WorldWideScience

Sample records for jupiter mass planet

  1. Accretion of Jupiter-mass planets in the limit of vanishing viscosity

    Energy Technology Data Exchange (ETDEWEB)

    Szulágyi, J.; Morbidelli, A.; Crida, A. [University of Nice-Sophia Antipolis, CNRS, Observatoire de la Côte d' Azur, Laboratoire Lagrange, F-06304, Nice (France); Masset, F., E-mail: jszulagyi@oca.eu [Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, P.O. Box 48-3, 62251 Cuernavaca, Morelos (Mexico)

    2014-02-20

    In the core-accretion model, the nominal runaway gas-accretion phase brings most planets to multiple Jupiter masses. However, known giant planets are predominantly Jupiter mass bodies. Obtaining longer timescales for gas accretion may require using realistic equations of states, or accounting for the dynamics of the circumplanetary disk (CPD) in the low-viscosity regime, or both. Here we explore the second way by using global, three-dimensional isothermal hydrodynamical simulations with eight levels of nested grids around the planet. In our simulations, the vertical inflow from the circumstellar disk (CSD) to the CPD determines the shape of the CPD and its accretion rate. Even without a prescribed viscosity, Jupiter's mass-doubling time is ∼10{sup 4} yr, assuming the planet at 5.2 AU and a Minimum Mass Solar Nebula. However, we show that this high accretion rate is due to resolution-dependent numerical viscosity. Furthermore, we consider the scenario of a layered CSD, viscous only in its surface layer, and an inviscid CPD. We identify two planet-accretion mechanisms that are independent of the viscosity in the CPD: (1) the polar inflow—defined as a part of the vertical inflow with a centrifugal radius smaller than two Jupiter radii and (2) the torque exerted by the star on the CPD. In the limit of zero effective viscosity, these two mechanisms would produce an accretion rate 40 times smaller than in the simulation.

  2. Final Masses of Giant Planets II: Jupiter Formation in a Gas-Depleted Disk

    CERN Document Server

    Tanigawa, Takayuki

    2015-01-01

    Firstly, we study the final masses of giant planets growing in protoplanetary disks through capture of disk gas, by employing an empirical formula for the gas capture rate and a shallow disk gap model, which are both based on hydrodynamical simulations. The shallow disk gaps cannot terminate growth of giant planets. For planets less massive than 10 Jupiter masses, their growth rates are mainly controlled by the gas supply through the global disk accretion, rather than their gaps. The insufficient gas supply compared with the rapid gas capture causes a depletion of the gas surface density even at the outside of the gap, which can create an inner hole in the protoplanetary disk. Our model can also predict the depleted gas surface density in the inner hole for a given planet mass. Secondly, our findings are applied to the formation of our solar system. For the formation of Jupiter, a very low-mass gas disk with a few or several Jupiter masses is required at the beginning of its gas capture because of the non-sto...

  3. No large population of unbound or wide-orbit Jupiter-mass planets

    Science.gov (United States)

    Mróz, Przemek; Udalski, Andrzej; Skowron, Jan; Poleski, Radosław; Kozłowski, Szymon; Szymański, Michał K.; Soszyński, Igor; Wyrzykowski, Łukasz; Pietrukowicz, Paweł; Ulaczyk, Krzysztof; Skowron, Dorota; Pawlak, Michał

    2017-08-01

    Planet formation theories predict that some planets may be ejected from their parent systems as result of dynamical interactions and other processes. Unbound planets can also be formed through gravitational collapse, in a way similar to that in which stars form. A handful of free-floating planetary-mass objects have been discovered by infrared surveys of young stellar clusters and star-forming regions as well as wide-field surveys, but these studies are incomplete for objects below five Jupiter masses. Gravitational microlensing is the only method capable of exploring the entire population of free-floating planets down to Mars-mass objects, because the microlensing signal does not depend on the brightness of the lensing object. A characteristic timescale of microlensing events depends on the mass of the lens: the less massive the lens, the shorter the microlensing event. A previous analysis of 474 microlensing events found an excess of ten very short events (1-2 days)—more than known stellar populations would suggest—indicating the existence of a large population of unbound or wide-orbit Jupiter-mass planets (reported to be almost twice as common as main-sequence stars). These results, however, do not match predictions of planet-formation theories and surveys of young clusters. Here we analyse a sample of microlensing events six times larger than that of ref. 11 discovered during the years 2010-15. Although our survey has very high sensitivity (detection efficiency) to short-timescale (1-2 days) microlensing events, we found no excess of events with timescales in this range, with a 95 per cent upper limit on the frequency of Jupiter-mass free-floating or wide-orbit planets of 0.25 planets per main-sequence star. We detected a few possible ultrashort-timescale events (with timescales of less than half a day), which may indicate the existence of Earth-mass and super-Earth-mass free-floating planets, as predicted by planet-formation theories.

  4. The SOPHIE search for northern extrasolar planets. III. A Jupiter-mass companion around HD 109246

    Science.gov (United States)

    Boisse, I.; Eggenberger, A.; Santos, N. C.; Lovis, C.; Bouchy, F.; Hébrard, G.; Arnold, L.; Bonfils, X.; Delfosse, X.; Desort, M.; Díaz, R. F.; Ehrenreich, D.; Forveille, T.; Gallenne, A.; Lagrange, A. M.; Moutou, C.; Udry, S.; Pepe, F.; Perrier, C.; Perruchot, S.; Pont, F.; Queloz, D.; Santerne, A.; Ségransan, D.; Vidal-Madjar, A.

    2010-11-01

    We report the detection of a Jupiter-mass planet discovered with the SOPHIE spectrograph mounted on the 1.93-m telescope at the Haute-Provence Observatory. The new planet orbits HD 109246, a G0V star slightly more metallic than the Sun. HD 109246b has a minimum mass of 0.77 MJup, an orbital period of 68 days, and an eccentricity of 0.12. It is placed in a sparsely populated region of the period distribution of extrasolar planets. We also present a correction method for the so-called seeing effect that affects the SOPHIE radial velocities. We complement this discovery announcement with a description of some calibrations that are implemented in the SOPHIE automatic reduction pipeline. These calibrations allow the derivation of the photon-noise radial velocity uncertainty and some useful stellar properties (v sin i, [Fe/H], log R’HK) directly from the SOPHIE data. Based on observations made with the SOPHIE spectrograph on the 1.93-m telescope at Observatoire de Haute-Provence (CNRS/OAMP), France (program 07A.PNP.CONS).RV tables (Tables C.1 and C.2) are only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/523/A88

  5. Dust Coagulation in the Vicinity of a Gap-Opening Jupiter-Mass Planet

    CERN Document Server

    Carballido, Augusto; Hyde, Truell W

    2015-01-01

    We analyze the coagulation of dust in and around a gap opened by a Jupiter-mass planet. To this end, we carry out a high-resolution magnetohydrodynamic (MHD) simulation of the gap environment, which is turbulent due to the magnetorotational instability. From the MHD simulation, we obtain values of the gas velocities, densities and turbulent stresses a) close to the gap edge, b) in one of the two gas streams that accrete onto the planet, c) inside the low-density gap, and d) outside the gap. The MHD values are then supplied to a Monte Carlo dust coagulation algorithm, which models grain sticking and compaction. We consider two dust populations for each region: one whose initial size distribution is monodisperse, with monomer radius equal to 1 $\\mu$m, and another one whose initial size distribution follows the Mathis-Rumpl-Nordsieck distribution for interstellar dust grains, with an initial range of monomer radii between 0.5 and 10 $\\mu$m. Our Monte Carlo calculations show initial growth of dust aggregates foll...

  6. Jupiter: Lord of the Planets.

    Science.gov (United States)

    Kaufmann, William

    1984-01-01

    Presents a chapter from an introductory college-level astronomy textbook in which full-color photographs and numerous diagrams highlight an extensive description of the planet Jupiter. Topics include Jupiter's geology, rotation, magnetic field, atmosphere (including clouds and winds), and the Great Red Spot. (DH)

  7. Two Jupiter-Mass Planets Orbiting HD 154672 and HD 205739

    CERN Document Server

    Lopez-Morales, Mercedes; Fischer, Debra A; Minniti, Dante; Shectman, Stephen A; Takeda, Genya; Adams, Fred C; Wright, Jason T; Arriagada, Pamela

    2008-01-01

    We report the detection of the first two planets from the N2K Doppler planet search program at the Magellan telescopes. The first planet has a mass of M sin i = 4.96 M_Jup and is orbiting the G3 IV star HD154672 with an orbital period of 163.9 days. The second planet is orbiting the F7 V star HD205739 with an orbital period of 279.8 days and has a mass of M sin i = 1.37 M_Jup. Both planets are in eccentric orbits, with eccentricities e = 0.61 and e = 0.27, respectively. Both stars are metal rich and appear to be chromospherically inactive, based on inspection of their Ca II H and K lines. Finally, the best Keplerian model fit to HD205739b shows a trend of 0.0649 m/s/day, suggesting the presence of an additional outer body in that system.

  8. WASP-26b: A 1-Jupiter-mass planet around an early-G-type star

    CERN Document Server

    Smalley, B; Cameron, A Collier; Gillon, M; Hellier, C; Lister, T A; Maxted, P F L; Queloz, D; Triaud, A H M J; West, R G; Bentley, S J; Enoch, B; Pepe, F; Pollacco, D L; Segransan, D; Smith, A M S; Southworth, J; Udry, S; Wheatley, P J; Wood, P L; Bento, J

    2010-01-01

    We report the discovery of WASP-26b, a moderately over-sized Jupiter-mass exoplanet transiting its 11.3-magnitude early-G-type host star (1SWASP J001824.70-151602.3; TYC 5839-876-1) every 2.7566 days. A simultaneous fit to transit photometry and radial-velocity measurements yields a planetary mass of 1.02 +/- 0.03 M_Jup and radius of 1.32 +/- 0.08 R_Jup. The host star, WASP-26, has a mass of 1.12 +/- 0.03 M_sun and a radius of 1.34 +/- 0.06 R_sun and is in a visual double with a fainter K-type star. The two stars are at least a common-proper motion pair with a common distance of around 250 +/- 15 pc and an age of 6 +/- 2 Gy.

  9. ECCENTRIC JUPITERS VIA DISK–PLANET INTERACTIONS

    Energy Technology Data Exchange (ETDEWEB)

    Duffell, Paul C.; Chiang, Eugene, E-mail: duffell@berkeley.edu, E-mail: echiang@astro.berkeley.edu [Department of Astronomy and Theoretical Astrophysics Center, University of California, Berkeley (United States)

    2015-10-20

    Numerical hydrodynamics calculations are performed to determine the conditions under which giant planet eccentricities can be excited by parent gas disks. Unlike in other studies, Jupiter-mass planets are found to have their eccentricities amplified—provided their orbits start off as eccentric. We disentangle the web of co-rotation, co-orbital, and external resonances to show that this finite-amplitude instability is consistent with that predicted analytically. Ellipticities can grow until they reach of order of the disk's aspect ratio, beyond which the external Lindblad resonances that excite eccentricity are weakened by the planet's increasingly supersonic epicyclic motion. Forcing the planet to still larger eccentricities causes catastrophic eccentricity damping as the planet collides into gap walls. For standard parameters, the range of eccentricities for instability is modest; the threshold eccentricity for growth (∼0.04) is not much smaller than the final eccentricity to which orbits grow (∼0.07). If this threshold eccentricity can be lowered (perhaps by non-barotropic effects), and if the eccentricity driving documented here survives in 3D, it may robustly explain the low-to-moderate eccentricities ≲0.1 exhibited by many giant planets (including Jupiter and Saturn), especially those without planetary or stellar companions.

  10. WASP-26b: a 1-Jupiter-mass planet around an early-G-type star

    Science.gov (United States)

    Smalley, B.; Anderson, D. R.; Collier Cameron, A.; Gillon, M.; Hellier, C.; Lister, T. A.; Maxted, P. F. L.; Queloz, D.; Triaud, A. H. M. J.; West, R. G.; Bentley, S. J.; Enoch, B.; Pepe, F.; Pollacco, D. L.; Segransan, D.; Smith, A. M. S.; Southworth, J.; Udry, S.; Wheatley, P. J.; Wood, P. L.; Bento, J.

    2010-09-01

    We report the discovery of WASP-26b, a moderately over-sized Jupiter-mass exoplanet transiting its 11.3-mag early-G-type host star (1SWASP J001824.70-151602.3; TYC 5839-876-1) every 2.7566 days. A simultaneous fit to transit photometry and radial-velocity measurements yields a planetary mass of 1.02 ± 0.03 MJup and radius of 1.32 ± 0.08 RJup. The host star, WASP-26, has a mass of 1.12 ± 0.03 M⊙ and a radius of 1.34 ± 0.06 R⊙ and is in a visual double with a fainter K-type star. The two stars are at least a common-proper motion pair with a common distance of around 250 ± 15 pc and an age of 6 ± 2 Gy. RV and photometric data are only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/520/A56

  11. KELT-10b and KELT-11b: Two Sub-Jupiter Mass Planets well-Suited for Atmospheric Characterization in the Southern Hemisphere

    Science.gov (United States)

    Rodriguez, Joseph E.

    2015-12-01

    The Kilodegree Extremely Little Telescope (KELT) project is a photometric survey in both the northern and southern hemispheres for transiting planets around bright stars (8 inflated transiting sub-Jupiter mass planet (0.68 MJ) around a V=10.7 early G-star. It has the 3rd deepest transit (1.4%) in the southern hemisphere for a star V target for transmission spectroscopy. KELT-11b is a highly inflated transiting Saturn mass planet (0.22 MJ) orbiting one of the brightest planet-hosting stars in the southern hemisphere. Interestingly, KELT-11b's host star is a clear sub-giant star (log(g) ~ 3.7). I will discuss their impact for atmospheric characterization. For example, the highly inflated nature of the KELT-11b planet provides the ability to study a sub-Jupiter atmosphere at very low planetary gravity, while the sub-giant nature of its host star allows us to study the effects of post main sequence evolution of a host star on a hot Jupiter.

  12. Astronomers find distant planet like Jupiter

    CERN Multimedia

    2003-01-01

    Astronomers searching for planetary systems like our solar system have found a planet similar to Jupiter orbiting a nearby star similar to our Sun, about 90 light-years from Earth, according to researchers (1/2 page).

  13. KOI-183b: a half-Jupiter mass planet transiting a very old solar-like star

    CERN Document Server

    Gandolfi, D; Deeg, H J; Lanza, A F; Fridlund, M; Moroni, P G Prada; Alonso, R; Augusteijn, T; Cabrera, J; Evans, T; Geier, S; Hatzes, A P; Holczer, T; Hoyer, S; Kangas, T; Mazeh, T; Pagano, I; Tal-Or, L; Tingley, B

    2014-01-01

    We report the spectroscopic confirmation of the Kepler object of interest KOI-183b (also known as KOI-183.01), a half-Jupiter mass planet transiting an old solar-like star every 2.7 days. Our analysis is the first to combine the full Kepler photometry (quarters 1-17) with high-precision radial velocity measurements taken with the FIES spectrograph at the Nordic Optical Telescope. We simultaneously modelled the photometric and spectroscopic data-sets using Bayesian approach coupled with Markov chain Monte Carlo sampling. We found that the Kepler pre-search data conditioned (PDC) light curve of KOI-183 exhibits quarter-to-quarter systematic variations of the transit depth, with a peak-to-peak amplitude of about 4.3 % and seasonal trends reoccurring every four quarters. We attributed these systematics to an incorrect assessment of the quarterly variation of the crowding metric. The host star KOI-183 is a G4 dwarf with $M_\\star=0.85\\pm0.04$ M$_\\rm{Sun}$, $R_\\star=0.95\\pm0.04$ R$_\\rm{Sun}$, $T_\\mathrm{eff}=5560\\pm...

  14. Kepler constraints on planets near hot Jupiters

    Energy Technology Data Exchange (ETDEWEB)

    Steffen, Jason H.; /Fermilab; Ragozzine, Darin; /Harvard-Smithsonian Ctr. Astrophys.; Fabrycky, Daniel C.; /UC, Santa Cruz, Astron. Astrophys.; Carter, Joshua A.; /Harvard-Smithsonian Ctr. Astrophys.; Ford, Eric B.; /Florida U.; Holman, Matthew J.; /Harvard-Smithsonian Ctr. Astrophys.; Rowe, Jason F.; /NASA, Ames; Welsh, William F.; /San Diego State U., Astron. Dept.; Borucki, William J.; /NASA, Ames; Boss, Alan P.; /Carnegie Inst., Wash., D.C., DTM; Ciardi, David R.; /Caltech /Harvard-Smithsonian Ctr. Astrophys.

    2012-05-01

    We present the results of a search for planetary companions orbiting near hot Jupiter planet candidates (Jupiter-size candidates with orbital periods near 3 d) identified in the Kepler data through its sixth quarter of science operations. Special emphasis is given to companions between the 2:1 interior and exterior mean-motion resonances. A photometric transit search excludes companions with sizes ranging from roughly two-thirds to five times the size of the Earth, depending upon the noise properties of the target star. A search for dynamically induced deviations from a constant period (transit timing variations) also shows no significant signals. In contrast, comparison studies of warm Jupiters (with slightly larger orbits) and hot Neptune-size candidates do exhibit signatures of additional companions with these same tests. These differences between hot Jupiters and other planetary systems denote a distinctly different formation or dynamical history.

  15. Kepler constraints on planets near hot Jupiters

    CERN Document Server

    Steffen, Jason H; Fabrycky, Daniel C; Carter, Joshua A; Ford, Eric B; Holman, Matthew J; Rowe, Jason F; Welsh, William F; Borucki, William J; Boss, Alan P; Ciardi, David R; Quinn, Samuel N

    2012-01-01

    We present the results of a search for planetary companions orbiting near hot Jupiter planet candidates (Jupiter-size candidates with orbital periods near 3 days) identified in the Kepler data through its sixth quarter of science operations. Special emphasis is given to companions between the 2:1 interior and exterior mean-motion resonances. A photometric transit search excludes companions with sizes ranging from roughly 2/3 to 5 times the size of the Earth, depending upon the noise properties of the target star. A search for dynamically induced deviations from a constant period (transit timing variations or TTVs) also shows no significant signals. In contrast, comparison studies of warm Jupiters (with slightly larger orbits) and hot Neptune-size candidates do exhibit signatures of additional companions with these same tests. These differences between hot Jupiters and other planetary systems denote a distinctly different formation or dynamical history.

  16. Kepler constraints on planets near hot Jupiters.

    Science.gov (United States)

    Steffen, Jason H; Ragozzine, Darin; Fabrycky, Daniel C; Carter, Joshua A; Ford, Eric B; Holman, Matthew J; Rowe, Jason F; Welsh, William F; Borucki, William J; Boss, Alan P; Ciardi, David R; Quinn, Samuel N

    2012-05-22

    We present the results of a search for planetary companions orbiting near hot Jupiter planet candidates (Jupiter-size candidates with orbital periods near 3 d) identified in the Kepler data through its sixth quarter of science operations. Special emphasis is given to companions between the 21 interior and exterior mean-motion resonances. A photometric transit search excludes companions with sizes ranging from roughly two-thirds to five times the size of the Earth, depending upon the noise properties of the target star. A search for dynamically induced deviations from a constant period (transit timing variations) also shows no significant signals. In contrast, comparison studies of warm Jupiters (with slightly larger orbits) and hot Neptune-size candidates do exhibit signatures of additional companions with these same tests. These differences between hot Jupiters and other planetary systems denote a distinctly different formation or dynamical history.

  17. There might be giants: unseen Jupiter-mass planets as sculptors of tightly-packed planetary systems

    CERN Document Server

    Hands, T O

    2015-01-01

    The limited completeness of the Kepler sample for planets with orbital periods $\\gtrsim$ 1 yr leaves open the possibility that exoplanetary systems may host undetected giant planets. Should such planets exist, their dynamical interactions with the inner planets may prove vital in sculpting the final orbital configurations of these systems. Using an $N$-body code with additional forces to emulate the effects of a protoplanetary disc, we perform simulations of the assembly of compact systems of super-Earth-mass planets with unseen giant companions. The simulated systems are analogous to Kepler-11 or Kepler-32 in that they contain 4 or 5 inner super-Earths, but our systems also contain longer-period giant companions which are unlikely to have been detected by Kepler. We find that giant companions tend to break widely-spaced, first-order mean-motion resonances, allowing the inner planets to migrate into tighter resonances. This leads to more compact architectures and increases the occurrence rate of Laplace reson...

  18. Warm Jupiters from secular planet-planet interactions

    CERN Document Server

    Petrovich, Cristobal

    2016-01-01

    Most warm Jupiters (gas-giant planets with $0.1~{\\rm AU}\\lesssim a \\lesssim1$ AU) have pericenter distances that are too large for significant orbital migration by tidal friction. We study the possibility that the warm Jupiters are undergoing secular eccentricity oscillations excited by an outer companion (a planet or star) in an eccentric and/or mutually inclined orbit. In this model the warm Jupiters migrate periodically, in the high-eccentricity phase of the oscillation when the pericenter distance is small, but are typically observed at much lower eccentricities. We show that the steady-state eccentricity distribution of the warm Jupiters migrating by this mechanism is approximately flat, which is consistent with the observed distribution if and only if we restrict the sample to warm Jupiters that have outer companions detected by radial-velocity surveys. The eccentricity distribution of warm Jupiters without companions exhibits a peak at low eccentricities ($e\\lesssim 0.2$) that must be explained by a di...

  19. Exploring the diversity of Jupiter-class planets.

    Science.gov (United States)

    Fletcher, Leigh N; Irwin, Patrick G J; Barstow, Joanna K; de Kok, Remco J; Lee, Jae-Min; Aigrain, Suzanne

    2014-04-28

    Of the 900+ confirmed exoplanets discovered since 1995 for which we have constraints on their mass (i.e. not including Kepler candidates), 75% have masses larger than Saturn (0.3 MJ), 53% are more massive than Jupiter and 67% are within 1 AU of their host stars. When Kepler candidates are included, Neptune-sized giant planets could form the majority of the planetary population. And yet the term 'hot Jupiter' fails to account for the incredible diversity of this class of astrophysical object, which exists on a continuum of giant planets from the cool jovians of our own Solar System to the highly irradiated, tidally locked hot roasters. We review theoretical expectations for the temperatures, molecular composition and cloud properties of hydrogen-dominated Jupiter-class objects under a variety of different conditions. We discuss the classification schemes for these Jupiter-class planets proposed to date, including the implications for our own Solar System giant planets and the pitfalls associated with compositional classification at this early stage of exoplanetary spectroscopy. We discuss the range of planetary types described by previous authors, accounting for (i) thermochemical equilibrium expectations for cloud condensation and favoured chemical stability fields; (ii) the metallicity and formation mechanism for these giant planets; (iii) the importance of optical absorbers for energy partitioning and the generation of a temperature inversion; (iv) the favoured photochemical pathways and expectations for minor species (e.g. saturated hydrocarbons and nitriles); (v) the unexpected presence of molecules owing to vertical mixing of species above their quench levels; and (vi) methods for energy and material redistribution throughout the atmosphere (e.g. away from the highly irradiated daysides of close-in giants). Finally, we discuss the benefits and potential flaws of retrieval techniques for establishing a family of atmospheric solutions that reproduce the

  20. WASP-54b, WASP-56b and WASP-57b: Three new sub-Jupiter mass planets from SuperWASP

    CERN Document Server

    Faedi, F; Barros, S C C; Brown, D; Cameron, A Collier; Doyle, A P; Gillon, M; Chew, Y Gomez Maqueo; Hebrard, G; Lendl, M; Liebig, C; Smalley, B; Triaud, A H M J; West, R G; Wheatley, P J; Alsubai, K A; Anderson, D R; Armstrong, D J; Bento, J; Bochinski, J; Bouchy, F; Busuttil, R; Fossati, L; Fumel, A; Haswell, C A; Hellier, C; Holmes, S; Jehin, E; Kolb, U; McCormac, J; Miller, G R M; Moutou, C; Norton, A J; Parley, N; Queloz, D; Skillen, I; Smith, A M S; Udry, S; Watson, C

    2012-01-01

    We present three newly discovered sub-Jupiter mass planets from the SuperWASP survey: WASP-54b is a heavily bloated planet of mass 0.636$^{+0.025}_{-0.024}$ \\mj and radius 1.653$^{+0.090}_{-0.083}$ \\rj. It orbits a F9 star, evolving off the main sequence, every 3.69 days. Our MCMC fit of the system yields a slightly eccentric orbit ($e=0.067^{+0.033}_{-0.025}$) for WASP-54b. We investigated further the veracity of our detection of the eccentric orbit for WASP-54b, and we find that it could be real. However, given the brightness of WASP-54 V=10.42 magnitudes, we encourage observations of a secondary eclipse to draw robust conclusions on both the orbital eccentricity and the thermal structure of the planet. WASP-56b and WASP-57b have masses of 0.571$^{+0.034}_{-0.035}$ \\mj and $0.672^{+0.049}_{-0.046}$ \\mj, respectively; and radii of $1.092^{+0.035}_{-0.033}$ \\rj for WASP-56b and $0.916^{+0.017}_{-0.014}$ \\rj for WASP-57b. They orbit main sequence stars of spectral type G6 every 4.67 and 2.84 days, respectively...

  1. Can Terrestrial Planets Form in Hot-Jupiter Systems?

    CERN Document Server

    Fogg, Martyn J

    2007-01-01

    Models of terrestrial planet formation in the presence of a migrating giant planet have challenged the notion that hot-Jupiter systems lack terrestrial planets. We briefly review this issue and suggest that hot-Jupiter systems should be prime targets for future observational missions designed to detect Earth-sized and potentially habitable worlds.

  2. Structures of the Planets Jupiter and Saturn

    CERN Document Server

    Kerley, Gerald I

    2013-01-01

    New equations of state (EOS) for hydrogen, helium, and compounds containing heavier elements are used to construct models for the structures of the planets Jupiter and Saturn. Good agreement with the gravitational moments J2 and J4 is obtained with a model that uses a two-layer gas envelope, in which the inner region is denser than the outer one, together with a small, dense core. It is possible to match J2 with a homogeneous envelope, but an envelope with a denser inner region is needed to match both moments. The two-layer envelope also gives good agreement with the global oscillation data for Jupiter. In Jupiter, the boundary between the inner and outer envelopes occurs at 319 GPa, with an 8% density increase. In Saturn, it occurs at 227 GPa, with a 69% density increase. The differences between the two planets show that the need for a density increase is not due to EOS errors. It is also shown that helium enrichment cannot be the cause of the density increase. The phenomenon can be explained as the result o...

  3. Could Jupiter or Saturn Have Ejected a Fifth Giant Planet?

    CERN Document Server

    Cloutier, Ryan; Valencia, Diana

    2015-01-01

    Models of the dynamical evolution of the early solar system following the dispersal of the gaseous protoplanetary disk have been widely successful in reconstructing the current orbital configuration of the giant planets. Statistically, some of the most successful dynamical evolution simulations have initially included a hypothetical fifth giant planet, of ice giant mass, which gets ejected by a gas giant during the early solar system's proposed instability phase. We investigate the likelihood of an ice giant ejection event by either Jupiter or Saturn through constraints imposed by the current orbits of their wide-separation regular satellites Callisto and Iapetus respectively. We show that planetary encounters that are sufficient to eject an ice giant, often provide excessive perturbations to the orbits of Callisto and Iapetus making it difficult to reconcile a planet ejection event with the current orbit of either satellite. Quantitatively, we compute the likelihood of reconciling a regular Jovian satellite ...

  4. Study of Power Options for Jupiter and Outer Planet Missions

    Science.gov (United States)

    Landis, Geoffrey A.; Fincannon, James

    2015-01-01

    Power for missions to Jupiter and beyond presents a challenging goal for photovoltaic power systems, but NASA missions including Juno and the upcoming Europa Clipper mission have shown that it is possible to operate solar arrays at Jupiter. This work analyzes photovoltaic technologies for use in Jupiter and outer planet missions, including both conventional arrays, as well as analyzing the advantages of advanced solar cells, concentrator arrays, and thin film technologies. Index Terms - space exploration, spacecraft solar arrays, solar electric propulsion, photovoltaic cells, concentrator, Fresnel lens, Jupiter missions, outer planets.

  5. The Solar Twin Planet Search II. A Jupiter twin around a solar twin

    CERN Document Server

    Bedell, M; Bean, J L; Ramirez, I; Asplund, M; Alves-Brito, A; Casagrande, L; Dreizler, S; Monroe, T; Spina, L; Maia, M Tucci

    2015-01-01

    Through our HARPS radial velocity survey for planets around solar twin stars, we have identified a promising Jupiter twin candidate around the star HIP11915. We characterize this Keplerian signal and investigate its potential origins in stellar activity. Our analysis indicates that HIP11915 hosts a Jupiter-mass planet with a 3600-day orbital period and low eccentricity. Although we cannot definitively rule out an activity cycle interpretation, we find that a planet interpretation is more likely based on a joint analysis of RV and activity index data. The challenges of long-period radial velocity signals addressed in this paper are critical for the ongoing discovery of Jupiter-like exoplanets. If planetary in nature, the signal investigated here represents a very close analog to the solar system in terms of both Sun-like host star and Jupiter-like planet.

  6. Microlensing constraints on the frequency of Jupiter-mass companions : Analysis of 5 years of PLANET photometry

    NARCIS (Netherlands)

    Gaudi, BS; Albrow, MD; An, J; Beaulieu, JP; Caldwell, JAR; DePoy, DL; Dominik, M; Gould, A; Greenhill, J; Hill, K; Kane, S; Martin, R; Menzies, J; Naber, RM; Pel, JW; Pogge, RW; Pollard, KR; Sackett, PD; Sahu, KC; Vermaak, P; Watson, R; Williams, A

    2002-01-01

    We analyze 5 years of PLANET photometry of microlensing events toward the Galactic bulge to search for the short-duration deviations from single-lens light curves that are indicative of the presence of planetary companions to the primary microlenses. Using strict event-selection criteria, we constru

  7. Pan-Planets: Searching for hot Jupiters around cool dwarfs

    Science.gov (United States)

    Obermeier, C.; Koppenhoefer, J.; Saglia, R. P.; Henning, Th.; Bender, R.; Kodric, M.; Deacon, N.; Riffeser, A.; Burgett, W.; Chambers, K. C.; Draper, P. W.; Flewelling, H.; Hodapp, K. W.; Kaiser, N.; Kudritzki, R.-P.; Magnier, E. A.; Metcalfe, N.; Price, P. A.; Sweeney, W.; Wainscoat, R. J.; Waters, C.

    2016-03-01

    The Pan-Planets survey observed an area of 42 sq deg. in the galactic disk for about 165 h. The main scientific goal of the project is the detection of transiting planets around M dwarfs. We establish an efficient procedure for determining the stellar parameters Teff and log g of all sources using a method based on SED fitting, utilizing a three-dimensional dust map and proper motion information. In this way we identify more than 60 000 M dwarfs, which is by far the largest sample of low-mass stars observed in a transit survey to date. We present several planet candidates around M dwarfs and hotter stars that are currently being followed up. Using Monte Carlo simulations we calculate the detection efficiency of the Pan-Planets survey for different stellar and planetary populations. We expect to find 3.0+3.3-1.6 hot Jupiters around F, G, and K dwarfs with periods lower than 10 days based on the planet occurrence rates derived in previous surveys. For M dwarfs, the percentage of stars with a hot Jupiter is under debate. Theoretical models expect a lower occurrence rate than for larger main sequence stars. However, radial velocity surveys find upper limits of about 1% due to their small sample, while the Kepler survey finds a occurrence rate that we estimate to be at least 0.17b(+0.67-0.04) %, making it even higher than the determined fraction from OGLE-III for F, G and K stellar types, 0.14 (+0.15-0.076) %. With the large sample size of Pan-Planets, we are able to determine an occurrence rate of 0.11 (+0.37-0.02) % in case one of our candidates turns out to be a real detection. If, however, none of our candidates turn out to be true planets, we are able to put an upper limit of 0.34% with a 95% confidence on the hot Jupiter occurrence rate of M dwarfs. This limit is a significant improvement over previous estimates where the lowest limit published so far is 1.1% found in the WFCAM Transit Survey. Therefore we cannot yet confirm the theoretical prediction of a lower

  8. Pan-Planets: Searching for hot Jupiters around cool dwarfs

    CERN Document Server

    Obermeier, C; Saglia, R P; Henning, Th; Bender, R; Kodric, M; Deacon, N; Riffeser, A; Burgett, W; Chambers, K C; Draper, P W; Flewelling, H; Hodapp, K W; Kaiser, N; Kudritzki, R -P; Magnier, E A; Metcalfe, N; Price, P A; Sweeney, W; Wainscoat, R J; Waters, C

    2015-01-01

    The Pan-Planets survey observed an area of 42 sq deg. in the galactic disk for about 165 hours. The main scientific goal of the project is the detection of transiting planets around M dwarfs. We establish an efficient procedure for determining the stellar parameters $T_{eff}$ and log$g$ of all sources using a method based on SED fitting, utilizing a three-dimensional dust map and proper motion information. In this way we identify more than 60000 M dwarfs, which is by far the largest sample of low-mass stars observed in a transit survey to date. We present several planet candidates around M dwarfs and hotter stars that are currently being followed up. Using Monte-Carlo simulations we calculate the detection efficiency of the Pan-Planets survey for different stellar and planetary populations. We expect to find $3.0^{+3.3}_{-1.6}$ hot Jupiters around F, G, and K dwarfs with periods lower than 10 days based on the planet occurrence rates derived in previous surveys. For M dwarfs, the percentage of stars with a ho...

  9. Warm Jupiters from Secular Planet–Planet Interactions

    Science.gov (United States)

    Petrovich, Cristobal; Tremaine, Scott

    2016-10-01

    Most warm Jupiters (gas-giant planets with 0.1 {{au}}≲ a≲ 1 au) have pericenter distances that are too large for significant orbital migration by tidal friction. We study the possibility that the warm Jupiters are undergoing secular eccentricity oscillations excited by an outer companion (a planet or star) in an eccentric and/or mutually inclined orbit. In this model, the warm Jupiters migrate periodically, in the high-eccentricity phase of the oscillation, but are typically observed at lower eccentricities. We show that in this model the steady-state eccentricity distribution of the warm Jupiters is approximately flat, which is consistent with the observed distribution if we restrict the sample to warm Jupiters with detected outer planetary companions. The eccentricity distribution of warm Jupiters without companions exhibits a peak at e≲ 0.2 that must be explained by a different formation mechanism. Based on a population synthesis study, we find that high-eccentricity migration excited by an outer planetary companion (1) can account for ∼ 20 % of the warm Jupiters and most of the warm Jupiters with e≳ 0.4; and (2) can produce most of the observed population of hot Jupiters, with a semimajor axis distribution that matches the observations, but fails to account adequately for ∼ 60 % of hot Jupiters with projected obliquities ≲ 20^\\circ . Thus ∼ 20 % of the warm Jupiters and ∼ 60 % of the hot Jupiters can be produced by high-eccentricity migration. We also provide predictions for the expected mutual inclinations and spin-orbit angles of the planetary systems with hot and warm Jupiters produced by high-eccentricity migration.

  10. Properties of the short period CoRoT-planet population II: The impact of loss processes on planet masses from Neptunes to Jupiters

    CERN Document Server

    Lammer, H; Wuchterl, G; Lichtenegger, H I M; Khodachenko, M L; Kulikov, Y N; Micela, G; Lammer, Helmut; Kulikov, Yu. N.

    2007-01-01

    The orbital distance at which close-in exoplanets maintain their initial mass is investigated by modelling the maximum expected thermal and nonthermal mass loss rates over several Gyr. Depending on an exosphere formation time and the evolution of the stellar X-ray and EUV flux we expect that thermal evaporation at orbital distances less than 0.05 AU may be an efficient loss process for hydrogen-rich exoplanets with masses less than 0.25 MJup. Our results indicate that nonthermal mass loss induced by Coronal Mass Ejections of the host star can significantly erode weakly magnetized short periodic gas giants. The observed exoplanets Gliese 876d at 0.0208 AU with a mass of about 0.033 MJup and 55 Cnc e at 0.045 AU with a mass of about 0.038 MJup could be strongly eroded gas giants, while HD69830b, at 0.078 AU, HD160691d at 0.09 AU and HD69830c at 0.18 AU belonged most likely since their origin to the Neptune-mass domain. The consequences for the planetary population predicted in paper I (Wuchterl et al. 2006) for...

  11. Effects of Collisions with Rocky Planets on the Properties of Hot Jupiters

    CERN Document Server

    Anderson, Kassandra R

    2012-01-01

    Observed Hot Jupiters exhibit a wide range of physical properties. For a given mass, many planets have inflated radii, while others are surprisingly compact and may harbor large central cores. Motivated by the observational sample, this paper considers possible effects from collisions of smaller rocky planets with gas giant planets. In this scenario, the Jovian planets migrate first and enter into (approximately) 4 day orbits, whereas rocky planets (mass = 0.1-20 that of Earth) migrate later and then encounter the gaseous giants. Previous work indicates that the collision rates are high for such systems. This paper calculates the trajectories of incoming rocky planets as they orbit within the gaseous planets and are subjected to gravitational, frictional, and tidal forces. These collisions always increase the metallicity of the Jovian planets. If the incoming rocky bodies survive tidal destruction and reach the central regions, they provide a means of producing large planetary cores. Both the added metallicit...

  12. Tilting Saturn without tilting Jupiter: Constraints on giant planet migration

    CERN Document Server

    Brasser, R

    2015-01-01

    The migration and encounter histories of the giant planets in our Solar System can be constrained by the obliquities of Jupiter and Saturn. We have performed secular simulations with imposed migration and N-body simulations with planetesimals to study the expected obliquity distribution of migrating planets with initial conditions resembling those of the smooth migration model, the resonant Nice model and two models with five giant planets initially in resonance (one compact and one loose configuration). For smooth migration, the secular spin-orbit resonance mechanism can tilt Saturn's spin axis to the current obliquity if the product of the migration time scale and the orbital inclinations is sufficiently large (exceeding 30 Myr deg). For the resonant Nice model with imposed migration, it is difficult to reproduce today's obliquity values, because the compactness of the initial system raises the frequency that tilts Saturn above the spin precession frequency of Jupiter, causing a Jupiter spin-orbit resonance...

  13. I0-Jupiter system A unique case of Moon-Planet interaction

    CERN Document Server

    Bhardwaj, A I

    2002-01-01

    Io and Jupiter constitute a moon-planet system that is unique in our solar system. Io is the most volcanically active planetary body, while Jupiter is the first among the planets in terms of size, mass, magnetic field strength, spin rate, and volume of the magnetosphere. That Io is electrodynamically linked to Jupiter is known for nearly four decades from the radio emissions. Io influences Jupiter by supplying heavy ions to its magnetosphere, which dominates its energetic and dynamics. Jupiter influences Io by tidally heating its interior, which in turn drives the volcanic activity on Io. The role of Io and Jupiter in their mutual interaction and the nature of their coupling were first elaborated in greater detail by the two Voyagers flybys in 1979. Subsequent exploration of this system by ground-based and Earth-satellite-borne observatories and by the Galileo orbiter mission has improved our understanding of the highly complex electrodynamical interaction between Io and Jupiter many fold. A distinct feature ...

  14. On the Detection of Non-Transiting Hot Jupiters in Multiple-Planet Systems

    CERN Document Server

    Millholland, Sarah; Laughlin, Gregory

    2016-01-01

    We outline a photometric method for detecting the presence of a non-transiting short-period giant planet in a planetary system harboring one or more longer period transiting planets. Within a prospective system of the type that we consider, a hot Jupiter on an interior orbit inclined to the line-of-sight signals its presence through approximately sinusoidal full-phase photometric variations in the stellar light curve, correlated with astrometrically induced transit timing variations for exterior transiting planets. Systems containing a hot Jupiter along with a low-mass outer planet or planets on inclined orbits are a predicted hallmark of in situ accretion for hot Jupiters, and their presence can thus be used to test planetary formation theories. We outline the prospects for detecting non-transiting hot Jupiters using photometric data from typical Kepler objects of interest (KOIs). As a demonstration of the technique, we perform a brief assessment of Kepler candidates and identify a potential non-transiting h...

  15. A Hot Jupiter for Breakfast? Early Stellar Ingestion of Planets May Be Common

    Science.gov (United States)

    Matsakos, Titos; Königl, Arieh

    2015-08-01

    Models of planet formation and evolution predict that giant planets form efficiently in protoplanetary disks, that most of these migrate rapidly to the disk’s inner edge, and that, if the arriving planet’s mass is ≲ Jupiter’s mass, then it could remain stranded near that radius. We argue that such planets would be ingested by tidal interaction with the host star on a timescale ≲ 1 Gyr, and that, in the case of a solar-type host, this would cause the stellar spin to approach the direction of the ingested planet’s orbital axis even if the two were initially highly misaligned. Primordially misaligned stars whose effective temperatures are ≳ 6250 K cannot be realigned in this way because, in contrast with solar-type hosts, their angular momenta are typically higher than the orbital angular momentum of the ingested planet as a result of inefficient magnetic braking and of a comparatively large moment of inertia. Hot Jupiters located farther out from the star can contribute to this process, but their effect is weaker because the tidal interaction strength decreases rapidly with increasing semimajor axis. We demonstrate that, if ∼ 50% of planetary systems harbored a stranded hot Jupiter, this scenario can in principle account for (1) the good alignment exhibited by planets around cool stars irrespective of the planet’s mass or orbital period, (2) the prevalence of misaligned planets around hot stars, (3) the apparent upper bound on the mass of hot Jupiters on retrograde orbits, and (4) the inverse correlation between stellar spin periods and hot-Jupiter masses.

  16. Three sub-Jupiter-mass planets: WASP-69b & WASP-84b transit active K dwarfs and WASP-70Ab transits the evolved primary of a G4+K3 binary

    CERN Document Server

    Anderson, D R; Delrez, L; Doyle, A P; Faedi, F; Fumel, A; Gillon, M; Chew, Y Gómez Maqueo; Hellier, C; Jehin, E; Lendl, M; Maxted, P F L; Pepe, F; Pollacco, D; Queloz, D; Ségransan, D; Skillen, I; Smalley, B; Smith, A M S; Southworth, J; Triaud, A H M J; Turner, O D; Udry, S; West, R G

    2013-01-01

    We report the discovery of the transiting exoplanets WASP-69b, WASP-70Ab and WASP-84b, each of which orbits a bright star (V~10). WASP-69b is a bloated Saturn-mass planet (0.26 M$_{\\rm Jup}$, 1.06 R$_{\\rm Jup}$) in a 3.868-d period around an active mid-K dwarf. We estimate a stellar age of 1 Gyr from both gyrochronological and age-activity relations, though an alternative gyrochronological relation suggests an age of 3 Gyr. ROSAT detected X-rays at a distance of 60$\\pm$27 arcsec from WASP-69. If the star is the source then the planet could be undergoing mass-loss at a rate of ~10$^{12}$ g s$^{-1}$. This is 1-2 orders of magnitude higher than the evaporation rate estimated for HD 209458b and HD 189733b, both of which have exhibited anomalously-large Lyman-{\\alpha} absorption during transit. WASP-70Ab is a sub-Jupiter-mass planet (0.59 M$_{\\rm Jup}$, 1.16R$_{\\rm Jup}$) in a 3.713-d orbit around the primary of a spatially-resolved G4+K3 binary, with a separation of 3.3 arcsec ($\\geq$800 AU). We exploit the binar...

  17. Disk Accretion Onto High-Mass Planets

    CERN Document Server

    Lubow, S H; Artymowicz, P

    1999-01-01

    We analyze the nonlinear, two-dimensional response of a gaseous, viscous protoplanetary disk to the presence of a planet of one Jupiter mass (1 M_J) and greater that orbits a 1 solar mass star by using the ZEUS hydrodynamics code with high resolution near the planet's Roche lobe. The planet is assumed to be in a circular orbit about the central star and is not allowed to migrate. A gap is formed about the orbit of the planet, but there is a nonaxisymmetric flow through the gap and onto the planet. The gap partitions the disk into an inner (outer) disk that extends inside (outside) the planet's orbit. For a 1 M_J planet and typical disk parameters, the accretion through the gap onto the planet is highly efficient. For typical disk parameters, the mass doubling time scale is less than 10^5 years, considerably shorter than the disk lifetime. Following shocks near the L1 and L2 Lagrange points, disk material enters the Roche lobe in the form of two gas streams. Shocks occur within the Roche lobe as the gas stream...

  18. The Anglo-Australian Planet Search. XXIII. Two New Jupiter Analogs

    CERN Document Server

    Wittenmyer, Robert A; Tinney, C G; Butler, R P; Jones, H R A; Tuomi, Mikko; Salter, G S; Carter, B D; Koch, F Elliott; O'Toole, S J; Bailey, J; Wright, D

    2014-01-01

    We report the discovery of two long-period giant planets from the Anglo-Australian Planet Search. HD 154857c is in a multiple-planet system, while HD 114613b appears to be solitary. HD 114613b has an orbital period P=10.5 years, and a minimum mass m sin i of 0.48 Jupiter masses; HD 154857c has P=9.5 years and m sin i=2.6 Jupiter masses. These new data confirm the planetary nature of the previously unconstrained long-period object in the HD 154857 system. We have performed detailed dynamical stability simulations which show that the HD 154857 two-planet system is stable on timescales of at least 100 million years. These results highlight the continued importance of "legacy" surveys with long observational baselines; these ongoing campaigns are critical for determining the population of Jupiter analogs, and hence of those planetary systems with architectures most like our own Solar system.

  19. Exploring the Diversity of Jupiter-Class Planets (Discussion Meeting Contribution)

    CERN Document Server

    Fletcher, Leigh N; Barstow, Joanna K; de Kok, Remco J; Lee, Jae-Min; Aigrain, Suzanne

    2014-01-01

    Royal Society Discussion Meeting (2013) `Characterizing exoplanets'. Of the 900+ confirmed exoplanets discovered since 1995 for which we have constraints on their mass (i.e., not including Kepler candidates), 75% have masses larger than Saturn (0.3MJ), 53% are more massive than Jupiter, and 67% are within 1 AU of their host stars. And yet the term `hot Jupiter' fails to account for the incredible diversity of this class of object, which exists on a continuum of giant planets from the cool jovians of our own solar system to the highly-irradiated, tidally-locked hot roasters. We review theoretical expectations for the temperatures, molecular composition and cloud properties of Jupiter-class objects under a variety of different conditions. We discuss the classification schemes for these Jupiter-class planets proposed to date, including the implications for our own Solar System giant planets and the pitfalls associated with classification at this early stage of exoplanetary spectroscopy. We discuss the range of p...

  20. Jupiter

    CERN Document Server

    Penne, Barbra

    2017-01-01

    Our solar system's largest planet is huge enough that all of the system's other planets could fit inside it. Although Jupiter has been known since ancient times, scientists are still learning exciting new information about the planet and its satellites today. In fact, several of its moons are now believed to have oceans below their icy surfaces. Chapters focus on topics such as Jupiter's orbit and rotation, rings, atmosphere, and moons, as well as on the space missions that have helped us get a closer look at the planet and its moons over the past decades.

  1. A hot Jupiter for breakfast? --- Early stellar ingestion of planets may be common

    CERN Document Server

    Matsakos, Titos

    2015-01-01

    Models of planet formation and evolution predict that giant planets form efficiently in protoplanetary disks, that most of these migrate rapidly to the disk's inner edge, and that, if the arriving planet's mass is $\\lesssim$ Jupiter's mass, it could remain stranded near that radius. We argue that such planets would be ingested by tidal interaction with the host star on a timescale $\\lesssim1\\,$Gyr, and that, in the case of a solar-type host, this would cause the stellar spin to approach the direction of the ingested planet's orbital axis even if the two were initially highly misaligned. Primordially misaligned stars whose effective temperatures are $\\gtrsim6250\\,$K cannot be realigned in this way because, in contrast with solar-type hosts, their angular momenta are typically higher than the orbital angular momentum of the ingested planet as a result of inefficient magnetic braking and of a comparatively large moment of inertia. Hot Jupiters located farther out from the star can contribute to this process, but...

  2. Hot Jupiters with relatives: discovery of additional planets in orbit around WASP-41 and WASP-47

    CERN Document Server

    Neveu-VanMalle, M; Anderson, D R; Brown, D J A; Cameron, A Collier; Delrez, L; Díaz, R F; Gillon, M; Hellier, C; Jehin, E; Lister, T; Pepe, F; Rojo, P; Ségransan, D; Triaud, A H M J; Turner, O D; Udry, S

    2015-01-01

    We report the discovery of two additional planetary companions to WASP-41 and WASP-47. WASP-41 c is a planet of minimum mass 3.18 $\\pm$ 0.20 M$_{\\rm Jup}$, eccentricity 0.29 $\\pm$ 0.02 and orbiting in 421 $\\pm$ 2 days. WASP-47 c is a planet of minimum mass 1.24 $\\pm$ 0.22 M$_{\\rm Jup}$, eccentricity 0.13 $\\pm$ 0.10 and orbiting in 572 $\\pm$ 7 days. Unlike most of the planetary systems including a hot Jupiter, these two systems with a hot Jupiter have a long period planet located at only $\\sim$1 AU from their host star. WASP-41 is a rather young star known to be chromospherically active. To differentiate its magnetic cycle from the radial velocity effect due the second planet, we use the emission in the H$\\alpha$ line and find this indicator well suited to detect the stellar activity pattern and the magnetic cycle. The analysis of the Rossiter-McLaughlin effect induced by WASP-41 b suggests that the planet could be misaligned, though an aligned orbit cannot be excluded. WASP-47 has recently been found to host ...

  3. N-body simulations of terrestrial planet formation under the influence of a hot Jupiter

    Energy Technology Data Exchange (ETDEWEB)

    Ogihara, Masahiro [Observatoire de la Côte d' Azur, Boulevard de l' Observatoire, F-06304 Nice Cedex 4 (France); Kobayashi, Hiroshi; Inutsuka, Shu-ichiro, E-mail: omasahiro@oca.eu, E-mail: ogihara@nagoya-u.jp [Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602 (Japan)

    2014-06-01

    We investigate the formation of multiple-planet systems in the presence of a hot Jupiter (HJ) using extended N-body simulations that are performed simultaneously with semianalytic calculations. Our primary aims are to describe the planet formation process starting from planetesimals using high-resolution simulations, and to examine the dependences of the architecture of planetary systems on input parameters (e.g., disk mass, disk viscosity). We observe that protoplanets that arise from oligarchic growth and undergo type I migration stop migrating when they join a chain of resonant planets outside the orbit of an HJ. The formation of a resonant chain is almost independent of our model parameters, and is thus a robust process. At the end of our simulations, several terrestrial planets remain at around 0.1 AU. The formed planets are not equal mass; the largest planet constitutes more than 50% of the total mass in the close-in region, which is also less dependent on parameters. In the previous work of this paper, we have found a new physical mechanism of induced migration of the HJ, which is called a crowding-out. If the HJ opens up a wide gap in the disk (e.g., owing to low disk viscosity), crowding-out becomes less efficient and the HJ remains. We also discuss angular momentum transfer between the planets and disk.

  4. An orbital period of 0.94 days for the hot-Jupiter planet WASP-18b.

    Science.gov (United States)

    Hellier, Coel; Anderson, D R; Cameron, A Collier; Gillon, M; Hebb, L; Maxted, P F L; Queloz, D; Smalley, B; Triaud, A H M J; West, R G; Wilson, D M; Bentley, S J; Enoch, B; Horne, K; Irwin, J; Lister, T A; Mayor, M; Parley, N; Pepe, F; Pollacco, D L; Segransan, D; Udry, S; Wheatley, P J

    2009-08-27

    The 'hot Jupiters' that abound in lists of known extrasolar planets are thought to have formed far from their host stars, but migrate inwards through interactions with the proto-planetary disk from which they were born, or by an alternative mechanism such as planet-planet scattering. The hot Jupiters closest to their parent stars, at orbital distances of only approximately 0.02 astronomical units, have strong tidal interactions, and systems such as OGLE-TR-56 have been suggested as tests of tidal dissipation theory. Here we report the discovery of planet WASP-18b with an orbital period of 0.94 days and a mass of ten Jupiter masses (10 M(Jup)), resulting in a tidal interaction an order of magnitude stronger than that of planet OGLE-TR-56b. Under the assumption that the tidal-dissipation parameter Q of the host star is of the order of 10(6), as measured for Solar System bodies and binary stars and as often applied to extrasolar planets, WASP-18b will be spiralling inwards on a timescale less than a thousandth that of the lifetime of its host star. Therefore either WASP-18 is in a rare, exceptionally short-lived state, or the tidal dissipation in this system (and possibly other hot-Jupiter systems) must be much weaker than in the Solar System.

  5. TrES-5: A Massive Jupiter-sized Planet Transiting A Cool G-dwarf

    CERN Document Server

    Mandushev, Georgi; Buchhave, Lars A; Dunham, Edward W; Rabus, Markus; Oetiker, Brian; Latham, David W; Charbonneau, David; Brown, Timothy M; Belmonte, Juan A; O'Donovan, Francis T

    2011-01-01

    We report the discovery of TrES-5, a massive hot Jupiter that transits the star GSC 03949-00967 every 1.48 days. From spectroscopy of the star we estimate a stellar effective temperature of$5171 +/- 36 K, and from high-precision B, R and I photometry of the transit we constrain the ratio of the semi-major axis and the stellar radius to be 6.07 +/- 0.14. We compare these values to model stellar isochrones to obtain a stellar mass of 0.893 +/- 0.024 solar masses. Based on this estimate and the photometric time series, we constrain the stellar radius to be 0.866 +/- 0.013 solar radii, and the planet radius to be 1.209 +/- 0.021 Jupiter radii. We model our radial-velocity data assuming a circular orbit and find a planetary mass of 1.778 +/- 0.063 Jupiter masses. Our radial-velocity observations rule out line-bisector variations that would indicate a specious detection resulting from a blend of an eclipsing binary system. TrES-5 orbits one of the faintest stars with transiting planets found to date from the ground...

  6. Simulated Photoevaporative Mass Loss from Hot Jupiters in 3D

    CERN Document Server

    Tripathi, Anjali; Murray-Clay, Ruth A; Krumholz, Mark R

    2015-01-01

    Ionizing stellar photons heat the upper regions of planetary atmospheres, driving atmospheric mass loss. Gas escaping from several hot, hydrogen-rich planets has been detected using UV and X-ray transmission spectroscopy. Because these planets are tidally locked, and thus asymmetrically irradiated, escaping gas is unlikely to be spherically symmetric. In this paper, we focus on the effects of asymmetric heating on local outflow structure. We use the Athena code for hydrodynamics to produce 3D simulations of hot Jupiter mass loss that jointly model wind launching and stellar heating via photoionization. Our fiducial planet is an inflated, hot Jupiter with radius $R_p=2.14 R_{\\rm Jup}$ and mass $M_p = 0.53 M_{\\rm Jup}$. We irradiate the initially neutral, atomic hydrogen atmosphere with 13.6 eV photons and compute the outflow's ionization structure. There are clear asymmetries in the atmospheric outflow, including a neutral shadow on the planet's nightside. Given an incident ionizing UV flux comparable to that ...

  7. WASP-47: A Hot Jupiter System with Two Additional Planets Discovered by K2

    CERN Document Server

    Becker, Juliette C; Adams, Fred C; Rappaport, Saul A; Schwengeler, Hans Martin

    2015-01-01

    Using new data from the K2 mission, we show that WASP-47, a previously known hot Jupiter host, also hosts two additional transiting planets: a Neptune-sized outer planet and a super-Earth inner companion. We measure planetary properties from the K2 light curve and detect transit timing variations, confirming the planetary nature of the outer planet. We performed a large number of numerical simulations to study the dynamical stability of the system and to find the theoretically expected transit timing variations (TTVs). The theoretically predicted TTVs are in good agreement with those observed, and we use the TTVs to determine the masses of two planets, and place a limit on the third. The WASP-47 planetary system is important because companion planets can both be inferred by TTVs and are also detected directly through transit observations. The depth of the hot Jupiter's transits make ground-based TTV measurements possible, and the brightness of the host star makes it amenable for precise radial velocity measur...

  8. CFBDSIR2149-0403: a 4-7 Jupiter-mass free-floating planet in the young moving group AB Doradus ?

    CERN Document Server

    Delorme, P; Malo, L; Reylé, C; Artigau, E; Albert, L; Forveille, T; Delfosse, X; Allard, F; Homeier, D

    2012-01-01

    Using the CFBDSIR wide field survey for brown dwarfs, we identified CFBDSIRJ214947.2-040308.9, a late T dwarf with atypically red J-Ks colour. We obtained an X-Shooter spectra, with signal detectable from 0.8 to 2.3 micron, which confirmed a T7 spectral type with an enhanced Ks-band flux indicative of a potentially low-gravity, young, object. The comparison of our near infrared spectrum with atmosphere models, for solar metallicity, shows that CFBDSIRJ214947.2-040308.9 is probably a 650-750 K, log g=3.75-4.0 substellar object. Using evolution models, this translates into a planetary mass object, with an age in the 20-200 Myr range. An independent Bayesian analysis from proper motion measurements results in a 87% probability that this free-floating planet is a member of the 50-120 Myr old AB Doradus moving group, which strengthens the spectroscopic youth diagnosis. By combining our atmospheric characterisation with the age and metallicity constraints arising from the probable membership to the AB Doradus movin...

  9. Hot Jupiters with relatives: discovery of additional planets in orbit around WASP-41 and WASP-47

    Science.gov (United States)

    Neveu-VanMalle, M.; Queloz, D.; Anderson, D. R.; Brown, D. J. A.; Collier Cameron, A.; Delrez, L.; Díaz, R. F.; Gillon, M.; Hellier, C.; Jehin, E.; Lister, T.; Pepe, F.; Rojo, P.; Ségransan, D.; Triaud, A. H. M. J.; Turner, O. D.; Udry, S.

    2016-02-01

    We report the discovery of two additional planetary companions to WASP-41 and WASP-47. WASP-41 c is a planet of minimum mass 3.18 ± 0.20 MJup and eccentricity 0.29 ± 0.02, and it orbits in 421 ± 2 days. WASP-47 c is a planet of minimum mass 1.24 ± 0.22 MJup and eccentricity 0.13 ± 0.10, and it orbits in 572 ± 7 days. Unlike most of the planetary systems that include a hot Jupiter, these two systems with a hot Jupiter have a long-period planet located at only ~1 au from their host star. WASP-41 is a rather young star known to be chromospherically active. To differentiate its magnetic cycle from the radial velocity effect induced by the second planet, we used the emission in the Hα line and find this indicator well suited to detecting the stellar activity pattern and the magnetic cycle. The analysis of the Rossiter-McLaughlin effect induced by WASP-41 b suggests that the planet could be misaligned, though an aligned orbit cannot be excluded. WASP-47 has recently been found to host two additional transiting super Earths. With such an unprecedented architecture, the WASP-47 system will be very important for understanding planetary migration. Using data collected at ESO's La Silla Observatory, Chile: HARPS on the ESO 3.6 m (Prog ID 087.C-0649 & 089.C-0151), the Swiss Euler Telescope, TRAPPIST, the 1.54-m Danish telescope (Prog CN2013A-159), and at the LCOGT's Faulkes Telescope South.Photometric lightcurve and RV tables are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/586/A93

  10. The Photoeccentric Effect and Proto-Hot-Jupiters I. Measuring photometric eccentricities of individual transiting planets

    CERN Document Server

    Dawson, Rebekah I

    2012-01-01

    Exoplanet orbital eccentricities offer valuable clues about the origins and orbital evolution of planetary systems. Eccentric, Jupiter-sized planets are particularly interesting: they may link the "cold" Jupiters beyond the ice line to hot Jupiters at a fraction of an AU, where they are unlikely to have formed in situ. To date, all eccentricities of individual planets come from radial velocity measurements. Kepler has discovered hundreds of transiting Jupiters spanning a range of periods, but the faintness of the host stars precludes radial velocity follow-up of most. Here we demonstrate a Bayesian method of measuring an individual planet's eccentricity solely from its transit light curve using prior knowledge of its host star's density. We show that eccentric Jupiters are readily identified by their short ingress/egress/total transit durations --- the "photoeccentric effect" --- even with long-cadence Kepler photometry and loosely-constrained stellar parameters. A Markov Chain Monte Carlo exploration of para...

  11. Jupiter and Planet Earth. [planetary and biological evolution and natural satellites

    Science.gov (United States)

    1975-01-01

    The evolution of Jupiter and Earth are discussed along with their atmospheres, the radiation belts around both planets, natural satellites, the evolution of life, and the Pioneer 10. Educational study projects are also included.

  12. Jupiter Observation Campaign: Citizen Science at the Outer Planets

    Science.gov (United States)

    Jones, J. Houston.; Wessen, A.; Pappalardo, Robert; Perry, Jason, Vance, Steve; Beisser, Kerri; Dyches, Preston

    2010-12-01

    NASA Solar System Education and Public Outreach (E/PO) will coordinate and disseminate a consistent process for receiving Jupiter observation data from citizen scientists. This may include a public repository or network matching scientists with citizen scientists who want to provide needed observations in a standard and consistent format. This will be a good Outer Planet mission contribution to the science community. Solar System Thematic E/PO will design a repository, or connect people with a process, and manage the process of defining the formatting and other needs of the data contributions from: 1) Regular observers: who right now do not have a consistent imaging of photography process or file naming convention for their data, etc. 2) Experienced observers, who currently send data on occasion to a network which includes appreciative scientists. record the start and end times of video they view each night, 3) Regional associations (ALPO, ALPO-Japan, BAA etc.) might be able to collect this info, disseminate the ground rules, etc.

  13. The anglo-australian planet search. XXIII. Two new Jupiter analogs

    Energy Technology Data Exchange (ETDEWEB)

    Wittenmyer, Robert A.; Horner, Jonathan; Tinney, C. G.; Salter, G. S.; Bailey, J.; Wright, D. [School of Physics, University of New South Wales, Sydney 2052 (Australia); Butler, R. P. [Department of Terrestrial Magnetism, Carnegie Institution of Washington, 5241 Broad Branch Road, NW, Washington, DC 20015-1305 (United States); Jones, H. R. A.; Tuomi, Mikko [University of Hertfordshire, Centre for Astrophysics Research, Science and Technology Research Institute, College Lane, AL10 9AB Hatfield (United Kingdom); Carter, B. D. [Computational Engineering and Science Research Centre, University of Southern Queensland, Toowoomba, Queensland 4350 (Australia); Koch, F. Elliott [San Diego State University, Physics Department, 5500 Campanile Drive, San Diego, CA 92182-1233 (United States); O' Toole, S. J., E-mail: rob@phys.unsw.edu.au [Australian Astronomical Observatory, P.O. Box 915, North Ryde, NSW 1670 (Australia)

    2014-03-10

    We report the discovery of two long-period giant planets from the Anglo-Australian Planet Search. HD 154857c is in a multiple-planet system, while HD 114613b appears to be solitary. HD 114613b has an orbital period P = 10.5 yr, and a minimum mass msin i of 0.48 M {sub Jup}; HD 154857c has P = 9.5 yr and msin i = 2.6 M {sub Jup}. These new data confirm the planetary nature of the previously unconstrained long-period object in the HD 154857 system. We have performed detailed dynamical stability simulations which show that the HD 154857 two-planet system is stable on timescales of at least 10{sup 8} yr. These results highlight the continued importance of 'legacy' surveys with long observational baselines; these ongoing campaigns are critical for determining the population of Jupiter analogs, and hence of those planetary systems with architectures most like our own solar system.

  14. Hot-Jupiter Core Mass from Roche-lobe Overflow

    CERN Document Server

    Ginzburg, Sivan

    2016-01-01

    The orbits of many observed hot Jupiters are decaying rapidly due to tidal interaction, eventually reaching the Roche limit. We analytically study the ensuing coupled mass loss and orbital evolution during the Roche-lobe overflow and find two possible scenarios. Planets with light cores $M_c\\lesssim 6M_\\oplus$ (assuming a nominal tidal dissipation factor $Q\\sim 10^6$ for the host star) are transformed into Neptune-mass gas planets, orbiting at a separation (relative to the stellar radius) $a/R_\\star\\approx 3.5$. Planets with heavier cores $M_c\\gtrsim 6M_\\oplus$ plunge rapidly until they are destroyed at the stellar surface. Remnant gas-Neptunes, which are stable to photo-evaporation, are absent from the observations, despite their unique transit radius ($5-10R_\\oplus$). This result suggests that $M_c\\gtrsim 6M_\\oplus$, providing a useful constraint on the poorly-known core mass that may distinguish between different formation theories of gas giants. Alternatively, given a prior estimate of $M_c\\approx 6 M_\\op...

  15. The Now Frontier. Pioneer to Jupiter. Man Links Earth and Planets. Issue No. 1-5.

    Science.gov (United States)

    1973

    This packet of space science instructional materials includes five issues related to the planet Jupiter. Each issue presents factual material about the planet, diagramatic representations of its movements and positions relative to bright stars or the earth, actual photographs and/or tables of data collected relevant to Pioneer 10, the spacecraft…

  16. Using polarimetry to detect and characterize Jupiter-like extrasolar planets

    NARCIS (Netherlands)

    Stam, D.M.; Hovenier, J.W.; Waters, L.B.F.M.

    2004-01-01

    Using numerical simulations of flux and polarization spectra of visible to near-infrared starlight reflected by Jupiter-like extrasolar planets, we show that polarimetry can be used both for the detection and for the characterization of extrasolar planets. Polarimetry is valuable for detection becau

  17. Using polarimetry to detect and characterize Jupiter-like extrasolar planets

    NARCIS (Netherlands)

    Stam, D.M.; Hovenier, J.W.; Waters, L.B.F.M.

    2004-01-01

    Using numerical simulations of flux and polarization spectra of visible to near-infrared starlight reflected by Jupiter-like extrasolar planets, we show that polarimetry can be used both for the detection and for the characterization of extrasolar planets. Polarimetry is valuable for detection becau

  18. A Low Mass for Mars from Jupiter's Early Gas-Driven Migration

    Science.gov (United States)

    Walsh, Kevin J.; Morbidelli, Alessandro; Raymond, Sean N.; O'Brien, David P.; Mandell, Avi M.

    2011-01-01

    Jupiter and Saturn formed in a few million years from a gas-dominated protoplanetary disk, and were susceptible to gas-driven migration of their orbits on timescales of only approximately 100,000 years. Hydrodynamic simulations show that these giant planets can undergo a two-stage, inward-then-outward, migration. The terrestrial planets finished accreting much later and their characteristics, including Mars' small mass, are best reproduced by starting from a planetesimal disk with an outer edge at about one astronomical unit from the Sun (1 AU is the Earth-Sun distance). Here we report simulations of the early Solar System that show how the inward migration of Jupiter to 1.5 AU, and its subsequent outward migration, lead to a planetesimal disk truncated at 1 AU; the terrestrial planets then form from this disk over the next 30-50 million years, with an Earth/Mars mass ratio consistent with observations. Scattering by Jupiter initially empties but then repopulates the asteroid belt, with inner-belt bodies originating between 1 and 3 AU and outer-belt bodies originating between and beyond the giant planets. This explains the significant compositional differences across the asteroid belt. The key aspect missing from previous models of terrestrial planet formation is the substantial radial migration of the giant planets, which suggests that their behaviour is more similar to that inferred for extrasolar planets than previously thought.

  19. The Anglo-Australian Planet Search XXIV: The Frequency of Jupiter Analogs

    CERN Document Server

    Wittenmyer, Robert A; Tinney, C G; Horner, Jonathan; Carter, B D; Wright, D J; Jones, H R A; Bailey, J; O'Toole, Simon J

    2016-01-01

    We present updated simulations of the detectability of Jupiter analogs by the 17-year Anglo-Australian Planet Search. The occurrence rate of Jupiter-like planets that have remained near their formation locations beyond the ice line is a critical datum necessary to constrain the details of planet formation. It is also vital in our quest to fully understand how common (or rare) planetary systems like our own are in the Galaxy. From a sample of 202 solar-type stars, and correcting for imperfect detectability on a star-by-star basis, we derive a frequency of $6.2^{+2.8}_{-1.6}$% for giant planets in orbits from 3-7 AU. When a consistent definition of "Jupiter analog" is used, our results are in agreement with those from other legacy radial velocity surveys.

  20. A hot Jupiter orbiting a 2-million-year-old solar-mass T Tauri star.

    Science.gov (United States)

    Donati, J F; Moutou, C; Malo, L; Baruteau, C; Yu, L; Hébrard, E; Hussain, G; Alencar, S; Ménard, F; Bouvier, J; Petit, P; Takami, M; Doyon, R; Collier Cameron, A

    2016-06-30

    Hot Jupiters are giant Jupiter-like exoplanets that orbit their host stars 100 times more closely than Jupiter orbits the Sun. These planets presumably form in the outer part of the primordial disk from which both the central star and surrounding planets are born, then migrate inwards and yet avoid falling into their host star. It is, however, unclear whether this occurs early in the lives of hot Jupiters, when they are still embedded within protoplanetary disks, or later, once multiple planets are formed and interact. Although numerous hot Jupiters have been detected around mature Sun-like stars, their existence has not yet been firmly demonstrated for young stars, whose magnetic activity is so intense that it overshadows the radial velocity signal that close-in giant planets can induce. Here we report that the radial velocities of the young star V830 Tau exhibit a sine wave of period 4.93 days and semi-amplitude 75 metres per second, detected with a false-alarm probability of less than 0.03 per cent, after filtering out the magnetic activity plaguing the spectra. We find that this signal is unrelated to the 2.741-day rotation period of V830 Tau and we attribute it to the presence of a planet of mass 0.77 times that of Jupiter, orbiting at a distance of 0.057 astronomical units from the host star. Our result demonstrates that hot Jupiters can migrate inwards in less than two million years, probably as a result of planet–disk interactions.

  1. Microlensing Discovery of an Earth-Mass Planet

    Science.gov (United States)

    Kohler, Susanna

    2017-04-01

    What do we know about planet formation around stars that are so light that they cant fuse hydrogen in their cores? The new discovery of an Earth-mass planet orbiting what is likely a brown dwarf may help us better understand this process.Planets Around Brown Dwarfs?Comparison of the sizes of the Sun, a low-mass star, a brown dwarf, Jupiter, and Earth. [NASA/JPL-Caltech/UCB]Planets are thought to form from the material inprotoplanetary disks around their stellar hosts. But the lowest-mass end of the stellar spectrum brown dwarfs, substellar objects so light that they straddle the boundary between planet and star will have correspondingly light disks. Do brown dwarfs disks typically have enough mass to form Earth-mass planets?To answer this question, scientists have searched for planets around brown dwarfs with marginal success. Thus far, only four such planets have been found and these systems may not be typical, since they were discovered via direct imaging. To build a more representative sample, wed like to discover exoplanets around brown dwarfs via a method that doesnt rely on imaging the faint light of the system.A diagram of how planets are detected via gravitational microlensing. The detectable planet is in orbit around the foreground lens star. [NASA]Lensed Light as a GiveawayConveniently, such a method exists and its recently been used to make a major discovery! The planet OGLE-2016-BLG-1195Lb was detected as a result of a gravitational microlensing event that was observed both from the ground and from space.The discovery of a planet via microlensing occurs when the light of a distant source star is magnified by a passing foreground star hosting a planet. The light curve of the source shows a distinctive magnification signature as a result of the gravitational lensing from the foreground star, and the gravitational field of the lensing stars planet can add its own detectable blip to the curve.OGLE-2016-BLG-1195LbThe magnification curve of OGLE-2016-BLG-1195

  2. The Heavy Element Masses of Extrasolar Giant Planets, Revealed

    CERN Document Server

    Miller, Neil

    2011-01-01

    We investigate a population of transiting planets that receive relatively modest stellar insolation and for which the heating mechanism that inflates hot Jupiters does not appear to be significantly active. Using the observed transit radius as a constraint and assuming that the unknown heating mechanism is not a heating source, we use structure and thermal evolution models to infer the amount of heavy elements within each of these planets. There is a correlation between the stellar metallicity and the mass of heavy elements in its transiting planet(s). It appears that all giant planets posses a minimum of $\\sim$ 10-15 Earth masses of heavy elements, with planets around metal-rich stars having larger heavy element masses. This relationship provides an important constraint on planet formation and planetesimal accretion, and suggests large amounts of heavy elements within planetary H/He envelopes. We suggest that the observed correlation can soon also be applied to inflated planets, such that the interior heavy ...

  3. Hot Jupiter Breezes: Time-dependent Outflows from Extrasolar Planets

    CERN Document Server

    Owen, James E

    2015-01-01

    We explore the dynamics of magnetically controlled outflows from Hot Jupiters, where these flows are driven by UV heating from the central star. In these systems, some of the open field lines do not allow the flow to pass smoothly through the sonic point, so that steady-state solutions do not exist in general. This paper focuses on this type of magnetic field configuration, where the resulting flow becomes manifestly time-dependent. We consider the case of both steady heating and time-variable heating, and find the time scales for the corresponding time variations of the outflow. Because the flow cannot pass through the sonic transition, it remains subsonic and leads to so-called breeze solutions. One manifestation of the time variability is that the flow samples a collection of different breeze solutions over time, and the mass outflow rate varies in quasi-periodic fashion. Because the flow is subsonic, information can propagate inward from the outer boundary, which determines, in part, the time scale of the...

  4. WASP-41b: A Transiting Hot Jupiter Planet Orbiting a Magnetically Active G8V Star

    Science.gov (United States)

    Maxted, P. F. L.; Anderson, D. R.; Collier Cameron, A.; Hellier, C.; Queloz, D.; Smalley, B.; Street, R. A.; Triaud, A. H. M. J.; West, R. G.; Gillon, M.; Lister, T. A.; Pepe, F.; Pollacco, D.; Ségransan, D.; Smith, A. M. S.; Udry, S.

    2011-05-01

    We report the discovery of a transiting planet with an orbital period of 3.05 days orbiting the star TYC 7247-587-1. The star, WASP-41, is a moderately bright G8 V star (V = 11.6) with a metallicity close to solar ([Fe/H] = -0.08 ± 0.09). The star shows evidence of moderate chromospheric activity, both from emission in the cores of the Ca ii H and K ines and photometric variability with a period of 18.4 days and an amplitude of about 1%. We use a new method to show quantitatively that this periodic signal has a low false-alarm probability. The rotation period of the star implies a gyrochronological age for WASP-41 of 1.8 Gyr with an error of about 15%. We have used a combined analysis of the available photometric and spectroscopic data to derive the mass and radius of the planet (0.92 ± 0.06 MJup, 1.20 ± 0.06 RJup). Further observations of WASP-41 can be used to explore the connections between the properties of hot Jupiter planets and the level of chromospheric activity in their host stars.

  5. Bayesian thermal evolution models for giant planets: Helium rain and double-diffusive convection in Jupiter

    Science.gov (United States)

    Mankovich, Christopher; Fortney, Jonathan J.; Nettelmann, Nadine; Moore, Kevin

    2016-10-01

    Hydrogen and helium unmix when sufficiently cool, and this bears on the thermal evolution of all cool giant planets at or below one Jupiter mass. Over the past few years, ab initio simulations have put us in the era of quantitative predictions for this H-He immiscibility at megabar pressures. We present models for the thermal evolution of Jupiter, including its evolving helium distribution following one such ab initio H-He phase diagram. After 4 Gyr of homogeneous evolution, differentiation establishes a helium gradient between 1 and 2 Mbar that dynamically stabilizes the fluid to overturning convection. The result is a region undergoing overstable double-diffusive convection (ODDC), whose relatively weak vertical heat transport maintains a superadiabatic temperature gradient. With a general parameterization for the ODDC efficiency, the models can reconcile Jupiter's intrinsic flux, atmospheric helium content, and mean radius at the age of the solar system if the H-He phase diagram is translated to cooler temperatures.We cast our nonadiabatic thermal evolution models in a Markov chain Monte Carlo parameter estimation framework, retrieving the total heavy element mass, the superadiabaticity of the deep temperature gradient, and the phase diagram temperature offset. Models using the interpolated Saumon, Chabrier and van Horn (1995) equation of state (SCvH-I) favor very inefficient ODDC such that the deep temperature gradient is strongly superadiabatic, forming a thermal boundary layer that allows the molecular envelope to cool quickly while the deeper interior (most of the planet's mass) actually heats up over time. If we modulate the overall cooling time with an additional free parameter, mimicking the effect of a colder or warmer EOS, the models favor those that are colder than SCvH-I; this class of EOS is also favored by shock experiments. The models in this scenario have more modest deep superadiabaticities such that the envelope cools more gradually and the deep

  6. Coupled evolutions of the stellar obliquity, orbital distance, and planet's radius due to the Ohmic dissipation induced in a diamagnetic hot Jupiter around a magnetic T Tauri star

    CERN Document Server

    Chang, Yu-Ling; Gu, Pin-Gao

    2012-01-01

    We revisit the calculation of the Ohmic dissipation in a hot Jupiter presented in Laine et al. (2008) by considering more realistic interior structures, stellar obliquity, and the resulting orbital evolution. In this simplified approach, the young hot Jupiter of one Jupiter mass is modelled as a diamagnetic sphere with a finite resistivity, orbiting across tilted stellar magnetic dipole fields in vacuum. Since the induced Ohmic dissipation occurs mostly near the planet's surface, we find that the dissipation is unable to significantly expand the young hot Jupiter. Nevertheless, the planet inside a small co-rotation orbital radius can undergo orbital decay by the dissipation torque and finally overfill its Roche lobe during the T Tauri star phase. The stellar obliquity can evolve significantly if the magnetic dipole is parallel/anti-parallel to the stellar spin. Our results are validated by the general torque-dissipation relation in the presence of the stellar obliquity. We also run the fiducial model in Laine...

  7. Search for giant planets in M67. III. Excess of hot Jupiters in dense open clusters

    Science.gov (United States)

    Brucalassi, A.; Pasquini, L.; Saglia, R.; Ruiz, M. T.; Bonifacio, P.; Leão, I.; Canto Martins, B. L.; de Medeiros, J. R.; Bedin, L. R.; Biazzo, K.; Melo, C.; Lovis, C.; Randich, S.

    2016-07-01

    Since 2008 we used high-precision radial velocity (RV) measurements obtained with different telescopes to detect signatures of massive planets around main-sequence and evolved stars of the open cluster (OC) M67. We aimed to perform a long-term study on giant planet formation in open clusters and determine how this formation depends on stellar mass and chemical composition. A new hot Jupiter (HJ) around the main-sequence star YBP401 is reported in this work. An update of the RV measurements for the two HJ host-stars YBP1194 and YBP1514 is also discussed. Our sample of 66 main-sequence and turnoff stars includes 3 HJs, which indicates a high rate of HJs in this cluster (5.6% for single stars and 4.5%% for the full sample). This rate is much higher than what has been discovered in the field, either with RV surveys or by transits. High metallicity is not a cause for the excess of HJs in M67, nor can the excess be attributed to high stellar masses. When combining this rate with the non-zero eccentricity of the orbits, our results are qualitatively consistent with a HJ formation scenario dominated by strong encounters with other stars or binary companions and subsequent planet-planet scattering, as predicted by N-body simulations. Based on observations collected at the ESO 3.6 m telescope (La Silla), at the 1.93 m telescope of the Observatoire de Haute-Provence (OHP), at the Hobby Eberly Telescope (HET), at the Telescopio Nazionale Galileo (TNG, La Palma) and at the Euler Swiss Telescope.

  8. New Concept for Internal Heat Production in Hot Jupiter Exo-Planets

    CERN Document Server

    Herndon, J M

    2006-01-01

    Discovery of hot Jupiter exo-planets, those with anomalously inflated size and low density relative to Jupiter, has evoked much discussion as to possible sources of internal heat production. But to date, no explanations have come forth that are generally applicable. The explanations advanced typically involve presumed tidal dissipation and/or converted incident stellar radiation. The present, brief communication suggests a novel interfacial nuclear fission-fusion source of internal heat production for hot Jupiters that has been overlooked by theoreticians and which has potentially general applicability.

  9. CROWDING-OUT OF GIANTS BY DWARFS: AN ORIGIN FOR THE LACK OF COMPANION PLANETS IN HOT JUPITER SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    Ogihara, Masahiro; Inutsuka, Shu-ichiro; Kobayashi, Hiroshi, E-mail: ogihara@nagoya-u.jp [Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602 (Japan)

    2013-11-20

    We investigate the formation of close-in terrestrial planets from planetary embryos under the influence of a hot Jupiter (HJ) using gravitational N-body simulations that include gravitational interactions between the gas disk and the terrestrial planet (e.g., type I migration). Our simulations show that several terrestrial planets efficiently form outside the orbit of the HJ, making a chain of planets, and all of them gravitationally interact directly or indirectly with the HJ through resonance, which leads to inward migration of the HJ. We call this mechanism of induced migration of the HJ ''crowding-out''. The HJ is eventually lost through collision with the central star, and only several terrestrial planets remain. We also find that the efficiency of the crowding-out effect depends on the model parameters; for example, the heavier the disk is, the more efficient the crowding-out is. When planet formation occurs in a massive disk, the HJ can be lost to the central star and is never observed. On the other hand, for a less massive disk, the HJ and terrestrial planets can coexist; however, the companion planets may be below the detection limit of current observations. In both cases, systems with a HJ and terrestrial planets have little chance of detection. Therefore, our model naturally explains the lack of companion planets in HJ systems regardless of the disk mass. In effect, our model provides a theoretical prediction for future observations; additional planets can be discovered just outside the HJ, and their masses should generally be small.

  10. From Dust to Dust: Protoplanetary Disk Accretion, Hot Jupiter Climates, and the Evaporation of Rocky Planets

    Science.gov (United States)

    Perez-Becker, Daniel Alonso

    2013-12-01

    This dissertation is composed of three independent projects in astrophysics concerning phenomena that are concurrent with the birth, life, and death of planets. In Chapters 1 & 2, we study surface layer accretion in protoplanetary disks driven stellar X-ray and far-ultraviolet (FUV) radiation. In Chapter 3, we identify the dynamical mechanisms that control atmospheric heat redistribution on hot Jupiters. Finally, in Chapter 4, we characterize the death of low-mass, short-period rocky planets by their evaporation into a dusty wind. Chapters 1 & 2: Whether protoplanetary disks accrete at observationally significant rates by the magnetorotational instability (MRI) depends on how well ionized they are. We find that disk surface layers ionized by stellar X-rays are susceptible to charge neutralization by condensates---ranging from mum-sized dust to angstrom-sized polycyclic aromatic hydrocarbons (PAHs). Ion densities in X-ray-irradiated surfaces are so low that ambipolar diffusion weakens the MRI. In contrast, ionization by stellar FUV radiation enables full-blown MRI turbulence in disk surface layers. Far-UV ionization of atomic carbon and sulfur produces a plasma so dense that it is immune to ion recombination on grains and PAHs. Even though the FUV-ionized layer is ˜10--100 times more turbulent than the X-ray-ionized layer, mass accretion rates of both layers are comparable because FUV photons penetrate to lower surface densities than do X-rays. We conclude that surface layer accretion occurs at observationally significant rates at radii ≳ 1--10 AU. At smaller radii, both X-ray- and FUV-ionized surface layers cannot sustain the accretion rates generated at larger distance and an additional means of transport is needed. In the case of transitional disks, it could be provided by planets. Chapter 3: Infrared light curves of transiting hot Jupiters present a trend in which the atmospheres of the hottest planets are less efficient at redistributing the stellar energy

  11. Search for giant planets in M67 III: excess of hot Jupiters in dense open clusters

    CERN Document Server

    Brucalassi, A; Saglia, R; Ruiz, M T; Bonifacio, P; Leao, I; Martins, B L Canto; de Medeiros, J R; Bedin, L R; Biazzo, K; Melo, C; Lovis, C; Randich, S

    2016-01-01

    Since 2008 we used high-precision radial velocity (RV) measurements obtained with different telescopes to detect signatures of massive planets around main-sequence and evolved stars of the open cluster (OC) M67. We aimed to perform a long-term study on giant planet formation in open clusters and determine how this formation depends on stellar mass and chemical composition. A new hot Jupiter (HJ) around the main-sequence star YBP401 is reported in this work. An update of the RV measurements for the two HJ host-stars YBP1194 and YBP1514 is also discussed. Our sample of 66 main-sequence and turnoff stars includes 3 HJs, which indicates a high rate of HJs in this cluster (~5.6% for single stars and ~4.5% for the full sample ). This rate is much higher than what has been discovered in the field, either with RV surveys or by transits. High metallicity is not a cause for the excess of HJs in M67, nor can the excess be attributed to high stellar masses. When combining this rate with the non-zero eccentricity of the o...

  12. Nonuniform viscosity in the solar nebula and large masses of Jupiter and Saturn

    OpenAIRE

    Jin, Liping

    2008-01-01

    I report a novel theory that nonuniform viscous frictional force in the solar nebula accounts for the largest mass of Jupiter and Saturn and their largest amount of H and He among the planets, two outstanding facts that are unsolved puzzles in our understanding of origin of the Solar System. It is shown that the nebula model of uniform viscosity does not match the present planet masses. By studying current known viscosity mechanisms, I show that viscosity is more efficient in the inner region...

  13. THE PHOTOECCENTRIC EFFECT AND PROTO-HOT JUPITERS. I. MEASURING PHOTOMETRIC ECCENTRICITIES OF INDIVIDUAL TRANSITING PLANETS

    Energy Technology Data Exchange (ETDEWEB)

    Dawson, Rebekah I. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, MS-10, Cambridge, MA 02138 (United States); Johnson, John Asher, E-mail: rdawson@cfa.harvard.edu [Department of Astronomy, California Institute of Technology, 1200 East California Boulevard, MC 249-17, Pasadena, CA 91125 (United States)

    2012-09-10

    Exoplanet orbital eccentricities offer valuable clues about the history of planetary systems. Eccentric, Jupiter-sized planets are particularly interesting: they may link the 'cold' Jupiters beyond the ice line to close-in hot Jupiters, which are unlikely to have formed in situ. To date, eccentricities of individual transiting planets primarily come from radial-velocity measurements. Kepler has discovered hundreds of transiting Jupiters spanning a range of periods, but the faintness of the host stars precludes radial-velocity follow-up of most. Here, we demonstrate a Bayesian method of measuring an individual planet's eccentricity solely from its transit light curve using prior knowledge of its host star's density. We show that eccentric Jupiters are readily identified by their short ingress/egress/total transit durations-part of the 'photoeccentric' light curve signature of a planet's eccentricity-even with long-cadence Kepler photometry and loosely constrained stellar parameters. A Markov Chain Monte Carlo exploration of parameter posteriors naturally marginalizes over the periapse angle and automatically accounts for the transit probability. To demonstrate, we use three published transit light curves of HD 17156 b to measure an eccentricity of e = 0.71{sup +0.16}{sub -0.09}, in good agreement with the discovery value e = 0.67 {+-} 0.08 based on 33 radial-velocity measurements. We present two additional tests using Kepler data. In each case, the technique proves to be a viable method of measuring exoplanet eccentricities and their confidence intervals. Finally, we argue that this method is the most efficient, effective means of identifying the extremely eccentric, proto-hot Jupiters predicted by Socrates et al.

  14. Limits on the Core Mass of Jupiter

    Science.gov (United States)

    Stevenson, D. J.

    2015-12-01

    The core is here defined as the central concentration of elements heavier than hydrogen and helium (it need not be solid and it need not be purely heavy elements and it will not have a sharp boundary). Its determination is a major goal of the Juno mission (2016-17) and it will be difficult to determine because it is expected to be only a few percent of the total mass. It has long been known that there is no prospect of determining the nature of this core (e.g., its density) from gravity measurements, even though the mass can be estimated. By consideration of simple models that are nonetheless faithful to the essential physics, it is further shown that should the core be contaminated with light elements (hydrogen and helium) then the gravity data can tell us the core mass as defined (with some caveats about the fuzziness of its boundary) but not the total mass within some small radius (which could include any light elements mixed in). This is both good and bad news: Good in that the core is thought to be diagnostic of the conditions under which the planet formed but bad in that the admixture also tells us more about both formation process and core erosion. Further, a linear perturbation theory has been developed that provides an easy approximate way of determining how errors in the equation of state (EOS) propagate into errors in the estimated core mass or envelope enrichment in heavies in models that nonetheless satisfy all observables. This theory does not require detailed models of the planet but provides an integral mapping from changes in the EOS into approximate changes in radius at fixed mass, and low degree gravity (or moment of inertia, MOI). This procedure also shows that there exist perturbations that leave the radius, mass and MOI unchanged but cause a change in J2, though in practice the non-uniqueness of structure by this consideration (~0.2% or less in MOI for example) is less than the non-uniqueness arising from likely EOS uncertainties (~1% in total

  15. The Occurrence of Additional Giant Planets Inside the Water-Ice Line in Systems with Hot Jupiters: Evidence Against High-Eccentricity Migration

    CERN Document Server

    Schlaufman, Kevin C

    2016-01-01

    The origin of Jupiter-mass planets with orbital periods of only a few days is still uncertain. It is widely believed that these planets formed near the water-ice line of the protoplanetary disk, and subsequently migrated into much smaller orbits. Most of the proposed migration mechanisms can be classified either as disk-driven migration, or as excitation of a very high eccentricity followed by tidal circularization. In the latter scenario, the giant planet that is destined to become a hot Jupiter spends billions of years on a highly-eccentric orbit, with apastron near the water-ice line. Eventually, tidal dissipation at periastron shrinks and circularizes the orbit. If this is correct, then it should be especially rare for hot Jupiters to be accompanied by another giant planet interior to the water-ice line. Using the current sample of giant planets discovered with the Doppler technique, we find that hot Jupiters with P_orb = 10 days. This result holds for exterior companions both inside and outside of the ap...

  16. Mass Spectrometry in Jupiter's Atmosphere: Vertical Variation of Volatile Vapors

    Science.gov (United States)

    Wong, Michael H.; Atreya, Sushil K.; Mahaffy, Paul R.

    2014-05-01

    The Galileo Probe made the first and only in situ measurements of composition in Jupiter's atmosphere, led by the Galileo Probe Mass Spectrometer, or GPMS [1]. The major contribution from this instrument was the measurement of abundances and isotope ratios of the noble gases, as well as the volatile gases CH4, NH3, H2O, and H2S [2,3]. These initial results were further refined by detailed laboratory calibrations for the noble gases [4] and the volatiles [5]. The probe measurements resulted in the first determination of the heavy element abundances (except carbon that was known previously) and He/H ratio, which provide critical constraints to models of the formation of Jupiter and the origin of its atmosphere [6,7]. The condensable volatiles, or CVs (ammonia, H2S, and water), increased with depth in the probe entry site. This vertical variation was observed at levels much deeper than the modeled cloud bases, as predicted by one-dimensional chemical equilibrium models. The discrepancy is due to the probe's entry into a dry region known as a 5-μm hot spot. The 5-μm hot spots are part of an atmospheric wave system that encircles Jupiter just north of the equator. Despite the anomalous meteorology, the bulk abundances of NH3 and H2S were measured by the probe, and found to be enriched with respect to solar composition (similarly to the non-condensable volatile CH4). The deepest water mixing ratio, however, was observed to be depleted relative to solar composition. We review an updated context for the CV vertical profiles measured by the GPMS, based on the latest results from remote sensing, simulation, and reinterpretation of Galileo Probe measurements. In particular, we find that (1) the bulk abundance of water in Jupiter's atmosphere must be greater than the subsolar abundance derived from the deepest GPMS measurements [8], and that (2) CV mixing ratios are controlled by a range of processes in addition to condensation of the ices NH3, NH4SH, and H2O [5-9]. Both

  17. WASP-32b: A transiting hot Jupiter planet orbiting a lithium-poor, solar-type star

    CERN Document Server

    Maxted, P F L; Cameron, A Collier; Gillon, M; Hellier, C; Queloz, D; Smalley, B; Triaud, A H M J; West, R G; Enoch, R; Lister, T A; Pepe, F; Pollacco, D L; Ségransan, D; Skillen, I; Udry, S

    2010-01-01

    We report the discovery of a transiting planet orbiting the star TYC 2-1155-1. The star, WASP-32, is a moderately bright (V=11.3) solar-type star (Teff=6100 +- 100K, [Fe/H] = -0.13 +- 0.10). The lightcurve of the star obtained with the WASP-South and WASP-North instruments shows periodic transit-like features with a depth of about 1% and a duration of 0.10d every 2.72d. The presence of a transit-like feature in the lightcurve is confirmed using z-band photometry obtained with Faulkes Telescope North. High resolution spectroscopy obtained with the CORALIE spectrograph confirms the presence of a planetary mass companion. From a combined analysis of the spectroscopic and photometric data, assuming that the star is a typical main-sequence star, we estimate that the planet has a mass M_p = 3.60 +- 0.07 M_Jup and a radius R_p = 1.19 +- 0.06R_Jup. WASP-32 is one of a small group of hot Jupiters with masses M_p > 3M_Jup. We find that some stars with hot Jupiter companions and with masses M_* =~ 1.2M_sun, including WA...

  18. WASP-32b: A Transiting Hot Jupiter Planet Orbiting a Lithium-Poor, Solar-Type Star

    Science.gov (United States)

    Maxted, P. F. L.; Anderson, D. R.; Collier Cameron, A.; Gillon, M.; Hellier, C.; Queloz, D.; Smalley, B.; Triaud, A. H. M. J.; West, R. G.; Enoch, R.; Lister, T. A.; Pepe, F.; Pollacco, D. L.; Ségransan, D.; Skillen, I.; Udry, S.

    2010-12-01

    We report the discovery of a transiting planet orbiting the star TYC 2-1155-1. The star, WASP-32, is a moderately bright (V = 11.3) solar-type star (Teff = 6100 ± 100 K, [Fe/H] = -0.13 ± 0.10). The light curve of the star obtained with the WASP-South and WASP-North instruments shows periodic transitlike features with a depth of about 1% and a duration of 0.10 day every 2.72 days. The presence of a transitlike feature in the light curve is confirmed using z -band photometry obtained with Faulkes Telescope North. High-resolution spectroscopy obtained with the Coralie spectrograph confirms the presence of a planetary mass companion. From a combined analysis of the spectroscopic and photometric data, assuming that the star is a typical main-sequence star, we estimate that the planet has a mass Mp of 3.60 ± 0.07 MJup and a radius Rp = 1.19 ± 0.06 RJup. WASP-32 is one of a small group of hot Jupiters with masses greater than 3 MJup. We find that some stars with hot Jupiter companions and with masses M⋆ ≈ 1.2 M⊙, including WASP-32, are depleted in lithium and that the majority of these stars have lithium abundances similar to field stars.

  19. A Venus-Mass Planet Orbiting a Brown Dwarf: Missing Link between Planets and Moons

    CERN Document Server

    Udalski, A; Han, C; Gould, A; Kozlowski, S; Skowron, J; Poleski, R; Soszyński, I; Pietrukowicz, P; Mróz, P; Szymański, M K; Wyrzykowski, Ł; Ulaczyk, K; Pietrzyński, G; Shvartzvald, Y; Maoz, D; Kaspi, S; Gaudi, B S; Hwang, K -H; Choi, J -Y; Shin, I -G; Park, H; Bozza, V

    2015-01-01

    The co-planarity of solar-system planets led Kant to suggest that they formed from an accretion disk, and the discovery of hundreds of such disks around young stars as well as hundreds of co-planar planetary systems by the {\\it Kepler} satellite demonstrate that this formation mechanism is extremely widespread. Many moons in the solar system, such as the Galilean moons of Jupiter, also formed out of the accretion disks that coalesced into the giant planets. We report here the discovery of an intermediate system OGLE-2013-BLG-0723LB/Bb composed of a Venus-mass planet orbiting a brown dwarf, which may be viewed either as a scaled down version of a planet plus star or as a scaled up version of a moon plus planet orbiting a star. The latter analogy can be further extended since they orbit in the potential of a larger, stellar body. For ice-rock companions formed in the outer parts of accretion disks, like Uranus and Callisto, the scaled masses and separations of the three types of systems are similar, leading us ...

  20. The Photoeccentric Effect and Proto Hot Jupiters II. KOI-1474.01, an eccentric planet perturbed by an unseen companion

    CERN Document Server

    Dawson, Rebekah I; Morton, Timothy D; Crepp, Justin R; Fabrycky, Daniel C; Murray-Clay, Ruth A; Howard, Andrew W

    2012-01-01

    The exoplanets known as hot Jupiters---Jupiter-sized planets with periods less than 10 days---likely are relics of dynamical processes that shape all planetary system architectures. Socrates et al. (2012) argued that high eccentricity migration (HEM) mechanisms proposed for situating these close-in planets should produce an observable population of highly eccentric proto hot Jupiters that have not yet tidally circularized. HEM should also create failed hot Jupiters, with periapses just beyond the influence of fast circularization. Using the technique we previously presented for measuring eccentricities from photometry (the "photoeccentric effect"), we are distilling a collection of eccentric proto and failed hot Jupiters from the Kepler Objects of Interest (KOI). Here we present the first, KOI-1474.01, which has a long orbital period (69.7340 days) and a large eccentricity e = 0.81 +0.10/-0.07, skirting the proto hot Jupiter boundary. Combining Keplerphotometry, ground-based spectroscopy, and stellar evolutio...

  1. Nonuniform viscosity in the solar nebula and large masses of Jupiter and Saturn

    CERN Document Server

    Jin, Liping

    2004-01-01

    I report a novel theory that nonuniform viscous frictional force in the solar nebula accounts for the largest mass of Jupiter and Saturn and their largest amount of H and He among the planets, two outstanding facts that are unsolved puzzles in our understanding of origin of the Solar System. It is shown that the nebula model of uniform viscosity does not match the present planet masses. By studying current known viscosity mechanisms, I show that viscosity is more efficient in the inner region inside Mercury and the outer region outside Jupiter-Saturn than the intermediate region. The more efficient viscosity drives faster radial inflow of material during the nebula evolution. Because the inflow in the outer region is faster than the intermediate region, the material tends to accumulate in Jupiter-Saturn region which is between the outer and intermediate region. It is demonstrated that the gas trapping time of Jovian planets is longer than the inflow time in the outer region. Therefore the gas already flows to...

  2. Planet Hunters. V. A Confirmed Jupiter-size Planet in the Habitable Zone and 42 Planet Candidates from the Kepler Archive Data

    Science.gov (United States)

    Wang, Ji; Fischer, Debra A.; Barclay, Thomas; Boyajian, Tabetha S.; Crepp, Justin R.; Schwamb, Megan E.; Lintott, Chris; Jek, Kian J.; Smith, Arfon M.; Parrish, Michael; Schawinski, Kevin; Schmitt, Joseph R.; Giguere, Matthew J.; Brewer, John M.; Lynn, Stuart; Simpson, Robert; Hoekstra, Abe J.; Jacobs, Thomas Lee; LaCourse, Daryll; Schwengeler, Hans Martin; Chopin, Mike; Herszkowicz, Rafal

    2013-10-01

    We report the latest Planet Hunter results, including PH2 b, a Jupiter-size (R PL = 10.12 ± 0.56 R ⊕) planet orbiting in the habitable zone of a solar-type star. PH2 b was elevated from candidate status when a series of false-positive tests yielded a 99.9% confidence level that transit events detected around the star KIC 12735740 had a planetary origin. Planet Hunter volunteers have also discovered 42 new planet candidates in the Kepler public archive data, of which 33 have at least 3 transits recorded. Most of these transit candidates have orbital periods longer than 100 days and 20 are potentially located in the habitable zones of their host stars. Nine candidates were detected with only two transit events and the prospective periods are longer than 400 days. The photometric models suggest that these objects have radii that range between those of Neptune and Jupiter. These detections nearly double the number of gas-giant planet candidates orbiting at habitable-zone distances. We conducted spectroscopic observations for nine of the brighter targets to improve the stellar parameters and we obtained adaptive optics imaging for four of the stars to search for blended background or foreground stars that could confuse our photometric modeling. We present an iterative analysis method to derive the stellar and planet properties and uncertainties by combining the available spectroscopic parameters, stellar evolution models, and transiting light curve parameters, weighted by the measurement errors. Planet Hunters is a citizen science project that crowd sources the assessment of NASA Kepler light curves. The discovery of these 43 planet candidates demonstrates the success of citizen scientists at identifying planet candidates, even in longer period orbits with only two or three transit events. .

  3. PLANET HUNTERS. V. A CONFIRMED JUPITER-SIZE PLANET IN THE HABITABLE ZONE AND 42 PLANET CANDIDATES FROM THE KEPLER ARCHIVE DATA

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ji; Fischer, Debra A.; Boyajian, Tabetha S.; Schmitt, Joseph R.; Giguere, Matthew J.; Brewer, John M. [Department of Astronomy, Yale University, New Haven, CT 06511 (United States); Barclay, Thomas [NASA Ames Research Center, M/S 244-30, Moffett Field, CA 94035 (United States); Crepp, Justin R. [Department of Physics, University of Notre Dame, 225 Nieuwland Science Hall, Notre Dame, IN 46556 (United States); Schwamb, Megan E. [Department of Physics, Yale University, P.O. Box 208121, New Haven, CT 06520 (United States); Lintott, Chris; Simpson, Robert [Oxford Astrophysics, Denys Wilkinson Building, Keble Road, Oxford OX1 3RH (United Kingdom); Jek, Kian J.; Hoekstra, Abe J.; Jacobs, Thomas Lee; LaCourse, Daryll; Schwengeler, Hans Martin; Smith, Arfon M.; Parrish, Michael; Lynn, Stuart [Adler Planetarium, 1300 South Lake Shore Drive, Chicago, IL 60605 (United States); Schawinski, Kevin, E-mail: ji.wang@yale.edu [Institute for Astronomy, Department of Physics, ETH Zurich, Wolfgang-Pauli-Strasse 16, CH-8093 Zurich (Switzerland); and others

    2013-10-10

    We report the latest Planet Hunter results, including PH2 b, a Jupiter-size (R{sub PL} = 10.12 ± 0.56 R{sub ⊕}) planet orbiting in the habitable zone of a solar-type star. PH2 b was elevated from candidate status when a series of false-positive tests yielded a 99.9% confidence level that transit events detected around the star KIC 12735740 had a planetary origin. Planet Hunter volunteers have also discovered 42 new planet candidates in the Kepler public archive data, of which 33 have at least 3 transits recorded. Most of these transit candidates have orbital periods longer than 100 days and 20 are potentially located in the habitable zones of their host stars. Nine candidates were detected with only two transit events and the prospective periods are longer than 400 days. The photometric models suggest that these objects have radii that range between those of Neptune and Jupiter. These detections nearly double the number of gas-giant planet candidates orbiting at habitable-zone distances. We conducted spectroscopic observations for nine of the brighter targets to improve the stellar parameters and we obtained adaptive optics imaging for four of the stars to search for blended background or foreground stars that could confuse our photometric modeling. We present an iterative analysis method to derive the stellar and planet properties and uncertainties by combining the available spectroscopic parameters, stellar evolution models, and transiting light curve parameters, weighted by the measurement errors. Planet Hunters is a citizen science project that crowd sources the assessment of NASA Kepler light curves. The discovery of these 43 planet candidates demonstrates the success of citizen scientists at identifying planet candidates, even in longer period orbits with only two or three transit events.

  4. Planet Hunters. V. A Confirmed Jupiter-Size Planet in the Habitable Zone and 42 Planet Candidates from the Kepler Archive Data

    CERN Document Server

    Wang, Ji; Barclay, Thomas; Boyajian, Tabetha S; Crepp, Justin R; Schwamb, Megan E; Lintott, Chris; Jek, Kian J; Smith, Arfon M; Parrish, Michael; Schawinski, Kevin; Schmitt, Joseph; Giguere, Matthew J; Brewer, John M; Lynn, Stuart; Simpson, Robert; Hoekstra, Abe J; Jacobs, Thomas Lee; LaCourse, Daryll; Schwengeler, Hans Martin; Chopin, Mike

    2013-01-01

    We report the latest Planet Hunter results, including PH2 b, a Jupiter-size (R_PL = 10.12 \\pm 0.56 R_E) planet orbiting in the habitable zone of a solar-type star. PH2 b was elevated from candidate status when a series of false positive tests yielded a 99.9% confidence level that transit events detected around the star KIC 12735740 had a planetary origin. Planet Hunter volunteers have also discovered 42 new planet candidates in the Kepler public archive data, of which 33 have at least three transits recorded. Most of these transit candidates have orbital periods longer than 100 days and 20 are potentially located in the habitable zones of their host stars. Nine candidates were detected with only two transit events and the prospective periods are longer than 400 days. The photometric models suggest that these objects have radii that range between Neptune to Jupiter. These detections nearly double the number of gas giant planet candidates orbiting at habitable zone distances. We conducted spectroscopic observat...

  5. Red worlds: Spitzer exploration of a compact system of temperate terrestrial planets transiting a nearby Jupiter-sized star

    Science.gov (United States)

    Gillon, Michael; Burdanov, Artem; Delrez, Laetitia; Jehin, Emmanuel; Magain, Pierre; Van Grootel, Valerie; Bolmont, Emeline; Leconte, Jeremy; Raymond, Sean; Selsis, Franck; Demory, Brice-Olivier; Queloz, Didier; Triaud, Amaury; de Wit, Julien; Burgasser, Adam; Carey, Sean; Ingalls, Jim; Lederer, Sue; Agol, Eric; Deck, Katherine

    2016-08-01

    The recently detected TRAPPIST-1 planetary system represents a unique opportunity to extend the nascent field of comparative exoplanetology into the realm of temperate terrestrial worlds. It is composed of at least three Earth-sized planets similar in sizes and irradiations to Earth and Venus transiting an ultra-cool dwarf star only 39 light-years away. Thanks to the Jupiter-size and infrared brightness of their host star, the planets are amenable for detailed atmospheric characterization with JWST, including for biosignatures detection. Our Spitzer Exploration Science Program aims to prepare and optimize the detailed study of this fascinating planetary system through the two following complementary sub-programs: (1) a 480 hrs continuous monitoring of the star to explore its full inner system up to its ice line in a search for any other transiting object(s) (planet, moon, Trojan) with a sensitivity high enough to detect any body as small as Ganymede, and (2) the observation of ~130 transits of the planets (520 hrs). This second part has two goals. First, to measure precisely the planets' masses and eccentricities through the Transit Timing Variations method, to constrain strongly their compositions and energy budgets. Secondly, to measure with an extremely high precision the planets' effective radii at 4.5 microns to assess, when combined with future HST/WFC3 observations, the presence of an atmosphere around them. The two complementary parts of this program will make it a long-lasting legacy of Spitzer to the fields of comparative exoplanetology and astrobiology, by providing the necessary measurements on the inner system of TRAPPIST-1 (complete census, masses, eccentricities, first insights on atmospheres) required to initiate and optimize the detailed atmospheric characterization of its different components with JWST and other future facilities.

  6. Derivation of the Mass Distribution of Extrasolar Planets with MAXLIMA - a Maximum Likelihood Algorithm

    CERN Document Server

    Zucker, S W; Zucker, Shay; Mazeh, Tsevi

    2001-01-01

    We construct a maximum-likelihood algorithm - MAXLIMA, to derive the mass distribution of the extrasolar planets when only the minimum masses are observed. The algorithm derives the distribution by solving a numerically stable set of equations, and does not need any iteration or smoothing. Based on 50 minimum masses, MAXLIMA yields a distribution which is approximately flat in log M, and might rise slightly towards lower masses. The frequency drops off very sharply when going to masses higher than 10 Jupiter masses, although we suspect there is still a higher mass tail that extends up to probably 20 Jupiter masses. We estimate that 5% of the G stars in the solar neighborhood have planets in the range of 1-10 Jupiter masses with periods shorter than 1500 days. For comparison we present the mass distribution of stellar companions in the range of 100--1000 Jupiter masses, which is also approximately flat in log M. The two populations are separated by the "brown-dwarf desert", a fact that strongly supports the id...

  7. Coupled Evolutions of the Stellar Obliquity, Orbital Distance, and Planet's Radius due to the Ohmic Dissipation Induced in a Diamagnetic Hot Jupiter around a Magnetic T Tauri Star

    Science.gov (United States)

    Chang, Yu-Ling; Bodenheimer, Peter H.; Gu, Pin-Gao

    2012-10-01

    We revisit the calculation of the ohmic dissipation in a hot Jupiter presented by Laine et al. by considering more realistic interior structures, stellar obliquity, and the resulting orbital evolution. In this simplified approach, the young hot Jupiter of one Jupiter mass is modeled as a diamagnetic sphere with a finite resistivity, orbiting across tilted stellar magnetic dipole fields in vacuum. Since the induced ohmic dissipation occurs mostly near the planet's surface, we find that the dissipation is unable to significantly expand the young hot Jupiter. Nevertheless, the planet inside a small corotation orbital radius can undergo orbital decay by the dissipation torque and finally overfill its Roche lobe during the T Tauri star phase. The stellar obliquity can evolve significantly if the magnetic dipole is parallel/antiparallel to the stellar spin. Our results are validated by the general torque-dissipation relation in the presence of the stellar obliquity. We also run the fiducial model of Laine et al. and find that the planet's radius is sustained at a nearly constant value by the ohmic heating, rather than being thermally expanded to the Roche radius as suggested by the authors.

  8. Mass-Loss Evolution of Close-In Exoplanets: Evaporation of Hot Jupiters and the Effect on Population

    CERN Document Server

    Kurokawa, Hiroyuki

    2014-01-01

    During their evolution, short-period exoplanets may lose envelope mass through atmospheric escape owing to intense XUV (X-ray and extreme ultraviolet) radiation from their host stars. Roche-lobe overflow induced by orbital evolution or intense atmospheric escape can also contribute to mass loss. To study the effects of mass loss on inner planet populations, we calculate the evolution of hot Jupiters considering mass loss of their envelopes and thermal contraction. Mass loss is assumed to occur through XUV-driven atmospheric escape and the following Roche-lobe overflow. The runaway effect of mass loss results in a dichotomy of populations: hot Jupiters that retain their envelopes and super Earths whose envelopes are completely lost. Evolution primarily depends on the core masses of planets and only slightly on migration history. In hot Jupiters with small cores (~10 Earth masses), runaway atmospheric escape followed by Roche-lobe overflow may create sub-Jupiter deserts, as observed in both mass and radius dist...

  9. Using Jupiter's Volatile Inventory to Trace the History Of Ices During Planet Formation

    Science.gov (United States)

    Ciesla, F.

    2014-12-01

    The Galileo probe's measurement of a uniform enrichment of Jupiter's atmosphere in volatiles, including noble gases, relative to a gas of solar composition has proven to be a challenge to models of planet formation. This uniform enrichment requires that Jupiter accreted planetesimals with solar ratios in all elements, except for hydrogen and helium. Given the very low temperatures needed to achieve such compositions if all elements behaved chemically as pure substances, efforts have focused on understanding how extremely volatile elements could be physically incorporated into ices and organics at low temperatures. Two primary methods for incorporation of these volatiles have emerged: formation of clathrate hydrates and trapping of gases during the formation of amorphous ice. These modes for incorporating volatiles make different predictions about the amount of water that would be contained within Jupiter, an issue that will be addressed by the Juno Mission. Either mode for incorporating volatiles will reveal details about the dynamical behavior of ices during planet formation and the environments in which planetary materials were formed. For example, Ciesla (2014) showed that amorphous ice formation, and thus trapping of volatiles in this manner, can occur as water molecules are photodesorbed and freeze-out again on grain surfaces, thus requiring high UV flux environments at the birth of the solar system or significant vertical lofting of grains in the disk by turbulence. I will review the conditions that are required for amorphous trapping and clathrate hydrate formation to have occurred in the solar nebula and discuss the implications for the compositions of the other giant planets and cometary bodies, as well as the relation of these materials to the sources of volatiles on terrestrial planets.

  10. Gravitational Microlensing of Earth-mass Planets

    DEFF Research Database (Denmark)

    Harpsøe, Kennet Bomann West

    , i.e. it is much easier to detect high mass planets in close orbits. With these two methods it is hard to detect planets in an exo-solar system with a structure similar to our own solar system; specifically, it is hard to detect Earth-like planets in Earth-like orbits. It is presently unknown how...... to the time duration of the signal, not the signal amplitude, rendering it critical to sample ongoing events very densely in time to detect Earth-mass planets. The lower limit of planet mass that will give rise to a signal is set by the angular size of the source which illuminates the lensing system. It can...... be shown that in the crowded fields where microlensing is observed, the primary obstacle for detecting Earth-mass planets is the crowding, rendering it hard to extract accurate photometry from faint sources at seeing limited resolutions. As all the sources tend to be at approximately the same distance...

  11. Spin-orbit angle measurements for six southern transiting planets; New insights into the dynamical origins of hot Jupiters

    CERN Document Server

    Triaud, Amaury H M J; Queloz, Didier; Anderson, David R; Gillon, Michaël; Hebb, Leslie; Hellier, Coel; Loeillet, Benoît; Maxted, Pierre F; Mayor, Michel; Pepe, Francesco; Pollacco, Don; Ségransan, Damien; Smalley, Barry; Udry, Stéphane; West, Richard G; Wheatley, Peter J

    2010-01-01

    For transiting planets, the Rossiter-McLaughlin effect allows the measurement of the sky-projected angle beta between the stellar rotation axis and a planet's orbital axis. Using the HARPS spectrograph, we observed the Rossiter-McLaughlin effect for six transiting hot Jupiters found by the WASP consortium. We combine these with long term radial velocity measurements obtained with CORALIE. We found that three of our targets have a projected spin-orbit angle above 90 degrees: WASP-2b: beta = 153 (+11 -15), WASP-15b: beta = 139.6 (+5.2 -4.3) and WASP-17b: beta = 148.5 (+5.1 -4.2); the other three (WASP-4b, WASP-5b and WASP-18b) have angles compatible with 0 degrees. There is no dependence between the misaligned angle and planet mass nor with any other planetary parameter. All orbits are close to circular, with only one firm detection of eccentricity on WASP-18b with e = 0.00848 (+0.00085 -0.00095). No long term radial acceleration was detected for any of the targets. Combining all previous 20 measurements of bet...

  12. WASP-41b: A transiting hot Jupiter planet orbiting a magnetically-active G8V star

    CERN Document Server

    Maxted, P F L; Cameron, A Collier; Hellier, C; Queloz, D; Smalley, B; Street, R A; Triaud, A H M J; West, R G; Gillon, M; Lister, T A; Pepe, F; Pollacco, D; Segransan, D; Smith, A M S; Udry, S

    2010-01-01

    We report the discovery of a transiting planet with an orbital period of 3.05d orbiting the star TYC 7247-587-1. The star, WASP-41, is a moderately bright G8V star (V=11.6) with a metallicity close to solar ([Fe/H]=-0.08+-0.09). The star shows evidence of moderate chromospheric activity, both from emission in the cores of the CaII H and K lines and photometric variability with a period of 18.3d and an amplitude of about 1%. The rotation period of the star implies a gyrochronological age for WASP-41 of 1.8Gyr with an error of about 15%. We have used a combined analysis of the available photometric and spectroscopic data to derive the mass and radius of the planet (0.93+-0.06M_Jup, 1.21+-0.06R_Jup). Further observations of WASP-41 can be used to explore the connections between the properties of hot Jupiter planets and the level of chromospheric activity in their host stars.

  13. Using Dynamical Models to Predict the Terrestrial-Mass Free-Floating Planet Population

    Science.gov (United States)

    Barclay, Thomas; Quintana, Elisa V.

    2016-10-01

    In the classical picture of planet formation, planets form within circumstellar disks as a product of star formation. The material in the disk either forms into a planet, remains bound to the star, falls into the star, or is ejected from the system. We explore the properties of this ejected material using N-body simulations of the late stages of terrestrial planet formation. We find that in planetary systems like ours (with Jupiter and Saturn) about half the ejected material is in bodies less massive than the Moon and half is in bodies more massive than Mars. No planets more massive than half an Earth-mass, however, were ejected, primarily because most of the ejections occur before the timescales needed to grow an Earth-mass body. Without giant planets present in the system, very little material is ever ejected. We predict that future space-borne microlensing searches for free-floating terrestrial-mass planets, such as WFIRST, will discover large numbers of Mars-mass planets but will not make significant detections of Earth-mass planets.

  14. The mass disruption of Jupiter Family comets

    Science.gov (United States)

    Belton, Michael J. S.

    2015-01-01

    I show that the size-distribution of small scattered-disk trans-neptunian objects when derived from the observed size-distribution of Jupiter Family comets (JFCs) and other observational constraints implies that a large percentage (94-97%) of newly arrived active comets within a range of 0.2-15.4 km effective radius must physically disrupt, i.e., macroscopically disintegrate, within their median dynamical lifetime. Additional observational constraints include the numbers of dormant and active nuclei in the near-Earth object (NEO) population and the slope of their size distributions. I show that the cumulative power-law slope (-2.86 to -3.15) of the scattered-disk TNO hot population between 0.2 and 15.4 km effective radius is only weakly dependent on the size-dependence of the otherwise unknown disruption mechanism. Evidently, as JFC nuclei from the scattered disk evolve into the inner Solar System only a fraction achieve dormancy while the vast majority of small nuclei (e.g., primarily those with effective radius Morbidelli, A., Dones, L., Jedicke, R., Wiegert, P.A., Bottke Jr., W.F. [2002]. Science 296, 2212-2215) suggesting that all types of comet nuclei may have similar structural characteristics even though they may have different source regions and thermal histories. The typical disruption rate for a 1 km radius active nucleus is ∼5 × 10-5 disruptions/year and the dormancy rate is typically 3 times less. We also estimate that average fragmentation rates range from 0.01 to 0.04 events/year/comet, somewhat above the lower limit of 0.01 events/year/comet observed by Chen and Jewitt (Chen, J., Jewitt, D.C. [1994]. Icarus 108, 265-271).

  15. High-energy irradiation and mass loss rates of hot Jupiters in the solar neighborhood

    CERN Document Server

    Salz, M; Czesla, S; Schmitt, J H M M

    2015-01-01

    Giant gas planets in close proximity to their host stars experience strong irradiation. In extreme cases photoevaporation causes a transonic, planetary wind and the persistent mass loss can possibly affect the planetary evolution. We have identified nine hot Jupiter systems in the vicinity of the Sun, in which expanded planetary atmospheres should be detectable through Lyman alpha transit spectroscopy according to predictions. We use X-ray observations with Chandra and XMM-Newton of seven of these targets to derive the high-energy irradiation level of the planetary atmospheres and the resulting mass loss rates. We further derive improved Lyman alpha luminosity estimates for the host stars including interstellar absorption. According to our estimates WASP-80 b, WASP-77 b, and WASP-43 b experience the strongest mass loss rates, exceeding the mass loss rate of HD 209458 b, where an expanded atmosphere has been confirmed. Furthermore, seven out of nine targets might be amenable to Lyman alpha transit spectroscopy...

  16. Planet Host Stars: Mass, Age and Kinematics

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    We determine the mass, age and kinematics of 51 extra-solar planet host stars. The results are then used to search for signs of connection of the data with metallicity and to investigate the population nature. We find that the increase in mean metallicity with stellar mass is similar to that in normal field stars, so it seems unsuitable to use this relation as a constraint on the theory of planet formation. The age and kinematic distributions seem to favour the metallicity of extra-solar planet host stars being initial. Although the kinematic data of these stars indicate their origin from two populations - the thin and the thick disks, kinematics may not help in the maintenance of the planet around the host. Stars with planets, brown dwarfs or stellar companions are sorted into three groups and re-investigated separately for their formation mechanism. The main results indicate that stars with M2 < 25MJ have [Fe/H] > -0.1 and a wide period range, but there are no other differences.Thus, there does not seem to be any physically distinguishable characteristics among the three star groups.

  17. Reconciling the Difference of Hot Jupiter Occurrence Rates From the Doppler and Transiting Planet Surveys

    Science.gov (United States)

    Wang, Ji; Fischer, Debra

    2015-08-01

    Many hot Jupiters (HJs) are detected by the Doppler and transit techniques. From surveys using these two techniques, however, the measured HJ occurrence rates differ by a factor of two or more. Using the California Planet Survey sample and the Kepler sample, we investigate the causes for this difference in the HJ occurrence rate. We find that 12.8% ± 0.24% of HJs are misidentified in the Kepler mission because of photometric dilution and subgiant contamination. We explore the differences between the Doppler sample and the Kepler sample that can account for the different HJ occurrence rate. We discuss how to measure the fundamental HJ occurrence rates by synthesizing the results from the Doppler and Kepler surveys. The fundamental HJ occurrence rates are measures of the HJ occurrence rate as a function of stellar multiplicity and evolutionary stage, e.g., the HJ occurrence rate for single and multiple stars or for main-sequence and subgiant stars.

  18. The Low Mass of Mars: First Evidence of Early Gas-Driven Migration by Jupiter

    Science.gov (United States)

    Walsh, K. J.; Morbidelli, A.; Raymond, S. N.; O'Brien, D. P.; Mandell, A. M.

    2010-12-01

    Numerical simulations of planetary accretion have succeeded in matching most of the physical and orbital properties of the terrestrial planets with one glaring exception: they categorically form Mars analogs that are roughly an order of magnitude too massive (Raymond et al. 2009). The initial conditions that best reproduce the mass of Mars require that the inner planetesimal disk had an outer edge at 1 Astronomical Unit (AU) (Hansen 2009). To date, no mechanism has been shown to create this edge and remain compatible with the current-day solar system, in particular the existence of the asteroid belt. Here we show that a substantial gas-driven radial migration of the giant planets is the needed mechanism. Hydrodynamical simulations show that the evolution of Jupiter and Saturn in a gas-disk generically leads to a two-stage, inward-then-outward, migration where the extent of each stage of migration depends on a priori unconstrained disk parameters (Masset & Snellgrove 2001, Morbidelli et al. 2007, Pierens & Nelson 2008). We demonstrate with numerical simulations that, if Jupiter migrated inwards to 1.5 AU before migrating out towards its current location, its gravitational influence would truncate the inner planetesimal disk at 1 AU. The resulting disk naturally reproduces all the terrestrial planets including Mars. During the giant planets' migration, the asteroid belt is emptied and later re-populated from two distinct parent populations. This provides the first dynamical explanation for the current dichotomy of physical properties of the main asteroid belt, with anhydrous asteroids (S-type) in the inner part and primitive asteroids (C-type) in the outer part (Gradie & Tedesco 1982). Our model links the origin of the inner solar system -- explaining the mass of Mars and the properties of the asteroid belt -- to a realistic evolution of the giant planets. Thus Mars and the asteroid belt provide the first evidence for an early solar system evolution characterized by

  19. Orbital circularization of a planet accreting disk gas: the formation of distant jupiters in circular orbits based on a core accretion model

    Energy Technology Data Exchange (ETDEWEB)

    Kikuchi, Akihiro; Higuchi, Arika [Department of Earth and Planetary Sciences, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8551 (Japan); Ida, Shigeru, E-mail: kikuchi.a@geo.titech.ac.jp, E-mail: higuchia@geo.titech.ac.jp, E-mail: ida@elsi.jp [Earth-Life Science Institute, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8550 (Japan)

    2014-12-10

    Recently, gas giant planets in nearly circular orbits with large semimajor axes (a ∼ 30-1000 AU) have been detected by direct imaging. We have investigated orbital evolution in a formation scenario for such planets, based on a core accretion model. (1) Icy cores accrete from planetesimals at ≲ 30 AU, (2) they are scattered outward by an emerging nearby gas giant to acquire highly eccentric orbits, and (3) their orbits are circularized through the accretion of disk gas in outer regions, where they spend most of their time. We analytically derived equations to describe the orbital circularization through gas accretion. Numerical integrations of these equations show that the eccentricity decreases by a factor of more than 5 while the planetary mass increases by a factor of 10. Because runaway gas accretion increases planetary mass by ∼10-300, the orbits are sufficiently circularized. On the other hand, a is reduced at most only by a factor of two, leaving the planets in the outer regions. If the relative velocity damping by shock is considered, the circularization slows down, but is still efficient enough. Therefore, this scenario potentially accounts for the formation of observed distant jupiters in nearly circular orbits. If the apocenter distances of the scattered cores are larger than the disk sizes, their a shrink to a quarter of the disk sizes; the a-distribution of distant giants could reflect the outer edges of the disks in a similar way that those of hot jupiters may reflect inner edges.

  20. FRIENDS OF HOT JUPITERS. III. AN INFRARED SPECTROSCOPIC SEARCH FOR LOW-MASS STELLAR COMPANIONS

    Energy Technology Data Exchange (ETDEWEB)

    Piskorz, Danielle; Knutson, Heather A.; Ngo, Henry; Batygin, Konstantin [Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA (United States); Muirhead, Philip S. [Institute for Astrophysical Research, Boston University, Boston, MA (United States); Crepp, Justin R. [Department of Physics, University of Notre Dame, South Bend, IN (United States); Hinkley, Sasha [Department of Physics and Astronomy, University of Exeter, Exeter (United Kingdom); Morton, Timothy D., E-mail: dpiskorz@gps.caltech.edu [Department of Astrophysical Sciences, Princeton University, Princeton, NJ (United States)

    2015-12-01

    Surveys of nearby field stars indicate that stellar binaries are common, yet little is known about the effects that these companions may have on planet formation and evolution. The Friends of Hot Jupiters project uses three complementary techniques to search for stellar companions to known planet-hosting stars: radial velocity monitoring, adaptive optics imaging, and near-infrared spectroscopy. In this paper, we examine high-resolution K band infrared spectra of fifty stars hosting gas giant planets on short-period orbits. We use spectral fitting to search for blended lines due to the presence of cool stellar companions in the spectra of our target stars, where we are sensitive to companions with temperatures between 3500 and 5000 K and projected separations less than 100 AU in most systems. We identify eight systems with candidate low-mass companions, including one companion that was independently detected in our AO imaging survey. For systems with radial velocity accelerations, a spectroscopic non-detection rules out scenarios involving a stellar companion in a high inclination orbit. We use these data to place an upper limit on the stellar binary fraction at small projected separations, and show that the observed population of candidate companions is consistent with that of field stars and also with the population of wide-separation companions detected in our previous AO survey. We find no evidence that spectroscopic stellar companions are preferentially located in systems with short-period gas giant planets on eccentric and/or misaligned orbits.

  1. Friends of Hot Jupiters. IV. Stellar companions beyond 50 AU might facilitate giant planet formation, but most are unlikely to cause Kozai-Lidov migration

    CERN Document Server

    Ngo, Henry; Hinkley, Sasha; Bryan, Marta; Crepp, Justin R; Batygin, Konstantin; Crossfield, Ian; Hansen, Brad; Howard, Andrew W; Johnson, John A; Mawet, Dimitri; Morton, Timothy D; Muirhead, Philip S; Wang, Ji

    2016-01-01

    Stellar companions can influence the formation and evolution of planetary systems, but there are currently few observational constraints on the properties of planet-hosting binary star systems. We search for stellar companions around 77 transiting hot Jupiter systems to explore the statistical properties of this population of companions as compared to field stars of similar spectral type. After correcting for survey incompleteness, we find that $47\\%\\pm7\\%$ of hot Jupiter systems have stellar companions with semi-major axes between 50-2000 AU. This is 2.9 times larger than the field star companion fraction in this separation range, with a significance of $4.4\\sigma$. In the 1-50AU range, only $3.9^{+4.5}_{-2.0}\\%$ of hot Jupiters host stellar companions compared to the field star value of $16.4\\%\\pm0.7\\%$, which is a $2.7\\sigma$ difference. We find that the distribution of mass ratios for stellar companions to hot Jupiter systems peaks at small values and therefore differs from that of field star binaries whi...

  2. Transiting planets from WASP-South, Euler, and TRAPPIST. WASP-68 b, WASP-73 b, and WASP-88 b, three hot Jupiters transiting evolved solar-type stars

    Science.gov (United States)

    Delrez, L.; Van Grootel, V.; Anderson, D. R.; Collier-Cameron, A.; Doyle, A. P.; Fumel, A.; Gillon, M.; Hellier, C.; Jehin, E.; Lendl, M.; Neveu-VanMalle, M.; Maxted, P. F. L.; Pepe, F.; Pollacco, D.; Queloz, D.; Ségransan, D.; Smalley, B.; Smith, A. M. S.; Southworth, J.; Triaud, A. H. M. J.; Udry, S.; West, R. G.

    2014-03-01

    Using the WASP transit survey, we report the discovery of three new hot Jupiters, WASP-68 b, WASP-73 b and WASP-88 b. The planet WASP-68 bhas a mass of 0.95 ± 0.03 MJup, a radius of 1.24-0.06+0.10 RJup, and orbits a V = 10.7 G0-type star (1.24 ± 0.03 M⊙ 1.69-0.06+0.11 R⊙, Teff = 5911 ± 60 K) with a period of 5.084298 ± 0.000015 days. Its size is typical of hot Jupiters with similar masses. The planet WASP-73 bis significantly more massive (1.88-0.06+0.07 MJup) and slightly larger (1.16-0.08+0.12 RJup) than Jupiter. It orbits a V = 10.5 F9-type star (1.34-0.04+0.05 M⊙, 2.07-0.08+0.19 R⊙, Teff = 6036 ± 120 K) every 4.08722 ± 0.00022 days. Despite its high irradiation (~2.3 × 109 erg s-1 cm-2), WASP-73 b has a high mean density (1.20-0.30+0.26 ρJup) that suggests an enrichment of the planet in heavy elements. The planet WASP-88 bis a 0.56 ± 0.08 MJuphot Jupiter orbiting a V = 11.4 F6-type star (1.45 ± 0.05 M⊙, 2.08-0.06+0.12 R⊙, Teff = 6431 ± 130 K) with a period of 4.954000 ± 0.000019 days. With a radius of 1.70-0.07+0.13 RJup, it joins the handful of planets with super-inflated radii. The ranges of ages we determine through stellar evolution modeling are 4.5-7.0 Gyr for WASP-68, 2.8-5.7 Gyr for WASP-73 and 1.8-4.3 Gyr for WASP-88. The star WASP-73 appears to be significantly evolved, close to or already in the subgiant phase. The stars WASP-68 and WASP-88 are less evolved, although in an advanced stage of core H-burning. Tables 1-3 are available in electronic form at http://www.aanda.orgThe photometric time-series used in this work are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/563/A143

  3. SALT observations of the chromospheric activity of transiting planet hosts: mass-loss and star-planet interactions★

    Science.gov (United States)

    Staab, D.; Haswell, C. A.; Smith, Gareth D.; Fossati, L.; Barnes, J. R.; Busuttil, R.; Jenkins, J. S.

    2017-04-01

    We measured the chromospheric activity of the four hot Jupiter hosts WASP-43, WASP-51/HAT-P-30, WASP-72 and WASP-103 to search for anomalous values caused by the close-in companions. The Mount Wilson Ca II H & K S-index was calculated for each star using observations taken with the Robert Stobie Spectrograph at the Southern African Large Telescope. The activity level of WASP-43 is anomalously high relative to its age and falls among the highest values of all known main-sequence stars. We found marginal evidence that the activity of WASP-103 is also higher than expected from the system age. We suggest that for WASP-43 and WASP-103 star-planet interactions (SPI) may enhance the Ca II H & K core emission. The activity levels of WASP-51/HAT-P-30 and WASP-72 are anomalously low, with the latter falling below the basal envelope for both main-sequence and evolved stars. This can be attributed to circumstellar absorption due to planetary mass-loss, though absorption in the interstellar medium may contribute. A quarter of known short-period planet hosts exhibit anomalously low activity levels, including systems with hot Jupiters and low-mass companions. Since SPI can elevate and absorption can suppress the observed chromospheric activity of stars with close-in planets, their Ca II H & K activity levels are an unreliable age indicator. Systems where the activity is depressed by absorption from planetary mass-loss are key targets for examining planet compositions through transmission spectroscopy.

  4. Magnitudes of selected stellar occultation candidates for Pluto and other planets, with new predictions for Mars and Jupiter

    Science.gov (United States)

    Sybert, C. B.; Bosh, A. S.; Sauter, L. M.; Elliot, J. L.; Wasserman, L. H.

    1992-01-01

    Occultation predictions for the planets Mars and Jupiter are presented along with BVRI magnitudes of 45 occultation candidates for Mars, Jupiter, Saturn, Uranus, and Pluto. Observers can use these magnitudes to plan observations of occultation events. The optical depth of the Jovian ring can be probed by a nearly central occultation on 1992 July 8. Mars occults an unusually red star in early 1993, and the occultations for Pluto involving the brightest candidates would possibly occur in the spring of 1992 and the fall of 1993.

  5. Jupiter's Grand Attack

    Science.gov (United States)

    Batygin, Konstantin

    2017-06-01

    The statistics of extrasolar planetary systems indicate that the default mode of planetary formation generates planets with orbital periods shorter than 100 days, and masses substantially exceeding that of the Earth. When viewed in this context, the Solar System, which contains no planets interior to Mercury's 88-day orbit, is unusual. Extra-solar planetary detection surveys also suggest that planets with masses and periods broadly similar to Jupiter's are somewhat uncommon, with occurrence fraction of less than ~ 10%. In this talk, I will present calculations which show that a popular formation scenario for Jupiter and Saturn, in which Jupiter migrates inward from a > 5AU to a ˜ 1.5 AU and then reverses direction, can explain the low overall mass of the Solar System's terrestrial planets, as well as the absence of planets with a 10 - 100 km planetesimals into low- order mean-motion resonances, shepherding of order 10 Earth masses of this material into the a ˜ 1 AU region while exciting substantial orbital eccentricity (e ˜ 0.2 - 0.4). We argue that under these conditions, a collisional cascade will ensue, generating a planetesimal disk that would have flushed any preexisting short-period super-Earth-like planets into the Sun. In this scenario, the Solar System's terrestrial planets formed from gas-starved mass-depleted debris that remained after the primary period of dynamical evolution.

  6. Precise Masses in the WASP-47 Multi-Transiting Hot Jupiter System

    Science.gov (United States)

    Vanderburg, Andrew; Becker, Juliette; Buchhave, Lars A.; Mortier, Annelies; Latham, David W.; Charbonneau, David; Lopez-Morales, Mercedes; HARPS-N Collaboration

    2017-06-01

    We present precise radial velocity observations of WASP-47, a star known to host a hot Jupiter, a distant Jovian companion, and, uniquely, two additional transiting planets in short-period orbits: a super-Earth in a 19 hour orbit, and a Neptune in a 9 day orbit. We combine our observations, collected with the HARPS-N spectrograph, with previously published data to measure the most precise planet masses yet for this system. When combined with new stellar parameters (from analysis of the HARPS-N spectra) and a reanalysis of the transit photometry, our mass measurements yield strong constraints on the small planets’ compositions. Finally, we probabilistically constrain the orbital inclination of the outer Jovian planet through a dynamical analysis that requires the system reproduce its observed parameters.This work was supported by the National Science Foundation Graduate Research Fellowship Program. HARPS-N was funded by the Swiss Space Office, the Harvard Origin of Life Initiative, the Scottish Universities Physics Alliance, the University of Geneva, the Smithsonian Astrophysical Observatory, the Italian National Astrophysical Institute, the University of St. Andrews, Queens University Belfast, and the University of Edinburgh.

  7. HAT-P-44b, HAT-P-45b, and HAT-P-46b: Three Transiting Hot Jupiters in Possible Multi-planet Systems

    Science.gov (United States)

    Hartman, J. D.; Bakos, G. Á.; Torres, G.; Kovács, G.; Johnson, J. A.; Howard, A. W.; Marcy, G. W.; Latham, D. W.; Bieryla, A.; Buchhave, L. A.; Bhatti, W.; Béky, B.; Csubry, Z.; Penev, K.; de Val-Borro, M.; Noyes, R. W.; Fischer, D. A.; Esquerdo, G. A.; Everett, M.; Szklenár, T.; Zhou, G.; Bayliss, D.; Shporer, A.; Fulton, B. J.; Sanchis-Ojeda, R.; Falco, E.; Lázár, J.; Papp, I.; Sári, P.

    2014-06-01

    We report the discovery by the HATNet survey of three new transiting extrasolar planets orbiting moderately bright (V = 13.2, 12.8, and 11.9) stars. The planets have orbital periods of 4.3012, 3.1290, and 4.4631 days, masses of 0.35, 0.89, and 0.49 M J, and radii of 1.24, 1.43, and 1.28 R J. The stellar hosts have masses of 0.94, 1.26, and 1.28 M ⊙. Each system shows significant systematic variations in its residual radial velocities, indicating the possible presence of additional components. Based on its Bayesian evidence, the preferred model for HAT-P-44 consists of two planets, including the transiting component, with the outer planet having a period of 872 days, eccentricity of 0.494 ± 0.081, and a minimum mass of 4.0 M J. Due to aliasing we cannot rule out alternative solutions for the outer planet having a period of 220 days or 438 days. For HAT-P-45, at present there is not enough data to justify the additional free parameters included in a multi-planet model; in this case a single-planet solution is preferred, but the required jitter of 22.5 ± 6.3 m s-1 is relatively high for a star of this type. For HAT-P-46 the preferred solution includes a second planet having a period of 78 days and a minimum mass of 2.0 M J, however the preference for this model over a single-planet model is not very strong. While substantial uncertainties remain as to the presence and/or properties of the outer planetary companions in these systems, the inner transiting planets are well characterized with measured properties that are fairly robust against changes in the assumed models for the outer planets. Continued radial velocity monitoring is necessary to fully characterize these three planetary systems, the properties of which may have important implications for understanding the formation of hot Jupiters. Based in part on observations obtained at the W. M. Keck Observatory, which is operated by the University of California and the California Institute of Technology. Keck

  8. HAT-P-44b, HAT-P-45b, AND HAT-P-46b: Three transiting hot Jupiters in possible multi-planet systems

    Energy Technology Data Exchange (ETDEWEB)

    Hartman, J. D.; Bakos, G. Á.; Bhatti, W.; Csubry, Z.; Penev, K.; De Val-Borro, M. [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States); Torres, G.; Latham, D. W.; Bieryla, A.; Béky, B.; Noyes, R. W.; Esquerdo, G. A. [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States); Kovács, G. [Konkoly Observatory, Budapest (Hungary); Johnson, J. A. [Department of Astrophysics, California Institute of Technology, Pasadena, CA 91125 (United States); Howard, A. W. [Institute for Astronomy, University of Hawaii, Honolulu, HI 96822 (United States); Marcy, G. W. [Department of Astronomy, University of California, Berkeley, CA 94720 (United States); Buchhave, L. A. [Niels Bohr Institute, Copenhagen University, DK-2100 Copenhagen (Denmark); Fischer, D. A. [Department of Astronomy, Yale University, New Haven, CT 06520-8101 (United States); Everett, M. [National Optical Astronomy Observatory, 950 North Cherry Avenue, Tucson, AZ 85719 (United States); Szklenár, T., E-mail: jhartman@astro.princeton.edu [Hungarian Astronomical Association, 1461 Budapest (Hungary); and others

    2014-06-01

    We report the discovery by the HATNet survey of three new transiting extrasolar planets orbiting moderately bright (V = 13.2, 12.8, and 11.9) stars. The planets have orbital periods of 4.3012, 3.1290, and 4.4631 days, masses of 0.35, 0.89, and 0.49 M {sub J}, and radii of 1.24, 1.43, and 1.28 R {sub J}. The stellar hosts have masses of 0.94, 1.26, and 1.28 M {sub ☉}. Each system shows significant systematic variations in its residual radial velocities, indicating the possible presence of additional components. Based on its Bayesian evidence, the preferred model for HAT-P-44 consists of two planets, including the transiting component, with the outer planet having a period of 872 days, eccentricity of 0.494 ± 0.081, and a minimum mass of 4.0 M {sub J}. Due to aliasing we cannot rule out alternative solutions for the outer planet having a period of 220 days or 438 days. For HAT-P-45, at present there is not enough data to justify the additional free parameters included in a multi-planet model; in this case a single-planet solution is preferred, but the required jitter of 22.5 ± 6.3 m s{sup –1} is relatively high for a star of this type. For HAT-P-46 the preferred solution includes a second planet having a period of 78 days and a minimum mass of 2.0 M {sub J}, however the preference for this model over a single-planet model is not very strong. While substantial uncertainties remain as to the presence and/or properties of the outer planetary companions in these systems, the inner transiting planets are well characterized with measured properties that are fairly robust against changes in the assumed models for the outer planets. Continued radial velocity monitoring is necessary to fully characterize these three planetary systems, the properties of which may have important implications for understanding the formation of hot Jupiters.

  9. Orbital Stability of Multi-Planet Systems: Behavior at High Masses

    CERN Document Server

    Morrison, Sarah J

    2016-01-01

    In the coming years, high contrast imaging surveys are expected to reveal the characteristics of the population of wide-orbit, massive, exoplanets. To date, a handful of wide planetary mass companions are known, but only one such multi-planet system has been discovered: HR8799. For low mass planetary systems, multi-planet interactions play an important role in setting system architecture. In this paper, we explore the stability of these high mass, multi-planet systems. While empirical relationships exist that predict how system stability scales with planet spacing at low masses, we show that extrapolating to super-Jupiter masses can lead to up to an order of magnitude overestimate of stability for massive, tightly packed systems. We show that at both low and high planet masses, overlapping mean motion resonances trigger chaotic orbital evolution, which leads to system instability. We attribute some of the difference in behavior as a function of mass to the increasing importance of second order resonances at h...

  10. A hot Jupiter orbiting a 2-Myr-old solar-mass T Tauri star

    CERN Document Server

    Donati, JF; Malo, L; Baruteau, C; Yu, L; Hebrard, E; Hussain, G; Alencar, S; Menard, F; Bouvier, J; Petit, P; Takami, M; Doyon, R; Cameron, A Collier

    2016-01-01

    Hot Jupiters are giant Jupiter-like exoplanets that orbit 100x closer to their host stars than Jupiter does to the Sun. These planets presumably form in the outer part of the primordial disc from which both the central star and surrounding planets are born, then migrate inwards and yet avoid falling into their host star. It is however unclear whether this occurs early in the lives of hot Jupiters, when still embedded within protoplanetary discs, or later, once multiple planets are formed and interact. Although numerous hot Jupiters were detected around mature Sun-like stars, their existence has not yet been firmly demonstrated for young stars, whose magnetic activity is so intense that it overshadows the radial velocity signal that close-in giant planets can induce. Here we show that hot Jupiters around young stars can be revealed from extended sets of high-resolution spectra. Once filtered-out from the activity, radial velocities of V830 Tau derived from new data collected in late 2015 exhibit a sine wave of...

  11. On the Orbital Evolution of a Giant Planet Pair Embedded in a Gaseous Disk. I. Jupiter-Saturn Configuration

    Science.gov (United States)

    Zhang, Hui; Zhou, Ji-Lin

    2010-05-01

    We carry out a series of high-resolution (1024 × 1024) hydrodynamical simulations to investigate the orbital evolution of Jupiter and Saturn embedded in a gaseous protostellar disk. Our work extends the results in the classical papers of Masset & Snellgrove and Morbidelli & Crida by exploring various surface density profiles (σ), where σ vprop r -α. The stability of the mean motion resonances (MMRs) caused by the convergent migration of the two planets is studied as well. Our results show that (1) the gap formation process of Saturn is greatly delayed by the tidal perturbation of Jupiter. These perturbations cause inward or outward runaway migration of Saturn, depending on the density profiles on the disk. (2) The convergent migration rate increases as α increases and the type of MMRs depends on α as well. When 0 4/3, Saturn passes through the 2:1 MMR with Jupiter and is captured into the 3:2 MMR. (3) The 3:2 MMR turns out to be unstable when the eccentricity of Saturn (es ) increases too high. The critical value above which instability will set in is es ~ 0.15. We also observe that the two planets are trapped into 2:1 MMR after the break of 3:2 MMR. This process may provide useful information for the formation of orbital configuration between Jupiter and Saturn in the solar system.

  12. Transiting exoplanets from the CoRoT space mission IX. CoRoT-6b: a transiting `hot Jupiter' planet in an 8.9d orbit around a low-metallicity star

    CERN Document Server

    Fridlund, M; Alonso, R; Deleuil, M; Gandolfi, D; Gillon, M; Bruntt, H; Alapini, A; Csizmadia, Sz; Guillot, T; Lammer, H; Aigrain, S; Almenara, J M; Auvergne, M; Baglin, A; Barge, P; Borde, P; Bouchy, F; Cabrera, J; Carone, L; Carpano, S; Deeg, H J; De la Reza, R; Dvorak, R; Erikson, A; Ferraz-Mello, S; Guenther, E; Gondoin, P; Hartog, R den; Hatzes, A; Jorda, L; Leger, A; Llebaria, A; Magain, P; Mazeh, T; Moutou, C; Ollivier, M; Patzold, M; Queloz, D; Rauer, H; Rouan, D; Samuel, B; Schneider, J; Shporer, A; Stecklum, B; Tingley, B; Weingrill, J; Wuchterl, G

    2010-01-01

    The CoRoT satellite exoplanetary team announces its sixth transiting planet in this paper. We describe and discuss the satellite observations as well as the complementary ground-based observations - photometric and spectroscopic - carried out to assess the planetary nature of the object and determine its specific physical parameters. The discovery reported here is a `hot Jupiter' planet in an 8.9d orbit, 18 stellar radii, or 0.08 AU, away from its primary star, which is a solar-type star (F9V) with an estimated age of 3.0 Gyr. The planet mass is close to 3 times that of Jupiter. The star has a metallicity of 0.2 dex lower than the Sun, and a relatively high $^7$Li abundance. While thelightcurveindicatesamuchhigherlevelof activity than, e.g., the Sun, there is no sign of activity spectroscopically in e.g., the [Ca ] H&K lines.

  13. Kepler Planet Masses and Eccentricities from TTV Analysis

    CERN Document Server

    Hadden, Sam

    2016-01-01

    We conduct a uniform analysis of the transit timing variations (TTVs) of 145 planets from 55 Kepler multiplanet systems to infer planet masses and eccentricities. Eighty of these planets do not have previously reported mass and eccentricity measurements. We employ two complementary methods to fit TTVs: Markov chain Monte Carlo simulations based on N-body integration and an analytic fitting approach. Mass measurements of 49 planets, including 12 without previously reported masses, meet our criterion for classification as robust. Using mass and radius measurements, we infer the masses of planets' gaseous envelopes for both our TTV sample as well as transiting planets with radial velocity observations. Insight from analytic TTV formulae allows us to partially circumvent degeneracies inherent to inferring eccentricities from TTV observations. We find that planet eccentricities are generally small, typically a few percent, but in many instances are non-zero.

  14. Gravitational Microlensing of Earth-mass Planets

    DEFF Research Database (Denmark)

    Harpsøe, Kennet Bomann West

    be shown that in the crowded fields where microlensing is observed, the primary obstacle for detecting Earth-mass planets is the crowding, rendering it hard to extract accurate photometry from faint sources at seeing limited resolutions. As all the sources tend to be at approximately the same distance......, but the photometric ability and stability has not been addressed in the literature. To this end, modifications to the traditional procedure for reducing CCD images is presented along with a discussion of how to optimally utilise lucky imaging, specifically for microlensing observations, by combining...

  15. Friends of Hot Jupiters III: An Infrared Spectroscopic Search for Low-Mass Stellar Companions

    CERN Document Server

    Piskorz, Danielle; Ngo, Henry; Muirhead, Philip S; Batygin, Konstantin; Crepp, Justin R; Hinkley, Sasha; Morton, Timothy D

    2015-01-01

    Surveys of nearby field stars indicate that stellar binaries are common, yet little is known about the effects that these companions may have on planet formation and evolution. The Friends of Hot Jupiters project uses three complementary techniques to search for stellar companions to known planet-hosting stars: radial velocity monitoring, adaptive optics imaging, and near-infrared spectroscopy. In this paper, we examine high-resolution K band infrared spectra of fifty stars hosting gas giant planets on short-period orbits. We use spectral fitting to search for blended lines due to the presence of cool stellar companions in the spectra of our target stars, where we are sensitive to companions with temperatures between 3500-5000 K and projected separations less than 100 AU in most systems. We identify eight systems with candidate low-mass companions, including one companion that was independently detected in our AO imaging survey. For systems with radial velocity accelerations, a spectroscopic non-detection rul...

  16. Transiting exoplanets from the CoRoT space mission: VII. The "hot-Jupiter"-type planet CoRoT-5b

    CERN Document Server

    Rauer, H; Csizmadia, Sz; Deleuil, M; Alonso, R; Aigrain, S; Almenara, J M; Auvergne, M; Baglin, A; Barge, P; Borde, P; Bouchy, F; Bruntt, H; Cabrera, J; Carone, L; Carpano, S; De la Reza, R; Deeg, H J; Dvorak, R; Erikson, A; Fridlund, M; Gandolfi, D; Gillon, M; Guillot, T; Günther, E; Hatzes, A; Hébrard, G; Kabath, P; Jorda, L; Lammer, H; Léger, A; Llebaria, A; Magain, P; Mazeh, T; Moutou, C; Ollivier, M; Paetzold, M; Pont, F; Rabus, M; Renner, S; Rouan, D; Shporer, A; Samuel, B; Schneider, J; Triaud, A H M J; Wuchterl, G

    2009-01-01

    Aims. The CoRoT space mission continues to photometrically monitor about 12 000 stars in its field-of-view for a series of target fields to search for transiting extrasolar planets ever since 2007. Deep transit signals can be detected quickly in the "alarm-mode" in parallel to the ongoing target field monitoring. CoRoT's first planets have been detected in this mode. Methods. The CoRoT raw lightcurves are filtered for orbital residuals, outliers, and low-frequency stellar signals. The phase folded lightcurve is used to fit the transit signal and derive the main planetary parameters. Radial velocity follow-up observations were initiated to secure the detection and to derive the planet mass. Results. We report the detection of CoRoT-5b, detected during observations of the LRa01 field, the first long-duration field in the galactic anticenter direction. CoRoT-5b is a "hot Jupiter-type" planet with a radius of 1.388(+0.046, -0.047) R_Jup, a mass of 0.467(+0.047, -0.024) M_Jup, and therefore, a mean density of 0.21...

  17. The Orbit and Mass of the Third Planet in the Kepler-56 System

    CERN Document Server

    Otor, Oderah Justin; Johnson, John Asher; Charbonneau, David; Collier-Cameron, Andrew; Howard, Andrew W; Isaacson, Howard; Latham, David W; Lopez-Morales, Mercedes; Lovis, Christophe; Mayor, Michel; Micela, Giusi; Molinari, Emilio; Pepe, Francesco; Piotto, Giampaolo; Phillips, David F; Queloz, Didier; Rice, Ken; Sasselov, Dimitar; Ségransan, Damien; Sozzetti, Alessandro; Udry, Stéphane; Watson, Chris

    2016-01-01

    While the vast majority of multiple-planet systems have their orbital angular momentum axes aligned with the spin axis of their host star, Kepler-56 is an exception: its two transiting planets are coplanar yet misaligned by at least 40 degrees with respect to their host star. Additional follow-up observations of Kepler-56 suggest the presence of a massive, non-transiting companion that may help explain this misalignment. We model the transit data along with Keck/HIRES and HARPS-N radial velocity data to update the masses of the two transiting planets and infer the physical properties of the third, non-transiting planet. We employ a Markov Chain Monte Carlo sampler to calculate the best-fitting orbital parameters and their uncertainties for each planet. We find the outer planet has a period of 1002 $\\pm$ 5 days and minimum mass of 5.61 $\\pm$ 0.38 Jupiter masses. We also place a 95% upper limit of 0.80 m/s/yr on long-term trends caused by additional, more distant companions.

  18. A Spitzer Five-Band Analysis of the Jupiter-Sized Planet TrES-1

    CERN Document Server

    Cubillos, Patricio; Madhusudhan, Nikku; Foster, Andrew S D; Lust, Nate B; Hardy, Ryan A; Bowman, M Oliver

    2014-01-01

    With an equilibrium temperature of 1200 K, TrES-1 is one of the coolest hot Jupiters observed by {\\Spitzer}. It was also the first planet discovered by any transit survey and one of the first exoplanets from which thermal emission was directly observed. We analyzed all {\\Spitzer} eclipse and transit data for TrES-1 and obtained its eclipse depths and brightness temperatures in the 3.6 {\\micron} (0.083 % {\\pm} 0.024 %, 1270 {\\pm} 110 K), 4.5 {\\micron} (0.094 % {\\pm} 0.024 %, 1126 {\\pm} 90 K), 5.8 {\\micron} (0.162 % {\\pm} 0.042 %, 1205 {\\pm} 130 K), 8.0 {\\micron} (0.0213 % {\\pm} 0.042 %, 1190 {\\pm} 130 K), and 16 {\\micron} (0.33 % {\\pm} 0.12 %, 1270 {\\pm} 310 K) bands. The eclipse depths can be explained, within 1$\\sigma$ errors, by a standard atmospheric model with solar abundance composition in chemical equilibrium, with or without a thermal inversion. The combined analysis of the transit, eclipse, and radial-velocity ephemerides gives an eccentricity $e = 0.033^{+0.015}_{-0.031}$, consistent with a circular ...

  19. Transiting Planets with LSST II. Period Detection of Planets Orbiting 1 Solar Mass Hosts

    CERN Document Server

    Jacklin, Savannah R; Pepper, Joshua; Stassun, Keivan G

    2015-01-01

    The Large Synoptic Survey Telescope (LSST) will photometrically monitor ~1 billion stars for ten years. The resulting light curves can be used to detect transiting exoplanets. In particular, as demonstrated by Lund et al. (2015), LSST will probe stellar populations currently undersampled in most exoplanet transit surveys, including out to extragalactic distances. In this paper we test the efficiency of the box-fitting least-squares (BLS) algorithm for accurately recovering the periods of transiting exoplanets using simulated LSST data. We model planets with a range of radii orbiting a solar-mass star at a distance of 7 kpc, with orbital periods ranging from 0.5 to 20 d. We find that typical LSST observations will be able to reliably detect Hot Jupiters with periods shorter than ~3 d. At the same time, we find that the LSST deep drilling cadence is extremely powerful: the BLS algorithm successfully recovers at least 30% of sub-Saturn-size exoplanets with orbital periods as long as 20 d.

  20. WASP-22 b: A Transiting "Hot Jupiter" Planet in a Hierarchical Triple System

    Science.gov (United States)

    Maxted, P. F. L.; Anderson, D. R.; Gillon, M.; Hellier, C.; Queloz, D.; Smalley, B.; Triaud, A. H. M. J.; West, R. G.; Wilson, D. M.; Bentley, S. J.; Cegla, H.; Collier Cameron, A.; Enoch, B.; Hebb, L.; Horne, K.; Irwin, J.; Lister, T. A.; Mayor, M.; Parley, N.; Pepe, F.; Pollacco, D.; Segransan, D.; Udry, S.; Wheatley, P. J.

    2010-12-01

    We report the discovery of a transiting planet orbiting the star TYC 6446-326-1. The star, WASP-22, is a moderately bright (V = 12.0) solar-type star (Teff = 6000 ± 100 K, [Fe/H] = -0.05 ± 0.08). The light curve of the star obtained with the WASP-South instrument shows periodic transit-like features with a depth of about 1% and a duration of 0.14 days. The presence of a transit-like feature in the light curve is confirmed using z-band photometry obtained with Faulkes Telescope South. High-resolution spectroscopy obtained with the CORALIE and HARPS spectrographs confirms the presence of a planetary mass companion with an orbital period of 3.533 days in a near-circular orbit. From a combined analysis of the spectroscopic and photometric data assuming that the star is a typical main-sequence star we estimate that the planet has a mass M p = 0.56 ± 0.02M Jup and a radius R p = 1.12 ± 0.04R Jup. In addition, there is a linear trend of 40 m s-1 yr-1 in the radial velocities measured over 16 months, from which we infer the presence of a third body with a long-period orbit in this system. The companion may be a low mass M-dwarf, a white dwarf, or a second planet.

  1. Ogle-2012-blg-0724lb: A Saturn Mass Planet Around an M-dwarf

    Science.gov (United States)

    Hirao, Y.; Sumi, T.; Bennett, D. P.; Bond, I. A.; Rattenbury, N.; Suzuki, D.; Koshimoto, N.; Abe, F.; Asakura, Y.; Bhattacharya, A.

    2016-01-01

    We report the discovery of a planet by the microlensing method, OGLE-2012-BLG-0724Lb. Although the duration of the planetary signal for this event was one of the shortest seen for a planetary event, the anomaly was well covered thanks to high-cadence observations taken by the survey groups OGLE and MOA. By analyzing the light curve, this planetary system is found to have a mass ratio q = (1.58 +/- 0.15) x 10(exp -3). By conducting a Bayesian analysis, we estimate that the host star is an M dwarf with a mass of M(sub L) = 0.29(+0.33/-0.16) solar mass located at D(sub L) = 6.7(+1.1/-1.2) kpc away from the Earth and the companion's mass is m(sub P) = 0.47(+0.54/-0.26) M(Jup). The projected planet- host separation is a falsum = 1.6(+0.4/-0.3) AU. Because the lens-source relative proper motion is relatively high, future highresolution images would detect the lens host star and determine the lens properties uniquely. This system is likely a Saturn-mass exoplanet around an M dwarf, and such systems are commonly detected by gravitational microlensing. This adds another example of a possible pileup of sub-Jupiters (0.2 less than m(sub P)/M(sub Jup) less than 1) in contrast to a lack of Jupiters (approximately 1-2 M(sub Jup)) around M dwarfs, supporting the prediction by core accretion models that Jupiter-mass or more massive planets are unlikely to form around M dwarfs.

  2. The SOPHIE search for northern extrasolar planets. VI. Three new hot Jupiters in multi-planet extrasolar systems

    Science.gov (United States)

    Moutou, C.; Hébrard, G.; Bouchy, F.; Arnold, L.; Santos, N. C.; Astudillo-Defru, N.; Boisse, I.; Bonfils, X.; Borgniet, S.; Delfosse, X.; Díaz, R. F.; Ehrenreich, D.; Forveille, T.; Gregorio, J.; Labrevoir, O.; Lagrange, A.-M.; Montagnier, G.; Montalto, M.; Pepe, F.; Sahlmann, J.; Santerne, A.; Ségransan, D.; Udry, S.; Vanhuysse, M.

    2014-03-01

    We present high-precision radial-velocity measurements of three solar-type stars: HD 13908, HD 159243, and HIP 91258. The observations were made with the SOPHIE spectrograph at the 1.93 m telescope of the Observatoire de Haute-Provence (France). They show that these three bright stars host exoplanetary systems composed of at least two companions. HD 13908 b is a planet with a minimum mass of 0.865 ± 0.035MJup on a circular orbit with a period of 19.382 ± 0.006 days. There is an outer massive companion in the system with a period of 931 ± 17 days, e = 0.12 ± 0.02, and a minimum mass of 5.13 ± 0.25MJup . The star HD 159243 also has two detected companions with respective masses, periods, and eccentricities of Mp= 1.13 ± 0.05 and 1.9 ± 0.13MJup , P = 12.620 ± 0.004 and 248.4 ± 4.9 days, and e = 0.02 ± 0.02 and 0.075 ± 0.05. Finally, the star HIP 91258 has a planetary companion with a minimum mass of 1.068 ± 0.038MJup , an orbital period of 5.0505 ± 0.0015 days, and a quadratic trend indicating an outer planetary or stellar companion that is as yet uncharacterized. The planet-hosting stars HD 13908, HD 159243, and HIP 91258 are main-sequence stars of spectral types F8V, G0V, and G5V, respectively, with moderate activity levels. HIP 91258 is slightly over-metallic, while the other two stars have solar-like metallicity. The three systems are discussed in the frame of formation and dynamical evolution models of systems composed of several giant planets. Tables 5-8 are available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/563/A22Tables 5-7 are also available in electronic form at http://www.aanda.orgBased on observations collected with the SOPHIE spectrograph on the 1.93 m telescope at the Observatoire de Haute-Provence (CNRS), France, by the SOPHIE RPE Consortium (program PNP.CONS).

  3. The mass of dwarf planet Eris.

    Science.gov (United States)

    Brown, Michael E; Schaller, Emily L

    2007-06-15

    The discovery of dwarf planet Eris was followed shortly by the discovery of its satellite, Dysnomia, but the satellite orbit, and thus the system mass, was not known. New observations with the Keck Observatory and the Hubble Space Telescopes show that Dysnomia has a circular orbit with a radius of 37,350 +/- 140 (1-sigma) kilometers and a 15.774 +/- 0.002 day orbital period around Eris. These orbital parameters agree with expectations for a satellite formed out of the orbiting debris left from a giant impact. The mass of Eris from these orbital parameters is 1.67 x 10(22) +/- 0.02 x 10(22) kilograms, or 1.27 +/- 0.02 that of Pluto.

  4. Transiting planets from WASP-South, Euler and TRAPPIST: WASP-68 b, WASP-73 b and WASP-88 b, three hot Jupiters transiting evolved solar-type stars

    CERN Document Server

    Delrez, L; Anderson, D R; Collier-Cameron, A; Doyle, A P; Fumel, A; Gillon, M; Hellier, C; Jehin, E; Lendl, M; Neveu-VanMalle, M; Maxted, P F L; Pepe, F; Pollacco, D; Queloz, D; Ségransan, D; Smalley, B; Smith, A M S; Southworth, J; Triaud, A H M J; Udry, S; West, R G

    2013-01-01

    We report the discovery by the WASP transit survey of three new hot Jupiters, WASP-68 b, WASP-73 b and WASP-88 b. WASP-68 b has a mass of 0.95+-0.03 M_Jup, a radius of 1.24-0.06+0.10 R_Jup, and orbits a V=10.7 G0-type star (1.24+-0.03 M_sun, 1.69-0.06+0.11 R_sun, T_eff=5911+-60 K) with a period of 5.084298+-0.000015 days. Its size is typical of hot Jupiters with similar masses. WASP-73 b is significantly more massive (1.88-0.06+0.07 M_Jup) and slightly larger (1.16-0.08+0.12 R_Jup) than Jupiter. It orbits a V=10.5 F9-type star (1.34-0.04+0.05 M_sun, 2.07-0.08+0.19 R_sun, T_eff=6036+-120 K) every 4.08722+-0.00022 days. Despite its high irradiation (2.3 10^9 erg s^-1 cm^-2), WASP-73 b has a high mean density (1.20-0.30+0.26 \\rho_Jup) that suggests an enrichment of the planet in heavy elements. WASP-88 b is a 0.56+-0.08 M_Jup planet orbiting a V=11.4 F6-type star (1.45+-0.05 M_sun, 2.08-0.06+0.12 R_sun, T_eff=6431+-130 K) with a period of 4.954000+-0.000019 days. With a radius of 1.70-0.07+0.13 R_Jup, it joins t...

  5. Atmospheric Mass Loss During Planet Formation

    CERN Document Server

    Schlichting, Hilke; Yalinewich, Almog

    2014-01-01

    We quantify the atmospheric mass loss during planet formation by examining the contributions to atmospheric loss from both giant impacts and planetesimal accretion. Giant impacts cause global motion of the ground. Using analytic self-similar solutions and full numerical integrations we find (for isothermal atmospheres with adiabatic index ($\\gamma=5/3$) that the local atmospheric mass loss fraction for ground velocities $v_g \\sqrt{2} \\rho_0 (\\pi h R)^{3/2}$ (25~km for the current Earth), are able to eject all the atmosphere above the tangent plane of the impact site, which is $h/2R$ of the whole atmosphere, where $h$, $R$ and $\\rho_0$ are the atmospheric scale height, radius of the target, and its atmospheric density at the ground. 2) Smaller impactors, but above $m>4 \\pi \\rho_0 h^3$ (1~km for the current Earth) are only able to eject a fraction of the atmospheric mass above the tangent plane. We find that the most efficient impactors (per unit impactor mass) for atmospheric loss are planetesimals just above...

  6. Dynamical corotation torques on low-mass planets

    CERN Document Server

    Paardekooper, Sijme-Jan

    2014-01-01

    We study torques on migrating low-mass planets in locally isothermal discs. Previous work on low-mass planets generally kept the planet on a fixed orbit, after which the torque on the planet was measured. In addition to these static torques, when the planet is allowed to migrate it experiences dynamical torques, which are proportional to the migration rate and whose sign depends on the background vortensity gradient. We show that in discs a few times more massive than the Minimum Mass Solar Nebula, these dynamical torques can have a profound impact on planet migration. Inward migration can be slowed down significantly, and if static torques lead to outward migration, dynamical torques can take over, taking the planet beyond zero-torque lines set by saturation of the corotation torque in a runaway fashion. This means the region in non-isothermal discs where outward migration is possible can be larger than what would be concluded from static torques alone.

  7. A Spitzer five-band analysis of the Jupiter-sized planet TrES-1

    Energy Technology Data Exchange (ETDEWEB)

    Cubillos, Patricio; Harrington, Joseph; Foster, Andrew S. D.; Lust, Nate B.; Hardy, Ryan A.; Bowman, M. Oliver [Planetary Sciences Group, Department of Physics, University of Central Florida, Orlando, FL 32816-2385 (United States); Madhusudhan, Nikku, E-mail: pcubillos@fulbrightmail.org [Department of Physics and Department of Astronomy, Yale University, New Haven, CT 06511 (United States)

    2014-12-10

    With an equilibrium temperature of 1200 K, TrES-1 is one of the coolest hot Jupiters observed by Spitzer. It was also the first planet discovered by any transit survey and one of the first exoplanets from which thermal emission was directly observed. We analyzed all Spitzer eclipse and transit data for TrES-1 and obtained its eclipse depths and brightness temperatures in the 3.6 μm (0.083% ± 0.024%, 1270 ± 110 K), 4.5 μm (0.094% ± 0.024%, 1126 ± 90 K), 5.8 μm (0.162% ± 0.042%, 1205 ± 130 K), 8.0 μm (0.213% ± 0.042%, 1190 ± 130 K), and 16 μm (0.33% ± 0.12%, 1270 ± 310 K) bands. The eclipse depths can be explained, within 1σ errors, by a standard atmospheric model with solar abundance composition in chemical equilibrium, with or without a thermal inversion. The combined analysis of the transit, eclipse, and radial-velocity ephemerides gives an eccentricity of e=0.033{sub −0.031}{sup +0.015}, consistent with a circular orbit. Since TrES-1's eclipses have low signal-to-noise ratios, we implemented optimal photometry and differential-evolution Markov Chain Monte Carlo (MCMC) algorithms in our Photometry for Orbits, Eclipses, and Transits pipeline. Benefits include higher photometric precision and ∼10 times faster MCMC convergence, with better exploration of the phase space and no manual parameter tuning.

  8. Transiting exoplanets from the CoRoT space mission XVII. The hot Jupiter CoRoT-17b: a very old planet

    CERN Document Server

    Csizmadia, Sz; Deleuil, M; Cabrera, J; Fridlund, M; Gandolfi, D; Aigrain, S; Alonso, R; Almenara, J M; Auvergne, M; Baglin, A; Barge, P; Bonomo, A S; Borde, P; Bouchy, F; Bruntt, H; Carone, L; Carpano, S; Cavarroc, C; Cochran, W; Deeg, H J; Diaz, R F; Dvorak, R; Endl, M; Erikson, A; Ferraz-Mello, S; Fruth, Th; Gazzano, J C; Gillon, M; Guenther, E W; Guillot, T; Hatzes, A; Havel, M; Hebrard, G; Jehin, E; Jorda, L; Leger, A; Llebaria, A; Lammer, H; Lovis, C; MacQueen, P J; Mazeh, T; Ollivier, M; Paetzold, M; Queloz, D; Rauer, H; Rouan, D; Santerne, A; Schneider, J; Tingley, B; Titz-Weider, R; Wuchterl, G

    2011-01-01

    We report on the discovery of a hot Jupiter-type exoplanet, CoRoT-17b, detected by the CoRoT satellite. It has a mass of $2.43\\pm0.30$\\Mjup and a radius of $1.02\\pm0.07$\\Rjup, while its mean density is $2.82\\pm0.38$ g/cm$^3$. CoRoT-17b is in a circular orbit with a period of $3.7681\\pm0.0003$ days. The host star is an old ($10.7\\pm1.0$ Gyr) main-sequence star, which makes it an intriguing object for planetary evolution studies. The planet's internal composition is not well constrained and can range from pure H/He to one that can contain $\\sim$380 earth masses of heavier elements.

  9. Masses, Radii, and Orbits of Small Kepler Planets: The Transition from Gaseous to Rocky Planets

    DEFF Research Database (Denmark)

    Marcy, Geoffrey W.; Isaacson, Howard; Howard, Andrew W.

    2014-01-01

    a rocky composition. We identify six planets with densities above 5 g cm–3, suggesting a mostly rocky interior for them. Indeed, the only planets that are compatible with a purely rocky composition are smaller than ~2 R ⊕. Larger planets evidently contain a larger fraction of low-density material (H, He......, along with high-resolution imaging and spectroscopy, Doppler spectroscopy, and (for 11 stars) asteroseismology, we establish low false-positive probabilities (FPPs) for all of the transiting planets (41 of 42 have an FPP under 1%), and we constrain their sizes and masses. Most of the transiting planets...

  10. Jupiter-like planets as dynamical barriers to inward-migrating super-Earths: a new understanding of the origin of Uranus and Neptune and predictions for extrasolar planetary systems

    Science.gov (United States)

    Morbidelli, Alessandro; Izidoro Da Costa, Andre'; Raymond, Sean

    2014-11-01

    Planets of 1-4 times Earth's size on orbits shorter than 100 days exist around 30-50% of all Sun-like stars. These ``hot super-Earths'' (or ``mini-Neptunes''), or their building blocks, might have formed on wider orbits and migrated inward due to interactions with the gaseous protoplanetary disk. The Solar System is statistically unusual in its lack of hot super-Earths. Here, we use a suite of dynamical simulations to show that gas-giant planets act as barriers to the inward migration of super-Earths initially placed on more distant orbits. Jupiter's early formation may have prevented Uranus and Neptune (and perhaps Saturn's core) from becoming hot super-Earths. It may actually have been crucial to the very formation of Uranus and Neptune. In fact, the large spin obliquities of these two planets argue that they experienced a stage of giant impacts from multi-Earth mass planetary embryos. We show that the dynamical barrier offered by Jupiter favors the mutual accretion of multiple migrating planetary embryos, favoring the formation of a few massive objects like Uranus and Neptune. Our model predicts that the populations of hot super-Earth systems and Jupiter-like planets should be anti-correlated: gas giants (especially if they form early) should be rare in systems with many hot super-Earths. Testing this prediction will constitute a crucial assessment of the validity of the migration hypothesis for the origin of close-in super-Earths.

  11. Possible Outcomes of Coplanar High-eccentricity Migration: Hot Jupiters, Close-in Super-Earths, and Counter-orbiting Planets

    Science.gov (United States)

    Xue, Yuxin; Masuda, Kento; Suto, Yasushi

    2017-02-01

    We investigate the formation of close-in planets in near-coplanar eccentric hierarchical triple systems via the secular interaction between an inner planet and an outer perturber (Coplanar High-eccentricity Migration; CHEM). We generalize the previous work on the analytical condition for successful CHEM for point masses interacting only through gravity by taking into account the finite mass effect of the inner planet. We find that efficient CHEM requires that the systems should have m1 ≪ m0 and m1 ≪ m2. In addition to the gravity for point masses, we examine the importance of the short-range forces, and provide an analytical estimate of the migration timescale. We perform a series of numerical simulations in CHEM for systems consisting of a Sun-like central star, giant gas inner planet, and planetary outer perturber, including the short-range forces and stellar and planetary dissipative tides. We find that most of such systems end up with a tidal disruption; a small fraction of the systems produce prograde hot Jupiters (HJs), but no retrograde HJ. In addition, we extend CHEM to super-Earth mass range, and show that the formation of close-in super-Earths in prograde orbits is also possible. Finally, we carry out CHEM simulation for the observed hierarchical triple and counter-orbiting HJ systems. We find that CHEM can explain a part of the former systems, but it is generally very difficult to reproduce counter-orbiting HJ systems.

  12. Growth of Jupiter: Enhancement of Core Accretion by a Voluminous Low-Mass Envelope

    CERN Document Server

    D'Angelo, Gennaro; Lissauer, Jack J; Bodenheimer, Peter

    2014-01-01

    We present calculations of the early stages of the formation of Jupiter via core nucleated accretion and gas capture. The core begins as a seed body of about 350 kilometers in radius and orbits in a swarm of planetesimals whose initial radii range from 15 meters to 50 kilometers. The evolution of the swarm accounts for growth and fragmentation, viscous and gravitational stirring, and for drag-assisted migration and velocity damping. During this evolution, less than 9% of the mass is in planetesimals smaller than 1 kilometer in radius; < ~25% is in planetesimals with radii between 1 and 10 kilometers; and < ~7% is in bodies with radii larger than 100 kilometers. Gas capture by the core substantially enhances the size-dependent cross-section of the planet for accretion of planetesimals. The calculation of dust opacity in the planet's envelope accounts for coagulation and sedimentation of dust particles released as planetesimals are ablated. The calculation is carried out at an orbital semi-major axis of 5...

  13. Voyager 2 Jupiter Eruption Movie

    Science.gov (United States)

    2000-01-01

    This movie records an eruptive event in the southern hemisphere of Jupiter over a period of 8 Jupiter days. Prior to the event, an undistinguished oval cloud mass cruised through the turbulent atmosphere. The eruption occurs over avery short time at the very center of the cloud. The white eruptive material is swirled about by the internal wind patterns of the cloud. As a result of the eruption, the cloud then becomes a type of feature seen elsewhere on Jupiter known as 'spaghetti bowls'.As Voyager 2 approached Jupiter in 1979, it took images of the planet at regular intervals. This sequence is made from 8 images taken once every Jupiter rotation period (about 10 hours). These images were acquired in the Violet filter around May 6, 1979. The spacecraft was about 50 million kilometers from Jupiter at that time.This time-lapse movie was produced at JPL by the Image Processing Laboratory in 1979.

  14. WASP-22 b: A transiting "hot Jupiter" planet in a hierarchical triple system

    CERN Document Server

    Maxted, P F L; Gillon, M; Hellier, C; Queloz, D; Smalley, B; Triaud, A H M J; West, R G; Wilson, D M; Bentley, S J; Cameron, A Collier; Enoch, B; Hebb, L; Horne, K; Irwin, J; Lister, T A; Mayor, M; Parley, N; Pepe, F; Pollacco, D; Segransan, D; Udry, S; Wheatley, P J

    2010-01-01

    We report the discovery of a transiting planet orbiting the star TYC 6446-326-1. The star, WASP-22, is a moderately bright (V=12.0) solar-type star (T_eff = 6000 +/- 100K, [Fe/H]= -0.05 \\pm 0.08). The lightcurve of the star obtained with the WASP-South instrument shows periodic transit-like features with a depth of about 1% and a duration of 0.14d. The presence of a transit-like feature in the lightcurve is confirmed using z-band photometry obtained with Faulkes Telescope South. High resolution spectroscopy obtained with the CORALIE and HARPS spectrographs confirm the presence of a planetary mass companion with an orbital period of 3.533d in a near-circular orbit. From a combined analysis of the spectroscopic and photometric data assuming that the star is a typical main-sequence star we estimate that the planet has a mass M_p = (0.56 +/- 0.02)M_Jup and a radius R_p = (1.12 +/- 0.04)R_Jup. In addition, there is a linear trend of 40m/s/y in the radial velocities measured over 16 months, from which we infer the ...

  15. Methane Planets and their Mass-Radius Relation

    CERN Document Server

    Helled, Ravit; Vos, Eran

    2015-01-01

    Knowledge of both the mass and radius of an exoplanet allows us to estimate its mean density, and therefore, its composition. Exoplanets seem to fill a very large parameter space in terms of mass and composition, and unlike the solar-system's planets, exoplanets also have intermediate masses (~5-50 M_Earth) with various densities. In this letter, we investigate the behavior of the Mass-Radius relation for methane (CH_4) planets and show that when methane planets are massive enough (M_planet > ~15 M_Earth) the methane can dissociate and lead to a differentiated planet with a carbon core, a methane envelope, and a hydrogen atmosphere. The contribution of a rocky core to the behavior of CH_4 planet is considered as well. We also develop interior models for several detected intermediate-mass planets that could, in principle, be methane/methane-rich planets. The example of methane planets emphasizes the complexity of the Mass-Radius relation and the challenge in inferring the planetary composition uniquely.

  16. New Planetary Systems from the Calan-Hertfordshire Extrasolar Planet Search and the Core Accretion Mass Limit

    CERN Document Server

    Jenkins, J S; Tuomi, M; Díaz, M; Cordero, J P; Aguayo, A; Pantoja, B; Arriagada, P; Mahu, R; Brahm, R; Rojo, P; Soto, M G; Ivanyuk, O; Yoma, N Becerra; Day-Jones, A C; Ruiz, M T; Pavlenko, Y V; Barnes, J R; Murgas, F; Pinfield, D J; Jones, M I; López-Morales, M; Shectman, S; Butler, R P; Minniti, D

    2016-01-01

    We report the discovery of eight new giant planets, and updated orbits for four known planets, orbiting dwarf and subgiant stars, using the CORALIE, HARPS, and MIKE instruments as part of the Calan-Hertfordshire Extrasolar Planet Search. We include radial velocity data prior- and post-2014 CORALIE upgrade and our Bayesian updating method returned a systematic offset of 19.2$\\pm$4.8 m/s between the two velocity sets for our stars. The planets have masses in the range 1.1-5.4M$_{\\rm{J}}$s, orbital periods from 40-2900 days, and eccentricities from 0.0-0.6. They include a double-planet system orbiting the most massive star in our sample (HD147873), two eccentric giant planets (HD128356$b$ and HD154672$b$), and a rare 14~Herculis analogue (HD224538$b$). We find that there is an over-abundance of Jupiter-mass objects compared to a simple power law fit to the mass function, with a steep increase in the planet frequency around 3M$_{\\rm{J}}$, reflecting the increased efficiency of planet formation towards lower masse...

  17. Exploring the Relationship Between Planet Mass and Atmospheric Metallicity for Cool Giant Planets

    Science.gov (United States)

    Thomas, Nancy H.; Wong, Ian; Knutson, Heather; Deming, Drake; Desert, Jean-Michel; Fortney, Jonathan J.; Morley, Caroline; Kammer, Joshua A.; Line, Michael R.

    2016-10-01

    Measurements of the average densities of exoplanets have begun to help constrain their bulk compositions and to provide insight into their formation locations and accretionary histories. Current mass and radius measurements suggest an inverse relationship between a planet's bulk metallicity and its mass, a relationship also seen in the gas and ice giant planets of our own solar system. We expect atmospheric metallicity to similarly increase with decreasing planet mass, but there are currently few constraints on the atmospheric metallicities of extrasolar giant planets. For hydrogen-dominated atmospheres, equilibrium chemistry models predict a transition from CO to CH4 below ~1200 K. However, with increased atmospheric metallicity the relative abundance of CH4 is depleted and CO is enhanced. In this study we present new secondary eclipse observations of a set of cool (planet mass and atmospheric metallicity as predicted by the core accretion models and observed in our solar system.

  18. How the presence of a gas giant affects the formation of mean-motion resonances between two low-mass planets in a locally isothermal gaseous disc

    Science.gov (United States)

    Podlewska-Gaca, E.; Szuszkiewicz, E.

    2014-03-01

    In this paper we investigate the possibility of a migration-induced resonance locking in systems containing three planets, namely an Earth analogue (1 M⊕), a super-Earth (4 M⊕) and a gas giant (one Jupiter mass). The planets have been listed in order of increasing orbital periods. All three bodies are embedded in a locally isothermal gaseous disc and orbit around a solar mass star. We are interested in answering the following questions: will the low-mass planets form the same resonant structures with each other in the vicinity of the gas giant as in the case when the gas giant is absent? More in general, how will the presence of the gas giant affect the evolution of the two low-mass planets? When there is no gas giant in the system, it has been already shown that if the two low-mass planets undergo a convergent differential migration, they will capture each other in a mean-motion resonance. For the choices of disc parameters and planet masses made in this paper, the formation of the 5:4 resonance in the absence of the Jupiter has been observed in a previous investigation and confirmed here. In this work we add a gas giant on the most external orbit of the system in such a way that its differential migration is convergent with the low-mass planets. We show that the result of this set-up is the speeding up of the migration of the super-Earth and, after that, all three planets become locked in a triple mean-motion resonance. However, this resonance is not maintained due to the low-mass planet eccentricity excitation, a fact that leads to close encounters between planets and eventually to the ejection from the internal orbits of one or both low-mass planets. We have observed that the ejected low-mass planets can leave the system, fall into a star or become the external planet relative to the gas giant. In our simulations the latter situation has been observed for the super-Earth. It follows from the results presented here that the presence of a Jupiter-like planet

  19. Trapping planets in an evolving protoplanetary disk: preferred time, locations and planet mass

    CERN Document Server

    Baillié, Kévin; Pantin, Éric

    2016-01-01

    Planet traps are necessary to prevent forming planets from falling onto their host star by type I migration. Surface mass density and temperature gradient irregularities favor the apparition of traps and deserts. Such features are found at the dust sublimation lines and heat transition barriers. We study how planets may remain trapped or escape as they grow and as the disk evolves. We model the temporal viscous evolution of a protoplanetary disk by coupling its dynamics, thermodynamics, geometry and composition. The resulting mid-plane density and temperature profiles allow the modeling of the interactions of such an evolving disk with potential planets, even before the steady state is reached. We follow the viscous evolution of a MMSN and compute the Lindblad and corotation torques that such a disk would exert on potential planets of various masses located within the planetary formation region. We determine the position of planet traps and deserts in relationship with the sublimation lines, shadowed regions ...

  20. Discovery of a Jupiter/Saturn Analog with Gravitational Microlensing

    Energy Technology Data Exchange (ETDEWEB)

    Gaudi, B; Bennett, D; Udalski, A; Gould, A; Christie, G; Maoz, D; Dong, S; McCormick, J; Szymanski, M; Tristram, P; Nikolaev, S; Paczynski, B; Kubiak, M; Pietrzynski, G; Soszynski, I; Szewczyk, O; Ulaczyk, K; Wyrzykowski, L; DePoy, D; Han, C; Kaspi, S; Lee, C; Mallia, F; Natusch, T; Pogge, R; Park, B; Abe, F; Bond, I; Botzler, C; Fukui, A; Hearnshaw, J; Itow, Y; Kamiya, K; Korpela, A; Kilmartin, P; Lin, W; Masuda, K; Matsubara, Y; Motomura, M; Muraki, Y; Nakamura, S; Okumura, T; Ohnishi, K; Rattenbury, N; Sako, T; Saito, T; Sato, S; Skuljan, L; Sullivan, D; Sumi, T; Sweatman, W; Yock, P; Albrow, M; Beaulieu, J; Burgdorf, M; Cook, K; Coutures, C; Dominik, M; Dieters, S; Fouque, P; Greenhill, J; Horne, K; Steele, I; Tsapras, Y; Chaboyer, B; Crocker, A; Frank, S; Macintosh, B

    2007-11-08

    Searches for extrasolar planets have uncovered an astonishing diversity of planetary systems, yet the frequency of solar system analogs remains unknown. The gravitational microlensing planet search method is potentially sensitive to multiple-planet systems containing analogs of all the solar system planets except Mercury. We report the first detection of a multiple-planet system with microlensing. We identify two planets with masses of {approx} 0.71 and {approx} 0.27 times the mass of Jupiter and orbital separations of {approx} 2.3 and {approx} 4.6 astronomical units orbiting a primary of mass {approx} 0.50 solar masses. This system resembles a scaled version of our solar system in that the mass ratio, separation ratio, and equilibrium temperatures of the planets are similar to those of Jupiter and Saturn. These planets could not have been detected with other techniques; their discovery from only 6 confirmed microlensing planet detections suggests that solar system analogs may be common.

  1. Close-in planets around giant stars. Lack of hot-Jupiters and prevalence of multi-planetary systems

    CERN Document Server

    Lillo-Box, J; Correia, A C M

    2016-01-01

    Extrasolar planets abound in almost any possible configuration. However, until five years ago, there was a lack of planets orbiting closer than 0.5 au to giant or subgiant stars. Since then, recent detections have started to populated this regime by confirming 13 planetary systems. We discuss the properties of these systems in terms of their formation and evolution off the main sequence. Interestingly, we find that $70.0\\pm6.6$ % of the planets in this regime are inner components of multiplanetary systems. This value is 4.2$\\sigma$ higher than for main-sequence hosts, which we find to be $42.4\\pm0.1$ %. The properties of the known planets seem to indicate that the closest-in planets (a < 0.06 au) to main-sequence stars are massive (i.e., hot Jupiters) and isolated and that they are subsequently engulfed by their host as it evolves to the red giant branch, leaving only the predominant population of multiplanetary systems in orbits 0.06 < a < 0.5 au. We discuss the implications of this emerging observa...

  2. Instability of mass transfer in a planet-star system

    CERN Document Server

    Jia, Shi

    2016-01-01

    We show that the angular momentum exchange mechanism governing the evolution of mass transferring binary stars does not apply to Roche-lobe filling planets, because most of the angular momentum of the mass transferring stream is absorbed by the host star. Apart from a correction for the difference in specific angular momentum of the stream and the centre of mass of the planet, the orbit does not expand much on Roche-lobe overflow. We explore the conditions for dynamically unstable Roche-lobe overflow as a function of planet mass and mass and radius (age) of host star and equation of state of planet. For a Sun-like host, gas giant planets in a range of mass and entropy can undergo dynamical mass transfer. Examples of the evolution of the mass transfer process are given. Dynamic mass transfer of rocky planets depend somewhat sensitively on equation of state used. Silicate planets in the range $1 M_{\\oplus} mass transfer before set...

  3. The Occurrence and Mass Distribution of Close-in Super-Earths, Neptunes, and Jupiters

    CERN Document Server

    Howard, Andrew W; Johnson, John Asher; Fischer, Debra A; Wright, Jason T; Isaacson, Howard; Valenti, Jeff A; Anderson, Jay; Lin, Doug N C; Ida, Shigeru; 10.1126/science.1194854

    2010-01-01

    The questions of how planets form and how common Earth-like planets are can be addressed by measuring the distribution of exoplanet masses and orbital periods. We report the occurrence rate of close-in planets (with orbital periods less than 50 days) based on precise Doppler measurements of 166 Sun-like stars. We measured increasing planet occurrence with decreasing planet mass (M). Extrapolation of a power law mass distribution fitted to our measurements, df/dlogM = 0.39M^-0.48, predicts that 23% of stars harbor a close-in Earth-mass planet (ranging from 0.5 to 2.0 Earth masses). Theoretical models of planet formation predict a deficit of planets in the domain from 5 to 30 Earth masses and with orbital periods less than 50 days. This region of parameter space is in fact well populated, implying that such models need substantial revision.

  4. The occurrence and mass distribution of close-in super-Earths, Neptunes, and Jupiters.

    Science.gov (United States)

    Howard, Andrew W; Marcy, Geoffrey W; Johnson, John Asher; Fischer, Debra A; Wright, Jason T; Isaacson, Howard; Valenti, Jeff A; Anderson, Jay; Lin, Doug N C; Ida, Shigeru

    2010-10-29

    The questions of how planets form and how common Earth-like planets are can be addressed by measuring the distribution of exoplanet masses and orbital periods. We report the occurrence rate of close-in planets (with orbital periods less than 50 days), based on precise Doppler measurements of 166 Sun-like stars. We measured increasing planet occurrence with decreasing planet mass (M). Extrapolation of a power-law mass distribution fitted to our measurements, df/dlogM = 0.39 M(-0.48), predicts that 23% of stars harbor a close-in Earth-mass planet (ranging from 0.5 to 2.0 Earth masses). Theoretical models of planet formation predict a deficit of planets in the domain from 5 to 30 Earth masses and with orbital periods less than 50 days. This region of parameter space is in fact well populated, implying that such models need substantial revision.

  5. Orbital migration of giant planets induced by gravitationally unstable gaps: the effect of planet mass

    CERN Document Server

    Cloutier, Ryan

    2013-01-01

    It has been suggested that long-period giant planets, such as HD 95086b and HR 8799bcde, may have formed through gravitational instability of protoplanetary discs. However, self-gravitating disc-satellite interaction can lead to the formation of a gravitationally unstable gap. Such an instability significantly affects the orbital migration of gap-opening perturbers in massive discs. We use 2D hydrodynamical simulations to examine the role of planet mass on the gravitational stability of gaps and its impact on orbital migration. We consider giant planets with planet-to-star mass ratio q=0.0003 to q=0.003, in a self-gravitating disc with disc-to-star mass ratio M_d/M_*=0.08, aspect ratio h=0.05, and Keplerian Toomre parameter Q = 1.5 at 2.5 times the planet's initial orbital radius. Fixed-orbit simulations show that all planet masses we consider open gravitationally unstable gaps, but the instability is stronger and develops sooner with increasing planet mass. The disc-on-planet torques typically become more po...

  6. Masses, Radii, and Orbits of Small Kepler Planets: The Transition from Gaseous to Rocky Planets

    CERN Document Server

    Marcy, Geoffrey W; Howard, Andrew W; Rowe, Jason F; Jenkins, Jon M; Bryson, Stephen T; Latham, David W; Howell, Steve B; Gautier, Thomas N; Batalha, Natalie M; Rogers, Leslie A; Ciardi, David; Fischer, Debra A; Gilliland, Ronald L; Kjeldsen, Hans; Christensen-Dalsgaard, Jørgen; Huber, Daniel; Chaplin, William J; Basu, Sarbani; Buchhave, Lars A; Quinn, Samuel N; Borucki, William J; Koch, David G; Hunter, Roger; Caldwell, Douglas A; Van Cleve, Jeffrey; Kolbl, Rea; Weiss, Lauren M; Petigura, Erik; Seager, Sara; Morton, Timothy; Johnson, John Asher; Ballard, Sarah; Burke, Chris; Cochran, William D; Endl, Michael; MacQueen, Phillip; Everett, Mark E; Lissauer, Jack J; Ford, Eric B; Torres, Guillermo; Fressin, Francois; Brown, Timothy M; Steffen, Jason H; Charbonneau, David; Basri, Gibor S; Sasselov, Dimitar D; Winn, Joshua; Sanchis-Ojeda, Roberto; Christiansen, Jessie; Adams, Elisabeth; Henze, Christopher; Dupree, Andrea; Fabrycky, Daniel C; Fortney, Jonathan J; Tarter, Jill; Holman, Matthew J; Tenenbaum, Peter; Shporer, Avi; Lucas, Philip W; Welsh, William F; Orosz, Jerome A; Bedding, T R; Campante, T L; Davies, G R; Elsworth, Y; Handberg, R; Hekker, S; Karoff, C; Kawaler, S D; Lund, M N; Lundkvist, M; Metcalfe, T S; Miglio, A; Aguirre, V Silva; Stello, D; White, T R; Boss, Alan; Devore, Edna; Gould, Alan; Prsa, Andrej; Agol, Eric; Barclay, Thomas; Coughlin, Jeff; Brugamyer, Erik; Mullally, Fergal; Quintana, Elisa V; Still, Martin; hompson, Susan E; Morrison, David; Twicken, Joseph D; Désert, Jean-Michel; Carter, Josh; Crepp, Justin R; Hébrard, Guillaume; Santerne, Alexandre; Moutou, Claire; Sobeck, Charlie; Hudgins, Douglas; Haas, Michael R; Robertson, Paul; Lillo-Box, Jorge; Barrado, David

    2014-01-01

    We report on the masses, sizes, and orbits of the planets orbiting 22 Kepler stars. There are 49 planet candidates around these stars, including 42 detected through transits and 7 revealed by precise Doppler measurements of the host stars. Based on an analysis of the Kepler brightness measurements, along with high-resolution imaging and spectroscopy, Doppler spectroscopy, and (for 11 stars) asteroseismology, we establish low false-positive probabilities for all of the transiting planets (41 of 42 have a false-positive probability under 1%), and we constrain their sizes and masses. Most of the transiting planets are smaller than 3X the size of Earth. For 16 planets, the Doppler signal was securely detected, providing a direct measurement of the planet's mass. For the other 26 planets we provide either marginal mass measurements or upper limits to their masses and densities; in many cases we can rule out a rocky composition. We identify 6 planets with densities above 5 g/cc, suggesting a mostly rocky interior f...

  7. Refining Mass Measurements of Kepler Planets with Keck/HIRES.

    Science.gov (United States)

    Isaacson, Howard T.; Marcy, Geoffrey W.; Howard, Andrew

    2015-12-01

    We present improved radial velocity mass measurements from Keck/HIRES for exoplanets detected by NASA’s Kepler Mission. Since Kepler’s launch 6 years ago, ~30 planetary systems have been monitored with radial velocities, resulting in measured masses for many planets between 1.0 and 4.0 Earth radii. The resulting planet masses have been used to determine the transition between planets with a rocky interior and those with a lower density interior which requiring significant H/He atmospheres. We provide updated masses and densities for those planets published in Marcy et al (2014) based on two additional observing seasons with HIRES of the Kepler field. These radial velocities also reveal non-transiting planets in systems with previously found transiting planets. One such system has a non-transiting planet with a period between two transiting planets, providing a constraint on the co-planarity of the system. Finally, we provide an updated mass-radius relation, showing the distinction between planets that must have a substantial iron-silicate interior, and those requiring significant contributions from volatiles such as hydrogen and helium.

  8. Formation and composition of planets around very low mass stars

    CERN Document Server

    Alibert, Yann

    2016-01-01

    The recent detection of planets around very low mass stars raises the question of the formation, composition and potential habitability of these objects. We use planetary system formation models to infer the properties, in particular their radius distribution and water content, of planets that may form around stars ten times less massive than the Sun. Our planetary system formation and composition models take into account the structure and evolution of the protoplanetary disk, the planetary mass growth by accretion of solids and gas, as well as planet-planet, planet-star and planet-disk interactions. We show that planets can form at small orbital period in orbit about low mass stars. We show that the radius of the planets is peaked at about 1 rearth and that they are, in general, volatile rich especially if proto-planetary discs orbiting this type of stars are long-lived. Close-in planets orbiting low-mass stars similar in terms of mass and radius to the ones recently detected can be formed within the framewo...

  9. HAT-P-34b-HAT-P-37b: Four Transiting Planets More Massive than Jupiter Orbiting Moderately Bright Stars

    Science.gov (United States)

    Bakos, G. Á.; Hartman, J. D.; Torres, G.; Béky, B.; Latham, D. W.; Buchhave, L. A.; Csubry, Z.; Kovács, G.; Bieryla, A.; Quinn, S.; Szklenár, T.; Esquerdo, G. A.; Shporer, A.; Noyes, R. W.; Fischer, D. A.; Johnson, J. A.; Howard, A. W.; Marcy, G. W.; Sato, B.; Penev, K.; Everett, M.; Sasselov, D. D.; Fűrész, G.; Stefanik, R. P.; Lázár, J.; Papp, I.; Sári, P.

    2012-07-01

    We report the discovery of four transiting extrasolar planets (HAT-P-34b-HAT-P-37b) with masses ranging from 1.05 to 3.33 M J and periods from 1.33 to 5.45 days. These planets orbit relatively bright F and G dwarf stars (from V = 10.16 to V = 13.2). Of particular interest is HAT-P-34b which is moderately massive (3.33 M J), has a high eccentricity of e = 0.441 ± 0.032 at a period of P = 5.452654 ± 0.000016 days, and shows hints of an outer component. The other three planets have properties that are typical of hot Jupiters. Based in part on observations obtained at the W. M. Keck Observatory, which is operated by the University of California and the California Institute of Technology. Keck time has been granted by NOAO (A289Hr) and NASA (N167Hr and N029Hr). Based in part on data collected at the Subaru Telescope, which is operated by the National Astronomical Observatory of Japan. Based in part on observations made with the Nordic Optical Telescope, operated on the island of La Palma jointly by Denmark, Finland, Iceland, Norway, and Sweden, in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias.

  10. Jupiter - friend or foe?

    Science.gov (United States)

    Horner, J.; Jones, B. W.

    2007-08-01

    Throughout both popular science and academia, there is a pervasive belief that Jupiter has acted as a celestial shield, reducing the impact rate on the Earth, and making the planet a significantly more conducive site for the evolution and survival of life. This old idea has, however, undergone little detailed scrutiny. In the first of a series of studies aimed at a better understanding of this idea, we examine the variation in the impact rate on the Earth which results from bodies moving inwards from the Edgeworth- Kuiper belt as a function of the mass of a giant planet in Jupiter's orbit. The results are not entirely what would be expected under the "Jupiter Shield" paradigm.

  11. A STELLAR-MASS-DEPENDENT DROP IN PLANET OCCURRENCE RATES

    Energy Technology Data Exchange (ETDEWEB)

    Mulders, Gijs D.; Pascucci, Ilaria [Lunar and Planetary Laboratory, The University of Arizona, Tucson, AZ 85721 (United States); Apai, Dániel [Department of Astronomy, The University of Arizona, Tucson, AZ 85721, USA. (United States)

    2015-01-10

    The Kepler spacecraft has discovered a large number of planets with up to one-year periods and down to terrestrial sizes. While the majority of the target stars are main-sequence dwarfs of spectral type F, G, and K, Kepler covers stars with effective temperatures as low as 2500 K, which corresponds to M stars. These cooler stars allow characterization of small planets near the habitable zone, yet it is not clear if this population is representative of that around FGK stars. In this paper, we calculate the occurrence of planets around stars of different spectral types as a function of planet radius and distance from the star and show that they are significantly different from each other. We further identify two trends. First, the occurrence of Earth- to Neptune-sized planets (1-4 R {sub ⊕}) is successively higher toward later spectral types at all orbital periods probed by Kepler; planets around M stars occur twice as frequently as around G stars, and thrice as frequently as around F stars. Second, a drop in planet occurrence is evident at all spectral types inward of a ∼10 day orbital period, with a plateau further out. By assigning to each spectral type a median stellar mass, we show that the distance from the star where this drop occurs is stellar mass dependent, and scales with semi-major axis as the cube root of stellar mass. By comparing different mechanisms of planet formation, trapping, and destruction, we find that this scaling best matches the location of the pre-main-sequence co-rotation radius, indicating efficient trapping of migrating planets or planetary building blocks close to the star. These results demonstrate the stellar-mass dependence of the planet population, both in terms of occurrence rate and of orbital distribution. The prominent stellar-mass dependence of the inner boundary of the planet population shows that the formation or migration of planets is sensitive to the stellar parameters.

  12. Masses, Radii, and Orbits of Small Kepler Planets: The Transition from Gaseous to Rocky Planets

    NARCIS (Netherlands)

    Marcy, G.W.; et al., [Unknown; Hekker, S.

    2014-01-01

    We report on the masses, sizes, and orbits of the planets orbiting 22 Kepler stars. There are 49 planet candidates around these stars, including 42 detected through transits and 7 revealed by precise Doppler measurements of the host stars. Based on an analysis of the Kepler brightness measurements,

  13. Instability of mass transfer in a planet-star system

    Science.gov (United States)

    Jia, Shi; Spruit, H. C.

    2017-02-01

    We show that the angular momentum exchange mechanism governing the evolution of mass-transferring binary stars does not apply to Roche lobe filling planets, because most of the angular momentum of the mass-transferring stream is absorbed by the host star. Apart from a correction for the difference in specific angular momentum of the stream and the centre of mass of the planet, the orbit does not expand much on Roche lobe overflow. We explore the conditions for dynamically unstable Roche lobe overflow as a function of planetary mass and mass and radius (age) of host star and equation of state of planet. For a Sun-like host, gas giant planets in a range of mass and entropy can undergo dynamical mass transfer. Examples of the evolution of the mass transfer process are given. Dynamic mass transfer of rocky planets depends somewhat sensitively on equation of state used. Silicate planets in the range 1 mass transfer before settling to slow overflow when their mass drops to less than 1 M⊕.

  14. Low-mass planets in nearly inviscid disks: Numerical treatment

    CERN Document Server

    Kley, Wilhelm; Kolb, Stefan M; Benitez-Llambay, Pablo; Masset, Frederic

    2012-01-01

    Embedded planets disturb the density structure of the ambient disk and gravitational back-reaction will induce possibly a change in the planet's orbital elements. The accurate determination of the forces acting on the planet requires careful numerical analysis. Recently, the validity of the often used fast orbital advection algorithm (FARGO) has been put into question, and special numerical resolution and stability requirements have been suggested. In this paper we study the process of planet-disk interaction for small mass planets of a few Earth masses, and reanalyze the numerical requirements to obtain converged and stable results. One focus lies on the applicability of the FARGO-algorithm. Additionally, we study the difference of two and three-dimensional simulations, compare global with local setups, as well as isothermal and adiabatic conditions. We study the influence of the planet on the disk through two- and three-dimensional hydrodynamical simulations. To strengthen our conclusions we perform a detai...

  15. On the gravitational signature of zonal flows in Jupiter-like planets: An analytical solution and its numerical validation

    Science.gov (United States)

    Kong, Dali; Zhang, Keke; Schubert, Gerald

    2017-02-01

    It is expected that the Juno spacecraft will provide an accurate spectrum of the Jovian zonal gravitational coefficients that would be affected by both the deep zonal flow, if it exists, and the basic rotational distortion. We derive the first analytical solution, under the spheroidal-shape approximation, for the density anomaly induced by an internal zonal flow in rapidly rotating Jupiter-like planets. We compare the density anomaly of the analytical solution to that obtained from a fully numerical solution based on a three-dimensional finite element method; the two show excellent agreement. We apply the analytical solution to a rapidly rotating Jupiter-like planet and show that there exists a close relationship between the spatial structure of the zonal flow and the spectrum of zonal gravitational coefficients. We check the accuracy of the spheroidal-shape approximation by computing both the spheroidal and non-spheroidal solutions with exactly the same physical parameters. We also discuss implications of the new analytical solution for interpreting the future high-precision gravitational measurements of the Juno spacecraft.

  16. XUV-driven mass loss from extrasolar giant planets orbiting active stars

    Science.gov (United States)

    Chadney, J. M.; Galand, M.; Unruh, Y. C.; Koskinen, T. T.; Sanz-Forcada, J.

    2015-04-01

    Upper atmospheres of Hot Jupiters are subject to extreme radiation conditions that can result in rapid atmospheric escape. The composition and structure of the upper atmospheres of these planets are affected by the high-energy spectrum of the host star. This emission depends on stellar type and age, which are thus important factors in understanding the behaviour of exoplanetary atmospheres. In this study, we focus on Extrasolar Giant Planets (EPGs) orbiting K and M dwarf stars. XUV spectra for three different stars - ɛ Eridani, AD Leonis and AU Microscopii - are constructed using a coronal model. Neutral density and temperature profiles in the upper atmosphere of hypothetical EGPs orbiting these stars are then obtained from a fluid model, incorporating atmospheric chemistry and taking atmospheric escape into account. We find that a simple scaling based solely on the host star's X-ray emission gives large errors in mass loss rates from planetary atmospheres and so we have derived a new method to scale the EUV regions of the solar spectrum based upon stellar X-ray emission. This new method produces an outcome in terms of the planet's neutral upper atmosphere very similar to that obtained using a detailed coronal model of the host star. Our results indicate that in planets subjected to radiation from active stars, the transition from Jeans escape to a regime of hydrodynamic escape at the top of the atmosphere occurs at larger orbital distances than for planets around low activity stars (such as the Sun).

  17. Lupus-TR-3b: A Low-Mass Transiting Hot Jupiter in the Galactic Plane?

    CERN Document Server

    Weldrake, David T F; Sackett, Penny D; Tingley, Brandon W; Gillon, Michael; Setiawan, Johny

    2007-01-01

    We present a prime case for a transiting Hot Jupiter planet identified during a single-field transit survey towards the Lupus region of the Galactic plane. The object, Lupus-TR-3b, transits a V=17.4 K1V host star every 3.91405d. Spectroscopy and stellar colors indicate a host star with effective temperature 5000+/-150 K, with a stellar mass and radius of 0.87+/-0.04 Msun and 0.82+/-0.05 Rsun, respectively. Limb-darkened transit fitting yields a companion radius of 0.89+/-0.07 Rjup and an orbital inclination of 88.3{+1.3}{-0.8} deg. Magellan 6.5m MIKE radial velocity measurements reveal a 2.4 sigma K=114+/-25 m/s sinusoidal variation in phase with the transit ephemeris. The resulting mass is 0.81+/-0.18 Mjup and density 1.4+/-0.4 g/cm^3. Y-band PANIC image deconvolution reveal a V>=21 red neighbor 0.4'' away which, although highly unlikely, we cannot conclusively rule out as a blended binary with current data. However, no in-phase bisector variations are observed and blend simulations show that only the most u...

  18. Jupiter: Cosmic Jekyll and Hyde.

    Science.gov (United States)

    Grazier, Kevin R

    2016-01-01

    It has been widely reported that Jupiter has a profound role in shielding the terrestrial planets from comet impacts in the Solar System, and that a jovian planet is a requirement for the evolution of life on Earth. To evaluate whether jovians, in fact, shield habitable planets from impacts (a phenomenon often referred to as the "Jupiter as shield" concept), this study simulated the evolution of 10,000 particles in each of the jovian inter-planet gaps for the cases of full-mass and embryo planets for up to 100 My. The results of these simulations predict a number of phenomena that not only discount the "Jupiter as shield" concept, they also predict that in a Solar System like ours, large gas giants like Saturn and Jupiter had a different, and potentially even more important, role in the evolution of life on our planet by delivering the volatile-laden material required for the formation of life. The simulations illustrate that, although all particles occupied "non-life threatening" orbits at their onset of the simulations, a significant fraction of the 30,000 particles evolved into Earth-crossing orbits. A comparison of multiple runs with different planetary configurations revealed that Jupiter was responsible for the vast majority of the encounters that "kicked" outer planet material into the terrestrial planet region, and that Saturn assisted in the process far more than has previously been acknowledged. Jupiter also tends to "fix" the aphelion of planetesimals at its orbit irrespective of their initial starting zones, which has the effect of slowing their passages through the inner Solar System, and thus potentially improving the odds of accretion of cometary material by terrestrial planets. As expected, the simulations indicate that the full-mass planets perturb many objects into the deep outer Solar System, or eject them entirely; however, planetary embryos also did this with surprising efficiency. Finally, the simulations predict that Jupiter's capacity to

  19. Masses, Radii, and Cloud Properties of the HR 8799 Planets

    CERN Document Server

    Marley, Mark S; Cushing, Michael; Ackerman, Andrew S; Fortney, Jonathan J; Freedman, Richard

    2012-01-01

    The near-infrared colors of the planets directly imaged around the A star HR 8799 are much redder than most field brown dwarfs of the same effective temperature. Previous theoretical studies of these objects have concluded that the atmospheres of planets b, c, and d are unusually cloudy or have unusual cloud properties. Most studies have also found that the inferred radii of some or all of the planets disagree with expectations of standard giant planet evolution models. Here we compare the available data to the predictions of our own set of atmospheric and evolution models that have been extensively tested against observations of field L and T dwarfs, including the reddest L dwarfs. Unlike almost all previous studies we require mutually consistent choices for effective temperature, gravity, cloud properties, and planetary radius. This procedure thus yields plausible values for the masses, effective temperatures, and cloud properties of all three planets. We find that the cloud properties of the HR 8799 planet...

  20. Giant Planet Occurrence in the Stellar Mass-Metallicity Plane

    CERN Document Server

    Johnson, John Asher; Howard, Andrew W; Crepp, Justin R

    2010-01-01

    Correlations between stellar properties and the occurrence rate of exoplanets can be used to inform the target selection of future planet search efforts and provide valuable clues about the planet formation process. We analyze a sample of 1194 stars drawn from the California Planet Survey targets to determine the empirical functional form describing the likelihood of a star harboring a giant planet as a function of its mass and metallicity. Our stellar sample ranges from M dwarfs with masses as low as 0.2 Msun to intermediate-mass subgiants with masses as high as 1.9 Msun. In agreement with previous studies, our sample exhibits a planet-metallicity correlation at all stellar masses; the fraction of stars that harbor giant planets scales as f \\propto 10^{1.2 [Fe/H]}. We can rule out a flat metallicity relationship among our evolved stars (at 98% confidence), which argues that the high metallicities of stars with planets is not likely due to convective envelope ``pollution.'' Our data also rule out a constant p...

  1. The effects of external planets on inner systems: multiplicities, inclinations, and pathways to eccentric warm Jupiters

    CERN Document Server

    Mustill, Alexander J; Johansen, Anders

    2016-01-01

    We study how the close-in systems such as those detected by Kepler are affected by the dynamics of bodies in the outer system. We consider two scenarios: outer systems of giant planets potentially unstable to planet--planet scattering, and wide binaries that may be capable of driving Kozai or other secular variations of outer planets' eccentricities. Dynamical excitation of planets in the outer system reduces the multiplicity of Kepler-detectable planets in the inner system in $\\sim20-25\\%$ of our systems. Accounting for the occurrence rates of wide-orbit planets and binary stars, $\\approx18\\%$ of close-in systems could be destabilised by their outer companions in this way. This provides some contribution to the apparent excess of systems with a single transiting planet compared to multiple, however, it only contributes at most $25\\%$ of the excess. The effects of the outer dynamics can generate systems similar to Kepler-56 (two coplanar planets significantly misaligned with the host star) and Kepler-108 (two...

  2. Advanced Ion Mass Spectrometer for Giant Planet Ionosphere, Magnetospheres and Moons

    Science.gov (United States)

    Sittler, Edward; Cooper, John; Paschalidis, Nick; Jones, Sarah; Brinkerhoff, William; Paterson, William; Ali, Ashraf; Coplan, Michael; Chornay, Dennis; Sturner, Steve; Benna, Mehdi; Bateman, Fred; Fontaine, Dominique; Verdeil, Christophe; Andre, Nicolas; Blanc, Michel; Wurz, Peter

    2017-01-01

    We present our Advanced Ion Mass Spectrometer (AIMS) for outer planet missions which has been under development from various NASA sources (NASA Living with a Star Instrument Development (LWSID), NASA Astrobiology Instrument Development (ASTID), NASA Goddard Internal Research and Development (IRAD)s) to measure elemental, isotopic, and simple molecular composition abundances of 1 V to 25 kV hot ions with wide field-of-view (FOV) in the 1 - 60 amu mass range at mass resolution M/ ΔM radiation background from the inner magnetospheres of Jupiter and Saturn to the outer magnetospheric boundary regions and the upstream solar wind. This instrument will work for both spinning spacecraft and 3-axis stabilized spacecraft. AIMS will measure the ion velocity distribution functions (VDF) for the individual ion species from which velocity moments will give their ion density, flow velocity and temperature.

  3. Exotic Earths: Forming Habitable Worlds with Giant Planet Migration

    CERN Document Server

    Raymond, S N; Sigurdsson, S; Raymond, Sean N.; Mandell, Avi M.; Sigurdsson, Steinn

    2006-01-01

    Close-in giant planets (e.g. ``Hot Jupiters'') are thought to form far from their host stars and migrate inward, through the terrestrial planet zone, via torques with a massive gaseous disk. Here we simulate terrestrial planet growth during and after giant planet migration. Several-Earth mass planets also form interior to the migrating Jovian planet, analogous to recently-discovered ``Hot Earths''. Very water-rich, Earth-mass planets form from surviving material outside the giant planet's orbit, often in the Habitable Zone and with low orbital eccentricities. More than a third of the known systems of giant planets may harbor Earth-like planets.

  4. Exotic Earths: forming habitable worlds with giant planet migration.

    Science.gov (United States)

    Raymond, Sean N; Mandell, Avi M; Sigurdsson, Steinn

    2006-09-08

    Close-in giant planets (e.g., "hot Jupiters") are thought to form far from their host stars and migrate inward, through the terrestrial planet zone, via torques with a massive gaseous disk. Here we simulate terrestrial planet growth during and after giant planet migration. Several-Earth-mass planets also form interior to the migrating jovian planet, analogous to recently discovered "hot Earths." Very-water-rich, Earth-mass planets form from surviving material outside the giant planet's orbit, often in the habitable zone and with low orbital eccentricities. More than a third of the known systems of giant planets may harbor Earth-like planets.

  5. Small Friends of Hot Jupiters

    Science.gov (United States)

    Nunez, Luis Ernesto; Johnson, John A.

    2017-01-01

    Hot Jupiters are Jupiter-sized gas giant exoplanets that closely orbit their host star in periods of about 10 days or less. Early models hypothesized that these exoplanets formed away from the star, then over time drifted to their characteristically closer locations. However, new theories predict that Hot Jupiters form at their close proximity during the process of core accretion (Batygin et al. 2015). In fact, a super-Earth and a Neptune-sized exoplanet have already been detected in the Hot Jupiter-hosting star WASP-47 (Becker et al. 2015). We will present our analysis of radial velocity time series plots to determine whether low-mass, short-period planets have been previously overlooked in systems of stars which host Hot Jupiters.The SAO REU program is funded in part by the National Science Foundation REU and Department of Defense ASSURE programs under NSF Grant no. 1262851.

  6. Terrestrial planet formation in a protoplanetary disk with a local mass depletion: A successful scenario for the formation of Mars

    Energy Technology Data Exchange (ETDEWEB)

    Izidoro, A.; Winter, O. C. [UNESP, Univ. Estadual Paulista - Grupo de Dinâmica Orbital and Planetologia, Guaratinguetá, CEP 12.516-410, São Paulo (Brazil); Haghighipour, N. [Institute for Astronomy and NASA Astrobiology Institute, University of Hawaii-Manoa, Honolulu, HI 96822 (United States); Tsuchida, M., E-mail: izidoro@feg.unesp.br, E-mail: nader@ifa.hawaii.edu [UNESP, Univ. Estadual Paulista, DCCE-IBILCE, São José do Rio Preto, CEP 15.054-000, São Paulo (Brazil)

    2014-02-10

    Models of terrestrial planet formation for our solar system have been successful in producing planets with masses and orbits similar to those of Venus and Earth. However, these models have generally failed to produce Mars-sized objects around 1.5 AU. The body that is usually formed around Mars' semimajor axis is, in general, much more massive than Mars. Only when Jupiter and Saturn are assumed to have initially very eccentric orbits (e ∼ 0.1), which seems fairly unlikely for the solar system, or alternately, if the protoplanetary disk is truncated at 1.0 AU, simulations have been able to produce Mars-like bodies in the correct location. In this paper, we examine an alternative scenario for the formation of Mars in which a local depletion in the density of the protosolar nebula results in a non-uniform formation of planetary embryos and ultimately the formation of Mars-sized planets around 1.5 AU. We have carried out extensive numerical simulations of the formation of terrestrial planets in such a disk for different scales of the local density depletion, and for different orbital configurations of the giant planets. Our simulations point to the possibility of the formation of Mars-sized bodies around 1.5 AU, specifically when the scale of the disk local mass-depletion is moderately high (50%-75%) and Jupiter and Saturn are initially in their current orbits. In these systems, Mars-analogs are formed from the protoplanetary materials that originate in the regions of disk interior or exterior to the local mass-depletion. Results also indicate that Earth-sized planets can form around 1 AU with a substantial amount of water accreted via primitive water-rich planetesimals and planetary embryos. We present the results of our study and discuss their implications for the formation of terrestrial planets in our solar system.

  7. Hot Jupiters and cool stars

    Energy Technology Data Exchange (ETDEWEB)

    Villaver, Eva; Mustill, Alexander J. [Department of Theoretical Physics, Universidad Autónoma de Madrid, Módulo 8, 28049 Madrid (Spain); Livio, Mario [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Siess, Lionel, E-mail: eva.villaver@uam.es [Institut d' Astronomie et d' Astrophysique, Université Libre de Bruxelles, B-1050 Bruxelles (Belgium)

    2014-10-10

    Close-in planets are in jeopardy, as their host stars evolve off the main sequence (MS) to the subgiant and red giant phases. In this paper, we explore the influences of the stellar mass (in the range 1.5-2 M {sub ☉}), mass-loss prescription, planet mass (from Neptune up to 10 Jupiter masses), and eccentricity on the orbital evolution of planets as their parent stars evolve to become subgiants and red giants. We find that planet engulfment along the red giant branch is not very sensitive to the stellar mass or mass-loss rates adopted in the calculations, but quite sensitive to the planetary mass. The range of initial separations for planet engulfment increases with decreasing mass-loss rates or stellar masses and increasing planetary masses. Regarding the planet's orbital eccentricity, we find that as the star evolves into the red giant phase, stellar tides start to dominate over planetary tides. As a consequence, a transient population of moderately eccentric close-in Jovian planets is created that otherwise would have been expected to be absent from MS stars. We find that very eccentric and distant planets do not experience much eccentricity decay, and that planet engulfment is primarily determined by the pericenter distance and the maximum stellar radius.

  8. High-dispersion spectroscopy of extrasolar planets: from CO in hot Jupiters to O2 in exo-Earths.

    Science.gov (United States)

    Snellen, Ignas

    2014-04-28

    Ground-based high-dispersion spectroscopy could reveal molecular oxygen as a biomarker gas in the atmospheres of twin-Earths transiting red dwarf stars within the next 25 years. The required contrasts are only a factor of 3 lower than that already achieved for carbon monoxide in hot Jupiter atmospheres today but will need much larger telescopes because the target stars will be orders of magnitude fainter. If extraterrestrial life is very common and can therefore be found on planets around the most nearby red dwarf stars, it may be detectable via transmission spectroscopy with the next-generation extremely large telescopes. However, it is likely that significantly more collecting area is required for this. This can be achieved through the development of low-cost flux collector technology, which combines a large collecting area with a low but sufficient image quality for high-dispersion spectroscopy of bright stars.

  9. Accurate, Empirical Radii and Masses of Planets with Gaia Parallaxes

    CERN Document Server

    Stassun, Keivan G; Gaudi, B Scott

    2016-01-01

    We present new, empirical measurements of the radii of 132 stars that host transiting planets. These stellar radii are determined using only direct observables---the bolometric flux at Earth, the stellar effective temperature, and the parallax newly provided by the Gaia first data release---and thus are virtually model independent, extinction being the only free parameter. We also determine each star's mass using our newly determined radius and the stellar density, itself a virtually model independent quantity from the previously published transit analysis. The newly determined stellar radii and masses are in turn used to re-determine the transiting planet radii and masses, once again using only direct observables. The uncertainties on the stellar radii and masses are typically 7% and 25%, respectively, and the resulting uncertainties on the planet radii and masses are 8% and 20%, respectively. These accuracies are generally larger than the previously published model-dependent precisions of 5% and 6% on the p...

  10. Fomalhaut's Debris Disk and Planet: Constraining the Mass of Formalhaut B from Disk Morphology

    Science.gov (United States)

    Chiang, E.; Kite, E.; Kalas, P.; Graham, J. R.; Clampin, M.

    2008-01-01

    Following the optical imaging of exoplanet candidate Fomalhaut b (Fom b), we present a numerical model of how Fomalhaut's debris disk is gravitationally shaped by a single interior planet. The model is simple, adaptable to other debris disks, and can be extended to accommodate multiple planets. If Fom b is the dominant perturber of the belt, then to produce the observed disk morphology it must have a mass M(sub pl) 101.5AU, and an orbital eccentricity e(sub pl) = 0.11 - 0.13. These conclusions are independent of Fom b's photometry. To not disrupt the disk, a greater mass for Fom b demands a smaller orbit farther removed from the disk; thus, future astrometric measurement of Fom b's orbit, combined with our model of planet-disk interaction, can be used to determine the mass more precisely. The inner edge of the debris disk at a approximately equals 133AU lies at the periphery of Fom b's chaotic zone, and the mean disk eccentricity of e approximately equals 0.11 is secularly forced by the planet, supporting predictions made prior to the discovery of Fom b. However, previous mass constraints based on disk morphology rely on several oversimplifications. We explain why our constraint is more reliable. It is based on a global model of the disk that is not restricted to the planet's chaotic zone boundary. Moreover, we screen disk parent bodies for dynamical stability over the system age of approximately 100 Myr, and model them separately from their dust grain progeny; the latter's orbits are strongly affected by radiation pressure and their lifetimes are limited to approximately 0.1 Myr by destructive grain-grain collisions. The single planet model predicts that planet and disk orbits be apsidally aligned. Fomalhaut b's nominal space velocity does not bear this out, but the astrometric uncertainties are difficult to quantify. Even if the apsidal misalignment proves real, our calculated upper mass limit of 3 M(sub J) still holds. Parent bodies are evacuated from mean

  11. MASSES, RADII, AND CLOUD PROPERTIES OF THE HR 8799 PLANETS

    Energy Technology Data Exchange (ETDEWEB)

    Marley, Mark S. [NASA Ames Research Center, MS-245-3, Moffett Field, CA 94035 (United States); Saumon, Didier [Los Alamos National Laboratory, Mail Stop F663, Los Alamos, NM 87545 (United States); Cushing, Michael [Department of Physics and Astronomy, The University of Toledo, 2801 West Bancroft Street, Toledo, OH 43606 (United States); Ackerman, Andrew S. [NASA Goddard Institute for Space Studies, 2880 Broadway, New York, NY 10025 (United States); Fortney, Jonathan J. [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Freedman, Richard, E-mail: Mark.S.Marley@NASA.gov, E-mail: dsaumon@lanl.gov, E-mail: michael.cushing@utoledo.edu, E-mail: andrew.ackerman@nasa.gov, E-mail: jfortney@ucolick.org, E-mail: freedman@darkstar.arc.nasa.gov [SETI Institute and NASA Ames Research Center, MS-245-3, Moffett Field, CA 94035 (United States)

    2012-08-01

    The near-infrared colors of the planets directly imaged around the A star HR 8799 are much redder than most field brown dwarfs of the same effective temperature. Previous theoretical studies of these objects have concluded that the atmospheres of planets b, c, and d are unusually cloudy or have unusual cloud properties. Some studies have also found that the inferred radii of some or all of the planets disagree with expectations of standard giant planet evolution models. Here, we compare the available data to the predictions of our own set of atmospheric and evolution models that have been extensively tested against observations of field L and T dwarfs, including the reddest L dwarfs. Unlike some previous studies, we require mutually consistent choices for effective temperature, gravity, cloud properties, and planetary radius. This procedure thus yields plausible values for the masses, effective temperatures, and cloud properties of all three planets. We find that the cloud properties of the HR 8799 planets are not unusual but rather follow previously recognized trends, including a gravity dependence on the temperature of the L to T spectral transition-some reasons for which we discuss. We find that the inferred mass of planet b is highly sensitive to whether or not we include the H- and the K-band spectrum in our analysis. Solutions for planets c and d are consistent with the generally accepted constraints on the age of the primary star and orbital dynamics. We also confirm that, like in L and T dwarfs and solar system giant planets, non-equilibrium chemistry driven by atmospheric mixing is also important for these objects. Given the preponderance of data suggesting that the L to T spectral type transition is gravity dependent, we present an exploratory evolution calculation that accounts for this effect. Finally we recompute the bolometric luminosity of all three planets.

  12. The SOPHIE search for northern extrasolar planets. V. Follow-up of ELODIE candidates: Jupiter-analogs around Sun-like stars

    Science.gov (United States)

    Boisse, I.; Pepe, F.; Perrier, C.; Queloz, D.; Bonfils, X.; Bouchy, F.; Santos, N. C.; Arnold, L.; Beuzit, J.-L.; Díaz, R. F.; Delfosse, X.; Eggenberger, A.; Ehrenreich, D.; Forveille, T.; Hébrard, G.; Lagrange, A.-M.; Lovis, C.; Mayor, M.; Moutou, C.; Naef, D.; Santerne, A.; Ségransan, D.; Sivan, J.-P.; Udry, S.

    2012-09-01

    We present radial-velocity measurements obtained in one of a number of programs underway to search for extrasolar planets with the spectrograph SOPHIE at the 1.93-m telescope of the Haute-Provence Observatory. Targets were selected from catalogs observed with ELODIE, which had been mounted previously at the telescope, in order to detect long-period planets with an extended database close to 15 years. Two new Jupiter-analog candidates are reported to orbit the bright stars HD 150706 and HD 222155 in 16.1 yr and 10.9 yr at 6.7-1.4+4.0 AU and 5.1-0.7+0.6 AU, and to have minimum masses of 2.71-0.66+1.14 MJup and 1.90-0.53+0.67 MJup, respectively. Using the measurements from ELODIE and SOPHIE, we refine the parameters of the long-period planets HD 154345b and HD 89307b, and publish the first reliable orbit for HD 24040b. This last companion has a minimum mass of 4.01 ± 0.49 MJup orbiting its star in 10.0 yr at 4.92 ± 0.38 AU. Moreover, the data provide evidence of a third bound object in the HD 24040 system. With a surrounding dust debris disk, HD 150706 is an active G0 dwarf for which we partially corrected the effect of the stellar spot on the SOPHIE radial-velocities. In contrast, HD 222155 is an inactive G2V star. In the SOPHIE measurements, an instrumental effect could be characterized and partly corrected. On the basis of the previous findings of Lovis and collaborators and since no significant correlation between the radial-velocity variations and the activity index are found in the SOPHIE data, these variations are not expected to be only due to stellar magnetic cycles. Finally, we discuss the main properties of this new population of long-period Jupiter-mass planets, which for the moment consists of fewer than 20 candidates. These stars are preferential targets either for direct-imaging or astrometry follow-up surveys to constrain the system parameters and for higher-precision radial-velocity searches for lower mass planets, aiming to find a solar system twin

  13. A rocky planet transiting a nearby low-mass star

    Science.gov (United States)

    Berta-Thompson, Zachory K.; Irwin, Jonathan; Charbonneau, David; Newton, Elisabeth R.; Dittmann, Jason; Astudillo-Defru, Nicola; Bonfils, Xavier; Gillon, Michael; Jehin, Emmanuel; Stark, Antony; Stalder, Brian; Bouchy, Francois; Delfosse, Xavier; Forveille, Thierry; Lovis, Christoph; Mayor, Michel; Neves, Vasco; Pepe, Francesco; Santos, Nuno; Udry, Stéphane; Wunsche, Anael

    2015-12-01

    Results from Kepler indicate that M dwarfs host, on average, at least 1.4 planets between 0.5 and 1.5 Earth radii per star. Yet, the closest small planets known to transit M dwarfs have been too distant to allow Doppler measurements of their masses or spectroscopic studies of their atmospheres. Here, we announce a new planet discovered by the MEarth-South observatory, an Earth-size planet transiting an M dwarf that is only 12 pc away. The density of the planet, determined from radial velocity observations with HARPS, is consistent with an Earth-like rock/iron composition. With an equilibrium temperature of 530K (assuming a Bond albedo of 0.3), this planet is cooler than most other rocky planets with measured densities. Although too hot to be habitable, it is cool enough that it may have retained a substantial atmosphere over its lifetime. Thanks to the star's proximity and its diminutive size of only 1/5th the radius of the Sun, this new world likely provides the first opportunity for our community to spectroscopically examine the atmosphere of a terrestrial exoplanet. We estimate that JWST could secure high signal-to-noise spectra of the planet's atmosphere, both in transmission during transit and in emission at secondary eclipse.

  14. An Earth-mass planet orbiting α Centauri B.

    Science.gov (United States)

    Dumusque, Xavier; Pepe, Francesco; Lovis, Christophe; Ségransan, Damien; Sahlmann, Johannes; Benz, Willy; Bouchy, François; Mayor, Michel; Queloz, Didier; Santos, Nuno; Udry, Stéphane

    2012-11-08

    Exoplanets down to the size of Earth have been found, but not in the habitable zone--that is, at a distance from the parent star at which water, if present, would be liquid. There are planets in the habitable zone of stars cooler than our Sun, but for reasons such as tidal locking and strong stellar activity, they are unlikely to harbour water-carbon life as we know it. The detection of a habitable Earth-mass planet orbiting a star similar to our Sun is extremely difficult, because such a signal is overwhelmed by stellar perturbations. Here we report the detection of an Earth-mass planet orbiting our neighbour star α Centauri B, a member of the closest stellar system to the Sun. The planet has an orbital period of 3.236 days and is about 0.04 astronomical units from the star (one astronomical unit is the Earth-Sun distance).

  15. Terrestrial planets and water delivery around low-mass stars

    Science.gov (United States)

    Dugaro, A.; de Elía, G. C.; Brunini, A.; Guilera, O. M.

    2016-11-01

    Context. Theoretical and observational studies suggest that protoplanetary disks with a wide range of masses could be found around low-mass stars. Aims: We analyze planetary formation processes in systems without gas giants around M3- and M0-type stars of 0.29 M⊙ and 0.5 M⊙, respectively. In particular, we assume disks with masses of 5% and 10% of the mass of the star. Our study focuses on the formation of terrestrial-like planets and water delivery in the habitable zone (HZ). Methods: First, we use a semi-analytical model to describe the evolution of embryos and planetesimals during the gaseous phase. Then, a N-body code is used to analyze the last giant impact phase after the gas dissipation. Results: For M3-type stars, five planets with different properties are formed in the HZ. These planets have masses of 0.072 M⊕, 0.13 M⊕ (two of them), and 1.03 M⊕, and have water contents of 5.9%, 16.7%, 28.6%, and 60.6% by mass, respectively. Then, the fifth planet formed in the HZ is a dry world with 0.138 M⊕. For M0-type stars, four planets are produced in the HZ with masses of 0.28 M⊕, 0.51 M⊕, 0.72 M⊕, and 1.42 M⊕, and they have water contents of 26.7%, 45.8%, 68%, and 50.5% by mass, respectively. Conclusions: M3- and M0-type stars represent targets of interest for the search of exoplanets in the HZ. In fact, the Mars-mass planets formed around M3-type stars could maintain habitable conditions in their early histories. Thus, the search for candidates around young M3-type stars could lead to the detection of planets analogous to early Mars. Moreover, Earth-mass planets should also be discovered around M3-type stars and, sub- and super-Earths should be detected around M0-type stars. Such planets are very interesting since they could maintain habitable conditions for very long.

  16. What is the Mass of a Gap-opening Planet?

    Science.gov (United States)

    Dong, Ruobing; Fung, Jeffrey

    2017-02-01

    High-contrast imaging instruments such as GPI and SPHERE are discovering gap structures in protoplanetary disks at an ever faster pace. Some of these gaps may be opened by planets forming in the disks. In order to constrain planet formation models using disk observations, it is crucial to find a robust way to quantitatively back out the properties of the gap-opening planets, in particular their masses, from the observed gap properties, such as their depths and widths. Combining 2D and 3D hydrodynamics simulations with 3D radiative transfer simulations, we investigate the morphology of planet-opened gaps in near-infrared scattered-light images. Quantitatively, we obtain correlations that directly link intrinsic gap depths and widths in the gas surface density to observed depths and widths in images of disks at modest inclinations under finite angular resolution. Subsequently, the properties of the surface density gaps enable us to derive the disk scale height at the location of the gap h, and to constrain the quantity Mp2/α, where Mp is the mass of the gap-opening planet and α characterizes the viscosity in the gap. As examples, we examine the gaps recently imaged by VLT/SPHERE, Gemini/GPI, and Subaru/HiCIAO in HD 97048, TW Hya, HD 169142, LkCa 15, and RX J1615.3-3255. Scale heights of the disks and possible masses of the gap-opening planets are derived assuming each gap is opened by a single planet. Assuming α = 10‑3, the derived planet masses in all cases are roughly between 0.1 and 1 MJ.

  17. Red Optical Planet Survey: A radial velocity search for low mass M dwarf planets

    Science.gov (United States)

    Barnes, J. R.; Jenkins, J. S.; Jones, H. R. A.; Rojo, P.; Arriagada, P.; Jordán, A.; Minniti, D.; Tuomi, M.; Jeffers, S. V.; Pinfield, D.

    2013-04-01

    We present radial velocity results from our Red Optical Planet Survey (ROPS), aimed at detecting low-mass planets orbiting mid-late M dwarfs. The ˜10 ms-1 precision achieved over 2 consecutive nights with the MIKE spectrograph at Magellan Clay is also found on week long timescales with UVES at VLT. Since we find that UVES is expected to attain photon limited precision of order 2 ms-1 using our novel deconvolution technique, we are limited only by the (≤10 ms-1) stability of atmospheric lines. Rocky planet frequencies of η⊕ = 0.3-0.7 lead us to expect high planet yields, enabling determination of η⊕ for the uncharted mid-late M dwarfs with modest surveys.

  18. Red Optical Planet Survey: A radial velocity search for low mass M dwarf planets

    Directory of Open Access Journals (Sweden)

    Minniti D.

    2013-04-01

    Full Text Available We present radial velocity results from our Red Optical Planet Survey (ROPS, aimed at detecting low-mass planets orbiting mid-late M dwarfs. The ∼10 ms−1 precision achieved over 2 consecutive nights with the MIKE spectrograph at Magellan Clay is also found on week long timescales with UVES at VLT. Since we find that UVES is expected to attain photon limited precision of order 2 ms−1 using our novel deconvolution technique, we are limited only by the (≤10 ms−1 stability of atmospheric lines. Rocky planet frequencies of η⊕ = 0.3−0.7 lead us to expect high planet yields, enabling determination of η⊕ for the uncharted mid-late M dwarfs with modest surveys.

  19. Fu Ori outbursts and the planet-disc mass exchange

    CERN Document Server

    Nayakshin, Sergei

    2011-01-01

    It has been recently proposed that giant protoplanets migrating inward through the disc more rapidly than they contract could be tidally disrupted when they fill their Roche lobes ~ 0.1 AU away from their parent protostars. Here we consider the process of mass and angular momentum exchange between the tidally disrupted planet and the surrounding disc in detail. We find that the planet's adiabatic mass-radius relation and its ability to open a deep gap in the disc determine whether the disruption proceeds as a sudden runaway or a balanced quasi-static process. In the latter case the planet feeds the inner disc through its Lagrangian L1 point like a secondary star in a stellar binary system. As the planet loses mass it gains specific angular momentum and normally migrates in the outward direction until the gap closes. Numerical experiments show that planet disruption outbursts are preceded by long "quiescent" periods during which the disc inward of the planet is empty. The hole in the disc is created when the p...

  20. An extrasolar planetary system with three Neptune-mass planets.

    Science.gov (United States)

    Lovis, Christophe; Mayor, Michel; Pepe, Francesco; Alibert, Yann; Benz, Willy; Bouchy, François; Correia, Alexandre C M; Laskar, Jacques; Mordasini, Christoph; Queloz, Didier; Santos, Nuno C; Udry, Stéphane; Bertaux, Jean-Loup; Sivan, Jean-Pierre

    2006-05-18

    Over the past two years, the search for low-mass extrasolar planets has led to the detection of seven so-called 'hot Neptunes' or 'super-Earths' around Sun-like stars. These planets have masses 5-20 times larger than the Earth and are mainly found on close-in orbits with periods of 2-15 days. Here we report a system of three Neptune-mass planets with periods of 8.67, 31.6 and 197 days, orbiting the nearby star HD 69830. This star was already known to show an infrared excess possibly caused by an asteroid belt within 1 au (the Sun-Earth distance). Simulations show that the system is in a dynamically stable configuration. Theoretical calculations favour a mainly rocky composition for both inner planets, while the outer planet probably has a significant gaseous envelope surrounding its rocky/icy core; the outer planet orbits within the habitable zone of this star.

  1. Jupiter's Dynamic Magnetosphere

    Science.gov (United States)

    Vogt, M. F.; Bunce, E. J.; Kronberg, E. A.; Jackman, C. M.

    2014-12-01

    Jupiter's magnetosphere is a highly dynamic environment. Hundreds of reconnection events have been identified in Jupiter's magnetotail through analysis of magnetic field and particle measurements collected by the Galileo spacecraft. Quasi-periodic behavior, suggestive of reconnection, has been intermittently observed on a ~2-3 day time scale in several data sets, including magnetic field dipolarizations, flow bursts, auroral polar dawn spots, and the hectometric radio emission. In this paper we review the present state of knowledge of Jovian magnetospheric dynamics. Throughout the discussion, we highlight similarities and differences to Saturn's magnetosphere. For example, recent analysis of plasmoid signatures at both Jupiter and Saturn has established the role of tail reconnection in the overall mass and flux transport in the outer planet magnetospheres. The results for both Jupiter and Saturn suggest that the observed mass loss rate due to tail reconnection and plasmoid release is insufficient to account for the mass input rate from the moons Io and Enceladus, respectively. We also present new analysis in which we use the Michigan mSWiM propagated solar wind MHD model to estimate the solar wind conditions upstream of Jupiter. This information allows us to determine whether reconnection events occur preferentially during certain solar wind conditions, or whether there is evidence that the solar wind modulates the quasi-periodicity seen in the field dipolarizations and flow bursts.

  2. A Preliminary Jupiter Model

    CERN Document Server

    Hubbard, W B

    2016-01-01

    In anticipation of new observational results for Jupiter's axial moment of inertia and gravitational zonal harmonic coefficients from the forthcoming Juno orbiter, we present a number of preliminary Jupiter interior models. We combine results from ab initio computer simulations of hydrogen-helium mixtures, including immiscibility calculations, with a new nonperturbative calculation of Jupiter's zonal harmonic coefficients, to derive a self-consistent model for the planet's external gravity and moment of inertia. We assume helium rain modified the interior temperature and composition profiles. Our calculation predicts zonal harmonic values to which measurements can be compared. Although some models fit the observed (pre-Juno) second- and fourth-order zonal harmonics to within their error bars, our preferred reference model predicts a fourth-order zonal harmonic whose absolute value lies above the pre-Juno error bars. This model has a dense core of about 12 Earth masses, and a hydrogen-helium-rich envelope with...

  3. A Preliminary Jupiter Model

    Science.gov (United States)

    Hubbard, W. B.; Militzer, B.

    2016-03-01

    In anticipation of new observational results for Jupiter's axial moment of inertia and gravitational zonal harmonic coefficients from the forthcoming Juno orbiter, we present a number of preliminary Jupiter interior models. We combine results from ab initio computer simulations of hydrogen-helium mixtures, including immiscibility calculations, with a new nonperturbative calculation of Jupiter's zonal harmonic coefficients, to derive a self-consistent model for the planet's external gravity and moment of inertia. We assume helium rain modified the interior temperature and composition profiles. Our calculation predicts zonal harmonic values to which measurements can be compared. Although some models fit the observed (pre-Juno) second- and fourth-order zonal harmonics to within their error bars, our preferred reference model predicts a fourth-order zonal harmonic whose absolute value lies above the pre-Juno error bars. This model has a dense core of about 12 Earth masses and a hydrogen-helium-rich envelope with approximately three times solar metallicity.

  4. Probing Clouds in Planets with a Simple Radiative Transfer Model: The Jupiter Case

    Science.gov (United States)

    Mendikoa, Inigo; Perez-Hoyos, Santiago; Sanchez-Lavega, Agustin

    2012-01-01

    Remote sensing of planets evokes using expensive on-orbit satellites and gathering complex data from space. However, the basic properties of clouds in planetary atmospheres can be successfully estimated with small telescopes even from an urban environment using currently available and affordable technology. This makes the process accessible for…

  5. Sprite discharges on Venus and Jupiter-like planets: a laboratory investigation.

    NARCIS (Netherlands)

    Dubrovin, S.; Nijdam, S.; Veldhuizen, E.M. van; Ebert, U.; Yair, Y.; Price, C.

    2010-01-01

    Large sprite discharges at high atmospheric altitudes have been found to be physically similar to small streamer discharges in air at sea level density. Based on this understanding, we investigate possible sprite discharges on Venus or Jupiter‐like planets through laboratory experiments on streamers

  6. Probing Clouds in Planets with a Simple Radiative Transfer Model: The Jupiter Case

    Science.gov (United States)

    Mendikoa, Inigo; Perez-Hoyos, Santiago; Sanchez-Lavega, Agustin

    2012-01-01

    Remote sensing of planets evokes using expensive on-orbit satellites and gathering complex data from space. However, the basic properties of clouds in planetary atmospheres can be successfully estimated with small telescopes even from an urban environment using currently available and affordable technology. This makes the process accessible for…

  7. Inflating and Deflating Hot Jupiters: Coupled Tidal and Thermal Evolution of Known Transiting Planets

    CERN Document Server

    Miller, N; Jackson, B

    2009-01-01

    We examine the radius evolution of close-in giant planets with a planet evolution model that couples the orbital-tidal and thermal evolution. For 45 transiting systems, we compute a large grid of cooling/contraction paths forward in time, starting from a large phase space of initial semi-major axes and eccentricities. Given observational constraints at the current time for a given planet (semi-major axis, eccentricity, and system age) we find possible evolutionary paths that match these constraints, and compare the calculated radii to observations. We find that tidal evolution has two effects. First, planets start their evolution at larger semi-major axis, allowing them to contract more efficiently at earlier times. Second, tidal heating can significantly inflate the radius when the orbit is being circularized, but this effect on the radius is short-lived thereafter. Often circularization of the orbit is proceeded by a long period while the semi-major axis slowly decreases. Some systems with previously unexpl...

  8. The first planet detected in the WTS: an inflated hot-Jupiter in a 3.35 day orbit around a late F-star

    CERN Document Server

    Cappetta, M; Birkby, J L; Koppenhoefer, J; Pinfield, D J; Hodgkin, S T; Cruz, P; Kovács, G; Sipöcz, B; Barrado, D; Nefs, B; Pavlenko, Y V; Fossati, L; del Burgo, C; Martín, E L; Snellen, I; Barnes, J; Bayo, A M; Campbell, D A; Catalan, S; Gálvez-Ortiz, M C; Goulding, N; Haswell, C; Ivanyuk, O; Jones, H; Kuznetsov, M; Lodieu, N; Marocco, F; Mislis, D; Murgas, F; Napiwotzki, R; Palle, E; Pollacco, D; Baro, L Sarro; Solano, E; Steele, P; Stoev, H; Tata, R; Zendejas, J

    2012-01-01

    We report the discovery of WTS-1b, the first extrasolar planet found by the WFCAM Transit Survey, which began observations at the 3.8-m United Kingdom Infrared Telescope. Light curves comprising almost 1200 epochs with a photometric precision of better than 1 per cent to J=16 were constructed for 60000 stars and searched for periodic transit signals. For one of the most promising transiting candidates, high-resolution spectra taken at the Hobby-Eberly Telescope allowed us to estimate the spectroscopic parameters of the host star, a late-F main sequence dwarf (V=16.13) with possibly slightly subsolar metallicity, and to measure its radial velocity variations. The combined analysis of the light curves and spectroscopic data resulted in an orbital period of the substellar companion of 3.35 days, a planetary mass of 4.01+-0.35 Mj and a planetary radius of 1.49+-0.17 Rj. WTS-1b has one of the largest radius anomalies among the known hot Jupiters in the mass range 3-5 Mj.

  9. The first planet detected in the WTS: an inflated hot-Jupiter in a 3.35 day orbit around a late F-star [ERRATUM

    CERN Document Server

    Cappetta, M; Birkby, J L; Koppenhoefer, J; Pinfield, D J; Hodgkin, S T; Cruz, P; Kovacs, G; Sipocz, B; Barrado, D; Nefs, B; Pavlenko, Y V; Fossati, L; del Burgo, C; Martin, E L; Snellen, I; Barnes, J; Campbell, D A; Catalan, S; Galvez-Ortiz, M C; Goulding, N; Haswell, C; Ivanyuk, O; Jones, H; Kuznetsov, M; Lodieu, N; Marocco, F; Mislis, D; Murgas, F; Napiwotzki, R; Palle, E; Pollacco, D; Baro, L Sarro; Solano, E; Steele, P; Stoev, H; Tata, R; Zendejas, J

    2014-01-01

    We report the discovery of WTS-1b, the first extrasolar planet found by the WFCAM Transit Survey, which began observations at the 3.8-m United Kingdom Infrared Telescope (UKIRT) in August 2007. Light curves comprising almost 1200 epochs with a photometric precision of better than 1 per cent to J ~ 16 were constructed for ~60000 stars and searched for periodic transit signals. For one of the most promising transiting candidates, high-resolution spectra taken at the Hobby-Eberly Telescope (HET) allowed us to estimate the spectroscopic parameters of the host star, a late-F main sequence dwarf (V=16.13) with possibly slightly subsolar metallicity, and to measure its radial velocity variations. The combined analysis of the light curves and spectroscopic data resulted in an orbital period of the substellar companion of 3.35 days, a planetary mass of 4.01 +- 0.35 Mj and a planetary radius of 1.49+0.16-0.18 Rj. WTS-1b has one of the largest radius anomalies among the known hot Jupiters in the mass range 3-5 Mj. The h...

  10. The Escaping Upper Atmospheres of Hot Jupiters

    Science.gov (United States)

    Davidson, Eric; Jones, Gabrielle; Uribe, Ana; Carson, Joseph

    2017-01-01

    Hot Jupiters are massive gaseous planets which orbit closely to their parent star. The strong stellar irradiation at these small orbital separations causes the temperature of the upper atmosphere of the planet to rise. This can cause the planet's atmosphere to escape into space, creating an exoplanet outflow. We ascertained which factors determine the presence and structure of these outflows by creating one dimensional simulations of the density, pressure, velocity, optical depth, and neutral fraction of hot Jupiter atmospheres. This was done for planets of masses and radii ranging from 0.5-1.5 Mj and 0.5-1.5 Rj. We found the outflow rate to be highest for a planet of 0.5 Mj and 1.5 Rj at 5.3×10-14 Mj/Yr. We also found that the higher the escape velocity, the lower the chance of the planet having an outflow.

  11. OGLE-2016-BLG-0596Lb: High-Mass Planet From High-Magnification Pure-Survey Microlensing Event

    CERN Document Server

    Mróz, P; Udalski, A; Poleski, R; Skowron, J; Szymański, M K; Soszyński, I; Pietrukowicz, P; Kozłowski, S; Ulaczyk, K; Wyrzykowski, Ł; Pawlak, M; Albrow, M D; Cha, S -M; Chung, S -J; Jung, Y K; Kim, D -J; Kim, S -L; Lee, C -U; Lee, Y; Park, B -G; Pogge, R W; Ryu, Y -H; Shin, I -G; Yee, J C; Zhu, W; Gould, A

    2016-01-01

    We report the discovery of a high mass-ratio planet $q=0.012$, i.e., 13 times higher than the Jupiter/Sun ratio. The host mass is not presently measured but can be determined or strongly constrained from adaptive optics imaging. The planet was discovered in a small archival study of high-magnification events in pure-survey microlensing data, which was unbiased by the presence of anomalies. The fact that it was previously unnoticed may indicate that more such planets lie in archival data and could be discovered by similar systematic study. In order to understand the transition from predominantly survey+followup to predominately survey-only planet detections, we conduct the first analysis of these detections in the observational $(s,q)$ plane. Here $s$ is projected separation in units of the Einstein radius. We find some evidence that survey+followup is relatively more sensitive to planets near the Einstein ring, but that there is no statistical difference in sensitivity by mass ratio.

  12. Fast migration of low-mass planets in radiative discs

    Science.gov (United States)

    Pierens, A.

    2015-12-01

    Low-mass planets are known to undergo Type I migration and this process must have played a key role during the evolution of planetary systems. Analytical formulae for the disc torque have been derived assuming that the planet evolves on a fixed circular orbit. However, recent work has shown that in isothermal discs, a migrating protoplanet may also experience dynamical corotation torques that scale with the planet drift rate. The aim of this study is to examine whether dynamical corotation torques can also affect the migration of low-mass planets in non-isothermal discs. We performed 2D radiative hydrodynamical simulations to examine the orbital evolution outcome of migrating protoplanets as a function of disc mass. We find that a protoplanet can enter a fast migration regime when it migrates in the direction set by the entropy-related horseshoe drag and when the Toomre stability parameter is less than a threshold value below which the horseshoe region contracts into a tadpole-like region. In that case, an underdense trapped region appears near the planet, with an entropy excess compared to the ambient disc. If the viscosity and thermal diffusivity are small enough so that the entropy excess is conserved during migration, the planet then experiences strong corotation torques arising from the material flowing across the planet orbit. During fast migration, we observe that a protoplanet can pass through the zero-torque line predicted by static torques. We also find that fast migration may help in disrupting the mean-motion resonances that are formed by convergent migration of embryos.

  13. Masses, Radii, and Cloud Properties of the HR 8799 Planets

    Science.gov (United States)

    Marley, Mark S.; Saumon, Didier; Cushing, Michael; Ackerman, Andrew S.; Fortney, Jonathan J.; Freedman, Richard

    2012-01-01

    The near-infrared colors of the planets directly imaged around the A star HR 8799 are much redder than most field brown dwarfs of the same effective temperature. Previous theoretical studies of these objects have compared the photometric and limited spectral data of the planets to the predictions of various atmosphere and evolution models and concluded that the atmospheres of planets b, c, and d are unusually cloudy or have unusual cloud properties. Most studies have also found that the inferred radii of some or all of the planets disagree with expectations of standard giant planet evolution models. Here we compare the available data to the predictions of our own set of atmospheric and evolution models that have been extensively tested against field L and T dwarfs, including the reddest L dwarfs. Unlike almost all previous studies we specify mutually self-consistent choices for effective temperature, gravity, cloud properties, and planetary radius. This procedure yields plausible and self-consistent values for the masses, effective temperatures, and cloud properties of all three planets. We find that the cloud properties of the HR 8799 planets are in fact not unusual but rather follow previously recognized trends including a gravity dependence on the temperature of the L to T spectral transition, some reasons for which we discuss. We find that the inferred mass of planet b is highly sensitive to the H and K band spectrum. Solutions for planets c and particularly d are less certain but are consistent with the generally accepted constraints on the age of the primary star and orbital dynamics. We also confirm that as for L and T dwarfs and solar system giant planets, non-equilibrium chemistry driven by atmospheric mixing is also important for these objects. Given the preponderance of data suggesting that the L to T spectral type transition is gravity dependent, we present a new evolution calculation that predicts cooling tracks on the near-infrared color

  14. Capture of Trojans by Jumping Jupiter

    CERN Document Server

    Nesvorny, David; Morbidelli, Alessandro

    2013-01-01

    Jupiter Trojans are thought to be survivors of a much larger population of planetesimals that existed in the planetary region when planets formed. They can provide important constraints on the mass and properties of the planetesimal disk, and its dispersal during planet migration. Here we tested a possibility that the Trojans were captured during the early dynamical instability among the outer planets (aka the Nice model), when the semimajor axis of Jupiter was changing as a result of scattering encounters with an ice giant. The capture occurs in this model when Jupiter's orbit and its Lagrange points become radially displaced in a scattering event and fall into a region populated by planetesimals (that previously evolved from their natal transplanetary disk to ~5 AU during the instability). Our numerical simulations of the new capture model, hereafter jump capture, satisfactorily reproduce the orbital distribution of the Trojans and their total mass. The jump capture is potentially capable of explaining the ...

  15. Types of Hot Jupiter Atmospheres

    Science.gov (United States)

    Bisikalo, Dmitry V.; Kaygorodov, Pavel V.; Ionov, Dmitry E.; Shematovich, Valery I.

    Hot Jupiters, i.e. exoplanet gas giants, having masses comparable to the mass of Jupiter and semimajor axes shorter than 0.1 AU, are a unique class of objects. Since they are so close to the host stars, their atmospheres form and evolve under the action of very active gas dynamical processes caused by the gravitational field and irradiation of the host star. As a matter of fact, the atmospheres of several of these planets fill their Roche lobes , which results in a powerful outflow of material from the planet towards the host star. The energy budget of this process is so important that it almost solely governs the evolution of hot Jupiters gaseous envelopes. Based on the years of experience in the simulations of gas dynamics in mass-exchanging close binary stars, we have investigated specific features of hot Jupiters atmospheres. The analytical estimates and results of 3D numerical simulations, discussed in this Chapter, show that the gaseous envelopes around hot Jupiters may be significantly non-spherical and, at the same time, stationary and long-lived. These results are of fundamental importance for the interpretation of observational data.

  16. Constraining the mass of the planet(s) sculpting a disk cavity

    CERN Document Server

    Canovas, H; Zurlo, A; Wahhaj, Z; Schreiber, M R; Vigan, A; Villaver, E; Olofsson, J; Meeus, G; Ménard, F; Caceres, C; Cieza, L A; Garufi, A

    2016-01-01

    2MASS J16042165-2130284 (hereafter J1604) is a pre-transitional disk with different gap sizes in the mm-sized (~79 au) and $\\mu$m-sized (~63 au) dust particles. The $^{12}$CO emission shows a ~30 au cavity. This radial structure suggests that giant planets are interacting with the disk. We aim to observationally constrain the masses and location of plausible giant planets inside the cavity of J1604, and compare our results with previous predictions from hydrodynamical models describing planet-disk interactions. We observed J1604 with VLT/SPHERE in pupil-stabilized mode, obtaining $YJHK$- band images. The dataset was processed exploiting the ADI technique with dedicated algorithms to maximize the sensitivity of our observations. Our observations reach an exquisite contrast of $\\Delta K, H ~12$ mag from 0.15" to 0.80" ($~22$ to 115 au), but no planet candidate is detected. The disk is directly imaged in scattered light in all the near infrared bands (from $Y$ to $K$). The disk has a red color, which indicates t...

  17. Discovery and Mass Measurements of a Cold, 10-Earth Mass Planet and Its Host Star

    Science.gov (United States)

    Barry, Richard K.; Muraki, Y.; Han, C.; Bennett, D. P.; Gaudi, B. S.

    2011-01-01

    We present the discovery and mass measurement of the cold, low-mass planet MOA-2009-BLG-266Lb, made with the gravitational microlensing method. This planet has a mass of mp = 10.4 +/- M(Earth) and orbits a star of Mstar = 0.56 +/- 0.09 M(Sun) at a semi-major axis of a = 3.2 + 1.9/-0.5 AU, and an orbital period of 7.6 +7.7/-1.5 yrs. The planet and host star mass measurements are due to the measurement of the microlensing parallax effect. This measurement was primarily due to the orbital motion of the Earth, but the analysis also demonstrates the capability measure micro lensing parallax with the Deep Impact (or EPOXI) spacecraft in a Heliocentric orbit. The planet mass and orbital distance are similar to predictions for the critical core mass needed to accrete a substantial gaseous envelope, and thus may indicate that this planet is a failed gas giant. This and future microlensing detections will test planet formation theory predictions regarding the prevalence and masses of such planets

  18. HAT-P-47b AND HAT-P-48b: Two Low Density Sub-Saturn-Mass Transiting Planets on the Edge of the Period--Mass Desert

    CERN Document Server

    Bakos, G Á; Torres, G; Latham, D W; Sato, B; Bieryla, A; Shporer, A; Howard, A W; Fulton, B J; Buchhave, L A; Penev, K; Kovács, G; Kovács, T; Csubry, Z; Esquerdo, G A; Everett, M; Szklenár, T; Quinn, S N; Béky, B; Marcy, G W; Noyes, R W; Lázár, J; Papp, I; Sári, P

    2016-01-01

    We report the discovery of two new transiting extrasolar planets orbiting moderately bright (V = 10.7 and 12.2 mag) F stars (masses of 1.39 Msun and 1.10 Msun, respectively). The planets have periods of P = 4.7322 d and 4.4087 d, and masses of 0.21 MJ and 0.17 MJ which are almost half-way between those of Neptune and Saturn. With radii of 1.31 RJ and 1.13 RJ, these very low density planets are the two lowest mass planets with radii in excess that of Jupiter. Comparing with other recent planet discoveries, we find that sub-Saturns (0.18MJ < Mp < 0.3MJ) and super-Neptunes (0.05MJ < Mp < 0.18MJ) exhibit a wide range of radii, and their radii exhibit a weaker correlation with irradiation than higher mass planets. The two planets are both suitable for measuring the Rossiter-McLaughlin effect and for atmospheric characterization. Measuring the former effect would allow an interesting test of the theory that star-planet tidal interactions are responsible for the tendency of close-in giant planets around ...

  19. A rocky planet transiting a nearby low-mass star

    CERN Document Server

    Berta-Thompson, Zachory K; Charbonneau, David; Newton, Elisabeth R; Dittmann, Jason A; Astudillo-Defru, Nicola; Bonfils, Xavier; Gillon, Michaël; Jehin, Emmanuël; Stark, Antony A; Stalder, Brian; Bouchy, Francois; Delfosse, Xavier; Forveille, Thierry; Lovis, Christophe; Mayor, Michel; Neves, Vasco; Pepe, Francesco; Santos, Nuno C; Udry, Stéphane; Wünsche, Anaël

    2015-01-01

    M-dwarf stars -- hydrogen-burning stars that are smaller than 60 per cent of the size of the Sun -- are the most common class of star in our Galaxy and outnumber Sun-like stars by a ratio of 12:1. Recent results have shown that M dwarfs host Earth-sized planets in great numbers: the average number of M-dwarf planets that are between 0.5 to 1.5 times the size of Earth is at least 1.4 per star. The nearest such planets known to transit their star are 39 parsecs away, too distant for detailed follow-up observations to measure the planetary masses or to study their atmospheres. Here we report observations of GJ 1132b, a planet with a size of 1.2 Earth radii that is transiting a small star 12 parsecs away. Our Doppler mass measurement of GJ 1132b yields a density consistent with an Earth-like bulk composition, similar to the compositions of the six known exoplanets with masses less than six times that of the Earth and precisely measured densities. Receiving 19 times more stellar radiation than the Earth, the plane...

  20. Revised Masses and Densities of the Planets around Kepler-10

    CERN Document Server

    Weiss, Lauren M; Isaacson, Howard T; Agol, Eric; Marcy, Geoffrey W; Rowe, Jason F; Kipping, David; Fulton, Benjamin J; Lissauer, Jack J; Howard, Andrew W; Fabrycky, Daniel

    2016-01-01

    Determining which small exoplanets have stony-iron compositions is necessary for quantifying the occurrence of such planets and for understanding the physics of planet formation. Kepler-10 hosts the stony-iron world Kepler-10b (K10b), and also contains what has been reported to be the largest solid silicate-ice planet, Kepler-10c (K10c). Using 220 radial velocities (RVs), including 72 precise RVs from Keck-HIRES of which 20 are new from 2014-2015, and 17 quarters of Kepler photometry, we obtain the most complete picture of the Kepler-10 system to date. We find that K10b (Rp=1.47 Re) has mass 3.72$\\pm$0.42 Me and density 6.46$\\pm$0.73 g/cc. Modeling the interior of K10b as an iron core overlaid with a silicate mantle, we find that the iron core constitutes 0.17$\\pm$0.11 of the planet mass. For K10c (Rp=2.35 Re) we measure Mp=13.98$\\pm$1.79 Me and $\\rho$=5.94$\\pm$0.76 g/cc, significantly lower than the mass computed in Dumusque et al. (2014, 17.2$\\pm$1.9 Me). Internal compositional modeling reveals that at leas...

  1. Fast migration of low-mass planets in radiative discs

    CERN Document Server

    Pierens, Arnaud

    2015-01-01

    Low-mass planets are known to undergo Type I migration and this process must have played a key role during the evolution of planetary systems. Analytical formulae for the disc torque have been derived assuming that the planet evolves on a fixed circular orbit. However, recent work has shown that in isothermal discs, a migrating protoplanet may also experience dynamical corotation torques that scale with the planet drift rate. The aim of this study is to examine whether dynamical corotation torques can also affect the migration of low-mass planets in non-isothermal discs. We performed 2D radiative hydrodynamical simulations to examine the orbital evolution outcome of migrating protoplanets as a function of disc mass. We find that a protoplanet can enter a fast migration regime when it migrates in the direction set by the entropy-related horseshoe drag and when the Toomre stability parameter is less than a threshold value below which the horseshoe region contracts into a tadpole-like region. In that case, an un...

  2. Discovery and Mass Measurements of a Cold, 10-Earth Mass Planet and Its Host Star

    CERN Document Server

    Muraki, Y; Bennett, D P; Suzuki, D; Monard, L A G; Street, R; Jorgensen, U G; Kundurthy, P; Skowron, J; Becker, A C; Albrow, M D; Fouque, P; Heyrovsky, D; Barry, R K; Beaulieu, J -P; Wellnitz, D D; Bond, I A; Sumi, T; Dong, S; Gaudi, B S; Bramich, D M; Dominik, M; Abe, F; Botzler, C S; Freeman, M; Fukui, A; Furusawa, K; Hayashi, F; Hearnshaw, J B; Hosaka, S; Itow, Y; Kamiya, K; Korpela, A V; Kilmartin, P M; Lin, W; Ling, C H; Makita, S; Masuda, K; Matsubara, Y; Miyake, N; Nishimoto, K; Ohnishi, K; Perrott, Y C; Rattenbury, N J; Saito, To; Skuljan, L; Sullivan, D J; Sweatman, W L; Tristram, P J; Wada, K; Yock, P C M; Christie, G W; DePoy, D L; Gorbikov, E; Gould, A; Kaspi, S; Lee, C -U; Mallia, F; Maoz, D; McCormick, J; Moorhouse, D; Natusch, T; Park, B -G; Pogge, R W; Polishook, D; Shporer, A; Thornley, G; Yee, J C; Allan, A; Browne, P; Horne, K; Kains, N; Snodgrass, C; Steele, I; Tsapras, Y; Batista, V; Bennett, C S; Brillant, S; Caldwell, J A R; Cassan, A; Cole, A; Corrales, R; Coutures, Ch; Dieters, S; Prester, D Dominis; Donatowicz, J; Greenhill, J; Kubas, D; Marquette, J -B; Martin, R; Menzies, J; Sahu, K C; Waldman, I; Zub, A Williams M; Bourhrous, H; Matsuoka, Y; Nagayama, T; Oi, N; Randriamanakoto, Z; Bozza, V; Burgdorf, M J; Novati, S Calchi; Dreizler, S; Finet, F; Glitrup, M; Harpsoe, K; Hinse, T C; Hundertmark, M; Liebig, C; Maier, G; Mancini, L; Mathiasen, M; Rahvar, S; Ricci, D; Scarpetta, G; Skottfelt, J; Surdej, J; Southworth, J; Wambsganss, J; Zimmer, F; Udalski, A; Poleski, R; Wyrzykowski, L; Ulaczyk, K; Szymanski, M K; Kubiak, M; Pietrzynski, G; Soszynski, I

    2011-01-01

    We present the discovery and mass measurement of the cold, low-mass planet MOA-2009-BLG-266Lb, made with the gravitational microlensing method. This planet has a mass of m_p = 10.4 +- 1.7 Earth masses and orbits a star of mass M_* = 0.56 +- 0.09 Solar masses at a semi-major axis of a = 3.2 (+1.9 -0.5) AU and an orbital period of P = 7.6 (+7.7 -1.5} yrs. The planet and host star mass measurements are enabled by the measurement of the microlensing parallax effect, which is seen primarily in the light curve distortion due to the orbital motion of the Earth. But, the analysis also demonstrates the capability to measure microlensing parallax with the Deep Impact (or EPOXI) spacecraft in a Heliocentric orbit. The planet mass and orbital distance are similar to predictions for the critical core mass needed to accrete a substantial gaseous envelope, and thus may indicate that this planet is a "failed" gas giant. This and future microlensing detections will test planet formation theory predictions regarding the preval...

  3. WASP-34b: a near-grazing transiting sub-Jupiter-mass exoplanet in a hierarchical triple system

    Science.gov (United States)

    Smalley, B.; Anderson, D. R.; Collier Cameron, A.; Hellier, C.; Lendl, M.; Maxted, P. F. L.; Queloz, D.; Triaud, A. H. M. J.; West, R. G.; Bentley, S. J.; Enoch, B.; Gillon, M.; Lister, T. A.; Pepe, F.; Pollacco, D.; Segransan, D.; Smith, A. M. S.; Southworth, J.; Udry, S.; Wheatley, P. J.; Wood, P. L.; Bento, J.

    2011-02-01

    We report the discovery of WASP-34b, a sub-Jupiter-mass exoplanet transiting its 10.4-magnitude solar-type host star (1SWASP J110135.89-235138.4; TYC 6636-540-1) every 4.3177 days in a slightly eccentric orbit (e = 0.038±0.012). We find a planetary mass of 0.59±0.01 MJup and radius of 1.22-0.08+0.11 RJup. There is a linear trend in the radial velocities of 55±4 m s-1 y-1 indicating the presence of a long-period third body in the system with a mass ⪆0.45 MJup at a distance of ⪆1.2 AU from the host star. This third-body is either a low-mass star, a white dwarf, or another planet. The transit depth ((RP/Rstar)2 = 0.0126) and high impact parameter (b = 0.90) suggest that this could be the first known transiting exoplanet expected to undergo grazing transits, but with a confidence of only 80%. Radial velocity and photometric data are only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/526/A130

  4. WASP-34b: a near-grazing transiting sub-Jupiter-mass exoplanet in a hierarchical triple system

    CERN Document Server

    Smalley, B; Cameron, A Collier; Hellier, C; Lendl, M; Maxted, P F L; Queloz, D; Triaud, A H M J; West, R G; Bentley, S J; Enoch, B; Gillon, M; Lister, T A; Pepe, F; Pollacco, D; Segransan, D; Smith, A M S; Southworth, J; Udry, S; Wheatley, P J; Wood, P L; Bento, J

    2010-01-01

    We report the discovery of WASP-34b, a sub-Jupiter-mass exoplanet transiting its 10.4-magnitude solar-type host star (1SWASP J110135.89-235138.4; TYC 6636-540-1) every 4.3177 days in a slightly eccentric orbit (e = 0.038 +/- 0.012). We find a planetary mass of 0.59 +/- 0.01 M_Jup and radius of 1.22 ^{+0.11}_{-0.08} R_Jup. There is a linear trend in the radial velocities of 55+/-4 m/s/y indicating the presence of a long-period third body in the system with a mass > 0.45 M_Jup at a distance of >1.2 AU from the host star. This third-body is either a low-mass star, white dwarf, or another planet. The transit depth ((R_P/R_*)^2 = 0.0126) and high impact parameter (b = 0.90) suggest that this could be the first known transiting exoplanet expected to undergo grazing transits, but with a confidence of only ~80%.

  5. THE PHOTOECCENTRIC EFFECT AND PROTO-HOT JUPITERS. II. KOI-1474.01, A CANDIDATE ECCENTRIC PLANET PERTURBED BY AN UNSEEN COMPANION

    Energy Technology Data Exchange (ETDEWEB)

    Dawson, Rebekah I.; Murray-Clay, Ruth A. [Harvard-Smithsonian Center for Astrophysics, 60 Garden St, MS-10, Cambridge, MA 02138 (United States); Johnson, John Asher; Morton, Timothy D. [Department of Astronomy, California Institute of Technology, 1200 East California Boulevard, MC 249-17, Pasadena, CA 91125 (United States); Crepp, Justin R. [Department of Physics, University of Notre Dame, 225 Nieuwland Science Hall, Notre Dame, IN 46556 (United States); Fabrycky, Daniel C. [Department of Astronomy and Astrophysics, University of California Santa Cruz, Santa Cruz, California 95064 (United States); Howard, Andrew W., E-mail: rdawson@cfa.harvard.edu [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822-1839 (United States)

    2012-12-20

    The exoplanets known as hot Jupiters-Jupiter-sized planets with periods of less than 10 days-likely are relics of dynamical processes that shape all planetary system architectures. Socrates et al. argued that high eccentricity migration (HEM) mechanisms proposed for situating these close-in planets should produce an observable population of highly eccentric proto-hot Jupiters that have not yet tidally circularized. HEM should also create failed-hot Jupiters, with periapses just beyond the influence of fast circularization. Using the technique we previously presented for measuring eccentricities from photometry (the ''photoeccentric effect''), we are distilling a collection of eccentric proto- and failed-hot Jupiters from the Kepler Objects of Interest (KOI). Here, we present the first, KOI-1474.01, which has a long orbital period (69.7340 days) and a large eccentricity e 0.81{sup +0.10}{sub -0.07}, skirting the proto-hot Jupiter boundary. Combining Kepler photometry, ground-based spectroscopy, and stellar evolution models, we characterize host KOI-1474 as a rapidly rotating F star. Statistical arguments reveal that the transiting candidate has a low false-positive probability of 3.1%. KOI-1474.01 also exhibits transit-timing variations of the order of an hour. We explore characteristics of the third-body perturber, which is possibly the ''smoking-gun'' cause of KOI-1474.01's large eccentricity. We use the host star's period, radius, and projected rotational velocity to measure the inclination of the stellar spin. Comparing KOI 1474.01's inclination, we find that its orbit is marginally consistent with being aligned with the stellar spin axis, although a reanalysis is warranted with future additional data. Finally, we discuss how the number and existence of proto-hot Jupiters will not only demonstrate that hot Jupiters migrate via HEM, but also shed light on the typical timescale for the mechanism.

  6. [Extrasolar terrestrial planets and possibility of extraterrestrial life].

    Science.gov (United States)

    Ida, Shigeru

    2003-12-01

    Recent development of research on extrasolar planets are reviewed. About 120 extrasolar Jupiter-mass planets have been discovered through the observation of Doppler shift in the light of their host stars that is caused by acceleration due to planet orbital motions. Although the extrasolar planets so far observed may be limited to gas giant planets and their orbits differ from those of giant planets in our Solar system (Jupiter and Saturn), the theoretically predicted probability of existence of extrasolar terrestrial planets that can have liquid water ocean on their surface is comparable to that of detectable gas giant planets. Based on the number of extrasolar gas giants detected so far, about 100 life-sustainable planets may exist within a range of 200 light years. Indirect observation of extrasolar terrestrial planets would be done with space telescopes within several years and direct one may be done within 20 years. The latter can detect biomarkers on these planets as well.

  7. A rocky planet transiting a nearby low-mass star.

    Science.gov (United States)

    Berta-Thompson, Zachory K; Irwin, Jonathan; Charbonneau, David; Newton, Elisabeth R; Dittmann, Jason A; Astudillo-Defru, Nicola; Bonfils, Xavier; Gillon, Michaël; Jehin, Emmanuël; Stark, Antony A; Stalder, Brian; Bouchy, Francois; Delfosse, Xavier; Forveille, Thierry; Lovis, Christophe; Mayor, Michel; Neves, Vasco; Pepe, Francesco; Santos, Nuno C; Udry, Stéphane; Wünsche, Anaël

    2015-11-12

    M-dwarf stars--hydrogen-burning stars that are smaller than 60 per cent of the size of the Sun--are the most common class of star in our Galaxy and outnumber Sun-like stars by a ratio of 12:1. Recent results have shown that M dwarfs host Earth-sized planets in great numbers: the average number of M-dwarf planets that are between 0.5 to 1.5 times the size of Earth is at least 1.4 per star. The nearest such planets known to transit their star are 39 parsecs away, too distant for detailed follow-up observations to measure the planetary masses or to study their atmospheres. Here we report observations of GJ 1132b, a planet with a size of 1.2 Earth radii that is transiting a small star 12 parsecs away. Our Doppler mass measurement of GJ 1132b yields a density consistent with an Earth-like bulk composition, similar to the compositions of the six known exoplanets with masses less than six times that of the Earth and precisely measured densities. Receiving 19 times more stellar radiation than the Earth, the planet is too hot to be habitable but is cool enough to support a substantial atmosphere, one that has probably been considerably depleted of hydrogen. Because the host star is nearby and only 21 per cent the radius of the Sun, existing and upcoming telescopes will be able to observe the composition and dynamics of the planetary atmosphere.

  8. The use of transit timing to detect terrestrial-mass extrasolar planets.

    Science.gov (United States)

    Holman, Matthew J; Murray, Norman W

    2005-02-25

    Future surveys for transiting extrasolar planets are expected to detect hundreds of jovian-mass planets and tens of terrestrial-mass planets. For many of these newly discovered planets, the intervals between successive transits will be measured with an accuracy of 0.1 to 100 minutes. We show that these timing measurements will allow for the detection of additional planets in the system (not necessarily transiting) by their gravitational interaction with the transiting planet. The transit-time variations depend on the mass of the additional planet, and in some cases terrestrial-mass planets will produce a measurable effect. In systems where two planets are seen to transit, the density of both planets can be determined without radial-velocity observations.

  9. A Transiting Hot Jupiter Orbiting a Metal-Rich Star

    CERN Document Server

    Dunham, Edward W; Koch, David G; Batalha, Natalie M; Buchhave, Lars A; Brown, Timothy M; Caldwell, Douglas A; Cochran, William D; Endl, Michael; Fischer, Debra; Furesz, Gabor; Gautier, Thomas N; Geary, John C; Gilliland, Ronald L; Gould, Alan; Howell, Steve B; Jenkins, Jon M; Kjeldsen, Hans; Latham, David W; Lissauer, Jack J; Marcy, Geoffrey W; Meibom, Soren; Monet, David G; Rowe, Jason F; Sasselov, Dimitar D

    2010-01-01

    We announce the discovery of Kepler-6b, a transiting hot Jupiter orbiting a star with unusually high metallicity, [Fe/H] = +0.34 +/- 0.04. The planet's mass is about 2/3 that of Jupiter, Mp = 0.67 Mj, and the radius is thirty percent larger than that of Jupiter, Rp = 1.32 Rj, resulting in a density of 0.35 g/cc, a fairly typical value for such a planet. The orbital period is P = 3.235 days. The host star is both more massive than the Sun, Mstar = 1.21 Msun, and larger than the Sun, Rstar = 1.39 Rsun.

  10. XUV-driven mass loss from extrasolar giant planets orbiting active stars

    CERN Document Server

    Chadney, J M; Unruh, Y C; Koskinen, T T; Sanz-Forcada, J

    2014-01-01

    Upper atmospheres of Hot Jupiters are subject to extreme radiation conditions that can result in rapid atmospheric escape. The composition and structure of the upper atmospheres of these planets are affected by the high-energy spectrum of the host star. This emission depends on stellar type and age, which are thus important factors in understanding the behaviour of exoplanetary atmospheres. In this study, we focus on Extrasolar Giant Planets (EPGs) orbiting K and M dwarf stars. XUV spectra for three different stars - epsilon Eridani, AD Leonis and AU Microscopii - are constructed using a coronal model. Neutral density and temperature profiles in the upper atmosphere of hypothetical EGPs orbiting these stars are then obtained from a fluid model, incorporating atmospheric chemistry and taking atmospheric escape into account. We find that a simple scaling based solely on the host star's X-ray emission gives large errors in mass loss rates from planetary atmospheres and so we have derived a new method to scale th...

  11. Formation and Detection of Earth Mass Planets around Low Mass Stars

    OpenAIRE

    Montgomery, Ryan; Laughlin, Greg

    2009-01-01

    We investigate an in-situ formation scenario for Earth-mass terrestrial planets in short-period, potentially habitable orbits around low-mass stars (M_star < 0.3 M_sun). We then investigate the feasibility of detecting these Earth-sized planets. Our simulations of terrestrial planet formation follow the growth of planetary embryos in an annular region around a fiducial M7 primary. Our simulations couple a semi-analytic model to a full N-body integration to follow the growth from ~3x10^21 g to...

  12. The discoveries of WASP-91b, WASP-105b and WASP-107b: Two warm Jupiters and a planet in the transition region between ice giants and gas giants

    Science.gov (United States)

    Anderson, D. R.; Collier Cameron, A.; Delrez, L.; Doyle, A. P.; Gillon, M.; Hellier, C.; Jehin, E.; Lendl, M.; Maxted, P. F. L.; Madhusudhan, N.; Pepe, F.; Pollacco, D.; Queloz, D.; Ségransan, D.; Smalley, B.; Smith, A. M. S.; Triaud, A. H. M. J.; Turner, O. D.; Udry, S.; West, R. G.

    2017-08-01

    We report the discoveries of three transiting exoplanets. WASP-91b is a warm Jupiter (1.34 MJup, 1.03 RJup) in a 2.8-day orbit around a metal-rich K3 star. WASP-105b is a warm Jupiter (1.8 MJup, 0.96 RJup) in a 7.9-day orbit around a metal-rich K2 star. WASP-107b is a warm super-Neptune/sub-Saturn (0.12 MJup, 0.94 RJup) in a 5.7-day orbit around a solar-metallicity K6 star. Considering that giant planets seem to be more common around stars of higher metallicity and stars of higher mass, it is notable that the hosts are all metal-rich, late-type stars. With orbital separations that place both WASP-105b and WASP-107b in the weak-tide regime, measurements of the alignment between the planets' orbital axes and their stars' spin axes may help us to understand the inward migration of short-period, giant planets. The mass of WASP-107b (2.2 MNep, 0.40 MSat) places it in the transition region between the ice giants and gas giants of the Solar System. Its radius of 0.94 RJup suggests that it is a low-mass gas giant with a H/He-dominated composition. The planet thus sets a lower limit of 2.2 MNep on the planetary mass above which large gaseous envelopes can be accreted and retained by proto-planets on their way to becoming gas giants. We may discover whether WASP-107b more closely resembles an ice giant or a gas giant by measuring its atmospheric metallicity via transmission spectroscopy, for which WASP-107b is a very good target. Based on observations made with: the WASP-South photometric survey instrument, the 0.6-m TRAPPIST robotic imager, and the EulerCam camera and the CORALIE spectrograph mounted on the 1.2-m Euler-Swiss telescope.The photometric time-series and radial-velocity data used in this work are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/604/A110

  13. Prospects for Improving the Masses of Minor Planets

    Science.gov (United States)

    2007-09-01

    1)Ceres and (4) Vesta , a study was done (Hilton 2008) to determine if there were any encounters between now and Dawn’s arrival at these two minor...be perturbed by Ceres or Vesta by enough to change the semi-major axis by 10−5 AU. Although developed for the improvement of the masses of Ceres and... Vesta , the techniques developed for finding these encounters are general and may be applied to the mass determination of any massive minor planet. All

  14. Evolutionary Analysis of Gaseous Sub-Neptune-Mass Planets with MESA

    CERN Document Server

    Chen, Howard

    2016-01-01

    Sub-Neptune-sized exoplanets represent one of the most common types of planets in the Milky Way, yet many of their properties are unknown. Here, we present a prescription to adapt the capabilities of the stellar evolution toolkit Modules for Experiments in Stellar Astrophysics (MESA) to model sub-Neptune mass planets with H/He envelopes. With the addition of routines treating the planet core luminosity, heavy element enrichment, atmospheric boundary condition, and mass loss due to hydrodynamic winds, the evolutionary pathways of planets with diverse starting conditions are more accurately constrained. Using these dynamical models, we construct mass-composition relationships of planets from 1 to 400 $M_{\\oplus}$ and investigate how mass-loss impacts their composition and evolution history. We demonstrate that planet radii are typically insensitive to the evolution pathway that brought the planet to its instantaneous mass, composition and age, with variations from hysteresis. We find that planet envelope mass l...

  15. Aeronomical constraints to the minimum mass and maximum radius of hot low-mass planets

    Science.gov (United States)

    Fossati, L.; Erkaev, N. V.; Lammer, H.; Cubillos, P. E.; Odert, P.; Juvan, I.; Kislyakova, K. G.; Lendl, M.; Kubyshkina, D.; Bauer, S. J.

    2017-02-01

    Stimulated by the discovery of a number of close-in low-density planets, we generalise the Jeans escape parameter taking hydrodynamic and Roche lobe effects into account. We furthermore define Λ as the value of the Jeans escape parameter calculated at the observed planetary radius and mass for the planet's equilibrium temperature and considering atomic hydrogen, independently of the atmospheric temperature profile. We consider 5 and 10 M⊕ planets with an equilibrium temperature of 500 and 1000 K, orbiting early G-, K-, and M-type stars. Assuming a clear atmosphere and by comparing escape rates obtained from the energy-limited formula, which only accounts for the heating induced by the absorption of the high-energy stellar radiation, and from a hydrodynamic atmosphere code, which also accounts for the bolometric heating, we find that planets whose Λ is smaller than 15-35 lie in the "boil-off" regime, where the escape is driven by the atmospheric thermal energy and low planetary gravity. We find that the atmosphere of hot (i.e. Teq ⪆ 1000 K) low-mass (Mpl ⪅ 5 M⊕) planets with Λmass (Mpl ⪅ 10 M⊕) planets with Λmass and maximum radius and can be used to predict the presence of aerosols and/or constrain planetary masses, for example.

  16. Rosuvastatin and the JUPITER trial: critical appraisal of a lifeless planet in the galaxy of primary prevention.

    Science.gov (United States)

    López, Antonio; Wright, James M

    2012-01-01

    In November 2008, the JUPITER trial was published in the New England Journal of Medicine. JUPITER is an acronym for Justification for the Use of Statins in Prevention: an Intervention Trial Evaluating Rosuvastatin. It was an AstraZeneca sponsored randomized double-blind trial comparing rosuvastatin 20 mg with placebo in 17,802 apparently healthy men and women with LDL cholesterol JUPITER trial have been widely publicized, and based on the trial, the main regulatory agencies have approved rosuvastatin for the indication of primary prevention of vascular events. However, the interpretation and clinical implications of the JUPITER trial have been questioned and remain controversial. The objective of this commentary is to evaluate the relevance, design, results, and conclusions of the JUPITER study.

  17. The SOPHIE search for northern extrasolar planets . I. A companion around HD 16760 with mass close to the planet/brown-dwarf transition

    Science.gov (United States)

    Bouchy, F.; Hébrard, G.; Udry, S.; Delfosse, X.; Boisse, I.; Desort, M.; Bonfils, X.; Eggenberger, A.; Ehrenreich, D.; Forveille, T.; Lagrange, A. M.; Le Coroller, H.; Lovis, C.; Moutou, C.; Pepe, F.; Perrier, C.; Pont, F.; Queloz, D.; Santos, N. C.; Ségransan, D.; Vidal-Madjar, A.

    2009-10-01

    We report on the discovery of a substellar companion or a massive Jupiter orbiting the G5V star HD 16760 using the spectrograph SOPHIE installed on the OHP 1.93-m telescope. Characteristics and performances of the spectrograph are presented, as well as the SOPHIE exoplanet consortium program. With a minimum mass of 14.3 {M}_Jup, an orbital period of 465 days and an eccentricity of 0.067, HD 16760b seems to be located just at the end of the mass distribution of giant planets, close to the planet/brown-dwarf transition. Its quite circular orbit supports a formation in a gaseous protoplanetary disk. Based on observations made with SOPHIE spectrograph on the 1.93-m telescope at Observatoire de Haute-Provence (CNRS/OAMP), France (program 07A.PNP.CONS). Table 2 is also available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/505/853

  18. Frontiers in the Interiors of Massive Planets

    Science.gov (United States)

    Stevenson, David J.

    2008-03-01

    The understanding of structures of massive planets such as Jupiter and somewhat lower mass planets such as Uranus can help us tackle some of the central questions in planetary science, such as whether and how planets form. On a decadal timescale, NASA is spending billions of dollars on missions devoted to answering such questions. A crucial part of this understanding is the properties of materials under extreme conditions. Typical conditions inside Jupiter are megabars and ten thousand kelvin, accessible in lab experiment and through simulation. Typical materials are cosmically abundant hydrogen, helium, oxygen, carbon and nitrogen (in appropriate mixtures) and also Earthlike ("rock" and iron). Equation of state, including slopes of isentropes, etc, phase diagrams and transport properties (especially electrical conductivity) are of particular interest. I will describe some of the outstanding unsolved problems for planets, including extrasolar planets more massive than Jupiter.

  19. Simulations for terrestrial planets formation

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    In this paper,the formation of terrestrial planets in the late stage of planetary formation is investigated using the two-planet model.At that time,the protostar formed for about 3 Ma and the gas disk dissipated.In the model,the perturbations from Jupiter and Saturn are considered.Variations of the mass of outer planet,and the initial eccentricities and inclinations of embryos and planetesimals are also considered.Our results show that,terrestrial planets are formed in 50 Ma,and the accretion rate is about 60%-80%.In each simulation,3-4 terrestrial planets are formed inside"Jupiter"with masses of 0.15 -3.6M⊕.In the 0.5-4 AU,when the eccentricities of planetesimals are excited,planetesimals are able to accrete material from wide radial direction.The plenty of water material of the terrestrial planet in the Habitable Zone may be transferred from the farther places by this mechanism.Accretion could also happen a few times between two major planets only if the outer planet has a moderate mass and the small terrestrial planet could survive at some resonances over time scale of 10 8 a.In one of our simulations,commensurability of the orbital periods of planets is very common.Moreover,a librating-circulating 3:2 configuration of mean motion resonance is found.

  20. Simulations for terrestrial planets formation

    Institute of Scientific and Technical Information of China (English)

    ZHANG Niu; JI JiangHui

    2009-01-01

    In this paper, the formation of terrestrial planets in the late stage of planetary formation is Investigated using the two-planet model. At that time, the protostar formed for about 3 Ma and the gas disk dissipated. In the model, the perturbations from Jupiter and Saturn are considered. Variations of the mass of outer planet, and the initial eccentricities and inclinations of embryos and planetesimals are also considered. Our results show that, terrestrial planets are formed in 50 Ma, and the accretion rate is about 60%-80%. In each simulation, 3-4 terrestrial planets are formed inside "Jupiter" with masses of 0.15-3.6 M(⊙). In the 0.5-4 AU, when the eccentricities of planetesimals are excited, planetesimals are able to accrete material from wide radial direction. The plenty of water material of the terrestrial planet in the Habitable Zone may be transferred from the farther places by this mechanism. Accretion could also happen a few times between two major planets only if the outer planet has a moderate mass and the small terrestrial planet could survive at some resonances over time scale of 108a. In one of our simulations, commensurability of the orbital periods of planets is very common. Moreover, a librating-circulating 3:2 configuration of mean motion resonance is found.

  1. Mass-Radius Relation for Rocky Planets based on PREM

    CERN Document Server

    Zeng, Li; Jacobsen, Stein

    2015-01-01

    Several small dense exoplanets are now known, inviting comparisons to Earth and Venus. Such comparisons require translating their masses and sizes to composition models of evolved multi-layer-interior planets. Such theoretical models rely on our understanding of the Earth's interior, as well as independently derived equations of state (EOS), but have so far not involved direct extrapolations from Earth's seismic model -PREM. In order to facilitate more detailed compositional comparisons between small exoplanets and the Earth, we derive here a semi-empirical mass-radius relation for two-layer rocky planets based on PREM: ${\\frac{R}{R_\\oplus}} = (1.07-0.21\\cdot \\text{CMF})\\cdot (\\frac{M}{M_\\oplus})^{1/3.7}$, where CMF stands for Core Mass Fraction. It is applicable to 1$\\sim$8 M$_{\\oplus}$ and CMF of 0.0$\\sim$0.4. Applying this formula to Earth and Venus and several known small exoplanets with radii and masses measured to better than $\\sim$30\\% precision gives a CMF fit of $0.26\\pm0.07$.

  2. Mass-Radius Relation for Rocky Planets Based on PREM

    Science.gov (United States)

    Zeng, Li; Sasselov, Dimitar D.; Jacobsen, Stein B.

    2016-03-01

    Several small dense exoplanets are now known, inviting comparisons to Earth and Venus. Such comparisons require translating their masses and sizes to composition models of evolved multi-layer interior planets. Such theoretical models rely on our understanding of the Earth’s interior, as well as independently derived equations of state, but so far have not involved direct extrapolations from Earth’s seismic model: the Preliminary Reference Earth Model (PREM). To facilitate more detailed compositional comparisons between small exoplanets and the Earth, we derive here a semi-empirical mass-radius relation for two-layer rocky planets based on PREM, \\frac{R}{{R}\\oplus }=(1.07-0.21\\cdot {CMF})\\cdot {≤ft(\\frac{M}{{M}\\oplus }\\right)}1/3.7, where CMF stands for core mass fraction. It is applicable to 1 ˜ 8 M⊕ and a CMF of 0.0 ˜ 0.4. Applying this formula to Earth and Venus and several known small exoplanets with radii and masses measured to better than ˜30% precision gives a CMF fit of 0.26 ± 0.07.

  3. Planet traps and first planets: The critical metallicity for gas giant formation

    Energy Technology Data Exchange (ETDEWEB)

    Hasegawa, Yasuhiro; Hirashita, Hiroyuki, E-mail: yasu@asiaa.sinica.edu.tw, E-mail: hirashita@asiaa.sinica.edu.tw [Institute of Astronomy and Astrophysics, Academia Sinica (ASIAA), P.O. Box 23-141, Taipei 10617, Taiwan (China)

    2014-06-10

    The ubiquity of planets poses an interesting question: when are first planets formed in galaxies? We investigate this by adopting a theoretical model where planet traps are combined with the standard core accretion scenario in which the efficiency of forming planetary cores directly relates to the metallicity ([Fe/H]) in disks. Three characteristic exoplanetary populations are examined: hot Jupiters, exo-Jupiters around 1 AU, and low-mass planets in tight orbits, such as super-Earths. We statistically compute planet formation frequencies (PFFs), as well as the orbital radius (〈R{sub rapid}〉) within which gas accretion becomes efficient enough to form Jovian planets, as a function of metallicity (–2 ≤ [Fe/H] ≤–0.6). We show that the total PFFs for these three populations increase steadily with metallicity. This is the direct outcome of the core accretion picture. For the metallicity range considered here, the population of low-mass planets dominates Jovian planets. The Jovian planets contribute to the PFFs above [Fe/H] ≅ –1. We find that the hot Jupiters form more efficiently than the exo-Jupiters at [Fe/H] ≲ –0.7. This arises from the slower growth of planetary cores and their more efficient radial inward transport by the host traps in lower metallicity disks. We show that the critical metallicity for forming Jovian planets is [Fe/H] ≅ –1.2 by comparing 〈R{sub rapid}〉 of hot Jupiters and low-mass planets. The comparison intrinsically links to the different gas accretion efficiency between these two types of planets. Therefore, this study implies that important physical processes in planet formation may be tested by exoplanet observations around metal-poor stars.

  4. The mass of planet GJ676A b from ground-based astrometry: A planetary system with two mature gas giants suitable for direct imaging

    CERN Document Server

    Sahlmann, J; Ségransan, D; Astudillo-Defru, N; Bonfils, X; Delfosse, X; Forveille, T; Hagelberg, J; Curto, G Lo; Pepe, F; Queloz, D; Udry, S; Zimmerman, N T

    2016-01-01

    GJ676A is an M0 dwarf hosting both gas-giant and super-Earth-type planets discovered with radial-velocity measurements. Using FORS2/VLT, we obtained position measurements of the star in the plane of the sky that tightly constrain its astrometric reflex motion caused by the super-Jupiter planet `b` in a 1052-day orbit. This allows us to determine the mass of this planet to $M_\\mathrm{b} = 6.7^{+1.8}_{-1.5}\\,M_\\mathrm{J}$, which is $\\sim$40 \\% higher than the minimum mass inferred from the radial-velocity orbit. Using new HARPS radial-velocity measurements, we improve upon the orbital parameters of the inner low-mass planets `d` and `e` and we determine the orbital period of the outer giant planet `c` to $P_\\mathrm{c}=7340$ days under the assumption of a circular orbit. The preliminary minimum mass of planet `c` is $M_\\mathrm{c} \\sin i = 6.8\\,M_\\mathrm{J}$ with an upper limit of $\\sim$$39\\,M_\\mathrm{J}$ that we set using NACO/VLT high-contrast imaging. We also determine precise parallaxes and relative proper mo...

  5. Mass-Loss Rates of "Hot-Jupiter" Exoplanets with Various Types of Gaseous Envelopes

    CERN Document Server

    Cherenkov, A A; Kaigorodov, P V

    2016-01-01

    According to the computations results obtained by Bisikalo et al. (2013b) for the gas-dynamical effect of stellar winds on exoplanet atmospheres, three types of gaseous envelopes can form around hot Jupiters: closed, quasi-closed, and open. The type of envelope that forms depends on the position of the frontal collision point (where the dynamical pressure of the wind is equal to the pressure of the surrounding atmosphere) relative to the Roche-lobe boundaries. Closed envelopes are formed around planets whose atmospheres lie completely within their Roche lobes. If the frontal collision point is located outside the Roche lobe, the atmospheric material begins to flow out through the Lagrangian points $\\mathrm{L_1}$ and $\\mathrm{L_2}$, which can result in the formation of quasi-closed (if the dynamical pressure of the stellar wind stops the outflow through $\\mathrm{L_1}$) or open gaseous envelopes. The example of the typical hot Jupiter HD 209458 b is considered for four sets of atmospheric parameters, to determi...

  6. Deuterium Burning in Massive Giant Planets and Low-Mass Brown Dwarfs formed by Core-Nucleated Accretion

    CERN Document Server

    Bodenheimer, Peter; Lissauer, Jack J; Fortney, Jonathan J; Saumon, Didier

    2013-01-01

    Formation of bodies near the deuterium-burning limit is considered by detailed numerical simulations according to the core-nucleated giant planet accretion scenario. The objects, with heavy-element cores in the range 5-30 Mearth, are assumed to accrete gas up to final masses of 10-15 Jupiter masses (Mjup). After the formation process, which lasts 1-5 Myr and which ends with a 'cold-start', low-entropy configuration, the bodies evolve at constant mass up to an age of several Gyr. Deuterium burning via proton capture is included in the calculation, and we determined the mass, M50, above which more than 50% of the initial deuterium is burned. This often-quoted borderline between giant planets and brown dwarfs is found to depend only slightly on parameters, such as core mass, stellar mass, formation location, solid surface density in the protoplanetary disk, disk viscosity, and dust opacity. The values for M50 fall in the range 11.6-13.6 Mjup, in agreement with previous determinations that do not take the formati...

  7. Moons around Jupiter

    Science.gov (United States)

    2007-01-01

    The New Horizons Long Range Reconnaissance Imager (LORRI) took this photo of Jupiter at 20:42:01 UTC on January 9, 2007, when the spacecraft was 80 million kilometers (49.6 million miles) from the giant planet. The volcanic moon Io is to the left of the planet; the shadow of the icy moon Ganymede moves across Jupiter's northern hemisphere. Ganymede's average orbit distance from Jupiter is about 1 million kilometers (620,000 miles); Io's is 422,000 kilometers (262,000 miles). Both Io and Ganymede are larger than Earth's moon; Ganymede is larger than the planet Mercury.

  8. Conditions for water ice lines and Mars-mass exomoons around accreting super-Jovian planets at 1 - 20 AU from Sun-like stars

    CERN Document Server

    Heller, René

    2015-01-01

    Exomoon detections might be feasible with NASA's Kepler or ESA's upcoming PLATO mission or the ground-based E-ELT. To use observational resources most efficiently we need to know where the largest, most easily detected moons can form. We explore the possibility of large exomoons by following the movement of water (H2O) ice lines in the accretion disks around young super-Jovian planets. We want to know how different heating sources in those disks affect the H2O ice lines. We simulate 2D rotationally symmetric accretion disks in hydrostatic equilibrium around super-Jovian exoplanets. The energy terms in our semi-analytical model -- (1) viscous heating, (2) planetary illumination, (3) accretional heating, and (4) stellar illumination -- are fed by precomputed planet evolution tracks. We consider planets accreting 1 to 12 Jupiter masses at distances between 1 and 20 AU to a Sun-like star. Accretion disks around Jupiter-mass planets closer than ~4.5 AU to Sun-like stars do not feature H2O ice lines, but the most m...

  9. ADDITIONAL OBSERVATIONS OF PLANETS AND QUASI-STELLAR RADIO SOURCES AT 3 MM,

    Science.gov (United States)

    MERCURY ( PLANET ), VENUS( PLANET ), PERIODIC VARIATIONS, RADIO ASTRONOMY, SPECTRUM SIGNATURES...EXTRATERRESTRIAL RADIO WAVES, SOURCES), GALAXIES, BLACKBODY RADIATION, BRIGHTNESS, TEMPERATURE, MARS( PLANET ), JUPITER( PLANET ), SATURN( PLANET

  10. Down-tail mass loss by plasmoids in Jupiter's and Saturn's magnetospheres

    Science.gov (United States)

    Cowley, S. W. H.; Nichols, J. D.; Jackman, C. M.

    2015-08-01

    Recent estimates of the plasma mass-loss rates by the formation and down-tail propagation of plasmoids observed in the plasma sheet in Jupiter's and Saturn's magnetosphere fall short of inner moon source rates by at least an order of magnitude. Here we argue that on the time scale between large-scale disconnection events, ~15 h at Jupiter and ~45 h at Saturn, mass-loaded closed flux tubes will typically have stretched out a few hundred planetary radii down tail at speeds ~100-200 km s-1. Consequently, the "plasmoids" of order ~10 planetary radii in length observed at closer planetary distances represent only a small planetward portion of the overall structure that is disconnected and lost down tail. Plasmoid mass-loss estimates are then revised upward by around an order of magnitude, becoming comparable to the moon source values. Additional "hidden," e.g., small-scale, mass-loss processes of comparable strength may not then be required. The essentially continuous azimuthally flowing source plasma in the dusk sector is shown to correspond to a plasma sheet layer adjacent to the magnetopause of width typically ~10% of the distance to the magnetopause in that local time sector. This physical picture also provides a simple explanation for the asymmetry in the plasmoid bipolar field signature observed at both Jupiter and Saturn and predicts that the apparent plasmoid length will increase with distance down tail to a limit beyond a few hundred planetary radii where the full ~100-200 planetary radii structures will be observed.

  11. The Anglo-Australian Planet Search. XXII. Two New Multi-Planet Systems

    CERN Document Server

    Wittenyer, Robert A; Tuomi, M; Salter, G S; Tinney, C G; Butler, R P; Jones, H R A; O'Toole, S J; Bailey, J; Carter, B D; Jenkins, J S; Zhang, Z; Vogt, S S; Rivera, E J

    2012-01-01

    We report the detection of two new planets from the Anglo-Australian Planet Search. These planets orbit two stars each previously known to host one planet. The new planet orbiting HD 142 has a period of 6005\\pm427 days, and a minimum mass of 5.3M_Jup. HD142c is thus a new Jupiter analog: a gas-giant planet with a long period and low eccentricity (e = 0.21 \\pm 0.07). The second planet in the HD 159868 system has a period of 352.3\\pm1.3 days, and m sin i=0.73\\pm0.05 M_Jup. In both of these systems, including the additional planets in the fitting process significantly reduced the eccentricity of the original planet. These systems are thus examples of how multiple-planet systems can masquerade as moderately eccentric single-planet systems.

  12. THE ANGLO-AUSTRALIAN PLANET SEARCH. XXII. TWO NEW MULTI-PLANET SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    Wittenmyer, Robert A.; Horner, J.; Salter, G. S.; Tinney, C. G.; Bailey, J. [Department of Astrophysics, School of Physics, University of New South Wales, Sydney, NSW 2052 (Australia); Tuomi, Mikko; Zhang, Z. [Centre for Astrophysics Research, Science and Technology Research Institute, University of Hertfordshire, College Lane, Hatfield AL10 9AB (United Kingdom); Butler, R. P. [Department of Terrestrial Magnetism, Carnegie Institution of Washington, 5241 Broad Branch Road, NW, Washington, DC 20015-1305 (United States); Jones, H. R. A. [Centre for Astrophysics Research, University of Hertfordshire, College Lane, Hatfield, AL10 9AB (United Kingdom); O' Toole, S. J. [Australian Astronomical Observatory, P.O. Box 296, Epping, NSW 1710 (Australia); Carter, B. D. [Faculty of Sciences, University of Southern Queensland, Toowoomba, Queensland 4350 (Australia); Jenkins, J. S. [Departamento de Astronomia, Universidad de Chile, Camino El Observatorio 1515, Las Condes, Santiago (Chile); Vogt, S. S.; Rivera, Eugenio J., E-mail: rob@phys.unsw.edu.au [UCO/Lick Observatory, University of California, Santa Cruz, CA 95064 (United States)

    2012-07-10

    We report the detection of two new planets from the Anglo-Australian Planet Search. These planets orbit two stars each previously known to host one planet. The new planet orbiting HD 142 has a period of 6005 {+-} 427 days, and a minimum mass of 5.3 M{sub Jup}. HD 142c is thus a new Jupiter analog: a gas-giant planet with a long period and low eccentricity (e = 0.21 {+-} 0.07). The second planet in the HD 159868 system has a period of 352.3 {+-} 1.3 days and m sin i = 0.73 {+-} 0.05 M{sub Jup}. In both of these systems, including the additional planets in the fitting process significantly reduced the eccentricity of the original planet. These systems are thus examples of how multiple-planet systems can masquerade as moderately eccentric single-planet systems.

  13. Measuring the mass of solar system planets using pulsar timing

    CERN Document Server

    Champion, D J; Manchester, R N; Edwards, R T; Backer, D C; Bailes, M; Bhat, N D R; Burke-Spolaor, S; Coles, W; Demorest, P B; Ferdman, R D; Folkner, W M; Hotan, A W; Kramer, M; Lommen, A N; Nice, D J; Purver, M B; Sarkissian, J M; Stairs, I H; van Straten, W; Verbiest, J P W; Yardley, D R B

    2010-01-01

    High-precision pulsar timing relies on a solar-system ephemeris in order to convert times of arrival (TOAs) of pulses measured at an observatory to the solar system barycenter. Any error in the conversion to the barycentric TOAs leads to a systematic variation in the observed timing residuals; specifically, an incorrect planetary mass leads to a predominantly sinusoidal variation having a period and phase associated with the planet's orbital motion about the Sun. By using an array of pulsars (PSRs J0437-4715, J1744-1134, J1857+0943, J1909-3744), the masses of the planetary systems from Mercury to Saturn have been determined. These masses are consistent with the best-known masses determined by spacecraft observations, with the mass of the Jovian system, 9.547921(2)E-4 Msun, being significantly more accurate than the mass determined from the Pioneer and Voyager spacecraft, and consistent with but less accurate than the value from the Galileo spacecraft. While spacecraft are likely to produce the most accurate m...

  14. TERRESTRIAL PLANET FORMATION DURING THE MIGRATION AND RESONANCE CROSSINGS OF THE GIANT PLANETS

    Energy Technology Data Exchange (ETDEWEB)

    Lykawka, Patryk Sofia [Astronomy Group, Faculty of Social and Natural Sciences, Kinki University, Shinkamikosaka 228-3, Higashiosaka-shi, Osaka 577-0813 (Japan); Ito, Takashi, E-mail: patryksan@gmail.com [National Astronomical Observatory of Japan, Osawa 2-21-1, Mitaka, Tokyo 181-8588 (Japan)

    2013-08-10

    The newly formed giant planets may have migrated and crossed a number of mutual mean motion resonances (MMRs) when smaller objects (embryos) were accreting to form the terrestrial planets in the planetesimal disk. We investigated the effects of the planetesimal-driven migration of Jupiter and Saturn, and the influence of their mutual 1:2 MMR crossing on terrestrial planet formation for the first time, by performing N-body simulations. These simulations considered distinct timescales of MMR crossing and planet migration. In total, 68 high-resolution simulation runs using 2000 disk planetesimals were performed, which was a significant improvement on previously published results. Even when the effects of the 1:2 MMR crossing and planet migration were included in the system, Venus and Earth analogs (considering both orbits and masses) successfully formed in several runs. In addition, we found that the orbits of planetesimals beyond a {approx} 1.5-2 AU were dynamically depleted by the strengthened sweeping secular resonances associated with Jupiter's and Saturn's more eccentric orbits (relative to the present day) during planet migration. However, this depletion did not prevent the formation of massive Mars analogs (planets with more than 1.5 times Mars's mass). Although late MMR crossings (at t > 30 Myr) could remove such planets, Mars-like small mass planets survived on overly excited orbits (high e and/or i), or were completely lost in these systems. We conclude that the orbital migration and crossing of the mutual 1:2 MMR of Jupiter and Saturn are unlikely to provide suitable orbital conditions for the formation of solar system terrestrial planets. This suggests that to explain Mars's small mass and the absence of other planets between Mars and Jupiter, the outer asteroid belt must have suffered a severe depletion due to interactions with Jupiter/Saturn, or by an alternative mechanism (e.g., rogue super-Earths)

  15. HAT-P-44b, HAT-P-45b, and HAT-P-46b: Three Transiting Hot Jupiters in Possible Multi-Planet Systems

    CERN Document Server

    Hartman, J D; Torres, G; Kovács, G; Johnson, J A; Howard, A W; Marcy, G W; Latham, D W; Bieryla, A; Buchhave, L A; Bhatti, W; Béky, B; Csubry, Z; Penev, K; de Val-Borro, M; Noyes, R W; Fischer, D A; Esquerdo, G A; Everett, M; Szklenár, T; Zhou, G; Bayliss, D; Shporer, A; Fulton, B J; Sanchis-Ojeda, R; Falco, E; Lázár, J; Papp, I; Sári, P

    2013-01-01

    We report the discovery by the HATNet survey of three new transiting extrasolar planets orbiting moderately bright (V=13.2, 12.8 and 11.9) stars. The planets have orbital periods of 4.3012, 3.1290, and 4.4631 days, masses of 0.39, 0.89, and 0.49 Mjup, and radii of 1.28, 1.43, and 1.28 Rjup. The stellar hosts have masses of 0.94, 1.26, and 1.28 Msun. Each system shows significant systematic variations in its residual radial velocities indicating the possible presence of additional components. Based on its Bayesian evidence, the preferred model for HAT-P-44 consists of two planets, including the transiting component, with the outer planet having a period of 220 d and a minimum mass of 1.6 Mjup. Due to aliasing we cannot rule out an alternative solution for the outer planet having a period of 438 d and a minimum mass of 3.7 Mjup. For HAT-P-45 at present there is not enough data to justify the additional free parameters included in a multi-planet model, in this case a single-planet solution is preferred, but the ...

  16. Masses, Radii, and Orbits of Small Kepler Planets: The Transition from Gaseous to Rocky Planets

    DEFF Research Database (Denmark)

    Marcy, Geoffrey W.; Isaacson, Howard; Howard, Andrew W.

    2014-01-01

    a rocky composition. We identify six planets with densities above 5 g cm–3, suggesting a mostly rocky interior for them. Indeed, the only planets that are compatible with a purely rocky composition are smaller than ~2 R ⊕. Larger planets evidently contain a larger fraction of low-density material (H, He...

  17. A decreased probability of habitable planet formation around low-mass stars

    CERN Document Server

    Raymond, Sean N; Meadows, Victoria

    2007-01-01

    Smaller terrestrial planets ( 0.3 Earth mass habitable planets decreases for low-mass stars for every realistic combination of parameters. This "habitable fraction" is small for stellar masses below a mass in the interval 0.5 to 0.8 Solar masses, depending on disk parameters, an interval that excludes most M stars. Radial mixing and therefore water delivery are inefficient in lower-mass disks commonly found around low-mass stars, such that terrestrial planets in the habitable zones of most low-mass stars are likely to be small and dry.

  18. How the presence of a gas giant affects the formation of mean-motion resonances between two low-mass planets in a locally isothermal gaseous disc

    CERN Document Server

    Podlewska-Gaca, Edyta

    2013-01-01

    In this paper we investigate the possibility of a migration-induced resonance locking in systems containing three planets, namely an Earth analog, a super-Earth and a gas giant. The planets have been listed in order of increasing orbital periods. All three bodies are embedded in a locally isothermal gaseous disc and orbit around a solar mass star. We are interested in answering the following question: Will the low-mass planets form the same resonant structures with each other in the vicinity of the gas giant as in the case when the gas giant is absent? When there is no gas giant in the system, it has been already shown that if the two low-mass planets undergo a convergent differential migration, they will capture each other in a mean-motion resonance. For the choices of disc parameters and planet masses made in this paper, the formation of the 5:4 resonance in the absence of the Jupiter has been observed. In this work we add a gas giant on the most external orbit of the system in such a way that its different...

  19. The Dharma Planet Survey of Low-mass and Habitable Rocky Planets around Nearby Solar-type Stars

    Science.gov (United States)

    Ge, Jian; Ma, Bo; Jeram, Sarik; Sithajan, Sirinrat; Singer, Michael; Muterspaugh, Matthew W.; Varosi, Frank; Schofield, Sidney; Liu, Jian; Kimock, Benjamin; Powell, Scott; Williamson, Michael W.; Herczeg, Aleczander; Grantham, Jim; Stafford, Greg; Hille, Bruce; Rosenbaum, Gary; Savage, David; Bland, Steve; Hoscheidt, Joseph; Swindle, Scott; Waidanz, Melanie; Petersen, Robert; Grieves, Nolan; Zhao, Bo; Cassette, Anthony; Chun, Andrew; Avner, Louis; Barnes, Rory; Tan, Jonathan C.; Lopez, Eric; Dai, Ruijia

    2017-01-01

    The Dharma Planet Survey (DPS) aims to monitor ~150 nearby very bright FGK dwarfs (most of them brighter than V=7) during 2016-2019 using the TOU optical very high resolution spectrograph (R~100,000, 380-900nm) at the dedicated 50-inch Robotic Telescope on Mt. Lemmon. Operated in high vacuum (measurement precision for bright survey targets. With very high RV precision and high cadence (~100 observations per target randomly spread over 450 days), a large number of rocky planets, including possible habitable ones, are expected to be detected. The discovery of a Neptune mass planet and early survey results will be announced.

  20. In Situ Formation and Dynamical Evolution of Hot Jupiter Systems

    Science.gov (United States)

    Batygin, Konstantin; Bodenheimer, Peter H.; Laughlin, Gregory P.

    2016-10-01

    Hot Jupiters, giant extrasolar planets with orbital periods shorter than ˜10 days, have long been thought to form at large radial distances, only to subsequently experience long-range inward migration. Here, we offer the contrasting view that a substantial fraction of the hot Jupiter population formed in situ via the core-accretion process. We show that under conditions appropriate to the inner regions of protoplanetary disks, rapid gas accretion can be initiated by super-Earth-type planets, comprising 10-20 Earth masses of refractory material. An in situ formation scenario leads to testable consequences, including the expectation that hot Jupiters should frequently be accompanied by additional low-mass planets with periods shorter than ˜100 days. Our calculations further demonstrate that dynamical interactions during the early stages of planetary systems’ lifetimes should increase the inclinations of such companions, rendering transits rare. High-precision radial velocity monitoring provides the best prospect for their detection.

  1. In Situ Formation and Dynamical Evolution of Hot Jupiter Systems

    CERN Document Server

    Batygin, Konstantin; Laughlin, Gregory P

    2015-01-01

    Hot Jupiters, giant extrasolar planets with orbital periods shorter than ~10 days, have long been thought to form at large radial distances, only to subsequently experience long-range inward migration. Here, we propose that in contrast with this picture, a substantial fraction of the hot Jupiter population formed in situ via the core accretion process. We show that under conditions appropriate to the inner regions of protoplanetary disks, rapid gas accretion can be initiated by Super-Earth type planets, comprising 10-20 Earth masses of refractory composition material. An in situ formation scenario leads to testable consequences, including the expectation that hot Jupiters should frequently be accompanied by additional low-mass planets with periods shorter than ~100 days. Our calculations further demonstrate that dynamical interactions during the early stages of planetary systems' lifetimes should increase the inclinations of such companions, rendering transits rare. High-precision radial velocity monitoring p...

  2. Observed properties of extrasolar planets.

    Science.gov (United States)

    Howard, Andrew W

    2013-05-03

    Observational surveys for extrasolar planets probe the diverse outcomes of planet formation and evolution. These surveys measure the frequency of planets with different masses, sizes, orbital characteristics, and host star properties. Small planets between the sizes of Earth and Neptune substantially outnumber Jupiter-sized planets. The survey measurements support the core accretion model, in which planets form by the accumulation of solids and then gas in protoplanetary disks. The diversity of exoplanetary characteristics demonstrates that most of the gross features of the solar system are one outcome in a continuum of possibilities. The most common class of planetary system detectable today consists of one or more planets approximately one to three times Earth's size orbiting within a fraction of the Earth-Sun distance.

  3. Molecular formation along the atmospheric mass loss of HD 209458 b and similar Hot Jupiters

    CERN Document Server

    Pinotti, Rafael

    2016-01-01

    The chemistry along the mass loss of Hot Jupiters is generally considered to be simple, consisting mainly of atoms, prevented from forming more complex species by the intense radiation field from their host stars. In order to probe the region where the temperature is low (T < 2000 K), we developed a 1D chemical and photochemical reaction model of the atmospheric mass loss of HD 209458 b, involving 56 species, including carbon chain and oxygen bearing ones, interacting through 566 reactions. The simulation results indicate that simple molecules like OH+, H2O+ and H3O+ are formed inside the region, considering that residual H2 survives in the exosphere, a possibility indicated by recent observational work. The molecules are formed and destroyed within a radial distance of less than 10^7 km, but the estimated integrated column density of OH+, a potential tracer of H2, is high enough to allow detection, which, once achieved, would indicate a revision of chemical models of the upper atmosphere of Hot Jupiters. ...

  4. HAT-P-55b: A Hot Jupiter Transiting a Sun-like Star

    CERN Document Server

    Juncher, D; Hartman, J D; Bakos, G Á; Bieryla, A; Kovács, T; Boisse, I; Latham, D W; Kovács, G; Bhatti, W; Csubry, Z; Penev, K; de Val-Borro, M; Falco, E; Torres, G; Noyes, R W; Lázár, J; Papp, I; Sári, P

    2015-01-01

    We report the discovery of a new transiting extrasolar planet, HAT-P-55b. The planet orbits a V = 13.207 +/- 0.039 sun-like star with a mass of 1.013 +/- 0.037 solar masses, a radius of 1.011 +/- 0.036 solar radii and a metallicity of -0.03 +/- 0.08. The planet itself is a typical hot Jupiter with a period of 3.5852467 +/- 0.0000064 days, a mass of 0.582 +/- 0.056 Jupiter masses and a radius of 1.182 +/- 0.055 Jupiter radii. This discovery adds to the increasing sample of transiting planets with measured bulk densities, which is needed to put constraints on models of planetary structure and formation theories.

  5. Investigating the free-floating planet mass by Euclid observations

    CERN Document Server

    Hamolli, Lindita; De Paolis, Francesco; Nucita, Achille A

    2016-01-01

    The detection of anomalies in gravitational microlensing events is nowadays one of the main goals among the microlensing community. In the case of single-lens events, these anomalies can be caused by the finite source effects, that is when the source disk size is not negligible, and by the Earth rotation around the Sun (the so-called parallax effect). The finite source and parallax effects may help to define the mass of the lens, uniquely. Free-floating planets (FFPs) are extremely dim objects, and gravitational microlensing provides at present the exclusive method to investigate these bodies. In this work, making use of a synthetic population algorithm, we study the possibility of detecting the finite source and parallax effects in simulated microlensing events caused by FFPs towards the Galactic bulge, taking into consideration the capabilities of the space-based Euclid telescope. We find a significant efficiency for detecting the parallax effect in microlensing events with detectable finite source effect, ...

  6. Extrasolar binary planets. I. Formation by tidal capture during planet-planet scattering

    Energy Technology Data Exchange (ETDEWEB)

    Ochiai, H. [Earth and Planetary Sciences, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551 (Japan); Nagasawa, M. [Interactive Research Center of Science, Tokyo Institute of Technology, 2-12-1, Ookayama, Meguro-ku, Tokyo 152-8551 (Japan); Ida, S., E-mail: nagasawa.m.ad@m.titech.ac.jp [Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550 (Japan)

    2014-08-01

    We have investigated (1) the formation of gravitationally bounded pairs of gas-giant planets (which we call 'binary planets') from capturing each other through planet-planet dynamical tide during their close encounters and (2) the subsequent long-term orbital evolution due to planet-planet and planet-star quasi-static tides. For the initial evolution in phase 1, we carried out N-body simulations of the systems consisting of three Jupiter-mass planets taking into account the dynamical tide. The formation rate of the binary planets is as much as 10% of the systems that undergo orbital crossing, and this fraction is almost independent of the initial stellarcentric semimajor axes of the planets, while ejection and merging rates sensitively depend on the semimajor axes. As a result of circularization by the planet-planet dynamical tide, typical binary separations are a few times the sum of the physical radii of the planets. After the orbital circularization, the evolution of the binary system is governed by long-term quasi-static tide. We analytically calculated the quasi-static tidal evolution in phase 2. The binary planets first enter the spin-orbit synchronous state by the planet-planet tide. The planet-star tide removes angular momentum of the binary motion, eventually resulting in a collision between the planets. However, we found that the binary planets survive the tidal decay for the main-sequence lifetime of solar-type stars (∼10 Gyr), if the binary planets are beyond ∼0.3 AU from the central stars. These results suggest that the binary planets can be detected by transit observations at ≳ 0.3 AU.

  7. The Mass-Metallicity Relation for Giant Planets

    CERN Document Server

    Thorngren, Daniel P; Lopez, Eric D

    2015-01-01

    Exoplanet discoveries of recent years have provided a great deal of new data for studying the bulk compositions of giant planets. Here we identify 38 transiting giant planets ($20 M_\\oplus 50 M_\\oplus$) suggest significant amounts of heavy elements in H/He envelopes, rather than cores, such that metal-enriched giant planet atmospheres should be the rule.

  8. Discovery of a Jupiter/Saturn Analog with Gravitational Microlensing

    CERN Document Server

    Gaudi, B S; Udalski, A; Gould, A; Christie, G W; Maoz, D; Dong, S; McCormick, J; Szymanski, M K; Tristram, P J; Nikolaev, S; Paczynski, B; Kubiak, M; Pietrzynski, G; Soszynski, I; Szewczyk, O; Ulaczyk, K; Wyrzykowski, L; De Poy, D L; Han, C; Kaspi, S; Lee, C -U; Mallia, F; Natusch, T; Pogge, R W; Park, B -G; Abe, F; Bond, I A; Botzler, C S; Fukui, A; Hearnshaw, J B; Itow, Y; Kamiya, K; Korpela, A V; Kilmartin, P M; Lin, W; Masuda, K; Matsubara, Y; Motomura, M; Muraki, Y; Nakamura, S; Okumura, T; Ohnishi, K; Rattenbury, N J; Sako, T; Saito, To; Sato, S; Skuljan, L; Sullivan, D J; Sumi, T; Sweatman, W L; Yock, P C M; Albrow, M D; Allan, A; Beaulieu, J -P; Burgdorf, M J; Cook, K H; Coutures, C; Dominik, M; Dieters, S; Fouqué, P; Greenhill, J; Horne, K; Steele, I; Tsapras, Y; Chaboyer, B; Crocker, A; Frank, S; MacIntosh, B

    2008-01-01

    Searches for extrasolar planets have uncovered an astonishing diversity of planetary systems, yet the frequency of solar system analogs remains unknown. The gravitational microlensing planet search method is potentially sensitive to multiple-planet systems containing analogs of all the solar system planets except Mercury. We report the detection of a multiple-planet system with microlensing. We identify two planets with masses of ~0.71 and ~0.27 times the mass of Jupiter and orbital separations of ~2.3 and ~4.6 astronomical units orbiting a primary star of mass ~0.50 solar masses at a distance of ~1.5 kiloparsecs. This system resembles a scaled version of our solar system in that the mass ratio, separation ratio, and equilibrium temperatures of the planets are similar to those of Jupiter and Saturn. These planets could not have been detected with other techniques; their discovery from only six confirmed microlensing planet detections suggests that solar system analogs may be common.

  9. Discovery of a Jupiter/Saturn analog with gravitational microlensing.

    Science.gov (United States)

    Gaudi, B S; Bennett, D P; Udalski, A; Gould, A; Christie, G W; Maoz, D; Dong, S; McCormick, J; Szymanski, M K; Tristram, P J; Nikolaev, S; Paczynski, B; Kubiak, M; Pietrzynski, G; Soszynski, I; Szewczyk, O; Ulaczyk, K; Wyrzykowski, L; Depoy, D L; Han, C; Kaspi, S; Lee, C-U; Mallia, F; Natusch, T; Pogge, R W; Park, B-G; Abe, F; Bond, I A; Botzler, C S; Fukui, A; Hearnshaw, J B; Itow, Y; Kamiya, K; Korpela, A V; Kilmartin, P M; Lin, W; Masuda, K; Matsubara, Y; Motomura, M; Muraki, Y; Nakamura, S; Okumura, T; Ohnishi, K; Rattenbury, N J; Sako, T; Saito, To; Sato, S; Skuljan, L; Sullivan, D J; Sumi, T; Sweatman, W L; Yock, P C M; Albrow, M D; Allan, A; Beaulieu, J-P; Burgdorf, M J; Cook, K H; Coutures, C; Dominik, M; Dieters, S; Fouqué, P; Greenhill, J; Horne, K; Steele, I; Tsapras, Y; Chaboyer, B; Crocker, A; Frank, S; Macintosh, B

    2008-02-15

    Searches for extrasolar planets have uncovered an astonishing diversity of planetary systems, yet the frequency of solar system analogs remains unknown. The gravitational microlensing planet search method is potentially sensitive to multiple-planet systems containing analogs of all the solar system planets except Mercury. We report the detection of a multiple-planet system with microlensing. We identify two planets with masses of approximately 0.71 and approximately 0.27 times the mass of Jupiter and orbital separations of approximately 2.3 and approximately 4.6 astronomical units orbiting a primary star of mass approximately 0.50 solar mass at a distance of approximately 1.5 kiloparsecs. This system resembles a scaled version of our solar system in that the mass ratio, separation ratio, and equilibrium temperatures of the planets are similar to those of Jupiter and Saturn. These planets could not have been detected with other techniques; their discovery from only six confirmed microlensing planet detections suggests that solar system analogs may be common.

  10. The minimum mass of detectable planets in protoplanetary discs and the derivation of planetary masses from high resolution observations

    CERN Document Server

    Rosotti, Giovanni P; Booth, Richard A; Clarke, Cathie J

    2016-01-01

    We investigate the minimum planet mass that produces observable signatures in infrared scattered light and submm continuum images and demonstrate how these images can be used to measure planet masses to within a factor of about two. To this end we perform multi-fluid gas and dust simulations of discs containing low mass planets, generating simulated observations at $1.65 \\mu$m, $10 \\mu$m and $850 \\mu$m. We show that the minimum planet mass that produces a detectable signature is $\\sim 15 M_\\oplus$: this value is strongly dependent on disc temperature and changes slightly with wavelength (favouring the submm). We also confirm previous results that there is a minimum planet mass of $\\sim 20 M_\\oplus$ that produces a pressure maximum in the disc: only planets above this threshold mass generate a dust trap that can eventually create a hole in the submm dust. Below this mass, planets produce annular enhancements in dust outward of the planet and a reduction in the vicinity of the planet. These features are in stea...

  11. The GAPS Programme with HARPS-N at TNG . XIV. Investigating giant planet migration history via improved eccentricity and mass determination for 231 transiting planets

    Science.gov (United States)

    Bonomo, A. S.; Desidera, S.; Benatti, S.; Borsa, F.; Crespi, S.; Damasso, M.; Lanza, A. F.; Sozzetti, A.; Lodato, G.; Marzari, F.; Boccato, C.; Claudi, R. U.; Cosentino, R.; Covino, E.; Gratton, R.; Maggio, A.; Micela, G.; Molinari, E.; Pagano, I.; Piotto, G.; Poretti, E.; Smareglia, R.; Affer, L.; Biazzo, K.; Bignamini, A.; Esposito, M.; Giacobbe, P.; Hébrard, G.; Malavolta, L.; Maldonado, J.; Mancini, L.; Martinez Fiorenzano, A.; Masiero, S.; Nascimbeni, V.; Pedani, M.; Rainer, M.; Scandariato, G.

    2017-06-01

    We carried out a Bayesian homogeneous determination of the orbital parameters of 231 transiting giant planets (TGPs) that are alone or have distant companions; we employed differential evolution Markov chain Monte Carlo methods to analyse radial-velocity (RV) data from the literature and 782 new high-accuracy RVs obtained with the HARPS-N spectrograph for 45 systems over 3 years. Our work yields the largest sample of systems with a transiting giant exoplanet and coherently determined orbital, planetary, and stellar parameters. We found that the orbital parameters of TGPs in non-compact planetary systems are clearly shaped by tides raised by their host stars. Indeed, the most eccentric planets have relatively large orbital separations and/or high mass ratios, as expected from the equilibrium tide theory. This feature would be the outcome of planetary migration from highly eccentric orbits excited by planet-planet scattering, Kozai-Lidov perturbations, or secular chaos. The distribution of α = a/aR, where a and aR are the semi-major axis and the Roche limit, for well-determined circular orbits peaks at 2.5; this agrees with expectations from the high-eccentricity migration (HEM), although it might not be limited to this migration scenario. The few planets of our sample with circular orbits and α> 5 values may have migrated through disc-planet interactions instead of HEM. By comparing circularisation times with stellar ages, we found that hot Jupiters with a< 0.05 au have modified tidal quality factors 105 ≲ Q'p ≲ 109, and that stellar Q's ≳ 106 - 107 are required to explain the presence of eccentric planets at the same orbital distance. As aby-product of our analysis, we detected a non-zero eccentricity e = 0.104-0.018+0.021 for HAT-P-29; we determined that five planets that were previously regarded to be eccentric or to have hints of non-zero eccentricity, namely CoRoT-2b, CoRoT-23b, TrES-3b, HAT-P-23b, and WASP-54b, have circular orbits or undetermined

  12. Reinflating Giant Planets

    Science.gov (United States)

    Kohler, Susanna

    2017-01-01

    Two new, large gas-giant exoplanets have been discovered orbiting close to their host stars. A recent study examining these planets and others like them may help us to better understand what happens to close-in hot Jupiters as their host stars reach the end of their main-sequence lives.OversizedGiantsUnbinned transit light curves for HAT-P-65b. [Adapted from Hartman et al. 2016]The discovery of HAT-P-65b and HAT-P-66b, two new transiting hot Jupiters, is intriguing. These planets have periods of just under 3 days and masses of roughly 0.5 and 0.8 times that of Jupiter, but their sizes are whats really interesting: they have inflated radii of 1.89 and 1.59 times that of Jupiter.These two planets, discovered using the Hungarian-made Automated Telescope Network (HATNet) in Arizona and Hawaii, mark the latest in an ever-growing sample of gas-giant exoplanets with radii larger than expected based on theoretical planetary structure models.What causes this discrepancy? Did the planets just fail to contract to the expected size when they were initially formed, or were they reinflated later in their lifetimes? If the latter, how? These are questions that scientists are only now starting to be able to address using statistics of the sample of close-in, transiting planets.Unbinned transit light curves for HAT-P-66b. [Hartman et al. 2016]Exploring Other PlanetsLed by Joel Hartman (Princeton University), the team that discovered HAT-P-65b and HAT-P-66b has examined these planets observed parameters and those of dozens of other known close-in, transiting exoplanets discovered with a variety of transiting exoplanet missions: HAT, WASP, Kepler, TrES, and KELT. Hartman and collaborators used this sample to draw conclusions about what causes some of these planets to have such large radii.The team found that there is a statistically significant correlation between the radii of close-in giant planets and the fractional ages of their host stars (i.e., the stars age divided by its full

  13. DEUTERIUM BURNING IN MASSIVE GIANT PLANETS AND LOW-MASS BROWN DWARFS FORMED BY CORE-NUCLEATED ACCRETION

    Energy Technology Data Exchange (ETDEWEB)

    Bodenheimer, Peter [UCO/Lick Observatory, Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); D' Angelo, Gennaro; Lissauer, Jack J. [Space Science and Astrobiology Division, NASA-Ames Research Center, Moffett Field, CA 94035 (United States); Fortney, Jonathan J. [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Saumon, Didier, E-mail: peter@ucolick.org, E-mail: gennaro.dangelo@nasa.gov, E-mail: Jack.J.Lissauer@nasa.gov, E-mail: jfortney@ucolick.org, E-mail: dsaumon@lanl.gov [Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545 (United States)

    2013-06-20

    Using detailed numerical simulations, we study the formation of bodies near the deuterium-burning limit according to the core-nucleated giant planet accretion scenario. The objects, with heavy-element cores in the range 5-30 M{sub Circled-Plus }, are assumed to accrete gas up to final masses of 10-15 Jupiter masses (M{sub Jup}). After the formation process, which lasts 1-5 Myr and which ends with a ''cold-start'', low-entropy configuration, the bodies evolve at constant mass up to an age of several Gyr. Deuterium burning via proton capture is included in the calculation, and we determined the mass, M{sub 50}, above which more than 50% of the initial deuterium is burned. This often-quoted borderline between giant planets and brown dwarfs is found to depend only slightly on parameters, such as core mass, stellar mass, formation location, solid surface density in the protoplanetary disk, disk viscosity, and dust opacity. The values for M{sub 50} fall in the range 11.6-13.6 M{sub Jup}, in agreement with previous determinations that do not take the formation process into account. For a given opacity law during the formation process, objects with higher core masses form more quickly. The result is higher entropy in the envelope at the completion of accretion, yielding lower values of M{sub 50}. For masses above M{sub 50}, during the deuterium-burning phase, objects expand and increase in luminosity by one to three orders of magnitude. Evolutionary tracks in the luminosity versus time diagram are compared with the observed position of the companion to Beta Pictoris.

  14. Full-lifetime simulations of multiple unequal-mass planets across all phases of stellar evolution

    CERN Document Server

    Veras, Dimitri; Gaensicke, Boris T; Redfield, Seth; Georgakarakos, Nikolaos; Bowler, Alex B; Lloyd, Maximillian J S

    2016-01-01

    We know that planetary systems are just as common around white dwarfs as around main sequence stars. However, self-consistently linking a planetary system across these two phases of stellar evolution through the violent giant branch poses computational challenges, and previous studies restricted architectures to equal-mass planets. Here, we remove this constraint and perform over 450 numerical integrations over a Hubble time (14 Gyr) of packed planetary systems with unequal-mass planets. We characterize the resulting trends as a function of planet order and mass. We find that intrusive radial incursions in the vicinity of the white dwarf become less likely as the dispersion amongst planet masses increases. The orbital meandering which may sustain a sufficiently dynamic environment around a white dwarf to explain observations is more dependent on the presence of terrestrial-mass planets than any variation in planetary mass. Triggering unpacking or instability during the white dwarf phase is comparably easy for...

  15. A Closely-Packed System of Low-Mass, Low-Density Planets Transiting Kepler-11

    CERN Document Server

    Lissauer, Jack J; Ford, Eric B; Borucki, William J; Fressin, Francois; Marcy, Geoffrey W; Orosz, Jerome A; Rowe, Jason F; Torres, Guillermo; Welsh, William F; Batalha, Natalie M; Bryson, Stephen T; Buchhave, Lars A; Caldwell, Douglas A; Carter, Joshua A; Charbonneau, David; Christiansen, Jessie L; Cochran, William D; Desert, Jean-Michel; Dunham, Edward W; Fanelli, Michael N; Fortney, Jonathan J; Gautier, Thomas N; Geary, John C; Gilliland, Ronald L; Haas, Michael R; Hall, Jennifer R; Holman, Matthew J; Koch, David G; Latham, David W; Lopez, Eric; McCauliff, Sean; Miller, Neil; Morehead, Robert C; Quintana, Elisa V; Ragozzine, Darin; Sasselov, Dimitar; Short, Donald R; Steffen, Jason H

    2011-01-01

    When an extrasolar planet passes in front of its star (transits), its radius can be measured from the decrease in starlight and its orbital period from the time between transits. Multiple planets transiting the same star reveal more: period ratios determine stability and dynamics, mutual gravitational interactions reflect planet masses and orbital shapes, and the fraction of transiting planets observed as multiples has implications for the planarity of planetary systems. But few stars have more than one known transiting planet, and none has more than three. Here we report Kepler spacecraft observations of a single Sun-like star that reveal six transiting planets, five with orbital periods between 10 and 47 days plus a sixth one with a longer period. The five inner planets are among the smallest whose masses and sizes have both been measured, and these measurements imply substantial envelopes of light gases. The degree of coplanarity and proximity of the planetary orbits imply energy dissipation near the end o...

  16. A PRELIMINARY JUPITER MODEL

    Energy Technology Data Exchange (ETDEWEB)

    Hubbard, W. B. [Lunar and Planetary Laboratory, The University of Arizona, Tucson, AZ 85721 (United States); Militzer, B. [Department of Earth and Planetary Science, Department of Astronomy, University of California, Berkeley, CA 94720 (United States)

    2016-03-20

    In anticipation of new observational results for Jupiter's axial moment of inertia and gravitational zonal harmonic coefficients from the forthcoming Juno orbiter, we present a number of preliminary Jupiter interior models. We combine results from ab initio computer simulations of hydrogen–helium mixtures, including immiscibility calculations, with a new nonperturbative calculation of Jupiter's zonal harmonic coefficients, to derive a self-consistent model for the planet's external gravity and moment of inertia. We assume helium rain modified the interior temperature and composition profiles. Our calculation predicts zonal harmonic values to which measurements can be compared. Although some models fit the observed (pre-Juno) second- and fourth-order zonal harmonics to within their error bars, our preferred reference model predicts a fourth-order zonal harmonic whose absolute value lies above the pre-Juno error bars. This model has a dense core of about 12 Earth masses and a hydrogen–helium-rich envelope with approximately three times solar metallicity.

  17. Migration of Gas Giant Planets in a Gravitationally Unstable Disk

    Science.gov (United States)

    Desai, Karna Mahadev; Steiman-Cameron, Thomas Y.; Michael, Scott; Durisen, Richard H.

    2017-01-01

    Understanding the migration of giant planets in gravitationally unstable protoplanetary disks is important for understanding planetary system architecture, especially the existence of planets orbiting close to and at large distances from their stars. Migration rates can determine the efficiency of planet formation and survival rates of planets. We present results from simulations of 0.3, 1, and 3 Jupiter-mass planets in a 0.14 M⊙ protoplanetary disk around a 1 M⊙ star, where the disk is marginally unstable to gravitational instabilities (GIs). Each planet is simulated separately. We use CHYMERA, a radiative 3D hydrodynamics code developed by the Indiana University Hydrodynamics Group. The simulations include radiative cooling governed by realistic dust opacities. The planets are inserted into the disk, once the disk has settled into its quasi-steady GI-active phase. We simulate each of the 0.3, 1, and 3 Jupiter-mass planets by inserting it at three different locations in the disk, at the corotation radius and at the inner and outer Lindblad resonances. No matter where placed, the 3 Jupiter-mass planets tend to drift inexorably inward but with a rate that slows after many orbital periods. The 1 Jupiter-mass planets migrate mostly inward, but their motion can be delayed or reversed near the corotation of the two-armed wave. The 0.3 Jupiter-mass planets are much less predictable and frequently migrate outward. We analyze how the density of matter and waves in the disk at different azimuthal locations affect the migration.

  18. The minimum mass of detectable planets in protoplanetary discs and the derivation of planetary masses from high-resolution observations

    Science.gov (United States)

    Rosotti, Giovanni P.; Juhasz, Attila; Booth, Richard A.; Clarke, Cathie J.

    2016-07-01

    We investigate the minimum planet mass that produces observable signatures in infrared scattered light and submillimetre (submm) continuum images and demonstrate how these images can be used to measure planet masses to within a factor of about 2. To this end, we perform multi-fluid gas and dust simulations of discs containing low-mass planets, generating simulated observations at 1.65, 10 and 850 μm. We show that the minimum planet mass that produces a detectable signature is ˜15 M⊕: this value is strongly dependent on disc temperature and changes slightly with wavelength (favouring the submm). We also confirm previous results that there is a minimum planet mass of ˜20 M⊕ that produces a pressure maximum in the disc: only planets above this threshold mass generate a dust trap that can eventually create a hole in the submm dust. Below this mass, planets produce annular enhancements in dust outwards of the planet and a reduction in the vicinity of the planet. These features are in steady state and can be understood in terms of variations in the dust radial velocity, imposed by the perturbed gas pressure radial profile, analogous to a traffic jam. We also show how planet masses can be derived from structure in scattered light and submm images. We emphasize that simulations with dust need to be run over thousands of planetary orbits so as to allow the gas profile to achieve a steady state and caution against the estimation of planet masses using gas-only simulations.

  19. The minimum mass of detectable planets in protoplanetary discs and the derivation of planetary masses from high-resolution observations.

    Science.gov (United States)

    Rosotti, Giovanni P; Juhasz, Attila; Booth, Richard A; Clarke, Cathie J

    2016-07-01

    We investigate the minimum planet mass that produces observable signatures in infrared scattered light and submillimetre (submm) continuum images and demonstrate how these images can be used to measure planet masses to within a factor of about 2. To this end, we perform multi-fluid gas and dust simulations of discs containing low-mass planets, generating simulated observations at 1.65, 10 and 850 μm. We show that the minimum planet mass that produces a detectable signature is ∼15 M⊕: this value is strongly dependent on disc temperature and changes slightly with wavelength (favouring the submm). We also confirm previous results that there is a minimum planet mass of ∼20 M⊕ that produces a pressure maximum in the disc: only planets above this threshold mass generate a dust trap that can eventually create a hole in the submm dust. Below this mass, planets produce annular enhancements in dust outwards of the planet and a reduction in the vicinity of the planet. These features are in steady state and can be understood in terms of variations in the dust radial velocity, imposed by the perturbed gas pressure radial profile, analogous to a traffic jam. We also show how planet masses can be derived from structure in scattered light and submm images. We emphasize that simulations with dust need to be run over thousands of planetary orbits so as to allow the gas profile to achieve a steady state and caution against the estimation of planet masses using gas-only simulations.

  20. THE McDONALD OBSERVATORY PLANET SEARCH: NEW LONG-PERIOD GIANT PLANETS AND TWO INTERACTING JUPITERS IN THE HD 155358 SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Robertson, Paul; Endl, Michael; Cochran, William D.; MacQueen, Phillip J.; Brugamyer, Erik J.; Barnes, Stuart I.; Caldwell, Caroline [Department of Astronomy and McDonald Observatory, University of Texas at Austin, Austin, TX 78712 (United States); Wittenmyer, Robert A.; Horner, J. [Department of Astrophysics and Optics, School of Physics, University of New South Wales, Sydney NSW 2052 (Australia); Simon, Attila E., E-mail: paul@astro.as.utexas.edu [Konkoly Observatory of the Hungarian Academy of Sciences, P.O. Box 67, H-1525 Budapest (Hungary)

    2012-04-10

    We present high-precision radial velocity (RV) observations of four solar-type (F7-G5) stars-HD 79498, HD 155358, HD 197037, and HD 220773-taken as part of the McDonald Observatory Planet Search Program. For each of these stars, we see evidence of Keplerian motion caused by the presence of one or more gas giant planets in long-period orbits. We derive orbital parameters for each system and note the properties (composition, activity, etc.) of the host stars. While we have previously announced the two-gas-giant HD 155358 system, we now report a shorter period for planet c. This new period is consistent with the planets being trapped in mutual 2:1 mean-motion resonance. We therefore perform an in-depth stability analysis, placing additional constraints on the orbital parameters of the planets. These results demonstrate the excellent long-term RV stability of the spectrometers on both the Harlan J. Smith 2.7 m telescope and the Hobby-Eberly telescope.

  1. Dawes Review. The tidal downsizing hypothesis of planet formation

    CERN Document Server

    Nayakshin, Sergei

    2016-01-01

    Tidal Downsizing is the modern version of the Kuiper (1951) scenario of planet formation. Detailed simulations of self-gravitating discs, gas fragments, dust grain dynamics, and planet evolutionary calculations are summarised here and used to build a predictive planet formation model and population synthesis. A new interpretation of exoplanetary and debris disc data, the Solar System's origins, and the links between planets and brown dwarfs is offered. This interpretation is contrasted with the current observations and the predictions of the Core Accretion theory. Observations that can distinguish the two scenarios are pointed out. In particular, Tidal Downsizing predicts that presence of debris discs, sub-Neptune mass planets, planets more massive than $\\sim 5$~Jupiter masses and brown dwarfs should not correlate strongly with the metallicity of the host. For gas giants of $\\sim$ Saturn to a few Jupiter mass, a strong host star metallicity correlation is predicted only inwards of a few AU from the host. Comp...

  2. A close-up view of Jupiter's magnetic field from Juno: New insights into the planet's deep interior

    Science.gov (United States)

    Jones, Chris A.; Holme, Richard

    2017-06-01

    The first results from the Juno mission magnetometer have recently become available. Juno provides us with the closest view of any planetary dynamo, flying to within 1.25 of the radius of the dynamo region, whereas for the Earth, we cannot get closer than 1.83 of the core-mantle boundary radius. We compare the Juno results with those from first principles dynamo simulations of Jupiter's magnetic field. Intense flux patches at Jupiter's surface are found in both the data and the simulations, though the simulations have them mainly at slightly higher latitudes than the observations. We consider the prospects for determining more accurately the location of the top of the metallic hydrogen region and the implications of possible weak flux patches at the poles.

  3. X-MIME: An Imaging X-ray Spectrometer for Detailed Study of Jupiter's Icy Moons and the Planet's X-ray Aurora

    Science.gov (United States)

    Elsner, R. F.; Ramsey, B. D.; Waite, J. H.; Rehak, P.; Johnson, R. E.; Cooper, J. F.; Swartz, D. A.

    2004-01-01

    Remote observations with the Chandra X-ray Observatory and the XMM-Newton Observatory have shown that the Jovian system is a source of x-rays with a rich and complicated structure. The planet's polar auroral zones and its disk are powerful sources of x-ray emission. Chandra observations revealed x-ray emission from the Io Plasma Torus and from the Galilean moons Io, Europa, and possibly Ganymede. The emission from these moons is certainly due to bombardment of their surfaces of highly energetic protons, oxygen and sulfur ions from the region near the Torus exciting atoms in their surfaces and leading to fluorescent x-ray emission lines. Although the x-ray emission from the Galilean moons is faint when observed from Earth orbit, an imaging x-ray spectrometer in orbit around these moons, operating at 200 eV and above with 150 eV energy resolution, would provide a detailed mapping (down to 40 m spatial resolution) of the elemental composition in their surfaces. Such maps would provide important constraints on formation and evolution scenarios for the surfaces of these moons. Here we describe the characteristics of X-MIME, an imaging x-ray spectrometer under going a feasibility study for the JIMO mission, with the ultimate goal of providing unprecedented x-ray studies of the elemental composition of the surfaces of Jupiter's icy moons and Io, as well as of Jupiter's auroral x-ray emission.

  4. Indication of a massive circumbinary planet orbiting the low-mass X-ray binary MXB 1658-298

    Science.gov (United States)

    Jain, Chetana; Paul, Biswajit; Sharma, Rahul; Jaleel, Abdul; Dutta, Anjan

    2017-06-01

    We present an X-ray timing analysis of the transient X-ray binary MXB 1658-298, using data obtained from the RXTE and XMM-Newton observatories. We have made 27 new mid-eclipse time measurements from observations made during the two outbursts of the source. These new measurements have been combined with the previously known values to study long-term changes in orbital period of the binary system. We have found that the mid-eclipse timing record of MXB 1658-298 is quite unusual. The long-term evolution of mid-eclipse times indicates an overall orbital period decay with a time-scale of -6.5(7) × 107 yr. Over and above this orbital period decay, the O-C residual curve also shows a periodic residual on shorter time-scales. This sinusoidal variation has an amplitude of ˜9 lt-s and a period of ˜760 d. This is indicative of the presence of a third body around the compact X-ray binary. The mass and orbital radius of the third body are estimated to lie in the ranges 20.5-26.9 Jupiter mass and 750-860 lt-s, respectively. If true, then it will be the most massive circumbinary planet and also the smallest period binary known to host a planet.

  5. Exploring Disks Around Planets

    Science.gov (United States)

    Kohler, Susanna

    2017-07-01

    Giant planets are thought to form in circumstellar disks surrounding young stars, but material may also accrete into a smaller disk around the planet. Weve never detected one of these circumplanetary disks before but thanks to new simulations, we now have a better idea of what to look for.Image from previous work simulating a Jupiter-mass planet forming inside a circumstellar disk. The planet has its own circumplanetary disk of accreted material. [Frdric Masset]Elusive DisksIn the formation of giant planets, we think the final phase consists of accretion onto the planet from a disk that surrounds it. This circumplanetary disk is important to understand, since it both regulates the late gas accretion and forms the birthplace of future satellites of the planet.Weve yet to detect a circumplanetary disk thus far, because the resolution needed to spot one has been out of reach. Now, however, were entering an era where the disk and its kinematics may be observable with high-powered telescopes (like the Atacama Large Millimeter Array).To prepare for such observations, we need models that predict the basic characteristics of these disks like the mass, temperature, and kinematic properties. Now a researcher at the ETH Zrich Institute for Astronomy in Switzerland, Judit Szulgyi, has worked toward this goal.Simulating CoolingSzulgyi performs a series of 3D global radiative hydrodynamic simulations of 1, 3, 5, and 10 Jupiter-mass (MJ) giant planets and their surrounding circumplanetary disks, embedded within the larger circumstellar disk around the central star.Density (left column), temperature (center), and normalized angular momentum (right) for a 1 MJ planet over temperatures cooling from 10,000 K (top) to 1,000 K (bottom). At high temperatures, a spherical circumplanetary envelope surrounds the planet, but as the planet cools, the envelope transitions around 64,000 K to a flattened disk. [Szulgyi 2017]This work explores the effects of different planet temperatures and

  6. Extrasolar Binary Planets I: Formation by tidal capture during planet-planet scattering

    CERN Document Server

    Ochiai, H; Ida, S

    2014-01-01

    We have investigated i) the formation of gravitationally bounded pairs of gas-giant planets (which we call "binary planets") from capturing each other through planet-planet dynamical tide during their close encounters and ii) the following long-term orbital evolution due to planet-planet and planet-star {\\it quasi-static} tides. For the initial evolution in phase i), we carried out N-body simulations of the systems consisting of three jupiter-mass planets taking into account the dynamical tide. The formation rate of the binary planets is as much as 10% of the systems that undergo orbital crossing and this fraction is almost independent of the initial stellarcentric semi-major axes of the planets, while ejection and merging rates sensitively depend on the semi-major axes. As a result of circularization by the planet-planet dynamical tide, typical binary separations are a few times the sum of the physical radii of the planets. After the orbital circularization, the evolution of the binary system is governed by ...

  7. Quantifying Jupiter's influence on the Earth's impact flux: Implications for planetary habitability

    CERN Document Server

    Horner, J

    2012-01-01

    It has long been thought that the presence of a giant planet is a pre-requisite for the development of life on potentially habitable planets. Without Jupiter, it was argued, the Earth would have been subject to a punishing impact regime, which would have significantly retarded or outright prevented the development of life on our planet. Although this idea is widely embraced, little research has previously been carried out to support it. Here, we present the results of several suites of dynamical integrations used to model the influence of Jupiter's mass and orbit on the impact rate that would be experienced by the Earth. We find that, far from being a simple shield, Jupiter's role in determining the terrestrial impact flux is significantly more complicated than previously thought. Far from being a simple friend, such giant planets are perhaps more likely to imperil the development of life on otherwise habitable planets.

  8. Microlensing Search for Planets with Two Simultaneously Rising Suns

    CERN Document Server

    Han, Cheongho

    2008-01-01

    Among more than 200 extrasolar planet candidates discovered to date, there is no known planet orbiting around normal binary stars. In this paper, we demonstrate that microlensing is a technique that can detect such planets. Microlensing discoveries of these planets are possible because the planet and host binary stars produce perturbations at a common region around center of mass of the binary stars and thus the signatures of both planet and binary can be detected in the light curves of high-magnification microlensing events. The ranges of the planetary and binary separations of systems for optimal detection vary depending on the planet mass. For a Jupiter-mass planet, we find that high detection efficiency is expected for planets located in the range of $\\sim$ 1 AU -- 5 AU from the binary stars which are separated by $\\sim$ 0.15 AU -- 0.5 AU

  9. The Detection of Earth-mass Planets around Active Stars: The Mass of Kepler-78b

    CERN Document Server

    Hatzes, Artie P

    2014-01-01

    Kepler-78b is a transiting Earth-mass planet in an 8.5 hr orbit discovered by the Kepler Space Mission. We performed an analysis of the published radial velocity measurements for Kepler-78 in order to derive a refined measurement for the planet mass. Kepler-78 is an active star and radial velocity variations due to activity were removed using a Floating Chunk Offset (FCO) method where an orbital solution was made to the data by allowing the velocity offsets of individual nights to vary. We show that if we had no a priori knowledge of the transit period the FCO method used as a periodogram would still have detected Kepler-78b in the radial velocity data. It can thus be effective at finding unknown short-period signals in the presence of significant activity noise. Using the FCO method while keeping the ephemeris and orbital phase fixed to the photometric values and using only data from nights where 6-10 measurements were taken results in a K-amplitude of 1.34 +/- 0.25 m/s. a planet mass of 1.31 +/- 0.24 M_Eart...

  10. The Solar Twin Planet Search. V. Close-in, low-mass planet candidates and evidence of planet accretion in the solar twin HIP 68468

    CERN Document Server

    Melendez, Jorge; Bean, Jacob L; Ramirez, Ivan; Asplund, Martin; Dreizler, Stefan; Yan, Hong-Liang; Shi, Jian-Rong; Lind, Karin; Ferraz-Mello, Sylvio; Galarza, Jhon Yana; Santos, Leonardo dos; Spina, Lorenzo; Maia, Marcelo Tucci; Alves-Brito, Alan; Monroe, TalaWanda; Casagrande, Luca

    2016-01-01

    [Methods]. We obtained high-precision radial velocities with HARPS on the ESO 3.6 m telescope and determined precise stellar elemental abundances (~0.01 dex) using MIKE spectra on the Magellan 6.5m telescope. [Results]. Our data indicate the presence of a planet with a minimum mass of 26 Earth masses around the solar twin HIP 68468. The planet is a super-Neptune, but unlike the distant Neptune in our solar system (30 AU), HIP 68468c is close-in, with a semi-major axis of 0.66 AU, similar to that of Venus. The data also suggest the presence of a super-Earth with a minimum mass of 2.9 Earth masses at 0.03 AU; if the planet is confirmed, it will be the fifth least massive radial velocity planet discovery to date and the first super-Earth around a solar twin. Both isochrones (5.9 Gyr) and the abundance ratio [Y/Mg] (6.4 Gyr) indicate an age of about 6 billion years. The star is enhanced in refractory elements when compared to the Sun, and the refractory enrichment is even stronger after corrections for Galactic c...

  11. Mass constraint for a planet in a protoplanetary disk from the gap width

    CERN Document Server

    Kanagawa, Kazuhiro D; Tanaka, Hidekazu; Tanigawa, Takayuki; Takeuchi, Taku; Tsukagoshi, Takashi; Momose, Munetake

    2016-01-01

    A giant planet creates a gap in a protoplanetary disk, which might explain the observed gaps in protoplanetary disks. The width and depth of the gaps depend on the planet mass and disk properties. We have performed two--dimensional hydrodynamic simulations for various planet masses, disk aspect ratios and viscosities, to obtain an empirical formula for the gap width. The gap width is proportional to the square root of the planet mass, -3/4 power of the disk aspect ratio and -1/4 power of the viscosity. This empirical formula enables us to estimate the mass of a planet embedded in the disk from the width of an observed gap. We have applied the empirical formula for the gap width to the disk around HL~Tau, assuming that each gap observed by ALMA observations is produced by planets, and discussed the planet masses within the gaps. The estimate of planet masses from the gap widths is less affected by the observational resolution and dust filtration than that from the gap depth.

  12. On the Mass-Period Distributions and Correlations of Extrasolar Planets

    CERN Document Server

    Jiang, Ing-Guey; Chang, Yen-Chang; Hung, Wen-Liang

    2007-01-01

    In addition to fitting the data of 233 extra-solar planets with power laws, we construct a correlated mass-period distribution function of extrasolar planets, as the first time in this field. The algorithm to generate a pair of positively correlated beta-distributed random variables is introduced and used for the construction of correlated distribution functions. We investigate the mass-period correlations of extrasolar planets both in the linear and logarithm spaces, determine the confidence intervals of the correlation coefficients, and confirm that there is a positive mass-period correlation for the extrasolar planets. In addition to the paucity of massive close-in planets, which makes the main contribution on this correlation, there are other fine structures for the data in the mass-period plane.

  13. rosuvastatin (JUPITER)

    DEFF Research Database (Denmark)

    Nordestgaard, Børge; Ridker, Paul M; MacFadyen, Jean G;

    2009-01-01

    were calculated across a range of end points, timeframes, and subgroups using data from Justification for the Use of statins in Prevention: an Intervention Trial Evaluating Rosuvastatin (JUPITER), a randomized evaluation of rosuvastatin 20 mg versus placebo conducted among 17 802 apparently healthy men...... infarction, stroke, revascularization, or death, the 5-year NNT within JUPITER was 20 (95% CI, 14 to 34). All subgroups had 5-year NNT values for this end point below 50; as examples, 5-year NNT values were 17 for men and 31 for women, 21 for whites and 19 for nonwhites, 18 for those with body mass index 300...

  14. The planet search programme at the ESO CES and HARPS. IV. The search for Jupiter analogues around solar-like stars

    CERN Document Server

    Zechmeister, M; Endl, M; Curto, G Lo; Hartman, H; Nilsson, H; Henning, T; Hatzes, A P; Cochran, W D

    2012-01-01

    In 1992 we began a precision radial velocity (RV) survey for planets around solar-like stars with the Coude Echelle Spectrograph and the Long Camera (CES LC) at the 1.4 m telescope in La Silla (Chile). We have continued the survey with the upgraded CES Very Long Camera (VLC) and HARPS, both at the 3.6 m telescope, until 2007. The observations for 31 stars cover a time span of up to 15 years and the RV precision permit a search for Jupiter analogues. We perform a joint analysis for variability, trends, periodicities, and Keplerian orbits and compute detection limits. Moreover, the HARPS RVs are analysed for correlations with activity indicators (CaII H&K and CCF shape). We achieve a long-term RV precision of 15 m/s (CES+LC, 1992-1998), 9 m/s (CES+VLC, 1999-2006), and 2.8 m/s (HARPS, 2003-2009, including archive data), resp. This enables us to confirm the known planets around Iota Hor, HR 506, and HR 3259. A steady RV trend for Eps Ind A can be explained by a planetary companion. On the other hand, we find ...

  15. Jupiter and Super-Earth embedded in a gaseous disc

    CERN Document Server

    Podlewska, E

    2007-01-01

    In this paper we investigate the evolution of a pair of interacting planets - a Jupiter mass planet and a Super-Earth with the 5.5 Earth masses - orbiting a Solar type star and embedded in a gaseous protoplanetary disc. We focus on the effects of type I and II orbital migrations, caused by the planet-disc interaction, leading to the Super-Earth capture in first order mean motion resonances by the Jupiter. The stability of the resulting resonant system in which the Super-Earth is on the internal orbit relatively to the Jupiter has been studied numerically by means of full 2D hydrodynamical simulations. Our main motivation is to determine the Super-Earth behaviour in the presence of the gas giant in the system. It has been found that the Jupiter captures the Super-Earth into the interior 3:2 or 4:3 mean motion resonances and the stability of such configurations depends on the initial planet positions and eccentricity evolution. If the initial separation of planet orbits is larger or close to that required for t...

  16. KEPLER-15b: A HOT JUPITER ENRICHED IN HEAVY ELEMENTS AND THE FIRST KEPLER MISSION PLANET CONFIRMED WITH THE HOBBY-EBERLY TELESCOPE

    Energy Technology Data Exchange (ETDEWEB)

    Endl, Michael; MacQueen, Phillip J.; Cochran, William D. [McDonald Observatory, University of Texas at Austin, Austin, TX 78712 (United States); Brugamyer, Erik J. [Astronomy Department, University of Texas at Austin, Austin, TX 78712 (United States); Buchhave, Lars A. [Niels Bohr Institute, University of Copenhagen, Denmark Centre for Star and Planet Formation, University of Copenhagen (Denmark); Rowe, Jason [SETI Institute, Moffett Field, CA 94035 (United States); Lucas, Phillip [Centre for Astrophysics Research, University of Hertfordshire, College Lane, Hatfield AL10 9AB (United Kingdom); Isaacson, Howard [Department of Astronomy, University of California, Berkeley, CA 94720 (United States); Bryson, Steve; Howell, Steve B.; Borucki, William J.; Caldwell, Douglas; Christiansen, Jessie L.; Haas, Michael R. [NASA-Ames Research Center, Moffett Field, CA 94035 (United States); Fortney, Jonathan J. [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Hansen, Terese [Niels Bohr Institute, University of Copenhagen (Denmark); Ciardi, David R. [NASA Exoplanet Science Institute/Caltech, Pasadena, CA 91125 (United States); Demory, Brice-Olivier [Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Everett, Mark [NOAO, 950 N. Cherry Ave., Tucson, AZ 85719 (United States); Ford, Eric B. [Astronomy Department, University of Florida, 211 Bryant Space Sciences Center, Gainesville, FL 32111 (United States); and others

    2011-11-01

    We report the discovery of Kepler-15b (KOI-128), a new transiting exoplanet detected by NASA's Kepler mission. The transit signal with a period of 4.94 days was detected in the quarter 1 (Q1) Kepler photometry. For the first time, we have used the High Resolution Spectrograph (HRS) at the Hobby-Eberly Telescope (HET) to determine the mass of a Kepler planet via precise radial velocity (RV) measurements. The 24 HET/HRS RVs and 6 additional measurements from the Fibre-fed Echelle Spectrograph spectrograph at the Nordic Optical Telescope reveal a Doppler signal with the same period and phase as the transit ephemeris. We used one HET/HRS spectrum of Kepler-15 taken without the iodine cell to determine accurate stellar parameters. The host star is a metal-rich ([Fe/H] = 0.36 {+-} 0.07) G-type main-sequence star with T{sub eff} = 5515 {+-} 124 K. The semi-amplitude K of the RV orbit is 78.7{sup +8.5}{sub -9.5} m s{sup -1}, which yields a planet mass of 0.66 {+-} 0.1 M{sub Jup}. The planet has a radius of 0.96 {+-} 0.06 R{sub Jup} and a mean bulk density of 0.9 {+-} 0.2 g cm{sup -3}. The radius of Kepler-15b is smaller than the majority of transiting planets with similar mass and irradiation level. This suggests that the planet is more enriched in heavy elements than most other transiting giant planets. For Kepler-15b we estimate a heavy element mass of 30-40 M{sub Circled-Plus }.

  17. Towards Chemical Constraints on Hot Jupiter Migration

    CERN Document Server

    Madhusudhan, Nikku; Kennedy, Grant M

    2014-01-01

    The origin of hot Jupiters -- gas giant exoplanets orbiting very close to their host stars -- is a long-standing puzzle. Planet formation theories suggest that such planets are unlikely to have formed in-situ but instead may have formed at large orbital separations beyond the snow line and migrated inward to their present orbits. Two competing hypotheses suggest that the planets migrated either through interaction with the protoplanetary disk during their formation, or by disk-free mechanisms such as gravitational interactions with a third body. Observations of eccentricities and spin-orbit misalignments of hot Jupiter systems have been unable to differentiate between the two hypotheses. In the present work, we suggest that chemical depletions in hot Jupiter atmospheres might be able to constrain their migration mechanisms. We find that sub-solar carbon and oxygen abundances in Jovian-mass hot Jupiters around Sun-like stars are hard to explain by disk migration. Instead, such abundances are more readily expla...

  18. Operating an Improved HAT Network to Discover and Characterize Many Planets, from Super-Earths to Super-Jupiters, Transiting Bright Stars

    Science.gov (United States)

    Bakos, Gaspar

    OBJECTIVES The primary objective of this program is to discover many new extrasolar planets that transit stars bright enough to allow in-depth follow-up studies. This program will focus, in particular, on exploring the large, but poorly studied, populations of long period planets as well as Neptunes and super Earths transiting bright stars. We will also provide accurate initial characterization of the newly discovered exoplanets. METHODS We will accomplish these research objectives by continuing the operation of the highly efficient and successful HATNet project in the period of 2013-2016, exploiting its unique capabilities to discover long period as well as small transiting planets. We also propose to replace our inexpensive front-illuminated CCDs with high quality back-illuminated CCDs so as to achieve 1 millimagnitude photometry at 9 minute cadence over a wide field of view for the brightest stars, as demonstrated by a recent experiment. The CCD upgrade, new observing techniques, and highly optimized reduction of the data will increase HATNet's current efficiency towards finding Neptune-sized planets by a factor of 8. With 38 transiting planets published to date, including two of the five well-characterized Neptune-mass planets, and having received more than 750 citations to date, HATNet is one of the world leaders in their discovery. Without further funding HATNet operations will cease. Our team has established a very well working machinery (equipment, personnel, follow-up tools, and expertise) which represents a significant, and highly cost- efficient investment by NASA. The specific methods and techniques we will use are now fully developed, and include: automated monitoring of all bright stars in selected 8x8 degree star fields; identifying candidate transiting planets based on these observations; and conducting follow-up spectroscopic and photometric observations to confirm and characterize those candidates which are real transiting planets. SIGNIFICANCE

  19. Dynamical Constraints on the Core Mass of Hot Jupiter HAT-P-13b

    CERN Document Server

    Buhler, Peter; Batygin, Konstantin; Fulton, BJ; Fortney, Jonathan; Burrows, Adam; Wong, Ian

    2016-01-01

    HAT-P-13b is a Jupiter-mass transiting exoplanet that has settled onto a stable, short-period, and mildly eccentric orbit as a consequence of the action of tidal dissipation and perturbations from a second, highly eccentric, outer companion. Due to the special orbital configuration of the HAT-P-13 system, the magnitude of HAT-P-13b's eccentricity ($e_b$) is in part dictated by its Love number ($k_{2_b}$), which is in turn a proxy for the degree of central mass concentration in its interior. Thus, the measurement of $e_b$ constrains $k_{2_b}$ and allows us to place otherwise elusive constraints on the mass of HAT-P-13b's core ($M_{\\rm{core,b}}$). In this study we derive new constraints on the value of $e_b$ by observing two secondary eclipses of HAT-P-13b with the Infrared Array Camera on board the $\\textit{Spitzer Space Telescope}$. We fit the measured secondary eclipse times simultaneously with radial velocity measurements and find that $e_b = 0.00700 \\pm 0.00100$. We then use octupole-order secular perturba...

  20. Atmospheric Escape from Hot Jupiters

    CERN Document Server

    Murray-Clay, Ruth; Murray, Norman

    2008-01-01

    Photoionization heating from UV radiation incident on the atmospheres of hot Jupiters may drive planetary mass loss. We construct a model of escape that includes realistic heating and cooling, ionization balance, tidal gravity, and pressure confinement by the host star wind. We show that mass loss takes the form of a hydrodynamic ("Parker") wind, emitted from the planet's dayside during lulls in the stellar wind. When dayside winds are suppressed by the confining action of the stellar wind, nightside winds might pick up if there is sufficient horizontal transport of heat. A hot Jupiter loses mass at maximum rates of ~2 x 10^12 g/s during its host star's pre-main-sequence phase and ~2 x10^10 g/s during the star's main sequence lifetime, for total maximum losses of ~0.06% and ~0.6% of the planet's mass, respectively. For UV fluxes F_UV < 10^4 erg/cm^2/s, the mass loss rate is approximately energy-limited and is proportional to F_UV^0.9. For larger UV fluxes, such as those typical of T Tauri stars, radiative ...

  1. The Solar Twin Planet Search. V. Close-in, low-mass planet candidates and evidence of planet accretion in the solar twin HIP 68468

    Science.gov (United States)

    Meléndez, Jorge; Bedell, Megan; Bean, Jacob L.; Ramírez, Iván; Asplund, Martin; Dreizler, Stefan; Yan, Hong-Liang; Shi, Jian-Rong; Lind, Karin; Ferraz-Mello, Sylvio; Galarza, Jhon Yana; dos Santos, Leonardo; Spina, Lorenzo; Maia, Marcelo Tucci; Alves-Brito, Alan; Monroe, TalaWanda; Casagrande, Luca

    2017-01-01

    Context. More than two thousand exoplanets have been discovered to date. Of these, only a small fraction have been detected around solar twins, which are key stars because we can obtain accurate elemental abundances especially for them, which is crucial for studying the planet-star chemical connection with the highest precision. Aims: We aim to use solar twins to characterise the relationship between planet architecture and stellar chemical composition. Methods: We obtained high-precision (1 m s-1) radial velocities with the HARPS spectrograph on the ESO 3.6 m telescope at La Silla Observatory and determined precise stellar elemental abundances ( 0.01 dex) using spectra obtained with the MIKE spectrograph on the Magellan 6.5 m telescope. Results: Our data indicate the presence of a planet with a minimum mass of 26 ± 4 Earth masses around the solar twin HIP 68468. The planet is more massive than Neptune (17 Earth masses), but unlike the distant Neptune in our solar system (30 AU), HIP 68468c is close-in, with a semi-major axis of 0.66 AU, similar to that of Venus. The data also suggest the presence of a super-Earth with a minimum mass of 2.9 ± 0.8 Earth masses at 0.03 AU; if the planet is confirmed, it will be the fifth least massive radial velocity planet candidate discovery to date and the first super-Earth around a solar twin. Both isochrones (5.9 ± 0.4 Gyr) and the abundance ratio [Y/Mg] (6.4 ± 0.8 Gyr) indicate an age of about 6 billion years. The star is enhanced in refractory elements when compared to the Sun, and the refractory enrichment is even stronger after corrections for Galactic chemical evolution. We determined a nonlocal thermodynamic equilibrium Li abundance of 1.52 ± 0.03 dex, which is four times higher than what would be expected for the age of HIP 68468. The older age is also supported by the low log () (-5.05) and low jitter (existence of the planets that are indicated by our data and to better constrain the nature of the planetary system

  2. The effect of type I migration on the formation of terrestrial planets in hot-Jupiter systems

    CERN Document Server

    Fogg, Martyn J

    2007-01-01

    Context: Our previous models of a giant planet migrating through an inner protoplanet/planetesimal disk find that the giant shepherds a portion of the material it encounters into interior orbits, whilst scattering the rest into external orbits. Scattering tends to dominate, leaving behind abundant material that can accrete into terrestrial planets. Aims: We add to the possible realism of our model by simulating type I migration forces which cause an inward drift, and strong eccentricity and inclination damping of protoplanetary bodies. This extra dissipation might be expected to enhance shepherding at the expense of scattering, possibly modifying our previous conclusions. Methods: We employ an N-body code that is linked to a viscous gas disk algorithm capable of simulating: gas accretion onto the central star; gap formation in the vicinity of the giant planet; type II migration of the giant planet; type I migration of protoplanets; and the effect of gas drag on planetesimals. We use the code to re-run three s...

  3. Lessons from our Own Solar System: Generation Mechanisms of Radio Emissions from Earth, Saturn and Jupiter and Atmospheric Loss from Magnetized versus non-magnetized planets

    Science.gov (United States)

    Brandt, Pontus

    2017-05-01

    The understanding of the engines and mechanisms behind kilometric and decametric radio emissions from the planets in our own solar system have taken great leaps with missions such as the NASA/Cassini, IMAGE and Galileo missions. The periodic Saturn Kilometric Radiation (SKR), the Auroral Kilometric Radiation (AKR) at Earth and the periodic decametric radio emissions from Jupiter all point to the same generation mechanisms: very large-scale explosive plasma heating events in the magnetotail of each of the planets. The character and periodicity of the associated radio emissions not only tells us about the presence of a magnetic field but also about the plasma content and size of the planetary magnetosphere, and the nature of the interaction with the solar wind.The presence of a planetary magnetic field, as could be established for exoplanets by the positive detection of low-frequency exoplanetary radio emissions, has been thought to shield a planet from atmospheric loss to space. However, recent data from Mars Express, MAVEN, and Venus Express, together with the wealth of terrestrial measurements of atmospheric escape to space has brought a surprising question in to light: Does a planetary magnetic field suppress or enhance atmospheric loss? While at the non-magnetized planets such as Mars and Venus, the solar wind has a more direct access to the ionized upper atmosphere, these planets do set up self shielding currents that do limit escape. Furthermore, it is not clear if Mars have lost the majority of its atmosphere by condensation in to surface and sub-surface frost, or through atmospheric escape. At Earth, the geomagnetic field sets up a relatively large cross section to the solar wind, that allows the induced solar-wind electric field to transfer substantial energy to the upper ionosphere and atmosphere resulting in substantial loss. It is therefore not clear how a planetary magnetic field correlates to the atmospheric loss, or if it does at all.In this

  4. Detecting the polarization signatures of extra-solar planets

    Science.gov (United States)

    Hough, J. H.; Lucas, P. W.; Bailey, J. A.; Tamura, M.; Hirst, E.

    2006-06-01

    Direct detection of the light scattered from extra-solar planets is important in establishing the planet's mass, radius, albedo and nature of the particles in the planetary atmosphere. We describe, and present results from, a new optical polarimeter (PlanetPol) designed to reach fractional polarizations of 10 -6 or better from ground-based telescopes, necessary to detect the polarization signature of unresolved hot-Jupiters.

  5. Trojan twin planets

    Science.gov (United States)

    Dvorak, R.; Loibnegger, B.; Schwarz, R.

    2017-03-01

    The Trojan asteroids are moving in the vicinity of the stable Lagrange points L_4 and L_5 of the gas giants Jupiter, Uranus and Neptune. Their motion can be described and understood with the aid of the restricted three-body problem. As an extension of this problem we investigate how stable motion close to the Lagrange points of two massive bodies can exist. This configuration can be described as the Trojan Twin Problem when we regard the two additional bodies as having a mass significantly smaller than the the two primary bodies: a star in the center (m_1) and an additional Jupiter-like mass (m_2). Using this 4-body problem we have undertaken numerical investigations concerning possible stable "twin orbits". However, these two bodies (m_3 and m_4) in Trojan-like orbits may have quite different masses. We decided to choose 6 different scenaria for this problem: as primary body, m2, we have taken a Jupiter-like planet, a Saturn-like one, and a super-Earth with 10 Earthmasses (m_{Earth}) respectively. As quasi twin planets, we have used different mass ratios namely objects for m3 and m4 from 10m_{Earth} to Moon like ones. We found different stable configurations depending on the involved masses and the initial distances between the twins (always close to the Lagrange point). Although the formation of such a configuration seems to be not very probable we should not exclude that it exists regarding the huge number of planets even in our own galaxy. This model is of special interest when the most massive planet (m_2) is moving on an orbit in the habitable zone around a main sequence star. One can use our results of stable orbits of Trojan Twin Planets (or asteroids) for extrasolar systems having as second primary a Jupiter-like, a Saturn-like or a super-Earth like planet around a star similar to our Sun.

  6. The Pan-Pacific Planet Search. IV. Two super-Jupiters in a 3:5 resonance orbiting the giant star HD33844

    CERN Document Server

    Wittenmyer, Robert A; Butler, R P; Horner, Jonathan; Wang, Liang; Robertson, Paul; Jones, M I; Jenkins, J S; Brahm, R; Tinney, C G; Mengel, M W; Clark, J

    2015-01-01

    We report the discovery of two giant planets orbiting the K giant HD 33844 based on radial velocity data from three independent campaigns. The planets move on nearly circular orbits with semimajor axes $a_b=1.60\\pm$0.02 AU and $a_c=2.24\\pm$0.05 AU, and have minimum masses (m sin $i$) of $M_b=1.96\\pm$0.12 Mjup and $M_c=1.76\\pm$0.18 Mjup. Detailed N-body dynamical simulations show that the two planets remain on stable orbits for more than $10^6$ years for low eccentricities, and are most likely trapped in a mutual 3:5 mean-motion resonance.

  7. Reevaluating the feasibility of ground-based Earth-mass microlensing planet detections

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Youn Kil; Park, Hyuk; Han, Cheongho; Hwang, Kyu-Ha; Shin, In-Gu; Choi, Joon-Young, E-mail: cheongho@astroph.chungbuk.ac.kr [Department of Physics, Institute for Astrophysics, Chungbuk National University, Cheongju 371-763 (Korea, Republic of)

    2014-05-10

    An important strength of the microlensing method to detect extrasolar planets is its high sensitivity to low-mass planets. However, many believe that microlensing detections of Earth-mass planets from ground-based observation would be difficult because of limits set by finite-source effects. This view comes from the previous estimation of planet detection probability based on the fractional deviation of planetary signals; however, a proper probability estimation is required when considering the source brightness, which is directly related to the photometric precision. In this paper, we reevaluate the feasibility of low-mass planet detections by considering photometric precision for different populations of source stars. From this, we find that the contribution of improved photometric precision to the planetary signal of a giant-source event is large enough to compensate for the decrease in magnification excess caused by finite-source effects. As a result, we conclude that giant-source events are suitable targets for Earth-mass planet detections with significantly higher detection probability than events involved with source stars of smaller radii, and we predict that Earth-mass planets could be detected by prospective high-cadence surveys.

  8. Architectural and chemical insights into the origin of hot Jupiters

    Science.gov (United States)

    Schlaufman, Kevin C.

    2015-10-01

    The origin of Jupiter-mass planets with orbital periods of only a few days is still uncertain. This problem has been with us for 20 years, long enough for significant progress to have been made, and also for a great deal of ``lore" to have accumulated about the properties of these planets. Among this lore is the widespread belief that hot Jupiters are less likely to be in multiple giant planet systems than longer-period giant planets. I will show that in this case the lore is not supported by the best data available today: hot Jupiters are not lonely. I will also show that stellar sodium abundance is inversely proportional to the probability that a star hosts a short-period giant planet. This observation is best explained by the effect of decreasing sodium abundance on protoplanetary disk structure and reveals that planetesimal-disk or planet-disk interactions are critical for the existence of short-period giant planets.

  9. Taxonomy of the extrasolar planet.

    Science.gov (United States)

    Plávalová, Eva

    2012-04-01

    When a star is described as a spectral class G2V, we know that the star is similar to our Sun. We know its approximate mass, temperature, age, and size. When working with an extrasolar planet database, it is very useful to have a taxonomy scale (classification) such as, for example, the Harvard classification for stars. The taxonomy has to be easily interpreted and present the most relevant information about extrasolar planets. I propose an extrasolar planet taxonomy scale with four parameters. The first parameter concerns the mass of an extrasolar planet in the form of units of the mass of other known planets, where M represents the mass of Mercury, E that of Earth, N Neptune, and J Jupiter. The second parameter is the planet's distance from its parent star (semimajor axis) described in a logarithm with base 10. The third parameter is the mean Dyson temperature of the extrasolar planet, for which I established four main temperature classes: F represents the Freezing class, W the Water class, G the Gaseous class, and R the Roasters class. I devised one additional class, however: P, the Pulsar class, which concerns extrasolar planets orbiting pulsar stars. The fourth parameter is eccentricity. If the attributes of the surface of the extrasolar planet are known, we are able to establish this additional parameter where t represents a terrestrial planet, g a gaseous planet, and i an ice planet. According to this taxonomy scale, for example, Earth is 1E0W0t, Neptune is 1N1.5F0i, and extrasolar planet 55 Cnc e is 9E-1.8R1.

  10. DIRECTLY IMAGING TIDALLY POWERED MIGRATING JUPITERS

    Energy Technology Data Exchange (ETDEWEB)

    Dong Subo; Katz, Boaz; Socrates, Aristotle [Institute for Advanced Study, Princeton, NJ 08540 (United States)

    2013-01-10

    Upcoming direct-imaging experiments may detect a new class of long-period, highly luminous, tidally powered extrasolar gas giants. Even though they are hosted by {approx} Gyr-'old' main-sequence stars, they can be as 'hot' as young Jupiters at {approx}100 Myr, the prime targets of direct-imaging surveys. They are on years-long orbits and presently migrating to 'feed' the 'hot Jupiters'. They are expected from 'high-e' migration mechanisms, in which Jupiters are excited to highly eccentric orbits and then shrink semimajor axis by a factor of {approx}10-100 due to tidal dissipation at close periastron passages. The dissipated orbital energy is converted to heat, and if it is deposited deep enough into the atmosphere, the planet likely radiates steadily at luminosity L {approx} 100-1000 L{sub Jup}(2 Multiplication-Sign 10{sup -7}-2 Multiplication-Sign 10{sup -6} L{sub Sun }) during a typical {approx} Gyr migration timescale. Their large orbital separations and expected high planet-to-star flux ratios in IR make them potentially accessible to high-contrast imaging instruments on 10 m class telescopes. {approx}10 such planets are expected to exist around FGK dwarfs within {approx}50 pc. Long-period radial velocity planets are viable candidates, and the highly eccentric planet HD 20782b at maximum angular separation {approx}0.''08 is a promising candidate. Directly imaging these tidally powered Jupiters would enable a direct test of high-e migration mechanisms. Once detected, the luminosity would provide a direct measurement of the migration rate, and together with mass (and possibly radius) estimate, they would serve as a laboratory to study planetary spectral formation and tidal physics.

  11. Influence of solar flares and CME on the gaseous envelopes of hot Jupiter exoplanets

    Science.gov (United States)

    Bisikalo, Dmitry; Cherenkov, Alexander

    2015-08-01

    Hot Jupiters, i.e. exoplanets having masses comparable to the mass of Jupiter and semimajor axes shorter than 0.1~AU, have a number of outstanding features, caused mostly by their proximity to the host star. As a matter of fact, the atmospheres of several dozens of these planets fill their Roche lobes, which results in a powerful outflow of material from the planet toward the host star. In addition, since the planet orbits at a short distance, its orbital velocity is supersonic, which causes the formation of a bow shock ahead of the planet. These effects substantially change the mechanism of interaction between the planet's gaseous envelope (atmosphere) and the stellar wind. In this paper, we investigate the flow pattern in the vicinity of a typical hot Jupiter by using 3D gas dynamic simulations. By considering the star-planet interaction we study variations in the structure of the hot Jupiter's envelope and estimate the variations of atmosphere’s mass-loss rate caused by the influence of typical solar flares and coronal mass ejections.

  12. Migration of accreting giant planets

    Science.gov (United States)

    Crida, A.; Bitsch, B.; Raibaldi, A.

    2016-12-01

    We present the results of 2D hydro simulations of giant planets in proto-planetary discs, which accrete gas at a more or less high rate. First, starting from a solid core of 20 Earth masses, we show that as soon as the runaway accretion of gas turns on, the planet is saved from type I migration : the gap opening mass is reached before the planet is lost into its host star. Furthermore, gas accretion helps opening the gap in low mass discs. Consequently, if the accretion rate is limited to the disc supply, then the planet is already inside a gap and in type II migration. We further show that the type II migration of a Jupiter mass planet actually depends on its accretion rate. Only when the accretion is high do we retrieve the classical picture where no gas crosses the gap and the planet follows the disc spreading. These results impact our understanding of planet migration and planet population synthesis models. The e-poster presenting these results in French can be found here: L'e-poster présentant ces résultats en français est disponible à cette adresse: http://sf2a.eu/semaine-sf2a/2016/posterpdfs/156_179_49.pdf.

  13. A planet in a polar orbit of 1.4 solar-mass star

    Directory of Open Access Journals (Sweden)

    Guenther E.W.

    2015-01-01

    Full Text Available Although more than a thousand transiting extrasolar planets have been discovered, only very few of them orbit stars that are more massive than the Sun. The discovery of such planets is interesting, because they have formed in disks that are more massive but had a shorter life time than those of solar-like stars. Studies of planets more massive than the Sun thus tell us how the properties of the proto-planetary disks effect the formation of planets. Another aspect that makes these planets interesting is that they have kept their original orbital inclinations. By studying them we can thus find out whether the orbital axes planets are initially aligned to the stars rotational axes, or not. Here we report on the discovery of a planet of a 1.4 solar-mass star with a period of 5.6 days in a polar orbit made by CoRoT. This new planet thus is one of the few known close-in planets orbiting a star that is substantially more massive than the Sun.

  14. MASSIVE: A Bayesian analysis of giant planet populations around low-mass stars

    CERN Document Server

    Lannier, J; Lagrange, A M; Borgniet, S; Rameau, J; Schlieder, J E; Gagné, J; Bonavita, M A; Malo, L; Chauvin, G; Bonnefoy, M; Girard, J H

    2016-01-01

    Direct imaging has led to the discovery of several giant planet and brown dwarf companions. These imaged companions populate a mass, separation and age domain (mass>1MJup, orbits>5AU, age2MJup might be independent from the mass of the host star.

  15. The Mass of Kepler-93b and The Composition of Terrestrial Planets

    CERN Document Server

    Dressing, Courtney D; Dumusque, Xavier; Gettel, Sara; Pepe, Francesco; Cameron, Andrew Collier; Latham, David W; Molinari, Emilio; Udry, Stephane; Affer, Laura; Bonomo, Aldo S; Buchhave, Lars A; Cosentino, Rosario; Figueira, Pedro; Fiorenzano, Aldo F M; Harutyunyan, Avet; Haywood, Raphaelle D; Johnson, John Asher; Lopez-Morales, Mercedes; Lovis, Christophe; Malavolta, Luca; Mayor, Michel; Micela, Giusi; Motalebi, Fatemeh; Nascimbeni, Valerio; Phillips, David F; Piotto, Giampaolo; Pollacco, Don; Queloz, Didier; Rice, Ken; Sasselov, Dimitar; Segransan, Damien; Sozzetti, Alessandro; Szentgyorgyi, Andrew; Watson, Chris

    2014-01-01

    Kepler-93b is a 1.478 +/- 0.019 Earth radius planet with a 4.7 day period around a bright (V=10.2), astroseismically-characterized host star with a mass of 0.911+/-0.033 solar masses and a radius of 0.919+/-0.011 solar radii. Based on 86 radial velocity observations obtained with the HARPS-N spectrograph on the Telescopio Nazionale Galileo and 32 archival Keck/HIRES observations, we present a precise mass estimate of 4.02+/-0.68 Earth masses. The corresponding high density of 6.88+/-1.18 g/cc is consistent with a rocky composition of primarily iron and magnesium silicate. We compare Kepler-93b to other dense planets with well-constrained parameters and find that between 1-6 Earth masses, all dense planets including the Earth and Venus are well-described by the same fixed ratio of iron to magnesium silicate. There are as of yet no examples of such planets with masses > 6 Earth masses: All known planets in this mass regime have lower densities requiring significant fractions of volatiles or H/He gas. We also co...

  16. The Europa Jupiter System Mission

    Science.gov (United States)

    Hendrix, A. R.; Clark, K.; Erd, C.; Pappalardo, R.; Greeley, R. R.; Blanc, M.; Lebreton, J.; van Houten, T.

    2009-05-01

    formation and evolution of gas giant planets and their satellites will be better known. Most important, EJSM will shed new light on the potential for the emergence of life in the celestial neighborhood and beyond. The EJSM mission architecture provides opportunities for coordinated synergistic observations by JEO and JGO of the Jupiter and Ganymede magnetospheres, the volcanoes and torus of Io, the atmosphere of Jupiter, and comparative planetology of icy satellites. Each spacecraft could and would conduct "stand-alone" measurements, including the detailed investigation of Europa and Ganymede, providing significant programmatic flexibility. Although engineering advances are needed for JEO (radiation designs) and JGO, no new technologies will be required to execute either EJSM mission element. The development schedule for the mission is such that a technology developed by 2012 - 2013 could easily be incorporated if it enhances the mission capability. Risk mitigation activities are under way to ensure that the radiation designs are implemented in the lowest-risk approach. The baseline mission concepts include robust mass and power margins.

  17. THE MASS OF Kepler-93b AND THE COMPOSITION OF TERRESTRIAL PLANETS

    Energy Technology Data Exchange (ETDEWEB)

    Dressing, Courtney D.; Charbonneau, David; Dumusque, Xavier; Gettel, Sara; Latham, David W.; Buchhave, Lars A.; Johnson, John Asher; Lopez-Morales, Mercedes [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Pepe, Francesco; Udry, Stéphane; Lovis, Christophe [Observatoire Astronomique de l' Université de Genève, 51 ch. des Maillettes, 1290 Versoix (Switzerland); Collier Cameron, Andrew; Haywood, Raphaëlle D. [SUPA, School of Physics and Astronomy, University of St. Andrews, North Haugh, St. Andrews Fife KY16 9SS (United Kingdom); Molinari, Emilio; Cosentino, Rosario; Fiorenzano, Aldo F. M.; Harutyunyan, Avet [INAF - Fundación Galileo Galilei, Rambla José Ana Fernandez Pérez 7, E-38712 Breña Baja (Spain); Affer, Laura [INAF - Osservatorio Astronomico di Palermo, Piazza del Parlamento 1, I-90124 Palermo (Italy); Bonomo, Aldo S. [INAF - Osservatorio Astrofisico di Torino, via Osservatorio 20, I-10025 Pino Torinese (Italy); Figueira, Pedro, E-mail: cdressing@cfa.harvard.edu [Centro de Astrofìsica, Universidade do Porto, Rua das Estrelas, 4150-762 Porto (Portugal); and others

    2015-02-20

    Kepler-93b is a 1.478 ± 0.019 R {sub ⊕} planet with a 4.7 day period around a bright (V = 10.2), astroseismically characterized host star with a mass of 0.911 ± 0.033 M {sub ☉} and a radius of 0.919 ± 0.011 R {sub ☉}. Based on 86 radial velocity observations obtained with the HARPS-N spectrograph on the Telescopio Nazionale Galileo and 32 archival Keck/HIRES observations, we present a precise mass estimate of 4.02 ± 0.68 M {sub ⊕}. The corresponding high density of 6.88 ± 1.18 g cm{sup –3} is consistent with a rocky composition of primarily iron and magnesium silicate. We compare Kepler-93b to other dense planets with well-constrained parameters and find that between 1 and 6 M {sub ⊕}, all dense planets including the Earth and Venus are well-described by the same fixed ratio of iron to magnesium silicate. There are as of yet no examples of such planets with masses >6 M {sub ⊕}. All known planets in this mass regime have lower densities requiring significant fractions of volatiles or H/He gas. We also constrain the mass and period of the outer companion in the Kepler-93 system from the long-term radial velocity trend and archival adaptive optics images. As the sample of dense planets with well-constrained masses and radii continues to grow, we will be able to test whether the fixed compositional model found for the seven dense planets considered in this paper extends to the full population of 1-6 M {sub ⊕} planets.

  18. Giant Planets

    CERN Document Server

    Guillot, Tristan

    2014-01-01

    We review the interior structure and evolution of Jupiter, Saturn, Uranus and Neptune, and giant exoplanets with particular emphasis on constraining their global composition. Compared to the first edition of this review, we provide a new discussion of the atmospheric compositions of the solar system giant planets, we discuss the discovery of oscillations of Jupiter and Saturn, the significant improvements in our understanding of the behavior of material at high pressures and the consequences for interior and evolution models. We place the giant planets in our Solar System in context with the trends seen for exoplanets.

  19. Four new planets around giant stars and the mass-metallicity correlation of planet-hosting stars

    CERN Document Server

    Jones, M I; Brahm, R; Wittenmyer, R A; Olivares, F E; Melo, C H F; Rojo, P; Jordán, A; Drass, H; Butler, R P; Wang, L

    2016-01-01

    CONTEXT. Exoplanet searches have demonstrated that giant planets are preferentially found around metal-rich stars and that their fraction increases with the stellar mass. AIMS. During the past six years, we have conducted a radial velocity follow-up program of 166 giant stars, to detect substellar companions, and characterizing their orbital properties. Using this information, we aim to study the role of the stellar evolution in the orbital parameters of the companions, and to unveil possible correlations between the stellar properties and the occurrence rate of giant planets. METHODS. Using FEROS and CHIRON spectra, we have computed precision radial velocities and we have derived atmospheric and physical parameters for all of our targets. Additionally, velocities computed from UCLES spectra are presented here. By studying the periodic radial velocity signals, we have detected the presence of several substellar companions. RESULTS. We present four new planetary systems around the giant stars HIP8541, HIP74890...

  20. A Correlation Between Stellar Activity and the Surface Gravity of Hot Jupiters

    CERN Document Server

    Hartman, Joel D

    2010-01-01

    Recently Knutson et al. (2010) have demonstrated a correlation between the presence of temperature inversions in the atmospheres of hot Jupiters, and the chromospheric activity levels of the host stars. Here we show that there is also a correlation, with greater than 99.5% confidence, between the surface gravity of hot Jupiters and the activity levels of the host stars, such that high surface gravity planets tend be found around high activity stars. We also find a less significant positive correlation between planet mass and chromospheric activity, but no significant correlation is seen between planet radius and chromospheric activity. We consider the possibility that this may be due to an observational bias against detecting lower mass planets around higher activity stars, but conclude that this bias is only likely to affect the detection of planets much smaller than those considered here. Finally, we speculate on physical origins for the correlation, including the possibility that the effect of stellar inso...

  1. Accurate Empirical Radii and Masses of Planets and Their Host Stars with Gaia Parallaxes

    Science.gov (United States)

    Stassun, Keivan G.; Collins, Karen A.; Gaudi, B. Scott

    2017-03-01

    We present empirical measurements of the radii of 116 stars that host transiting planets. These radii are determined using only direct observables—the bolometric flux at Earth, the effective temperature, and the parallax provided by the Gaia first data release—and thus are virtually model independent, with extinction being the only free parameter. We also determine each star’s mass using our newly determined radius and the stellar density, a virtually model independent quantity itself from previously published transit analyses. These stellar radii and masses are in turn used to redetermine the transiting-planet radii and masses, again using only direct observables. The median uncertainties on the stellar radii and masses are 8% and 30%, respectively, and the resulting uncertainties on the planet radii and masses are 9% and 22%, respectively. These accuracies are generally larger than previously published model-dependent precisions of 5% and 6% on the planet radii and masses, respectively, but the newly determined values are purely empirical. We additionally report radii for 242 stars hosting radial-velocity (non-transiting) planets, with a median achieved accuracy of ≈2%. Using our empirical stellar masses we verify that the majority of putative “retired A stars” in the sample are indeed more massive than ∼1.2 {M}ȯ . Most importantly, the bolometric fluxes and angular radii reported here for a total of 498 planet host stars—with median accuracies of 1.7% and 1.8%, respectively—serve as a fundamental data set to permit the re-determination of transiting-planet radii and masses with the Gaia second data release to ≈3% and ≈5% accuracy, better than currently published precisions, and determined in an entirely empirical fashion.

  2. A Day on Jupiter (Animation)

    Science.gov (United States)

    2007-01-01

    This 'movie' strings 11 images of Jupiter captured by the New Horizons Long Range Reconnaissance Imager (LORRI) on January 9, 2007, when the spacecraft was about 80 million kilometers (49.6 million miles) from the giant planet. The sequence covers a full 10-hour rotation of Jupiter, during which the moons Ganymede and Io -- as well as the shadows they cast on Jupiter -- move across the camera's field of view.

  3. Mg/Si Mineralogical Ratio of Low-Mass Planet Hosts. Correction for the NLTE Effects

    Science.gov (United States)

    Adibekyan, V.; Gonçalves da Silva, H. M.; Sousa, S. G.; Santos, N. C.; Delgado Mena, E.; Hakobyan, A. A.

    2017-09-01

    Mg/Si and Fe/Si ratios are important parameters that control the composition of rocky planets. In this work we applied non-LTE correction to the Mg and Si abundances of stars with and without planets to confirm/reject our previous findings that [Mg/Si] atmospheric abundance is systematically higher for Super-Earth/Neptune-mass planet hosts than stars without planets. Our results show that the small differences of stellar parameters observed in these two groups of stars are not responsible for the already reported difference in the [Mg/Si] ratio. Thus, the high [Mg/Si] ratio of Neptunian hosts is probably related to the formation efficiency of these planets in such environments.

  4. The HARPS search for southern extra-solar planets. XVII. Super-Earth and Neptune-mass planets in multiple planet systems HD47186 and HD181433

    CERN Document Server

    Bouchy, F; Lovis, C; Udry, S; Benz, W; Bertaux, J-L; Delfosse, X; Mordasini, C; Pepe, F; Queloz, D; Ségransan, D

    2008-01-01

    This paper reports on the detection of two new multiple planet systems around solar-like stars HD47186 and HD181433. The first system includes a hot Neptune of 22.78 M_Earth at 4.08-days period and a Saturn of 0.35 M_Jup at 3.7-years period. The second system includes a Super-Earth of 7.5 M_Earth at 9.4-days period, a 0.64 M$_Jup at 2.6-years period as well as a third companion of 0.54 M_Jup with a period of about 6 years. These detections increase to 20 the number of close-in low-mass exoplanets (below 0.1 M_Jup) and strengthen the fact that 80% of these planets are in a multiple planetary systems.

  5. Mars - an escaping planet?

    CERN Document Server

    Dvorak, R

    2005-01-01

    The chaotic behaviour of the motion of the planets in our Solar System is well established. Numerical experiments with a modified Solar System consisting of a more massive Earth have shown, that for special values of an enlargement factor K around 5 the dynamical state of a truncated planetary system (excluding Mercury and the outer planets Uranus and Neptune) is highly chaotic. On the contrary for values of the mass of the Earth up to the mass of Saturn no irregular dynamical behaviour was observed. We extended our investigations to the complete planetary system and showed, that this chaotic window found before still exists. Tests in different 'Solar Systems' showed that only including Jupiter and Saturn with their actual masses together with a 'massive' Earth (between 4 and 6 times more massive) destabilize the orbit of Mars so that even escapes from the system are possible.

  6. Exoplanet dynamics. Asynchronous rotation of Earth-mass planets in the habitable zone of lower-mass stars.

    Science.gov (United States)

    Leconte, Jérémy; Wu, Hanbo; Menou, Kristen; Murray, Norman

    2015-02-06

    Planets in the habitable zone of lower-mass stars are often assumed to be in a state of tidally synchronized rotation, which would considerably affect their putative habitability. Although thermal tides cause Venus to rotate retrogradely, simple scaling arguments tend to attribute this peculiarity to the massive Venusian atmosphere. Using a global climate model, we show that even a relatively thin atmosphere can drive terrestrial planets' rotation away from synchronicity. We derive a more realistic atmospheric tide model that predicts four asynchronous equilibrium spin states, two being stable, when the amplitude of the thermal tide exceeds a threshold that is met for habitable Earth-like planets with a 1-bar atmosphere around stars more massive than ~0.5 to 0.7 solar mass. Thus, many recently discovered terrestrial planets could exhibit asynchronous spin-orbit rotation, even with a thin atmosphere.

  7. Star Masses and Star-Planet Distances for Earth-like Habitability.

    Science.gov (United States)

    Waltham, David

    2017-01-01

    This paper presents statistical estimates for the location and duration of habitable zones (HZs) around stars of different mass. The approach is based upon the assumption that Earth's location, and the Sun's mass, should not be highly atypical of inhabited planets. The results support climate-model-based estimates for the location of the Sun's HZ except models giving a present-day outer-edge beyond 1.64 AU. The statistical approach also demonstrates that there is a habitability issue for stars smaller than 0.65 solar masses since, otherwise, Earth would be an extremely atypical inhabited world. It is difficult to remove this anomaly using the assumption that poor habitability of planets orbiting low-mass stars results from unfavorable radiation regimes either before, or after, their stars enter the main sequence. However, the anomaly is well explained if poor habitability results from tidal locking of planets in the HZs of small stars. The expected host-star mass for planets with intelligent life then has a 95% confidence range of 0.78 M⊙ < M < 1.04 M⊙, and the range for planets with at least simple life is 0.57 M⊙ < M < 1.64 M⊙. Key Words: Habitability-Habitable zone-Anthropic-Red dwarfs-Initial mass function. Astrobiology 17, 61-77.

  8. Star Masses and Star-Planet Distances for Earth-like Habitability

    Science.gov (United States)

    2017-01-01

    Abstract This paper presents statistical estimates for the location and duration of habitable zones (HZs) around stars of different mass. The approach is based upon the assumption that Earth's location, and the Sun's mass, should not be highly atypical of inhabited planets. The results support climate-model-based estimates for the location of the Sun's HZ except models giving a present-day outer-edge beyond 1.64 AU. The statistical approach also demonstrates that there is a habitability issue for stars smaller than 0.65 solar masses since, otherwise, Earth would be an extremely atypical inhabited world. It is difficult to remove this anomaly using the assumption that poor habitability of planets orbiting low-mass stars results from unfavorable radiation regimes either before, or after, their stars enter the main sequence. However, the anomaly is well explained if poor habitability results from tidal locking of planets in the HZs of small stars. The expected host-star mass for planets with intelligent life then has a 95% confidence range of 0.78 M⊙ planets with at least simple life is 0.57 M⊙ < M < 1.64 M⊙. Key Words: Habitability—Habitable zone—Anthropic—Red dwarfs—Initial mass function. Astrobiology 17, 61–77. PMID:28103107

  9. The First Kepler Mission Planet Confirmed With The Hobby-Eberly Telescope: Kepler-15b, a Hot Jupiter Enriched In Heavy Elements

    CERN Document Server

    Endl, Michael; Cochran, William D; Brugamyer, Erik; Buchhave, Lars A; Rowe, Jason; Lucas, Phillip; Issacson, Howard; Bryson, Steve; Howell, Steve B; Fortney, Jonathan J; Hansen, Terese; Borucki, William J; Caldwell, Douglas; Christiansen, Jessie L; Ciardi, David R; Demory, Brice-Olivier; Everett, Mark; Ford, Eric B; Haas, Michael R; Holman, Matthew J; Horch, Elliot; Jenkins, Jon M; Koch, David J; Lissauer, Jack J; Machalek, Pavel; Still, Martin; Welsh, William F; Sanderfer, Dwight T; Seader, Shawn E; Smith, Jeffrey C; Thompson, Susan E; Twicken, Joseph D

    2011-01-01

    We report the discovery of Kepler-15b, a new transiting exoplanet detected by NASA's Kepler mission. The transit signal with a period of 4.94 days was detected in the quarter 1 (Q1) Kepler photometry. For the first time, we have used the High-Resolution-Spectrograph (HRS) at the Hobby-Eberly Telescope (HET) to determine the mass of a Kepler planet via precise radial velocity (RV) measurements. The 24 HET/HRS radial velocities (RV) and 6 additional measurements from the FIES spectrograph at the Nordic Optical Telescope (NOT) reveal a Doppler signal with the same period and phase as the transit ephemeris. We used one HET/HRS spectrum of Kepler-15 taken without the iodine cell to determine accurate stellar parameters. The host star is a metal-rich ([Fe/H]=0.36+/-0.07) G-type main sequence star with T_eff=5515+/-124 K. The amplitude of the RV-orbit yields a mass of the planet of 0.66+/-0.1 M_Jup. The planet has a radius of 0.96+/-0.06 R_Jup and a mean bulk density of 0.9+/-0.2 g/cm^3. The planetary radius resides...

  10. ELODIE metallicity-biased search for transiting Hot Jupiters. IV. Intermediate period planets orbiting the stars HD 43691 and HD 132406

    Science.gov (United States)

    da Silva, R.; Udry, S.; Bouchy, F.; Moutou, C.; Mayor, M.; Beuzit, J.-L.; Bonfils, X.; Delfosse, X.; Desort, M.; Forveille, T.; Galland, F.; Hébrard, G.; Lagrange, A.-M.; Loeillet, B.; Lovis, C.; Pepe, F.; Perrier, C.; Pont, F.; Queloz, D.; Santos, N. C.; Ségransan, D.; Sivan, J.-P.; Vidal-Madjar, A.; Zucker, S.

    2007-10-01

    We report here the discovery of two planet candidates as a result of our planet-search programme biased in favour of high-metallicity stars, using the ELODIE spectrograph at the Observatoire de Haute Provence. One candidate has a minimum mass m_2 sin i = 2.5 M_Jup and is orbiting the metal-rich star HD 43691 with period P = 40 days and eccentricity e=0.14. The other planet has a minimum mass m_2 sin{i} = 5.6 M_Jup and orbits the slightly metal-rich star HD 132406 with period P=974 days and eccentricity e = 0.34. Additional observations for both stars were performed using the new SOPHIE spectrograph that replaces the ELODIE instrument, allowing an improved orbital solution for the systems. Based on radial velocities collected with the ELODIE spectrograph mounted on the 193-cm telescope at the Observatoire de Haute Provence, France. Additional observations were made using the new SOPHIE spectrograph (run 06B.PNP.CONS) that replaces ELODIE.

  11. The CRIRES Search for Planets Around the Lowest-Mass Stars. II. No Giant Planet Orbiting VB10

    CERN Document Server

    Bean, Jacob L; Hartman, Henrik; Nilsson, Hampus; Reiners, Ansgar; Dreizler, Stefan; Henry, Todd J; Wiedemann, Guenter

    2009-01-01

    We present radial velocities of the very low-mass star VB10 obtained over a time span of 0.61 yr as part of an ongoing search for planets around stars at the end of the main sequence. The radial velocities were measured from high-resolution near-infrared spectra obtained using the CRIRES instrument on the VLT with an ammonia gas cell. The typical internal precision of the measurements is 10 m/s. These data do not exhibit significant variability and are essentially constant at a level consistent with the measurement uncertainties. Therefore, we do not detect the radial velocity variations of VB10 expected due to the presence of an orbiting giant planet similar to that recently proposed by Pravdo and Shaklan based on apparent astrometric perturbations. In addition, we do not confirm the ~1 km/s radial velocity variability of the star tentatively detected by Zapatero Osorio and colleagues with lower precision measurements. Our measurements rule out planets with M > 3 M_Jup and the orbital period and inclination ...

  12. The mass of planet GJ 676A b from ground-based astrometry. A planetary system with two mature gas giants suitable for direct imaging

    Science.gov (United States)

    Sahlmann, J.; Lazorenko, P. F.; Ségransan, D.; Astudillo-Defru, N.; Bonfils, X.; Delfosse, X.; Forveille, T.; Hagelberg, J.; Lo Curto, G.; Pepe, F.; Queloz, D.; Udry, S.; Zimmerman, N. T.

    2016-11-01

    The star GJ 676A is an M0 dwarf hosting both gas-giant and super-Earth-type planets that were discovered with radial-velocity measurements. Using FORS2/VLT, we obtained position measurements of the star in the plane of the sky that tightly constrain its astrometric reflex motion caused by the super-Jupiter planet "b" in a 1052-day orbit. This allows us to determine the mass of this planet to be , which is 40% higher than the minimum mass inferred from the radial-velocity orbit. Using new HARPS radial-velocity measurements, we improve upon the orbital parameters of the inner low-mass planets "d" and "e" and we determine the orbital period of the outer giant planet "c" to be Pc = 7340 days under the assumption of a circular orbit. The preliminary minimum mass of planet "c" is Mcsini = 6.8 MJ with an upper limit of 39 MJ that we set using NACO/VLT high-contrast imaging. We also determine precise parallaxes and relative proper motions for both GJ 676A and its wide M3 companion GJ 676B. Although the system is probably quite mature, the masses and projected separations ( 0.̋1-0.̋4) of planets "b" and "c" make them promising targets for direct imaging with future instruments in space and on extremely large telescopes. In particular, we estimate that GJ 676A b and GJ 676A c are promising targets for directly detecting their reflected light with the WFIRST space mission. Our study demonstrates the synergy of radial-velocity and astrometric surveys that is necessary to identify the best targets for such a mission. Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere under ESO programmes 385.C-0416 (A,B), 086.C-0515(A), 089.C-0115(D,E), 072.C-0488(E), 180.C-0886(A), 183.C-0437(A), 085.C-0019(A), 091.C-0034(A), 095.C-0551(A), 096.C-0460(A).Full Table A.2 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/595/A77

  13. Maps and Masses of Transiting Exoplanets: Towards New Insights into Atmospheric and Interior Properties of Planets

    CERN Document Server

    de Wit, Julien

    2015-01-01

    With over 1800 planets discovered outside of the Solar System in the past two decades, the field of exoplanetology has broadened our perspective on planetary systems. Research priorities are now moving from planet detection to planet characterization. In this context, transiting exoplanets are of special interest due to the wealth of data made available by their orbital configuration. Here, I introduce two methods to gain new insights into the atmospheric and interior properties of exoplanets. The first method aims to map an exoplanet's atmosphere based on the scanning obtained while it is occulted by its host star. I introduce the basics of eclipse mapping, its caveats, and a framework to mitigate their effects via global analyses including transits, phase curves, and radial velocity measurements. I use this method to create the first 2D map and the first cloud map of an exoplanet for the hot-Jupiters HD189733b and Kepler-7b, respectively. Ultimately temperature, composition, and circulation patterns could b...

  14. Measurement of planet masses with transit timing variations due to synodic "chopping" effects

    CERN Document Server

    Deck, Katherine M

    2014-01-01

    Gravitational interactions between planets in transiting exoplanetary systems lead to variations in the times of transit that are diagnostic of the planetary masses and the dynamical state of the system. Here we show that synodic "chopping" contributions to these transit timing variations (TTVs) can be used to uniquely measure the masses of planets without full dynamical analyses involving direct integration of the equations of motion. We present simple analytic formulae for the chopping signal, which are valid (generally <10% error) for modest eccentricities e <~ 0.1. Importantly, these formulae primarily depend on the mass of the perturbing planet, and therefore the chopping signal can be used to break the mass/free-eccentricity degeneracy which can appear for systems near first order mean motion resonances. Using a harmonic analysis, we apply these TTV formulae to a number of Kepler systems which had been previously analyzed with full dynamical analyses. We show that when chopping is measured, the ma...

  15. Jupiter's Role in Sculpting the Early Solar System

    Science.gov (United States)

    Naoz, Smadar

    2015-03-01

    Recent observations made by the Kepler space mission, combined with statistical analysis of existing ground and space-based data, have shown that planets somewhat bigger than the Earth - but substantially smaller than Jupiter - ;are extremely common in our Galaxy (1-4). These systems are typically found to be tightly packed, nearly coplanar, and have nearly circular orbits. Furthermore, these planets tend to have very short-period orbits, ranging from days to months. In contrast, our innermost planet, Mercury, orbits the Sun once every 88 d. Thus, taken at face value, these observations imply that the architecture of our Solar System is unique compared with the galactic population. In other words, why are there no short-period planets in our Solar System? In PNAS, Batygin and Laughlin (5) demonstrate that Jupiter is to blame. In particular, Jupiter's inward-followed-by-outward migration during the Solar System's early evolution could have driven a collisional cascade that would grind planetesimals to smaller size. Gas drag, which dominates these small planetesimals, may then have driven preexisting short-period planets into the Sun. Thus, Batygin and Laughlin (5) suggest that the terrestrial planets in our Solar System are in fact "second-generation planets," which formed after the first short-period planets were destroyed, in mass-dispersed, gas-depleted conditions (see Fig. 1 for the description of the scenario). The developed model suggests that systems with short-period Earth and super-Earth planets are anticorrelated with the existence of giant planets within the same system.

  16. SOPHIE velocimetry of Kepler transit candidates. XV. KOI-614b, KOI-206b, and KOI-680b: a massive warm Jupiter orbiting a G0 metallic dwarf and two highly inflated planets with a distant companion around evolved F-type stars

    CERN Document Server

    Almenara, J M; Bouchy, F; Havel, M; Bruno, G; Hébrard, G; Diaz, R F; Deleuil, M; Barros, S C C; Boisse, I; Bonomo, A; Montagnier, G; Santerne, A

    2015-01-01

    We report the validation and characterization of three new transiting exoplanets using SOPHIE radial velocities: KOI-614b, KOI-206b, and KOI-680b. KOI-614b has a mass of $2.86\\pm0.35~{\\rm M_{Jup}}$ and a radius of $1.13^{+0.26}_{-0.18}~{\\rm R_{Jup}}$, and it orbits a G0, metallic ([Fe/H]=$0.35\\pm0.15$) dwarf in 12.9 days. Its mass and radius are familiar and compatible with standard planetary evolution models, so it is one of the few known transiting planets in this mass range to have an orbital period over ten days. With an equilibrium temperature of $T_{eq}=1000 \\pm 45$ K, this places KOI-614b at the transition between what is usually referred to as "hot" and "warm" Jupiters. KOI-206b has a mass of $2.82\\pm 0.52~{\\rm M_{Jup}}$ and a radius of $1.45\\pm0.16~{\\rm R_{Jup}}$, and it orbits a slightly evolved F7-type star in a 5.3-day orbit. It is a massive inflated hot Jupiter that is particularly challenging for planetary models because it requires unusually large amounts of additional dissipated energy in the ...

  17. Star Masses and Star-Planet Distances for Earth-like Habitability

    Science.gov (United States)

    Waltham, David

    2017-01-01

    This paper presents statistical estimates for the location and duration of habitable zones (HZs) around stars of different mass. The approach is based upon the assumption that Earth's location, and the Sun's mass, should not be highly atypical of inhabited planets. The results support climate-model-based estimates for the location of the Sun's HZ except models giving a present-day outer-edge beyond 1.64 AU. The statistical approach also demonstrates that there is a habitability issue for stars smaller than 0.65 solar masses since, otherwise, Earth would be an extremely atypical inhabited world. It is difficult to remove this anomaly using the assumption that poor habitability of planets orbiting low-mass stars results from unfavorable radiation regimes either before, or after, their stars enter the main sequence. However, the anomaly is well explained if poor habitability results from tidal locking of planets in the HZs of small stars. The expected host-star mass for planets with intelligent life then has a 95% confidence range of 0.78 M⊙ planets with at least simple life is 0.57 M⊙ < M < 1.64 M⊙.

  18. Planet hunters. VII. Discovery of a new low-mass, low-density planet (PH3 C) orbiting Kepler-289 with mass measurements of two additional planets (PH3 B and D)

    Energy Technology Data Exchange (ETDEWEB)

    Schmitt, Joseph R.; Fischer, Debra A.; Wang, Ji; Margossian, Charles; Brewer, John M.; Giguere, Matthew J. [Department of Astronomy, Yale University, New Haven, CT 06511 (United States); Agol, Eric [Department of Astronomy, Box 351580, University of Washington, Seattle, WA 98195 (United States); Deck, Katherine M. [Department of Physics and Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 (United States); Rogers, Leslie A. [Department of Astronomy and Division of Geological and Planetary Sciences, California Institute of Technology, MC249-17, 1200 East California Boulevard, Pasadena, CA 91125 (United States); Gazak, J. Zachary [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); Holman, Matthew J. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Jek, Kian J.; Omohundro, Mark R.; Winarski, Troy; Lintott, Chris; Simpson, Robert [Oxford Astrophysics, Denys Wilkinson Building, Keble Road, Oxford OX1 3RH (United Kingdom); Lynn, Stuart; Parrish, Michael [Adler Planetarium, 1300 South Lake Shore Drive, Chicago, IL 60605 (United States); Schawinski, Kevin [Institute for Astronomy, Department of Physics, ETH Zurich, Wolfgang-Pauli-Strasse 16, CH-8093 Zurich (Switzerland); Schwamb, Megan E., E-mail: joseph.schmitt@yale.edu [Institute of Astronomy and Astrophysics, Academia Sinica: 11F Astronomy-Mathematics Building, National Taiwan University. No.1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan (China); and others

    2014-11-10

    We report the discovery of one newly confirmed planet (P = 66.06 days, R {sub P} = 2.68 ± 0.17 R {sub ⊕}) and mass determinations of two previously validated Kepler planets, Kepler-289 b (P = 34.55 days, R {sub P} = 2.15 ± 0.10 R {sub ⊕}) and Kepler-289-c (P = 125.85 days, R {sub P} = 11.59 ± 0.10 R {sub ⊕}), through their transit timing variations (TTVs). We also exclude the possibility that these three planets reside in a 1:2:4 Laplace resonance. The outer planet has very deep (∼1.3%), high signal-to-noise transits, which puts extremely tight constraints on its host star's stellar properties via Kepler's Third Law. The star PH3 is a young (∼1 Gyr as determined by isochrones and gyrochronology), Sun-like star with M {sub *} = 1.08 ± 0.02 M {sub ☉}, R {sub *} = 1.00 ± 0.02 R {sub ☉}, and T {sub eff} = 5990 ± 38 K. The middle planet's large TTV amplitude (∼5 hr) resulted either in non-detections or inaccurate detections in previous searches. A strong chopping signal, a shorter period sinusoid in the TTVs, allows us to break the mass-eccentricity degeneracy and uniquely determine the masses of the inner, middle, and outer planets to be M = 7.3 ± 6.8 M {sub ⊕}, 4.0 ± 0.9M {sub ⊕}, and M = 132 ± 17 M {sub ⊕}, which we designate PH3 b, c, and d, respectively. Furthermore, the middle planet, PH3 c, has a relatively low density, ρ = 1.2 ± 0.3 g cm{sup –3} for a planet of its mass, requiring a substantial H/He atmosphere of 2.1{sub −0.3}{sup +0.8}% by mass, and joins a growing population of low-mass, low-density planets.

  19. The Effect of Planets Beyond the Ice Line on the Accretion of Volatiles by Habitable-Zone Rocky Planets

    CERN Document Server

    Quintana, Elisa V

    2014-01-01

    Models of planet formation have shown that giant planets have a large impact on the number, masses and orbits of terrestrial planets that form. In addition, they play an important role in delivering volatiles from material that formed exterior to the snow-line (the region in the disk beyond which water ice can condense) to the inner region of the disk where terrestrial planets can maintain liquid water on their surfaces. We present simulations of the late stages of terrestrial planet formation from a disk of protoplanets around a solar-type star, and we include a massive planet (from 1 Earth mass to 1 Jupiter mass) in Jupiter's orbit at ~5.2 AU in all but one set of simulations. Two initial disk models are examined with the same mass distribution and total initial water content, but with different distributions of water content. We compare the accretion rates and final water mass fraction of the planets that form. Remarkably, all of the planets that formed in our simulations without giant planets were water-r...

  20. Discovery and spectroscopy of the young Jovian planet 51 Eri b with the Gemini Planet Imager

    CERN Document Server

    Macintosh, B; Barman, T; De Rosa, R J; Konopacky, Q; Marley, M S; Marois, C; Nielsen, E L; Pueyo, L; Rajan, A; Rameau, J; Saumon, D; Wang, J J; Ammons, M; Arriaga, P; Artigau, E; Beckwith, S; Brewster, J; Bruzzone, S; Bulger, J; Burningham, B; Burrows, A S; Chen, C; Chiang, E; Chilcote, J K; Dawson, R I; Dong, R; Doyon, R; Draper, Z H; Duchêne, G; Esposito, T M; Fabrycky, D; Fitzgerald, M P; Follette, K B; Fortney, J J; Gerard, B; Goodsell, S; Greenbaum, A Z; Hibon, P; Hinkley, S; Hufford, T; Hung, L -W; Ingraham, P; Johnson-Groh, M; Kalas, P; Lafreniere, D; Larkin, J E; Lee, J; Line, M; Long, D; Maire, J; Marchis, F; Matthews, B C; Max, C E; Metchev, S; Millar-Blanchaer, M A; Mittal, T; Morley, C V; Morzinski, K M; Murray-Clay, R; Oppenheimer, R; Palmer, D W; Patel, R; Patience, J; Perrin, M D; Poyneer, L A; Rafikov, R R; Rantakyrö, F T; Rice, E; Rojo, P; Rudy, A R; Ruffio, J -B; Ruiz, M T; Sadakuni, N; Saddlemyer, L; Salama, M; Savransky, D; Schneider, A C; Sivaramakrishnan, A; Song, I; Soummer, R; Thomas, S; Vasisht, G; Wallace, J K; Ward-Duong, K; Wiktorowicz, S J; Wolff, S G; Zuckerman, B

    2015-01-01

    Directly detecting thermal emission from young extrasolar planets allows measurement of their atmospheric composition and luminosity, which is influenced by their formation mechanism. Using the Gemini Planet Imager, we discovered a planet orbiting the \\$sim$20 Myr-old star 51 Eridani at a projected separation of 13 astronomical units. Near-infrared observations show a spectrum with strong methane and water vapor absorption. Modeling of the spectra and photometry yields a luminosity of L/LS=1.6-4.0 x 10-6 and an effective temperature of 600-750 K. For this age and luminosity, "hot-start" formation models indicate a mass twice that of Jupiter. This planet also has a sufficiently low luminosity to be consistent with the "cold- start" core accretion process that may have formed Jupiter.

  1. Discovery and spectroscopy of the young jovian planet 51 Eri b with the Gemini Planet Imager.

    Science.gov (United States)

    Macintosh, B; Graham, J R; Barman, T; De Rosa, R J; Konopacky, Q; Marley, M S; Marois, C; Nielsen, E L; Pueyo, L; Rajan, A; Rameau, J; Saumon, D; Wang, J J; Patience, J; Ammons, M; Arriaga, P; Artigau, E; Beckwith, S; Brewster, J; Bruzzone, S; Bulger, J; Burningham, B; Burrows, A S; Chen, C; Chiang, E; Chilcote, J K; Dawson, R I; Dong, R; Doyon, R; Draper, Z H; Duchêne, G; Esposito, T M; Fabrycky, D; Fitzgerald, M P; Follette, K B; Fortney, J J; Gerard, B; Goodsell, S; Greenbaum, A Z; Hibon, P; Hinkley, S; Cotten, T H; Hung, L-W; Ingraham, P; Johnson-Groh, M; Kalas, P; Lafreniere, D; Larkin, J E; Lee, J; Line, M; Long, D; Maire, J; Marchis, F; Matthews, B C; Max, C E; Metchev, S; Millar-Blanchaer, M A; Mittal, T; Morley, C V; Morzinski, K M; Murray-Clay, R; Oppenheimer, R; Palmer, D W; Patel, R; Perrin, M D; Poyneer, L A; Rafikov, R R; Rantakyrö, F T; Rice, E L; Rojo, P; Rudy, A R; Ruffio, J-B; Ruiz, M T; Sadakuni, N; Saddlemyer, L; Salama, M; Savransky, D; Schneider, A C; Sivaramakrishnan, A; Song, I; Soummer, R; Thomas, S; Vasisht, G; Wallace, J K; Ward-Duong, K; Wiktorowicz, S J; Wolff, S G; Zuckerman, B

    2015-10-02

    Directly detecting thermal emission from young extrasolar planets allows measurement of their atmospheric compositions and luminosities, which are influenced by their formation mechanisms. Using the Gemini Planet Imager, we discovered a planet orbiting the ~20-million-year-old star 51 Eridani at a projected separation of 13 astronomical units. Near-infrared observations show a spectrum with strong methane and water-vapor absorption. Modeling of the spectra and photometry yields a luminosity (normalized by the luminosity of the Sun) of 1.6 to 4.0 × 10(-6) and an effective temperature of 600 to 750 kelvin. For this age and luminosity, "hot-start" formation models indicate a mass twice that of Jupiter. This planet also has a sufficiently low luminosity to be consistent with the "cold-start" core-accretion process that may have formed Jupiter.

  2. MOA 2011-BLG-028Lb: a Neptune-mass Microlensing Planet in the Galactic Bulge

    CERN Document Server

    Skowron, J; Poleski, R; Kozłowski, S; Szymański, M K; Wyrzykowski, Ł; Ulaczyk, K; Pietrukowicz, P; Pietrzyński, G; Soszyński, I; Abe, F; Bennett, D P; Bhattacharya, A; Bond, I A; Freeman, M; Fukui, A; Hirao, Y; Itow, Y; Koshimoto, N; Ling, C H; Masuda, K; Matsubara, Y; Muraki, Y; Nagakane, M; Ohnishi, K; Rattenbury, N; Saito, To; Sullivan, D J; Sumi, T; Suzuki, D; Tristram, P J; Yonehara, A; Dominik, M; Jørgensen, U G; Bozza, V; Harpsøe, K; Hundertmark, M; Skottfelt, J

    2015-01-01

    We present the discovery of a Neptune-mass planet orbiting a 0.8 +- 0.3 M_Sun star in the Galactic bulge. The planet manifested itself during the microlensing event MOA 2011-BLG-028/OGLE-2011-BLG-0203 as a low-mass companion to the lens star. The analysis of the light curve provides the measurement of the mass ratio: (1.2 +- 0.2) x 10^-4, which indicates the mass of the planet to be 12-60 Earth masses. The lensing system is located at 7.3 +- 0.7 kpc away from the Earth near the direction to Baade's Window. The projected separation of the planet, at the time of the microlensing event, was 3.1-5.2 AU. Although the "microlens parallax" effect is not detected in the light curve of this event, preventing the actual mass measurement, the uncertainties of mass and distance estimation are narrowed by the measurement of the source star proper motion on the OGLE-III images spanning eight years, and by the low amount of blended light seen, proving that the host star cannot be too bright and massive. We also discuss the ...

  3. Sharpening Up Jupiter

    Science.gov (United States)

    2008-10-01

    New image-correction technique delivers sharpest whole-planet ground-based picture ever A record two-hour observation of Jupiter using a superior technique to remove atmospheric blur has produced the sharpest whole-planet picture ever taken from the ground. The series of 265 snapshots obtained with the Multi-Conjugate Adaptive Optics Demonstrator (MAD) prototype instrument mounted on ESO's Very Large Telescope (VLT) reveal changes in Jupiter's smog-like haze, probably in response to a planet-wide upheaval more than a year ago. Sharpening Up Jupiter ESO PR Photo 33/08 Sharpening Up Jupiter Being able to correct wide field images for atmospheric distortions has been the dream of scientists and engineers for decades. The new images of Jupiter prove the value of the advanced technology used by MAD, which uses two or more guide stars instead of one as references to remove the blur caused by atmospheric turbulence over a field of view thirty times larger than existing techniques [1]. "This type of adaptive optics has a big advantage for looking at large objects, such as planets, star clusters or nebulae," says lead researcher Franck Marchis, from UC Berkeley and the SETI Institute in Mountain View, California, USA. "While regular adaptive optics provides excellent correction in a small field of view, MAD provides good correction over a larger area of sky. And in fact, were it not for MAD, we would not have been able to perform these amazing observations." MAD allowed the researchers to observe Jupiter for almost two hours on 16 and 17 August 2008, a record duration, according to the observing team. Conventional adaptive optics systems using a single Jupiter moon as reference cannot monitor Jupiter for so long because the moon moves too far from the planet. The Hubble Space Telescope cannot observe Jupiter continuously for more than about 50 minutes, because its view is regularly blocked by the Earth during Hubble's 96-minute orbit. Using MAD, ESO astronomer Paola Amico

  4. Understanding Jupiter's Interior

    CERN Document Server

    Militzer, Burkhard; Wahl, Sean M; Hubbard, William

    2016-01-01

    This article provides an overview of how models of giant planet interiors are constructed. We review measurements from past space missions that provide constraints for the interior structure of Jupiter. We discuss typical three-layer interior models that consist of a dense central core and an inner metallic and an outer molecular hydrogen-helium layer. These models rely heavily on experiments, analytical theory, and first-principle computer simulations of hydrogen and helium to understand their behavior up to the extreme pressures ~10 Mbar and temperatures ~10,000 K. We review the various equations of state used in Jupiter models and compare them with shock wave experiments. We discuss the possibility of helium rain, core erosion and double diffusive convection may have important consequences for the structure and evolution of giant planets. In July 2016 the Juno spacecraft entered orbit around Jupiter, promising high-precision measurements of the gravitational field that will allow us to test our understandi...

  5. SOPHIE velocimetry of Kepler transit candidates. XV. KOI-614b, KOI-206b, and KOI-680b: a massive warm Jupiter orbiting a G0 metallic dwarf and two highly inflated planets with a distant companion around evolved F-type stars

    Science.gov (United States)

    Almenara, J. M.; Damiani, C.; Bouchy, F.; Havel, M.; Bruno, G.; Hébrard, G.; Diaz, R. F.; Deleuil, M.; Barros, S. C. C.; Boisse, I.; Bonomo, A. S.; Montagnier, G.; Santerne, A.

    2015-03-01

    We report the validation and characterization of three new transiting exoplanets using SOPHIE radial velocities: KOI-614b, KOI-206b, and KOI-680b. KOI-614b has a mass of 2.86 ± 0.35 MJup and a radius of 1.13 +0.26-0.18 RJup, and it orbits a G0, metallic ([ Fe/H ] = 0.35 ± 0.15) dwarf in 12.9 days. Its mass and radius are familiar and compatible with standard planetary evolution models, so it is one of the few known transiting planets in this mass range to have an orbital period over ten days. With an equilibrium temperature of Teq = 1000 ± 45 K, this places KOI-614b at the transition between what is usually referred to as "hot" and "warm" Jupiters. KOI-206b has a mass of 2.82 ± 0.52 MJup and a radius of 1.45 ± 0.16 RJup, and it orbits a slightly evolved F7-type star in a 5.3-day orbit. It is a massive inflated hot Jupiter that is particularly challenging for planetary models because it requires unusually large amounts of additional dissipated energy in the planet. On the other hand, KOI-680b has a much lower mass of 0.84 ± 0.15 MJup and requires less extra-dissipation to explain its uncommonly large radius of 1.99 ± 0.18 RJup. It is one of the biggest transiting planets characterized so far, and it orbits a subgiant F9-star well on its way to the red giant stage, with an orbital period of 8.6 days. With host stars of masses of 1.46 ± 0.17 M⊙ and 1.54 ± 0.09 M⊙, respectively, KOI-206b, and KOI-680b are interesting objects for theories of formation and survival of short-period planets around stars more massive than the Sun. For those two targets, we also find signs of a possible distant additional companion in the system. Based on observations made with SOPHIE on the 1.93-m telescope at the Observatoire de Haute-Provence (CNRS), France.Figures 11-14 are available in electronic form at http://www.aanda.org

  6. New strategy for planets serach in debris disks

    Science.gov (United States)

    Zakhozhay, O.

    2014-09-01

    Based on the modern theory of planet formation, planetary systems are formed in protoplanetary disks that could surround young stellar and substellar objects. Giant planets formation process starts at first 100 thousand years as a consequence of disk gravitational instability. Rocky planets form later, through the coagulation of planetesimals. Common feature in both types planets formation scenarios is that once planet reaches stable orbit (especially if orbit is circular), planet clears a gap in the disk along the planet's orbit. By the debris disk stage the gap opened by planet becomes optically thin. There are two observational methods to study the structure of debris disks: with an image and via an excess in stellar spectral energy distribution (SED) at the infrared. The image of such disk is the best way to detect the gap opened by planet and even the planet itself. It is almost impossible to detect the planet around the star by studying SED, due to the big difference of their luminosities. But it is possible to suspect planet based on the param- eters of the gap cleaned by planet, that could be derived based on the analysis of SED profile. The aim of present work is to investigate a possibility to detect planet in debris disk via SED profile analyze and to determine planets physical parameters that can be derived with this method. I will present the results of numerical calculations for systems with low-mass stellar and substellar objects at 1 Gyr. Debris disk particles radii vary from 0.1 microns to 1 meter; disk masses vary from 10**-16 to 0.05 masses of the star (that initially doesn't account extinction due to the gap opened by the planet). Width of the gap opened by the planet is determined as a diameter of Hill sphere. Planet masses are varied from 10 Earth to 10 Jupiter masses. Distance from the planet to the central star is within all possible positions along the disk radius.

  7. Galilean Moons, Kepler's Third Law, and the Mass of Jupiter

    Science.gov (United States)

    Bates, Alan

    2013-01-01

    Simulations of physical systems are widely available online, with no cost, and are ready to be used in our classrooms. Such simulations offer an accessible tool that can be used for a range of interactive learning activities. The Jovian Moons Apple allows the user to track the position of Jupiter's four Galilean moons with a variety of…

  8. Extrasolar planets.

    Science.gov (United States)

    Lissauer, J J; Marcy, G W; Ida, S

    2000-11-07

    The first known extrasolar planet in orbit around a Sun-like star was discovered in 1995. This object, as well as over two dozen subsequently detected extrasolar planets, were all identified by observing periodic variations of the Doppler shift of light emitted by the stars to which they are bound. All of these extrasolar planets are more massive than Saturn is, and most are more massive than Jupiter. All orbit closer to their stars than do the giant planets in our Solar System, and most of those that do not orbit closer to their star than Mercury is to the Sun travel on highly elliptical paths. Prevailing theories of star and planet formation, which are based on observations of the Solar System and of young stars and their environments, predict that planets should form in orbit about most single stars. However, these models require some modifications to explain the properties of the observed extrasolar planetary systems.

  9. Direct imaging of multiple planets orbiting the star HR 8799

    Energy Technology Data Exchange (ETDEWEB)

    Marois, C; Macintosh, B; Barman, T; Zuckerman, B; Song, I; Patience, J; Lafreniere, D; Doyon, R

    2008-10-14

    Direct imaging of exoplanetary systems is a powerful technique that can reveal Jupiter-like planets in wide orbits, can enable detailed characterization of planetary atmospheres, and is a key step towards imaging Earth-like planets. Imaging detections are challenging due to the combined effect of small angular separation and large luminosity contrast between a planet and its host star. High-contrast observations with the Keck and Gemini telescopes have revealed three planets orbiting the star HR 8799, with projected separations of 24, 38, and 68 astronomical units. Multi-epoch data show counter-clockwise orbital motion for all three imaged planets. The low luminosity of the companions and the estimated age of the system imply planetary masses between 5 and 13 times that of Jupiter. This system resembles a scaled-up version of the outer portion of our Solar System.

  10. Detection of Extrasolar Planets by Transit Photometry

    Science.gov (United States)

    Borucki, William; Koch, David; Webster, Larry; Dunham, Edward; Witteborn, Fred; Jenkins, Jon; Caldwell, Douglas; Showen, Robert; DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    A knowledge of other planetary systems that includes information on the number, size, mass, and spacing of the planets around a variety of star types is needed to deepen our understanding of planetary system formation and processes that give rise to their final configurations. Recent discoveries show that many planetary systems are quite different from the solar system in that they often possess giant planets in short period orbits. The inferred evolution of these planets and their orbital characteristics imply the absence of Earth-like planets near the habitable zone. Information on the properties of the giant-inner planets is now being obtained by both the Doppler velocity and the transit photometry techniques. The combination of the two techniques provides the mass, size, and density of the planets. For the planet orbiting star HD209458, transit photometry provided the first independent confirmation and measurement of the diameter of an extrasolar planet. The observations indicate a planet 1.27 the diameter of Jupiter with 0.63 of its mass (Charbonneau et al. 1999). The results are in excellent agreement with the theory of planetary atmospheres for a planet of the indicated mass and distance from a solar-like star. The observation of the November 23, 1999 transit of that planet made by the Ames Vulcan photometer at Lick Observatory is presented. In the future, the combination of the two techniques will greatly increase the number of discoveries and the richness of the science yield. Small rocky planets at orbital distances from 0.9 to 1.2 AU are more likely to harbor life than the gas giant planets that are now being discovered. However, new technology is needed to find smaller, Earth-like planets, which are about three hundred times less massive than Jupiter-like planets. The Kepler project is a space craft mission designed to discover hundreds of Earth-size planets in and near the habitable zone around a wide variety of stars. To demonstrate that the

  11. FURTHER OBSERVATIONS OF PLANETS AND QUASI-STELLAR RADIO SOURCES AT 3 MM.

    Science.gov (United States)

    EXTRATERRESTRIAL RADIO WAVES), (* MERCURY ( PLANET ), (*RADIO ASTRONOMY, EXTRATERRESTRIAL RADIO WAVES), PLANETARY ATMOSPHERES, SKY BRIGHTNESS, ANTENNAS...EPHEMERIDES, ASTROPHYSICS, JUPITER( PLANET ), VENUS( PLANET ), BRIGHTNESS, ATMOSPHERIC TEMPERATURE, INTENSITY, MEASUREMENT.

  12. Mass measurement of a single unseen star and detection efficiency to low mass planets for OGLE 2007-BLG-050

    CERN Document Server

    Batista, V; Gould, A; Beaulieu, J P; Cassan, A; Christie, G W; Han, C; Udalski, A; Allen, W; De Poy, D L; Gal-Yam, A; Gaudi, B S; Johnson, B; Kaspi, S; Lee, C U; Maoz, D; McCormick, J; McGreer, I; Monard, B; Natusch, T; Ofek, E; Park, B -G; Pogge, R W; Polishook, D; Shporer, A; Albrow, M D; Bennett, D P; Brillant, S; Bode, M; Bramich, D M; Burgdorf, M; Caldwell, J A R; Calitz, H; Cole, A; Cook, K H; Coutures, Ch; Dieters, S; Dominik, M; Prester, D Dominis; Donatowicz, J; Fouqué, P; Greenhill, J; Hoffman, M; Horne, K; Jørgensen, U G; Kains, N; Kane, S; Kubas, D; Marquette, J B; Martin, R; Meintjes, P; Menzies, J; Pollard, K R; Sahu, K C; Snodgrass, C; Steele, I; Tsapras, Y; Wambsganss, J; Williams, A; Zub, M; Wyrzykowski, Ł; Kubiak, M; Szymański, M K; Pietrzyński, G; Soszyński, I; Szewczyk, O; Ulaczyk, K; Abe, F; Bond, I A; Fukui, A; Furusawa, K; Hearnshaw, J B; Holderness, S; Itow, Y; Kamiya, K; Kilmartin, P M; Korpela, A; Lin, W; Ling, C H; Masuda, K; Matsubara, Y; Miyake, N; Muraki, Y; Nagaya, M; Ohnishi, K; Okumura, T; Perrott, Y C; Rattenbury, N; Saito, To; Sako, T; Skuljan, L; Sullivan, D; Sumi, T; Sweatman, W L; Tristram, P J; Yock, P C M

    2009-01-01

    We analyze OGLE-2007-BLG-050, a high magnification microlensing event ($A\\sim 432$) whose peak occurred on 2 May, 2007, with pronounced finite-source and parallax effects. We compute planet detection efficiencies for this event in order to determine its sensitivity to the presence of planets around the lens star. Both finite-source and parallax effects permit a measurement of the angular Einstein radius $\\theta_{\\rm E}=0.48\\pm 0.01$ mas and the parallax $\\pi_{\\rm E}=0.12\\pm 0.03$, leading to an estimate of the lens mass $M=0.50\\pm0.14 M_{\\odot}$ and its distance to the observer $D_L=5.5\\pm0.4$ \\rm{kpc}. This is only the second determination of a reasonably precise ($<30%$) mass estimate for an isolated unseen object, using any method. This allows us to calculate the planetary detection efficiency in physical units $(r_\\perp,m_p)$, where $r_\\perp$ is the projected planet-star separation and $m_p$ is the planet mass. When computing planet detection efficiency, we did not find any planetary signature and our ...

  13. Tidal Effects of Passing Planets and Mass Extinctions

    CERN Document Server

    Fargion, D; Fargion, Daniele; Dar, Arnon

    1998-01-01

    Recent observations suggest that many planetary-mass objects may be present in the outer solar system between the Kuiper belt and the Oort cloud. Gravitational perturbations may occasionally bring them into the inner solar system. Their passage near Earth could have generated gigantic tidal waves, large volcanic eruptions, sea regressions, large meteoritic impacts and drastic changes in global climate. They could have caused the major biological mass extinctions in the past 600 My as documented in the geological records.

  14. The effect of planet-planet scattering on the survival of exomoons

    CERN Document Server

    Gong, Yan-Xiang; Xie, Ji-Wei; Wu, Xiao-Mei; 10.1088/2041-8205/769/1/L14

    2013-01-01

    Compared to the giant planets in the solar system, exoplanets have many remarkable properties such as the prevalence of giant planets on eccentric orbits and the presence of hot Jupiters. Planet-planet scattering (PPS) between giant planets is a possible mechanism in interpreting above and other observed properties. If the observed giant planet architectures are indeed the outcomes of PPS, such drastic dynamical process must affect their primordial moon systems. In this Letter, we discuss the effect of the PPS on the survival of their regular moons. From the viewpoint of observations, some preliminary conclusions are drawn from the simulations. 1. PPS is a destructive process to the moon systems, single planets on eccentric orbits are not the ideal moon-search targets. 2. If hot Jupiters formed through PPS, their original moons have little chance to survive. 3. Planets in multiple systems with small eccentricities are more likely holding their primordial moons. 4. Compared to the lower-mass planets, the massi...

  15. Detection of Earth-mass and Super-Earth Trojan Planets Using Transit Timing Variation Method

    CERN Document Server

    Haghighipour, Nader; Hinse, Tobias C

    2013-01-01

    We have carried out an extensive study of the possibility of the detection of Earth-mass and super-Earth Trojan planets using transit timing variation method with the Kepler space telescope. We have considered a system consisting of a transiting Jovian-type planet in a short period orbit, and determined the induced variations in its transit timing due to an Earth-mass/super-Earth Trojan planet. We mapped a large section of the phase space around the 1:1 mean-motion resonance and identified regions corresponding to several other mean-motion resonances where the orbit of the planet would be stable. We calculated TTVs for different values of the mass and orbital elements of the transiting and perturbing bodies as well as the mass of central star, and identified orbital configurations of these objects (ranges of their orbital elements and masses) for which the resulted TTVs would be within the range of the variations of the transit timing of Kepler's planetary candidates. Results of our study indicate that in gen...

  16. Korean-Japanese Planet Search Program: Substellar Companions around Intermediate-Mass Giants

    CERN Document Server

    Omiya, Masashi; Izumiura, Hideyuki; Lee, Byeong-Cheol; Sato, Bun'ei; Kim, Kang-Min; Yoon, Tae Seog; Kambe, Eiji; Yoshida, Michitoshi; Masuda, Seiji; Toyota, Eri; Urakawa, Seitaro; Takada-Hidai, Masahide

    2011-01-01

    A Korean-Japanese planet search program has been carried out using the 1.8m telescope at Bohyunsan Optical Astronomy Observatory (BOAO) in Korea, and the 1.88m telescope at Okayama Astrophysical Observatory (OAO) in Japan to search for planets around intermediate-mass giant stars. The program aims to show the properties of planetary systems around such stars by precise Doppler survey of about 190 G or K type giants together with collaborative surveys of the East-Asian Planet Search Network. So far, we detected two substellar companions around massive intermediate-mass giants in the Korean-Japanese planet search program. One is a brown dwarf-mass companion with 37.6 $M_{\\mathrm{J}}$ orbiting a giant HD 119445 with 3.9 $M_{\\odot}$, which is the most massive brown dwarf companion among those found around intermediate-mass giants. The other is a planetary companion with 1.8 $M_{\\mathrm{J}}$ orbiting a giant star with 2.4 $M_{\\odot}$, which is the lowest-mass planetary companion among those detected around giant s...

  17. Volatile Delivery to Planets from Water-rich Planetesimals around Low Mass Stars

    CERN Document Server

    Ciesla, Fred J; Pascucci, Ilaria; Apai, Daniel

    2015-01-01

    Most models of volatile delivery to accreting terrestrial planets assume that the carriers for water are similar in water content to the carbonaceous chondrites in our Solar System. Here we suggest that the water content of primitive bodies in many planetary systems may actually be much higher, as carbonaceous chondrites have lost some of their original water due to heating from short-lived radioisotopes that drove parent body alteration. Using N-body simulations, we explore how planetary accretion would be different if bodies beyond the water line contained a water mass fraction consistent with chemical equilibrium calculations, and more similar to comets, as opposed to the more traditional water-depleted values. We apply this model to consider planet formation around stars of different masses and identify trends in the properties of Habitable Zone planets and planetary system architecture which could be tested by ongoing exoplanet census data collection. Comparison of such data with the model predicted tren...

  18. When Extrasolar Planets Transit Their Parent Stars

    CERN Document Server

    Charbonneau, D; Burrows, A; Laughlin, G; Charbonneau, David; Brown, Timothy M.; Burrows, Adam; Laughlin, Greg

    2006-01-01

    When extrasolar planets are observed to transit their parent stars, we are granted unprecedented access to their physical properties. It is only for transiting planets that we are permitted direct estimates of the planetary masses and radii, which provide the fundamental constraints on models of their physical structure. In particular, precise determination of the radius may indicate the presence (or absence) of a core of solid material, which in turn would speak to the canonical formation model of gas accretion onto a core of ice and rock embedded in a protoplanetary disk. Furthermore, the radii of planets in close proximity to their stars are affected by tidal effects and the intense stellar radiation. As a result, some of these "hot Jupiters" are significantly larger than Jupiter in radius. Precision follow-up studies of such objects (notably with the space-based platforms of the Hubble and Spitzer Space Telescopes) have enabled direct observation of their transmission spectra and emitted radiation. These ...

  19. Kepler-424 b: A "Lonely" Hot Jupiter That Found A Companion

    CERN Document Server

    Endl, Michael; Barclay, Thomas; Huber, Daniel; Isaacson, Howard; Buchhave, Lars A; Brugamyer, Erik; Robertson, Paul; Cochran, William D; MacQueen, Phillip J; Havel, Mathieu; Lucas, Phillip; Howell, Steve B; Fischer, Debra; Quintana, Elisa; Ciardi, David R

    2014-01-01

    Hot Jupiter systems provide unique observational constraints for migration models in multiple systems and binaries. We report on the discovery of the Kepler-424 (KOI-214) two-planet system, which consists of a transiting hot Jupiter (Kepler-424b) in a 3.31-d orbit accompanied by a more massive outer companion in an eccentric (e=0.3) 223-d orbit. The outer giant planet, Kepler-424c, is not detected to transit the host star. The masses of both planets and the orbital parameters for the second planet were determined using precise radial velocity (RV) measurements from the Hobby-Eberly Telescope (HET) and its High Resolution Spectrograph (HRS). In stark contrast to smaller planets, hot Jupiters are predominantly found to be lacking any nearby additional planets, the appear to be "lonely" (e.g. Steffen et al.~2012). This might be a consequence of a highly dynamical past of these systems. The Kepler-424 planetary system is a system with a hot Jupiter in a multiple system, similar to upsilon Andromedae. We also pres...

  20. The effect of planets beyond the ice line on the accretion of volatiles by habitable-zone rocky planets

    Energy Technology Data Exchange (ETDEWEB)

    Quintana, Elisa V. [SETI Institute, 189 Bernardo Avenue, Suite 100, Mountain View, CA 94043 (United States); Lissauer, Jack J., E-mail: elisa.quintana@nasa.gov [Space Science and Astrobiology Division 245-3, NASA Ames Research Center, Moffett Field, CA 94035 (United States)

    2014-05-01

    Models of planet formation have shown that giant planets have a large impact on the number, masses, and orbits of terrestrial planets that form. In addition, they play an important role in delivering volatiles from material that formed exterior to the snow line (the region in the disk beyond which water ice can condense) to the inner region of the disk where terrestrial planets can maintain liquid water on their surfaces. We present simulations of the late stages of terrestrial planet formation from a disk of protoplanets around a solar-type star and we include a massive planet (from 1 M {sub ⊕} to 1 M {sub J}) in Jupiter's orbit at ∼5.2 AU in all but one set of simulations. Two initial disk models are examined with the same mass distribution and total initial water content, but with different distributions of water content. We compare the accretion rates and final water mass fraction of the planets that form. Remarkably, all of the planets that formed in our simulations without giant planets were water-rich, showing that giant planet companions are not required to deliver volatiles to terrestrial planets in the habitable zone. In contrast, an outer planet at least several times the mass of Earth may be needed to clear distant regions of debris truncating the epoch of frequent large impacts. Observations of exoplanets from radial velocity surveys suggest that outer Jupiter-like planets may be scarce, therefore, the results presented here suggest that there may be more habitable planets residing in our galaxy than previously thought.

  1. A giant cloud of hydrogen escaping the warm Neptune-mass planet GJ 436b

    Science.gov (United States)

    Ehrenreich, David

    2015-12-01

    Exoplanets in extreme irradiation environments, close to their parent stars, could lose some fraction of their atmospheres because of the extreme irradiation. Atmospheric mass loss has been observed during the past 12 years for hot gas giants, as large (~10%) ultraviolet absorption signals during transits. Meanwhile, no confident detection have been obtained for lower-mass planets, which are most likely to be significantly affected by atmospheric escape. In fact, hot rocky planets observed by Corot and Kepler might have lost all of their atmosphere, having begun as Neptune-like. The signature of this loss could be observed in the ultraviolet, when the planet and its escaping atmosphere transit the star, giving rise to deeper and longer transit signatures than in the optical. I will report on new Hubble observations of the Neptune-mass exoplanet GJ 436b, around which an extended atmosphere has been tentatively detected in 2014. The new data reveal that GJ 436b has huge transit depths of 56.3±3.5% in the hydrogen Lyman-alpha line, far beyond the 0.69% optical transit depth, and even far beyond mass loss signatures observed at the same wavelength from more irradiated gas giants. We infer from this repeated observations that the planet is surrounded and trailed by a large exospheric cloud of hydrogen, shaped as a giant comet, much bigger than the star. We estimate a mass-loss rate, which today is far too small to deplete the atmosphere of a Neptune-like planet in the lifetime of the parent star, but would have been much greater in the past. This 16-sigma detection opens exciting perspectives for the atmospheric characterization of low-mass and moderately-irradiated exoplanets, a large number of which will be detected by forthcoming transit surveys.

  2. CAPTURE OF TROJANS BY JUMPING JUPITER

    Energy Technology Data Exchange (ETDEWEB)

    Nesvorny, David [Department of Space Studies, Southwest Research Institute, 1050 Walnut St., Suite 300, Boulder, CO 80302 (United States); Vokrouhlicky, David [Institute of Astronomy, Charles University, V Holesovickach 2, 180 00 Prague 8 (Czech Republic); Morbidelli, Alessandro [Departement Cassiopee, University of Nice, CNRS, Observatoire de la Cote d' Azur, Nice, F-06304 (France)

    2013-05-01

    Jupiter Trojans are thought to be survivors of a much larger population of planetesimals that existed in the planetary region when planets formed. They can provide important constraints on the mass and properties of the planetesimal disk, and its dispersal during planet migration. Here, we tested a possibility that the Trojans were captured during the early dynamical instability among the outer planets (aka the Nice model), when the semimajor axis of Jupiter was changing as a result of scattering encounters with an ice giant. The capture occurs in this model when Jupiter's orbit and its Lagrange points become radially displaced in a scattering event and fall into a region populated by planetesimals (that previously evolved from their natal transplanetary disk to {approx}5 AU during the instability). Our numerical simulations of the new capture model, hereafter jump capture, satisfactorily reproduce the orbital distribution of the Trojans and their total mass. The jump capture is potentially capable of explaining the observed asymmetry in the number of leading and trailing Trojans. We find that the capture probability is (6-8) Multiplication-Sign 10{sup -7} for each particle in the original transplanetary disk, implying that the disk contained (3-4) Multiplication-Sign 10{sup 7} planetesimals with absolute magnitude H < 9 (corresponding to diameter D = 80 km for a 7% albedo). The disk mass inferred from this work, M{sub disk} {approx} 14-28 M{sub Earth}, is consistent with the mass deduced from recent dynamical simulations of the planetary instability.

  3. The fate of scattered planets

    Energy Technology Data Exchange (ETDEWEB)

    Bromley, Benjamin C. [Department of Physics and Astronomy, University of Utah, 115 S 1400 E, Rm 201, Salt Lake City, UT 84112 (United States); Kenyon, Scott J., E-mail: bromley@physics.utah.edu, E-mail: skenyon@cfa.harvard.edu [Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge, MA 02138 (United States)

    2014-12-01

    As gas giant planets evolve, they may scatter other planets far from their original orbits to produce hot Jupiters or rogue planets that are not gravitationally bound to any star. Here, we consider planets cast out to large orbital distances on eccentric, bound orbits through a gaseous disk. With simple numerical models, we show that super-Earths can interact with the gas through dynamical friction to settle in the remote outer regions of a planetary system. Outcomes depend on planet mass, the initial scattered orbit, and the evolution of the time-dependent disk. Efficient orbital damping by dynamical friction requires planets at least as massive as the Earth. More massive, longer-lived disks damp eccentricities more efficiently than less massive, short-lived ones. Transition disks with an expanding inner cavity can circularize orbits at larger distances than disks that experience a global (homologous) decay in surface density. Thus, orbits of remote planets may reveal the evolutionary history of their primordial gas disks. A remote planet with an orbital distance ∼100 AU from the Sun is plausible and might explain correlations in the orbital parameters of several distant trans-Neptunian objects.

  4. The mass function of primordial rogue planet MACHOs in quasar nano-lensing

    NARCIS (Netherlands)

    Schild, R.E; Nieuwenhuizen, T.M.; Gibson, C.H.

    2012-01-01

    The recent Sumi et al (2010 Astrophys. J. 710 1641; 2011 Nature 473 349) detection of free roaming planet mass MACHOs in cosmologically significant numbers recalls their original detection in quasar microlening studies (Colley and Schild 2003 Astrophys. J. 594 97; Schild R E 1996 Astrophys. J. 464

  5. Interior phase transformations and mass-radius relationships of silicon-carbon planets

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Hugh F. [CSIRO Materials Science and Engineering, Parkville, Victoria 3052 (Australia); Militzer, Burkhard, E-mail: hughfw@gmail.com [Department of Earth and Planetary Science and Department of Astronomy, University of California, Berkeley, CA 94720 (United States)

    2014-09-20

    Planets such as 55 Cancri e orbiting stars with a high carbon-to-oxygen ratio may consist primarily of silicon and carbon, with successive layers of carbon, silicon carbide, and iron. The behavior of silicon-carbon materials at the extreme pressures prevalent in planetary interiors, however, has not yet been sufficiently understood. In this work, we use simulations based on density functional theory to determine high-pressure phase transitions in the silicon-carbon system, including the prediction of new stable compounds with Si{sub 2}C and SiC{sub 2} stoichiometry at high pressures. We compute equations of state for these silicon-carbon compounds as a function of pressure, and hence derive interior structural models and mass-radius relationships for planets composed of silicon and carbon. Notably, we predict a substantially smaller radius for SiC planets than in previous models, and find that mass radius relationships for SiC planets are indistinguishable from those of silicate planets. We also compute a new equation of state for iron. We rederive interior models for 55 Cancri e and are able to place more stringent restrictions on its composition.

  6. Constraining the mass of the planet(s) sculpting a disk cavity. The intriguing case of 2MASS J16042165-2130284

    Science.gov (United States)

    Canovas, H.; Hardy, A.; Zurlo, A.; Wahhaj, Z.; Schreiber, M. R.; Vigan, A.; Villaver, E.; Olofsson, J.; Meeus, G.; Ménard, F.; Caceres, C.; Cieza, L. A.; Garufi, A.

    2017-01-01

    Context. The large cavities observed in the dust and gas distributions of transition disks may be explained by planet-disk interactions. At 145 pc, 2MASS J16042165-2130284 (J1604) is a 5-12 Myr old transitional disk with different gap sizes in the mm- and μm-sized dust distributions (outer edges at 79 and at 63 au, respectively). Its 12CO emission shows a 30 au cavity. This radial structure suggests that giant planets are sculpting this disk. Aims: We aim to constrain the masses and locations of plausible giant planets around J1604. Methods: We observed J1604 with the Spectro-Polarimetric High-contrast Exoplanet REsearch (SPHERE) at the Very Large Telescope (VLT), in IRDIFS_EXT, pupil-stabilized mode, obtaining YJH-band images with the integral field spectrograph (IFS) and K1K2-band images with the Infra-Red Dual-beam Imager and Spectrograph (IRDIS). The dataset was processed exploiting the angular differential imaging (ADI) technique with high-contrast algorithms. Results: Our observations reach a contrast of ΔK,ΔYH 12 mag from 0".15 to 0".80 ( 22 to 115 au), but no planet candidate is detected. The disk is directly imaged in scattered light at all bands from Y to K, and it shows a red color. This indicates that the dust particles in the disk surface are mainly ≳0.3 μm-sized grains. We confirm the sharp dip/decrement in scattered light in agreement with polarized light observations. Comparing our images with a radiative transfer model we argue that the southern side of the disk is most likely the nearest. Conclusions: This work represents the deepest search yet for companions around J1604. We reach a mass sensitivity of ≳2-3 MJup from 22 to 115 au according to a hot start scenario. We propose that a brown dwarf orbiting inside of 15 au and additional Jovian planets at larger radii could account for the observed properties of J1604 while explaining our lack of detection. Based on observations made with the VLT, program 095.C-0673(A).The reduced images (FITS

  7. In search of planets and life around other stars.

    Science.gov (United States)

    Lunine, J I

    1999-05-11

    The discovery of over a dozen low-mass companions to nearby stars has intensified scientific and public interest in a longer term search for habitable planets like our own. However, the nature of the detected companions, and in particular whether they resemble Jupiter in properties and origin, remains undetermined.

  8. Planet Hunters VII. Discovery of a New Low-Mass, Low-Density Planet (PH3 c) Orbiting Kepler-289 with Mass Measurements of Two Additional Planets (PH3 b and d)

    CERN Document Server

    Schmitt, Joseph R; Deck, Katherine M; Rogers, Leslie A; Gazak, J Zachary; Fischer, Debra A; Wang, Ji; Holman, Matthew J; Jek, Kian J; Margossian, Charles; Omohundro, Mark R; Winarski, Troy; Brewer, John M; Giguere, Matthew J; Lintott, Chris; Lynn, Stuart; Parrish, Michael; Schawinski, Kevin; Schwamb, Megan E; Simpson, Robert; Smith, Arfon M

    2014-01-01

    We report the discovery of one newly confirmed planet ($P=66.06$ days, $R_{\\rm{P}}=2.68\\pm0.17R_\\oplus$) and mass determinations of two previously validated Kepler planets, Kepler-289 b ($P=34.55$ days, $R_{\\rm{P}}=2.15\\pm0.10R_\\oplus$) and Kepler-289-c ($P=125.85$ days, $R_{\\rm{P}}=11.59\\pm0.10R_\\oplus$), through their transit timing variations (TTVs). We also exclude the possibility that these three planets reside in a $1:2:4$ Laplace resonance. The outer planet has very deep ($\\sim1.3%$), high signal-to-noise transits, which puts extremely tight constraints on its host star's stellar properties via Kepler's Third Law. The star PH3 is a young ($\\sim1$ Gyr as determined by isochrones and gyrochronology), Sun-like star with $M_*=1.08\\pm0.02M_\\odot$, $R_*=1.00\\pm0.02R_\\odot$, and $T_{\\rm{eff}}=5990\\pm38$ K. The middle planet's large TTV amplitude ($\\sim5$ hours) resulted either in non-detections or inaccurate detections in previous searches. A strong chopping signal, a shorter period sinusoid in the TTVs, allo...

  9. Imaging Extrasolar Giant Planets

    Science.gov (United States)

    Bowler, Brendan P.

    2016-10-01

    High-contrast adaptive optics (AO) imaging is a powerful technique to probe the architectures of planetary systems from the outside-in and survey the atmospheres of self-luminous giant planets. Direct imaging has rapidly matured over the past decade and especially the last few years with the advent of high-order AO systems, dedicated planet-finding instruments with specialized coronagraphs, and innovative observing and post-processing strategies to suppress speckle noise. This review summarizes recent progress in high-contrast imaging with particular emphasis on observational results, discoveries near and below the deuterium-burning limit, and a practical overview of large-scale surveys and dedicated instruments. I conclude with a statistical meta-analysis of deep imaging surveys in the literature. Based on observations of 384 unique and single young (≈5-300 Myr) stars spanning stellar masses between 0.1 and 3.0 M ⊙, the overall occurrence rate of 5-13 M Jup companions at orbital distances of 30-300 au is {0.6}-0.5+0.7 % assuming hot-start evolutionary models. The most massive giant planets regularly accessible to direct imaging are about as rare as hot Jupiters are around Sun-like stars. Dividing this sample into individual stellar mass bins does not reveal any statistically significant trend in planet frequency with host mass: giant planets are found around {2.8}-2.3+3.7 % of BA stars, planets spanning a broad range of masses and ages.

  10. Numerical simulations for terrestrial planets formation

    Directory of Open Access Journals (Sweden)

    Ji J.

    2011-07-01

    Full Text Available We investigate the formation of terrestrial planets in the late stage of planetary formation using two-planet model. At that time, the protostar has formed for about 3 Myr and the gas disk has dissipated. In the model, the perturbations from Jupiter and Saturn are considered. We also consider variations of the mass of outer planet, and the initial eccentricities and inclinations of embryos and planetesimals. Our results show that, terrestrial planets are formed in 50 Myr, and the accretion rate is about 60%–80%. In each simulation, 3–4 terrestrial planets are formed inside “Jupiter” with masses of 0.15–3.6 M⊕. In the 0.5–4 AU, when the eccentricities of planetesimals are excited, planetesimals are able to accrete material from wide radial direction. The plenty of water material of the terrestrial planet in the Habitable Zone may be transferred from the farther places by this mechanism. Accretion may also happen a few times between two giant planets only if the outer planet has a moderate mass and the small terrestrial planet could survive at some resonances over time scale of 108 yr.

  11. Migration of icy planetesimals to forming terrestrial planets

    Science.gov (United States)

    Ipatov, Sergei I.; Marov, Mikhail

    2016-07-01

    Our studies of migration of planetesimals from the feeding zone of Jupiter and Saturn to forming terrestrial planets were based on computer simulations of the orbital evolution of 10^4 planetesimals under the gravitational influence of planets. In series JN, all planets were considered in present orbits with present masses, and in series JS, Uranus and Neptune were excluded. Initial eccentricities and inclinations of planetesimals were 0.3 and 0.15 rad, respectively. Their initial semi-major axes were between 4.5 and 12 AU. Masses of planets moving in the orbits of the terrestrial planets were equal to present masses of the planets in series JS and JN, and were smaller by a factor of 10 in series JS_{01} and JN_{01}. The obtained results show that the ratio of the fraction of the planetesimals collided with an embryo of the Earth's embryo was about 2\\cdot10^{-6} and 4\\cdot10^{-7} for the mass of the embryo equal to the Earth mass and to 10% of the Earth mass, respectively. We concluded that during the growth of the mass of the Earth's embryo up to a half of the present mass of the Earth, the amount of water delivered to the embryo could be about 30% of all water delivered to the Earth from the feeding zone of Jupiter and Saturn. The total mass of water delivered to the Earth from the feeding zones of the giant planets and beyond these zones could be comparable with the mass of the Earth's oceans. A half of this water could come from the feeding zone of Jupiter and Saturn, and another half from more distant regions. Most of the water that was delivered from the distant regions to the Earth's embryo came when its mass was not small (e.g., was mainly greater than a half of the Earth mass). In series JS, the ratio of the mass of water delivered to a planet to the mass of the planet for the Earth was smaller by a factor of 2, 1.25, and 1.3 than for Mars, Venus and Mercury, respectively. For series JN, the above values of the factor were equal to 3.4, 0.7 i 0.8. For

  12. The HARPS search for southern extra-solar planets. XLII. A system of Earth-mass planets around the nearby M dwarf YZ Ceti

    Science.gov (United States)

    Astudillo-Defru, N.; Díaz, R. F.; Bonfils, X.; Almenara, J. M.; Delisle, J.-B.; Bouchy, F.; Delfosse, X.; Forveille, T.; Lovis, C.; Mayor, M.; Murgas, F.; Pepe, F.; Santos, N. C.; Ségransan, D.; Udry, S.; Wünsche, A.

    2017-09-01

    Exoplanet surveys have shown that systems with multiple low-mass planets on compact orbits are common. Except for a few cases, however, the masses of these planets are generally unknown. At the very end of the main sequence, host stars have the lowest mass and hence offer the largest reflect motion for a given planet. In this context, we monitored the low-mass (0.13 M⊙) M dwarf YZ Cet (GJ 54.1, HIP 5643) intensively and obtained radial velocities and stellar-activity indicators derived from spectroscopy and photometry, respectively. We find strong evidence that it is orbited by at least three planets in compact orbits (POrb = 1.97, 3.06, 4.66 days), with the inner two near a 2:3 mean-motion resonance. The minimum masses are comparable to the mass of Earth (M sin i = 0.75 ± 0.13, 0.98 ± 0.14, and 1.14 ± 0.17 M⊕), and they are also the lowest masses measured by radial velocity so far. We note the possibility for a fourth planet with an even lower mass of M sin i = 0.472 ± 0.096 M⊕ at POrb = 1.04 days. An n-body dynamical model is used to place further constraints on the system parameters. At 3.6 parsecs, YZ Cet is the nearest multi-planet system detected to date. Based on observations made with the HARPS instrument on the ESO 3.6 m telescope under the program IDs 180.C-0886(A), 183.C-0437(A), and 191.C-0873(A) at Cerro La Silla (Chile).Radial velocity data (Table B.4) are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/605/L11

  13. Convection and Mixing in Giant Planet Evolution

    CERN Document Server

    Vazan, Allona; Kovetz, Attay; Podolak, Morris

    2015-01-01

    The primordial internal structures of gas giant planets are unknown. Often giant planets are modeled under the assumption that they are adiabatic, convective, and homogeneously mixed, but this is not necessarily correct. In this work, we present the first self-consistent calculation of convective transport of both heat and material as the planets evolve. We examine how planetary evolution depends on the initial composition and its distribution, whether the internal structure changes with time, and if so, how it affects the evolution. We consider various primordial distributions, different compositions, and different mixing efficiencies and follow the distribution of heavy elements in a Jupiter-mass planet as it evolves. We show that a heavy-element core cannot be eroded by convection if there is a sharp compositional change at the core-envelope boundary. If the heavy elements are initially distributed within the planet according to some compositional gradient, mixing occurs in the outer regions resulting in a...

  14. HAT-P-65b and HAT-P-66b: Two Transiting Inflated Hot Jupiters and Observational Evidence for the Reinflation of Close-in Giant Planets

    Science.gov (United States)

    Hartman, J. D.; Bakos, G. Á.; Bhatti, W.; Penev, K.; Bieryla, A.; Latham, D. W.; Kovács, G.; Torres, G.; Csubry, Z.; de Val-Borro, M.; Buchhave, L.; Kovács, T.; Quinn, S.; Howard, A. W.; Isaacson, H.; Fulton, B. J.; Everett, M. E.; Esquerdo, G.; Béky, B.; Szklenar, T.; Falco, E.; Santerne, A.; Boisse, I.; Hébrard, G.; Burrows, A.; Lázár, J.; Papp, I.; Sári, P.

    2016-12-01

    We present the discovery of the transiting exoplanets HAT-P-65b and HAT-P-66b, with orbital periods of 2.6055 and 2.9721 days, masses of 0.527+/- 0.083 {M}{{J}} and 0.783+/- 0.057 {M}{{J}}, and inflated radii of 1.89+/- 0.13 {R}{{J}} and {1.59}-0.10+0.16 {R}{{J}}, respectively. They orbit moderately bright (V=13.145+/- 0.029 and V=12.993+/- 0.052) stars of mass 1.212+/- 0.050 {M}⊙ and {1.255}-0.054+0.107 {M}⊙ . The stars are at the main-sequence turnoff. While it is well known that the radii of close-in giant planets are correlated with their equilibrium temperatures, whether or not the radii of planets increase in time as their hosts evolve and become more luminous is an open question. Looking at the broader sample of well-characterized close-in transiting giant planets, we find that there is a statistically significant correlation between planetary radii and the fractional ages of their host stars, with a false-alarm probability of only 0.0041%. We find that the correlation between the radii of planets and the fractional ages of their hosts is fully explained by the known correlation between planetary radii and their present-day equilibrium temperatures; however, if the zero-age main-sequence equilibrium temperature is used in place of the present-day equilibrium temperature, then a correlation with age must also be included to explain the planetary radii. This suggests that, after contracting during the pre-main-sequence, close-in giant planets are reinflated over time due to the increasing level of irradiation received from their host stars. Prior theoretical work indicates that such a dynamic response to irradiation requires a significant fraction of the incident energy to be deposited deep within the planetary interiors. Based on observations obtained with the Hungarian-made Automated Telescope Network. Based on observations obtained at the W. M. Keck Observatory, which is operated by the University of California and the California Institute of Technology

  15. Tidal dissipation in rotating low-mass stars and implications for the orbital evolution of close-in massive planets. II. Effect of stellar metallicity

    Science.gov (United States)

    Bolmont, E.; Gallet, F.; Mathis, S.; Charbonnel, C.; Amard, L.; Alibert, Y.

    2017-08-01

    Observations of hot-Jupiter exoplanets suggest that their orbital period distribution depends on the metallicity of the host stars. We investigate here whether the impact of the stellar metallicity on the evolution of the tidal dissipation inside the convective envelope of rotating stars and its resulting effect on the planetary migration might be a possible explanation for this observed statistical trend. We use a frequency-averaged tidal dissipation formalism coupled to an orbital evolution code and to rotating stellar evolution models in order to estimate the effect of a change of stellar metallicity on the evolution of close-in planets. We consider here two different stellar masses: 0.4 M⊙ and 1.0 M⊙ evolving from the early pre-main sequence phase up to the red-giant branch. We show that the metallicity of a star has a strong effect on the stellar parameters, which in turn strongly influence the tidal dissipation in the convective region. While on the pre-main sequence, the dissipation of a metal-poor Sun-like star is higher than the dissipation of a metal-rich Sun-like star; on the main sequence it is the opposite. However, for the 0.4 M⊙ star, the dependence of the dissipation with metallicity is much less visible. Using an orbital evolution model, we show that changing the metallicity leads to different orbital evolutions (e.g., planets migrate farther out from an initially fast-rotating metal-rich star). Using this model, we qualitatively reproduced the observational trends of the population of hot Jupiters with the metallicity of their host stars. However, more steps are needed to improve our model to try to quantitatively fit our results to the observations. Specifically, we need to improve the treatment of the rotation evolution in the orbital evolution model, and ultimately we need to consistently couple the orbital model to the stellar evolution model.

  16. Band parameters for self-broadened ammonia gas in the range 0.74 to 5.24 μm to support measurements of the atmosphere of the planet Jupiter

    Science.gov (United States)

    Bowles, Neil; Calcutt, Simon; Irwin, Pat; Temple, Jon

    2008-08-01

    We present new measurements and modelling of low-resolution transmission spectra of self-broadened ammonia gas, one of the most important absorbers found in the near-infrared spectrum of the planet Jupiter. These new spectral measurements were specifically designed to support measurements of Jupiter's atmosphere made by the Near-Infrared Mapping Spectrometer (NIMS) which was part of the Galileo mission that orbited Jupiter from 1995 to September 2003. To reach approximate jovian conditions in the lab, a new gas spectroscopy facility was developed and used to measure self-broadened ammonia spectra from 0.74 to 5.2 μm, virtually the complete range of the NIMS instrument, for the first time. Spectra were recorded at temperatures varying from 300 to 215 K, pressures from 1000 to 33 mb and using three different path lengths (10.164, 6.164 and 2.164 m). The spectra were then modelled using a series of increasingly complex physically based transmittance functions.

  17. Hot Super Earths: disrupted young jupiters?

    CERN Document Server

    Nayakshin, Sergei

    2011-01-01

    Recent {\\em Kepler} observations revealed an unexpected abundance of "hot" Earth-size to Neptune-size planets in the inner $0.02-0.2$ AU from their parent stars. We propose that these smaller planets are the remnants of massive giant planets that migrated inward quicker than they could contract. We show that such disruptions naturally occur in the framework of the Tidal Downsizing hypothesis for planet formation. We find that the characteristic planet-star separation at which such "hot disruptions" occur is $R \\approx 0.03-0.2$ AU. This result is independent of the planet's embryo mass but is dependent on the accretion rate in the disc. At high accretion rates, $\\dot M \\simgt 10^{-6}\\msun$ yr$^{-1}$, the embryo is unable to contract quickly enough and is disrupted. At late times, when the accretion rate drops to $\\dot M \\simlt 10^{-8} \\msun$ yr$^{-1}$, the embryos migrate sufficiently slow to not be disrupted. These "late arrivals" may explain the well known population of hot jupiters. If type I migration reg...

  18. Terrestrial planets across space and time

    CERN Document Server

    Zackrisson, E; Gonzalez, J; Benson, A; Johansen, A; Janson, M

    2016-01-01

    The study of cosmology, galaxy formation and exoplanetary systems has now advanced to a stage where a cosmic inventory of terrestrial planets may be attempted. By coupling semi-analytic models of galaxy formation to a recipe that relates the occurrence of planets to the mass and metallicity of their host stars, we trace the population of terrestrial planets around both solar-mass (FGK type) and lower-mass (M dwarf) stars throughout all of cosmic history. We find that the mean age of terrestrial planets in the local Universe is $8\\pm1$ Gyr and that the typical planet of this type is located in a spheroid-dominated galaxy with total stellar mass about twice that of the Milky Way. We estimate that hot Jupiters have depleted the population of terrestrial planets around FGK stars at redshift $z=0$ by no more than $\\approx 10\\%$, and predict that $\\approx 1/3$ of the terrestrial planets in the local Universe are orbiting stars in a metallicity range for which such planets have yet to be been detected. When looking ...

  19. The composition of transiting giant extrasolar planets

    Energy Technology Data Exchange (ETDEWEB)

    Guillot, T [Laboratoire Cassiopee, CNRS UMR 6202, Observatoire de la Cote d' Azur, BP4229, 06304 Nice Cedex 4 (France)], E-mail: guillot@obs-nice.fr

    2008-08-15

    In principle, the combined measurements of the mass and radius of a giant exoplanet allow one to determine the relative fraction of hydrogen and helium and of heavy elements in the planet. However, uncertainties on the underlying physics imply that some known transiting planets appear anomalously large, and this generally prevents any firm conclusion when a planet is considered on an individual basis. On the basis of a sample of nine transiting planets known at that time, Guillot et al (1996 Astron. Astrophys.453 L21) concluded that all planets could be explained with the same set of hypotheses, either by large but plausible modifications of the equations of state, opacities, or by the addition of an energy source, probably related to the dissipation of kinetic energy by tides. On this basis, they concluded that the amount of heavy elements in close-in giant planets is correlated with the metallicity of the parent star. Furthermore, they showed that planets around metal-rich stars can possess large amounts of heavy elements, up to 100 Earth masses. These results are confirmed by studying the present sample of 18 transiting planets with masses between that of Saturn and twice the mass of Jupiter.

  20. Numerical Simulations of Disk-Planet Interactions

    Science.gov (United States)

    D'Angelo, Gennaro

    2003-06-01

    The aim of this thesis is the study the dynamical interactions occurring between a forming planet and its surrounding protostellar environment. This task is accomplished by means of both 2D and 3D numerical simulations. The first part of this work concerned global simulations in 3D. These were intended to investigate large-scale effects caused by a Jupiter-size body still in the process of accreting matter from its surroundings. Simulations show that, despite a density gap forms along the orbital path, Jupiter-mass protoplanets still accrete at a rate on the order of 0.01 Earth's masses per year when they are embedded in a minimum-mass Solar nebula. In the same conditions, the migration time scale due to gravitational torques by the disk is around 100000 years. The second part of the work was dedicated to perform 2D calculations, by employing a nested-grid technique. This method allows to carry out global simulations of planets orbiting in disks and, at the same time, to resolve in great detail the dynamics of the flow inside the Roche lobe of both massive and low-mass planets. Regardless of the planet mass, the high resolution supplied by the nested-grid technique permits an evaluation of the torques, resulting from short and very short range gravitational interactions, more reliable than the one previously estimated with the aid of numerical methods. Likewise, the mass flow onto the planet is computed in a more accurate fashion. Resulting migration time scales are in the range from 20000 years, for intermediate-mass planets, to 1000000 years, for very low-mass as well as high-mass planets. Circumplanetary disks form inside of the Roche lobe of Jupiter-size secondaries. In order to evaluate the consequences of the flat geometry on the local flow structure around planets, 3D nested-grid simulations were carried out to investigate a range of planetary masses spanning from 1.5 Earth's masses to one Jupiter's mass. Outcomes show that migration rates are relatively

  1. MASSIVE: A Bayesian analysis of giant planet populations around low-mass stars

    Science.gov (United States)

    Lannier, J.; Delorme, P.; Lagrange, A. M.; Borgniet, S.; Rameau, J.; Schlieder, J. E.; Gagné, J.; Bonavita, M. A.; Malo, L.; Chauvin, G.; Bonnefoy, M.; Girard, J. H.

    2016-12-01

    Context. Direct imaging has led to the discovery of several giant planet and brown dwarf companions. These imaged companions populate a mass, separation and age domain (mass >1 MJup, orbits > 5 AU, age planetary formation models. Methods: We observed 58 young and nearby M-type dwarfs in L'-band with the VLT/NaCo instrument and used angular differential imaging algorithms to optimize the sensitivity to planetary-mass companions and to derive the best detection limits. We estimate the probability of detecting a planet as a function of its mass and physical separation around each target. We conduct a Bayesian analysis to determine the frequency of substellar companions orbiting low-mass stars, using a homogenous sub-sample of 54 stars. Results: We derive a frequency of for companions with masses in the range of 2-80 MJup, and % for planetary mass companions (2-14 MJup), at physical separations of 8 to 400 AU for both cases. Comparing our results with a previous survey targeting more massive stars, we find evidence that substellar companions more massive than 1 MJup with a low mass ratio Q with respect to their host star (Q 2 MJup might be independent from the mass of the host star.

  2. Two phase, inward-then-outward migration of Jupiter and Saturn in the gaseous Solar Nebula

    CERN Document Server

    Pierens, Arnaud

    2011-01-01

    It has recently been shown that the terrestrial planets and asteroid belt can be reproduced if the giant planets underwent an inward-then-outward migration (the "Grand Tack"; Walsh et al 2011). Inward migration occurs when Jupiter opens a gap and type II migrates inward. The planets "tack" and migrate outward when Saturn reaches the gap-opening mass and is caught in the 3:2 resonance with Jupiter. The aim is to test the viability of the Grand Tack model and to study the dynamical evolution of Jupiter and Saturn during their growth from 10 Earth masses cores. We have performed numerical simulations using a grid-based hydrodynamical code. Most of our simulations assume an isothermal equation of state for the disk but a subset use a fully-radiative version of the code. For an isothermal disk the two phase migration of Jupiter and Saturn is very robust and independent of the mass-growth history of these planets provided the disk is cool enough. For a radiative disk the we find some outcomes with two phase migrati...

  3. Survival of habitable planets in unstable planetary systems

    CERN Document Server

    Carrera, Daniel; Johansen, Anders

    2016-01-01

    Many observed giant planets lie on eccentric orbits. Such orbits could be the result of strong scatterings with other giant planets. The same dynamical instability that produces giant planet scatterings can also alter the orbits of terrestrial planets. For example, a habitable rocky planet in the system can be ejected or transported to an orbit outside the habitable zone. Therefore, there is a link between observed giant planets and the habitability of smaller planets in the system. We say that a habitable planet has resilient habitability if it is able to avoid ejections and collisions and its orbit remains inside the habitable zone. Here we model the orbital evolution of rocky planets in planetary systems where giant planets become dynamically unstable. We measure the resilience of habitable planets as a function of the observed, present-day masses and orbits of the giant planets. We find that the survival rate of habitable planets depends strongly on the giant planet architecture. Systems with three Jupite...

  4. Planets around Low-mass Stars (PALMS). IV. The Outer Architecture of M Dwarf Planetary Systems

    Science.gov (United States)

    Bowler, Brendan P.; Liu, Michael C.; Shkolnik, Evgenya L.; Tamura, Motohide

    2015-01-01

    We present results from a high-contrast adaptive optics imaging search for giant planets and brown dwarfs (gsim1 M Jup) around 122 newly identified nearby (lsim40 pc) young M dwarfs. Half of our targets are younger than 135 Myr and 90% are younger than the Hyades (620 Myr). After removing 44 close stellar binaries (implying a stellar companion fraction of >35.4% ± 4.3% within 100 AU), 27 of which are new or spatially resolved for the first time, our remaining sample of 78 single M dwarfs makes this the largest imaging search for planets around young low-mass stars (0.1-0.6 M ⊙) to date. Our H- and K-band coronagraphic observations with Keck/NIRC2 and Subaru/HiCIAO achieve typical contrasts of 12-14 mag and 9-13 mag at 1'', respectively, which correspond to limiting planet masses of 0.5-10 M Jup at 5-33 AU for 85% of our sample. We discovered four young brown dwarf companions: 1RXS J235133.3+312720 B (32 ± 6 M Jup; L0+2-1; 120 ± 20 AU), GJ 3629 B (64+30-23 M Jup; M7.5 ± 0.5; 6.5 ± 0.5 AU), 1RXS J034231.8+121622 B (35 ± 8 M Jup; L0 ± 1; 19.8 ± 0.9 AU), and 2MASS J15594729+4403595 B (43 ± 9 M Jup; M8.0 ± 0.5; 190 ± 20 AU). Over 150 candidate planets were identified; we obtained follow-up imaging for 56% of these but all are consistent with background stars. Our null detection of planets enables strong statistical constraints on the occurrence rate of long-period giant planets around single M dwarfs. We infer an upper limit (at the 95% confidence level) of 10.3% and 16.0% for 1-13 M Jup planets between 10-100 AU for hot-start and cold-start (Fortney) evolutionary models, respectively. Fewer than 6.0% (9.9%) of M dwarfs harbor massive gas giants in the 5-13 M Jup range like those orbiting HR 8799 and β Pictoris between 10-100 AU for a hot-start (cold-start) formation scenario. The frequency of brown dwarf (13-75 M Jup) companions to single M dwarfs between 10-100 AU is 2.8+2.4-1.5%. Altogether we find that giant planets, especially massive ones, are rare

  5. PLANETS AROUND LOW-MASS STARS (PALMS). IV. THE OUTER ARCHITECTURE OF M DWARF PLANETARY SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    Bowler, Brendan P. [California Institute of Technology, Division of Geological and Planetary Sciences, 1200 East California Boulevard, Pasadena, CA 91101 (United States); Liu, Michael C. [Institute for Astronomy, University of Hawai' i, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); Shkolnik, Evgenya L. [Lowell Observatory, 1400 West Mars Hill Road, Flagstaff, AZ 86001 (United States); Tamura, Motohide, E-mail: bpbowler@caltech.edu [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan)

    2015-01-01

    We present results from a high-contrast adaptive optics imaging search for giant planets and brown dwarfs (≳1 M {sub Jup}) around 122 newly identified nearby (≲40 pc) young M dwarfs. Half of our targets are younger than 135 Myr and 90% are younger than the Hyades (620 Myr). After removing 44 close stellar binaries (implying a stellar companion fraction of >35.4% ± 4.3% within 100 AU), 27 of which are new or spatially resolved for the first time, our remaining sample of 78 single M dwarfs makes this the largest imaging search for planets around young low-mass stars (0.1-0.6 M {sub ☉}) to date. Our H- and K-band coronagraphic observations with Keck/NIRC2 and Subaru/HiCIAO achieve typical contrasts of 12-14 mag and 9-13 mag at 1'', respectively, which correspond to limiting planet masses of 0.5-10 M {sub Jup} at 5-33 AU for 85% of our sample. We discovered four young brown dwarf companions: 1RXS J235133.3+312720 B (32 ± 6 M {sub Jup}; L0{sub −1}{sup +2}; 120 ± 20 AU), GJ 3629 B (64{sub −23}{sup +30} M {sub Jup}; M7.5 ± 0.5; 6.5 ± 0.5 AU), 1RXS J034231.8+121622 B (35 ± 8 M {sub Jup}; L0 ± 1; 19.8 ± 0.9 AU), and 2MASS J15594729+4403595 B (43 ± 9 M {sub Jup}; M8.0 ± 0.5; 190 ± 20 AU). Over 150 candidate planets were identified; we obtained follow-up imaging for 56% of these but all are consistent with background stars. Our null detection of planets enables strong statistical constraints on the occurrence rate of long-period giant planets around single M dwarfs. We infer an upper limit (at the 95% confidence level) of 10.3% and 16.0% for 1-13 M {sub Jup} planets between 10-100 AU for hot-start and cold-start (Fortney) evolutionary models, respectively. Fewer than 6.0% (9.9%) of M dwarfs harbor massive gas giants in the 5-13 M {sub Jup} range like those orbiting HR 8799 and β Pictoris between 10-100 AU for a hot-start (cold-start) formation scenario. The frequency of brown dwarf (13-75 M {sub Jup}) companions

  6. On The Orbital Evolution of Jupiter Mass Protoplanet Embedded in A Self-Gravity Disk

    CERN Document Server

    Zhang, Hui; Lin, D N C; Yen, D C C

    2007-01-01

    We performed a series of hydro-dynamic simulations to investigate the orbital migration of a Jovian planet embedded in a proto-stellar disk. In order to take into account of the effect of the disk's self gravity, we developed and adopted an \\textbf{Antares} code which is based on a 2-D Godunov scheme to obtain the exact Reimann solution for isothermal or polytropic gas, with non-reflecting boundary conditions. Our simulations indicate that in the study of the runaway (type III) migration, it is important to carry out a fully self consistent treatment of the gravitational interaction between the disk and the embedded planet. Through a series of convergence tests, we show that adequate numerical resolution, especially within the planet's Roche lobe, critically determines the outcome of the simulations. We consider a variety of initial conditions and show that isolated, non eccentric protoplanet planets do not undergo type III migration. We attribute the difference between our and previous simulations to the con...

  7. Formation of Hot Planets by a Combination of Planet Scattering, Tidal Circularization, and the Kozai Mechanism

    Science.gov (United States)

    Nagasawa, M.; Ida, S.; Bessho, T.

    2008-05-01

    We have investigated the formation of close-in extrasolar giant planets through a coupling effect of mutual scattering, the Kozai mechanism, and tidal circularization, by orbital integrations. Close-in gas giants would have been originally formed at several AU beyond the ice lines in protoplanetary disks and migrated close to their host stars. Although type II migration due to planet-disk interactions may be a major channel for the migration, we show that this scattering process would also give a nonnegligible contribution. We carried out orbital integrations of three planets with Jupiter mass, directly including the effect of tidal circularization. We have found that in about 30% of the runs close-in planets are formed, which is much higher than suggested by previous studies. Three-planet orbit crossing usually results in the ejection of one or two planets. Tidal circularization often occurs during three-planet orbit crossing, but previous studies have monitored only the final stage after the ejection, significantly underestimating the formation probability. We have found that the Kozai mechanism in outer planets is responsible for the formation of close-in planets. During three-planet orbital crossing, Kozai excitation is repeated and the eccentricity is often increased secularly to values close enough to unity for tidal circularization to transform the inner planet to a close-in planet. Since a moderate eccentricity can retain for the close-in planet, this mechanism may account for the observed close-in planets with moderate eccentricities and without nearby secondary planets. Since these planets also remain a broad range of orbital inclinations (even retrograde ones), the contribution of this process would be clarified by more observations of Rossiter-McLaughlin effects for transiting planets.

  8. Photometric Follow-up Observations of the Transiting Neptune-Mass Planet GJ 436b

    CERN Document Server

    Shporer, Avi; Winn, Joshua N; Holman, Matthew J; Latham, David W; Pont, Frederic; Esquerdo, Gilbert A

    2008-01-01

    This paper presents multi-band photometric follow-up observations of the Neptune-mass transiting planet GJ 436b, consisting of 5 new ground-based transit light curves obtained in May 2007. Together with one already published light curve we have at hand a total of 6 light curves, spanning 29 days. The analysis of the data yields an orbital period P = 2.64386+-0.00003 days, mid-transit time T_c [HJD] =2454235.8355+-0.0001, planet mass M_p = 23.1+-0.9 M_{\\earth} = 0.073+-0.003 M_{Jup}, planet radius R_p = 4.2+-0.2 R_{\\earth} = 0.37+-0.01 R_{Jup} and stellar radius R_s = 0.45+-0.02 R_{\\sun}. Our typical precision for the mid transit timing for each transit is about 30 seconds. We searched the data for a possible signature of a second planet in the system through transit timing variations (TTV) and variation of the impact parameter. The analysis could not rule out a small, of the order of a minute, TTV and a long-term modulation of the impact parameter, of the order of +0.2 year^{-1}.

  9. The Effect of Stellar Evolution on Migrating Warm Jupiters

    CERN Document Server

    Frewen, Shane

    2015-01-01

    Warm jupiters are an unexpected population of extrasolar planets that are too near to their host to have formed in situ, but distant enough to retain a significant eccentricity in the face of tidal damping. These planets are curiously absent around stars larger than two solar radii. We hypothesize that the warm jupiters are migrating due to Kozai-Lidov oscillations, which leads to transient episodes of high eccentricity and a consequent tidal decay. As their host evolves, such planets would be rapidly dragged in or engulfed at minimum periapse, leading to a rapid depletion of the population with increasing stellar radius, as is observed. Using numerical simulations, we determine the relationship between periapse distance and orbital migration rate for planets 0.1 to 10 Jupiter masses and with orbital periods between 10 and 100 days. We find that Kozai-Lidov oscillations effectively result in planetary removal early in the evolution of the host star, possibly accounting for the observed deficit. While the obse...

  10. A FRAMEWORK FOR CHARACTERIZING THE ATMOSPHERES OF LOW-MASS LOW-DENSITY TRANSITING PLANETS

    Energy Technology Data Exchange (ETDEWEB)

    Fortney, Jonathan J.; Nettelmann, Nadine [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Mordasini, Christoph [Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg (Germany); Kempton, Eliza M.-R. [Department of Physics, Grinnell College, Grinnell, IA (United States); Greene, Thomas P.; Zahnle, Kevin, E-mail: jfortney@ucolick.org [Space Science and Astrobiology Division, NASA Ames Research Center, Moffett Field, CA (United States)

    2013-09-20

    We perform modeling investigations to aid in understanding the atmospheres and composition of small planets of ∼2-4 Earth radii, which are now known to be common in our Galaxy. GJ 1214b is a well-studied example whose atmospheric transmission spectrum has been observed by many investigators. Here we take a step back from GJ 1214b to investigate the role that planetary mass, composition, and temperature play in impacting the transmission spectra of these low-mass low-density (LMLD) planets. Under the assumption that these planets accrete modest hydrogen-dominated atmospheres and planetesimals, we use population synthesis models to show that predicted metal enrichments of the H/He envelope are high, with metal mass fraction Z{sub env} values commonly 0.6-0.9, or ∼100-400+ times solar. The high mean molecular weight of such atmospheres (μ ≈ 5-12) would naturally help to flatten the transmission spectrum of most LMLD planets. The high metal abundance would also provide significant condensible material for cloud formation. It is known that the H/He abundance in Uranus and Neptune decreases with depth, and we show that atmospheric evaporation of LMLD planets could expose atmospheric layers with gradually higher Z{sub env}. However, values of Z{sub env} close to solar composition can also arise, so diversity should be expected. Photochemically produced hazes, potentially due to methane photolysis, are another possibility for obscuring transmission spectra. Such hazes may not form above T{sub eq} of ∼800-1100 K, which is testable if such warm, otherwise low mean molecular weight atmospheres are stable against atmospheric evaporation. We find that available transmission data are consistent with relatively high mean molecular weight atmospheres for GJ 1214b and 'warm Neptune' GJ 436b. We examine future prospects for characterizing GJ 1214b with Hubble and the James Webb Space Telescope.

  11. Estimates of the Planet Yield from Ground-Based High-Contrast Imaging Observations as a Function of Stellar Mass

    CERN Document Server

    Crepp, Justin R

    2011-01-01

    We use Monte Carlo simulations to estimate the number of extrasolar planets that are directly detectable in the solar-neighborhood using current and forthcoming high-contrast imaging instruments. Our calculations take into account the important factors that govern the likelihood for imaging a planet, including the statistical properties of nearby stars, correlations between star and planet properties, observational effects, and selection criteria. We consider several different ground-based surveys and express the resulting yields as a function of stellar mass. Selecting targets based on their youth and visual brightness, we find that strong correlations between star mass and planet properties are required to reproduce high-contrast imaging results to date. Using the most recent empirical findings for the occurrence rate of planets from RV surveys, our simulations indicate that extrapolation of the Doppler planet population to separations accessible to high-contrast instruments provides excellent agreement bet...

  12. The International Deep Planet Survey. II. The frequency of directly imaged giant exoplanets with stellar mass

    Science.gov (United States)

    Galicher, R.; Marois, C.; Macintosh, B.; Zuckerman, B.; Barman, T.; Konopacky, Q.; Song, I.; Patience, J.; Lafrenière, D.; Doyon, R.; Nielsen, E. L.

    2016-10-01

    Context. Radial velocity and transit methods are effective for the study of short orbital period exoplanets but they hardly probe objects at large separations for which direct imaging can be used. Aims: We carried out the international deep planet survey of 292 young nearby stars to search for giant exoplanets and determine their frequency. Methods: We developed a pipeline for a uniform processing of all the data that we have recorded with NIRC2/Keck II, NIRI/Gemini North, NICI/Gemini South, and NACO/VLT for 14 yr. The pipeline first applies cosmetic corrections and then reduces the speckle intensity to enhance the contrast in the images. Results: The main result of the international deep planet survey is the discovery of the HR 8799 exoplanets. We also detected 59 visual multiple systems including 16 new binary stars and 2 new triple stellar systems, as well as 2279 point-like sources. We used Monte Carlo simulations and the Bayesian theorem to determine that 1.05+2.80-0.70% of stars harbor at least one giant planet between 0.5 and 14 MJ and between 20 and 300 AU. This result is obtained assuming uniform distributions of planet masses and semi-major axes. If we consider power law distributions as measured for close-in planets instead, the derived frequency is 2.30+5.95-1.55%, recalling the strong impact of assumptions on Monte Carlo output distributions. We also find no evidence that the derived frequency depends on the mass of the hosting star, whereas it does for close-in planets. Conclusions: The international deep planet survey provides a database of confirmed background sources that may be useful for other exoplanet direct imaging surveys. It also puts new constraints on the number of stars with at least one giant planet reducing by a factor of two the frequencies derived by almost all previous works. Tables 11-15 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc

  13. A sub-Saturn Mass Planet, MOA-2009-BLG-319Lb

    CERN Document Server

    Miyake, N; Dong, Subo; Street, R; Mancini, L; Gould, A; Bennett, D P; Tsapras, Y; Yee, J C; Albrow, M D; Bond, I A; Fouque, P; Browne, P; Han, C; Snodgrass, C; Finet, F; Furusawa, K; Harpsoe, K; Allen, W; Hundertmark, M; Freeman, M; Suzuki, D; Abe, F; Botzler, C S; Douchin, D; Fukui, A; Hayashi, F; Hearnshaw, J B; Hosaka, S; Itow, Y; Kamiya, K; Kilmartin, P M; Korpela, A; Lin, W; Ling, C H; Makita, S; Masuda, K; Matsubara, Y; Muraki, Y; Nagayama, T; Nishimoto, K; Ohnishi, K; Perrott, Y C; Rattenbury, N; Saito, To; Skuljan, L; Sullivan, D J; Sweatman, W L; Tristram, P J; Wada, K; Yock, P C M; Bolt, G; Bos, M; Christie, G W; DePoy, D L; Drummond, J; Gal-Yam, A; Gaudi, B S; Gorbikov, E; Higgins, D; Janczak, K -H Hwang J; Kaspi, S; Lee, C -U; Koo, J -R; lowski, S Koz; Lee, Y; Mallia, F; Maury, A; Maoz, D; McCormick, J; Monard, L A G; Moorhouse, D; Mu~noz, J A; Natusch, T; Ofek, E O; Pogge, R W; Polishook, D; Santallo, R; Shporer, A; Spector, O; Thornley, G; Allan, A; Bramich, D M; Horne, K; Kains, N; Steele, I; Bozza, V; Burgdorf, M J; Novati, S Calchi; Dominik, M; Dreizler, S; Glitrup, M; Hessman, F V; Hinse, T C; Jorgensen, U G; Liebig, C; Maier, G; Mathiasen, M; Rahvar, S; Ricci, D; Scarpetta, G; Skottfelt, J; Southworth, J; Surdej, J; Wambsganss, J; Zimmer, F; Batista, V; Beaulieu, J P; Brillant, S; Cassan, A; Cole, A; Corrales, E; Coutures, Ch; Dieters, S; Greenhill, J; Kubas, D; Menzies, J

    2015-01-01

    We report the gravitational microlensing discovery of a sub-Saturn mass planet, MOA-2009-BLG-319Lb, orbiting a K or M-dwarf star in the inner Galactic disk or Galactic bulge. The high cadence observations of the MOA-II survey discovered this microlensing event and enabled its identification as a high magnification event approximately 24 hours prior to peak magnification. As a result, the planetary signal at the peak of this light curve was observed by 20 different telescopes, which is the largest number of telescopes to contribute to a planetary discovery to date. The microlensing model for this event indicates a planet-star mass ratio of q = (3.95 +/- 0.02) x 10^{-4} and a separation of d = 0.97537 +/- 0.00007 in units of the Einstein radius. A Bayesian analysis based on the measured Einstein radius crossing time, t_E, and angular Einstein radius, \\theta_E, along with a standard Galactic model indicates a host star mass of M_L = 0.38^{+0.34}_{-0.18} M_{Sun} and a planet mass of M_p = 50^{+44}_{-24} M_{Earth}...

  14. The Fate of Scattered Planets

    CERN Document Server

    Bromley, Benjamin C

    2014-01-01

    As gas giant planets evolve, they may scatter other planets far from their original orbits to produce hot Jupiters or rogue planets that are not gravitationally bound to any star. Here, we consider planets cast out to large orbital distances on eccentric, bound orbits through a gaseous disk. With simple numerical models, we show that super-Earths can interact with the gas through dynamical friction to settle in the remote outer regions of a planetary system. Outcomes depend on planet mass, the initial scattered orbit, and the evolution of the time-dependent disk. Efficient orbital damping by dynamical friction requires planets at least as massive as the Earth. More massive, longer-lived disks damp eccentricities more efficiently than less massive, short-lived ones. Transition disks with an expanding inner cavity can circularize orbits at larger distances than disks that experience a global (homologous) decay in surface density. Thus, orbits of remote planets may reveal the evolutionary history of their primor...

  15. Jupiter before Juno: State of the atmosphere at cloud level in 2016 from PlanetCam observations in the 0.4-1.7 microns wavelength range and amateur observations in the visible

    Science.gov (United States)

    Hueso, Ricardo; Sanchez-Lavega, Agustin; Perez-Hoyos, Santiago; Rojas, Jose Felix; Iñurrigarro, Peio; Mendikoa, Iñigo; Go, Christopher; PVOL-IOPW Team

    2016-10-01

    The arrival of Juno to Jupiter provides a unique opportunity to link findings of the inner structure of the planet with astronomical observations of its meteorology at cloud level. Long time base observations of Jupiter's atmosphere before and during the Juno mission are critical in providing context to Junocam observations and may benefit the interpretation of the MWR data on the lower atmosphere structure as well as Juno data on the depth of the zonal winds. We have performed a long campaign of observations in the visible with the PlanetCam lucky imaging instrument in the 2.2m telescope at Calar Alto Observatory in Spain with observations obtained in December 2015 and in March, May, June and July 2016. In observations under good atmospheric seeing, the instrument allows to obtain images with a spatial resolution of 0.05'' in the visible and 0.1'' from 1.0 to 1.7 microns. The later is an interesting range of wavelengths for observing Jupiter because of the existence of several strong and weak methane absorption bands not generally used in high-resolution ground-based observations of the planet. A combination of images using narrow filters centered in methane absorption bands and their adjacent continuum allows studying the vertical structure of the clouds at horizontal spatial scales of 350-1000 km over the planet depending on the atmospheric seeing and filter used. The best images can be further processed showing features at spatial resolutions of about 150 km. We have also monitored the state of the atmosphere with images obtained by amateur astronomers contributing to the Planetary Virtual Observatory Laboratory database (http://pvol.ehu.eus). Based on both datasets we present zonal winds from -70 to +75 deg with an accuracy of 10 m/s in the low latitudes and 25 m/s in subpolar latitudes. Relative altitude maps of features observed in bands J, H and others with different methane absorption will be presented.

  16. Completing the Census of Extrasolar Planets in the Milky Way with the Microlensing Planet Finder

    Science.gov (United States)

    Bennett, D. P.; Bond, I.; Cheng, E.; Friedman, S.; Garnavich, P.; Gaudi, B. S.; Gilliland, R.; Gould, A.; Greenhouse, M.; Griest, K.; Kimble, R.; Lunine, J.; Mather, J.; Minniti, D.; Niedner, M.; Paczynski, B.; Peale, S.; Rauscher, B.; Rich, R. M.; Sahu, K.; Tenerelli, D.; Udalski, A.; Woolf, N.; Yock, P.

    2004-12-01

    The Microlensing Planet Finder (MPF) is a proposed Discovery mission that will complete the first census of extrasolar planets with sensitivity to planets like those in our own solar system. MPF will employ a 1.1m aperture telescope, which images a 1.3 sq. deg. field-of-view in the near-IR, in order to detect extrasolar planets with the gravitational microlensing effect. MPF's sensitivity extends down to planets of 0.1 Earth masses, and MPF can detect Earth-like planets at all separations from 0.7AU to infinity. If the planet:star mass ratios and planetary semi-major axes of our own Solar System are typical, MPF will detect 66 terrestrial planets (Venus/Earth/Mars analogs), 3300 gas giants (Jupiter/Saturn analogs), and 110 ice giants (Uranus/Neptune analogs). Thus, MPF will be able to be able to find analogs to our own Solar System's planets even if planetary systems like ours are not common. MPF's extrasolar planet census will provide critical information needed to understand the formation and frequency of extra solar planetary systems similar to our own.

  17. Structure and Evolution of Internally Heated Hot Jupiters

    Science.gov (United States)

    Komacek, Thaddeus D.; Youdin, Andrew N.

    2015-11-01

    The transit radii of many close-in extrasolar giant planets, or "hot Jupiters," are systematically larger than those expected from models considering only cooling from an initial high-entropy state. Though these planets receive strong irradiation, with equilibrium temperatures of 1000-2500 Kelvin, the absorption of stellar incident flux in the upper atmosphere alone cannot explain these anomalous radii. More promising mechanisms involve irradiation-driven meteorological activity, which penetrates much deeper into the planet than direct stellar heating. This circulation can lead to large-scale mixing and downward transport of kinetic energy, both processes whereby a fraction of the stellar incident power is transported downwards to the interior of the planet. Here we consider how deposition of heat at different pressure levels or structural locations within a planet affects the resulting evolution. To do so, we run global gas giant evolutionary models with with the stellar structure code MESA including additional energy dissipation. We find that relatively shallow atmospheric heating alone can explain the transit radii of the hot Jupiter sample, but heating in the convective zone is an order of magnitude more efficient regardless of exact location. Additionally, a small difference in atmospheric heating location can have a significant effect on radius evolution, especially near the radiative-convective boundary. The most efficient location to heat the planet is at the radiative-convective boundary or deeper. We expect that shear instabilities at this interface may naturally explain energy dissipation at the radiative-convective boundary, which typically lies at a pressure of ~1 kilobar after 5 Gyr for a planet with the mass and incident stellar flux of HD 209458b. Hence, atmospheric processes are most efficient at explaining the bloated radii of hot Jupiters if they can transport incident stellar power downwards to the top of the inner convective zone.

  18. Jupiter's Water Worlds

    Science.gov (United States)

    Pappalardo, R. T.

    2004-01-01

    When the twin Voyager spacecraft cruised past Jupiter in 1979, they did more than rewrite the textbooks on the giant planet. Their cameras also unveiled the astounding diversity of the four planet-size moons of ice and stone known as the Galilean satellites. The Voyagers revealed the cratered countenance of Callisto, the valleys and ridges of Ganymede, the cracked face of Europa, and the spewing volcanoes of Io. But it would take a spacecraft named for Italian scientist Galileo, who discovered the moons in 1610, to reveal the true complexity of these worlds and to begin to divulge their interior secrets. Incredibly, the Galileo data strongly suggest that Jupiter's three large icy moons (all but rocky Io) hide interior oceans.

  19. The accretion of migrating giant planets

    CERN Document Server

    Dürmann, Christoph

    2016-01-01

    Most studies concerning the growth and evolution of massive planets focus either on their accretion or their migration only. In this work we study both processes concurrently to investigate how they might mutually affect each other. We modeled a 2-dimensional disk with a steady accretion flow onto the central star and embed a Jupiter mass planet at 5.2 au. The disk is locally isothermal and viscosity is modeled using a constant $\\alpha$. The planet is held on a fixed orbit for a few hundred orbits to allow the disk to adapt and carve a gap. After this period, the planet is released and free to move according to the gravitational interaction with the gas disk. The mass accretion onto the planet is modeled by removing a fraction of gas from the inner Hill sphere, and the removed mass and momentum can be added to the planet. Our results show that a fast migrating planet is able to accrete more gas than a slower migrating planet. Utilizing a tracer fluid we analyzed the origin of the accreted gas which comes pred...

  20. An overabundance of low-density Neptune-like planets

    Science.gov (United States)

    Cubillos, Patricio; Erkaev, Nikolai V.; Juvan, Ines; Fossati, Luca; Johnstone, Colin P.; Lammer, Helmut; Lendl, Monika; Odert, Petra; Kislyakova, Kristina G.

    2017-04-01

    We present a uniform analysis of the atmospheric escape rate of Neptune-like planets with estimated radius and mass (restricted to Mp Values of Λ ≲ 20 suggest extremely high mass-loss rates. We identify 27 planets (out of 167) that are simultaneously consistent with hydrogen-dominated atmospheres and are expected to exhibit extreme mass-loss rates. We further estimate the mass-loss rates (Lhy) of these planets with tailored atmospheric hydrodynamic models. We compare Lhy to the energy-limited (maximum-possible high-energy driven) mass-loss rates. We confirm that 25 planets (15 per cent of the sample) exhibit extremely high mass-loss rates (Lhy > 0.1 M⌖ Gyr-1), well in excess of the energy-limited mass-loss rates. This constitutes a contradiction, since the hydrogen envelopes cannot be retained given the high mass-loss rates. We hypothesize that these planets are not truly under such high mass-loss rates. Instead, either hydrodynamic models overestimate the mass-loss rates, transit-timing-variation measurements underestimate the planetary masses, optical transit observations overestimate the planetary radii (due to high-altitude clouds), or Neptunes have consistently higher albedos than Jupiter planets. We conclude that at least one of these established estimations/techniques is consistently producing biased values for Neptune planets. Such an important fraction of exoplanets with misinterpreted parameters can significantly bias our view of populations studies, like the observed mass-radius distribution of exoplanets for example.

  1. The High-Energy Radiation Environment of Planets around Low-Mass Stars

    Science.gov (United States)

    Shkolnik, Evgenya; Miles, Brittany; Barman, Travis; Peacock, Sarah

    2015-12-01

    Low-mass stars are the dominant planet hosts averaging about one planet per star. Many of these planets orbit in the canonical habitable zone (HZ) of the star where, if other conditions allowed, liquid water may exist on the surface.A planet’s habitability, including atmospheric retention, is strongly dependent on the star’s ultraviolet (UV) emission, which chemically modifies, ionizes, and even erodes the atmosphere over time including the photodissociation of important diagnostic molecules, e.g. H2O, CH4, and CO2. The UV spectral slope of a low-mass star can enhance atmospheric lifetimes, and increase the detectability of biologically generated gases. But, a different slope may lead to the formation of abiotic oxygen and ozone producing a false-positive biosignature for oxygenic photosynthesis. Realistic constraints on the incident UV flux over a planet’s lifetime are necessary to explore the cumulative effects on the evolution, composition, and fate of a HZ planetary atmosphere.NASA’s Galaxy Evolution Explorer (GALEX) provides a unique data set with which to study the broadband UV emission from many hundreds of M dwarfs. The GALEX satellite has imaged nearly 3/4 of the sky simultaneously in two UV bands: near-UV (NUV; 175-275 nm) and far-UV (FUV; 135-175 nm). With these data these, we are able to calculate the mean UV emission and its level of variability at these wavelengths over critical planet formation and evolution time scales to better understand the probable conditions in HZ planetary atmospheres.In the near future, dedicated CubeSats (miniaturized satellites for space research) to monitor M dwarf hosts of transiting exoplanets will provide the best opportunity to measure their UV variability, constrain the probabilities of detecting habitable (and inhabited) planets, and provide the correct context within which to interpret IR transmission and emission spectroscopy of transiting exoplanets.

  2. Barnard’s Star: Planets or Pretense

    Science.gov (United States)

    Bartlett, Jennifer L.; Ianna, P. A.

    2014-01-01

    Barnard’s Star remains popular with planet hunters because it is not only an extremely near, high proper motion star, but also the object of early planet-detection claims. In 1963, van de Kamp explained perturbations in its proper motion by the presence of a planet. In 1969, he produced another single-planet solution and a two-planet solution to the astrometric wobbles detected. At least 19 studies have failed to confirm his results using a range of techniques, including radial velocity, direct imaging, and speckle interferometry. However, most of them lacked the sensitivity to detect the planets he described, including astrometric studies at the McCormick and Naval Observatories. However, radial-velocity monitoring of Barnard’s Star at Lick and Keck Observatories from 1987 through 2012 appears to have ruled out such planets. Based upon observations made at the Sproul Observatory between 1916 and 1962, van de Kamp claimed that Barnard’s Star had a planet with about 1.6 times the mass of Jupiter and an orbital period of 24 years. After accounting for instrumentation effects that might have been partially responsible for his initial results, he continued to assert that this red dwarf had two planets. In his 1982 analysis of ~20,000 exposures collected between 1938 and 1981, he calculated that two planets with 0.7- and 0.5-Jupiter masses in 12- and 20-year orbits, respectively, orbited the second-closest stellar system to our own. Starting in 1995, the dramatic successes of radial velocity searches for extrasolar planets drove van de Kamp’s unsubstantiated claims from popular consciousness. Although many low-mass stellar companions were discovered through astrometry, the technique has been less successful for planets: “The Extrasolar Planets Encyclopaedia” identifies one such discovery out of the 997 planets listed on 2013 September 23. Although Barnard’s Star has lost its pretensions to hosting the first extrasolar planets known, its intrinsic

  3. Discovery of WASP-65b and WASP-75b: Two Hot Jupiters Without Highly Inflated Radii

    CERN Document Server

    Chew, Y Gómez Maqueo; Pollacco, D; Brown, D J A; Doyle, A P; Cameron, A Collier; Gillon, M; Lendl, M; Smalley, B; Triaud, A H M J; West, R G; Wheatley, P J; Busuttil, R; Liebig, C; Anderson, D R; Armstrong, D J; Barros, S C C; Bento, J; Bochinski, J; Burwitz, V; Delrez, L; Enoch, B; Fumel, A; Haswell, C A; Hébrard, G; Hellier, C; Holmes, S; Jehin, E; Kolb, U; McCormac, J; Miller, G R M; Norton, A J; Pepe, F; Queloz, D; Rodríguez, J; Ségransan, D; Skillen, I; Stassun, K G; Udry, S; Watson, C A

    2013-01-01

    We report the discovery of two transiting hot Jupiters, WASP-65b (M_pl = 1.55 +/- 0.16 M_J; R_pl = 1.11 +/- 0.06 R_J), and WASP-75b (M_pl = 1.07 +/- 0.05 M_J; R_pl = 1.27 +/- 0.05 R_J). They orbit their host star every 2.311, and 2.484 days, respectively. The planet host WASP-65 is a G6 star (T_eff = 5600 K, [Fe/H] = -0.07 +/- 0.07, age > 8 Gyr); WASP-75 is an F9 star (T_eff = 6100 K, [Fe/H] = 0.07 +/- 0.09, age of 3 Gyr). The mean density of WASP-65b is similar to that of Jupiter (rho_pl = 1.13 +/- 0.08 rho_J), and in fact, WASP-65b is one of the densest planets with a mass between 0.1 and 2.0 M_J, a mass range in which a large fraction of the known planets have been found to be inflated with respect to theoretical planet models. WASP-65b is one of only a handful of planets with masses of around 1.5 M_J, a mass regime surprisingly underrepresented among the currently known hot Jupiters. The radius of Jupiter-mass WASP-75b is slightly inflated (< 10%) as compared to theoretical planet models with no core, ...

  4. Age of Jupiter inferred from the distinct genetics and formation times of meteorites.

    Science.gov (United States)

    Kruijer, Thomas S; Burkhardt, Christoph; Budde, Gerrit; Kleine, Thorsten

    2017-06-27

    The age of Jupiter, the largest planet in our Solar System, is still unknown. Gas-giant planet formation likely involved the growth of large solid cores, followed by the accumulation of gas onto these cores. Thus, the gas-giant cores must have formed before dissipation of the solar nebula, which likely occurred within less than 10 My after Solar System formation. Although such rapid accretion of the gas-giant cores has successfully been modeled, until now it has not been possible to date their formation. Here, using molybdenum and tungsten isotope measurements on iron meteorites, we demonstrate that meteorites derive from two genetically distinct nebular reservoirs that coexisted and remained spatially separated between ∼1 My and ∼3-4 My after Solar System formation. The most plausible mechanism for this efficient separation is the formation of Jupiter, opening a gap in the disk and preventing the exchange of material between the two reservoirs. As such, our results indicate that Jupiter's core grew to ∼20 Earth masses within <1 My, followed by a more protracted growth to ∼50 Earth masses until at least ∼3-4 My after Solar System formation. Thus, Jupiter is the oldest planet of the Solar System, and its solid core formed well before the solar nebula gas dissipated, consistent with the core accretion model for giant planet formation.

  5. Kepler Planets: A Tale of Evaporation

    Science.gov (United States)

    Owen, James E.; Wu, Yanqin

    2013-10-01

    Inspired by the Kepler mission's planet discoveries, we consider the thermal contraction of planets close to their parent star, under the influence of evaporation. The mass-loss rates are based on hydrodynamic models of evaporation that include both X-ray and EUV irradiation. We find that only low mass planets with hydrogen envelopes are significantly affected by evaporation, with evaporation being able to remove massive hydrogen envelopes inward of ~0.1 AU for Neptune-mass objects, while evaporation is negligible for Jupiter-mass objects. Moreover, most of the evaporation occurs in the first 100 Myr of stars' lives when they are more chromospherically active. We construct a theoretical population of planets with varying core masses, envelope masses, orbital separations, and stellar spectral types, and compare this population with the sizes and densities measured for low-mass planets, both in the Kepler mission and from radial velocity surveys. This exercise leads us to conclude that evaporation is the driving force of evolution for close-in Kepler planets. In fact, some 50% of the Kepler planet candidates may have been significantly eroded. Evaporation explains two striking correlations observed in these objects: a lack of large radius/low density planets close to the stars and a possible bimodal distribution in planet sizes with a deficit of planets around 2 R ⊕. Planets that have experienced high X-ray exposures are generally smaller than this size, and those with lower X-ray exposures are typically larger. A bimodal planet size distribution is naturally predicted by the evaporation model, where, depending on their X-ray exposure, close-in planets can either hold on to hydrogen envelopes ~0.5%-1% in mass or be stripped entirely. To quantitatively reproduce the observed features, we argue that not only do low-mass Kepler planets need to be made of rocky cores surrounded with hydrogen envelopes, but few of them should have initial masses above 20 M ⊕ and the

  6. EPIC212521166 b: a Neptune-mass planet with Earth-like density

    CERN Document Server

    Osborn, H P; Barros, S C C; Armstrong, D J; Santos, N C; Hojjatpanah, S; Demangeon, O; Adibekyan, V; Almenara, J M; Barrado, D; Bayliss, D; Boisse, I; Bouchy, F; Brown, D J A; Deleuil, M; Mena, E Delgado; Hébrard, G; Kirk, J; King, G W; Lam, K W F; Lillo-Box, J; Louden, T M; Lovis, C; Marmier, M; McCormac, J; Pollacco, D; Sousa, S G; Udry, S; Walker, S R

    2016-01-01

    We report the discovery of the exoplanet EPIC212521166 b from K2 photometry orbiting on a 13.8637d period around an old, metal-poor K3 dwarf star. A joint analysis of K2 photometry and high-precision RVs from HARPS reveals it to have a radius of 2.6$\\pm 0.1 R_{\\oplus}$ and a mass of 18.3$\\pm 2.8 M_{\\oplus}$, making it the most massive planet with a sub-Neptune radius (i.e. mini-Neptune) yet found. When accounting for compression, the resulting Earth-like density is best fit by a $0.2M_{\\oplus}$ hydrogen atmosphere over an $18M_{\\oplus}$ Earth-like core, although the planet could also have significant water content. At 0.1AU, even taking into account the old stellar age of $8 \\pm 3$ Gyr, the planet is unlikely to have been significantly affected by EUV evaporation or tides. However the planet likely disc-migrated to its current position making the lack of a thick H$_2$ atmosphere puzzling. With a V-band magnitude of 11.9 it is particularly amenable to follow-up observations, making EPIC-1166 b a rare and extre...

  7. Featured Image: Mapping Jupiter with Hubble

    Science.gov (United States)

    Kohler, Susanna

    2016-07-01

    Zonal wind profile for Jupiter, describing the speed and direction of its winds at each latitude. [Simon et al. 2015]This global map of Jupiters surface (click for the full view!) was generated by the Hubble Outer Planet Atmospheres Legacy (OPAL) program, which aims to createnew yearly global maps for each of the outer planets. Presented in a study led by Amy Simon (NASA Goddard Space Flight Center), the map above is the first generated for Jupiter in the first year of the OPAL campaign. It provides a detailed look at Jupiters atmospheric structure including the Great Red Spot and allowed the authors to measure the speed and direction of the wind across Jupiters latitudes, constructing an updated zonal wind profile for Jupiter.In contrast to this study, the Juno mission (which will be captured into Jupiters orbit today after a 5-year journey to Jupiter!) will be focusing more on the features below Jupiters surface, studying its deep atmosphere and winds. Some of Junos primary goals are to learn about Jupiters composition, gravitational field, magnetic field, and polar magnetosphere. You can follow along with the NASATV livestream as Juno arrives at Jupiter tonight; orbit insertion coverage starts at 10:30 EDT.CitationAmy A. Simon et al 2015 ApJ 812 55. doi:10.1088/0004-637X/812/1/55

  8. Terrestrial planet formation from a truncated disk -- The 'Grand Tack'

    Science.gov (United States)

    Walsh, K. J.; Morbidelli, A.; Raymond, S.; O'Brien, D. P.; Mandell, A. M.

    2012-12-01

    A new terrestrial planet formation model (Walsh et al., 2011) explores the effects of a two-stage, inward-then-outward migration of Jupiter and Saturn, as found in numerous hydrodynamical simulations of giant planet formation (Masset & Snellgrove 2001, Morbidelli & Crida 2007, Pierens & Nelson 2008, Pierens & Raymond 2011). The inward migration of Jupiter truncates the disk of planetesimals and embryos in the terrestrial planet region. Subsequent accretion in that region then forms the terrestrial planets, in particular it produces the correct Earth/Mars mass ratio, which has been difficult to reproduce in simulations with a self-consistent set of initial conditions (see, eg. Raymond et al. 2009, Hansen 2009). Additionally, the outward migration of the giant planets populates the asteroid belt with distinct populations of bodies, with the inner belt filled by bodies originating inside of 3 AU, and the outer belt filled with bodies originating from beyond the giant planets. This differs from previous models of terrestrial planet formation due to the early radial mixing of material due to the giant planet's substantial migration. Specifically, the assumption that the current radial distribution of material in the inner Solar System is reflective of the primordial distribution of material in that region is no longer necessary. We will discuss the implications of this model in relation to previous models of terrestrial planet formation as well as available chemical and isotopic constraints.

  9. Slowly-growing gap-opening planets trigger weaker vortices

    CERN Document Server

    Hammer, Michael; Lin, Min-Kai

    2016-01-01

    The presence of a giant planet in a low-viscosity disc can create a gap edge in the disc's radial density profile sharp enough to excite the Rossby Wave Instability. This instability may evolve into dust-trapping vortices that might explain the "banana-shaped" features in recently observed asymmetric transition discs with inner cavities. Previous hydrodynamical simulations of planet-induced vortices have neglected the timescale of hundreds to thousands of orbits to grow a massive planet to Jupiter-size. In this work, we study the effect of a giant planet's runaway growth timescale on the lifetime and characteristics of the resulting vortex. For two different planet masses (1 and 5 Jupiter masses) and two different disc viscosities ($\\alpha$=3$\\times 10^{-4}$ and 3$\\times10^{-5}$), we compare the vortices induced by planets with several different growth timescales between 10 and 4000 planet orbits. In general, we find that slowly-growing planets create significantly weaker vortices with lifetimes and surface d...

  10. Rapid heating of the atmosphere of an extrasolar planet.

    Science.gov (United States)

    Laughlin, Gregory; Deming, Drake; Langton, Jonathan; Kasen, Daniel; Vogt, Steve; Butler, Paul; Rivera, Eugenio; Meschiari, Stefano

    2009-01-29

    Near-infrared observations of more than a dozen 'hot-Jupiter' extrasolar planets have now been reported. These planets display a wide diversity of properties, yet all are believed to have had their spin periods tidally spin-synchronized with their orbital periods, resulting in permanent star-facing hemispheres and surface flow patterns that are most likely in equilibrium. Planets in significantly eccentric orbits can enable direct measurements of global heating that are largely independent of the details of the hydrodynamic flow. Here we report 8-microm photometric observations of the planet HD 80606b during a 30-hour interval bracketing the periastron passage of its extremely eccentric 111.4-day orbit. As the planet received its strongest irradiation (828 times larger than the flux received at apastron) its maximum 8-microm brightness temperature increased from approximately 800 K to approximately 1,500 K over a six-hour period. We also detected a secondary eclipse for the planet, which implies an orbital inclination of i approximately 90 degrees , fixes the planetary mass at four times the mass of Jupiter, and constrains the planet's tidal luminosity. Our measurement of the global heating rate indicates that the radiative time constant at the planet's 8-microm photosphere is approximately 4.5 h, in comparison with 3-5 days in Earth's stratosphere.

  11. Constraints on resonant-trapping for two planets embedded in a protoplanetary disc

    CERN Document Server

    Pierens, Arnaud

    2008-01-01

    We investigate the evolution of two-planet systems embedded in a protoplanetary disc, which are composed of a Jupiter-mass planet plus another body located further out in the disc. We consider outermost planets with masses ranging from 10 earth masses to 1 M_J. We also examine the case of outermost bodies with masses 20 M_E, trapped initially at the edge of the gap, or in the 2:1 resonance, also result in eventual capture in the 3:2 resonance as the planet mass grows to become close to the mass of Saturn. Our results suggest that there is a theoretical lower limit to the mass of an outer planet that can be captured into resonance with an inner Jovian planet, which is relevant to observations of extrasolar multiplanet systems. Furthermore, capture of a Saturn-like planet into the 3:2 resonance with a Jupiter-like planet is a very robust outcome of simulations. This result is relevant to recent scenarios of early Solar System evolution which require Saturn to have existed interior to the 2:1 resonance with Jup...

  12. On the migration-induced resonances in a system of two planets with masses in the Earth mass range

    CERN Document Server

    Papaloizou, J C B

    2005-01-01

    We investigate orbital resonances expected to arise when a system of two planets, with masses in the range 1-4 Earth masses, undergoes convergent migration while embedded in a section of gaseous disc where the flow is laminar. We consider surface densities corresponding to 0.5-4 times that expected for a minimum mass solar nebula at 5.2 AU. Using hydrodynamic simulations we find that when the configuration is such that convergent migration occurs the planets can become locked in a first order commensurability for which the period ratio is (p+1)/p with p being an integer and migrate together maintaining it for many orbits. Relatively rapid convergent migration as tends to occur for disparate masses, results in commensurabilities with p larger than 2. However, in these cases the dynamics is found to have a stochastic character. When the convergent migration is slower, such as occurs in the equal mass case, lower p commensurabilities such as 3:2 are attained which show much greater stability. In one already know...

  13. CoRoT’s first seven planets: An overview*

    Directory of Open Access Journals (Sweden)

    Barge P.

    2011-07-01

    Full Text Available The up to 150 day uninterrupted high-precision photometry of about 100000 stars – provided so far by the exoplanet channel of the CoRoT space telescope – gave a new perspective on the planet population of our galactic neighbourhood. The seven planets with very accurate parameters widen the range of known planet properties in almost any respect. Giant planets have been detected at low metallicity, rapidly rotating and active, spotted stars. CoRoT-3 populated the brown dwarf desert and closed the gap of measured physical properties between standard giant planets and very low mass stars. CoRoT extended the known range of planet masses down-to 5 Earth masses and up to 21 Jupiter masses, the radii to less than 2 Earth radii and up to the most inflated hot Jupiter found so far, and the periods of planets discovered by transits to 9 days. Two CoRoT planets have host stars with the lowest content of heavy elements known to show a transit hinting towards a different planet-host-star-metallicity relation then the one found by radial-velocity search programs. Finally the properties of the CoRoT-7b prove that terrestrial planets with a density close to Earth exist outside the Solar System. The detection of the secondary transit of CoRoT-1 at the 10−5-level and the very clear detection of the 1.7 Earth radii of CoRoT-7b at 3.5 10−4 relative flux are promising evidence of CoRoT being able to detect even smaller, Earth sized planets.

  14. The Influence of Coronal Mass Ejections on the Gas Dynamics of the Atmosphere of a "Hot~Jupiter" Exoplanet

    CERN Document Server

    Bisikalo, D V

    2016-01-01

    The results of three-dimensional numerical simulations of the gas dynamics of the atmosphere of a "hot Jupiter" exoplanet during the passage of a coronal mass ejection (CME) from the central star are presented. These computations assumed the parameters for the stellar wind and the CME to be typical of the solar values. The characteristic variations of the flow pattern are considered for quasi-closed and closed (but appreciably distorted by the gravitational influence of the star) gaseous envelopes of the exoplanet. It is shown that a typical CME is sufficient to tear off the outer part of an asymmetric envelope that is located beyond the Roche lobe and carry it away from the exoplanet. This leads to a substantial increase in the mass-loss rate from the exoplanet envelope during the passage of CMEs. The mass-loss rate grows by about a factor of 11 for a closed envelope, and by about a factor of 14 for a quasi-closed envelope. Possible evolutionary consequences of the loss of part of the atmosphere during the p...

  15. Planets Around Low-Mass Stars (PALMS). IV. The Outer Architecture of M Dwarf Planetary Systems

    CERN Document Server

    Bowler, Brendan P; Shkolnik, Evgenya L; Tamura, Motohide

    2014-01-01

    We present results from a high-contrast adaptive optics imaging search for giant planets and brown dwarfs (>1 MJup) around 122 newly identified nearby (<40 pc) young M dwarfs. Half of our targets are younger than 135 Myr and 90% are younger than the Hyades (620 Myr). Our H- and K-band coronagraphic observations with Keck/NIRC2 and Subaru/HiCIAO achieve typical contrasts of 12-14 mag and 9-13 mag at 1", respectively, which corresponds to limiting planet masses of 0.5-10 MJup at 5-33 AU for 85% of our sample. We discovered four young brown dwarf companions: 1RXS J235133.3+312720 B (32 $\\pm$ 6 MJup; L0$^{+2}_{-1}$; 120 $\\pm$ 20 AU), GJ 3629 B (64$^{+30}_{-23}$ MJup; M7.5 $\\pm$ 0.5; 6.5 $\\pm$ 0.5 AU), 1RXS J034231.8+121622 B (35 $\\pm$ 8 MJup; L0 $\\pm$ 1; 19.8 $\\pm$ 0.9 AU), and 2MASS J15594729+4403595 B (43 $\\pm$ 9 MJup; M8.0 $\\pm$ 0.5; 190 $\\pm$ 20 AU). Over 150 candidate planets were identified; we obtained follow-up imaging for 56% of these but all are consistent with background stars. Our null detection of...

  16. Colliding Winds in Low-Mass Binary Star Systems: wind interactions and implications for habitable planets

    CERN Document Server

    Johnstone, C P; Pilat-Lohinger, E; Bisikalo, D; Güdel, M; Eggl, S

    2015-01-01

    Context. In binary star systems, the winds from the two components impact each other, leading to strong shocks and regions of enhanced density and temperature. Potentially habitable circumbinary planets must continually be exposed to these interactions regions. Aims. We study, for the first time, the interactions between winds from low-mass stars in a binary system, to show the wind conditions seen by potentially habitable circumbinary planets. Methods. We use the advanced 3D numerical hydrodynamic code Nurgush to model the wind interactions of two identical winds from two solar mass stars with circular orbits and a binary separation of 0.5 AU. As input into this model, we use a 1D hydrodynamic simulation of the solar wind, run using the Versatile Advection Code. We derive the locations of stable and habitable orbits in this system to explore what wind conditions potentially habitable planets will be exposed to during their orbits. Results. Our wind interaction simulations result in the formation of two stron...

  17. On the width and shape of the corotation region for low-mass planets

    CERN Document Server

    Paardekooper, S -J

    2009-01-01

    We study the coorbital flow for embedded, low mass planets. We provide a simple semi-analytic model for the corotation region, which is subsequently compared to high resolution numerical simulations. The model is used to derive an expression for the half-width of the horseshoe region, x_s, which in the limit of zero softening is given by x_s/r_p = 1.68(q/h)^(1/2), where q is the planet to central star mass ratio, h is the disc aspect ratio and r_p the orbital radius. This is in very good agreement with the same quantity measured from simulations. This result is used to show that horseshoe drag is about an order of magnitude larger than the linear corotation torque in the zero softening limit. Thus the horseshoe drag, the sign of which depends on the gradient of specific vorticity, is important for estimates of the total torque acting on the planet. We further show that phenomena, such as the Lindblad wakes, with a radial separation from corotation of ~ a pressure scale height H can affect x_s, even though for...

  18. Expected Detection and False Alarm Rates for Transiting Jovian Planets

    CERN Document Server

    Brown, T M

    2003-01-01

    Ground-based searches for transiting Jupiter-sized planets have so far produced few detections of planets, but many of stellar systems with eclipse depths, durations, and orbital periods that resemble those expected from planets. I show that these detection rates are consistent with our present knowledge of binary and multiple-star systems, and of Jovian-mass extrasolar planets. Upcoming space-based searches for transiting Earth-sized planets will be largely unaffected by the sources of false alarms that afflict current ground-based searches, with one exception, namely distant eclipsing binaries whose light is strongly diluted by that of a foreground star. A byproduct of the rate estimation is evidence that the period distribution of extrasolar planets is depressed for periods between 5 and 200 days.

  19. Close approach maneuvers around an oblate planet

    Science.gov (United States)

    Oliveira, G. M. C.; Prado, A. F. B. A.; Sanchez, D. M.

    2015-10-01

    There are many applications of the close approach maneuvers in astronautics, and several missions used this technique in the last decades. In the present work, those close approach maneuvers are revisited, but now considering that the spacecraft passes around an oblate planet. This fact changes the distribution of mass of the planet, increasing the mass in the region of the equator, so increasing the gravitational forces in the equatorial plane. Since the present study is limited to planar trajectories, there is an increase in the variation of energy given by the maneuver. The planet Jupiter is used as the body for the close approach, but the value of J2 is varied in a large range to simulate situations of other celestial bodies that have larger oblateness, but the same mass ratio. This is particularly true in recent discovered exoplanets, and this first study can help the study of the dynamics around those bodies.

  20. Imaging Young Planets From Ground and Space

    CERN Document Server

    Beichman, Charles A; Trauger, John T; Greene, Thomas P; Oppenheimer, Ben; Sivaramakrishnan, Anand; Doyon, Rene; Boccaletti, Antony; Barman, Travis S; Rieke, Marcia

    2010-01-01

    High contrast imaging can find and characterize gas giant planets around nearby young stars and the closest M stars, complementing radial velocity and astrometric searches by exploring orbital separations inaccessible to indirect methods. Ground-based coronagraphs are already probing within 25 AU of nearby young stars to find objects as small as ~ 3 Jupiter masses. This paper compares near-term and future ground-based capabilities with high contrast imaging modes of the James Webb Space Telescope (JWST). Monte Carlo modeling reveals that JWST can detect planets with masses as small as 0.2 MJup across a broad range of orbital separations. We present new calculations for planet brightness as a function of mass and age for specific JWST filters and extending to 0.1 MJup.

  1. Planet Hunters: A Transiting Circumbinary Planet in a Quadruple Star System

    Science.gov (United States)

    Schwamb, Megan E.; Orosz, Jerome A.; Carter, Joshua A.; Welsh, William F.; Fischer, Debra A.; Torres, Guillermo; Howard, Andrew W.; Crepp, Justin R.; Keel, William C.; Lintott, Chris J.; Kaib, Nathan A.; Terrell, Dirk; Gagliano, Robert; Jek, Kian J.; Parrish, Michael; Smith, Arfon M.; Lynn, Stuart; Simpson, Robert J.; Giguere, Matthew J.; Schawinski, Kevin

    2013-05-01

    We report the discovery and confirmation of a transiting circumbinary planet (PH1b) around KIC 4862625, an eclipsing binary in the Kepler field. The planet was discovered by volunteers searching the first six Quarters of publicly available Kepler data as part of the Planet Hunters citizen science project. Transits of the planet across the larger and brighter of the eclipsing stars are detectable by visual inspection every ~137 days, with seven transits identified in Quarters 1-11. The physical and orbital parameters of both the host stars and planet were obtained via a photometric-dynamical model, simultaneously fitting both the measured radial velocities and the Kepler light curve of KIC 4862625. The 6.18 ± 0.17 R ⊕ planet orbits outside the 20 day orbit of an eclipsing binary consisting of an F dwarf (1.734 ± 0.044 R ⊙, 1.528 ± 0.087 M ⊙) and M dwarf (0.378 ± 0.023 R ⊙, 0.408 ± 0.024 M ⊙). For the planet, we find an upper mass limit of 169 M ⊕ (0.531 Jupiter masses) at the 99.7% confidence level. With a radius and mass less than that of Jupiter, PH1b is well within the planetary regime. Outside the planet's orbit, at ~1000 AU, a previously unknown visual binary has been identified that is likely bound to the planetary system, making this the first known case of a quadruple star system with a transiting planet.

  2. H-alpha as a Probe of Very Low-mass Planets: The GAPplanetS Survey With the MagAO System

    Science.gov (United States)

    Close, L.; MagAO Team

    2014-03-01

    We utilized the new high-order 585 actuator Magellan Adaptive Optics system (MagAO) to obtain very high-resolution visible light images of young Transitional Disk with MagAO's VisAO science camera. In the median seeing conditions of the 6.5m Magellan telescope (0.5 - 0.7''), we find MagAO delivers 24-19% Strehl at Ha (0.656 mm). We detect a faint companion embedded in this young transitional disk system at just 86.3±1.9 mas (~12 AU) from the star. The companion is detected in both Ha and a continuum filter (Dmag=6.33±0.20 mag at Ha and 7.50±0.25 mag in the continuum filter). The Ha emission from the ~0.25 solar mass companion (EW=180 Angstroms) implies a mass accretion rate of ~5.9x10-10 Msun/yr, and a total accretion luminosity of 1.2% Lsun. Assuming a similar accretion rate, we estimate that a 1 Jupiter mass gas giant could have considerably better (50-1,000x) planet/star contrasts at Ha than at H band (COND models) for a range of optical extinctions (3.4-0 mag). We suggest that ~0.5-5 Mjup extrasolar planets in their gas accretion phase could be much more luminous at Ha than in the NIR. This is the motivation for our new MagAO GAPplanetS survey for directly imaging lowmass exoplanets in the gaps of transitional disks in the light of H-alpha with MagAO's unique SDI AO camera.

  3. Planets under pressure

    Science.gov (United States)

    Jeanloz, Raymond

    2009-04-01

    Deep inside the planet Jupiter, diamonds hail down from hydrocarbon clouds as intense atmospheric pressures break methane into its atomic components. Further in - but still only 15% of the way to the planet's centre - the pressure reaches a million times that of the Earth's atmosphere. This is enough to transform hydrogen from the transparent, insulating gas we know at our planet's surface into a metallic fluid that sustains Jupiter's huge magnetic field. Even diamond is not forever: at pressures of 8-10 million atmospheres it is transformed into an opaque, metallic form of carbon, rather than the familiar transparent crystal.

  4. Range of outward migration and influence of the disc's mass on the migration of giant planet cores

    Science.gov (United States)

    Bitsch, B.; Kley, W.

    2011-12-01

    Context. The migration of planets plays an important role in the early planet-formation process. An important problem has been that standard migration theories predict very rapid inward migration, which poses problems for population synthesis models. However, it has been shown recently that low-mass planets (20-30 MEarth) that are still embedded in the protoplanetary disc can migrate outwards under certain conditions. Simulations have been performed mostly for planets at given radii for a particular disc model. Aims: Here, we plan to extend previous work and consider different masses of the disc to quantify the influence of the physical disc conditions on planetary migration. The migration behaviour of the planets will be analysed for a variety of positions in the disc. Methods: We perform three-dimensional (3D) radiation hydrodynamical simulations of embedded planets in protoplanetary discs. We use the explicit-implicit 3D hydrodynamical code NIRVANA that includes full tensor viscosity, and implicit radiation transport. For planets on circular orbits at various locations we measure the radial dependence of the torques for three different planetary masses. Results: For all considered planet masses (20-30 MEarth) in this study we find outward migration within a limited radial range of the disc, typically from about 0.5 up to 1.5-2.5 aJup. Inside and outside this interval, migration is inward and given by the Lindblad value for large radii. Interestingly, the fastest outward migration occurs at a radius of about aJup for different disc and planet masses. Because outward migration stops at a certain location in the disc, there exists a zero-torque distance for planetary embryos, where they can continue to grow without moving too fast. For higher disc masses (Mdisc > 0.02 M⊙) convection ensues, which changes the structure of the disc and therefore the torque on the planet as well. Conclusions: Outward migration stops at different points in the disc for different

  5. Models of Warm Jupiter Atmospheres: Observable Signatures of Obliquity

    Science.gov (United States)

    Rauscher, Emily

    2017-09-01

    We present three-dimensional atmospheric circulation models of a hypothetical “warm Jupiter” planet, for a range of possible obliquities from 0° to 90°. We model a Jupiter-mass planet on a 10 day orbit around a Sun-like star, since this hypothetical planet sits at the boundary between planets for which we expect that tidal forces should have aligned their rotation axes with their orbital axes (i.e., ones with zero obliquity) and planets whose timescale for tidal alignment is longer than the typical age of an exoplanet system. In line with observational progress, which is pushing atmospheric characterization for planets on longer orbital periods, we calculate the observable signatures of obliquity for a transiting warm Jupiter: in orbital phase curves of thermal emission and in the hemispheric flux gradients that could be measured by eclipse mapping. For both of these predicted measurements, the signal that we would see depends strongly on our viewing geometry relative to the orientation of the planet’s rotation axis, and we thoroughly identify the degeneracies that result. We compare these signals to the predicted sensitivities of current and future instruments and determine that the James Webb Space Telescope should be able to constrain the obliquities of nearby warm Jupiters to be small (if ≤slant 10^\\circ ) or to directly measure them if significantly non-zero (≥slant 30^\\circ ) using the technique of eclipse mapping. For a bright target and assuming photon-limited precision, this could be done with a single secondary eclipse observation.

  6. The Anglo-Australian Planet Search Legacy

    Science.gov (United States)

    Wittenmyer, Robert A.; Tinney, Christopher G.; Butler, Paul; Horner, Jonathan; Carter, Brad; Wright, Duncan; Jones, H. R. A.

    2017-01-01

    Radial velocity searches for exoplanets have undergone a revolution in recent years: now precisions of 1 m/s or better are being demonstrated by many instruments, and new purpose-built spectrographs hold the promise of bringing Earth-mass planets into the realm of secure detectability. In the "race to the bottom," it is critical not to overlook the impact of long-running planet search programs that continue to hold the advantage of time. We highlight the continuing impact of the 18-year Anglo-Australian Planet Search: the characterisation of long-period giant planets, and the insights into the occurrence rate of Jupiter and Saturn analogs. To fully understand the origins of planetary systems and the fundamental question of how common (or rare) the architecture of the Solar system is in the Galaxy, we must continue these "legacy" surveys to probe ever-larger orbital separations.

  7. Migration then assembly: Formation of Neptune mass planets inside 1~AU

    CERN Document Server

    Hansen, Brad M S

    2011-01-01

    We demonstrate that the observed distribution of 'Hot Neptune'/'Super-Earth' systems is well reproduced by a model in which planet assembly occurs in situ, with no significant migration. This is achieved only if the amount of mass in rocky material is 50--100 M_{\\oplus} interior to 1 AU, so significant radial migration of material is likely still required, but it must occur earlier than the final assembly stages. The model not only reproduces the general distribution of mass versus period, but also the detailed statistics of multiple planet systems in the sample. We furthermore demonstrate that cores of this size are also likely to meet the criterion to gravitationally capture gas from the nebula, although accretion is rapidly limited by the opening of gaps in the gas disk. If the mass growth is limited by this tidal truncation, then the scenario sketched here naturally produces Neptune-mass objects with substantial components of both rock and gas, as is observed. The quantitative expectations of this scenari...

  8. OGLE-2012-BLG-0724Lb: A Saturn-mass Planet around an M-dwarf

    CERN Document Server

    Hirao, Y; Sumi, T; Bennett, D P; Bond, I A; Rattenbury, N; Suzuki, D; Koshimoto, N; Abe, F; Asakura, Y; Bhattacharya, A; Freeman, M; Fukui, A; Itow, Y; Li, M C A; Ling, C H; Masuda, K; Matsubara, Y; Matsuo, T; Muraki, Y; Nagakane, M; Ohnishi, K; Oyokawa, H; Saito, To; Sharan, A; Shibai, H; Sullivan, D J; Tristram, P J; Yonehara, A; Poleski, R; Skowron, J; Mróz, P; Szymański, M K; Kozłowski, S; Pietrukowicz, P; Soszyński, I; Wyzykowski, Ł; Ulaczyk, K

    2016-01-01

    We report the discovery of a planet by the microlensing method, OGLE-2012-BLG-0724Lb. Although the duration of the planetary signal for this event was one of the shortest seen for a planetary event, the anomaly was well covered thanks to high cadence observations taken by the survey groups OGLE and MOA. By analyzing the light curve, this planetary system is found to have a mass ratio $q=(1.58\\pm0.15)\\times10^{-3}$. By conducting a Bayesian analysis, we estimate that the host star is an M-dwarf star with a mass of $M_{\\rm L}=0.29_{-0.16}^{+0.33} \\ M_{\\odot}$ located at $D_{\\rm L}=6.7_{-1.2}^{+1.1} \\ {\\rm kpc}$ away from the Earth and the companion's mass is $m_{\\rm P}=0.47_{-0.26}^{+0.54} \\ M_{\\rm Jup}$. The projected planet-host separation is $a_{\\perp}=1.6_{-0.3}^{+0.4} \\ {\\rm AU}$. Because the lens-source relative proper motion is relatively high, future high resolution images would detect the lens host star and determine the lens properties uniquely. This system is likely a Saturn-mass exoplanet around an ...

  9. Kepler-424 b: A 'lonely' hot Jupiter that found A companion

    Energy Technology Data Exchange (ETDEWEB)

    Endl, Michael [McDonald Observatory, The University of Texas at Austin, Austin, TX 78712 (United States); Caldwell, Douglas A.; Barclay, Thomas; Huber, Daniel; Havel, Mathieu; Howell, Steve B.; Quintana, Elisa [NASA Ames Research Center, Moffett Field, CA 94035 (United States); Isaacson, Howard [Department of Astronomy, University of California, Berkeley, CA 94720 (United States); Buchhave, Lars A. [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States); Brugamyer, Erik [Department of Astronomy, The University of Texas at Austin, Austin, TX 78712 (United States); Robertson, Paul [Department of Astronomy and Astrophysics, Center for Exoplanets and Habitable Worlds, Pennsylvania State University (United States); Cochran, William D.; MacQueen, Phillip J. [McDonald Observatory and Department of Astronomy, The University of Texas at Austin, Austin, TX 78712 (United States); Lucas, Phillip [Centre for Astrophysics Research, University of Hertfordshire, College Lane, Hatfield AL10 9AB (United Kingdom); Fischer, Debra [Department of Astronomy, Yale University (United States); Ciardi, David R. [NASA Exoplanet Science Institute, California Institute of Technology, Pasadena, CA 91125 (United States)

    2014-11-10

    Hot Jupiter systems provide unique observational constraints for migration models in multiple systems and binaries. We report on the discovery of the Kepler-424 (KOI-214) two-planet system, which consists of a transiting hot Jupiter (Kepler-424b) in a 3.31 day orbit accompanied by a more massive outer companion in an eccentric (e = 0.3) 223 day orbit. The outer giant planet, Kepler-424c, is not detected transiting the host star. The masses of both planets and the orbital parameters for the second planet were determined using precise radial velocity (RV) measurements from the Hobby-Eberly Telescope (HET) and its High Resolution Spectrograph (HRS). In stark contrast to smaller planets, hot Jupiters are predominantly found to be lacking any nearby additional planets; they appear to be {sup l}onely{sup .} This might be a consequence of these systems having a highly dynamical past. The Kepler-424 planetary system has a hot Jupiter in a multiple system, similar to υ Andromedae. We also present our results for Kepler-422 (KOI-22), Kepler-77 (KOI-127), Kepler-43 (KOI-135), and Kepler-423 (KOI-183). These results are based on spectroscopic data collected with the Nordic Optical Telescope (NOT), the Keck 1 telescope, and HET. For all systems, we rule out false positives based on various follow-up observations, confirming the planetary nature of these companions. We performed a comparison with planetary evolutionary models which indicate that these five hot Jupiters have heavy element contents between 20 and 120 M {sub ⊕}.

  10. The fates of Solar system analogues with one additional distant planet

    CERN Document Server

    Veras, Dimitri

    2016-01-01

    The potential existence of a distant planet ("Planet Nine") in the Solar system has prompted a re-think about the evolution of planetary systems. As the Sun transitions from a main sequence star into a white dwarf, Jupiter, Saturn, Uranus and Neptune are currently assumed to survive in expanded but otherwise unchanged orbits. However, a sufficiently-distant and sufficiently-massive extra planet would alter this quiescent end scenario through the combined effects of Solar giant branch mass loss and Galactic tides. Here, I estimate bounds for the mass and orbit of a distant extra planet that would incite future instability in systems with a Sun-like star and giant planets with masses and orbits equivalent to those of Jupiter, Saturn, Uranus and Neptune. I find that this boundary is diffuse and strongly dependent on each of the distant planet's orbital parameters. Nevertheless, I claim that instability occurs more often than not when the planet is as massive as Jupiter and harbours a semimajor axis exceeding abo...

  11. Dawes Review 7: The Tidal Downsizing Hypothesis of Planet Formation

    Science.gov (United States)

    Nayakshin, Sergei

    2017-01-01

    Tidal Downsizing scenario of planet formation builds on ideas proposed by Gerard Kuiper in 1951. Detailed simulations of self-gravitating discs, gas fragments, dust grain dynamics, and planet evolutionary calculations are summarised here and used to build a predictive population synthesis. A new interpretation of exoplanetary and debris disc data, the Solar System's origins, and the links between planets and brown dwarfs is offered. Tidal Downsizing predicts that presence of debris discs, sub-Neptune mass planets, planets more massive than 5 Jupiter masses and brown dwarfs should not correlate strongly with the metallicity of the host. For gas giants of Saturn to a few Jupiter mass, a strong host star metallicity correlation is predicted only inwards of a few AU from the host. Composition of massive cores is predicted to be dominated by rock rather than ices. Debris discs made by Tidal Downsizing have an innermost edge larger than about 1 au, have smaller total masses and are usually in a dynamically excited state. Planet formation in surprisingly young or very dynamic systems such as HL Tau and Kepler-444 may be a signature of Tidal Downsizing. Open questions and potential weaknesses of the hypothesis are pointed out.

  12. Extrasolar planets detections and statistics through gravitational microlensing

    Science.gov (United States)

    Cassan, A.

    2014-10-01

    Gravitational microlensing was proposed thirty years ago as a promising method to probe the existence and properties of compact objects in the Galaxy and its surroundings. The particularity and strength of the technique is based on the fact that the detection does not rely on the detection of the photon emission of the object itself, but on the way its mass affects the path of light of a background, almost aligned source. Detections thus include not only bright, but also dark objects. Today, the many successes of gravitational microlensing have largely exceeded the original promises. Microlensing contributed important results and breakthroughs in several astrophysical fields as it was used as a powerful tool to probe the Galactic structure (proper motions, extinction maps), to search for dark and compact massive objects in the halo and disk of the Milky Way, to probe the atmospheres of bulge red giant stars, to search for low-mass stars and brown dwarfs and to hunt for extrasolar planets. As an extrasolar planet detection method, microlensing nowadays stands in the top five of the successful observational techniques. Compared to other (complementary) detection methods, microlensing provides unique information on the population of exoplanets, because it allows the detection of very low-mass planets (down to the mass of the Earth) at large orbital distances from their star (0.5 to 10 AU). It is also the only technique that allows the discovery of planets at distances from Earth greater than a few kiloparsecs, up to the bulge of the Galaxy. Microlensing discoveries include the first ever detection of a cool super-Earth around an M-dwarf star, the detection of several cool Neptunes, Jupiters and super-Jupiters, as well as multi-planetary systems and brown dwarfs. So far, the least massive planet detected by microlensing has only three times the mass of the Earth and orbits a very low mass star at the edge of the brown dwarf regime. Several free-floating planetary-mass

  13. The Stability of the Orbits of Earth-mass Planets in and near the Habitable Zones of Known Exoplanetary Systems

    CERN Document Server

    Jones, B W; Sleep, P N; Underwood, David R

    2003-01-01

    We have shown that Earth-mass planets could survive in variously restricted regions of the habitable zones (HZs) of most of a sample of nine of the 93 main-sequence exoplanetary systems confirmed by May 2003. In a preliminary extrapolation of our results to the other systems, we estimate that roughly a third of the 93 systems might be able to have Earth-mass planets in stable, confined orbits somewhere in their HZs. Clearly, these systems should be high on the target list for exploration for terrestrial planets. We have reached this conclusion by launching putative Earth-mass planets in various orbits and following their fate with a mixed-variable symplectic integrator.

  14. A 5 Micron of beta Pictoris B at a Sub-Jupiter Projected Separation: Evidence for a Misalignment Between the Planet and the Inner, Warped Disk

    Science.gov (United States)

    Currie, Thayne; Thalmann, Christian; Matsumura, Soko; Madhusudhan, Nikku; Burrows, Adam; Kuchner, Marc

    2011-01-01

    We present and analyze a new M' detection of the young exoplanet Beta Pictoris b from 2008 VLT/NaCo data at a separation of approx. = 4 AU and a high signal-to-noise rereduction of L' data taken in December 2Q09. Based on our orbital analysis, the planet's orbit is viewed almost perfectly edge-on (i approx. 89 degrees) and has a Saturn-like semimajor axis of 9.50AU(+3.93 AU)/-(1.7AU) . Intriguingly, the planet's orbit is aligned with the major axis of the outer disk (Omega approx.31 degrees) but probably misaligned with the warp/inclined disk at 80 AU often cited as a signpost for the planet's existence. Our results motivate new studies to clarify how Beta Pic b sculpts debris disk structures and whether a second planet is required to explain the warp/inclined disk

  15. Extrasolar Planet Twice as Big as Jupiter%太阳系外行星大小是木星两倍

    Institute of Scientific and Technical Information of China (English)

    Irene Brown

    2003-01-01

    @@ After two years of painstaking(艰苦的)research, scientists have determined the precise size of a planet beyond our solar system by measuring tiny shifts in the tilt of light coming from its parent star.

  16. WARM JUPITERS NEED CLOSE ''FRIENDS'' FOR HIGH-ECCENTRICITY MIGRATION—A STRINGENT UPPER LIMIT ON THE PERTURBER'S SEPARATION

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Subo [Kavli Institute for Astronomy and Astrophysics, Peking University, Yi He Yuan Road 5, Hai Dian District, Beijing 100871 (China); Katz, Boaz; Socrates, Aristotle [Institute for Advanced Study, 1 Einstein Dr., Princeton, NJ 08540 (United States)

    2014-01-20

    We propose a stringent observational test on the formation of warm Jupiters (gas-giant planets with 10 days ≲ P ≲ 100 days) by high-eccentricity (high-e) migration mechanisms. Unlike hot Jupiters, the majority of observed warm Jupiters have pericenter distances too large to allow efficient tidal dissipation to induce migration. To access the close pericenter required for migration during a Kozai-Lidov cycle, they must be accompanied by a strong enough perturber to overcome the precession caused by general relativity, placing a strong upper limit on the perturber's separation. For a warm Jupiter at a ∼ 0.2 AU, a Jupiter-mass (solar-mass) perturber is required to be ≲ 3 AU (≲ 30 AU) and can be identified observationally. Among warm Jupiters detected by radial velocities (RVs), ≳ 50% (5 out of 9) with large eccentricities (e ≳ 0.4) have known Jovian companions satisfying this necessary condition for high-e migration. In contrast, ≲ 20% (3 out of 17) of the low-e (e ≲ 0.2) warm Jupiters have detected additional Jovian companions, suggesting that high-e migration with planetary perturbers may not be the dominant formation channel. Complete, long-term RV follow-ups of the warm-Jupiter population will allow a firm upper limit to be put on the fraction of these planets formed by high-e migration. Transiting warm Jupiters showing spin-orbit misalignments will be interesting to apply our test. If the misalignments are solely due to high-e migration as commonly suggested, we expect that the majority of warm Jupiters with low-e (e ≲ 0.2) are not misaligned, in contrast with low-e hot Jupiters.

  17. HATS-22b, HATS-23b and HATS-24b: Three new transiting Super-Jupiters from the HATSouth Project

    CERN Document Server

    Bento, Joao; Hartman, Joel; Bakos, Gaspar; Ciceri, Simona; Brahm, Rafael; Bayliss, Daniel; Espinoza, Nestor; Zhou, George; Rabus, Markus; Bhatti, Waqas; Penev, Kaloyan; Csubry, Zoltan; Jordan, Andres; Mancini, Luigi; Henning, Thomas; de Val-Borro, Miguel; Tinney, Chris; Wright, Duncan; Suc, Vincent; Noyes, Robert; Lazar, Jozsef; Papp, Istvan; Sari, Pal

    2016-01-01

    We report the discovery of three moderately high-mass transiting hot Jupiters from the HATSouth survey: HATS-22b, HATS-23b and HATS-24b. These planets add to the numbers of known planets in the ~2MJ regime. HATS-22b is a 2.74+/-0.11 MJ mass and 0.953+0.048/-0.029 RJ radius planet orbiting a V = 13.455 +/- 0.040 sub-silar mass (M_star = 0.759+/-0.019 M_sun; R_star = 0.759+/-0.019 R_sun) K-dwarf host star on an eccentric (e = 0.079 +/- 0.026) orbit. This planet's high planet-to-stellar mass ratio is further evidence that migration mechanisms for hot Jupiters may rely on exciting orbital eccentricities that bring planets closer to their parent stars followed by tidal circularisation. HATS-23b is a 1.478 +/- 0.080 MJ mass and 1.69 +/- 0.24 RJ radius planet on a grazing orbit around a V = 13.901 +/- 0.010 G-dwarf with properties very similar to those of the Sun (M_star = 1.115 +/- 0.054 M_sun; R_star = 1.145 +/- 0.070 R_sun). HATS-24b orbits a moderately bright V = 12.830 +/- 0.010 F-dwarf star (M_star = 1.218 +/-...

  18. Predicting the incidence of planets and debris discs as a function of stellar mass

    CERN Document Server

    Greaves, J S

    2010-01-01

    The mass of solids in a young circumstellar disc may be the key factor in its efficiency in building planetesimals and planetary cores, and dust observed around young T Tauri and Herbig Ae stars can be used as a proxy for this initial solid content. The dust-mass distributions are taken from recent millimetre-wavelength data and fitted using survival analysis to take into account upper limits, and threshold disc-masses for building planets and belts of comets are estimated. Amongst A-stars, 20% gas giant and 55% debris disc systems are predicted, in good agreement with observations. For M-stars, the predicted and observed planet-frequencies agree at ~2-3%, and this low incidence is explained by a lack of massive discs. However, debris is predicted around approx. 14% of M-stars, while only ~2% such systems have so far been found. This suggests that deeper searches such as with Herschel and SCUBA-2 may find a cold disc population previously missed around these low-luminosity stars. Also, an estimate of the effi...

  19. THE VLA VIEW OF THE HL TAU DISK: DISK MASS, GRAIN EVOLUTION, AND EARLY PLANET FORMATION

    Energy Technology Data Exchange (ETDEWEB)

    Carrasco-González, Carlos; Rodríguez, Luis F.; Galván-Madrid, Roberto [Instituto de Radioastronomía y Astrofísica UNAM, Apartado Postal 3-72 (Xangari), 58089 Morelia, Michoacán, México (Mexico); Henning, Thomas; Linz, Hendrik; Birnstiel, Til; Boekel, Roy van; Klahr, Hubert [Max-Planck-Institut für Astronomie Heidelberg, Königstuhl 17, D-69117 Heidelberg (Germany); Chandler, Claire J.; Pérez, Laura [National Radio Astronomy Observatory, P.O. Box O, 1003 Lopezville Road, Socorro, NM 87801-0387 (United States); Anglada, Guillem; Macias, Enrique; Osorio, Mayra [Instituto de Astrofísica de Andalucía (CSIC), Apartado 3004, E-18080 Granada (Spain); Flock, Mario [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States); Menten, Karl [Jansky Fellow of the National Radio Astronomy Observatory (United States); Testi, Leonardo [European Southern Observatory, Karl-Schwarzschild-Str. 2, D-85748 Garching bei München (Germany); Torrelles, José M. [Institut de Ciències de l’Espai (CSIC-IEEC) and Institut de Ciències del Cosmos (UB-IEEC), Martí i Franquès 1, E-08028 Barcelona (Spain); Zhu, Zhaohuan, E-mail: c.carrasco@crya.unam.mx, E-mail: l.rodriguez@crya.unam.mx, E-mail: r.galvan@crya.unam.mx, E-mail: henning@mpia.de, E-mail: linz@mpia.de [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States)

    2016-04-10

    The first long-baseline ALMA campaign resolved the disk around the young star HL Tau into a number of axisymmetric bright and dark rings. Despite the very young age of HL Tau, these structures have been interpreted as signatures for the presence of (proto)planets. The ALMA images triggered numerous theoretical studies based on disk–planet interactions, magnetically driven disk structures, and grain evolution. Of special interest are the inner parts of disks, where terrestrial planets are expected to form. However, the emission from these regions in HL Tau turned out to be optically thick at all ALMA wavelengths, preventing the derivation of surface density profiles and grain-size distributions. Here, we present the most sensitive images of HL Tau obtained to date with the Karl G. Jansky Very Large Array at 7.0 mm wavelength with a spatial resolution comparable to the ALMA images. At this long wavelength, the dust emission from HL Tau is optically thin, allowing a comprehensive study of the inner disk. We obtain a total disk dust mass of (1–3) × 10{sup −3} M {sub ⊙}, depending on the assumed opacity and disk temperature. Our optically thin data also indicate fast grain growth, fragmentation, and formation of dense clumps in the inner densest parts of the disk. Our results suggest that the HL Tau disk may be actually in a very early stage of planetary formation, with planets not already formed in the gaps but in the process of future formation in the bright rings.

  20. Possible planet formation in the young, low-mass, multiple stellar system GG Tau A.

    Science.gov (United States)

    Dutrey, Anne; Di Folco, Emmanuel; Guilloteau, Stéphane; Boehler, Yann; Bary, Jeff; Beck, Tracy; Beust, Hervé; Chapillon, Edwige; Gueth, Fredéric; Huré, Jean-Marc; Pierens, Arnaud; Piétu, Vincent; Simon, Michal; Tang, Ya-Wen

    2014-10-30

    The formation of planets around binary stars may be more difficult than around single stars. In a close binary star (with a separation of less than a hundred astronomical units), theory predicts the presence of circumstellar disks around each star, and an outer circumbinary disk surrounding a gravitationally cleared inner cavity around the stars. Given that the inner disks are depleted by accretion onto the stars on timescales of a few thousand years, any replenishing material must be transferred from the outer reservoir to fuel planet formation (which occurs on timescales of about one million years). Gas flowing through disk cavities has been detected in single star systems. A circumbinary disk was discovered around the young low-mass binary system GG Tau A (ref. 7), which has recently been shown to be a hierarchical triple system. It has one large inner disk around the single star, GG Tau Aa, and shows small amounts of shocked hydrogen gas residing within the central cavity, but other than a single weak detection, the distribution of cold gas in this cavity or in any other binary or multiple star system has not hitherto been determined. Here we report imaging of gas fragments emitting radiation characteristic of carbon monoxide within the GG Tau A cavity. From the kinematics we conclude that the flow appears capable of sustaining the inner disk (around GG Tau Aa) beyond the accretion lifetime, leaving time for planet formation to occur there. These results show the complexity of planet formation around multiple stars and confirm the general picture predicted by numerical simulations.

  1. The phase-dependent infrared brightness of the extrasolar planet upsilon Andromedae b.

    Science.gov (United States)

    Harrington, Joseph; Hansen, Brad M; Luszcz, Statia H; Seager, Sara; Deming, Drake; Menou, Kristen; Cho, James Y-K; Richardson, L Jeremy

    2006-10-27

    The star upsilon Andromedae is orbited by three known planets, the innermost of which has an orbital period of 4.617 days and a mass at least 0.69 that of Jupiter. This planet is close enough to its host star that the radiation it absorbs overwhelms its internal heat losses. Here, we present the 24-micrometer light curve of this system, obtained with the Spitzer Space Telescope. It shows a variation in phase with the orbital motion of the innermost planet, demonstrating that such planets possess distinct hot substellar (day) and cold antistellar (night) faces.

  2. Planet Traps and First Planets: the Critical Metallicity for Gas Giant Formation

    CERN Document Server

    Hasegawa, Yasuhiro

    2014-01-01

    The ubiquity of planets poses an interesting question: when first planets are formed in galaxies. We investigate this problem by adopting a theoretical model developed for understanding the statistical properties of exoplanets. Our model is constructed as the combination of planet traps with the standard core accretion scenario in which the efficiency of forming planetary cores directly relates to the dust density in disks or the metallicity ([Fe/H]). We statistically compute planet formation frequencies (PFFs) as well as the orbital radius ($$) within which gas accretion becomes efficient enough to form Jovian planets. The three characteristic exoplanetary populations are considered: hot Jupiters, exo-Jupiters densely populated around 1 AU, and low-mass planets such as super-Earths. We explore the behavior of the PFFs as well as $$ for the three different populations as a function of metallicity ($-2 \\leq$[Fe/H]$\\leq -0.6$). We show that the total PFFs increase steadily with metallicity, which is the direct ...

  3. Limits on the Abundance of Galactic Planets From Five Years of PLANET Observations

    CERN Document Server

    Albrow, M D; Beaulieu, J P; Caldwell, J A R; De Poy, D L; Dominik, M; Gaudi, B S; Gould, A; Greenhill, J; Hill, K; Kane, S; Martin, R D; Menzies, J; Naber, R M; Pel, J W; Pogge, R W; Pollard, K R; Sackett, P D; Sahu, K C; Vermaak, P; Vreeswijk, P M; Watson, R; Williams, A

    2001-01-01

    We search for signatures of planets in 43 intensively monitored microlensing events that were observed between 1995 and 1999. Planets would be expected to cause a short (~1 day) deviation on an otherwise normal smooth, symmetric, single-lens light curve. We find no such anomalies and infer that less than 1/3 of the ~0.3 M_sun stars that typically comprise the lens population have Jupiter-mass companions in the range of semi-major axes 1.5 AU < a < 4 AU.

  4. The Origin of Retrograde Hot Jupiters

    Science.gov (United States)

    Naoz, Smadar; Farr, W.; Lithwick, Y.; Rasio, F.; Teyssandier, J.

    2011-09-01

    The search for extra-solar planets has led to the surprising discovery of many Jupiter-like planets in very close proximity to their host star, the so-called ``hot Jupiters'' (HJ). Even more surprisingly, many of these HJs have orbits that are eccentric or highly inclined with respect to the equator of the star, and some (about 25%) even orbiting counter to the spin direction of the star. This poses a unique challenge to all planet formation models. We show that secular interactions between Jupiter-like planet and another perturber in the system can easily produce retrograde HJ orbits. We show that in the frame of work of secular hierarchical triple system (the so-called Kozai mechanism) the inner orbit's angular momentum component parallel to the total angular momentum (i.e., the z-component of the inner orbit angular momentum) need not be constant. In fact, it can even change sign, leading to a retrograde orbit. A brief excursion to very high eccentricity during the chaotic evolution of the inner orbit allows planet-star tidal interactions to rapidly circularize that orbit, decoupling the planets and forming a retrograde hot Jupiter. We estimate the relative frequencies of retrograde orbits and counter to the stellar spin orbits using Monte Carlo simulations, and find that the they are consistent with the observations. The high observed incidence of planets orbiting counter to the stellar spin direction may suggest that planet--planet secular interactions are an important part of their dynamical history.

  5. Accretion and Evolution of ~2.5 Earth-mass Planets with Voluminous H/He Envelopes

    CERN Document Server

    Bodenheimer, Peter

    2014-01-01

    Formation of planets in the Neptune size range with low-mass, but voluminous, H_2/He gaseous envelopes is modeled by detailed numerical simulations according to the core-nucleated accretion scenario. Formation locations ranging from 0.5 to 4 AU from a star of 1 solar mass are considered. The final planets have heavy-element cores of 2.2--2.5 Earth masses and envelopes in the range 0.037--0.16 Earth masses. After the formation process, which lasts 2 Myr or less, the planets evolve at constant mass up to an age of several Gyr. For assumed equilibrium temperatures of 250, 500, and 1000 K, their calculated final radii are compared with those observed by the Kepler spacecraft. For the particular case of Kepler-11 f, we address the question whether it could have formed in situ or whether migration from a formation location farther out in the disk is required.

  6. Voyager picture of Jupiter

    Science.gov (United States)

    1998-01-01

    NASA's Voyager 1 took this picture of the planet Jupiter on Saturday, Jan. 6, the first in its three-month-long, close-up investigation of the largest planet. The spacecraft, flying toward a March 5 closest approach, was 35.8 million miles (57.6 million kilometers) from Jupiter and 371.7 million miles (598.2 million kilometers) from Earth when the picture was taken. As the Voyager cameras begin their meteorological surveillance of Jupiter, they reveal a dynamic atmosphere with more convective structure than had previously been thought. While the smallest atmospheric features seen in this picture are still as large as 600 miles (1,000 kilometers) across, Voyager will be able to detect individual storm systems as small as 3 miles (5 kilometers) at closest approach. The Great Red Spot can be seen near the limb at the far right. Most of the other features are too small to be seen in terrestrial telescopes. This picture was transmitted to the Jet Propulsion Laboratory through the Deep Space Network's tracking station at Madrid, Spain. The Voyager Project is managed for NASA by Caltech's Jet Propulsion Laboratory.

  7. A Detailed Model Grid for Solid Planets from 0.1 through 100 Earth Masses

    CERN Document Server

    Zeng, Li

    2013-01-01

    This paper describes a new grid for the mass-radius relation of 3-layer exoplanets within the mass range of 0.1 through 100 Earth Masses. The 3 layers are: Fe (epsilon iron), MgSiO3 (including both the perovskite phase, post-perovskite phase, and its dissociation at ultra-high pressures), and H2O (including Ices Ih, III, V, VI, VII, X, and the superionic phase along the melting curve). We discuss the current state of knowledge about the equations of state (EOS) that influence these calculations and the improvements used in the new grid. For the 2-layer model, we demonstrate the utility of contours on the mass-radius diagrams. Given the mass and radius input, these contours can be used to quickly determine the important physical properties of a planet including its p0 (central pressure), p1/p0 (core-mantle boundary pressure over central pressure), CMF (core mass fraction) or CRF (core radius fraction). For the 3-layer model, a curve segment on the ternary diagram represents all possible relative mass proportio...

  8. A Transiting Jupiter Analog

    CERN Document Server

    Kipping, David M; Henze, Chris; Teachey, Alex; Isaacson, Howard T; Petigura, Erik A; Marcy, Geoffrey W; Buchhave, Lars A; Chen, Jingjing; Bryson, Steve T; Sandford, Emily

    2016-01-01

    Decadal-long radial velocity surveys have recently started to discover analogs to the most influential planet of our solar system, Jupiter. Detecting and characterizing these worlds is expected to shape our understanding of our uniqueness in the cosmos. Despite the great successes of recent transit surveys, Jupiter analogs represent a terra incognita, owing to the strong intrinsic bias of this method against long orbital periods. We here report on the first validated transiting Jupiter analog, Kepler-167e (KOI-490.02), discovered using Kepler archival photometry orbiting the K4-dwarf KIC-3239945. With a radius of $(0.91\\pm0.02)$ $R_{\\mathrm{Jup}}$, a low orbital eccentricity ($0.06_{-0.04}^{+0.10}$) and an equilibrium temperature of $(131\\pm3)$ K, Kepler-167e bears many of the basic hallmarks of Jupiter. Kepler-167e is accompanied by three Super-Earths on compact orbits, which we also validate, leaving a large cavity of transiting worlds around the habitable-zone. With two transits and continuous photometric ...

  9. Jupiter Eruptions

    Science.gov (United States)

    2008-01-01

    [figure removed for brevity, see original site] Click on the image for high resolution image of Nature Cover Detailed analysis of two continent-sized storms that erupted in Jupiter's atmosphere in March 2007 shows that Jupiter's internal heat plays a significant role in generating atmospheric disturbances. Understanding these outbreaks could be the key to unlock the mysteries buried in the deep Jovian atmosphere, say astronomers. This visible-light image is from NASA's Hubble Space Telescope taken on May 11, 2007. It shows the turbulent pattern generated by the two plumes on the upper left part of Jupiter. Understanding these phenomena is important for Earth's meteorology where storms are present everywhere and jet streams dominate the atmospheric circulation. Jupiter is a natural laboratory where atmospheric scientists study the nature and interplay of the intense jets and severe atmospheric phenomena. According to the analysis, the bright plumes were storm systems triggered in Jupiter's deep water clouds that moved upward in the atmosphere vi gorously and injected a fresh mixture of ammonia ice and water about 20 miles (30 kilometers) above the visible clouds. The storms moved in the peak of a jet stream in Jupiter's atmosphere at 375 miles per hour (600 kilometers per hour). Models of the disturbance indicate that the jet stream extends deep in the buried atmosphere of Jupiter, more than 60 miles (approximately100 kilometers) below the cloud tops where most sunlight is absorbed.

  10. A DEFINITION FOR GIANT PLANETS BASED ON THE MASS–DENSITY RELATIONSHIP

    Energy Technology Data Exchange (ETDEWEB)

    Hatzes, Artie P. [Thüringer Landessternwarte Tautenburg, Sternwarte 5, D-07778 Tautenburg (Germany); Rauer, Heike, E-mail: artie@tls-tautenburg.de, E-mail: Heike.Rauer@dlr.de [Institut für Planetenforschung, Deutsches Zentrum für Luft- und Raumfahrt, Rutherfordstrasse 2, D-12489 Berlin (Germany)

    2015-09-10

    We present the mass–density relationship (log M − log ρ) for objects with masses ranging from planets (M ≈ 0.01 M{sub Jup}) to stars (M > 0.08 M{sub ⊙}). This relationship shows three distinct regions separated by a change in slope in the log M − log ρ plane. In particular, objects with masses in the range 0.3 M{sub Jup}–60 M{sub Jup} follow a tight linear relationship with no distinguishing feature to separate the low-mass end (giant planets) from the high-mass end (brown dwarfs). We propose a new definition of giant planets simply based on changes in the slope of the log M versus log ρ relationship. By this criterion, objects with masses less than ≈0.3 M{sub Jup} are low-mass planets, either icy or rocky. Giant planets cover the mass range 0.3 M{sub Jup}–60 M{sub Jup}. Analogous to the stellar main sequence, objects on the upper end of the giant planet sequence (brown dwarfs) can simply be referred to as “high-mass giant planets,” while planets with masses near that of Jupiter can be called “low-mass giant planets.”.

  11. Slowly-growing gap-opening planets trigger weaker vortices

    Science.gov (United States)

    Hammer, Michael; Kratter, Kaitlin M.; Lin, Min-Kai

    2017-04-01

    The presence of a giant planet in a low-viscosity disc can create a gap edge in the disc's radial density profile sharp enough to excite the Rossby wave instability. This instability may evolve into dust-trapping vortices that might explain the 'banana-shaped' features in recently observed asymmetric transition discs with inner cavities. Previous hydrodynamical simulations of planet-induced vortices have neglected the time-scale of hundreds to thousands of orbits to grow a massive planet to Jupiter size. In this work, we study the effect of a giant planet's runaway growth time-scale on the lifetime and characteristics of the resulting vortex. For two different planet masses (1 and 5 Jupiter masses) and two different disc viscosities (α = 3 × 10-4 and 3 × 10-5), we compare the vortices induced by planets with several different growth time-scales between 10 and 4000 planet orbits. In general, we find that slowly-growing planets create significantly weaker vortices with lifetimes and surface densities reduced by more than 50 per cent. For the higher disc viscosity, the longest growth time-scales in our study inhibit vortex formation altogether. Additionally, slowly-growing planets produce vortices that are up to twice as elongated, with azimuthal extents well above 180° in some cases. These unique, elongated vortices likely create a distinct signature in the dust observations that differentiates them from the more concentrated vortices that correspond to planets with faster growth time-scales. Lastly, we find that the low viscosities necessary for vortex formation likely prevent planets from growing quickly enough to trigger the instability in self-consistent models.

  12. A LOW STELLAR OBLIQUITY FOR WASP-47, A COMPACT MULTIPLANET SYSTEM WITH A HOT JUPITER AND AN ULTRA-SHORT PERIOD PLANET

    Energy Technology Data Exchange (ETDEWEB)

    Sanchis-Ojeda, Roberto; Isaacson, Howard; Marcy, Geoffrey W.; Weiss, Lauren [Department of Astronomy, University of California, Berkeley, CA 94720 (United States); Winn, Joshua N.; Dai, Fei [Department of Physics, and Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Howard, Andrew W.; Sinukoff, Evan [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); Petigura, Erik; Rogers, Leslie [Department of Astronomy and Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125 (United States); Albrecht, Simon [Stellar Astrophysics Centre, Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C (Denmark); Hirano, Teruyuki, E-mail: sanchisojeda@berkeley.edu [Department of Earth and Planetary Sciences, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551 (Japan)

    2015-10-10

    We have detected the Rossiter–Mclaughlin effect during a transit of WASP-47b, the only known hot Jupiter with close planetary companions. By combining our spectroscopic observations with Kepler photometry, we show that the projected stellar obliquity is λ = 0° ± 24°. We can firmly exclude a retrograde orbit for WASP-47b, and rule out strongly misaligned prograde orbits. Low obliquities have also been found for most of the other compact multiplanet systems that have been investigated. The Kepler-56 system, with two close-in gas giants transiting their subgiant host star with an obliquity of at least 45{sup ◦}, remains the only clear counterexample.

  13. A low stellar obliquity for WASP-47, a compact multiplanet system with a hot Jupiter and an ultra-short period planet

    CERN Document Server

    Sanchis-Ojeda, Roberto; Dai, Fei; Howard, Andrew W; Isaacson, Howard; Marcy, Geoffrey W; Petigura, Erik; Sinukoff, Evan; Weiss, Lauren; Albrecht, Simon; Hirano, Teruyuki; Rogers, Leslie

    2015-01-01

    We have detected the Rossiter-Mclaughlin effect during a transit of WASP-47b, the only known hot Jupiter with close planetary companions. By combining our spectroscopic observations with Kepler photometry, we show that the projected stellar obliquity is $\\lambda = 0^\\circ \\pm 24^\\circ$. We can firmly exclude a retrograde orbit for WASP-47b, and rule out strongly misaligned prograde orbits. Low obliquities have also been found for most of the other compact multiplanet systems that have been investigated. The Kepler-56 system, with two close-in gas giants transiting their subgiant host star with an obliquity of at least 45$^\\circ$, remains the only clear counterexample.

  14. Bow Shock Leads the Way for a Speeding Hot Jupiter

    Science.gov (United States)

    Kohler, Susanna

    2015-09-01

    important for modeling their interiors, their mass loss rates, and their interactions with their host stars. Current models of exoplanets often assume low-value fields similar to those of planets within our solar system. But if the field strength estimated for HD 189733bs field is common for hot Jupiters, it may be time to update our models!BonusCheck out this video from Cauleys website, which provides an action view of the transit data for HD 189733b and the possible bow shock leading it. The upper panel shows the transit as viewed from the side, the right panel shows a top-down view of the orbit, and the plot shows the transmission data (points) and model (solid lines) for the three hydrogen lines monitored. All sizes and distances are to scale.http://aasnova.org/wp-content/uploads/2015/09/tran_movie_final.m4vCitationP. Wilson Cauley et al 2015 ApJ 810 13. doi:10.1088/0004-637X/810/1/13

  15. Critical Masses for Various Terrestrial Planet Atmospheric Gases and Water in/on Mars

    Directory of Open Access Journals (Sweden)

    Lin-gun Liu

    2014-01-01

    Full Text Available The lower critical mass boundaries (CM for various atmospheric gas species on terrestrial planets are estimated. The CM is different for different gas molecules. Except for He, the observed atmospheric compositions of the terrestrial planets are consistent with these estimates. The lower CM boundary for gaseous H2O is calculated as 8.06 × 1026 g, which is significantly greater than the Martian mass (6.419 × 1026 g. Thus, Mars is not capable of retaining H2O in its atmosphere. If the speculated ocean on Mars and the claimed H2O ice in the Martian soil are true, both the ocean and ice had to be derived earlier from H2O degassed from the Martian interior after the surface temperature cooled much below 100°C. These watery bodies cannot be sustained for long durations because evaporation and sublimation would turn them into gaseous H2O, which would be lost to outer-space. It is concluded that H2O in/on Mars is inherent and that the primordial planetesimals that formed Mars must have contained appreciable amounts of hydrous minerals, if the oceans and/or H2O ice on Mars are true.

  16. Critical Masses for Various Terrestrial Planet Atmospheric Gases and Water in/on Mars

    Directory of Open Access Journals (Sweden)

    Lin-gun Liu

    2014-01-01

    Full Text Available The lower critical mass boundaries (CM for various atmospheric gas species on terrestrial planets are estimated. The CM is different for different gas molecules. Except for He, the observed atmospheric compositions of the terrestrial planets are consistent with these estimates. The lower CM boundary for gaseous H2O is calculated as 8.06 ×× 1026 g, which is significantly greater than the Martian mass (6.419 ×× 1026 g. Thus, Mars is not capable of retaining H2O in its atmosphere. If the speculated ocean on Mars and the claimed H2O ice in the Martian soil are true, both the ocean and ice had to be derived earlier from H2O degassed from the Martian interior after the surface temperature cooled much below 100°C.100°C. These watery bodies cannot be sustained for long durations because evaporation and sublimation would turn them into gaseous H2O, which would be lost to outer-space. It is concluded that H2O in/on Mars is inherent and that the primordial planetesimals that formed Mars must have contained appreciable amounts of hydrous minerals, if the oceans and/or H2O ice on Mars are true.

  17. Tidally-driven Roche-lobe Overflow of Hot Jupiters with MESA

    Science.gov (United States)

    Valsecchi, Francesca; Rappaport, Saul; Rasio, Frederic A.; Marchant, Pablo; Rogers, Leslie A.

    2015-11-01

    Many exoplanets have now been detected in orbits with ultra-short periods very close to the Roche limit. Building upon our previous work, we study the possibility that mass loss through Roche lobe overflow (RLO) may affect the evolution of these planets, and could possibly transform a hot Jupiter into a lower-mass planet (hot Neptune or super-Earth). We focus here on systems in which the mass loss occurs slowly (“stable mass transfer” in the language of binary star evolution) and we compute their evolution in detail with the binary evolution code Modules for Experiments in Stellar Astrophysics. We include the effects of tides, RLO, irradiation, and photo-evaporation (PE) of the planet, as well as the stellar wind and magnetic braking. Our calculations all start with a hot Jupiter close to its Roche limit, in orbit around a Sun-like star. The initial orbital decay and onset of RLO are driven by tidal dissipation in the star. We confirm that such a system can indeed evolve to produce lower-mass planets in orbits of a few days. The RLO phase eventually ends and, depending on the details of the mass transfer and on the planetary core mass, the orbital period can remain around a few days for several Gyr. The remnant planets have rocky cores and some amount of envelope material, which is slowly removed via PE at a nearly constant orbital period; these have properties resembling many of the observed super-Earths and sub-Neptunes. For these remnant planets, we also predict an anti-correlation between mass and orbital period; very low-mass planets (Mpl ≲ 5 M⊕) in ultra-short periods (Porb < 1 day) cannot be produced through this type of evolution.

  18. TIDALLY DRIVEN ROCHE-LOBE OVERFLOW OF HOT JUPITERS WITH MESA

    Energy Technology Data Exchange (ETDEWEB)

    Valsecchi, Francesca; Rasio, Frederic A. [Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA), and Northwestern University, Department of Physics and Astronomy, Evanston, IL 60208 (United States); Rappaport, Saul [Department of Physics, and Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Marchant, Pablo [Argelander-Institut für Astronomie, Universität Bonn, Auf dem Hgel 71, D-53121 Bonn (Germany); Rogers, Leslie A., E-mail: francesca@u.northwestern.edu, E-mail: rasio@northwestern.edu, E-mail: sar@mit.edu, E-mail: pablo@astro.uni-bonn.de, E-mail: larogers@caltech.edu [Department of Astronomy and Department of Geophysics and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125 (United States)

    2015-11-10

    Many exoplanets have now been detected in orbits with ultra-short periods very close to the Roche limit. Building upon our previous work, we study the possibility that mass loss through Roche lobe overflow (RLO) may affect the evolution of these planets, and could possibly transform a hot Jupiter into a lower-mass planet (hot Neptune or super-Earth). We focus here on systems in which the mass loss occurs slowly (“stable mass transfer” in the language of binary star evolution) and we compute their evolution in detail with the binary evolution code Modules for Experiments in Stellar Astrophysics. We include the effects of tides, RLO, irradiation, and photo-evaporation (PE) of the planet, as well as the stellar wind and magnetic braking. Our calculations all start with a hot Jupiter close to its Roche limit, in orbit around a Sun-like star. The initial orbital decay and onset of RLO are driven by tidal dissipation in the star. We confirm that such a system can indeed evolve to produce lower-mass planets in orbits of a few days. The RLO phase eventually ends and, depending on the details of the mass transfer and on the planetary core mass, the orbital period can remain around a few days for several Gyr. The remnant planets have rocky cores and some amount of envelope material, which is slowly removed via PE at a nearly constant orbital period; these have properties resembling many of the observed super-Earths and sub-Neptunes. For these remnant planets, we also predict an anti-correlation between mass and orbital period; very low-mass planets (M{sub pl} ≲ 5 M{sub ⊕}) in ultra-short periods (P{sub orb} < 1 day) cannot be produced through this type of evolution.

  19. Kepler-47 Circumbinary Planets obey Quantization of Angular Momentum per Unit Mass predicted by Quantum Celestial Mechanics (QCM

    Directory of Open Access Journals (Sweden)

    Potter F.

    2014-01-01

    Full Text Available The Kepler-47 circumbinary system has three known planets orbiting its binary star barycenter and therefore can provide a precision test of the Quantum Celestial Mechan- ics (QCM prediction of the quantization of angular momentum per unit mass in all gravitationally bound systems. Two of the planets are in the Habitable Zone (HZ, so system stability can be a primary concern. QCM may be a major contributor to the stability of this system.

  20. Discovery of the distant cool sub-Neptune mass planet OGLE 2005-BLG-390Lb by microlensing

    Energy Technology Data Exchange (ETDEWEB)

    Beaulieu, J P; Bennett, D P; Fouque, P; Williams, A; Dominik, M; Jorgensen, U G; Kubas, D; Cassan, A; Coutures, C; Greenhill, J; Hill, K; Menzies, J; Sackett, P D; Albrow, M; Brillant, S; Caldwell, J R; Calitz, J J; Cook, K H; Corrales, E; Desort, M; Dieters, S; Dominis, D; Donatowicz, J; Hoffman, M; Kane, S; Marquette, J B; Martin, R; Meintjes, P; Pollard, K; Sahu, K; Vinter, C; Wambsganss, J; Woller, K; Horne, K; Steele, I; Bramich, D M; Burgdorf, M; Snodgrass, C; Bode, M; Udalski, A; Szymanski, M K; Kubiak, M; Wieckowski, T; Pietrzynski, G; Soszynski, I; Szewczyk, O; Wyrzykowski, L; Paczynski, B; Abe, F; Bond, I A; Britton, T R; Gilmore, A C; Hearnshaw, J B; Itow, Y; Kamiya, K; Kilmartin, P M; Korpela, A V; Masuda, K; Matsubara, Y; Motomura, M; Muraki, Y; Nakamura, S; Okada, C; Ohnishi, K; Rattenbury, N J; Sako, T; Sato, S; Sasaki, M; Sekiguchi, T; Sullivan, D J; Tristram, P J; Yock, P M; Yoskioka, T

    2005-11-07

    The favoured theoretical explanation for planetary systems formation is the core-accretion model in which solid planetesimals accumulate to build up planetary cores, which then accrete nebular gas if they are sufficiently massive. Around M-dwarf stars, the most common stars of our Galaxy, this model favours the formation of Earth- to Neptune-mass planets in a few million years with orbital sizes of 1 to 10 AU, which is consistent with the small number of detections of giant planets with M-dwarf host stars. More than 170 extrasolar planets have been discovered so far with a wide range of masses and orbital periods, but planets of Neptune's mass or less have not previously been detected at separations of more than 0.15 AU from normal stars. Here we report the discovery of a 5.5{sub -2.7}{sup +5.5} Earthmass planetary companion at a separation of 2.6{sub -0.6}{sup +1.5}AU from a 0.22{sub -0.11}{sup +0.21} M{sub e} M-dwarf star, which is the lens star for gravitational microlensing event OGLE 2005-BLG-390. This is the lowest mass ever reported for an extrasolar planet orbiting a main sequence star, although the error bars overlap those for the mass of GJ876d. Our detection suggests that such cool, sub-Neptune mass planets may be common than gas giant planets, as predicted by the core accretion theory.

  1. Simulation of Rogue Planet Encounters with the Solar System: Is Planet 9 a Captured Rogue?

    Science.gov (United States)

    Vesper, James; Mason, Paul A.

    2017-01-01

    Rogue, or free-floating, planets may be abundant in the Galaxy. Several have been observed in the solar neighborhood. They have been predicted to even outnumber stars by a large fraction, and may partially account for dark matter in the disk of the galaxy, as the result of circumbinary planet formation. We performed N-body simulations of rogue encounters with the solar system with a variety of impact parameters. We find that Jupiter mass and higher rogues leave a significant imprint on planetary system architecture. Rogue formation models are therefore constrained by observed planetary system structure. We speculate that if rogue planets are abundant as predicted, then, Planet 9 may be a captured rogue.

  2. Using Jupiter's Synchrotron Radiation as a Probe into Jupiter's Inner Radiation Belts

    Science.gov (United States)

    Bolton, S. J.; Gulkis, S.; Klein, M. J.; Thorne, R. M.

    1995-01-01

    The Jovian decimetric emission is caused by the combined emission of synchrotron radiation originating from the relativistic electrons trapped in Jupiter's 'Van Allen radiation belts' and thermal emission from the planet's atmosphere. Synchrotron radiation characteristics and variations (which provides insight into the physical properties of Jupiter's inner radiation belts) will be amplified and discussed.

  3. Influence of Sudden Change of Solar Mass in the PN Stage on the Orbit of Earth-Like Planet

    Indian Academy of Sciences (India)

    Yunfeng Zhu; Caijuan Pan; Dasheng Pan; Hongqiang Huang; Zhi-Fu Chen

    2014-09-01

    Assuming that the terminated mass is confined within the range 0.4551-0.5813⊙ when the sun is going to evolve into a white dwarf, the velocity of the sun projecting the shell in the PN stage is much greater than the revolving velocity of the earth-like planet, therefore, we think that the solar mass change is instantaneous.

  4. Planets around evolved intermediate-mass stars. I. Two substellar companions in the open clusters NGC 2423 and NGC 4349

    CERN Document Server

    Lovis, C

    2007-01-01

    Context. Many efforts are being made to characterize extrasolar planetary systems and unveil the fundamental mechanisms of planet formation. An important aspect of the problem, which remains largely unknown, is to understand how the planet formation process depends on the mass of the parent star. In particular, as most planets discovered to date orbit a solar-mass primary, little is known about planet formation around more massive stars. Aims. To investigate this point, we present first results from a radial velocity planet search around red giants in the clump of intermediate-age open clusters. We choose clusters harbouring red giants with masses between 1.5 and 4 M_sun, using the well-known cluster parameters to accurately determine the stellar masses. We are therefore exploring a poorly-known domain of primary masses, which will bring new insights into the properties of extrasolar planetary systems. Methods. We are following a sample of about 115 red giants with the Coralie and HARPS spectrographs to obtai...

  5. The coolest 'stars' are free-floating planets

    CERN Document Server

    Joergens, V; Liu, Y; Bayo, A; Wolf, S

    2014-01-01

    We show that the coolest known object that is probably formed in a star-like mode is a free-floating planet. We discovered recently that the free-floating planetary mass object OTS,44 (M9.5, ~12 Jupiter masses, age ~2 Myr) has significant accretion and a substantial disk. This demonstrates that the processes that characterize the canonical star-like mode of formation apply to isolated objects down to a few Jupiter masses. We detected in VLT/SINFONI spectra that OTS44 has strong, broad, and variable Paschen beta emission. This is the first evidence for active accretion of a free-floating planet. The object allows us to study accretion and disk physics at the extreme and can be seen as free-floating analog of accreting planets that orbit stars. Our analysis of OTS44 shows that the mass-accretion rate decreases continuously from stars of several solar masses down to free-floating planets. We determined, furthermore, the disk mass (10 Earth masses) and further disk properties of OTS44 through modeling its SED inc...

  6. Kepler Mission to Detect Earth-like Planets

    Science.gov (United States)

    Kondo, Yoji

    2002-01-01

    Kepler Mission to detect Earth-like planets in our Milky Way galaxy was approved by NASA in December 2001 for a 4-5 year mission. The launch is planned in about 5 years. The Kepler observatory will be placed in an Earth-trailing orbit. The unique feature of the Kepler Mission is its ability to detect Earth-like planets orbiting around solar-type stars at a distance similar to that of Earth (from our Sun); such an orbit could provide an environment suitable for supporting life as we know it. The Kepler observatory accomplishes this feat by looking for the transits of planetary object in front of their suns; Kepler has a photometric precision of 10E-5 (0.00001) to achieve such detections. Other ongoing planetary detection programs (based mostly on a technique that looks for the shifting of spectral lines of the primary star due to its planetary companions' motions around it) have detected massive planets (with masses in the range of Jupiter); such massive planets are not considered suitable for supporting life. If our current theories for the formation of planetary systems are valid, we expect to detect about 50 Earth-like planets during Kepler's 4-year mission (assuming a random distribution of the planetary orbital inclinations with respect to the line of sight from Kepler). The number of detection will increase about 640 planets if the planets to be detected are Jupiter-sized.

  7. Modelling the dynamics of a hypothetical Planet X by way of gravitational N-body simulator

    Science.gov (United States)

    Cowley, Michael; Hughes, Stephen

    2017-03-01

    This paper describes a novel activity to model the dynamics of a Jupiter-mass, trans-Neptunian planet of a highly eccentric orbit. Despite a history rooted in modern astronomy, ‘Planet X’, a hypothesised hidden planet lurking in our outer Solar System, has often been touted by conspiracy theorists as the cause of past mass extinction events on Earth, as well as other modern-day doomsday scenarios. Frequently dismissed as pseudoscience by astronomers, these stories continue to draw the attention of the public by provoking mass media coverage. Targeted at junior undergraduate levels, this activity allows students to debunk some of the myths surrounding Planet X by using simulation software to demonstrate that such a large-mass planet with extreme eccentricity would be unable to enter our Solar System unnoticed, let alone maintain a stable orbit.

  8. The Stellar Obliquity, Planet Mass, and Very Low Albedo of Qatar-2 from K2 Photometry

    Science.gov (United States)

    Dai, Fei; Winn, Joshua N.; Yu, Liang; Albrecht, Simon

    2017-01-01

    The Qatar-2 transiting exoplanet system was recently observed in short-cadence mode by Kepler as part of K2 Campaign 6. We identify dozens of starspot-crossing events, when the planet eclipses a relatively dark region of the stellar photosphere. The observed patterns of these events demonstrate that the planet always transits over the same range of stellar latitudes and, therefore, that the stellar obliquity is less than about 10°. We support this conclusion with two different modeling approaches: one based on explicit identification and timing of the events and the other based on fitting the light curves with a spotted-star model. We refine the transit parameters and measure the stellar rotation period (18.5 ± 1.9 days), which corresponds to a “gyrochronological” age of 1.4 ± 0.3 Gyr. Coherent flux variations with the same period as the transits are well modeled as the combined effects of ellipsoidal light variations (15.4 ± 4.8 ppm) and Doppler boosting (14.6 ± 5.1 ppm). The magnitudes of these effects correspond to a planetary mass of 2.6+/- 0.9 {M}{Jup} and 3.9+/- 1.5 {M}{Jup}, respectively. Both of these independent mass estimates agree with the mass determined by the spectroscopic Doppler technique (2.487+/- 0.086 {M}{Jup}). No occultations are detected, giving a 2σ upper limit of 0.06 on the planet’s visual geometric albedo. We find no evidence for orbital decay, although we are only able to place a weak lower bound on the relevant tidal quality factor: {Q}\\star \\prime > 1.5× {10}4 (95% confidence).

  9. Tidal and Magnetic Interactions between a Hot Jupiter and its Host Star in the Magnetospheric Cavity of a Protoplanetary Disk

    CERN Document Server

    Chang, Shih-Hsin; Bodenheimer, Peter

    2009-01-01

    We present a simplified model to study the orbital evolution of a young hot Jupiter inside the magnetospheric cavity of a proto-planetary disk. The model takes into account the disk locking of stellar spin as well as the tidal and magnetic interactions between the star and the planet. We focus on the orbital evolution starting from the orbit in the 2:1 resonance with the inner edge of the disk, followed by the inward and then outward orbital migration driven by the tidal and magnetic torques as well as the Roche-lobe overflow of the tidally inflated planet. The goal in this paper is to study how the orbital evolution inside the magnetospheric cavity depends on the cavity size, planet mass, and orbital eccentricity. In the present work, we only target the mass range from 0.7 to 2 Jupiter masses. In the case of the large cavity corresponding to the rotational period ~ 7 days, the planet of mass >1 Jupiter mass with moderate initial eccentricities (>~ 0.3) can move to the region < 0.03 AU from its central sta...

  10. Formation of telluric planets and the origin of terrestrial water

    Directory of Open Access Journals (Sweden)

    Raymond Sean

    2014-02-01

    Full Text Available Simulations of planet formation have failed to reproduce Mars’ small mass (compared with Earth for 20 years. Here I will present a solution to the Mars problem that invokes large-scale migration of Jupiter and Saturn while they were still embedded in the gaseous protoplanetary disk. Jupiter first migrated inward, then “tacked” and migrated back outward when Saturn caught up to it and became trapped in resonance. If this tack occurred when Jupiter was at 1.5 AU then the inner disk of rocky planetesimals and embryos is truncated and the masses and orbits of all four terrestrial planet are quantitatively reproduced. As the giant planets migrate back outward they re-populate the asteroid belt from two different source populations, matching the structure of the current belt. C-type material is also scattered inward to the terrestrial planet-forming zone, delivering about the right amount of water to Earth on 10-50 Myr timescales.

  11. Secular orbital evolution of Jupiter family comets

    Science.gov (United States)

    Rickman, H.; Gabryszewski, R.; Wajer, P.; Wiśniowski, T.; Wójcikowski, K.; Szutowicz, S.; Valsecchi, G. B.; Morbidelli, A.

    2017-02-01

    Context. The issue of the long term dynamics of Jupiter family comets (JFCs) involves uncertain assumptions about the physical evolution and lifetimes of these comets. Contrary to what is often assumed, real effects of secular dynamics cannot be excluded and therefore merit investigation. Aims: We use a random sample of late heavy bombardment cometary projectiles to study the long-term dynamics of JFCs by a Monte Carlo approach. In a steady-state picture of the Jupiter family, we investigate the orbital distribution of JFCs, including rarely visited domains like retrograde orbits or orbits within the outer parts of the asteroid main belt. Methods: We integrate 100 000 objects over a maximum of 100 000 orbital revolutions including the Sun, a comet, and four giant planets. Considering the steady-state number of JFCs to be proportional to the total time spent in the respective orbital domain, we derive the capture rate based on observed JFCs with small perihelia and large nuclei. We consider a purely dynamical model and one where the nuclei are eroded by ice sublimation. Results: The JFC inclination distribution is incompatible with our erosional model. This may imply that a new type of comet evolution model is necessary. Considering that comets may live for a long time, we show that JFCs can evolve into retrograde orbits as well as asteroidal orbits in the outer main belt or Cybele regions. The steady-state capture rate into the Jupiter family is consistent with 1 × 109 scattered disk objects with diameters D > 2 km. Conclusions: Our excited scattered disk makes it difficult to explain the JFC inclination distribution, unless the physical evolution of JFCs is more intricate than assumed in standard, erosional models. Independent of this, the population size of the Jupiter family is consistent with a relatively low-mass scattered disk.

  12. Inferring the Composition of Super-Jupiter Mass Companions of Pulsars with Radio Line Spectroscopy

    Science.gov (United States)

    Ray, Alak; Loeb, Abraham

    2017-02-01

    We propose using radio line spectroscopy to detect molecular absorption lines (such as OH at 1.6–1.7 GHz) before and after the total eclipse of black widow and other short orbital period binary pulsars with low-mass companions. The companion in such a binary may be ablated away by energetic particles and high-energy radiation produced by the pulsar wind. The observations will probe the eclipsing wind being ablated by the pulsar and constrain the nature of the companion and its surroundings. Maser emission from the interstellar medium stimulated by a pulsar beam might also be detected from the intrabinary medium. The short temporal resolution allowed by the millisecond pulsars can probe this medium with the high angular resolution of the pulsar beam.

  13. The HARPS search for southern extra-solar planets. XXVII. Up to seven planets orbiting HD 10180: probing the architecture of low-mass planetary systems

    CERN Document Server

    Lovis, C; Mayor, M; Udry, S; Benz, W; Bertaux, J -L; Bouchy, F; Correia, A C M; Laskar, J; Curto, G Lo; Mordasini, C; Pepe, F; Queloz, D; Santos, N C

    2010-01-01

    Context. Low-mass extrasolar planets are presently being discovered at an increased pace by radial velocity and transit surveys, opening a new window on planetary systems. Aims. We are conducting a high-precision radial velocity survey with the HARPS spectrograph which aims at characterizing the population of ice giants and super-Earths around nearby solar-type stars. This will lead to a better understanding of their formation and evolution, and yield a global picture of planetary systems from gas giants down to telluric planets. Methods. Progress has been possible in this field thanks in particular to the sub-m/s radial velocity precision achieved by HARPS. We present here new high-quality measurements from this instrument. Results. We report the discovery of a planetary system comprising at least five Neptune-like planets with minimum masses ranging from 12 to 25 M_Earth, orbiting the solar-type star HD 10180 at separations between 0.06 and 1.4 AU. A sixth radial velocity signal is present at a longer perio...

  14. Classifying Planets: Nature vs. Nurture

    Science.gov (United States)

    Beichman, Charles A.

    2009-05-01

    The idea of a planet was so simple when we learned about the solar system in elementary school. Now students and professional s alike are faced with confusing array of definitions --- from "Brown Dwarfs” to "Super Jupiters", from "Super Earths” to "Terrestrial Planets", and from "Planets” to "Small, Sort-of Round Things That Aren't Really Planets". I will discuss how planets might be defined by how they formed, where they are found, or by the life they might support.

  15. Searching for Earth-mass planets around $\\alpha$ Centauri: precise radial velocities from contaminated spectra

    CERN Document Server

    Bergmann, Christoph; Hearnshaw, John B; Wittenmyer, Robert A; Wright, Duncan J

    2014-01-01

    This work is part of an ongoing project which aims to detect terrestrial planets in our neighbouring star system $\\alpha$ Centauri using the Doppler method. Owing to the small angular separation between the two components of the $\\alpha$ Cen AB binary system, the observations will to some extent be contaminated with light coming from the other star. We are accurately determining the amount of contamination for every observation by measuring the relative strengths of the H-$\\alpha$ and NaD lines. Furthermore, we have developed a modified version of a well established Doppler code that is modelling the observations using two stellar templates simultaneously. With this method we can significantly reduce the scatter of the radial velocity measurements due to spectral cross-contamination and hence increase our chances of detecting the tiny signature caused by potential Earth-mass planets. After correcting for the contamination we achieve radial velocity precision of $\\sim 2.5\\,\\mathrm{m\\,s^{-1}}$ for a given night...

  16. Orbits and Masses of the Satellites of the Dwarf Planet Haumea = 2003 EL61

    CERN Document Server

    Ragozzine, Darin

    2009-01-01

    Using precise relative astrometry from the Hubble Space Telescope and the W. M. Keck Telescope, we have determined the orbits and masses of the two dynamically interacting satellites of the dwarf planet (136108) Haumea, formerly 2003 EL61. The orbital parameters of Hi'iaka, the outer, brighter satellite, match well the previously derived orbit. On timescales longer than a few weeks, no Keplerian orbit is sufficient to describe the motion of the inner, fainter satellite Namaka. Using a fully-interacting three point-mass model, we have recovered the orbital parameters of both orbits and the mass of Haumea and Hi'iaka; Namaka's mass is marginally detected. The data are not sufficient to uniquely determine the gravitational quadrupole of the non-spherical primary (described by $J_2$). The nearly co-planar nature of the satellites, as well as an inferred density similar to water ice, strengthen the hypothesis that Haumea experienced a giant collision billions of years ago. The excited eccentricities and mutual inc...

  17. Did Fomalhaut, HR 8799, and HL Tauri Form Planets via the Gravitational Instability? Placing Limits on the Required Disk Masses

    CERN Document Server

    Nero, D

    2009-01-01

    Disk fragmentation resulting from the gravitational instability has been proposed as an efficient mechanism for forming giant planets. We use the planet Fomalhaut b, the triple-planetary system HR 8799, and the potential protoplanet associated with HL Tau to test the viability of this mechanism. We choose the above systems since they harbor planets with masses and orbital characteristics favored by the fragmentation mechanism. We do not claim that these planets must have formed as the result of fragmentation, rather the reverse: if planets can form from disk fragmentation, then these systems are consistent with what we should expect to see. We use the orbital characteristics of these recently discovered planets, along with a new technique to more accurately determine the disk cooling times, to place both lower and upper limits on the disk surface density--and thus mass--required to form these objects by disk fragmentation. Our cooling times are over an order of magnitude shorter than those of Rafikov (2005),w...

  18. Direct Imaging of Warm Extrasolar Planets

    Energy Technology Data Exchange (ETDEWEB)

    Macintosh, B

    2005-04-11

    One of the most exciting scientific discoveries in the last decade of the twentieth century was the first detection of planets orbiting a star other than our own. By now more than 130 extrasolar planets have been discovered indirectly, by observing the gravitational effects of the planet on the radial velocity of its parent star. This technique has fundamental limitations: it is most sensitive to planets close to their star, and it determines only a planet's orbital period and a lower limit on the planet's mass. As a result, all the planetary systems found so far are very different from our own--they have giant Jupiter-sized planets orbiting close to their star, where the terrestrial planets are found in our solar system. Such systems have overturned the conventional paradigm of planet formation, but have no room in them for habitable Earth-like planets. A powerful complement to radial velocity detections of extrasolar planets will be direct imaging--seeing photons from the planet itself. Such a detection would allow photometric measurements to determine the temperature and radius of a planet. Also, direct detection is most sensitive to planets in wide orbits, and hence more capable of seeing solar systems resembling our own, since a giant planet in a wide orbit does not preclude the presence of an Earth-like planet closer to the star. Direct detection, however, is extremely challenging. Jupiter is roughly a billion times fainter than our sun. Two techniques allowed us to overcome this formidable contrast and attempt to see giant planets directly. The first is adaptive optics (AO) which allows giant earth-based telescopes, such as the 10 meter W.M. Keck telescope, to partially overcome the blurring effects of atmospheric turbulence. The second is looking for young planets: by searching in the infrared for companions to young stars, we can see thermal emission from planets that are still warm with the heat of their formation. Together with a UCLA team that

  19. Energy flux determines magnetic field strength of planets and stars.

    Science.gov (United States)

    Christensen, Ulrich R; Holzwarth, Volkmar; Reiners, Ansgar

    2009-01-08

    The magnetic fields of Earth and Jupiter, along with those of rapidly rotating, low-mass stars, are generated by convection-driven dynamos that may operate similarly (the slowly rotating Sun generates its field through a different dynamo mechanism). The field strengths of planets and stars vary over three orders of magnitude, but the critical factor causing that variation has hitherto been unclear. Here we report an extension of a scaling law derived from geodynamo models to rapidly rotating stars that have strong density stratification. The unifying principle in the scaling law is that the energy flux available for generating the magnetic field sets the field strength. Our scaling law fits the observed field strengths of Earth, Jupiter, young contracting stars and rapidly rotating low-mass stars, despite vast differences in the physical conditions of the objects. We predict that the field strengths of rapidly rotating brown dwarfs and massive extrasolar planets are high enough to make them observable.

  20. Energy flux determines magnetic field strength of planets and stars

    Science.gov (United States)

    Christensen, Ulrich R.; Holzwarth, Volkmar; Reiners, Ansgar

    2009-01-01

    The magnetic fields of Earth and Jupiter, along with those of rapidly rotating, low-mass stars, are generated by convection-driven dynamos that may operate similarly (the slowly rotating Sun generates its field through a different dynamo mechanism). The field strengths of planets and stars vary over three orders of magnitude, but the critical factor causing that variation has hitherto been unclear. Here we report an extension of a scaling law derived from geodynamo models to rapidly rotating stars that have strong density stratification. The unifying principle in the scaling law is that the energy flux available for generating the magnetic field sets the field strength. Our scaling law fits the observed field strengths of Earth, Jupiter, young contracting stars and rapidly rotating low-mass stars, despite vast differences in the physical conditions of the objects. We predict that the field strengths of rapidly rotating brown dwarfs and massive extrasolar planets are high enough to make them observable.

  1. Giant planet formation in radially structured protoplanetary discs

    Science.gov (United States)

    Coleman, Gavin A. L.; Nelson, Richard P.

    2016-08-01

    Our recent N-body simulations of planetary system formation, incorporating models for the main physical processes thought to be important during the building of planets (i.e. gas disc evolution, migration, planetesimal/boulder accretion, gas accretion on to cores, etc.), have been successful in reproducing some of the broad features of the observed exoplanet population (e.g. compact systems of low-mass planets, hot Jupiters), but fail completely to form any surviving cold Jupiters. The primary reason for this failure is rapid inward migration of growing protoplanets during the gas accretion phase, resulting in the delivery of these bodies on to orbits close to the star. Here, we present the results of simulations that examine the formation of gas giant planets in protoplanetary discs that are radially structured due to spatial and temporal variations in the effective viscous stresses, and show that such a model results in the formation of a population of cold gas giants. Furthermore, when combined with models for disc photoevaporation and a central magnetospheric cavity, the simulations reproduce the well-known hot-Jupiter/cold-Jupiter dichotomy in the observed period distribution of giant exoplanets, with a period valley between 10 and 100 d.

  2. Forming Jupiter, Saturn, Uranus and Neptune in Few Million Years by Core Accretion

    CERN Document Server

    Benvenuto, Omar G; Brunini, Adrian

    2009-01-01

    Giant planet formation process is still not completely understood. The current most accepted paradigm, the core instability model, explains several observed properties of the solar system's giant planets but, to date, has faced difficulties to account for a formation time shorter than the observational estimates of protoplanetary disks' lifetimes, especially for the cases of Uranus and Neptune. In the context of this model, and considering a recently proposed primordial solar system orbital structure, we performed numerical calculations of giant planet formation. Our results show that if accreted planetesimals follow a size distribution in which most of the mass lies in 30-100 meter sized bodies, Jupiter, Saturn, Uranus and Neptune may have formed according to the nucleated instability scenario. The formation of each planet occurs within the time constraints and they end up with core masses in good agreement with present estimations.

  3. Unstable Roche-Lobe Overflow of Gaseous Planets

    Science.gov (United States)

    Jackson, Brian

    The discoveries of more than 100 roughly Earth-sized bodies with orbital periods less than 1 day, ultra-short-period planets or candidates (USPs), have challenged planet formation theories, and evidence suggests USPs may be the remnants of gaseous planets that shed their atmospheres. Indeed, many hot Jupiters are near Roche-Lobe overflow (RLO), and tidal decay can push them the rest of the way in. Recent work has shown stable RLO (atmospheres lost via a steady outflow and thin accretion disk) probably cannot produce USPs on its own but suggested unstable RLO (atmospheres quickly shed on dynamical timescales) may. In fact, stable RLO may drive overflowing hot Jupiters into unstable RLO, and by analogy with the common-envelope binaries, the core that remains can drive off the gaseous envelope at the cost of its orbital energy. Wellestablished mass-radius relations for gaseous planets, coupled to simple energy and angular momentum considerations, provide a connection between the observed masses and periods for USPs and their putative progenitor gaseous planets, with few free parameters. We propose to investigate the hypothesis that USPs originate through tidal decay and a combination of stable and unstable Roche-lobe overflow of short-period gaseous planets through the following studies: -We will explore the planetary masses, orbital periods, etc. that produce unstable RLO using the Modules for Experiments in Stellar Astrophysics (MESA) suite. -We will relate the observed periods and masses of USPs to their putative progenitor masses and periods to see whether they are consistent with the unstable RLO hypothesis. This proposal is directly relevant to the Exoplanets Research Program since it seeks to "understand the ... physical processes of exoplanets" and "improve understanding of [their] origins" through "theoretical studies ... and modeling'". We also expect that it will have broad impacts on a variety of astrophysical topics: -Ultra-short period planets could

  4. HIGH-MASS, FOUR-PLANET CONFIGURATIONS FOR HR 8799: CONSTRAINING THE ORBITAL INCLINATION AND AGE OF THE SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Sudol, Jeffrey J. [Department of Physics, West Chester University, 720 S. Church Street, West Chester, PA 19383 (United States); Haghighipour, Nader, E-mail: jsudol@wcupa.edu, E-mail: nader@ifa.hawaii.edu [Institute for Astronomy and NASA Astrobiology Institute, University of Hawaii-Manoa, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States)

    2012-08-10

    Debates regarding the age and inclination of the planetary system orbiting HR 8799, and the release of additional astrometric data following the discovery of the fourth planet, prompted us to examine the possibility of constraining these two quantities by studying the long-term stability of this system at different orbital inclinations and in its high-mass configuration (7-10-10-10 M{sub Jup}). We carried out {approx}1.5 million N-body integrations for different combinations of orbital elements of the four planets. The most dynamically stable combinations survived less than {approx}5 Myr at inclinations of 0 Degree-Sign and 13 Degree-Sign , and 41, 46, and 31 Myr at 18 Degree-Sign , 23 Degree-Sign , and 30 Degree-Sign , respectively. Given such short lifetimes and the location of the system on the age-luminosity diagram for low-mass objects, the most reasonable conclusion of our study is that the planetary masses are less than 7-10-10-10 M{sub Jup} and the system is quite young. Two trends to note from our work are as follows. (1) In the most stable systems, the higher the inclination, the more the coordinates for planets b and c diverge from the oldest archival astrometric data (released after we completed our N-body integrations), suggesting that either these planets are in eccentric orbits or have lower orbital inclinations than that of planet d. (2) The most stable systems place planet e closer to the central star than is observed, supporting the conclusion that the planets are more massive and the system is young. We present the details of our simulations and discuss the implications of the results.

  5. Kepler-14b: A massive hot Jupiter transiting an F star in a close visual binary

    OpenAIRE

    Buchhave, Lars A.; Latham, David W.; Carter, Joshua A.; Désert, Jean-Michel; Torres, Guillermo; Adams, Elisabeth R.; Bryson, Stephen T.; Charbonneau, David B.; Ciardi, David R.; Kulesa, Craig; Dupree, Andrea K.; Fischer, Debra A.; Fressin, François; Gautier III, Thomas N.; Gilliland, Ronald L.

    2011-01-01

    We present the discovery of a hot Jupiter transiting an F star in a close visual (0.3" sky projected angular separation) binary system. The dilution of the host star's light by the nearly equal magnitude stellar companion (~ 0.5 magnitudes fainter) significantly affects the derived planetary parameters, and if left uncorrected, leads to an underestimate of the radius and mass of the planet by 10% and 60%, respectively. Other published exoplanets, which have not been observed with high-resolut...

  6. Habitability of Terrestrial-Mass Planets in the HZ of M Dwarfs. I. H/He-Dominated Atmospheres

    CERN Document Server

    Owen, James E

    2016-01-01

    The ubiquity of M dwarfs, combined with the relative ease of detecting terrestrial-mass planets around them, has made them prime targets for finding and characterising planets in the "Habitable Zone" (HZ). However, Kepler has revealed that terrestrial-mass exoplanets are often born with voluminous H/He envelopes, comprising mass-fractions ($M_{env}/M_{core}$) $\\gtrsim 1$\\%. If these planets retain such envelopes over Gyr timescales, they will not be "habitable" even within the HZ. Given the strong X-ray/UV fluxes of M dwarfs, we study whether these planets can lose sufficient envelope-mass through photoevaporation to become habitable. We improve upon previous work by using hydrodynamic models that account for radiative cooling as well as the transition from hydrodynamic to ballistic escape. Adopting the XUV spectrum of the active M dwarf AD Leo as a template, including stellar evolution, and considering both evaporation and thermal evolution, we show that: (1) the envelope-mass lost is significantly lower tha...

  7. OGLE-2012-BLG-0950Lb: The First Planet Mass Measurement from Only Microlens Parallax and Lens Flux

    Science.gov (United States)

    Koshimoto, N.; Udalski, A.; Beaulieu, J. P.; Sumi, T.; Bennett, D. P.; Bond, I. A.; Rattenbury, N.; Fukui, A.; Batista, V.; Marquette, J. B.; Brillant, S.; and; Abe, F.; Asakura, Y.; Bhattacharya, A.; Donachie, M.; Freeman, M.; Hirao, Y.; Itow, Y.; Li, M. C. A.; Ling, C. H.; Masuda, K.; Matsubara, Y.; Matsuo, T.; Muraki, Y.; Nagakane, M.; Ohnishi, K.; Oyokawa, H.; Saito, To.; Sharan, A.; Shibai, H.; Sullivan, D. J.; Suzuki, D.; Tristram, P. J.; Yonehara, A.; MOA Collaboration; Kozłowski, S.; Pietrukowicz, P.; Poleski, R.; Skowron, J.; Soszyński, I.; Szymański, M. K.; Ulaczyk, K.; Wyrzykowski, Ł.; OGLE Collaboration

    2017-01-01

    We report the discovery of a microlensing planet OGLE-2012-BLG-0950Lb with a planet/host mass ratio of q≃ 2× {10}-4. A long term distortion detected in both MOA and OGLE light curve can be explained by the microlens parallax due to the Earth’s orbital motion around the Sun. Although the finite source effect is not detected, we obtain the lens flux by the high resolution Keck AO observation. Combining the microlens parallax and the lens flux reveal the nature of the lens: a planet with mass of {M}{{p}}={35}-9+17{M}\\oplus is orbiting around an M-dwarf with mass of {M}{host}={0.56}-0.16+0.12{M}ȯ with a planet-host projected separation of {r}\\perp ={2.7}-0.7+0.6 au located at {D}{{L}}={3.0}-1.1+0.8 kpc from us. This is the first mass measurement from only microlens parallax and the lens flux without the finite source effect. In the coming space observation-era with Spitzer, K2, Euclid, and WFIRST, we expect many such events for which we will not be able to measure any finite source effect. This work demonstrates an ability of mass measurements in such events.

  8. Searching for the signatures of terrestial planets in solar analogs

    CERN Document Server

    Hernandez, J I Gonzalez; Santos, N C; Sousa, S; Delgado-Mena, E; Neves, V; Udry, S

    2010-01-01

    We present a fully differential chemical abundance analysis using very high-resolution (R >~ 85,000) and very high signal-to-noise (S/N~800 on average) HARPS and UVES spectra of 7 solar twins and 95 solar analogs, 24 are planet hosts and 71 are stars without detected planets. The whole sample of solar analogs provide very accurate Galactic chemical evolution trends in the metalliciy range -0.3<[Fe/H]<0.5. Solar twins with and without planets show similar mean abundance ratios. We have also analysed a sub-sample of 28 solar analogs, 14 planet hosts and 14 stars without known planets, with spectra at S/N~850 on average, in the metallicity range 0.14<[Fe/H]<0.36 and find the same abundance pattern for both samples of stars with and without planets. This result does not depend on either the planet mass, from 7 Earth masses to 17.4 Jupiter masses, or the orbital period of the planets, from 3 to 4300 days. In addition, we have derived the slope of the abundance ratios as a function of the condensation t...

  9. Transiting exoplanets from the CoRoT space mission: XIII. CoRoT-14b: an unusually dense very hot Jupiter

    CERN Document Server

    Tingley, B; Gazzano, J -C; Alonso, R; Mazeh, T; Jorda, L; Aigrain, S; Almenara, J -M; Auvergne, M; Baglin, A; Barge, P; Bonomo, A S; Bordé, P; Bouchy, F; Bruntt, H; Cabrera, J; Carpano, S; Carone, L; Cochran, W D; Csizmadia, Sz; Deleuil, M; Deeg, H J; Dvorak, R; Erikson, A; Ferraz-Mello, S; Fridlund, M; Gandolfi, D; Gillon, M; Guenther, E W; Guillot, T; Hatzes, A; Hébrard, G; Léger, A; Llebaria, A; Lammer, H; Lovis, C; MacQueen, P J; Moutou, C; Ollivier, M; Ofir, A; Pätzold, M; Pepe, F; Queloz, D; Rauer, H; Rouan, D; Samuel, B; Schneider, J; Shporer, A; Wuchterl, G

    2011-01-01

    In this paper, the CoRoT Exoplanet Science Team announces its 14th discovery. Herein, we discuss the observations and analyses that allowed us to derive the parameters of this system: a hot Jupiter with a mass of $7.6 \\pm 0.6$ Jupiter masses orbiting a solar-type star (F9V) with a period of only 1.5 d, less than 5 stellar radii from its parent star. It is unusual for such a massive planet to have such a small orbit: only one other known exoplanet with a higher mass orbits with a shorter period.