WorldWideScience

Sample records for jupiter laser facility

  1. Jupiter Laser Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Jupiter Laser Facility is an institutional user facility in the Physical and Life Sciences Directorate at LLNL. The facility is designed to provide a high degree...

  2. Experimental results from magnetized-jet experiments executed at the Jupiter Laser Facility

    Science.gov (United States)

    Manuel, M. J.-E.; Kuranz, C. C.; Rasmus, A. M.; Klein, S. R.; MacDonald, M. J.; Trantham, M. R.; Fein, J. R.; Belancourt, P. X.; Young, R. P.; Keiter, P. A.; Drake, R. P.; Pollock, B. B.; Park, J.; Hazi, A. U.; Williams, G. J.; Chen, H.

    2015-12-01

    Recent experiments at the Jupiter Laser Facility investigated magnetization effects on collimated plasma jets. Laser-irradiated plastic-cone-targets produced collimated, millimeter-scale plasma flows as indicated by optical interferometry. Proton radiography of these jets showed no indication of strong, self-generated magnetic fields, suggesting a dominantly hydrodynamic collimating mechanism. Targets were placed in a custom-designed solenoid capable of generating field strengths up to 5 T. Proton radiographs of the well-characterized B-field, without a plasma jet, suggested an external source of trapped electrons that affects proton trajectories. The background magnetic field was aligned with the jet propagation direction, as is the case in many astrophysical systems. Optical interferometry showed that magnetization of the plasma results in disruption of the collimated flow and instead produces a hollow cavity. This result is a topic of ongoing investigation.

  3. Jupiter Laser Facility - COMET Laser

    Data.gov (United States)

    Federal Laboratory Consortium — COMET has 4 beam configurations with uncompressed pulse lengths from 500 ps to 6 ns, compressed pulses to 0.5 ps, and beam energies up to 20 J. COMET can fire every...

  4. Jupiter

    CERN Document Server

    Penne, Barbra

    2017-01-01

    Our solar system's largest planet is huge enough that all of the system's other planets could fit inside it. Although Jupiter has been known since ancient times, scientists are still learning exciting new information about the planet and its satellites today. In fact, several of its moons are now believed to have oceans below their icy surfaces. Chapters focus on topics such as Jupiter's orbit and rotation, rings, atmosphere, and moons, as well as on the space missions that have helped us get a closer look at the planet and its moons over the past decades.

  5. Jupiter

    Science.gov (United States)

    1990-01-01

    This processed color image of Jupiter was produced in 1990 by the U.S. Geological Survey from a Voyager image captured in 1979. The colors have been enhanced to bring out detail. Zones of light-colored, ascending clouds alternate with bands of dark, descending clouds. The clouds travel around the planet in alternating eastward and westward belts at speeds of up to 540 kilometers per hour. Tremendous storms as big as Earthly continents surge around the planet. The Great Red Spot (oval shape toward the lower-left) is an enormous anticyclonic storm that drifts along its belt, eventually circling the entire planet.

  6. Electra Laser Facility

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: The Electra Laser Facility is used to develop the science and technology needed to develop a reliable, efficient, high-energy, repetitively pulsed krypton...

  7. Laser Guidance Analysis Facility

    Data.gov (United States)

    Federal Laboratory Consortium — This facility, which provides for real time, closed loop evaluation of semi-active laser guidance hardware, has and continues to be instrumental in the development...

  8. Laser safety at high profile laser facilities

    International Nuclear Information System (INIS)

    Barat, K.

    2010-01-01

    Complete text of publication follows. Laser safety has been an active concern of laser users since the invention of the laser. Formal standards were developed in the early 1970's and still continue to be developed and refined. The goal of these standards is to give users guidance on the use of laser and consistent safety guidance and requirements for laser manufacturers. Laser safety in the typical research setting (government laboratory or university) is the greatest challenge to the laser user and laser safety officer. This is due to two factors. First, the very nature of research can put the user at risk; consider active manipulation of laser optics and beam paths, and user work with energized systems. Second, a laser safety culture that seems to accept laser injuries as part of the graduate student educational process. The fact is, laser safety at research settings, laboratories and universities still has long way to go. Major laser facilities have taken a more rigid and serious view of laser safety, its controls and procedures. Part of the rationale for this is that these facilities draw users from all around the world presenting the facility with a work force of users coming from a wide mix of laser safety cultures. Another factor is funding sources do not like bad publicity which can come from laser accidents and a poor safety record. The fact is that injuries, equipment damage and lost staff time slow down progress. Hence high profile/large laser projects need to adapt a higher safety regimen both from an engineering and administrative point of view. This presentation will discuss all these points and present examples. Acknowledgement. This work has been supported by the University of California, Director, Office of Science.

  9. NTES laser facility for physics experiments

    International Nuclear Information System (INIS)

    Christie, D.J.; Foley, R.J.; Frank, D.N.

    1989-01-01

    This paper discusses the following topics on the NTES laser facility: Mission Statement and Project Description; Experiment Area; High-Energy, Double-Pass Laser; Facilities; Laser Control and Data Acquisition; and Auxiliary Lasers

  10. High Energy Solid State Laser Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — A suite of laboratories with advanced spectroscopic and laser equipment, this facility develops materials and techniques for advanced solid state high energy lasers....

  11. Argus Laser Fusion Facility

    International Nuclear Information System (INIS)

    Speck, D.R.; Simmons, W.W.

    1976-01-01

    ARGUS is a two-beam Nd: glass laser system built for laser fusion irradiation experiments. It is the first glass laser system planned and built with the understanding that small-scale beam break-up is the dominant performance limiting factor in obtaining high output power. Accordingly, five vacuum spatial filters are located at strategic intervals along each chain to eliminate the accumulated small-scale filamentation. This strategy permits cascading of amplifiers to obtain a focusable output of more than one terawatt per arm in a spatially clean beam of 20 centimeter diameter. Beam diagnostics which characterize each shot include the time-integrated spatial profile and the time resolved intensity/power at the target. Demonstrated performance to date includes: (1) Peak power in excess of 2 TW at the target is achieved with regularity. (2) Maximum system brightness is in excess of 10 17 watts/cm 2 ster. (3) Shot-to-shot pointing stability within 50 μ radians is achieved over periods of days. (4) Successful target experiments have been performed with pulses of from 30 to 500 ps duration

  12. Large laser system facility design

    International Nuclear Information System (INIS)

    Gilmartin, T.J.

    1983-01-01

    Optical stability of foundations and support structures, environmental control, close-in subsystem integration, spatial organization, materiel flow and access to remote subsystems is discussed and compared for four laser facilities: The Special Isotope Separation Laboratory, Argus, Shiva/Nova, and Firepond

  13. Berkeley Lab Laser Accelerator (BELLA) facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Berkeley Lab Laser Accelerator (BELLA) facility (formerly LOASIS) develops advanced accelerators and radiation sources. High gradient (1-100 GV/m) laser-plasma...

  14. 8. High power laser and ignition facilities

    International Nuclear Information System (INIS)

    Bayramian, A.J.; Beach, R.J.; Bibeau, C.

    2002-01-01

    This document gives a review of the various high power laser projects and ignition facilities in the world: the Mercury laser system and Electra (Usa), the krypton fluoride (KrF) laser and the HALNA (high average power laser for nuclear-fusion application) project (Japan), the Shenguang series, the Xingguang facility and the TIL (technical integration line) facility (China), the Vulcan peta-watt interaction facility (UK), the Megajoule project and its feasibility phase: the LIL (laser integration line) facility (France), the Asterix IV/PALS high power laser facility (Czech Republic), and the Phelix project (Germany). In Japan the 100 TW Petawatt Module Laser, constructed in 1997, is being upgraded to the world biggest peta-watt laser. Experiments have been performed with single-pulse large aperture e-beam-pumped Garpun (Russia) and with high-current-density El-1 KrF laser installation (Russia) to investigate Al-Be foil transmittance and stability to multiple e-beam irradiations. An article is dedicated to a comparison of debris shield impacts for 2 experiments at NIF (national ignition facility). (A.C.)

  15. The SwissFEL Experimental Laser facility.

    Science.gov (United States)

    Erny, Christian; Hauri, Christoph Peter

    2016-09-01

    The hard X-ray laser SwissFEL at the Paul Scherrer Institute is currently being commissioned and will soon become available for users. In the current article the laser facility is presented, an integral part of the user facility, as most time-resolved experiments will require a versatile optical laser infrastructure and precise information about the relative delay between the X-ray and optical pulse. The important key parameters are a high availability and long-term stability while providing advanced laser performance in the wavelength range from ultraviolet to terahertz. The concept of integrating a Ti:sapphire laser amplifier system with subsequent frequency conversion stages and drift compensation into the SwissFEL facility environment for successful 24 h/7 d user operation is described.

  16. Performance of Shiva as a laser fusion irradiation facility

    International Nuclear Information System (INIS)

    Speck, D.R.; Bliss, E.S.; Glaze, J.A.; Johnson, B.C.; Manes, K.R.; Ozarski, R.G.; Rupert, P.R.; Simmons, W.W.; Swift, C.D.; Thompson, C.E.

    1979-01-01

    Shiva is a 20 beam Nd:Glass Laser and Target Irradiation Facility at the Lawrence Livermore Laboratory. The laser system and integrated target facility evolved during the last year from a large, untested, experimental laser system to a target irradiation facility which has provided significant laser driven inertial confinement fusion data. The operation of the facility is discussed

  17. SERC Central Laser Facility annual report 1992

    International Nuclear Information System (INIS)

    1992-01-01

    In this 1992 Annual Report to the Laser Facility Committee of the Science and Engineering Research Council, the Central Laser Facility at Rutherford Appleton Laboratory, technical progress is described and mid-term organizational goals outlined. Outstanding among recent achievements is the work on plasma heating being undertaken on the Sprite facility using the ultra-bright KrF laser pumped Raman beams. Two-beam operation at power levels approaching 2 TW in 10 ps are hoped for. On a four year timescale the Titania system will provide four Raman beams of exceptional brightness and power up to 20TW in 10ps. The other high power laser facility, Vulcan is also producing exciting work. Progress in nanosecond studies using Raman spectroscopy have produced the first Raman spectrum of solvated Buckmister fullerene and direct observation of the separation of germinate ion pairs, as well as information on the behaviour of a single base in an oligonuclide chain. Phase boundaries for the solidification of a two dimensional electron fluid have been determined in a Gallium Arsenide heterojunction. Despite staff number attrition, operation and development of the facilities have continued successfully. (UK)

  18. The Nike Laser Facility and its Capabilities

    Science.gov (United States)

    Serlin, V.; Aglitskiy, Y.; Chan, L. Y.; Karasik, M.; Kehne, D. M.; Oh, J.; Obenschain, S. P.; Weaver, J. L.

    2013-10-01

    The Nike laser is a 56-beam krypton fluoride (KrF) system that provides 3 to 4 kJ of laser energy on target. The laser uses induced spatial incoherence to achieve highly uniform focal distributions. 44 beams are overlapped onto target with peak intensities up to 1016 W/cm2. The effective time-averaged illumination nonuniformity is Nike produces highly uniform ablation pressures on target allowing well-controlled experiments at pressures up to 20 Mbar. The other 12 laser beams are used to generate diagnostic x-rays radiographing the primary laser-illuminated target. The facility includes a front end that generates the desired temporal and spatial laser profiles, two electron-beam pumped KrF amplifiers, a computer-controlled optical system, and a vacuum target chamber for experiments. Nike is used to study the physics and technology issues of direct-drive laser fusion, such as, hydrodynamic and laser-plasma instabilities, studies of the response of materials to extreme pressures, and generation of X rays from laser-heated targets. Nike features a computer-controlled data acquisition system, high-speed, high-resolution x-ray and visible imaging systems, x-ray and visible spectrometers, and cryogenic target capability. Work supported by DOE/NNSA.

  19. Mobile terawatt laser propagation facility (Conference Presentation)

    Science.gov (United States)

    Shah, Lawrence; Roumayah, Patrick; Bodnar, Nathan; Bradford, Joshua D.; Maukonen, Douglas; Richardson, Martin C.

    2017-03-01

    This presentation will describe the design and construction status of a new mobile high-energy femtosecond laser systems producing 500 mJ, 100 fs pulses at 10 Hz. This facility is built into a shipping container and includes a cleanroom housing the laser system, a separate section for the beam director optics with a retractable roof, and the environmental control equipment necessary to maintain stable operation. The laser system includes several innovations to improve the utility of the system for "in field" experiments. For example, this system utilizes a fiber laser oscillator and a monolithic chirped Bragg grating stretcher to improve system robustness/size and employs software to enable remote monitoring and system control. Uniquely, this facility incorporates a precision motion-controlled gimbal altitude-azimuth mount with a coudé path to enable aiming of the beam over a wide field of view. In addition to providing the ability to precisely aim at multiple targets, it is also possible to coordinate the beam with separate tracking/diagnostic sensing equipment as well as other laser systems. This mobile platform will be deployed at the Townes Institute Science and Technology Experimental Facility (TISTEF) located at the Kennedy Space Center in Florida, to utilize the 1-km secured laser propagation range and the wide array of meteorological instrumentation for atmospheric and turbulence characterization. This will provide significant new data on the propagation of high peak power ultrashort laser pulses and detailed information on the atmospheric conditions in a coastal semi-tropical environment.

  20. Annual report to the Laser Facility Committee, 1982

    International Nuclear Information System (INIS)

    1982-03-01

    The report covers the work done at, or in association with, the Central Laser Facility during the year April 1981 to March 1982 under the headings; glass laser facility development, gas laser development, laser plasma interactions, transport and particle emission studies, ablative acceleration and compression studies, spectroscopy and XUV lasers, and, theory and computation. Publications based on the work of the facility which have either appeared or been accepted for publication during the year are listed. (U.K.)

  1. Development laser light facility for uranium isotope separation

    International Nuclear Information System (INIS)

    Dickinson, G.J.

    1992-01-01

    A laser light facility has been built and successfully commissioned as part of a programme to explore the economic potential of Laser Isotope Separation of Uranium. The laser systems are comprised of tunable dye lasers pumped by copper vapour lasers. The requirements for optical beam stability, alignment of lasers in chains, and protection of optical coatings have made challenging demands on the engineering design and operation of the facility. (Author)

  2. The Jupiter program

    International Nuclear Information System (INIS)

    Ramirez, J.J.

    1995-01-01

    Jupiter is a Sandia initiative to develop the next generation of fast Z-pinch drivers for applications to high energy density physics, inertial confinement fusion, and radiation effects simulation. Jupiter will also provide unique capabilities for science research in a broad spectrum of areas involving ultra high magnetic fields, hot/dense plasmas, x-ray physics, intense neutron sources, etc. The program is based on the premise that a single facility using magnetically driven implosions can meet the needs in these multiple program areas. Jupiter requires a 450-500 TW, 8-10 MV, ∼ 100 ns pulsed power generator to impart - 15 MJ kinetic energy to an imploding plasma load. The baseline concept uses a highly modular, robust architecture with demonstrated performance reliability. The design also has the flexibility to drive longer implosion times. This paper describes the Jupiter accelerator concept, and the research underway to establish the technological readiness to proceed with construction of the facility

  3. Annual report to the Laser Facility Committee 1979

    International Nuclear Information System (INIS)

    1979-03-01

    The report covers the work done at the Central Laser Facility, Rutherford Laboratory during the year preceding 31 March 1979. Preliminary work already undertaken on the upgrade of the glass laser and target areas consisting of the relocation of the two beam target chamber and tests on phosphate glass and also the completion of the electron beam generator for use by researchers on high power gas laser systems, are described. Work of the groups using the glass laser facility are considered under the headings; glass laser development, gas laser development, laser plasma interactions, transport and particle emission, ablative compression studies, atomic and radiation physics, XUV lasers, theory and computation. (U.K.)

  4. Annual report to the Laser Facility Committee 1986

    International Nuclear Information System (INIS)

    1986-01-01

    This paper is the annual report of the Science and Engineering Research Council, research and development work carried out at the Central Laser Facility, Rutherford Laboratory, United Kingdom, 1985/6. Part I contains the technical details of the studies of the High Power Laser scientific programme and Laser Support Facility, as well as the Laser Research and Development investigations. Part II concerns the application of UV lasers to microcircuit fabrication. (UK)

  5. Accomplishments in the Trident Laser Facility

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, Juan Carlos [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-08-25

    Trident has been an extremely productive laser facility, despite its modest size and operating cost in the firmament of high-energy, high-power laser facilities worldwide. More than 150 peer-reviewed journal articles (in 39 different journals) have been published using Trident experimental data, many in high-impact journals such as Nature, Nature Physics, Nature Communications, and Physical Review Letters. More than 230 oral presentations involving research at Trident have been presented at national and international conferences. Trident publications have over 5000 citations in the literature with an h-index of 38. AT least 23 Los Alamos postdoctoral researchers have worked on Trident. In the period since its inception in 1992-2007, despite not issuing formal proposal calls for access nor functioning explicitly as a user facility until later, Trident has 170 unique users from more than 30 unique institutions, such as Los Alamos, Lawrence Livermore, and Sandia national laboratories, various University of California campuses, General Atomic, Imperial College, and Ecole Polytechnique. To reinforce its role as an important Los Alamos point of connection to the external research community, at least 20 PhD students did a significant fraction of their thesis work on Trident. Such PhD students include Mike Dunne (Imperial College, 1995) - now director of LCLS and professor at Stanford; David Hoarty (IC, 1997) - scientist at Atomic Weapons Establishment, UK; Dustin Froula (UC Davis, 2002) - Plasma and Ultrafast Physics Group leader at the Laboratory for Laser Energetics and assistant professor at the Physics and Astronomy Department at the University of Rochester; Tom Tierney (UC Irvine, 2002) - scientist at Los Alamos; Eric Loomis (Arizona State U., 2005) - scientist at Los Alamos; and Eliseo Gamboa (University of Michigan, 2013) - scientist at the Linac Coherent Light Source. The work performed on Trident, besides its scientific impact, has also supported the Inertial

  6. Support structures for optical components in the Laser Demonstration Facility

    International Nuclear Information System (INIS)

    Finucane, R.G.

    1985-01-01

    The laser system in the Laser Demonstration Facility is mounted on an array of 108 support columns. This milestone report describes the design, analyses, testing, fabrication, installation, and performance characteristics of these supports

  7. Laser heated solenoid proof-of-concept experiment (PCX) facility

    International Nuclear Information System (INIS)

    DeHart, T.E.; Zumdieck, J.F.; Hoffman, A.L.; Lowenthal, D.D.; Crawford, E.A.; Parry, B.

    1977-01-01

    The total facility, including laser, magnet, focusing optics, instrumentation and control, its design problems, and its current performance are discussed. Preliminary results from plasma heating experiments are discussed

  8. Annual report to the Laser Facility Committee 1984

    International Nuclear Information System (INIS)

    1984-01-01

    The report describes the work carried out at, or in association with, the Central Laser Facility (CLF), during the year ending March 1984. The CLF programme is divided into three main sections. The first, the glass laser scientific programme, is concerned with applications of the high power Nd glass laser. The second, the ultra violet radiation facility scientific programme, involves the excimer pumped frequency tunable lasers. The last, high power KrF laser development, describes Research and development work on this laser. (U.K.)

  9. High energy laser facilities at Lawrence Livermore National Laboratory

    International Nuclear Information System (INIS)

    Holmes, N.C.

    1981-06-01

    High energy laser facilities at Lawrence Livermore National Laboratory are described, with special emphasis on their use for equation of state investigations using laser-generated shockwaves. Shock wave diagnostics now in use are described. Future Laboratory facilities are also discussed

  10. Annual report to the Laser Facility Committee 1983

    International Nuclear Information System (INIS)

    1983-01-01

    The report covers the work done at, or in association with, the Central Laser Facility during the year ended 31 March 1983. There are eight chapters in all, six corresponding to the six groups of the Glass Laser Scientific Programme and Scheduling Committee, a chapter on gas laser development, and a chapter describing the work and development of the newly established Ultraviolet Radiation Facility. (author)

  11. Science and Engineering Research Council Central Laser Facility

    International Nuclear Information System (INIS)

    1981-03-01

    This report covers the work done at, or in association with, the Central Laser Facility during the year April 1980 to March 1981. In the first chapter the major reconstruction and upgrade of the glass laser, which has been undertaken in order to increase the versatility of the facility, is described. The work of the six groups of the Glass Laser Scientific Progamme and Scheduling Committee is described in further chapters entitled; glass laser development, laser plasma interactions, transport and particle emission studies, ablative acceleration and compression studies, spectroscopy and XUV lasers, and theory and computation. Publications based on the work of the facility which have either appeared or been accepted for publication during the year are listed. (U.K.)

  12. Measurements of laser parameters for the Shiva laser fusion facility

    International Nuclear Information System (INIS)

    Ozarski, R.G.

    1979-01-01

    Large laser systems require numerous laser diagnostics to provide configuration, performance and maintenance data to permit efficient operation. The following diagnostics for a large laser system named Shiva are discussed: (1) description of Shiva laser system, (2) what measurements are desired and or required and why, (3) what measurement techniques and packages are employed and a brief description of the operating principles of the sensors employed, and (4) the laser diagnostic data acquisition and display system

  13. Jupiter: as a planet

    International Nuclear Information System (INIS)

    1975-01-01

    The planet Jupiter, its planetary mass and atmosphere, radio waves emitted from Jupiter, thermal radiation, internal structure of Jupiter, and the possibility of life on Jupiter are discussed. Educational study projects are included

  14. Helios, a 20 TW CO2 laser fusion facility

    International Nuclear Information System (INIS)

    Ladish, J.S.

    1979-01-01

    Since June 1978 the Los Alamos Scientific Laboratory's Helios CO 2 laser fusion facility has been committed to an experimental target program to investigate the feasibility of laser produced inertial confinement fusion. This system is briefly described, and preliminary experimental results are reported

  15. rosuvastatin (JUPITER)

    DEFF Research Database (Denmark)

    Ridker, Paul M; MacFadyen, Jean G; Fonseca, Francisco A H

    2009-01-01

    were calculated across a range of end points, timeframes, and subgroups using data from Justification for the Use of statins in Prevention: an Intervention Trial Evaluating Rosuvastatin (JUPITER), a randomized evaluation of rosuvastatin 20 mg versus placebo conducted among 17 802 apparently healthy men...... infarction, stroke, revascularization, or death, the 5-year NNT within JUPITER was 20 (95% CI, 14 to 34). All subgroups had 5-year NNT values for this end point below 50; as examples, 5-year NNT values were 17 for men and 31 for women, 21 for whites and 19 for nonwhites, 18 for those with body mass index 300...

  16. A Laser Technology Test Facility for Laser Inertial Fusion Energy (LIFE)

    International Nuclear Information System (INIS)

    Bayramian, A.J.; Campbell, R.W.; Ebbers, C.A.; Freitas, B.L.; Latkowski, J.; Molander, W.A.; Sutton, S.B.; Telford, S.; Caird, J.A.

    2010-01-01

    A LIFE laser driver needs to be designed and operated which meets the rigorous requirements of the NIF laser system while operating at high average power, and operate for a lifetime of >30 years. Ignition on NIF will serve to demonstrate laser driver functionality, operation of the Mercury laser system at LLNL demonstrates the ability of a diode-pumped solid-state laser to run at high average power, but the operational lifetime >30 yrs remains to be proven. A Laser Technology test Facility (LTF) has been designed to specifically address this issue. The LTF is a 100-Hz diode-pumped solid-state laser system intended for accelerated testing of the diodes, gain media, optics, frequency converters and final optics, providing system statistics for billion shot class tests. These statistics will be utilized for material and technology development as well as economic and reliability models for LIFE laser drivers.

  17. Soft x-ray laser experiments at Novette Laser Facility

    International Nuclear Information System (INIS)

    Matthews, D.; Hagelstein, P.; Rosen, M.

    1984-01-01

    We discuss the results of and future plans for experiments to study the possibility of producing an x-ray laser. The schemes we have investigated are all pumped by the Novette Laser, operated at short pulse (tau/sub L/ approx. 100 psec) and an incident wavelength of lambda /sub L/ approx. 0.53 μm. We have studied the possibility of lasing at 53.6, 68.0 to 72.0, 119.0, and 153.0 eV, using the inversion methods of resonant photo-excitation, collisional excitation, and three-body recombination

  18. Annual report to the Laser Facility Committee 1978

    International Nuclear Information System (INIS)

    1978-01-01

    The report is in sections, as follows: the development of the facility (glass laser physics and development, performance and reliability of the glass laser, computer control, target fabrication, target area, optical design, gas laser development); single beam interaction studies (optical and magnetic measurements, X-ray and VUV spectroscopy, optical emission studies, particle emission measurements, gas breakdown observations, related theoretical and computational studies); two beam compression studies (vacuum ultra violet and X-ray spectroscopy, optical spectroscopy, particle emission studies, optical and magnetic measurements, theory and computational modelling). (U.K.)

  19. Laser programs facility management plan for environment, safety, and health

    International Nuclear Information System (INIS)

    Cruz, G.E.

    1996-01-01

    The Lawrence Livermore National Laboratory's (LLNL) Laser Programs ES ampersand H policy is established by the Associate Director for Laser Programs. This FMP is one component of that policy. Laser Programs personnel design, construct and operate research and development equipment located in various Livermore and Site 300 buildings. The Programs include a variety of activities, primarily laser research and development, inertial confinement fusion, isotope separation, and an increasing emphasis on materials processing, imaging systems, and signal analysis. This FMP is a formal statement of responsibilities and controls to assure operational activities are conducted without harm to employees, the general public, or the environment. This plan identifies the hazards associated with operating a large research and development facility and is a vehicle to control and mitigate those hazards. Hazards include, but are not limited to: laser beams, hazardous and radioactive materials, criticality, ionizing radiation or x rays, high-voltage electrical equipment, chemicals, and powered machinery

  20. Centralized computer-based controls of the Nova Laser Facility

    International Nuclear Information System (INIS)

    Krammen, J.

    1985-01-01

    This article introduces the overall architecture of the computer-based Nova Laser Control System and describes its basic components. Use of standard hardware and software components ensures that the system, while specialized and distributed throughout the facility, is adaptable. 9 references, 6 figures

  1. Alignment system for SGII-Up laser facility

    Science.gov (United States)

    Gao, Yanqi; Cui, Yong; Li, Hong; Gong, Lei; Lin, Qiang; Liu, Daizhong; Zhu, Baoqiang; Ma, Weixin; Zhu, Jian; Lin, Zunqi

    2018-03-01

    The SGII-Up laser facility in Shanghai is one of the most important high-power laser facilities in China. It is designed to obtain 24 kJ (3ω) of energy with a square pulse of 3 ns using eight laser beams (two bundles). To satisfy the requirements for the safety, efficiency, and quality, an alignment system is developed for this facility. This alignment system can perform automatic alignment of the preamplifier system, main amplifier system, and harmonic conversion system within 30 min before every shot during the routine operation of the facility. In this article, an overview of the alignment system is first presented. Then, its alignment characteristics are discussed, along with the alignment process. Finally, experimental results, including the alignment results and the facility performance, are reported. The results show that the far-field beam pointing alignment accuracy is better than 3 μrad, and the alignment error of the near-field beam centering is no larger than 1 mm. These satisfy the design requirements very well.

  2. Laser fusion experiments, facilities and diagnostics at Lawrence Livermore Laboratory

    International Nuclear Information System (INIS)

    Ahlstrom, H.G.

    1980-02-01

    The progress of the LLL Laser Fusion Program to achieve high gain thermonuclear micro-explosions is discussed. Many experiments have been successfully performed and diagnosed using the large complex, 10-beam, 30 TW Shiva laser system. A 400 kJ design of the 20-beam Nova laser has been completed. The construction of the first phase of this facility has begun. New diagnostic instruments are described which provide one with new and improved resolution, information on laser absorption and scattering, thermal energy flow, suprathermal electrons and their effects, and final fuel conditions. Measurements were made on the absorption and Brillouin scattering for target irradiations at both 1.064 μm and 532 nm. These measurements confirm the expected increased absorption and reduced scattering at the shorter wavelength. Implosion experiments have been performed which have produced final fuel densities over the range of 10x to 100x liquid DT density

  3. Ultraviolet Free Electron Laser Facility preliminary design report

    Energy Technology Data Exchange (ETDEWEB)

    Ben-Zvi, I. (ed.)

    1993-02-01

    This document, the Preliminary Design Report (PDR) for the Brookhaven Ultraviolet Free Electron Laser (UV FEL) facility, describes all the elements of a facility proposed to meet the needs of a research community which requires ultraviolet sources not currently available as laboratory based lasers. Further, for these experiments, the requisite properties are not extant in either the existing second or upcoming third generation synchrotron light sources. This document is the result of our effort at BNL to identify potential users, determine the requirements of their experiments, and to design a facility which can not only satisfy the existing need, but have adequate flexibility for possible future extensions as need dictates and as evolving technology allows. The PDR is comprised of three volumes. In this, the first volume, background for the development of the proposal is given, including descriptions of the UV FEL facility, and representative examples of the science it was designed to perform. Discussion of the limitations and potential directions for growth are also included. A detailed description of the facility design is then provided, which addresses the accelerator, optical, and experimental systems. Information regarding the conventional construction for the facility is contained in an addendum to volume one (IA).

  4. Ultraviolet Free Electron Laser Facility preliminary design report

    International Nuclear Information System (INIS)

    Ben-Zvi, I.

    1993-02-01

    This document, the Preliminary Design Report (PDR) for the Brookhaven Ultraviolet Free Electron Laser (UV FEL) facility, describes all the elements of a facility proposed to meet the needs of a research community which requires ultraviolet sources not currently available as laboratory based lasers. Further, for these experiments, the requisite properties are not extant in either the existing second or upcoming third generation synchrotron light sources. This document is the result of our effort at BNL to identify potential users, determine the requirements of their experiments, and to design a facility which can not only satisfy the existing need, but have adequate flexibility for possible future extensions as need dictates and as evolving technology allows. The PDR is comprised of three volumes. In this, the first volume, background for the development of the proposal is given, including descriptions of the UV FEL facility, and representative examples of the science it was designed to perform. Discussion of the limitations and potential directions for growth are also included. A detailed description of the facility design is then provided, which addresses the accelerator, optical, and experimental systems. Information regarding the conventional construction for the facility is contained in an addendum to volume one (IA)

  5. Laser heated solenoid as a neutron source facility

    International Nuclear Information System (INIS)

    Steinhauer, L.C.; Rose, P.H.

    1975-01-01

    Conceptual designs are presented for a radiation test facility based on a laser heated plasma confined in a straight solenoid. The thin plasma column, a few meters in length and less than a centimeter in diameter, serves as a line source of neutrons. Test samples are located within or just behind the plasma tube, at a radius of 1-2 cm from the axis. The plasma is heated by an axially-directed powerful long-wavelength laser beam. The plasma is confined radially in the intense magnetic field supplied by a pulsed solenoid surrounding the plasma tube. The facility is pulsed many times a second to achieve a high time-averaged neutron flux on the test samples. Based on component performance achievable in the near term (e.g., magnetic field, laser pulse energy) and assuming classical physical processes, it appears that average fluxes of 10 13 to 10 14 neutrons/cm 2 -sec can be achieved in such a device. The most severe technical problems in such a facility appear to be rapid pulsing design and lifetime of some electrical and laser components

  6. Laser performance upgrade for precise ICF experiment in SG-Ⅲ laser facility

    Directory of Open Access Journals (Sweden)

    Wanguo Zheng

    2017-09-01

    Full Text Available The SG-Ⅲ laser facility (SG-Ⅲ is the largest laser driver for inertial confinement fusion (ICF researches in China, which has 48 beamlines and can deliver 180 kJ ultraviolet laser energy in 3 ns. In order to meet the requirements of precise physics experiments, some new functionalities need to be added to SG-Ⅲ and some intrinsic laser performances need upgrade. So at the end of SG-Ⅲ's engineering construction, the 2-year laser performance upgrade project started. This paper will introduce the newly added functionalities and the latest laser performance of SG-Ⅲ. With these function extensions and performance upgrade, SG-Ⅲ is now fully prepared for precise ICF experiments and solidly paves the way towards fusion ignition.

  7. Research of time fiducial and imaging VISAR laser for Shenguang-III laser facility

    Science.gov (United States)

    Zhang, Rui; Wang, Zhenguo; Tian, Xiaocheng; Zhou, Dandan; Zhu, Na; Wang, Jianjun; Li, Mingzhong; Xu, Dangpeng; Dang, Zhao; Hu, Dongxia; Zhu, Qihua; Zheng, Wanguo; Wang, Feng

    2015-10-01

    Time fiducial laser is an important tool for the precise measurement in high energy density physics experiments. The VISAR probe laser is also vital for shock wave diagnostics in ICF experiments. Here, time fiducial laser and VISAR light were generated from one source on SG-III laser facility. After generated from a 1064-nm DFB laser, the laser is modulated by an amplitude modulator driven by 10 GS/s arbitrary waveform generator. Using time division multiplexing technology, the ten-pulse time fiducial laser and the 20-ns VISAR pulse were split by a 1×2 multiplexer and then chosen by two acoustic optic modulators. Using the technique, cost of the system was reduced. The technologies adopted in the system also include pulse polarization stabilization, high precision fiber coupling and energy transmission. The time fiducial laser generated synchronized 12-beam 2ω and 4-beam 3ω laser, providing important reference marks for different detectors and making it convenient for the analysis of diagnostic data. After being amplified by fiber amplifiers and Nd:YAG rod amplifiers, the VISAR laser pulse was frequency-converted to 532-nm pulse by a thermally controlled LBO crystal with final output energy larger than 20 mJ. Finally, the green light was coupled into a 1-mm core diameter, multimode fused silica optical fiber and propagated to the imaging VISAR. The VISAR laser has been used in the VISAR diagnostic physics experiments. Shock wave loading and slowdown processes were measured. Function to measure velocity history of shock wave front movement in different kinds of materials was added to the SG-III laser facility.

  8. Full aperture backscatter signal analysis of laser with hohlraum on Shenguang II laser facility

    International Nuclear Information System (INIS)

    Jiao Chunye; Wang Feng; Liu Shenye; Jiang Xiaohua; Li Sanwei; Liu Yonggang; Yang Jiamin; Gu Yuqiu; Wang Chuanke

    2010-01-01

    Full aperture backscatter system and experimental measurement of hohlraum with 351 nm wavelength laser on Shenguang II laser facility is reported. FABS optical path has been analyzed and the backscattering light completely entered FABS collecting optical path. FABS existed the background light when the eight beams symmetrically acted on hohlraum. The background light is composed of 526.5 nm and 1053 nm wavelength remains while the 1053 nm wavelength changes into 351 nm wavelength, according to records of laser sensitive paper and optical filter. The background light accounts for 15% of FABS energy from experimental measurement result. (authors)

  9. Hydrodynamic instability experiments on the HIPER laser facility at the Institute of Laser Engineering, Osaka University

    International Nuclear Information System (INIS)

    Shigemori, K.; Azechi, H.; Fujioka, S.

    2003-01-01

    We present recent results on the hydrodynamic instability experiments on the HIPER (High Intensity Plasma Experimental Research) laser facility at ILE, Osaka University. We measured the Rayleigh-Taylor growth rate on the HIPER laser. Also measured were all parameters that determine the RT growth rate. We focused on the measurements of the ablation density of laser-irradiated targets, which had not been experimentally measured. The experimental results were compared with calculations with one dimensional simulation coupled with Fokker-Planck equation for electron transport. (author)

  10. The National Ignition Facility 2007 laser performance status

    Energy Technology Data Exchange (ETDEWEB)

    Haynam, C A; Sacks, R A; Wegner, P J; Bowers, M W; Dixit, S N; Erbert, G V; Heestand, G M; Henesian, M A; Hermann, M R; Jancaitis, K S; Manes, K R; Marshall, C D; Mehta, N C; Menapace, J; Nostrand, M C; Orth, C D; Shaw, M J; Sutton, S B; Williams, W H; Widmayer, C C [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA, 94550 (United States)], E-mail: haynam1@llnl.gov (and others)

    2008-05-15

    The National Ignition Facility (NIF) at Lawrence Livermore National Laboratory contains a 192-beam 3.6 MJ neodymium glass laser that is frequency converted to 351nm light. It has been designed to support high energy density science (HEDS), including the demonstration of fusion ignition through Inertial Confinement. To meet this goal, laser design criteria include the ability to generate pulses of up to 1.8-MJ total energy at 351nm, with peak power of 500 TW and precisely-controlled temporal pulse shapes spanning two orders of magnitude. The focal spot fluence distribution of these pulses is conditioned, through a combination of special optics in the 1{omega} (1053 nm) portion of the laser (continuous phase plates), smoothing by spectral dispersion (SSD), and the overlapping of multiple beams with orthogonal polarization (polarization smoothing). In 2006 and 2007, a series of measurements were performed on the NIF laser, at both 1{omega} and 3{omega} (351 nm). When scaled to full 192-beam operation, these results lend confidence to the claim that NIF will meet its laser performance design criteria and that it will be able to simultaneously deliver the temporal pulse shaping, focal spot conditioning, peak power, shot-to-shot reproducibility, and power balance requirements of indirect-drive fusion ignition campaigns. We discuss the plans and status of NIF's commissioning, and the nature and results of these measurement campaigns.

  11. The KAERI laser facility with temporal laser beam shaping for application's user

    International Nuclear Information System (INIS)

    Hong, Sung Ki; Kim, Min Suk; Kim, Young Won; Ko, Kwanghoon; Lim, Changhwan; Seo, Young Seok

    2008-01-01

    The Korea Atomic Energy Research Institute(KAERI)has been developed a high energy Nd:Glass laser facility(KLF)for fast ignition research and high energy physics applications at early 2008. Now, we are researching the temporal laser beam shaping for application's user. The temporal laser beam shaping has been applied to a number of industrial applications. The KLF beam shaping system with fiber based consists of two electro optic modulator with DC bias using a Mach Zehnder interferometer, an arbitrary electronic waveform generator, a continuous wavelength fiber laser source, a fiber based pulse amplification system and DC bias source to generate temporally shaped pulses with a high extinction ratio and high resolution. RF signal waveform user defined by an arbitrary electronic waveform generator is only connected to one electro optic modulator. DC bias source with auto feed back or manual controller is connected both two electro optic modulators. Emitting laser light from a continuous wavelength fiber laser source is modulated to meet a user defined laser pulse with a high extinction ratio by two electro optic modulators. Experimental results are shown in Fig.1. Figure 1(a)shows two programmed waveforms with the signal width 10ns in an arbitrary electronic waveform generator. Figure 1(b)shows output laser pulses with sub mJ energy from amplification results of the KLF beam shaping system which can control the pulse width ranges from 400ps to sub us

  12. In-Source Laser Resonance Ionization at ISOL Facilities

    CERN Document Server

    Marsh, Bruce; Feddosseev, Valentin

    Resonance ionization laser ion source development has been carried out at two radioactive ion beam facilities: ISOLDE (CERN, Switzerland) and the IGISOL facility (Jyvaskyla, Finland). The scope of the Resonance Ionization Laser Ion Source has been extended to 27 elements with the development of new three-step ionization schemes for Sb, Sc, Dy, Y and Au. The efficiencies were determined to be in the range of 2 - 20 %. Additionally, a new two-step ionization scheme has been developed for bismuth in an off-line atomic beam unit. The scheme relies on ionization via a strong and broad auto-ionizing resonance at an energy of 63196.79 cm$^{−1}$. This scheme may offer an improvement over the existing RILIS efficiency and will be more convenient for use during resonance ionization spectroscopy of Bi isotopes. The RILIS can be used as a spectroscopic tool to probe features such as the hyperfine structures and the isotope-shifts of radioisotopes with low production rates. By coupling a laser scanning process that dire...

  13. Full aperture backscatter diagnostic for the NIF laser facility (abstract)

    International Nuclear Information System (INIS)

    Sewall, Noel; Lewis, Izzy; Kirkwood, Robert; Moody, John; Celeste, John

    2001-01-01

    The current schemes for achieving ignition on the National Ignition Facility require efficient coupling of energy from 192 laser beams to the deuterium--tritium fuel capsule. Each laser beam must propagate through a long scalelength plasma region before being converted to x rays (indirect drive) or being absorbed on the capsule (direct drive). Laser-plasma instabilities such as stimulated Brillouin and stimulated Raman scattering (SBS and SRS) will scatter a fraction of the incident laser energy out of the target leading to an overall reduction in the coupling efficiency. It is important to measure the character of this scattered light in order to understand it and to develop methods for reducing it to acceptable levels. We are designing a system called the full aperature backscatter diagnostic with the capability to measure the time-dependent amplitude and spectral content of the light which is backscattered through the incident beam focusing optic. The backscattered light will be collected over about 85% of the full beam aperture and separated into the SBS wavelength band (348--354 nm) and the SRS wavelength band (400--700 nm). Spectrometers coupled to streak cameras will provide time-resolved spectra for both scattered light components. The scattered light amplitude will be measured with fast and slow diodes. The entire system will be routinely calibrated. Analysis of the data will provide important information for reducing scattered power, achieving power balance, and finally achieving ignition

  14. ETL linac facility and free-electron lasers

    International Nuclear Information System (INIS)

    Yamazaki, T.; Noguchi, T.; Mikado, T.; Sugiyama, S.; Yamada, K.; Chiwaki, M.; Ohgaki, H.; Suzuki, R.; Sei, N.

    1993-01-01

    An outline is presented of the recent development on the ETL (Electro-technical Laboratory) electron-linac facility and storage-ring FELs (free-electron lasers). Some modifications including the injection system have been made to the linac. Four storage rings are working very well. The TERAS FEL system has been shut down after the successful oscillation around 590 nm. The new NIJI-IV FEL system has been proven to work well, and the current tunable wavelength range is over 100 nm (488-595 nm). Preparatory experiments on the FEL at shorter wavelength are underway. (author)

  15. Pulsed laser facilities operating from UV to IR at the Gas Laser Lab of the Lebedev Institute

    Science.gov (United States)

    Ionin, Andrei; Kholin, Igor; Vasil'Ev, Boris; Zvorykin, Vladimir

    2003-05-01

    Pulsed laser facilities developed at the Gas Lasers Lab of the Lebedev Physics Institute and their applications for different laser-matter interactions are discussed. The lasers operating from UV to mid-IR spectral region are as follows: e-beam pumped KrF laser (λ= 0.248 μm) with output energy 100 J; e-beam sustained discharge CO2(10.6 μm) and fundamental band CO (5-6 μm) lasers with output energy up to ~1 kJ; overtone CO laser (2.5-4.2 μm) with output energy ~ 50 J and N2O laser (10.9 μm) with output energy of 100 J; optically pumped NH3 laser (11-14 μm). Special attention is paid to an e-beam sustained discharge Ar-Xe laser (1.73 μm ~ 100 J) as a potential candidate for a laser-propulsion facility. The high energy laser facilities are used for interaction of laser radiation with polymer materials, metals, graphite, rocks, etc.

  16. Dual-beam operation of the Astra Gemini laser facility

    International Nuclear Information System (INIS)

    Bryan Parry; Nicola Booth; Oleg Chekhlov; John Collier; Edwin Divall; Klaus Ertel; Peta Foster; Steve Hawkes; Chris Hooker; Victoria Marshall

    2010-01-01

    Complete text of publication follows. Gemini is a Petawatt class Ti:Sapphire laser system at the Rutherford Appleton Laboratory, UK. It was designed as a dual beam laser, with two independently configurable 800 nm beams delivering 15 J to target in 30 fs pulse duration, giving 0.5 PW peak power per beam. It is capable of reaching intensities over 10 22 W/cm 2 . Gemini can achieve a maximum repetition rate of one shot every 20 seconds, allowing it to deliver hundreds of shots per day; a feature which makes it unique among PW lasers. Already this has proved valuable in experiments involving electron acceleration in gas jets. The first Gemini beamline became operational in 2008. Commissioning of the second beam was deferred to allow earlier access to the facility by experimental scientists, and to develop operational experience. In this mode, Gemini has already produced significant results from a number of advanced plasma physics experiments. The second beam of Gemini is now coming online, with the first dual beam experiment starting in June 2010. The flexibility offered by two short pulse, ultra high intensity beams is another aspect that makes this laser system unique. The dual beams enable versatile configurations and illumination geometries, facilitating a wider range of experiments than is possible with only a single beam. Operationally however, it introduces additional factors which must be monitored and controlled in order to achieve experimental success. The beams must be timed with respect to each other with accuracy less than the pulse duration. The beam foci must also be overlapped spatially, and the stability of both these factors maintained over extended periods. We report on the second beam commissioning process, including the latest results on the characteristics, stability and spatio-temporal overlap of the two beams. We present details of amplifier performance, along with measurements of beam quality, focal spot, pulse duration and contrast, to give a

  17. Laser-based characterization and decontamination of contaminated facilities

    International Nuclear Information System (INIS)

    Leong, K.H.; Hunter, B.V.; Grace, J.E.; Pellin, M.J.; Leidich, H.F.; Kugler, T.R.

    1996-01-01

    This study examines the application of laser ablation to the characterization and decontamination of painted and unpainted concrete and metal surfaces that are typical of many facilities within the US Department of Energy complex. The utility of this promising technology is reviewed and the essential requirements for efficient ablation extracted. Recent data obtained on the ablation of painted steel surfaces and concrete are presented. The affects of beam irradiance, ablation speed and efficiency, and characteristics of the aerosol effluent are discussed. Characterization of the ablated components of the surface offers the ability of concurrent determination of the level of contamination. This concept can be applied online where the ablation endpoint can be determined. A conceptual system for the characterization and decontamination of surfaces is proposed

  18. Laser peening applications for next generation of nuclear power facilities

    International Nuclear Information System (INIS)

    Rankin, J.; Truong, C.; Walter, M.; Chen, H.-L.; Hackel, L.

    2008-01-01

    Generation of electricity by nuclear power can assist in achieving goals of reduced greenhouse gas emissions. Increased safety and reliability are necessary attributes of any new nuclear power plants. High pressure, hot water and radiation contribute to operating environments where Stress Corrosion Cracking (SCC) and hydrogen embrittlement can lead to potential component failures. Desire for improved steam conversion efficiency pushes the fatigue stress limits of turbine blades and other rotating equipment. For nuclear reactor facilities now being designed and built and for the next generations of designs, laser peening could be incorporated to provide significant performance life to critical subsystems and components making them less susceptible to fatigue, SCC and radiation induced embrittlement. These types of components include steam turbine blades, hubs and bearings as well as reactor components including cladding material, housings, welded assemblies, fittings, pipes, flanges, vessel penetrations, nuclear waste storage canisters. Laser peening has proven to be a commercial success in aerospace applications and has recently been put into use for gas and steam turbine generators and light water reactors. An expanded role for this technology for the broader nuclear power industry would be a beneficial extension. (author)

  19. [Glass Development Laser (GDL) Facility upgrade.] LLE Review. Quarterly report, October-December 1984. Volume 21

    International Nuclear Information System (INIS)

    Kim, H.

    1984-01-01

    This volume of the LLE Review contains articles on the upgrade of the GDL (Glass Development) system, theoretical advances in the laser fusion effort, improved target fabrication capabilities, x-ray laser research, developments in the picosecond optics research of the LLE advanced technology program, and on the National Laser Users Facility activities for October-December 1984. 56 refs., 31 figs., 3 tabs

  20. Cold Hole Over Jupiter's Pole

    Science.gov (United States)

    2002-01-01

    Observations with two NASA telescopes show that Jupiter has an arctic polar vortex similar to a vortex over Earth's Antarctica that enables depletion of Earth's stratospheric ozone.These composite images of Jupiter's north polar region from the Hubble Space Telescope (right) and the Infrared Telescope Facility (left) show a quasi-hexagonal shape that extends vertically from the stratosphere down into the top of the troposphere. A sharp temperature drop, compared to surrounding air masses, creates an eastward wind that tends to keep the polar atmosphere, including the stratospheric haze, isolated from the rest of the atmosphere.The linear striations in the composite projections are artifacts of the image processing. The area closest to the pole has been omitted because it was too close to the edge of the planet in the original images to represent the planet reliably.The composite on the right combines images from the Wide Field and Planetary Camera 2 of the Hubble Space Telescope taken at a wavelength of 890 nanometers, which shows stratospheric haze particles.The sharp boundary and wave-like structure of the haze layer suggest a polar vortex and a similarity to Earth's stratospheric polar clouds. Images of Jupiter's thermal radiation clinch that identification. The composite on the left, for example, is made from images taken with Jet Propulsion Laboratory's Mid-Infrared Large-Well Imager at NASA's Infrared Telescope Facility at a wavelength of 17 microns. It shows polar air mass that is 5 to 6 degrees Celsius (9 to 10 degrees Fahrenheit) colder than its surroundings, with the same border as the stratospheric haze. Similar observations at other infrared wavelengths show the cold air mass extends at least as high as the middle stratosphere down to the top of the troposphere.These images were taken Aug. 11 through Aug. 13, 1999, near a time when Jupiter's north pole was most visible from Earth. Other Infrared Telescope Facility images at frequencies sensitive to the

  1. Plasma interpenetration study on the Omega laser facility

    Science.gov (United States)

    Le Pape, Sebastien; Divol, Laurent; Ross, Steven; Wilks, Scott; Amendt, Peter; Berzak Hopkins, Laura; Huser, Gael; Moody, John; MacKinnon, Andy; Meezan, Nathan

    2016-10-01

    The Near Vacuum Campaign on the National Ignition Facility has sparked an interest on the nature of the gold/carbon interface at high velocity, high electron temperature, low-electron density. Indeed radiation-hydrodynamic simulations have been unable to accurately reproduce the experimental shape of the hot spot resulting from implosion driven in Near Vacuum Holhraum. The experimental data are suggesting that the inner beams are freely propagating to the waist of the hohlraum when simulations predict that a density ridge at the gold/carbon interface blocks the inner beams. The discrepancy between experimental data and simulation might be explained by the fluid description of the plasma interface in a rad-hydro code which is probably not valid in when two plasma at high velocity, high temperature are meeting. To test our assumption, we went to the Omega laser facility to study gold/carbon interface in the relevant regime. Time resolved images of the self-emission as well as Thomson scattering data will be presented. For the first time, a transition from a multifluid to a single fluid is observed as plasmas are interacting. This work was performed under the auspices of the U.S. Department of Energy by the Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344.

  2. All Solid State Optical Pulse Shaper for the OMEGA Laser Fusion Facility

    International Nuclear Information System (INIS)

    Okishev, A.V.; Skeldon, M.D.; Keck, R.L.; Seka, W.

    2000-01-01

    OAK-B135 All Solid State Optical Pulse Shaper for the OMEGA Laser Fusion Facility. The authors have developed an all-solid-state, compact, computer-controlled, flexible optical pulse shaper for the OMEGA laser facility. This pulse shaper produces high bandwidth, temporally shaped laser pulses that meet OMEGA requirements. The design is a significant simplification over existing technology with improved performance capabilities

  3. Voyage to Jupiter.

    Science.gov (United States)

    Morrison, David; Samz, Jane

    This publication illustrates the features of Jupiter and its family of satellites pictured by the Pioneer and the Voyager missions. Chapters included are: (1) "The Jovian System" (describing the history of astronomy); (2) "Pioneers to Jupiter" (outlining the Pioneer Mission); (3) "The Voyager Mission"; (4)…

  4. Radiological safety design considerations for a laser-fusion facility

    International Nuclear Information System (INIS)

    Singh, M.S.

    1977-01-01

    Detailed neutronics and photonics calculations have been performed for analyzing prompt and residual radiations and required shielding associated with the design of a laser-fusion facility with a nominal yield of 10 19 neutrons per D--T burn pulse. The standard Livermore Monte Carlo codes and nuclear data cross section libraries were used in calculations. The Bateman equation was used to calculate the accumulation and decay of radionuclide chain products. A number of activation sensitivity experiments were conducted and the results were found to be in very good agreement within 10 percent of those calculated. It has been found that neutron yields of 2 x 10 19 per day can be conducted continuously if the reactor chamber is Kevlar-epoxy or silica, the primary shield is 0.60-m of water immediately on the chamber, and the building concrete is 1.80 m thick. These precautions result in dose equivalents below the primary protection limits inside the target room after a few hours of cool-down per each 10 19 pulse, 10 percent of the primary protection limits immediately outside the target room, and 1 percent of the natural background level at the nearest site boundary

  5. Multiwavelength interferometry system for the Orion laser facility.

    Science.gov (United States)

    Patankar, S; Gumbrell, E T; Robinson, T S; Lowe, H F; Giltrap, S; Price, C J; Stuart, N H; Kemshall, P; Fyrth, J; Luis, J; Skidmore, J W; Smith, R A

    2015-12-20

    We report on the design and testing of a multiwavelength interferometry system for the Orion laser facility based upon the use of self-path matching Wollaston prisms. The use of UV corrected achromatic optics allows for both easy alignment with an eye-safe light source and small (∼ millimeter) offsets to the focal lengths between different operational wavelengths. Interferograms are demonstrated at wavelengths corresponding to first, second, and fourth harmonics of a 1054 nm Nd:glass probe beam. Example data confirms the broadband achromatic capability of the imaging system with operation from the UV (263 nm) to visible (527 nm) and demonstrates that features as small as 5 μm can be resolved for object sizes of 15 by 10 mm. Results are also shown for an off-harmonic wavelength that will underpin a future capability. The primary optics package is accommodated inside the footprint of a ten-inch manipulator to allow the system to be deployed from a multitude of viewing angles inside the 4 m diameter Orion target chamber.

  6. LLE 1998 annual report, October 1997 -September 1998. Inertial fusion program and National Laser Users' Facility program

    International Nuclear Information System (INIS)

    1999-01-01

    This report summarizes research at the Laboratory for Laser Energetics (LLE), the operation of the National Laser Users' Facility (NLUF), and programs involving the education of high school, undergraduate, and graduate students for FY98. Research summaries cover: progress in laser fusion; diagnostic development; laser and optical technology; and advanced technology for laser targets

  7. LLE 1998 annual report, October 1997--September 1998. Inertial fusion program and National Laser Users` Facility program

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-01-01

    This report summarizes research at the Laboratory for Laser Energetics (LLE), the operation of the National Laser Users` Facility (NLUF), and programs involving the education of high school, undergraduate, and graduate students for FY98. Research summaries cover: progress in laser fusion; diagnostic development; laser and optical technology; and advanced technology for laser targets.

  8. Development of construction specifications to attain clean rooms for the NOVA laser facility

    International Nuclear Information System (INIS)

    Benedix, C.P.

    1980-02-01

    This paper describes the process of defining technical requirements for a major Department of Energy Research and Development Facility and subsequent development of construction specifications for the clean spaces in that facility. The organizational interactions between technical client, Engineering and Construction elements are described. The importance of an interdisciplinary team approach is stressed. A brief description of the SHIVA Laser and NOVA Laser Clean Spaces is included to indicate the scope of the facility undertaking. A number of potential pitfalls are discussed that may be helpful to designers of new facilities

  9. National Ignition Facility system design requirements Laser System SDR002

    International Nuclear Information System (INIS)

    Larson, D.W.; Bowers, J.M.; Bliss, E.S.; Karpenko, V.P.; English, E.

    1996-01-01

    This System Design Requirement document establishes the performance, design, development, and test requirements for the NIP Laser System. The Laser System generates and delivers high-power optical pulses to the target chamber, and is composed of all optical puke creating and transport elements from Puke Generation through Final Optics as well as the special equipment that supports, energizes and controls them. The Laser System consists of the following WBS elements: 1.3 Laser System 1.4 Beam Transport System 1.6 Optical Components 1.7 Laser Control 1.8.7 Final Optics

  10. Jupiter Environment Tool

    Science.gov (United States)

    Sturm, Erick J.; Monahue, Kenneth M.; Biehl, James P.; Kokorowski, Michael; Ngalande, Cedrick,; Boedeker, Jordan

    2012-01-01

    The Jupiter Environment Tool (JET) is a custom UI plug-in for STK that provides an interface to Jupiter environment models for visualization and analysis. Users can visualize the different magnetic field models of Jupiter through various rendering methods, which are fully integrated within STK s 3D Window. This allows users to take snapshots and make animations of their scenarios with magnetic field visualizations. Analytical data can be accessed in the form of custom vectors. Given these custom vectors, users have access to magnetic field data in custom reports, graphs, access constraints, coverage analysis, and anywhere else vectors are used within STK.

  11. Radio emission from Jupiter

    International Nuclear Information System (INIS)

    Velusamy, T.

    1976-01-01

    The basic features of the different radio emissions from the planet Jupiter are reviewed. These radio emissions characterized into three types as thermal, decimetric and decametric, are discussed. The coherent emission mechanism for the origin of the decametric bursts and the acceleration mechanism for relativistic electrons in the decimetric radiation have not been properly understood. The emissions are much related to the magnetic field of Jupiter. The system III rotation period for Jupiter has been calculated as 092 55 m 29.74 S. (A.K.)

  12. Reliability analysis of minimum energy on target for laser facilities with more beam lines

    International Nuclear Information System (INIS)

    Chen Guangyu

    2008-01-01

    Shot reliability performance measures of laser facilities with more beam lines pertain to three categories: minimum-energy-on-target, power balance, and shot diagnostics. Accounting for symmetry of NIF beam line design and similarity of subset reliability in a same partition, a fault tree of meeting minimum-energy-on-target for the large laser facility shot of type K and a simplified method are presented, which are used to analyze hypothetic reliability of partition subsets in order to get trends of influences increasing number of beam lines and diverse shot types of large laser facilities on their shot reliability. Finally, it finds that improving component reliability is more crucial for laser facilities with more beam lines in comparison with those with beam lines and functional diversity from design flexibility is greatly helpful for improving shot reliability. (authors)

  13. Commissioning of the collinear laser spectroscopy system in the BECOLA facility at NSCL

    International Nuclear Information System (INIS)

    Minamisono, K.; Mantica, P.F.; Klose, A.; Vinnikova, S.; Schneider, A.; Johnson, B.; Barquest, B.R.

    2013-01-01

    A collinear laser-spectroscopy (CLS) system in the BEam COoler and LAser spectroscopy (BECOLA) facility was constructed at National Superconducting Cyclotron Laboratory (NSCL) at Michigan State University. The BECOLA facility will be used to advance measurements of nuclear properties of low-energy rare isotope beams generated via in-flight reactions and subsequent beam thermalization in a buffer gas. The CLS studies at BECOLA will complement laser spectroscopy studies of charge radii and nuclear moments mostly obtained so far at Isotope SeOn Line (ISOL) facilities. Commissioning tests of the CLS system have been performed using an offline ion source to produce stable-ion beams. The tests set the ground work for experiments at the future Facility for Rare Isotope Beams (FRIB) as well as experiments at the current Coupled Cyclotron Facility at NSCL

  14. Pulse generation and preamplification for long pulse beamlines of Orion laser facility.

    Science.gov (United States)

    Hillier, David I; Winter, David N; Hopps, Nicholas W

    2010-06-01

    We describe the pulse generation, shaping, and preamplification system for the nanosecond beamlines of the Orion laser facility. The system generates shaped laser pulses of up to approximately 1 J of 100 ps-5 ns duration with a programmable temporal profile. The laser has a 30th-power supergaussian spatial profile and is diffraction limited. The system is capable of imposing 2D smoothing by spectral dispersion upon the beam, which will produce a nonuniformity of 10% rms at the target.

  15. Jupiter and planet Earth

    International Nuclear Information System (INIS)

    1975-01-01

    The evolution of Jupiter and Earth are discussed along with their atmospheres, the radiation belts around both planets, natural satellites, the evolution of life, and the Pioneer 10. Educational study projects are also included

  16. Seismology of the Jupiter

    International Nuclear Information System (INIS)

    Vorontsov, S.V.; Gudkova, T.V.; Zharkov, V.N.

    1989-01-01

    The structure and diagnostic properties of the spectrum of free oscillations of the models of the Jupiter are discussed. The spectrum is very sensitive to the properties of the inner core and density discontinuities in the interior of the planet. It is shown that in seismology of the Jupiter unlike to solar seismology, it is not possible to use the asymptotic theory for investigation of the high-frequency part of the acoustic spectrum

  17. Engineering design of the Nova Laser Facility for inertial-confinement fusion

    International Nuclear Information System (INIS)

    Simmons, W.W.; Godwin, R.O.; Hurley, C.A.

    1982-01-01

    The design of the Nova Laser Facility for inertial confinement fusion experiments at Lawrence Livermore National Laboratory is presented from an engineering perspective. Emphasis is placed upon design-to-performance requirements as they impact the various subsystems that comprise this complex experimental facility

  18. The Nike KrF laser facility: Performance and initial target experiments

    Science.gov (United States)

    Obenschain, S. P.; Bodner, S. E.; Colombant, D.; Gerber, K.; Lehmberg, R. H.; McLean, E. A.; Mostovych, A. N.; Pronko, M. S.; Pawley, C. J.; Schmitt, A. J.; Sethian, J. D.; Serlin, V.; Stamper, J. A.; Sullivan, C. A.; Dahlburg, J. P.; Gardner, J. H.; Chan, Y.; Deniz, A. V.; Hardgrove, J.; Lehecka, T.; Klapisch, M.

    1996-05-01

    Krypton-fluoride (KrF) lasers are of interest to laser fusion because they have both the large bandwidth capability (≳THz) desired for rapid beam smoothing and the short laser wavelength (1/4 μm) needed for good laser-target coupling. Nike is a recently completed 56-beam KrF laser and target facility at the Naval Research Laboratory. Because of its bandwidth of 1 THz FWHM (full width at half-maximum), Nike produces more uniform focal distributions than any other high-energy ultraviolet laser. Nike was designed to study the hydrodynamic instability of ablatively accelerated planar targets. First results show that Nike has spatially uniform ablation pressures (Δp/pNike laser in producing uniform illumination, and its performance in correspondingly uniform acceleration of targets.

  19. Measurements required to construct the Shiva laser fusion facility

    International Nuclear Information System (INIS)

    Rien, H.J.

    1979-01-01

    The construction of a large laser fusion system involves all aspects of metrology. This report covers some of the technical problems encountered and how the science of weights and measures was used to identify and solve them. The techniques used range from very simple and inexpensive handheld equipment to sophisticated scientific apparatus costing thousands of dollars. The success of the 30 trillion watt Shiva laser system would not have been possible without reliable and accurate measurements

  20. 'Defense-in-Depth' Laser Safety and the National Ignition Facility

    International Nuclear Information System (INIS)

    King, J.J.

    2010-01-01

    The National Ignition Facility (NIF) is the largest and most energetic laser in the world contained in a complex the size of a football stadium. From the initial laser pulse, provided by telecommunication style infrared nanoJoule pulsed lasers, to the final 192 laser beams (1.8 Mega Joules total energy in the ultraviolet) converging on a target the size of a pencil eraser, laser safety is of paramount concern. In addition to this, there are numerous high-powered (Class 3B and 4) diagnostic lasers in use that can potentially send their laser radiation travelling throughout the facility. With individual beam paths of up to 1500 meters and a workforce of more than one thousand, the potential for exposure is significant. Simple laser safety practices utilized in typical laser labs just don't apply. To mitigate these hazards, NIF incorporates a multi layered approach to laser safety or 'Defense in Depth.' Most typical high-powered laser operations are contained and controlled within a single room using relatively simplistic controls to protect both the worker and the public. Laser workers are trained, use a standard operating procedure, and are required to wear Personal Protective Equipment (PPE) such as Laser Protective Eyewear (LPE) if the system is not fully enclosed. Non-workers are protected by means of posting the room with a warning sign and a flashing light. In the best of cases, a Safety Interlock System (SIS) will be employed which will 'safe' the laser in the case of unauthorized access. This type of laser operation is relatively easy to employ and manage. As the operation becomes more complex, higher levels of control are required to ensure personnel safety. Examples requiring enhanced controls are outdoor and multi-room laser operations. At the NIF there are 192 beam lines and numerous other Class 4 diagnostic lasers that can potentially deliver their hazardous energy to locations far from the laser source. This presents a serious and complex potential

  1. Status of JUPITER Program

    International Nuclear Information System (INIS)

    Inoue, Teruji; Shirakata, Keisho; Kinjo, Katsuya; Ikegami, Tetsuo; Yamamoto, Masaaki.

    1981-01-01

    The criticality experiment program for large fast reactors by the joint research of the Power Reactor and Nuclear Fuel Development Corp. and the Department of Energy, USA, is called JUPITER Program. The experiment was carried out from April, 1978, to August, 1979, using the zero power plutonium reactor in ANL, and the analysis is carried out independently in Japan and USA. The experiment this time was carried out with two assemblies, ZPPR-9 and 10, and it is called JUPITER Phase 1. Two engineers were dispatched from PNC to ANL-Idaho for two years from August, 1978, and they took part in the planning, execution and analysis of the experiment to obtain the informations. The FBR Core Design Committee was installed in PNC, and has studied the core plan, experimental plan and the course of analysis. The JUPITER Phase 1 is the bench mark experiment to obtain the informations required at the initial stage of the nuclear design of demonstration reactor cores. The rating, object and progress of the JUPITER Phase 1, the outline of experiment, and the present state of the analysis of experiment are described. Hereafter, the general evaluation of the JUPITER Phase 1 will be carried out to clarify the problems when the present method of analysis is applied to large homogeneous reactors. Also the bench mark experiment on large heterogeneous reactors will be planned. (Kako, I.)

  2. High-energy, twelve-channel laser facility (DEFIN) for spherical irradiation of thermonuclear targets

    International Nuclear Information System (INIS)

    Basov, N.G.; Danilov, A.E.; Krokhin, O.N.; Kruglov, B.V.; Mikhailov, Yu.A.; Sklizkov, G.V.; Fedotov, S.I.; Fedorov, A.N.

    This paper describes a high-energy, twelve-channel laser facility (DELFIN) intended for high-temperature heating of thermonuclear targets with spherical symmetry. The facility includes a neodymium-glass laser with the ultimate radiation energy of 10 kJ, a pulse length of approximately 10 -10 to 10 -9 s, beam divergence of 5 x 10 -4 radians, a vacuum chamber in which laser radiation interacts with the plasma, and a system of diagnostic instrumentation for the observation of laser beam and plasma parameters. Described are the optical scheme and construction details of the laser facility. Presented is an analysis of focusing schemes for target irradiation and described is the focusing scheme of the DELFIN facility, which is capable of attaining a high degree of spherical symmetry in irradiating targets with maximum beam intensity at the target surface of approximately 10 15 W/cm 2 . This paper examines the most important problems connected with the physical investigations of thermonuclear laser plasma and the basic diagnostic problems involved in their solution

  3. High-energy Nd:glass laser facility for collisionless laboratory astrophysics

    International Nuclear Information System (INIS)

    Niemann, C; Constantin, C G; Schaeffer, D B; Lucky, Z; Gekelman, W; Everson, E T; Tauschwitz, A; Weiland, T; Winske, D

    2012-01-01

    A kilojoule-class laser (Raptor) has recently been activated at the Phoenix-laser-facility at the University of California Los Angeles (UCLA) for an experimental program on laboratory astrophysics in conjunction with the Large Plasma Device (LAPD). The unique combination of a high-energy laser system and the 18 meter long, highly-magnetized but current-free plasma will support a new class of plasma physics experiments, including the first laboratory simulations of quasi-parallel collisionless shocks, experiments on magnetic reconnection, or advanced laser-based diagnostics of basic plasmas. Here we present the parameter space accessible with this new instrument, results from a laser-driven magnetic piston experiment at reduced power, and a detailed description of the laser system and its performance.

  4. Sharpening Up Jupiter

    Science.gov (United States)

    2008-10-01

    New image-correction technique delivers sharpest whole-planet ground-based picture ever A record two-hour observation of Jupiter using a superior technique to remove atmospheric blur has produced the sharpest whole-planet picture ever taken from the ground. The series of 265 snapshots obtained with the Multi-Conjugate Adaptive Optics Demonstrator (MAD) prototype instrument mounted on ESO's Very Large Telescope (VLT) reveal changes in Jupiter's smog-like haze, probably in response to a planet-wide upheaval more than a year ago. Sharpening Up Jupiter ESO PR Photo 33/08 Sharpening Up Jupiter Being able to correct wide field images for atmospheric distortions has been the dream of scientists and engineers for decades. The new images of Jupiter prove the value of the advanced technology used by MAD, which uses two or more guide stars instead of one as references to remove the blur caused by atmospheric turbulence over a field of view thirty times larger than existing techniques [1]. "This type of adaptive optics has a big advantage for looking at large objects, such as planets, star clusters or nebulae," says lead researcher Franck Marchis, from UC Berkeley and the SETI Institute in Mountain View, California, USA. "While regular adaptive optics provides excellent correction in a small field of view, MAD provides good correction over a larger area of sky. And in fact, were it not for MAD, we would not have been able to perform these amazing observations." MAD allowed the researchers to observe Jupiter for almost two hours on 16 and 17 August 2008, a record duration, according to the observing team. Conventional adaptive optics systems using a single Jupiter moon as reference cannot monitor Jupiter for so long because the moon moves too far from the planet. The Hubble Space Telescope cannot observe Jupiter continuously for more than about 50 minutes, because its view is regularly blocked by the Earth during Hubble's 96-minute orbit. Using MAD, ESO astronomer Paola Amico

  5. Obtaining laser safety at a synchrotron radiation user facility: The Advanced Light Source

    International Nuclear Information System (INIS)

    Barat, K.

    1996-01-01

    The Advanced Light Source (ALS) is a US national facility for scientific research and development located at the Lawrence Berkeley National Laboratory in California. The ALS delivers the world's brightest synchrotron radiation in the far ultraviolet and soft X-ray regions of the spectrum. As a user facility it is available to researchers from industry, academia, and laboratories from around the world. Subsequently, a wide range of safety concerns become involved. This article relates not only to synchrotron facilities but to any user facility. A growing number of US centers are attracting organizations and individuals to use the equipment on site, for a fee. This includes synchrotron radiation and/or free electron facilities, specialty research centers, and laser job shops. Personnel coming to such a facility bring with them a broad spectrum of safety cultures. Upon entering, the guests must accommodate to the host facility safety procedures. This article describes a successful method to deal with that responsibility

  6. A laser particulate spectrometer for a space simulation facility

    Science.gov (United States)

    Schmitt, R. J.; Boyd, B. A.; Linford, R. M. F.; Richmond, R. G.

    1975-01-01

    A laser particulate spectrometer (LPS) system was developed to measure the size and speed distributions of particulate contaminants. Detection of the particulates is achieved by means of light scattering and extinction effects using a single laser beam to cover a size range of 0.8 to 275 microns diameter and a speed range of 0.2 to 20 meters/second. The LPS system was designed to operate in the high-vacuum environment of a space simulation chamber with cold shroud temperatures ranging from 77 to 300 K.

  7. Overview of laser systems for the Orion facility at the AWE.

    Science.gov (United States)

    Hopps, Nicholas; Danson, Colin; Duffield, Stuart; Egan, David; Elsmere, Stephen; Girling, Mark; Harvey, Ewan; Hillier, David; Norman, Michael; Parker, Stefan; Treadwell, Paul; Winter, David; Bett, Thomas

    2013-05-20

    The commissioning of the Orion laser facility at the Atomic Weapons Establishment (AWE) in the UK has recently been completed. The facility is a twelve beam Nd:glass-based system for studying high energy density physics. It consists of ten frequency-tripled beam-lines operating with nanosecond pulses, synchronized with two beam-lines with subpicosecond pulses, each capable of delivering 500 J to target. One of the short pulse beams has the option of frequency doubling, at reduced aperture, to yield up to 100 J at 527 nm in a subpicosecond pulse with high temporal contrast. An extensive array of target diagnostics is provided. This article describes the laser design and commissioning and presents key performance data of the facility's laser systems.

  8. Operator-machine interface at a large laser-fusion facility

    International Nuclear Information System (INIS)

    Sutton, J.G.; Howell, J.A.

    1982-01-01

    The operator-machine interface at the Antares Laser Facility provides the operator with a means of controlling the laser system and obtaining operational and performance information. The goal of this interface is to provide an operator with access to the control system in a comfortable way, and to facilitate meeting operational requirements. We describe the philosophy and requirements behind this interface, the hardware used in building it, and the software environment

  9. The first picosecond terawatt CO2 laser at the Brookhaven Accelerator Test Facility

    International Nuclear Information System (INIS)

    Pogorelsky, I.V.; Ben-Zvi, I.; Babzien, M.

    1998-02-01

    The first terawatt picosecond CO 2 laser will be brought to operation at the Brookhaven Accelerator Test Facility in 1998. System consists of a single-mode TEA oscillator, picosecond semiconductor optical switch, multi-atmosphere. The authors report on design, simulation, and performance tests of the 10 atm final amplifier that allows for direct multi-joule energy extraction in a picosecond laser pulse

  10. Development of a free-electron laser user facility for the extreme ultraviolet

    International Nuclear Information System (INIS)

    Newnam, B.E.

    1987-01-01

    A free-electron laser user facility for scientific experimentation in the extreme ultraviolet is being developed at Los Alamos. A series of laser oscillators and amplifiers, driven by a single, rf linear accelerator, will generate broadly tunable, picosecond-pulse, coherent radiation from 1 nm to 400 nm. The design and output parameters of this facility are described, comparison with synchrotron radiation sources is made, and recent progress in developing the three primary components (electron beam, undulator, and resonator mirrors) is reviewed, and various categories of scientific applications are indicated

  11. Shuttle Laser Technology Experiment Facility (LTEF)-to-airplane lasercom experiment: Airplane considerations

    Science.gov (United States)

    Kalil, Ford

    1990-01-01

    NASA is considering the use of various airplanes for a Shuttle Laser Technology Experiment Facility (LTEF)-to-Airplane laser communications experiment. As supporting documentation, pertinent technical details are included about the potential use of airplanes located at Ames Research Center and Wallops Flight Facility. The effects and application of orbital mechanics considerations are also presented, including slant range, azimuth, elevation, and time. The pros and cons of an airplane equipped with a side port with a bubble window versus a top port with a dome are discussed.

  12. Operational characteristics of the OMEGA short-wavelength laser fusion facility

    International Nuclear Information System (INIS)

    Soures, J.M.; Hutchison, R.; Jacobs, S.; McCrory, R.L.; Peck, R.; Seka, W.

    1984-01-01

    Twelve beams of the OMEGA, 24 beam direct-drive laser facility have been converted to 351-nm wavelength operation. The performance characteristics of this short-wavelength facility will be discussed. Beam-to-beam energy balance of +-2.3% and on-target energy, at 351-nm, in excess of 70 J per beam have been demonstrated. Long-term performance (>600 shots) of the system has been optimized by appropriate choice of index matching liquid, optical materials and coatings. The application of this system in direct-drive laser fusion experiments will be discussed

  13. Jupiter's Big Bang.

    Science.gov (United States)

    McDonald, Kim A.

    1994-01-01

    Collision of a comet with Jupiter beginning July 16, 1994 will be observed by astronomers worldwide, with computerized information relayed to a center at the University of Maryland, financed by the National Aeronautics and Space Administration and National Science Foundation. Geologists and paleontologists also hope to learn more about earth's…

  14. Vendor-based laser damage metrology equipment supporting the National Ignition Facility

    International Nuclear Information System (INIS)

    Campbell, J. H; Jennings, R. T.; Kimmons, J. F.; Kozlowski, M. R.; Mouser, R. P.; Schwatz, S.; Stolz, C. J.; Weinzapfel, C. L.

    1998-01-01

    A sizable laser damage metrology effort is required as part of optics production and installation for the 192 beam National Ignition Facility (NIF) laser. The large quantities, high damage thresholds, and large apertures of polished and coated optics necessitates vendor-based metrology equipment to assure component quality during production. This equipment must be optimized to provide the required information as rapidly as possible with limited operator experience. The damage metrology tools include: (1) platinum inclusion damage test systems for laser amplifier slabs, (2) laser conditioning stations for mirrors and polarizers, and (3) mapping and damage testing stations for UV transmissive optics. Each system includes a commercial Nd:YAG laser, a translation stage for the optics, and diagnostics to evaluate damage. The scanning parameters, optical layout, and diagnostics vary with the test fluences required and the damage morphologies expected. This paper describes the technical objectives and milestones involved in fulfilling these metrology requirements

  15. First laser-plasma interaction and hohlraum experiments on the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Dewald, E L; Glenzer, S H; Landen, O L; Suter, L J; Jones, O S; Schein, J; Froula, D; Divol, L; Campbell, K; Schneider, M S; Holder, J; McDonald, J W; Niemann, C; Mackinnon, A J; Hammel, B A [Lawrence Livermore National Laboratory, PO Box 808, Livermore, CA 94550 (United States)

    2005-12-15

    Recently the first laser-plasma interaction and hohlraum experiments have been performed at the National Ignition Facility (NIF) in support of indirect drive inertial confinement fusion designs. The effects of laser beam smoothing by spectral dispersion and polarization smoothing on the intense (2 x 10{sup 15} W cm{sup -2}) beam propagation in gas-filled tubes has been studied at up to 7 mm plasma scales as found in indirect drive gas filled ignition hohlraum designs. These experiments have shown the expected full propagation without filamentation and beam break up when using full laser smoothing. In addition, vacuum hohlraums have been irradiated with laser powers up to 6 TW, 1-9 ns pulse lengths and energies up to 17 kJ to activate several diagnostics, to study the hohlraum radiation temperature scaling with the laser power and hohlraum size, and to make contact with hohlraum experiments performed at the Nova and Omega laser facilities. Subsequently, novel long laser pulse hohlraum experiments have tested models of hohlraum plasma filling and long pulse hohlraum radiation production. The validity of the plasma filling assessment using in analytical models and radiation hydrodynamics calculations with the code LASNEX has been proven in these studies. The comparison of these results with modelling will be discussed.

  16. The laser Megajoule facility personnel security and safety interlocks

    International Nuclear Information System (INIS)

    Chapuis, J.C.; Arnoul, J.P.; Hurst, A.; Manson, M.

    2012-01-01

    The LMJ (Laser Megajoule) is designed to deliver about 1.4 MJ of 0.35 μm light to targets for high energy density physics experiments. Such an installation entails specific hazards related to the presence of intense laser beams, and high voltage power laser amplifiers. Furthermore, the thermonuclear fusion reactions induced by the experiment also produce different radiations and neutrons burst, and also activate various materials in the chamber environment. All these hazards could be lethal. The SSP (Personnel Safety System) was designed to prevent accidents and protect personnel working in the LMJ. To satisfy at the lowest cost the requirements of safety regulations and those of the operation management, the choice was made to implement a functional architecture built around two independent technological barriers when required by the risk level. Each technical barrier is composed of two subsets, one dedicated to hazard sources management, and the other one dedicated to worker presence management. The two completely independent barriers, even at the sensor or actuator level, are designed with different technologies adapted to the required Safety Integrity Level. The combination of these 2 barriers is equivalent to a unique barrier with a rate of dangerous failure of about 10 -6 per year

  17. Producing National Ignition Facility (NIF)-quality beams on the Nova and Beamlet lasers

    International Nuclear Information System (INIS)

    Widmayer, C.C.; Auerbach, J.M.; Ehrlich, R.B.

    1996-08-01

    The Nova and Beamlet lasers were used to simulate the beam propagation conditions that will be encountered during the National Ignition Facility operation. Perturbation theory predicts that there is a 5mm scale length propagation mode that experiences large nonlinear power growth. This mode was observed in the tests. Further tests have confirmed that this mode can be suppressed with improved spatial filtering

  18. Soft x-ray power diagnostic improvements at the Omega Laser Facility

    International Nuclear Information System (INIS)

    Sorce, C.; Schein, J.; Weber, F.; Widmann, K.; Campbell, K.; Dewald, E.; Turner, R.; Landen, O.; Jacoby, K.; Torres, P.; Pellinen, D.

    2006-01-01

    Soft x-ray power diagnostics are essential for evaluating high temperature laser plasma experiments. The Dante soft x-ray spectrometer, a core diagnostic for radiation flux and temperature measurements of Hohlraums, installed on the Omega Laser Facility at the Laboratory for Laser Energetics has recently undergone a series of upgrades. Work performed at Brookhaven National Laboratory for the development of the National Ignition Facility (NIF) Dante spectrometer enables the Omega Dante to offer a total of 18 absolutely calibrated channels in the energy range from 50 eV to 20 keV. This feature provides Dante with the capability to measure higher, NIF relevant, radiation temperatures with increased accuracy including a differentiation of higher energy radiation such as the Au M and L bands. Diagnostic monitoring using experimental data from directly driven Au spherical shots is discussed

  19. Rugby and elliptical-shaped hohlraums experiments on the OMEGA laser facility

    Science.gov (United States)

    Tassin, Veronique; Monteil, Marie-Christine; Depierreux, Sylvie; Masson-Laborde, Paul-Edouard; Philippe, Franck; Seytor, Patricia; Fremerye, Pascale; Villette, Bruno

    2017-10-01

    We are pursuing on the OMEGA laser facility indirect drive implosions experiments in gas-filled rugby-shaped hohlraums in preparation for implosion plateforms on LMJ. The question of the precise wall shape of rugby hohlraum has been addressed as part of future megajoule-scale ignition designs. Calculations show that elliptical-shaped holhraum is more efficient than spherical-shaped hohlraum. There is less wall hydrodynamics and less absorption for the inner cone, provided a better control of time-dependent symmetry swings. In this context, we have conducted a series of experiments on the OMEGA laser facility. The goal of these experiments was therefore to characterize energetics with a complete set of laser-plasma interaction measurements and capsule implosion in gas-filled elliptical-shaped hohlraum with comparison with spherical-shaped hohlraum. Experiments results are discussed and compared to FCI2 radiation hydrodynamics simulations.

  20. Use of lasers at the Los Alamos Hot-Cell Facility

    International Nuclear Information System (INIS)

    Lazarus, M.E.

    1983-01-01

    An optical profilometer that uses a Techmet LaserMike scanning, focused, laser-beam, optical micrometer is installed in a remote alpha-gamma containment cell at the Los Alamos Hot-Cell Facility. A hot-cell extension chamber provides the nominal 30-cm (12-in.) working distance required by the LaserMike and, at the same time, keeps the LaserMike components outside the high-radiation-containment environment. This system provides measurement accuracy better than +- 5 μm (0.0002 in.) on diameters between 2 and 13 mm (0.88 and 0.5 in.) at a rate of 33 measurements per second. The Hot-Cell Facility also uses a Korad 20-J-output ruby pulsed laser to drill a hole in reactor-fuel-element cladding to sample fission gas. The laser is then used to reweld the hole so that the fuel element will not be contaminated and may be stored without an alpha-containment barrier. The wall thickness of the fuel elements sampled varies from 0.25 to 0.50 mm (0.010 to 0.020 in.)

  1. Radiation safety aspects of new X-ray free electron laser facility, SACLA

    International Nuclear Information System (INIS)

    Asano, Yoshihiro

    2013-01-01

    In the safety point of view, X-ray free electron laser facilities have some characteristics in comparison with 3 rd generation synchrotron radiation facilities. One is that the high energy electrons are always injected into the beam dump and the beamlines must be constructed in the direction of the movements of electrons, and another is that the total number of accelerated electrons of X-ray free electron laser facilities is much larger than that of synchrotron radiation facilities. In addition to the importance of safety interlock systems, therefore, it is important that high energy electrons never invade into X-ray free electron laser beamlines and the amount of accelerated electron beam losses must be reduced as much as possible. At SACLA, a safety permanent magnet was installed into the X-ray light beam axis, and a beam halo monitor and beam loss monitors were installed within and around the electron transport pipes, respectively. In comparison with the SPring-8 synchrotron radiation facility, shielding design of SACLA, outline of the radiation safety systems including the monitors will be presented

  2. A PRELIMINARY JUPITER MODEL

    International Nuclear Information System (INIS)

    Hubbard, W. B.; Militzer, B.

    2016-01-01

    In anticipation of new observational results for Jupiter's axial moment of inertia and gravitational zonal harmonic coefficients from the forthcoming Juno orbiter, we present a number of preliminary Jupiter interior models. We combine results from ab initio computer simulations of hydrogen–helium mixtures, including immiscibility calculations, with a new nonperturbative calculation of Jupiter's zonal harmonic coefficients, to derive a self-consistent model for the planet's external gravity and moment of inertia. We assume helium rain modified the interior temperature and composition profiles. Our calculation predicts zonal harmonic values to which measurements can be compared. Although some models fit the observed (pre-Juno) second- and fourth-order zonal harmonics to within their error bars, our preferred reference model predicts a fourth-order zonal harmonic whose absolute value lies above the pre-Juno error bars. This model has a dense core of about 12 Earth masses and a hydrogen–helium-rich envelope with approximately three times solar metallicity

  3. A PRELIMINARY JUPITER MODEL

    Energy Technology Data Exchange (ETDEWEB)

    Hubbard, W. B. [Lunar and Planetary Laboratory, The University of Arizona, Tucson, AZ 85721 (United States); Militzer, B. [Department of Earth and Planetary Science, Department of Astronomy, University of California, Berkeley, CA 94720 (United States)

    2016-03-20

    In anticipation of new observational results for Jupiter's axial moment of inertia and gravitational zonal harmonic coefficients from the forthcoming Juno orbiter, we present a number of preliminary Jupiter interior models. We combine results from ab initio computer simulations of hydrogen–helium mixtures, including immiscibility calculations, with a new nonperturbative calculation of Jupiter's zonal harmonic coefficients, to derive a self-consistent model for the planet's external gravity and moment of inertia. We assume helium rain modified the interior temperature and composition profiles. Our calculation predicts zonal harmonic values to which measurements can be compared. Although some models fit the observed (pre-Juno) second- and fourth-order zonal harmonics to within their error bars, our preferred reference model predicts a fourth-order zonal harmonic whose absolute value lies above the pre-Juno error bars. This model has a dense core of about 12 Earth masses and a hydrogen–helium-rich envelope with approximately three times solar metallicity.

  4. High-order dispersion control of 10-petawatt Ti:sapphire laser facility.

    Science.gov (United States)

    Li, Shuai; Wang, Cheng; Liu, Yanqi; Xu, Yi; Li, Yanyan; Liu, Xingyan; Gan, Zebiao; Yu, Lianghong; Liang, Xiaoyan; Leng, Yuxin; Li, Ruxin

    2017-07-24

    A grism pair is utilized to control the high-order dispersion of the Shanghai Superintense Ultrafast Lasers Facility, which is a large-scale project aimed at delivering 10-PW laser pulses. We briefly present the characteristics of the laser system and calculate the cumulative B-integral, which determines the nonlinear phase shift influence on material dispersion. Three parameters are selected, grism separation, angle of incidence and slant distance of grating compressor, to determine their optimal values through an iterative searching procedure. Both the numerical and experimental results confirm that the spectral phase distortion is controlled, and the recompressed pulse with a duration of 24 fs is obtained in the single-shot mode. The distributions and stabilities of the pulse duration at different positions of the recompressed beam are also investigated. This approach offers a new feasible solution for the high-order dispersion compensation of femtosecond petawatt laser systems.

  5. JUICE space mission to Jupiter

    CERN Document Server

    CERN. Geneva

    2018-01-01

    JUICE - JUpiter ICy moons Explorer - is the first large-class mission in ESA's Cosmic Vision 2015-2025 programme. Planned for launch in 2022 and arrival at Jupiter in 2029, it will spend at least three years making detailed observations of the giant gaseous planet Jupiter and three of its largest moons, Ganymede, Callisto and Europa. JUICE will perform detailed investigations of Jupiter and its system in all their inter-relations and complexity with particular emphasis on Ganymede as a planetary body and potential habitat. Investigations of Europa and Callisto would complete a comparative picture of the Galilean moons. Jupiter is the archetype for the giant planets of the Solar System and for the numerous giant planets now known to orbit other stars. Moreover, Jupiter's diverse Galilean satellites - three of which are believed to harbour internal oceans - are central to understanding the habitability of icy worlds. JUICE spacecraft will carry the most powerful remote sensing, geophysical, and in situ paylo...

  6. Investigation of plasma ablation and crater formation processes in the Prague Asterix Laser System laser facility

    Czech Academy of Sciences Publication Activity Database

    Borodziuk, S.; Kasperczuk, A.; Pisarczyk, T.; Gus'kov, S.; Ullschmied, Jiří; Králiková, Božena; Rohlena, Karel; Skála, Jiří; Pisarczyk, P.; Kálal, M.

    2004-01-01

    Roč. 34, č. 1 (2004), s. 31-42 ISSN 0078-5466 R&D Projects: GA MŠk LN00A100 Grant - others:HPRI-CT(XX) 1999-00053 Institutional research plan: CEZ:AV0Z2043910; CEZ:AV0Z1010921 Source of funding: R - rámcový projekt EK Keywords : laser-produced plasma * interferometric measurements * crater Subject RIV: BH - Optics, Masers, Lasers Impact factor: 0.308, year: 2004

  7. The Nike KrF laser facility: Performance and initial target experiments

    International Nuclear Information System (INIS)

    Obenschain, S.P.; Bodner, S.E.; Colombant, D.; Gerber, K.; Lehmberg, R.H.; McLean, E.A.; Mostovych, A.N.; Pronko, M.S.; Pawley, C.J.; Schmitt, A.J.; Sethian, J.D.; Serlin, V.; Stamper, J.A.; Sullivan, C.A.; Dahlburg, J.P.; Gardner, J.H.; Chan, Y.; Deniz, A.V.; Hardgrove, J.; Lehecka, T.; Klapisch, M.

    1996-01-01

    Krypton-fluoride (KrF) lasers are of interest to laser fusion because they have both the large bandwidth capability (approx-gt THz) desired for rapid beam smoothing and the short laser wavelength (1/4 μm) needed for good laser endash target coupling. Nike is a recently completed 56-beam KrF laser and target facility at the Naval Research Laboratory. Because of its bandwidth of 1 THz FWHM (full width at half-maximum), Nike produces more uniform focal distributions than any other high-energy ultraviolet laser. Nike was designed to study the hydrodynamic instability of ablatively accelerated planar targets. First results show that Nike has spatially uniform ablation pressures (Δp/p<2%). Targets have been accelerated for distances sufficient to study hydrodynamic instability while maintaining good planarity. In this review we present the performance of the Nike laser in producing uniform illumination, and its performance in correspondingly uniform acceleration of targets. copyright 1996 American Institute of Physics

  8. First Octahedral Spherical Hohlraum Energetics Experiment at the SGIII Laser Facility

    Science.gov (United States)

    Huo, Wen Yi; Li, Zhichao; Chen, Yao-Hua; Xie, Xufei; Ren, Guoli; Cao, Hui; Li, Shu; Lan, Ke; Liu, Jie; Li, Yongsheng; Li, Sanwei; Guo, Liang; Liu, Yonggang; Yang, Dong; Jiang, Xiaohua; Hou, Lifei; Du, Huabing; Peng, Xiaoshi; Xu, Tao; Li, Chaoguang; Zhan, Xiayu; Wang, Zhebin; Deng, Keli; Wang, Qiangqiang; Deng, Bo; Wang, Feng; Yang, Jiamin; Liu, Shenye; Jiang, Shaoen; Yuan, Guanghui; Zhang, Haijun; Jiang, Baibin; Zhang, Wei; Gu, Qianqian; He, Zhibing; Du, Kai; Deng, Xuewei; Zhou, Wei; Wang, Liquan; Huang, Xiaoxia; Wang, Yuancheng; Hu, Dongxia; Zheng, Kuixing; Zhu, Qihua; Ding, Yongkun

    2018-04-01

    The first octahedral spherical hohlraum energetics experiment is accomplished at the SGIII laser facility. For the first time, the 32 laser beams are injected into the octahedral spherical hohlraum through six laser entrance holes. Two techniques are used to diagnose the radiation field of the octahedral spherical hohlraum in order to obtain comprehensive experimental data. The radiation flux streaming out of laser entrance holes is measured by six flat-response x-ray detectors (FXRDs) and four M -band x-ray detectors, which are placed at different locations of the SGIII target chamber. The radiation temperature is derived from the measured flux of FXRD by using the blackbody assumption. The peak radiation temperature inside hohlraum is determined by the shock wave technique. The experimental results show that the octahedral spherical hohlraum radiation temperature is in the range of 170-182 eV with drive laser energies of 71 kJ to 84 kJ. The radiation temperature inside the hohlraum determined by the shock wave technique is about 175 eV at 71 kJ. For the flat-top laser pulse of 3 ns, the conversion efficiency of gas-filled octahedral spherical hohlraum from laser into soft x rays is about 80% according to the two-dimensional numerical simulation.

  9. Use of laser cutting techniques for dismantling tasks in nuclear facilities

    International Nuclear Information System (INIS)

    Haferkamp, H.; Drygalla, M.; Goede, M.

    2001-01-01

    A handguided laser processing system developed by laser zentrum Hannover e.V. (LZH) allows impressive cutting, notching, and material removal applications for the dismantling of nuclear power plants. The handguided unit is equipped with a motor drive for consistent processing results and flexible processing for as long as desired. It offers the possibility to adjust the nozzle as well as focal position in order that various materials with different material thicknesses may be processed. The set process parameters may be viewed on a display which also indicates the laser processing programme selected. An integrated exhaust system guarantees a shielded process. The operator is not only protected against process emissions but also against laser beam reflexions. The handguided unit is connected to the laser beam source via an optical fibre and can be used for laser output powers of up to 1500 W with a high beam quality. For handguided laser material processing low emissions at high feed rates as well as cutting kerf widths between 0.5 and 0.3 mm for special applications such as the dismantling of large facilities or units, etc. are decisive, especially when cutting metal sheets for the dismantling of nuclear power plants. (orig.)

  10. Use of laser cutting techniques for dismantling tasks in nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    Haferkamp, H.; Drygalla, M.; Goede, M. [Laser Zentrum Hannover e.V. (Germany)

    2001-07-01

    A handguided laser processing system developed by laser zentrum Hannover e.V. (LZH) allows impressive cutting, notching, and material removal applications for the dismantling of nuclear power plants. The handguided unit is equipped with a motor drive for consistent processing results and flexible processing for as long as desired. It offers the possibility to adjust the nozzle as well as focal position in order that various materials with different material thicknesses may be processed. The set process parameters may be viewed on a display which also indicates the laser processing programme selected. An integrated exhaust system guarantees a shielded process. The operator is not only protected against process emissions but also against laser beam reflexions. The handguided unit is connected to the laser beam source via an optical fibre and can be used for laser output powers of up to 1500 W with a high beam quality. For handguided laser material processing low emissions at high feed rates as well as cutting kerf widths between 0.5 and 0.3 mm for special applications such as the dismantling of large facilities or units, etc. are decisive, especially when cutting metal sheets for the dismantling of nuclear power plants. (orig.)

  11. Large-scale laser-microwave synchronization for attosecond photon science facilities

    Energy Technology Data Exchange (ETDEWEB)

    Shafak, Kemal

    2017-04-15

    Low-noise transfer of time and frequency standards over large distances provides high temporal resolution for ambitious scientific explorations such as sensitive imaging of astronomical objects using multi-telescope arrays, comparison of distant optical clocks or gravitational-wave detection using large laser interferometers. In particular, rapidly expanding photon science facilities such as X-ray free-electron lasers (FELs) and attoscience centers have the most challenging synchronization requirements of sub-fs timing precision to generate ultrashort X-ray pulses for the benefit of creating super-microscopes with sub-atomic spatiotemporal resolution. The critical task in these facilities is to synchronize various pulsed lasers and microwave sources across multi-kilometer distances as required for seeded FELs and attosecond pump-probe experiments. So far, there has been no timing distribution system meeting this strict requirement. Therefore, insufficient temporal precision provided by the current synchronization systems hinders the development of attosecond hard X-ray photon science facilities. The aim of this thesis is to devise a timing distribution system satisfying the most challenging synchronization requirements in science mandated by the next-generation photon science facilities. Using the pulsed-optical timing distribution approach, attosecond timing precision is realized by thoroughly investigating and eliminating the remaining noise sources in the synchronization system. First, optical and microwave timing detection schemes are further developed to support long-term stable, attosecond-precision measurements. Second, the feasibility of the master laser to support a kilometer-scale timing network with attosecond precision is examined by experimentally characterizing its free-running timing jitter and improving its long-term frequency stability with a sophisticated environmental insulation. Third, nonlinear pulse propagation inside optical fibers is studied

  12. Large-scale laser-microwave synchronization for attosecond photon science facilities

    International Nuclear Information System (INIS)

    Shafak, Kemal

    2017-04-01

    Low-noise transfer of time and frequency standards over large distances provides high temporal resolution for ambitious scientific explorations such as sensitive imaging of astronomical objects using multi-telescope arrays, comparison of distant optical clocks or gravitational-wave detection using large laser interferometers. In particular, rapidly expanding photon science facilities such as X-ray free-electron lasers (FELs) and attoscience centers have the most challenging synchronization requirements of sub-fs timing precision to generate ultrashort X-ray pulses for the benefit of creating super-microscopes with sub-atomic spatiotemporal resolution. The critical task in these facilities is to synchronize various pulsed lasers and microwave sources across multi-kilometer distances as required for seeded FELs and attosecond pump-probe experiments. So far, there has been no timing distribution system meeting this strict requirement. Therefore, insufficient temporal precision provided by the current synchronization systems hinders the development of attosecond hard X-ray photon science facilities. The aim of this thesis is to devise a timing distribution system satisfying the most challenging synchronization requirements in science mandated by the next-generation photon science facilities. Using the pulsed-optical timing distribution approach, attosecond timing precision is realized by thoroughly investigating and eliminating the remaining noise sources in the synchronization system. First, optical and microwave timing detection schemes are further developed to support long-term stable, attosecond-precision measurements. Second, the feasibility of the master laser to support a kilometer-scale timing network with attosecond precision is examined by experimentally characterizing its free-running timing jitter and improving its long-term frequency stability with a sophisticated environmental insulation. Third, nonlinear pulse propagation inside optical fibers is studied

  13. Laser beam smoothing and backscatter saturation processes in plasmas relevant to national ignition facility hohlraums

    International Nuclear Information System (INIS)

    MacGowan, B.J.; Berger, R.L.; Cohen, B.I.

    2001-01-01

    We have used gas-filled targets irradiated by the Nova laser to simulate National Ignition Facility (NIF) hohlraum plasmas and to study the dependence of Stimulated Raman (SRS) and Brillouin (SBS) Scattering on beam smoothing at a range of laser intensities (3ω, 2-410 15 Wcm -2 ) and plasma conditions. We have demonstrated the effectiveness of polarization smoothing as a potential upgrade to the NIF. Experiments with higher intensities and higher densities characteristic of 350eV hohlraum designs indicate that with appropriate beam smoothing the backscatter from such hohlraums may be tolerable. (author)

  14. Time response characteristics of X-ray detector system on Silex-Ⅰ laser facility

    International Nuclear Information System (INIS)

    Yi Rongqing; He Xiao'an; Li Hang; Du Huabing; Zhang Haiying; Cao Zhurong

    2013-01-01

    On the Silex-Ⅰ laser facility, the time response characteristics of XRD detector were studied. A laser with a pulse of 32 fs and a wavelength of 800 nm was used to irradiate a plane Au target. X-ray calibrated method of time of exposure X-ray framing camera and time resolution of X-ray streak camera was explored. The time response characteristics of XRD detector and time process of X-ray emission were obtained from experiment. We obtained X-ray calibration method of time of exposure X-ray framing camera and time resolution of X-ray streak camera. (authors)

  15. Software systems for processing and analysis at the NOVA high-energy laser facility

    International Nuclear Information System (INIS)

    Auerbach, J.M.; Montgomery, D.S.; McCauley, E.W.; Stone, G.F.

    1986-01-01

    A typical laser interaction experiment at the NOVA high-energy laser facility produces in excess of 20 Mbytes of digitized data. Extensive processing and analysis of this raw data from a wide variety of instruments is necessary to produce results that can be readily used to interpret the experiment. Using VAX-based computer hardware, software systems have been set up to convert the digitized instrument output to physics quantities describing the experiment. A relational data-base management system is used to coordinate all levels of processing and analysis. Software development emphasizes structured design, flexibility, automation, and ease of use

  16. Multi-keV X-ray area source intensity at SGII laser facility

    Science.gov (United States)

    Wang, Rui-rong; An, Hong-hai; Xie, Zhi-yong; Wang, Wei

    2018-05-01

    Experiments for investigating the feasibility of multi-keV backlighters for several different metallic foil targets were performed at the Shenguang II (SGII) laser facility in China. Emission spectra in the energy range of 1.65-7.0 keV were measured with an elliptically bent crystal spectrometer, and the X-ray source size was measured with a pinhole camera. The X-ray intensity near 4.75 keV and the X-ray source size for titanium targets at different laser intensity irradiances were studied. By adjusting the total laser energy at a fixed focal spot size, laser intensity in the range of 1.5-5.0 × 1015 W/cm2, was achieved. The results show that the line emission intensity near 4.75 keV and the X-ray source size are dependent on the laser intensity and increase as the laser intensity increases. However, an observed "peak" in the X-ray intensity near 4.75 keV occurs at an irradiance of 4.0 × 1015 W/cm2. For the employed experimental conditions, it was confirmed that the laser intensity could play a significant role in the development of an efficient multi-keV X-ray source. The experimental results for titanium indicate that the production of a large (˜350 μm in diameter) intense backlighter source of multi-keV X-rays is feasible at the SGII facility.

  17. Synthetic methods for beam to beam power balancing capability of large laser facilities

    International Nuclear Information System (INIS)

    Chen Guangyu; Zhang Xiaomin; Zhao Runchang; Zheng Wanguo; Yang Xiaoyu; You Yong; Wang Chengcheng; Shao Yunfei

    2011-01-01

    To account for output power balancing capability of large laser facilities, a synthetic method with beam to beam root-mean-square is presented. Firstly, a conversion process for the facilities from original data of beam powers to regular data is given. The regular data contribute to the normal distribution approximately, and then a corresponding simple method of root-mean-square for beam to beam power balancing capability is given.Secondly, based on theory of total control charts and cause-selecting control charts, control charts with root-mean-square are established which show short-term variety of power balancing capability of the facilities. Mean rate of failure occurrence is also defined and used to describe long-term trend of global balancing capabilities of the facilities. Finally, advantages of the intuitive and efficient diagnosis for synthetic methods are illustrated by analysis of experimental data. (authors)

  18. Laser performance operations model (LPOM): a computational system that automates the setup and performance analysis of the national ignition facility

    Energy Technology Data Exchange (ETDEWEB)

    Shaw, M; House, R; Williams, W; Haynam, C; White, R; Orth, C; Sacks, R [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA, 94550 (United States)], E-mail: shaw7@llnl.gov

    2008-05-15

    The National Ignition Facility (NIF) is a stadium-sized facility containing a 192-beam, 1.8 MJ, 500-TW, 351-nm laser system together with a 10-m diameter target chamber with room for many target diagnostics. NIF will be the world's largest laser experimental system, providing a national center to study inertial confinement fusion and the physics of matter at extreme energy densities and pressures. A computational system, the Laser Performance Operations Model (LPOM) has been developed and deployed that automates the laser setup process, and accurately predict laser energetics. LPOM determines the settings of the injection laser system required to achieve the desired main laser output, provides equipment protection, determines the diagnostic setup, and supplies post shot data analysis and reporting.

  19. Basic features of electromagnetic pulse generated in a laser-target chamber at 3-TW laser facility PALS

    International Nuclear Information System (INIS)

    De Marco, M; Pfeifer, M; Krousky, E; Krasa, J; Cikhardt, J; Klir, D; Nassisi, V

    2014-01-01

    We describe the radiofrequency emission taking place when 300 ps laser pulses irradiate various solid targets with an intensity of 10 16 W/cm 2 . The emission of intense electromagnetic pulses was observed outside the laser target chamber by two loop antennas up to 1 GHz. Electromagnetic pulses can be 800 MHz transients, which decay from a peak electromagnetic field of E 0 ≊ 7 kV/m and H 0 ≊ 15 A/m. The occurrence of these electromagnetic pulses is associated with generation of hard x-rays with photon energies extending beyond 1 MeV. This contribution reports the first observation of this effect at the PALS facility.

  20. Neutron/photon/electron shielding study for a laser-fusion facility

    International Nuclear Information System (INIS)

    Thompson, W.L.

    1977-01-01

    A Monte Carlo shielding study encompassing neutron, photon, and electron transport has been conducted for the High Energy Gas Laser Facility at the Los Alamos Scientific Laboratory. This paper describes the application of the Monte Carlo technique and several variance reduction schemes to the study. The calculations involve a geometry which is complicated in all three dimensions, a very intense 14 MeV neutron source, skyshine and deep penetrations. The facility design with 1.83 m concrete walls and a 1.52 m concrete roof is based on these calculations

  1. The Cryogenic Studying and Filling Facilities for the Laser Megajoule Targets

    Energy Technology Data Exchange (ETDEWEB)

    Bachelet, F.; Vincent-Viry, O.; Collier, R.; Fleury, E.; Jeannot, L.; Legaie, O.; Pascal, G. [CEA Valduc, DAM, 21 - Is-sur-Tille (France); Perin, J. P.; Viargues, F. [CEA Grenoble, DSM INAC SBT, 38 (France)

    2009-04-15

    As part of the French Inertial Confinement Fusion program, Commissariat a l'Energie Atomique has developed cryogenic target assemblies (CTAs) for the Laser Megajoule (LMJ) and a program in two stages for the permeation filling of these CTAs: (a) the permeation filling studies with the Study Filling Station cryostats and (b) the design and manufacturing of the whole operational chain of CTA filling facilities. This paper deals with the description of both the cryogenic studying and the filling facilities for the LMJ targets. (authors)

  2. First Earth-Based Detection of a Superbolide on Jupiter

    Science.gov (United States)

    Hueso, R.; Wesley, A.; Go, C.; Perez-Hoyos, S.; Wong, M. H.; Fletcher, L. N.; Sanchez-Lavega, A.; Boslough, M. B.; DePater, I.; Orton, G. S.; hide

    2010-01-01

    Cosmic collisions can planets cause detectable optical flashes that range from terrestrial shooting stars to bright fireballs. On 2010 June 3 a bolide in Jupiter's atmosphere was simultaneously observed from the Earth by two amateur astronomers observing Jupiter in red and blue wavelengths, The bolide appeared as a flash of 2 s duration in video recording data of the planet. The analysis of the light carve of the observations results in an estimated energy of the impact of (0.9-4,0) x 10(exp 15) J which corresponds to a colliding body of 8-13 m diameter assuming a mean density of 2 g/cu cm. Images acquired a few days later by the Hubble Space Telescope and other large ground-based facilities did not show any signature of aerosol debris, temperature, or chemical composition anomaly, confirming that the body was small and destroyed in Jupiter's upper atmosphere. Several collisions of this size may happen on Jupiter on a yearly basis. A systematic study of the impact rate and size of these bolides can enable an empirical determination. of the flux of meteoroids in Jupiter with implications for the populations of small bodies in the outer solar system and may allow a better quantification of the threat of impacting bodies to Earth. The serendipitous recording of this optical flash opens a new window in the observation of Jupiter with small telescopes.

  3. FIRST EARTH-BASED DETECTION OF A SUPERBOLIDE ON JUPITER

    International Nuclear Information System (INIS)

    Hueso, R.; Perez-Hoyos, S.; Sanchez-Lavega, A.; Wesley, A.; Go, C.; Wong, M. H.; De Pater, I.; Fletcher, L. N.; Boslough, M. B. E.; Orton, G. S.; Yanamandra-Fisher, P. A.; Simon-Miller, A. A.; Djorgovski, S. G.; Edwards, M. L.; Hammel, H. B.; Clarke, J. T.; Noll, K. S.

    2010-01-01

    Cosmic collisions on planets cause detectable optical flashes that range from terrestrial shooting stars to bright fireballs. On 2010 June 3 a bolide in Jupiter's atmosphere was simultaneously observed from the Earth by two amateur astronomers observing Jupiter in red and blue wavelengths. The bolide appeared as a flash of 2 s duration in video recording data of the planet. The analysis of the light curve of the observations results in an estimated energy of the impact of (0.9-4.0) x 10 15 J which corresponds to a colliding body of 8-13 m diameter assuming a mean density of 2 g cm -3 . Images acquired a few days later by the Hubble Space Telescope and other large ground-based facilities did not show any signature of aerosol debris, temperature, or chemical composition anomaly, confirming that the body was small and destroyed in Jupiter's upper atmosphere. Several collisions of this size may happen on Jupiter on a yearly basis. A systematic study of the impact rate and size of these bolides can enable an empirical determination of the flux of meteoroids in Jupiter with implications for the populations of small bodies in the outer solar system and may allow a better quantification of the threat of impacting bodies to Earth. The serendipitous recording of this optical flash opens a new window in the observation of Jupiter with small telescopes.

  4. Jupiter: Lord of the Planets.

    Science.gov (United States)

    Kaufmann, William

    1984-01-01

    Presents a chapter from an introductory college-level astronomy textbook in which full-color photographs and numerous diagrams highlight an extensive description of the planet Jupiter. Topics include Jupiter's geology, rotation, magnetic field, atmosphere (including clouds and winds), and the Great Red Spot. (DH)

  5. Laser imprint and implications for direct drive ignition with the National Ignition Facility

    International Nuclear Information System (INIS)

    Weber, S.V.; Glendinning, S.G.; Kalantar, D.H.; Remington, B.A.; Rothenberg, J.E.

    1996-01-01

    For direct drive ICF, nonuniformities in laser illumination can seed ripples at the ablation front in a process called imprint. Such nonuniformities will grow during the capsule implosion and can penetrate the capsule shell impede ignition, or degrade burn. We have simulated imprint for a number of experiments on tile Nova laser. Results are in generally good agreement with experimental data. We leave also simulated imprint upon National Ignition Facility (NIF) direct drive ignition capsules. Imprint modulation amplitude comparable to the intrinsic surface finish of ∼40 nm is predicted for a laser bandwidth of 0.5 THz. Ablation front modulations experience growth factors up to several thousand, carrying modulation well into the nonlinear regime. Saturation modeling predicts that the shell should remain intact at the time of peak velocity, but penetration at earlier times appears more marginal

  6. Hierarchical tree-structured control network for the Antares laser facility

    Energy Technology Data Exchange (ETDEWEB)

    McGirt, F.

    1979-01-01

    The design and implementation of a distributed, computer-based control system for the Antares 100-kJ gas laser fusion facility is presented. Control system requirements and their operational interrelationships that consider both integrated system control and individual subsystem control are described. Several configurations of minicomputers are established to provide direct control of sets of microcomputers and to provide points of operator-laser interaction. Over 100 microcomputers are located very close to the laser device control points or sources of data and perform the real-time functions of the control system, such as data and control signal multiplexing, stepping motor control, and vacuum and gas system control. These microcomputers are designed to be supported as an integral part of the control network and to be software compatible with the larger minicomputers.

  7. Hierarchical tree-structured control network for the Antares laser facility

    International Nuclear Information System (INIS)

    McGirt, F.

    1979-01-01

    The design and implementation of a distributed, computer-based control system for the Antares 100-kJ gas laser fusion facility is presented. Control system requirements and their operational interrelationships that consider both integrated system control and individual subsystem control are described. Several configurations of minicomputers are established to provide direct control of sets of microcomputers and to provide points of operator-laser interaction. Over 100 microcomputers are located very close to the laser device control points or sources of data and perform the real-time functions of the control system, such as data and control signal multiplexing, stepping motor control, and vacuum and gas system control. These microcomputers are designed to be supported as an integral part of the control network and to be software compatible with the larger minicomputers

  8. Low-Cost Facile Fabrication of Flexible Transparent Copper Electrodes by Nanosecond Laser Ablation

    KAUST Repository

    Paeng, Dongwoo

    2015-03-27

    © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. Low-cost Cu flexible transparent conducting electrodes (FTCEs) are fabricated by facile nanosecond laser ablation. The fabricated Cu FTCEs show excellent opto-electrical properties (transmittance: 83%, sheet resistance: 17.48 Ω sq-1) with outstanding mechanical durability. Successful demonstration of a touch-screen panel confirms the potential applicability of Cu FTCEs to the flexible optoelectronic devices.

  9. First experimental comparisons of laser-plasma interactions between spherical and cylindrical hohlraums at SGIII laser facility

    Directory of Open Access Journals (Sweden)

    Yaohua Chen

    2017-03-01

    Full Text Available We present our recent laser-plasmas instability (LPI comparison experiment at the SGIII laser facility between the spherical and cylindrical hohlraums. Three kinds of filling are considered: vacuum, gas-filling with or without a capsule inside. A spherical hohlraum of 3.6 mm in diameter, and a cylindrical hohlraum of 2.4 mm × 4.3 mm are used. The capsule diameter is 0.96 mm. A flat-top laser pulse with 3 ns duration and up to 92.73 kJ energy is used. The experiment has shown that the LPI level in the spherical hohlraum is close to that of the outer beam in the cylindrical hohlraum, while much lower than that of the inner beam. The experiment is further simulated by using our 2-dimensional radiation hydrodynamic code LARED-Integration, and the laser back-scattering fraction and the stimulated Raman scatter (SRS spectrum are post-processed by the high efficiency code of laser interaction with plasmas HLIP. According to the simulation, the plasma waves are strongly damped and the SRS is mainly developed at the plasma conditions of electron density from 0.08 nc to 0.1 nc and electron temperature from 1.5 keV to 2.0 keV inside the hohlraums. However, obvious differences between the simulation and experiment are found, such as that the SRS back-scattering is underestimated, and the numerical SRS spectrum peaks at a larger wavelength and at a later time than the data. These differences indicate that the development of a 3D radiation hydrodynamic code, with more accurate physics models, is mandatory for spherical hohlraum study.

  10. Hot Jupiters around M dwarfs

    Directory of Open Access Journals (Sweden)

    Murgas F.

    2013-04-01

    Full Text Available The WFCAM Transit Survey (WTS is a near-infrared transit survey running on the United Kingdom Infrared Telescope (UKIRT. We conduct Monte Carlo transit injection and detection simulations for short period (<10 day Jupiter-sized planets to characterize the sensitivity of the survey. We investigate the recovery rate as a function of period and magnitude in 2 hypothetical star-planet cases: M0–2 + hot Jupiter, M2–4 + hot Jupiter. We find that the WTS lightcurves are very sensitive to the presence of Jupiter-sized short-period transiting planets around M dwarfs. The non-detection of a hot-Jupiter around an M dwarf by the WFCAM Transit Survey allows us to place a firm upper limit of 1.9 per cent (at 95 per cent confidence on the planet occurrence rate.

  11. On the possiblity of using vertically pointing Central Laser Facilities to calibrate the Cherenkov Telescope Array

    International Nuclear Information System (INIS)

    Gaug, Markus

    2014-01-01

    A Central Laser Facility is a system composed of a laser placed at a certain distance from a light-detector array, emitting fast light pulses, typically in the vertical direction, with the aim to calibrate that array. During calibration runs, all detectors are pointed towards the same portion of the laser beam at a given altitude. Central Laser Facilities are used for various currently operating ultra-high-energy cosmic ray and imaging atmospheric Cherenkov telescope arrays. In view of the future Cherenkov Telescope Array, a similar device could provide a fast calibration of the whole installation at different wavelengths. The relative precision (i.e. each individual telescope with respect to the rest of the array is expected) to be better than 5%, while an absolute calibration should reach a precisions of 6–11%, if certain design requirements are met. Additionally, a preciser monitoring of the sensitivity of each telescope can be made on time-scales of days to years

  12. Spatial filter lens design for the main laser of the National Ignition Facility

    International Nuclear Information System (INIS)

    Korniski, R.J.

    1998-01-01

    The National Ignition Facility (NIF), being designed and constructed at Lawrence Livermore National Laboratory (LLNL), comprises 192 laser beams The lasing medium is neodymium in phosphate glass with a fundamental frequency (1ω) of 1 053microm Sum frequency generation in a pair of conversion crystals (KDP/KD*P) will produce 1 8 megajoules of the third harmonic light (3ω or λ=351microm) at the target The purpose of this paper is to provide the lens design community with the current lens design details of the large optics in the Main Laser This paper describes the lens design configuration and design considerations of the Main Laser The Main Laser is 123 meters long and includes two spatial filters one 13 5 meters and one 60 meters These spatial filters perform crucial beam filtering and relaying functions We shall describe the significant lens design aspects of these spatial filter lenses which allow them to successfully deliver the appropriate beam characteristic onto the target For an overview of NIF please see ''Optical system design of the National Ignition Facility,'' by R Edward English. et al also found in this volume

  13. Laser-Plasma Interactions on NIKE and the Fusion Test Facility

    Science.gov (United States)

    Phillips, Lee; Weaver, James

    2008-11-01

    Recent proposed designs for a Fusion Test Facility (FTF) (Obenchain et al., Phys. Plasmas 13 056320 (2006)) for direct-drive ICF targets for energy applications involve high implosion velocities combined with higher laser irradiances. The use of high irradiances increases the likelihood of deleterious laser plasma instabilities (LPI) but the proposed use of a 248 nm KrF laser to drive these targets is expected to minimize the LPI risk. We examine, using simulation results from NRL's FAST hydrocode, the proposed operational regimes of the FTF in relation to the thresholds for the SRS, SBS, and 2-plasmon instabilities. Simulations are also used to help design and interpret ongoing experiments being conducted at NRL's NIKE facility for the purpose of generating and studying LPI. Target geometries and laser pulseshapes were devised in order to create plasma conditions with long scalelengths and low electron temperatures that allow the growth of parametric instabilities. These simulations include the effects of finite beam angles through the use of raytracing.

  14. Role of the laboratory for laser energetics in the National Ignition Facility Project

    International Nuclear Information System (INIS)

    Soures, J.M.; Loucks, S.J.; McCrory, R.L.

    1996-01-01

    The National Ignition Facility (NIF) is a 192-beam, 1.8-MJ (ultraviolet) laser facility that is currently planned to start operating in 2002. The NIF mission is to provide data critical to this Nation's science-based stockpile stewardship (SBSS) program and to advance the understanding of inertial confinement fusion and assess its potential as an energy source. The NIF project involves a collaboration among the Lawrence Livermore National Laboratory (LLNL), Los Alamos National Laboratory (LANL), Sandia National Laboratory (SNL), and the University of Rochester's Laboratory for Laser Energetics (UR/LLE). In this paper, the role of the University of Rochester in the research, development, and planning required to assure the success of the NIF will be presented. The principal roles of the UR/LLE in the NIF are (1) validation of the direct-drive approach to NIF using the OMEGA 60-beam, 40-kJ UV laser facility; (2) support of indirect-drive physics experiments using OMEGA in collaboration with LLNL and LANL; (3) development of plasma diagnostics for NIF; (4) development of beam-smoothing techniques; and (5) development of thin-film coatings for NIF and cryogenic-fuel-layer targets for eventual application to NIF. 3 refs., 6 figs

  15. A UV pre-ionized dual-wavelength short-pulse high-power CO{sub 2} laser facility for laser particle acceleration research

    Energy Technology Data Exchange (ETDEWEB)

    Ebrahim, N A; Mouris, J F; Davis, R W

    1994-12-01

    In this report we describe the Chalk River dual-wavelength, short-pulse, single-mode, high-power CO{sub 2} laser facility for research in laser particle acceleration and CANDU materials modifications. The facility is designed and built around UV-preionized transversely-excited atmospheric-pressure (TEA) Lumonics CO{sub 2} laser discharge modules. Peak focussed power densities of up to 2 x 10{sup 14} W/cm{sup 2} in 500 ps pulses have been obtained. (author). 10 refs., 9 figs.

  16. Near Field Intensity Trends of Main Laser Alignment Images in the National Ignition Facility (NIF)

    Energy Technology Data Exchange (ETDEWEB)

    Leach, R R; Beltsar, I; Burkhart, S; Lowe-Webb, R; Kamm, V M; Salmon, T; Wilhelmsen, K

    2015-01-22

    The National Ignition Facility (NIF) utilizes 192 high-energy laser beams focused with enough power and precision on a hydrogen-filled spherical, cryogenic target to potentially initiate a fusion reaction. NIF has been operational for six years; during that time, thousands of successful laser firings or shots have been executed. Critical instrument measurements and camera images are carefully recorded for each shot. The result is a massive and complex database or ‘big data’ archive that can be used to investigate the state of the laser system at any point in its history or to locate and track trends in the laser operation over time. In this study, the optical light throughput for more than 1600 NIF shots for each of the 192 main laser beams and 48 quads was measured over a three year period from January 2009 to October 2012. The purpose was to verify that the variation in the transmission of light through the optics over time performed within design expectations during this time period. Differences between average or integrated intensity from images recorded by the input sensor package (ISP) and by the output sensor package (OSP) in the NIF beam-line were examined. A metric is described for quantifying changes in the integrated intensity measurements and was used to view potential trends. Results are presented for the NIF input and output sensor package trends and changes over the three year time-frame.

  17. A tip / tilt mirror with large dynamic range for the ESO VLT Four Laser Guide Star Facility

    NARCIS (Netherlands)

    Rijnveld, N.; Henselmans, R.; Nijland, B.A.H.

    2011-01-01

    One of the critical elements in the Four Laser Guide Star Facility (4LGSF) for the ESO Very Large Telescope (VLT) is the Optical Tube Assembly (OTA), consisting of a stable 20x laser beam expander and an active tip/tilt mirror, the Field Selector Mechanism (FSM). This paper describes the design and

  18. Lightning activity on Jupiter

    Science.gov (United States)

    Borucki, W. J.; Bar-Nun, A.; Scarf, F. L.; Look, A. F.; Hunt, G. E.

    1982-01-01

    Photographic observations of the nightside of Jupiter by the Voyager 1 spacecraft show the presence of extensive lightning activity. Detection of whistlers by the plasma wave analyzer confirms the optical observations and implies that many flashes were not recorded by the Voyager camera because the intensity of the flashes was below the threshold sensitivity of the camera. Measurements of the optical energy radiated per flash indicate that the observed flashes had energies similar to that for terrestrial superbolts. The best estimate of the lightning energy dissipation rate of 0.0004 W/sq m was derived from a consideration of the optical and radiofrequency measurements. The ratio of the energy dissipated by lightning compared to the convective energy flux is estimated to be between 0.000027 and 0.00005. The terrestrial value is 0.0001.

  19. Jupiter and the Voyager mission

    Science.gov (United States)

    Soderblom, L.; Spall, Henry

    1980-01-01

    In 1977, the United States launched two unmanned Voyager spacecraft that were to take part in an extensive reconnaissance of the outer planets over a 12-year period visiting the environs of Jupiter, Saturn, Uranus, and Neptune. Their first encounter was with the complex Jupiter planetary system 400 million miles away. Sweeping by Jupiter and its five moons in 1979, the two spacecraft have sent back to Earth an enormous amount of data that will prove to be vital in understanding our solar system. Voyager 1 is scheduled to fly past Saturn on November 13 of this year; Voyager 2, in August of the following year. 

  20. Nuclear Reactions Studies in Laser-Plasmas at the forthcoming ELI-NP facilities

    Science.gov (United States)

    Lanzalone, G.; Muoio, A.; Altana, C.; Frassetto, M.; Malferrari, L.; Mascali, D.; Odorici, F.; Tudisco, S.; Gizzi, L. A.; Labate, L.; Puglia, S. M. R.; Trifirò, A.

    2018-05-01

    This work aim to prepare a program of studies on nuclear physics and astrophysics, which will be conducted at the new ELI-NP Laser facility, which actually is under construction in Bucharest, Romania. For the arguments treated, such activity has required also a multidisciplinary approach and knowledge in the fields of nuclear physics, astrophysics, laser and plasma physics join with also some competences on solid state physics related to the radiation detection. A part of this work has concerned to the experimental test, which have been performed in several laboratories and in order to study and increase the level of knowledge on the different parts of the project. In particular have been performed studies on the laser matter interaction at the ILIL laboratory of Pisa Italy and at the LENS laboratory in Catania, where (by using different experimental set-ups) has been investigated some key points concerning the production of the plasma stream. Test has been performed on several target configurations in terms of: composition, structure and size. All the work has been devoted to optimize the conditions of target in order to have the best performance on the production yields and on energies distribution of the inner plasma ions. A parallel activity has been performed in order to study the two main detectors, which will constitute the full detections system, which will be installed at the ELI-NP facility.

  1. Laser stand for irradiation of targets by laser pulses from the Iskra-5 facility at a repetition rate of 100 MHz

    International Nuclear Information System (INIS)

    Annenkov, V I; Garanin, Sergey G; Eroshenko, V A; Zhidkov, N V; Zubkov, A V; Kalipanov, S V; Kalmykov, N A; Kovalenko, V P; Krotov, V A; Lapin, S G; Martynenko, S P; Pankratov, V I; Faizullin, V S; Khrustalev, V A; Khudikov, N M; Chebotar, V S

    2009-01-01

    A train of a few tens of high-power subnanosecond laser pulses with a repetition period of 10 ns is generated in the Iskra-5 facility. The laser pulse train has an energy of up to 300 J and contains up to 40 pulses (by the 0.15 intensity level), the single pulse duration in the train being ∼0.5 ns. The results of experiments on conversion of a train of laser pulses to a train of X-ray pulses are presented. Upon irradiation of a tungsten target, a train of X-ray pulses is generated with the shape of an envelope in the spectral band from 0.18 to 0.28 keV similar to that of the envelope of the laser pulse train. The duration of a single X-ray pulse in the train is equal to that of a single laser pulse. (lasers)

  2. Operational Radiation Protection in Synchrotron Light and Free Electron Laser Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Liu, James C.; Rokni, Sayed H.; /SLAC; Vylet, Vaclav; /Jefferson Lab

    2009-12-11

    The 3rd generation synchrotron radiation (SR) facilities are storage ring based facilities with many insertion devices and photon beamlines, and have low injection beam power (< few tens of watts), but extremely high stored beam power ({approx} 1 GW). The 4th generation x-ray free electron laser (FEL) facilities are based on an electron Linac with a long undulator and have high injection beam power (a few kW). Due to its electron and photon beam characteristics and modes of operation, storage ring and photon beamlines have unique safety aspects, which are the main subjects of this paper. The shielding design limits, operational modes, and beam losses are first reviewed. Shielding analysis (source terms and methodologies) and interlocked safety systems for storage ring and photon beamlines (including SR and gas bremsstrahlung) are described. Specific safety issues for storage ring top-off injection operation and FEL facilities are discussed. The operational safety program, e.g., operation authorization, commissioning, training, and radiation measurements, for SR facilities is also presented.

  3. Operational Radiation Protection in Synchrotron Light and Free Electron Laser Facilities

    International Nuclear Information System (INIS)

    Liu, James C.; Rokni, Sayed H.; Vylet, Vaclav

    2009-01-01

    The 3rd generation synchrotron radiation (SR) facilities are storage ring based facilities with many insertion devices and photon beamlines, and have low injection beam power (< few tens of watts), but extremely high stored beam power (∼ 1 GW). The 4th generation x-ray free electron laser (FEL) facilities are based on an electron Linac with a long undulator and have high injection beam power (a few kW). Due to its electron and photon beam characteristics and modes of operation, storage ring and photon beamlines have unique safety aspects, which are the main subjects of this paper. The shielding design limits, operational modes, and beam losses are first reviewed. Shielding analysis (source terms and methodologies) and interlocked safety systems for storage ring and photon beamlines (including SR and gas bremsstrahlung) are described. Specific safety issues for storage ring top-off injection operation and FEL facilities are discussed. The operational safety program, e.g., operation authorization, commissioning, training, and radiation measurements, for SR facilities is also presented.

  4. Development of a collinear laser spectrometer facility at VECC: First test result

    Science.gov (United States)

    Ali, Md Sabir; Ray, Ayan; Raja, Waseem; Bandyopadhyay, Arup; Naik, Vaishali; Polley, Asish; Chakrabarti, Alok

    2018-04-01

    We report here the development of collinear laser spectroscopy (CLS) system at VECC for the study of hyperfine spectrum and isotopic shift of stable and unstable isotopes. The facility is first of its kind in the country allowing measurement of hyperfine splitting of atomic levels using atomic beams. The CLS system is installed downstream of the focal plane of the existing isotope separator online (ISOL) facility at VECC and is recently commissioned by successfully resolving the fluorescence spectrum of the hyperfine levels in ^{85,87}Rb. The atomic beams of Rb were produced by charge exchange of 8 keV Rb ion beam which were produced, extracted and transported to the charge exchange cell using the ion sources, extractor and the beam-line magnets of the ISOL facility. The laser propagating opposite to the ion / atom beam direction was allowed to interact with the atom beam and fluorescence spectrum was recorded. The experimental set-up and the experiment conducted are reported in detail. The measures needed to be carried out for improving the sensitivity to a level necessary for studying short-lived exotic nuclei have also been discussed.

  5. Design of the energy storage system for the High Energy Gas Laser Facility at LASL

    International Nuclear Information System (INIS)

    Riepe, K.B.; Kircher, M.J.

    1977-01-01

    The Antares laser is being built in the High Energy Gas Laser Facility (HEGLF) at Los Alamos to continue laser fusion experiments at very high power. The laser medium will be pumped by an electrical discharge, which requires an energy input of about 5 MJ in a few microseconds at about 500 kV. The energy storage system which will provide the pulsed power will be a bank of high-voltage pulse-forming networks. Tradeoff studies have been performed comparing the performance of multi-mesh networks with single-mesh networks. The single-mesh network requires about 20% more energy than a two-mesh network, but will tolerate three times the inductance of a two-mesh network. Analysis also shows that amplifier gain is not sensitive to impedance mismatch among the pulse-forming network, the transmission cables, and the gas discharge. A prototype pulse-forming network is being built to test components and trigger performance. It is a Marx generator storing 300 kJ at 1.2 MV open circuit, with 3 μH internal inductance

  6. A HWIL test facility of infrared imaging laser radar using direct signal injection

    Science.gov (United States)

    Wang, Qian; Lu, Wei; Wang, Chunhui; Wang, Qi

    2005-01-01

    Laser radar has been widely used these years and the hardware-in-the-loop (HWIL) testing of laser radar become important because of its low cost and high fidelity compare with On-the-Fly testing and whole digital simulation separately. Scene generation and projection two key technologies of hardware-in-the-loop testing of laser radar and is a complicated problem because the 3D images result from time delay. The scene generation process begins with the definition of the target geometry and reflectivity and range. The real-time 3D scene generation computer is a PC based hardware and the 3D target models were modeled using 3dsMAX. The scene generation software was written in C and OpenGL and is executed to extract the Z-buffer from the bit planes to main memory as range image. These pixels contain each target position x, y, z and its respective intensity and range value. Expensive optical injection technologies of scene projection such as LDP array, VCSEL array, DMD and associated scene generation is ongoing. But the optical scene projection is complicated and always unaffordable. In this paper a cheaper test facility was described that uses direct electronic injection to provide rang images for laser radar testing. The electronic delay and pulse shaping circuits inject the scenes directly into the seeker's signal processing unit.

  7. On internal constitution of Jupiter

    International Nuclear Information System (INIS)

    Kozyrev, N.A.

    1977-01-01

    Jupiter internal construction is considered. The density and pressure inside a cosmic body can be calculated from the known values of the mass and radius. For Jupiter, the inertia moment calculated from the motion of the satellites permits to determine the degree of uniformity of its structure and to find more precise values of density and pressure in the center of the planet. In assumption that the matter of Jupiter consists of hydrogen only, the dependence of pressure on temperature was calculated with accounting for the degeneracy of gas and electrostatic interactions. Hence the central temperature, calculated from pressure and density, appears to be equal to 165.000 deg K. At the thermal conductivity by free electrons such a temperature at the center is to result in a thermal flux of about 1.0x10 4 erg/cm 2 from Jupiter's surface, which was observed during the flights of the ''Pioneer'' stations

  8. Hybrid Ti:Sapphire / KrF laser facility GARPUN for combined subpicosecond/nanosecond laser-matter interaction studies

    International Nuclear Information System (INIS)

    Zvorykin, V.D.; Ionin, A.A.; Konyashcenko, A.V.; Levchenko, A.O.; Krokhin, O.N.; Mesyats, G.A.; Molchanov, A.G.; Rorulev, M.A.

    2006-01-01

    Complete test of publication follows. Hybrid laser facility consisting of Ti:Sapphire front end, 3ω converter, and e-beam-pumped large-aperture KrF amplifiers is under construction to generate combined sub-picosecond/nanosecond pulses in UV spectral range at 248-nm wavelength. This is a part of the Petawatt excimer laser project started at P.N. Lebedev Physical Institute. In comparison with commonly used solid-state chirped-pulse amplifiers (CPA), KrF amplifiers have following advantages: (i) low-density gaseous matter with three orders of magnitude lower non-linear refraction index has a small value of B-integral and negligible pulse distortion; (ii) short radiation lifetime τ r = 6 ns of the upper laser level of KrF(B-X) transition (with accounting for collisions τ c ∼ 2 ns), that means the population inversion is recovered each 2 ns during the pumping time, which is typically τ p ≥ 100 ns for technical reasons. Thus, it might be possible eliminating of very costly large-aperture compressor gratings and to amplify both short τ sh c and long τ long ≥ τ c pulses in the same amplifiers, as a short pulse does not affect the gain during the most of pumping. This gives a unique opportunity for realization of fast-ignition scheme in Inertial Confinement Fusion using large-scale KrF drivers. The Ti:Sapphire front end 'Start 248M' currently operates with the following parameters: rep rate 10 Hz, pulse energy and duration at fundamental wavelength (744 nm) > 8 mJ and 0.5 mJ and 0.4 mJ, 740 nm) and multi-pass amplifier (10 Hz, > 15 mJ, 740 nm), both pumped by 2ω pulsed Lotis LS-2134 Nd:YAG laser (10 Hz, 10 ns, 532 nm) with distributed energies of 5 and 70 mJ, two-gratings compressor, and 3ω converter with two BBO crystals and total efficiency 8%. EMG 150MSC Lambda Physik KrF laser is used afterwards to generate ns pulses and to amplify fs pulses in its two separate discharge chambers. Two e-beam pumped KrF amplifiers Berdysh and GARPUN with active volumes 10

  9. Vulnerability analysis of DT fusion diagnostics for laser Megajoule facility. A new tool: Diacad

    International Nuclear Information System (INIS)

    D'hose, C.; Baggio, J.; Musseau, O.

    1999-01-01

    The Megajoule laser (LMJ) project is a major component of the French simulation program to study inertial confinement. This new facility will provide an energy 60 times greater than the largest lasers presently available (Phebus, Nova, Omega). Many diagnostic links will have to be developed in order to acquire complementary knowledge in this domain. A computer based tool has been defined. This paper presents the most recent developments of this new CAD (computer assisted diagnosis) tool. We first describe LMJ context, and then the analysis methodology developed to address the sensitivity to transient radiation of nuclear diagnosis links. This tool takes into account the vulnerability of individual parts and the global structure of the link. (A.C.)

  10. Summaries of FY16 LANL experimental campaigns at the OMEGA and EP Laser Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Loomis, Eric Nicholas [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Merritt, Elizabeth Catherine [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Montgomery, David [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Kim, Yong Ho [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Murphy, Thomas Joseph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Johns, Heather Marie [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Kline, John L. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Shah, Rahul C. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Zylstra, Alex [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Herrmann, Hans W. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Schmitt, Mark J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Flippo, Kirk Adler [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Rasmus, Alexander Martin [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-10-25

    In FY16, Los Alamos National Laboratory carried out 22 shot days on the OMEGA and OMEGA- EP laser facilities in the areas of High Energy Density (HED) Science and Inertial Confinement Fusion (ICF). In HED our focus areas were on radiation flow, hydrodynamic turbulent mix and burn, warm dense matter equations of state, and coupled Kelvin-­Helmholtz (KH)/Richtmyer-­ Meshkov (RM) instability growth. For ICF our campaigns focused on the Priority Research Directions (PRD) of implosion phase mix and stagnation and burn, specifically as they pertain to Laser Direct Drive (LDD). We also had several focused shot days on transport properties in the kinetic regime. We continue to develop advanced diagnostics such as Neutron Imaging, Gamma Reaction History, and Gas Cherenkov Detectors. Below are a summary of our campaigns, their motivation, and main results from this year.

  11. Indirect-drive ablative Rayleigh-Taylor growth experiments on the Shenguang-II laser facility

    Energy Technology Data Exchange (ETDEWEB)

    Wu, J. F.; Fan, Z. F.; Zheng, W. D.; Wang, M.; Pei, W. B.; Zhu, S. P.; Zhang, W. Y. [Institute of Applied Physics and Computational Mathematics, Beijing 100094 (China); Miao, W. Y.; Yuan, Y. T.; Cao, Z. R.; Deng, B.; Jiang, S. E.; Liu, S. Y.; Ding, Y. K. [Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900 (China); Wang, L. F.; Ye, W. H., E-mail: ye-wenhua@iapcm.ac.cn; He, X. T. [Institute of Applied Physics and Computational Mathematics, Beijing 100094 (China); HEDPS, Center for Applied Physics and Technology, Peking University, Beijing 100871 (China)

    2014-04-15

    In this research, a series of single-mode, indirect-drive, ablative Rayleigh-Taylor (RT) instability experiments performed on the Shenguang-II laser facility [X. T. He and W. Y. Zhang, Eur. Phys. J. D 44, 227 (2007)] using planar target is reported. The simulation results from the one-dimensional hydrocode for the planar foil trajectory experiment indicate that the energy flux at the hohlraum wall is obviously less than that at the laser entrance hole. Furthermore, the non-Planckian spectra of x-ray source can strikingly affect the dynamics of the foil flight and the perturbation growth. Clear images recorded by an x-ray framing camera for the RT growth initiated by small- and large-amplitude perturbations are obtained. The observed onset of harmonic generation and transition from linear to nonlinear growth regime is well predicted by two-dimensional hydrocode simulations.

  12. Data acquisition and processing system at the NOVETTE laser-fusion facility

    International Nuclear Information System (INIS)

    Auerbach, J.M.; Severyn, J.R.; Kroepfl, D.J.

    1982-01-01

    The computer hardware and software used for acquisition and processing of data from experiments at the NOVETTE laser fusion facility are described. Nearly two hundred sensors are used to measure the performance of millimeter extent targets irradiated by multi-kilojoule laser pulses. Sensor output is recorded on CAMAC based digitizers, CCD arrays, and film. CAMAC instrument outputs are acquired and collected by a network of LSI-11 microprocessors centrally controlled by a VAX 11/780. The user controls the system through menus presented on color video displays equipped with touch panels. The control VAX collects data from all microprocessors and CCD arrays and stores them in a file for transport to a second VAX 11/780 which is used for processing and final analysis. Transfer is done through a high speed fiber-optic link. Relational data bases are used extensively in the processing and archiving of data

  13. Software systems for processing and analysis of experimental data at the Nova laser facility

    International Nuclear Information System (INIS)

    Auerbach, J.M.; McCauley, E.W.; Stone, G.F.; Montgomery, D.S.

    1986-01-01

    A typical laser-plasma interaction experiment at the Nova laser facility produces in excess of 20 megabytes of digitized data. Extensive processing and analysis of this raw data from a wide variety of instruments is necessary to produce data that can be readily used to interpret the experiment. The authors describe how using VAX based computer hardware, a software system has been set up to convert the digitized instrument output to physics quantities describing the experiment. A relational data base management system is used to coordinate all levels of processing and analysis. Extensive data bases of instrument response and set-up parameters are used at all levels of processing and archiving. An extensive set of programs is used to handle the large amounts of X, Y, Z data recorded on film by the bulk of Nova diagnostics. Software development emphasizes structured design, flexibility, automation and ease of use

  14. High performance capsule implosions on the OMEGA Laser facility with rugby hohlraums

    International Nuclear Information System (INIS)

    Robey, H. F.; Amendt, P.; Park, H.-S.; Town, R. P. J.; Milovich, J. L.; Doeppner, T.; Hinkel, D. E.; Wallace, R.; Sorce, C.; Strozzi, D. J.; Philippe, F.; Casner, A.; Caillaud, T.; Landoas, O.; Liberatore, S.; Monteil, M.-C.; Seguin, F.; Rosenberg, M.; Li, C. K.; Petrasso, R.

    2010-01-01

    Rugby-shaped hohlraums have been proposed as a method for x-ray drive enhancement for indirectly driven capsule implosions. This concept has recently been tested in a series of shots on the OMEGA laser facility [T. R. Boehly, D. L. Brown, R. S. Craxton et al., Opt. Commun. 133, 495 (1997)]. In this paper, experimental results are presented comparing the performance of D 2 -filled capsules between standard cylindrical Au hohlraums and rugby-shaped hohlraums. The rugby hohlraums demonstrated 18% more x-ray drive energy as compared with the cylinders, and the high-performance design of these implosions (both cylinder and rugby) also provided ≅20x more deuterium (DD) neutrons than any previous indirectly driven campaign on OMEGA and ≅3x more than ever achieved on NOVA [E. M. Campbell, Laser Part. Beams 9, 209 (1991)] implosions driven with nearly twice the laser energy. This increase in performance enables, for the first time, a measurement of the neutron burn history and imaging of the neutron core shapes in an indirectly driven implosion. Previous DD neutron yields had been too low to register this key measurement of capsule performance and the effects of dynamic mix. A wealth of additional data on the fuel areal density from the suite of charged particle diagnostics was obtained on a subset of the shots that used D 3 He rather than D 2 fuel. Comparisons of the experimental results with numerical simulations are shown to be in very good agreement. The design techniques employed in this campaign, e.g., smaller laser entrance holes and hohlraum case-to-capsule ratios, provide added confidence in the pursuit of ignition on the National Ignition Facility [J. D. Lindl, P. Amendt, R. L. Berger et al., Phys. Plasmas 11, 339 (2004)].

  15. High performance capsule implosions on the OMEGA Laser facility with rugby hohlraumsa)

    Science.gov (United States)

    Robey, H. F.; Amendt, P.; Park, H.-S.; Town, R. P. J.; Milovich, J. L.; Döppner, T.; Hinkel, D. E.; Wallace, R.; Sorce, C.; Strozzi, D. J.; Philippe, F.; Casner, A.; Caillaud, T.; Landoas, O.; Liberatore, S.; Monteil, M.-C.; Séguin, F.; Rosenberg, M.; Li, C. K.; Petrasso, R.; Glebov, V.; Stoeckl, C.; Nikroo, A.; Giraldez, E.

    2010-05-01

    Rugby-shaped hohlraums have been proposed as a method for x-ray drive enhancement for indirectly driven capsule implosions. This concept has recently been tested in a series of shots on the OMEGA laser facility [T. R. Boehly, D. L. Brown, R. S. Craxton et al., Opt. Commun. 133, 495 (1997)]. In this paper, experimental results are presented comparing the performance of D2-filled capsules between standard cylindrical Au hohlraums and rugby-shaped hohlraums. The rugby hohlraums demonstrated 18% more x-ray drive energy as compared with the cylinders, and the high-performance design of these implosions (both cylinder and rugby) also provided ≈20× more deuterium (DD) neutrons than any previous indirectly driven campaign on OMEGA and ≈3× more than ever achieved on NOVA [E. M. Campbell, Laser Part. Beams 9, 209 (1991)] implosions driven with nearly twice the laser energy. This increase in performance enables, for the first time, a measurement of the neutron burn history and imaging of the neutron core shapes in an indirectly driven implosion. Previous DD neutron yields had been too low to register this key measurement of capsule performance and the effects of dynamic mix. A wealth of additional data on the fuel areal density from the suite of charged particle diagnostics was obtained on a subset of the shots that used D H3e rather than D2 fuel. Comparisons of the experimental results with numerical simulations are shown to be in very good agreement. The design techniques employed in this campaign, e.g., smaller laser entrance holes and hohlraum case-to-capsule ratios, provide added confidence in the pursuit of ignition on the National Ignition Facility [J. D. Lindl, P. Amendt, R. L. Berger et al., Phys. Plasmas 11, 339 (2004)].

  16. High Performance Capsule Implosions on the Omega Laser Facility with Rugby Hohlraums

    Science.gov (United States)

    Robey, Harry F.

    2009-11-01

    Rugby-shaped hohlraums have been proposed as a method for x-ray drive enhancement for indirectly-driven capsule implosions [1]. This concept has recently been tested in a series of shots on the OMEGA laser facility at the Laboratory for Laser Energetics at the University of Rochester. In this talk, experimental results are presented comparing the performance of D2-filled capsules between standard cylindrical Au hohlraums and rugby-shaped hohlraums. Not only did the rugby hohlraums demonstrate 18% more x-ray drive energy as compared with the cylinders, but the high-performance design of these implosions (both cylinder and rugby) also provided 20X more DD neutrons than any previous indirectly-driven campaign on Omega (and 3X more than ever achieved on Nova implosions driven with nearly twice the laser energy). This increase in performance enables, for the first time, a measurement of the neutron burn history of an indirectly-driven implosion. Previous DD neutron yields had been too low to register this key measurement of capsule performance and the effects of dynamic mix. A wealth of additional data on the fuel areal density from the suite of charged particle diagnostics was obtained on a subset of the shots that used D^3He rather than D2 fuel. Comparisons of the experimental results with numerical simulations are shown to be in excellent agreement. The design techniques employed in this campaign, e.g., smaller NIF-like laser entrance holes and hohlraum case-to-capsule ratios, provide added confidence in the pursuit of ignition on the National Ignition Facility. [4pt] [1] P. Amendt, C. Cerjan, D. E. Hinkel, J. L. Milovich, H.-S. Park, and H. F. Robey, ``Rugby-like hohlraum experimental designs for demonstrating x-ray drive enhancement'', Phys. Plasmas 15, 012702 (2008).

  17. Ulysses dust measurements near Jupiter.

    Science.gov (United States)

    Grün, E; Zook, H A; Baguhl, M; Fechtig, H; Hanner, M S; Kissel, J; Lindblad, B A; Linkert, D; Linkert, G; Mann, I B

    1992-09-11

    Submicrometer- to micrometer-sized particles were recorded by the Ulysses dust detector within 40 days of the Jupiter flyby. Nine impacts were recorded within 50 Jupiter radii with most of them recorded after closest approach. Three of these impacts are consistent with particles on prograde orbits around Jupiter and the rest are believed to have resulted from gravitationally focused interplanetary dust. From the ratio of the impact rate before the Jupiter flyby to the impact rate after the Jupiter flyby it is concluded that interplanetary dust particles at the distance of Jupiter move on mostly retrograde orbits. On 10 March 1992, Ulysses passed through an intense dust stream. The dust detector recorded 126 impacts within 26 hours. The stream particles were moving on highly inclined and apparently hyperbolic orbits with perihelion distances of >5 astronomical units. Interplanetary dust is lost rather quickly from the solar system through collisions and other mechanisms and must be almost continuously replenished to maintain observed abundances. Dust flux measurements, therefore, give evidence of the recent rates of production from sources such as comets, asteroids, and moons, as well as the possible presence of interstellar grains.

  18. A laser heating facility for energy-dispersive X-ray absorption spectroscopy

    DEFF Research Database (Denmark)

    Kantor, Innokenty; Marini, C.; Mathon, O.

    2018-01-01

    A double-sided laser heating setup for diamond anvil cells installed on the ID24 beamline of the ESRF is presented here. The setup geometry is specially adopted for the needs of energy-dispersive X-ray absorption spectroscopic (XAS) studies of materials under extreme pressure and temperature...... conditions. We illustrate the performance of the facility with a study on metallic nickel at 60 GPa. The XAS data provide the temperature of the melting onset and quantitative information on the structural parameters of the first coordination shell in the hot solid up to melting....

  19. OMEGA EP: High-Energy Petawatt Capability for the OMEGA Laser Facility

    International Nuclear Information System (INIS)

    Kelly, J.H.; Waxer, L.J.; Bagnoud, V.; Begishev, I.A.; Bromage, J.; Kruschwitz, B.E.; Kessler, T.J.; Loucks, S.J.; Maywar, D.N.; McCrory, R.L.; Meyerhofer, D.D.; Morse, S.F.B.; Oliver, J.B.; Rigatti, A.L.; Schmid, A.W.; Stoeckl, C.; Dalton, S.; Folnsbee, L.; Guardalben, M.J.; Jungquist, R.; Puth, J.; Shoup III, M.J.; Weiner, D.; Zuegel, J.D.

    2006-01-01

    OMEGA EP (Extended Performance) is a petawatt-class addition to the existing 30-kJ, 60-beam OMEGA Laser Facility at the University of Rochester. When completed, it will consist of four beamlines, each capable of producing up to 6.5 kJ at 351 nm in a 1 to 10 ns pulse. Two of the beamlines will produce up to 2.6 kJ in a pulse-width range of 1 to 100 ps at 1053 nm using chirped-pulse amplification (CPA). This paper reviews both the OMEGA EP performance objectives and the enabling technologies required to meet these goals

  20. OMEGA EP: High-energy peta-watt capability for the OMEGA laser facility

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, J.H.; Waxer, L.J.; Bagnoud, V.; Begishev, I.A.; Bromage, J.; Kruschwitz, B.E.; Kessler, T.J.; Loucks, S.J.; Maywar, D.N.; McCrory, R.L.; Meyerhofer, D.D.; Morse, S.F.B.; Oliver, J.B.; Rigatti, A.L.; Schmid, A.W.; Stoeckl, C.; Dalton, S.; Folnsbee, L.; Guardalben, M.J.; Jungquist, R.; Puth, J.; Shoup III, M.J.; Weiner, D.; Zuegel, J.D. [Rochester Univ., Lab. for Laser Energetics, NY (United States)

    2006-06-15

    OMEGA EP (Extended Performance) is a peta-watt-class addition to the existing 30-kJ, 60-beam OMEGA Laser Facility at the University of Rochester. When completed, it will consist of four beamlines, each capable of producing up to 6.5 kJ at 351 nm in a 1 to 10 ns pulse. Two of the beamlines will produce up to 2.6 kJ in a pulse-width range of 1 to 100 ps at 1053 nm using chirped-pulse amplification (CPA). This paper reviews both the OMEGA EP performance objectives and the enabling technologies required to meet these goals. (authors)

  1. OMEGA EP: High-energy peta-watt capability for the OMEGA laser facility

    International Nuclear Information System (INIS)

    Kelly, J.H.; Waxer, L.J.; Bagnoud, V.; Begishev, I.A.; Bromage, J.; Kruschwitz, B.E.; Kessler, T.J.; Loucks, S.J.; Maywar, D.N.; McCrory, R.L.; Meyerhofer, D.D.; Morse, S.F.B.; Oliver, J.B.; Rigatti, A.L.; Schmid, A.W.; Stoeckl, C.; Dalton, S.; Folnsbee, L.; Guardalben, M.J.; Jungquist, R.; Puth, J.; Shoup III, M.J.; Weiner, D.; Zuegel, J.D.

    2006-01-01

    OMEGA EP (Extended Performance) is a peta-watt-class addition to the existing 30-kJ, 60-beam OMEGA Laser Facility at the University of Rochester. When completed, it will consist of four beamlines, each capable of producing up to 6.5 kJ at 351 nm in a 1 to 10 ns pulse. Two of the beamlines will produce up to 2.6 kJ in a pulse-width range of 1 to 100 ps at 1053 nm using chirped-pulse amplification (CPA). This paper reviews both the OMEGA EP performance objectives and the enabling technologies required to meet these goals. (authors)

  2. Laser scattering in large-scale-length plasmas relevant to National Ignition Facility hohlraums

    International Nuclear Information System (INIS)

    MacGowan, B.J.; Berger, R.L.; Afeyan, B.B.

    1996-10-01

    We have used homogeneous plasmas of high density (up to 1.3 X 10 21 electrons per cm 3 ) and temperature (∼ 3 keV) with large density scale lengths (∼2 mm) to approximate conditions within National Ignition Facility (NIF) hohlraums. Within these plasmas we have studied the dependence of stimulated Raman (SRS) and Brillouin (SBS) scattering on beam smoothing and plasma conditions at the relevant laser intensity (3ω, 2 X 10 15 Wcm 2 ). Both SBS and SRS are reduced by the use of smoothing by spectral dispersion (SSD)

  3. Radiation control aspects of the civil construction for a high power free electron laser (FEL) facility

    International Nuclear Information System (INIS)

    Dunn, T.; Neil, G.; Stapleton, G.

    1996-01-01

    The paper discusses some of the assumptions and methods employed for the control of ionizing radiation in the specifications for the civil construction of a planned free electron laser facility based on a 200 MeV, 5 mA superconducting recirculation electron accelerator. Consideration is given firstly to the way in which the underlying building configuration and siting aspects were optimized on the basis of the early assumptions of beam loss and radiation goals. The various design requirements for radiation protection are then considered, and how they were folded into an aesthetically pleasing and functional building

  4. Shock Synthesis in the Atmosphere of Jupiter

    Science.gov (United States)

    Khare, B. N.; Sagan, C.; McDonald, G. D.; de Vanssay, E.; Borucki, W. J.; McKay, C. P.; Bernstein, M. P.; Hartman, T. G.; Lech, J.

    1996-09-01

    We have previously investigated an approximate simulation of the Jupiter troposphere at the 1 bar NH_3 cloud level using Laser Induced Plasma (LIP) for shock synthesis in a 84.62:13.3:1.07:1.01 H_2:He:CH_4:NH_3 gas mixture, and found by GC/MS that HCN is the most abundant product, more abundant than all the major product hydrocarbons (C_2H_6, C_2H_2, C_3H_8, and C_4H10) combined. Using purge and trap isolation techniques on the LIP gas mixture using two absorbent traps in tandem, thermal desorption GC/MS has revealed a large array of product molecules starting from simple hydrocarbons such as C_2H_2, C_2H_4, etc., simple nitriles such as HCN, CH_3CN, etc., to molecules up to C13 (e.g. C13H23N). Here we report the results of our more accurate simulation of Jupiter at the 5 bar level using LIP with a 88:11.7:0.2:0.1 H_2:He:CH_4:NH_3 mixture, for comparison with mass spectral data from the Galileo probe. We detect in this more acurate simulation of Jupiter many of the same compounds, such as HCN, dimethylaminoacetonitrile, and dimethylcyanamide, as in the previous lower dilution experiment. We will compare the present results with those from low-pressure continuous flow plasma discharge experiments (McDonald et al. 1992, al Icarus 99, 131). We will also discuss the relevance of our data in light of the significant discrepancies between standard models of the jovian atmosphere and the compositional data returned by the Galileo entry probe.

  5. R and D for a Soft X-Ray Free Electron Laser Facility

    International Nuclear Information System (INIS)

    Corlett, John; Attwood, David; Byrd, John; Denes, Peter; Falcone, Roger; Heimann, Phil; Leemans, Wim; Padmore, Howard; Prestemon, Soren; Sannibale, Fernando; Schlueter, Ross; Schroeder, Carl; Staples, John; Venturini, Marco; Warwick, Tony; Wells, Russell; Wilcox, Russell; Zholent, Alexander; Adolphsen, Chris; Arthur, John; Bergmann, Uwe; Cai, Yunhai; Colby, Eric; Dowell, David; Emma, Paul; Fox, John; Frisch, Josef; Galayda, John; Hettel, Robert; Huang, Zhirong; Phinney, Nan; Rabedeau, Tom; Raubenheimer, Tor; Reis, David; Schmerge, John; Stoehr, Joachim; Stupakov, Gennady; White, Bill; Xiang, Dao

    2009-01-01

    Several recent reports have identified the scientific requirements for a future soft x-ray light source, and a high-repetition-rate free-electron laser (FEL) facility that is responsive to these requirements is now on the horizon. R and D in some critical areas is needed, however, to demonstrate technical performance, thus reducing technical risks and construction costs. Such a facility most likely will be based on a CW superconducting linear accelerator with beam supplied by a high-brightness, high-repetition-rate photocathode electron gun operating in CW mode, and on an array of FELs to which the accelerated beam is distributed, each operating at high repetition rate and with even pulse spacing. Dependent on experimental requirements, the individual FELs can be configured for either self-amplified spontaneous emission (SASE), seeded, or oscillator mode of operation, including the use of high-gain harmonic generation (HGHG), echo-enhanced harmonic generation (EEHG), harmonic cascade, or other configurations. In this White Paper we identify the overall accelerator R and D needs, and highlight the most important pre-construction R and D tasks required to value-engineer the design configuration and deliverables for such a facility. In Section 1.4 we identify the comprehensive R and D ultimately needed. We identify below the highest-priority requirements for understanding machine performance and reduce risk and costs at this pre-conceptual design stage. Details of implementing the required tasks will be the subject of future evaluation. Our highest-priority R and D program is the injector, which must be capable of delivering a beam with bunches up to a nanocoulomb at MHz repetition rate and with normalized emittance (le) 1 mm · mrad. This will require integrated accelerating structure, cathode, and laser systems development. Cathode materials will impact the choice of laser technology in wavelength and energy per pulse, as well as vacuum requirements in the

  6. R&D for a Soft X-Ray Free Electron Laser Facility

    Energy Technology Data Exchange (ETDEWEB)

    Corlett, John; Attwood, David; Byrd, John; Denes, Peter; Falcone, Roger; Heimann, Phil; Leemans, Wim; Padmore, Howard; Prestemon, Soren; Sannibale, Fernando; Schlueter, Ross; Schroeder, Carl; Staples, John; Venturini, Marco; Warwick, Tony; Wells, Russell; Wilcox, Russell; Zholent, Alexander; Adolphsen, Chris; Arthur, John; Bergmann, Uwe; Cai, Yunhai; Colby, Eric; Dowell, David; Emma, Paul; Fox, John; Frisch, Josef; Galayda, John; Hettel, Robert; Huang, Zhirong; Phinney, Nan; Rabedeau, Tom; Raubenheimer, Tor; Reis, David; Schmerge, John; Stohr, Joachim; Stupakov, Gennady; White, Bill; Xiang, Dao

    2009-06-08

    Several recent reports have identified the scientific requirements for a future soft x-ray light source, and a high-repetition-rate free-electron laser (FEL) facility that is responsive to these requirements is now on the horizon. R&D in some critical areas is needed, however, to demonstrate technical performance, thus reducing technical risks and construction costs. Such a facility most likely will be based on a CW superconducting linear accelerator with beam supplied by a high-brightness, high-repetition-rate photocathode electron gun operating in CW mode, and on an array of FELs to which the accelerated beam is distributed, each operating at high repetition rate and with even pulse spacing. Dependent on experimental requirements, the individual FELs can be configured for either self-amplified spontaneous emission (SASE), seeded, or oscillator mode of operation, including the use of high-gain harmonic generation (HGHG), echo-enhanced harmonic generation (EEHG), harmonic cascade, or other configurations. In this White Paper we identify the overall accelerator R&D needs, and highlight the most important pre-construction R&D tasks required to value-engineer the design configuration and deliverables for such a facility. In Section 1.4 we identify the comprehensive R&D ultimately needed. We identify below the highest-priority requirements for understanding machine performance and reduce risk and costs at this pre-conceptual design stage. Details of implementing the required tasks will be the subject of future evaluation. Our highest-priority R&D program is the injector, which must be capable of delivering a beam with bunches up to a nanocoulomb at MHz repetition rate and with normalized emittance {le} 1 mm {center_dot} mrad. This will require integrated accelerating structure, cathode, and laser systems development. Cathode materials will impact the choice of laser technology in wavelength and energy per pulse, as well as vacuum requirements in the accelerating

  7. Consolidated Laser-Induced Fluorescence Diagnostic Systems for the NASA Ames Arc Jet Facilities

    Science.gov (United States)

    Grinstead, Jay; Wilder, Michael C.; Porter, Barry; Brown, Jeff; Yeung, Dickson; Battazzo, Steve; Brubaker, Tim

    2016-01-01

    The spectroscopic diagnostic technique of two photon absorption laser-induced fluorescence (TALIF) of atomic species for non-intrusive arc jet flow property measurement was first implemented at NASA Ames in the mid-1990s. Use of TALIF expanded at NASA Ames and to NASA Johnsons arc jet facility in the late 2000s. In 2013-2014, NASA combined the agency's large-scale arc jet test capabilities at NASA Ames. Concurrent with that effort, the agency also sponsored a project to establish two comprehensive LIF diagnostic systems for the Aerodynamic Heating Facility (AHF) and Interaction Heating Facility (IHF) arc jets. The scope of the project enabled further engineering development of the existing IHF LIF system as well as the complete reconstruction of the original AHF LIF system. The updated LIF systems are identical in design and capability. They represent the culmination of over 20 years of development experience in transitioning a specialized laboratory research tool into a measurement system for large-scale, high-demand test facilities. This paper documents the overall system design from measurement requirements to implementation. Representative data from the redeveloped AHF and IHF LIF systems are also presented.

  8. Asymmetrically cut crystal pair as x-ray magnifier for imaging at high intensity laser facilities

    Energy Technology Data Exchange (ETDEWEB)

    Szabo, C. I.; Feldman, U. [Artep Inc., 2922 Excelsior Spring Circle, Ellicott City, Maryland 21042 (United States); Seely, J. F. [Space Science Division, Naval Research Laboratory, Washington, DC 20375-5352 (United States); Curry, J. J.; Hudson, L. T.; Henins, A. [National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States)

    2010-10-15

    The potential of an x-ray magnifier prepared from a pair of asymmetrically cut crystals is studied to explore high energy x-ray imaging capabilities at high intensity laser facilities. OMEGA-EP and NIF when irradiating mid and high Z targets can be a source of high-energy x-rays whose production mechanisms and use as backlighters are a subject of active research. This paper studies the properties and potential of existing asymmetric cut crystal pairs from the National Institute of Standards and Technology (NIST) built in a new enclosure for imaging x-ray sources. The technique of the x-ray magnifier has been described previously. This new approach is aimed to find a design that could be used at laser facilities by magnifying the x-ray source into a screen far away from the target chamber center, with fixed magnification defined by the crystals' lattice spacing and the asymmetry angles. The magnified image is monochromatic and the imaging wavelength is set by crystal asymmetry and incidence angles. First laboratory results are presented and discussed.

  9. Techniques for measuring aerosol attenuation using the Central Laser Facility at the Pierre Auger Observatory

    Energy Technology Data Exchange (ETDEWEB)

    Collaboration, The Pierre Auger

    2013-04-01

    The Pierre Auger Observatory in Malargüe, Argentina, is designed to study the properties of ultra-high energy cosmic rays with energies above 10(18)eV. It is a hybrid facility that employs a Fluorescence Detector to perform nearly calorimetric measurements of Extensive Air Shower energies. To obtain reliable calorimetric information from the FD, the atmospheric conditions at the observatory need to be continuously monitored during data acquisition. In particular, light attenuation due to aerosols is an important atmospheric correction. The aerosol concentration is highly variable, so that the aerosol attenuation needs to be evaluated hourly. We use light from the Central Laser Facility, located near the center of the observatory site, having an optical signature comparable to that of the highest energy showers detected by the FD. This paper presents two procedures developed to retrieve the aerosol attenuation of fluorescence light from CLF laser shots. Cross checks between the two methods demonstrate that results from both analyses are compatible, and that the uncertainties are well understood. The measurements of the aerosol attenuation provided by the two procedures are currently used at the Pierre Auger Observatory to reconstruct air shower data.

  10. First set of gated x-ray imaging diagnostics for the Laser Megajoule facility

    Energy Technology Data Exchange (ETDEWEB)

    Rosch, R.; Trosseille, C.; Caillaud, T.; Allouche, V.; Bourgade, J. L.; Briat, M.; Brunel, P.; Burillo, M.; Casner, A.; Depierreux, S.; Gontier, D.; Jadaud, J. P.; Le Breton, J. P.; Llavador, P.; Loupias, B.; Miquel, J. L.; Oudot, G.; Perez, S.; Raimbourg, J.; Rousseau, A. [CEA-DAM Ile de France, Bruyères-le-Châtel, 91297 Arpajon Cedex (France); and others

    2016-03-15

    The Laser Megajoule (LMJ) facility located at CEA/CESTA started to operate in the early 2014 with two quadruplets (20 kJ at 351 nm) focused on target for the first experimental campaign. We present here the first set of gated x-ray imaging (GXI) diagnostics implemented on LMJ since mid-2014. This set consists of two imaging diagnostics with spatial, temporal, and broadband spectral resolution. These diagnostics will give basic measurements, during the entire life of the facility, such as position, structure, and balance of beams, but they will also be used to characterize gas filled target implosion symmetry and timing, to study x-ray radiography and hydrodynamic instabilities. The design requires a vulnerability approach, because components will operate in a harsh environment induced by neutron fluxes, gamma rays, debris, and shrapnel. Grazing incidence x-ray microscopes are fielded as far as possible away from the target to minimize potential damage and signal noise due to these sources. These imaging diagnostics incorporate microscopes with large source-to-optic distance and large size gated microchannel plate detectors. Microscopes include optics with grazing incidence mirrors, pinholes, and refractive lenses. Spatial, temporal, and spectral performances have been measured on x-ray tubes and UV lasers at CEA-DIF and at Physikalisch-Technische Bundesanstalt BESSY II synchrotron prior to be set on LMJ. GXI-1 and GXI-2 designs, metrology, and first experiments on LMJ are presented here.

  11. The development of a laser-induced photoacoustic facility for actinide speciation

    International Nuclear Information System (INIS)

    Ewart, F.T.; McMillan, J.W.; Pollard, P.M.; Thomason, H.P.; Liezers, M.

    1987-09-01

    A laser induced photoacoustic spectroscopy (LIPAS) facility has been developed at Harwell to measure actinide species in solution with the minimal disturbance of the species equilibria. The novel true dual beam system, which is based on an excimer laser driven dye laser and optical cells mounted on piezoelectric detectors, has high sensitivity and stability, and is capable of detecting Am(III) at ca 10 -8 M and Np(IV), (V) and (VI) at ca 10 -7 M. Samples can be measured in an inert atmosphere glove box which helps to maintain the anaerobic conditions expected in deep waste repositories. To date, LIPAS has been used to measure actinide species directly in solutions from waste programmes and to observe americium and neptunium species in solutions of varying Eh, pH and carbonate concentration. The information gained is being used to validate the data used in the geochemical/thermodynamic codes used to predict possible radionuclide species within a radioactive waste repository. (author)

  12. The development of a laser-induced photoacoustic facility for actinide speciation

    International Nuclear Information System (INIS)

    Ewart, F.T.; McMillan, J.W.; Thomason, H.P.; Liezers, M.; Pollard, P.M.

    1988-02-01

    A laser induced photoacoustic spectroscopy (LIPAS) facility has been developed at Harwell to measure actinide species in solution with the minimal disturbance of the species equilibria. The novel true dual beam system, which is based on an excimer laser driven dye laser and optical cells mounted on piezoelectric detectors, has high sensitivity and stability, and is capable of detecting Am(III) at ca 10 -8 M and Np(IV), (V) and (VI) at ca 10 -7 M. Samples can be measured in an inert atmosphere glove box which helps to maintain the anaerobic conditions expected in deep waste repositories. To date, LIPAS has been used to measure actinide species directly in solutions from waste programmes and to observe americium and neptunium species in solutions of varying Eh, pH and carbonate concentration. The information gained is being used to validate the data used in the geochemical/thermodynamic codes used to predict possible radionuclide species within a radioactive waste repository. (author)

  13. High-energy x-ray microscopy of laser-fusion plasmas at the National Ignition Facility

    International Nuclear Information System (INIS)

    Koch, J.A.; Landen, O.L.; Hammel, B.A.

    1997-01-01

    Multi-keV x-ray microscopy will be an important laser-produced plasma diagnostic at future megajoule facilities such as the National Ignition Facility (NIF).In preparation for the construction of this facility, we have investigated several instrumentation options in detail, and we conclude that near normal incidence single spherical or toroidal crystals may offer the best general solution for high-energy x-raymicroscopy at NIF and at similar large facilities. Kirkpatrick-Baez microscopes using multi-layer mirrors may also be good secondary options, particularly if apertures are used to increase the band-width limited field of view

  14. Hubble Images Reveal Jupiter's Auroras

    Science.gov (United States)

    1996-01-01

    These images, taken by the Hubble Space Telescope, reveal changes in Jupiter's auroral emissions and how small auroral spots just outside the emission rings are linked to the planet's volcanic moon, Io. The images represent the most sensitive and sharply-detailed views ever taken of Jovian auroras.The top panel pinpoints the effects of emissions from Io, which is about the size of Earth's moon. The black-and-white image on the left, taken in visible light, shows how Io and Jupiter are linked by an invisible electrical current of charged particles called a 'flux tube.' The particles - ejected from Io (the bright spot on Jupiter's right) by volcanic eruptions - flow along Jupiter's magnetic field lines, which thread through Io, to the planet's north and south magnetic poles. This image also shows the belts of clouds surrounding Jupiter as well as the Great Red Spot.The black-and-white image on the right, taken in ultraviolet light about 15 minutes later, shows Jupiter's auroral emissions at the north and south poles. Just outside these emissions are the auroral spots. Called 'footprints,' the spots are created when the particles in Io's 'flux tube' reach Jupiter's upper atmosphere and interact with hydrogen gas, making it fluoresce. In this image, Io is not observable because it is faint in the ultraviolet.The two ultraviolet images at the bottom of the picture show how the auroral emissions change in brightness and structure as Jupiter rotates. These false-color images also reveal how the magnetic field is offset from Jupiter's spin axis by 10 to 15 degrees. In the right image, the north auroral emission is rising over the left limb; the south auroral oval is beginning to set. The image on the left, obtained on a different date, shows a full view of the north aurora, with a strong emission inside the main auroral oval.The images were taken by the telescope's Wide Field and Planetary Camera 2 between May 1994 and September 1995.This image and other images and data

  15. Galileo's Telescopy and Jupiter's Tablet

    Science.gov (United States)

    Usher, P. D.

    2003-12-01

    A previous paper (BAAS 33:4, 1363, 2001) reported on the dramatic scene in Shakespeare's Cymbeline that features the descent of the deity Jupiter. The paper suggested that the four ghosts circling the sleeping Posthumus denote the four Galilean moons of Jupiter. The god Jupiter commands the ghosts to lay a tablet upon the prone Posthumus, but says that its value should not be overestimated. When Posthumus wakens he notices the tablet, which he calls a "book." Not only has the deity's "tablet" become the earthling's "book," but it appears that the book has covers which Posthumus evidently recognizes because without even opening the book he ascribes two further properties to it: rarity, and the very property that Jupiter had earlier attributed, viz. that one must not read too much into it. The mystery deepens when the Jovian gift undergoes a second metamorphosis, to "label." With the help of the OED, the potentially disparate terms "tablet," "book," and "label," may be explained by terms appropriate either to supernatural or worldly beings. "Tablet" may recognize the Mosaic artifact, whereas "book" and "label" are probably mundane references to Galileo's Sidereus Nuncius which appeared shortly before Cymbeline. The message of the Olympian god indicates therefore that the book is unique even as its contents have limited value. The first property celebrates the fact that Galileo's book is the first of its kind, and the second advises that all results except the discovery of Jupiter's moons have been reported earlier, in Hamlet.

  16. Laser-Plasma Interactions in Drive Campaign targets on the National Ignition Facility

    International Nuclear Information System (INIS)

    Hinkel, D E; Callahan, D A; Moody, J D; Amendt, P A; Lasinski, B F; MacGowan, B J; Meeker, D; Michel, P A; Ralph, J; Rosen, M D; Ross, J S; Schneider, M B; Storm, E; Strozzi, D J; Williams, E A

    2016-01-01

    The Drive campaign [D A Callahan et al., this conference] on the National Ignition Facility (NIF) laser [E. I. Moses, R. N. Boyd, B. A. Remington, C. J. Keane, R. Al-Ayat, Phys. Plasmas 16, 041006 (2009)] has the focused goal of understanding and optimizing the hohlraum for ignition. Both the temperature and symmetry of the radiation drive depend on laser and hohlraum characteristics. The drive temperature depends on the coupling of laser energy to the hohlraum, and the symmetry of the drive depends on beam-to-beam interactions that result in energy transfer [P. A. Michel, S. H. Glenzer, L. Divol, et al, Phys. Plasmas 17, 056305 (2010).] within the hohlraum. To this end, hohlraums are being fielded where shape (rugby vs. cylindrical hohlraums), gas fill composition (neopentane at room temperature vs. cryogenic helium), and gas fill density (increase of ∼ 150%) are independently changed. Cylindrical hohlraums with higher gas fill density show improved inner beam propagation, as should rugby hohlraums, because of the larger radius over the capsule (7 mm vs. 5.75 mm in a cylindrical hohlraum). Energy coupling improves in room temperature neopentane targets, as well as in hohlraums at higher gas fill density. In addition cross-beam energy transfer is being addressed directly by using targets that mock up one end of a hohlraum, but allow observation of the laser beam uniformity after energy transfer. Ideas such as splitting quads into “doublets” by re-pointing the right and left half of quads are also being pursued. LPI results of the Drive campaign will be summarized, and analyses of future directions presented. (paper)

  17. Optical design of the National Ignition Facility main laser and switchyard/target area beam transport systems

    Science.gov (United States)

    Miller, John L.; English, R. Edward, Jr.; Korniski, Ronald J.; Rodgers, J. Michael

    1999-07-01

    The optical design of the main laser and transport mirror sections of the National Ignition Facility are described. For the main laser the configuration, layout constraints, multiple beam arrangement, pinhole layout and beam paths, clear aperture budget, ray trace models, alignment constraints, lens designs, wavefront performance, and pupil aberrations are discussed. For the transport mirror system the layout, alignment controls and clear aperture budget are described.

  18. Scientists Revise Thinking on Comets, Planet Jupiter

    Science.gov (United States)

    Chemical and Engineering News, 1974

    1974-01-01

    Discusses scientific information obtained from Pioneer 10's Jupiter flyby and the comet Kohoutek's first trip around the sun, including the high hydrogen emission of Jupiter's principal moon, Io. (CC)

  19. Jupiter radiation belt models (July 1974)

    International Nuclear Information System (INIS)

    Divine, N.

    1974-01-01

    Flux profiles which were derived from data returned by Pioneer 10 during Jupiter encounter, form the basis for a new set of numerical models for the energy spectra of electrons and protons in Jupiter's inner magnetosphere

  20. Laser Performance Operations Model (LPOM): A Tool to Automate the Setup and Diagnosis of the National Ignition Facility

    International Nuclear Information System (INIS)

    Shaw, M; House, R; Haynam, C; Williams, W

    2005-01-01

    The National Ignition Facility (NIF), currently under construction at the University of California's Lawrence Livermore National Laboratory (LLNL) is a stadium-sized facility containing a 192-beam, 1.8 MJ, 500-TW, 351-nm laser system together with a 10-m diameter target chamber with room for nearly 100 experimental diagnostics. When completed, NIF will be the world's largest laser experimental system, providing a national center to study inertial confinement fusion and the physics of matter at extreme energy densities and pressures. The first four beamlines (a quad) have recently been commissioned, and operations on the first bundle (units of eight beamlines) will begin in Summer 2005. A computational system, the Laser Performance Operations Model (LPOM) has been developed and deployed to automate the laser setup process, and accurately predict laser energetics. For each shot on NIF, the LPOM determines the characteristics of the injection laser system required to achieve the desired main laser output, provides parameter checking for equipment protection, determines the required diagnostic setup, and supplies post-shot data analysis and reporting

  1. National Ignition Facility quality assurance plan for laser materials and optical technology

    Energy Technology Data Exchange (ETDEWEB)

    Wolfe, C.R.

    1996-05-01

    Quality achievement is the responsibility of the line organizations of the National Ignition Facility (NIF) Project. This subtier Quality Assurance Plan (QAP) applies to activities of the Laser Materials & Optical Technology (LM&OT) organization and its subcontractors. It responds to the NIF Quality Assurance Program Plan (QAPP, L-15958-2, NIF-95-499) and Department of Energy (DOE) Order 5700.6C. This Plan is organized according to 10 Quality Assurance (QA) criteria and subelements of a management system as outlined in the NIF QAPP. This Plan describes how those QA requirements are met. This Plan is authorized by the Associate Project Leader for the LM&OT organization, who has assigned responsibility to the Optics QA engineer to maintain this plan, with the assistance of the NIF QA organization. This Plan governs quality-affecting activities associated with: design; procurement; fabrication; testing and acceptance; handling and storage; and installation of NIF Project optical components into mounts and subassemblies.

  2. Studies on a VUV free electron laser at the TESLA Test Facility at DESY

    Energy Technology Data Exchange (ETDEWEB)

    Rossbach, J. [Deutsches Elektronen-Synchrotron, Hamburg (Germany)

    1995-12-31

    The TESLA Test Facility (TTF) currently under construction at DESY is a test-bed for acceleration sections of a high-gradient, high efficiency superconducting linear collider. Due to ist unrivaled ability to sustain high beam quality during acceleration, a superconducting rf linac is considered the optimum choice to drive a Free Electron Laser (FEL). We aim at a photon wavelength of {lambda} = 6 manometer utilizing the TTF after is has been extended to 1 GeV beam energy. Due to lack of mirrors and seed-lasers in this wavelength regime, a single pass FEL and Self-Amplified-Spontaneous-Emission (SASE) is considered. A first test is foreseen at a larger photon wavelength. The overall design as well as both electron and photon beam properties will be discussed. To reach the desired photon wavelength, the main components that have to be added to the TTF are: (a) a low emittance rf gun including space charge compensation (b) a two stage bunch compressor increasing the peak bunch current from 100 A up to 2500 A (c) four more accelerating modules to achieve 1 GeV beam energy (d) a 25 m long undulator (period length 27 mm, peak field 0.5 T) The average brillance will be larger than 1-10{sup 22}photons/s/mm{sup 2}/mrad{sup 2}/0.1%. Each 800 {mu}s long pulse will contain up to 7200 equidistant bunches. The repetition frequency of the linac is 10 Hz.

  3. The effects of early time laser drive on hydrodynamic instability growth in National Ignition Facility implosions

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, J. L.; Clark, D. S.; Suter, L. J. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Masse, L. P. [CEA, DAM, DIF, 91297 Arpajon (France)

    2014-09-15

    Defects on inertial confinement fusion capsule surfaces can seed hydrodynamic instability growth and adversely affect capsule performance. The dynamics of shocks launched during the early period of x-ray driven National Ignition Facility (NIF) implosions determine whether perturbations will grow inward or outward at peak implosion velocity and final compression. In particular, the strength of the first shock, launched at the beginning of the laser pulse, plays an important role in determining Richtmyer-Meshkov (RM) oscillations on the ablation front. These surface oscillations can couple to the capsule interior through subsequent shocks before experiencing Rayleigh-Taylor (RT) growth. We compare radiation hydrodynamic simulations of NIF implosions to analytic theories of the ablative RM and RT instabilities to illustrate how early time laser strength can alter peak velocity growth. We develop a model that couples the RM and RT implosion phases and captures key features of full simulations. We also show how three key parameters can control the modal demarcation between outward and inward growth.

  4. High contrast high intensity petawatt J-KAREN-P laser facility at QST

    Science.gov (United States)

    Nishiuchi, Mamiko; Kiriyama, Hiromitsu; Sakaki, Hironao; Dover, Nicholas P.; Kondo, Kotaro; Pirozhkov, Alexander S.; Sagisaka, Akito; Fukuda, Yuji; Nishitani, Keita; Miyahara, Takumi; Ogura, Koichi; Alkhimova, Mariya A.; Pikuz, Tatiana A.; Faenov, Anatoly Y.; Watanabe, Yukinobu; Koga, James; Bulanov, Sergei V.; Kando, Masaki; Kondo, Kiminori

    2017-05-01

    We report on the J-KAREN-P laser facility at QST, which can provide PW peak power at 0.1 Hz on target. The system can deliver short pulses with an energy of 30 J and pulse duration of 30 fs after compression with a contrast level of better than 1012. Such performance in high field science will give rise to the birth of new applications and breakthroughs, which include relativistic particle acceleration, bright x-ray source generation, and nuclear activation. The current achieved laser intensity on target is up to > 9x1021 Wcm-2 with an energy of 9 J on target. The interaction with a 3 to 5- μm stainless steel tape target provides us electrons with a typical temperature of more than 10 MeV and energetic proton beams with typical maximum energies of > 40 MeV with good reproducibility. The protons are accelerated in the Target Normal Sheath Acceleration regime, which is suitable for many applications including as an injector into a beamline for medical use, which is one of our objectives.

  5. Designing symmetric polar direct drive implosions on the Omega laser facility

    Energy Technology Data Exchange (ETDEWEB)

    Krasheninnikova, Natalia S.; Cobble, James A.; Murphy, Thomas J.; Tregillis, Ian L.; Bradley, Paul A.; Hakel, Peter; Hsu, Scott C.; Kyrala, George A.; Obrey, Kimberly A.; Schmitt, Mark J.; Baumgaertel, Jessica A.; Batha, Steven H. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

    2014-04-15

    Achieving symmetric capsule implosions with Polar Direct Drive [S. Skupsky et al., Phys. Plasmas 11, 2763 (2004); R. S. Craxton et al., Phys. Plasmas 12, 056304 (2005); F. J. Marshall et al., J. Phys. IV France 133, 153–157 (2006)] has been explored during recent Defect Induced Mix Experiment campaign on the Omega facility at the Laboratory for Laser Energetics. To minimize the implosion asymmetry due to laser drive, optimized laser cone powers, as well as improved beam pointings, were designed using 3D radiation-hydrodynamics code HYDRA [M. M. Marinak et al., Phys. Plasmas 3, 2070 (1996)]. Experimental back-lit radiographic and self-emission images revealed improved polar symmetry and increased neutron yield which were in good agreement with 2D HYDRA simulations. In particular, by reducing the energy in Omega's 21.4° polar rings by 16.75%, while increasing the energy in the 58.9° equatorial rings by 8.25% in such a way as to keep the overall energy to the target at 16 kJ, the second Legendre mode (P{sub 2}) was reduced by a factor of 2, to less than 4% at bang time. At the same time the neutron yield increased by 62%. The polar symmetry was also improved relative to nominal DIME settings by a more radical repointing of OMEGA's 42.0° and 58.9° degree beams, to compensate for oblique incidence and reduced absorption at the equator, resulting in virtually no P{sub 2} around bang time and 33% more yield.

  6. Study of Jupiter polarization properties

    International Nuclear Information System (INIS)

    Bolkvadze, O.R.

    1980-01-01

    Investigations into polarization properties of the Jupiter reflected light were carried on at the Abastumani astrophysical observatory in 1967, 1968 and 1969 in the four spectral ranges: 4000, 4800, 5400 and 6600 A deg. Data on light polarization in different parts of the Jupiter visible disk are given. Curves of dependence of the planet light polarization degree on a phase angle are plotted. It is shown that in the central part of the visible planet disk the polarization degree is low. Atmosphere is in a stable state in this part of Jupiter. Mean radius of particles of a cloud layer is equal to 0.26μ, and optical thickness of overcloud atmosphere tau=0.05. Height of transition boundary of the cloud layer into overcloud gas atmosphere changes from year to year at the edges of the equatorial zone. Optical thickness of overcloud atmosphere changes also with changing height of a transient layer. The polar Jupiter regions possess a high degree of polarization which depends on a latitude. Polarization increases monotonously with the latitude and over polar regions accepts a maximum value [ru

  7. National Ignition Facility subsystem design requirements laser and target area building (LTAB) SSDR 1.2.2.1

    International Nuclear Information System (INIS)

    Kempel, P.; Hands, J.

    1996-01-01

    This Subsystem Design Requirements (SSDR) document establishes the performance, design, and verification requirements for the conventional building systems and subsystems of the Laser and Target Area Building (LTAB), including those that house and support the operation of high-energy laser equipment and the operational flow of personnel and materials throughout the facility. This SSDR addresses the following subsystems associated with the LTAB: Building structural systems for the Target Bay, Switchyards, Diagnostic Building, Decontamination Area, Laser Bays, Capacitor Bays and Operations Support Area, and the necessary space associated with building-support equipment; Architectural building features associated with housing the space and with the operational cleanliness of the functional operation of the facilities; Heating, Ventilating, and Air Conditioning (HVAC) systems for maintaining a clean and thermally stable ambient environment within the facilities; Plumbing systems that provide potable water and sanitary facilities for the occupants, plus stormwater drainage for transporting rainwater; Fire Protection systems that guard against fire damage to the facilities and their contents; Material handling systems for transporting personnel and heavy materials within the building areas; Mechanical process piping systems for liquids and gases that provide cooling and other service to experimental laser equipment and components; Electrical power and grounding systems that provide service and standby power to building and experimental equipment, including lighting distribution and communications systems for the facilities; Instrumentation and control systems that ensure the safe operation of conventional facilities systems, such as those listed above. Detailed requirements for building subsystems that are not addressed in this document (such as specific sizes, locations, or capacities) are included in detail-level NIP Project Interface Control Documents (ICDS)

  8. Jupiter: Cosmic Jekyll and Hyde.

    Science.gov (United States)

    Grazier, Kevin R

    2016-01-01

    It has been widely reported that Jupiter has a profound role in shielding the terrestrial planets from comet impacts in the Solar System, and that a jovian planet is a requirement for the evolution of life on Earth. To evaluate whether jovians, in fact, shield habitable planets from impacts (a phenomenon often referred to as the "Jupiter as shield" concept), this study simulated the evolution of 10,000 particles in each of the jovian inter-planet gaps for the cases of full-mass and embryo planets for up to 100 My. The results of these simulations predict a number of phenomena that not only discount the "Jupiter as shield" concept, they also predict that in a Solar System like ours, large gas giants like Saturn and Jupiter had a different, and potentially even more important, role in the evolution of life on our planet by delivering the volatile-laden material required for the formation of life. The simulations illustrate that, although all particles occupied "non-life threatening" orbits at their onset of the simulations, a significant fraction of the 30,000 particles evolved into Earth-crossing orbits. A comparison of multiple runs with different planetary configurations revealed that Jupiter was responsible for the vast majority of the encounters that "kicked" outer planet material into the terrestrial planet region, and that Saturn assisted in the process far more than has previously been acknowledged. Jupiter also tends to "fix" the aphelion of planetesimals at its orbit irrespective of their initial starting zones, which has the effect of slowing their passages through the inner Solar System, and thus potentially improving the odds of accretion of cometary material by terrestrial planets. As expected, the simulations indicate that the full-mass planets perturb many objects into the deep outer Solar System, or eject them entirely; however, planetary embryos also did this with surprising efficiency. Finally, the simulations predict that Jupiter's capacity to

  9. Structure stability index allocation theory and measurement of laser prototype facility

    International Nuclear Information System (INIS)

    Zhang Junwei; China Academy of Engineering Physics, Mianyang; Zhou Hai; Feng Bin; Lin Donghui; Jing Feng; Zhou Yi; Wang Shilong

    2008-01-01

    Structure stability is an important design index of ICF driver. Based on laser prototype facility(TIL) design characteristic of multi-pass amplifier and frame structure, the optical matrix is used to analyze the single optical element influence on the beam drift and get the mathematic model. Considering all the optical elements influence on the beam drift, the mathematic model of the optical element stability index allocation is built, the parameter relation of the mathematic model is defined according to the structure characteristic of TIL, the stability index of each optical element is got as the support structure design index. Charge-coupled device(CCD) detect technology is used to measure the general beam stability of TIL. The root mean square beam drift in x and y direction are 2.78 μm, the difference between peak and valley values are 14.4 μm and 15.60 μm, respectively. The result indicates that the stability drift of the prototype facility can satisfy the design requirement, the way of the stability allocation is reasonable. (authors)

  10. Collimation system for the VUV free-electron laser at the TESLA test facility

    International Nuclear Information System (INIS)

    Schlarb, H.

    2001-11-01

    To perform a proof-of-principle experiment for a Free Electron Laser operating at VUV wavelengths an undulator has been installed in the TESLA Test Facility linac phase I. To meet the requirements on the magnetic field quality in the undulator, a hybrid type structure with NdFeB permanent magnets has been chosen. The permanent magnets are sensitive to radiation by high energy particles. In order to perform the various experiments planned at the TESLA Test Facility linac, a collimator section has been installed to protect the undulator from radiation. In this thesis the design, performance and required steps for commissioning the collimator system are presented. To identify potential difficulties for the linac operation, the beam halo and the dark current transport through the entire linac is discussed. Losses of primary electrons caused by technical failures, component misalignments, and operation errors are investigated by tracking simulations, in order to derive a complete understanding of the absorbed dose in the permanent magnets of the undulator. Various topics related to a collimator system such as the removal of secondary particles produced at the collimators, generation and shielding of neutrons, excitation of wake fields, and beam based alignment concepts are important subjects of this thesis. (orig.)

  11. Atmospheres of Jupiter and Saturn

    International Nuclear Information System (INIS)

    Hunt, G.E.

    1981-01-01

    In this paper the current knowledge of the atmospheres of Jupiter and Saturn are reviewed making use of the extensive telescopic studies, International Ultraviolet Explorer Satellite observations and the measurements made during the recent Pioneer and Voyager flybys which have been supported by detailed theoretical studies. A detailed discussion is given of the composition of these atmospheres and the abundance ratios which provide insight into their original state and their evolution. The Voyager observations indicate a surprisingly close similarity between the weather systems of the Earth and the giant planets. Although both Jupiter and Saturn have internal heat sources, and are therefore star-like in their interiors, they appear to produce terrestrial-style weather systems. A detailed discussion is given of this work, which forms a major study of the Laboratory for Planetary Atmospheres at University College London. (author)

  12. Analysis of the X-ray emission spectra of copper, germanium and rubidium plasmas produced at the Phelix laser facility

    Science.gov (United States)

    Comet, M.; Pain, J.-C.; Gilleron, F.; Piron, R.; Denis-Petit, D.; Méot, V.; Gosselin, G.; Morel, P.; Hannachi, F.; Gobet, F.; Tarisien, M.; Versteegen, M.

    2017-03-01

    We present the analysis of X-ray emission spectra of copper, germanium and rubidium plasmas measured at the Phelix laser facility. The laser intensity was around 6×1014 W.cm-2. The analysis is based on the hypothesis of an homogeneous plasma in local thermodynamic equilibrium using an effective temperature. This temperature is deduced from hydrodynamic simulations and collisional-radiative computations. Spectra are then calculated using the LTE opacity codes OPAMCDF and SCO-RCG and compared to experimental data.

  13. Symmetry tuning with megajoule laser pulses at the National Ignition Facility

    Directory of Open Access Journals (Sweden)

    Kline J.L.

    2013-11-01

    Full Text Available Experiments conducted at the National Ignition Facility using shaped laser pulses with more than 1 MJ of energy have demonstrated the ability to control the implosion symmetry under ignition conditions. To achieve thermonuclear ignition, the low mode asymmetries must be small to minimize the size of the hotspot. The symmetry tuning experiments use symmetry capsules, “symcaps”, which replace the DT fuel with an equivalent mass of CH to emulate the hydrodynamic behavior of an ignition capsule. The x-ray self-emission signature from gas inside the capsule during the peak compression correlates with the surrounding hotspot shape. By tuning the shape of the self-emission, the capsule implosion symmetry can be made to be “round.” In the experimental results presented here, we utilized crossbeam energy transfer [S. H. Glenzer, et al., Science 327, 1228 (2010] to change the ratio of the inner to outer cone power inside the hohlraum targets on the NIF. Variations in the ratio of the inner cone to outer cone power affect the radiation pattern incident on the capsule modifying the implosion symmetry.

  14. National Ignition Facility quality assurance plan for laser materials and optical technology

    International Nuclear Information System (INIS)

    Wolfe, C.R.

    1996-05-01

    Quality achievement is the responsibility of the line organizations of the National Ignition Facility (NIF) Project. This subtier Quality Assurance Plan (QAP) applies to activities of the Laser Materials ampersand Optical Technology (LM ampersand OT) organization and its subcontractors. It responds to the NIF Quality Assurance Program Plan (QAPP, L-15958-2, NIF-95-499) and Department of Energy (DOE) Order 5700.6C. This Plan is organized according to 10 Quality Assurance (QA) criteria and subelements of a management system as outlined in the NIF QAPP. This Plan describes how those QA requirements are met. This Plan is authorized by the Associate Project Leader for the LM ampersand OT organization, who has assigned responsibility to the Optics QA engineer to maintain this plan, with the assistance of the NIF QA organization. This Plan governs quality-affecting activities associated with: design; procurement; fabrication; testing and acceptance; handling and storage; and installation of NIF Project optical components into mounts and subassemblies

  15. Results from colliding magnetized plasma jet experiments executed at the Trident laser facility

    Science.gov (United States)

    Manuel, M. J.-E.; Rasmus, A. M.; Kurnaz, C. C.; Klein, S. R.; Davis, J. S.; Drake, R. P.; Montgomery, D. S.; Hsu, S. C.; Adams, C. S.; Pollock, B. B.

    2015-11-01

    The interaction of high-velocity plasma flows in a background magnetic field has applications in pulsed-power and fusion schemes, as well as astrophysical environments, such as accretion systems and stellar mass ejections into the magnetosphere. Experiments recently executed at the Trident Laser Facility at the Los Alamos National Laboratory investigated the effects of an expanding aluminum plasma flow into a uniform 4.5-Tesla magnetic field created using a solenoid designed and manufactured at the University of Michigan. Opposing-target experiments demonstrate interesting collisional behavior between the two magnetized flows. Preliminary interferometry and Faraday rotation measurements will be presented and discussed. This work is funded by the U.S Department of Energy, through the NNSA-DS and SC-OFES Joint Program in High-Energy-Density Laboratory Plasmas, grant number DE-NA0001840. Support for this work was provided by NASA through Einstein Postdoctoral Fellowship grant number PF3-140111 awarded by the Chandra X-ray Center, which is operated by the Astrophysical Observatory for NASA under contract NAS8-03060.

  16. Monitoring the electron beam position at the TESLA test facility free electron laser

    Energy Technology Data Exchange (ETDEWEB)

    Kamps, T

    2000-06-14

    The operation of a free electron laser working in the Self Amplified Spontaneous Emission mode (SASE FEL) requires the electron trajectory to be aligned with very high precision in overlap with the photon beam. In order to ensure this overlap, one module of the SASE FEL undulator at the TESLA Test Facility (TTF) is equipped with a new type of waveguide beam position monitor (BPM). Four waveguides are arranged symmetrically around the beam pipe, each channel couples through a small slot to the electromagnetic beam field. The induced signal depends on the beam intensity and on the transverse beam position in terms of beam-to-slot distance. With four slot--waveguide combinations a linear position sensitive signal can be achieved, which is independent of the beam intensity. The signals transduced by the slots are transferred by ridged waveguides through an impedance matching stage into a narrowband receiver tuned to 12 GHz. The present thesis describes design, tests, and implementation of this new type of BPM. (orig.)

  17. Megajoule-class single-pulse KrF laser test facility as a logical step toward inertial fusion commercialization

    International Nuclear Information System (INIS)

    Harris, D.B.; Pendergrass, J.H.

    1985-01-01

    The cost and efficiency of megajoule-class KrF laser single pulse test facilities have been examined. A baseline design is described which illuminates targets with 5 MJ with shaped 10-ns pulses. The system uses 24 main amplifiers and operates with an optics operating fluence of 4.0 J/cm 2 . This system has 9.0% efficiency and costs $200/joule. Tradeoff studies indicate that large amplifier modules and high fluences lead to the lowest laser system costs, but that only a 20% cost savings can be realized by going to amplifier modules larger than 200 kJ and/or fluences greater than 4 J/cm 2 . The role of the megajoule-class single-pulse test facility towards inertial fusion commercialization will also be discussed

  18. Simulation of the hohlraum for a laser facility of Megajoule scale

    Energy Technology Data Exchange (ETDEWEB)

    Chizhkov, M N; Kozmanov, M Y U; Lebedev, S N; Lykov, V A; Rykovanova, V V; Seleznev, V N; Selezneva, K I; Stryakhnina, O V; Shestakov, A A; Vronskiy, A V, E-mail: M.N.Chizhkov@VNIITF.r [Russian Federal Nuclear Center - VNIITF Vasilieva str. 13, Snezhinsk, Chelyabinsk reg., 456770 (Russian Federation)

    2010-08-01

    2D calculations of the promising laser hohlraums were performed with using of the Sinara computer code. These hohlraums are intended for achievement of indirectly-driven thermonuclear ignition at laser energy above 1 MJ. Two calculation variants of the laser assembly with the form close to a rugby ball were carried out: with laser entrance hole shields and without shields. Time dependent hohlraum radiation temperature and x-ray flux asymmetry on a target were obtained.

  19. Simulation of the hohlraum for a laser facility of Megajoule scale

    International Nuclear Information System (INIS)

    Chizhkov, M N; Kozmanov, M Y U; Lebedev, S N; Lykov, V A; Rykovanova, V V; Seleznev, V N; Selezneva, K I; Stryakhnina, O V; Shestakov, A A; Vronskiy, A V

    2010-01-01

    2D calculations of the promising laser hohlraums were performed with using of the Sinara computer code. These hohlraums are intended for achievement of indirectly-driven thermonuclear ignition at laser energy above 1 MJ. Two calculation variants of the laser assembly with the form close to a rugby ball were carried out: with laser entrance hole shields and without shields. Time dependent hohlraum radiation temperature and x-ray flux asymmetry on a target were obtained.

  20. Polycyclic aromatic hydrocarbons in the atmospheres of Titan and Jupiter

    Science.gov (United States)

    Sagan, Carl; Khare, B. N.; Thompson, W. R.; Mcdonald, G. D.; Wing, Michael R.; Bada, Jeffrey L.; Vo-Dinh, Tuan; Arakawa, E. T.

    1993-01-01

    PAHs are important components of the interstellar medium and carbonaceous chondrites, but have never been identified in the reducing atmospheres of the outer solar system. Incompletely characterized complex organic solids (tholins) produced by irradiating simulated Titan atmospheres reproduce well the observed UV/visible/IR optical constants of the Titan stratospheric haze. Titan tholin and a tholin generated in a crude simulation of the atmosphere of Jupiter are examined by two-step laser desorption/multiphoton ionization mass spectrometry. A range of two- to four-ring PAHs, some with one to four alkylation sites, are identified, with a net abundance of about 0.0001 g/g (grams per gram) of tholins produced. Synchronous fluorescence techniques confirm this detection. Titan tholins have proportionately more one- and two-ring PAHs than do Jupiter tholins, which in turn have more four-ring and larger PAHs. The four-ringed PAH chrysene, prominent in some discussions of interstellar grains, is found in Jupiter tholins.

  1. Interactive Game for Teaching Laser Amplification Used at the National Ignition Facility

    International Nuclear Information System (INIS)

    Lin, E.

    2009-01-01

    The purpose of this project was to create an interactive game to expose high school students to concepts in laser amplification by demonstrating the National Ignition Facility's main amplifier at Lawrence Livermore National Laboratory. To succeed, the game had to be able to communicate effectively the basic concepts of laser amplification as accurately as possible and to be capable of exposing as many students as possible. Since concepts need to be communicated in a way that students understand, the Science Content Standards for California Public Schools were used to make assumptions about high school students knowledge of light. Effectively communicating a new concept necessitates the omission on terminology and symbolism. Therefore, creating a powerful experience was ideal for communicating this material. Various methods of reinforcing this experience ranging from color choice to abstractions kept the student focused on the game to maximize concept retention. The program was created in Java to allow the creation of a Java Applet that can be embedded onto a webpage, which is a perfect medium for mass exposure. Because a game requires interaction, the game animations had to be easily manipulated to enable the program to respond to user input. Image sprites, as opposed to image folders, were used in these animations to minimize the number of Hypertext Transfer Protocol connections, and thus, significantly reduce the transfer time of necessary animation files. These image sprites were loaded and cropped into a list of animation frames. Since the caching of large transition animations caused the Java Virtual Machine to run out of memory, large animations were implemented as animated Graphics Interchange Format images since transitions require no interaction, and thus, no frame manipulation was needed. This reduced the animation's memory footprint. The first version of this game was completed during this project. Future work for the project could include the creation

  2. Interactive Game for Teaching Laser Amplification Used at the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Lin, E

    2009-08-06

    The purpose of this project was to create an interactive game to expose high school students to concepts in laser amplification by demonstrating the National Ignition Facility's main amplifier at Lawrence Livermore National Laboratory. To succeed, the game had to be able to communicate effectively the basic concepts of laser amplification as accurately as possible and to be capable of exposing as many students as possible. Since concepts need to be communicated in a way that students understand, the Science Content Standards for California Public Schools were used to make assumptions about high school students knowledge of light. Effectively communicating a new concept necessitates the omission on terminology and symbolism. Therefore, creating a powerful experience was ideal for communicating this material. Various methods of reinforcing this experience ranging from color choice to abstractions kept the student focused on the game to maximize concept retention. The program was created in Java to allow the creation of a Java Applet that can be embedded onto a webpage, which is a perfect medium for mass exposure. Because a game requires interaction, the game animations had to be easily manipulated to enable the program to respond to user input. Image sprites, as opposed to image folders, were used in these animations to minimize the number of Hypertext Transfer Protocol connections, and thus, significantly reduce the transfer time of necessary animation files. These image sprites were loaded and cropped into a list of animation frames. Since the caching of large transition animations caused the Java Virtual Machine to run out of memory, large animations were implemented as animated Graphics Interchange Format images since transitions require no interaction, and thus, no frame manipulation was needed. This reduced the animation's memory footprint. The first version of this game was completed during this project. Future work for the project could include the

  3. Strange Isotope Ratios in Jupiter

    Science.gov (United States)

    Manuel, O.; Ragland, D.; Windler, K.; Zirbel, J.; Johannes, L.; Nolte, A.

    1998-05-01

    At the January AAS meeting, Dr. Daniel Goldin ordered the release of isotopic data from the 1995 Galileo probe into Jupiter. This probe took mass readings for mass numbers 2-150, which includes all of the noble gas isotopes. A certain few noble gas isotopes, specifically those at mass/charge = 21, 40, 78, 124, and 126, are difficult to distinguish from background, while interference causes some variation in signals for noble gas isotopes at mass/charge = 20, 22, 36, 38, 40, 80, 82, 83, 84 and 86. Some contamination was caused by incomplete adsorption of low mass hydrocarbons by Carbosieve, the material used in the concentration cells [Space Sci. Rev. 60, 120 (1992)]. Thus, preliminary results are most reliable in the high mass region that includes xenon. The Galileo Probe provided the first direct measurements from a planet with a chemical composition drastically different from Earth. Our preliminary analyses indicate that Jupiter contains Xe-X [Nature 240, 99 (1972)], which differs significantly from Earth's xenon. Xe-X and primordial He are tightly coupled on the microscopic scale of meteorite minerals [Science 195, 208 (1977); Meteoritics 15, 117 (1980)]. The presence today of Xe-X in the He-rich atmosphere of Jupiter suggests that the primordial linkage of Xe-X with He extended across the protosolar nebula, on a planetary scale [Comments Astrophys. 18, 335 (1997)]. Contamination by hydrocarbons and other gases does not necessarily remove light noble gases from further consideration. Currently, isolation of signals of these elements from interference continues and may result in the presentation of many other interesting observations at the conference.

  4. Variability of ethane on Jupiter

    Science.gov (United States)

    Kostiuk, Theodor; Espenak, Fred; Mumma, Michael J.; Deming, Drake; Zipoy, David

    1987-01-01

    Varying stratospheric temperature profiles and C2H6 altitude distributions furnish contexts for the evaluation of ethane abundances and distributions in the Jupiter stratosphere. Substantial ethane line emission and retrieved mole fraction variability is noted near the footprint of Io's flux tube, as well as within the auroral regions. It is suggested that this and other observed phenomena are due to the modification of local stratospheric chemistry by higher-order effects, which are in turn speculated to be due to the precipitation of charged particles along magnetic field lines.

  5. Realization of high irradiation uniformity for direct drive ICF at the SG-III prototype laser facility

    International Nuclear Information System (INIS)

    Tian, C.; Shan, L.; Zhang, B.; Zhou, W.; Liu, D.; Bi, B.; Zhang, F.; Wang, W.; Zhang, B.; Giu, Y.

    2015-01-01

    The direct drive irradiation uniformity during the initial imprinting phase at the SG-III prototype laser facility is analyzed and optimized with different methods. At first, the polar direct drive technique is applied to reduce the root mean square deviation σ from 16.1% to 6.4%. To further reduce the non-uniformity, we propose a new method by adjusting the intensity distribution of the laser spot. The overlap of laser beams on the capsule surface is studied and a factor is introduced to adjust the intensity of the laser spot for achieving absolute irradiation uniformity while bringing wild intensity change at laser spot edges. Noting that the overlapping region at the capsule surface is symmetrically distributed, the contribution of light from the edge of a spot can be transferred to its own internal. The newly adjusted intensity distributes at two main regions and the intensity varies slowly and continuously in each, further reducing σ to about 0.35%. Taken into account that the adjusted intensity has very sharp steps, super-Gaussian spatial profiles are used to approximate the required intensity to make it more practicable, which leads σ to 0.94%. Furthermore, sensitivity analysis to beam errors is performed and results show that this scheme can tolerate a certain amount of uncertainties. (authors)

  6. High-energy fibered amplification for large-scale laser facilities

    International Nuclear Information System (INIS)

    Lago, L.

    2011-01-01

    This work concerns the development of a double-clad ytterbium-doped single-mode micro-structured flexible fiber-based amplifier, in the nanosecond, multi-kilohertz and milli-Joule regime, for large-scale laser facilities seeding. We have used a multi-stage master oscillator power amplifier fibered architecture. A numerical model of ytterbium-doped double-clad fiber-based amplification, including amplified spontaneous emission, was developed in order to study the behaviour of such amplifier and to correctly design the experimental set-up. This model was completed by a feed-back algorithm to numerically predict the optimal temporal shape to compensate the gain saturation process. We demonstrated experimental results in good agreement with numerical simulations, with the following performances: 0.5 mJ pulse energy, at a frequency repetition from 1 kHz to 10 kHz, with a narrow bandwidth spectrum centred at 1053 nm wavelength, with 10 ns pulse duration on a perfect super-Gaussian temporal profile, an optical signal-to-noise ratio better than 50 dB and a polarization extinction ratio of 20 dB. We checked that the beam quality was diffraction limited, with an M 2 measurement of 1.1. Moreover, the system can deliver energies up to 1.5 mJ. Then, we took the advantage of such results to amplify chirped pulses. We demonstrated 0.7 mJ pulse energy, with 570 fs duration at 10 kHz repetition frequency. (author) [fr

  7. Jupiter's magnetosphere and radiation belts

    Science.gov (United States)

    Kennel, C. F.; Coroniti, F. V.

    1979-01-01

    Radioastronomy and Pioneer data reveal the Jovian magnetosphere as a rotating magnetized source of relativistic particles and radio emission, comparable to astrophysical cosmic ray and radio sources, such as pulsars. According to Pioneer data, the magnetic field in the outer magnetosphere is radially extended into a highly time variable disk-shaped configuration which differs fundamentally from the earth's magnetosphere. The outer disk region, and the energetic particles confined in it, are modulated by Jupiter's 10 hr rotation period. The entire outer magnetosphere appears to change drastically on time scales of a few days to a week. In addition to its known modulation of the Jovian decametric radio bursts, Io was found to absorb some radiation belt particles and to accelerate others, and most importantly, to be a source of neutral atoms, and by inference, a heavy ion plasma which may significantly affect the hydrodynamic flow in the magnetosphere. Another important Pioneer finding is that the Jovian outer magnetosphere generates, or permits to escape, fluxes of relativistic electrons of such intensities that Jupiter may be regarded as the dominant source of 1 to 30 MeV cosmic ray electrons in the heliosphere.

  8. Laser plasma interaction on rugby hohlraum on the Omega Laser Facility: Comparisons between cylinder, rugby, and elliptical hohlraums

    Science.gov (United States)

    Masson-Laborde, P. E.; Monteil, M. C.; Tassin, V.; Philippe, F.; Gauthier, P.; Casner, A.; Depierreux, S.; Neuville, C.; Villette, B.; Laffite, S.; Seytor, P.; Fremerye, P.; Seka, W.; Teychenné, D.; Debayle, A.; Marion, D.; Loiseau, P.; Casanova, M.

    2016-02-01

    Gas-filled rugby-shaped hohlraums have demonstrated high performances compared to a classical similar diameter cylinder hohlraum with a nearly 40% increase of x-ray drive, 10% higher measured peak drive temperature, and an increase in neutron production. Experimental comparisons have been done between rugby, cylinder, and elliptical hohlraums. The impact of these geometry differences on the laser plasma instabilities is examined. Using comparisons with hydrodynamic simulations carried out with the code FCI2 and postprocessed by Piranah, we have been able to reproduce the stimulated Raman and Brillouin scattering spectrum of the different beams. Using a methodology based on a statistical analysis for the gain calculations, we show that the behavior of the laser plasma instabilities in rugby hohlraums can be reproduced. The efficiency of laser smoothing techniques to mitigate these instabilities are discussed, and we show that while rugby hohlraums exhibit more laser plasma instabilities than cylinder hohlraum, the latter can be mitigated in the case of an elliptical hohlraum.

  9. National Ignition Facility, subsystem design requirements beam control and laser diagnostics SSDR 1.7

    International Nuclear Information System (INIS)

    Bliss, E.

    1996-01-01

    This Subsystem Design Requirement document is a development specification that establishes the performance, design, development, and test requirements for the Alignment subsystem (WBS 1.7.1), Beam Diagnostics (WBS 1.7.2), and the Wavefront Control subsystem (WBS 1.7. 3) of the NIF Laser System (WBS 1.3). These three subsystems are collectively referred to as the Beam Control ampersand Laser Diagnostics Subsystem. The NIF is a multi-pass, 192-beam, high-power, neodymium-glass laser that meets requirements set forth in the NIF SDR 002 (Laser System). 3 figs., 3 tabs

  10. Spectroscopy Methods and Applications of the Tor Vergata Laser-Plasma Facility Driven by GW-Level Laser System

    Directory of Open Access Journals (Sweden)

    M. Francucci

    2011-01-01

    GW, tabletop, multistage Nd:YAG/Glass laser system, delivering infrared (IR pulses with nanosecond width and 1064 nm wavelength (TEM00 mode. Its applications are discussed providing: wide analysis of IR → soft X-ray conversion efficiency (1.3–1.55 keV; measures and modeling of line emission in soft X-ray spectra, such as those from zinc plasma near Ne-like Zn XXI and from barium plasma near Ni-like Ba XXIX. Particular attention is devoted to high-n dielectronic Rydberg satellites for finding a useful diagnostic tool for plasma conditions. Dependence of plasma spectra on laser parameters is shown. Finally, microradiography applications are presented for thin biological samples. Images permit to visualize specific structures and detect bioaccumulation sites due to contamination from pollutants.

  11. Facile fabrication of functional PDMS surfaces with tunable wettablity and high adhesive force via femtosecond laser textured templating

    Directory of Open Access Journals (Sweden)

    Yanlei Hu

    2014-12-01

    Full Text Available Femtosecond laser processing is emerged as a promising tool to functionalize surfaces of various materials, including metals, semiconductors, and polymers. However, the productivity of this technique is limited by the low efficiency of laser raster scanning. Here we report a facile approach for efficiently producing large-area functional polymer surfaces, by which metal is firstly textured by a femtosecond laser, and the as-prepared hierarchical structures are subsequently transferred onto polydimethylsiloxane (PDMS surfaces. Aluminum pieces covered by laser induced micro/nano-structures act as template masters and their performance of displaying diverse colors are investigated. Polymer replicas are endowed with tunable wetting properties, which are mainly attributed to the multi-scale surface structures. Furthermore, the surfaces are found to have extremely high adhesive force for water drops because of the high water penetration depth and the resultant high contact angle hysteresis. This characteristic facilitates many potential applications like loss-free tiny water droplets transportation. The reusability of metal master and easiness of soft lithography make it to be a very simple, fast and cost-efficient way for mass production of functional polymeric surfaces.

  12. Jupiter's evolution with primordial composition gradients

    Science.gov (United States)

    Vazan, Allona; Helled, Ravit; Guillot, Tristan

    2018-02-01

    Recent formation and structure models of Jupiter suggest that the planet can have composition gradients and not be fully convective (adiabatic). This possibility directly affects our understanding of Jupiter's bulk composition and origin. In this Letter we present Jupiter's evolution with a primordial structure consisting of a relatively steep heavy-element gradient of 40 M⊕. We show that for a primordial structure with composition gradients, most of the mixing occurs in the outer part of the gradient during the early evolution (several 107 yr), leading to an adiabatic outer envelope (60% of Jupiter's mass). We find that the composition gradient in the deep interior persists, suggesting that 40% of Jupiter's mass can be non-adiabatic with a higher temperature than the one derived from Jupiter's atmospheric properties. The region that can potentially develop layered convection in Jupiter today is estimated to be limited to 10% of the mass. Movies associated to Figs. 1-3 are available at http://https://www.aanda.org

  13. Change in operating parameters of the Continuous Electron Beam Accelerator Facility and Free Electron Laser, Thomas Jefferson National Accelerator Facility, Newport News, Virginia

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-10-01

    In this environmental assessment (EA), the US Department of Energy (DOE) reports the results of an analysis of the potential environmental impacts from a proposed change in operating parameters of the Continuous Electron Beam Accelerator Facility (CEBAF), and operation of the Free Electron Laser (FEL) facility beyond the initial demonstration period. With this proposal, DOE intends to increase CEBAF operating range from its current operating maximum beam energy of 4.0 GeV [giga-(billion) electron volts] to 8.0 GeV at a beam power of no greater than 1,000 kW [1 megawatt (MW)], its maximum attainable level, based on current technology and knowledge, without significant, costly equipment modifications. DOE has prepared an EA for this action to determine the potential for adverse impacts from operation of CEBAF and the FEL at the proposed levels. Changing the operating parameters of CEBAF would require no new major construction and minor modifications to the accelerator, its support systems, the FEL, and onsite utility systems. Modifications and performance improvements would be made to (1) the accelerator housed in the underground tunnels, (2) its support systems located in the above ground service buildings, and (3) the water and equipment cooling systems both in the tunnel and at the ground surface. All work would be performed on previously disturbed land and in, on, or adjacent to existing buildings, structures, and equipment. With the proposed action, the recently constructed FEL facility at the Jefferson Lab would operate in concert with CEBAF beyond its demonstration period and up to its maximum effective electron beam power level of 210 kW. In this EA, DOE evaluates the impacts of the no-action alternative and the proposed action alternative. Alternatives considered, but dismissed from further evaluation, were the use of another accelerator facility and the use of another technology.

  14. Change in operating parameters of the Continuous Electron Beam Accelerator Facility and Free Electron Laser, Thomas Jefferson National Accelerator Facility, Newport News, Virginia

    International Nuclear Information System (INIS)

    1997-10-01

    In this environmental assessment (EA), the US Department of Energy (DOE) reports the results of an analysis of the potential environmental impacts from a proposed change in operating parameters of the Continuous Electron Beam Accelerator Facility (CEBAF), and operation of the Free Electron Laser (FEL) facility beyond the initial demonstration period. With this proposal, DOE intends to increase CEBAF operating range from its current operating maximum beam energy of 4.0 GeV [giga-(billion) electron volts] to 8.0 GeV at a beam power of no greater than 1,000 kW [1 megawatt (MW)], its maximum attainable level, based on current technology and knowledge, without significant, costly equipment modifications. DOE has prepared an EA for this action to determine the potential for adverse impacts from operation of CEBAF and the FEL at the proposed levels. Changing the operating parameters of CEBAF would require no new major construction and minor modifications to the accelerator, its support systems, the FEL, and onsite utility systems. Modifications and performance improvements would be made to (1) the accelerator housed in the underground tunnels, (2) its support systems located in the above ground service buildings, and (3) the water and equipment cooling systems both in the tunnel and at the ground surface. All work would be performed on previously disturbed land and in, on, or adjacent to existing buildings, structures, and equipment. With the proposed action, the recently constructed FEL facility at the Jefferson Lab would operate in concert with CEBAF beyond its demonstration period and up to its maximum effective electron beam power level of 210 kW. In this EA, DOE evaluates the impacts of the no-action alternative and the proposed action alternative. Alternatives considered, but dismissed from further evaluation, were the use of another accelerator facility and the use of another technology

  15. A new look at Jupiter: results at the now frontier

    International Nuclear Information System (INIS)

    1975-01-01

    Pioneer 10's encounter with Jupiter is discussed along with the interplanetary space beyond the orbit of Mars. Other topics discussed include the size of Jupiter, the Galilean satellites, the magnetic field of Jupiter, radiation belts, Jupiter's weather and interior, and future exploration possibilities. Educational projects are also included

  16. The infrared spectrum of Jupiter

    Science.gov (United States)

    Ridgway, S. T.; Larson, H. P.; Fink, U.

    1976-01-01

    The principal characteristics of Jupiter's infrared spectrum are reviewed with emphasis on their significance for our understanding of the composition and temperature structure of the Jovian upper atmosphere. The spectral region from 1 to 40 microns divides naturally into three regimes: the reflecting region, thermal emission from below the cloud deck (5-micron hot spots), and thermal emission from above the clouds. Opaque parts of the Jovian atmosphere further subdivide these regions into windows, and each is discussed in the context of its past or potential contributions to our knowledge of the planet. Recent results are incorporated into a table of atmospheric composition and abundance which includes positively identified constituents as well as several which require verification. The limited available information about spatial variations of the infrared spectrum is presented

  17. Detection of water vapor on Jupiter

    Science.gov (United States)

    Larson, H. P.; Fink, U.; Treffers, R.; Gautier, T. N., III

    1975-01-01

    High-altitude (12.4 km) spectroscopic observations of Jupiter at 5 microns from the NASA 91.5 cm airborne infrared telescope have revealed 14 absorptions assigned to the rotation-vibration spectrum of water vapor. Preliminary analysis indicates a mixing ratio about 1 millionth for the vapor phase of water. Estimates of temperature (greater than about 300 K) and pressure (less than 20 atm) suggest observation of water deep in Jupiter's hot spots responsible for its 5 micron flux. Model-atmosphere calculations based on radiative-transfer theory may change these initial estimates and provide a better physical picture of Jupiter's atmosphere below the visible cloud tops.

  18. MLRS - A lunar/artificial satellite laser ranging facility at the McDonald Observatory

    Science.gov (United States)

    Shelus, P. J.

    1985-01-01

    Experience from lunar and satellite laser ranging experiments carried out at McDonald Observatory has been used to design the McDonald Laser Ranging Station (MLRS). The MLRS is a dual-purpose installation designed to obtain observations from the LAGEOS satellite and lunar targets. The instruments used at the station include a telescope assembly 0.76 meters in diameter; a Q-switched doubled neodymium YAG laser with a pulse rate of three nanoseconds; and a GaAs photodetector with Fabry-Perot interferometric filter. A functional diagram of the system is provided. The operating parameters of the instruments are summarized in a table.

  19. Short Pulsed Laser Methods for Velocimetry and Thermometry in High Enthalpy Facilities, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — A suite of laser-based diagnostics is proposed to measure velocity and temperature simultaneously using unseeded techniques in high enthalpy flows relevant to...

  20. In situ Laser Diagnostics for Arc-Jet Facilities, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — In this SBIR Phase I effort, Los Gatos Research (LGR) proposes to develop novel instrumentation based on laser absorption spectroscopy techniques for ultrasensitive...

  1. Short Pulsed Laser Methods for Velocimetry and Thermometry in High Enthalpy Facilities, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — A suite of pulsed laser diagnostics is proposed for studying aspects of planetary entry and Earth atmospheric reentry in arc jets. For example, dissociation of...

  2. A Laser-Based Diagnostic Suite for Hypersonic Test Facilities, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — In this SBIR effort, Los Gatos Research (LGR) proposes to develop a suite of laser-based diagnostics for the study of reactive and non-reactive hypersonic flows....

  3. Inertial fusion program in Japan and ignition experiment facility by laser

    International Nuclear Information System (INIS)

    Nakai, S.

    1989-01-01

    The recent progress in laser fusion research is remarkable with respect to obtaining the high density and high temperature plasma which produces thermonuclear neutrons of 10 13 per shot (pellet gain of 0.2%) and to the understanding of implosion physics. Data bases for laser fusion have been accumulated and technologies for advanced experiments have been developed, both of which enable us to make the reserarch step toward the fusion ignition experiment and the achievement of the breakeven condition, which is estimated to be possible with a 100 kJ blue laser. The demonstration of high gain pellets requires laser energy in the range MJ in blue light. The design studies of the MJ laser are continue in the framework of the solid state laser at ILE. The design studies on the commercial reactor of ICF have proceeded and several conceptual designs have been proposed. These designs utilize a liquid metal first wall and blanket which enable long life for commercial use. As a consequence, the ICF reactor has technically a high feasibility for commercial application. (orig.)

  4. Free electron laser facilities employing a 150-MeV linac injector for Saga synchrotron light source

    International Nuclear Information System (INIS)

    Tomimasu, T.; Yasumoto, M.; Ochiai, Y.; Ishibashi, M.; Murayama, T.

    1999-01-01

    Free electron laser (FEL) facilities as the FELI FEL Facility are proposed, for which a 150-MeV linac type injector for a Saga synchrotron light source (SLS) is employed in FEL mode. The linac has two operating modes; short macropulse mode a 1 μs at 150 MeV for injection to a 1 - 1.3-GeV third generation type storage ring and long macropulse mode of 12 μs at 100 MeV for four FEL Facilities. The macropulse beam consists of a train of several ps, 0.6 nC microbunches (peak current 100 A) repeating at 89.25 MHz. We are aiming to supply high power level photon beams covering an attractive wavelength range from 0.05 nm (25 keV) to 200 μm (0.006 eV) for scientific researches, bio-medical and industrial applications, using the Saga third generation type SLS with a superconducting wiggler and the proposed four FEL Facilities. (author)

  5. Simulation based assembly and alignment process ability analysis for line replaceable units of the high power solid state laser facility

    International Nuclear Information System (INIS)

    Wang, Junfeng; Lu, Cong; Li, Shiqi

    2016-01-01

    Highlights: • Discrete event simulation is applied to analyze the assembly and alignment process ability of LRUs in SG-III facility. • The overall assembly and alignment process of LRUs with specific characteristics is described. • An extended-directed graph is proposed to express the assembly and alignment process of LRUs. • Different scenarios have been simulated to evaluate assembling process ability of LRUs and decision making is supported to ensure the construction millstone. - Abstract: Line replaceable units (LRUs) are important components of the very large high power solid state laser facilities. The assembly and alignment process ability of LRUs will impact the construction milestone of facilities. This paper describes the use of discrete event simulation method for assembly and alignment process analysis of LRUs in such facilities. The overall assembly and alignment process for LRUs is presented based on the layout of the optics assembly laboratory and the process characteristics are analyzed. An extended-directed graph is proposed to express the assembly and alignment process of LRUs. Taking the LRUs of disk amplifier system in Shen Guang-III (SG-III) facility as the example, some process simulation models are built based on the Quest simulation platform. The constraints, such as duration, equipment, technician and part supply, are considered in the simulation models. Different simulation scenarios have been carried out to evaluate the assembling process ability of LRUs. The simulation method can provide a valuable decision making and process optimization tool for the optics assembly laboratory layout and the process working out of such facilities.

  6. Simulation based assembly and alignment process ability analysis for line replaceable units of the high power solid state laser facility

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Junfeng; Lu, Cong; Li, Shiqi, E-mail: sqli@hust.edu.cn

    2016-11-15

    Highlights: • Discrete event simulation is applied to analyze the assembly and alignment process ability of LRUs in SG-III facility. • The overall assembly and alignment process of LRUs with specific characteristics is described. • An extended-directed graph is proposed to express the assembly and alignment process of LRUs. • Different scenarios have been simulated to evaluate assembling process ability of LRUs and decision making is supported to ensure the construction millstone. - Abstract: Line replaceable units (LRUs) are important components of the very large high power solid state laser facilities. The assembly and alignment process ability of LRUs will impact the construction milestone of facilities. This paper describes the use of discrete event simulation method for assembly and alignment process analysis of LRUs in such facilities. The overall assembly and alignment process for LRUs is presented based on the layout of the optics assembly laboratory and the process characteristics are analyzed. An extended-directed graph is proposed to express the assembly and alignment process of LRUs. Taking the LRUs of disk amplifier system in Shen Guang-III (SG-III) facility as the example, some process simulation models are built based on the Quest simulation platform. The constraints, such as duration, equipment, technician and part supply, are considered in the simulation models. Different simulation scenarios have been carried out to evaluate the assembling process ability of LRUs. The simulation method can provide a valuable decision making and process optimization tool for the optics assembly laboratory layout and the process working out of such facilities.

  7. D/H ratio for Jupiter

    International Nuclear Information System (INIS)

    Smith, H.; Schempp, W.V.; Baines, K.H.

    1989-01-01

    Observations of Jupiter's spectrum near the R5(0) HD line at 6063.88 A are reported. A feature with an equivalent width of 0.065 + or - 0.021 mA is coincident with the expected line. This feature is compared with HD profiles computed for inhomogeneous scattering models for Jupiter to yield a range for the Jovian D/H ratio of 1.0-2.9 x 10 to the -5th. This D/H ratio is in the lower range of previously reported D/H values for Jupiter and corresponds to an essentially solar D/H ratio for Jupiter. The detection of HD features in the presence of probable blends with spectral features of minor atmospheric hydrocarbon molecules is discussed. Such blends may make unambiguous identification of HD features difficult. 26 references

  8. Kepler constraints on planets near hot Jupiters

    Science.gov (United States)

    Steffen, Jason H.; Ragozzine, Darin; Fabrycky, Daniel C.; Carter, Joshua A.; Ford, Eric B.; Holman, Matthew J.; Rowe, Jason F.; Welsh, William F.; Borucki, William J.; Boss, Alan P.; Ciardi, David R.; Quinn, Samuel N.

    2012-01-01

    We present the results of a search for planetary companions orbiting near hot Jupiter planet candidates (Jupiter-size candidates with orbital periods near 3 d) identified in the Kepler data through its sixth quarter of science operations. Special emphasis is given to companions between the 2∶1 interior and exterior mean-motion resonances. A photometric transit search excludes companions with sizes ranging from roughly two-thirds to five times the size of the Earth, depending upon the noise properties of the target star. A search for dynamically induced deviations from a constant period (transit timing variations) also shows no significant signals. In contrast, comparison studies of warm Jupiters (with slightly larger orbits) and hot Neptune-size candidates do exhibit signatures of additional companions with these same tests. These differences between hot Jupiters and other planetary systems denote a distinctly different formation or dynamical history. PMID:22566651

  9. Terrestrial magnetosphere and comparison with Jupiter's

    International Nuclear Information System (INIS)

    Michel, F.C.

    1974-01-01

    A review of the characteristics of Jupiter's magnetosphere, with comparisons to the earth's is given. Radio observations of Jupiter indicate that energetic electrons are trapped in its magnetic field. The interaction of the trapped radiation with the satellite Io and the centrifugal instability of Jupiter's magnetosphere are discussed. Jupiter's outer magnetosphere is constantly accreting plasma at an uncertain rate. Various mechanisms for supplying ions to the outer magnetosphere are discussed, including: gravitational and centrifugal forces acting on corotating particles; field-line diffusion; photoelectron injection; excitation by Io or other satellites; and viscous interaction with the solar wind. The over-all morphology of the Jovian magnetosphere seems to be highly distorted by centrifugal forces and is easily compressed or deflected by the solar wind

  10. Kepler constraints on planets near hot Jupiters.

    Science.gov (United States)

    Steffen, Jason H; Ragozzine, Darin; Fabrycky, Daniel C; Carter, Joshua A; Ford, Eric B; Holman, Matthew J; Rowe, Jason F; Welsh, William F; Borucki, William J; Boss, Alan P; Ciardi, David R; Quinn, Samuel N

    2012-05-22

    We present the results of a search for planetary companions orbiting near hot Jupiter planet candidates (Jupiter-size candidates with orbital periods near 3 d) identified in the Kepler data through its sixth quarter of science operations. Special emphasis is given to companions between the 21 interior and exterior mean-motion resonances. A photometric transit search excludes companions with sizes ranging from roughly two-thirds to five times the size of the Earth, depending upon the noise properties of the target star. A search for dynamically induced deviations from a constant period (transit timing variations) also shows no significant signals. In contrast, comparison studies of warm Jupiters (with slightly larger orbits) and hot Neptune-size candidates do exhibit signatures of additional companions with these same tests. These differences between hot Jupiters and other planetary systems denote a distinctly different formation or dynamical history.

  11. Astronomers find distant planet like Jupiter

    CERN Multimedia

    2003-01-01

    Astronomers searching for planetary systems like our solar system have found a planet similar to Jupiter orbiting a nearby star similar to our Sun, about 90 light-years from Earth, according to researchers (1/2 page).

  12. Analysis of JUPITER experiment in ZPPR-9

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1980-09-15

    Information and data from the ZPPR-9 reactor JUPITER experiment are presented concerning a general description of data and methods; criticality; reaction rate ratio and reaction rate distribution; Doppler and sample reactivity worth; sodium void worth; and control rod worth.

  13. Shoemaker-Levy 9/JUPITER Collision Update

    Science.gov (United States)

    1994-05-01

    There are many signs that the upcoming collision between comet Shoemaker-Levy 9 and giant planet Jupiter is beginning to catch the imagination of the public. Numerous reports in the various media describe the effects expected during this unique event which according to the latest calculations will start in the evening of July 16 and end in the morning of July 22, 1994. (The times in this Press Release are given in Central European Summer Time (CEST), i.e., Universal Time (UT) + 2 hours. The corresponding local time in Chile is CEST - 6 hours.) Astronomers all over the world are now preparing to observe the associated phenomena with virtually all major telescopes. There will be no less than 12 different investigations at the ESO La Silla observatory during this period. This Press Release updates the information published in ESO PR 02/94 (27 January 1994) and provides details about the special services which will be provided by ESO to the media around this rare astronomical event. SCIENTIFIC EXPECTATIONS The nucleus of comet Shoemaker-Levy 9 broke into many smaller pieces during a near passage of Jupiter in July 1992. They are now moving in parallel orbits around this planet and recent calculations show with close to 100 % certainty that they will all collide with it, just two months from now. At some time, more than 20 individual nuclei were observed. This Press Release is accompanied by a photo that shows this formation, the famous "string of pearls", as it looked like in early May 1994. Both Jupiter and these nuclei have been extensively observed during the past months. A large, coordinated observing programme at La Silla has been active since early April and the first results have become available. However, while we now possess more accurate information about the comet's motion and the times of impact, there is still great uncertainty about the effects which may actually be observed at the time of the impacts. This is first of all due to the fact that it has not

  14. Laser parametric instability experiments of a 3ω, 15 kJ, 6-ns laser pulse in gas-filled hohlraums at the Ligne d'Intégration Laser facility

    Energy Technology Data Exchange (ETDEWEB)

    Rousseaux, C.; Huser, G.; Loiseau, P.; Casanova, M.; Alozy, E.; Villette, B.; Wrobel, R. [Commissariat à l' Energie Atomique, DAM, DIF, F-91297 Arpajon (France); Henry, O.; Raffestin, D. [Commissariat à l' Energie Atomique, DAM, CESTA, F-33114 Le Barp (France)

    2015-02-15

    Experimental investigation of stimulated Raman (SRS) and Brillouin (SBS) scattering have been obtained at the Ligne-d'Intégration-Laser facility (LIL, CEA-Cesta, France). The parametric instabilities (LPI) are driven by firing four laser beamlets (one quad) into millimeter size, gas-filled hohlraum targets. A quad delivers energy on target of 15 kJ at 3ω in a 6-ns shaped laser pulse. The quad is focused by means of 3ω gratings and is optically smoothed with a kinoform phase plate and with smoothing by spectral dispersion-like 2 GHz and/or 14 GHz laser bandwidth. Open- and closed-geometry hohlraums have been used, all being filled with 1-atm, neo-pentane (C{sub 5}H{sub 12}) gas. For SRS and SBS studies, the light backscattered into the focusing optics is analyzed with spectral and time resolutions. Near-backscattered light at 3ω and transmitted light at 3ω are also monitored in the open geometry case. Depending on the target geometry (plasma length and hydrodynamic evolution of the plasma), it is shown that, at maximum laser intensity about 9 × 10{sup 14} W/cm{sup 2}, Raman reflectivity noticeably increases up to 30% in 4-mm long plasmas while SBS stays below 10%. Consequently, laser transmission through long plasmas drops to about 10% of incident energy. Adding 14 GHz bandwidth to the laser always reduces LPI reflectivities, although this reduction is not dramatic.

  15. HILL: The High-Intensity Laser Laboratory Core Team's Reply to Questions from the NNSA Experimental Facilities Panel

    International Nuclear Information System (INIS)

    Albright, B.J.

    2012-01-01

    Question 1 - The type of physics regimes that HILL can access for weapons studies is quite interesting. The question that arises for the proposal team is what priority does this type of experimental data have versus data that can be obtained with NIF, and Z. How does HILL rank in priority compared to MARIE 1.0 in terms of the experimental data it will provide? We reiterate that isochoric heating experiments to be conducted with HILL are complementary to the high energy density physics experiments at NIF and Z and uniquely access states of matter that neither other facility can access. It is our belief that HILL will enable several important questions, e.g., as related to mix morphology, radiation transfer from corrugated surfaces, and equations of state, to be run to ground through carefully diagnosed, 'unit-physics' experiments. Such experiments will substantially improve confidence in our computer models and provide a rigorous science basis for certification. Question 2 - A secondary question relates to the interests of LLNL and SNL in the physics that HILL can address. This should be spelled out clearly. I would like to see the other labs be part of the discussion regarding how important this capability would be if built. Both sister Labs have a keen interest in the physics enabled by high-intensity, high-energy lasers, as evinced by the Z Petawatt and NIF ARC upgrades to their signature facilities. LANL scientists have teamed with scientists from both Laboratories in high-intensity laser 'first experiments' envisioned for HILL and we fully intend to continue these profitable discussions going forward. In the preparation of the HILL proposal, feedback was solicited from the broader HEDP and weapons science communities. The consensus view was that HILL filled a critical gap and that there was a need for a facility like HILL to address outstanding questions in weapons science. It was recognized that co-location of HILL with a facility such as MaRIE 1.0, Z, NIF, or

  16. A statistical method for determining the dimensions, tolerances and specification of optics for the Laser Megajoule facility (LMJ)

    Science.gov (United States)

    Denis, Vincent

    2008-09-01

    This paper presents a statistical method for determining the dimensions, tolerance and specifications of components for the Laser MegaJoule (LMJ). Numerous constraints inherent to a large facility require specific tolerances: the huge number of optical components; the interdependence of these components between the beams of same bundle; angular multiplexing for the amplifier section; distinct operating modes between the alignment and firing phases; the definition and use of alignment software in the place of classic optimization. This method provides greater flexibility to determine the positioning and manufacturing specifications of the optical components. Given the enormous power of the Laser MegaJoule (over 18 kJ in the infrared and 9 kJ in the ultraviolet), one of the major risks is damage the optical mounts and pollution of the installation by mechanical ablation. This method enables estimation of the beam occultation probabilities and quantification of the risks for the facility. All the simulations were run using the ZEMAX-EE optical design software.

  17. Effect of amplifier component maintenance on laser system availability and reliability for the US National Ignition Facility

    International Nuclear Information System (INIS)

    Erlandson, A.C.; Lambert, H.; Zapata, L.E.

    1996-12-01

    We have analyzed the availability and reliability of the flashlamp-pumped, Nd:glass amplifiers that, as a part of a laser now being designed for future experiments, in inertial confinement fusion (ICF), will be used in the National Ignition Facility (NIF). Clearly , in order for large ICF systems such as the NIF to operate effectively as a whole, all components must meet demanding availability and reliability requirements. Accordingly, the NIF amplifiers can achieve high reliability and availability by using reliable parts, and by using a cassette-based maintenance design that allows most key amplifier parts to be 1744 replaced within a few hours. In this way, parts that degrade slowly, as the laser slabs, silver reflectors, and blastshields can be expected to do, based on previous experience, can be replaced either between shots or during scheduled maintenance periods, with no effect on availability or reliability. In contrast, parts that fail rapidly, such as the flashlamps, can and do cause unavailability or unreliability. Our analysis demonstrates that the amplifiers for the NIF will meet availability and reliability goals, respectively, of 99.8% and 99.4%, provided that the 7680 NIF flashlamps in NIF have failure rates of less than, or equal to, those experienced on Nova, a 5000-lamp laser at Lawrence Livermore National Laboratory (LLNL)

  18. Jupiter's Multi-level Clouds

    Science.gov (United States)

    1997-01-01

    Clouds and hazes at various altitudes within the dynamic Jovian atmosphere are revealed by multi-color imaging taken by the Near-Infrared Mapping Spectrometer (NIMS) onboard the Galileo spacecraft. These images were taken during the second orbit (G2) on September 5, 1996 from an early-morning vantage point 2.1 million kilometers (1.3 million miles) above Jupiter. They show the planet's appearance as viewed at various near-infrared wavelengths, with distinct differences due primarily to variations in the altitudes and opacities of the cloud systems. The top left and right images, taken at 1.61 microns and 2.73 microns respectively, show relatively clear views of the deep atmosphere, with clouds down to a level about three times the atmospheric pressure at the Earth's surface.By contrast, the middle image in top row, taken at 2.17 microns, shows only the highest altitude clouds and hazes. This wavelength is severely affected by the absorption of light by hydrogen gas, the main constituent of Jupiter's atmosphere. Therefore, only the Great Red Spot, the highest equatorial clouds, a small feature at mid-northern latitudes, and thin, high photochemical polar hazes can be seen. In the lower left image, at 3.01 microns, deeper clouds can be seen dimly against gaseous ammonia and methane absorption. In the lower middle image, at 4.99 microns, the light observed is the planet's own indigenous heat from the deep, warm atmosphere.The false color image (lower right) succinctly shows various cloud and haze levels seen in the Jovian atmosphere. This image indicates the temperature and altitude at which the light being observed is produced. Thermally-rich red areas denote high temperatures from photons in the deep atmosphere leaking through minimal cloud cover; green denotes cool temperatures of the tropospheric clouds; blue denotes cold of the upper troposphere and lower stratosphere. The polar regions appear purplish, because small-particle hazes allow leakage and reflectivity

  19. One step synthesis of porous graphene by laser ablation: A new and facile approach

    Science.gov (United States)

    Kazemizadeh, Fatemeh; Malekfar, Rasoul

    2018-02-01

    Porous graphene (PG) was obtained using one step laser process. Synthesis was carried out by laser ablation of nickel-graphite target under ultra-high flow of argon gas. The field emission scanning electron microscopy (FE-SEM) results showed the formation of a porous structure and the transmission electron microscopy (TEM) revealed that the porosity of PGs increase under intense laser irradiation. Structural characterization study using Raman spectroscopy, X-ray powder diffraction (XRD) and selected area electron diffraction (SAED) technique showed that the obtained PGs display high crystalline structure in the form of few layer rhombohedral graphitic arrangement that can be interpreted as the phase prior to the formation of other carbon nanostructures.

  20. First results with the novel petawatt laser acceleration facility in Dresden

    International Nuclear Information System (INIS)

    Schramm, U; Bussmann, M; Irman, A; Siebold, M; Zeil, K; Albach, D; Bernert, C; Bock, S; Brack, F; Branco, J; Couperus, JP; Cowan, TE; Debus, A; Eisenmann, C; Garten, M; Gebhardt, R; Grams, S; Helbig, U; Huebl, A; Kluge, T

    2017-01-01

    We report on first commissioning results of the DRACO Petawatt ultra-short pulse laser system implemented at the ELBE center for high power radiation sources of Helmholtz-Zentrum Dresden-Rossendorf. Key parameters of the laser system essential for efficient and reproducible performance of plasma accelerators are presented and discussed with the demonstration of 40 MeV proton acceleration under TNSA conditions as well as peaked electron spectra with unprecedented bunch charge in the 0.5 nC range. (paper)

  1. Hot Jupiters and cool stars

    International Nuclear Information System (INIS)

    Villaver, Eva; Mustill, Alexander J.; Livio, Mario; Siess, Lionel

    2014-01-01

    Close-in planets are in jeopardy, as their host stars evolve off the main sequence (MS) to the subgiant and red giant phases. In this paper, we explore the influences of the stellar mass (in the range 1.5-2 M ☉ ), mass-loss prescription, planet mass (from Neptune up to 10 Jupiter masses), and eccentricity on the orbital evolution of planets as their parent stars evolve to become subgiants and red giants. We find that planet engulfment along the red giant branch is not very sensitive to the stellar mass or mass-loss rates adopted in the calculations, but quite sensitive to the planetary mass. The range of initial separations for planet engulfment increases with decreasing mass-loss rates or stellar masses and increasing planetary masses. Regarding the planet's orbital eccentricity, we find that as the star evolves into the red giant phase, stellar tides start to dominate over planetary tides. As a consequence, a transient population of moderately eccentric close-in Jovian planets is created that otherwise would have been expected to be absent from MS stars. We find that very eccentric and distant planets do not experience much eccentricity decay, and that planet engulfment is primarily determined by the pericenter distance and the maximum stellar radius.

  2. Laser cutting of steel plates up to 100 mm in thickness with a 6-kW fiber laser for application to dismantling of nuclear facilities

    Science.gov (United States)

    Shin, Jae Sung; Oh, Seong Yong; Park, Hyunmin; Chung, Chin-Man; Seon, Sangwoo; Kim, Taek-Soo; Lee, Lim; Lee, Jonghwan

    2018-01-01

    A cutting study with a high-power ytterbium-doped fiber laser was conducted for the dismantling of nuclear facilities. Stainless steel and carbon steel plates of various thicknesses were cut at a laser power of 6-kW. Despite the use of a low output of 6-kW, the cutting was successful for both stainless steel and carbon steel plates of up to 100 mm in thickness. In addition, the maximum cutting speeds against the thicknesses were obtained to evaluate the cutting performance. As representative results, the maximum cutting speeds for a 60-mm thickness were 72 mm/min for the stainless steel plates and 35 mm/min for the carbon steel plates, and those for a 100-mm thickness were 7 mm/min for stainless steel and 5 mm/min for carbon steel plates. These results show an efficient cutting capability of about 16.7 mm by kW, whereas other groups have shown cutting capabilities of ∼10 mm by kW. Moreover, the maximum cutting speeds were faster for the same thicknesses than those from other groups. In addition, the kerf widths of 60-mm and 100-mm thick steels were also obtained as another important parameter determining the amount of secondary waste. The front kerf widths were ∼1.0 mm and the rear kerf widths were larger than the front kerf widths but as small as a few millimeters.

  3. Progress in direct-drive laser fusion using GEKKO XII/PW facility

    International Nuclear Information System (INIS)

    Yamanaka, T.

    2002-01-01

    Extensive studies have been carried out for the fast-ignitor laser fusion which can provide one of the most feasible short tracks in the fusion energy development. We have upgraded the heating laser up to 1 PW(500 J/500 fs) and have started comprehensive studies on the transport of high current relativistic electron beam in the dense plasma. Substantial heating of the core plasma up to 1 keV is expected with implosion plasma produced by the Gekko XII laser. We have experimentally obtained for the first time all parameters to decide the growth rate of Rayleigh-Taylor instability using the HIPER irradiation system which can generate ablation pressure up to 60 Mbar and newly developed advanced x-ray diagnostic tools. We have proposed the FIREX (Fast Ignitor Realization Experiment) program for demonstrating the proof-of-principle of fast ignitor scheme. By the irradiation of ∼10 kJ/2-10 ps laser onto a DT core plasma formed by the GEKKO-XII, we are aiming at temperature of >8 keV and the fusion gain near unity. (author)

  4. PHEBUS: a new powerful laser facility for I.C.F. research

    International Nuclear Information System (INIS)

    Andre, M.; Coudeville, A.; Dautray, R.

    1986-09-01

    The new laser system called Phebus recently settled by the Centre d'Etudes of Limeil-Valenton is presented, together with the wide range of diagnostic tools allowed to be setted in the vacuum vessel. Research directions of target fabrication are also given

  5. Evolution of Technology Laser Scanner. Implications for use in Nuclear Power and Radioactive Facilities

    International Nuclear Information System (INIS)

    Sarti Fernandez, F.; Bonet, J.

    2012-01-01

    The main technical factors affecting these teams their actual implementation in nuclear power plants will be analyzed: data acquisition speed, sensitivity, laser power, autonomy, contamination of equipment, radiation effect, etc. In conclusion, the real difference is displayed in the data collection in function of various technologies, embodied in field time, and costs.

  6. High intensity 5 eV cw laser substained O-atom exposure facility for material degradation studies

    International Nuclear Information System (INIS)

    Cross, J.B.; Spangler, L.H.; Hoffbauer, M.A.; Archuleta, F.A.

    1986-01-01

    An atomic oxygen exposure facility has been developed for studies of material degradation. The goal of these studies is to provide design criteria and information for the manufacture of long life (20 to 30 years) construction material for use in low earth orbit. The studies that are being undertaken using the facility will provide (1) absolute reaction cross sections for use in engineering design problems, (2) formulations of reaction mechanisms for use in selection of suitable existing materials and design of new more resistant ones, and (3) calibration of flight hardware (mass spectrometers, etc.) in order to directly relate experiments performed in low earth orbit to ground based investigations. The facility consists of (1) a cw laser sustained discharge source of O-atoms having a variable energy up to 5 eV and an intensity of between 10 15 -10 17 O-atoms s -1 cm -2 , (2) an atomic beam formation and diagnostics system consisting of various stages of differential pumping, mass spectrometer detector and time-of-flight analysis, (3) a spinning rotor viscometer for absolute O-atom flux measurements, and (4) provision for using the system for calibration of flight instruments. 15 refs., 10 figs

  7. JUICE: A European Mission to Jupiter and its Icy Moons

    Science.gov (United States)

    Grasset, Olivier; Witasse, Olivier; Barabash, Stas; Brandt, Pontus; Bruzzone, Lorenzo; Bunce, Emma; Cecconi, Baptiste; Cavalié, Thibault; Cimo, Giuseppe; Coustenis, Athena; Cremonese, Gabriele; Dougherty, Michele; Fletcher, Leigh N.; Gladstone, Randy; Gurvits, Leonid; Hartogh, Paul; Hoffmann, Holger; Hussmann, Hauke; Iess, Luciano; Jaumann, Ralf; Kasaba, Yasumasa; Kaspi, Yohai; Krupp, Norbert; Langevin, Yves; Mueller-Wodarg, Ingo; Palumbo, Pasquale; Piccioni, Giuseppe; Plaut, Jeffrey; Poulet, Francois; Roatsch, Thomas; Retherford, Kurt D.; Rothkaehl, Hanna; Stevenson, David J.; Tosi, Federico; Van Hoolst, Tim; Wahlund, Jan-Erik; Wurz, Peter; Altobelli, Nicolas; Accomazzo, A.; Boutonnet, Arnaud; Erd, Christian; Vallat, Claire

    2016-10-01

    JUICE - JUpiter ICy moons Explorer - is the first large mission in the ESA Cosmic Vision programme [1]. The implementation phase started in July 2015. JUICE will arrive at Jupiter in October 2029, and will spend 3 years characterizing the Jovian system, the planet itself, its giant magnetosphere, and the giant icy moons: Ganymede, Callisto and Europa. JUICE will then orbit Ganymede.The first goal of JUICE is to explore the habitable zone around Jupiter [2]. Ganymede is a high-priority target because it provides a unique laboratory for analyzing the nature, evolution and habitability of icy worlds, including the characteristics of subsurface oceans, and because it possesses unique magnetic fields and plasma interactions with the environment. On Europa, the focus will be on recently active zones, where the composition, surface and subsurface features (including putative water reservoirs) will be characterized. Callisto will be explored as a witness of the early Solar System.JUICE will also explore the Jupiter system as an archetype of gas giants. The circulation, meteorology, chemistry and structure of the Jovian atmosphere will be studied from the cloud tops to the thermosphere and ionosphere. JUICE will investigate the 3D properties of the magnetodisc, and study the coupling processes within the magnetosphere, ionosphere and thermosphere. The mission also focuses on characterizing the processes that influence surface and space environments of the moons.The payload consists of 10 instruments plus a ground-based experiment (PRIDE) to better constrain the S/C position. A remote sensing package includes imaging (JANUS) and spectral-imaging capabilities from UV to sub-mm wavelengths (UVS, MAJIS, SWI). A geophysical package consists of a laser altimeter (GALA) and a radar sounder (RIME) for exploring the moons, and a radio science experiment (3GM) to probe the atmospheres and to determine the gravity fields. The in situ package comprises a suite to study plasma and

  8. X-ray calibration facility for plasma diagnostics of the MegaJoule laser

    International Nuclear Information System (INIS)

    Hubert, S.; Prevot, V.

    2013-01-01

    The Laser MegaJoule (LMJ) located at CEA-CESTA will be equipped with x-ray plasma diagnostics using different kinds of x-ray components such as filters, mirrors, crystals, detectors and cameras. To guarantee LMJ measurements, detectors such as x-ray cameras need to be regularly calibrated. An x-ray laboratory is devoted to this task and performs absolute x-ray calibrations for similar x-ray cameras running on Laser Integration Line (LIL). This paper presents the x-ray calibration bench with its x-ray tube based High Energy x-ray Source (HEXS) and some calibration results. By mean of an ingenious transposition system under vacuum absolute x-ray calibration of x-ray cameras, like streak and stripline ones, can be carried out. Coupled to a new collimation system with micrometric accuracy on aperture sensitivity quantum efficiency measurements can be achieved with reduced uncertainties. (authors)

  9. Preliminary studies on fast particle diagnostics for the future fs-laser facility at PALS

    Czech Academy of Sciences Publication Activity Database

    Margarone, Daniele; Krása, Josef; Láska, Leoš; Velyhan, Andriy; Mocek, Tomáš; Torrisi, L.; Ando, L.; Gammino, S.; Prokůpek, J.; Krouský, Eduard; Pfeifer, Miroslav; Ullschmied, Jiří; Rus, Bedřich

    2010-01-01

    Roč. 165, 6-10 (2010), s. 419-428 ISSN 1042-0150 R&D Projects: GA AV ČR IAA100100715 Institutional research plan: CEZ:AV0Z10100523; CEZ:AV0Z20430508 Keywords : fs-laser plasma * electron streams * ion streams * electron spectrometer * ion collectors Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 0.660, year: 2010

  10. High-intensity laser-accelerated ion beam produced from cryogenic micro-jet target

    Energy Technology Data Exchange (ETDEWEB)

    Gauthier, M., E-mail: maxence.gauthier@stanford.edu; Kim, J. B.; Curry, C. B.; Gamboa, E. J.; Göde, S.; Propp, A.; Glenzer, S. H. [SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Aurand, B.; Willi, O. [Heinrich-Heine-University Düsseldorf, Düsseldorf (Germany); Goyon, C.; Hazi, A.; Pak, A.; Ruby, J.; Williams, G. J. [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States); Kerr, S. [University of Alberta, Edmonton, Alberta T6G 1R1 (Canada); Ramakrishna, B. [Indian Institute of Technology, Hyderabad (India); Rödel, C. [SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Friedrich-Schiller-University Jena, Jena (Germany)

    2016-11-15

    We report on the successful operation of a newly developed cryogenic jet target at high intensity laser-irradiation. Using the frequency-doubled Titan short pulse laser system at Jupiter Laser Facility, Lawrence Livermore National Laboratory, we demonstrate the generation of a pure proton beam a with maximum energy of 2 MeV. Furthermore, we record a quasi-monoenergetic peak at 1.1 MeV in the proton spectrum emitted in the laser forward direction suggesting an alternative acceleration mechanism. Using a solid-density mixed hydrogen-deuterium target, we are also able to produce pure proton-deuteron ion beams. With its high purity, limited size, near-critical density, and high-repetition rate capability, this target is promising for future applications.

  11. Investigation of X-ray lasers on the SOKOL-P facility at RFNC-VNIITF

    Science.gov (United States)

    Gavrilov, D. S.; Andriyash, A. V.; Vikhlyaev, D. A.; Gorokhov, S. A.; Dmitrov, D. A.; Zapysov, A. L.; Kakshin, A. G.; Kapustin, I. A.; Loboda, E. A.; Lykov, V. A.; Politov, V. Yu.; Potapov, A. V.; Pronin, V. A.; Rykovanov, G. N.; Sukhanov, V. N.; Tischenko, A. S.; Ugodenko, A. A.; Chefonov, O. V.

    2007-11-01

    The experiments [1] have demonstrated generation of the laser X-radiation (LXR) λ=326A on 3p-3s transitions of Ne-like Ti ions at sequential irradiation of the targets by two laser pulses, focused into a narrow line. The small signal gain equaled 30cm-1. The intensity was 0.5.10^12 W/cm^2 in the prepulse of 0.4ns and 10^14 W/cm^2 in the master pulse of 4ps (delay 1.5 ns). The dependence of LXR yield on the laser energy is demonstrated to have an exponential form. The traveling pumping wave mode was realized using the reflective echelon and the LXR yield is as great as 5-fold. The latest experiments have demonstrated the LXR generation on 4d-4p of Ni-like molybdenum λ=189A. The development of LXR generation model, and numerical codes which allow for the quanta delay effects, quanta refraction in plasma with heavy density gradient, and also the saturation effect have made it possible to describe the experimental dependence of the output LXR yield on the active medium length. Good quantitative agreement is also evident when estimating the output LXR yield on Ne-like Ti ions. [1]Andriyash Quantum Electronics 36 511

  12. Versatile 0.5 TW electron beam facility for power conditioning studies of large rare-gas/halide lasers

    International Nuclear Information System (INIS)

    Ramirez, J.J.

    1980-01-01

    Rare-gas/halide lasers which are being developed for Inertial Confinement Fusion will require large area, low impedance electron beam drivers. A wide range of electron beam parameters are being considered for future systems in an effort to optimize the overall system design. A number of power conditioning issues must be investigated in order to obtain a better understanding of the various trade-offs involved in making such optimizations. The RAYITO electron beam accelerator is being designed and built at Sandia National Laboratories and will be used for such investigations. It will be capable of operating in either a 2 or 4 ohm configuration at 1 MV, 50 ns or 0.8 MV, 200 ns. Design details for RAYITO are presented in this paper. Experiments planned for this facility are also discussed

  13. Hydrodynamic simulations of long-scale-length two-plasmon–decay experiments at the Omega Laser Facility

    International Nuclear Information System (INIS)

    Hu, S. X.; Michel, D. T.; Edgell, D. H.; Froula, D. H.; Follett, R. K.; Goncharov, V. N.; Myatt, J. F.; Skupsky, S.; Yaakobi, B.

    2013-01-01

    Direct-drive–ignition designs with plastic CH ablators create plasmas of long density scale lengths (L n ≥ 500 μm) at the quarter-critical density (N qc ) region of the driving laser. The two-plasmon–decay (TPD) instability can exceed its threshold in such long-scale-length plasmas (LSPs). To investigate the scaling of TPD-induced hot electrons to laser intensity and plasma conditions, a series of planar experiments have been conducted at the Omega Laser Facility with 2-ns square pulses at the maximum laser energies available on OMEGA and OMEGA EP. Radiation–hydrodynamic simulations have been performed for these LSP experiments using the two-dimensional hydrocode draco. The simulated hydrodynamic evolution of such long-scale-length plasmas has been validated with the time-resolved full-aperture backscattering and Thomson-scattering measurements. draco simulations for CH ablator indicate that (1) ignition-relevant long-scale-length plasmas of L n approaching ∼400 μm have been created; (2) the density scale length at N qc scales as L n (μm)≃(R DPP ×I 1/4 /2); and (3) the electron temperature T e at N qc scales as T e (keV)≃0.95×√(I), with the incident intensity (I) measured in 10 14 W/cm 2 for plasmas created on both OMEGA and OMEGA EP configurations with different-sized (R DPP ) distributed phase plates. These intensity scalings are in good agreement with the self-similar model predictions. The measured conversion fraction of laser energy into hot electrons f hot is found to have a similar behavior for both configurations: a rapid growth [f hot ≃f c ×(G c /4) 6 for G c hot ≃f c ×(G c /4) 1.2 for G c ≥ 4, with the common wave gain is defined as G c =3 × 10 −2 ×I qc L n λ 0 /T e , where the laser intensity contributing to common-wave gain I qc , L n , T e at N qc , and the laser wavelength λ 0 are, respectively, measured in [10 14 W/cm 2 ], [μm], [keV], and [μm]. The saturation level f c is observed to be f c ≃ 10 –2 at around

  14. Cavity-Type BPMs For The TESLA Test Facility Free Electron Laser

    CERN Document Server

    Waldmann, H

    2003-01-01

    For measurements of the beam position at the undulator section of the TESLA Test Facility (TTF) at DESY cavity-type beam position monitors were developed, installed and brought into operation. Besides of some theoretical aspects results of in-beam measurements at the TTF are presented and pros and cons of this monitor concept are discussed.

  15. Observations and models of the decimetric radio emission from Jupiter

    International Nuclear Information System (INIS)

    Pater, I. de.

    1980-01-01

    The high energy electron distribution as a function of energy, pitch angle and spatial coordinates in Jupiter's inner magnetosphere was derived from a comparison of radio data and model calculations of Jupiter's synchrotron radiation. (Auth.)

  16. The effect of laser spot shapes on polar-direct-drive implosions on the National Ignition Facility

    International Nuclear Information System (INIS)

    Weilacher, F.; Radha, P. B.; Collins, T. J. B.; Marozas, J. A.

    2015-01-01

    Ongoing polar-direct-drive (PDD) implosions on the National Ignition Facility (NIF) [J. D. Lindl and E. I. Moses, Phys. Plasmas 18, 050901 (2011)] use existing NIF hardware, including indirect-drive phase plates. This limits the performance achievable in these implosions. Spot shapes are identified that significantly improve the uniformity of PDD NIF implosions; outer surface deviation is reduced by a factor of 7 at the end of the laser pulse and hot-spot distortion is reduced by a factor of 2 when the shell has converged by a factor of ∼10. As a result, the neutron yield increases by approximately a factor of 2. This set of laser spot shapes is a combination of circular and elliptical spots, along with elliptical spot shapes modulated by an additional higher-intensity ellipse offset from the center of the beam. This combination is motivated in this paper. It is also found that this improved implosion uniformity is obtained independent of the heat conduction model. This work indicates that significant improvement in performance can be obtained robustly with the proposed spot shapes

  17. The effect of laser spot shapes on polar-direct-drive implosions on the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Weilacher, F.; Radha, P. B., E-mail: rbah@lle.rochester.edu; Collins, T. J. B.; Marozas, J. A. [Laboratory for Laser Energetics, University of Rochester, 250 East River Road, Rochester, New York 14623 (United States)

    2015-03-15

    Ongoing polar-direct-drive (PDD) implosions on the National Ignition Facility (NIF) [J. D. Lindl and E. I. Moses, Phys. Plasmas 18, 050901 (2011)] use existing NIF hardware, including indirect-drive phase plates. This limits the performance achievable in these implosions. Spot shapes are identified that significantly improve the uniformity of PDD NIF implosions; outer surface deviation is reduced by a factor of 7 at the end of the laser pulse and hot-spot distortion is reduced by a factor of 2 when the shell has converged by a factor of ∼10. As a result, the neutron yield increases by approximately a factor of 2. This set of laser spot shapes is a combination of circular and elliptical spots, along with elliptical spot shapes modulated by an additional higher-intensity ellipse offset from the center of the beam. This combination is motivated in this paper. It is also found that this improved implosion uniformity is obtained independent of the heat conduction model. This work indicates that significant improvement in performance can be obtained robustly with the proposed spot shapes.

  18. Three-Dimensional Simulations of Flat-Foil Laser-Imprint Experiments at the National Ignition Facility

    Science.gov (United States)

    Shvydky, A.; Radha, P. B.; Rosenberg, M. J.; Anderson, K. S.; Goncharov, V. N.; Marozas, J. A.; Marshall, F. J.; McKenty, P. W.; Regan, S. P.; Sangster, T. C.; Hohenberger, M.; di Nicola, J. M.; Koning, J. M.; Marinak, M. M.; Masse, L.; Karasik, M.

    2017-10-01

    Control of shell nonuniformities imprinted by the laser and amplified by hydrodynamic instabilities in the imploding target is critical for the success of direct-drive ignition at the National Ignition Facility (NIF). To measure a level of imprint and its reduction by the NIF smoothing by spectral dispersion (SSD), we performed experiments that employed flat CH foils driven with a single NIF beam with either no SSD or the NIF indirect-drive SSD applied to the laser pulse. Face-on x-ray radiography was used to measure optical depth variations, from which the amplitudes of the foil areal-density modulations were obtained. Results of 3-D, radiation-hydrodynamic code HYDRA simulations of the growth of the imprint-seeded perturbations are presented and compared with the experimental data. This work was supported by the U.S. Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944 and under the auspices of the Lawrence Livermore National Security, LLC, (LLNS) under Contract Number DE-AC52-07NA27344.

  19. A tip/tilt mirror with large dynamic range for the ESO VLT Four Laser Guide Star Facility

    Science.gov (United States)

    Rijnveld, N.; Henselmans, R.; Nijland, B.

    2011-09-01

    One of the critical elements in the Four Laser Guide Star Facility (4LGSF) for the ESO Very Large Telescope (VLT) is the Optical Tube Assembly (OTA), consisting of a stable 20x laser beam expander and an active tip/tilt mirror, the Field Selector Mechanism (FSM). This paper describes the design and performance testing of the FSM. The driving requirement for the FSM is its large stroke of +/-6.1 mrad, in combination with less than 1.5 μrad RMS absolute accuracy. The FSM design consists of a Zerodur mirror, bonded to a membrane spring and strut combination to allow only tip and tilt. Two spindle drives actuate the mirror, using a stiffness based transmission to increase resolution. Absolute accuracy is achieved with two differential inductive sensor pairs. A prototype of the FSM is realized to optimize the control configuration and measure its performance. Friction in the spindle drive is overcome by creating a local velocity control loop between the spindle drives and the shaft encoders. Accuracy is achieved by using a cascaded low bandwidth control loop with feedback from the inductive sensors. The pointing jitter and settling time of the FSM are measured with an autocollimator. The system performance meets the strict requirements, and is ready to be implemented in the first OTA.

  20. On possible life on Jupiter's satellite Io

    Science.gov (United States)

    Vidmachenko, A. P.

    2018-05-01

    Some of the satellites of Jupiter may well be suitable both for mastering, and for finding possible traces of life there. Among them such satellite like Io - nearest Galilean satellite of Jupiter, and one of the most volcanically active bodies in the solar system. Warming of the mantle is caused by a powerful tidal force from the side of Jupiter. This leads to the heating of some parts of the mantle to a temperature above 1800 K, with an average surface temperature of about 140 K. But under its surface can be safe and even comfortable shelters, where life could once have come from the outside (even in a very primitive form), and could survive to this day. Moreover, according to some model's assumptions, Io could sometime be formed in another part of the Solar system, where the water could exist. Note that on neighboring Galilean satellites now exist significant amounts of water .

  1. Vorticity and energy diagnostics from the 2000 Cassini Jupiter flyby

    Science.gov (United States)

    Young, R. M. B.; Read, P. L.; Armstrong, D.; Lancaster, A.

    2011-10-01

    The Cassini spacecraft flew by Jupiter in December 2000, returning hundreds of images near closest approach [1]. We have been analysing the images spanning four Jupiter rotation periods at closest approach using automated cloud tracking software to obtain horizontal velocity fields. Our method has some advantages over other methods used for this purpose in that it accounts for both cloud deformation and rotation in addition to the standard translation. We shall present detailed horizontal velocity vectors and related vorticity and energy fields over four Jupiter rotation periods. We also intend to produce derived energy and turbulence diagnostics that will help us to understand the interplay between processes acting on different length scales. It may also be possible to relate these diagnostics to 'zonostrophic' jets and small-scale turbulence studied in the laboratory using the Coriolis rotating tank, work itself motivated by jets in giant planet atmospheres [2]. In the future we intend to combine velocity fields with temperature data to produce fully-3D velocity and potential vorticity fields for Jupiter's troposphere and stratosphere. The cloud tracking method is based on correlation image velocimetry (CIV) and was originally developed by the Coriolis facility team at LEGI, Université de Grenoble [3], where it is used to extract velocity fields from data obtained in their 13m diameter rotating tank experiment. The method has two stages. First, velocity vectors are calculated using translation only, where the velocity is defined by the highest correlation between two images taken 63 minutes apart of a small pixel patch moving within a larger search box. In the second stage the correlation analysis is repeated, but instead of just translation of the pixel patch, rotation and deformation (shearing, stretching) are taken into account. We use the first stage velocity field as an estimate of the velocity vector and search within a small window around this, including

  2. Generation of fast neutrons through deuteron acceleration at the PALS laser facility

    Czech Academy of Sciences Publication Activity Database

    Krása, Josef; Klír, Daniel; Velyhan, Andriy; Řezáč, Karel; Cikhardt, Jakub; Ryć, L.; Krouský, Eduard; Pfeifer, Miroslav; De Marco, Massimo; Skála, Jiří; Dudžák, Roman; Ullschmied, Jiří

    2016-01-01

    Roč. 11, Mar (2016), 1-11, č. článku C03050. ISSN 1748-0221 R&D Projects: GA ČR(CZ) GA15-02964S; GA MŠk(CZ) LG13029; GA MŠk(CZ) LD14089 EU Projects: European Commission(XE) 654148 - LASERLAB-EUROPE Institutional support: RVO:68378271 ; RVO:61389021 Keywords : plasma generation (laser-produced, RF, x-ray-produced) * plasma diagnostics-charged-particle spectroscopy * plasma diagnostics probes Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.220, year: 2016

  3. Thermal tides on a hot Jupiter

    Directory of Open Access Journals (Sweden)

    Hsieh H.-F.

    2011-07-01

    Full Text Available Following the linear analysis laid out by Gu & Ogilvie 2009 (hereafter GO09, we investigate the dynamical response of a non-synchronized hot Jupiter to stellar irradiation. Besides the internal and Rossby waves considered by GO09, we study the Kelvin waves excited by the diurnal Fourier harmonic of the prograde stellar irradiation. We also present a 2-dimensional plot of internal waves excited by the semi-diurnal component of the stellar irradiation and postulate that thermal bulges may arise in a hot Jupiter. Whether our postulation is valid and is consistent with the recent results from Arras & Socrates (2009b requires further investigation.

  4. Lucy: Navigating a Jupiter Trojan Tour

    Science.gov (United States)

    Stanbridge, Dale; Williams, Ken; Williams, Bobby; Jackman, Coralie; Weaver, Hal; Berry, Kevin; Sutter, Brian; Englander, Jacob

    2017-01-01

    In January 2017, NASA selected the Lucy mission to explore six Jupiter Trojan asteroids. These six bodies, remnants of the primordial material that formed the outer planets, were captured in the Sun-Jupiter L4 and L5 Lagrangian regions early in the solar system formation. These particular bodies were chosen because of their diverse spectral properties and the chance to observe up close for the first time two orbiting approximately equal mass binaries, Patroclus and Menoetius. KinetX, Inc. is the primary navigation supplier for the Lucy mission. This paper describes preliminary navigation analyses of the approach phase for each Trojan encounter.

  5. Assessment and mitigation of electromagnetic pulse (EMP) impacts at short-pulse laser facilities

    International Nuclear Information System (INIS)

    Brown, C G Jr; Bond, E; Clancy, T; Dangi, S; Eder, D C; Ferguson, W; Kimbrough, J; Throop, A

    2010-01-01

    The National Ignition Facility (NIF) will be impacted by electromagnetic pulse (EMP) during normal long-pulse operation, but the largest impacts are expected during short-pulse operation utilizing the Advanced Radiographic Capability (ARC). Without mitigation these impacts could range from data corruption to hardware damage. We describe our EMP measurement systems on Titan and NIF and present some preliminary results and thoughts on mitigation.

  6. Simultaneous Laser-induced Fluorescence of Nitric Oxide and Atomic Oxygen in the Hypersonic Materials Environment Test System Arcjet Facility

    Science.gov (United States)

    Johansen, Craig; Lincoln, Daniel; Bathel, Brett; Inman, Jennifer; Danehy, Paul

    2014-01-01

    Simultaneous nitric oxide (NO) and atomic oxygen (O) laser induced fluorescence (LIF) experiments were performed in the Hypersonic Materials Environmental Test System (HYMETS) facility at the NASA Langley Research Center. The data serves as an experimental database for validation for chemical and thermal nonequilibrium models used in hypersonic flows. Measurements were taken over a wide range of stagnation enthalpies (6.7 - 18.5 MJ/kg) using an Earth atmosphere simulant with a composition of 75% N2, 20% O2, and 5% Ar (by volume). These are the first simultaneous measurements of NO and O LIF to be reported in literature for the HYMETS facility. The maximum O LIF mean signal intensity was observed at a stagnation enthalpy of approximately 12 MJ/kg while the maximum NO LIF mean signal intensity was observed at a stagnation enthalpy of 6.7 MJ/kg. Experimental results were compared to simple fluorescence model that assumes equilibrium conditions in the plenum and frozen chemistry in the isentropic nozzle expansion (Mach 5). The equilibrium calculations were performed using CANTERA v2.1.1 with 16 species. The fluorescence model captured the correlation in mean O and NO LIF signal intensities over the entire range of stagnation enthalpies tested. Very weak correlations between single-shot O and NO LIF intensities were observed in the experiments at all of the stagnation enthalpy conditions.

  7. Lasers

    CERN Document Server

    Milonni, Peter W

    1988-01-01

    A comprehensive introduction to the operating principles and applications of lasers. Explains basic principles, including the necessary elements of classical and quantum physics. Provides concise discussions of various laser types including gas, solid state, semiconductor, and free electron lasers, as well as of laser resonators, diffraction, optical coherence, and many applications including holography, phase conjugation, wave mixing, and nonlinear optics. Incorporates many intuitive explanations and practical examples. Discussions are self-contained in a consistent notation and in a style that should appeal to physicists, chemists, optical scientists and engineers.

  8. Quasi-isentropic Compression of Iron and Magnesium Oxide to 3 Mbar at the Omega Laser Facility

    Science.gov (United States)

    Wang, J.; Smith, R. F.; Coppari, F.; Eggert, J. H.; Boehly, T.; Collins, G.; Duffy, T. S.

    2011-12-01

    Developing a high-pressure, modest temperature ramp compression drive permits exploration of new regions of thermodynamic space, inaccessible through traditional methods of shock or static compression, and of particular relevance to material conditions found in planetary interiors both within and outside our solar system. Ramp compression is a developing technique that allows materials to be compressed along a quasi-isentropic path and provides the ability to study materials in the solid state to higher pressures than can be achieved with diamond anvil cell or shock wave methods. Iron and magnesium oxide are geologically important materials each representative of one of the two major interior regions (core and mantle) of terrestrial planets. An experimental platform for ramp loading of iron (Fe) and magnesium oxide (MgO), has been established and tested in experiments at the Omega Laser Facility, University of Rochester. Omega is a 60-beam ultraviolet (352 nm) neodymium glass laser which is capable of delivery kilojoules of energy in ~10 ns pulses onto targets of a few mm in dimension. In the current experiments, we used a composite ramped laser pulse involving typically 15 beams with total energy of 2.6-3.3 kJ. The laser beams were used to launch spatially planar ramp compression waves into Fe and MgO targets. Each target had four steps that were approximately 5-7 μm thick. Detection of the ramp wave arrival and its velocity at the free surface of each step was made using a VISAR velocity interferometer. Through the use of Lagrangian analysis on the measured wave profiles, stress-density states in iron and magnesium oxide have been determined to pressures of 291 GPa and 260 GPa respectively. For Fe, the α-ɛ transition of iron is overdriven by an initial shock pulse of ~90.1 GPa followed by ramp compression to the peak pressure. The results will be compared with shock compression and diamond anvil cell data for both materials. We acknowledge the Omega staff at

  9. Multipurpose 10 in. manipulator-based optical telescope for Omega and the Trident laser facilities

    International Nuclear Information System (INIS)

    Oertel, J.A.; Murphy, T.J.; Berggren, R.R.; Faulkner, J.; Schmell, R.; Little, D.; Archuleta, T.; Lopez, J.; Velarde, J.; Horton, R.F.

    1999-01-01

    We have recently designed and are building a telescope which acts as an imaging light collector relaying the image to an optical table for experiment dependent analysis and recording. The expected primary use of this instrument is a streaked optical pyrometer for witness plate measurements of the hohlraum drive temperature. The telescope is based on the University of Rochester close-quote s 10 in. manipulator (TIM) which allows compatibility between Omega, Trident, and the NIF lasers. The optics capture a f/7 cone of light, have a field of view of 6 mm, have a spatial resolution of 5 - 7 μm per line pair at the object plane, and are optimized for operation at 280 nm. The image is at a magnification of 11.7x, which is convenient for many experiments, but can be changed using additional optics that reside outside the TIM. copyright 1999 American Institute of Physics

  10. A multipurpose TIM-based optical telescope for Omega and the Trident laser facilities

    International Nuclear Information System (INIS)

    Oertel, J.A.; Murphy, T.J.; Berggren, R.R.

    1998-01-01

    The authors have recently designed and are building a telescope which acts as an imaging light collector relaying the image to an optical table for experiment dependent analysis and recording. The expected primary use of this instrument is a streaked optical pyrometer for witness plate measurements of Hohlraum drive temperature. The telescope is based on University of Rochester's Ten-Inch Manipulator (TIM) which allows compatibility between Omega, Trident, and the NIF lasers. The optics capture a f/7 cone of light, have a field of view of 6-mm, have a spatial resolution of 5 to 7-microm per line pair at the object plane, and are optimized for operation at 280-nm. The image is at a magnification of 11.7x, which is convenient for many experiments, but can be changed using additional optics that reside outside the TIM

  11. Conceptual design of a laser fusion power plant. Part I. An integrated facility

    International Nuclear Information System (INIS)

    1981-07-01

    This study is a new preliminary conceptual design and economic analysis of an inertial confinement fusion (ICF) power plant performed by Bechtel under the direction of Lawrence Livermore National Laboratory (LLNL). The purpose of a new conceptual design is to examine alternatives to the LLNL HYLIFE power plant and to incorporate information from the recent liquid metal cooled power plant conceptual design study (CDS) into the reactor system and balance of plant design. A key issue in the design of a laser fusion power plant is the degree of symmetry in the illumination of the target that will be required for a proper burn. Because this matter is expected to remain unresolved for some time, another purpose of this study is to determine the effect of symmetry requirements on the total plant size, layout, and cost

  12. Techniques for measuring aerosol attenuation using the Central Laser Facility at the Pierre Auger Observatory

    Czech Academy of Sciences Publication Activity Database

    Abreu, P.; Aglietta, M.; Ahlers, M.; Boháčová, Martina; Chudoba, Jiří; Ebr, Jan; Mandát, Dušan; Nečesal, Petr; Nožka, Libor; Palatka, Miroslav; Pech, Miroslav; Prouza, Michael; Řídký, Jan; Schovancová, Jaroslava; Schovánek, Petr; Tománková, L.; Trávníček, Petr; Vícha, Jakub

    2013-01-01

    Roč. 8, APR (2013), s. 1-29 ISSN 1748-0221 R&D Projects: GA MŠk(CZ) MEB111003; GA AV ČR KJB100100904; GA MŠk(CZ) LA08016; GA MŠk LC527; GA MŠk(CZ) 1M06002 Institutional research plan: CEZ:AV0Z10100502; CEZ:AV0Z10100522 Keywords : data analysis * large detector systems for particle and astroparticle physics * detector alignment and calibration methods (lasers, sources) Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 1.526, year: 2013 http://iopscience.iop.org/1748-0221/8/04/P04009/pdf/1748-0221_8_04_P04009.pdf

  13. A microwiggler Free-Electron Laser at the Brookhaven Accelerator Test Facility

    International Nuclear Information System (INIS)

    Batchelor, K.; Ben-Zvi, I.; Fernow, R.; Gallardo, J.; Kirk, H.; Pellegrini, C.; van Steenbergen, A.; Bhowmik, A.; Rockwell International Corp., Canoga Park, CA

    1989-01-01

    We report the design and status of an FEL experiment at the Brookhaven National Laboratory Accelerator Test Facility. A 50 MeV high brightness electron beam will be utilized for an oscillator experiment in the visible wavelength region. The microwiggler to be used is a superferric planar undulator with a 0.88 cm period, 60 cm length and K = 0.35. The optical cavity is a 368 cm long stable resonator with broadband dielectric coated mirrors. 8 refs., 2 figs., 4 tabs

  14. Dramatic Change in Jupiter's Great Red Spot

    Science.gov (United States)

    Simon, A. A.; Wong, M. H.; Rogers, J. H.; Orton, G. S.; de Pater, I.; Asay-Davis, X.; Carlson, R. W.; Marcus, P. S.

    2015-01-01

    Jupiter's Great Red Spot (GRS) is one of its most distinct and enduring features, having been continuously observed since the 1800's. It currently spans the smallest latitude and longitude size ever recorded. Here we show analyses of 2014 Hubble spectral imaging data to study the color, structure and internal dynamics of this long-live storm.

  15. From Basking Ridge to the Jupiter Trojans

    Science.gov (United States)

    Englander, Jacob

    2017-01-01

    This presentation describes the activities of the Global Trajectory Optimization Lab, a subdivision of the Navigation and Mission Design Branch at NASA GSFC. The students will learn the basics of interplanetary trajectory optimization and then, as an example, the Lucy mission to the Jupiter Trojans will be described from both a science and engineering perspective.

  16. Jupiter Environmental Research & Field Studies Academy.

    Science.gov (United States)

    Huttemeyer, Bob

    1996-01-01

    Describes the development and workings of the Jupiter Environmental Research and Field Studies Academy that focuses on enabling both teachers and students to participate in real-life learning experiences. Discusses qualifications for admittance, curriculum, location, ongoing projects, students, academics, preparation for life, problem solving, and…

  17. JUPITER PROJECT - MERGING INVERSE PROBLEM FORMULATION TECHNOLOGIES

    Science.gov (United States)

    The JUPITER (Joint Universal Parameter IdenTification and Evaluation of Reliability) project seeks to enhance and build on the technology and momentum behind two of the most popular sensitivity analysis, data assessment, calibration, and uncertainty analysis programs used in envi...

  18. Jupiter Quest: A Path to Scientific Discovery.

    Science.gov (United States)

    Bollman, Kelly A.; Rodgers, Mark H.; Mauller, Robert L.

    2001-01-01

    To experience the world of professional science, students must have access to the scientific community and be allowed to become real scientists. A partnership involving the National Aeronautics and Space Administration, the Jet Propulsion Laboratory, and the Lewis Center for Educational Research has produced Jupiter Quest, an engaging curriculum…

  19. Meteorite Dichotomy Implies that Jupiter Formed Early

    Science.gov (United States)

    Kruijer, T. S.; Burkhardt, C.; Budde, G.; Kleine, T.

    2018-05-01

    Meteorites derive from two distinct nebular reservoirs that co-existed and remained spatially separated between 1 and 3–4 Ma after CAIs. This can most easily be explained if Jupiter acted as a barrier and formed early, within less than 1 Ma.

  20. Baby Jupiters Must Gain Weight Fast

    Science.gov (United States)

    2009-01-01

    This photograph from NASA's Spitzer Space Telescope shows the young star cluster NGC 2362. By studying it, astronomers found that gas giant planet formation happens very rapidly and efficiently, within less than 5 million years, meaning that Jupiter-like worlds experience a growth spurt in their infancy.

  1. Comet Shoemaker-Levy 9 meets Jupiter.

    Science.gov (United States)

    Levy, D. H.; Shoemaker, E. M.; Shoemaker, C. S.

    1995-08-01

    The impact of comet D/1993 F2 (Shoemaker-Levy 9) with Jupiter was unforgettable, an event probably not to be repeated for millennia to come. One year later the astronomers who first spotted the comet reflect on their discovery, on the anxious months of anticipation before the collision and on what has been learned since.

  2. Origin and evolution of Jupiter and Saturn

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, S S [Virginia Univ., Charlottesville (USA)

    1977-07-01

    Arguments are presented which make it very unlikely that Jupiter and Saturn were formed by contraction from initially extended gaseous states. Formation of these and other planets (in the solar system) by the mechanism of accretion does not appear to present any difficulties.

  3. Juno's first peek at Jupiter's interior

    Science.gov (United States)

    Guillot, Tristan; Miguel, Yamila; Hubbard, William B.; Kaspi, Yohai; Reese, Daniel; Helled, Ravit; Galanti, Eli; Militzer, Burkhard; Wahl, Sean; Folkner, William M.; Anderson, John; Iess, Luciano; Durante, Daniele; Parisi, Marzia; Stevenson, David J.

    2017-04-01

    The first orbits of Juno around Jupiter have led to a considerable improvement in the measurement of the planet's even gravitational moments. We will discuss how this leads to better constraints on jovian interior models, and how internal differential rotation and equations of state play an important part in the analysis.

  4. Why Are Hot Jupiters So Lonely?

    Science.gov (United States)

    Kohler, Susanna

    2017-10-01

    Jupiter-like planets with blisteringly close-in orbits are generally friendless, with no nearbyplanets transiting along with them. Giant planets with orbits a little further out, on the other hand, often have at least one companion. A new study examines the cause of hot Jupiters loneliness.Forming Close-In GiantsArtists impression of a planet forming within a protoplanetary disk. [NAOJ]Though weve studied close-in giant planets for decades now, we still dont fully understand how these objects form and evolve. Jupiter-like giant planets could form in situ next to their host stars, or they could form further out in the system beyond the ice line and then migrate inwards. And if they do migrate, this migration could occur early, while the protoplanetary disk still exists, or long after, via excitation of large eccentricities.We can try to resolve this mystery by examining the statistics of the close-in giant planets weve observed, but this often raises more questions than it answers. A prime example: the properties of close-in giants that have close-in companion planets orbiting in the same plane (i.e., co-transiting).About half of warm Jupiters Jupiter-like planets with periods of 1030 days appear to have close-in, co-transiting companions. In contrast, almost no hot Jupiters Jupiter-like planets with periods of less than 10 days have such companions. What causes this dichotomy?Schematic of the authors model, in which the close-in giant (m1) encounters a resonance with its host star, causing the orbit of the exterior companion (m2) to become tilted. [Spalding Batygin 2017]Friendless Hot JupitersWhile traditional models have argued that the two types of planets form via different pathways warm Jupiters form in situ, or else migrate inward early and smoothly, whereas hot Jupiters migrate inward late and violently, losing their companions in the process a new study casts doubt on this picture.Two scientists from the California Institute of Technology, Christopher

  5. Strong Solar Control of Infrared Aurora on Jupiter: Correlation Since the Last Solar Maximum

    Science.gov (United States)

    Kostiuk, T.; Livengood, T. A.; Hewagama, T.

    2009-01-01

    Polar aurorae in Jupiter's atmosphere radiate throughout the electromagnetic spectrum from X ray through mid-infrared (mid-IR, 5 - 20 micron wavelength). Voyager IRIS data and ground-based spectroscopic measurements of Jupiter's northern mid-IR aurora, acquired since 1982, reveal a correlation between auroral brightness and solar activity that has not been observed in Jovian aurora at other wavelengths. Over nearly three solar cycles, Jupiter auroral ethane emission brightness and solar 10.7 cm radio flux and sunspot number are positively correlated with high confidence. Ethane line emission intensity varies over tenfold between low and high solar activity periods. Detailed measurements have been made using the GSFC HIPWAC spectrometer at the NASA IRTF since the last solar maximum, following the mid-IR emission through the declining phase toward solar minimum. An even more convincing correlation with solar activity is evident in these data. Current analyses of these results will be described, including planned measurements on polar ethane line emission scheduled through the rise of the next solar maximum beginning in 2009, with a steep gradient to a maximum in 2012. This work is relevant to the Juno mission and to the development of the Europa Jupiter System Mission. Results of observations at the Infrared Telescope Facility (IRTF) operated by the University of Hawaii under Cooperative Agreement no. NCC5-538 with the National Aeronautics and Space Administration, Science Mission Directorate, Planetary Astronomy Program. This work was supported by the NASA Planetary Astronomy Program.

  6. Radiation transport and energetics of laser-driven half-hohlraums at the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Moore, A. S., E-mail: alastair.moore@physics.org; Graham, P.; Comley, A. J.; Foster, J. [Directorate Science and Technology, AWE Aldermaston, Reading RG7 4PR (United Kingdom); Cooper, A. B. R.; Schneider, M. B.; MacLaren, S.; Lu, K.; Seugling, R.; Satcher, J.; Klingmann, J.; Marrs, R.; May, M.; Widmann, K.; Glendinning, G.; Castor, J.; Sain, J.; Baker, K.; Hsing, W. W.; Young, B. [Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94551-0808 (United States); and others

    2014-06-15

    Experiments that characterize and develop a high energy-density half-hohlraum platform for use in benchmarking radiation hydrodynamics models have been conducted at the National Ignition Facility (NIF). Results from the experiments are used to quantitatively compare with simulations of the radiation transported through an evolving plasma density structure, colloquially known as an N-wave. A half-hohlraum is heated by 80 NIF beams to a temperature of 240 eV. This creates a subsonic diffusive Marshak wave, which propagates into a high atomic number Ta{sub 2}O{sub 5} aerogel. The subsequent radiation transport through the aerogel and through slots cut into the aerogel layer is investigated. We describe a set of experiments that test the hohlraum performance and report on a range of x-ray measurements that absolutely quantify the energetics and radiation partition inside the target.

  7. Radiation transport and energetics of laser-driven half-hohlraums at the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Moore, A. S. [Directorate Science and Technology, AWE Aldermaston, Reading (United Kingdom); Cooper, A. B.R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Schneider, M. B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); MacLaren, S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Graham, P. [Directorate Science and Technology, AWE Aldermaston, Reading (United Kingdom); Lu, K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Seugling, R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Satcher, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Klingmann, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Comley, A. J. [Directorate Science and Technology, AWE Aldermaston, Reading (United Kingdom); Marrs, R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); May, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Widmann, K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Glendinning, G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Castor, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Sain, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Back, C. A. [General Atomics, San Diego, CA (United States); Hund, J. [General Atomics, San Diego, CA (United States); Baker, K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Hsing, W. W. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Foster, J. [Directorate Science and Technology, AWE Aldermaston, Reading (United Kingdom); Young, B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Young, P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2014-06-01

    Experiments that characterize and develop a high energy-density half-hohlraum platform for use in bench-marking radiation hydrodynamics models have been conducted at the National Ignition Facility (NIF). Results from the experiments are used to quantitatively compare with simulations of the radiation transported through an evolving plasma density structure, colloquially known as an N-wave. A half-hohlraum is heated by 80 NIF beams to a temperature of 240 eV. This creates a subsonic di usive Marshak wave which propagates into a high atomic number Ta2O5 aerogel. The subsequent radiation transport through the aerogel and through slots cut into the aerogel layer is investigated. We describe a set of experiments that test the hohlraum performance and report on a range

  8. Relationship between symmetry and laser pulse shape in low-fill hohlraums at the National Ignition Facility

    Science.gov (United States)

    MacLaren, Steve; Zylstra, A. B.; Yi, A.; Kline, J. L.; Kyrala, G. A.; Kot, L. B.; Loomis, E. N.; Perry, T. S.; Shah, R. C.; Masse, L. P.; Ralph, J. E.; Khan, S. F.

    2017-10-01

    Typically in indirect-drive inertial confinement fusion (ICF) hohlraums cryogenic helium gas fill is used to impede the motion of the hohlraum wall plasma as it is driven by the laser pulse. A fill of 1 mg/cc He has been used to significantly suppress wall motion in ICF hohlraums at the National Ignition Facility (NIF); however, this level of fill also causes laser-plasma instabilities (LPI) which result in hot electrons, time-dependent symmetry swings and reduction in drive due to increased backscatter. There are currently no adequate models for these phenomena in codes used to simulate integrated ICF experiments. A better compromise is a fill in the range of 0.3 0.6 mg/cc, which has been shown to provide some reduction in wall motion without incurring significant LPI effects. The wall motion in these low-fill hohlraums and the resulting effect on symmetry due to absorption of the inner cone beams by the outer cone plasma can be simulated with some degree of accuracy with the hydrodynamics and inverse Bremsstrahlung models in ICF codes. We describe a series of beryllium capsule implosions in 0.3 mg/cc He fill hohlraums that illustrate the effect of pulse shape on implosion symmetry in the ``low-fill'' regime. In particular, we find the shape of the beginning or ``foot'' of the pulse has significant leverage over the final symmetry of the stagnated implosion. This work was performed under the auspices of the Lawrence Livermore National Security, LLC, (LLNS) under Contract No. DE-AC52-07NA27344.

  9. The size and structure of the laser entrance hole in gas-filled hohlraums at the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, M. B., E-mail: schneider5@llnl.gov; MacLaren, S. A.; Widmann, K.; Meezan, N. B.; Hammer, J. H.; Yoxall, B. E.; Bell, P. M.; Benedetti, L. R.; Bradley, D. K.; Callahan, D. A.; Dewald, E. L.; Döppner, T.; Eder, D. C.; Edwards, M. J.; Hinkel, D. E.; Hsing, W. W.; Kervin, M. L.; Landen, O. L.; Lindl, J. D.; May, M. J. [Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94550 (United States); and others

    2015-12-15

    At the National Ignition Facility, a thermal X-ray drive is created by laser energy from 192 beams heating the inside walls of a gold cylinder called a “hohlraum.” The x-ray drive heats and implodes a fuel capsule. The laser beams enter the hohlraum via laser entrance holes (LEHs) at each end. The LEH radius decreases as heated plasma from the LEH material blows radially inward but this is largely balanced by hot plasma from the high-intensity region in the center of the LEH pushing radially outward. The x-ray drive on the capsule is deduced by measuring the time evolution and spectra of the x-radiation coming out of the LEH and correcting for geometry and for the radius of the LEH. Previously, the LEH radius was measured using time-integrated images in an x-ray band of 3–5 keV (outside the thermal x-ray region). For gas-filled hohlraums, the measurements showed that the LEH radius is larger than that predicted by the standard High Flux radiation-hydrodynamic model by about 10%. A new platform using a truncated hohlraum (“ViewFactor hohlraum”) is described, which allows time-resolved measurements of the LEH radius at thermal x-ray energies from two views, from outside the hohlraum and from inside the hohlraum. These measurements show that the LEH radius closes during the low power part of the pulse but opens up again at peak power. The LEH radius at peak power is larger than that predicted by the models by about 15%–20% and does not change very much with time. In addition, time-resolved images in a >4 keV (non-thermal) x-ray band show a ring of hot, optically thin gold plasma just inside the optically thick LEH plasma. The structure of this plasma varies with time and with Cross Beam Energy Transfer.

  10. Chemical fingerprints of hot Jupiter planet formation

    Science.gov (United States)

    Maldonado, J.; Villaver, E.; Eiroa, C.

    2018-05-01

    Context. The current paradigm to explain the presence of Jupiter-like planets with small orbital periods (P involves their formation beyond the snow line following inward migration, has been challenged by recent works that explore the possibility of in situ formation. Aims: We aim to test whether stars harbouring hot Jupiters and stars with more distant gas-giant planets show any chemical peculiarity that could be related to different formation processes. Methods: Our methodology is based on the analysis of high-resolution échelle spectra. Stellar parameters and abundances of C, O, Na, Mg, Al, Si, S, Ca, Sc, Ti, V, Cr, Mn, Co, Ni, Cu, and Zn for a sample of 88 planet hosts are derived. The sample is divided into stars hosting hot (a 0.1 au) Jupiter-like planets. The metallicity and abundance trends of the two sub-samples are compared and set in the context of current models of planet formation and migration. Results: Our results show that stars with hot Jupiters have higher metallicities than stars with cool distant gas-giant planets in the metallicity range +0.00/+0.20 dex. The data also shows a tendency of stars with cool Jupiters to show larger abundances of α elements. No abundance differences between stars with cool and hot Jupiters are found when considering iron peak, volatile elements or the C/O, and Mg/Si ratios. The corresponding p-values from the statistical tests comparing the cumulative distributions of cool and hot planet hosts are 0.20, products from observations made with ESO Telescopes at the La Silla Paranal Observatory under programme ID 072.C-0033(A), 072.C-0488(E), 074.B-0455(A), 075.C-0202(A), 077.C-0192(A), 077.D-0525(A), 078.C-0378(A), 078.C-0378(B), 080.A-9021(A), 082.C-0312(A) 082.C-0446(A), 083.A-9003(A), 083.A-9011(A), 083.A-9011(B), 083.A-9013(A), 083.C-0794(A), 084.A-9003(A), 084.A-9004(B), 085.A-9027(A), 085.C-0743(A), 087.A-9008(A), 088.C-0892(A), 089.C-0440(A), 089.C-0444(A), 089.C-0732(A), 090.C-0345(A), 092.A-9002(A), 192.C-0852

  11. Time Integrated Soft X-ray Imaging in High Intensity Laser Experiments (thesis)

    Energy Technology Data Exchange (ETDEWEB)

    Stafford, David [Univ. of California, Davis, CA (United States)

    2009-01-01

    2009 marks a significant achievement and the dawn of a new era in high intensity laser research with the final commissioning of all 192 beams at the National Ignition Facility (NIF). NIF is a department of energy (DOE) funded project more than 10 years in the making located at the Lawrence Livermore National Laboratory (LLNL). The following research was done as one of many preliminary experiments done to prepare for these historic events. The primary focus of the experimental campaign this paper addresses is to test and develop a thermal x-radiation source using a short pulse laser. This data is hoped to provide information about the thermal transport mechanisms important in the development of prediction models in High Energy Density (HED) science. One of several diagnostics fielded was a soft x-ray imager (SXRI) which is detailed in this paper. The SXRI will be used to measure the relative size of the heated region and also the relative level of specific x-ray emissions among several shot and target configurations. The laser system used was the Titan laser located in the Jupiter Laser Facility (JLF) at Lawrence Livermore National Laboratory (LLNL). Titan uses the JLF Janus Nd:glass laser west frontend system with a Optical Parametric Chirped Pulse Amplification (OPCPA) in place of the nanosecond oscillator. The system is capable of producing laser intensities of over a petawatt with several tens of joules delivered in the beam.

  12. Diagnostic technique for measuring fusion reaction rate for inertial confinement fusion experiments at Shen Guang-III prototype laser facility

    International Nuclear Information System (INIS)

    Wang Feng; Peng Xiao-Shi; Liu Shen-Ye; Xu Tao; Kang Dong-Guo

    2013-01-01

    A study is conducted using a two-dimensional simulation program (Lared-s) with the goal of developing a technique to evaluate the effect of Rayleigh-Taylor growth in a neutron fusion reaction region. Two peaks of fusion reaction rate are simulated by using a two-dimensional simulation program (Lared-s) and confirmed by the experimental results. A neutron temporal diagnostic (NTD) system is developed with a high temporal resolution of ∼ 30 ps at the Shen Guang-III (SG-III) prototype laser facility in China, to measure the fusion reaction rate history. With the shape of neutron reaction rate curve and the spherical harmonic function in this paper, the degree of Rayleigh-Taylor growth and the main source of the neutron yield in our experiment can be estimated qualitatively. This technique, including the diagnostic system and the simulation program, may provide important information for obtaining a higher neutron yield in implosion experiments of inertial confinement fusion

  13. Intermediate results of a one-year study of a laser spectrometer in the DOE filter test facilities

    International Nuclear Information System (INIS)

    Soderholm, S.C.; Tillery, M.I.

    1984-01-01

    A 1-year study of the model LAS-X (Particle Measuring Systems, Inc.) laser spectrometer in the Department of Energy (DOE) Filter Test Facilities (FTFs) was begun on August 1, 1983. The principal objectives of the study were to gain operational experience with the LAS-X/diluter/HP-85 particle size measurement system in the FTF environment, acquire size distribution data to quantify the consistency of the Q107 aerosol size distribution at each FTF and among FTFs, and compare the FTF test aerosols to current and proposed standards. Results of the first 9 months of the study are summarized and discussed. Major conclusions based on these data are: (1) the LAS-X system can be operated successfully in the FTF environment, (2) each FTF would require a back-up LAS-X to be able to continue filter testing during the (at least) once each year removal of a LAS-X from service for major recalibration and repair, (3) the FTF test aerosols are not monodisperse, as assumed in the military standard MIL-STD-282, and do not all meet the new DOE Nuclear Standard NE-F-3-43, which a replacement aerosol would be required to meet, (4) the test aerosol at each FTF is quite consistent over time, and (5) the test aerosols at the three FTFs differ consistently. Final conclusions and recommendations from this study will be developed after analysis of the full 12 months of data

  14. The use of beam propagation modeling of Beamlet and Nova to ensure a ''safe'' National Ignition Facility laser system design

    International Nuclear Information System (INIS)

    Henesian, M.A.; Renard, P.; Auerbach, J.

    1997-01-01

    An exhaustive set of Beamlet and Nova laser system simulations were performed over a wide range of power levels in order to gain understanding about the statistical trends in Nova and Beamlet's experimental data sets, and to provide critical validation of propagation tools and design ''rules'' applied to the 192-arm National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL). The experiments considered for modeling were at 220-ps FWHM duration with unpumped booster slabs on Beamlet, and 100-ps FWHM with pumped 31.5-cm and 46-cm disk amplifiers on Nova. Simulations indicated that on Beamlet, the AB (the intensity pendent phase shift parameter characterizing the tendency towards beam filamentation) for the booster amplifier stage without pumping, would be nearly identical to the AB expected on NIF at the peak of a typical 20-ns long shaped pulse intended for ICF target irradiation. Therefore, with energies less than I kJ in short-pulses, we examined on Beamlet the comparable AB-driven filamentation conditions predicted for long ICF pulseshapes in the 18 kJ regime on the NIF, while avoiding fluence dependent surface damage. Various spatial filter pinhole configurations were examined on Nova and Beamlet. Open transport spatial filter pinholes were used in some experiments to allow the direct measurement of the onset of beam filamentation. Schlieren images on Beamlet of the far field irradiance measuring the scattered light fraction outside of 33-microradians were also obtained and compared to modeled results

  15. Assessing the Time Variability of Jupiter's Tropospheric Properties from 1996 to 2011

    Science.gov (United States)

    Orton, G. S.; Fletcher, L. N.; Yanamandra-Fisher, P. A.; Simon-Miller, A. A.; Greco, J.; Wakefield, L.

    2012-01-01

    We acquired and analyzed mid-infrared images of Jupiter's disk at selected wavelengths from NASA's Infrared Telescope Facility (IRTF) from 1996 to 2011, including a period of large-scale changes of cloud color and albedo. We derived the 100-300 mbar temperature structure, together with tracers of vertical motion: the thickness of a 600- mbar cloud layer, the 300-mbar abundance of the condensable gas NH3, and the 400- mbar para- vs. ortho-H2 ratio. The biggest visual change was detected in the normally dark South Equatorial Belt (SEB) that 'faded' to a light color in 2010, during which both cloud thickness and NH3 abundance rose; both returned to their pre-fade levels in 2011, as the SEB regained its normal dark color. The cloud thickness in Jupiter's North Temperate Belt (NTB) increased in 2002, coincident with its visible brightening, and its NH3 abundance spiked in 2002-2003. Jupiter's Equatorial Zone (EZ), a region marked by more subtle but widespread color and albedo change, showed high cloud thickness variability between 2007 and 2009. In Jupiter's North Equatorial Belt (NEB), the cloud thickened in 2005, then slowly decreased to a minimum value in 2010-2011. No temperature variations were associated with any of these changes, but we discovered temperature oscillations of approx.2-4 K in all regions, with 4- or 8-year periods and phasing that was dissimilar in the different regions. There was also no detectable change in the para- vs. ortho-H2 ratio over time, leading to the possibility that it is driven from much deeper atmospheric levels and may be time-invariant. Our future work will continue to survey the variability of these properties through the Juno mission, which arrives at Jupiter in 2016, and to connect these observations with those made using raster-scanned images from 1980 to 1993 (Orton et al. 1996 Science 265, 625).

  16. Hohlraum-driven mid-Z (SiO2) double-shell implosions on the omega laser facility and their scaling to NIF.

    Science.gov (United States)

    Robey, H F; Amendt, P A; Milovich, J L; Park, H-S; Hamza, A V; Bono, M J

    2009-10-02

    High-convergence, hohlraum-driven implosions of double-shell capsules using mid-Z (SiO2) inner shells have been performed on the OMEGA laser facility [T. R. Boehly, Opt. Commun. 133, 495 (1997)]. These experiments provide an essential extension of the results of previous low-Z (CH) double-shell implosions [P. A. Amendt, Phys. Rev. Lett. 94, 065004 (2005)] to materials of higher density and atomic number. Analytic modeling, supported by highly resolved 2D numerical simulations, is used to account for the yield degradation due to interfacial atomic mixing. This extended experimental database from OMEGA enables a validation of the mix model, and provides a means for quantitatively assessing the prospects for high-Z double-shell implosions on the National Ignition Facility [Paisner, Laser Focus World 30, 75 (1994)].

  17. Programs for interfacing digital storage oscilloscope and micro positioner to a PC for laser induced vaporisation mass spectrometric facility - an application note

    International Nuclear Information System (INIS)

    Joseph, M.; Sivakumar, N.

    1995-01-01

    A laser induced vaporization mass spectrometry (LIV-MS) facility is being developed in our laboratory. The primary motivation for building this mass spectrometry system is the need to generate vapour pressure data of reactor fuels at very high temperatures (∼ 5000K). High power pulsed lasers are ideal heat sources to attain these high temperatures in a containerless fashion and the mass spectrometer can be used to characterise the vapour species that are formed during laser vaporization. In this report the interfacing programs developed for the data acquisition from Digital Storage Oscilloscope and for controlling the micro positioner by a PC through a General Purpose Interface Bus (GPIB/IEEE 488) card are presented. The general structure adopted in the programs will be suitable for any such data collection procedures. (author)

  18. Computer programs for capital cost estimation, lifetime economic performance simulation, and computation of cost indexes for laser fusion and other advanced technology facilities

    International Nuclear Information System (INIS)

    Pendergrass, J.H.

    1978-01-01

    Three FORTRAN programs, CAPITAL, VENTURE, and INDEXER, have been developed to automate computations used in assessing the economic viability of proposed or conceptual laser fusion and other advanced-technology facilities, as well as conventional projects. The types of calculations performed by these programs are, respectively, capital cost estimation, lifetime economic performance simulation, and computation of cost indexes. The codes permit these three topics to be addressed with considerable sophistication commensurate with user requirements and available data

  19. A New Approach to Modeling Jupiter's Magnetosphere

    Science.gov (United States)

    Fukazawa, K.; Katoh, Y.; Walker, R. J.; Kimura, T.; Tsuchiya, F.; Murakami, G.; Kita, H.; Tao, C.; Murata, K. T.

    2017-12-01

    The scales in planetary magnetospheres range from 10s of planetary radii to kilometers. For a number of years we have studied the magnetospheres of Jupiter and Saturn by using 3-dimensional magnetohydrodynamic (MHD) simulations. However, we have not been able to reach even the limits of the MHD approximation because of the large amount of computer resources required. Recently thanks to the progress in supercomputer systems, we have obtained the capability to simulate Jupiter's magnetosphere with 1000 times the number of grid points used in our previous simulations. This has allowed us to combine the high resolution global simulation with a micro-scale simulation of the Jovian magnetosphere. In particular we can combine a hybrid (kinetic ions and fluid electrons) simulation with the MHD simulation. In addition, the new capability enables us to run multi-parameter survey simulations of the Jupiter-solar wind system. In this study we performed a high-resolution simulation of Jovian magnetosphere to connect with the hybrid simulation, and lower resolution simulations under the various solar wind conditions to compare with Hisaki and Juno observations. In the high-resolution simulation we used a regular Cartesian gird with 0.15 RJ grid spacing and placed the inner boundary at 7 RJ. From these simulation settings, we provide the magnetic field out to around 20 RJ from Jupiter as a background field for the hybrid simulation. For the first time we have been able to resolve Kelvin Helmholtz waves on the magnetopause. We have investigated solar wind dynamic pressures between 0.01 and 0.09 nPa for a number of IMF values. These simulation data are open for the registered users to download the raw data. We have compared the results of these simulations with Hisaki auroral observations.

  20. Modeling Magnetospheric Fields in the Jupiter System

    OpenAIRE

    Saur, Joachim; Chané, Emmanuel; Hartkorn, Oliver

    2018-01-01

    The various processes which generate magnetic fields within the Jupiter system are exemplary for a large class of similar processes occurring at other planets in the solar system, but also around extrasolar planets. Jupiter’s large internal dynamo magnetic field generates a gigantic magnetosphere, which in contrast to Earth’s magnetosphere is strongly rotational driven and possesses large plasma sources located deeply within the magnetosphere. The combination of the latter two effects is the ...

  1. Capture of irregular satellites at Jupiter

    International Nuclear Information System (INIS)

    Nesvorný, David; Vokrouhlický, David; Deienno, Rogerio

    2014-01-01

    The irregular satellites of outer planets are thought to have been captured from heliocentric orbits. The exact nature of the capture process, however, remains uncertain. We examine the possibility that irregular satellites were captured from the planetesimal disk during the early solar system instability when encounters between the outer planets occurred. Nesvorný et al. already showed that the irregular satellites of Saturn, Uranus, and Neptune were plausibly captured during planetary encounters. Here we find that the current instability models present favorable conditions for capture of irregular satellites at Jupiter as well, mainly because Jupiter undergoes a phase of close encounters with an ice giant. We show that the orbital distribution of bodies captured during planetary encounters provides a good match to the observed distribution of irregular satellites at Jupiter. The capture efficiency for each particle in the original transplanetary disk is found to be (1.3-3.6) × 10 –8 . This is roughly enough to explain the observed population of jovian irregular moons. We also confirm Nesvorný et al.'s results for the irregular satellites of Saturn, Uranus, and Neptune.

  2. CAPTURE OF TROJANS BY JUMPING JUPITER

    International Nuclear Information System (INIS)

    Nesvorný, David; Vokrouhlický, David; Morbidelli, Alessandro

    2013-01-01

    Jupiter Trojans are thought to be survivors of a much larger population of planetesimals that existed in the planetary region when planets formed. They can provide important constraints on the mass and properties of the planetesimal disk, and its dispersal during planet migration. Here, we tested a possibility that the Trojans were captured during the early dynamical instability among the outer planets (aka the Nice model), when the semimajor axis of Jupiter was changing as a result of scattering encounters with an ice giant. The capture occurs in this model when Jupiter's orbit and its Lagrange points become radially displaced in a scattering event and fall into a region populated by planetesimals (that previously evolved from their natal transplanetary disk to ∼5 AU during the instability). Our numerical simulations of the new capture model, hereafter jump capture, satisfactorily reproduce the orbital distribution of the Trojans and their total mass. The jump capture is potentially capable of explaining the observed asymmetry in the number of leading and trailing Trojans. We find that the capture probability is (6-8) × 10 –7 for each particle in the original transplanetary disk, implying that the disk contained (3-4) × 10 7 planetesimals with absolute magnitude H disk ∼ 14-28 M Earth , is consistent with the mass deduced from recent dynamical simulations of the planetary instability.

  3. A retrograde object near Jupiter's orbit

    Science.gov (United States)

    Connors, M.; Wiegert, P.

    2018-02-01

    Asteroid 2007 VW266 is among the rare objects with a heliocentric retrograde orbit, and its semimajor axis is within a Hill sphere radius of that of Jupiter. This raised the interesting possibility that it could be in co-orbital retrograde resonance with Jupiter, a second "counter-orbital" object in addition to recently discovered 2015 BZ509. We find instead that the object is in 13/14 retrograde mean motion resonance (also referred to as 13/-14). The object is shown to have entered its present orbit about 1700 years ago, and it will leave it in about 8000 years, both through close approach to Jupiter. Entry and exit states both avoid 1:1 retrograde resonance, but the retrograde nature is preserved. The temporary stable state is due to an elliptic orbit with high inclination keeping nodal passages far from the associated planet. We discuss the motion of this unusual object based on modeling and theory, and its observational prospects.

  4. Development of a thermal fatigue test method for thermal barrier coatings by laser excitation using a laser thermal shock facility; Entwicklung eines Pruefverfahrens zur laserinduzierten thermischen Ermuedung thermischer Schutzschichten mittels einer Laser-Thermoschockpruefeinrichtung

    Energy Technology Data Exchange (ETDEWEB)

    Nies, Daniel

    2012-07-13

    The finite nature of fossil fuel supply and the growing environmental awareness become increasingly stronger motivations for the development of efficient gas turbines and jet engines for power generation or as engines for land-, sea- and water-based vehicles. One concept developed for this purpose are thermal barrier coatings, where the thermal load of components is reduced by applying a ceramic coating onto the components. In this work the possibility to use a laser thermal shock facility for thermo-cyclic testing of thermal barrier coatings is examined. A focused laser beam is used for heating the sample and a homogeneous temperature distribution on the sample surface is achieved by the used trajectory and radial adjusted laser power. The required improvements of the existing testing facility are explained, including the development of a new sample holder and of the testing and evaluation routines for the experiments. For the assessment of the initiation and evolution of damages, acoustic emission and thermographic methods are used. The possibilities and limits of these methods are assessed during the experiments. The work also includes an extensive temperature dependent characterisation of the ceramic material used for the thermal barrier coating. In this part, the measurement of the Young's modulus by a dynamic method is to be highlighted, as this is a rarely used technique. The characterisations show the expected values, except for a lower porosity as expected by the manufacturer and no significant phase changes during isothermal heat treatments. To reach sample surface temperatures above 1000 C, it is necessary to increase the absorption by an additional coating of magnetite. The temperature distribution on the surface is measured by an infrared camera, which is calibrated for this purpose. With the incorporated active air cooling of the sample backside, the temperature gradient can be controlled, but still leaves room for improvements. Already without

  5. Above scaling short-pulse ion acceleration from flat foil and ``Pizza-top Cone'' targets at the Trident laser facility

    Science.gov (United States)

    Flippo, Kirk; Hegelich, B. Manuel; Cort Gautier, D.; Johnson, J. Randy; Kline, John L.; Shimada, Tsutomu; Fernández, Juan C.; Gaillard, Sandrine; Rassuchine, Jennifer; Le Galloudec, Nathalie; Cowan, Thomas E.; Malekos, Steve; Korgan, Grant

    2006-10-01

    Ion-driven Fast Ignition (IFI) has certain advantages over electron-driven FI due to a possible large reduction in the amount of energy required. Recent experiments at the Los Alamos National Laboratory's Trident facility have yielded ion energies and efficiencies many times in excess of recent published scaling laws, leading to even more potential advantages of IFI. Proton energies in excess of 35 MeV have been observed from targets produced by the University of Nevada, Reno - dubbed ``Pizza-top Cone'' targets - at intensities of only 1x10^19 W/cm^2 with 20 joules in 600 fs. Energies in excess of 24 MeV were observed from simple flat foil targets as well. The observed energies, above any published scaling laws, are attributed to target production, preparation, and shot to shot monitoring of many laser parameters, especially the laser ASE prepulse level and laser pulse duration. The laser parameters are monitored in real-time to keep the laser in optimal condition throughout the run providing high quality, reproducible shots.

  6. Interplanetary electrons: what is the strength of the Jupiter source

    International Nuclear Information System (INIS)

    Fillius, W.; Ip, Wing-Huen; Knickerbocker, P.

    1977-01-01

    Because there is not enough information to support a rigorous answer, we use a phenomenological approach and conservative assumptions to address the source strength of Jupiter for interplanetary electrons. We estimate that Jupiter emits approximately 10 24 - 10 26 electrons s -1 of energy > 6 MeV, which source may be compared with the population of approximately 3 x 10 28 electrons of the same energy in Jupiter's outer magnetosphere. We conclude that Jupiter accelerates particles at a rate exceeding that of ordinary trapped particle dynamical processes. (author)

  7. Study of Power Options for Jupiter and Outer Planet Missions

    Science.gov (United States)

    Landis, Geoffrey A.; Fincannon, James

    2015-01-01

    Power for missions to Jupiter and beyond presents a challenging goal for photovoltaic power systems, but NASA missions including Juno and the upcoming Europa Clipper mission have shown that it is possible to operate solar arrays at Jupiter. This work analyzes photovoltaic technologies for use in Jupiter and outer planet missions, including both conventional arrays, as well as analyzing the advantages of advanced solar cells, concentrator arrays, and thin film technologies. Index Terms - space exploration, spacecraft solar arrays, solar electric propulsion, photovoltaic cells, concentrator, Fresnel lens, Jupiter missions, outer planets.

  8. Spatial beam shaping using a micro-structured optical fiber and all-fiber laser amplification system for large-scale laser facilities seeding

    International Nuclear Information System (INIS)

    Calvet, Pierre

    2014-01-01

    Spatial beam shaping is an important topic for the lasers applications. For various industrial areas (marking, drilling, laser-matter interaction, high-power laser seeding...) the optical beam has to be flattened. Currently, the state of the art of the beam shaping: 'free-space' solutions or highly multimode fibers, are not fully suitable. The first ones are very sensitive to any perturbations and the maintenance is challenging, the second ones cannot deliver a coherent beam. For this reason, we present in this manuscript a micro-structured optical single-mode fiber delivering a spatially flattened beam. This 'Top-Hat' fiber can shape any beam in a spatially coherent beam what is a progress with respect to the highly multimode fibers used in the state of the art. The optical fibers are easy to use and very robust, what is a strong benefit with respect to the 'free-space' solutions. Thanks to this fiber, we could realize an all-fiber multi-stage laser chain to amplify a 10 ns pulse to 100 μJ. Moreover the temporal, spectral and spatial properties were preserved. We adapted this 'Top-Hat' fiber to this multi-stage laser chain, we proved the capability and the interest of this fiber for the spatial beam shaping of the laser beams in highly performing and robust laser systems. (author) [fr

  9. ESO Observations of New Moon of Jupiter

    Science.gov (United States)

    2000-08-01

    Two astronomers, both specialists in minor bodies in the solar system, have performed observations with ESO telescopes that provide important information about a small moon, recently discovered in orbit around the solar system's largest planet, Jupiter. Brett Gladman (of the Centre National de la Recherche Scientifique (CNRS) and working at Observatoire de la Cote d'Azur, France) and Hermann Boehnhardt ( ESO-Paranal) obtained detailed data on the object S/1999 J 1 , definitively confirming it as a natural satellite of Jupiter. Seventeen Jovian moons are now known. The S/1999 J 1 object On July 20, 2000, the Minor Planet Center (MPC) of the International Astronomical Union (IAU) announced on IAU Circular 7460 that orbital computations had shown a small moving object, first seen in the sky in 1999, to be a new candidate satellite of Jupiter. The conclusion was based on several positional observations of that object made in October and November 1999 with the Spacewatch Telescope of the University of Arizona (USA). In particular, the object's motion in the sky was compatible with that of an object in orbit around Jupiter. Following the official IAU procedure, the IAU Central Bureau for Astronomical Telegrams designated the new object as S/1999 J 1 (the 1st candidate Satellite of Jupiter to be discovered in 1999). Details about the exciting detective story of this object's discovery can be found in an MPC press release and the corresponding Spacewatch News Note. Unfortunately, Jupiter and S/1999 J 1 were on the opposite side of the Sun as seen from the Earth during the spring of 2000. The faint object remained lost in the glare of the Sun in this period and, as expected, a search in July 2000 through all available astronomical data archives confirmed that it had not been seen since November 1999, nor before that time. With time, the extrapolated sky position of S/1999 J 1 was getting progressively less accurate. New observations were thus urgently needed to "recover

  10. JUPITER and satellites: Clinical implications of the JUPITER study and its secondary analyses.

    Science.gov (United States)

    Kostapanos, Michael S; Elisaf, Moses S

    2011-07-26

    THE JUSTIFICATION FOR THE USE OF STATINS IN PREVENTION: an intervention trial evaluating rosuvastatin (JUPITER) study was a real breakthrough in primary cardiovascular disease prevention with statins, since it was conducted in apparently healthy individuals with normal levels of low-density lipoprotein cholesterol (LDL-C JUPITER, rosuvastatin was associated with significant reductions in cardiovascular outcomes as well as in overall mortality compared with placebo. In this paper the most important secondary analyses of the JUPITER trial are discussed, by focusing on their novel findings regarding the role of statins in primary prevention. Also, the characteristics of otherwise healthy normocholesterolemic subjects who are anticipated to benefit more from statin treatment in the clinical setting are discussed. Subjects at "intermediate" or "high" 10-year risk according to the Framingham score, those who exhibit low post-treatment levels of both LDL-C (JUPITER added to our knowledge that statins may be effective drugs in the primary prevention of cardiovascular disease in normocholesterolemic individuals at moderate-to-high risk. Also, statin treatment may reduce the risk of venous thromboembolism and preserve renal function. An increase in physician-reported diabetes represents a major safety concern associated with the use of the most potent statins.

  11. Design of laser-driven SiO2-YAG:Ce composite thick film: Facile synthesis, robust thermal performance, and application in solid-state laser lighting

    Science.gov (United States)

    Xu, Jian; Liu, Bingguo; Liu, Zhiwen; Gong, Yuxuan; Hu, Baofu; Wang, Jian; Li, Hui; Wang, Xinliang; Du, Baoli

    2018-01-01

    In recent times, there have been rapid advances in the solid-state laser lighting technology. Due to the large amounts of heat accumulated from the high flux laser radiation, color conversion materials used in solid-state laser lighting devices should possess high durability, high thermal conductivity, and low thermal quenching. The aim of this study is to develop a thermally robust SiO2-YAG:Ce composite thick film (CTF) for high-power solid-state laser lighting applications. Commercial colloidal silica which was used as the source of SiO2, played the roles of an adhesive, a filler, and a protecting agent. Compared to the YAG:Ce powder, the CTF exhibits remarkable thermal stability (11.3% intensity drop at 200 °C) and durability (4.5% intensity drop after 1000 h, at 85 °C and 85% humidity). Furthermore, the effects of the substrate material and the thickness of the CTF on the laser lighting performance were investigated in terms of their thermal quenching and luminescence saturation behaviors, respectively. The CTF with a thickness of 50 μm on a sapphire substrate does not show luminescence saturation, despite a high-power density of incident radiation i.e. 20 W/mm2. These results demonstrate the potential applicability of the CTF in solid-state laser lighting devices.

  12. The Interiors of Jupiter and Saturn

    Science.gov (United States)

    Helled, Ravit

    2018-05-01

    Probing the interiors of the giant planets in our Solar System is not an easy task. This requires a set of observations combined with theoretical models that are used to infer the planetary composition and its depth dependence. The masses of Jupiter and Saturn are 318 and 96 Earth masses, respectively, and since a few decades, we know that they mostly consist of hydrogen and helium. It is the mass of heavy elements (all elements heavier than helium) that is not well determined, as well as its distribution within the planets. While the heavy elements are not the dominating materials in Jupiter and Saturn, they are the key for our understanding of their formation and evolution histories. The planetary internal structure is inferred to fit the available observational constraints including the planetary masses, radii, 1-bar temperatures, rotation rates, and gravitational fields. Then, using theoretical equations of states (EOSs) for hydrogen, helium, their mixtures, and heavier elements (typically rocks and/or ices), a structure model is developed. However, there is no unique solution for the planetary structure, and the results depend on the used EOSs and the model assumptions imposed by the modeler. Standard interior models of Jupiter and Saturn include three main regions: (1) the central region (core) that consists of heavy elements, (2) an inner metallic hydrogen envelope that is helium rich, and (3) an outer molecular hydrogen envelope depleted with helium. The distribution of heavy elements can be either homogenous or discontinuous between the two envelopes. Major model assumptions that can affect the derived internal structure include the number of layers, the heat transport mechanism within the planet (and its entropy), the nature of the core (compact vs. diluted), and the location/pressure where the envelopes are divided. Alternative structure models assume a less distinct division between the layers and/or a less non-homogenous distribution of the heavy

  13. Jupiter Europa Orbiter Architecture Definition Process

    Science.gov (United States)

    Rasmussen, Robert; Shishko, Robert

    2011-01-01

    The proposed Jupiter Europa Orbiter mission, planned for launch in 2020, is using a new architectural process and framework tool to drive its model-based systems engineering effort. The process focuses on getting the architecture right before writing requirements and developing a point design. A new architecture framework tool provides for the structured entry and retrieval of architecture artifacts based on an emerging architecture meta-model. This paper describes the relationships among these artifacts and how they are used in the systems engineering effort. Some early lessons learned are discussed.

  14. HET/JUPITER project assessment report

    International Nuclear Information System (INIS)

    Baxter, B.J.; Harrington, F.E.; Kaiser, G.G.; Wolf, J.

    1979-05-01

    This report is an assessment of the United States' Hot Engineering Test (HET) and the Federal Republic of Germany's Juelich Pilot Plant Thorium Element Reprocessing (JUPITER) Projects. The assessment was conducted with a view to developing mutually supportive roles in the achievement of hot engineering test objectives. Conclusions of the assessment are positive and identify several technical areas with potential for US/FRG cooperation. Recommendations presented in this report support a cost-effective US/FRG program to jointly develop high temperature gas-cooled reactor fuel recycle technology. (orig.) [de

  15. Exploring the limits of case-to-capsule ratio, pulse length, and picket energy for symmetric hohlraum drive on the National Ignition Facility Laser

    Science.gov (United States)

    Callahan, D. A.; Hurricane, O. A.; Ralph, J. E.; Thomas, C. A.; Baker, K. L.; Benedetti, L. R.; Berzak Hopkins, L. F.; Casey, D. T.; Chapman, T.; Czajka, C. E.; Dewald, E. L.; Divol, L.; Döppner, T.; Hinkel, D. E.; Hohenberger, M.; Jarrott, L. C.; Khan, S. F.; Kritcher, A. L.; Landen, O. L.; LePape, S.; MacLaren, S. A.; Masse, L. P.; Meezan, N. B.; Pak, A. E.; Salmonson, J. D.; Woods, D. T.; Izumi, N.; Ma, T.; Mariscal, D. A.; Nagel, S. R.; Kline, J. L.; Kyrala, G. A.; Loomis, E. N.; Yi, S. A.; Zylstra, A. B.; Batha, S. H.

    2018-05-01

    We present a data-based model for low mode asymmetry in low gas-fill hohlraum experiments on the National Ignition Facility {NIF [Moses et al., Fusion Sci. Technol. 69, 1 (2016)]} laser. This model is based on the hypothesis that the asymmetry in these low fill hohlraums is dominated by the hydrodynamics of the expanding, low density, high-Z (gold or uranium) "bubble," which occurs where the intense outer cone laser beams hit the high-Z hohlraum wall. We developed a simple model which states that the implosion symmetry becomes more oblate as the high-Z bubble size becomes large compared to the hohlraum radius or the capsule size becomes large compared to the hohlraum radius. This simple model captures the trends that we see in data that span much of the parameter space of interest for NIF ignition experiments. We are now using this model as a constraint on new designs for experiments on the NIF.

  16. ECCENTRIC JUPITERS VIA DISK–PLANET INTERACTIONS

    International Nuclear Information System (INIS)

    Duffell, Paul C.; Chiang, Eugene

    2015-01-01

    Numerical hydrodynamics calculations are performed to determine the conditions under which giant planet eccentricities can be excited by parent gas disks. Unlike in other studies, Jupiter-mass planets are found to have their eccentricities amplified—provided their orbits start off as eccentric. We disentangle the web of co-rotation, co-orbital, and external resonances to show that this finite-amplitude instability is consistent with that predicted analytically. Ellipticities can grow until they reach of order of the disk's aspect ratio, beyond which the external Lindblad resonances that excite eccentricity are weakened by the planet's increasingly supersonic epicyclic motion. Forcing the planet to still larger eccentricities causes catastrophic eccentricity damping as the planet collides into gap walls. For standard parameters, the range of eccentricities for instability is modest; the threshold eccentricity for growth (∼0.04) is not much smaller than the final eccentricity to which orbits grow (∼0.07). If this threshold eccentricity can be lowered (perhaps by non-barotropic effects), and if the eccentricity driving documented here survives in 3D, it may robustly explain the low-to-moderate eccentricities ≲0.1 exhibited by many giant planets (including Jupiter and Saturn), especially those without planetary or stellar companions

  17. The Occurrence Rate of Hot Jupiters

    Science.gov (United States)

    Rampalli, Rayna; Catanzarite, Joseph; Batalha, Natalie M.

    2017-01-01

    As the first kind of exoplanet to be discovered, hot Jupiters have always been objects of interest. Despite being prevalent in radial velocity and ground-based surveys, they were found to be much rarer based on Kepler observations. These data show a pile-up at radii of 9-22 Rearth and orbital periods of 1-10 days. Computing accurate occurrence rates can lend insight into planet-formation and migration-theories. To get a more accurate look, the idea of reliability was introduced. Each hot Jupiter candidate was assigned a reliability based on its location in the galactic plane and likelihood of being a false positive. Numbers were updated if ground-based follow-up indicated a candidate was indeed a false positive. These reliabilities were introduced into an occurrence rate calculation and yielded about a 12% decrease in occurrence rate for each period bin examined and a 25% decrease across all the bins. To get a better idea of the cause behind the pileup, occurrence rates based on parent stellar metallicity were calculated. As expected from previous work, higher metallicity stars yield higher occurrence rates. Future work includes examining period distributions in both the high metallicity and low metallicity sample for a better understanding and confirmation of the pile-up effect.

  18. The Jovian rings as observed from Jupiter.

    Science.gov (United States)

    Malinnikova Bang, A.; Joergensen, J. L.; Joergensen, P. S.; Denver, T.; Connerney, J. E. P.; Bolton, S. J.; Levin, S.

    2017-12-01

    Juno entered a highly eliptic orbit around Jupiter on the 4. July 2016. Since then, it has completed 8 perijove passages. The Magnetometer experiment consists of two measurement platforms mounted 10m and 12m from the spacecraft spin axis, on one of three large solar panels. Each magnetometer platform is equipped with two star trackers to provide accurate attitude information to the vector magnetometers. The star trackers are pointed 13deg from the (anti) spin vector, and clocked 180deg to avoid simultaneous blinding effects from bright Jupiter only 6000km away, during perijove. This brings Juno well inside the innermost known satellite, Metis. The star trackers pointing close to, and above the Jovian horizon for most of each rotation of Juno, has an excellent view of the Jovian ring systems with a beta-angle close to 180deg. We report on the ring imaging performed during the first 8 orbits, discuss the structure, optical depth and moon sheparding of the inner rings as measured so far.

  19. Vulnerability analysis of DT fusion diagnostics for laser Megajoule facility. A new tool: Diacad; Analyse de vulnerabilite de chaines de diagnostic pour la fusion DT dans le cadre du laser megajoule. Un nouvel outil: diacad

    Energy Technology Data Exchange (ETDEWEB)

    D' hose, C.; Baggio, J.; Musseau, O. [CEA Bruyeres-le-Chatel, 91 (France)

    1999-07-01

    The Megajoule laser (LMJ) project is a major component of the French simulation program to study inertial confinement. This new facility will provide an energy 60 times greater than the largest lasers presently available (Phebus, Nova, Omega). Many diagnostic links will have to be developed in order to acquire complementary knowledge in this domain. A computer based tool has been defined. This paper presents the most recent developments of this new CAD (computer assisted diagnosis) tool. We first describe LMJ context, and then the analysis methodology developed to address the sensitivity to transient radiation of nuclear diagnosis links. This tool takes into account the vulnerability of individual parts and the global structure of the link. (A.C.)

  20. The identification of autoionizing states of atomic chromium for the resonance ionization laser ion source of the ISOLDE radioactive ion beam facility

    CERN Document Server

    Goodacre, T Day

    2017-01-01

    The resonance ionization laser ion source (RILIS) is the principal ion source of the ISOLDE radioactive beam facility based at CERN. Using the method of in-source resonance ionization spectroscopy, an optimal three-step, three-resonance photo-ionization scheme has been developed for chromium. The scheme uses an ionizing transition to one of the 14 newly observed autoionizing states. This work increases the range of ISOLDE-RILIS ionized beams to 32 chemical elements. Details of the spectroscopic studies are described and the new ionization scheme is summarized. A link to the complete version of this document will be added here following publication:

  1. Exposure implications for uranium aerosols formed at a new laser enrichment facility: application of the ICRP Respiratory Tract and Systemic Model

    Energy Technology Data Exchange (ETDEWEB)

    Ansorbolo, E.; Hodgson, A.; Stradling, G.N.; Hodgson, S.; Metivier, H.; Henge-Napoli, M.H.; Jarvis, N.S.; Birchall, A

    1998-07-01

    A pilot enrichment facility developed in France employs laser technology. The development of this process has resulted in three different types of aerosols identified as variable mixtures of U{sub metal}+ UO{sub 2} and U{sub 3}O{sub 8}. A procedure is described for assessing intakes and doses after inhalation of these dusts using site and material specific data in conjunction with the most recent ICRP biokinetic models. It is concluded that exposure control could be based on either radiotoxicity or chemical toxicity and that chest monitoring and urine assay could be useful, provided that measurements are made soon after a known acute intake. (author)

  2. Clinical and Research Activities at the CATANA Facility of INFN-LNS: From the Conventional Hadrontherapy to the Laser-Driven Approach.

    Science.gov (United States)

    Cirrone, Giuseppe A P; Cuttone, Giacomo; Raffaele, Luigi; Salamone, Vincenzo; Avitabile, Teresio; Privitera, Giuseppe; Spatola, Corrado; Margarone, Daniele; Patti, Valeria; Petringa, Giada; Romano, Francesco; Russo, Andrea; Russo, Antonio; Sabini, Maria G; Scuderi, Valentina; Schillaci, Francesco; Valastro, Lucia M

    2017-01-01

    The CATANA proton therapy center was the first Italian clinical facility making use of energetic (62 MeV) proton beams for the radioactive treatment of solid tumors. Since the date of the first patient treatment in 2002, 294 patients have been successful treated whose majority was affected by choroidal and iris melanomas. In this paper, we report on the current clinical and physical status of the CATANA facility describing the last dosimetric studies and reporting on the last patient follow-up results. The last part of the paper is dedicated to the description of the INFN-LNS ongoing activities on the realization of a beamline for the transport of laser-accelerated ion beams for future applications. The ELIMED (ELI-Beamlines MEDical and multidisciplinary applications) project is introduced and the main scientific aspects will be described.

  3. Clinical and Research Activities at the CATANA Facility of INFN-LNS: From the Conventional Hadrontherapy to the Laser-Driven Approach

    Science.gov (United States)

    Cirrone, Giuseppe A. P.; Cuttone, Giacomo; Raffaele, Luigi; Salamone, Vincenzo; Avitabile, Teresio; Privitera, Giuseppe; Spatola, Corrado; Amico, Antonio G.; Larosa, Giuseppina; Leanza, Renata; Margarone, Daniele; Milluzzo, Giuliana; Patti, Valeria; Petringa, Giada; Romano, Francesco; Russo, Andrea; Russo, Antonio; Sabini, Maria G.; Schillaci, Francesco; Scuderi, Valentina; Valastro, Lucia M.

    2017-01-01

    The CATANA proton therapy center was the first Italian clinical facility making use of energetic (62 MeV) proton beams for the radioactive treatment of solid tumors. Since the date of the first patient treatment in 2002, 294 patients have been successful treated whose majority was affected by choroidal and iris melanomas. In this paper, we report on the current clinical and physical status of the CATANA facility describing the last dosimetric studies and reporting on the last patient follow-up results. The last part of the paper is dedicated to the description of the INFN-LNS ongoing activities on the realization of a beamline for the transport of laser-accelerated ion beams for future applications. The ELIMED (ELI-Beamlines MEDical and multidisciplinary applications) project is introduced and the main scientific aspects will be described. PMID:28971066

  4. Clinical and Research Activities at the CATANA Facility of INFN-LNS: From the Conventional Hadrontherapy to the Laser-Driven Approach

    Directory of Open Access Journals (Sweden)

    Giuseppe A. P. Cirrone

    2017-09-01

    Full Text Available The CATANA proton therapy center was the first Italian clinical facility making use of energetic (62 MeV proton beams for the radioactive treatment of solid tumors. Since the date of the first patient treatment in 2002, 294 patients have been successful treated whose majority was affected by choroidal and iris melanomas. In this paper, we report on the current clinical and physical status of the CATANA facility describing the last dosimetric studies and reporting on the last patient follow-up results. The last part of the paper is dedicated to the description of the INFN-LNS ongoing activities on the realization of a beamline for the transport of laser-accelerated ion beams for future applications. The ELIMED (ELI-Beamlines MEDical and multidisciplinary applications project is introduced and the main scientific aspects will be described.

  5. Small inner companions of warm Jupiters: Lifetimes and legacies

    International Nuclear Information System (INIS)

    Van Laerhoven, Christa; Greenberg, Richard

    2013-01-01

    Although warm Jupiters are generally too far from their stars for tides to be important, the presence of an inner planetary companion to a warm Jupiter can result in tidal evolution of the system. Insight into the process and its effects comes form classical secular theory of planetary perturbations. The lifetime of the inner planet may be shorter than the age of the system, because the warm Jupiter maintains its eccentricity and hence promotes tidal migration into the star. Thus a warm Jupiter observed to be alone in its system might have previously cleared away any interior planets. Before its demise, even if an inner planet is of terrestrial scale, it may promote damping of the warm Jupiter's eccentricity. Thus any inferences of the initial orbit of an observed warm Jupiter must include the possibility of a greater initial eccentricity than would be estimated by assuming it had always been alone. Tidal evolution involving multiple planets also enhances the internal heating of the planets, which readily exceeds that of stellar radiation for the inner planet, and may be great enough to affect the internal structure of warm Jupiters. Secular theory gives insight into the tidal processes, providing, among other things, a way to constrain eccentricities of transiting planets based on estimates of the tidal parameter Q.

  6. A Secular Resonant Origin for the Loneliness of Hot Jupiters

    Science.gov (United States)

    Spalding, Christopher; Batygin, Konstantin

    2017-09-01

    Despite decades of inquiry, the origin of giant planets residing within a few tenths of an astronomical unit from their host stars remains unclear. Traditionally, these objects are thought to have formed further out before subsequently migrating inwards. However, the necessity of migration has been recently called into question with the emergence of in situ formation models of close-in giant planets. Observational characterization of the transiting subsample of close-in giants has revealed that “warm” Jupiters, possessing orbital periods longer than roughly 10 days more often possess close-in, co-transiting planetary companions than shorter period “hot” Jupiters, that are usually lonely. This finding has previously been interpreted as evidence that smooth, early migration or in situ formation gave rise to warm Jupiter-hosting systems, whereas more violent, post-disk migration pathways sculpted hot Jupiter-hosting systems. In this work, we demonstrate that both classes of planet may arise via early migration or in situ conglomeration, but that the enhanced loneliness of hot Jupiters arises due to a secular resonant interaction with the stellar quadrupole moment. Such an interaction tilts the orbits of exterior, lower-mass planets, removing them from transit surveys where the hot Jupiter is detected. Warm Jupiter-hosting systems, in contrast, retain their coplanarity due to the weaker influence of the host star’s quadrupolar potential relative to planet-disk interactions. In this way, hot Jupiters and warm Jupiters are placed within a unified theoretical framework that may be readily validated or falsified using data from upcoming missions, such as TESS.

  7. Positional Catalogues of Saturn's and Jupiter's Moons

    Science.gov (United States)

    Yizhakevych, O.; Andruk, V.; Pakuliak, L.; Lukianchuk, V.; Shatokhina, S.

    In the framework of the UkrVO national project (http://ukr-vo.org/) we have started the processing of photographic observations of Saturn's (S1-S8) and Jupiter's (J6-J8) moons. Observations were conducted during 1961-1993 with three astrographs DLFA, DWA, DAZ and Z600 reflector. Plate images were digitized as tif-files with commercial scanners. Image processing was carried out by specific software package in the LINUX-MIDAS-ROMAFOT environment with Tycho2 as reference. The software was developed at the MAO NASU. Obtained positions of objects were compared with theoretically predicted ones in IMCCE (Paris) (www.imcce.fr/sat) online. Rms error of divergence between observed and calculated positions is of 0.20' - 0.35'.

  8. Magnetosphere - Ionosphere - Thermosphere (MIT) Coupling at Jupiter

    Science.gov (United States)

    Yates, J. N.; Ray, L. C.; Achilleos, N.

    2017-12-01

    Jupiter's upper atmospheric temperature is considerably higher than that predicted by Solar Extreme Ultraviolet (EUV) heating alone. Simulations incorporating magnetosphere-ionosphere coupling effects into general circulation models have, to date, struggled to reproduce the observed atmospheric temperatures under simplifying assumptions such as azimuthal symmetry and a spin-aligned dipole magnetic field. Here we present the development of a full three-dimensional thermosphere model coupled in both hemispheres to an axisymmetric magnetosphere model. This new coupled model is based on the two-dimensional MIT model presented in Yates et al., 2014. This coupled model is a critical step towards to the development of a fully coupled 3D MIT model. We discuss and compare the resulting thermospheric flows, energy balance and MI coupling currents to those presented in previous 2D MIT models.

  9. Does Io's ionosphere influence Jupiter's radio bursts.

    Science.gov (United States)

    Webster, D. L.; Alksne, A. Y.; Whitten, R. C.

    1972-01-01

    Goldreich and Lynden-Bell's theory of Jupiter's Io-correlated decametric radiation sets a lower limit to Io's conductivity, high enough to carry the current associated with the radiated power. Dermott's analysis of conductivities of rocks and ice shows no such conductivity at Io's temperature. However, we show that if Io has even a small atmosphere, say of methane as suggested by Binder and Cruikshank, or of argon or nitrogen, it will have an ionosphere with adequate conductivity to meet the above criterion. A requirement for higher conductivity was found by Goldreich and Lynden-Bell on the basis of motion of magnetic lines past Io. This requirement appears to us unnecessary in view of experiments which prove that motion of the lines is not the source of the electromotance.

  10. The European SL-9/JUPITER Workshop

    Science.gov (United States)

    1995-02-01

    During the past six months, many astronomers - observational as well theoretical - have been busy interpreting the many data taken during the impacts and thereafter. This is a very labour-intensive task and although the first conclusions have begun to emerge, it has also become obvious that extensive consultations between the various groups are necessary before it will be possible to understand the very complex processes during the impacts and thereafter. In order to further the interaction among the involved scientists, it has been decided to hold a three-day "European SL-9/Jupiter Workshop" at the Headquarters of the European Southern Observatory. More than 100 astronomers will meet on February 13-15, 1995, and close to 100 reports will be delivered on this occasion. Although most come from European countries, the major groups on other continents are also well represented. This meeting will give the participants the opportunity to exchange information about their individual programmes and will serve to establish future collaborative efforts. SL-9/JUPITER PRESS CONFERENCE In this connection, ESO is pleased to invite the media to a Press Conference: Wednesday, February 15, 1995, 17:30 CET ESO Headquarters, Karl-Schwarzschild-Strasse 2, D-85748 Garching, Germany This conference will be held at the end of the Workshop and will provide a thorough overview of the latest results, as presented during the meeting. Media representatives who are interested in participating in this Press Conference are requested to register with the ESO Information Service (Mrs. E. Völk, Tel.: +49-89-32006276; Fax: +49-89-3202362), at the latest on Friday, February 10, 1995. ESO Press Information is made available on the World-Wide Web (URL: http://www.hq.eso.org/) and on CompuServe (space science and astronomy area, GO SPACE).

  11. The Jupiter system through the eyes of Voyager 1

    Science.gov (United States)

    Smith, B.A.; Soderblom, L.A.; Johnson, T.V.; Ingersoll, A.P.; Collins, S.A.; Shoemaker, E.M.; Hunt, G.E.; Masursky, H.; Carr, M.H.; Davies, M.E.; Cook, A.F.; Boyce, J.; Danielson, G.E.; Owen, Timothy W.; Sagan, C.; Beebe, R.F.; Veverka, J.; Strom, R.G.; McCauley, J.F.; Morrison, D.; Briggs, G.A.; Suomi, V.E.

    1979-01-01

    The cameras aboard Voyager I have provided a closeup view of the Jupiter system, revealing heretofore unknown characteristics and phenomena associated with the planet's atmosphere and the surfaces of its five major satellites. On Jupiter itself, atmospheric motions-the interaction of cloud systems-display complex vorticity. On its dark side, lightning and auroras are observed. A ring was discovered surrounding Jupiter. The satellite surfaces display dramatic differences including extensive active volcanismn on Io, complex tectonism on Ganymnede and possibly Europa, and flattened remnants of enormous impact features on Callisto. Copyright ?? 1979 AAAS.

  12. The high albedo of the hot Jupiter Kepler-7b

    DEFF Research Database (Denmark)

    Demory, B.-O.; Seager, S.; Madhusudhan, N.

    2011-01-01

    Hot Jupiters are expected to be dark from both observations (albedo upper limits) and theory (alkali metals and/or TiO and VO absorption). However, only a handful of hot Jupiters have been observed with high enough photometric precision at visible wavelengths to investigate these expectations....... The NASA Kepler mission provides a means to widen the sample and to assess the extent to which hot Jupiter albedos are low. We present a global analysis of Kepler-7 b based on Q0-Q4 data, published radial velocities, and asteroseismology constraints. We measure an occultation depth in the Kepler bandpass...

  13. Phosphorus Chemistry in the Atmosphere of Jupiter: A Reassessment

    Science.gov (United States)

    Borunov, Sergei; Dorofeeva, Vera; Khodakovsky, Igor; Drossart, Pierre; Lellouch, Emmanuel; Encrenaz, Thérèse

    1995-02-01

    A new distribution of phosphorus compounds in the atmosphere of Jupiter is given, using revised values for the chemical constants. In contrast with previous works, it is shown that phosphine PH 3 remains the most abundant equilibrium gaseous compound even at the upper levels of Jupiter's troposphere. The observed PH 3 abundance is equal to the equilibrium value, at all temperatures above 535 K for solar P and O elemental abundances, and above 600 K for a reasonable range of P and O abundances. P 4O 6 does not take part in the phosphorus cycle on Jupiter.

  14. Absolutely calibrated, time-resolved measurements of soft x rays using transmission grating spectrometers at the Nike Laser Facility

    International Nuclear Information System (INIS)

    Weaver, J.L.; Feldman, U.; Seely, J.F.; Holland, G.; Serlin, V.; Klapisch, M.; Columbant, D.; Mostovych, A.

    2001-01-01

    Accurate simulation of pellet implosions for direct drive inertial confinement fusion requires benchmarking the codes with experimental data. The Naval Research Laboratory (NRL) has begun to measure the absolute intensity of radiation from laser irradiated targets to provide critical information for the radiatively preheated pellet designs developed by the Nike laser group. Two main diagnostics for this effort are two spectrometers incorporating three detection systems. While both spectrometers use 2500 lines/mm transmission gratings, one instrument is coupled to a soft x-ray streak camera and the other is coupled to both an absolutely calibrated Si photodiode array and a charge coupled device (CCD) camera. Absolute calibration of spectrometer components has been undertaken at the National Synchrotron Light Source at Brookhaven National Laboratories. Currently, the system has been used to measure the spatially integrated soft x-ray flux as a function of target material, laser power, and laser spot size. A comparison between measured and calculated flux for Au and CH targets shows reasonable agreement to one-dimensional modeling for two laser power densities

  15. Backscatter spectra measurements of the two beams on the same cone on Shenguang-III laser facility

    Science.gov (United States)

    Zha, Weiyi; Yang, Dong; Xu, Tao; Liu, Yonggang; Wang, Feng; Peng, Xiaoshi; Li, Yulong; Wei, Huiyue; Liu, Xiangming; Mei, Yu; Yan, Yadong; He, Junhua; Li, Zhichao; Li, Sanwei; Jiang, Xiaohua; Guo, Liang; Xie, Xufei; Pan, Kaiqiang; Liu, Shenye; Jiang, Shaoen; Zhang, Baohan; Ding, Yongkun

    2018-01-01

    In laser driven hohlraums, laser beams on the same incident cone may have different beam and plasma conditions, causing beam-to-beam backscatter difference and subsequent azimuthal variations in the x-ray drive on the capsule. To elucidate the large variation of backscatter proportion from beam to beam in some gas-filled hohlraum shots on Shenguang-III, two 28.5° beams have been measured with the Stimulated Raman Scattering (SRS) time-resolved spectra. A bifurcated fiber is used to sample two beams and then coupled to a spectrometer and streak camera combination to reduce the cost. The SRS spectra, characterized by a broad wavelength, were further corrected considering the temporal distortion and intensity modulation caused by components along the light path. This measurement will improve the understanding of the beam propagation inside the hohlraum and related laser plasma instabilities.

  16. Facile fabrication of a superhydrophobic cage by laser direct writing for site-specific colloidal self-assembled photonic crystal.

    Science.gov (United States)

    Yoo, Jae-Hyuck; Kwon, Hyuk-Jun; Paeng, Dongwoo; Yeo, Junyeob; Elhadj, Selim; Grigoropoulos, Costas P

    2016-04-08

    Micron-sized ablated surface structures with nano-sized 'bumpy' structures were produced by femtosecond (fs) laser ablation of polytetrafluoroethylene (PTFE) film under ambient conditions. Upon just a single step, the processed surface exhibited hierarchical micro/nano morphology. In addition, due to the tribological properties of PTFE, polydimethylsiloxane (PDMS) could be replicated from the laser-ablated PTFE surface without anti-adhesive surface treatment. By controlling the design of the ablated patterns, tunable wettability and superhydrophobicity were achieved on both PTFE and PDMS replica surfaces. Furthermore, using fs laser ablation direct writing, a flexible superhydrophobic PDMS cage formed by superhydrophobic patterns encompassing the unmodified region was demonstrated for aqueous droplet positioning and trapping. Through evaporation-driven colloidal self-assembly in this superhydrophobic cage, a colloidal droplet containing polystyrene (PS) particles dried into a self-assembled photonic crystal, whose optical band gap could be manipulated by the particle size.

  17. Techniques for synchronization of X-Ray pulses to the pump laser in an ultrafast X-Ray facility

    International Nuclear Information System (INIS)

    Corlett, J.N.; Doolittle, L.; Schoenlein, R.; Staples, J.; Wilcox, R.; Zholents, A.

    2003-01-01

    Accurate timing of ultrafast x-ray probe pulses emitted from a synchrotron radiation source with respect to the signal initiating a process in the sample under study is critical for the investigation of structural dynamics in the femtosecond regime. We describe schemes for achieving accurate timing of femtosecond x-ray synchrotron radiation pulses relative to a pump laser, where x-rays pulses of <100 fs duration are generated from the proposed LUX source based on a recirculating superconducting linac. We present a description of the timing signal generation and distribution systems to minimize timing jitter of the x-rays relative to the experimental lasers

  18. Size control and supporting of palladium nanoparticles made by laser ablation in saline solution as a facile route to heterogeneous catalysts

    International Nuclear Information System (INIS)

    Marzun, Galina; Nakamura, Junji; Zhang, Xiaorui; Barcikowski, Stephan; Wagener, Philipp

    2015-01-01

    Graphical abstract: - Highlights: • We studied laser-generated, size-controlled palladium nanoparticles in saline solution. • Palladium nanoparticles were electrostatically stabilized by anions. • Photo- and electrocatalyst are prepared by supporting Pd nanoparticles to TiO 2 and graphene. • Particle size does not change during supporting process, while 18 wt% load has been achieved. • Palladium nanoparticles and graphene undergo a redox-reaction during adsorption. - Abstract: In the literature many investigations on colloidal stability and size control of gold nanoparticles are shown but less for ligand-free palladium nanoparticles, which can be promising materials in various applications. Palladium nanoparticles are perspective materials for a manifold of energy application like photo- and electrocatalysis or hydrogen storage. For this purpose, size-controlled nanoparticles with clean surfaces and facile immobilization on catalyst supports are wanted. Laser ablation in saline solution yields ligand-free, charged colloidal palladium nanoparticles that are supported by titania and graphene nanosheets as model systems for photo- and electrocatalysis, respectively. By adjusting the ionic strength during laser ablation in liquid, it is possible to control stability and particle size without compromising subsequent nanoparticle adsorption of supporting materials. A quantitative deposition of nearly 100% yield with up to 18 wt% nanoparticle load was achieved. The average size of the laser-generated nanoparticles remains the same after immobilization on a support material, in contrast to other preparation methods of catalysts. The characterization by X-ray photoelectron spectroscopy reveals a redox reaction between the immobilized nanoparticles and the graphene support

  19. Searching sequences of resonant orbits between a spacecraft and Jupiter

    International Nuclear Information System (INIS)

    Formiga, J K S; Prado, A F B A

    2013-01-01

    This research shows a study of the dynamical behavior of a spacecraft that performs a series of close approaches with the planet Jupiter. The main idea is to find a sequence of resonant orbits that allows the spacecraft to stay in the region of the space near the orbit of Jupiter around the Sun gaining energy from each passage by the planet. The dynamical model considers the existence of only two massive bodies in the systems, which are the Sun and Jupiter. They are assumed to be in circular orbits around their center of mass. Analytical equations are used to obtain the values of the parameters required to get this sequence of close approaches. Those equations are useful, because they show which orbits are physically possible when taking into account that the periapsis distances have to be above the surface of the Sun and that the closest approach distances during the passage by Jupiter have to be above its surface

  20. JUPITER PROJECT - JOINT UNIVERSAL PARAMETER IDENTIFICATION AND EVALUATION OF RELIABILITY

    Science.gov (United States)

    The JUPITER (Joint Universal Parameter IdenTification and Evaluation of Reliability) project builds on the technology of two widely used codes for sensitivity analysis, data assessment, calibration, and uncertainty analysis of environmental models: PEST and UCODE.

  1. VOYAGER 1 JUPITER POSITION RESAMPLED DATA 48.0 SECONDS

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set includes Voyager 1 Jupiter encounter position data that have been generated at a 48.0 second sample rate using the NAIF SPICE kernals. The data set is...

  2. VOYAGER 2 JUPITER POSITION RESAMPLED DATA 48.0 SECONDS

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set includes Voyager 2 Jupiter encounter position data that have been generated at a 48.0 second sample rate using the NAIF SPICE kernals. The data set is...

  3. Jupiter energetic particle experiment ESAD proton sensor design

    International Nuclear Information System (INIS)

    Gruhn, C.R.; Higbie, P.R.

    1977-12-01

    A proton sensor design for the Jupiter Energetic Particle Experiment is described. The sensor design uses avalanche multiplication in order to lower the effective energy threshold. A complete signal-to-noise analysis is given for this design

  4. VOYAGER 2 JUPITER MAGNETOMETER RESAMPLED DATA 48.0 SEC

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set includes Voyager 2 Jupiter encounter magnetometer data that have been resampled at a 48.0 second sample rate. The data set is composed of 6 columns: 1)...

  5. Synchronization of x-ray pulses to the pump laser in an ultrafast x-ray facility

    International Nuclear Information System (INIS)

    Corlett, J.N.; Barry, W.; Byrd, J.M.; Schoenlein, R.; Zholents, A.

    2002-01-01

    Accurate timing of ultrafast x-ray probe pulses emitted from a synchrotron radiation source with respect to a pump laser exciting processes in the sample under study is critical for the investigation of structural dynamics in the femtosecond regime. We describe a scheme for synchronizing femtosecond x-ray pulses relative to a pump laser. X-ray pulses of <100 fs duration are generated from a proposed source based on a recirculating superconducting linac [1,2,3]. Short x-ray pulses are obtained by a process of electron pulse compression, followed by transverse temporal correlation of the electrons, and ultimately x-ray pulse compression. Timing of the arrival of the x-ray pulse with respect to the pump laser is found to be dominated by the operation of the deflecting cavities which provide the transverse temporal correlation of the electrons. The deflecting cavities are driven from a highly stable RF signal derived from a modelocked laser oscillator which is also the origin of the pump l aser pulses

  6. The Frequency of Hot Jupiters in the Galaxy

    Directory of Open Access Journals (Sweden)

    Sackett P. D.

    2011-02-01

    Full Text Available The frequency of Hot Jupiters around Galactic dwarf stars is determined from the results of the SuperLupus transit survey and realistic Monte Carlo simulations of the survey efficiency. We find that for Hot Jupiters with mean radii of 1.1RJ and periods between 1 and 10 days, the frequency around dwarf stars is just 0.16±0.60.2%.

  7. A Learning Organization approach for Knowledge Management at Jupiter Design.

    OpenAIRE

    Jones, Timothy John

    2006-01-01

    This report has been carried out by a student studying for the degree of a Masters in Business Administration at Nottingham University Business School. The focus of the report is to suggest a knowledge management framework for the client Jupiter Design Limited. Jupiter has experienced considerable success and growth over recent years, evolving from a relatively small but well respected design agency into one of the largest agencies operating outside of London. Due to an expanding clie...

  8. An analysis of Jupiter data from the RAE-1 satellite

    Science.gov (United States)

    Carr, T. D.

    1974-01-01

    The analysis of Radio Astronomy Explorer Satellite data are presented. Radio bursts from Jupiter are reported in the frequency range 4700 KHz to 45 KHz. Strong correlations with lo were found at 4700, 3930, and 2200 KHz, while an equally strong Europa effect was observed at 1300, 900, and 700 KHz. Histograms indicating the relative probability and the successful identification of Jupiter activity were plotted, using automatic computer and visual search techniques.

  9. Strong tidal dissipation in Io and Jupiter from astrometric observations.

    Science.gov (United States)

    Lainey, Valéry; Arlot, Jean-Eudes; Karatekin, Ozgür; Van Hoolst, Tim

    2009-06-18

    Io is the volcanically most active body in the Solar System and has a large surface heat flux. The geological activity is thought to be the result of tides raised by Jupiter, but it is not known whether the current tidal heat production is sufficiently high to generate the observed surface heat flow. Io's tidal heat comes from the orbital energy of the Io-Jupiter system (resulting in orbital acceleration), whereas dissipation of energy in Jupiter causes Io's orbital motion to decelerate. Here we report a determination of the tidal dissipation in Io and Jupiter through its effect on the orbital motions of the Galilean moons. Our results show that the rate of internal energy dissipation in Io (k(2)/Q = 0.015 +/- 0.003, where k(2) is the Love number and Q is the quality factor) is in good agreement with the observed surface heat flow, and suggest that Io is close to thermal equilibrium. Dissipation in Jupiter (k(2)/Q = (1.102 +/- 0.203) x 10(-5)) is close to the upper bound of its average value expected from the long-term evolution of the system, and dissipation in extrasolar planets may be higher than presently assumed. The measured secular accelerations indicate that Io is evolving inwards, towards Jupiter, and that the three innermost Galilean moons (Io, Europa and Ganymede) are evolving out of the exact Laplace resonance.

  10. Estimating the Magnetic Field Strength in Hot Jupiters

    Energy Technology Data Exchange (ETDEWEB)

    Yadav, Rakesh K. [Department of Earth and Planetary Sciences, Harvard University, 20 Oxford Street, Cambridge, MA 02138 (United States); Thorngren, Daniel P., E-mail: rakesh_yadav@fas.harvard.edu [Department of Physics, University of California, Santa Cruz, CA (United States)

    2017-11-01

    A large fraction of known Jupiter-like exoplanets are inflated as compared to Jupiter. These “hot” Jupiters orbit close to their parent star and are bombarded with intense starlight. Many theories have been proposed to explain their radius inflation and several suggest that a small fraction of the incident starlight is injected into the planetary interior, which helps to puff up the planet. How will such energy injection affect the planetary dynamo? In this Letter, we estimate the surface magnetic field strength of hot Jupiters using scaling arguments that relate energy available in planetary interiors to the dynamo-generated magnetic fields. We find that if we take into account the energy injected in the planetary interior that is sufficient to inflate hot Jupiters to observed radii, then the resulting dynamo should be able generate magnetic fields that are more than an order of magnitude stronger than the Jovian values. Our analysis highlights the potential fundamental role of the stellar light in setting the field strength in hot Jupiters.

  11. Magnetohydrodynamic simulations of hot jupiter upper atmospheres

    Energy Technology Data Exchange (ETDEWEB)

    Trammell, George B.; Li, Zhi-Yun; Arras, Phil, E-mail: gbt8f@virginia.edu, E-mail: zl4h@virginia.edu, E-mail: arras@virginia.edu [Department of Astronomy, University of Virginia, P.O. Box 400325, Charlottesville, VA 22904-4325 (United States)

    2014-06-20

    Two-dimensional simulations of hot Jupiter upper atmospheres including the planet's magnetic field are presented. The goal is to explore magnetic effects on the layer of the atmosphere that is ionized and heated by stellar EUV radiation, and the imprint of these effects on the Lyα transmission spectrum. The simulations are axisymmetric, isothermal, and include both rotation and azimuth-averaged stellar tides. Mass density is converted to atomic hydrogen density through the assumption of ionization equilibrium. The three-zone structure—polar dead zone (DZ), mid-latitude wind zone (WZ), and equatorial DZ—found in previous analytic calculations is confirmed. For a magnetic field comparable to that of Jupiter, the equatorial DZ, which is confined by the magnetic field and corotates with the planet, contributes at least half of the transit signal. For even stronger fields, the gas escaping in the mid-latitude WZ is found to have a smaller contribution to the transit depth than the equatorial DZ. Transmission spectra computed from the simulations are compared to Hubble Space Telescope Space Telescope Imaging Spectrograph and Advanced Camera for Surveys data for HD 209458b and HD 189733b, and the range of model parameters consistent with the data is found. The central result of this paper is that the transit depth increases strongly with magnetic field strength when the hydrogen ionization layer is magnetically dominated, for dipole magnetic field B {sub 0} ≳ 10 G. Hence transit depth is sensitive to magnetic field strength, in addition to standard quantities such as the ratio of thermal to gravitational binding energies. Another effect of the magnetic field is that the planet loses angular momentum orders of magnitude faster than in the non-magnetic case, because the magnetic field greatly increases the lever arm for wind braking of the planet's rotation. Spin-down timescales for magnetized models of HD 209458b that agree with the observed transit depth

  12. ATMOSPHERIC HEAT REDISTRIBUTION ON HOT JUPITERS

    International Nuclear Information System (INIS)

    Perez-Becker, Daniel; Showman, Adam P.

    2013-01-01

    Infrared light curves of transiting hot Jupiters present a trend in which the atmospheres of the hottest planets are less efficient at redistributing the stellar energy absorbed on their daysides—and thus have a larger day-night temperature contrast—than colder planets. To this day, no predictive atmospheric model has been published that identifies which dynamical mechanisms determine the atmospheric heat redistribution efficiency on tidally locked exoplanets. Here we present a shallow-water model of the atmospheric dynamics on synchronously rotating planets that explains why heat redistribution efficiency drops as stellar insolation rises. Our model shows that planets with weak friction and weak irradiation exhibit a banded zonal flow with minimal day-night temperature differences, while models with strong irradiation and/or strong friction exhibit a day-night flow pattern with order-unity fractional day-night temperature differences. To interpret the model, we develop a scaling theory which shows that the timescale for gravity waves to propagate horizontally over planetary scales, τ wave , plays a dominant role in controlling the transition from small to large temperature contrasts. This implies that heat redistribution is governed by a wave-like process, similar to the one responsible for the weak temperature gradients in the Earth's tropics. When atmospheric drag can be neglected, the transition from small to large day-night temperature contrasts occurs when τ wave ∼√(τ rad /Ω), where τ rad is the radiative relaxation time and Ω is the planetary rotation frequency. Alternatively, this transition criterion can be expressed as τ rad ∼ τ vert , where τ vert is the timescale for a fluid parcel to move vertically over the difference in day-night thickness. These results subsume the more widely used timescale comparison for estimating heat redistribution efficiency between τ rad and the horizontal day-night advection timescale, τ adv . Only

  13. Features of Jupiter's Great Red Spot

    Science.gov (United States)

    1996-01-01

    This montage features activity in the turbulent region of Jupiter's Great Red Spot (GRS). Four sets of images of the GRS were taken through various filters of the Galileo imaging system over an 11.5 hour period on 26 June, 1996 Universal Time. The sequence was designed to reveal cloud motions. The top and bottom frames on the left are of the same area, northeast of the GRS, viewed through the methane (732 nm) filter but about 70 minutes apart. The top left and top middle frames are of the same area and at the same time, but the top middle frame is taken at a wavelength (886 nm) where methane absorbs more strongly. (Only high clouds can reflect sunlight in this wavelength.) Brightness differences are caused by the different depths of features in the two images. The bottom middle frame shows reflected light at a wavelength (757 nm) where there are essentially no absorbers in the Jovian atmosphere. The white spot is to the northwest of the GRS; its appearance at different wavelengths suggests that the brightest elements are 30 km higher than the surrounding clouds. The top and bottom frames on the right, taken nine hours apart and in the violet (415 nm) filter, show the time evolution of an atmospheric wave northeast of the GRS. Visible crests in the top right frame are much less apparent 9 hours later in the bottom right frame. The misalignment of the north-south wave crests with the observed northwestward local wind may indicate a shift in wind direction (wind shear) with height. The areas within the dark lines are 'truth windows' or sections of the images which were transmitted to Earth using less data compression. Each of the six squares covers 4.8 degrees of latitude and longitude (about 6000 square kilometers). North is at the top of each frame.Launched in October 1989, Galileo entered orbit around Jupiter on December 7, 1995. The spacecraft's mission is to conduct detailed studies of the giant planet, its largest moons and the Jovian magnetic environment. The

  14. Mirror position display equipment for the target chamber mirror mounts of the LASL HELIOS laser fusion facility

    International Nuclear Information System (INIS)

    Wells, F.D.; Remington, D.A.

    1979-01-01

    Equipment has been fabricated which records the absolute positions of sixteen mirror mounts used to direct and focus eight high-energy laser beams for research in laser induced fusion. Each mirror mount is driven by three stepping motors, controlled to produce the motions of Focus, Tilt, and Rotate relative to the target. Stepping of the motors is sensed by incremental optical encoders coupled to the motor drive shafts. Outputs from the encoder tracks are multiplexed to a microprocessor which transmits motor step information via a fiber optical data link to a Mirror Position Display chassis. This unit accumulates the steps, stores the motor positions, displays mirror position data to the operator, and provides the equipment control functions. Standby battery power is included to retain the motor step data in the event of power failure

  15. DarkLight: A Search for Dark Forces at the Jefferson Laboratory Free-Electron Laser Facility

    Energy Technology Data Exchange (ETDEWEB)

    Balewski, Jan; Bernauer, J; Bertozzi, William; Bessuille, Jason; Buck, B; Cowan, Ray; Dow, K; Epstein, C; Fisher, Peter; Gilad, Shalev; Ihloff, Ernest; Kahn, Yonatan; Kelleher, Aidan; Kelsey, J; Milner, Richard; Moran, C; Ou, Longwu; Russell, R; Schmookler, Barak; Thaler, J; Tschalar, C; Vidal, Christopher; Winnebeck, A; Benson, Stephen [JLAB; Gould, Christopher [JLAB; Biallas, George [JLAB; Boyce, James [JLAB; Coleman, James [JLAB; Douglas, David [JLAB; Ent, Rolf [JLAB; Evtushenko, Pavel [JLAB; Fenker, Howard [JLAB; Gubeli, Joseph [JLAB; Hannon, Fay [JLAB; Huang, Jia [JLAB; Jordan, Kevin [JLAB; Legg, Robert [JLAB; Marchlik, Matthew [JLAB; Moore, Steven [JLAB; Neil, George [JLAB; Shinn, Michelle D [JLAB; Tennant, Christopher [JLAB; Walker, Richard [JLAB; Williams, Gwyn [JLAB; Zhang, Shukui [JLAB; Freytsis, M; Fiorito, Ralph; O' Shea, P; Alarcon, Ricardo; Dipert, R; Ovanesyan, G; Gunter, Thoth; Kalantarians, Narbe; Kohl, M; Albayrak, Ibrahim; Horn, Tanja; Gunarathne, D S; Martoff, C J; Olvitt, D L; Surrow, Bernd; Lia, X; Beck, Reinhard; Schmitz, R; Walther, D; Brinkmann, K; Zaunig, H

    2014-05-01

    We give a short overview of the DarkLight detector concept which is designed to search for a heavy photon A' with a mass in the range 10 MeV/c^2 < m(A') < 90 MeV/c^2 and which decays to lepton pairs. We describe the intended operating environment, the Jefferson Laboratory free electon laser, and a way to extend DarkLight's reach using A' --> invisible decays.

  16. Facile synthesis of AgCl/polydopamine/Ag nanoparticles with in-situ laser improving Raman scattering effect

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yan; Zhang, Wenqi; Wang, Lin; Wang, Feng, E-mail: wangfeng@shnu.edu.cn; Yang, Haifeng

    2017-01-15

    Highlights: • AgCl/PDA/AgNPs (polydopamine (PDA) adlayer covered cubic AgCl core inlaid with Ag nanoparticles (AgNPs)) was fabricated for in-situ SERS detection. • Such SERS substrate shows in-situ laser improving Raman scattering effect due to the generation of more AgNPs. • Enhancement factor could reach 10{sup 7}. • Such SERS substrate shows good reproducibility and long term stability. - Abstract: We reported a simple and fast method to prepare a composite material of polydopamine (PDA) adlayer covered cubic AgCl core, which was inlaid with Ag nanoparticles (NPs), shortly named as AgCl/PDA/AgNPs. The resultant AgCl/PDA/AgNPs could be employed as surface-enhanced Raman scattering (SERS) substrate for in-situ detection and the SERS activity could be further greatly improved due to the production of more AgNPs upon laser irradiation. With 4-mercaptopyridine (4-Mpy) as the probe molecule, the enhancement factor could reach 10{sup 7}. Additionally, such SERS substrate shows good reproducibility with relative standard deviation of 7.32% and long term stability (after storage for 100 days under ambient condition, SERS intensity decay is less than 25%). In-situ elevating SERS activity of AgCl/PDA/AgNPs induced by laser may be beneficial to sensitive analysis in practical fields.

  17. Jupiter Analogs Orbit Stars with an Average Metallicity Close to That of the Sun

    DEFF Research Database (Denmark)

    Buchhave, Lars A.; Bitsch, Bertram; Johansen, Anders

    2018-01-01

    Jupiter played an important role in determining the structure and configuration of the Solar System. Whereas hot-Jupiter type exoplanets preferentially form around metal-rich stars, the conditions required for the formation of planets with masses, orbits, and eccentricities comparable to Jupiter...... (Jupiter analogs) are unknown. Using spectroscopic metallicities, we show that stars hosting Jupiter analogs have an average metallicity close to solar, in contrast to their hot-Jupiter and eccentric cool-Jupiter counterparts, which orbit stars with super-solar metallicities. Furthermore......, the eccentricities of Jupiter analogs increase with host-star metallicity, suggesting that planet-planet scatterings producing highly eccentric cool Jupiters could be more common in metal-rich environments. To investigate a possible explanation for these metallicity trends, we compare the observations to numerical...

  18. Mid-infrared mapping of Jupiter's temperatures, aerosol opacity and chemical distributions with IRTF/TEXES

    Science.gov (United States)

    Fletcher, Leigh N.; Greathouse, T. K.; Orton, G. S.; Sinclair, J. A.; Giles, R. S.; Irwin, P. G. J.; Encrenaz, T.

    2016-11-01

    Global maps of Jupiter's atmospheric temperatures, gaseous composition and aerosol opacity are derived from a programme of 5-20 μm mid-infrared spectroscopic observations using the Texas Echelon Cross Echelle Spectrograph (TEXES) on NASA's Infrared Telescope Facility (IRTF). Image cubes from December 2014 in eight spectral channels, with spectral resolutions of R ∼2000 - 12 , 000 and spatial resolutions of 2-4° latitude, are inverted to generate 3D maps of tropospheric and stratospheric temperatures, 2D maps of upper tropospheric aerosols, phosphine and ammonia, and 2D maps of stratospheric ethane and acetylene. The results are compared to a re-analysis of Cassini Composite Infrared Spectrometer (CIRS) observations acquired during Cassini's closest approach to Jupiter in December 2000, demonstrating that this new archive of ground-based mapping spectroscopy can match and surpass the quality of previous investigations, and will permit future studies of Jupiter's evolving atmosphere. The visibility of cool zones and warm belts varies from channel to channel, suggesting complex vertical variations from the radiatively-controlled upper troposphere to the convective mid-troposphere. We identify mid-infrared signatures of Jupiter's 5-μm hotspots via simultaneous M, N and Q-band observations, which are interpreted as temperature and ammonia variations in the northern Equatorial Zone and on the edge of the North Equatorial Belt (NEB). Equatorial plumes enriched in NH3 gas are located south-east of NH3-desiccated 'hotspots' on the edge of the NEB. Comparison of the hotspot locations in several channels across the 5-20 μm range indicate that these anomalous regions tilt westward with altitude. Aerosols and PH3 are both enriched at the equator but are not co-located with the NH3 plumes. The equatorial temperature minimum and PH3/aerosol maxima have varied in amplitude over time, possibly as a result of periodic equatorial brightenings and the fresh updrafts of

  19. Magnetic fields of Jupiter and Saturn

    International Nuclear Information System (INIS)

    Ness, N.F.

    1981-01-01

    The magnetic fields of Jupiter and Saturn and the characteristics of their magnetospheres, formed by interaction with the solar wind, are discussed. The origins of both magnetic fields are associated with a dynamo process deep in the planetary interior. The Jovian magnetosphere is analogous to that of a pulsar magnetosphere: a massive central body with a rapid rotation and an associated intense magnetic field. Its most distinctive feature is its magnetodisk of concentrated plasma and particle flux, and reduced magnetic field intensity. The magnetopause near the subsolar point has been observed at radial distances ranging over 50 to 100 Jovian radii, implying a relatively compressible obstacle to solar wind flow. The composition of an embedded current sheet within the magnetic tail is believed to be influenced by volcanic eruptions and emissions from Io. Spectral troughs of the Jovian radiation belts have been interpreted as possible ring particles. The Saturnian magnetosphere appears to be more like the earth in its topology. It is mainly characterized by a dipole axis parallel to the rotational axis of the planet and a magnetic field intensity much less than expected

  20. Wave propagation in the magnetosphere of Jupiter

    Science.gov (United States)

    Liemohn, H. B.

    1972-01-01

    A systematic procedure is developed for identifying the spatial regimes of various modes of wave propagation in the Jupiter magnetosphere that may be encountered by flyby missions. The Clemmow-Mullaly-Allis (CMA) diagram of plasma physics is utilized to identify the frequency regimes in which different modes of propagation occur in the magnetoplasma. The Gledhill model and the Ioannidis and Brice model of the magnetoplasma are summarized, and configuration-space CMA diagrams are constructed for each model for frequencies from 10 Hz to 1 MHz. The distinctive propagation features, the radio noise regimes, and the wave-particle interactions are discussed. It is concluded that the concentration of plasma in the equatorial plane makes this region of vital importance for radio observations with flyby missions. Local radio noise around the electron cyclotron frequency will probably differ appreciably from its terrestrial counterpart due to the lack of field-line guidance. Hydromagnetic wave properties at frequencies near the ion cyclotron frequency and below will probably be similar to the terrestrial case.

  1. Laser Propulsion - Quo Vadis

    International Nuclear Information System (INIS)

    Bohn, Willy L.

    2008-01-01

    First, an introductory overview of the different types of laser propulsion techniques will be given and illustrated by some historical examples. Second, laser devices available for basic experiments will be reviewed ranging from low power lasers sources to inertial confinement laser facilities. Subsequently, a status of work will show the impasse in which the laser propulsion community is currently engaged. Revisiting the basic relations leads to new avenues in ablative and direct laser propulsion for ground based and space based applications. Hereby, special attention will be devoted to the impact of emerging ultra-short pulse lasers on the coupling coefficient and specific impulse. In particular, laser sources and laser propulsion techniques will be tested in microgravity environment. A novel approach to debris removal will be discussed with respect to the Satellite Laser Ranging (SRL) facilities. Finally, some non technical issues will be raised aimed at the future prospects of laser propulsion in the international community

  2. High-energy (>70 keV) x-ray conversion efficiency measurement on the ARC laser at the National Ignition Facility

    Science.gov (United States)

    Chen, Hui; Hermann, M. R.; Kalantar, D. H.; Martinez, D. A.; Di Nicola, P.; Tommasini, R.; Landen, O. L.; Alessi, D.; Bowers, M.; Browning, D.; Brunton, G.; Budge, T.; Crane, J.; Di Nicola, J.-M.; Döppner, T.; Dixit, S.; Erbert, G.; Fishler, B.; Halpin, J.; Hamamoto, M.; Heebner, J.; Hernandez, V. J.; Hohenberger, M.; Homoelle, D.; Honig, J.; Hsing, W.; Izumi, N.; Khan, S.; LaFortune, K.; Lawson, J.; Nagel, S. R.; Negres, R. A.; Novikova, L.; Orth, C.; Pelz, L.; Prantil, M.; Rushford, M.; Shaw, M.; Sherlock, M.; Sigurdsson, R.; Wegner, P.; Widmayer, C.; Williams, G. J.; Williams, W.; Whitman, P.; Yang, S.

    2017-03-01

    The Advanced Radiographic Capability (ARC) laser system at the National Ignition Facility (NIF) is designed to ultimately provide eight beamlets with a pulse duration adjustable from 1 to 30 ps, and energies up to 1.5 kJ per beamlet. Currently, four beamlets have been commissioned. In the first set of 6 commissioning target experiments, the individual beamlets were fired onto gold foil targets with energy up to 1 kJ per beamlet at 20-30 ps pulse length. The x-ray energy distribution and pulse duration were measured, yielding energy conversion efficiencies of 4-9 × 10-4 for x-rays with energies greater than 70 keV. With greater than 3 J of such x-rays, ARC provides a high-precision x-ray backlighting capability for upcoming inertial confinement fusion and high-energy-density physics experiments on NIF.

  3. A compact low cost “master–slave” double crystal monochromator for x-ray cameras calibration of the Laser MégaJoule Facility

    Energy Technology Data Exchange (ETDEWEB)

    Hubert, S., E-mail: sebastien.hubert@cea.fr; Prévot, V.

    2014-12-21

    The Alternative Energies and Atomic Energy Commission (CEA-CESTA, France) built a specific double crystal monochromator (DCM) to perform calibration of x-ray cameras (CCD, streak and gated cameras) by means of a multiple anode diode type x-ray source for the MégaJoule Laser Facility. This DCM, based on pantograph geometry, was specifically modeled to respond to relevant engineering constraints and requirements. The major benefits are mechanical drive of the second crystal on the first one, through a single drive motor, as well as compactness of the entire device. Designed for flat beryl or Ge crystals, this DCM covers the 0.9–10 keV range of our High Energy X-ray Source. In this paper we present the mechanical design of the DCM, its features quantitatively measured and its calibration to finally provide monochromatized spectra displaying spectral purities better than 98%.

  4. X-ray grating spectrometer for opacity measurements in the 50 eV to 250 eV spectral range at the LULI 2000 laser facility.

    Science.gov (United States)

    Reverdin, Charles; Thais, Frédéric; Loisel, Guillaume; Busquet, M; Bastiani-Ceccotti, S; Blenski, T; Caillaud, T; Ducret, J E; Foelsner, W; Gilles, D; Gilleron, F; Pain, J C; Poirier, M; Serres, F; Silvert, V; Soullie, G; Turck-Chieze, S; Villette, B

    2012-10-01

    An x-ray grating spectrometer was built in order to measure opacities in the 50 eV to 250 eV spectral range with an average spectral resolution ∼ 50. It has been used at the LULI-2000 laser facility at École Polytechnique (France) to measure the Δn = 0, n = 3 transitions of several elements with neighboring atomic number: Cr, Fe, Ni, and Cu in the same experimental conditions. Hence a spectrometer with a wide spectral range is required. This spectrometer features one line of sight looking through a heated sample at backlighter emission. It is outfitted with one toroidal condensing mirror and several flat mirrors cutting off higher energy photons. The spectral dispersion is obtained with a flatfield grating. Detection consists of a streak camera sensitive to soft x-ray radiation. Some experimental results showing the performance of this spectrometer are presented.

  5. X-ray grating spectrometer for opacity measurements in the 50 eV to 250 eV spectral range at the LULI 2000 laser facility

    International Nuclear Information System (INIS)

    Reverdin, Charles; Caillaud, T.; Gilleron, F.; Pain, J. C.; Silvert, V.; Soullie, G.; Villette, B.; Thais, Frédéric; Loisel, Guillaume; Blenski, T.; Poirier, M.; Busquet, M.; Bastiani-Ceccotti, S.; Serres, F.; Ducret, J. E.; Foelsner, W.; Gilles, D.; Turck-Chieze, S.

    2012-01-01

    An x-ray grating spectrometer was built in order to measure opacities in the 50 eV to 250 eV spectral range with an average spectral resolution ∼ 50. It has been used at the LULI-2000 laser facility at École Polytechnique (France) to measure the Δn = 0, n = 3 transitions of several elements with neighboring atomic number: Cr, Fe, Ni, and Cu in the same experimental conditions. Hence a spectrometer with a wide spectral range is required. This spectrometer features one line of sight looking through a heated sample at backlighter emission. It is outfitted with one toroidal condensing mirror and several flat mirrors cutting off higher energy photons. The spectral dispersion is obtained with a flatfield grating. Detection consists of a streak camera sensitive to soft x-ray radiation. Some experimental results showing the performance of this spectrometer are presented.

  6. Technical basis for the performance of radiological surveys in support of nuclear facility decommissioning/deactivation utilizing the Laser-Assisted Ranging and Data System (LARADS)

    International Nuclear Information System (INIS)

    Wade, C.D.

    1997-06-01

    This document describes the implementation of the Laser-Assisted Ranging and Data System (LARADS) as it applies to performing radiological surveys on facility exterior and interior surfaces. The LARADS enables the system operator to document scanning measurements, stationary radiological measurements, and sample locations of surfaces, with the radiological readings and exact coordinates (<2 cm [0.8 in.] precision) automatically logged in real-time. After the survey is completed, the information is downloaded to a geographical information system, and the radiological information is overlaid on a digital picture of the survey area or may be generated as a computer- aided drafted drawing. The final product is a track map or contour of the survey area that clearly shows the area covered by the detector and the locations of elevated readings. The exact reproducibility of data facilitates locating hot spots for remediation and provides for objective review by regulators and verifiers

  7. X-ray grating spectrometer for opacity measurements in the 50 eV to 250 eV spectral range at the LULI 2000 laser facility

    Energy Technology Data Exchange (ETDEWEB)

    Reverdin, Charles; Caillaud, T.; Gilleron, F.; Pain, J. C.; Silvert, V.; Soullie, G.; Villette, B. [CEA, DAM, DIF, 91297 Arpajon (France); Thais, Frederic; Loisel, Guillaume; Blenski, T.; Poirier, M. [CEA, DSM, IRAMIS, Service Photons, Atomes et Molecules, 91191 Gif-sur-Yvette (France); Busquet, M. [ARTEP Inc, Ellicott City, Maryland 21042 (United States); Bastiani-Ceccotti, S.; Serres, F. [LULI, Ecole Polytechnique, CNRS, CEA, UPMC, route de Saclay, 91128 Palaiseau (France); Ducret, J. E. [CELIA, UMR5107, CEA, CNRS, Universite de Bordeaux, 33400 Talence (France); Foelsner, W. [Max Planck Instituet fuer Quantum Optik, 85748 Garching (Germany); Gilles, D.; Turck-Chieze, S. [CEA, DSM, IRFU, Service d' astrophysique, 91191 Gif-sur-Yvette (France)

    2012-10-15

    An x-ray grating spectrometer was built in order to measure opacities in the 50 eV to 250 eV spectral range with an average spectral resolution {approx} 50. It has been used at the LULI-2000 laser facility at Ecole Polytechnique (France) to measure the {Delta}n = 0, n = 3 transitions of several elements with neighboring atomic number: Cr, Fe, Ni, and Cu in the same experimental conditions. Hence a spectrometer with a wide spectral range is required. This spectrometer features one line of sight looking through a heated sample at backlighter emission. It is outfitted with one toroidal condensing mirror and several flat mirrors cutting off higher energy photons. The spectral dispersion is obtained with a flatfield grating. Detection consists of a streak camera sensitive to soft x-ray radiation. Some experimental results showing the performance of this spectrometer are presented.

  8. ISTEF Laser Radar Program

    National Research Council Canada - National Science Library

    Stryjewski, John

    1998-01-01

    The BMDO Innovative Science and Technology Experimentation Facility (BMDO/ISTEF) laser radar program is engaged in an ongoing program to develop and demonstrate advanced laser radar concepts for Ballistic Missile Defense (BMD...

  9. Frequency tripling of convergent beam employing crystals tiling in large-aperture high-energy laser facilities

    Science.gov (United States)

    Wang, Junhua; Li, Dazhen; Wang, Bo; Yang, Jing; Yang, Houwen; Wang, Xiaoqian; Cheng, Wenyong

    2017-11-01

    In inertial confinement fusion, ultraviolet laser damage of the fused silica lens is an important limiting factor for load capability of the laser driver. To solve this problem, a new configuration of frequency tripling is proposed in this paper. The frequency tripling crystal is placed on downstream of the focusing lens, thus sum frequency generation of fundamental frequency light and doubling frequency light occurs in the beam convergence path. The focusing lens is only irradiated by fundamental light and doubling frequency lights. Thus, its damage threshold will increase. LiB3O5 (LBO) crystals are employed as frequency tripling crystals for its larger acceptance angle and higher damage threshold than KDP/DKDP crystals'. With the limitation of acceptance angle and crystal growth size are taken into account, the tiling scheme of LBO crystals is proposed and designed optimally to adopt to the total convergence angle of 36.0 mrad. Theoretical results indicate that 3 LBO crystals titling with different cutting angles in θ direction can meet the phase matching condition. Compared with frequency tripling of parallel beam using one LBO crystal, 83.8% (93.1% with 5 LBO crystals tiling) of the frequency tripling conversion efficiency can be obtained employing this new configuration. The results of a principle experiment also support this scheme. By employing this new design, not only the load capacity of a laser driver will be significantly improved, but also the fused silica lens can be changed to K9 glass lens which has the mature technology and low cost.

  10. High-Resolution Spectroscopy of Stratospheric Ethane Following the Jupiter Impact of 2009

    Science.gov (United States)

    Fast, Kelly; Kostiuk, Theodor; Livengood, Timothy A.; Hewagama, Tilak; Amen, John

    2010-01-01

    We report on high-resolution infrared spectroscopy of ethane (C2H6) performed at the latitude of an impact site on Jupiter discovered on 19 July 2009 by A. Wesley from a location in Murrumbateman, Australia. The observations used the NASA Goddard Space Flight Center's Heterodyne Instrument for Planetary Wind and Composition (HIPWAC) at the NASA Infrared Telescope Facility (IRTF) on Mauna Kea, Hawaii. HIPWAC is a mid-infrared (9-12 microns) heterodyne spectrometer operating at the highest limit of spectral resolving power (lambda\\Delta\\lambda > l06), providing information on atmospheric constituent abundance and temperature through fully resolved tine shapes. Ethane is a stable trace product of methane photochemistry that is nearly uniformly mixed in Jupiter's stratosphere, providing an effective probe of that altitude region. Ethane emission line profiles near 11,74 microns in the Ug band were measured in Jupiter's stratosphere at 25 MHz (11.00083/cm) resolution. A sequence of spectra of ethane acquired over a range of longitude at the impact latitude (56S planetocentric) probes constituent abundance and temperature profile, both on and off the impact region. Near the site of the impact, ethane emission increased above levels measured well outside the impact region. Radiative transfer analysis indicates increased ethane mole fraction (30% greater). Variation in the measured continuum level and line intensities within 75deg of the impact longitude indicate the presence of an opacity source (haze) at altitudes near and above the tropopause and as high as the 10-mbar level near the impact site. The indication of possible haze opacity up to the 10-mbar level in the atmosphere is consistent with measurements made by HIPWAC's predecessor as part of the IRTF Shoemaker Levy-9 campaign in 1994.

  11. The mass disruption of Jupiter Family comets

    Science.gov (United States)

    Belton, Michael J. S.

    2015-01-01

    I show that the size-distribution of small scattered-disk trans-neptunian objects when derived from the observed size-distribution of Jupiter Family comets (JFCs) and other observational constraints implies that a large percentage (94-97%) of newly arrived active comets within a range of 0.2-15.4 km effective radius must physically disrupt, i.e., macroscopically disintegrate, within their median dynamical lifetime. Additional observational constraints include the numbers of dormant and active nuclei in the near-Earth object (NEO) population and the slope of their size distributions. I show that the cumulative power-law slope (-2.86 to -3.15) of the scattered-disk TNO hot population between 0.2 and 15.4 km effective radius is only weakly dependent on the size-dependence of the otherwise unknown disruption mechanism. Evidently, as JFC nuclei from the scattered disk evolve into the inner Solar System only a fraction achieve dormancy while the vast majority of small nuclei (e.g., primarily those with effective radius <2 km) break-up. The percentage disruption rate appears to be comparable with that of the dynamically distinct Oort cloud and Halley type comets (Levison, H.F., Morbidelli, A., Dones, L., Jedicke, R., Wiegert, P.A., Bottke Jr., W.F. [2002]. Science 296, 2212-2215) suggesting that all types of comet nuclei may have similar structural characteristics even though they may have different source regions and thermal histories. The typical disruption rate for a 1 km radius active nucleus is ∼5 × 10-5 disruptions/year and the dormancy rate is typically 3 times less. We also estimate that average fragmentation rates range from 0.01 to 0.04 events/year/comet, somewhat above the lower limit of 0.01 events/year/comet observed by Chen and Jewitt (Chen, J., Jewitt, D.C. [1994]. Icarus 108, 265-271).

  12. Search for the radio occulation flash at Jupiter

    International Nuclear Information System (INIS)

    Martin, J.M.; Tyler, G.L.; Eshleman, V.R.; Wood, G.E.; Lindall, G.F.

    1981-01-01

    The 'evolute flash' a focusing effect caused by the curvature of a planet's limb, was sought in the radio data taken during the occulation of Voyager 1 by Jupiter, using a modified matched-filter technique. The expected frequency structure of the flash signal is double branched, while the intensity structure is highly localized in time. The search for the signal was carried out over a 6.4 s period. The signal parameters were varied to span the uncertainties introduced by imperfect knowledge of the orbit of the spacecraft and the shape of Jupiter. Several peaks at the 8 standard deviation level were present in the filter output. However, these peaks were separated in time by up to 3.3 s, and none could be identified as the flash. From this negative result a lower bound on the absorption along a ray with periapsis near the 4 bar level in Jupiter's atmosphere can be established at 25 dB. Employing the new Voyager results on the structure of the atmosphere of Jupiter and the mixing ratio of the absorbent ammonia, as well as the improved knowledge of flash characteristics resulting from this study, we estimate that the flash would have been detected if the distance behind the planet where the spacecraft trajectory crossed the evolute were at least 20 Jupiter radii, as compared with a value near 7 in the experiment. For focusing at this greater distance, the atmospheric pressure at the ray periapsis would be between 1.5 and 2 bar

  13. Cassini-VIMS at Jupiter: Solar occultation measurements using Io

    Science.gov (United States)

    Formisano, V.; D'Aversa, E.; Bellucci, G.; Baines, K.H.; Bibring, J.-P.; Brown, R.H.; Buratti, B.J.; Capaccioni, F.; Cerroni, P.; Clark, R.N.; Coradini, A.; Cruikshank, D.P.; Drossart, P.; Jaumann, R.; Langevin, Y.; Matson, D.L.; McCord, T.B.; Mennella, V.; Nelson, R.M.; Nicholson, P.D.; Sicardy, B.; Sotin, Christophe; Chamberlain, M.C.; Hansen, G.; Hibbits, K.; Showalter, M.; Filacchione, G.

    2003-01-01

    We report unusual and somewhat unexpected observations of the jovian satellite Io, showing strong methane absorption bands. These observations were made by the Cassini VIMS experiment during the Jupiter flyby of December/January 2000/2001. The explanation is straightforward: Entering or exiting from Jupiter's shadow during an eclipse, Io is illuminated by solar light which has transited the atmosphere of Jupiter. This light, therefore becomes imprinted with the spectral signature of Jupiter's upper atmosphere, which includes strong atmospheric methane absorption bands. Intercepting solar light refracted by the jovian atmosphere, Io essentially becomes a "miffor" for solar occultation events of Jupiter. The thickness of the layer where refracted solar light is observed is so large (more than 3000 km at Io's orbit), that we can foresee a nearly continuous multi-year period of similar events at Saturn, utilizing the large and bright ring system. During Cassini's 4-year nominal mission, this probing tecnique should reveal information of Saturn's atmosphere over a large range of southern latitudes and times. ?? 2003 Elsevier Inc. All rights reserved.

  14. Shiva target irradiation facility

    International Nuclear Information System (INIS)

    Manes, K.R.; Ahlstrom, H.G.; Coleman, L.W.; Storm, E.K.; Glaze, J.A.; Hurley, C.A.; Rienecker, F.; O'Neal, W.C.

    1977-01-01

    The first laser/plasma studies performed with the Shiva laser system will be two sided irradiations extending the data obtained by other LLL lasers to higher powers. The twenty approximately 1 TW laser pulses will reach the target simultaneously from above and below in nested pentagonal clusters. The upper and lower clusters of ten beams each are radially polarized so that they strike the target in p-polarization and maximize absorption. This geometry introduces laser system isolation problems which will be briefly discussed. The layout and types of target diagnostics will be described and a brief status report on the facility given

  15. Laser-accelerated proton conversion efficiency thickness scaling

    International Nuclear Information System (INIS)

    Hey, D. S.; Foord, M. E.; Key, M. H.; LePape, S. L.; Mackinnon, A. J.; Patel, P. K.; Ping, Y.; Akli, K. U.; Stephens, R. B.; Bartal, T.; Beg, F. N.; Fedosejevs, R.; Friesen, H.; Tiedje, H. F.; Tsui, Y. Y.

    2009-01-01

    The conversion efficiency from laser energy into proton kinetic energy is measured with the 0.6 ps, 9x10 19 W/cm 2 Titan laser at the Jupiter Laser Facility as a function of target thickness in Au foils. For targets thicker than 20 μm, the conversion efficiency scales approximately as 1/L, where L is the target thickness. This is explained by the domination of hot electron collisional losses over adiabatic cooling. In thinner targets, the two effects become comparable, causing the conversion efficiency to scale weaker than 1/L; the measured conversion efficiency is constant within the scatter in the data for targets between 5 and 15 μm, with a peak conversion efficiency of 4% into protons with energy greater than 3 MeV. Depletion of the hydrocarbon contaminant layer is eliminated as an explanation for this plateau by using targets coated with 200 nm of ErH 3 on the rear surface. The proton acceleration is modeled with the hybrid-particle in cell code LSP, which reproduced the conversion efficiency scaling observed in the data.

  16. Multi probes measurements at the PALS Facility Research Centre during high intense laser pulse interactions with various target materials

    Directory of Open Access Journals (Sweden)

    De Marco Massimo

    2018-01-01

    Full Text Available During the interaction of high intense laser pulse with solid target, a large amount of hot electrons is produced and a giant Electromagnetic Pulse (EMP is generated due to the current flowing into the system target–target holder, as well as due to the escaping charged particles in vacuum. EMP production for different target materials is investigated inside and outside the target chamber, using monopole antenna, super wide-band microstrip antenna and Moebius antenna. The EMP consists in a fast transient magnetic field lasting hundreds of nanosecond with frequencies ranging from MHz to tens of GHz. Measurements of magnetic field and return target current in the range of kA were carried out by an inductive target probe (Cikhardt J. et al. Rev. Sci. Instrum. 85 (2014 103507.

  17. Hot Jupiters Aren't As Lonely As We Thought

    Science.gov (United States)

    Kohler, Susanna

    2016-01-01

    The Friends of Hot Jupiters (FOHJ) project is a systematic search for planetary- and stellar-mass companions in systems that have known hot Jupiters short-period, gas-giant planets. This survey has discovered that many more hot Jupiters may have companions than originally believed.Missing FriendsFOHJ was begun with the goal of better understanding the systems that host hot Jupiters, in order to settle several longstanding issues.The first problem was one of observational statistics. We know that roughly half of the Sun-like stars nearby are in binary systems, yet weve only discovered a handful of hot Jupiters around binaries. Are binary systems less likely to host hot Jupiters? Or have we just missed the binary companions in the hot-Jupiter-hosting systems weve seen so far?An additional issue relates to formation mechanisms. Hot Jupiters probably migrated inward from where they formed out beyond the ice lines in protoplanetary disks but how?This median-stacked image, obtained with adaptive optics, shows one of the newly-discovered stellar companions to a star hosting a hot Jupiter. The projected separation is ~180 AU. [Ngo et al. 2015]Observations reveal two populations of hot Jupiters: those with circular orbits aligned with their hosts spins, and those with eccentric, misaligned orbits. The former population support a migration model dominated by local planet-disk interactions, whereas the latter population suggest the hot Jupiters migrated through dynamical interactions with distant companions. A careful determination of the companion rate in hot-Jupiter-hosting systems could help establish the ability of these two models to explain the observed populations.Search for CompanionsThe FOHJ project began in 2012 and studied 51 systems hosting known, transiting hot Jupiters with roughly half on circular, aligned orbits and half on eccentric, misaligned orbits. The survey consisted of three different, complementary components:Study 1Lead author: Heather Knutson

  18. Galileo's first images of Jupiter and the Galilean satellites

    Science.gov (United States)

    Belton, M.J.S.; Head, J. W.; Ingersoll, A.P.; Greeley, R.; McEwen, A.S.; Klaasen, K.P.; Senske, D.; Pappalardo, R.; Collins, G.; Vasavada, A.R.; Sullivan, R.; Simonelli, D.; Geissler, P.; Carr, M.H.; Davies, M.E.; Veverka, J.; Gierasch, P.J.; Banfield, D.; Bell, M.; Chapman, C.R.; Anger, C.; Greenberg, R.; Neukum, G.; Pilcher, C.B.; Beebe, R.F.; Burns, J.A.; Fanale, F.; Ip, W.; Johnson, T.V.; Morrison, D.; Moore, J.; Orton, G.S.; Thomas, P.; West, R.A.

    1996-01-01

    The first images of Jupiter, Io, Europa, and Ganymede from the Galileo spacecraft reveal new information about Jupiter's Great Red Spot (GRS) and the surfaces of the Galilean satellites. Features similar to clusters of thunderstorms were found in the GRS. Nearby wave structures suggest that the GRS may be a shallow atmospheric feature. Changes in surface color and plume distribution indicate differences in resurfacing processes near hot spots on lo. Patchy emissions were seen while Io was in eclipse by Jupiter. The outer margins of prominent linear markings (triple bands) on Europa are diffuse, suggesting that material has been vented from fractures. Numerous small circular craters indicate localized areas of relatively old surface. Pervasive brittle deformation of an ice layer appears to have formed grooves on Ganymede. Dark terrain unexpectedly shows distinctive albedo variations to the limit of resolution.

  19. Launch Opportunities for Jupiter Missions Using the Gravity Assist

    Directory of Open Access Journals (Sweden)

    Young-Joo Song

    2004-06-01

    Full Text Available Interplanetary trajectories using the gravity assists are studied for future Korean interplanetary missions. Verifications of the developed softwares and results were performed by comparing data from ESA's Mars Express mission and previous results. Among the Jupiter exploration mission scenarios, multi-planet gravity assist mission to Jupiter (Earth-Mars-Earth-Jupiter Gravity Assist, EMEJGA trajectory requires minimum launch energy (C3 of 29.231 km2/s2 with 4.6 years flight times. Others, such as direct mission and single-planet(Mars gravity assist mission, requires launch energy (C3 of 75.656 km^2/s^2 with 2.98 years flight times and 63.590 km2/s2 with 2.33 years flight times, respectively. These results show that the planetary gravity assists can reduce launch energy, while EMEJGA trajectory requires the longer flight time than the other missions.

  20. High spatial and spectral resolution measurements of Jupiter's auroral regions using Gemini-North-TEXES

    Science.gov (United States)

    Sinclair, J. A.; Orton, G. S.; Greathouse, T. K.; Lacy, J.; Giles, R.; Fletcher, L. N.; Vogt, M.; Irwin, P. G.

    2017-12-01

    Jupiter exhibits auroral emission at a multitude of wavelengths. Auroral emission at X-ray, ultraviolet and near-infrared wavelengths demonstrate the precipitation of ion and electrons in Jupiter's upper atmosphere, at altitudes exceeding 250 km above the 1-bar level. Enhanced mid-infrared emission of CH4, C2H2, C2H4 and further hydrocarbons is also observed coincident with Jupiter's auroral regions. Retrieval analyses of infrared spectra from IRTF-TEXES (Texas Echelon Cross Echelle Spectrograph on NASA's Infrared Telescope Facility) indicate strong heating at the 1-mbar level and evidence of ion-neutral chemistry, which enriches the abundances of unsaturated hydrocarbons (Sinclair et al., 2017b, doi:10.1002/2017GL073529, Sinclair et al., 2017c (under review)). The extent to which these phenomena in the stratosphere are correlated and coupled physically with the shorter-wavelength auroral emission originating from higher altitudes has been a challenge due to the limited spatial resolution available on the IRTF. Smaller-scale features observed in the near-infrared and ultraviolet emission, such as the main `oval', transient `swirls' and dusk-active regions within the main oval (e.g. Stallard et al., 2014, doi:10.1016/j/Icarus.2015.12.044, Nichols et al., 2017, doi: 10.1002/2017GL073029) are potentially being blurred in the mid-infrared by the diffraction-limited resolution (0.7") of IRTF's 3-metre primary aperture. However, on March 17-19th 2017, we obtained spectral measurements of H2 S(1), CH4, C2H2, C2H4 and C2H6 emission of Jupiter's high latitudes using TEXES on Gemini-North, which has a 8-metre primary aperture. This rare opportunity combines the superior spectral resolving power of TEXES and the high spatial resolution provided by Gemini-North's 8-metre aperture. We will perform a retrieval analyses to determine the 3D distributions of temperature, C2H2, C2H4 and C2H6. The morphology will be compared with near-contemporaneous measurements of H3+ emission from

  1. SECULAR CHAOS AND THE PRODUCTION OF HOT JUPITERS

    International Nuclear Information System (INIS)

    Wu Yanqin; Lithwick, Yoram

    2011-01-01

    In a planetary system with two or more well-spaced, eccentric, inclined planets, secular interactions may lead to chaos. The innermost planet may gradually become very eccentric and/or inclined as a result of the secular degrees of freedom drifting toward equipartition of angular momentum deficit. Secular chaos is known to be responsible for the eventual destabilization of Mercury in our own solar system. Here we focus on systems with three giant planets. We characterize the secular chaos and demonstrate the criterion for it to occur, but leave a detailed understanding of secular chaos to a companion paper. After an extended period of eccentricity diffusion, the inner planet's pericenter can approach the star to within a few stellar radii. Strong tidal interactions and ensuing tidal dissipation extract orbital energy from the planet and pull it inward, creating a hot Jupiter. In contrast to other proposed channels for the production of hot Jupiters, such a scenario (which we term 'secular migration') explains a range of observations: the pile-up of hot Jupiters at 3 day orbital periods, the fact that hot Jupiters are in general less massive than other radial velocity planets, that they may have misaligned inclinations with respect to stellar spin, and that they have few easily detectable companions (but may have giant companions in distant orbits). Secular migration can also explain close-in planets as low in mass as Neptune; and an aborted secular migration can explain the 'warm Jupiters' at intermediate distances. In addition, the frequency of hot Jupiters formed via secular migration increases with stellar age. We further suggest that secular chaos may be responsible for the observed eccentricities of giant planets at larger distances and that these planets could exhibit significant spin-orbit misalignment.

  2. MULTIPLE-PLANET SCATTERING AND THE ORIGIN OF HOT JUPITERS

    International Nuclear Information System (INIS)

    Beaugé, C.; Nesvorný, D.

    2012-01-01

    Doppler and transit observations of exoplanets show a pile-up of Jupiter-size planets in orbits with a 3 day period. A fraction of these hot Jupiters have retrograde orbits with respect to the parent star's rotation, as evidenced by the measurements of the Rossiter-McLaughlin effect. To explain these observations we performed a series of numerical integrations of planet scattering followed by the tidal circularization and migration of planets that evolved into highly eccentric orbits. We considered planetary systems having three and four planets initially placed in successive mean-motion resonances, although the angles were taken randomly to ensure orbital instability in short timescales. The simulations included the tidal and relativistic effects, and precession due to stellar oblateness. Our results show the formation of two distinct populations of hot Jupiters. The inner population (Population I) is characterized by semimajor axis a 1 Gyr and fits nicely the observed 3 day pile-up. A comparison between our three-planet and four-planet runs shows that the formation of hot Jupiters is more likely in systems with more initial planets. Due to the large-scale chaoticity that dominates the evolution, high eccentricities and/or high inclinations are generated mainly by close encounters between the planets and not by secular perturbations (Kozai or otherwise). The relative proportion of retrograde planets seems of be dependent on the stellar age. Both the distribution of almost aligned systems and the simulated 3 day pile-up also fit observations better in our four-planet simulations. This may suggest that the planetary systems with observed hot Jupiters were originally rich in the number of planets, some of which were ejected. In a broad perspective, our work therefore hints on an unexpected link between the hot Jupiters and recently discovered free floating planets.

  3. Ultraviolet Studies of Jupiter's Hydrocarbons and Aerosols from Galileo

    Science.gov (United States)

    Gladstone, G. Randall

    2001-01-01

    This is the final report for this project. The purpose of this project was to support PI Wayne Pryor's effort to reduce and analyze Galileo UVS (Ultraviolet Spectrometer) data under the JSDAP program. The spectral observations made by the Galileo UVS were to be analyzed to determine mixing ratios for important hydrocarbon species (and aerosols) in Jupiter's stratosphere as a function of location on Jupiter. Much of this work is still ongoing. To date, we have concentrated on analyzing the variability of the auroral emissions rather than the absorption signatures of hydrocarbons, although we have done some work in this area with related HST-STIS data.

  4. Unmasking Europa the search for life on Jupiter's ocean moon

    CERN Document Server

    Greenberg, Richard

    2008-01-01

    Jupiter's ice moon Europa is widely regarded as the most likely place to find extraterrestrial life. This book tells the engaging story of Europa, the oceanic moon. It features a large number of stunning images of the ocean moon's surface, clearly displaying the spectacular crack patterns, extensive rifts and ridges, and refrozen pools of exposed water filled with rafts of displaced ice. Coverage also features firsthand accounts of Galileo's mission to Jupiter and its moons. The book tells the rough and tumble inside story of a very human enterprise in science that lead to the discovery of a f

  5. Recent Simulations of the Late Stages Growth of Jupiter

    Science.gov (United States)

    Lissauer, Jack J.; D'Angelo, Gennaro; Hubickyj, Olenka

    2012-01-01

    Presented by Lissauer et al. (2009, Icarus 199, 338) are used to test the model of capture of Jupiter's irregular satellites within proto-Jupiter's distended and thermally-supported envelope. We find such capture highly unlikely, since the envelope shrinks too slowly for a large number of moons to be retained, and many of those that would be retained would orbit closer to the planet than do the observed Jovian irregulars. Our calculations do not address (and therefore do not exclude) the possibility that the irregular satellites were captured as a result of gas drag within a circumjovian disk. Support for this research from NASA Outer Planets Research Program is gratefully acknowledged.

  6. Analysis of JUPITER critical experiments by JENDL-3.2

    International Nuclear Information System (INIS)

    Ishikawa, Makoto

    1996-01-01

    Applicability of the JENDL-3.2 library to large FBR cores was evaluated using JUPITER experimental data. The nuclear characteristics treated in the present report include criticality, reaction rate ratio, space dependency of C/E values, sodium void reactivity and Doppler reactivity. As a conclusion, JENDL-3.2 is judged to be a well-balanced library for prediction of large FBR core parameters. The unification of integral experimental information from JUPITER and differential nuclear data of JENDL-3.2 will enhance the accuracy and reliability of large FBR core design. (author)

  7. The Hottest Hot Jupiters May Host Atmospheric Dynamos

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, T. M. [Department of Mathematics and Statistics, Newcastle University, Newcastle upon Tyne (United Kingdom); McElwaine, J. N. [Planetary Science Institute, Tucson, AZ 85721 (United States)

    2017-06-01

    Hot Jupiters have proven themselves to be a rich class of exoplanets that test our theories of planetary evolution and atmospheric dynamics under extreme conditions. Here, we present three-dimensional magnetohydrodynamic simulations and analytic results that demonstrate that a dynamo can be maintained in the thin, stably stratified atmosphere of a hot Jupiter, independent of the presumed deep-seated dynamo. This dynamo is maintained by conductivity variations arising from strong asymmetric heating from the planets’ host star. The presence of a dynamo significantly increases the surface magnetic field strength and alters the overall planetary magnetic field geometry, possibly affecting star–planet magnetic interactions.

  8. 76 FR 24513 - Public Land Order No. 7765; Partial Revocation Jupiter Inlet Lighthouse Withdrawal; Florida

    Science.gov (United States)

    2011-05-02

    ...] Public Land Order No. 7765; Partial Revocation Jupiter Inlet Lighthouse Withdrawal; Florida AGENCY... as part of the Jupiter Inlet Lighthouse Outstanding Natural Area. DATES: Effective Date: May 2, 2011... U.S.C. 1787), which created the Jupiter Inlet Lighthouse Outstanding Natural Area, and which...

  9. 77 FR 63722 - Special Local Regulations; Palm Beach World Championship, Atlantic Ocean; Jupiter, FL

    Science.gov (United States)

    2012-10-17

    ...-AA08 Special Local Regulations; Palm Beach World Championship, Atlantic Ocean; Jupiter, FL AGENCY... offshore of Jupiter, Florida during the Palm Beach World Championship, a high speed power boat race. The... Atlantic Ocean, just offshore of Jupiter, Florida. The high speed power boat race event will include...

  10. Ulysses at jupiter: an overview of the encounter.

    Science.gov (United States)

    Smith, E J; Wenzel, K P; Page, D E

    1992-09-11

    In February 1992, the Ulysses spacecraft flew through the giant magnetosphere of Jupiter. The primary objective of the encounter was to use the gravity field of Jupiter to redirect the spacecraft to the sun's polar regions, which will now be traversed in 1994 and 1995. However, the Ulysses scientific investigations were well suited to observations of the Jovian magnetosphere, and the encounter has resulted in a major contribution to our understanding of this complex and dynamic plasma environment. Among the more exciting results are (i) possible entry into the polar cap, (ii) the identification of magnetospheric ions originating from Jupiter's ionosphere, lo, and the solar wind, (iii) observation of longitudinal asymmetries in density and discrete wave-emitting regions of the lo plasma torus, (iv) the presence of counter-streaming ions and electrons, field-aligned currents, and energetic electron and radio bursts in the dusk sector on high-latitude magnetic field lines, and (v) the identification of the direction of the magnetic field in the dusk sector, which is indicative of tailward convection. This overview serves as an introduction to the accompanying reports that present the preliminary scientific findings. Aspects of the encounter that are common to all of the investigations, such as spacecraft capabilities, the flight path past Jupiter, and unique aspects of the encounter, are presented herein.

  11. A nebula of gases from Io surrounding Jupiter.

    Science.gov (United States)

    Krimigis, Stamatios M; Mitchell, Donald G; Hamilton, Douglas C; Dandouras, Jannis; Armstrong, Thomas P; Bolton, Scott J; Cheng, Andrew F; Gloeckler, George; Hsieh, K C; Keath, Edwin P; Krupp, Norbert; Lagg, Andreas; Lanzerotti, Louis J; Livi, Stefano; Mauk, Barry H; McEntire, Richard W; Roelof, Edmond C; Wilken, Berend; Williams, Donald J

    2002-02-28

    Several planetary missions have reported the presence of substantial numbers of energetic ions and electrons surrounding Jupiter; relativistic electrons are observable up to several astronomical units (au) from the planet. A population of energetic (>30[?]keV) neutral particles also has been reported, but the instrumentation was not able to determine the mass or charge state of the particles, which were subsequently labelled energetic neutral atoms. Although images showing the presence of the trace element sodium were obtained, the source and identity of the neutral atoms---and their overall significance relative to the loss of charged particles from Jupiter's magnetosphere---were unknown. Here we report the discovery by the Cassini spacecraft of a fast (>103[?]km[?]s-1) and hot magnetospheric neutral wind extending more than 0.5[?]au from Jupiter, and the presence of energetic neutral atoms (both hot and cold) that have been accelerated by the electric field in the solar wind. We suggest that these atoms originate in volcanic gases from Io, undergo significant evolution through various electromagnetic interactions, escape Jupiter's magnetosphere and then populate the environment around the planet. Thus a 'nebula' is created that extends outwards over hundreds of jovian radii.

  12. First Earth-based Detection of a Superbolide on Jupiter

    Science.gov (United States)

    Hueso, Ricardo; Wesley, A.; Go, C.; Perez-Hoyos, S.; Wong, M. H.; Fletcher, L. N.; Sanchez-Lavega, A.; Boslough, M. B. E.; de Pater, I.; Orton, G. S.; Simon-Miller, A. A.; Djorgovski, S. G.; Edwards, M. L.; Hammel, H. B.; Clarke, J. T.; Noll, K. S.; Yanamandra-Fisher, P. A.

    2010-10-01

    On June 3, 2010 a bolide in Jupiter's atmosphere was observed from the Earth for the first time. The flash was detected by amateur astronomers A. Wesley and C. Go observing in two wavelength ranges. We present an analysis of the light curve of those observations that allow estimating the size of the object to be significantly smaller than the SL9 and the July 2009 Jupiter impact. Observations obtained a few days later by large telescopes including HST, VLT, Keck and Gemini showed no signature of the impact in Jupiter atmosphere confirming the small size of the impact body. A nearly continuous observation campaign based on several small telescopes by amateurs astronomers might allow an empirical determination of the flux of meteoroids in Jupiter with implications for the populations of small bodies in the outer solar system and may allow a better quantification of the threat of impacting bodies to Earth. Acknowledgements: RH, ASL and SPH are supported by the Spanish MICIIN AYA2009-10701 with FEDER and Grupos Gobierno Vasco IT-464-07. LNF is supported by a Glasstone Science Fellowship at the University of Oxford.

  13. First Results of ISO-SWS Grating Observations of Jupiter

    NARCIS (Netherlands)

    Encrenaz, Th.; de Graauw, Th.; Schaeidt, S.; Lellouch, E.; Feuchtgruber, H.; Beintema, D. A.; Bezard, B.; Drossart, P.; Griffin, M.; Heras, A.; Kessler, M.; Leech, K.; Morris, A.; Roelfsema, P. R.; Roos-Serote, M.; Salama, A.; Vandenbussche, B.; Valentijn, E. A.; Davies, G. R.; Naylor, D. A.

    1996-01-01

    The spectrum of Jupiter has been recorded on April 12, 1996, between 2.75 and 14.5 mu m, with the grating mode of the Short-Wavelength Spectrometer of ISO (Infrared Space Observatory). The resolving power is 1500 and the sensitivity limit is better than 1 Jy. The corresponding S/N ratio is better

  14. First results of ISO-SWS observations of Jupiter

    NARCIS (Netherlands)

    Encrenaz, T.; de Graauw, T.; Schaeidt, S.; Lellouch, E.; Feuchtgruber, H.; Beintema, D. A.; Bezard, B.; Drossart, P.; Griffin, M.; Heras, A.; Kessler, M.; Leech, K.; Morris, P.; Roelfsema, P. R.; Roos-Serote, M.; Salama, A.; Vandenbussche, B.; Valentijn, E. A.; Davis, G. R.; Naylor, D. A.

    The spectrum of Jupiter has been recorded between 2.75 and 14.5 mu m with the grating mode of the Short-Wavelength Spectrometer (SWS) of ISO. The resolving power is 1500. The main preliminary results of this observation are (1) at 3 mu m, the first spectroscopic signature, probably associated with

  15. Multi-band characterization of the hot Jupiters

    DEFF Research Database (Denmark)

    Moyano, M.; Almeida, L. A.; von Essen, C.

    2017-01-01

    We have carried out a campaign to characterize the hot Jupiters WASP-5b, WASP-44b and WASP-46b using multiband photometry collected at the Observatorio do Pico Dos Dias in Brazil. We have determined the planetary physical properties and new transit ephemerides for these systems. The new orbital...

  16. James A. Van Allen: The Trip to Jupiter

    Science.gov (United States)

    Jacobsen, Sally

    1973-01-01

    Discusses the research purposes and activities of the Pioneer mission, including the instruments used, data on Jupiter's radiation belt, and information about cosmic ray intensity. Included is a description of the scientist's view about the value of the space program. (CC)

  17. Radiation analysis for manned missions to the Jupiter system.

    Science.gov (United States)

    De Angelis, G; Clowdsley, M S; Nealy, J E; Tripathi, R K; Wilson, J W

    2004-01-01

    An analysis for manned missions targeted to the Jovian system has been performed in the framework of the NASA RASC (Revolutionary Aerospace Systems Concepts) program on Human Exploration beyond Mars. The missions were targeted to the Jupiter satellite Callisto. The mission analysis has been divided into three main phases, namely the interplanetary cruise, the Jupiter orbital insertion, and the surface landing and exploration phases. The interplanetary phase is based on departure from the Earth-Moon L1 point. Interplanetary trajectories based on the use of different propulsion systems have been considered, with resulting overall cruise phase duration varying between two and five years. The Jupiter-approach and the orbital insertion trajectories are considered in detail, with the spacecraft crossing the Jupiter radiation belts and staying around the landing target. In the surface exploration phase the stay on the Callisto surface is considered. The satellite surface composition has been modeled based on the most recent results from the GALILEO spacecraft. In the transport computations the surface backscattering has been duly taken into account. Particle transport has been performed with the HZETRN heavy ion code for hadrons and with an in-house developed transport code for electrons and bremsstrahlung photons. The obtained doses have been compared to dose exposure limits. c2004 COSPAR. Published by Elsevier Ltd. All rights reserved.

  18. Influence of tides on the gravitational field of Jupiter

    International Nuclear Information System (INIS)

    Gavrilov, S.V.; Zharkov, V.N.; Leont'ev, V.V.

    1975-01-01

    The influence of tides on the gravitational field of giant planets is considered quantitatively. The ''gravitational noise'' due to tides can affect the determination of J 8 and J 10 for Jupiter. Tidal sounding of the giant planets is suggested. (author)

  19. The Moons of Jupiter / Journey to the Stars

    Science.gov (United States)

    Litwak, J.; Chatzichristou, E.

    2017-09-01

    The Moons of Jupiter/ Journey to the Stars uses the arts, most particularly theatre arts to inspire curiosity about science education. Using characters which include famous scientists as well as mythological figures, the project provokes thought and offers opportunity for discovery. The play and the subsequent creative teaching tools are accessible to scientists, artists and lay people in an out of the classroom.

  20. An Overview of the Jupiter Europa Orbiter Concept's Europa Science Phase Orbit Design

    Science.gov (United States)

    Lock, Robert E.; Ludwinski, Jan M.; Petropoulos, Anastassios E.; Clark, Karla B.; Pappalardo, Robert T.

    2009-01-01

    Jupiter Europa Orbiter (JEO), the proposed NASA element of the proposed joint NASA-ESA Europa Jupiter System Mission (EJSM), could launch in February 2020 and conceivably arrive at Jupiter in December of 2025. The concept is to perform a multi-year study of Europa and the Jupiter system, including 30 months of Jupiter system science and a comprehensive Europa orbit phase of 9 months. This paper provides an overview of the JEO concept and describes the Europa Science phase orbit design and the related science priorities, model pay-load and operations scenarios needed to conduct the Europa Science phase. This overview is for planning and discussion purposes only.

  1. The Brookhaven Accelerator Test Facility

    International Nuclear Information System (INIS)

    Batchelor, K.; Ben-Zvi, I.; Fernow, R.C.; Fischer, J.; Fisher, A.S.; Gallardo, J.; Jialin, Xie; Kirk, H.G.; Parsa, Z.; Palmer, R.B.; Rao, T.; Rogers, J.; Sheehan, J.; Tsang, T.Y.F.; Ulc, S.; Van Steenbergen, A.; Woodle, M.; Zhang, R.S.; McDonald, K.T.; Russell, D.P.; Jiang, Z.Y.; Pellegrini, C.; Wang, X.J.

    1990-01-01

    The Accelerator Test Facility (ATF), presently under construction at Brookhaven National laboratory, is described. It consists of a 50-MeV electron beam synchronizable to a high-peak power CO 2 laser. The interaction of electrons with the laser field will be probed, with some emphasis on exploring laser-based acceleration techniques. 5 refs., 2 figs

  2. Geohydrology of the High Energy Laser System Test Facility site, White Sands Missile Range, Tularosa Basin, south-central New Mexico

    Science.gov (United States)

    Basabilvazo, G.T.; Nickerson, E.L.; Myers, R.G.

    1994-01-01

    The Yesum-HoHoman and Gypsum land (hummocky) soils at the High Energy Laser System Test Facility (HELSTF) represent wind deposits from recently desiccated lacustrine deposits and deposits from the ancestral Lake Otero. The upper 15-20 feet of the subsurface consists of varved gypsiferous clay and silt. Below these surfidai deposits the lithology consists of interbedded clay units, silty-clay units, and fine- to medium-grained quartz arenite units in continuous and discontinuous horizons. Clay horizons can cause perched water above the water table. Analyses of selected clay samples indicate that clay units are composed chiefly of kaolinire and mixed-layer illite/ smectite. The main aquifer is representative of a leaky-confined aquifer. Estimated aquifer properties are: transmissivity (T) = 780 feet squared per day, storage coefficient (S) = 3.1 x 10-3, and hydraulic conductivity (K) = 6.0 feet per day. Ground water flows south and southwest; the estimated hydraulic gradient is 5.3 feet per mile. Analyses of water samples indicate that ground water at the HELSTF site is brackish to slightly saline at the top of the main aquifer. Dissolved-solids concentration near the top of the main aquifer ranges from 5,940 to 11,800 milligrams per liter. Predominant ions are sodium and sulfate. At 815 feet below land surface, the largest dissolved-solids concentration measured is 111,000 milligrams per liter, which indicates increasing salinity with depth. Predominant ions are sodium and chloride.

  3. The hot plasma environment at jupiter: ulysses results.

    Science.gov (United States)

    Lanzerotti, L J; Armstrong, T P; Gold, R E; Anderson, K A; Krimigis, S M; Lin, R P; Pick, M; Roelof, E C; Sarris, E T; Simnett, G M; Maclennan, C G; Choo, H T; Tappin, S J

    1992-09-11

    Measurements of the hot plasma environment during the Ulysses flyby of Jupiter have revealed several new discoveries related to this large rotating astrophysical system. The Jovian magnetosphere was found by Ulysses to be very extended, with the day-side magnetopause located at approximately 105 Jupiter radii. The heavy ion (sulfur, oxygen, and sodium) population in the day-side magnetosphere increased sharply at approximately 86 Jupiter radii. This is somewhat more extended than the "inner" magnetosphere boundary region identified by the Voyager hot plasma measurements. In the day-side magnetosphere, the ion fluxes have the anisotropy direction expected for corotation with the planet, with the magnitude of the anisotropy increasing when the spacecraft becomes more immersed in the hot plasma sheet. The relative abundances of sulfur, oxygen, and sodium to helium decreased somewhat with decreasing radial distance from the planet on the day-side, which suggests that the abundances of the Jupiter-derived species are dependent on latitude. In the dusk-side, high-latitude region, intense fluxes of counter-streaming ions and electrons were discovered from the edge of the plasma sheet to the dusk-side magnetopause. These beams of electrons and ions were found to be very tightly aligned with the magnetic field and to be superimposed on a time- and space-variable isotropic hot plasma background. The currents carried by the measured hot plasma particles are typically approximately 1.6 x 10(-4) microamperes per square meter or approximately 8 x 10(5) amperes per squared Jupiter radius throughout the high-latitude magnetosphere volume. It is likely that the intense particle beams discovered at high Jovian latitudes produce auroras in the polar caps of the planet.

  4. Tilting Saturn without Tilting Jupiter: Constraints on Giant Planet Migration

    Science.gov (United States)

    Brasser, R.; Lee, Man Hoi

    2015-11-01

    The migration and encounter histories of the giant planets in our solar system can be constrained by the obliquities of Jupiter and Saturn. We have performed secular simulations with imposed migration and N-body simulations with planetesimals to study the expected obliquity distribution of migrating planets with initial conditions resembling those of the smooth migration model, the resonant Nice model and two models with five giant planets initially in resonance (one compact and one loose configuration). For smooth migration, the secular spin-orbit resonance mechanism can tilt Saturn’s spin axis to the current obliquity if the product of the migration timescale and the orbital inclinations is sufficiently large (exceeding 30 Myr deg). For the resonant Nice model with imposed migration, it is difficult to reproduce today’s obliquity values, because the compactness of the initial system raises the frequency that tilts Saturn above the spin precession frequency of Jupiter, causing a Jupiter spin-orbit resonance crossing. Migration timescales sufficiently long to tilt Saturn generally suffice to tilt Jupiter more than is observed. The full N-body simulations tell a somewhat different story, with Jupiter generally being tilted as often as Saturn, but on average having a higher obliquity. The main obstacle is the final orbital spacing of the giant planets, coupled with the tail of Neptune’s migration. The resonant Nice case is barely able to simultaneously reproduce the orbital and spin properties of the giant planets, with a probability ˜ 0.15%. The loose five planet model is unable to match all our constraints (probability <0.08%). The compact five planet model has the highest chance of matching the orbital and obliquity constraints simultaneously (probability ˜0.3%).

  5. Exploring the diversity of Jupiter-class planets.

    Science.gov (United States)

    Fletcher, Leigh N; Irwin, Patrick G J; Barstow, Joanna K; de Kok, Remco J; Lee, Jae-Min; Aigrain, Suzanne

    2014-04-28

    Of the 900+ confirmed exoplanets discovered since 1995 for which we have constraints on their mass (i.e. not including Kepler candidates), 75% have masses larger than Saturn (0.3 MJ), 53% are more massive than Jupiter and 67% are within 1 AU of their host stars. When Kepler candidates are included, Neptune-sized giant planets could form the majority of the planetary population. And yet the term 'hot Jupiter' fails to account for the incredible diversity of this class of astrophysical object, which exists on a continuum of giant planets from the cool jovians of our own Solar System to the highly irradiated, tidally locked hot roasters. We review theoretical expectations for the temperatures, molecular composition and cloud properties of hydrogen-dominated Jupiter-class objects under a variety of different conditions. We discuss the classification schemes for these Jupiter-class planets proposed to date, including the implications for our own Solar System giant planets and the pitfalls associated with compositional classification at this early stage of exoplanetary spectroscopy. We discuss the range of planetary types described by previous authors, accounting for (i) thermochemical equilibrium expectations for cloud condensation and favoured chemical stability fields; (ii) the metallicity and formation mechanism for these giant planets; (iii) the importance of optical absorbers for energy partitioning and the generation of a temperature inversion; (iv) the favoured photochemical pathways and expectations for minor species (e.g. saturated hydrocarbons and nitriles); (v) the unexpected presence of molecules owing to vertical mixing of species above their quench levels; and (vi) methods for energy and material redistribution throughout the atmosphere (e.g. away from the highly irradiated daysides of close-in giants). Finally, we discuss the benefits and potential flaws of retrieval techniques for establishing a family of atmospheric solutions that reproduce the

  6. Jupiter's Mid-Infrared Aurora: Solar Connection and Minor Constituents

    Science.gov (United States)

    Kostiuk, Theodore; Livengood, T.A.; Fast, K.E.; Hewagama, T.; Schmilling, F.; Sonnabend, G.; Delgado, J.

    2009-01-01

    High spectral resolution in the 12 pin region of the polar regions of Jupiter reveal unique information on auroral phenomena and upper stratospheric composition. Polar aurorae in Jupiter's atmosphere radiate; throughout the electromagnetic spectrum from X-ray through mid-infrared (mid-IR, 5 - 20 micron wavelength). Voyager IRIS data and ground-based. spectroscopic measurements of Jupiter's northern mid-IR aurora acquired since 1982, reveal a correlation between auroral brightness and solar activity that has not been observed in Jovian aurora at other wavelengths. Over nearly three solar cycles, Jupiter auroral ethane, emission brightness and solar 10.7-cm radar flux and sunspot number are positively correlated with high confidence. Ethane line emission intensity varies over tenfold between low and high scalar activity periods. Detailed measurements have been made using the GSFC HIPWAC spectrometer at the NASA IRTF since the last solar maximum, following the mid-IR emission through the declining phase toward solar minimum. An even more convincing correlation with solar activity is evident in these data. The spectra measured contain features that cannot be attributed to ethane and are most likely spectra of minor constituents whose molecular bands overlap the v9 band of ethane. Possible candidates are allene, propane, and other higher order hydrocarbons. These features appear to be enhanced in the active polar regions. Laboratory measurements at comparable spectral resolution of spectra of candidate molecules will be used to identify the constituents. Current analyses of these results will be described, including planned measurements on polar ethane line emission scheduled through the rise of the next solar maximum beginning in 2009, with a steep gradient to a maximum in 2012. This work is relevant to the Juno mission and to the development of the NASA/ESA Europa Jupiter System Mission.

  7. Exterior Companions to Hot Jupiters Orbiting Cool Stars Are Coplanar

    Science.gov (United States)

    Becker, Juliette C.; Vanderburg, Andrew; Adams, Fred C.; Khain, Tali; Bryan, Marta

    2017-12-01

    The existence of hot Jupiters has challenged theories of planetary formation since the first extrasolar planets were detected. Giant planets are generally believed to form far from their host stars, where volatile materials like water exist in their solid phase, making it easier for giant planet cores to accumulate. Several mechanisms have been proposed to explain how giant planets can migrate inward from their birth sites to short-period orbits. One such mechanism, called Kozai-Lidov migration, requires the presence of distant companions in orbits inclined by more than ˜40° with respect to the plane of the hot Jupiter’s orbit. The high occurrence rate of wide companions in hot-Jupiter systems lends support to this theory for migration. However, the exact orbital inclinations of these detected planetary and stellar companions is not known, so it is not clear whether the mutual inclination of these companions is large enough for the Kozai-Lidov process to operate. This paper shows that in systems orbiting cool stars with convective outer layers, the orbits of most wide planetary companions to hot Jupiters must be well aligned with the orbits of the hot Jupiters and the spins of the host stars. For a variety of possible distributions for the inclination of the companion, the width of the distribution must be less than ˜20° to recreate the observations with good fidelity. As a result, the companion orbits are likely well aligned with those of the hot Jupiters, and the Kozai-Lidov mechanism does not enforce migration in these systems.

  8. Lasers for the SILVA laser isotope separation process

    International Nuclear Information System (INIS)

    Lapierre, Y.

    1997-01-01

    The main principles of the laser isotope separation process for the production of enriched uranium at lower cost, are reviewed and the corresponding optimal laser characteristics are described. The development of the SILVA laser isotope separation process involved researches in the various domains of pump lasers, dye lasers, laser and optics systems and two test facilities for the feasibility studies which are expected for 1997

  9. ORION laser target diagnostics

    International Nuclear Information System (INIS)

    Bentley, C. D.; Edwards, R. D.; Andrew, J. E.; James, S. F.; Gardner, M. D.; Comley, A. J.; Vaughan, K.; Horsfield, C. J.; Rubery, M. S.; Rothman, S. D.; Daykin, S.; Masoero, S. J.; Palmer, J. B.; Meadowcroft, A. L.; Williams, B. M.; Gumbrell, E. T.; Fyrth, J. D.; Brown, C. R. D.; Hill, M. P.; Oades, K.

    2012-01-01

    The ORION laser facility is one of the UK's premier laser facilities which became operational at AWE in 2010. Its primary mission is one of stockpile stewardship, ORION will extend the UK's experimental plasma physics capability to the high temperature, high density regime relevant to Atomic Weapons Establishment's (AWE) program. The ORION laser combines ten laser beams operating in the ns regime with two sub ps short pulse chirped pulse amplification beams. This gives the UK a unique combined long pulse/short pulse laser capability which is not only available to AWE personnel but also gives access to our international partners and visiting UK academia. The ORION laser facility is equipped with a comprehensive suite of some 45 diagnostics covering optical, particle, and x-ray diagnostics all able to image the laser target interaction point. This paper focuses on a small selection of these diagnostics.

  10. ORION laser target diagnostics.

    Science.gov (United States)

    Bentley, C D; Edwards, R D; Andrew, J E; James, S F; Gardner, M D; Comley, A J; Vaughan, K; Horsfield, C J; Rubery, M S; Rothman, S D; Daykin, S; Masoero, S J; Palmer, J B; Meadowcroft, A L; Williams, B M; Gumbrell, E T; Fyrth, J D; Brown, C R D; Hill, M P; Oades, K; Wright, M J; Hood, B A; Kemshall, P

    2012-10-01

    The ORION laser facility is one of the UK's premier laser facilities which became operational at AWE in 2010. Its primary mission is one of stockpile stewardship, ORION will extend the UK's experimental plasma physics capability to the high temperature, high density regime relevant to Atomic Weapons Establishment's (AWE) program. The ORION laser combines ten laser beams operating in the ns regime with two sub ps short pulse chirped pulse amplification beams. This gives the UK a unique combined long pulse/short pulse laser capability which is not only available to AWE personnel but also gives access to our international partners and visiting UK academia. The ORION laser facility is equipped with a comprehensive suite of some 45 diagnostics covering optical, particle, and x-ray diagnostics all able to image the laser target interaction point. This paper focuses on a small selection of these diagnostics.

  11. Ion Acceleration by Laser Plasma Interaction from Cryogenic Microjets

    Energy Technology Data Exchange (ETDEWEB)

    Propp, Adrienne [Harvard Univ., Cambridge, MA (United States)

    2015-08-16

    Processes that occur in extreme conditions, such as in the center of stars and large planets, can be simulated in the laboratory using facilities such as SLAC National Accelerator Laboratory and the Jupiter Laser Facility (JLF) at Lawrence Livermore National Laboratory (LLNL). These facilities allow scientists to investigate the properties of matter by observing their interactions with high-power lasers. Ion acceleration from laser plasma interaction is gaining greater attention today due to its widespread potential applications, including proton beam cancer therapy and fast ignition for energy production. Typically, ion acceleration is achieved by focusing a high power laser on thin foil targets through a mechanism called Target Normal Sheath Acceleration. However, this mechanism is not ideal for creating the high-energy proton beams needed for future applications. Based on research and recent experiments, we hypothesized that a pure liquid cryogenic jet would be an ideal target for exploring new regimes of ion acceleration. Furthermore, it would provide a continuous, pure target, unlike metal foils which are consumed in the interaction and easily contaminated. In an effort to test this hypothesis, we used the 527 nm split beam, frequency-doubled TITAN laser at JLF. Data from the cryogenic jets was limited due to the flow of current up the jet into the nozzle during the interaction, heating the jet and damaging the orifice. However, we achieved a pure proton beam with evidence of a monoenergetic feature. Furthermore, data from gold and carbon wires showed surprising and interesting results. Preliminary analysis of data from two ion emission diagnostics, Thomson parabola spectrometers (TPs) and radio chromic films (RCFs), suggests that shockwave acceleration occurred rather than target normal sheath acceleration, the standard mechanism of ion acceleration. Upon completion of the experiment at TITAN, I researched the possibility of transforming our liquid cryogenic

  12. Ion Acceleration by Laser Plasma Interaction from Cryogenic Microjets

    International Nuclear Information System (INIS)

    Propp, Adrienne

    2015-01-01

    Processes that occur in extreme conditions, such as in the center of stars and large planets, can be simulated in the laboratory using facilities such as SLAC National Accelerator Laboratory and the Jupiter Laser Facility (JLF) at Lawrence Livermore National Laboratory (LLNL). These facilities allow scientists to investigate the properties of matter by observing their interactions with high-power lasers. Ion acceleration from laser plasma interaction is gaining greater attention today due to its widespread potential applications, including proton beam cancer therapy and fast ignition for energy production. Typically, ion acceleration is achieved by focusing a high power laser on thin foil targets through a mechanism called Target Normal Sheath Acceleration. However, this mechanism is not ideal for creating the high-energy proton beams needed for future applications. Based on research and recent experiments, we hypothesized that a pure liquid cryogenic jet would be an ideal target for exploring new regimes of ion acceleration. Furthermore, it would provide a continuous, pure target, unlike metal foils which are consumed in the interaction and easily contaminated. In an effort to test this hypothesis, we used the 527 nm split beam, frequency-doubled TITAN laser at JLF. Data from the cryogenic jets was limited due to the flow of current up the jet into the nozzle during the interaction, heating the jet and damaging the orifice. However, we achieved a pure proton beam with evidence of a monoenergetic feature. Furthermore, data from gold and carbon wires showed surprising and interesting results. Preliminary analysis of data from two ion emission diagnostics, Thomson parabola spectrometers (TPs) and radio chromic films (RCFs), suggests that shockwave acceleration occurred rather than target normal sheath acceleration, the standard mechanism of ion acceleration. Upon completion of the experiment at TITAN, I researched the possibility of transforming our liquid cryogenic

  13. ISO celebrates its prolonged life with a video of Jupiter

    Science.gov (United States)

    1997-07-01

    This is excellent news for astronomers and especially for the multinational teams, with leaders in France, Germany, the Netherlands and the United Kingdom, who spent many years devising the four instruments served by ISO's telescope. The camera ISOCAM, the photometer ISOPHOT, the Short Wavelength Spectrometer and the Long Wavelength Spectrometer span between them an unprecedented range of infrared wavelengths from 2 to 200 microns. The atmosphere of Jupiter is one of the cool and cloudy places attracting ISO's attention, and ESA today releases a video of unprecedented images of Jupiter. The planet changes its appearance drastically as the camera ISOCAM scans a range of 90 different infrared wavelengths. Picture by picture, ISOCAM picks out different features of the atmosphere's composition and behaviour. These and other results from ISO will enable scientists to sharpen their ideas about how Jupiter's weather works. "ISO is giving us a new impression of the giant planets of the Solar System," comments Roger Bonnet, ESA's director of science. "Not just Jupiter, but Saturn, Uranus and Neptune too. By observing the planets across its very wide range of infrared wavelengths, ISO can see features overlooked even by spacecraft visiting the planets. The remarkable movie of Jupiter released today represents only a few per cent of ISO's wavelength range, yet every image tells its own story." More information about the Jupiter video appears later in this Information Note. How ISO's cold telescope beat the calendar The need to keep ISO's telescope and instruments chilled to a very low temperature sets a limit to their useful operating life. ISO was supplied with more than 2000 litres of superfluid helium to cool it. Slow evaporation maintains key parts of the spacecraft at temperatures close to absolute zero, below minus 271 degrees C. The rate of loss of helium was expected to be about 3 litres a day, but the cryogenic system could not be tested in exactly the conditions

  14. HUBBLE CLICKS IMAGES OF IO SWEEPING ACROSS JUPITER

    Science.gov (United States)

    2002-01-01

    While hunting for volcanic plumes on Io, NASA's Hubble Space Telescope captured these images of the volatile moon sweeping across the giant face of Jupiter. Only a few weeks before these dramatic images were taken, the orbiting telescope snapped a portrait of one of Io's volcanoes spewing sulfur dioxide 'snow.' These stunning images of the planetary duo are being released to commemorate the ninth anniversary of the Hubble telescope's launch on April 24, 1990. All of these images were taken with the Wide Field and Planetary Camera 2. The three overlapping snapshots show in crisp detail Io passing above Jupiter's turbulent clouds. The close-up picture of Io (bottom right) reveal a 120-mile-high (200-kilometer) plume of sulfur dioxide 'snow' emanating from Pillan, one of the moon's active volcanoes. 'Other observations have inferred sulfur dioxide 'snow' in Io's plumes, but this image offers direct observational evidence for sulfur dioxide 'snow' in an Io plume,' explains John R. Spencer of Lowell Observatory in Flagstaff, Ariz. A Trip Around Jupiter The three snapshots of the volcanic moon rounding Jupiter were taken over a 1.8-hour time span. Io is roughly the size of Earth's moon but 2,000 times farther away. In two of the images, Io appears to be skimming Jupiter's cloud tops, but it's actually 310,000 miles (500,000 kilometers) away. Io zips around Jupiter in 1.8 days, whereas the moon circles Earth every 28 days. The conspicuous black spot on Jupiter is Io's shadow and is about the size of the moon itself (2,262 miles or 3,640 kilometers across). This shadow sails across the face of Jupiter at 38,000 mph (17 kilometers per second). The smallest details visible on Io and Jupiter measure 93 miles (150 kilometers) across, or about the size of Connecticut. These images were further sharpened through image reconstruction techniques. The view is so crisp that one would have to stand on Io to see this much detail on Jupiter with the naked eye. The bright patches on Io

  15. Effects of laser energy fluence on the onset and growth of the Rayleigh–Taylor instabilities and its influence on the topography of the Fe thin film grown in pulsed laser deposition facility

    International Nuclear Information System (INIS)

    Mahmood, S.; Rawat, R. S.; Wang, Y.; Lee, S.; Tan, T. L.; Springham, S. V.; Lee, P.; Zakaullah, M.

    2012-01-01

    The effect of laser energy fluence on the onset and growth of Rayleigh–Taylor (RT) instabilities in laser induced Fe plasma is investigated using time-resolved fast gated imaging. The snow plow and shock wave models are fitted to the experimental results and used to estimate the ablation parameters and the density of gas atoms that interact with the ablated species. It is observed that RT instability develops during the interface deceleration stage and grows for a considerable time for higher laser energy fluence. The effects of RT instabilities formation on the surface topography of the Fe thin films grown in pulsed laser deposition system are investigated (i) using different laser energy fluences for the same wavelength of laser radiation and (ii) using different laser wavelengths keeping the energy fluence fixed. It is concluded that the deposition achieved under turbulent condition leads to less smooth deposition surfaces with bigger sized particle agglomerates or network.

  16. Electromagnetically Interacting Dust Streams During Ulysses' Second Jupiter Encounter

    International Nuclear Information System (INIS)

    Krueger, H.; Forsyth, R.J.; Graps, A.L.; Gruen, E.

    2005-01-01

    The Jupiter system is a source of collimated burst-like streams of electrically charged 10-nm dust particles. In 2004 the Ulysses spacecraft had its second flyby at Jupiter and from late 2002 to early 2005 it measured a total of 24 dust streams between 0.8 and 3.4 AU from the planet. The grains show strong coupling to the interplanetary magnetic field: their impact directions correlate with the orientation and strength of the interplanetary magnetic field vector (namely its tangential and radial components) and they occur at 26 day intervals, closely matching the solar rotation period. Ulysses measured the dust streams over a large range in jovian latitude (+75 deg. to -35 deg.). Enhanced dust emission was measured along the jovian equator

  17. A reassessment of Galileo radiation exposures in the Jupiter magnetosphere.

    Science.gov (United States)

    Atwell, William; Townsend, Lawrence; Miller, Thomas; Campbell, Christina

    2005-01-01

    Earlier particle experiments in the 1970s on Pioneer-10 and -11 and Voyager-1 and -2 provided Jupiter flyby particle data, which were used by Divine and Garrett to develop the first Jupiter trapped radiation environment model. This model was used to establish a baseline radiation effects design limit for the Galileo onboard electronics. Recently, Garrett et al. have developed an updated Galileo Interim Radiation Environment (GIRE) model based on Galileo electron data. In this paper, we have used the GIRE model to reassess the computed radiation exposures and dose effects for Galileo. The 34-orbit 'as flown' Galileo trajectory data and the updated GIRE model were used to compute the electron and proton spectra for each of the 34 orbits. The total ionisation doses of electrons and protons have been computed based on a parametric shielding configuration, and these results are compared with previously published results.

  18. Ongoing Analysis of Jupiter's Equatorial Hotspots and Plumes from Cassini

    Science.gov (United States)

    Choi, D. S.; Showmwn, A. P.; Vasavada, A. R.; Simon-Miller, A. A.

    2012-01-01

    We present updated results from our ongoing analysis of Cassini observations of Jupiter's equatorial meteorology. For two months preceding the spacecraft's closest approach of the planet, the ISS instrument onboard Cassini regularly imaged the atmosphere of Jupiter. We created time-lapse movies from this period that show the complex activity and interactions of the equatorial atmosphere. During this period, hot spots exhibited significant variations in size and shape over timescales of days and weeks. Some of these changes appear to be a result of interactions with passing vortex systems in adjacent latitudes. Strong anticyclonic gyres to the southeast of the dark areas converge with flow from the west and appear to circulate into a hot spot at its southwestern corner.

  19. Telecommunications Antennas for the Juno Mission to Jupiter

    Science.gov (United States)

    Vacchione, Joseph D.; Kruid, Ronald C.; Prata, Aluizio, Jr.; Amaro, Luis R.; Mittskus, Anthony P.

    2012-01-01

    The Juno Mission to Jupiter requires a full sphere of coverage throughout its cruise to and mission at Jupiter. This coverage is accommodated through the use of five (5) antennas; forward facing low gain, medium gain, and high gain antennas, and an aft facing low gain antenna along with an aft mounted low gain antenna with a torus shaped antenna pattern. Three of the antennas (the forward low and medium gain antennas) are classical designs that have been employed on several prior NASA missions. Two of the antennas employ new technology developed to meet the Juno mission requirements. The new technology developed for the low gain with torus shaped radiation pattern represents a significant evolution of the bicone antenna. The high gain antenna employs a specialized surface shaping designed to broaden the antenna's main beam at Ka-band to ease the requirements on the spacecraft's attitude control system.

  20. Inferring Temperature Inversions in Hot Jupiters Via Spitzer Emission Spectroscopy

    Science.gov (United States)

    Garhart, Emily; Deming, Drake; Mandell, Avi

    2016-10-01

    We present a systematic study of 35 hot Jupiter secondary eclipses, including 16 hot Jupiters never before characterized via emission, observed at the 3.6 μm and 4.5 μm bandpasses of Warm Spitzer in order to classify their atmospheric structure, namely, the existence of temperature inversions. This is a robust study in that these planets orbit stars with a wide range of compositions, temperatures, and activity levels. This diverse sample allows us to investigate the source of planetary temperature inversions, specifically, its correlation with stellar irradiance and magnetic activity. We correct for systematic and intra-pixel sensitivity effects with a pixel level decorrelation (PLD) method described in Deming et al. (2015). The relationship between eclipse depths and a best-fit blackbody function versus stellar activity, a method described in Knutson et al. (2010), will ultimately enable us to appraise the current hypotheses of temperature inversions.

  1. HOT STARS WITH HOT JUPITERS HAVE HIGH OBLIQUITIES

    International Nuclear Information System (INIS)

    Winn, Joshua N.; Albrecht, Simon; Fabrycky, Daniel; Johnson, John Asher

    2010-01-01

    We show that stars with transiting planets for which the stellar obliquity is large are preferentially hot (T eff > 6250 K). This could explain why small obliquities were observed in the earliest measurements, which focused on relatively cool stars drawn from Doppler surveys, as opposed to hotter stars that emerged more recently from transit surveys. The observed trend could be due to differences in planet formation and migration around stars of varying mass. Alternatively, we speculate that hot-Jupiter systems begin with a wide range of obliquities, but the photospheres of cool stars realign with the orbits due to tidal dissipation in their convective zones, while hot stars cannot realign because of their thinner convective zones. This in turn would suggest that hot Jupiters originate from few-body gravitational dynamics and that disk migration plays at most a supporting role.

  2. Neutron irradiation experiments for fusion reactor materials through JUPITER program

    International Nuclear Information System (INIS)

    Abe, K.; Namba, C.; Wiffen, F.W.; Jones, R.H.

    1998-01-01

    A Japan-USA program of irradiation experiments for fusion research, ''JUPITER'', has been established as a 6 year program from 1995 to 2000. The goal is to study ''the dynamic behavior of fusion reactor materials and their response to variable and complex irradiation environment''. This is phase-three of the collaborative program, which follows RTNS-II program (phase-1: 1982-1986) and FFTF/MOTA program (phase-2: 1987-1994). This program is to provide a scientific basis for application of materials performance data, generated by fission reactor experiments, to anticipated fusion environments. Following the systematic study on cumulative irradiation effects, done through FFTF/MOTA program. JUPITER is emphasizing the importance of dynamic irradiation effects on materials performance in fusion systems. The irradiation experiments in this program include low activation structural materials, functional ceramics and other innovative materials. The experimental data are analyzed by theoretical modeling and computer simulation to integrate the above effects. (orig.)

  3. A reassessment of Galileo radiation exposures in the Jupiter magnetosphere

    International Nuclear Information System (INIS)

    Atwell, W.; Townsend, L.; Miller, T.; Campbell, C.

    2005-01-01

    Earlier particle experiments in the 1970's on Pioneer-10 and -11 and Voyager-1 and -2 provided Jupiter flyby particle data, which were used by Divine and Garrett to develop the first Jupiter trapped radiation environment model. This model was used to establish a baseline radiation effects design limit for the Galileo onboard electronics. Recently, Garrett et al. have developed an updated Galileo Interim Radiation Environment (GIRE) model based on Galileo electron data. In this paper, we have used the GIRE model to reassess the computed radiation exposures and dose effects for Galileo. The 34-orbit 'as flown' Galileo trajectory data and the updated GIRE model were used to compute the electron and proton spectra for each of the 34 orbits. The total ionisation doses of electrons and protons have been computed based on a parametric shielding configuration, and these results are compared with previously published results. Published by Oxford Univ. Press. All right reserved. (authors)

  4. Variations of Synchrotron Radio Emissions from Jupiter's Inner Radiation Belt

    Science.gov (United States)

    Lou, Y.-Q.

    2017-09-01

    Variations of Synchrotron Radio Emissions from Jupiter's Inner Radiation Belt Yu-Qing Lou* Physics Department, Tsinghua Centre for Astrophysics (THCA), Tsinghua-National Astronomical Observatories of China (NAOC) joint Research Centre for Astrophysics, Tsinghua University, Beijing 100084, China We describe the basic phenommenology of quasi-periodic 40 minute (QP-40) polar burst activities of Jupiter and their close correlation with the solar wind speed variations at the Jovian magnetosphere. Physically, relativistic electrons of QP-40 bursts most likely come from the circumpolar regions of the inner radiation belt (IRB) which gives off intense synchroton radio emissions in a wide wavelength range. Such relativistic electron bursts also give rise to beamed low-frequency radio bursts along polar magnetic field lines with distinct polarizations from Jupiter's two polar regions. Jovian aurora activities are expected to be also affected by such QP-40 burst activities. We present evidence of short-term (typical timescales shorter than an hour) variabilities of the IRB at 6cm wavelength and describe recent joint radio telescope observation campaign to monitor Jupiter in coordination with JUNO spacecraft. Except for low-frequency polarization features, we anticipate JUNO to detect QP-40 activities from both polar regions during the arrival of high-speed solar wind with intermittency. References 1. Y.-Q. Lou, The Astrophysical Journal, 548, 460 (2001). 2. Y.-Q. Lou, and C. Zheng, Mon. Not. Roy. Astron. Soc. Letters, 344, L1 (2003). 3. Y.-Q. Lou, H. G. Song, Y.Y. Liu, and M. Yang, Mon. Not. Roy. Astron. Soc. Letters, 421, L62 (2012). 4. Y.-Q. Lou, Geophysical Research Letters, 23, 609 (1996). 5. Y.-Q. Lou, Journal of Geophysical Research, 99, 14747 (1994). 6. G. R. Gladstone, et al., Nature, 415, 1000 (2002).

  5. Carbon monoxide in jupiter's upper atmosphere: An extraplanetary source

    International Nuclear Information System (INIS)

    Prather, M.J.; Logan, J.A.; McElroy, M.B.

    1978-01-01

    Ablation of meteoroidal material in Jupiter's atmosphere may provide substantial quantities of H 2 O. Subsequent photochemistry can convert H 2 O and CH 4 to CO and H 2 . The associated source of CO could account for the observations by Beer, Larson, Fink, and Treffers, and Beer and Taylor, and would explain the relatively low rotational temperatures inferred by Beer and Taylor. Meteoritic debris might also provide spectroscopically detectable concentrations of SiO

  6. RE-INFLATED WARM JUPITERS AROUND RED GIANTS

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, Eric D. [Institute for Astronomy, Royal Observatory Edinburgh, University of Edinburgh, Blackford Hill, Edinburgh (United Kingdom); Fortney, Jonathan J. [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States)

    2016-02-10

    Since the discovery of the first transiting hot Jupiters, models have sought to explain the anomalously large radii of highly irradiated gas giants. We now know that the size of hot Jupiter radius anomalies scales strongly with a planet's level of irradiation and numerous models like tidal heating, ohmic dissipation, and thermal tides have since been developed to help explain these inflated radii. In general, however, these models can be grouped into two broad categories: models that directly inflate planetary radii by depositing a fraction of the incident irradiation into the interior and models that simply slow a planet's radiative cooling, allowing it to retain more heat from formation and thereby delay contraction. Here we present a new test to distinguish between these two classes of models. Gas giants orbiting at moderate orbital periods around post-main-sequence stars will experience enormous increases to their irradiation as their host stars move up the sub-giant and red-giant branches. If hot Jupiter inflation works by depositing irradiation into the planet's deep interiors then planetary radii should increase in response to the increased irradiation. This means that otherwise non-inflated gas giants at moderate orbital periods of >10 days can re-inflate as their host stars evolve. Here we explore the circumstances that can lead to the creation of these “re-inflated” gas giants and examine how the existence or absence of such planets can be used to place unique constraints on the physics of the hot Jupiter inflation mechanism. Finally, we explore the prospects for detecting this potentially important undiscovered population of planets.

  7. Coloring Jupiter's clouds: Radiolysis of ammonium hydrosulfide (NH4SH)

    Science.gov (United States)

    Loeffler, Mark J.; Hudson, Reggie L.

    2018-03-01

    Here we present our recent studies on the color and spectral reflectance changes induced by ∼0.9 MeV proton irradiation of ammonium hydrosulfide, NH4SH, a compound predicted to be an important tropospheric cloud component of Jupiter and other giant planets. Ultraviolet-visible spectroscopy was used to observe and identify reaction products in the ice sample and digital photography was used to document the corresponding color changes at 10-160 K. Our experiments clearly show that the resulting color of the sample depends not only on the irradiation dose but also the irradiation temperature. Furthermore, unlike in our most recent studies of irradiation of NH4SH at 120 K, which showed that higher irradiation doses caused the sample to appear green, the lower temperature studies now show that the sample becomes red after irradiation. However, comparison of these lower temperature spectra over the entire spectral range observed by HST shows that even though the color and spectrum resemble the color and spectrum of the GRS, there is still enough difference to suggest that another component may be needed to adequately fit spectra of the GRS and other red regions of Jupiter's clouds. Regardless, the presence of NH4SH in the atmosphere of Jupiter and other gas giants, combined with this compound's clear alteration via radiolysis, suggests that its contribution to the ultraviolet-visible spectra of any of these object's clouds is significant.

  8. Jupiter's Magnetic Field and Magnetosphere after Juno's First 8 Orbits

    Science.gov (United States)

    Connerney, J. E. P.; Oliversen, R. J.; Espley, J. R.; Gruesbeck, J.; Kotsiaros, S.; DiBraccio, G. A.; Joergensen, J. L.; Joergensen, P. S.; Merayo, J. M. G.; Denver, T.; Benn, M.; Bjarno, J. B.; Malinnikova Bang, A.; Bloxham, J.; Moore, K.; Bolton, S. J.; Levin, S.; Gershman, D. J.

    2017-12-01

    The Juno spacecraft entered polar orbit about Jupiter on July 4, 2016, embarking upon an ambitious mission to map Jupiter's magnetic and gravitational potential fields and probe its deep atmosphere, in search of clues to the planet's formation and evolution. Juno is also instrumented to conduct the first exploration of the polar magnetosphere and to acquire images and spectra of its polar auroras and atmosphere. Juno's 53.5-day orbit trajectory carries her science instruments from pole to pole in approximately 2 hours, with a closest approach to within 1.05 Rj of the center of the planet (one Rj = 71,492 km, Jupiter's equatorial radius), just a few thousand km above the clouds. Repeated periapsis passes will eventually encircle the planet with a dense net of observations equally spaced in longitude (magnetometer sensor suites, located 10 and 12 m from the center of the spacecraft at the end of one of Juno's three solar panel wings. Each contains a vector fluxgate magnetometer (FGM) sensor and a pair of co-located non-magnetic star tracker camera heads, providing accurate attitude determination for the FGM sensors. We present an overview of the magnetometer observations obtained during Juno's first year in orbit in context with prior observations and those acquired by Juno's other science instruments.

  9. Radio Emission from Red-Giant Hot Jupiters

    Science.gov (United States)

    Fujii, Yuka; Spiegel, David S.; Mroczkowski, Tony; Nordhaus, Jason; Zimmerman, Neil T.; Parsons, Aaron R.; Mirbabayi, Mehrdad; Madhusudhan, Nikku

    2016-01-01

    When planet-hosting stars evolve off the main sequence and go through the red-giant branch, the stars become orders of magnitudes more luminous and, at the same time, lose mass at much higher rates than their main sequence counterparts. Accordingly, if planetary companions exist around these stars at orbital distances of a few au, they will be heated up to the level of canonical hot Jupiters and also be subjected to a dense stellar wind. Given that magnetized planets interacting with stellar winds emit radio waves, such "Red-Giant Hot Jupiters" (RGHJs) may also be candidate radio emitters. We estimate the spectral auroral radio intensity of RGHJs based on the empirical relation with the stellar wind as well as a proposed scaling for planetary magnetic fields. RGHJs might be intrinsically as bright as or brighter than canonical hot Jupiters and about 100 times brighter than equivalent objects around main-sequence stars. We examine the capabilities of low-frequency radio observatories to detect this emission and find that the signal from an RGHJ may be detectable at distances up to a few hundred parsecs with the Square Kilometer Array.

  10. ATMOSPHERIC CIRCULATION OF HOT JUPITERS: INSENSITIVITY TO INITIAL CONDITIONS

    International Nuclear Information System (INIS)

    Liu Beibei; Showman, Adam P.

    2013-01-01

    The ongoing characterization of hot Jupiters has motivated a variety of circulation models of their atmospheres. Such models must be integrated starting from an assumed initial state, which is typically taken to be a wind-free, rest state. Here, we investigate the sensitivity of hot-Jupiter atmospheric circulation to initial conditions with shallow-water models and full three-dimensional models. Those models are initialized with zonal jets, and we explore a variety of different initial jet profiles. We demonstrate that, in both classes of models, the final, equilibrated state is independent of initial condition—as long as frictional drag near the bottom of the domain and/or interaction with a specified planetary interior are included so that the atmosphere can adjust angular momentum over time relative to the interior. When such mechanisms are included, otherwise identical models initialized with vastly different initial conditions all converge to the same statistical steady state. In some cases, the models exhibit modest time variability; this variability results in random fluctuations about the statistical steady state, but we emphasize that, even in these cases, the statistical steady state itself does not depend on initial conditions. Although the outcome of hot-Jupiter circulation models depend on details of the radiative forcing and frictional drag, aspects of which remain uncertain, we conclude that the specification of initial conditions is not a source of uncertainty, at least over the parameter range explored in most current models.

  11. Architectural and chemical insights into the origin of hot Jupiters

    Science.gov (United States)

    Schlaufman, Kevin C.

    2015-10-01

    The origin of Jupiter-mass planets with orbital periods of only a few days is still uncertain. This problem has been with us for 20 years, long enough for significant progress to have been made, and also for a great deal of ``lore" to have accumulated about the properties of these planets. Among this lore is the widespread belief that hot Jupiters are less likely to be in multiple giant planet systems than longer-period giant planets. I will show that in this case the lore is not supported by the best data available today: hot Jupiters are not lonely. I will also show that stellar sodium abundance is inversely proportional to the probability that a star hosts a short-period giant planet. This observation is best explained by the effect of decreasing sodium abundance on protoplanetary disk structure and reveals that planetesimal-disk or planet-disk interactions are critical for the existence of short-period giant planets.

  12. Laser safety tools and training

    CERN Document Server

    Barat, Ken

    2008-01-01

    Lasers perform many unique functions in a plethora of applications, but there are many inherent risks with this continually burgeoning technology. Laser Safety: Tools and Training presents simple, effective ways for users in a variety of facilities to evaluate the hazards of any laser procedure and ensure they are following documented laser safety standards.Designed for use as either a stand-alone volume or a supplement to Laser Safety Management, this text includes fundamental laser and laser safety information and critical laser use information rarely found in a single source. The first lase

  13. Physical conditions for Jupiter-like dynamo models

    Science.gov (United States)

    Duarte, Lúcia D. V.; Wicht, Johannes; Gastine, Thomas

    2018-01-01

    The Juno mission will measure Jupiter's magnetic field with unprecedented precision and provide a wealth of additional data that will allow us to constrain the planet's interior structure and dynamics. Here we analyse 66 different numerical simulations in order to explore the sensitivity of the dynamo-generated magnetic field to the planets interior properties. Jupiter field models based on pre-Juno data and up-to-date interior models based on ab initio simulations serve as benchmarks. Our results suggest that Jupiter-like magnetic fields can be found for a number of different models. These complement the steep density gradients in the outer part of the simulated shell with an electrical conductivity profile that mimics the low conductivity in the molecular hydrogen layer and thus renders the dynamo action in this region largely unimportant. We find that whether we assume an ideal gas or use the more realistic interior model based on ab initio simulations makes no difference. However, two other factors are important. A low Rayleigh number leads to a too strong axial dipole contribution while the axial dipole dominance is lost altogether when the convective driving is too strong. The required intermediate range that yields Jupiter-like magnetic fields depends on the other system properties. The second important factor is the convective magnetic Reynolds number radial profile Rmc(r), basically a product of the non-axisymmetric flow velocity and electrical conductivity. We find that the depth where Rmc exceeds about 50 is a good proxy for the top of the dynamo region. When the dynamo region sits too deep, the axial dipole is once more too dominant due to geometric reasons. Extrapolating our results to Jupiter and the result suggests that the Jovian dynamo extends to 95% of the planetary radius. The zonal flow system in our simulations is dominated by an equatorial jet which remains largely confined to the molecular layer. Where the jet reaches down to higher

  14. GO JUPITER PWS EDITED EDR 10KHZ WAVEFORM RECEIVER V1.0

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set includes wideband waveform measurements from the Galileo plasma wave receiver obtained during Jupiter orbital operations. These data were obtained...

  15. GO JUPITER PWS EDITED EDR 1KHZ WAVEFORM RECEIVER V1.0

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set includes wideband waveform measurements from the Galileo plasma wave receiver obtained during Jupiter orbital operations. These data were obtained...

  16. Simulation study of 3–5 keV x-ray conversion efficiency from Ar K-shell vs. Ag L-shell targets on the National Ignition Facility laser

    Energy Technology Data Exchange (ETDEWEB)

    Kemp, G. E., E-mail: kemp10@llnl.gov; Colvin, J. D.; Fournier, K. B.; May, M. J.; Barrios, M. A.; Patel, M. V.; Scott, H. A.; Marinak, M. M. [Lawrence Livermore National Laboratory, Livermore, California 94550-9698 (United States)

    2015-05-15

    Tailored, high-flux, multi-keV x-ray sources are desirable for studying x-ray interactions with matter for various civilian, space and military applications. For this study, we focus on designing an efficient laser-driven non-local thermodynamic equilibrium 3–5 keV x-ray source from photon-energy-matched Ar K-shell and Ag L-shell targets at sub-critical densities (∼n{sub c}/10) to ensure supersonic, volumetric laser heating with minimal losses to kinetic energy, thermal x rays and laser-plasma instabilities. Using HYDRA, a multi-dimensional, arbitrary Lagrangian-Eulerian, radiation-hydrodynamics code, we performed a parameter study by varying initial target density and laser parameters for each material using conditions readily achievable on the National Ignition Facility (NIF) laser. We employ a model, benchmarked against Kr data collected on the NIF, that uses flux-limited Lee-More thermal conductivity and multi-group implicit Monte-Carlo photonics with non-local thermodynamic equilibrium, detailed super-configuration accounting opacities from CRETIN, an atomic-kinetics code. While the highest power laser configurations produced the largest x-ray yields, we report that the peak simulated laser to 3–5 keV x-ray conversion efficiencies of 17.7% and 36.4% for Ar and Ag, respectively, occurred at lower powers between ∼100–150 TW. For identical initial target densities and laser illumination, the Ag L-shell is observed to have ≳10× higher emissivity per ion per deposited laser energy than the Ar K-shell. Although such low-density Ag targets have not yet been demonstrated, simulations of targets fabricated using atomic layer deposition of Ag on silica aerogels (∼20% by atomic fraction) suggest similar performance to atomically pure metal foams and that either fabrication technique may be worth pursuing for an efficient 3–5 keV x-ray source on NIF.

  17. Ultra-Short-Pulse Laser Effects Research and Analysis Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Enables research into advanced laser countermeasure techniques.DESCRIPTION: This laser facility has a capability to produce very high peak power levels of...

  18. Crystal and source characterization for the Crystal Backlighter Imager capability at the National Ignition Facility

    Science.gov (United States)

    Krauland, C. M.; Hall, G. N.; Buscho, J. G.; Hibbard, R.; McCarville, T. J.; Lowe-Webb, R.; Ayers, S. L.; Kalantar, D.; Kohut, T.; Kemp, G. E.; Bradley, D. K.; Bell, P.; Landen, O. L.; Brewster, T. N.; Piston, K.

    2017-10-01

    The Crystal Backlighter Imager (CBI) is a very narrow bandwidth ( 10 eV) x-ray radiography system that uses Bragg reflection from a spherically-curved crystal at near normal incidence. This diagnostic has the capability to image late in an ICF implosion because it only requires the brightness of the backlighter to be larger than the capsule self-emission in that narrow bandwidth. While the limited bandwidth is advantageous for this reason, it also requires that the effective energy of the backlighter atomic line is known to 1 eV accuracy for proper crystal alignment. Any Doppler shift in the line energy must be understood for the imaging system to work. The work presented details characterization experiments done at the Jupiter Laser Facility with a Si (8 6 2) crystal that will be used with a Selenium backlighter in the NIF CBI diagnostic. We used the spherically-bent crystals to image a small ( 200 µm) He α source generated by the Janus laser on a Se foil. Scanning Bragg angles over multiple shots allowed us to map out the spectral line intensity distribution for optimal alignment in NIF. A subsequent Doppler shift measurement using CBI on NIF will also be presented with complementary HYDRA modeling for both experiments. Prepared by LLNL under Contract DE-AC52-07NA27344 and by General Atomics under Contract DE-NA0001808.

  19. Comparison between SRAM SEE cross-sections from ion beam testing with those obtained using a new picosecond pulsed laser facility

    International Nuclear Information System (INIS)

    Jones, R.; Chugg, A.M.; Jones, C.M.S.; Duncan, P.H.; Dyer, C.S.; Sanderson, C.

    1999-01-01

    A laser system has been designed to be capable of delivering large numbers of pulses across a micro-chip die under computer control, so as rapidly to generate upset and latch-up cross-section curves, in order to provide an efficient screening tool for SEE (single event effect) susceptibility. The system has been automated to make screening of parts for use in an SEE environment fast, efficient and inexpensive. A comparison between ion beam test results and laser test results has been used to develop initial calibrations between laser energy and LET (linear energy transfer)

  20. Jupiter Trojan's Shallow Subsurface: Direct Observation By Radar Sounding

    Science.gov (United States)

    Herique, A.; Plettemeier, D.; Beck, P.; Michel, P.; Kumamoto, A.; Kofman, W. W.

    2017-12-01

    Most of the Jupiter's Trojan are classified as spectral type P or D from visible and near-IR observations. Still, major question remain regarding theire origin and geological evolution: What ices are present in their interior, and in what amount? What is the abundance and the nature of the organic fraction? Did they experience some level of differentiation powered by 26Al? Answering theses question is the goal of the Solar-Power Sail JAXA mission [1, 2]. This mission plans to study the surface by remote sensing in the optical in IR domain. This probe will carry a large-sized lander with a drill to sample the constitutive material at meter depth in order to complement physical and chemical properties measured by on-board instruments. The sample return is an option under study.Radar sounding of the shallow subsurface would be envisaged in complement to this payload. Sounding radar could provide the structure of the first tens of meters of the Trojan surface. It will allow identifying layering, ice lens, and embedded block. It also will enable to reconnect the surface with the deep interior in order to identify exogenous / pristine material. For the surface package, the drilling and the sample return, radar sounding is a unique opportunity to support the selection of the landing site and to provide the greater geological context of the samples that will be returned to Earth.In this paper, we will detail the objective of this instrument and then we will outline the proposed instrument, which is inheriting from the radar developed for the AIDA/AIM mission.[1] Mori, O. et al., Science experiments on a Jupiter Trojan Asteroid in the solar powerd sail mission. LPSC 2016 - 1822.[2] Okada, T. et al., Science and Exploration of a Jupiter Trojan Asteroid in the solar-power sail mission. LPSC 2017 - 1828.

  1. New Measurements Of Jupiter's Equatorial Region In Visible Wavelengths

    Science.gov (United States)

    Rojas, Jose; Arregi, J.; García-Melendo, E.; Barrado-Izagirre, N.; Hueso, R.; Gómez-Forrellad, J. M.; Pérez-Hoyos, S.; Sanz-Requena, J. F.; Sánchez-Lavega, A.

    2010-10-01

    We have studied the equatorial region of Jupiter, between 15ºS and 15ºN, on Cassini ISS images obtained during the Jupiter flyby at the end of 2000 and on HST images acquired in May and July 2008. We have found significant longitudinal variations in the intensity of the 6ºN eastward jet, up to 60 m s-1 in Cassini and HST observations. In the HST case we found that these longitudinal variations are associated to different cloud morphology. Photometric and radiative transfer analysis of the cloud features used as tracers in HST images shows that there is only a small height difference, no larger than 0.5 - 1 scale heights at most, between the slow ( 100 m s-1) and fast ( 150 m s-1) moving features. This suggests that speed variability at 6ºN is not dominated by vertical wind shears and we propose that Rossby wave activity is the responsible for the zonal variability. After removing this variability we found that Jupiter's equatorial jet is actually symmetric relative to the equator with two peaks of 140 - 150 m s-1 located at latitudes 6ºN and 6ºS and at a similar pressure level. We also studied a large, long-lived feature called the White Spot (WS) located at 6ºS that turns to form and desapear. The internal flow field in the White Spot indicates that it is a weakly rotating quasi-equatorial anticyclone relative to the ambient meridionally sheared flow. Acknowledgements: This work was supported by the Spanish MICIIN AYA2009-10701 with FEDER and Grupos Gobierno Vasco IT-464-07.

  2. DOPPLER SIGNATURES OF THE ATMOSPHERIC CIRCULATION ON HOT JUPITERS

    International Nuclear Information System (INIS)

    Showman, Adam P.; Lewis, Nikole K.; Fortney, Jonathan J.; Shabram, Megan

    2013-01-01

    The meteorology of hot Jupiters has been characterized primarily with thermal measurements, but recent observations suggest the possibility of directly detecting the winds by observing the Doppler shift of spectral lines seen during transit. Motivated by these observations, we show how Doppler measurements can place powerful constraints on the meteorology. We show that the atmospheric circulation—and Doppler signature—of hot Jupiters splits into two regimes. Under weak stellar insolation, the day-night thermal forcing generates fast zonal jet streams from the interaction of atmospheric waves with the mean flow. In this regime, air along the terminator (as seen during transit) flows toward Earth in some regions and away from Earth in others, leading to a Doppler signature exhibiting superposed blueshifted and redshifted components. Under intense stellar insolation, however, the strong thermal forcing damps these planetary-scale waves, inhibiting their ability to generate jets. Strong frictional drag likewise damps these waves and inhibits jet formation. As a result, this second regime exhibits a circulation dominated by high-altitude, day-to-night airflow, leading to a predominantly blueshifted Doppler signature during transit. We present state-of-the-art circulation models including non-gray radiative transfer to quantify this regime shift and the resulting Doppler signatures; these models suggest that cool planets like GJ 436b lie in the first regime, HD 189733b is transitional, while planets hotter than HD 209458b lie in the second regime. Moreover, we show how the amplitude of the Doppler shifts constrains the strength of frictional drag in the upper atmospheres of hot Jupiters. If due to winds, the ∼2 km s –1 blueshift inferred on HD 209458b may require drag time constants as short as 10 4 -10 6 s, possibly the result of Lorentz-force braking on this planet's hot dayside.

  3. Prevalent lightning sferics at 600 megahertz near Jupiter's poles

    Science.gov (United States)

    Brown, Shannon; Janssen, Michael; Adumitroaie, Virgil; Atreya, Sushil; Bolton, Scott; Gulkis, Samuel; Ingersoll, Andrew; Levin, Steven; Li, Cheng; Li, Liming; Lunine, Jonathan; Misra, Sidharth; Orton, Glenn; Steffes, Paul; Tabataba-Vakili, Fachreddin; Kolmašová, Ivana; Imai, Masafumi; Santolík, Ondřej; Kurth, William; Hospodarsky, George; Gurnett, Donald; Connerney, John

    2018-06-01

    Lightning has been detected on Jupiter by all visiting spacecraft through night-side optical imaging and whistler (lightning-generated radio waves) signatures1-6. Jovian lightning is thought to be generated in the mixed-phase (liquid-ice) region of convective water clouds through a charge-separation process between condensed liquid water and water-ice particles, similar to that of terrestrial (cloud-to-cloud) lightning7-9. Unlike terrestrial lightning, which emits broadly over the radio spectrum up to gigahertz frequencies10,11, lightning on Jupiter has been detected only at kilohertz frequencies, despite a search for signals in the megahertz range12. Strong ionospheric attenuation or a lightning discharge much slower than that on Earth have been suggested as possible explanations for this discrepancy13,14. Here we report observations of Jovian lightning sferics (broadband electromagnetic impulses) at 600 megahertz from the Microwave Radiometer15 onboard the Juno spacecraft. These detections imply that Jovian lightning discharges are not distinct from terrestrial lightning, as previously thought. In the first eight orbits of Juno, we detected 377 lightning sferics from pole to pole. We found lightning to be prevalent in the polar regions, absent near the equator, and most frequent in the northern hemisphere, at latitudes higher than 40 degrees north. Because the distribution of lightning is a proxy for moist convective activity, which is thought to be an important source of outward energy transport from the interior of the planet16,17, increased convection towards the poles could indicate an outward internal heat flux that is preferentially weighted towards the poles9,16,18. The distribution of moist convection is important for understanding the composition, general circulation and energy transport on Jupiter.

  4. Tidal formation of Hot Jupiters in binary star systems

    Science.gov (United States)

    Bataille, M.; Libert, A.-S.; Correia, A. C. M.

    2015-10-01

    More than 150 Hot Jupiters with orbital periods less than 10 days have been detected. Their in-situ formation is physically unlikely. We need therefore to understand the migration of these planets from high distance (several AUs). Three main models are currently extensively studied: disk-planet interactions (e.g. [3]), planet-planet scattering (e.g. [4]) and Kozai migration (e.g. [2]). Here we focus on this last mechanism, and aim to understand which dynamical effects are the most active in the accumulation of planetary companions with low orbital periods in binary star systems. To do so, we investigate the secular evolution of Hot Jupiters in binary star systems. Our goal is to study analytically the 3-day pile-up observed in their orbital period. Our framework is the hierarchical three-body problem, with the effects of tides, stellar oblateness, and general relativity. Both the orbital evolution and the spin evolution are considered. Using the averaged equations of motion in a vectorial formalism of [1], we have performed # 100000 numerical simulations of well diversified three-body systems, reproducing and generalizing the numerical results of [2]. Based on a thorough analysis of the initial and final configurations of the systems, we have identified different categories of secular evolutions present in the simulations, and proposed for each one a simplified set of equations reproducing the evolution. Statistics about spin-orbit misalignements and mutual inclinations between the orbital planes of the Hot Jupiter and the star companion are also provided. Finally, we show that the extent of the 3 day pile-up is very dependent on the initial parameters of the simulations.

  5. Observation of L-bursts of Jupiter decameter waves

    International Nuclear Information System (INIS)

    Imai, Kazumasa; Tomisawa, Ichiro

    1978-01-01

    The Jupiter decameter waves are the only information source which can be obtained on the earth for the investigation of dynamics concerning the generation of plasma waves in the magnetosphere of Jupiter. The emission of Jupiter decameter waves is modulated by the satellite Io considerably. It is observed that the emission of decameter waves fluctuated much in course of time. The duration time of bursts is 1 to 10 sec and 1 to 50 msec for L-bursts and S-bursts, respectively. The simultaneous observations were conducted at two locations from August, 1977, and at three locations from December, 1977, for searching the source of L-bursts. The relation between the appearance frequency of L-bursts and S-bursts and Io phase and system 3 longitude is explained. The observation points were Sugadaira, Chofu and Toyokawa, The minimum detectable flux density by the wave receiving network is 10 -21 W/m 2 .Hz. Concerning the observed results, the locations of observed events on the Io phase and the system 3 longitude are shown. The analytical results on the L-bursts of the main source and the early source are explained, taking ten events. The analysed dynamic cross-correlation and the spectrum analysis of the decameter intensity are shown. The relation between the origin and the emission mechanism was investigated, considering the observed data and the evaluation mentioned above for the main source and early source, and the clue was obtained to solve the riddle of emission mechanism. (Nakai, Y.)

  6. Solar wind control of stratospheric temperatures in Jupiter's auroral regions?

    Science.gov (United States)

    Sinclair, James Andrew; Orton, Glenn; Kasaba, Yasumasa; Sato, Takao M.; Tao, Chihiro; Waite, J. Hunter; Cravens, Thomas; Houston, Stephen; Fletcher, Leigh; Irwin, Patrick; Greathouse, Thomas K.

    2017-10-01

    Auroral emissions are the process through which the interaction of a planet’s atmosphere and its external magnetosphere can be studied. Jupiter exhibits auroral emission at a multitude of wavelengths including the X-ray, ultraviolet and near-infrared. Enhanced emission of CH4 and other stratospheric hydrocarbons is also observed coincident with Jupiter’s shorter-wavelength auroral emission (e.g. Caldwell et al., 1980, Icarus 44, 667-675, Kostiuk et al., 1993, JGR 98, 18823). This indicates that auroral processes modify the thermal structure and composition of the auroral stratosphere. The exact mechanism responsible for this auroral-related heating of the stratosphere has however remained elusive (Sinclair et al., 2017a, Icarus 292, 182-207, Sinclair et al., 2017b, GRL, 44, 5345-5354). We will present an analysis of 7.8-μm images of Jupiter measured by COMICS (Cooled Mid-Infrared Camera and Spectrograph, Kataza et al., 2000, Proc. SPIE(4008), 1144-1152) on the Subaru telescope. These images were acquired on January 11th, 12th, 13th, 14th, February 4, 5th and May 17th, 18th, 19th and 20th in 2017, allowing the daily variability of Jupiter’s auroral-related stratospheric heating to be tracked. Preliminary results suggest lower stratospheric temperatures are directly forced by the solar wind dynamical pressure. The southern auroral hotspot exhibited a significant increase in brightness temperature over a 24-hour period. Over the same time period, a solar wind propagation model (Tao et al. 2005, JGR 110, A11208) predicts a strong increase in the solar wind dynamical pressure at Jupiter.

  7. JUPITER-3実験解析(4)

    OpenAIRE

    三田 敏男

    1990-01-01

    本報告書は、技術開発部プラント工学室で組識しているJUPITERサブワーキングGrの平成元年度の成果をまとめたものである。JUPITERサブワーキングGrは、動燃事業団が米国エネルギー省(DOE)との共同研究としてアルゴンヌ国立研究所(ANL-W)の大型臨界実験装置ZPPRで実施した大型高速炉臨界実験(JUPITER-III)の計画、実験解析を行うためのワーキンググループである。JUPITER-IIIは電気出力65万kW級の軸方向非均質炉心模擬実験(ZPPR-17シリーズ)と100万kW級の均質炉心模擬実験(ZPPR-18シリーズ)からなる。JUPITER-III実験解析は本年度で終了し、その成果を過去のJUPITER-I,II(電気出力60万sim80万kW級の均質、径方向非均質炉心模擬実験)の解析結果と比較してJUPITER実験解析を総合評価した。本年度の主な成果は下記の通りである。(1) JUPITER実験解析法をセル計算を中心に検討して現状の最新解析法をまとめると共に、これらに基づく炉心設計法を設定した。...

  8. Lyapunov Orbits in the Jupiter System Using Electrodynamic Tethers

    Science.gov (United States)

    Bokelmann, Kevin; Russell, Ryan P.; Lantoine, Gregory

    2013-01-01

    Various researchers have proposed the use of electrodynamic tethers for power generation and capture from interplanetary transfers. The effect of tether forces on periodic orbits in Jupiter-satellite systems are investigated. A perturbation force is added to the restricted three-body problem model and a series of simplifications allows development of a conservative system that retains the Jacobi integral. Expressions are developed to find modified locations of equilibrium positions. Modified families of Lyapunov orbits are generated as functions of tether size and Jacobi integral. Zero velocity curves and stability analyses are used to evaluate the dynamical properties of tether-modified orbits.

  9. JESTR: Jupiter Exploration Science in the Time Regime

    Science.gov (United States)

    Noll, Keith S.; Simon-Miller, A. A.; Wong, M. H.; Choi, D. S.

    2012-01-01

    Solar system objects are inherently time-varying with changes that occur on timescales ranging from seconds to years. For all planets other than the Earth, temporal coverage of atmospheric phenomena is limited and sparse. Many important atmospheric phenomena, especially those related to atmospheric dynamics, can be studied in only very limited ways with current data. JESTR is a mission concept that would remedy this gap in our exploration of the solar system by ncar-continuous imaging and spectral monitoring of Jupiter over a multi-year mission lifetime.

  10. Photochemistry, mixing and transport in Jupiter's stratosphere constrained by Cassini

    Science.gov (United States)

    Hue, V.; Hersant, F.; Cavalié, T.; Dobrijevic, M.; Sinclair, J. A.

    2018-06-01

    In this work, we aim at constraining the diffusive and advective transport processes in Jupiter's stratosphere, using Cassini/CIRS observations published by Nixon et al. (2007,2010). The Cassini-Huygens flyby of Jupiter on December 2000 provided the highest spatially resolved IR observations of Jupiter so far, with the CIRS instrument. The IR spectrum contains the fingerprints of several atmospheric constituents and allows probing the tropospheric and stratospheric composition. In particular, the abundances of C2H2 and C2H6, the main compounds produced by methane photochemistry, can be retrieved as a function of latitude in the pressure range at which CIRS is sensitive to. CIRS observations suggest a very different meridional distribution for these two species. This is difficult to reconcile with their photochemical histories, which are thought to be tightly coupled to the methane photolysis. While the overall abundance of C2H2 decreases with latitude, C2H6 becomes more abundant at high latitudes. In this work, a new 2D (latitude-altitude) seasonal photochemical model of Jupiter is developed. The model is used to investigate whether the addition of stratospheric transport processes, such as meridional diffusion and advection, are able to explain the latitudinal behavior of C2H2 and C2H6. We find that the C2H2 observations are fairly well reproduced without meridional diffusion. Adding meridional diffusion to the model provides an improved agreement with the C2H6 observations by flattening its meridional distribution, at the cost of a degradation of the fit to the C2H2 distribution. However, meridional diffusion alone cannot produce the observed increase with latitude of the C2H6 abundance. When adding 2D advective transport between roughly 30 mbar and 0.01 mbar, with upwelling winds at the equator and downwelling winds at high latitudes, we can, for the first time, reproduce the C2H6 abundance increase with latitude. In parallel, the fit to the C2H2 distribution is

  11. Clinical implications of JUPITER in a contemporary European population: the EPIC-Norfolk prospective population study

    NARCIS (Netherlands)

    Sondermeijer, Brigitte M.; Boekholdt, S. Matthijs; Rana, Jamal S.; Kastelein, John J. P.; Wareham, Nicholas J.; Khaw, Kay-Tee

    2013-01-01

    Justification for the Use of statins in Prevention: an Intervention Trial Evaluating Rosuvastatin (JUPITER) has raised several points of debate. We quantified the proportion of individuals meeting the JUPITER criteria, determined their risk profile, and their risk of coronary heart disease (CHD)

  12. Jupiter Icy Moons Explorer (JUICE) : Science Objectives, Mission and Instruments (abstract)

    NARCIS (Netherlands)

    Gurvits, L.; Plaut, J.J.; Barabash, S.; Bruzzone, L.; Dougherty, M.; Erd, C.; Fletcher, L.; Gladstone, R.; Grasset, O.; Hartogh, P.; Hussmann, H.; Iess, L.; Jaumann, R.; Langevin, Y.; Palumbo, P.; Piccioni, G.; Titov, D.; Wahlund, J.E.

    2014-01-01

    The JUpiter ICy Moons Explorer (JUICE) is a European Space Agency mission that will fly by and observe the Galilean satellites Europa, Ganymede and Callisto, characterize the Jovian system in a lengthy Jupiter-orbit phase, and ultimately orbit Ganymede for in-depth studies of habitability, evolution

  13. Periodic Comet Shoemaker-Levy 9 Collides with Jupiter. Background Material for Science Teachers.

    Science.gov (United States)

    Jet Propulsion Lab., Pasadena, CA.

    In July of 1994, fragments of Comet Shoemaker-Levy collided with Jupiter. This document has been provided to better inform students of the work that will be done by scientists and others involved in the study of this event. This document offers some background material on Jupiter, comets, what has and possibly will happen, and how scientists…

  14. 78 FR 32696 - Jupiter Enterprises, Inc., Order of Suspension of Trading

    Science.gov (United States)

    2013-05-31

    ... SECURITIES AND EXCHANGE COMMISSION [File No. 500-1] Jupiter Enterprises, Inc., Order of Suspension of Trading May 29, 2013. It appears to the Securities and Exchange Commission that there is a lack of current and accurate information concerning the securities of Jupiter Enterprises, Inc. because it has not...

  15. Forming Hot Jupiters: Observational Constraints on Gas Giant Formation and migration

    Science.gov (United States)

    Becker, Juliette; Vanderburg, Andrew; Adams, Fred C.; Khain, Tali; Bryan, Marta

    2018-04-01

    Since the first extrasolar planets were detected, the existence of hot Jupiters has challenged prevailing theories of planet formation. The three commonly considered pathways for hot Jupiter formation are in situ formation, runaway accretion in the outer disk followed by disk migration, and tidal migration (occurring after the disk has dissipated). None of these explains the entire observed sample of hot Jupiters, suggesting that different selections of systems form via different pathways. The way forward is to use observational data to constrain the migration pathways of particular classes of systems, and subsequently assemble these results into a coherent picture of hot Jupiter formation. We present constraints on the migratory pathway for one particular type of system: hot Jupiters orbiting cool stars (T< 6200 K). Using the full observational sample, we find that the orbits of most wide planetary companions to hot Jupiters around these cool stars must be well aligned with the orbits of the hot Jupiters and the spins of the host stars. The population of systems containing both a hot Jupiter and an exterior companion around a cool star thus generally exist in roughly coplanar configurations, consistent with the idea that disk-driven migratory mechanisms have assembled most of this class of systems. We then discuss the overall applicability of this result to a wider range of systems and the broader implications on planet formation.

  16. Secular chaos and its application to Mercury, hot Jupiters, and the organization of planetary systems.

    Science.gov (United States)

    Lithwick, Yoram; Wu, Yanqin

    2014-09-02

    In the inner solar system, the planets' orbits evolve chaotically, driven primarily by secular chaos. Mercury has a particularly chaotic orbit and is in danger of being lost within a few billion years. Just as secular chaos is reorganizing the solar system today, so it has likely helped organize it in the past. We suggest that extrasolar planetary systems are also organized to a large extent by secular chaos. A hot Jupiter could be the end state of a secularly chaotic planetary system reminiscent of the solar system. However, in the case of the hot Jupiter, the innermost planet was Jupiter (rather than Mercury) sized, and its chaotic evolution was terminated when it was tidally captured by its star. In this contribution, we review our recent work elucidating the physics of secular chaos and applying it to Mercury and to hot Jupiters. We also present results comparing the inclinations of hot Jupiters thus produced with observations.

  17. Secular chaos and its application to Mercury, hot Jupiters, and the organization of planetary systems

    Science.gov (United States)

    Lithwick, Yoram; Wu, Yanqin

    2014-01-01

    In the inner solar system, the planets’ orbits evolve chaotically, driven primarily by secular chaos. Mercury has a particularly chaotic orbit and is in danger of being lost within a few billion years. Just as secular chaos is reorganizing the solar system today, so it has likely helped organize it in the past. We suggest that extrasolar planetary systems are also organized to a large extent by secular chaos. A hot Jupiter could be the end state of a secularly chaotic planetary system reminiscent of the solar system. However, in the case of the hot Jupiter, the innermost planet was Jupiter (rather than Mercury) sized, and its chaotic evolution was terminated when it was tidally captured by its star. In this contribution, we review our recent work elucidating the physics of secular chaos and applying it to Mercury and to hot Jupiters. We also present results comparing the inclinations of hot Jupiters thus produced with observations. PMID:24367108

  18. Shiva laser system performance

    International Nuclear Information System (INIS)

    Glaze, J.; Godwin, R.O.; Holzrichter, J.F.

    1978-01-01

    On November 18, 1977, after four years of experimentation, innovation, and construction, the Shiva High Energy Laser facility produced 10.2 kJ of focusable laser energy delivered in a 0.95 ns pulse. The Shiva laser, with its computer control system and delta amplifiers, demonstrated its versatility on May 18, 1978, when the first 20-beam target shot with delta amplifiers focused 26 TW on a target and produced a yield of 7.5 x 10 9 neutrons

  19. Ulysses radio and plasma wave observations in the jupiter environment.

    Science.gov (United States)

    Stone, R G; Pedersen, B M; Harvey, C C; Canu, P; Cornilleau-Wehrlin, N; Desch, M D; de Villedary, C; Fainberg, J; Farrell, W M; Goetz, K; Hess, R A; Hoang, S; Kaiser, M L; Kellogg, P J; Lecacheux, A; Lin, N; Macdowall, R J; Manning, R; Meetre, C A; Meyer-Vernet, N; Moncuquet, M; Osherovich, V; Reiner, M J; Tekle, A; Thiessen, J; Zarka, P

    1992-09-11

    The Unified Radio and Plasma Wave (URAP) experiment has produced new observations of the Jupiter environment, owing to the unique capabilities of the instrument and the traversal of high Jovian latitudes. Broad-band continuum radio emission from Jupiter and in situ plasma waves have proved valuable in delineating the magnetospheric boundaries. Simultaneous measurements of electric and magnetic wave fields have yielded new evidence of whistler-mode radiation within the magnetosphere. Observations of aurorallike hiss provided evidence of a Jovian cusp. The source direction and polarization capabilities of URAP have demonstrated that the outer region of the lo plasma torus supported at least five separate radio sources that reoccurred during successive rotations with a measurable corotation lag. Thermal noise measurements of the lo torus densities yielded values in the densest portion that are similar to models suggested on the basis of Voyager observations of 13 years ago. The URAP measurements also suggest complex beaming and polarization characteristics of Jovian radio components. In addition, a new class of kilometer-wavelength striated Jovian bursts has been observed.

  20. Magnetotail Reconnection and Flux Circulation: Jupiter and Saturn Compared

    Science.gov (United States)

    Jackman, C. M.; Vogt, M. F.; Slavin, J. A.; Cowley, S. W. H.; Boardsen, S. A.

    2011-01-01

    The Jovian magnetosphere has been visited by eight spacecraft, and the magnetometer data have been used to identify dozens of plasmoids and 250 field dipolarizations associated with magnetic reconnection in the tail [e.g. Vogt et al., 2010]. Since the arrival of the Cassini spacecraft at Saturn in 2004, the magnetometer instrument has also been used to identify reconnection signatures. The deepest magnetotail orbits were in 2006, and during this time 34 signatures of plasmoids were identified. In this study we compare the statistical properties of plasmoids at Jupiter and Saturn such as duration, size, location, and recurrence period. Such parameters can be influenced by many factors, including the different Dungey cycle timescales and cross-magnetospheric potential drops at the two planets. We present superposed epoch analyses of plasmoids at the two planets to determine their average properties and to infer their role in the reconfiguration of the nightside of the magnetosphere. We examine the contributions of plasmoids to the magnetic flux transfer cycle at both planets. At Jupiter, there is evidence of an extended interval after reconnection where the field remains northward (analogous to the terrestrial post-plasmoid plasma sheet). At Saturn we see a similar feature, and calculate the amount of flux closed on average in reconnection events, leading us to an estimation of the recurrence rate of plasmoid release.

  1. A retrograde co-orbital asteroid of Jupiter.

    Science.gov (United States)

    Wiegert, Paul; Connors, Martin; Veillet, Christian

    2017-03-29

    Recent theoretical work in celestial mechanics has revealed that an asteroid may orbit stably in the same region as a planet, despite revolving around the Sun in the sense opposite to that of the planet itself. Asteroid 2015 BZ 509 was discovered in 2015, but with too much uncertainty in its measured orbit to establish whether it was such a retrograde co-orbital body. Here we report observations and analysis that demonstrates that asteroid 2015 BZ 509 is indeed a retrograde co-orbital asteroid of the planet Jupiter. We find that 2015 BZ 509 has long-term stability, having been in its current, resonant state for around a million years. This is long enough to preclude precise calculation of the time or mechanism of its injection to its present state, but it may be a Halley-family comet that entered the resonance through an interaction with Saturn. Retrograde co-orbital asteroids of Jupiter and other planets may be more common than previously expected.

  2. Modeling of Jupiter's electron an ion radiation belts

    International Nuclear Information System (INIS)

    Sicard, Angelica

    2004-01-01

    In the Fifties, James Van Allen showed the existence of regions of the terrestrial magnetosphere consisted of energetic particles, trapped by the magnetic field: the radiation belts. The radiation belts of the Earth were the subject of many modeling works and are studied since several years at the Departement Environnement Spatial (DESP) of ONERA. In 1998, the DESP decided to adapt the radiation belts model of the Earth, Salammbo, to radiation environment of Jupiter. A first thesis was thus carried out on the subject and a first radiation belts model of electrons of Jupiter was developed [Santos-Costa, 2001]. The aim of this second thesis is to develop a radiation belts model for protons and heavy ions. In order to validate the developed model, the comparisons between Salammbo results and observations are essential. However, the validation is difficult in the case of protons and heavy ions because in-situ measurements of the probes are very few and most of the time contaminated by very energetic electrons. To solve this problem, a very good model of electrons radiation belts is essential to confirm or cancel the contamination of protons and heavy ions measurements. Thus, in parallel to the development of the protons and heavy ions radiation belts model, the electrons models, already existing, has been improved. Then Salammbo results have been compared to the different observations available (in-situ measurements, radio-astronomical observations). The different comparisons show a very good agreement between Salammbo results and observations. (author) [fr

  3. RADIO EMISSION FROM RED-GIANT HOT JUPITERS

    International Nuclear Information System (INIS)

    Fujii, Yuka; Spiegel, David S.; Mroczkowski, Tony; Nordhaus, Jason; Zimmerman, Neil T.; Parsons, Aaron R.; Mirbabayi, Mehrdad; Madhusudhan, Nikku

    2016-01-01

    When planet-hosting stars evolve off the main sequence and go through the red-giant branch, the stars become orders of magnitudes more luminous and, at the same time, lose mass at much higher rates than their main-sequence counterparts. Accordingly, if planetary companions exist around these stars at orbital distances of a few au, they will be heated up to the level of canonical hot Jupiters and also be subjected to a dense stellar wind. Given that magnetized planets interacting with stellar winds emit radio waves, such “Red-Giant Hot Jupiters” (RGHJs) may also be candidate radio emitters. We estimate the spectral auroral radio intensity of RGHJs based on the empirical relation with the stellar wind as well as a proposed scaling for planetary magnetic fields. RGHJs might be intrinsically as bright as or brighter than canonical hot Jupiters and about 100 times brighter than equivalent objects around main-sequence stars. We examine the capabilities of low-frequency radio observatories to detect this emission and find that the signal from an RGHJ may be detectable at distances up to a few hundred parsecs with the Square Kilometer Array

  4. NUMERICAL MODELING OF THE 2009 IMPACT EVENT ON JUPITER

    Energy Technology Data Exchange (ETDEWEB)

    Pond, Jarrad W. T.; Palotai, Csaba; Gabriel, Travis; Harrington, Joseph; Rebeli, Noemi [Planetary Sciences Group, Department of Physics, University of Central Florida, Orlando, FL 32816-2385 (United States); Korycansky, Donald G., E-mail: jarradpond@gmail.com [Department of Earth and Planetary Science, University of California, Santa Cruz, CA 95064 (United States)

    2012-02-01

    We have investigated the 2009 July impact event on Jupiter using the ZEUS-MP 2 three-dimensional hydrodynamics code. We studied the impact itself and the following plume development. Eight impactors were considered: 0.5 km and 1 km porous ({rho} = 1.760 g cm{sup -3}) and non-porous ({rho} = 2.700 g cm{sup -3}) basalt impactors, and 0.5 km and 1 km porous ({rho} = 0.600 g cm{sup -3}) and non-porous ({rho} = 0.917 g cm{sup -3}) ice impactors. The simulations consisted of these bolides colliding with Jupiter at an incident angle of {theta} = 69 Degree-Sign from the vertical and with an impact velocity of v = 61.4 km s{sup -1}. Our simulations show the development of relatively larger, faster plumes created after impacts involving 1 km diameter bodies. Comparing simulations of the 2009 event with simulations of the Shoemaker-Levy 9 (SL9) events reveals a difference in plume development, with the higher incident angle of the 2009 impact leading to a shallower terminal depth and a smaller and slower plume. We also studied the amount of dynamical chaos present in the simulations conducted at the 2009 incident angle. Compared to the chaos of the SL9 simulations, where {theta} Almost-Equal-To 45 Degree-Sign , we find no significant difference in chaos at the higher 2009 incident angle.

  5. The size of Jupiter's electrically conducting fluid core

    International Nuclear Information System (INIS)

    Hide, R.; Malin, S.R.C.

    1979-01-01

    When the magnetic field of a planet is due to hydromagnetic dynamo action in an electrically conducting fluid core surrounded by a poorly conducting mantle it is possible in principle to determine the radius rsub(c) of the core from determinations of secular changes in the magnetic field B in the accessible region above the surface of the planet, mean radius rsub(s) (> = rsub(c)). A preliminary study is described in which the magnetic field measurements made in December 1973 and December 1974 when the Pioneer 10 and 11 fly-by space probes encountered Jupiter have been analysed. It was expected that over such a short time interval any true secular changes would be masked by errors and the corresponding estimates of rsub(c)/rsub(s) highly implausible or even physically impossible, but this turns out not to be the case. Taken at their face value the apparent secular changes in the dipole and quadrupole components of Jupiter's magnetic field imply that rsub(c)/rsub(s) is close to 0.7. Somewhat higher values of rsub(c)/rsub(s) are found when contributions from the octupole component are also included. (UK)

  6. RADIO EMISSION FROM RED-GIANT HOT JUPITERS

    Energy Technology Data Exchange (ETDEWEB)

    Fujii, Yuka [Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, 152-8550 (Japan); Spiegel, David S. [Analytics and Algorithms, Stitch Fix, San Francisco, CA 94103 (United States); Mroczkowski, Tony [Naval Research Laboratory, 4555 Overlook Ave SW, Washington, DC 20375 (United States); Nordhaus, Jason [Department of Science and Mathematics, National Technical Institute for the Deaf, Rochester Institute of Technology, Rochester, NY 14623 (United States); Zimmerman, Neil T. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Parsons, Aaron R. [Astronomy Department, University of California, Berkeley, CA (United States); Mirbabayi, Mehrdad [Astrophysics Department, Institute for Advanced Study, Princeton, NJ 08540 (United States); Madhusudhan, Nikku, E-mail: yuka.fujii@elsi.jp [Astronomy Department, University of Cambridge (United Kingdom)

    2016-04-01

    When planet-hosting stars evolve off the main sequence and go through the red-giant branch, the stars become orders of magnitudes more luminous and, at the same time, lose mass at much higher rates than their main-sequence counterparts. Accordingly, if planetary companions exist around these stars at orbital distances of a few au, they will be heated up to the level of canonical hot Jupiters and also be subjected to a dense stellar wind. Given that magnetized planets interacting with stellar winds emit radio waves, such “Red-Giant Hot Jupiters” (RGHJs) may also be candidate radio emitters. We estimate the spectral auroral radio intensity of RGHJs based on the empirical relation with the stellar wind as well as a proposed scaling for planetary magnetic fields. RGHJs might be intrinsically as bright as or brighter than canonical hot Jupiters and about 100 times brighter than equivalent objects around main-sequence stars. We examine the capabilities of low-frequency radio observatories to detect this emission and find that the signal from an RGHJ may be detectable at distances up to a few hundred parsecs with the Square Kilometer Array.

  7. Family Portrait of the Small Inner Satellites of Jupiter

    Science.gov (United States)

    1997-01-01

    These images, taken by Galileo's solid state imaging system between November 1996 and June 1997, provide the first ever 'family portrait' of the four small, irregularly shaped moons that orbit Jupiter in the zone between the planet's ring and the larger Galilean satellites. The moons are shown in their correct relative sizes, with north approximately up in all cases. From left to right, arranged in order of increasing distance from Jupiter, are Metis (longest dimension is approximately 60 kilometers or 37 miles across), Adrastea (20 kilometers or 12 miles across), Amalthea (247 kilometers or 154 miles across), and Thebe (116 kilometers or 72 miles across). While Amalthea, the largest of these four tiny moons, was imaged by NASA's two Voyager spacecraft in 1979 with a resolution comparable to what is shown here, the new Galileo observations represent the first time that Metis, Adrastea, and Thebe have been seen as more than points of light.The Jet Propulsion Laboratory, Pasadena, CA manages the Galileo mission for NASA's Office of Space Science, Washington, DC. JPL is an operating division of California Institute of Technology (Caltech).This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://www.jpl.nasa.gov/ galileo.

  8. Some features of Jupiter decametric radiation and its temporary variations

    International Nuclear Information System (INIS)

    Levitskij, L.S.

    1977-01-01

    The following parameters of Jupiter decametric radiation are considered: duration of the storms, the distribution of the storms over Jupiter's longitudes and Io's position, the distribution along frequency range, burstness. It is shown that probability W of revealing decametric emission does not depend on solar activity level. The relative probability (W 3 /W) of appearing noise storms of large intensity changes according to variations of solar activity indexes for all frequencies (10-35 MHz). The duration of noise storms, its frequency range, intensity and L-burst number increase systematically with the storm's power. There is a tendency to the expansion of the sources of the emission along the longitude if the observer (the Earth) changes his position from the boundary to center of emission cone. Io effects in decametric emission are appreciable for the largest storms only. For small storms these effects may be revealed only in years of minimum solar activity. A part of storms with large number of L-bursts is correlated with the Asub(p)-index

  9. Discovery of a Jupiter/Saturn analog with gravitational microlensing.

    Science.gov (United States)

    Gaudi, B S; Bennett, D P; Udalski, A; Gould, A; Christie, G W; Maoz, D; Dong, S; McCormick, J; Szymanski, M K; Tristram, P J; Nikolaev, S; Paczynski, B; Kubiak, M; Pietrzynski, G; Soszynski, I; Szewczyk, O; Ulaczyk, K; Wyrzykowski, L; Depoy, D L; Han, C; Kaspi, S; Lee, C-U; Mallia, F; Natusch, T; Pogge, R W; Park, B-G; Abe, F; Bond, I A; Botzler, C S; Fukui, A; Hearnshaw, J B; Itow, Y; Kamiya, K; Korpela, A V; Kilmartin, P M; Lin, W; Masuda, K; Matsubara, Y; Motomura, M; Muraki, Y; Nakamura, S; Okumura, T; Ohnishi, K; Rattenbury, N J; Sako, T; Saito, To; Sato, S; Skuljan, L; Sullivan, D J; Sumi, T; Sweatman, W L; Yock, P C M; Albrow, M D; Allan, A; Beaulieu, J-P; Burgdorf, M J; Cook, K H; Coutures, C; Dominik, M; Dieters, S; Fouqué, P; Greenhill, J; Horne, K; Steele, I; Tsapras, Y; Chaboyer, B; Crocker, A; Frank, S; Macintosh, B

    2008-02-15

    Searches for extrasolar planets have uncovered an astonishing diversity of planetary systems, yet the frequency of solar system analogs remains unknown. The gravitational microlensing planet search method is potentially sensitive to multiple-planet systems containing analogs of all the solar system planets except Mercury. We report the detection of a multiple-planet system with microlensing. We identify two planets with masses of approximately 0.71 and approximately 0.27 times the mass of Jupiter and orbital separations of approximately 2.3 and approximately 4.6 astronomical units orbiting a primary star of mass approximately 0.50 solar mass at a distance of approximately 1.5 kiloparsecs. This system resembles a scaled version of our solar system in that the mass ratio, separation ratio, and equilibrium temperatures of the planets are similar to those of Jupiter and Saturn. These planets could not have been detected with other techniques; their discovery from only six confirmed microlensing planet detections suggests that solar system analogs may be common.

  10. Specular Reflectivity and Hot-Electron Generation in High-Contrast Relativistic Laser-Plasma Interactions

    Energy Technology Data Exchange (ETDEWEB)

    Kemp, Gregory Elijah [The Ohio State Univ., Columbus, OH (United States)

    2013-01-01

    Ultra-intense laser (> 1018 W/cm2) interactions with matter are capable of producing relativistic electrons which have a variety of applications in state-of-the-art scientific and medical research conducted at universities and national laboratories across the world. Control of various aspects of these hot-electron distributions is highly desired to optimize a particular outcome. Hot-electron generation in low-contrast interactions, where significant amounts of under-dense pre-plasma are present, can be plagued by highly non-linear relativistic laser-plasma instabilities and quasi-static magnetic field generation, often resulting in less than desirable and predictable electron source characteristics. High-contrast interactions offer more controlled interactions but often at the cost of overall lower coupling and increased sensitivity to initial target conditions. An experiment studying the differences in hot-electron generation between high and low-contrast pulse interactions with solid density targets was performed on the Titan laser platform at the Jupiter Laser Facility at Lawrence Livermore National Laboratory in Livermore, CA. To date, these hot-electrons generated in the laboratory are not directly observable at the source of the interaction. Instead, indirect studies are performed using state-of-the-art simulations, constrained by the various experimental measurements. These measurements, more-often-than-not, rely on secondary processes generated by the transport of these electrons through the solid density materials which can susceptible to a variety instabilities and target material/geometry effects. Although often neglected in these types of studies, the specularly reflected light can provide invaluable insight as it is directly influenced by the interaction. In this thesis, I address the use of (personally obtained) experimental specular reflectivity measurements to indirectly study hot-electron generation in the context of high-contrast, relativistic

  11. Development of laser technology in Research Center of Laser Fusion

    International Nuclear Information System (INIS)

    Zheng Wanguo; Deng Ying; Zhou Wei

    2013-01-01

    This paper reviews the progress in the construction of SG-Ⅲ laser facility, integrated Testbed and XG-Ⅲ laser facility and that in the upgrade of the prototype of SG-Ⅲ, and the development in assembling and installing technology, and the achievements in maintaining cleanliness project and metrology in Laser Fusion Research Center, China Academy of Engineering Physics in China in 2012. (authors)

  12. National Ignition Facility system design requirements conventional facilities SDR001

    International Nuclear Information System (INIS)

    Hands, J.

    1996-01-01

    This System Design Requirements (SDR) document specifies the functions to be performed and the minimum design requirements for the National Ignition Facility (NIF) site infrastructure and conventional facilities. These consist of the physical site and buildings necessary to house the laser, target chamber, target preparation areas, optics support and ancillary functions

  13. A 0.8-2.4 μm Transmission spectrum of the hot Jupiter CoRoT-1b

    Energy Technology Data Exchange (ETDEWEB)

    Schlawin, E.; Herter, T. [Astronomy Department, Cornell University, Ithaca, NY 14853 (United States); Zhao, M. [Department of Astronomy, Pennsylvania State University, University Park, PA 16802 (United States); Teske, J. K. [Astronomy Department, The University of Arizona, Tucson, AZ 85721 (United States)

    2014-03-01

    Hot Jupiters with brightness temperatures ≳2000 K can have TiO and VO molecules as gaseous species in their atmospheres. The TiO and VO molecules can potentially induce temperature inversions in hot Jupiter atmospheres and also have an observable signature of large optical to infrared transit depth ratios. Previous transmission spectra of very hot Jupiters have shown a lack of TiO and VO, but only in planets that also appear to lack temperature inversions. We measure the transmission spectrum of CoRoT-1b, a hot Jupiter that was predicted to have a temperature inversion potentially due to significant TiO and VO in its atmosphere. We employ the multi-object spectroscopy method using the SpeX and MORIS instruments on the Infrared Telescope Facility (IRTF) and the Gaussian process method to model red noise. By using a simultaneous reference star on the slit for calibration and a wide slit to minimize slit losses, we achieve transit depth precision of 0.03%-0.09%, comparable to the atmospheric scale height but detect no statistically significant molecular features. We combine our IRTF data with optical CoRoT transmission measurements to search for differences in the optical and near-infrared absorption that would arise from TiO/VO. Our IRTF spectrum and the CoRoT photometry disfavor a TiO/VO-rich spectrum for CoRoT-1b, suggesting that the atmosphere has another absorber that could create a temperature inversion or that the blackbody-like emission from the planet is due to a spectroscopically flat cloud, dust, or haze layer that smoothes out molecular features in both CoRoT-1b's emission and transmission spectra. This system represents the faintest planet hosting star (K = 12.2) with a measured planetary transmission spectrum.

  14. Optimization of the laser-induced photoemission for the production of polarized electron beams at the 50-keV source of the Bonn accelerator facility ELSA

    International Nuclear Information System (INIS)

    Gowin, M.

    2001-10-01

    Medium energy experiments requiring circularly polarized photons (produced by Bremsstrahlung of longitudinally polarized electrons) have started at the electron stretcher ELSA in Bonn. To fulfill the demands of the experiment (GDH) the laser induced photoemission of the 50 keV electron source has been optimized. Systematic studies with a titan-sapphire laser to optimize the pulse structure of the laser pulse and the emitted spectral width has been done. Using a Be-InGaAs/Be-AlGaAs strained superlattice photocathode a beam polarization of 80% with a quantum efficiency of 0.4% has been obtained while producing a space charge limited 100 mA beam current. (orig.)

  15. The ORION Facility

    International Nuclear Information System (INIS)

    Noble, Robert

    2003-01-01

    ORION will be a user-oriented research facility for understanding the physics and developing the technology for future high-energy particle accelerators, as well as for research in related fields. The facility has as its centerpiece the Next Linear Collider Test Accelerator (NLCTA) at the Stanford Linear Accelerator Center (SLAC). The NLCTA will be modified with the addition of a new, high-brightness photoinjector, its drive laser, an S-band rf power system, a user laser room, a low-energy experimental hall supplied with electron beams up to 60 MeV in energy, and a high-energy hall supplied with beams up to 350 MeV. The facility design and parameters are described here along with highlights from the 2nd ORION Workshop held in February 2003

  16. Results of Joint Observations of Jupiter's Atmosphere by Juno and a Network of Earth-Based Observing Stations

    Science.gov (United States)

    Orton, G. S.; Momary, T.; Tabataba-Vakili, F.; Bolton, S.; Levin, S.; Adriani, A.; Gladstone, G. R.; Hansen, C. J.; Janssen, M.

    2017-09-01

    Well over sixty investigator/instrument investigations are actively engaged in the support of the Juno mission. These observations range from X-ray to the radio wavelengths and involve both space- and ground-based astronomical facilities. These observations enhance and expand Juno measurements by (1) providing a context that expands the area covered by often narrow spatial coverage of Juno's instruments, (2) providing a temporal context that shows how phenomena evolve over Juno's 53-day orbit period, (3) providing observations in spectral ranges not covered by Juno's instruments, and (4) monitoring the behavior of external influences to Jupiter's magnetosphere. Intercommunication between the Juno scientists and the support program is maintained by reference to a Google table that describes the observation and its current status, as well as by occasional group emails. A non-interactive version of this invitation-only site is mirrored in a public site. Several sets of these supporting observations are described at this meeting.

  17. Lasers '89

    International Nuclear Information System (INIS)

    Harris, D.G.; Shay, T.M.

    1990-01-01

    This book covers the following topics: XUV, X-Ray and Gamma-Ray Lasers, excimer lasers, chemical lasers, nuclear pumped lasers, high power gas lasers, solid state lasers, laser spectroscopy. The paper presented include: Development of KrF lasers for fusion and Nuclear driven solid-state lasers

  18. Pan-Planets: Searching for hot Jupiters around cool dwarfs

    Science.gov (United States)

    Obermeier, C.; Koppenhoefer, J.; Saglia, R. P.; Henning, Th.; Bender, R.; Kodric, M.; Deacon, N.; Riffeser, A.; Burgett, W.; Chambers, K. C.; Draper, P. W.; Flewelling, H.; Hodapp, K. W.; Kaiser, N.; Kudritzki, R.-P.; Magnier, E. A.; Metcalfe, N.; Price, P. A.; Sweeney, W.; Wainscoat, R. J.; Waters, C.

    2016-03-01

    The Pan-Planets survey observed an area of 42 sq deg. in the galactic disk for about 165 h. The main scientific goal of the project is the detection of transiting planets around M dwarfs. We establish an efficient procedure for determining the stellar parameters Teff and log g of all sources using a method based on SED fitting, utilizing a three-dimensional dust map and proper motion information. In this way we identify more than 60 000 M dwarfs, which is by far the largest sample of low-mass stars observed in a transit survey to date. We present several planet candidates around M dwarfs and hotter stars that are currently being followed up. Using Monte Carlo simulations we calculate the detection efficiency of the Pan-Planets survey for different stellar and planetary populations. We expect to find 3.0+3.3-1.6 hot Jupiters around F, G, and K dwarfs with periods lower than 10 days based on the planet occurrence rates derived in previous surveys. For M dwarfs, the percentage of stars with a hot Jupiter is under debate. Theoretical models expect a lower occurrence rate than for larger main sequence stars. However, radial velocity surveys find upper limits of about 1% due to their small sample, while the Kepler survey finds a occurrence rate that we estimate to be at least 0.17b(+0.67-0.04) %, making it even higher than the determined fraction from OGLE-III for F, G and K stellar types, 0.14 (+0.15-0.076) %. With the large sample size of Pan-Planets, we are able to determine an occurrence rate of 0.11 (+0.37-0.02) % in case one of our candidates turns out to be a real detection. If, however, none of our candidates turn out to be true planets, we are able to put an upper limit of 0.34% with a 95% confidence on the hot Jupiter occurrence rate of M dwarfs. This limit is a significant improvement over previous estimates where the lowest limit published so far is 1.1% found in the WFCAM Transit Survey. Therefore we cannot yet confirm the theoretical prediction of a lower

  19. Gas flow in the solar nebula leading to the formation of Jupiter

    International Nuclear Information System (INIS)

    Sekiya, Minoru; Miyama, Shoken M.; Hayashi, Chushiro.

    1987-01-01

    The three-dimensional gas flow in the solar nebula, which is subject to the gravity of the Sun and proto-Jupiter, is numerically calculated using a three-dimensional hydrodynamic code i.e., the so-called smoothed-particle method. The flow is circulating around the Sun as well as falling into the potential well of proto-Jupiter. The results for various masses of proto-Jupiter show that the e-folding growth time of proto-Jupiter by accretion of the nebular gas is as short as about 300 years in stages where the mass of proto-Jupiter is 0.2 ∼ 0.5 times the present Jovian mass and that proto-Jupiter begins to push away the nebular gas from the orbit of proto-Jupiter and form a gap around the orbit, when its mass is about 0.7 times the present Jovian mass. It is possible that this pushing-away process determined the present Jovian mass

  20. Clinical implications of JUPITER in a contemporary European population: the EPIC-Norfolk prospective population study.

    Science.gov (United States)

    Sondermeijer, Brigitte M; Boekholdt, S Matthijs; Rana, Jamal S; Kastelein, John J P; Wareham, Nicholas J; Khaw, Kay-Tee

    2013-05-01

    Justification for the Use of statins in Prevention: an Intervention Trial Evaluating Rosuvastatin (JUPITER) has raised several points of debate. We quantified the proportion of individuals meeting the JUPITER criteria, determined their risk profile, and their risk of coronary heart disease (CHD) events during a long-term follow-up in a contemporary European cohort. A total of 25 639 participants aged between 45 and 79 years were followed for 11.4 ± 2.8 years in EPIC-Norfolk population cohort. A total of 8397 individuals with complete data available were considered potentially eligible for primary prevention. A total of 846 (10.1%) individuals fulfilled the JUPITER criteria [low-density lipoprotein cholesterol-C (LDL-C) JUPITER criteria had significantly higher CHD risk compared with those with LDL-C ≥ 3.4 mmol/L and C-reactive protein JUPITER criteria. In this European cohort, JUPITER-eligible individuals had significantly higher event rates compared with those with LDL-C JUPITER criteria qualified almost one-fifth of the population for statin therapy that otherwise would not have qualified based on SCORE or ATP III criteria.

  1. Comet Shoemaker-Levy 9/Jupiter collision observed with a high resolution speckle imaging system

    Energy Technology Data Exchange (ETDEWEB)

    Gravel, D. [Lawrence Livermore National Lab., CA (United States)

    1994-11-15

    During the week of July 16, 1994, comet Shoemaker-Levy 9, broken into 20 plus pieces by tidal forces on its last orbit, smashed into the planet Jupiter, releasing the explosive energy of 500 thousand megatons. A team of observers from LLNL used the LLNL Speckle Imaging Camera mounted on the University of California`s Lick Observatory 3 Meter Telescope to capture continuous sequences of planet images during the comet encounter. Post processing with the bispectral phase reconstruction algorithm improves the resolution by removing much of the blurring due to atmospheric turbulence. High resolution images of the planet surface showing the aftermath of the impact are probably the best that were obtained from any ground-based telescope. We have been looking at the regions of the fragment impacts to try to discern any dynamic behavior of the spots left on Jupiter`s cloud tops. Such information can lead to conclusions about the nature of the comet and of Jupiter`s atmosphere. So far, the Hubble Space Telescope has observed expanding waves from the G impact whose mechanism is enigmatic since they appear to be too slow to be sound waves and too fast to be gravity waves, given the present knowledge of Jupiter`s atmosphere. Some of our data on the G and L impact region complements the Hubble observations but, so far, is inconclusive about spot dynamics.

  2. Near equality of ion phase space densities at earth, Jupiter, and Saturn

    Science.gov (United States)

    Cheng, A. F.; Krimigis, S. M.; Armstrong, T. P.

    1985-01-01

    Energetic-ion phase-space density profiles are strikingly similar in the inner magnetospheres of earth, Jupiter, and Saturn for ions of first adiabatic invariant near 100 MeV/G and small mirror latitudes. Losses occur inside L approximately equal to 7 for Jupiter and Saturn and inside L approximately equal to 5 at earth. At these L values there exist steep plasma-density gradients at all three planets, associated with the Io plasma torus at Jupiter, the Rhea-Dione-Tethys torus at Saturn, and the plasmasphere at earth. Measurements of ion flux-tube contents at Jupiter and Saturn by the low-energy charged-particle experiment show that these are similar (for O ions at L = 5-9) to those at earth (for protons at L = 2-6). Furthermore, the thermal-ion flux-tube contents from Voyager plasma-science data at Jupiter and Saturn are also very nearly equal, and again similar to those at earth, differing by less than a factor of 3 at the respective L values. The near equality of energetic and thermal ion flux-tube contents at earth, Jupiter, and Saturn suggests the possibility of strong physical analogies in the interaction between plasma and energetic particles at the plasma tori/plasma sheets of Jupiter and Saturn and the plasmasphere of earth.

  3. Physics of short-wavelength-laser design

    Energy Technology Data Exchange (ETDEWEB)

    Hagelstein, P.L.

    1981-01-01

    The physics and design of vuv and soft x-ray lasers pumped by ICF class high intensity infrared laser drivers are described (for example, the SHIVA laser facility at LLNL). Laser design and physics issues are discussed in the case of a photoionization pumping scheme involving Ne II and line pumping schemes involving H-like and He-like neon.

  4. 77 FR 14838 - General Electric-Hitachi Global Laser Enrichment LLC, Commercial Laser-Based Uranium Enrichment...

    Science.gov (United States)

    2012-03-13

    ... Laser Enrichment LLC, Commercial Laser-Based Uranium Enrichment Facility, Wilmington, North Carolina... a license to General Electric-Hitachi Global Laser Enrichment LLC (GLE or the applicant) to authorize construction of a laser-based uranium enrichment facility and possession and use of byproduct...

  5. The interplanetary magnetic field observed by Juno enroute to Jupiter

    Science.gov (United States)

    Gruesbeck, Jacob R.; Gershman, Daniel J.; Espley, Jared R.; Connerney, John E. P.

    2017-06-01

    The Juno spacecraft was launched on 5 August 2011 and spent nearly 5 years traveling through the inner heliosphere on its way to Jupiter. The Magnetic Field Investigation was powered on shortly after launch and obtained vector measurements of the interplanetary magnetic field (IMF) at sample rates from 1 to 64 samples/second. The evolution of the magnetic field with radial distance from the Sun is compared to similar observations obtained by Voyager 1 and 2 and the Ulysses spacecraft, allowing a comparison of the radial evolution between prior solar cycles and the current depressed one. During the current solar cycle, the strength of the IMF has decreased throughout the inner heliosphere. A comparison of the variance of the normal component of the magnetic field shows that near Earth the variability of the IMF is similar during all three solar cycles but may be less at greater radial distances.

  6. High resolution LBT imaging of Io and Jupiter

    Science.gov (United States)

    Conrad, A.; de Kleer, K.; Leisenring, J.; La Camera, A.; Arcidiacono, C.; Bertero, M.; Boccacci, P.; Defrère, D.; de Pater, I.; Hinz, P.; Hoffman, K.-H.; Kürster, M.; Rathbun, J.; Schertl, D.; Skemer, A.; Skrutskie, M.; Spencer, J.; Veillet, C.; Weigelt, G.; Woodward, C.

    2015-10-01

    We report here results from observing Io at high angular resolution, ˜32 mas at 4.8 μm, with LBT at two favorable oppositions as described in our report given at the 2011 EPSC [1]. Analysis of datasets acquired during the last two oppositions has yielded spatially resolved M-band emission at Loki Patera [2], L-band fringes at an eruption site, an occultation of Loki and Pele by Europa, and sufficient sub-earth longitude (SEL) and parallactic angle coverage to produce a full disk map.We summarize completed results for the first of these, and give brief progress reports for the latter three. Finally, we provide plans for imaging the full disk of Jupiter using the MCAO system which is in its commissioning phase at LBT.

  7. KARL GOOSS AND A TEMPLE OF JUPITER IN APULUM

    Directory of Open Access Journals (Sweden)

    Csaba Szabó

    2015-12-01

    Full Text Available Karl Gooss (1844-1881 was one of the few intellectuals of his time who witnessed personally the building of the railway and the ditch of Alba Iulia between 1865 and 1868. The construction was the biggest project of the city since the building of the Vauban fort and destroyed the most significant part of the Colonia Aurelia Apulensis, one of the biggest urban centers of the province. During these works, Gooss witnessed the discovery and destruction of the first Jupiter temple attested in Dacia, the biggest silver deposit ever found in Transylvania and the first coin hoard of Apulum. His German publication was ignored by the later historiography, although it is the first and only detailed account of the archaeological finds discovered in the Partoș in the end of August, 1867. His detailed account helps us to identify the context of some well known artifacts and to reconsider the topography of the Colonia Aurelia Apulensis.

  8. The Interplanetary Magnetic Field Observed by Juno Enroute to Jupiter

    Science.gov (United States)

    Gruesbeck, Jacob R.; Gershman, Daniel J.; Espley, Jared R.; Connerney, John E. P.

    2017-01-01

    The Juno spacecraft was launched on 5 August 2011 and spent nearly 5 years traveling through the inner heliosphere on its way to Jupiter. The Magnetic Field Investigation was powered on shortly after launch and obtained vector measurements of the interplanetary magnetic field (IMF) at sample rates from 1 to 64 samples/second. The evolution of the magnetic field with radial distance from the Sun is compared to similar observations obtained by Voyager 1 and 2 and the Ulysses spacecraft, allowing a comparison of the radial evolution between prior solar cycles and the current depressed one. During the current solar cycle, the strength of the IMF has decreased throughout the inner heliosphere. A comparison of the variance of the normal component of the magnetic field shows that near Earth the variability of the IMF is similar during all three solar cycles but may be less at greater radial distances.

  9. An interstellar origin for Jupiter's retrograde co-orbital asteroid

    Science.gov (United States)

    Namouni, F.; Morais, M. H. M.

    2018-06-01

    Asteroid (514107) 2015 BZ509 was discovered recently in Jupiter's co-orbital region with a retrograde motion around the Sun. The known chaotic dynamics of the outer Solar system have so far precluded the identification of its origin. Here, we perform a high-resolution statistical search for stable orbits and show that asteroid (514107) 2015 BZ509 has been in its current orbital state since the formation of the Solar system. This result indicates that (514107) 2015 BZ509 was captured from the interstellar medium 4.5 billion years in the past as planet formation models cannot produce such a primordial large-inclination orbit with the planets on nearly coplanar orbits interacting with a coplanar debris disc that must produce the low-inclination small-body reservoirs of the Solar system such as the asteroid and Kuiper belts. This result also implies that more extrasolar asteroids are currently present in the Solar system on nearly polar orbits.

  10. Forward directed x-ray from source produced by relativistic electrons from a Self-Modulated Laser Wakefield Accelerator

    Science.gov (United States)

    Lemos, Nuno; Albert, Felicie; Shaw, Jessica; King, Paul; Milder, Avi; Marsh, Ken; Pak, Arthur; Joshi, Chan

    2017-10-01

    Plasma-based particle accelerators are now able to provide the scientific community with novel light sources. Their applications span many disciplines, including high-energy density sciences, where they can be used as probes to explore the physics of dense plasmas and warm dense matter. A recent advance is in the experimental and theoretical characterization of x-ray emission from electrons in the self-modulated laser wakefield regime (SMLWFA) where little is known about the x-ray properties. A series of experiments at the LLNL Jupiter Laser Facility, using the 1 ps 150 J Titan laser, have demonstrated low divergence electron beams with energies up to 300 MeV and 6 nCs of charge, and betatron x-rays with critical energies up to 20 keV. This work identifies two other mechanisms which produce high energy broadband x-rays and gamma-rays from the SMLWFA: Bremsstrahlung and inverse Compton scattering. We demonstrate the use of Compton scattering and bremsstrahlung to generate x/Gamma-rays from 3 keV up to 1.5 MeV with a source size of 50um and a divergence of 100 mrad. This work is an important step towards developing this x-ray light source on large-scale international laser facilities, and also opens up the prospect of using them for applications. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under the contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC.

  11. The Jovian Auroral Distributions Experiment (JADE) on the Juno Mission to Jupiter

    Science.gov (United States)

    McComas, D. J.; Alexander, N.; Allegrini, F.; Bagenal, F.; Beebe, C.; Clark, G.; Crary, F.; Desai, M. I.; De Los Santos, A.; Demkee, D.; Dickinson, J.; Everett, D.; Finley, T.; Gribanova, A.; Hill, R.; Johnson, J.; Kofoed, C.; Loeffler, C.; Louarn, P.; Maple, M.; Mills, W.; Pollock, C.; Reno, M.; Rodriguez, B.; Rouzaud, J.; Santos-Costa, D.; Valek, P.; Weidner, S.; Wilson, P.; Wilson, R. J.; White, D.

    2017-11-01

    The Jovian Auroral Distributions Experiment (JADE) on Juno provides the critical in situ measurements of electrons and ions needed to understand the plasma energy particles and processes that fill the Jovian magnetosphere and ultimately produce its strong aurora. JADE is an instrument suite that includes three essentially identical electron sensors (JADE-Es), a single ion sensor (JADE-I), and a highly capable Electronics Box (EBox) that resides in the Juno Radiation Vault and provides all necessary control, low and high voltages, and computing support for the four sensors. The three JADE-Es are arrayed 120∘ apart around the Juno spacecraft to measure complete electron distributions from ˜0.1 to 100 keV and provide detailed electron pitch-angle distributions at a 1 s cadence, independent of spacecraft spin phase. JADE-I measures ions from ˜5 eV to ˜50 keV over an instantaneous field of view of 270∘×90∘ in 4 s and makes observations over all directions in space each 30 s rotation of the Juno spacecraft. JADE-I also provides ion composition measurements from 1 to 50 amu with m/Δ m˜2.5, which is sufficient to separate the heavy and light ions, as well as O+ vs S+, in the Jovian magnetosphere. All four sensors were extensively tested and calibrated in specialized facilities, ensuring excellent on-orbit observations at Jupiter. This paper documents the JADE design, construction, calibration, and planned science operations, data processing, and data products. Finally, the Appendix describes the Southwest Research Institute [SwRI] electron calibration facility, which was developed and used for all JADE-E calibrations. Collectively, JADE provides remarkably broad and detailed measurements of the Jovian auroral region and magnetospheric plasmas, which will surely revolutionize our understanding of these important and complex regions.

  12. Evolution of Technology Laser Scanner. Implications for use in Nuclear Power and Radioactive Facilities; Evolucion de la Tecnologia Laser Escaner. Implicaciones en uso en Centrales Nucleares e Instalaciones Radioactivas

    Energy Technology Data Exchange (ETDEWEB)

    Sarti Fernandez, F.; Bonet, J.

    2012-07-01

    The main technical factors affecting these teams their actual implementation in nuclear power plants will be analyzed: data acquisition speed, sensitivity, laser power, autonomy, contamination of equipment, radiation effect, etc. In conclusion, the real difference is displayed in the data collection in function of various technologies, embodied in field time, and costs.

  13. Survey of Galileo Plasma Observations in Jupiter's Plasma Sheet

    Science.gov (United States)

    Bagenal, Fran; Wilson, Robert J.; Siler, Scott; Paterson, William R.; Kurth, William S.

    2016-01-01

    The plasma science (PLS) Instrument on the Galileo spacecraft (orbiting Jupiter from December 1995 to September 2003) measured properties of the ions that were trapped in the magnetic field. The PLS data provide a survey of the plasma properties between approx. 5 and 30 Jupiter radii [R(sub J)] in the equatorial region. We present plasma properties derived via two analysis methods: numerical moments and forward modeling. We find that the density decreases with radial distance by nearly 5 orders of magnitude from approx. 2 to 3000 cm(exp.-3) at 6R(sub j) to approx. 0.05cm(sub -3) at 30 R(sub j). The density profile did not show major changes from orbit to orbit, suggesting that the plasma production and transport remained constant within about a factor of 2. The radial profile of ion temperature increased with distance which implied that contrary to the concept of adiabatic cooling on expansion, the plasma heats up as it expands out from Io's orbit (where TI is approx.60-80 eV) at approx. 6R(sub j) to a few keV at 30R(sub j).There does not seem to be a long-term, systematic variation in ion temperature with either local time or longitude. This latter finding differs from earlier analysis of Galileo PLS data from a selection of orbits. Further examination of all data from all Galileo orbits suggests that System Ill variations are transitory on timescales of weeks, consistent with the modeling of Cassini Ultraviolet Imaging Spectrograph observations. The plasma flow is dominated by azimuthal flow that is between 80% and 100% of corotation out to 25 R(sub j).

  14. Formation of Silicate and Titanium Clouds on Hot Jupiters

    Science.gov (United States)

    Powell, Diana; Zhang, Xi; Gao, Peter; Parmentier, Vivien

    2018-06-01

    We present the first application of a bin-scheme microphysical and vertical transport model to determine the size distribution of titanium and silicate cloud particles in the atmospheres of hot Jupiters. We predict particle size distributions from first principles for a grid of planets at four representative equatorial longitudes, and investigate how observed cloud properties depend on the atmospheric thermal structure and vertical mixing. The predicted size distributions are frequently bimodal and irregular in shape. There is a negative correlation between the total cloud mass and equilibrium temperature as well as a positive correlation between the total cloud mass and atmospheric mixing. The cloud properties on the east and west limbs show distinct differences that increase with increasing equilibrium temperature. Cloud opacities are roughly constant across a broad wavelength range, with the exception of features in the mid-infrared. Forward-scattering is found to be important across the same wavelength range. Using the fully resolved size distribution of cloud particles as opposed to a mean particle size has a distinct impact on the resultant cloud opacities. The particle size that contributes the most to the cloud opacity depends strongly on the cloud particle size distribution. We predict that it is unlikely that silicate or titanium clouds are responsible for the optical Rayleigh scattering slope seen in many hot Jupiters. We suggest that cloud opacities in emission may serve as sensitive tracers of the thermal state of a planet’s deep interior through the existence or lack of a cold trap in the deep atmosphere.

  15. Main magnetic field of Jupiter and its implications for future orbiter missions

    Science.gov (United States)

    Acuna, M. H.; Ness, N. F.

    1975-01-01

    A very strong planetary magnetic field and an enormous magnetosphere with extremely intense radiation belts exist at Jupiter. Pioneer 10 and 11 fly-bys confirmed and extended the earlier ground based estimates of many of these characteristics but left unanswered or added to the list of several important and poorly understood features: the source mechanism and location of decametric emissions, and the absorption effects by the natural satellites Amalthea, Io, Europa and Ganymede. High inclination orbits (exceeding 60 deg) with low periapses (less than 2 Jupiter radii) are required to map the radiation belts and main magnetic field of Jupiter accurately so as to permit full investigation of these and associated phenomena.

  16. Jupiter's interior and deep atmosphere: The initial pole-to-pole passes with the Juno spacecraft

    DEFF Research Database (Denmark)

    Bolton, S. J.; Adriani, Alberto; Adumitroaie, V.

    2017-01-01

    On 27 August 2016, the Juno spacecraft acquired science observations of Jupiter, passing less than 5000 kilometers above the equatorial cloud tops. Images of Jupiter's poles show a chaotic scene, unlike Saturn's poles. Microwave sounding reveals weather features at pressures deeper than 100 bars,...... of magnitude more precise. This has implications for the distribution of heavy elements in the interior, including the existence and mass of Jupiter's core. The observed magnetic field exhibits smaller spatial variations than expected, indicative of a rich harmonic content....

  17. THE PHOTOECCENTRIC EFFECT AND PROTO-HOT JUPITERS. III. A PAUCITY OF PROTO-HOT JUPITERS ON SUPER-ECCENTRIC ORBITS

    International Nuclear Information System (INIS)

    Dawson, Rebekah I.; Murray-Clay, Ruth A.; Johnson, John Asher

    2015-01-01

    Gas giant planets orbiting within 0.1 AU of their host stars are unlikely to have formed in situ and are evidence for planetary migration. It is debated whether the typical hot Jupiter smoothly migrated inward from its formation location through the proto-planetary disk, or was perturbed by another body onto a highly eccentric orbit, which tidal dissipation subsequently shrank and circularized during close stellar passages. Socrates and collaborators predicted that the latter model should produce a population of super-eccentric proto-hot Jupiters readily observable by Kepler. We find a paucity of such planets in the Kepler sample, which is inconsistent with the theoretical prediction with 96.9% confidence. Observational effects are unlikely to explain this discrepancy. We find that the fraction of hot Jupiters with an orbital period P > 3 days produced by the star-planet Kozai mechanism does not exceed (at two-sigma) 44%. Our results may indicate that disk migration is the dominant channel for producing hot Jupiters with P > 3 days. Alternatively, the typical hot Jupiter may have been perturbed to a high eccentricity by interactions with a planetary rather than stellar companion, and began tidal circularization much interior to 1 AU after multiple scatterings. A final alternative is that early in the tidal circularization process at high eccentricities tidal circularization occurs much more rapidly than later in the process at low eccentricities, although this is contrary to current tidal theories

  18. Resonance Ionization Laser Ion Sources

    CERN Document Server

    Marsh, B

    2013-01-01

    The application of the technique of laser resonance ionization to the production of singly charged ions at radioactive ion beam facilities is discussed. The ability to combine high efficiency and element selectivity makes a resonance ionization laser ion source (RILIS) an important component of many radioactive ion beam facilities. At CERN, for example, the RILIS is the most commonly used ion source of the ISOLDE facility, with a yearly operating time of up to 3000 hours. For some isotopes the RILIS can also be used as a fast and sensitive laser spectroscopy tool, provided that the spectral resolution is sufficiently high to reveal the influence of nuclear structure on the atomic spectra. This enables the study of nuclear properties of isotopes with production rates even lower than one ion per second and, in some cases, enables isomer selective ionization. The solutions available for the implementation of resonance laser ionization at radioactive ion beam facilities are summarized. Aspects such as the laser r...

  19. Facilities & Leadership

    Data.gov (United States)

    Department of Veterans Affairs — The facilities web service provides VA facility information. The VA facilities locator is a feature that is available across the enterprise, on any webpage, for the...

  20. Laser Safety Inspection Criteria

    International Nuclear Information System (INIS)

    Barat, K

    2005-01-01

    A responsibility of the Laser Safety Officer (LSO) is to perform laser safety audits. The American National Standard Z136.1 Safe use of Lasers references this requirement in several sections: (1) Section 1.3.2 LSO Specific Responsibilities states under Hazard Evaluation, ''The LSO shall be responsible for hazards evaluation of laser work areas''; (2) Section 1.3.2.8, Safety Features Audits, ''The LSO shall ensure that the safety features of the laser installation facilities and laser equipment are audited periodically to assure proper operation''; and (3) Appendix D, under Survey and Inspections, it states, ''the LSO will survey by inspection, as considered necessary, all areas where laser equipment is used''. Therefore, for facilities using Class 3B and or Class 4 lasers, audits for laser safety compliance are expected to be conducted. The composition, frequency and rigueur of that inspection/audit rests in the hands of the LSO. A common practice for institutions is to develop laser audit checklists or survey forms. In many institutions, a sole Laser Safety Officer (LSO) or a number of Deputy LSO's perform these audits. For that matter, there are institutions that request users to perform a self-assessment audit. Many items on the common audit list and the associated findings are subjective because they are based on the experience and interest of the LSO or auditor in particular items on the checklist. Beam block usage is an example; to one set of eyes a particular arrangement might be completely adequate, while to another the installation may be inadequate. In order to provide more consistency, the National Ignition Facility Directorate at Lawrence Livermore National Laboratory (NIF-LLNL) has established criteria for a number of items found on the typical laser safety audit form. These criteria are distributed to laser users, and they serve two broad purposes: first, it gives the user an expectation of what will be reviewed by an auditor, and second, it is an