WorldWideScience

Sample records for jupiter family comet

  1. The number of Jupiter family comets as a constraint on the transneptunian population

    Science.gov (United States)

    Tancredi, G.; et al.

    Several duynamical studies point out that the comets of the Jupiter family were originated in a flat belt in the transneptunian region. The Jupiter family is a transient dynamical state between the injection from the outer region and i) the ejection out of the Solar System, ii) the collision against one of its members or iii) the desintegration into a meteor stream. It has been generally assumed that the Jupiter family (JF) is in a steady state; i.e. the injection is balanced by the ejection+collision+ desintegration. Knowing the duration of a typical visit into the Jupiter family and the number of JF comets we could infer the injection rate. The rate of escapes from the transneptunian region and the fraction that reach the Jupiter family can be computed from massive integrations of particles starting in the outer region. An estimate of the required population of transneptunian objects can then be inferred from these numbers. There have been published several estimates of the dynamical parameters mentioned above but the total number of JF comets has been difficult to estimate. Based on a compilation of all the reported nuclear magnitudes of JF comets, we derive the total number of objects in the cometary population. The observed population (~ 200) is a tiny fraction of the total population (several thousands). Compiling all these numbers, we then derive the required trasneptunian population.

  2. The mass disruption of Jupiter Family comets

    Science.gov (United States)

    Belton, Michael J. S.

    2015-01-01

    I show that the size-distribution of small scattered-disk trans-neptunian objects when derived from the observed size-distribution of Jupiter Family comets (JFCs) and other observational constraints implies that a large percentage (94-97%) of newly arrived active comets within a range of 0.2-15.4 km effective radius must physically disrupt, i.e., macroscopically disintegrate, within their median dynamical lifetime. Additional observational constraints include the numbers of dormant and active nuclei in the near-Earth object (NEO) population and the slope of their size distributions. I show that the cumulative power-law slope (-2.86 to -3.15) of the scattered-disk TNO hot population between 0.2 and 15.4 km effective radius is only weakly dependent on the size-dependence of the otherwise unknown disruption mechanism. Evidently, as JFC nuclei from the scattered disk evolve into the inner Solar System only a fraction achieve dormancy while the vast majority of small nuclei (e.g., primarily those with effective radius <2 km) break-up. The percentage disruption rate appears to be comparable with that of the dynamically distinct Oort cloud and Halley type comets (Levison, H.F., Morbidelli, A., Dones, L., Jedicke, R., Wiegert, P.A., Bottke Jr., W.F. [2002]. Science 296, 2212-2215) suggesting that all types of comet nuclei may have similar structural characteristics even though they may have different source regions and thermal histories. The typical disruption rate for a 1 km radius active nucleus is ∼5 × 10-5 disruptions/year and the dormancy rate is typically 3 times less. We also estimate that average fragmentation rates range from 0.01 to 0.04 events/year/comet, somewhat above the lower limit of 0.01 events/year/comet observed by Chen and Jewitt (Chen, J., Jewitt, D.C. [1994]. Icarus 108, 265-271).

  3. A catalog of observed nuclear magnitudes of Jupiter family comets

    Science.gov (United States)

    Tancredi, G.; Fernández, J. A.; Rickman, H.; Licandro, J.

    2000-10-01

    A catalog of a sample of 105 Jupiter family (JF) comets (defined as those with Tisserand constants T > 2 and orbital periods P International Comet Quarterly Archive of Cometary Photometric Data, the Minor Planet Center (MPC) data base, IAU Circulars, International Comet Quarterly, and a few papers devoted to some particular comets, together with our own observations. Photometric data previous to 1990 have mainly been taken from the Comet Light Curve Catalogue (CLICC) compiled by Kamél (\\cite{kamel}). We discuss the reliability of the reported nuclear magnitudes in relation to the inherent sources of errors and uncertainties, in particular the coma contamination often present even at large heliocentric distances. A large fraction of the JF comets of our sample indeed shows various degrees of activity at large heliocentric distances, which is correlated with recent downward jumps in their perihelion distances. The reliability of coma subtraction methods to compute the nuclear magnitude is also discussed. Most absolute nuclear magnitudes are found in the range 15 - 18, with no magnitudes fainter than H_N ~ 19.5. The catalog can be found at: http://www.fisica.edu.uy/ ~ gonzalo/catalog/. Table 2 and Appendix B are only available in electronic form at http://www.edpsciences.org Table 5 is also available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/Abstract.html

  4. Scientists Revise Thinking on Comets, Planet Jupiter

    Science.gov (United States)

    Chemical and Engineering News, 1974

    1974-01-01

    Discusses scientific information obtained from Pioneer 10's Jupiter flyby and the comet Kohoutek's first trip around the sun, including the high hydrogen emission of Jupiter's principal moon, Io. (CC)

  5. Implications of the Small Spin Changes Measured for Large Jupiter-Family Comet Nuclei

    Science.gov (United States)

    Kokotanekova, R.; Snodgrass, C.; Lacerda, P.; Green, S. F.; Nikolov, P.; Bonev, T.

    2018-06-01

    Rotational spin-up due to outgassing of comet nuclei has been identified as a possible mechanism for considerable mass-loss and splitting. We report a search for spin changes for three large Jupiter-family comets (JFCs): 14P/Wolf, 143P/Kowal-Mrkos, and 162P/Siding Spring. None of the three comets has detectable period changes, and we set conservative upper limits of 4.2 (14P), 6.6 (143P) and 25 (162P) minutes per orbit. Comparing these results with all eight other JFCs with measured rotational changes, we deduce that none of the observed large JFCs experiences significant spin changes. This suggests that large comet nuclei are less likely to undergo rotationally-driven splitting, and therefore more likely to survive more perihelion passages than smaller nuclei. We find supporting evidence for this hypothesis in the cumulative size distributions of JFCs and dormant comets, as well as in recent numerical studies of cometary orbital dynamics. We added 143P to the sample of 13 other JFCs with known albedos and phase-function slopes. This sample shows a possible correlation of increasing phase-function slopes for larger geometric albedos. Partly based on findings from recent space missions to JFCs, we hypothesise that this correlation corresponds to an evolutionary trend for JFCs. We propose that newly activated JFCs have larger albedos and steeper phase functions, which gradually decrease due to sublimation-driven erosion. If confirmed, this could be used to analyse surface erosion from ground and to distinguish between dormant comets and asteroids.

  6. A HERSCHEL STUDY OF D/H IN WATER IN THE JUPITER-FAMILY COMET 45P/HONDA-MRKOS-PAJDUŠÁKOVÁ AND PROSPECTS FOR D/H MEASUREMENTS WITH CCAT

    International Nuclear Information System (INIS)

    Lis, D. C.; Blake, G. A.; Biver, N.; Bockelée-Morvan, D.; Crovisier, J.; Moreno, R.

    2013-01-01

    We present Herschel observations of water isotopologues in the atmosphere of the Jupiter-family comet 45P/Honda-Mrkos-Pajdušáková. No HDO emission is detected, with a 3σ upper limit of 2.0 × 10 –4 for the D/H ratio. This value is consistent with the earlier Herschel measurement in the Jupiter-family comet 103P/Hartley 2. The canonical value of 3 × 10 –4 measured pre-Herschel in a sample of Oort-cloud comets can be excluded at a 4.5σ level. The observations presented here further confirm that a diversity of D/H ratios exists in the comet population and emphasize the need for additional measurements with future ground-based facilities, such as CCAT, in the post-Herschel era

  7. Comet Shoemaker-Levy 9 meets Jupiter.

    Science.gov (United States)

    Levy, D. H.; Shoemaker, E. M.; Shoemaker, C. S.

    1995-08-01

    The impact of comet D/1993 F2 (Shoemaker-Levy 9) with Jupiter was unforgettable, an event probably not to be repeated for millennia to come. One year later the astronomers who first spotted the comet reflect on their discovery, on the anxious months of anticipation before the collision and on what has been learned since.

  8. A Herschel Study of D/H in Water in the Jupiter-family Comet 45P/Honda-Mrkos-Pajdušáková and Prospects for D/H Measurements with CCAT

    Science.gov (United States)

    Lis, D. C.; Biver, N.; Bockelée-Morvan, D.; Hartogh, P.; Bergin, E. A.; Blake, G. A.; Crovisier, J.; de Val-Borro, M.; Jehin, E.; Küppers, M.; Manfroid, J.; Moreno, R.; Rengel, M.; Szutowicz, S.

    2013-09-01

    We present Herschel observations of water isotopologues in the atmosphere of the Jupiter-family comet 45P/Honda-Mrkos-Pajdušáková. No HDO emission is detected, with a 3σ upper limit of 2.0 × 10-4 for the D/H ratio. This value is consistent with the earlier Herschel measurement in the Jupiter-family comet 103P/Hartley 2. The canonical value of 3 × 10-4 measured pre-Herschel in a sample of Oort-cloud comets can be excluded at a 4.5σ level. The observations presented here further confirm that a diversity of D/H ratios exists in the comet population and emphasize the need for additional measurements with future ground-based facilities, such as CCAT, in the post-Herschel era.

  9. Evolving coma abundances and detection of hypervolatiles in Jupiter-family comet 45P/Honda-Mrkos-Pajdusakova

    Science.gov (United States)

    Dello Russo, Neil; DiSanti, Michael A.; Kawakita, Hideyo; Shinnaka, Yoshiharu; Vervack, Ronald J.; Bonev, Boncho P.; Gibb, Erika L.; Roth, Nathan; McKay, Adam J.; Weaver, Harold A.; Cochran, Anita L.

    2017-10-01

    Two major shortcomings in chemically classifying comets at infrared wavelengths are a lack of hypervolatile (CO and CH4) detections in Jupiter-family comets and incomplete temporal coverage of comet chemistry, particularly at small heliocentric distances (Rh). We report post-perihelion volatile abundances in comet 45P/Honda-Mrkos-Pajdusakova with the high-resolution infrared spectrometer iSHELL at the NASA/IRTF on UT 6 - 8 January when Rh = 0.55 AU (DiSanti et al. 2017, Astron. J., in press), and with NIRSPEC at the Keck Observatory on UT 13 and 19 February when Rh = 1.0 and 1.1 AU, respectively. Favorable comet geocentric velocities enabled the detection of CO and CH4 in early January and 19 February. The relative abundance of CO is severely depleted whereas CH4 is typical to enriched in 45P when compared to comets from the Oort cloud. Significant differences are seen in relative abundances of species between January and February, notably in the ratio of C2H2/HCN. We explore whether the heliocentric distances of the measurements or seasonal changes primarily cause these differences by comparing to observations of C/2012 S1 ISON obtained over a similar range of heliocentric distances. NASA and NSF research grants support this work. We also acknowledge the expert support of the IRTF and Keck support staffs during these observations.

  10. On the asymmetric evolution of the perihelion distances of near-Earth Jupiter family comets around the discovery time

    Science.gov (United States)

    Sosa, A.; Fernández, J. A.; Pais, P.

    2012-12-01

    We study the dynamical evolution of the near-Earth Jupiter family comets (NEJFCs) that came close to or crossed the Earth's orbit at the epoch of their discovery (perihelion distances qdisc time evolution of the mean perihelion distance bar{q} of the NEJFCs at the discovery time of each comet (taken as t = 0) and a past-future asymmetry of bar{q} in an interval -1000 yr, +1000 yr centred on t = 0, confirming previous results. The asymmetry indicates that there are more comets with greater q in the past than in the future. For comparison purposes, we also analysed the population of near-Earth asteroids in cometary orbits (defined as those with aphelion distances Q > 4.5 AU) and with absolute magnitudes H time a large sample of fictitious comets, cloned from the observed NEJFCs, over a 20 000 yr time interval and started the integration before the comet's discovery time, when it had a perihelion distance q > 2 AU. By assuming that NEJFCs are mostly discovered when they decrease their perihelion distances below a certain threshold qthre = 1.05 AU for the first time during their evolution, we were able to reproduce the main features of the observed bar{q} evolution in the interval [-1000, 1000] yr with respect to the discovery time. Our best fits indicate that 40% of the population of NEJFCs would be composed of young, fresh comets that entered the region q spending at least 3000 yr in the q family comets (JFCs).

  11. Planetary perturbations and the origins of short-period comets

    International Nuclear Information System (INIS)

    Quinn, T.; Tremaine, S.; Duncan, M.

    1990-01-01

    To investigate the dynamical plausibility of possible sources for the short-period comets, a representative sample of comet orbits in the field of the sun and the giant planets was integrated, with the aim to determine whether the distribution of orbits from a proposed source that reach observable perihelia (q less than 2.5 AU) matches the observed distribution of short-period orbits. It is found that the majority of the short-period comets, those with orbital period P less than 20 yr (the Jupiter family), cannot arise from isotropic orbits with perihelia near Jupiter's orbit, because the resulting observable comet orbits have the wrong distribution in period, inclination, and argument of perihelion. The simulations also show that Jupiter-family comets cannot arise from isotropic orbits with perihelia in the Uranus-Neptune region. On the other hand, a source of low-inclination Neptune-crossing orbits yields a distribution of observable Jupiter-family comets that is consistent with the data in all respects. These results imply that the Jupiter-family comets arise from a disk source in the outer solar system rather than from the Oort comet cloud. 30 refs

  12. Periodic Comet Shoemaker-Levy 9 Collides with Jupiter. Background Material for Science Teachers.

    Science.gov (United States)

    Jet Propulsion Lab., Pasadena, CA.

    In July of 1994, fragments of Comet Shoemaker-Levy collided with Jupiter. This document has been provided to better inform students of the work that will be done by scientists and others involved in the study of this event. This document offers some background material on Jupiter, comets, what has and possibly will happen, and how scientists…

  13. Comet Shoemaker-Levy 9/Jupiter collision observed with a high resolution speckle imaging system

    Energy Technology Data Exchange (ETDEWEB)

    Gravel, D. [Lawrence Livermore National Lab., CA (United States)

    1994-11-15

    During the week of July 16, 1994, comet Shoemaker-Levy 9, broken into 20 plus pieces by tidal forces on its last orbit, smashed into the planet Jupiter, releasing the explosive energy of 500 thousand megatons. A team of observers from LLNL used the LLNL Speckle Imaging Camera mounted on the University of California`s Lick Observatory 3 Meter Telescope to capture continuous sequences of planet images during the comet encounter. Post processing with the bispectral phase reconstruction algorithm improves the resolution by removing much of the blurring due to atmospheric turbulence. High resolution images of the planet surface showing the aftermath of the impact are probably the best that were obtained from any ground-based telescope. We have been looking at the regions of the fragment impacts to try to discern any dynamic behavior of the spots left on Jupiter`s cloud tops. Such information can lead to conclusions about the nature of the comet and of Jupiter`s atmosphere. So far, the Hubble Space Telescope has observed expanding waves from the G impact whose mechanism is enigmatic since they appear to be too slow to be sound waves and too fast to be gravity waves, given the present knowledge of Jupiter`s atmosphere. Some of our data on the G and L impact region complements the Hubble observations but, so far, is inconclusive about spot dynamics.

  14. Rotation of cometary nuclei: new light curves and an update of the ensemble properties of Jupiter-family comets

    Science.gov (United States)

    Kokotanekova, R.; Snodgrass, C.; Lacerda, P.; Green, S. F.; Lowry, S. C.; Fernández, Y. R.; Tubiana, C.; Fitzsimmons, A.; Hsieh, H. H.

    2017-11-01

    We report new light curves and phase functions for nine Jupiter-family comets (JFCs). They were observed in the period 2004-2015 with various ground telescopes as part of the Survey of Ensemble Physical Properties of Cometary Nuclei as well as during devoted observing campaigns. We add to this a review of the properties of 35 JFCs with previously published rotation properties. The photometric time series were obtained in Bessel R, Harris R and SDSS r΄ filters and were absolutely calibrated using stars from the Pan-STARRS survey. This specially developed method allowed us to combine data sets taken at different epochs and instruments with absolute-calibration uncertainty down to 0.02 mag. We used the resulting time series to improve the rotation periods for comets 14P/Wolf, 47P/Ashbrook-Jackson, 94P/Russell and 110P/Hartley 3 and to determine the rotation rates of comets 93P/Lovas and 162P/Siding Spring for the first time. In addition to this, we determined the phase functions for seven of the examined comets and derived geometric albedos for eight of them. We confirm the known cut-off in bulk densities at ˜0.6 g cm-3 if JFCs are strengthless. Using a model for prolate ellipsoids with typical density and elongations, we conclude that none of the known JFCs requires tensile strength larger than 10-25 Pa to remain stable against rotational instabilities. We find evidence for an increasing linear phase function coefficient with increasing geometric albedo. The median linear phase function coefficient for JFCs is 0.046 mag deg-1 and the median geometric albedo is 4.2 per cent.

  15. Meteoroid Streams from Sunskirter Comet Breakup

    Science.gov (United States)

    Jenniskens, P. M.

    2012-12-01

    In its first year of operations, the CAMS project (Cameras for Allsky Meteor Surveillance) has measured 47,000 meteoroid orbits at Earth, including some that pass the Sun as close as 0.008 AU. The population density increases significantly above perihelion distance q = 0.037 AU. Meteoroid streams are known with q about 0.1 AU. The Sun has a profound effect on comets that pass at 0.04-0.16 AU distance, called the sunskirter comets. SOHO and STEREO see families of small comets called the Marsden and Kracht groups. Sunlight is efficiently scattered by small 10-m sized fragments, making those fragments visible even when far from Earth. These comet groups are associated with meteor showers on Earth, in particular the Daytime Arietids and Delta Aquariids. All are related to 96P/Machholz, a highly inclined short-period (5.2 year) Jupiter family comet that comes to within 0.12 AU from the Sun, the smallest perihelion distance known among numbered comets. The proximity of the Sun speeds up the disintegration process, providing us a unique window on this important decay mechanism of Jupiter family comets and creating meteoroid streams. These are not the only sunskirting comets, however. In this presentation, we will present CAMS observations of the complete low-q meteoroid population at Earth and review their association with known parent bodies.

  16. MOLECULAR OXYGEN IN OORT CLOUD COMET 1P/HALLEY

    Energy Technology Data Exchange (ETDEWEB)

    Rubin, M.; Altwegg, K. [Physikalisches Institut, University of Bern, Sidlerstrasse 5, CH-3012 Bern (Switzerland); Dishoeck, E. F. van [Leiden Observatory, Leiden University, P.O. Box 9513, 2300 RA Leiden (Netherlands); Schwehm, G. [ESA (retired) Science Operations Department, ESTEC, Keplerlaan 1, 2201 AZ Noordwijk (Netherlands)

    2015-12-10

    Recently, the ROSINA mass spectrometer suite on board the European Space Agency's Rosetta spacecraft discovered an abundant amount of molecular oxygen, O{sub 2}, in the coma of Jupiter family comet 67P/Churyumov–Gerasimenko of O{sub 2}/H{sub 2}O = 3.80 ± 0.85%. It could be shown that O{sub 2} is indeed a parent species and that the derived abundances point to a primordial origin. Crucial questions are whether the O{sub 2} abundance is peculiar to comet 67P/Churyumov–Gerasimenko or Jupiter family comets in general, and also whether Oort cloud comets such as comet 1P/Halley contain similar amounts of molecular oxygen. We investigated mass spectra obtained by the Neutral Mass Spectrometer instrument during the flyby by the European Space Agency's Giotto probe of comet 1P/Halley. Our investigation indicates that a production rate of O{sub 2} of 3.7 ± 1.7% with respect to water is indeed compatible with the obtained Halley data and therefore that O{sub 2} might be a rather common and abundant parent species.

  17. Ensemble Properties of Comets in the Sloan Digital Sky Survey

    Energy Technology Data Exchange (ETDEWEB)

    Solontoi, Michael; /Adler Planetarium, Chicago; Ivezic, Zeljko; /Washington U., Seattle, Astron. Dept.; Juric, Mario; /Harvard Coll. Observ.; Becker, Andrew C.; /Washington U., Seattle, Astron. Dept.; Jones, Lynne; /Washington U., Seattle, Astron. Dept.; West, Andrew A.; /Boston U.; Kent, Steve; /Fermilab; Lupton, Robert H.; /Princeton U. Observ.; Claire, Mark; /Washington U., Seattle, Astron. Dept.; Knapp, Gillian R.; /Princeton U. Observ.; Quinn, Tom; /Washington U., Seattle, Astron. Dept. /Princeton U. Observ.

    2012-02-01

    We present the ensemble properties of 31 comets (27 resolved and 4 unresolved) observed by the Sloan Digital Sky Survey (SDSS). This sample of comets represents about 1 comet per 10 million SDSS photometric objects. Five-band (u, g, r, i, z) photometry is used to determine the comets colors, sizes, surface brightness profiles, and rates of dust production in terms of the Afp formalism. We find that the cumulative luminosity function for the Jupiter Family Comets in our sample is well fit by a power law of the form N(comets. The resolved comets show an extremely narrow distribution of colors (0.57 {+-} 0.05 in g - r for example), which are statistically indistinguishable from that of the Jupiter Trojans. Further, there is no evidence of correlation between color and physical, dynamical, or observational parameters for the observed comets.

  18. Asteroid Family Associations of Main-Belt Comets

    Science.gov (United States)

    Hsieh, Henry H.; Novakovic, Bojan; Kim, Yoonyoung; Brasser, Ramon

    2016-10-01

    We present a population-level analysis of the asteroid family associations of known main-belt comets or main-belt comet candidates (which, to date, have largely just been analyzed on individual bases as they have been discovered). In addition to family associations that have already been reported in the literature, we have identified dynamical relationships between 324P/La Sagra and the Alauda family, P/2015 X6 (PANSTARRS) and the Aeolia family, and P/2016 G1 (PANSTARRS) and the Adeona family. We will discuss the overall implications of these family associations, particularly as they pertain to the hypothesis that members of primitive asteroid family members may be more susceptible to producing observable sublimation-driven dust emission activity, and thus becoming main-belt comets. We will also discuss the significance of other dynamical and physical properties of a family or sub-family as they relate to the likelihood of that family containing one or more currently active main-belt comets.

  19. Hypervolatiles in a Jupiter-family Comet: Observations of 45P/Honda-Mrkos-Pajdušáková Using iSHELL at the NASA-IRTF

    Science.gov (United States)

    DiSanti, Michael A.; Bonev, Boncho P.; Dello Russo, Neil; Vervack, Ronald J., Jr.; Gibb, Erika L.; Roth, Nathan X.; McKay, Adam J.; Kawakita, Hideyo; Feaga, Lori M.; Weaver, Harold A.

    2017-12-01

    We used the new high spectral resolution cross-dispersed facility spectrograph, iSHELL, at the NASA Infrared Telescope Facility on Maunakea, HI, to observe Jupiter-family comet (JFC) 45P/Honda-Mrkos-Pajdušáková. We report water production rates, as well as production rates and abundance ratios relative to H2O, for eight trace parent molecules (native ices), CO, CH4, H2CO, CH3OH, HCN, NH3, C2H2, and C2H6, on 2 days spanning UT 2017 January 6/7 and 7/8, shortly following perihelion. Trace species were measured simultaneously with H2O and/or OH prompt emission, a proxy for H2O production, thereby providing a robust and consistent means of establishing the native ice composition of 45P. Its favorable geocentric radial velocity (approximately -35 km s-1) permitted sensitive measures of the “hypervolatiles” CO and CH4, which are substantially undercharacterized in JFCs. Our results represent the most precise ground-based measures of CO and CH4 to date in a JFC, providing a foundation for building meaningful statistics regarding their abundances. The abundance ratio for CH4 in 45P (0.79% ± 0.06% relative to H2O) was consistent with its median value as measured among Oort Cloud comets, whereas CO (0.60% ± 0.04%) was strongly depleted. Compared with all measured comets, HCN (0.049% ± 0.012%) was strongly depleted, CH3OH (3.6% ± 0.3%) was enriched, and the remaining species were consistent with their respective median abundances. The volatile composition measured for 45P could indicate processing of ices prior to their incorporation into its nucleus. Spatial analysis of emissions suggests enhanced release of more volatile species into the sunward-facing hemisphere of the coma.

  20. Constraining the Volatile Composition and Coma Photochemistry in Jupiter Family Comet 41P/Tuttle-Giacobini-Kresak with High Resolution IR and Optical Spectroscopy

    Science.gov (United States)

    McKay, Adam; DiSanti, Michael; Cochran, Anita; Dello Russo, Neil; Bonev, Boncho; Vervack, Ronald; Gibb, Erika; Roth, Nathan; Kawakita, Hideyo

    2018-01-01

    Over the past 20 years optical and IR spectroscopy of cometary comae has expanded our understanding both of cometary volatile composition and coma photochemistry. However, these observations tend to be biased towards Nearly Isotropic Comets (NIC'S) from the Oort Cloud, rather than the generally fainter and less active Jupiter Family Comets (JFC's) that are thought to originate from the Scattered Disk. However, early 2017 provided a rare opportunity to study several JFC's. We present preliminary results from IR and optical spectroscopy of JFC 41P/Tuttle-Giacobini-Kresak obtained during its 2017 apparition. IR spectra were obtained with the NIRSPEC instrument on Keck II and the new iSHELL spectrograph on NASA IRTF. High spectral resolution optical spectra were obtained with the Tull Coude spectrograph on the 2.7-meter Harlan J. Smith Telescope at McDonald Observatory. We will discuss mixing ratios of HCN, NH3, C2H6, C2H2, H2CO, and CH3OH compared to H2O and compare these to previous observations of comets. Preliminary results from the NIRSPEC observations indicate that 41P has typical C2H2 and HCN abundances compared to other JFC's, while the C2H6 abundance is similar to that of NIC's, but is enriched compared to other JFC's. H2CO appears to be heavily depleted in 41P. Analysis of the iSHELL spectra is underway and we will include results from these observations, which complement those from NIRSPEC and extend the scope or our compositional study by measuring additional molecules. We will also present abundances for CN, C2, NH2, C3, and CH obtained from the optical spectra and discuss the implications for the coma photochemistry.This work is supported by the NASA Postdoctoral Program, administered by the Universities Space Research Association, with additional funding from the NSF and NASA PAST.

  1. Jupiter Laser Facility - COMET Laser

    Data.gov (United States)

    Federal Laboratory Consortium — COMET has 4 beam configurations with uncompressed pulse lengths from 500 ps to 6 ns, compressed pulses to 0.5 ps, and beam energies up to 20 J. COMET can fire every...

  2. Dynamical evolution and disintegration of comets

    Science.gov (United States)

    Kresak, L.

    Current concepts of the origin and evolution of comets are reviewed. The place of their formation from which they have been delivered into the Oort reservoir is still an open problem, but the region of the outermost planets appears most probable. The interplay of stellar and planetary perturbations can be traced by model computations which reveal both the general trends and the variety of individual evolutionary paths. The present structure of the system of comets is controlled by the dynamical evolution of its individual members, limited by their physical aging by disintegration. Where the lifetimes are short, as in the Jupiter family of short-period comets, an equilibrium between elimination and replenishment is established. The role of different destructive processes and the resulting survival times are discussed.

  3. Migration of Interplanetary Dust and Comets

    Science.gov (United States)

    Ipatov, S. I.; Mather, J. C.

    Our studies of migration of interplanetary dust and comets were based on the results of integration of the orbital evolution of 15,000 dust particles and 30,000 Jupiter-family comets (JFCs) [1-3]. For asteroidal and cometary particles, the values of the ratio β between the radiation pressure force and the gravitational force varied from 1000 and 1 microns. The probability of a collision of a dust particle started from an asteroid or JFC with the Earth during a lifetime of the particle was maximum at diameter d ˜100 microns. For particles started from asteroids and comet 10P, this maximum probability was ˜0.01. Different studies of migration of dust particles and small bodies testify that the fraction of cometary dust particles of the overall dust population inside Saturn's orbit is considerable and can be dominant: (1) Cometary dust particles produced both inside and outside Jupiter's orbit are needed to explain the observed constant number density of dust particles at 3-18 AU. The number density of migrating trans-Neptunian particles near Jupiter's orbit is smaller by a factor of several than that beyond Saturn's orbit. Only a small fraction of asteroidal particles can get outside Jupiter's orbit. (2) Some (less than 0.1%) JFCs can reach typical near-Earth object orbits and remain there for millions of years. Dynamical lifetimes of most of the former JFCs that have typical near-Earth object orbits are about 106 -109 yr, so during most of these times they were extinct comets. Such former comets could disintegrate and produce a lot of mini-comets and dust. (3) Comparison of the velocities of zodiacal dust particles (velocities of MgI line) based on the distributions of particles over their orbital elements obtained in our runs [3-4] with the velocities obtained at the WHAM observations shows that only asteroidal dust particles cannot explain these observations, and particles produced by comets, including high-eccentricity comets, are needed for such explanation

  4. Observing comets

    CERN Document Server

    James, Nick

    2003-01-01

    Since comet Shoemaker-Levy collided with the planet Jupiter with stupendous force in 1994 there has been an upsurge of amateur interest in comets Most comets are first discovered by amateur astronomers because there are so many amateurs looking for them, and techniques and instruments have improved dramatically in the past few years After a short but detailed introduction to the comets themselves Nick James and Gerald North describe comet hunting, photographing and imaging comets, and digital image processing The use of computers for orbital calculations and even helping to discover new comets is given a full chapter, as are advanced techniques including comet photometry and spectroscopy This comprehensive book has an accompanying CD-ROM and is at once a "primer" for comet hunters and a reference text for more advanced amateur astronomers

  5. Dynamical evolution and disintegration of comets

    International Nuclear Information System (INIS)

    Kresak, L.

    1982-01-01

    Current concepts of the origin and evolution of comets are reviewed. The place of their formation from which they have been delivered into the Oort reservoir is still an open problem, but the region of the outermost planets appears most probable. The interplay of stellar and planetary perturbations can be traced by model computations which reveal both the general trends and the variety of individual evolutionary paths. The present structure of the system of comets is controlled by the dynamical evolution of its individual members limited by their physical aging by disintegration. Where the lifetimes are short, as in the Jupiter family of short-period comets, an equilibrium between elimination and replenishment is established. The role of different destructive processes and the resulting survival times are discussed. (Auth.)

  6. Comet 169P/NEAT(=2002EX12): More Dead Than Alive

    Science.gov (United States)

    Kasuga, T.; Balam, D. D.; Wiegert, P. A.

    2011-10-01

    The Jupiter family comet 169P/NEAT (previously known as asteroid 2002 EX12) has a dynamical association with the ?-Capriconid meteoroid stream. In this paper, we present photometric observations of comet 169P/NEAT to further investigate the physical characters of its disintegration state related to the stream. The comet shows a point-like surface brightness profile limiting contamination due to coma emission at ˜ 4% at most, indicating no evidence of outgassing. An upper limit on the fraction of the surface that could be sublimating water ice of disintegration of the parent at every return.

  7. FORMATION CONDITIONS OF ICY MATERIALS IN COMET C/2004 Q2 (MACHHOLZ). I. MIXING RATIOS OF ORGANIC VOLATILES

    International Nuclear Information System (INIS)

    Kobayashi, Hitomi; Kawakita, Hideyo

    2009-01-01

    We observed comet C/2004 Q2 (Machholz) with the Keck II telescope in late 2005 January and we obtained the spectra of C/2004 Q2 including many emission lines of volatile species such as H 2 O, HCN, C 2 H 2 , NH 3 , CH 4 , C 2 H 6 , CH 3 OH, and H 2 CO with high-signal-to-noise ratios. Based on our observations, we determined the mixing ratios of the molecules relative to H 2 O in C/2004 Q2. Since C/2004 Q2 is one of Oort Cloud comets, it is interesting to compare our results with other Oort Cloud comets. The mixing ratios of C 2 H 2 /H 2 O and C 2 H 6 /H 2 O in C/2004 Q2 are lower than typical Oort Cloud comets. Especially, C 2 H 2 /H 2 O ratio in C/2004 Q2 is as lower as Jupiter Family comets. However, mixing ratios of other molecules in C/2004 Q2 are similar to typical Oort Cloud comets. C/2004 Q2 might be the intermediate type between Oort Cloud and Jupiter Family comets. To investigate the formation conditions of such intermediate type comet, we focused on the (C 2 H 2 +C 2 H 6 )/H 2 O ratios and C 2 H 6 /(C 2 H 6 +C 2 H 2 ) ratios in comets from the viewpoint of conversion from C 2 H 2 to C 2 H 6 in the precometary ices. We found that (C 2 H 2 +C 2 H 6 )/H 2 O ratio in C/2004 Q2 is lower than the ratio in typical Oort Cloud comets while C 2 H 6 /(C 2 H 6 +C 2 H 2 ) ratio in C/2004 Q2 is consistent with the ratio of the typical Oort Cloud comets and Jupiter family comets. If we assume that the cometary volatiles such as H 2 O, CH 4 , and C 2 H 2 formed similar environment, the C 2 H 6 /(C 2 H 6 +C 2 H 2 ) ratio might not be sensitive in the temperature range where hydrogen-addition reactions occurred and cometesimals formed (∼30 K). We employed the dynamical-evolutional model and the chemical-evolutional model to determine the formation region of C/2004 Q2 more precisely. We found that comet C/2004 Q2 might have formed in relatively inner region of the solar nebula than the typical Oort Cloud comet (but slightly further than 5 AU from the proto-Sun).

  8. Comparison of the oxidation state of Fe in comet 81P/Wild 2 and chondritic-porous interplanetary dust particles

    Energy Technology Data Exchange (ETDEWEB)

    Ogliore, Ryan C.; Butterworth, Anna L.; Fakra, Sirine C.; Gainsforth, Zack; Marcus, Matthew A.; Westphal, Andrew J.

    2010-07-16

    The fragile structure of chondritic-porous interplanetary dust particles (CP-IDPs) and their minimal parent-body alteration have led researchers to believe these particles originate in comets rather than asteroids where aqueous and thermal alterations have occurred. The solar elemental abundances and atmospheric entry speed of CP-IDPs also suggest a cometary origin. With the return of the Stardust samples from Jupiter-family comet 81P/Wild 2, this hypothesis can be tested. We have measured the Fe oxidation state of 15 CP-IDPs and 194 Stardust fragments using a synchrotron-based x-ray microprobe. We analyzed {approx}300 ng of Wild 2 material - three orders of magnitude more material than other analyses comparing Wild 2 and CP-IDPs. The Fe oxidation state of these two samples of material are > 2{sigma} different: the CP-IDPs are more oxidized than the Wild 2 grains. We conclude that comet Wild 2 contains material that formed at a lower oxygen fugacity than the parent-body, or parent bodies, of CP-IDPs. If all Jupiter-family comets are similar, they do not appear to be consistent with the origin of CP-IDPs. However, comets that formed from a different mix of nebular material and are more oxidized than Wild 2 could be the source of CP-IDPs.

  9. Comet P/2010 V1 as a Natural Disintegration Laboratory

    Science.gov (United States)

    Jewitt, David; Weaver, Harold A.; Mutchler, Maximilian J.; Agarwal, Jessica; Meech, Karen Jean; Li, Jing; Kleyna, Jan; Ishiguro, Masateru; Wainscoat, Richard J.; Hui, Man-To

    2016-10-01

    Discovered in outburst in 2010, Jupiter-family comet P/2010 V1 (Ikeya-Murukami) was found to be split in observations at the end of 2015. We used the Hubble Space Telescope to obtain deep images of P/2010 V1 at high angular resolution in the 2016 January to March period. The resulting data, by far the best yet obtained for any split or disrupting comet, show the astrometric, photometric and morphological evolution of about 30 fragments. We will present the first results for the velocity dispersion, photometric distribution and variability and discuss the measurements in terms of models for the breakup.

  10. Reservoirs for Comets: Compositional Differences Based on Infrared Observations

    Science.gov (United States)

    Disanti, Michael A.; Mumma, Michael J.

    Tracing measured compositions of comets to their origins continues to be of keen interest to cometary scientists and to dynamical modelers of Solar System formation and evolution. This requires building a taxonomy of comets from both present-day dynamical reservoirs: the Kuiper Belt (hereafter KB), sampled through observation of ecliptic comets (primarily Jupiter Family comets, or JFCs), and the Oort cloud (OC), represented observationally by the long-period comets and by Halley Family comets (HFCs). Because of their short orbital periods, JFCs are subjected to more frequent exposure to solar radiation compared with OC comets. The recent apparitions of the JFCs 9P/Tempel 1 and 73P/Schwassmann-Wachmann 3 permitted detailed observations of material issuing from below their surfaces—these comets added significantly to the compositional database on this dynamical class, which is under-represented in studies of cometary parent volatiles. This chapter reviews the latest techniques developed for analysis of high-resolution spectral observations from ˜2-5 μm, and compares measured abundances of native ices among comets. While no clear compositional delineation can be drawn along dynamical lines, interesting comparisons can be made. The sub-surface composition of comet 9P, as revealed by the Deep Impact ejecta, was similar to the majority of OC comets studied. Meanwhile, 73P was depleted in all native ices except HCN, similar to the disintegrated OC comet C/1999 S4 (LINEAR). These results suggest that 73P may have formed in the inner giant planets' region while 9P formed farther out or, alternatively, that both JFCs formed farther from the Sun but with 73P forming later in time.

  11. Comet showers and the steady-state infall of comets from the Oort cloud

    International Nuclear Information System (INIS)

    Hills, J.G.

    1981-01-01

    The appearance of an inner edge to the Oort comet cloud at a semimajor axis of a = (1--2) x 10 4 AU is an observational artifact. Stellar perturbations are frequent enough and strong enough to assure that a constant fraction of the comets with semimajor axes greater than this are in orbits which bring them within the planetary region. Only infrequent, close stellar encounters are able to repopulate the planet-crossing orbits of comets with smaller semimajor axes. Owing to their relatively short orbital periods which return them frequently to the planetary system, the comets in these more tightly bound orbits will be deflected by Jupiter into drastically different orbits or be destroyed by solar heating before another close stellar passage repopulates their numbers. Comets with semimajor axes less than 2 x 10 4 AU appear in the inner solar system only in intense bursts or showers which last for a few orbital periods after the close passage of a star to the Sun. This is followed by a much longer span of time during which only comets with a>2 x 10 4 AU enter the planetary system. The theoretically determined location of the boundary between the semimajor axes of those comets which enter the planetary system only in bursts or showers and those which arrive in a steady stream is very abrupt and falls at the observed inner edge of the Oort cloud. We propose that the comets formed in the outer parts of the collapsing protosun, which had a radius of less than 5 x 10 3 AU. If this produced a first-generation comet cloud with a radius of 10 3 AU or greater, the coupled dynamical perturbations of passing stars and Jupiter will, of necessity, lead to the formation of a comet cloud similar that of the observed Oort comet cloud

  12. Comet 169P/NEAT(=2002 EX12): The Parent Body of the α-Capricornid Meteoroid Stream

    Science.gov (United States)

    Kasuga, Toshihiro; Balam, David D.; Wiegert, Paul A.

    2010-12-01

    The Jupiter-family comet 169P/NEAT (previously known as asteroid 2002 EX12) has a dynamical association with the α-Capricornid meteoroid stream. In this paper, we present photometric observations of comet 169P/NEAT to further investigate the physical characters of its disintegration state related to the stream. The comet shows a point-like surface brightness profile limiting contamination due to coma emission to ~4% at most, indicating no evidence of outgassing. An upper limit on the fraction of the surface that could be sublimating water ice of disintegration of the parent at every return.

  13. Origin and development of comets

    International Nuclear Information System (INIS)

    Kresak, L.

    1989-01-01

    The comets are the most primitive and probably also the oldest members of the solar system. Comet cores are brittle bodies of an irregular shape and of a size of 1 to 10 km whose main component is ice. Around 130 comets move along short-period paths whose aphelia are concentrated in the area of Jupiter. They are in the last stage of development. About 20 comets have periods of 20 to 200 years and feature higher motion stability. Roughly 180 comets have elliptical orbits of a period exceeding 200 years, 200 comets have parabolic and 120 comets have hyperbolic orbits. The most distant comets form the Oort cloud around the solar system consisting of about one billion comets. Comets originated roughly 4.6 thousand million years ago together with planets, probably inside the Oort cloud. (M.D.). 11 figs

  14. COMETARY VOLATILES AND THE ORIGIN OF COMETS

    International Nuclear Information System (INIS)

    A'Hearn, Michael F.; Feaga, Lori M.; Sunshine, Jessica M.; Besse, Sebastien; Bodewits, Dennis; Farnham, Tony L.; Kelley, Michael S.; Keller, H. Uwe; Kawakita, Hideyo; Hampton, Donald L.; Kissel, Jochen; Klaasen, Kenneth P.; Yeomans, Donald K.; McFadden, Lucy A.; Meech, Karen J.; Schultz, Peter H.; Thomas, Peter C.; Veverka, Joseph; Groussin, Olivier; Lisse, Carey M.

    2012-01-01

    We describe recent results on the CO/CO 2 /H 2 O composition of comets together with a survey of older literature (primarily for CO/H 2 O) and compare these with models of the protoplanetary disk. Even with the currently small sample, there is a wide dispersion in abundance ratios and little if any systematic difference between Jupiter-family comets (JFCs) and long-period and Halley-type comets (LPCs and HTCs). We argue that the cometary observations require reactions on grain surfaces to convert CO to CO 2 and also require formation of all types of comets in largely, but not entirely, overlapping regions, probably between the CO and CO 2 snow lines. Any difference in the regions of formation is in the opposite direction from the classical picture with the JFCs having formed closer to the Sun than the LPCs. In the classical picture, the LPCs formed in the region of the giant planets and the JFCs formed in the Kuiper Belt. However, these data suggest, consistent with suggestions on dynamical grounds, that the JFCs and LPCs formed in largely overlapping regions where the giant planets are today and with JFCs on average forming slightly closer to the Sun than did the LPCs. Presumably at least the JFCs passed through the scattered disk on their way to their present dynamical family.

  15. COMETARY VOLATILES AND THE ORIGIN OF COMETS

    Energy Technology Data Exchange (ETDEWEB)

    A' Hearn, Michael F.; Feaga, Lori M.; Sunshine, Jessica M.; Besse, Sebastien; Bodewits, Dennis; Farnham, Tony L.; Kelley, Michael S. [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States); Keller, H. Uwe [Institute for Geophysics and Extraterrestrial Physics, Technische Universitaet Braunschweig, D-38106 Braunschweig (Germany); Kawakita, Hideyo [Department of Physics, Kyoto Sangyo University, Kamigamo JP Kita-ku, Kyoto 603-8555 (Japan); Hampton, Donald L. [Geophysical Institute, University of Alaska Fairbanks, 903 Koyukuk Drive, Fairbanks, AK 99775 (United States); Kissel, Jochen [Max-Planck-Institut for Solar System Research, Max-Planck-Strasse 2, D-37191 Katlenburg-Lindau (Germany); Klaasen, Kenneth P.; Yeomans, Donald K. [Jet Propulsion Laboratory/Caltech, Pasadena, CA 91109 (United States); McFadden, Lucy A. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Meech, Karen J. [Institute for Astronomy, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); Schultz, Peter H. [Department of Geological Sciences, Brown University, Providence, RI 02912 (United States); Thomas, Peter C.; Veverka, Joseph [Department of Astronomy, Cornell University, Ithaca, NY 14853 (United States); Groussin, Olivier [Laboratoire d' Astrophysique de Marseille, Universite d' Aix-Marseille and CNRS, UMR7326, 38 rue F. Joliot-Curie, F-13388 Marseille Cedex 13 (France); Lisse, Carey M., E-mail: ma@astro.umd.edu [Space Department, JHU-APL, 11100 Johns Hopkins Road, Laurel, MD 20723 (United States); and others

    2012-10-10

    We describe recent results on the CO/CO{sub 2}/H{sub 2}O composition of comets together with a survey of older literature (primarily for CO/H{sub 2}O) and compare these with models of the protoplanetary disk. Even with the currently small sample, there is a wide dispersion in abundance ratios and little if any systematic difference between Jupiter-family comets (JFCs) and long-period and Halley-type comets (LPCs and HTCs). We argue that the cometary observations require reactions on grain surfaces to convert CO to CO{sub 2} and also require formation of all types of comets in largely, but not entirely, overlapping regions, probably between the CO and CO{sub 2} snow lines. Any difference in the regions of formation is in the opposite direction from the classical picture with the JFCs having formed closer to the Sun than the LPCs. In the classical picture, the LPCs formed in the region of the giant planets and the JFCs formed in the Kuiper Belt. However, these data suggest, consistent with suggestions on dynamical grounds, that the JFCs and LPCs formed in largely overlapping regions where the giant planets are today and with JFCs on average forming slightly closer to the Sun than did the LPCs. Presumably at least the JFCs passed through the scattered disk on their way to their present dynamical family.

  16. Jupiter's Big Bang.

    Science.gov (United States)

    McDonald, Kim A.

    1994-01-01

    Collision of a comet with Jupiter beginning July 16, 1994 will be observed by astronomers worldwide, with computerized information relayed to a center at the University of Maryland, financed by the National Aeronautics and Space Administration and National Science Foundation. Geologists and paleontologists also hope to learn more about earth's…

  17. Modeling Formaldehyde Emission in Comets

    Science.gov (United States)

    Disanti, M. A.; Reuter, D. C.; Bonev, B. P.; Mumma, M. J.; Villanueva, G. L.

    Modeling fluorescent emission from monomeric formaldehyde (H2CO) forms an integral part of our overall comprehensive program of measuring the volatile composition of comets through high-resolution (RP ~ 25,000) infrared spectroscopy using CSHELL at the IRTF and NIRSPEC at Keck II. The H2CO spectra contain lines from both the nu1 (symmetric CH2 stretch) and nu5 (asymmetric CH2 stretch) bands near 3.6 microns. We have acquired high-quality spectra of twelve Oort cloud comets, and at least six of these show clear emission from H2CO. We also detected H2CO with NIRSPEC in one Jupiter Family comet, 9P/Tempel 1, during Deep Impact observations. Our H2CO model, originally developed to interpret low-resolution spectra of comets Halley and Wilson (Reuter et al. 1989 Ap J 341:1045), predicts individual line intensities (g-factors) as a function of rotational temperature for approximately 1300 lines having energies up to approximately 400 cm^-1 above the ground state. Recently, it was validated through comparison with CSHELL spectra of C/2002 T7 (LINEAR), where newly developed analyses were applied to obtain robust determinations of both the rotational temperature and abundance of H2CO (DiSanti et al. 2006 Ap J 650:470). We are currently in the process of extending the model to higher rotational energy (i.e., higher rotational quantum number) in an attempt to improve the fit to high-J lines in our spectra of C/T7 and other comets. Results will be presented, and implications discussed.Modeling fluorescent emission from monomeric formaldehyde (H2CO) forms an integral part of our overall comprehensive program of measuring the volatile composition of comets through high-resolution (RP ~ 25,000) infrared spectroscopy using CSHELL at the IRTF and NIRSPEC at Keck II. The H2CO spectra contain lines from both the nu1 (symmetric CH2 stretch) and nu5 (asymmetric CH2 stretch) bands near 3.6 microns. We have acquired high-quality spectra of twelve Oort cloud comets, and at least six of

  18. Comparison of the Oxidation State of Fe in Comet 81P/Wild 2 and Chondritic-Porous Interplanetary Dust Particles

    OpenAIRE

    Ogliore, R. C.; Butterworth, A. L.; Fakra, S. C.; Gainsforth, Z.; Marcus, M. A.; Westphal, A. J.

    2010-01-01

    The fragile structure of chondritic-porous interplanetary dust particles (CP- IDPs) and their minimal parent-body alteration have led researchers to believe these particles originate in comets rather than asteroids where aqueous and thermal alteration have occurred. The solar elemental abundances and atmospheric entry speed of CP-IDPs also suggest a cometary origin. With the return of the Stardust samples from Jupiter-family comet 81P/Wild 2, this hypothesis can be tested. We have measured th...

  19. Where are the mini Kreutz-family comets?

    International Nuclear Information System (INIS)

    Ye, Quan-Zhi; Wiegert, Paul A.; Hui, Man-To; Kracht, Rainer

    2014-01-01

    The Kreutz family of sungrazing comets contains over 2000 known members, many of which are believed to be under ∼100 m sizes (mini comets) and have only been studied at small heliocentric distances (r H ) with space-based SOHO/STEREO spacecraft. To understand the brightening process of mini Kreutz comets, we conducted a survey using CFHT/MegaCam at moderate r H guided by SOHO/STEREO observations. We identify two comets that should be in our search area but are not detected, indicating that the comets have either followed a steeper brightening rate within the previously reported rapid brightening stage (the brightening burst), or the brightening burst starts earlier than expected. We present a composite analysis of the pre-perihelion light curves of five Kreutz comets that cover to ∼1 AU. We observe significant diversity in the light curves that can be used to grossly classify them into two types: C/Ikeya-Seki and C/SWAN follow the canonical r H −4 while the others follow r H −7 . In particular, C/SWAN seems to have undergone an outburst (Δm > 5 mag) or a rapid brightening (n ≳ 11) between r H = 1.06 AU and 0.52 AU, and shows hints of structural/compositional differences compared to other bright Kreutz comets. We also find evidence that the Kreutz comets as a population lose their mass less efficiently than the dynamically new comet, C/ISON, and are relatively devoid of species that drive C/ISON's activity at large r H . Concurrent observations of C/STEREO in different wavelengths also suggest that a blueward species such as CN may be the main driver for brightening bursts, instead of sodium as previously thought

  20. EPOXI: Comet 103p/Hartley 2 Observations from a Worldwide Campaign

    Science.gov (United States)

    Meech, K. J.; Hearn, M. F. A.; Bauer, J. M.; Bonev, B. P.; Charnley, S. B.; DiSanti, M. A.; Gersch, A.; Immler, S. M.; Kaluna, H. M.; Keane, J. V.; hide

    2011-01-01

    Earth- and space-based observations provide synergistic information for space mission encounters by providing data over longer timescales. at different wavelengths and using techniques that are impossible with an in situ flyby. We report here such observations in support of the EPOXI spacecraft flyby of comet 103P (Hartley 2. The nucleus is small and dark, and exhibited a very rapidly changing rotation period. Prior to the onset of activity, the period was approximately 16.4 hr. Starting in 2010 August the period changed from 16.6 hr to near 19 hr in December. With respect to dust composition, most volatiles and carbon and nitrogen isotope ratios, the comet is similar to other Jupiter-family comets. What is unusual is the dominance of CO2-driven activity near perihelion, which likely persists out to aphelion. Near perihelion the comet nucleus was surrounded by a large halo of water-ice grains that contributed significantly to the total water production.

  1. EPOXI: COMET 103P/HARTLEY 2 OBSERVATIONS FROM A WORLDWIDE CAMPAIGN

    International Nuclear Information System (INIS)

    Meech, K. J.; A'Hearn, M. F.; Bodewits, D.; Adams, J. A.; Bacci, P.; Bai, J.; Barrera, L.; Battelino, M.; Bauer, J. M.; Becklin, E.; Bhatt, B.; Biver, N.; Bockelee-Morvan, D.; Boehnhardt, H.; Boissier, J.; Bonev, B. P.; Borghini, W.; Brucato, J. R.; Bryssinck, E.; Buie, M. W.

    2011-01-01

    Earth- and space-based observations provide synergistic information for space mission encounters by providing data over longer timescales, at different wavelengths and using techniques that are impossible with an in situ flyby. We report here such observations in support of the EPOXI spacecraft flyby of comet 103P/Hartley 2. The nucleus is small and dark, and exhibited a very rapidly changing rotation period. Prior to the onset of activity, the period was ∼16.4 hr. Starting in 2010 August the period changed from 16.6 hr to near 19 hr in December. With respect to dust composition, most volatiles and carbon and nitrogen isotope ratios, the comet is similar to other Jupiter-family comets. What is unusual is the dominance of CO 2 -driven activity near perihelion, which likely persists out to aphelion. Near perihelion the comet nucleus was surrounded by a large halo of water-ice grains that contributed significantly to the total water production.

  2. CLATHRATE HYDRATES FORMATION IN SHORT-PERIOD COMETS

    International Nuclear Information System (INIS)

    Marboeuf, Ulysse; Mousis, Olivier; Petit, Jean-Marc; Schmitt, Bernard

    2010-01-01

    The initial composition of current models of cometary nuclei is only based on two forms of ice: crystalline ice for long-period comets and amorphous ice for short-period comets. A third form of ice, i.e., clathrate hydrate, could exist within the short-period cometary nuclei, but the area of formation of this crystalline structure in these objects has never been studied. Here, we show that the thermodynamic conditions in the interior of short-period comets allow the existence of clathrate hydrates in Halley-type comets. We show that their existence is viable in the Jupiter family comets only when the equilibrium pressure of CO clathrate hydrate is at least 1 order of magnitude lower than the usually assumed theoretical value. We calculate that the amount of volatiles that could be trapped in the clathrate hydrate layer may be orders of magnitude greater than the daily amount of gas released at the surface of the nucleus at perihelion. The formation and the destruction of the clathrate hydrate cages could then explain the diversity of composition of volatiles observed in comets, as well as some pre-perihelion outbursts. We finally show that the potential clathrate hydrate layer in comet 67P/Churyumov-Gerasimenko would, unfortunately, be deep inside the nucleus, out of reach of the Rosetta lander. However, such a clathrate hydrate layer would show up by the gas composition of the coma.

  3. A retrograde co-orbital asteroid of Jupiter.

    Science.gov (United States)

    Wiegert, Paul; Connors, Martin; Veillet, Christian

    2017-03-29

    Recent theoretical work in celestial mechanics has revealed that an asteroid may orbit stably in the same region as a planet, despite revolving around the Sun in the sense opposite to that of the planet itself. Asteroid 2015 BZ 509 was discovered in 2015, but with too much uncertainty in its measured orbit to establish whether it was such a retrograde co-orbital body. Here we report observations and analysis that demonstrates that asteroid 2015 BZ 509 is indeed a retrograde co-orbital asteroid of the planet Jupiter. We find that 2015 BZ 509 has long-term stability, having been in its current, resonant state for around a million years. This is long enough to preclude precise calculation of the time or mechanism of its injection to its present state, but it may be a Halley-family comet that entered the resonance through an interaction with Saturn. Retrograde co-orbital asteroids of Jupiter and other planets may be more common than previously expected.

  4. Finding Long Lost Lexell's Comet: The Fate of the First Discovered Near-Earth Object

    Science.gov (United States)

    Ye, Quan-Zhi; Wiegert, Paul A.; Hui, Man-To

    2018-04-01

    Jupiter-family Comet D/1770 L1 (Lexell) was the first discovered Near-Earth Object (NEO) and passed the Earth on 1770 July 1 at a recorded distance of 0.015 au. The comet was subsequently lost due to unfavorable observing circumstances during its next apparition followed by a close encounter with Jupiter in 1779. Since then, the fate of D/Lexell has attracted interest from the scientific community, and now we revisit this long-standing question. We investigate the dynamical evolution of D/Lexell based on a set of orbits recalculated using the observations made by Charles Messier, the comet’s discoverer, and find that there is a 98% chance that D/Lexell remains in the solar system by the year of 2000. This finding remains valid even if a moderate non-gravitational effect is imposed. Messier’s observations also suggest that the comet is one of the largest known near-Earth comets, with a nucleus of ≳10 km in diameter. This implies that the comet should have been detected by contemporary NEO surveys regardless of its activity level if it has remained in the inner solar system. We identify asteroid 2010 JL33 as a possible descendant of D/Lexell, with a 0.8% probability of chance alignment, but a direct orbital linkage of the two bodies has not been successfully accomplished. We also use the recalculated orbit to investigate the meteors potentially originating from D/Lexell. While no associated meteors have been unambiguously detected, we show that meteor observations can be used to better constrain the orbit of D/Lexell despite the comet being long lost.

  5. COLOR SYSTEMATICS OF COMETS AND RELATED BODIES

    Energy Technology Data Exchange (ETDEWEB)

    Jewitt, David, E-mail: jewitt@ucla.edu [Department of Earth, Planetary and Space Sciences, UCLA, 595 Charles Young Drive East, Los Angeles, CA 90095-1567 (United States)

    2015-12-15

    Most comets are volatile-rich bodies that have recently entered the inner solar system following long-term storage in the Kuiper belt and the Oort cloud reservoirs. These reservoirs feed several distinct, short-lived “small body” populations. Here, we present new measurements of the optical colors of cometary and comet-related bodies including long-period (Oort cloud) comets, Damocloids (probable inactive nuclei of long-period comets) and Centaurs (recent escapees from the Kuiper belt and precursors to the Jupiter family comets). We combine the new measurements with published data on short-period comets, Jovian Trojans and Kuiper belt objects to examine the color systematics of the comet-related populations. We find that the mean optical colors of the dust in short-period and long-period comets are identical within the uncertainties of measurement, as are the colors of the dust and of the underlying nuclei. These populations show no evidence for scattering by optically small particles or for compositional gradients, even at the largest distances from the Sun, and no evidence for ultrared matter. Consistent with earlier work, ultrared surfaces are common in the Kuiper belt and on the Centaurs, but not in other small body populations, suggesting that this material is hidden or destroyed upon entry to the inner solar system. The onset of activity in the Centaurs and the disappearance of the ultrared matter in this population begin at about the same perihelion distance (∼10 AU), suggesting that the two are related. Blanketing of primordial surface materials by the fallback of sub-orbital ejecta, for which we calculate a very short timescale, is the likely mechanism. The same process should operate on any mass-losing body, explaining the absence of ultrared surface material in the entire comet population.

  6. Ulysses dust measurements near Jupiter.

    Science.gov (United States)

    Grün, E; Zook, H A; Baguhl, M; Fechtig, H; Hanner, M S; Kissel, J; Lindblad, B A; Linkert, D; Linkert, G; Mann, I B

    1992-09-11

    Submicrometer- to micrometer-sized particles were recorded by the Ulysses dust detector within 40 days of the Jupiter flyby. Nine impacts were recorded within 50 Jupiter radii with most of them recorded after closest approach. Three of these impacts are consistent with particles on prograde orbits around Jupiter and the rest are believed to have resulted from gravitationally focused interplanetary dust. From the ratio of the impact rate before the Jupiter flyby to the impact rate after the Jupiter flyby it is concluded that interplanetary dust particles at the distance of Jupiter move on mostly retrograde orbits. On 10 March 1992, Ulysses passed through an intense dust stream. The dust detector recorded 126 impacts within 26 hours. The stream particles were moving on highly inclined and apparently hyperbolic orbits with perihelion distances of >5 astronomical units. Interplanetary dust is lost rather quickly from the solar system through collisions and other mechanisms and must be almost continuously replenished to maintain observed abundances. Dust flux measurements, therefore, give evidence of the recent rates of production from sources such as comets, asteroids, and moons, as well as the possible presence of interstellar grains.

  7. Linking main-belt comets to asteroid families

    Science.gov (United States)

    Novakovic, B.; Hsieh, H. H.; Cellino, A.

    2012-09-01

    Here we present our results obtained by applying different methods in order to establish a firm link between the main-belt comets (MBCs) and colisionally-formed asteroid families (AFs), i.e, to possibly find additional line of evidence supporting the hypothesis that MBCs may be preferentially found among the members of young AFs.

  8. Constraints on Comet 332P/Ikeya-Murakami

    Science.gov (United States)

    Hui, Man-To; Ye, Quan-Zhi; Wiegert, Paul

    2017-01-01

    Encke-type comet 332P/Ikeya-Murakami is experiencing cascading fragmentation events during its 2016 apparition. It is likely the first splitting Encke-type comet ever observed. A nongravitational solution to the astrometry reveals a statistical detection of the radial and transverse nongravitational parameters, {A}1=(1.54+/- 0.39)× {10}-8 au day‑2 and {A}2=(7.19+/- 1.92)× {10}-9 au day‑2, respectively, which implies a nucleus erosion rate of (9.1+/- 1.7)‰ per orbital revolution. The mass-loss rate likely has to be supported by a much larger fraction of an active surface area than known cases of short-period comets; it may be relevant to the ongoing fragmentation. We failed to detect any serendipitous pre-discovery observations of the comet in archival data from major sky surveys, whereby we infer that 332P used to be largely inactive, and is perhaps among the few short-period comets that have been reactivated from weakly active or dormant states. We therefore constrain an upper limit to the nucleus size as 2.0 ± 0.2 km in radius. A search for small bodies in similar orbits to that of 332P reveals comet P/2010 B2 (WISE) to be the best candidate. From an empirical generalized Jupiter-family (Encke-type included) comet population model, we estimate the likelihood of a chance alignment of the 332P–P/2010 B2 pair to be 1 in 33, a small number indicative of a genetic linkage between the two comets on a statistical basis. The pair possibly originated from a common progenitor, which underwent a disintegration event well before the twentieth century.

  9. Jupiter: Cosmic Jekyll and Hyde.

    Science.gov (United States)

    Grazier, Kevin R

    2016-01-01

    It has been widely reported that Jupiter has a profound role in shielding the terrestrial planets from comet impacts in the Solar System, and that a jovian planet is a requirement for the evolution of life on Earth. To evaluate whether jovians, in fact, shield habitable planets from impacts (a phenomenon often referred to as the "Jupiter as shield" concept), this study simulated the evolution of 10,000 particles in each of the jovian inter-planet gaps for the cases of full-mass and embryo planets for up to 100 My. The results of these simulations predict a number of phenomena that not only discount the "Jupiter as shield" concept, they also predict that in a Solar System like ours, large gas giants like Saturn and Jupiter had a different, and potentially even more important, role in the evolution of life on our planet by delivering the volatile-laden material required for the formation of life. The simulations illustrate that, although all particles occupied "non-life threatening" orbits at their onset of the simulations, a significant fraction of the 30,000 particles evolved into Earth-crossing orbits. A comparison of multiple runs with different planetary configurations revealed that Jupiter was responsible for the vast majority of the encounters that "kicked" outer planet material into the terrestrial planet region, and that Saturn assisted in the process far more than has previously been acknowledged. Jupiter also tends to "fix" the aphelion of planetesimals at its orbit irrespective of their initial starting zones, which has the effect of slowing their passages through the inner Solar System, and thus potentially improving the odds of accretion of cometary material by terrestrial planets. As expected, the simulations indicate that the full-mass planets perturb many objects into the deep outer Solar System, or eject them entirely; however, planetary embryos also did this with surprising efficiency. Finally, the simulations predict that Jupiter's capacity to

  10. AKARI NEAR-INFRARED SPECTROSCOPIC SURVEY FOR CO2 IN 18 COMETS

    International Nuclear Information System (INIS)

    Ootsubo, Takafumi; Kawakita, Hideyo; Hamada, Saki; Kobayashi, Hitomi; Yamaguchi, Mitsuru; Usui, Fumihiko; Nakagawa, Takao; Ueno, Munetaka; Ishiguro, Masateru; Sekiguchi, Tomohiko; Watanabe, Jun-ichi; Sakon, Itsuki; Shimonishi, Takashi; Onaka, Takashi

    2012-01-01

    We conducted a spectroscopic survey of cometary volatiles with the Infrared Camera on board the Japanese infrared satellite AKARI in the wavelength range from 2.5 to 5 μm. In our survey, 18 comets, including both the Oort cloud comets and the Jupiter-family comets, were observed in the period from 2008 June to 2010 January, most of which were observed at least twice. The prominent emission bands in the observed spectra are the fundamental vibrational bands of water (H 2 O) at 2.7 μm and carbon dioxide (CO 2 ) at 4.3 μm. The fundamental vibrational band of carbon monoxide (CO) around 4.7 μm and the broad emission feature, probably related to carbon-hydrogen-bearing molecules, can also be recognized around the 3.3-3.5-μm region in some of the comets. With respect to H 2 O, gas production rate ratios of CO 2 have been derived in 17 comets, except for the comet 29P/Schwassmann-Wachmann 1. Our data set provides the largest homogeneous database of CO 2 /H 2 O production rate ratios in comets obtained so far. The CO 2 /H 2 O production rate ratios are considered to reflect the composition of cometary ice when a comet is observed at a heliocentric distance within ∼2.5 AU, since H 2 O ice fully sublimates there. The CO 2 /H 2 O ratio in cometary ice spans from several to ∼30% among the comets observed at 2 in the comets seems to be smaller than unity based on our observations, although we only obtain upper limits for CO in most of the comets.

  11. Comet P/Machholtz and the Quadrantid meteor stream

    International Nuclear Information System (INIS)

    Mcintosh, B.A.

    1990-01-01

    Attention is drawn to the suggestive similarities between the calculated perturbation behavior of Comet P/Machholtz 1986 VIII, on the one hand, and on the other those of the Quadrantid, Delta Aquarid, and Arietid meteor streams. There appears to be adequate evidence for the formation by the Comets P/Machholtz and 1491-I, together with the three meteor streams, of a related complex controlled by Jupiter's gravitational perturbations; there is no comparably compelling information, however, bearing on the questions of parent-offspring or sibling relationships among these comets and meteor streams. 13 refs

  12. A Meteorite Dropping Superbolide from the Catastrophycally Disrupted Comet C1919Q2 Metcalf: A Pathway for Meteorites from Jupiter Family Comets

    Science.gov (United States)

    Trigo-Rodríguez, J. M.; Madiedo, J. M.; Williams, I. P.; Castro-Tirado, A. J.; Llorca, J.; Vítek, S.; Jelínek, M.

    2009-03-01

    A meter-sized meteoroid probably produced during the disintegration of comet C1919Q2 Metcalf was observed producing a -18 magn. bolide (MNRAS, in press).The progenitor meteoroid was sufficiently large and of high enough tensile strength to produce meteorites.

  13. The Disruption and Demise of Periodic Comet Shoemaker-Levy 9

    Science.gov (United States)

    Asphaug, Erik; Benz, Willy; Cuzzi, Jeffrey (Technical Monitor)

    1994-01-01

    The impact of the fragmented comet Shoemaker-Levy 9 (SL9) into Jupiter this July promises to change our understanding of the outer solar system. More than twenty mountain-sized conglomerates of ice and rock will hit the atmosphere at approx. 50 km/s over the course of a week beginning July 16, releasing approx. 10(exp 4) to 10(exp8) megatons of energy per burst, and providing unique and perhaps pivotal clues to the properties of comets and the physics of massive atmospheres. Because the fragments will strike the far side of Jupiter, data acquisition, analysis and interpretation will be quite sensitive to the actual size and energy of the fragments. We therefore examine an event which took place two summers ago, unnoticed and unobserved: the disruption of SL9 into a "string of pearls' as it passed within the Roche limit at perijove. We first demonstrate, on the basis of timescales of tidal interaction, that the comet could not have broken into 20+ fragments through a hierarchy of brittle fracture events. Next, noting that the tidal stress was too weak to have even fragmented an uncompressed mass of freshly fallen snow, we run models for a strengthless comet held together only by self-gravity. We explore the initial size, density, and rotation. We conclude that a 4 km diameter comet (smaller if a prograde rotator) of density approx. 0.5 g/cu cm disrupts and disperses into a chain of fragments similar to Shoemaker-Levy 9, whether we begin with 21, 85, 169, 700 or 2000 sub-grains. Gravitational reaccumulation is evidently the answer, and there is no need to invoke the presence of 21 "cometesimals" as the subscale of the comet. To explain how a comet can be weaker than uncompacted snow, we show that the ring-plane crossing prior to perijove could have caused total damage. Finally, we compute the tidal stress on impactors as they approach Jupiter this July. Objects of various density are moderately distorted but not disrupted by the time they strike the planet.

  14. IN SITU PLASMA MEASUREMENTS OF FRAGMENTED COMET 73P SCHWASSMANN–WACHMANN 3

    International Nuclear Information System (INIS)

    Gilbert, J. A.; Lepri, S. T.; Combi, M.; Zurbuchen, T. H.; Rubin, M.

    2015-01-01

    The interiors of comets contain some of the most pristine material in the solar system. Comet 73P/Schwassmann–Wachmann 3, discovered in 1930, is a Jupiter-family comet with a 5.34-year period. This comet split into 5 fragments in 1995 and disintegrated into nearly 70 major pieces in 2006. In 2006 May and June, recently ionized cometary particles originating from fragments including and surrounding some of these major objects were collected with the ACE/SWICS and Wind/STICS sensors. Due to a combination of the instrument characteristics and the close proximity of the fragments passing between those spacecraft and the Sun, unique measurements regarding the charge state composition and the elemental abundances of both cometary and heliospheric plasma were made during that time. The cometary material released from some of these fragments can be identified by the concentrations of water-group pickup ions having a mass-per-charge ratio of 16–18 amu e −1 , indicating that while these fragments are small, they are still actively sublimating. We present an analysis of cometary composition, spatial distribution, and heliospheric interactions, with a focus on helium, C + /O + , and water-group ions

  15. In Situ Plasma Measurements of Fragmented Comet 73P Schwassmann-Wachmann 3

    Science.gov (United States)

    Gilbert, J. A.; Lepri, S. T.; Rubin, M.; Combi, M.; Zurbuchen, T. H.

    2015-12-01

    The interiors of comets contain some of the most pristine material in the solar system. Comet 73P/Schwassmann-Wachmann 3, discovered in 1930, is a Jupiter-family comet with a 5.34-year period. This comet split into 5 fragments in 1995 and disintegrated into nearly 70 major pieces in 2006. In 2006 May and June, recently ionized cometary particles originating from fragments including and surrounding some of these major objects were collected with the ACE/SWICS and Wind/STICS sensors. Due to a combination of the instrument characteristics and the close proximity of the fragments passing between those spacecraft and the Sun, unique measurements regarding the charge state composition and the elemental abundances of both cometary and heliospheric plasma were made during that time. The cometary material released from some of these fragments can be identified by the concentrations of water-group pickup ions having a mass-per-charge ratio of 16-18 amu e-1, indicating that while these fragments are small, they are still actively sublimating. We present an analysis of cometary composition, spatial distribution, and heliospheric interactions, with a focus on helium, C+/O+, and water-group ions.

  16. IN SITU PLASMA MEASUREMENTS OF FRAGMENTED COMET 73P SCHWASSMANN–WACHMANN 3

    Energy Technology Data Exchange (ETDEWEB)

    Gilbert, J. A.; Lepri, S. T.; Combi, M.; Zurbuchen, T. H. [University of Michigan, Ann Arbor, MI 48109 (United States); Rubin, M., E-mail: jagi@umich.edu [Universität Bern, Bern (Switzerland)

    2015-12-10

    The interiors of comets contain some of the most pristine material in the solar system. Comet 73P/Schwassmann–Wachmann 3, discovered in 1930, is a Jupiter-family comet with a 5.34-year period. This comet split into 5 fragments in 1995 and disintegrated into nearly 70 major pieces in 2006. In 2006 May and June, recently ionized cometary particles originating from fragments including and surrounding some of these major objects were collected with the ACE/SWICS and Wind/STICS sensors. Due to a combination of the instrument characteristics and the close proximity of the fragments passing between those spacecraft and the Sun, unique measurements regarding the charge state composition and the elemental abundances of both cometary and heliospheric plasma were made during that time. The cometary material released from some of these fragments can be identified by the concentrations of water-group pickup ions having a mass-per-charge ratio of 16–18 amu e{sup −1}, indicating that while these fragments are small, they are still actively sublimating. We present an analysis of cometary composition, spatial distribution, and heliospheric interactions, with a focus on helium, C{sup +}/O{sup +}, and water-group ions.

  17. AKARI NEAR-INFRARED SPECTROSCOPIC SURVEY FOR CO{sub 2} IN 18 COMETS

    Energy Technology Data Exchange (ETDEWEB)

    Ootsubo, Takafumi [Astronomical Institute, Graduate School of Science, Tohoku University, Aramaki, Aoba-ku, Sendai 980-8578 (Japan); Kawakita, Hideyo; Hamada, Saki; Kobayashi, Hitomi; Yamaguchi, Mitsuru [Koyama Astronomical Observatory, Kyoto Sangyo University, Motoyama, Kamigamo, Kita-Ku, Kyoto 603-8555 (Japan); Usui, Fumihiko; Nakagawa, Takao; Ueno, Munetaka [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 252-5210 (Japan); Ishiguro, Masateru [Department of Physics and Astronomy, Seoul National University, 599 Gwanak-ro, Gwanak-gu, Seoul 151-742 (Korea, Republic of); Sekiguchi, Tomohiko [Department of Teacher Training, Hokkaido University of Education, Asahikawa Campus, Hokumon 9, Asahikawa, Hokkaido 070-8621 (Japan); Watanabe, Jun-ichi [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Sakon, Itsuki; Shimonishi, Takashi; Onaka, Takashi, E-mail: ootsubo@astr.tohoku.ac.jp [Department of Astronomy, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan)

    2012-06-10

    We conducted a spectroscopic survey of cometary volatiles with the Infrared Camera on board the Japanese infrared satellite AKARI in the wavelength range from 2.5 to 5 {mu}m. In our survey, 18 comets, including both the Oort cloud comets and the Jupiter-family comets, were observed in the period from 2008 June to 2010 January, most of which were observed at least twice. The prominent emission bands in the observed spectra are the fundamental vibrational bands of water (H{sub 2}O) at 2.7 {mu}m and carbon dioxide (CO{sub 2}) at 4.3 {mu}m. The fundamental vibrational band of carbon monoxide (CO) around 4.7 {mu}m and the broad emission feature, probably related to carbon-hydrogen-bearing molecules, can also be recognized around the 3.3-3.5-{mu}m region in some of the comets. With respect to H{sub 2}O, gas production rate ratios of CO{sub 2} have been derived in 17 comets, except for the comet 29P/Schwassmann-Wachmann 1. Our data set provides the largest homogeneous database of CO{sub 2}/H{sub 2}O production rate ratios in comets obtained so far. The CO{sub 2}/H{sub 2}O production rate ratios are considered to reflect the composition of cometary ice when a comet is observed at a heliocentric distance within {approx}2.5 AU, since H{sub 2}O ice fully sublimates there. The CO{sub 2}/H{sub 2}O ratio in cometary ice spans from several to {approx}30% among the comets observed at <2.5 AU (13 out of the 17 comets). Alternatively, the ratio of CO/CO{sub 2} in the comets seems to be smaller than unity based on our observations, although we only obtain upper limits for CO in most of the comets.

  18. Evolution of comets into asteroids

    International Nuclear Information System (INIS)

    Weissman, P.R.; A'hearn, M.F.; Rickman, H.; Mcfadden, L.A.

    1989-01-01

    This paper presents observational evidence, together with recent theoretical developments, supporting the hypothesis that at least some asteroids might be extinct or dormant cometary nuclei. The observations include the discovery of a number of apparent asteroids in chaotic Jupiter-crossing orbits; the IRAS discovery of 1983 TB, an asteroid in the same orbit as the Geminid meteor shower; the apparent low activity levels determined for several short-period comet nuclei including Comet Halley; and observations of possible cometary activity in some earth-crossing asteroids. Theoretical developments include explorations of dynamical mechanisms capable of delivering main-belt asteroids into earth-crossing orbits, and an understanding of possible processes which may affect comets during their long residence in the Oort cloud and lead to the formation of nonvolatile crusts before and after they enter the planetary system. 143 refs

  19. Voyage to Jupiter.

    Science.gov (United States)

    Morrison, David; Samz, Jane

    This publication illustrates the features of Jupiter and its family of satellites pictured by the Pioneer and the Voyager missions. Chapters included are: (1) "The Jovian System" (describing the history of astronomy); (2) "Pioneers to Jupiter" (outlining the Pioneer Mission); (3) "The Voyager Mission"; (4)…

  20. The Rosetta Mission to Comet 67P/ Churyumov-Gerasimenko

    Science.gov (United States)

    Buratti, Bonnie J.

    2017-06-01

    As remnant bodies left over from the formation of the Solar System, comets offer clues to the physical conditions and architecture of the protosolar nebula. The Rosetta spacecraft, which included an orbiter and a lander that were built and managed by the European Space Agency with NASA contributing four instruments and scientific expertise, was the first mission to orbit and study a comet through a perihelion passage. The targeted Jupiter-family comet 67P/ Churyumov-Gerasimenko, is seemingly two distinct planetesimals stuck together. The comet has not melted or been processed substantially, except for its outer layers, which consist of reaccreted dust and a crust of heated, devolatized, and annealed refractory materials and organics. The exceptionally low density (0.53 gm/cc) of 67P/ implies it is a rubble pile. The comet also appears to contain a hierarchy of building blocks: smaller spherically shaped meter-sized bodies can be seen in its interior, and even smaller cm-sized pebbles were imaged by the camera as the spacecraft made a soft crash landing on the comet’s surface on 30 September 2016. The unexpected discovery of molecular oxygen, nitrogen, and hydrogen imply that 67P/ was formed under cold conditions not exceeding 30K. The discovery of many organic compounds, including the amino acid glycine, lends support to the idea that comets, which originate in the Kuiper Belt and the Oort Cloud, brought the building blocks of life to Earth. More laboratory data on organic compounds would help to identify additional organic compounds on the comet. The differences between cometary and terrestrial D/H ratios suggest that comets are not the primary source of terrestrial water, although data on more comets is needed to confirm this result.Besides being primordial objects offering a window into the formation of solar systems, comets are astrophysical laboratories, ejecting dust and charged particles into the plasma comprising the solar wind. Several unusual phenomena

  1. MSSSO CASPIR STAR CALS BEFORE SL9 IMPACTS WITH JUPITER V1.0

    Data.gov (United States)

    National Aeronautics and Space Administration — This archive contains star images used as calibrations in preparation for the collision of Comet Shoemaker-Levy 9 with Jupiter obtained with CASPIR on the Australian...

  2. Optical design of the comet Shoemaker-Levy speckle camera

    Energy Technology Data Exchange (ETDEWEB)

    Bissinger, H. [Lawrence Livermore National Lab., CA (United States)

    1994-11-15

    An optical design is presented in which the Lick 3 meter telescope and a bare CCD speckle camera system was used to image the collision sites of the Shoemaker-Levy 9 comet with the Planet Jupiter. The brief overview includes of the optical constraints and system layout. The choice of a Risley prism combination to compensate for the time dependent atmospheric chromatic changes are described. Plate scale and signal-to-noise ratio curves resulting from imaging reference stars are compared with theory. Comparisons between un-corrected and reconstructed images of Jupiter`s impact sites. The results confirm that speckle imaging techniques can be used over an extended time period to provide a method to image large extended objects.

  3. Vaporization of comet nuclei: Light curves and life times

    Energy Technology Data Exchange (ETDEWEB)

    Cowan, J J [Harvard Univ., Cambridge, MA (USA). Center for Astrophysics; A' Hearn, M F [Maryland Univ., College Park (USA)

    1979-10-01

    The authors have examined the effects of vaporization from the nucleus of a comet and show that a latitude dependence of vaporization can, in some cases, explain asymmetries in commetary light curves. They also find that a non-uniform distribution of solar radiation over a comet can considerably shorten the vaporization lifetime compared to the results normally obtained by assuming that the nuclear surface is isothermal. Independent of any latitude effects, comets with CO/sub 2/-dominated nuclei and with periherlion distances less than 0.5 AU have vaporization lifetimes less than or comparable to their dynamical ejection times. This may explain the observed deficit of comets with small perihelion distances. Similarly comets with CO/sub 2/-dominated nuclei and perihelia near Jupiter's orbit have vaporization lifetimes that are shorter than the time for capture into short-period orbits. They suggest, therefore, that at least some new comets are composed in large part of CO/sub 2/, while only H/sub 2/O-dominated comets, with lower vaporization rates, can survive to be captured into short-period orbits.

  4. ACE-SWICS In Situ Plasma Composition of Fragmented Comet 73P/Schwassmann-Wachmann 3

    Science.gov (United States)

    Gilbert, J. A.; Lepri, S. T.; Rubin, M.; Zurbuchen, T.

    2013-12-01

    The interiors of comets contain some of the most pristine material in the solar system. Comet 73P/Schwassmann-Wachmann 3, discovered in 1930 with a double nucleus, is a Jupiter-family comet with a 5.34-year period. This comet split into 5 fragments in 1995 and disintegrated into nearly 70 pieces in 2006. In May and June of 2006, recently ionized cometary particles originating from some of these fragments were collected with the ACE-SWICS sensor. Due to a combination of the close proximity of the fragments passing between ACE-SWICS and the Sun, and the instrument characteristics, unique measurements regarding the charge state composition and the elemental abundances of both cometary and heliospheric plasma were made during this time. The cometary material released from some of these fragments can be identified by the concentrations of water-group pick-up ions having a mass-per-charge of 16-18 amu/e. With a focus on Helium, Carbon, and water-group ions, we present an analysis of the cometary plasma. Charge state ratios of C+/O+ fall below 0.1 during detection of comet fragment plasma, and there is a clear increase in He+ during fragment crossings. The C/O ratio and He charge states are used to provide constraints on the activity of the cometary fragments and also the spatial distribution of the extended and ionized cometary tail.

  5. Comet 17P/Holmes: contrast in activity between before and after the 2007 outburst

    Energy Technology Data Exchange (ETDEWEB)

    Ishiguro, Masateru; Kim, Yoonyoung; Warjurkar, Dhanraj S.; Ham, Ji-Beom [Department of Physics and Astronomy, Seoul National University, Gwanak, Seoul 151-742 (Korea, Republic of); Kim, Junhan [Department of Astronomy and Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Usui, Fumihiko [Department of Astronomy, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Vaubaillon, Jeremie J. [Observatoire de Paris, I.M.C.C.E., Denfert Rochereau, Bat. A., F-75014 Paris (France); Ishihara, Daisuke [Department of Physics, School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602 (Japan); Hanayama, Hidekazu [Ishigakijima Astronomical Observatory, National Astronomical Observatory of Japan, Ishigaki, Okinawa 907-0024 (Japan); Sarugaku, Yuki; Hasegawa, Sunao [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 252-5210 (Japan); Kasuga, Toshihiro; Watanabe, Jun-ichi [National Astronomical Observatory, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Pyo, Jeonghyun [Korea Astronomy and Space Science Institute, Daejeon 305-348 (Korea, Republic of); Kuroda, Daisuke [National Institutes of Natural Sciences, Okayama Astrophysical Observatory, Kamogata-cho, Okayama 719-0232 (Japan); Ootsubo, Takafumi [Astronomical Institute, Tohoku University, Aramaki, Aoba-ku, Sendai 980-8578 (Japan); Sakamoto, Makoto; Narusawa, Shin-ya; Takahashi, Jun [Nishi-Harima Astronomical Observatory, Center for Astronomy, University of Hyogo, Sayo, Hyogo 679-5313 (Japan); Akisawa, Hiroki, E-mail: ishiguro@astro.snu.ac.kr [Himeji City Science Museum, Himeji, Hyogo 671-2222 (Japan)

    2013-11-20

    A Jupiter-family comet, 17P/Holmes, underwent outbursts in 1892 and 2007. In particular, the 2007 outburst is known as the greatest outburst over the past century. However, little is known about the activity before the outburst because it was unpredicted. In addition, the time evolution of the nuclear physical status has not been systematically studied. Here, we study the activity of 17P/Holmes before and after the 2007 outburst through optical and mid-infrared observations. We found that the nucleus was highly depleted in its near-surface icy component before the outburst but that it became activated after the 2007 outburst. Assuming a conventional 1 μm sized grain model, we derived a surface fractional active area of 0.58% ± 0.14% before the outburst whereas the area was enlarged by a factor of ∼50 after the 2007 outburst. We also found that large (≥1 mm) particles could be dominant in the dust tail observed around aphelion. Based on the size of the particles, the dust production rate was ≳170 kg s{sup –1} at a heliocentric distance of r{sub h} = 4.1 AU, suggesting that the nucleus was still active around the aphelion passage. The nucleus color was similar to that of the dust particles and average for a Jupiter-family comet but different from that of most Kuiper Belt objects, implying that color may be inherent to icy bodies in the solar system. On the basis of these results, we concluded that more than 76 m of surface material was blown off by the 2007 outburst.

  6. Comet 17P/Holmes: contrast in activity between before and after the 2007 outburst

    International Nuclear Information System (INIS)

    Ishiguro, Masateru; Kim, Yoonyoung; Warjurkar, Dhanraj S.; Ham, Ji-Beom; Kim, Junhan; Usui, Fumihiko; Vaubaillon, Jeremie J.; Ishihara, Daisuke; Hanayama, Hidekazu; Sarugaku, Yuki; Hasegawa, Sunao; Kasuga, Toshihiro; Watanabe, Jun-ichi; Pyo, Jeonghyun; Kuroda, Daisuke; Ootsubo, Takafumi; Sakamoto, Makoto; Narusawa, Shin-ya; Takahashi, Jun; Akisawa, Hiroki

    2013-01-01

    A Jupiter-family comet, 17P/Holmes, underwent outbursts in 1892 and 2007. In particular, the 2007 outburst is known as the greatest outburst over the past century. However, little is known about the activity before the outburst because it was unpredicted. In addition, the time evolution of the nuclear physical status has not been systematically studied. Here, we study the activity of 17P/Holmes before and after the 2007 outburst through optical and mid-infrared observations. We found that the nucleus was highly depleted in its near-surface icy component before the outburst but that it became activated after the 2007 outburst. Assuming a conventional 1 μm sized grain model, we derived a surface fractional active area of 0.58% ± 0.14% before the outburst whereas the area was enlarged by a factor of ∼50 after the 2007 outburst. We also found that large (≥1 mm) particles could be dominant in the dust tail observed around aphelion. Based on the size of the particles, the dust production rate was ≳170 kg s –1 at a heliocentric distance of r h = 4.1 AU, suggesting that the nucleus was still active around the aphelion passage. The nucleus color was similar to that of the dust particles and average for a Jupiter-family comet but different from that of most Kuiper Belt objects, implying that color may be inherent to icy bodies in the solar system. On the basis of these results, we concluded that more than 76 m of surface material was blown off by the 2007 outburst.

  7. Prediction of the return of Comet P/Grigg-Skjellerup in 1987

    International Nuclear Information System (INIS)

    Sitarski, G.

    1986-01-01

    Using 82 observations made in the period 1966-1982 during the last four apparitions of the comet, the corrections of orbital elements were determined together with nongravitational parameters A 1 , A 2 and with a parameter D of a displacement of the photometric center from the center of mass of the comet. It was found that a value of the secular acceleration diminished in comparison with such a value before the close approach of the comet Jupiter in 1964; the nongravitational parameters of Style 2 in Marsden's notation now are: A 1 = +0.0371, A 2 = +0.008. To make the best prediction of the comet's return in 1987, the orbit was improved using 67 observations from the last two apparitions of the comet in 1977 and 1982, and taking the constant values of A 1 , A 2 as determined earlier; basing on the latter orbit the ephemeris of the comet for 1987 was computed. 3 refs., 2 tabs. (author)

  8. High Resolution 3D Radar Imaging of Comet Interiors

    Science.gov (United States)

    Asphaug, E. I.; Gim, Y.; Belton, M.; Brophy, J.; Weissman, P. R.; Heggy, E.

    2012-12-01

    Knowing the interiors of comets and other primitive bodies is fundamental to our understanding of how planets formed. We have developed a Discovery-class mission formulation, Comet Radar Explorer (CORE), based on the use of previously flown planetary radar sounding techniques, with the goal of obtaining high resolution 3D images of the interior of a small primitive body. We focus on the Jupiter-Family Comets (JFCs) as these are among the most primitive bodies reachable by spacecraft. Scattered in from far beyond Neptune, they are ultimate targets of a cryogenic sample return mission according to the Decadal Survey. Other suitable targets include primitive NEOs, Main Belt Comets, and Jupiter Trojans. The approach is optimal for small icy bodies ~3-20 km diameter with spin periods faster than about 12 hours, since (a) navigation is relatively easy, (b) radar penetration is global for decameter wavelengths, and (c) repeated overlapping ground tracks are obtained. The science mission can be as short as ~1 month for a fast-rotating JFC. Bodies smaller than ~1 km can be globally imaged, but the navigation solutions are less accurate and the relative resolution is coarse. Larger comets are more interesting, but radar signal is unlikely to be reflected from depths greater than ~10 km. So, JFCs are excellent targets for a variety of reasons. We furthermore focus on the use of Solar Electric Propulsion (SEP) to rendezvous shortly after the comet's perihelion. This approach leaves us with ample power for science operations under dormant conditions beyond ~2-3 AU. This leads to a natural mission approach of distant observation, followed by closer inspection, terminated by a dedicated radar mapping orbit. Radar reflections are obtained from a polar orbit about the icy nucleus, which spins underneath. Echoes are obtained from a sounder operating at dual frequencies 5 and 15 MHz, with 1 and 10 MHz bandwidths respectively. The dense network of echoes is used to obtain global 3D

  9. Family Portrait of the Small Inner Satellites of Jupiter

    Science.gov (United States)

    1997-01-01

    These images, taken by Galileo's solid state imaging system between November 1996 and June 1997, provide the first ever 'family portrait' of the four small, irregularly shaped moons that orbit Jupiter in the zone between the planet's ring and the larger Galilean satellites. The moons are shown in their correct relative sizes, with north approximately up in all cases. From left to right, arranged in order of increasing distance from Jupiter, are Metis (longest dimension is approximately 60 kilometers or 37 miles across), Adrastea (20 kilometers or 12 miles across), Amalthea (247 kilometers or 154 miles across), and Thebe (116 kilometers or 72 miles across). While Amalthea, the largest of these four tiny moons, was imaged by NASA's two Voyager spacecraft in 1979 with a resolution comparable to what is shown here, the new Galileo observations represent the first time that Metis, Adrastea, and Thebe have been seen as more than points of light.The Jet Propulsion Laboratory, Pasadena, CA manages the Galileo mission for NASA's Office of Space Science, Washington, DC. JPL is an operating division of California Institute of Technology (Caltech).This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://www.jpl.nasa.gov/ galileo.

  10. On the existence of a comet belt beyond Neptune

    International Nuclear Information System (INIS)

    Fernandez, J.A.

    1980-01-01

    The possible existence of a comet belt in connection with the origin of the short-period comets is analysed. It is noted that the current theory - that these comets originate as near-parabolic comets captured by Jupiter and the other giant planets - implies an excessive wastage of comets lost in hyperbolic orbits, which is avoided in the present model. The following picture is predicted. Solid conglomerates up to approximately 10 18 g were formed by gravitational instabilities in the belt region (about 35 to 50 AU). A further fragmentation-accretion process led to a power-law mass distribution similar to that observed in the asteroids. Since then, close encounters between members of the belt have provoked the diffusion of some of them with the effect that they have become subject to the strong perturbations of Neptune. Of these a small number pass from one planet to the next inside and end as short-period comets. By means of a Monte Carlo method, the influence of close encounters between belt comets is then studied in relation to the diffusion of their orbits. It is concluded that if such a belt contains members with masses equal to or greater than that of Ceres, the orbital diffusion could proceed fast enough to maintain the number of observed short-period comets in a steady state. (author)

  11. Asteroid families, dynamics and astrometry

    International Nuclear Information System (INIS)

    Williams, J.G.; Gibson, J.

    1987-01-01

    The proper elements and family assignments for the 1227 Palomar-Leiden Survey asteroids of high quality were tabulated. In addition to the large table, there are also auxiliary tables of Mars crossers and commensurate objects, histograms of the proper element distributions, and a discussion. Probably the most important part of the discussion describes the Mars crossing boundary, how the closest distances of approach to Mars and Jupiter are calculated, and why the observed population of Mars crossers should bombard that planet episodically rather than uniformly. Analytical work was done to derive velocity distributions of family forming events from proper element distributions subject to assumptions which may be appropriate for cratering events. Software was developed for a microcomputer to permit plotting of the proper elements. Three orthogonal views are generated and stereo pairs can be printed when desired. This program was created for the study of asteroid families. The astrometry task is directed toward measuring and reducing positions on faint comets and the minor planets with less common orbits. The observational material is CCD frames taken with the Palomar 1.5 m telescope. Positions of 10 comets and 16 different asteroids were published on the Minor Planet Circulars

  12. A PROTOSOLAR NEBULA ORIGIN FOR THE ICES AGGLOMERATED BY COMET 67P/CHURYUMOV–GERASIMENKO

    Energy Technology Data Exchange (ETDEWEB)

    Mousis, O.; Vernazza, P. [Aix Marseille Université, CNRS, LAM (Laboratoire d’Astrophysique de Marseille) UMR 7326, F-13388 Marseille (France); Lunine, J. I. [Center For Radiophysics And Space Research, Space Sciences Building Cornell University, Ithaca, NY 14853 (United States); Luspay-Kuti, A.; Hässig, M.; Waite, J. H. [Department of Space Research, Southwest Research Institute, 6220 Culebra Road, San Antonio, TX 78228 (United States); Guillot, T. [Laboratoire J.-L. Lagrange, Université de Nice-Sophia Antipolis, CNRS, Observatoire de la Côte d’Azur, BP 4229, F-06304 Nice (France); Marty, B. [CRPG-CNRS, Nancy-Université, 15 rue Notre Dame des Pauvres, F-54501 Vandoeuvre-lès-Nancy (France); Ali-Dib, M. [Université de Franche-Comté, Institut UTINAM, CNRS/INSU, UMR 6213, Besançon Cedex (France); Wurz, P.; Altwegg, K.; Bieler, A.; Rubin, M., E-mail: olivier.mousis@lam.fr [Physikalisches Institut, University of Bern, Sidlerstrasse 5, CH-3012 Bern (Switzerland)

    2016-03-10

    The nature of the icy material accreted by comets during their formation in the outer regions of the protosolar nebula (PSN) is a major open question in planetary science. Some scenarios of comet formation predict that these bodies agglomerated from crystalline ices condensed in the PSN. Concurrently, alternative scenarios suggest that comets accreted amorphous ice originating from the interstellar cloud or from the very distant regions of the PSN. On the basis of existing laboratory and modeling data, we find that the N{sub 2}/CO and Ar/CO ratios measured in the coma of the Jupiter-family comet 67P/Churyumov–Gerasimenko by the Rosetta Orbiter Spectrometer for Ion and Neutral Analysis instrument on board the European Space Agency’s Rosetta spacecraft match those predicted for gases trapped in clathrates. If these measurements are representative of the bulk N{sub 2}/CO and Ar/CO ratios in 67P/Churyumov–Gerasimenko, it implies that the ices accreted by the comet formed in the nebula and do not originate from the interstellar medium, supporting the idea that the building blocks of outer solar system bodies have been formed from clathrates and possibly from pure crystalline ices. Moreover, because 67P/Churyumov–Gerasimenko is impoverished in Ar and N{sub 2}, the volatile enrichments observed in Jupiter’s atmosphere cannot be explained solely via the accretion of building blocks with similar compositions and require an additional delivery source. A potential source may be the accretion of gas from the nebula that has been progressively enriched in heavy elements due to photoevaporation.

  13. Origin of Short-Perihelion Comets

    Science.gov (United States)

    Guliyev, A. S.

    2011-01-01

    New regularities for short-perihelion comets are found. Distant nodes of cometary orbits of Kreutz family are concentrated in a plane with ascending node 76 and inclination 267 at the distance from 2 up to 3 a.u. and in a very narrow interval of longitudes. There is a correlation dependence between q and cos I concerning the found plane (coefficient of correlation 0.41). Similar results are received regarding to cometary families of Meyer, Kracht and Marsden. Distant nodes of these comets are concentrated close three planes (their parameters are discussed in the article) and at distances 1.4; 0.5; 6 a.u. accordingly. It is concluded that these comet groups were formed as a result of collision of parent bodies with meteoric streams. One more group, consisting of 7 comets is identified. 5 comet pairs are selected among sungrazers.

  14. Comet radar explorer

    Science.gov (United States)

    Farnham, Tony; Asphaug, Erik; Barucci, Antonella; Belton, Mike; Bockelee-Morvan, Dominique; Brownlee, Donald; Capria, Maria Teresa; Carter, Lynn; Chesley, Steve; Farnham, Tony; Gaskell, Robert; Gim, Young; Heggy, Essam; Herique, Alain; Klaasen, Ken; Kofman, Wlodek; Kreslavsky, Misha; Lisse, Casey; Orosei, Roberto; Plaut, Jeff; Scheeres, Dan

    The Comet Radar Explorer (CORE) is designed to perform a comprehensive and detailed exploration of the interior, surface, and inner coma structures of a scientifically impor-tant Jupiter family comet. These structures will be used to investigate the origins of cometary nuclei, their physical and geological evolution, and the mechanisms driving their spectacular activity. CORE is a high heritage spacecraft, injected by solar electric propulsion into orbit around a comet. It is capable of coherent deep radar imaging at decameter wavelengths, high resolution stereo color imaging, and near-IR imaging spectroscopy. Its primary objective is to obtain a high-resolution map of the interior structure of a comet nucleus at a resolution of ¿100 elements across the diameter. This structure shall be related to the surface geology and morphology, and to the structural details of the coma proximal to the nucleus. This is an ideal complement to the science from recent comet missions, providing insight into how comets work. Knowing the structure of the interior of a comet-what's inside-and how cometary activity works, is required before we can understand the requirements for a cryogenic sample return mission. But more than that, CORE is fundamental to understanding the origin of comets and their evolution in time. The mission is made feasible at low cost by the use of now-standard MARSIS-SHARAD reflec-tion radar imaging hardware and data processing, together with proven flight heritage of solar electric propulsion. Radar flight heritage has been demonstrated by the MARSIS radar on Mars Express (Picardi et al., Science 2005; Plaut et al., Science 2007), the SHARAD radar onboard the Mars Reconnaissance Orbiter (Seu et al., JGR 2007), and the LRS radar onboard Kaguya (Ono et al, EPS 2007). These instruments have discovered detailed subsurface structure to depths of several kilometers in a variety of terrains on Mars and the Moon. A reflection radar deployed in orbit about a comet

  15. Disintegration of comet nuclei

    International Nuclear Information System (INIS)

    Ksanfomality, Leonid V

    2012-01-01

    The breaking up of comets into separate pieces, each with its own tail, was seen many times by astronomers of the past. The phenomenon was in sharp contrast to the idea of the eternal and unchangeable celestial firmament and was commonly believed to be an omen of impending disaster, especially for comets with tails stretching across half the sky. It is only now that we have efficient enough space exploration tools to see comet nuclei and even - in the particular case of small comet Hartley-2 in 2010 - to watch their disintegration stage. There are also other suspected candidates for disintegration in the vast family of comet nuclei and other Solar System bodies. (physics of our days)

  16. Disintegration of comet nuclei

    Science.gov (United States)

    Ksanfomality, Leonid V.

    2012-02-01

    The breaking up of comets into separate pieces, each with its own tail, was seen many times by astronomers of the past. The phenomenon was in sharp contrast to the idea of the eternal and unchangeable celestial firmament and was commonly believed to be an omen of impending disaster, especially for comets with tails stretching across half the sky. It is only now that we have efficient enough space exploration tools to see comet nuclei and even - in the particular case of small comet Hartley-2 in 2010 - to watch their disintegration stage. There are also other suspected candidates for disintegration in the vast family of comet nuclei and other Solar System bodies.

  17. COMET 169P/NEAT(=2002 EX12): THE PARENT BODY OF THE α-CAPRICORNID METEOROID STREAM

    International Nuclear Information System (INIS)

    Kasuga, Toshihiro; Wiegert, Paul A.; Balam, David D.

    2010-01-01

    The Jupiter-family comet 169P/NEAT (previously known as asteroid 2002 EX 12 ) has a dynamical association with the α-Capricornid meteoroid stream. In this paper, we present photometric observations of comet 169P/NEAT to further investigate the physical characters of its disintegration state related to the stream. The comet shows a point-like surface brightness profile limiting contamination due to coma emission to ∼4% at most, indicating no evidence of outgassing. An upper limit on the fraction of the surface that could be sublimating water ice of -4 is obtained with an upper limit to the mass loss of ∼10 -2 kg s -1 . The effective radius of nucleus is found to be 2.3 ± 0.4 km. Red filter photometry yields a rotational period of 8.4096 ± 0.0012 hr, and the range of the amplitude 0.29 ± 0.02 mag is indicative of a moderately spherical shape having a projected axis ratio ∼1.3. The comet shows redder colors than the Sun, being compatible with other dead comet candidates. The calculated lost mass per revolution is ∼10 9 kg. If it has sustained this mass loss over the estimated 5000 yr age of the α-Capricornid meteoroid stream, the total mass loss from 169P/NEAT (∼10 13 kg) is consistent with the reported stream mass (∼10 13 -10 15 kg), suggesting that the stream is the product of steady disintegration of the parent at every return.

  18. Rosetta/VIRTIS-M spectral data: Comet 67P/CG compared to other primitive small bodies.

    Science.gov (United States)

    De Sanctis, M. C.; Capaccioni, F.; Filacchione, G.; Erard, S.; Tosi, F.; Ciarniello, M.; Raponi, A.; Piccioni, G.; Leyrat, C.; Bockelée-Morvan, D.; Drossart, P.; Fornasier, S.

    2014-12-01

    VIRTIS-M, the Visible InfraRed Thermal Imaging Spectrometer, onboard the Rosetta Mission orbiter (Coradini et al., 2007) acquired data of the comet 67P/Churyumov-Gerasimenko in the 0.25-5.1 µm spectral range. The initial data, obtained during the first mission phases to the comet, allow us to derive albedo and global spectral properties of the comet nucleus as well as spectra of different areas on the nucleus. The characterization of cometary nuclei surfaces and their comparison with those of related populations such as extinct comet candidates, Centaurs, near-Earth asteroids (NEAs), trans-Neptunian objects (TNOs), and primitive asteroids is critical to understanding the origin and evolution of small solar system bodies. The acquired VIRTIS data are used to compare the global spectral properties of comet 67P/CG to published spectra of other cometary nuclei observed from ground or visited by space mission. Moreover, the spectra of 67P/Churyumov-Gerasimenko are also compared to those of primitive asteroids and centaurs. The comparison can give us clues on the possible common formation and evolutionary environment for primitive asteroids, centaurs and Jupiter-family comets. Authors acknowledge the funding from Italian and French Space Agencies. References: Coradini, A., Capaccioni, F., Drossart, P., Arnold, G., Ammannito, E., Angrilli, F., Barucci, A., Bellucci, G., Benkhoff, J., Bianchini, G., Bibring, J. P., Blecka, M., Bockelee-Morvan, D., Capria, M. T., Carlson, R., Carsenty, U., Cerroni, P., Colangeli, L., Combes, M., Combi, M., Crovisier, J., De Sanctis, M. C., Encrenaz, E. T., Erard, S., Federico, C., Filacchione, G., Fink, U., Fonti, S., Formisano, V., Ip, W. H., Jaumann, R., Kuehrt, E., Langevin, Y., Magni, G., McCord, T., Mennella, V., Mottola, S., Neukum, G., Palumbo, P., Piccioni, G., Rauer, H., Saggin, B., Schmitt, B., Tiphene, D., Tozzi, G., Space Science Reviews, Volume 128, Issue 1-4, 529-559, 2007.

  19. The Impact of a Large Object with Jupiter in July 2009

    Science.gov (United States)

    Sanchez-Lavega, Agustin; Wesley, A.; Orton, G.; Chodas, P.; Hueso, R.; Perez-Hoyos, S.; Fletcher, L.; Yanamandra-Fisher, P.; Legarreta, J.; Gomez-Forrellad, J. M.

    2010-05-01

    The only major impact ever observed directly in the Solar System was that of a large fragmented comet with Jupiter in July (1994) (Comet Shoemaker-Levy 9; SL9). We report here the observation of a second, single, large impact on Jupiter that occurred on 19 July 2009 at a latitude of -55° with an orthogonal entry trajectory and a lower incidence angle compared to those of SL9. The size of the initial aerosol cloud debris was 4,800 km East-West and 2,500 km North-South. Comparison its properties with those produced by the SL9 fragments, coupled with dynamical calculations of possible pre-impact orbits, indicates that the impactor was most probably an icy body with a size of 0.5-1 km. We calculate that the rate of collisions of this magnitude may be five to ten times more frequent than previously thought. The search for unpredicted impacts, such as the current one, could be best performed in the near-infrared methane absorption bands at 890 nm and in the 2.12 to 2.3 μm K methane-hydrogen absorption band, where the high-altitude aerosols detach by their brightness relative to Jupiter's primary clouds. We present measurements of the debris dispersion by Jovian winds from a long-term imaging campaign with ground-based telescopes. Ackowledgements: Work was supported by the Spanish MICIIN AYA2009-10701 with FEDER and Grupos Gobierno Vasco IT-464-07, by NASA funds to JPL, Caltech, by the NASA Postdoctoral Program at JPL, and by the Glasstone Fellowship program at Oxford.

  20. Dust Production of Comet 21P/Giacobini-Zinner Using Broadband Photometry

    Science.gov (United States)

    Blaauw, R. C.; Suggs, R. M.; Cooke, W.

    2012-01-01

    Comet 21P/Giacobini-Zinner is a Jupiter family comet, approximately 2 km in diameter, and is established to be the parent of the Draconids, a meteor shower known to outburst. In 1933 and 1946 up to 10,000 meteors per hour were reported for the Draconids, and 2011 saw a minor Draconid outburst. Meteor stream modeling/forecasting being a primary focus for the NASA Meteoroid Environment Office, it was decided to monitor 21P for three purposes: firstly to find the apparent and absolute magnitude with respect to heliocentric distance; second to calculate Af , a quantity that describes the dust production rate and is used in models to predict the activity of the Draconids; and thirdly to detect possible increases in cometary activity, which could correspond to future Draconid meteor outbursts. A similar study was done for 21P during its 2004-2006 close approach to the Sun in which apparent and absolute magnitudes were found with various heliocentric distances, as well as the dust production. At 2.32 AU from the Sun, 21P possessed an apparent magnitude of 17.05 and Af of 83 cm, and an apparent magnitude of 15.91 and Af of 130.66 cm at 1.76 AU from the sun.

  1. Giant comets and mass extinctions of life

    Science.gov (United States)

    Napier, W. M.

    2015-03-01

    I find evidence for clustering in age of well-dated impact craters over the last 500 Myr. At least nine impact episodes are identified, with durations whose upper limits are set by the dating accuracy of the craters. Their amplitudes and frequency are inconsistent with an origin in asteroid breakups or Oort cloud disturbances, but are consistent with the arrival and disintegration in near-Earth orbits of rare, giant comets, mainly in transit from the Centaur population into the Jupiter family and Encke regions. About 1 in 10 Centaurs in Chiron-like orbits enter Earth-crossing epochs, usually repeatedly, each such epoch being generally of a few thousand years' duration. On time-scales of geological interest, debris from their breakup may increase the mass of the near-Earth interplanetary environment by two or three orders of magnitude, yielding repeated episodes of bombardment and stratospheric dusting. I find a strong correlation between these bombardment episodes and major biostratigraphic and geological boundaries, and propose that episodes of extinction are most effectively driven by prolonged encounters with meteoroid streams during bombardment episodes. Possible mechanisms are discussed.

  2. DUST FROM COMET 209P/LINEAR DURING ITS 2014 RETURN: PARENT BODY OF A NEW METEOR SHOWER, THE MAY CAMELOPARDALIDS

    Energy Technology Data Exchange (ETDEWEB)

    Ishiguro, Masateru [Department of Physics and Astronomy, Seoul National University, Gwanak, Seoul 151-742 (Korea, Republic of); Kuroda, Daisuke [Okayama Astrophysical Observatory, National Astronomical Observatory of Japan, Asakuchi, Okayama 719-0232 (Japan); Hanayama, Hidekazu [Ishigakijima Astronomical Observatory, National Astronomical Observatory of Japan, Ishigaki, Okinawa 907-0024 (Japan); Takahashi, Jun; Takagi, Yuhei; Morihana, Kumiko; Honda, Satoshi; Arai, Akira [Nishi-Harima Astronomical Observatory, Center for Astronomy, University of Hyogo, Sayo, Hyogo 679-5313 (Japan); Hasegawa, Sunao; Sarugaku, Yuki [Institute of Space and Astronautical Science (ISAS), Japan Aerospace Exploration Agency (JAXA), Sagamihara, Kanagawa 252-5210 (Japan); Watanabe, Makoto; Imai, Masataka; Goda, Shuhei [Department of Cosmosciences, Graduate School of Science, Hokkaido University, Sapporo 060-0810 (Japan); Akitaya, Hiroshi [Hiroshima Astrophysical Science Center, Hiroshima University, Higashihiroshima, Hiroshima 739-8526 (Japan); Sekiguchi, Kazuhiro [National Astronomical Observatory of Japan, National Institute of Natural Sciences, Mitaka, Tokyo 181-8588 (Japan); Oasa, Yumiko [Faculty of Education, Saitama University, Sakura, Saitama 338-8570 (Japan); Saito, Yoshihiko [Department of Physics, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8551 (Japan); Morokuma, Tomoki [Institute of Astronomy, Graduate School of Science, The University of Tokyo, Mitaka, Tokyo 181-0015 (Japan); Murata, Katsuhiro [Department of Astrophysics, Nagoya University, Chikusa-ku, Nagoya 464-8602 (Japan); Nogami, Daisaku [Department of Astronomy, Graduate School of Science, Kyoto University, Kyoto 606-8502 (Japan); and others

    2015-01-10

    We report a new observation of the Jupiter family comet 209P/LINEAR during its 2014 return. The comet is recognized as a dust source of a new meteor shower, the May Camelopardalids. 209P/LINEAR was apparently inactive at a heliocentric distance r{sub h} = 1.6 AU and showed weak activity at r{sub h} ≤ 1.4 AU. We found an active region of <0.001% of the entire nuclear surface during the comet's dormant phase. An edge-on image suggests that particles up to 1 cm in size (with an uncertainty of factor 3-5) were ejected following a differential power-law size distribution with index q = –3.25 ± 0.10. We derived a mass-loss rate of 2-10 kg s{sup –1} during the active phase and a total mass of ≈5 × 10{sup 7} kg during the 2014 return. The ejection terminal velocity of millimeter- to centimeter-sized particles was 1-4 m s{sup –1}, which is comparable to the escape velocity from the nucleus (1.4 m s{sup –1}). These results imply that such large meteoric particles marginally escaped from the highly dormant comet nucleus via the gas drag force only within a few months of the perihelion passage.

  3. Ground-based multiwavelength observations of comet 103P/Hartley 2

    International Nuclear Information System (INIS)

    Gicquel, A.; Villanueva, G. L.; Cordiner, M. A.; Milam, S. N.; Charnley, S. B.; Remijan, A. J.; Coulson, I. M.; Chuang, Y.-L.; Kuan, Y.-J.

    2014-01-01

    The Jupiter-family comet 103P/Hartley 2 (103P) was the target of the NASA EPOXI mission. In support of this mission, we conducted observations from radio to submillimeter wavelengths of comet 103P in the three weeks preceding the spacecraft rendezvous on UT 2010 November 4.58. This time period included the passage at perihelion and the closest approach of the comet to the Earth. Here, we report detections of HCN, H 2 CO, CS, and OH and upper limits for HNC and DCN toward 103P using the Arizona Radio Observatory Kitt Peak 12 m telescope (ARO 12 m) and submillimeter telescope (SMT), the James Clerk Maxwell Telescope (JCMT), and the Green Bank Telescope (GBT). The water production rate, Q H 2 O = (0.67-1.07) × 10 28 s –1 , was determined from the GBT OH data. From the average abundance ratios of HCN and H 2 CO relative to water (0.13 ± 0.03% and 0.14 ± 0.03%, respectively), we conclude that H 2 CO is depleted and HCN is normal with respect to typically observed cometary mixing ratios. However, the abundance ratio of HCN with water shows a large diversity with time. Using the JCMT data, we measured an upper limit for the DCN/HCN ratio <0.01. Consecutive observations of ortho-H 2 CO and para-H 2 CO on November 2 (from data obtained at the JCMT) allowed us to derive an ortho:para ratio (OPR) of ≈2.12 ± 0.59 (1σ), corresponding to T spin > 8 K (2σ).

  4. Ground-based multiwavelength observations of comet 103P/Hartley 2

    Energy Technology Data Exchange (ETDEWEB)

    Gicquel, A.; Villanueva, G. L.; Cordiner, M. A. [Catholic University of America, Physics Department, 620 Michigan Avenue NE, Washington, DC (United States); Milam, S. N.; Charnley, S. B. [Goddard Center for Astrobiology, NASA Goddard Space Flight Center, 8800 Greenbelt Road, Greenbelt, MD 20771 (United States); Remijan, A. J. [National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903 (United States); Coulson, I. M. [Joint Astronomy Centre, 660 North A' ohoku Place University Park, Hilo, HI 96720 (United States); Chuang, Y.-L.; Kuan, Y.-J., E-mail: adeline.gicquel@nasa.gov, E-mail: stefanie.n.milam@nasa.gov, E-mail: geronimo.l.villanueva@nasa.gov, E-mail: steven.b.charnley@nasa.gov, E-mail: martin.a.cordiner@nasa.gov, E-mail: aremijan@nrao.edu, E-mail: i.coulson@jach.hawaii.edu, E-mail: ylchuang@std.ntnu.edu.tz, E-mail: kuan@ntnu.edu.tw [National Taiwan Normal University, 88 Sec. 4 Ting-Chou Road, Taipei 116, Taiwan (China)

    2014-10-10

    The Jupiter-family comet 103P/Hartley 2 (103P) was the target of the NASA EPOXI mission. In support of this mission, we conducted observations from radio to submillimeter wavelengths of comet 103P in the three weeks preceding the spacecraft rendezvous on UT 2010 November 4.58. This time period included the passage at perihelion and the closest approach of the comet to the Earth. Here, we report detections of HCN, H{sub 2}CO, CS, and OH and upper limits for HNC and DCN toward 103P using the Arizona Radio Observatory Kitt Peak 12 m telescope (ARO 12 m) and submillimeter telescope (SMT), the James Clerk Maxwell Telescope (JCMT), and the Green Bank Telescope (GBT). The water production rate, Q{sub H{sub 2O}} = (0.67-1.07) × 10{sup 28} s{sup –1}, was determined from the GBT OH data. From the average abundance ratios of HCN and H{sub 2}CO relative to water (0.13 ± 0.03% and 0.14 ± 0.03%, respectively), we conclude that H{sub 2}CO is depleted and HCN is normal with respect to typically observed cometary mixing ratios. However, the abundance ratio of HCN with water shows a large diversity with time. Using the JCMT data, we measured an upper limit for the DCN/HCN ratio <0.01. Consecutive observations of ortho-H{sub 2}CO and para-H{sub 2}CO on November 2 (from data obtained at the JCMT) allowed us to derive an ortho:para ratio (OPR) of ≈2.12 ± 0.59 (1σ), corresponding to T {sub spin} > 8 K (2σ).

  5. SUBLIMATION-DRIVEN ACTIVITY IN MAIN-BELT COMET 313P/GIBBS

    Energy Technology Data Exchange (ETDEWEB)

    Hsieh, Henry H. [Institute of Astronomy and Astrophysics, Academia Sinica, P.O. Box 23-141, Taipei 10617, Taiwan (China); Hainaut, Olivier [European Southern Observatory, Karl-Schwarzschild-Straße 2, D-85748 Garching bei München (Germany); Novaković, Bojan [Department of Astronomy, Faculty of Mathematics, University of Belgrade, Studentski trg 16, 11000 Belgrade (Serbia); Bolin, Bryce [Observatoire de la Côte d’Azur, Boulevard de l’Observatoire, B.P. 4229, F-06304 Nice Cedex 4 (France); Denneau, Larry; Haghighipour, Nader; Kleyna, Jan; Meech, Karen J.; Schunova, Eva; Wainscoat, Richard J. [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); Fitzsimmons, Alan [Astrophysics Research Centre, Queens University Belfast, Belfast BT7 1NN (United Kingdom); Kokotanekova, Rosita; Snodgrass, Colin [Planetary and Space Sciences, Department of Physical Sciences, The Open University, Milton Keynes MK7 6AA (United Kingdom); Lacerda, Pedro [Max Planck Institute for Solar System Research, Justus-von-Liebig-Weg 3, D-37077 Göttingen (Germany); Micheli, Marco [ESA SSA NEO Coordination Centre, Frascati, RM (Italy); Moskovitz, Nick; Wasserman, Lawrence [Lowell Observatory, 1400 W. Mars Hill Road, Flagstaff, AZ 86001 (United States); Waszczak, Adam, E-mail: hhsieh@asiaa.sinica.edu.tw [Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125 (United States)

    2015-02-10

    We present an observational and dynamical study of newly discovered main-belt comet 313P/Gibbs. We find that the object is clearly active both in observations obtained in 2014 and in precovery observations obtained in 2003 by the Sloan Digital Sky Survey, strongly suggesting that its activity is sublimation-driven. This conclusion is supported by a photometric analysis showing an increase in the total brightness of the comet over the 2014 observing period, and dust modeling results showing that the dust emission persists over at least three months during both active periods, where we find start dates for emission no later than 2003 July 24 ± 10 for the 2003 active period and 2014 July 28 ± 10 for the 2014 active period. From serendipitous observations by the Subaru Telescope in 2004 when the object was apparently inactive, we estimate that the nucleus has an absolute R-band magnitude of H{sub R} = 17.1 ± 0.3, corresponding to an effective nucleus radius of r{sub e} ∼ 1.00 ± 0.15 km. The object’s faintness at that time means we cannot rule out the presence of activity, and so this computed radius should be considered an upper limit. We find that 313P’s orbit is intrinsically chaotic, having a Lyapunov time of T{sub l} = 12,000 yr and being located near two three-body mean-motion resonances with Jupiter and Saturn, 11J-1S-5A and 10J+12S-7A, yet appears stable over >50 Myr in an apparent example of stable chaos. We furthermore find that 313P is the second main-belt comet, after P/2012 T1 (PANSTARRS), to belong to the ∼155 Myr old Lixiaohua asteroid family.

  6. Dust Production of Comet 21P/Giacobini Zinner Using Broadband Photometry

    Science.gov (United States)

    Blaauw, Rhiannon; Suggs, Robert M.; Cooke, William

    2012-01-01

    Comet 21P/Giacobini-Zinner is a Jupiter family comet that was discovered in December of 1900 by the French astronomer Michel Giacobini, and rediscovered two orbits later by German astronomer Ernst Zinner in 1913. 21P is approximately 2 km in diameter, and is the parent of the Draconids, a meteor shower known to undergo dramatic outbursts. In 1933 and 1946, up to 10,000 meteors per hour were reported for the Draconids; and 2011 saw a minor Draconid outburst. As meteor stream modeling/ forecasting is a primary focus for the NASA Meteoroid Environment Office, it was decided to monitor 21P for three purposes: firstly to find the apparent and absolute magnitude with respect to heliocentric distance; second to calculate Af(rho), a quantity that describes the dust production rate and is used in models to predict the activity of the Draconids; thirdly to detect possible increases in cometary activity, which could correspond to future Draconid meteor outbursts. Giacobini-Zinner is unique in several ways. It was the first comet to have measurements made in situ. Comet 21P was visited by ICE (International Cometary Explorer) in 1985 to study the interaction of the cometary atmosphere with the flowing solar-wind plasma. It is a carbon-depleted comet, and most studies show that it peaks in gas and dust production pre-perihelion, specifically in two very studied passages; 1985 and 1998. A prior study was conducted by Pittichova et al (2008) for 21P during its 2004-2006 close approach to the Sun. Apparent and absolute magnitudes were measured at various heliocentric distances as well as the dust production. At 2.32 AU from the Sun, 21P exhibited an apparent magnitude of 17.05 and Af of 83 cm, and an apparent magnitude of 15.91/Af(rho) of 130.66 cm at 1.76 AU. Another such study performed by Lara et al.on 21P s 1998 apparition found values of Af(rho) of 1010 cm when 1.05 AU from the Sun, two weeks before perihelion, and 669 cm at perihelion, when 1.03 AU from the Sun

  7. Submillimeter Monitoring of the HCN Molecule in Fragment C of the Split Comet 73P/Schwassmann-Wachmann 3

    Science.gov (United States)

    Drahus, Michal; Kueppers, M.; Jarchow, C.; Paganini, L.; Hartogh, P.; Villanueva, G. L.

    2007-10-01

    Comet 73P/Schwassmann-Wachmann 3 is a member of the Jupiter family which broke up into several fragments in 1995. After the unfavourable return in 2000/2001, the comet passed very close to the Earth in 2006, with the perigee distance below 0.1 AU. Simultaneously, it was well situated on the sky, which resulted in several observing campaigns. We observed this comet using the SMT facility at the Mt. Graham International Observatory in Arizona. In particular, on 5 nights between 10 and 22 May 2006 the HCN molecule in fragment C was spectroscopically monitored, through the J(3-2) and J(4-3) transitions. Using a simplified model, we found the expansion velocity of the HCN coma to be equal to 0.8 ± 0.1 km/s, what is a typical value for a comet at heliocentric distance r = 1 AU. We also reconstructed the production rates Q of this molecule, finding Q(r=1AU) = 2.7 ± 0.1 × 1025 molec/s. Our result is consistent with most of the other estimates, including the CN production rate. Furthermore, taking advantage of the fairly small beam sizes during our campaign (ranging from 600 km to 1200 km in radius), we detected short-term variability of the production rate, presumably stimulated by the nucleus rotation. Although our analysis did not yield a unique rotation period, we found a limited number of possible solutions. We will discuss them in detail along with a comparison with other period claims, and propose a possible scenario that links most of the periodicities reported so far for this comet. The SMT is operated by the Arizona Radio Observatory (ARO), Steward Observatory, University of Arizona.

  8. Weird comets and asteroids the strange little worlds of the sun's family

    CERN Document Server

    Seargent, David A J

    2017-01-01

    This book concentrates on some of the odd aspects of comets and asteroids. Strange behavior of comets, such as outbursts and schisms, and how asteroids can temporally act as comets are discussed, together with the possible threat of Centaurs-class objects like the Taurid complex. Recent years have seen the distinction between comets and asteroids become less prominent. Comets in "asteroid" orbits and vice versa have become almost commonplace and a clearer view of the role of small bodies in the formation of the Solar System and their effect on Earth has become apparent. Seargent covers this development in detail by including new data and information from space probes. .

  9. Statistical analysis of dust signals observed by ROSINA/COPS onboard of the Rosetta spacecraft at comet 67P/Churyumov-Gerasimenko

    Science.gov (United States)

    Tzou, Chia-Yu; altwegg, kathrin; Bieler, Andre; Calmonte, Ursina; Gasc, Sébastien; Le Roy, Léna; Rubin, Martin

    2016-10-01

    ROSINA is the in situ Rosetta Orbiter Spectrometer for Ion and Neutral Analysis on board of Rosetta, one of the corner stone missions of the European Space Agency (ESA) to land and orbit the Jupiter family comet 67P/Churyumov-Gerasimenko (67P). ROSINA consists of two mass spectrometers and a pressure sensor. The Reflectron Time of Flight Spectrometer (RTOF) and the Double Focusing Mass Spectrometer (DFMS) complement each other in mass and time resolution.The Comet Pressure Sensor (COPS) provides density measurements of the neutral molecules in the cometary coma of 67P. COPS has two gauges, a nude gauge that measures the total neutral density and a ram gauge that measures the dynamic pressure from the comet. Combining the two COPS is also capable of providing gas dynamic information such as gas velocity and gas temperature of the coma.While Rosetta started orbiting around 67P in August 2014, COPS observed diurnal and seasonal variations of the neutral gas density in the coma. Surprisingly, additional to these major density variation patterns, COPS occasionally observed small spikes in the density that are associated with dust. These dust signals can be interpreted as a result of cometary dust releasing volatiles while heated up near COPS. A statistical analysis of dust signals detected by COPS will be presented.

  10. The big comet crash of 1994. Intensive observational campaign at ESO

    Science.gov (United States)

    1994-01-01

    Astronomers all over the world are preparing themselves for observations of a most unique event: during a period of six days in July 1994, at least 21 fragments of comet Shoemaker-Levy 9 will collide with giant planet Jupiter. At the European Southern Observatory, an intensive observational campaign with most of the major telescopes at La Silla is being organized with the participation of a dozen international teams of astronomers. This is the first time ever that it has been possible to predict such a collision. Although it is difficult to make accurate estimates, it is likely that there will be important, observable effects in the Jovian atmosphere. WHAT IS KNOWN ABOUT THE COMET ? Comet Shoemaker-Levy 9 is the ninth short-period comet discovered by Gene and Carolyn Shoemaker and David Levy. It was first seen on a photographic plate obtained on 18 March 1993 with the 18-inch Schmidt telescope at the Mount Palomar Observatory, California. It was close in the sky to Jupiter and orbital calculations soon showed that it moves in a very unusual orbit. While other comets revolve around the Sun, this one moves in an elongated orbit around Jupiter. It is obvious that it must have been ``captured'' rather recently by the gravitational field of the planet. It was also found that Shoemaker-Levy 9 consists of several individual bodies which move like ``pearls on a string'' in a majestic procession. It was later determined that this is because the comet suffered a dramatic break-up due to the strong attraction of Jupiter at the time of an earlier close passage to this planet in July 1992. High-resolution Hubble Space Telescope images have shown the existence of up to 21 individual fragments (termed ``nuclei''), whose diameters probably range between a few kilometres and a few hundred meters. There is also much cometary dust visible around the nuclei; it is probably a mixture of grains of different sizes, from sub-millimetre sand up to metre-sized boulders. No outgassing has so

  11. Thirty years of cometary spectroscopy from McDonald Observatory

    Science.gov (United States)

    Cochran, A. L.; Barker, E. S.; Gray, C. L.

    2012-03-01

    We report on the results of a spectroscopic survey of 130 comets that was conducted at McDonald Observatory from 1980 through 2008. Some of the comets were observed on only one night, while others were observed repeatedly. For 20 of these comets, no molecules were detected. For the remaining 110 comets, some emission from CN, OH, NH, C3, C2, CH, and NH2 molecules were observed on at least one occasion. We converted the observed molecular column densities to production rates using a Haser (Haser, L. [1957]. Liege Inst. Astrophysics Reprint No. 394) model. We defined a restricted data set of comets that had at least three nights of observations. The restricted data set consists of 59 comets. We used ratios of production rates to study the trends in the data. We find two classes of comets: typical and carbon-chain depleted comets. Using a very strict definition of depleted comets, requiring C2and C3 to both be depleted, we find 9% of our restricted data set comets to be depleted. Using a more relaxed definition that requires only C2 to be below a threshold (similar to other researchers), we find 25% of the comets are depleted. Two-thirds of the depleted comets are Jupiter Family comets, while one-third are Long Period comets. 37% of the Jupiter Family comets are depleted, while 18.5% of the Long Period comets are depleted. We compare our results with other studies and find good agreement.

  12. Comet Dust After Deep Impact

    Science.gov (United States)

    Wooden, Diane H.; Harker, David E.; Woodward, Charles E.

    2006-01-01

    When the Deep Impact Mission hit Jupiter Family comet 9P/Tempel 1, an ejecta crater was formed and an pocket of volatile gases and ices from 10-30 m below the surface was exposed (A Hearn et aI. 2005). This resulted in a gas geyser that persisted for a few hours (Sugita et al, 2005). The gas geyser pushed dust grains into the coma (Sugita et a1. 2005), as well as ice grains (Schulz et al. 2006). The smaller of the dust grains were submicron in radii (0-25.3 micron), and were primarily composed of highly refractory minerals including amorphous (non-graphitic) carbon, and silicate minerals including amorphous (disordered) olivine (Fe,Mg)2SiO4 and pyroxene (Fe,Mg)SiO3 and crystalline Mg-rich olivine. The smaller grains moved faster, as expected from the size-dependent velocity law produced by gas-drag on grains. The mineralogy evolved with time: progressively larger grains persisted in the near nuclear region, having been imparted with slower velocities, and the mineralogies of these larger grains appeared simpler and without crystals. The smaller 0.2-0.3 micron grains reached the coma in about 1.5 hours (1 arc sec = 740 km), were more diverse in mineralogy than the larger grains and contained crystals, and appeared to travel through the coma together. No smaller grains appeared at larger coma distances later (with slower velocities), implying that if grain fragmentation occurred, it happened within the gas acceleration zone. These results of the high spatial resolution spectroscopy (GEMINI+Michelle: Harker et 4. 2005, 2006; Subaru+COMICS: Sugita et al. 2005) revealed that the grains released from the interior were different from the nominally active areas of this comet by their: (a) crystalline content, (b) smaller size, (c) more diverse mineralogy. The temporal changes in the spectra, recorded by GEMIM+Michelle every 7 minutes, indicated that the dust mineralogy is inhomogeneous and, unexpectedly, the portion of the size distribution dominated by smaller grains has

  13. Comet or Asteroid?

    Science.gov (United States)

    1997-11-01

    When is a minor object in the solar system a comet? And when is it an asteroid? Until recently, there was little doubt. Any object that was found to display a tail or appeared diffuse was a comet of ice and dust grains, and any that didn't, was an asteroid of solid rock. Moreover, comets normally move in rather elongated orbits, while most asteroids follow near-circular orbits close to the main plane of the solar system in which the major planets move. However, astronomers have recently discovered some `intermediate' objects which seem to possess properties that are typical for both categories. For instance, a strange object (P/1996 N2 - Elst-Pizarro) was found last year at ESO ( ESO Press Photo 36/96 ) which showed a cometary tail, while moving in a typical asteroidal orbit. At about the same time, American scientists found another (1996 PW) that moved in a very elongated comet-type orbit but was completely devoid of a tail. Now, a group of European scientists, by means of observations carried out at the ESO La Silla observatory, have found yet another object that at first appeared to be one more comet/asteroid example. However, continued and more detailed observations aimed at revealing its true nature have shown that it is most probably a comet . Consequently, it has received the provisional cometary designation P/1997 T3 . The Uppsala-DLR Trojan Survey Some time ago, Claes-Ingvar Lagerkvist (Astronomical Observatory, Uppsala, Sweden), in collaboration with Gerhard Hahn, Stefano Mottola, Magnus Lundström and Uri Carsenty (DLR, Institute of Planetary Exploration, Berlin, Germany), started to study the distribution of asteroids near Jupiter. They were particularly interested in those that move in orbits similar to that of Jupiter and which are located `ahead' of Jupiter in the so-called `Jovian L4 Lagrangian point'. Together with those `behind' Jupiter, these asteroids have been given the names of Greek and Trojan Heroes who participated in the famous Trojan war

  14. Comet and Asteroid Hazard to the Terrestrial Planets

    Science.gov (United States)

    Ipatov, S. I.; Mather, J. C.; Oegerle, William (Technical Monitor)

    2002-01-01

    We made computer simulations of orbital evolution for intervals of at least 5-10 Myr of N=2000 Jupiter-crossing objects (JCOs) with initial orbits close to those of real comets with period P less than 10 yr, 500 objects with orbits close to that of Comet 10P, and the asteroids initially located at the 3:1 and 5:2 resonances with Jupiter at initial eccentricity e(sub 0)=0.15 and initial inclination i(sub 0)=10(sup 0). The gravitational influence of all planets, except for Mercury and Pluto, was taken into account (without dissipative factors). We calculated the probabilities of collisions of bodies with the terrestrial planets, using orbital elements obtained with a step equal to 500 yr, and then summarized the results for all bodies, obtaining, the total probability Psigma of collisions with a planet and the total time interval Tsigma during which perihelion distance q of bodies was less than a semimajor axis of the planet. The values of p(sub r) =10(exp 6)Psigma/N and T(sub r)=T/1000 yr (where T=Tsigma/N) are presented in a table together with the ratio r of the total time interval when orbits were of Apollo type (at a greater than 1 AU, q less than 1.017 AU, e less than 0.999) to that of Amor type (1.017 less than q less than 1.33 AU), r(sub 2) is the same as r but for Apollo objects with e less than 0.9. For asteroids we present only results obtained by direct integration, as a symplectic method can give large errors for these resonances.

  15. Comet Tempel 1 Went Back to Sleep

    Science.gov (United States)

    2005-07-01

    after the impact, the morphology of Comet Tempel 1 had changed, with the appearance of a new plume-like structure, produced by matter being ejected with a speed of about 700 to 1000 km/h (see ESO PR Photo 23/05). This structure, however, diffused away in the following days, being more and more diluted and less visible, the comet taking again the appearance it had before the impact. Further images obtained with, among others, the adaptive optics NACO instrument on the Very Large Telescope, showed the same jets that were visible prior to impact, demonstrating that the comet activity survived widely unaffected by the spacecraft crash. The study of the gas in Comet Tempel 1 (see "Looking for Molecules"), made with UVES on Kueyen (UT2 of the VLT), reveals a small flux increase the first night following the impact. At that time, more than 17 hours after the impact, the ejected matter was fading away but still measurable thanks to the large light collecting power of the VLT. The data accumulated during 10 nights around the impact have provided the astronomers with the best ever time series of optical spectra of a Jupiter Family comet, with a total of more than 40 hours of exposure time. This unique data set has already allowed the astronomers to characterize the normal gas activity of the comet and also to detect, to their own surprise, an active region. This active region is not related to the impact as it was also detected in data collected in June. It shows up about every 41 hours, the rotation period of the comet nucleus determined by the Deep Impact spacecraft. Exciting measurements of the detailed chemical composition (such as the isotopic ratios) of the material released by the impact as well as the one coming from that source will be performed by the astronomers in the next weeks and months. Further spectropolarimetric observations with FORS1 have confirmed the surface of the comet to be rather evolved - as expected - but more importantly, that the dust is not coming

  16. I. T. - R. O. C. K. S. Comet Nuclei Sample Return Mission

    Science.gov (United States)

    Dalcher, N.

    2009-04-01

    Ices, organics and minerals recording the chemical evolution of the outer regions of the early solar nebula are the main constituents of comets. Because comets maintain the nearly pristine nature of the cloud where they formed, the analyses of their composition, structure, thermodynamics and isotope ratios will increase our understanding of the processes that occurred in the early phases of the solar system as well as the Interstellar Medium (ISM) Cloud that predated the formation of the solar nebula [1]. While the deep impact mission aimed at determining the internal structure of comet Temple1's nuclei [e.g. 3], the stardust mission sample return has dramatically increased our understanding of comets. Its first implications indicated that some of the comet material originated in the inner solar system and was later transported outward beyond the freezing line [4]. A wide range of organic compounds identified within different grains of the aerogel collectors has demonstrated the heterogeneity in their assemblages [5]. This suggests either many histories associated with these material or possibly analytical constraints imposed by capture heating of Wild2 material in silica aerogel. The current mission ROSETTA, will further expand our knowledge about comets considerably through rigorous in situ analyses of a Jupiter Family Comet (JFC). As the next generation of comet research post ROSETTA, we present the comet nuclei sample return mission IT - ROCKS (International Team - Return Of Comet's Key Samples) to return several minimally altered samples from various locations of comet 88P/Howell, a typical JFC. The mission scenario includes remote sensing of the comet's nucleus with onboard instruments similar to the ROSETTA instruments [6, 7, 8] (VIS, IR, Thermal IR, X-Ray, Radar) and gas/dust composition measurements including a plasma science package. Additionally two microprobes [9] will further investigate the physical properties of the comet's surface. Retrieving of the

  17. Stochasticity in the Kepler problem and a model of possible dynamics of comets in the Oort cloud

    Energy Technology Data Exchange (ETDEWEB)

    Sagdeev, R Z; Zaslavsky, G M

    1987-02-11

    The orbits of comets from the Oort cloud have eccentricities very close to unity. These orbits are highly elongated which provide one more possibility of their delivery into the planetary zone, besides collisions of comets with stars which are effective near the aphelions. Weak but repetitive perturbations being produced by the great planets, Jupiter and Saturn, on comets with perihelious < 20 AU can cause chaotization of dynamics of comets at orbits with major axes a> or approx.10/sup 3/ AU. A comet may suffer as large as 100/1000 such ''weak'' collisions before it is expelled onto a hyperbolic orbit. The dynamic chaos mechanism provides filling of the loss cone, diffusion of comets from inner parts of the Oort cloud into the outer one (the halo) and fluctuatory comings of comets into the inner part of planetary zone. A diffusive evolution of eccentricity can serve as one of the mechanisms of formation of the Oort cloud. A similar role can be played by both the Galactic gravitational field and periodic perturbations from the hypothetical Sun's companion, Nemesis. The dynamic chaos allows us, along with star encounters, to fill the loss cone in the outer part of the Oort cloud. In the inner part of the Oort cloud the dynamical chaos can be a primary mechanism of the loss cone filling between consecutive rare (although strong) collisions with stars.

  18. Chandra Observations of the Deep Impact Encounter with Comet 9P/Tempel 1

    Science.gov (United States)

    Lisse, C. M.; Christian, D. J.; Dennerl, K.; Wolk, S. J.; Bodewits, D.; Combi, M. R.; Hoekstra, R.; Makinen, T.; Schultz, P. H.; Weaver, H. A.

    2005-08-01

    On July 4, 2005 NASA's discovery mission Deep Impact (hereafter DI) will send a 375 kg impactor into the nucleus of comet 9P/Tempel 1 at 10.2 km/s relative velocity. In the x-ray, the DI experiment allows for a controlled test of the charge exchange (CXE) emission mechanism that drives cometary x-ray emission (Lisse et al. 2001, Kharchenko and Dalgarno 2001, Krasnopolsky et al.2002). Previous ROSAT and Chandra observations studied cometary x-ray emission as the solar wind changed but the cometary emission remained constant. Here, at a precise time, a fresh amount of neutral material will be injected into a finite volume of the extended atmosphere, or coma, of the comet. This new material will directly increase the emission measure for the comet, passing from the collisionally thick to the collisionally thin regions of emission over the course of days. The DI experiment also allows for a direct search for prompt x-rays created by hyper-velocity impact processes, such as was seen by ROSAT during the impact of the K-fragment of comet D/Shoemaker-Levy 9 on Jupiter (Waite et al. 1995). We report here on the first results of of the Chandra observations of the Deep Impact encounter.

  19. Opportunities for in-depth compositional studies of comets: Summary from semester 2017A observations and prospects for a 2018 observing campaign

    Science.gov (United States)

    DiSanti, Michael A.; Dello Russo, Neil; Bonev, Boncho P.; Gibb, Erika L.; Roth, Nathan; Vervack, Ronald J.; McKay, Adam J.; Kawakita, Hideyo; Cochran, Anita L.

    2017-10-01

    The period from late 2016 to mid 2017 provided unusually rich observational opportunities for compositional studies of comets using ground-based IR and optical spectroscopy. Three ecliptic comets - Jupiter-family comet (JFC) 45P/Honda-Mrkos-Pajdusakova, JFC 41P/Tuttle-Giacobini-Kresak, and 2P/Encke - as well as two moderately bright nearly istotropic comets from the Oort cloud (C/2015 ER61 PanSTARRS and C/2015 V2 Johnson) experienced highly favorable appritions.In the IR, very long on-source integration times were accumulated on all targets, primarily with the powerful new high-resolution, cross-dispersed iSHELL spectrograph at the IRTF (Rayner et al. 2016 SPIE 9908:1) but also with NIRSPEC at Keck II. This enabled accurate production rates and abundance ratios for 8-10 native ices, and spatially resolved studies of coma physics (H2O rotational temperatures and column abundances). The recent availability of iSHELL coupled with the daytime observing capability at the IRTF has opened a powerful window for conducting detailed compositional studies of comets over a range of heliocentric distances (Rh), particularly at small Rh where studies are relatively sparse. Our campaign provided detections of (or stringent abundance limits for) hyper-volatiles CO and CH4, which are severely lacking in compositional studies of JFCs.For all of these targets, optical spectra measured photo-dissociation product species using the Tull Coude spectrograph at McDonald Observatory, and ARCES at Apache Point Observatory. When possible optical and IR observations were obtained contemporaneously, with the goal of addressing potential parent-product relationships.We summarize our campaign and highlight related presentations. Prospects for investigations during the upcoming favorable apparitions of JFCs 21P/Giacobini-Zinner and 46P/Wirtanen will also be discussed, along with increased capabilities for serial studies (i.e., measurements at multiple Rh) of newly discovered (Oort cloud) comets

  20. Shoemaker-Levy 9/JUPITER Collision Update

    Science.gov (United States)

    1994-05-01

    There are many signs that the upcoming collision between comet Shoemaker-Levy 9 and giant planet Jupiter is beginning to catch the imagination of the public. Numerous reports in the various media describe the effects expected during this unique event which according to the latest calculations will start in the evening of July 16 and end in the morning of July 22, 1994. (The times in this Press Release are given in Central European Summer Time (CEST), i.e., Universal Time (UT) + 2 hours. The corresponding local time in Chile is CEST - 6 hours.) Astronomers all over the world are now preparing to observe the associated phenomena with virtually all major telescopes. There will be no less than 12 different investigations at the ESO La Silla observatory during this period. This Press Release updates the information published in ESO PR 02/94 (27 January 1994) and provides details about the special services which will be provided by ESO to the media around this rare astronomical event. SCIENTIFIC EXPECTATIONS The nucleus of comet Shoemaker-Levy 9 broke into many smaller pieces during a near passage of Jupiter in July 1992. They are now moving in parallel orbits around this planet and recent calculations show with close to 100 % certainty that they will all collide with it, just two months from now. At some time, more than 20 individual nuclei were observed. This Press Release is accompanied by a photo that shows this formation, the famous "string of pearls", as it looked like in early May 1994. Both Jupiter and these nuclei have been extensively observed during the past months. A large, coordinated observing programme at La Silla has been active since early April and the first results have become available. However, while we now possess more accurate information about the comet's motion and the times of impact, there is still great uncertainty about the effects which may actually be observed at the time of the impacts. This is first of all due to the fact that it has not

  1. Craters on comets

    Science.gov (United States)

    Vincent, J.; Oklay, N.; Marchi, S.; Höfner, S.; Sierks, H.

    2014-07-01

    This paper reviews the observations of crater-like features on cometary nuclei. ''Pits'' have been observed on almost all cometary nuclei but their origin is not fully understood [1,2,3,4]. It is currently assumed that they are created mainly by the cometary activity with a pocket of volatiles erupting under a dust crust, leaving a hole behind. There are, however, other features which cannot be explained in this way and are interpreted alternatively as remnants of impact craters. This work focusses on the second type of pit features: impact craters. We present an in-depth review of what has been observed previously and conclude that two main types of crater morphologies can be observed: ''pit-halo'' and ''sharp pit''. We extend this review by a series of analysis of impact craters on cometary nuclei through different approaches [5]: (1) Probability of impact: We discuss the chances that a Jupiter Family Comet like 9P/Tempel 1 or the target of Rosetta 67P/Churyumov-Gerasimenko can experience an impact, taking into account the most recent work on the size distribution of small objects in the asteroid Main Belt [6]. (2) Crater morphology from scaling laws: We present the status of scaling laws for impact craters on cometary nuclei [7] and discuss their strengths and limitations when modeling what happens when a rocky projectile hits a very porous material. (3) Numerical experiments: We extend the work on scaling laws by a series of hydrocode impact simulations, using the iSALE shock physics code [8,9,10] for varying surface porosity and impactor velocity (see Figure). (4) Surface processes and evolution: We discuss finally the fate of the projectile and the effects of the impact-induced surface compaction on the activity of the nucleus. To summarize, we find that comets do undergo impacts although the rapid evolution of the surface erases most of the features and make craters difficult to detect. In the case of a collision between a rocky body and a highly porous

  2. ISO's analysis of Comet Hale-Bopp

    Science.gov (United States)

    1997-03-01

    spatial resolution of ISO. We have a long time coverage of the comet, so we hope to determine the light-curve of the nucleus -- which, in turn, will reveal its gross shape and an estimate of its rotation period." A commanding role in comet research As comets are relics from the construction of the Solar System, and played a major role in the formation of the planets, they are a link between the Earth and the wider Universe of stars. The carbon compounds contained in comets probably contributed raw materials for the origin of life on the Earth, and according to one theory the Earth's oceans were made from comet ice. Growing knowledge of the composition and behaviour of comets is therefore crucial for a fuller understanding of our cosmic origins. ESA has a commanding role in space research on comets. Its Giotto spacecraft was the most daring of the international fleet of spacecraft that visited Halley's Comet in March 1986. Giotto obtained exceptional pictures and other data as it passed within 600 kilometres of the nucleus. Dust from the comet badly damaged the spacecraft, but in a navigational tour de force Giotto made an even closer approach to Comet Grigg-Skjellerup in July 1992. Now ESA is planning the Rosetta mission that will rendezvous with Comet Wirtanen and fly in company with it, making observations far more detailed than the fast flybys of Halley's Comet and Comet Grigg-Skjellerup could achieve. As for space astronomy, the International Ultraviolet Explorer, in which ESA was a partner, made unrivalled observations of Halley's Comet by ultraviolet light. ESA is also a partner in the Hubble Space Telescope, which saw the historic impacts of Comet Shoemaker-Levy 9 on Jupiter in July 1994, and has recently observed Comet Hyakutake as well as Hale-Bopp. The SOHO spacecraft, built by ESA for a joint ESA-NASA project to examine the Sun, has a distinctive view of comets. It has observed the hydrogen coronas of comets with its SWAN instrument. SOHO's coronagraph LASCO

  3. The Comet Radar Explorer Mission

    Science.gov (United States)

    Asphaug, Erik; Belton, Mike; Bockelee-Morvan, Dominique; Chesley, Steve; Delbo, Marco; Farnham, Tony; Gim, Yonggyu; Grimm, Robert; Herique, Alain; Kofman, Wlodek; Oberst, Juergen; Orosei, Roberto; Piqueux, Sylvain; Plaut, Jeff; Robinson, Mark; Sava, Paul; Heggy, Essam; Kurth, William; Scheeres, Dan; Denevi, Brett; Turtle, Elizabeth; Weissman, Paul

    2014-11-01

    Missions to cometary nuclei have revealed major geological surprises: (1) Global scale layers - do these persist through to the interior? Are they a record of primary accretion? (2) Smooth regions - are they landslides originating on the surface? Are they cryovolcanic? (3) Pits - are they impact craters or sublimation pits, or rooted in the interior? Unambiguous answers to these and other questions can be obtained by high definition 3D radar reflection imaging (RRI) of internal structure. RRI can answer many of the great unknowns in planetary science: How do primitive bodies accrete? Are cometary nuclei mostly ice? What drives their spectacular activity and evolution? The Comet Radar Explorer (CORE) mission will image the detailed internal structure of the nucleus of 10P/Tempel 2. This ~16 x 8 x 7 km Jupiter Family Comet (JFC), or its parent body, originated in the outer planets region possibly millions of years before planet formation. CORE arrives post-perihelion and observes the comet’s waning activity from safe distance. Once the nucleus is largely dormant, the spacecraft enters a ~20-km dedicated Radar Mapping Orbit (RMO). The exacting design of the RRI experiment and the precise navigation of RMO will achieve a highly focused 3D radar reflection image of internal structure, to tens of meters resolution, and tomographic images of velocity and attenuation to hundreds of meters resolution, tied to the gravity model and shape. Visible imagers will produce maps of the surface morphology, albedo, color, texture, and photometric response, and images for navigation and shape determination. The cameras will also monitor the structure and dynamics of the coma, and its dusty jets, allowing their correlation in 3D with deep interior structures and surface features. Repeated global high-resolution thermal images will probe the near-surface layers heated by the Sun. Derived maps of thermal inertia will be correlated with the radar boundary response, and photometry and

  4. Jupiter: as a planet

    International Nuclear Information System (INIS)

    1975-01-01

    The planet Jupiter, its planetary mass and atmosphere, radio waves emitted from Jupiter, thermal radiation, internal structure of Jupiter, and the possibility of life on Jupiter are discussed. Educational study projects are included

  5. Physical and dynamical properties of the anomalous comet 249P/LINEAR

    Science.gov (United States)

    Fernández, Julio A.; Licandro, Javier; Moreno, Fernando; Sosa, Andrea; Cabrera-Lavers, Antonio; de León, Julia; Birtwhistle, Peter

    2017-10-01

    Images and low-resolution spectra of the near-Earth Jupiter family comet (JFC) 249P/LINEAR in the visible range obtained with the instrument OSIRIS in the 10.4 m Gran Telescopio Canarias (GTC) (La Palma, Spain) on January 3, 4, 6 and February 6, 2016 are presented, together with a series of images obtained with the 0.4m telescope of the Great Shefford Observatory obtained on Oct. 22 and 27, and Nov. 1 and 24, 2006. The reflectance spectrum of 249P is similar to that of a B-type asteroid. The comet has an absolute (visual) nuclear magnitude HV = 17.0 ± 0.4 , which corresponds to a radius of about 1-1.3 km for a geometric albedo ∼ 0.04 - 0.07 . From the analysis of GTC images using a Monte Carlo dust tail code we find that the time of maximum dust ejection rate was around 1.6 days before perihelion. The analysis of the dust tails during the 2006 and 2016 perihelion approaches reveals that, during both epochs, the comet repeated the same dust ejection pattern, with a similar short-lived activity period of about 20 days (FWHM) around perihelion and a dust loss rate peaking at 145 ± 50 kg/s. The total dust mass ejected during its last perihelion passage was (2.5 ± 0.9) × 108 kg, almost all this mass being emitted before the first observation of January 3, 2016. The activity onset, duration, and total ejected mass were very similar during the 2006 perihelion passage. This amount of dust mass is very low as compared with that from other active JFCs. The past orbital evolution of 249P and 100 clones were also followed over a time scale of ∼ 5 × 104 yr. The object and more than 60% of the clones remained bound to the near-Earth region for the whole computed period, keeping its perihelion distance within the range q ≃ 0.4 - 1.1 au. The combination of photometric and spectroscopic observations and dynamical studies show that the near-Earth comet 249P/LINEAR has several peculiar features that clearly differentiate it from typical JFCs. We may be in front of a new

  6. Spin-State-Dependent Ion-Molecule Chemistry as the Origin of N-15 and D Isotopic Anomalies in Primitive Matter.

    Science.gov (United States)

    Wirstrom, E. S.; Charnley, S. B.; Cordiner, M. A.; Milam, S. N.

    2012-01-01

    Many meteoritic and interplanetary dust particle (IDP) samples contain bulk enhancements and hotspots rich in N-15. Similarly low C(14)N/C(15)N ratios have been observed in numerous comets, An almost constant enrichment factor in comets from disti'nct formation zones in the nebular disk (i.e. both Jupiter Family and Oort Cloud comets), strongly suggests that this fractionation is primordial and was set in the protsolar cloud core. Deuterium enrichment is observed in both meteorites and IDPs

  7. The Implications of the Excited Rotation of Comet 252P/2000 G1 (LINEAR)

    Science.gov (United States)

    Li, Jian-Yang; Samarasinha, Nalin H.; Kelley, Michael S. P.; Farnocchia, Davide; Mutchler, Max J.; Ren, Yanqiong; Lu, Xiaoping; Tholen, David J.; Lister, Tim; Micheli, Marco

    2018-01-01

    Jupiter Family comet (JFC) 252P/LINEAR had a close encounter to Earth on 2016 March 21. We imaged the comet with the Hubble Space Telescope Wide Field Camera 3 UVIS channel through the V- and r’-band filters spanning ~8 hours on 2016 April 4. The pixel scale of 2.7 km/pixel allowed us to study the structure of the cometary coma at scales of a few kilometers to a few hundred kilometers from the nucleus, a characteristic that is unique to our data. The dust coma of 252P showed a strong, well defined, narrow and nearly linear feature in the sunward direction, and its projected position angle moved about the nucleus for ~60 deg in 8 hours, consistent with an apparent periodicity of ~7.24 hours. On the other hand, the lightcurve measured in both V- and r’-band images from a 13 km radius aperture, after corrected for color term, showed a variability of >0.14 mag that is consistent with an apparent periodicity of ~5.4 hours or its multiples. We suggest that the two different periodicities derived from coma morphology and the lightcurve is a strong indication that the nucleus of 252P is in a non-principal axis (NPA) rotation, joining two other confirmed NPA rotators (1P/Halley and 103P/Hartley 2) and comets that are potentially in NPA rotational states (e.g., 2P/Encke). However, this apparition has been unusual for 252P. In the past three perihelion passages since discovery, the comet was very weakly active compared to other JFCs. Meteor evidence also exists that it probably has been very weakly active for a few hundred years. But in our data, we saw a very active comet in this 2016 apparition with an active fraction of 40% to >100%, representing an increase of 100x with respect to its recent past. Based on our observations, 252P has a small nucleus with a radius of ~0.3 km, which suggests that its rotational state could be relatively easily changed by torques caused by outgassing. Since the very weak outgassing in the past is not likely to change the rotational state

  8. 100 and counting : SOHO's score as the world's top comet finder

    Science.gov (United States)

    2000-02-01

    comet hunters," said Shanklin, who is director of the British Astronomical Association's comet section. "It allows amateurs to discover some of the smallest comets ever seen. Yet they link us to sightings of great comets going back more than 2000 years." Nine of the comets found with LASCO, including SOHO-100, 101 and 102, passed the Sun at a safe distance. SOHO-49, which showed up in LASCO images in May 1998 and was designated as Comet 1998 J1, became visible to the naked eye in the southern hemisphere. But the great majority of SOHO's comets failed to survive very close encounters with the Sun. Snowballs in hell Of the first 100 SOHO comets, 92 vaporized in the solar atmosphere. Isaac Newton suggested 300 years ago that infalling comets might supply the Sun with fuel, but no one has ever tracked a comet that definitely hit the bright surface. Near misses are well known, and 100 years ago Heinrich Kreutz in Kiel, Germany, realized that several comets seen buzzing the Sun seemed to have a common origin, because they came from the same direction among the stars. These comets are now called the Kreutz sungrazers, and the 92 vanishing SOHO comets belong to that class. They were not unexpected. Between 1979 and 1989 the P78-1 and SMM solar satellites spotted 16 comets closing with the Sun. Life is perilous for a sungrazer. The mixture of ice and dust that makes up a comet's nucleus is heated like the proverbial snowball in hell, and can survive its visit to the Sun only if it is quite large. What's more, the very strong tidal effect of the Sun's gravity can tear the loosely glued nucleus apart. The disruption that created the many SOHO sungrazers was similar to the fate of Comet Shoemaker-Levy 9, which went too close to Jupiter and broke up into many pieces that eventually fell into the massive planet in 1994. "SOHO is seeing fragments from the gradual break-up of a great comet, perhaps the one that the Greek astronomer Ephorus saw in 372 BC," commented Brian Marsden of the

  9. Reconciling the dawn-dusk asymmetry in Mercury's exosphere with the micrometeoroid impact directionality

    OpenAIRE

    Pokorný, Petr; Sarantos, Menelaos; Janches, Diego

    2017-01-01

    Combining dynamical models of dust from Jupiter Family Comets and Halley-type Comets, we demonstrate that the seasonal variation of the dust/meteoroid environment at Mercury is responsible for producing the dawn-dusk asymmetry in Mercury's exosphere observed by the MESSENGER spacecraft. Our latest models, calibrated recently from ground-based and space-borne measurements, provide unprecedented statistics that enable us to study the longitudinal and latitudinal distribution of meteoroids impac...

  10. Comets

    International Nuclear Information System (INIS)

    Hughes, D.W.

    1982-01-01

    Comets are objects of considerable fascination and this paper reviews the present knowledge of the physical structure of the cometary nucleus, coma and tail, the orbits of comets in the Solar System, the proposed mechanisms of cometary origin, the decay processes suffered by comets, and the ways in which they can be observed from Earth and by spacecraft. (author)

  11. Photochemistry of comets

    International Nuclear Information System (INIS)

    Huebner, W.F.

    1985-01-01

    The classification of comets, chemically rich mixtures of volatile materials and refractory grains, is described. The developments of coma and tails, and the composition and structure of coma, plasma tails, dust, and nucleus are examined. The differences between comets and planetary atmospheres are investigated. Three hypotheses on the origin of comets are proposed; one states that comets formed in the region of the giant planets, the second theory has the development of comets occuring in the outer parts of the solar nebula, and the third states that comets formed in a companion fragment of the nebula. The use of radar, photometric, spectral, and laboratory measurements for modeling comets is discussed. The physics and main photolytic and chemical reaction processes of a collision-dominated coma are analyzed; the influence of the solar wind on the coma is studied. A comparison of the model with observed data is presented; good correlation of data is observed. The features of Halley's Comet and other comets with distinctive characteristics are examined. Future comet exploration missions and the need to improve comet models are discussed. 31 references

  12. Visually observing comets

    CERN Document Server

    Seargent, David A J

    2017-01-01

    In these days of computers and CCD cameras, visual comet observers can still contribute scientifically useful data with the help of this handy reference for use in the field. Comets are one of the principal areas for productive pro-amateur collaboration in astronomy, but finding comets requires a different approach than the observing of more predictable targets. Principally directed toward amateur astronomers who prefer visual observing or who are interested in discovering a new comet or visually monitoring the behavior of known comets, it includes all the advice needed to thrive as a comet observer. After presenting a brief overview of the nature of comets and how we came to the modern understanding of comets, this book details the various types of observations that can usefully be carried out at the eyepiece of a telescope. Subjects range from how to search for new comets to visually estimating the brightness of comets and the length and orientation of tails, in addition to what to look for in comet heads a...

  13. Solar-insolation-induced changes in the coma morphology of comet 67P/Churyumov-Gerasimenko. Optical monitoring with the Nordic Optical Telescope

    Science.gov (United States)

    Zaprudin, B.; Lehto, H. J.; Nilsson, K.; Somero, A.; Pursimo, T.; Snodgrass, C.; Schulz, R.

    2017-07-01

    Context. 67P/Churyumov-Gerasimenko (67P/C-G) is a short-period Jupiter family comet with an orbital period of 6.55 yr. Being the target comet of ESA's Rosetta mission, 67P/C-G has become one of the most intensively studied minor bodies of the solar system. The Rosetta Orbiter and the Philae Lander have brought us unique information about the structure and activity of the comet nucleus, as well as its activity along the orbit, composition of gas, and dust particles emitted into the coma. However, as Rosetta stayed in very close proximity to the cometary nucleus (less than 500 km with a few short excursions reaching up to 1500 km), it could not see the global picture of a coma at the scales reachable by telescopic observations (103 - 105 km). Aims: In this work we aim to connect in-situ observations made by Rosetta with the morphological evolution of the coma structures monitored by the ground-based observations. In particular, we concentrate on causal relationships between the coma morphology and evolution observed with the Nordic Optical Telescope (NOT) in the Canary Islands, and the seasonal changes of the insolation and the activity of the comet observed by the Rosetta instruments. Methods: Comet 67P/C-G was monitored with the NOT in imaging mode in two colors. Imaging optical observations were performed roughly on a weekly basis, which provides good coverage of short- and long-term variability. With the three dimensional modeling of the coma produced by active regions on the southern hemisphere, we aim to qualify the observed morphology by connecting it to the activity observed by Rosetta. Results: During our monitoring program, we detected major changes in the coma morphology of comet 67P/C-G. These were long-term and long-lasting changes. They do not represent any sudden outburst or short transient event, but are connected to seasonal changes of the surface insolation and the emergence of new active regions on the irregular shaped comet nucleus. We have also

  14. OpenComet: An automated tool for comet assay image analysis

    Directory of Open Access Journals (Sweden)

    Benjamin M. Gyori

    2014-01-01

    Full Text Available Reactive species such as free radicals are constantly generated in vivo and DNA is the most important target of oxidative stress. Oxidative DNA damage is used as a predictive biomarker to monitor the risk of development of many diseases. The comet assay is widely used for measuring oxidative DNA damage at a single cell level. The analysis of comet assay output images, however, poses considerable challenges. Commercial software is costly and restrictive, while free software generally requires laborious manual tagging of cells. This paper presents OpenComet, an open-source software tool providing automated analysis of comet assay images. It uses a novel and robust method for finding comets based on geometric shape attributes and segmenting the comet heads through image intensity profile analysis. Due to automation, OpenComet is more accurate, less prone to human bias, and faster than manual analysis. A live analysis functionality also allows users to analyze images captured directly from a microscope. We have validated OpenComet on both alkaline and neutral comet assay images as well as sample images from existing software packages. Our results show that OpenComet achieves high accuracy with significantly reduced analysis time.

  15. Sharpening Up Jupiter

    Science.gov (United States)

    2008-10-01

    New image-correction technique delivers sharpest whole-planet ground-based picture ever A record two-hour observation of Jupiter using a superior technique to remove atmospheric blur has produced the sharpest whole-planet picture ever taken from the ground. The series of 265 snapshots obtained with the Multi-Conjugate Adaptive Optics Demonstrator (MAD) prototype instrument mounted on ESO's Very Large Telescope (VLT) reveal changes in Jupiter's smog-like haze, probably in response to a planet-wide upheaval more than a year ago. Sharpening Up Jupiter ESO PR Photo 33/08 Sharpening Up Jupiter Being able to correct wide field images for atmospheric distortions has been the dream of scientists and engineers for decades. The new images of Jupiter prove the value of the advanced technology used by MAD, which uses two or more guide stars instead of one as references to remove the blur caused by atmospheric turbulence over a field of view thirty times larger than existing techniques [1]. "This type of adaptive optics has a big advantage for looking at large objects, such as planets, star clusters or nebulae," says lead researcher Franck Marchis, from UC Berkeley and the SETI Institute in Mountain View, California, USA. "While regular adaptive optics provides excellent correction in a small field of view, MAD provides good correction over a larger area of sky. And in fact, were it not for MAD, we would not have been able to perform these amazing observations." MAD allowed the researchers to observe Jupiter for almost two hours on 16 and 17 August 2008, a record duration, according to the observing team. Conventional adaptive optics systems using a single Jupiter moon as reference cannot monitor Jupiter for so long because the moon moves too far from the planet. The Hubble Space Telescope cannot observe Jupiter continuously for more than about 50 minutes, because its view is regularly blocked by the Earth during Hubble's 96-minute orbit. Using MAD, ESO astronomer Paola Amico

  16. Jupiter Environment Tool

    Science.gov (United States)

    Sturm, Erick J.; Monahue, Kenneth M.; Biehl, James P.; Kokorowski, Michael; Ngalande, Cedrick,; Boedeker, Jordan

    2012-01-01

    The Jupiter Environment Tool (JET) is a custom UI plug-in for STK that provides an interface to Jupiter environment models for visualization and analysis. Users can visualize the different magnetic field models of Jupiter through various rendering methods, which are fully integrated within STK s 3D Window. This allows users to take snapshots and make animations of their scenarios with magnetic field visualizations. Analytical data can be accessed in the form of custom vectors. Given these custom vectors, users have access to magnetic field data in custom reports, graphs, access constraints, coverage analysis, and anywhere else vectors are used within STK.

  17. Jupiter

    CERN Document Server

    Penne, Barbra

    2017-01-01

    Our solar system's largest planet is huge enough that all of the system's other planets could fit inside it. Although Jupiter has been known since ancient times, scientists are still learning exciting new information about the planet and its satellites today. In fact, several of its moons are now believed to have oceans below their icy surfaces. Chapters focus on topics such as Jupiter's orbit and rotation, rings, atmosphere, and moons, as well as on the space missions that have helped us get a closer look at the planet and its moons over the past decades.

  18. Mystery of comets

    International Nuclear Information System (INIS)

    Whipple, F.L.

    1985-01-01

    An account is given of the growth of human understanding of comets with emphasis initially placed on theories developed before the twentieth century and subsequently on information regarding the nature of comets, their origin and possible relation to life on earth. Special consideration is given to a description of how the author arrived at his own model of the origin and nature of comets, the dirty snowball theory. The significance of comets (i.e. the hazards they may represent) is assessed and space missions to Halley's comet together with the first landing on a comet (tentatively planned for 1995) are described. It is noted that this growth of cometary understanding is presented as an integral part of the growth of science and technology. 14 references

  19. The Jupiter program

    International Nuclear Information System (INIS)

    Ramirez, J.J.

    1995-01-01

    Jupiter is a Sandia initiative to develop the next generation of fast Z-pinch drivers for applications to high energy density physics, inertial confinement fusion, and radiation effects simulation. Jupiter will also provide unique capabilities for science research in a broad spectrum of areas involving ultra high magnetic fields, hot/dense plasmas, x-ray physics, intense neutron sources, etc. The program is based on the premise that a single facility using magnetically driven implosions can meet the needs in these multiple program areas. Jupiter requires a 450-500 TW, 8-10 MV, ∼ 100 ns pulsed power generator to impart - 15 MJ kinetic energy to an imploding plasma load. The baseline concept uses a highly modular, robust architecture with demonstrated performance reliability. The design also has the flexibility to drive longer implosion times. This paper describes the Jupiter accelerator concept, and the research underway to establish the technological readiness to proceed with construction of the facility

  20. Physics of comets

    CERN Document Server

    Krishna Swamy, K S

    1997-01-01

    The study of Comet Halley in 1986 was a tremendous success for cometary science. In March of that year, six spacecrafts passed through Comet Halley as close as 600 km from the nucleus and made the in situ measurements of various kinds. These space missions to Comet Halley and that of the ICE spacecraft to Comet Giacobini-Zinner combined with studies, both ground-based and above the atmosphere, have increased our knowledge of cometary science in a dramatic way.This new edition of Physics of Comets incorporates these new and exciting findings. The emphasis of the book is on the physical processe

  1. JUICE space mission to Jupiter

    CERN Document Server

    CERN. Geneva

    2018-01-01

    JUICE - JUpiter ICy moons Explorer - is the first large-class mission in ESA's Cosmic Vision 2015-2025 programme. Planned for launch in 2022 and arrival at Jupiter in 2029, it will spend at least three years making detailed observations of the giant gaseous planet Jupiter and three of its largest moons, Ganymede, Callisto and Europa. JUICE will perform detailed investigations of Jupiter and its system in all their inter-relations and complexity with particular emphasis on Ganymede as a planetary body and potential habitat. Investigations of Europa and Callisto would complete a comparative picture of the Galilean moons. Jupiter is the archetype for the giant planets of the Solar System and for the numerous giant planets now known to orbit other stars. Moreover, Jupiter's diverse Galilean satellites - three of which are believed to harbour internal oceans - are central to understanding the habitability of icy worlds. JUICE spacecraft will carry the most powerful remote sensing, geophysical, and in situ paylo...

  2. Exploring the diversity of Jupiter-class planets.

    Science.gov (United States)

    Fletcher, Leigh N; Irwin, Patrick G J; Barstow, Joanna K; de Kok, Remco J; Lee, Jae-Min; Aigrain, Suzanne

    2014-04-28

    Of the 900+ confirmed exoplanets discovered since 1995 for which we have constraints on their mass (i.e. not including Kepler candidates), 75% have masses larger than Saturn (0.3 MJ), 53% are more massive than Jupiter and 67% are within 1 AU of their host stars. When Kepler candidates are included, Neptune-sized giant planets could form the majority of the planetary population. And yet the term 'hot Jupiter' fails to account for the incredible diversity of this class of astrophysical object, which exists on a continuum of giant planets from the cool jovians of our own Solar System to the highly irradiated, tidally locked hot roasters. We review theoretical expectations for the temperatures, molecular composition and cloud properties of hydrogen-dominated Jupiter-class objects under a variety of different conditions. We discuss the classification schemes for these Jupiter-class planets proposed to date, including the implications for our own Solar System giant planets and the pitfalls associated with compositional classification at this early stage of exoplanetary spectroscopy. We discuss the range of planetary types described by previous authors, accounting for (i) thermochemical equilibrium expectations for cloud condensation and favoured chemical stability fields; (ii) the metallicity and formation mechanism for these giant planets; (iii) the importance of optical absorbers for energy partitioning and the generation of a temperature inversion; (iv) the favoured photochemical pathways and expectations for minor species (e.g. saturated hydrocarbons and nitriles); (v) the unexpected presence of molecules owing to vertical mixing of species above their quench levels; and (vi) methods for energy and material redistribution throughout the atmosphere (e.g. away from the highly irradiated daysides of close-in giants). Finally, we discuss the benefits and potential flaws of retrieval techniques for establishing a family of atmospheric solutions that reproduce the

  3. Comets and their origin the tools to decipher a comet

    CERN Document Server

    Meierhenrich, Uwe

    2014-01-01

    Divided into two parts, the first four chapters of Comets and their Origin refer to comets and their formation in general, describing cometary missions, comet remote observations, astrochemistry, artificial comets, and the chirality phenomenon.The second part covers the cometary Rosetta mission, its launch, journey, scientific objectives, and instrumentations, as well as the landing scenario on a cometary nucleus. Along the way, the author presents general questions concerning the origin of terrestrial water and the molecular beginnings of lifeon Earth, as well as how the instruments used on

  4. OBSERVATIONAL AND DYNAMICAL CHARACTERIZATION OF MAIN-BELT COMET P/2010 R2 (La Sagra)

    Energy Technology Data Exchange (ETDEWEB)

    Hsieh, Henry H.; Yang Bin; Haghighipour, Nader; Jedicke, Robert; Wainscoat, Richard J.; Denneau, Larry; Kaluna, Heather M.; Kleyna, Jan [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu HI 96822 (United States); Novakovic, Bojan [Department of Astronomy, Faculty of Mathematics, University of Belgrade, Studentski trg 16, 11000 Belgrade (Serbia); Abe, Shinsuke; Chen Wenping; Ip, Wing; Kinoshita, Daisuke [Institute of Astronomy, National Central University, 300 Jhongda Rd, Jhongli 32001, Taiwan (China); Fitzsimmons, Alan; Lacerda, Pedro [Astronomy Research Centre, Queens University Belfast, Belfast BT7 1NN (United Kingdom); Granvik, Mikael [Department of Physics, P.O. Box 64, 00014 University of Helsinki (Finland); Grav, Tommy [Department of Physics and Astronomy, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218 (United States); Knight, Matthew M. [Lowell Observatory, 1400 West Mars Hill Road, Flagstaff, AZ 86001 (United States); Lisse, Carey M. [Planetary Exploration Group, Space Department, Johns Hopkins University Applied Physics Laboratory, Laurel, MD 20723 (United States); Maclennan, Eric, E-mail: hsieh@ifa.hawaii.edu [Department of Physics and Astronomy, Northern Arizona University, 602 South Humphreys Street, Flagstaff, AZ 86011 (United States); and others

    2012-05-15

    We present observations of the recently discovered comet-like main-belt object P/2010 R2 (La Sagra) obtained by Pan-STARRS1 and the Faulkes Telescope-North on Haleakala in Hawaii, the University of Hawaii 2.2 m, Gemini-North, and Keck I telescopes on Mauna Kea, the Danish 1.54 m telescope (operated by the MiNDSTEp consortium) at La Silla, and the Isaac Newton Telescope on La Palma. An antisolar dust tail is observed to be present from 2010 August through 2011 February, while a dust trail aligned with the object's orbit plane is also observed from 2010 December through 2011 August. Assuming typical phase darkening behavior, P/La Sagra is seen to increase in brightness by >1 mag between 2010 August and December, suggesting that dust production is ongoing over this period. These results strongly suggest that the observed activity is cometary in nature (i.e., driven by the sublimation of volatile material), and that P/La Sagra is therefore the most recent main-belt comet to be discovered. We find an approximate absolute magnitude for the nucleus of H{sub R} = 17.9 {+-} 0.2 mag, corresponding to a nucleus radius of {approx}0.7 km, assuming an albedo of p = 0.05. Comparing the observed scattering surface areas of the dust coma to that of the nucleus when P/La Sagra was active, we find dust-to-nucleus area ratios of A{sub d} /A{sub N} = 30-60, comparable to those computed for fellow main-belt comets 238P/Read and P/2008 R1 (Garradd), and one to two orders of magnitude larger than for two other main-belt comets (133P/Elst-Pizarro and 176P/LINEAR). Using optical spectroscopy to search for CN emission, we do not detect any conclusive evidence of sublimation products (i.e., gas emission), finding an upper limit CN production rate of Q{sub CN} < 6 Multiplication-Sign 10{sup 23} mol s{sup -1}, from which we infer an H{sub 2}O production rate of Q{sub H{sub 2O}} < 10{sup 26} mol s{sup -1}. Numerical simulations indicate that P/La Sagra is dynamically stable for >100 Myr

  5. OBSERVATIONAL AND DYNAMICAL CHARACTERIZATION OF MAIN-BELT COMET P/2010 R2 (La Sagra)

    International Nuclear Information System (INIS)

    Hsieh, Henry H.; Yang Bin; Haghighipour, Nader; Jedicke, Robert; Wainscoat, Richard J.; Denneau, Larry; Kaluna, Heather M.; Kleyna, Jan; Novaković, Bojan; Abe, Shinsuke; Chen Wenping; Ip, Wing; Kinoshita, Daisuke; Fitzsimmons, Alan; Lacerda, Pedro; Granvik, Mikael; Grav, Tommy; Knight, Matthew M.; Lisse, Carey M.; Maclennan, Eric

    2012-01-01

    We present observations of the recently discovered comet-like main-belt object P/2010 R2 (La Sagra) obtained by Pan-STARRS1 and the Faulkes Telescope-North on Haleakala in Hawaii, the University of Hawaii 2.2 m, Gemini-North, and Keck I telescopes on Mauna Kea, the Danish 1.54 m telescope (operated by the MiNDSTEp consortium) at La Silla, and the Isaac Newton Telescope on La Palma. An antisolar dust tail is observed to be present from 2010 August through 2011 February, while a dust trail aligned with the object's orbit plane is also observed from 2010 December through 2011 August. Assuming typical phase darkening behavior, P/La Sagra is seen to increase in brightness by >1 mag between 2010 August and December, suggesting that dust production is ongoing over this period. These results strongly suggest that the observed activity is cometary in nature (i.e., driven by the sublimation of volatile material), and that P/La Sagra is therefore the most recent main-belt comet to be discovered. We find an approximate absolute magnitude for the nucleus of H R = 17.9 ± 0.2 mag, corresponding to a nucleus radius of ∼0.7 km, assuming an albedo of p = 0.05. Comparing the observed scattering surface areas of the dust coma to that of the nucleus when P/La Sagra was active, we find dust-to-nucleus area ratios of A d /A N = 30-60, comparable to those computed for fellow main-belt comets 238P/Read and P/2008 R1 (Garradd), and one to two orders of magnitude larger than for two other main-belt comets (133P/Elst-Pizarro and 176P/LINEAR). Using optical spectroscopy to search for CN emission, we do not detect any conclusive evidence of sublimation products (i.e., gas emission), finding an upper limit CN production rate of Q CN 23 mol s –1 , from which we infer an H 2 O production rate of Q H 2 O 26 mol s –1 . Numerical simulations indicate that P/La Sagra is dynamically stable for >100 Myr, suggesting that it is likely native to its current location and that its composition is

  6. Jupiter's evolution with primordial composition gradients

    Science.gov (United States)

    Vazan, Allona; Helled, Ravit; Guillot, Tristan

    2018-02-01

    Recent formation and structure models of Jupiter suggest that the planet can have composition gradients and not be fully convective (adiabatic). This possibility directly affects our understanding of Jupiter's bulk composition and origin. In this Letter we present Jupiter's evolution with a primordial structure consisting of a relatively steep heavy-element gradient of 40 M⊕. We show that for a primordial structure with composition gradients, most of the mixing occurs in the outer part of the gradient during the early evolution (several 107 yr), leading to an adiabatic outer envelope (60% of Jupiter's mass). We find that the composition gradient in the deep interior persists, suggesting that 40% of Jupiter's mass can be non-adiabatic with a higher temperature than the one derived from Jupiter's atmospheric properties. The region that can potentially develop layered convection in Jupiter today is estimated to be limited to 10% of the mass. Movies associated to Figs. 1-3 are available at http://https://www.aanda.org

  7. The search for main-belt comets: The Pan-STARRS1 perspective

    Science.gov (United States)

    Hsieh, H.; Denneau, L.; Wainscoat, R.; Jedicke, R.; Schorghofer, N.; Micheli, M.; Veres, P.; Kleyna, J.; Bolin, B.

    2014-07-01

    In recent years, an increasing number of objects have been discovered in the main asteroid belt that exhibit comet-like activity. Some instances of activity are believed to result from sublimation of volatile sub-surface ice, and the objects exhibiting this type of activity have come to be known as main-belt comets (MBCs; Hsieh & Jewitt 2006). For most MBCs, the presence of gas is only inferred from visible dust emission, although water vapor outgassing has recently been directly detected from (1) Ceres (Kuppers et al. 2014), indicating that water sublimation on MBCs could also be possible. In other instances, comet-like dust emission has been found to result from impacts onto otherwise inert objects, rotational disruption, or a combination of effects (cf., Jewitt 2012). In these cases, the objects can be referred to as disrupted asteroids. Collectively, MBCs and disrupted asteroids are known as active asteroids. MBCs have attracted interest in astrobiology due to theoretical studies indicating that material from the asteroid belt region could have been a significant primordial source of the water and other volatiles on the Earth. Icy asteroids also contain some of the least altered material from the inner protosolar disk still in existence today, presenting us with opportunities to learn about the earliest stages of our solar system's formation. The added bonus of the MBCs' relatively close proximity in the asteroid belt means that in situ spacecraft studies are entirely feasible using present-day technology. Pan-STARRS1 (PS1) is a wide-field synoptic survey telescope located on Halekala in Hawaii. It employs a 3.2×3.2 deg 1.4 gigapixel camera and uses an SDSS-like filter system. As of 2014 March 31, the Pan-STARRS1 survey has discovered three MBCs --- P/2006 VW139, P/2012 T1 (PANSTARRS), and P/2013 R3 (Catalina-PANSTARRS) --- as well as one disrupted asteroid (P/2013 P5 (PANSTARRS)), two active Centaurs, 33 Jupiter-family comets, and 17 long-period comets. For

  8. Comet Giacobini-Zinner - a normal comet?

    International Nuclear Information System (INIS)

    Cochran, A.L.; Barker, E.S.

    1987-01-01

    Observations of Comet Giacobini-Zinner were obtained during its 1985 apparition using an IDS spectrograph at McDonald Observatory. Column densities and production rates were computed. The production rates were compared to observations of other normal comets. Giacobini-Zinner is shown to be depleted in C2 and C3 relative to CN. These production rates are down by a factor of 5. 12 references

  9. Radio emission from Jupiter

    International Nuclear Information System (INIS)

    Velusamy, T.

    1976-01-01

    The basic features of the different radio emissions from the planet Jupiter are reviewed. These radio emissions characterized into three types as thermal, decimetric and decametric, are discussed. The coherent emission mechanism for the origin of the decametric bursts and the acceleration mechanism for relativistic electrons in the decimetric radiation have not been properly understood. The emissions are much related to the magnetic field of Jupiter. The system III rotation period for Jupiter has been calculated as 092 55 m 29.74 S. (A.K.)

  10. Hot Jupiters around M dwarfs

    Directory of Open Access Journals (Sweden)

    Murgas F.

    2013-04-01

    Full Text Available The WFCAM Transit Survey (WTS is a near-infrared transit survey running on the United Kingdom Infrared Telescope (UKIRT. We conduct Monte Carlo transit injection and detection simulations for short period (<10 day Jupiter-sized planets to characterize the sensitivity of the survey. We investigate the recovery rate as a function of period and magnitude in 2 hypothetical star-planet cases: M0–2 + hot Jupiter, M2–4 + hot Jupiter. We find that the WTS lightcurves are very sensitive to the presence of Jupiter-sized short-period transiting planets around M dwarfs. The non-detection of a hot-Jupiter around an M dwarf by the WFCAM Transit Survey allows us to place a firm upper limit of 1.9 per cent (at 95 per cent confidence on the planet occurrence rate.

  11. Meteorites and cosmic dust: Interstellar heritage and nebular processes in the early solar system

    Directory of Open Access Journals (Sweden)

    Engrand C.

    2012-01-01

    Full Text Available Small solar system bodies like asteroids and comets have escaped planetary accretion. They are the oldest and best preserved witnesses of the formation of the solar system. Samples of these celestial bodies fall on Earth as meteorites and interplanetary dust. The STARDUST mission also recently returned to Earth cometary dust from comet 81P/Wild 2, a Jupiter Family Comet (JFC. These samples provide unique insights on the physico-chemical conditions and early processes of the solar system. They also contain some minute amount of materials inherited from the local interstellar medium that have survived the accretion processes in the solar system.

  12. Meteor activity from 2001XQ on 2-3 December 2016?

    Science.gov (United States)

    Roggemans, Paul

    2016-04-01

    The minor shower 66 Draconid (541 SDD) which was discovered by the Croatian Meteor Network has a mean orbit based on 43 meteors, similar to the orbit of 2001 XD. The asteroid 2001 XD has an orbit typical for Jupiter family comets and therefore may be a dormant comet. The shower activity ranges from November 23 until December 21. All meteor observers are encouraged to pay attention to any possible meteors from this source, although no outburst or any anything spectacular has to be expected.

  13. Meter-scale thermal contraction crack polygons on the nucleus of comet 67P/Churyumov-Gerasimenko

    Science.gov (United States)

    Auger, A.-T.; Groussin, O.; Jorda, L.; El-Maarry, M. R.; Bouley, S.; Séjourné, A.; Gaskell, R.; Capanna, C.; Davidsson, B.; Marchi, S.; Höfner, S.; Lamy, P. L.; Sierks, H.; Barbieri, C.; Rodrigo, R.; Koschny, D.; Rickman, H.; Keller, H. U.; Agarwal, J.; A'Hearn, M. F.; Barucci, M. A.; Bertaux, J.-L.; Bertini, I.; Cremonese, G.; Da Deppo, V.; Debei, S.; De Cecco, M.; Fornasier, S.; Fulle, M.; Gutiérrez, P. J.; Güttler, C.; Hviid, S.; Ip, W.-H.; Knollenberg, J.; Kramm, J.-R.; Kührt, E.; Küppers, M.; Lara, L. M.; Lazzarin, M.; Lopez Moreno, J. J.; Marzari, F.; Massironi, M.; Michalik, H.; Naletto, G.; Oklay, N.; Pommerol, A.; Sabau, L.; Thomas, N.; Tubiana, C.; Vincent, J.-B.; Wenzel, K.-P.

    2018-02-01

    We report on the detection and characterization of more than 6300 polygons on the surface of the nucleus of comet 67P/Churyumov-Gerasimenko, using images acquired by the OSIRIS camera onboard Rosetta between August 2014 and March 2015. They are found in consolidated terrains and grouped in localized networks. They are present at all latitudes (from North to South) and longitudes (head, neck, and body), sometimes on pit walls or following lineaments. About 1.5% of the observed surface is covered by polygons. Polygons have an homogeneous size across the nucleus, with 90% of them in the size range 1 - 5 m and a mean size of 3.0 ± 1.4 m. They show different morphologies, depending on the width and depth of their trough. They are found in networks with 3- or 4-crack intersection nodes. The polygons observed on 67P are consistent with thermal contraction crack polygons formed by the diurnal or seasonal temperature variations in a hard (MPa) and consolidated sintered layer of water ice, located a few centimeters below the surface. Our thermal analysis shows an evolution of thermal contraction crack polygons according to the local thermal environment, with more evolved polygons (i.e. deeper and larger troughs) where the temperature and the diurnal and seasonal temperature range are the highest. Thermal contraction crack polygons are young surface morphologies that probably formed after the injection of 67P in the inner solar system, typically 100,000 years ago, and could be as young as a few orbital periods, following the decreasing of its perihelion distance in 1959 from 2.7 to 1.3 a.u. Meter scale thermal contraction crack polygons should be common features on the nucleus of Jupiter family comets.

  14. Spectrophotometry of 25 comets - Post-Halley updates for 17 comets plus new observations for eight additional comets

    Science.gov (United States)

    Newburn, Ray L., Jr.; Spinrad, Hyron

    1989-01-01

    The best possible production figures within the current post-Halley framework and available observations are given for H2O, O(1D), CN, C3, C2 and dust in 25 comets. Of these, the three objects with the smallest mixing ratios of all minor species have moderate to little or no dust and appear 'old'. Comets with large amounts of CN are very dusty, and there is a clear correlation of CN with dust, although comets with little or no dust still have some CN. Thus, CN appears to have at least two sources, dust and one or more parent gases. Also, the C2/CN production ratio changes continuously with heliocentric distance in every comet considered, suggesting that C2 production may be a function of coma density as well as parental abundance. Dust production ranges from essentially zero in Comet Sugano-Saigusa-Fujikawa up to 67,000 kg/s for Halley on March 14, 1986.

  15. Spectrophotometry of 25 comets - Post-Halley updates for 17 comets plus new observations for eight additional comets

    International Nuclear Information System (INIS)

    Newburn, R.L. Jr.; Spinrad, H.

    1989-01-01

    The best possible production figures within the current post-Halley framework and available observations are given for H2O, O(1D), CN, C3, C2 and dust in 25 comets. Of these, the three objects with the smallest mixing ratios of all minor species have moderate to little or no dust and appear 'old'. Comets with large amounts of CN are very dusty, and there is a clear correlation of CN with dust, although comets with little or no dust still have some CN. Thus, CN appears to have at least two sources, dust and one or more parent gases. Also, the C2/CN production ratio changes continuously with heliocentric distance in every comet considered, suggesting that C2 production may be a function of coma density as well as parental abundance. Dust production ranges from essentially zero in Comet Sugano-Saigusa-Fujikawa up to 67,000 kg/s for Halley on March 14, 1986. 61 references

  16. Numerical simulations of comets - predictions for Comet Giacobini-Zinner

    International Nuclear Information System (INIS)

    Fedder, J.A.; Lyon, J.G.; Giuliani, J.L. Jr.

    1986-01-01

    Simulations of Comet Giacobini-Zinner's interaction with solar wind are described and results are presented. The simulations are carried out via the numerical solution of the ideal MHD equations as an initial value problem in a uniform solar wind. The calculations are performed on a Cartesian mesh centered at the comet. Results reveal that the first significant modifications of the solar wind along the ISEE/ICE trajectory will occur 100,000 km from the solar wind comet axis. 6 references

  17. Mission to the comets

    International Nuclear Information System (INIS)

    Hughes, D.

    1980-01-01

    The plans of space agencies in the United States and Europe for an exploratory comet mission including a one year rendezvous with comet Temple-2 and a fast fly-by of comet Halley are discussed. The mission provides an opportunity to make comparative measurements on the two different types of comets and also satisfies the three major scientific objectives of cometary missions namely: (1) To determine the chemical nature and the physical structure of cometary nuclei, and the changes that occur with time and orbital position. (2) To study the chemical and physical nature of the atmospheres and ionospheres of comets, the processes that occur in them, and their development with time and orbital position. (3) To determine the nature of the tails of comets and the processes by which they are formed, and to characterise the interaction of comets with solar wind. (UK)

  18. Ammonia abundances in comets

    Science.gov (United States)

    Wyckoff, S.; Tegler, S.; Engel, L.

    The emission band strengths of the NH2 bands of Comets Halley, Hartley-Good, Thiele, and Borrelly were measured to determine the NH2 column densities for the comets. Production rates obtained using the Haser and vectorial models are in agreement within the observational errors, suggesting that a simple two-step decay model may be used to approximate the NH2 distribution in a comet's coma. Ammonia-to-water abundance ratios from 0.01 to 0.4 percent were found for the four comets. The ratio in Comet Halley is found to be Q(NH3)/Q(H2O) = 0.002 + or - 0.001. No significant difference in the ammonia abundance was found before or after perihelion in Comet Halley.

  19. Comets in Australian Aboriginal Astronomy

    Science.gov (United States)

    Hamacher, Duane W.; Norris, Ray P.

    2011-03-01

    We present 25 accounts of comets from 40 Australian Aboriginal communities, citing both supernatural perceptions of comets and historical accounts of historically bright comets. Historical and ethnographic descriptions include the Great Comets of 1843, 1861, 1901, 1910, and 1927. We describe the perceptions of comets in Aboriginal societies and show that they are typically associated with fear, death, omens, malevolent spirits, and evil magic, consistent with many cultures around the world. We also provide a list of words for comets in 16 different Aboriginal languages.

  20. Observation of freakish-asteroid-discovered-resembles support my idea that many dark comets were arrested and lurked in the solar system after every impaction

    Science.gov (United States)

    Cao, Dayong

    2014-03-01

    New observations show that some asteroids are looked like comets. http://www.astrowatch.net/2013/11/freakish-asteroid-discovered-resembles.html, http://www.astrowatch.net/2013/11/astronomers-puzzle-over-newfound.html. It supports my idea that ``many dark comets with very special tilted orbits were arrested and lurked in the solar system'' - ``Sun's companion-dark hole seasonal took its dark comets belt and much dark matter to impact near our earth. And some of them probability hit on our earth. So this model kept and triggered periodic mass extinctions on our earth every 25 to 27 million years. After every impaction, many dark comets with very special tilted orbits were arrested and lurked in the solar system. Because some of them picked up many solar matter, so it looked like the asteroids. When the dark hole-Tyche goes near the solar system again, they will impact near planets.'' The idea maybe explains why do the asteroid looks like the comet? Where are the asteroids come from? What relationship do they have with the impactions and extinctions? http://meetings.aps.org/link/BAPS.2011.CAL.C1.7, http://meetings.aps.org/Meeting/CAL12/Event/181168, http://meetings.aps.org/link/BAPS.2013.MAR.H1.267. During 2009 to 2010, I had presented there are many dark comets like dark Asteroids near the orbit of Jupiter in ASP Meetings. In 2010, NASA's WISE found them. http://meetings.aps.org/link/BAPS.2011.APR.K1.17, http://www.nasa.gov/mission_pages/WISE/news/wise20100122.html Avoid Earth Extinction Associ.

  1. Comet Riders--Nuclear nomads to the stars

    International Nuclear Information System (INIS)

    Angelo, J.A. Jr.; Buden, D.

    1991-01-01

    This paper describes the potential role of an evolutionary family of advanced space nuclear power systems (solid core reactor, gas core reactor, and thermonulcear fusion systems) in the detailed exploration of Solar System comets and in the use of interstellar comes to support migratory journeys to the stars by both human beings and their smart robot systems. 14 refs., 5 figs., 2 tabs

  2. Hubble Images Reveal Jupiter's Auroras

    Science.gov (United States)

    1996-01-01

    These images, taken by the Hubble Space Telescope, reveal changes in Jupiter's auroral emissions and how small auroral spots just outside the emission rings are linked to the planet's volcanic moon, Io. The images represent the most sensitive and sharply-detailed views ever taken of Jovian auroras.The top panel pinpoints the effects of emissions from Io, which is about the size of Earth's moon. The black-and-white image on the left, taken in visible light, shows how Io and Jupiter are linked by an invisible electrical current of charged particles called a 'flux tube.' The particles - ejected from Io (the bright spot on Jupiter's right) by volcanic eruptions - flow along Jupiter's magnetic field lines, which thread through Io, to the planet's north and south magnetic poles. This image also shows the belts of clouds surrounding Jupiter as well as the Great Red Spot.The black-and-white image on the right, taken in ultraviolet light about 15 minutes later, shows Jupiter's auroral emissions at the north and south poles. Just outside these emissions are the auroral spots. Called 'footprints,' the spots are created when the particles in Io's 'flux tube' reach Jupiter's upper atmosphere and interact with hydrogen gas, making it fluoresce. In this image, Io is not observable because it is faint in the ultraviolet.The two ultraviolet images at the bottom of the picture show how the auroral emissions change in brightness and structure as Jupiter rotates. These false-color images also reveal how the magnetic field is offset from Jupiter's spin axis by 10 to 15 degrees. In the right image, the north auroral emission is rising over the left limb; the south auroral oval is beginning to set. The image on the left, obtained on a different date, shows a full view of the north aurora, with a strong emission inside the main auroral oval.The images were taken by the telescope's Wide Field and Planetary Camera 2 between May 1994 and September 1995.This image and other images and data

  3. Ammonia abundances in four comets

    International Nuclear Information System (INIS)

    Wickoff, S.; Tegler, S.C.; Engel, L.

    1991-01-01

    NH2 emission band strengths were measured in four comets and the NH2 column densities were determined in order to measure the ammonia content of the comets. The mean ammonia/water abundance ratio derived for the four comets is found to be 0.13 + or - 0.06 percent, with no significant variation among the comets. The uniformity of this abundance attests to a remarkable degree of chemical homogeneity over large scales in the comet-forming region of the primordial solar nebula, and contrasts with the CO abundance variations found previously in comets. The N2 and NH3 abundances indicate a condensation temperature in the range 20-160 K, consistent with virtually all comet formation hypotheses. 64 refs

  4. Realm of the comets

    International Nuclear Information System (INIS)

    Weissman, P.R.

    1987-01-01

    Studies of Jovian perturbations of the orbits of long-period comets led to the concept of the Oort cloud of 180 billion comets at 50,000-150,000 AU from the sun. Several comets are induced to move toward the sun every million years by the passage of a star at a distance of a few light years. The location of the cloud has since been revised to 20,000-100,000 AU, and comets are now accepted as remnant material fron the proto-solar system epoch. The galactic disk and random, close-passing stars may also cause rare, large perturbations in the orbits of the cloud comets, sending large numbers of comets through the inner solar system. The resulting cometary storm is a candidate cause for the wholesale extinction of dinosaurs in the Cretaceous-Terniary transition due to large number of planetesimals, or one large comet, striking the earth, in a short period of time. The IRAS instruments have detected similar clouds of material around other stars

  5. Status of JUPITER Program

    International Nuclear Information System (INIS)

    Inoue, Teruji; Shirakata, Keisho; Kinjo, Katsuya; Ikegami, Tetsuo; Yamamoto, Masaaki.

    1981-01-01

    The criticality experiment program for large fast reactors by the joint research of the Power Reactor and Nuclear Fuel Development Corp. and the Department of Energy, USA, is called JUPITER Program. The experiment was carried out from April, 1978, to August, 1979, using the zero power plutonium reactor in ANL, and the analysis is carried out independently in Japan and USA. The experiment this time was carried out with two assemblies, ZPPR-9 and 10, and it is called JUPITER Phase 1. Two engineers were dispatched from PNC to ANL-Idaho for two years from August, 1978, and they took part in the planning, execution and analysis of the experiment to obtain the informations. The FBR Core Design Committee was installed in PNC, and has studied the core plan, experimental plan and the course of analysis. The JUPITER Phase 1 is the bench mark experiment to obtain the informations required at the initial stage of the nuclear design of demonstration reactor cores. The rating, object and progress of the JUPITER Phase 1, the outline of experiment, and the present state of the analysis of experiment are described. Hereafter, the general evaluation of the JUPITER Phase 1 will be carried out to clarify the problems when the present method of analysis is applied to large homogeneous reactors. Also the bench mark experiment on large heterogeneous reactors will be planned. (Kako, I.)

  6. Comet thermal modeling

    International Nuclear Information System (INIS)

    Weissman, P.R.; Kieffer, H.H.

    1987-01-01

    The past year was one of tremendous activity because of the appearance of Halley's Comet. Observations of the comet were collected from a number of sources and compared with the detailed predictions of the comet thermal modeling program. Spacecraft observations of key physical parameters for cometary nucleus were incorporated into the thermal model and new cases run. These results have led to a much better understanding of physical processes on the nucleus and have pointed the way for further improvements to the modeling program. A model for the large-scale structure of cometary nuclei was proposed in which comets were envisioned as loosely bound agglomerations of smaller icy planetesimals, essentially a rubble pile of primordial dirty snowballs. In addition, a study of the physical history of comets was begun, concentrating on processes during formation and in the Oort cloud which would alter the volatile and nonvolatile materials in cometary nuclei from their pristine state before formation

  7. D/H ratio for Jupiter

    International Nuclear Information System (INIS)

    Smith, H.; Schempp, W.V.; Baines, K.H.

    1989-01-01

    Observations of Jupiter's spectrum near the R5(0) HD line at 6063.88 A are reported. A feature with an equivalent width of 0.065 + or - 0.021 mA is coincident with the expected line. This feature is compared with HD profiles computed for inhomogeneous scattering models for Jupiter to yield a range for the Jovian D/H ratio of 1.0-2.9 x 10 to the -5th. This D/H ratio is in the lower range of previously reported D/H values for Jupiter and corresponds to an essentially solar D/H ratio for Jupiter. The detection of HD features in the presence of probable blends with spectral features of minor atmospheric hydrocarbon molecules is discussed. Such blends may make unambiguous identification of HD features difficult. 26 references

  8. The McDonald Observatory Faint Comet Survey - Gas production in 17 comets

    Science.gov (United States)

    Cochran, Anita L.; Barker, Edwin S.; Ramseyer, Tod F.; Storrs, Alex D.

    1992-01-01

    The complete Intensified Dissector Scanner data set on 17 comets is presented, and production rates are derived and analyzed. It is shown that there is a strong degree of homogenization in the production rate ratios of many comets. It also appears that the ratio of the production rates of the various species has no heliocentric distance dependence, except for the case of NH2. When speaking of the gas in the coma of a comet, it appears that comets must have been formed under remarkably uniform conditions, and that they must have evolved and formed their comae in a similar manner. The data presented here constitute strong evidence that the minor species must be bound up in a lattice and that the interior of a comet must be reasonably uniform.

  9. OUTBURST OF COMET 17P/HOLMES OBSERVED WITH THE SOLAR MASS EJECTION IMAGER

    International Nuclear Information System (INIS)

    Li Jing; Jewitt, David; Clover, John M.; Jackson, Bernard V.

    2011-01-01

    We present time-resolved photometric observations of the Jupiter family comet 17P/Holmes during its dramatic 2007 outburst. The observations, from the orbiting Solar Mass Ejection Imager (SMEI), provide the most complete measure of the whole-coma brightness, free from the effects of instrumental saturation and with a time resolution well matched to the rapid brightening of the comet. The light curve is divided into two distinct parts. A rapid rise between the first SMEI observation on UT 2007 October 24 06h 37m (mid-integration) and UT 2007 October 25 is followed by a slow decline until the last SMEI observation on UT 2008 April 6 22h 16m (mid-integration). We find that the rate of change of the brightness is reasonably well described by a Gaussian function having a central time of UT 2007 October 24.54 ± 0.01 and a full width at half-maximum of 0.44 ± 0.02 days. The maximum rate of brightening occurs some 1.2 days after the onset of activity. At the peak, the scattering cross-section grows at 1070 ± 40 km 2 s -1 while the (model-dependent) mass loss rates inferred from the light curve reach a maximum at 3 x 10 5 kg s -1 . The integrated mass in the coma lies in the range (2-90) x 10 10 kg, corresponding to 0.2%-10% of the nucleus mass, while the kinetic energy of the ejecta is (0.7-30) megatonnes TNT. The particulate coma mass could be contained within a shell on the nucleus of thickness 1-60 m. This is also the approximate distance traveled by conducted heat in the century since the previous outburst of 17P/Holmes. This coincidence is consistent with, but does not prove, the idea that the outburst was triggered by the action of conducted heat, possibly through the crystallization of buried amorphous ice.

  10. Optical observation of comets

    International Nuclear Information System (INIS)

    Tanabe, Hiroyoshi

    1974-01-01

    The observation of comets is proposed to study the state of interplanetary space. The behavior of the tails of comets shows the state of solar wind. On July 4, 1964, large bending was seen in the tail of the Tomita-Gerber-Handa comet. Then, on July 7, 1964, geomagnetic disturbance was observed. Disturbance in the tail of Kohoutek comet was seen on Jan. 19, 1974, and Ksub(p)--5 on the ground on Jan. 25. The effort for the quantitative measurement of the parameters of solar wind has been continued in various countries. Recently, the large scale observation of the Kohoutek comet was carried out in the world. Preliminary report is presented in this paper. Waving in the type 1 tail of the comet was seen, and this phenomenon may show some instability due to the interaction between the tail and the solar wind. Periodic variation of the direction of the tail has been reported. The present result also confirmed this report. In case of small comets, flare-up occurs and original luminous intensity is regained after several days. Measurement of the spectrum at the time of flare-up may show information concerning temporary variation of the state of interplanetary space. For the tracking of time variation of comets, cooperation of a number of stations at different positions is required. (Kato, T.)

  11. Disappearance and disintegration of comets

    Science.gov (United States)

    Sekanina, Z.

    1984-01-01

    The present investigation has the objective to provide a summary of the existing evidence on the disappearance of comets and to draw conclusions regarding the physical processes involved in the disappearance. Information concerning the classification of evidence and the causes of apparent disappearance of comets is presented in a table. Attention is given to the dissipating comets, the headless sungrazing comet 1887 I, and the physical behavior of the dissipating comets and the related phenomena. It is found that all comets confined to the planetary region of the solar system decay on astronomically short time scales. However, only some of them appear to perish catastrophically. Some of the observed phenomena could be successfully interpreted. But little insight has been obtained into the character of the processes which the dissipating comets experience.

  12. rosuvastatin (JUPITER)

    DEFF Research Database (Denmark)

    Ridker, Paul M; MacFadyen, Jean G; Fonseca, Francisco A H

    2009-01-01

    were calculated across a range of end points, timeframes, and subgroups using data from Justification for the Use of statins in Prevention: an Intervention Trial Evaluating Rosuvastatin (JUPITER), a randomized evaluation of rosuvastatin 20 mg versus placebo conducted among 17 802 apparently healthy men...... infarction, stroke, revascularization, or death, the 5-year NNT within JUPITER was 20 (95% CI, 14 to 34). All subgroups had 5-year NNT values for this end point below 50; as examples, 5-year NNT values were 17 for men and 31 for women, 21 for whites and 19 for nonwhites, 18 for those with body mass index 300...

  13. Physical processes in comets

    International Nuclear Information System (INIS)

    Newburn, R.L. Jr.

    1988-01-01

    When this program began in 1975 only limited photometry had been carried out on comets at any wavelength. Program goals were to observe many comets, including faint periodic comets, at a range of heliocentric distances in order to begin to understand the range of behavior among comets and in a given comet during its approach and departure from the sun. Then a study of the continuum of scattered light from dust was added. More recently the value of joint team observations in visible and infrared light has been recognized and utilized as often as possible. All 1978 to 1982 data was reanalyzed and 1983 to 1986 data analyzed in the framwork of the post-Halley paradigm, covering 25 comets in all. Four observing runs (June, July, Sept., and Jan.) with Hanner produced excellent results on Wilson, Bradfield, P/Klemola, and P/Borrelly and lesser data on other objects, including the last reported IR photometry of P/Halley. The Wilson and Halley data have been reduced

  14. ESA Unveils Its New Comet Chaser.

    Science.gov (United States)

    1999-07-01

    mission because it is much easier to reach than most comets and its path is predictable. Since its discovery in 1948, it has been well observed by ground-based instruments, so its orbit is well known. In recent years the comet's orbit has been altered by the gravitational pull of Jupiter so that it passes close to the Earth's orbit and never strays too far from the Sun. After multiple approaches to the Sun, Wirtanen has lost most of its volatile ices, so outgassing activity remains quite low. This will make it easier for the instruments on board the Rosetta orbiter and lander to image and study the comet's surface.

  15. CO2 Orbital Trends in Comets

    Science.gov (United States)

    Kelley, Michael; Feaga, Lori; Bodewits, Dennis; McKay, Adam; Snodgrass, Colin; Wooden, Diane

    2014-12-01

    Spacecraft missions to comets return a treasure trove of details of their targets, e.g., the Rosetta mission to comet 67P/Churyumov-Gerasimenko, the Deep Impact experiment at comet 9P/Tempel 1, or even the flyby of C/2013 A1 (Siding Spring) at Mars. Yet, missions are rare, the diversity of comets is large, few comets are easily accessible, and comet flybys essentially return snapshots of their target nuclei. Thus, telescopic observations are necessary to place the mission data within the context of each comet's long-term behavior, and to further connect mission results to the comet population as a whole. We propose a large Cycle 11 project to study the long-term activity of past and potential future mission targets, and select bright Oort cloud comets to infer comet nucleus properties, which would otherwise require flyby missions. In the classical comet model, cometary mass loss is driven by the sublimation of water ice. However, recent discoveries suggest that the more volatile CO and CO2 ices are the likely drivers of some comet active regions. Surprisingly, CO2 drove most of the activity of comet Hartley 2 at only 1 AU from the Sun where vigorous water ice sublimation would be expected to dominate. Currently, little is known about the role of CO2 in comet activity because telluric absorptions prohibit monitoring from the ground. In our Cycle 11 project, we will study the CO2 activity of our targets through IRAC photometry. In conjunction with prior observations of CO2 and CO, as well as future data sets (JWST) and ongoing Earth-based projects led by members of our team, we will investigate both long-term activity trends in our target comets, with a particular goal to ascertain the connections between each comet's coma and nucleus.

  16. Why Are Hot Jupiters So Lonely?

    Science.gov (United States)

    Kohler, Susanna

    2017-10-01

    Jupiter-like planets with blisteringly close-in orbits are generally friendless, with no nearbyplanets transiting along with them. Giant planets with orbits a little further out, on the other hand, often have at least one companion. A new study examines the cause of hot Jupiters loneliness.Forming Close-In GiantsArtists impression of a planet forming within a protoplanetary disk. [NAOJ]Though weve studied close-in giant planets for decades now, we still dont fully understand how these objects form and evolve. Jupiter-like giant planets could form in situ next to their host stars, or they could form further out in the system beyond the ice line and then migrate inwards. And if they do migrate, this migration could occur early, while the protoplanetary disk still exists, or long after, via excitation of large eccentricities.We can try to resolve this mystery by examining the statistics of the close-in giant planets weve observed, but this often raises more questions than it answers. A prime example: the properties of close-in giants that have close-in companion planets orbiting in the same plane (i.e., co-transiting).About half of warm Jupiters Jupiter-like planets with periods of 1030 days appear to have close-in, co-transiting companions. In contrast, almost no hot Jupiters Jupiter-like planets with periods of less than 10 days have such companions. What causes this dichotomy?Schematic of the authors model, in which the close-in giant (m1) encounters a resonance with its host star, causing the orbit of the exterior companion (m2) to become tilted. [Spalding Batygin 2017]Friendless Hot JupitersWhile traditional models have argued that the two types of planets form via different pathways warm Jupiters form in situ, or else migrate inward early and smoothly, whereas hot Jupiters migrate inward late and violently, losing their companions in the process a new study casts doubt on this picture.Two scientists from the California Institute of Technology, Christopher

  17. The Science of Sungrazers, Sunskirters, and Other Near-Sun Comets

    Science.gov (United States)

    Jones, Geraint H.; Knight, Matthew M.; Battams, Karl; Boice, Daniel C.; Brown, John; Giordano, Silvio; Raymond, John; Snodgrass, Colin; Steckloff, Jordan K.; Weissman, Paul; Fitzsimmons, Alan; Lisse, Carey; Opitom, Cyrielle; Birkett, Kimberley S.; Bzowski, Maciej; Decock, Alice; Mann, Ingrid; Ramanjooloo, Yudish; McCauley, Patrick

    2018-02-01

    This review addresses our current understanding of comets that venture close to the Sun, and are hence exposed to much more extreme conditions than comets that are typically studied from Earth. The extreme solar heating and plasma environments that these objects encounter change many aspects of their behaviour, thus yielding valuable information on both the comets themselves that complements other data we have on primitive solar system bodies, as well as on the near-solar environment which they traverse. We propose clear definitions for these comets: We use the term near-Sun comets to encompass all objects that pass sunward of the perihelion distance of planet Mercury (0.307 AU). Sunskirters are defined as objects that pass within 33 solar radii of the Sun's centre, equal to half of Mercury's perihelion distance, and the commonly-used phrase sungrazers to be objects that reach perihelion within 3.45 solar radii, i.e. the fluid Roche limit. Finally, comets with orbits that intersect the solar photosphere are termed sundivers. We summarize past studies of these objects, as well as the instruments and facilities used to study them, including space-based platforms that have led to a recent revolution in the quantity and quality of relevant observations. Relevant comet populations are described, including the Kreutz, Marsden, Kracht, and Meyer groups, near-Sun asteroids, and a brief discussion of their origins. The importance of light curves and the clues they provide on cometary composition are emphasized, together with what information has been gleaned about nucleus parameters, including the sizes and masses of objects and their families, and their tensile strengths. The physical processes occurring at these objects are considered in some detail, including the disruption of nuclei, sublimation, and ionisation, and we consider the mass, momentum, and energy loss of comets in the corona and those that venture to lower altitudes. The different components of comae and

  18. Cometography a catalog of comets

    CERN Document Server

    Kronk, Gary W; Seargent, David A J

    2017-01-01

    Cometography is a multi-volume catalog of every comet observed from ancient times up to the 1990s, when the internet took off as a medium of scientific record. It uses the most reliable orbits known to determine the distances from the Earth and Sun at the time of discovery and last observation, as well as the largest and smallest angular distance to the Sun, most northerly and southerly declination, closest distance to the Earth, and other details, to enable the reader to understand each comet's physical appearance. Volume 6, the final volume in the catalog, covers the observations and pertinent calculations for every comet seen between 1983 and 1993. The comets are listed in chronological order, with complete references to publications relating to each comet and physical descriptions of each comet's development throughout its apparition. Cometography is the definitive reference on comets through the ages, for astronomers and historians of science.

  19. Jupiter: Lord of the Planets.

    Science.gov (United States)

    Kaufmann, William

    1984-01-01

    Presents a chapter from an introductory college-level astronomy textbook in which full-color photographs and numerous diagrams highlight an extensive description of the planet Jupiter. Topics include Jupiter's geology, rotation, magnetic field, atmosphere (including clouds and winds), and the Great Red Spot. (DH)

  20. Detecting active comets with SDSS

    Energy Technology Data Exchange (ETDEWEB)

    Solontoi, Michael; Ivezic, Zeljko; /Washington U., Seattle, Astron. Dept.; West, Andrew A.; /MIT, MKI; Claire, Mark; /Washington U., Seattle, Astron. Dept.; Juric, Mario; /Princeton U. Observ.; Becker, Andrew; Jones, Lynne; /Washington U., Seattle, Astron. Dept.; Hall, Patrick B.; /York U., Canada; Kent, Steve; /Fermilab; Lupton, Robert H.; /Princeton U. Observ.; Quinn, Tom; /Washington U., Seattle, Astron. Dept. /Princeton U. Observ.

    2010-12-01

    Using a sample of serendipitously discovered active comets in the Sloan Digital Sky Survey (SDSS), we develop well-controlled selection criteria for greatly increasing the efficiency of comet identification in the SDSS catalogs. After follow-up visual inspection of images to reject remaining false positives, the total sample of SDSS comets presented here contains 19 objects, roughly one comet per 10 million other SDSS objects. The good understanding of selection effects allows a study of the population statistics, and we estimate the apparent magnitude distribution to r {approx} 18, the ecliptic latitude distribution, and the comet distribution in SDSS color space. The most surprising results are the extremely narrow range of colors for comets in our sample (e.g. root-mean-square scatter of only {approx}0.06 mag for the g-r color), and the similarity of comet colors to those of jovian Trojans. We discuss the relevance of our results for upcoming deep multi-epoch optical surveys such as the Dark Energy Survey, Pan-STARRS, and the Large Synoptic Survey Telescope (LSST), and estimate that LSST may produce a sample of about 10,000 comets over its 10-year lifetime.

  1. Postencounter view of comets

    International Nuclear Information System (INIS)

    Mendis, D.A.

    1988-01-01

    Ground-based and space observations of Comet Halley during its 1986 perihelion passage are reviewed, with an emphasis on their implications for theoretical models. Consideration is given to the shape, surface morphology, and composition of the comet nucleus; the shape, dynamics, and composition of the dust tail; neutral and ionic gas species in the head and plasma tail; and the comet/solar-wind interaction. Extensive diagrams, graphs, and sample images are provided, and the potential value of the new kinds of data to be obtained with the NASA Comet-Rendezvous/Asteroid-Flyby spacecraft is discussed. 139 references

  2. CometQ: An automated tool for the detection and quantification of DNA damage using comet assay image analysis.

    Science.gov (United States)

    Ganapathy, Sreelatha; Muraleedharan, Aparna; Sathidevi, Puthumangalathu Savithri; Chand, Parkash; Rajkumar, Ravi Philip

    2016-09-01

    DNA damage analysis plays an important role in determining the approaches for treatment and prevention of various diseases like cancer, schizophrenia and other heritable diseases. Comet assay is a sensitive and versatile method for DNA damage analysis. The main objective of this work is to implement a fully automated tool for the detection and quantification of DNA damage by analysing comet assay images. The comet assay image analysis consists of four stages: (1) classifier (2) comet segmentation (3) comet partitioning and (4) comet quantification. Main features of the proposed software are the design and development of four comet segmentation methods, and the automatic routing of the input comet assay image to the most suitable one among these methods depending on the type of the image (silver stained or fluorescent stained) as well as the level of DNA damage (heavily damaged or lightly/moderately damaged). A classifier stage, based on support vector machine (SVM) is designed and implemented at the front end, to categorise the input image into one of the above four groups to ensure proper routing. Comet segmentation is followed by comet partitioning which is implemented using a novel technique coined as modified fuzzy clustering. Comet parameters are calculated in the comet quantification stage and are saved in an excel file. Our dataset consists of 600 silver stained images obtained from 40 Schizophrenia patients with different levels of severity, admitted to a tertiary hospital in South India and 56 fluorescent stained images obtained from different internet sources. The performance of "CometQ", the proposed standalone application for automated analysis of comet assay images, is evaluated by a clinical expert and is also compared with that of a most recent and related software-OpenComet. CometQ gave 90.26% positive predictive value (PPV) and 93.34% sensitivity which are much higher than those of OpenComet, especially in the case of silver stained images. The

  3. JUPITER and satellites: Clinical implications of the JUPITER study and its secondary analyses.

    Science.gov (United States)

    Kostapanos, Michael S; Elisaf, Moses S

    2011-07-26

    THE JUSTIFICATION FOR THE USE OF STATINS IN PREVENTION: an intervention trial evaluating rosuvastatin (JUPITER) study was a real breakthrough in primary cardiovascular disease prevention with statins, since it was conducted in apparently healthy individuals with normal levels of low-density lipoprotein cholesterol (LDL-C JUPITER, rosuvastatin was associated with significant reductions in cardiovascular outcomes as well as in overall mortality compared with placebo. In this paper the most important secondary analyses of the JUPITER trial are discussed, by focusing on their novel findings regarding the role of statins in primary prevention. Also, the characteristics of otherwise healthy normocholesterolemic subjects who are anticipated to benefit more from statin treatment in the clinical setting are discussed. Subjects at "intermediate" or "high" 10-year risk according to the Framingham score, those who exhibit low post-treatment levels of both LDL-C (JUPITER added to our knowledge that statins may be effective drugs in the primary prevention of cardiovascular disease in normocholesterolemic individuals at moderate-to-high risk. Also, statin treatment may reduce the risk of venous thromboembolism and preserve renal function. An increase in physician-reported diabetes represents a major safety concern associated with the use of the most potent statins.

  4. Composition of faint comets

    International Nuclear Information System (INIS)

    Brown, L.W.

    1986-01-01

    The study uses an emission line, differential imaging camera built by the Science Operations Branch. This instrument allows photometric data to be obtained over a large area of a comet in a large number of resolution elements. The detector is a 100x100 Reticon array which with interchangeable optics can give resolutions from 2'' to 30'' over a field of 1' to 15'. The camera through its controlling computer can simultaneously take images in on-line and continuum filters and through computer subtraction and calibration present a photometric image of the comet produced by only the emission of the molecule under study. Initial work has shown two significant problems. First the auxiliary equipment of the telescope has not allowed the unambiguous location of faint comets so that systematic observations could be made, and secondly initial data has not shown much molecular emission from the faint comets which were located. Work last year on a software and hardware display system and this year on additional guide motors on the 36-inch telescope has allowed the differential camera to act as its own finder and guide scope. Comet IRAS was observed in C2 and CO+, as well as an occultation by the comet of SAO029103. The perodic comet Giacobini-Zinner was also observed in C2

  5. Rosetta - a comet ride to solve planetary mysteries

    Science.gov (United States)

    2003-01-01

    be kept in hibernation during most of its 8-year trek towards Wirtanen. What makes Rosetta's cruise so long? To reach Comet Wirtanen, the spacecraft needs to go out in deep space as far from the Sun as Jupiter is. No launcher could possibly get Rosetta there directly. ESA's spacecraft will gather speed from gravitational ‘kicks’ provided by three planetary fly-bys: one of Mars in 2005 and two of Earth in 2005 and 2007. During the trip, Rosetta will also visit two asteroids, Otawara (in 2006) and Siwa (in 2008). During these encounters, scientists will switch on Rosetta's instruments for calibration and scientific studies. Long trips in deep space include many hazards, such as extreme changes in temperature. Rosetta will leave the benign environment of near-Earth space to the dark, frigid regions beyond the asteroid belt. To manage these thermal loads, experts have done very tough pre-launch tests to study Rosetta's endurance. For example, they have heated its external surfaces to more than 150°C, then quickly cooled it to -180°C in the next test. The spacecraft will be fully reactivated prior to the comet rendezvous manoeuvre in 2011. Then, Rosetta will orbit the comet - an object only 1.2 km wide - while it cruises through the inner Solar System at 135 000 kilometres per hour. At that time of the rendezvous - around 675 million km from the Sun - Wirtanen will hardly show any surface activity. It means that the carachteristic coma (the comet’s ‘atmosphere’) and the tail will not be formed yet, because of the large distance from the Sun. The comet's tail is in fact made of dust grains and frozen gases from the comet's surface that vapourise because of the Sun's heat. During 6-month, Rosetta will extensively map the comet surface, prior to selecting a landing site. In July 2012, the lander will self-eject from the spacecraft from a height of just one kilometre. Touchdown will take place at walking speed - less than 1 metre per second. Immediately after

  6. On internal constitution of Jupiter

    International Nuclear Information System (INIS)

    Kozyrev, N.A.

    1977-01-01

    Jupiter internal construction is considered. The density and pressure inside a cosmic body can be calculated from the known values of the mass and radius. For Jupiter, the inertia moment calculated from the motion of the satellites permits to determine the degree of uniformity of its structure and to find more precise values of density and pressure in the center of the planet. In assumption that the matter of Jupiter consists of hydrogen only, the dependence of pressure on temperature was calculated with accounting for the degeneracy of gas and electrostatic interactions. Hence the central temperature, calculated from pressure and density, appears to be equal to 165.000 deg K. At the thermal conductivity by free electrons such a temperature at the center is to result in a thermal flux of about 1.0x10 4 erg/cm 2 from Jupiter's surface, which was observed during the flights of the ''Pioneer'' stations

  7. Physics of comets

    CERN Document Server

    Krishna Swamy, K S

    2010-01-01

    This revised edition places a unique emphasis on all the new results from ground-based, satellites and space missions - detection of molecule H2 and prompt emission lines of OH for the first time; discovery of X-rays in comets; observed diversity in chemical composition among comets; the puzzle of the constancy of spin temperature; the well-established mineralogy of cometary dust; extensive theoretical modeling carried out for understanding the observed effects; and, the similarity in the mineralogy of dust in circumstellar shell of stars, comets, meteorites, asteroids and IDPs, thus indicatin

  8. Comets in UV

    Science.gov (United States)

    Shustov, B.; Sachkov, M.; Gómez de Castro, A. I.; Vallejo, J. C.; Kanev, E.; Dorofeeva, V.

    2018-04-01

    Comets are important "eyewitnesses" of Solar System formation and evolution. Important tests to determine the chemical composition and to study the physical processes in cometary nuclei and coma need data in the UV range of the electromagnetic spectrum. Comprehensive and complete studies require additional ground-based observations and in situ experiments. We briefly review observations of comets in the ultraviolet (UV) and discuss the prospects of UV observations of comets and exocomets with space-borne instruments. A special reference is made to the World Space Observatory-Ultraviolet (WSO-UV) project.

  9. Periodic Comet Machholz and its idiosyncrasies

    International Nuclear Information System (INIS)

    Sekanina, Z.

    1990-01-01

    The dynamics and physical characteristics of Comet P/Machholz are analyzed. The discovery of the comet (Machholz, 1986) is discussed, including the observational conditions and the theory that the comet is inactive over extensive periods of time. Consideration is given to observations of the two tails of Comet P/Machholz (Emerson, 1986), the brightness variations and light curve of the comet, and nuclear photometry of the comet (Green, 1987). It is suggested that the increase in activity beginning one day after perihelion was triggered by a discrete source within 15 deg of the rotation pole that became sunlit after perihelion. Also, the possibility that Comet P/Machholz is associated with a meteor stream is examined. 45 refs

  10. Terrestrial magnetosphere and comparison with Jupiter's

    International Nuclear Information System (INIS)

    Michel, F.C.

    1974-01-01

    A review of the characteristics of Jupiter's magnetosphere, with comparisons to the earth's is given. Radio observations of Jupiter indicate that energetic electrons are trapped in its magnetic field. The interaction of the trapped radiation with the satellite Io and the centrifugal instability of Jupiter's magnetosphere are discussed. Jupiter's outer magnetosphere is constantly accreting plasma at an uncertain rate. Various mechanisms for supplying ions to the outer magnetosphere are discussed, including: gravitational and centrifugal forces acting on corotating particles; field-line diffusion; photoelectron injection; excitation by Io or other satellites; and viscous interaction with the solar wind. The over-all morphology of the Jovian magnetosphere seems to be highly distorted by centrifugal forces and is easily compressed or deflected by the solar wind

  11. Jupiter and the Voyager mission

    Science.gov (United States)

    Soderblom, L.; Spall, Henry

    1980-01-01

    In 1977, the United States launched two unmanned Voyager spacecraft that were to take part in an extensive reconnaissance of the outer planets over a 12-year period visiting the environs of Jupiter, Saturn, Uranus, and Neptune. Their first encounter was with the complex Jupiter planetary system 400 million miles away. Sweeping by Jupiter and its five moons in 1979, the two spacecraft have sent back to Earth an enormous amount of data that will prove to be vital in understanding our solar system. Voyager 1 is scheduled to fly past Saturn on November 13 of this year; Voyager 2, in August of the following year. 

  12. Seismology of the Jupiter

    International Nuclear Information System (INIS)

    Vorontsov, S.V.; Gudkova, T.V.; Zharkov, V.N.

    1989-01-01

    The structure and diagnostic properties of the spectrum of free oscillations of the models of the Jupiter are discussed. The spectrum is very sensitive to the properties of the inner core and density discontinuities in the interior of the planet. It is shown that in seismology of the Jupiter unlike to solar seismology, it is not possible to use the asymptotic theory for investigation of the high-frequency part of the acoustic spectrum

  13. Molecular ions in comet tails

    International Nuclear Information System (INIS)

    Wyckoff, S.; Wehinger, P.A.

    1976-01-01

    Band intensities of the molecular ions CH + , CO + , N 2 + , and H 2 O + have been determined on an absolute scale from tail spectra of comet Kohoutek (1973f) and comet Bradfield (1974b). Photoionization and photodissociation rates have been computed for CH, CO, and N 2 . Also emission rate excitation g-factors for (1) photoionization plus excitation and (2) resonance fluorescence have been computed for the observed ions. It is shown that resonance fluorescence is the dominant excitation mechanism for observed comet tail ions at rapprox. =1 AU. Band system luminosities and molecular ion abundances within a projected nuclear distance rho 4 km have been determined for CH + , CO + , N 2 + , and H 2 O + in comet Kohoutek, and for H 2 O + in comet Bradfield. Estimates are also given for column densities of all observed ions at rhoapprox. =10 4 km on the tailward side of the coma. The observed H 2 O + column densities were found to be roughly the same in comet Kohoutek and comet Bradfield et equal heliocentric distances, while CO + was found to be approximately 100 times more abundant than H 2 O + , N 2 + , and CH + at rhoapprox. =10 4 km in comet Kohoutek. Finally, the relative abundances of the observed ions and of the presumed parent neutral species are briefly discussed

  14. Comets and their composition

    International Nuclear Information System (INIS)

    Spinrad, H.

    1987-01-01

    Recent theoretical and observational studies of comets are reviewed, with an emphasis on in situ data from spacecraft encounters with P/Giacobini-Zinner (September 1985) and P/Halley (March 1986). Topics addressed include clues on the origin and permanence of the Oort cometary cloud, observations of cometary nuclei far from the sun, the Halley nucleus, compositional and physical data from comae studies, and the parent molecules in comet ices. Also discussed are quantitative analyses of coma production; special features in the tail of P/Giacobini-Zinner; and proposals for (1) observations to detect distant giant comets, (2) high-resolution spectroscopic studies of comae, and (3) additional spacecraft missions such as the NASA Comet Rendezvous and Asteroid Flyby. 121 references

  15. Jupiter radiation belt models (July 1974)

    International Nuclear Information System (INIS)

    Divine, N.

    1974-01-01

    Flux profiles which were derived from data returned by Pioneer 10 during Jupiter encounter, form the basis for a new set of numerical models for the energy spectra of electrons and protons in Jupiter's inner magnetosphere

  16. Reasonable threshold value used to segment the individual comet from the comet assay image

    International Nuclear Information System (INIS)

    Yan Xuekun; Chen Ying; Du Jie; Zhang Xueqing; Luo Yisheng

    2009-01-01

    Reasonable segmentation of the individual comet contour from the Comet Assay (CA) images is the precondition for all of parameters analysis during the automatic analyzing for the CA. The Otsu method and several arithmetic operators for image segmentation, such as Sobel, Prewitt, Roberts and Canny were used to segment the comet contour, and characters of the CA images were analyzed firstly. And then the segmentation methods which had been adopted in the software for CA automatic analysis, such as the CASP, the TriTek CometScore TM , were put for-ward and compared. At last, a two-step procedure for threshold calculation based on image-content analysis is adopted to segment the individual comet from the CA images, and several principles for the segmentation are put forward too.(authors)

  17. DIRBE Comet Trails

    Science.gov (United States)

    Arendt, Richard G.

    2015-01-01

    Re-examination of the COBE DIRBE data reveals the thermal emission of several comet dust trails.The dust trails of 1P/Halley, 169P/NEAT, and 3200 Phaethon have not been previously reported.The known trails of 2P/Encke, and 73P/Schwassmann-Wachmann 3 are also seen. The dust trails have 12 and 25 microns surface brightnesses of trails are very difficult to see in any single daily image of the sky, but are evident as rapidly moving linear features in movies of the DIRBE data. Some trails are clearest when crossing through the orbital plane of the parent comet, but others are best seen at high ecliptic latitudes as the Earth passes over or under the dust trail. All these comets have known associations with meteor showers. This re-examination also reveals one additional comet and 13 additional asteroids that had not previously been recognized in the DIRBE data.

  18. Singing comet changes its song

    Science.gov (United States)

    Volwerk, M.; Goetz, C.; Delva, M.; Richter, I.; Tsurutani, B. T.; Eriksson, A.; Odelstad, E.; Meier, P.; Nilsson, H.; Glassmeier, K.-H.

    2017-09-01

    The singing comet was discovered at the beginning of the Rosetta mission around comet 67P/Churyumov-Gerasimenko. Large amplitude compressional waves with frequencies between 10 and 100 mHz were observed. When the comet became more active this signal was no longer measured. During the so-called tail excursion, late in the mission after perihelion, with again a less active comet, the singing was observed again and interestingly, going from 26 March to 27 March 2016 the character of the singing changed.

  19. Study of Jupiter polarization properties

    International Nuclear Information System (INIS)

    Bolkvadze, O.R.

    1980-01-01

    Investigations into polarization properties of the Jupiter reflected light were carried on at the Abastumani astrophysical observatory in 1967, 1968 and 1969 in the four spectral ranges: 4000, 4800, 5400 and 6600 A deg. Data on light polarization in different parts of the Jupiter visible disk are given. Curves of dependence of the planet light polarization degree on a phase angle are plotted. It is shown that in the central part of the visible planet disk the polarization degree is low. Atmosphere is in a stable state in this part of Jupiter. Mean radius of particles of a cloud layer is equal to 0.26μ, and optical thickness of overcloud atmosphere tau=0.05. Height of transition boundary of the cloud layer into overcloud gas atmosphere changes from year to year at the edges of the equatorial zone. Optical thickness of overcloud atmosphere changes also with changing height of a transient layer. The polar Jupiter regions possess a high degree of polarization which depends on a latitude. Polarization increases monotonously with the latitude and over polar regions accepts a maximum value [ru

  20. Meteorite Source Regions as Revealed by the Near-Earth Object Population

    Science.gov (United States)

    Binzel, Richard P.; DeMeo, Francesca E.; Burt, Brian J.; Polishook, David; Burbine, Thomas H.; Bus, Schelte J.; Tokunaga, Alan; Birlan, Mirel

    2014-11-01

    Spectroscopic and taxonomic information is now available for 1000 near-Earth objects, having been obtained through both targeted surveys (e.g. [1], [2], [3]) or resulting from all-sky surveys (e.g. [4]). We determine their taxonomic types in the Bus-DeMeo system [5] [6] and subsequently examine meteorite correlations based on spectral analysis (e.g. [7],[8]). We correlate our spectral findings with the source region probabilities calculated using the methods of Bottke et al. [9]. In terms of taxonomy, very clear sources are indicated: Q-, Sq-, and S-types most strongly associated with ordinary chondrite meteorites show clear source signatures through the inner main-belt. V-types are relatively equally balanced between nu6 and 3:1 resonance sources, consistent with the orbital dispersion of the Vesta family. B- and C-types show distinct source region preferences for the outer belt and for Jupiter family comets. A Jupiter family comet source predominates for the D-type near-Earth objects, implying these "asteroidal" bodies may be extinct or dormant comets [10]. Similarly, near-Earth objects falling in the spectrally featureless "X-type" category also show a strong outer belt and Jupiter family comet source region preference. Finally the Xe-class near-Earth objects, which most closely match the spectral properties of enstatite achondrite (aubrite) meteorites seen in the Hungaria region[11], show a source region preference consistent with a Hungaria origin by entering near-Earth space through the Mars crossing and nu6 resonance pathways. This work supported by the National Science Foundation Grant 0907766 and NASA Grant NNX10AG27G.[1] Lazzarin, M. et al. (2004), Mem. S. A. It. Suppl. 5, 21. [2] Thomas, C. A. et al. (2014), Icarus 228, 217. [3] Tokunaga, A. et al. (2006) BAAS 38, 59.07. [4] Hasselmann, P. H., Carvano, J. M., Lazzaro, D. (2011) NASA PDS, EAR-A-I0035-5-SDSSTAX-V1.0. [5] Bus, S.J., Binzel, R.P. (2002). Icarus 158, 146. [6] DeMeo, F.E. et al. (2009), Icarus

  1. Nature and origin of comets

    International Nuclear Information System (INIS)

    Fernandez, J.A.; Jockers, K.

    1983-01-01

    The review examines basic history and morphology, motion, dynamic evolution, physical properties of neutral gaseous matter, vaporization of gases and outflow from the nucleus, chemistry of the coma gases, the comet nucleus, dust particles, solar wind-comet interactions and tail formation and the origin of comets. (U.K.)

  2. A New Orbit for Comet C/1865 B1 (Great Southern Comet of 1865)

    Science.gov (United States)

    Branham, Richard L., Jr.

    2018-04-01

    Comet C/1865 B1 (Great southern comet of 1865), observed only in the southern hemisphere, is one of a large number of comets with parabolic orbits. Given that there are 202 observations in right ascension and 165 in declination it proves possible to calculate a better orbit than that Körber published in 1887, the orbit used in various catalogs and data bases. C/1865 B1's orbit is hyperbolic and statistically distinguishable from a parabola. This object, therefore, cannot be considered an NEO. The comet has a small perihelion distance of 0.026 AU.

  3. Halley comet, implication on the origin

    International Nuclear Information System (INIS)

    Festou, M.C.

    1990-01-01

    One will first give a rapid description of the different parts that compose a comet coma. Then one will describe the spectrum of comets from the UV to the IR regions with special emphasis on how information relative to the physico-chemistry of comet atmospheres can be retrieved. Our basic knowledge about the composition of comets before 1985 will be summarized and the input of the 1985-86 observing campaign of comet Halley will be shown (in situ, ground-based and space borne observations). One will see then that the chemical composition of comets appears as of today completely compatible with a formation from pre-solar matter that condensed inside the solar system [fr

  4. A Comet Engulfs Mars: MAVEN Observations of Comet Siding Spring's Influence on the Martian Magnetosphere

    Science.gov (United States)

    Espley, Jared R.; Dibraccio, Gina A.; Connerney, John E. P.; Brain, David; Gruesbeck, Jacob; Soobiah, Yasir; Halekas, Jasper S.; Combi, Michael; Luhmann, Janet; Ma, Yingjuan

    2015-01-01

    The nucleus of comet C/2013 A1 (Siding Spring) passed within 141,000?km of Mars on 19 October 2014. Thus, the cometary coma and the plasma it produces washed over Mars for several hours producing significant effects in the Martian magnetosphere and upper atmosphere. We present observations from Mars Atmosphere and Volatile EvolutioN's (MAVEN's) particles and field's instruments that show the Martian magnetosphere was severely distorted during the comet's passage. We note four specific major effects: (1) a variable induced magnetospheric boundary, (2) a strong rotation of the magnetic field as the comet approached, (3) severely distorted and disordered ionospheric magnetic fields during the comet's closest approach, and (4) unusually strong magnetosheath turbulence lasting hours after the comet left. We argue that the comet produced effects comparable to that of a large solar storm (in terms of incident energy) and that our results are therefore important for future studies of atmospheric escape, MAVEN's primary science objective.

  5. A PRELIMINARY JUPITER MODEL

    International Nuclear Information System (INIS)

    Hubbard, W. B.; Militzer, B.

    2016-01-01

    In anticipation of new observational results for Jupiter's axial moment of inertia and gravitational zonal harmonic coefficients from the forthcoming Juno orbiter, we present a number of preliminary Jupiter interior models. We combine results from ab initio computer simulations of hydrogen–helium mixtures, including immiscibility calculations, with a new nonperturbative calculation of Jupiter's zonal harmonic coefficients, to derive a self-consistent model for the planet's external gravity and moment of inertia. We assume helium rain modified the interior temperature and composition profiles. Our calculation predicts zonal harmonic values to which measurements can be compared. Although some models fit the observed (pre-Juno) second- and fourth-order zonal harmonics to within their error bars, our preferred reference model predicts a fourth-order zonal harmonic whose absolute value lies above the pre-Juno error bars. This model has a dense core of about 12 Earth masses and a hydrogen–helium-rich envelope with approximately three times solar metallicity

  6. A PRELIMINARY JUPITER MODEL

    Energy Technology Data Exchange (ETDEWEB)

    Hubbard, W. B. [Lunar and Planetary Laboratory, The University of Arizona, Tucson, AZ 85721 (United States); Militzer, B. [Department of Earth and Planetary Science, Department of Astronomy, University of California, Berkeley, CA 94720 (United States)

    2016-03-20

    In anticipation of new observational results for Jupiter's axial moment of inertia and gravitational zonal harmonic coefficients from the forthcoming Juno orbiter, we present a number of preliminary Jupiter interior models. We combine results from ab initio computer simulations of hydrogen–helium mixtures, including immiscibility calculations, with a new nonperturbative calculation of Jupiter's zonal harmonic coefficients, to derive a self-consistent model for the planet's external gravity and moment of inertia. We assume helium rain modified the interior temperature and composition profiles. Our calculation predicts zonal harmonic values to which measurements can be compared. Although some models fit the observed (pre-Juno) second- and fourth-order zonal harmonics to within their error bars, our preferred reference model predicts a fourth-order zonal harmonic whose absolute value lies above the pre-Juno error bars. This model has a dense core of about 12 Earth masses and a hydrogen–helium-rich envelope with approximately three times solar metallicity.

  7. DRBE comet trails

    International Nuclear Information System (INIS)

    Arendt, Richard G.

    2014-01-01

    Re-examination of the Cosmic Background Explorer Diffuse Infrared Background Experiment (DIRBE) data reveals the thermal emission of several comet dust trails. The dust trails of 1P/Halley, 169P/NEAT, and 3200 Phaethon have not been previously reported. The known trails of 2P/Encke and 73P/Schwassmann–Wachmann 3 are also seen. The dust trails have 12 and 25 μm surface brightnesses of <0.1 and <0.15 MJy sr −1 , respectively, which is <1% of the zodiacal light intensity. The trails are very difficult to see in any single daily image of the sky, but are evident as rapidly moving linear features in movies of the DIRBE data. Some trails are clearest when crossing through the orbital plane of the parent comet, but others are best seen at high ecliptic latitudes as the Earth passes over or under the dust trail. All these comets have known associations with meteor showers. This re-examination also reveals 1 additional comet and 13 additional asteroids that had not previously been recognized in the DIRBE data.

  8. DRBE comet trails

    Energy Technology Data Exchange (ETDEWEB)

    Arendt, Richard G., E-mail: Richard.G.Arendt@nasa.gov [CREST/UMBC, Code 665, NASA/GSFC, Greenbelt, MD 20771 (United States)

    2014-12-01

    Re-examination of the Cosmic Background Explorer Diffuse Infrared Background Experiment (DIRBE) data reveals the thermal emission of several comet dust trails. The dust trails of 1P/Halley, 169P/NEAT, and 3200 Phaethon have not been previously reported. The known trails of 2P/Encke and 73P/Schwassmann–Wachmann 3 are also seen. The dust trails have 12 and 25 μm surface brightnesses of <0.1 and <0.15 MJy sr{sup −1}, respectively, which is <1% of the zodiacal light intensity. The trails are very difficult to see in any single daily image of the sky, but are evident as rapidly moving linear features in movies of the DIRBE data. Some trails are clearest when crossing through the orbital plane of the parent comet, but others are best seen at high ecliptic latitudes as the Earth passes over or under the dust trail. All these comets have known associations with meteor showers. This re-examination also reveals 1 additional comet and 13 additional asteroids that had not previously been recognized in the DIRBE data.

  9. Studying Short-Period Comets and Long-Period Comets Detected by WISE/NEOWISE

    Science.gov (United States)

    Kramer, Emily A.; Fernández, Yanga R.; Bauer, James M.; Stevenson, Rachel; Mainzer, Amy K.; Grav, Tommy; Masiero, Joseph; Walker, Russell G.; Lisse, Carey M.

    2014-11-01

    The Wide-field Infrared Survey Explorer (WISE) mission surveyed the sky in four infrared wavelength bands (3.4, 4.6, 12 and 22-micron) between January 2010 and February 2011 [1, 2]. During the mission, WISE serendipitously observed 160 comets, including 21 newly discovered objects. About 89 of the comets observed by WISE displayed a significant dust tail in the 12 and 22-micron (thermal emission) bands, showing a wide range of activity levels and dust morphology. Since the observed objects are a mix of both long-period comets (LPCs) and short-period comets (SPCs), differences in their activity can be used to better understand the thermal evolution that each of these populations has undergone. For the comets that displayed a significant dust tail, we have estimated the sizes and ages of the particles using dynamical models based on the Finson-Probstein method [3, 4]. For a selection of 40 comets, we have then compared these models to the data using a novel tail-fitting method that allows the best-fit model to be chosen analytically rather than subjectively. For comets that were observed multiple times by WISE, the dust tail particle properties were estimated separately, and then compared. We find that the dust tails of both LPCs and SPCs are primarily comprised of ~mm to cm sized particles, which were the result of emission that occurred several months to several years prior to the observations. The LPCs nearly all have strong dust emission close to the comet's perihelion distance, and the SPCs mostly have strong dust emission close to perihelion, but some have strong dust emission well before perihelion. Acknowledgments: This publication makes use of data products from (1) WISE, which is a joint project of UCLA and JPL/Caltech, funded by NASA; and (2) NEOWISE, which is a project of JPL/Caltech, funded by the Planetary Science Division of NASA. EK was supported by a NASA Earth and Space Sciences Fellowship. RS gratefully acknowledges support from the NASA

  10. Inside look at Halley's comet

    International Nuclear Information System (INIS)

    Beatty, J.K.

    1986-01-01

    The 1985-1986 emergence of Halley's comet, the first since the advent of the space age, was explored by a variety of spacecraft. The Vega 1, launched by the USSR together with the Eastern-block alliance, passed 5523 miles from the comet's nucleus at 7:20:06 Universal time. It indicated that the comet was about 300 miles closer to the sun than had been predicted. The Japanese spacecraft, Suisei, was created to map the distribution of neutral hydrogen atoms outside Halley's visible coma. Its pictures indicated that the comet's output of water varied between 25 and 60 tons per second. Five days after the Vega 2's passage through the comet, the Giotto (sponsored by the European Space Agency) probe appeared. Giotto's close approach took place 3.1 minutes after midnight UT on March 14th; the craft had passed 376 miles from its target. Giotto's data indicated that the nucleus was bigger than expected, and that the comet was composed primarily of water, CO2 and N2. The Vegas and Giotto found that as the solar wind approaches Halley, it slows gradually and the solar magnetic lines embedded in the wind begin to pile up. Pick-up ions, from the comet's halo of neutral hydrogen, were found in this solar wind. Sensors on the Vega spacecraft found a variety of plasma waves propagating inside the bow wave. In order to synthesize all the results, a conference on the exploration of Halley's comet will be held this October

  11. Comet Mineralogy as Inferred from Infrared Spectra of Comets

    Science.gov (United States)

    Wooden, Diane H.

    2006-01-01

    For most comets, infrared (IR) spectroscopy (remote sensing) is the method through which we diagnose the mineralogy and size distribution of dust in their comae. The shape and contrast of the IR spectral features depend on the particle size: optically active minerals (absorbing of visible and near-IR solar photons) and submicron solid grains or highly porous (> 90% vacuum) grains primarily contribute to the shapes of the observed resonances. Comet mineralogies typically are determined by fitting thermal emission models of ensembles of discrete mineral grains to observed IR spectral energy distributions. The absorptivities (Q-abs) and scattering efficiencies (Q-scat) of the discrete mineral grains are computed using Mie scattering, Maxwell-Garnet mixing, Discrete Dipole Approximation, and Multi-Layered Sphere codes. These techniques when applied to crystalline minerals, specifically olivine (Mg_x, Fe_1-x)2 Si04, x>0.9, require the use of ellipsoidal shaped particles with elongated axial ratios or hollow spheres to produce the shapes of the resonances observed both from comet comae and laboratory samples. The wavelength positions of the distinct resonances from submicron-radii crystalline silicates, as well as their thermal equilibrium temperatures, constrain the crystalline olivine to have a relatively high Mg-content (x>0.9, or Fo>90). Only resonances computed for submicron Mg-rich crystalline olivine and crystalline orthopyroxene match the observed IR spectral features. However, this has led to the interpretation that micron-radii and larger crystals are absent from comet comae. Furthermore, the mass fraction of silicate crystals is dependent upon whether just the submicron portion of the size distribution is being compared or the submicron crystals compare to the aggregates of porous amorphous silicates that are computationally tractable as porous spheres. We will discuss the Deep Impact results as examples of these challenges to interpreting mid-IR spectra of

  12. Observations of Comet 2P/Encke During the Fall 2013 Apparition

    Science.gov (United States)

    Abell, Paul; Woodney, L.; Fernandez, Yanga R.; Mueller, Beatrice E.; Samarasinha, Nalin H.; Chi, Brian; Farr, Cynthia; Redinger, Haley; Schlueter, Lindsey

    2013-01-01

    We will present preliminary results from our observational campaign of Comet 2P/Encke during its 2013 perihelion passage. At optical wavelengths Encke is an extremely dust poor comet that has in past perihelion passages emitted a gas jet in the form a sunward fan. We expect to characterize both the morphology and lightcurve of the comet. The low optical dust means that even near perihelion the nuclear signature can be obtained in lightcurve data taken with narrowband continuum filters which cut out the gas emission. The campaign will consist of both narrowband and broadband imaging as well as infrared spectroscopy. Imaging will be obtained from 8 nights on the KPNO 2.1m between Sept. 7 and 14 UT. Additionally, the Murillo Family Observatory, a 0.5m telescope on the CSUSB campus which is equipped with both broadband filters and a narrowband Hale-Bopp set of filters will be used to observe the comet every clear night the moon allows between late August and early October to obtain extensive lightcurve data. These data will overlap both the Kitt Peak observations and the infrared spectroscopy which will be obtained with the SpeX instrument at the IRTF on four nights between September 26 UT and October 2 UT.

  13. Galileo's Telescopy and Jupiter's Tablet

    Science.gov (United States)

    Usher, P. D.

    2003-12-01

    A previous paper (BAAS 33:4, 1363, 2001) reported on the dramatic scene in Shakespeare's Cymbeline that features the descent of the deity Jupiter. The paper suggested that the four ghosts circling the sleeping Posthumus denote the four Galilean moons of Jupiter. The god Jupiter commands the ghosts to lay a tablet upon the prone Posthumus, but says that its value should not be overestimated. When Posthumus wakens he notices the tablet, which he calls a "book." Not only has the deity's "tablet" become the earthling's "book," but it appears that the book has covers which Posthumus evidently recognizes because without even opening the book he ascribes two further properties to it: rarity, and the very property that Jupiter had earlier attributed, viz. that one must not read too much into it. The mystery deepens when the Jovian gift undergoes a second metamorphosis, to "label." With the help of the OED, the potentially disparate terms "tablet," "book," and "label," may be explained by terms appropriate either to supernatural or worldly beings. "Tablet" may recognize the Mosaic artifact, whereas "book" and "label" are probably mundane references to Galileo's Sidereus Nuncius which appeared shortly before Cymbeline. The message of the Olympian god indicates therefore that the book is unique even as its contents have limited value. The first property celebrates the fact that Galileo's book is the first of its kind, and the second advises that all results except the discovery of Jupiter's moons have been reported earlier, in Hamlet.

  14. Comet Halley and interstellar chemistry

    International Nuclear Information System (INIS)

    Snyder, L.E.

    1989-01-01

    How complex is the chemistry of the interstellar medium? How far does it evolve and how has it interacted with the chemistry of the solar system? Are the galactic chemical processes destroyed, preserved, or even enhanced in comets? Are biogenic molecules formed in space and have the formation mechanisms interacted in any way with prebiotic organic chemical processes on the early earth? Radio molecular studies of comets are important for probing deep into the coma and nuclear region and thus may help answer these questions. Comets are believed to be pristine samples of the debris left from the formation of the solar system and may have been the carrier between interstellar and terrestrial prebiotic chemistries. Recent observations of Comet Halley and subsequent comets have given the author an excellent opportunity to study the relationship between interstellar molecular chemistry and cometary chemistry

  15. Estimating the Magnetic Field Strength in Hot Jupiters

    Energy Technology Data Exchange (ETDEWEB)

    Yadav, Rakesh K. [Department of Earth and Planetary Sciences, Harvard University, 20 Oxford Street, Cambridge, MA 02138 (United States); Thorngren, Daniel P., E-mail: rakesh_yadav@fas.harvard.edu [Department of Physics, University of California, Santa Cruz, CA (United States)

    2017-11-01

    A large fraction of known Jupiter-like exoplanets are inflated as compared to Jupiter. These “hot” Jupiters orbit close to their parent star and are bombarded with intense starlight. Many theories have been proposed to explain their radius inflation and several suggest that a small fraction of the incident starlight is injected into the planetary interior, which helps to puff up the planet. How will such energy injection affect the planetary dynamo? In this Letter, we estimate the surface magnetic field strength of hot Jupiters using scaling arguments that relate energy available in planetary interiors to the dynamo-generated magnetic fields. We find that if we take into account the energy injected in the planetary interior that is sufficient to inflate hot Jupiters to observed radii, then the resulting dynamo should be able generate magnetic fields that are more than an order of magnitude stronger than the Jovian values. Our analysis highlights the potential fundamental role of the stellar light in setting the field strength in hot Jupiters.

  16. X-rays from comets - a surprising discovery

    CERN Document Server

    CERN. Geneva

    2000-01-01

    Comets are kilometre-size aggregates of ice and dust, which remained from the formation of the solar system. It was not obvious to expect X-ray emission from such objects. Nevertheless, when comet Hyakutake (C/1996 B2) was observed with the ROSAT X-ray satellite during its close approach to Earth in March 1996, bright X-ray emission from this comet was discovered. This finding triggered a search in archival ROSAT data for comets, which might have accidentally crossed the field of view during observations of unrelated targets. To increase the surprise even more, X-ray emission was detected from four additional comets, which were optically 300 to 30 000 times fainter than Hyakutake. For one of them, comet Arai (C/1991 A2), X-ray emission was even found in data which were taken six weeks before the comet was optically discovered. These findings showed that comets represent a new class of celestial X-ray sources. The subsequent detection of X-ray emission from several other comets in dedicated observations confir...

  17. A new look at Jupiter: results at the now frontier

    International Nuclear Information System (INIS)

    1975-01-01

    Pioneer 10's encounter with Jupiter is discussed along with the interplanetary space beyond the orbit of Mars. Other topics discussed include the size of Jupiter, the Galilean satellites, the magnetic field of Jupiter, radiation belts, Jupiter's weather and interior, and future exploration possibilities. Educational projects are also included

  18. Comparison of the Mineralogy of Comet Wild 2 Coma Grains to Other Astromaterials

    Science.gov (United States)

    Frank, David; Zolensky, Michael

    2010-01-01

    We propose that Kuiper Belt samples (in this case comet coma grains from the Jupiter family comet Wild 2) are recognizably different from the bulk of materials in outer belt asteroids, because of their different formation positions and times in the early solar system. We believe this despite similarities found between some Wild 2 grains and components of carbonaceous chondrites (i.e. some CAI and chondrules). Kuiper Belt samples must preserve measurable mineralogical and compositional evidence of formation at unique positions and times in the early solar nebula, and these formational differences must have imparted recognizable special characteristics. We hypothesize that these characteristics include: (1) Unique major element compositional ranges of common astromaterial minerals, especially olivine and pyroxene; (2) Unique minor element compositions of major silicate phases, especially olivine and low-Ca pyroxene; (3) Degree and effects of radiation processing -- including amorphous rims, metal coatings, and Glass with Embedded Metal and Sulfides (GEMS); (4) Presence of abundant presolar silicate grains as recognized by anomalous oxygen in silicates; (5) Oxidation state of the mineral assemblage. We are working our way through all available Wild 2 samples, selecting 1-2 non-consecutive viable TEM grids from each possible extracted Wild 2 grain. We especially prefer TEM grids from grains for which complete mineralogical details have not been published (which is to say the majority of the extracted grains). We are performing a basic mineralogic survey by E-beam techniques, to establish the essential features of the extracted Wild 2 grains. We are making a particular effort to carefully and accurately measure minor elements of olivine and pyroxene, as these minerals are widespread in astromaterials, and comparisons of their compositions will serve to place the Wild 2 silicates in contact with asteroids, meteorites and chondritic interplanetary dust particles

  19. The Halley comet

    International Nuclear Information System (INIS)

    Encrenaz, T.; Festou, M.

    1985-01-01

    The conspicuous part of a comet, made of tenuous gas and dusts, represents only a tiny part of its mass. The main information is hidden in the central part: a solid nucleus, ice and rock blocks with a radius less than 10 km, completely invisible from the Earth. The knowledge of the nucleus structure and its composition could give the key of the planet creation mechanisms. That is a reason why it has been decided to send an automatic device to penetrate the Halley comet atmosphere and that two Soviet probes, Vega 1 and 2, one European probe Giotto, and two Japanese, Planet-A and MS-TS, will explore in-situ in March 1986, for the first time, a comet at atmosphere [fr

  20. Detection of water vapor on Jupiter

    Science.gov (United States)

    Larson, H. P.; Fink, U.; Treffers, R.; Gautier, T. N., III

    1975-01-01

    High-altitude (12.4 km) spectroscopic observations of Jupiter at 5 microns from the NASA 91.5 cm airborne infrared telescope have revealed 14 absorptions assigned to the rotation-vibration spectrum of water vapor. Preliminary analysis indicates a mixing ratio about 1 millionth for the vapor phase of water. Estimates of temperature (greater than about 300 K) and pressure (less than 20 atm) suggest observation of water deep in Jupiter's hot spots responsible for its 5 micron flux. Model-atmosphere calculations based on radiative-transfer theory may change these initial estimates and provide a better physical picture of Jupiter's atmosphere below the visible cloud tops.

  1. Ion Microprobe Measurements of Comet Dust and Implications for Models of Oxygen Isotope Heterogeneity in the Solar System

    Science.gov (United States)

    Snead, C. J.; McKeegan, K. D.; Keller, L. P.; Messenger, S.

    2017-01-01

    The oxygen isotopic compositions of anhydrous minerals in carbonaceous chondrites reflect mixing between a O-16-rich and O-17, O18-rich reservoir. The UV photodissociation of CO (i.e. selfshielding) has been proposed as a mass-independent mechanism for producing these isotopically distinct reservoirs. Self-shielding models predict the composition for the CO gas reservoir to be O-16-rich, and that the accreting primordial dust was in isotopic equilibrium with the gaseous reservoir [1, 2]. Self-shielding also predicts that cometary water, presumed to represent the O-17, O-18-rich reservoir, should be enriched in O-17 and O-18, with compositions of 200 -1000per mille, and that the interaction with this O-17, O-18-rich H2O reservoir altered the compositions of the primordial dust toward planetary values. The bulk composition of the solar nebula, which may be an approximation to the 16O-rich gaseous reservoir, has been constrained by the Genesis results [3]. However, material representing the O-17, O-18-rich end-member is rare [4], and dust representing the original accreting primordial dust has been challenging to conclusively identify in current collections. Anhydrous dust from comets, which accreted in the distal cold regions of the nebula at temperatures below approximately 30K, may provide the best opportunity to measure the oxygen isotope composition of primordial dust. Chondritic porous interplanetary dust particles (CP-IDPs) have been suggested as having cometary origins [5]; however, until direct comparisons with dust from a known comet parent body were made, link between CP-IDPs and comets remained circumstantial. Oxygen isotope analyses of particles from comet 81P/Wild 2 collected by NASA's Stardust mission have revealed surprising similarities to minerals in carbonaceous chondrites which have been interpreted as evidence for large scale radial migration of dust components from the inner solar nebula to the accretion regions of Jupiter- family comets [6

  2. ESO Observations of New Moon of Jupiter

    Science.gov (United States)

    2000-08-01

    " this object and "secure" its orbit. Recovery of S/1999 J 1 at La Silla Jupiter and its moons would again become visible in the early morning hours in late July with telescopes in the southern hemisphere. By a fortunate coincidence, observing time for observations of comets and asteroids had been allocated to Brett Gladman and his collaborators at two ESO telescopes in exactly this period. Just before sunrise on July 25, he used the Wide Field Imager (WFI) on the MPG/ESO 2.2-m telescope at La Silla to search for S/1999 J 1 . This camera has a comparatively large field-of-view, about 0.5 x 0.5 deg 2 , or about the size of the full moon. This was comfortably larger than the estimated uncertainty in the object's predicted position at the time of the observation. And indeed, S/1999 J 1 was spotted not too far from that location, weakly visible in the glare of the nearby waning moon. Detailed observations of S/1999 J 1 at Paranal Only three days later, in the early morning hours of July 28, the small object was again imaged, this time from the 8.2-m VLT ANTU telescope at Paranal. Brett Gladman and Hermann Boehnhardt , now knowing exactly where to look in the sky, used the FORS-1 multi-mode instrument to obtain exposures of S/1999 J 1 through several optical filters. The great light-collecting power of this telescope resulted in excellent images while S/1999 J 1 was moving across the sky, cf. PR Photos 19a-b/00 . These observations definitively confirmed the "recovery" of the object and also provided an accurate determination of its brightness and colour, cf. IAU Circular 7472 , published on August 3. From accurate positional measurements on these exposures and the earlier ones from La Silla, Gareth Williams of the Minor Planet Center was able to substantially improve the computation of the orbit of S/1999 J 1 around Jupiter. It was found ( IAU Circular 7469 ) to move in a somewhat elliptical orbit around Jupiter with a period of just over 2 years (768 days) and at a mean

  3. Comet prospects for 2004

    Science.gov (United States)

    Shanklin, J. D.

    2003-12-01

    2004 sees the return of 18 periodic comets. None are particularly bright and the best are likely to be 78P/Gehrels and 88P/Howell. Three new long period comets are likely to put on a good show: 2001 Q4 (NEAT) reaches perihelion in May, when it could make at least 3rd magnitude. Northern hemisphere observers will first pick it up just after perihelion as it rapidly moves north. 2002 T7 (LINEAR) could also reach 3rd magnitude at closest approach in May, however northern hemisphere observers will have lost it as a binocular object in mid-March. Observers at far southern latitudes may be able to see these two naked eye comets at the same time. 2003 K4 (LINEAR) could reach 6th magnitude as it brightens on its way to perihelion. Several other long period comets discovered in previous years are also still visible.

  4. X-ray emission from comets

    International Nuclear Information System (INIS)

    Dennerl, Konrad

    1999-01-01

    When comet Hyakutake (C/1996 B2) encountered Earth in March 1996 at a minimum distance of only 15 million kilometers (40 times the distance of the moon), x-ray and extreme ultraviolet emission was discovered for the first time from a comet. The observations were performed with the astronomy satellites ROSAT and EUVE. A systematic search for x-rays from comets in archival data, obtained during the ROSAT all-sky survey in 1990/91, resulted in the discovery of x-ray emission from four additional comets. They were detected at seven occasions in total, when they were optically 300 to 30 000 times fainter than Hyakutake. These findings indicated that comets represent a new class of celestial x-ray sources. Subsequent detections of x-ray emission from additional comets with the satellites ROSAT, EUVE, and BeppoSAX confirmed this conclusion. The x-ray observations have obviously revealed the presence of a process in comets which had escaped attention until recently. This process is most likely charge exchange between highly charged heavy ions in the solar wind and cometary neutrals. The solar wind, a stream of particles continuously emitted from the sun with ≅ 400 km s -1 , consists predominantly of protons, electrons, and alpha particles, but contains also a small fraction (≅0.1%) of highly charged heavier ions, such as C 6+ ,O 6+ ,Ne 8+ ,Si 9+ ,Fe 11+ . When these ions capture electrons from the cometary gas, they attain highly excited states and radiate a large fraction of their excitation energy in the extreme ultraviolet and x-ray part of the spectrum. Charge exchange reproduces the intensity, the morphology and the spectrum of the observed x-ray emission from comets very well

  5. Hot Jupiters Aren't As Lonely As We Thought

    Science.gov (United States)

    Kohler, Susanna

    2016-01-01

    The Friends of Hot Jupiters (FOHJ) project is a systematic search for planetary- and stellar-mass companions in systems that have known hot Jupiters short-period, gas-giant planets. This survey has discovered that many more hot Jupiters may have companions than originally believed.Missing FriendsFOHJ was begun with the goal of better understanding the systems that host hot Jupiters, in order to settle several longstanding issues.The first problem was one of observational statistics. We know that roughly half of the Sun-like stars nearby are in binary systems, yet weve only discovered a handful of hot Jupiters around binaries. Are binary systems less likely to host hot Jupiters? Or have we just missed the binary companions in the hot-Jupiter-hosting systems weve seen so far?An additional issue relates to formation mechanisms. Hot Jupiters probably migrated inward from where they formed out beyond the ice lines in protoplanetary disks but how?This median-stacked image, obtained with adaptive optics, shows one of the newly-discovered stellar companions to a star hosting a hot Jupiter. The projected separation is ~180 AU. [Ngo et al. 2015]Observations reveal two populations of hot Jupiters: those with circular orbits aligned with their hosts spins, and those with eccentric, misaligned orbits. The former population support a migration model dominated by local planet-disk interactions, whereas the latter population suggest the hot Jupiters migrated through dynamical interactions with distant companions. A careful determination of the companion rate in hot-Jupiter-hosting systems could help establish the ability of these two models to explain the observed populations.Search for CompanionsThe FOHJ project began in 2012 and studied 51 systems hosting known, transiting hot Jupiters with roughly half on circular, aligned orbits and half on eccentric, misaligned orbits. The survey consisted of three different, complementary components:Study 1Lead author: Heather Knutson

  6. Jupiter Laser Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Jupiter Laser Facility is an institutional user facility in the Physical and Life Sciences Directorate at LLNL. The facility is designed to provide a high degree...

  7. OpenComet: An automated tool for comet assay image analysis

    OpenAIRE

    Gyori, Benjamin M.; Venkatachalam, Gireedhar; Thiagarajan, P.S.; Hsu, David; Clement, Marie-Veronique

    2014-01-01

    Reactive species such as free radicals are constantly generated in vivo and DNA is the most important target of oxidative stress. Oxidative DNA damage is used as a predictive biomarker to monitor the risk of development of many diseases. The comet assay is widely used for measuring oxidative DNA damage at a single cell level. The analysis of comet assay output images, however, poses considerable challenges. Commercial software is costly and restrictive, while free software generally requires ...

  8. Comets and How to Observe Them

    CERN Document Server

    Schmude, Richard

    2010-01-01

    Comets have inspired wonder, excitement and even fear ever since they were first observed. They contain material from early in the life of the Solar System, held in deep-freeze. This makes them key in our understanding of the formation and evolution of many Solar System bodies. Recent ground- and space-based observations have changed much in our understanding of comets. Comets and How to Observe Them gives a summary of our current knowledge and describes how amateur astronomers can contribute to the body of scientific knowledge of comets. This book contains many practical examples of how to construct comet light-curves, measure how fast a comet’s coma expands, and determine the rotation period of the nucleus. All these examples are illustrated with drawings and photographs.

  9. Rosetta comet-chaser takes a close look at planet Mars

    Science.gov (United States)

    2007-09-01

    Its final destination is comet Churyumov-Gerasimenko, which it will reach only in 2014, after travelling some 6000 million kilometres in 10 years (its epic voyage began on 2 March 2004 with a launch by an Ariane 5 rocket). Rosetta will next be heading for the Sun, and its journey will require two more swing-bys around the Earth, in November this year and November 2009. Once at its destination, Rosetta will first deposit, from a height of about one kilometre, a small but very complex lander on the comet’s nucleus. This lander, a sort of miniature chemical laboratory packed with sophisticated instruments, will analyse the surface and provide information on the nucleus. The Rosetta probe will then chase the comet for one year and observe its nucleus as it continues on its trip towards the inner solar system at a speed of 135,000 km per hour. There is still a long way to go, but so far everything seems to be going exactly according to plan. ESA's Director of Science, David Southwood, witnessing the Mars swing-by at ESOC with scientists involved in the mission and the operations teams, said: "Interplanetary expeditions rely on very complex communication links. ESA’s mission operations centre here in Darmstadt is doing a great job. I and all the scientists involved in the mission are grateful to the experts who are taking such good care of 'our baby'. And this is only the beginning. The true excitement of targeting and releasing the lander on the comet’s nucleus is yet to come. Today we have reached another milestone on the way to finding an answer to questions such as whether life on Earth began with the help of comets." “The successful Mars swingby of the ESA Rosetta spacecraft has been the most critical event in the mission since launch. Now we are heading back to Earth in order to gain, in November this year, further momentum for the subsequent visits of the asteroids and the comet. I would like to thank all those who have contributed to this achievement

  10. PHOTOMETRIC STUDY OF THE KREUTZ COMETS OBSERVED BY SOHO FROM 1996 TO 2005

    International Nuclear Information System (INIS)

    Knight, Matthew M.; A'Hearn, Michael F.; Hamilton, Douglas P.; Biesecker, Douglas A.; Faury, Guillaume; Lamy, Philippe; Llebaria, Antoine

    2010-01-01

    We present analysis of the photometry of more than 900 Kreutz comets observed by SOHO from 1996 to 2005. The Kreutz comets have 'sungrazing' orbits with q∼ 1-2 R sun , high inclinations (i ∼ 143 deg.), and periods of 500-1000 years. We find that they do not have a bimodal distance of peak brightness as previously reported, but instead peak from 10.5 R sun to 14 R sun (prior to perihelion), suggesting there is a continuum of compositions rather than two distinct subpopulations. The light curves have two rates of brightening, typically ∝ r -7.3±2.0 when first observed by SOHO (at distances of 30-35 R sun ) then rapidly transitioning to ∝ r -3.8±0.7 between 20 R sun and 30 R sun . It is unclear at what distance the steeper slope begins, but it likely does not extend much beyond the SOHO field of view. We derive nuclear sizes up to ∼50 m in radius for the SOHO-observed comets, with a cumulative size distribution of N(>R) ∝ R -2.2 for comets larger than 5 m in radius. This size distribution cannot explain the largest members of the family seen from the ground, suggesting that either the size distribution does not extend to the largest sizes or that the distribution is not uniform around the orbit. The total mass of the distribution up to the largest expected size (∼500 m) is ∼4 x 10 14 g, much less than the estimated masses of the largest ground-observed members. After correcting for the changing discovery circumstances, the flux of comets reaching perihelion has increased since 1996, and the increase is seen in comets of all sizes. Comparison of the SOHO comets with the Solwind and Solar Maximum Mission discoveries suggests there may have been an overabundance of bright comets arriving from 1979 to 1989, possibly indicative of a changing distribution around the Kreutz orbit.

  11. Astrobiology of Comets

    Science.gov (United States)

    Hoover, Richard B.; Wickramasinghe, Nalin C.; Wallis, Max K.; Sheldon, Robert B.

    2004-01-01

    We review the current state of knowledge concerning microbial extremophiles and comets and the potential significance of comets to Astrobiology. We model the thermal history of a cometary body, regarded as an assemblage of boulders, dust, ices and organics, as it approaches a perihelion distance of - IAU. The transfer of incident energy from sunlight into the interior leads to the melting of near surface ices, some under stable porous crust, providing possible habitats for a wide range of microorganisms. We provide data concerning new evidence for indigenous microfossils in CI meteorites, which may be the remains of extinct cometary cores. We discuss the dominant microbial communities of polar sea-ice, Antarctic ice sheet, and cryoconite environments as possible analogs for microbial ecosystems that may grow in sub-crustal pools or in ice/water films in comets.

  12. Kepler constraints on planets near hot Jupiters.

    Science.gov (United States)

    Steffen, Jason H; Ragozzine, Darin; Fabrycky, Daniel C; Carter, Joshua A; Ford, Eric B; Holman, Matthew J; Rowe, Jason F; Welsh, William F; Borucki, William J; Boss, Alan P; Ciardi, David R; Quinn, Samuel N

    2012-05-22

    We present the results of a search for planetary companions orbiting near hot Jupiter planet candidates (Jupiter-size candidates with orbital periods near 3 d) identified in the Kepler data through its sixth quarter of science operations. Special emphasis is given to companions between the 21 interior and exterior mean-motion resonances. A photometric transit search excludes companions with sizes ranging from roughly two-thirds to five times the size of the Earth, depending upon the noise properties of the target star. A search for dynamically induced deviations from a constant period (transit timing variations) also shows no significant signals. In contrast, comparison studies of warm Jupiters (with slightly larger orbits) and hot Neptune-size candidates do exhibit signatures of additional companions with these same tests. These differences between hot Jupiters and other planetary systems denote a distinctly different formation or dynamical history.

  13. Kepler constraints on planets near hot Jupiters

    Science.gov (United States)

    Steffen, Jason H.; Ragozzine, Darin; Fabrycky, Daniel C.; Carter, Joshua A.; Ford, Eric B.; Holman, Matthew J.; Rowe, Jason F.; Welsh, William F.; Borucki, William J.; Boss, Alan P.; Ciardi, David R.; Quinn, Samuel N.

    2012-01-01

    We present the results of a search for planetary companions orbiting near hot Jupiter planet candidates (Jupiter-size candidates with orbital periods near 3 d) identified in the Kepler data through its sixth quarter of science operations. Special emphasis is given to companions between the 2∶1 interior and exterior mean-motion resonances. A photometric transit search excludes companions with sizes ranging from roughly two-thirds to five times the size of the Earth, depending upon the noise properties of the target star. A search for dynamically induced deviations from a constant period (transit timing variations) also shows no significant signals. In contrast, comparison studies of warm Jupiters (with slightly larger orbits) and hot Neptune-size candidates do exhibit signatures of additional companions with these same tests. These differences between hot Jupiters and other planetary systems denote a distinctly different formation or dynamical history. PMID:22566651

  14. The Aftermath of the Largest Cometary Outburst in Recorded History - An In-Depth Study of Comet 17P/Holmes

    Science.gov (United States)

    Stevenson, Rachel Ann

    On UT 2007 Oct. 23, Jupiter Family comet 17P/Holmes underwent the largest cometary outburst in recorded history when it brightened by a factor of nearly a million in less than 2 days. This unprecedented event prompted a four-month observing campaign to observe the aftermath of the outburst. The wide field imager, MegaCam mounted on the Canada-France-Hawaii telescope was used to obtain r' images of the nucleus and the rapidly expanding dust coma. These images are unequaled in their quality and scope, and form a unique dataset with which to study the outburst aftermath. This original work examines the morphology of the outburst, and constrains the characteristics of the ejected material. Spatial filtering of images obtained in 2007 Nov. revealed numerous fragments moving away from the nucleus. The fragments were too bright to have been inactive, monolithic blocks and must have been acting as mini-comets with their own sources of sublimating volatiles and dust comae. They represented a significant (~ 10%) of the total ejected mass. The fragments had unusually high velocities relative to the nucleus, suggesting that they were accelerated by high gas pressure inside the nucleus prior to ejection. This work presents the first detection of such large, rapidly moving cometary fragments. The scarcity of similar ejecta around other fragmenting comets may be due to observational biases, rather than being unique to 17P/Holmes. Aperture photometry was used to study the evolution of the inner coma, which faded rapidly in the weeks and months following the initial outburst. Despite the observed fading, the nucleus must have remained active, continuing to supply fresh material to the inner coma. A second, much smaller outburst was detected on UT 2007 Nov. 12, which released an estimated 106 kg of dust into the inner coma. The secondary outburst showed that the nucleus remained unstable for several weeks after the initial event. Surface brightness profiles of the inner coma were

  15. 2006 SQ372: A LIKELY LONG-PERIOD COMET FROM THE INNER OORT CLOUD

    International Nuclear Information System (INIS)

    Kaib, Nathan A.; Becker, Andrew C.; Jones, R. Lynne; Quinn, Thomas; Puckett, Andrew W.; Bizyaev, Dmitry; Oravetz, Daniel J.; Pan, Kaike; Watters, Shannon; Dilday, Benjamin; Frieman, Joshua A.; Schneider, Donald P.

    2009-01-01

    We report the discovery of a minor planet (2006 SQ 372 ) on an orbit with a perihelion of 24 AU and a semimajor axis of 796 AU. Dynamical simulations show that this is a transient orbit and is unstable on a timescale of ∼200 Myr. Falling near the upper semimajor axis range of the scattered disk and the lower semimajor axis range of the Oort Cloud, previous membership in either class is possible. By modeling the production of similar orbits from the Oort Cloud as well as from the scattered disk, we find that the Oort Cloud produces 16 times as many objects on SQ 372 -like orbits as the scattered disk. Given this result, we believe this to be the most distant long-period comet (LPC) ever discovered. Furthermore, our simulation results also indicate that 2000 OO 67 has had a similar dynamical history. Unaffected by the 'Jupiter-Saturn Barrier', these two objects are most likely LPCs from the inner Oort Cloud.

  16. COMET concept; COMET-Konzept

    Energy Technology Data Exchange (ETDEWEB)

    Alsmeyer, H.; Tromm, W.

    1995-08-01

    Studies of the COMET core catcher concept developed for a future PWR have been continued. The concept is based on the spreading of a core melt on a sacrificial layer and its erosion, until a subsequent addition of water from below causes a fragmentation of the melt. A porous solidification of the melt would then admit a complete flooding within a short period. (orig.)

  17. Lyapunov Orbits in the Jupiter System Using Electrodynamic Tethers

    Science.gov (United States)

    Bokelmann, Kevin; Russell, Ryan P.; Lantoine, Gregory

    2013-01-01

    Various researchers have proposed the use of electrodynamic tethers for power generation and capture from interplanetary transfers. The effect of tether forces on periodic orbits in Jupiter-satellite systems are investigated. A perturbation force is added to the restricted three-body problem model and a series of simplifications allows development of a conservative system that retains the Jacobi integral. Expressions are developed to find modified locations of equilibrium positions. Modified families of Lyapunov orbits are generated as functions of tether size and Jacobi integral. Zero velocity curves and stability analyses are used to evaluate the dynamical properties of tether-modified orbits.

  18. Mechanism for the Coupled Photochemistry of Ammonia and Acetylene: Implications for Giant Planets, Comets and Interstellar Organic Synthesis

    Science.gov (United States)

    Keane, Thomas C.

    2017-09-01

    Laboratory studies provide a fundamental understanding of photochemical processes in planetary atmospheres. Photochemical reactions taking place on giant planets like Jupiter and possibly comets and the interstellar medium are the subject of this research. Reaction pathways are proposed for the coupled photochemistry of NH3 (ammonia) and C2H2 (acetylene) within the context Jupiter's atmosphere. We then extend the discussion to the Great Red Spot, Extra-Solar Giant Planets, Comets and Interstellar Organic Synthesis. Reaction rates in the form of quantum yields were measured for the decomposition of reactants and the formation of products and stable intermediates: HCN (hydrogen cyanide), CH3CN (acetonitrile), CH3CH = N-N = CHCH3 (acetaldazine), CH3CH = N-NH2 (acetaldehyde hydrazone), C2H5NH2 (ethylamine), CH3NH2 (methylamine) and C2H4 (ethene) in the photolysis of NH3/C2H2 mixtures. Some of these compounds, formed in our investigation of pathways for HCN synthesis, were not encountered previously in observational, theoretical or laboratory photochemical studies. The quantum yields obtained allowed for the formulation of a reaction mechanism that attempts to explain the observed results under varying experimental conditions. In general, the results of this work are consistent with the initial observations of Ferris and Ishikawa (1988). However, their proposed reaction pathway which centers on the photolysis of CH3CH = N-N = CHCH3 does not explain all of the results obtained in this study. The formation of CH3CH = N-N = CHCH3 by a radical combination reaction of CH3CH = N• was shown in this work to be inconsistent with other experiments where the CH3CH = N• radical is thought to form but where no CH3CH = N-N = CHCH3 was detected. The importance of the role of H atom abstraction reactions was demonstrated and an alternative pathway for CH3CH = N-N = CHCH3 formation involving nucleophilic reaction between N2H4 and CH3CH = NH is advanced.

  19. Comets in Indian Scriptures

    Science.gov (United States)

    Das Gupta, P.

    2016-01-01

    The Indo-Aryans of ancient India observed stars and constellations for ascertaining auspicious times in order to conduct sacrificial rites ordained by the Vedas. Naturally, they would have sighted comets and referred to them in the Vedic texts. In Rigveda (circa 1700-1500 BC) and Atharvaveda (circa 1150 BC), there are references to dhumaketus and ketus, which stand for comets in Sanskrit. Rigveda speaks of a fig tree whose aerial roots spread out in the sky (Parpola 2010). Had this imagery been inspired by the resemblance of a comet's tail with long and linear roots of a banyan tree (ficus benghalensis)? Varahamihira (AD 550) and Ballal Sena (circa AD 1100-1200) described a large number of comets recorded by ancient seers, such as Parashara, Vriddha Garga, Narada, and Garga, to name a few. In this article, we propose that an episode in Mahabharata in which a radiant king, Nahusha, who rules the heavens and later turns into a serpent after he kicked the seer Agastya (also the star Canopus), is a mythological retelling of a cometary event.

  20. Small inner companions of warm Jupiters: Lifetimes and legacies

    International Nuclear Information System (INIS)

    Van Laerhoven, Christa; Greenberg, Richard

    2013-01-01

    Although warm Jupiters are generally too far from their stars for tides to be important, the presence of an inner planetary companion to a warm Jupiter can result in tidal evolution of the system. Insight into the process and its effects comes form classical secular theory of planetary perturbations. The lifetime of the inner planet may be shorter than the age of the system, because the warm Jupiter maintains its eccentricity and hence promotes tidal migration into the star. Thus a warm Jupiter observed to be alone in its system might have previously cleared away any interior planets. Before its demise, even if an inner planet is of terrestrial scale, it may promote damping of the warm Jupiter's eccentricity. Thus any inferences of the initial orbit of an observed warm Jupiter must include the possibility of a greater initial eccentricity than would be estimated by assuming it had always been alone. Tidal evolution involving multiple planets also enhances the internal heating of the planets, which readily exceeds that of stellar radiation for the inner planet, and may be great enough to affect the internal structure of warm Jupiters. Secular theory gives insight into the tidal processes, providing, among other things, a way to constrain eccentricities of transiting planets based on estimates of the tidal parameter Q.

  1. Comet-Narval acquisition notice

    International Nuclear Information System (INIS)

    Le Bris, J.; Sellem, R.; Artiges, J.C.; Clavelin, J.F.; Du, S.; Grave, X.; Hubert, O.; Sauvage, J.; Roussiere, B.

    2006-01-01

    The COMET cards (encoding and time marking) serve to determine the energies and the time correlations of radiations detected during a multiparameter experiment while avoiding any extra specific module like coincidence circuits or delays) to set this time correlation. For each detected radiation, the arrival time information as well as the amplitude of the detected signal, are encoded. The results of these amplitude and time coding are associated to create an event. In this way, each detector is an independent source which provides a building block of the general information obtained by all the detectors. The COMET cards are associated with a NARVAL data acquisition system. This document is the instruction booklet of the COMET-NARVAL acquisition system

  2. Comet: Multifunction VOEvent broker

    Science.gov (United States)

    Swinbank, John

    2014-04-01

    Comet is a Python implementation of the VOEvent Transport Protocol (VTP). VOEvent is the IVOA system for describing transient celestial events. Details of transients detected by many projects, including Fermi, Swift, and the Catalina Sky Survey, are currently made available as VOEvents, which is also the standard alert format by future facilities such as LSST and SKA. The core of Comet is a multifunction VOEvent broker, capable of receiving events either by subscribing to one or more remote brokers or by direct connection from authors; it can then both process those events locally and forward them to its own subscribers. In addition, Comet provides a tool for publishing VOEvents to the global VOEvent backbone.

  3. Comets in the space age

    International Nuclear Information System (INIS)

    Whipple, F.L.

    1989-01-01

    The historical development of the study of the nature of comets and their origin is discussed, emphasizing the use of aerospace technology in cometary science. The use of satellites to study the Comet Kohoutek 1973 XII, advances between Kohoutek and P/Halley, and studies of P/Halley during its 1986 return are examined. Consideration is given to data from ground, air, and space sensors, and from the Giotto and Vega spacecraft missions. Also, the physical structure of the nucleus of Comet Halley is described. 136 refs

  4. A Secular Resonant Origin for the Loneliness of Hot Jupiters

    Science.gov (United States)

    Spalding, Christopher; Batygin, Konstantin

    2017-09-01

    Despite decades of inquiry, the origin of giant planets residing within a few tenths of an astronomical unit from their host stars remains unclear. Traditionally, these objects are thought to have formed further out before subsequently migrating inwards. However, the necessity of migration has been recently called into question with the emergence of in situ formation models of close-in giant planets. Observational characterization of the transiting subsample of close-in giants has revealed that “warm” Jupiters, possessing orbital periods longer than roughly 10 days more often possess close-in, co-transiting planetary companions than shorter period “hot” Jupiters, that are usually lonely. This finding has previously been interpreted as evidence that smooth, early migration or in situ formation gave rise to warm Jupiter-hosting systems, whereas more violent, post-disk migration pathways sculpted hot Jupiter-hosting systems. In this work, we demonstrate that both classes of planet may arise via early migration or in situ conglomeration, but that the enhanced loneliness of hot Jupiters arises due to a secular resonant interaction with the stellar quadrupole moment. Such an interaction tilts the orbits of exterior, lower-mass planets, removing them from transit surveys where the hot Jupiter is detected. Warm Jupiter-hosting systems, in contrast, retain their coplanarity due to the weaker influence of the host star’s quadrupolar potential relative to planet-disk interactions. In this way, hot Jupiters and warm Jupiters are placed within a unified theoretical framework that may be readily validated or falsified using data from upcoming missions, such as TESS.

  5. Report of Some Comets: The Discovery of Uranus and Comets by William, Caroline, and John Herschel

    Science.gov (United States)

    Pasachoff, Jay M.; Olson, R. J. M.

    2011-01-01

    We report on the discovery and drawings of comets by William, Caroline, and John Herschel. The first discovery, by William Herschel, in 1781 from Bath, published in the Philosophical Transactions of the Royal Society with the title "Report of a Comet," turned out to be Uranus, the first planet ever discovered, Mercury through Saturn having been known since antiquity. William's sister Caroline was given duties of sweeping the skies and turned out to be a discoverer of 8 comets in her own right, in addition to keeping William's notes. Caroline's comets were discovered from Slough between 1786 and 1797. In the process, we also discuss original documents from the archives of the Royal Society and of the Royal Astronomical Society. We conclude by showing comet drawings that we have recently attributed to John Herschel, including Halley's Comet from 1836, recently located in the Ransom Center of the University of Texas at Austin. Acknowledgments: Planetary astronomy at Williams College is supported in part by grant NNX08AO50G from NASA Planetary Astronomy. We thank Peter Hingley of the Royal Astronomical Society and Richard Oram of the Harry Ransom Center of The University of Texas at Austin for their assistance.

  6. Nucleus of Comet IRAS-Araki-Alcock (1983 VII)

    International Nuclear Information System (INIS)

    Sekanina, Z.

    1988-01-01

    Optical, radar, infrared, UV, and microwave-continuum observations of Comet IRAS-Araki-Alcok were obtained in May 1983, the week of the comet's close approach to earth. The comet has a nucleus dimension and a rotation period which are similar to those of Comet Halley, but a different morphological signature (a persisting sunward fan-shaped coma). Time variations are noted in the projected nucleus cross section. Results suggest significant limb-darkening effects in the relevant domains of radio waves, and that the comet's interior must be extremely cold. It is found that the thermal-infrared fluxes from the inner coma of the comet are dominated by the nucleus. 63 references

  7. EPOXI at comet Hartley 2.

    Science.gov (United States)

    A'Hearn, Michael F; Belton, Michael J S; Delamere, W Alan; Feaga, Lori M; Hampton, Donald; Kissel, Jochen; Klaasen, Kenneth P; McFadden, Lucy A; Meech, Karen J; Melosh, H Jay; Schultz, Peter H; Sunshine, Jessica M; Thomas, Peter C; Veverka, Joseph; Wellnitz, Dennis D; Yeomans, Donald K; Besse, Sebastien; Bodewits, Dennis; Bowling, Timothy J; Carcich, Brian T; Collins, Steven M; Farnham, Tony L; Groussin, Olivier; Hermalyn, Brendan; Kelley, Michael S; Kelley, Michael S; Li, Jian-Yang; Lindler, Don J; Lisse, Carey M; McLaughlin, Stephanie A; Merlin, Frédéric; Protopapa, Silvia; Richardson, James E; Williams, Jade L

    2011-06-17

    Understanding how comets work--what drives their activity--is crucial to the use of comets in studying the early solar system. EPOXI (Extrasolar Planet Observation and Deep Impact Extended Investigation) flew past comet 103P/Hartley 2, one with an unusually small but very active nucleus, taking both images and spectra. Unlike large, relatively inactive nuclei, this nucleus is outgassing primarily because of CO(2), which drags chunks of ice out of the nucleus. It also shows substantial differences in the relative abundance of volatiles from various parts of the nucleus.

  8. Optical Detection of Anomalous Nitrogen in Comets

    Science.gov (United States)

    2003-12-01

    studies will provide crucial information about the detailed composition of a much larger number of comets than hitherto possible and hence, more information about the primordial matter from which the solar system formed. A better understanding of the origins of the cometary material (in particular the HCN and CN molecules [3]) and the connection with heavier organic molecules is highly desirable. This is especially so in view of the probable rôle of comets in bringing to the young Earth materials essential for the subsequent formation of life on our planet . PR Photo 28a/03 : Comet LINEAR (C/2000 WM1) - direct image and UVES slit position. PR Photo 28b/03 : Part of the UVES spectrum of Comet LINEAR (C/2000 WM1) with CN-band. PR Photo 28c/03 : Identification of nitrogen-15 in the spectrum. Cometary material Knowledge of the abundance of the stable isotopes [2] of the light elements in different solar system objects provides critical clues to the origin and early evolution of these objects and of the system as a whole. In order to gain the best possible insight into the origins and formation of the niche in which we live, it is therefore important to determine such isotopic abundance ratios in as many members of the solar family as possible. This is particularly true for comets, believed to be carriers of well-preserved specimens of the pristine material from which the solar system was made, some 4,600 million years ago. However, the detailed study of cometary material is a difficult task. Measurements of isotopic ratios is an especially daunting undertaking, mainly because of the extreme weakness of the spectral signatures (emissions) of the less abundant species like carbon-13, nitrogen-15, etc.. Measurements of microwave emission from those atoms suffer from additional, inherent uncertainties connected to the much stronger emission of the more abundant species. Measurements in the optical spectral region thus take on particular importance in this context. However, it is

  9. Abundant Solar Nebula Solids in Comets

    Science.gov (United States)

    Messenger, S.; Keller, L. P.; Nakamura-Messenger, K.; Nguyen, A. N.; Clemett, S.

    2016-01-01

    Comets have been proposed to consist of unprocessed interstellar materials together with a variable amount of thermally annealed interstellar grains. Recent studies of cometary solids in the laboratory have shown that comets instead consist of a wide range of materials from across the protoplanetary disk, in addition to a minor complement of interstellar materials. These advances were made possible by the return of direct samples of comet 81P/Wild 2 coma dust by the NASA Stardust mission and recent advances in microscale analytical techniques. Isotopic studies of 'cometary' chondritic porous interplanetary dust particles (CP-IDPs) and comet 81P/Wild 2 Stardust samples show that preserved interstellar materials are more abundant in comets than in any class of meteorite. Identified interstellar materials include sub-micron-sized presolar silicates, oxides, and SiC dust grains and some fraction of the organic material that binds the samples together. Presolar grain abundances reach 1 weight percentage in the most stardust-rich CP-IDPs, 50 times greater than in meteorites. Yet, order of magnitude variations in presolar grain abundances among CP-IDPs suggest cometary solids experienced significant variations in the degree of processing in the solar nebula. Comets contain a surprisingly high abundance of nebular solids formed or altered at high temperatures. Comet 81P/Wild 2 samples include 10-40 micron-sized, refractory Ca- Al-rich inclusion (CAI)-, chondrule-, and ameboid olivine aggregate (AOA)-like materials. The O isotopic compositions of these refractory materials are remarkably similar to their meteoritic counterparts, ranging from 5 percent enrichments in (sup 16) O to near-terrestrial values. Comet 81P/Wild 2 and CP-IDPs also contain abundant Mg-Fe crystalline and amorphous silicates whose O isotopic compositions are also consistent with Solar System origins. Unlike meteorites, that are dominated by locally-produced materials, comets appear to be composed of

  10. THE PHOTOECCENTRIC EFFECT AND PROTO-HOT JUPITERS. III. A PAUCITY OF PROTO-HOT JUPITERS ON SUPER-ECCENTRIC ORBITS

    International Nuclear Information System (INIS)

    Dawson, Rebekah I.; Murray-Clay, Ruth A.; Johnson, John Asher

    2015-01-01

    Gas giant planets orbiting within 0.1 AU of their host stars are unlikely to have formed in situ and are evidence for planetary migration. It is debated whether the typical hot Jupiter smoothly migrated inward from its formation location through the proto-planetary disk, or was perturbed by another body onto a highly eccentric orbit, which tidal dissipation subsequently shrank and circularized during close stellar passages. Socrates and collaborators predicted that the latter model should produce a population of super-eccentric proto-hot Jupiters readily observable by Kepler. We find a paucity of such planets in the Kepler sample, which is inconsistent with the theoretical prediction with 96.9% confidence. Observational effects are unlikely to explain this discrepancy. We find that the fraction of hot Jupiters with an orbital period P > 3 days produced by the star-planet Kozai mechanism does not exceed (at two-sigma) 44%. Our results may indicate that disk migration is the dominant channel for producing hot Jupiters with P > 3 days. Alternatively, the typical hot Jupiter may have been perturbed to a high eccentricity by interactions with a planetary rather than stellar companion, and began tidal circularization much interior to 1 AU after multiple scatterings. A final alternative is that early in the tidal circularization process at high eccentricities tidal circularization occurs much more rapidly than later in the process at low eccentricities, although this is contrary to current tidal theories

  11. Cold Hole Over Jupiter's Pole

    Science.gov (United States)

    2002-01-01

    Observations with two NASA telescopes show that Jupiter has an arctic polar vortex similar to a vortex over Earth's Antarctica that enables depletion of Earth's stratospheric ozone.These composite images of Jupiter's north polar region from the Hubble Space Telescope (right) and the Infrared Telescope Facility (left) show a quasi-hexagonal shape that extends vertically from the stratosphere down into the top of the troposphere. A sharp temperature drop, compared to surrounding air masses, creates an eastward wind that tends to keep the polar atmosphere, including the stratospheric haze, isolated from the rest of the atmosphere.The linear striations in the composite projections are artifacts of the image processing. The area closest to the pole has been omitted because it was too close to the edge of the planet in the original images to represent the planet reliably.The composite on the right combines images from the Wide Field and Planetary Camera 2 of the Hubble Space Telescope taken at a wavelength of 890 nanometers, which shows stratospheric haze particles.The sharp boundary and wave-like structure of the haze layer suggest a polar vortex and a similarity to Earth's stratospheric polar clouds. Images of Jupiter's thermal radiation clinch that identification. The composite on the left, for example, is made from images taken with Jet Propulsion Laboratory's Mid-Infrared Large-Well Imager at NASA's Infrared Telescope Facility at a wavelength of 17 microns. It shows polar air mass that is 5 to 6 degrees Celsius (9 to 10 degrees Fahrenheit) colder than its surroundings, with the same border as the stratospheric haze. Similar observations at other infrared wavelengths show the cold air mass extends at least as high as the middle stratosphere down to the top of the troposphere.These images were taken Aug. 11 through Aug. 13, 1999, near a time when Jupiter's north pole was most visible from Earth. Other Infrared Telescope Facility images at frequencies sensitive to the

  12. Comet formation

    Science.gov (United States)

    Blum, J.

    2014-07-01

    There has been vast progress in our understanding of planetesimal formation over the past decades, owing to a number of laboratory experiments as well as to refined models of dust and ice agglomeration in protoplanetary disks. Coagulation rapidly forms cm-sized ''pebbles'' by direct sticking in collisions at low velocities (Güttler et al. 2010; Zsom et al. 2010). For the further growth, two model approaches are currently being discussed: (1) Local concentration of pebbles in nebular instabilities until gravitational instability occurs (Johansen et al. 2007). (2) A competition between fragmentation and mass transfer in collisions among the dusty bodies, in which a few ''lucky winners'' make it to planetesimal sizes (Windmark et al. 2012a,b; Garaud et al. 2013). Predictions of the physical properties of the resulting bodies in both models allow a distinction of the two formation scenarios of planetesimals. In particular, the tensile strength (i.e, the inner cohesion) of the planetesimals differ widely between the two models (Skorov & Blum 2012; Blum et al. 2014). While model (1) predicts tensile strengths on the order of ˜ 1 Pa, model (2) results in rather compactified dusty bodies with tensile strengths in the kPa regime. If comets are km-sized survivors of the planetesimal-formation era, they should in principle hold the secret of their formation process. Water ice is the prime volatile responsible for the activity of comets. Thermophysical models of the heat and mass transport close to the comet-nucleus surface predict water-ice sublimation temperatures that relate to maximum sublimation pressures well below the kPa regime predicted for formation scenario (2). Model (1), however, is in agreement with the observed dust and gas activity of comets. Thus, a formation scenario for cometesimals involving gravitational instability is favored (Blum et al. 2014).

  13. Comet Halley Returns. A Teacher's Guide, 1985-1986.

    Science.gov (United States)

    Chapman, Robert D.; Bondurant, R. Lynn, Jr.

    This booklet was designed as an aid for elementary and secondary school teachers. It is divided into two distinct parts. Part I is a brief tutorial which introduces some of the most important concepts about comets. Areas addressed include: the historical importance of Comet Halley; how comets are found and names; cometary orbits; what Comet Halley…

  14. Comets and the origin and evolution of life

    CERN Document Server

    McKay, Christopher P

    2006-01-01

    Nine years after the publication of Comets and the Origin and Evolution of Life, one of the pioneering books in Astrobiology, this second edition revisits the role comets may have played in the origins and evolution of life. Recent analyses of Antarctic micrometeorites and ancient rocks in Australia and South Africa, the continuing progress in discovering complex organic macromolecules in comets, protostars and interstellar clouds, new insights into organic synthesis in comets, and numerical simulations of comet impacts on the Earth and other members of the solar system yield a spectacular wea

  15. Interplanetary electrons: what is the strength of the Jupiter source

    International Nuclear Information System (INIS)

    Fillius, W.; Ip, Wing-Huen; Knickerbocker, P.

    1977-01-01

    Because there is not enough information to support a rigorous answer, we use a phenomenological approach and conservative assumptions to address the source strength of Jupiter for interplanetary electrons. We estimate that Jupiter emits approximately 10 24 - 10 26 electrons s -1 of energy > 6 MeV, which source may be compared with the population of approximately 3 x 10 28 electrons of the same energy in Jupiter's outer magnetosphere. We conclude that Jupiter accelerates particles at a rate exceeding that of ordinary trapped particle dynamical processes. (author)

  16. Study of Power Options for Jupiter and Outer Planet Missions

    Science.gov (United States)

    Landis, Geoffrey A.; Fincannon, James

    2015-01-01

    Power for missions to Jupiter and beyond presents a challenging goal for photovoltaic power systems, but NASA missions including Juno and the upcoming Europa Clipper mission have shown that it is possible to operate solar arrays at Jupiter. This work analyzes photovoltaic technologies for use in Jupiter and outer planet missions, including both conventional arrays, as well as analyzing the advantages of advanced solar cells, concentrator arrays, and thin film technologies. Index Terms - space exploration, spacecraft solar arrays, solar electric propulsion, photovoltaic cells, concentrator, Fresnel lens, Jupiter missions, outer planets.

  17. Detection of radiation-induced apoptosis using the comet assay

    International Nuclear Information System (INIS)

    Wada, Seiichi; Kobayashi, Yasuhiko; Funayama, Tomoo; Yamamoto, Kazuo; Khoa, Tran Van; Natsuhori, Masahiro; Ito, Nobuhiko

    2003-01-01

    The electrophoresis pattern of apoptotic cells detected by the comet assay has a characteristic small head and spread tail. This image has been referred to as an apoptotic comet, but it has not been previously proven to be apoptotic cells by any direct method. In order to identify this image obtained by the comet assay as corresponding to an apoptotic cell, the frequency of appearance of apoptosis was examined using CHO-K1 and L5178Y cells which were exposed to gamma irradiation. As a method for detecting apoptosis, the terminal deoxynucleotidyl transferase mediated dUTP nick end labeling (TUNEL) assay was used. When the frequency of appearance of apoptotic cells following gamma irradiation was observed over a period of time, there was a significant increase in appearance of apoptosis when using the TUNEL assay. However, there was only a slight increase when using the comet assay. In order to verify the low frequency of appearance of apoptosis when using the comet assay, we attempted to use the TUNEL assay to satin the apoptotic comets detected in the comet assay. The apoptotic comets were TUNEL positive and the normal comets were TUNEL negative. This indicates that the apoptotic comets were formed from DNA fragments with 3'-hydroxy ends that are generated as cells undergo apoptosis. Therefore, it was understood that the characteristic pattern of apoptotic comets detected by the comet assay corresponds to cells undergoing apoptosis. (author)

  18. Comets - cosmic 'snowballs'

    International Nuclear Information System (INIS)

    Luest, R.

    1979-01-01

    Non-periodic comets come from regions at the limit of our solar system and have conserved their original structure and composition since they have originated from a pre-solar nebuly together with the sun and the planets about 4.5 x 10 9 years ago. They are icy bodies of kilometer size whose structure and chemical composition is of great interest also with respect to the origin of the solar system. It is hoped to send a space craft to comet Halley in 1986 to get more detailed informations. (orig.) [de

  19. NUMERICAL MODELING OF THE DISRUPTION OF COMET D/1993 F2 SHOEMAKER-LEVY 9 REPRESENTING THE PROGENITOR BY A GRAVITATIONALLY BOUND ASSEMBLAGE OF RANDOMLY SHAPED POLYHEDRA

    Energy Technology Data Exchange (ETDEWEB)

    Movshovitz, Naor; Asphaug, Erik; Korycansky, Donald, E-mail: nmovshov@ucsc.edu [Department of Earth and Planetary Sciences, University of California, Santa Cruz, 1156 High Street, Santa Cruz, CA 95064 (United States)

    2012-11-10

    We advance the modeling of rubble-pile solid bodies by re-examining the tidal breakup of comet Shoemaker-Levy 9, an event that occurred during a 1.33 R encounter with Jupiter in 1992 July. Tidal disruption of the comet nucleus led to a chain of sub-nuclei {approx}100-1000 m diameter; these went on to collide with the planet two years later. They were intensively studied prior to and during the collisions, making SL9 the best natural benchmark for physical models of small-body disruption. For the first time in the study of this event, we use numerical codes treating rubble piles as collections of polyhedra. This introduces forces of dilatation and friction, and inelastic response. As in our previous studies we conclude that the progenitor must have been a rubble pile, and we obtain approximately the same pre-breakup diameter ({approx}1.5 km) in our best fits to the data. We find that the inclusion of realistic fragment shapes leads to grain locking and dilatancy, so that even in the absence of friction or other dissipation we find that disruption is overall more difficult than in our spheres-based simulations. We constrain the comet's bulk density at {rho}{sub bulk} {approx} 300-400 kg m{sup -3}, half that of our spheres-based predictions and consistent with recent estimates derived from spacecraft observations.

  20. Nitrogen abundance in Comet Halley

    International Nuclear Information System (INIS)

    Wyckoff, S.; Tegler, S.C.; Engel, L.

    1991-01-01

    Data on the nitrogen-containing compounds that observed spectroscopically in the coma of Comet Halley are summarized, and the elemental abundance of nitrogen in the Comet Halley nucleus is derived. It is found that 90 percent of elemental nitrogen is in the dust fraction of the coma, while in the gas fraction, most of the nitrogen is contained in NH3 and CN. The elemental nitrogen abundance in the ice component of the nucleus was found to be deficient by a factor of about 75, relative to the solar photosphere, indicating that the chemical partitioning of N2 into NH3 and other nitrogen compounds during the evolution of the solar nebula cannot account completely for the low abundance ratio N2/NH3 = 0.1, observed in the comet. It is suggested that the low N2/NH3 ratio in Comet Halley may be explained simply by physical fractionation and/or thermal diffusion. 88 refs

  1. Comet nuclei and Trojan asteroids - A new link and a possible mechanism for comet splittings

    International Nuclear Information System (INIS)

    Hartmann, W.K.; Tholen, D.J.

    1990-01-01

    Relatively elongated shapes, implied by recent evidence of a greater incidence of high amplitude lightcurves for comet nuclei and Trojan asteroids than for similarly scaled main belt asteroids, are suggested to have evolved among comet nuclei and Trojans due to volatile loss. It is further suggested that such an evolutionary course may account for observed comet splitting; rotational splitting may specifically occur as a result of evolution in the direction of an elongated shape through sublimation. Supporting these hypotheses, the few m/sec separation velocities projected for rotationally splitting elongated nuclei are precisely in the observed range. 40 refs

  2. Jupiter Analogs Orbit Stars with an Average Metallicity Close to That of the Sun

    DEFF Research Database (Denmark)

    Buchhave, Lars A.; Bitsch, Bertram; Johansen, Anders

    2018-01-01

    Jupiter played an important role in determining the structure and configuration of the Solar System. Whereas hot-Jupiter type exoplanets preferentially form around metal-rich stars, the conditions required for the formation of planets with masses, orbits, and eccentricities comparable to Jupiter...... (Jupiter analogs) are unknown. Using spectroscopic metallicities, we show that stars hosting Jupiter analogs have an average metallicity close to solar, in contrast to their hot-Jupiter and eccentric cool-Jupiter counterparts, which orbit stars with super-solar metallicities. Furthermore......, the eccentricities of Jupiter analogs increase with host-star metallicity, suggesting that planet-planet scatterings producing highly eccentric cool Jupiters could be more common in metal-rich environments. To investigate a possible explanation for these metallicity trends, we compare the observations to numerical...

  3. Solar wind interaction with type-1 comet tails

    International Nuclear Information System (INIS)

    Ershkovich, A.I.

    1977-01-01

    A comet tail is considered as a plasma cylinder separated by a tangential discontinuity surface from the solar wind. Under typical conditions a comet tail boundary is shown to undergo the Kelvin-Helmholtz instability. With infinite amplitude the stabilizing effect of the magnetic field increases, and waves become stable. The proposed model supplies the detailed quantitative description of helical waves observed in type-1 comet tails. This theory enables the evaluation of the comet tail magnetic field by means of the observations of helical waves. The magnetic field in the comet tail turns out to be of the order of the interplanetary field. This conclusion seems to be in accordance with Alfven's idea that the magnetic field in type-1 comet tails is a captured interplanetary field. (Auth.)

  4. Theories of comets to the age of Laplace

    Science.gov (United States)

    Heidarzadeh, Tofigh

    Although the development of ideas about cometary motion has been investigated in several projects, a comprehensive and detailed survey of physical theories of comets has not been conducted. The available works either illustrate relatively short periods in the history of physical cometology or portray a landscape view without adequate details. The present study is an attempt to depict the details of the major physical theories of comets from Aristotle to the age of Laplace. The basic question from which this project originated was simple: how did natural philosophers and astronomers define the nature and place of a new category of celestial objects--the comets--after Brahe's estimation of cometary distances? However, a study starting merely from Brahe without covering classical and medieval thought about comets would be incomplete. Thus, based on the fundamental physical characteristics attributed to comets, the history of cometology may be divided into three periods: from Aristotle to Brahe, in which comets were assumed to be meteorological phenomena; from Brahe to Newton, when comets were admitted as celestial bodies but with unknown trajectories; and from Newton to Laplace, in which they were treated as members of the solar system having more or less the same properties of the planets. By estimating the mass of comets in the 1800s, Laplace diverted cometology into a different direction wherein they were considered among the smallest bodies in the solar system and deprived of the most important properties that had been used to explain their physical constitution during the previous two millennia. Ideas about the astrological aspects of comets are not considered in this study. Also, topics concerning the motion of comets are explained to the extent that is helpful in illustrating their physical properties. The main objective is to demonstrate the foundations of physical theories of comets, and the interaction between observational and mathematical astronomy, and

  5. THE PLASMA ENVIRONMENT IN COMETS OVER A WIDE RANGE OF HELIOCENTRIC DISTANCES: APPLICATION TO COMET C/2006 P1 (MCNAUGHT)

    Energy Technology Data Exchange (ETDEWEB)

    Shou, Y.; Combi, M.; Gombosi, T.; Toth, G. [Department of Atmospheric, Oceanic and Space Sciences, University of Michigan, Ann Arbor, MI (United States); Jia, Y.-D. [IGPP, and EPSS, University of California, Los Angeles, CA 90095 (United States); Rubin, M. [Physikalisches Institut, University of Bern, Sidlerstrasse. 5, CH-3012 Bern (Switzerland)

    2015-08-20

    On 2007 January 12, comet C/2006 P1 (McNaught) passed its perihelion at 0.17 AU. Abundant remote observations offer plenty of information on the neutral composition and neutral velocities within 1 million kilometers of the comet nucleus. In early February, the Ulysses spacecraft made an in situ measurement of the ion composition, plasma velocity, and magnetic field when passing through the distant ion tail and the ambient solar wind. The measurement by Ulysses was made when the comet was at around 0.8 AU. With the constraints provided by remote and in situ observations, we simulated the plasma environment of Comet C/2006 P1 (McNaught) using a multi-species comet MHD model over a wide range of heliocentric distances from 0.17 to 1.75 AU. The solar wind interaction of the comet at various locations is characterized and typical subsolar standoff distances of the bow shock and contact surface are presented and compared to analytic solutions. We find the variation in the bow shock standoff distances at different heliocentric distances is smaller than the contact surface. In addition, we modified the multi-species model for the case when the comet was at 0.7 AU and achieved comparable water group ion abundances, proton densities, plasma velocities, and plasma temperatures to the Ulysses/SWICS and SWOOPS observations. We discuss the dominating chemical reactions throughout the comet-solar wind interaction region and demonstrate the link between the ion composition near the comet and in the distant tail as measured by Ulysses.

  6. THE PLASMA ENVIRONMENT IN COMETS OVER A WIDE RANGE OF HELIOCENTRIC DISTANCES: APPLICATION TO COMET C/2006 P1 (MCNAUGHT)

    International Nuclear Information System (INIS)

    Shou, Y.; Combi, M.; Gombosi, T.; Toth, G.; Jia, Y.-D.; Rubin, M.

    2015-01-01

    On 2007 January 12, comet C/2006 P1 (McNaught) passed its perihelion at 0.17 AU. Abundant remote observations offer plenty of information on the neutral composition and neutral velocities within 1 million kilometers of the comet nucleus. In early February, the Ulysses spacecraft made an in situ measurement of the ion composition, plasma velocity, and magnetic field when passing through the distant ion tail and the ambient solar wind. The measurement by Ulysses was made when the comet was at around 0.8 AU. With the constraints provided by remote and in situ observations, we simulated the plasma environment of Comet C/2006 P1 (McNaught) using a multi-species comet MHD model over a wide range of heliocentric distances from 0.17 to 1.75 AU. The solar wind interaction of the comet at various locations is characterized and typical subsolar standoff distances of the bow shock and contact surface are presented and compared to analytic solutions. We find the variation in the bow shock standoff distances at different heliocentric distances is smaller than the contact surface. In addition, we modified the multi-species model for the case when the comet was at 0.7 AU and achieved comparable water group ion abundances, proton densities, plasma velocities, and plasma temperatures to the Ulysses/SWICS and SWOOPS observations. We discuss the dominating chemical reactions throughout the comet-solar wind interaction region and demonstrate the link between the ion composition near the comet and in the distant tail as measured by Ulysses

  7. To Catch A Comet...Learning From Halley's.

    Science.gov (United States)

    National Aeronautics and Space Administration, Washington, DC.

    Comet chronicles and stories extend back over thousands of years. A common theme has been that comets are a major cause of catastrophe and tragedy here on earth. In addition, both Aristotle and Ptolemy believed that comets were phenomena within the earth's atmosphere, and it wasn't until the 16th century, when Danish astronomer Tycho Brache…

  8. Cassini-VIMS at Jupiter: Solar occultation measurements using Io

    Science.gov (United States)

    Formisano, V.; D'Aversa, E.; Bellucci, G.; Baines, K.H.; Bibring, J.-P.; Brown, R.H.; Buratti, B.J.; Capaccioni, F.; Cerroni, P.; Clark, R.N.; Coradini, A.; Cruikshank, D.P.; Drossart, P.; Jaumann, R.; Langevin, Y.; Matson, D.L.; McCord, T.B.; Mennella, V.; Nelson, R.M.; Nicholson, P.D.; Sicardy, B.; Sotin, Christophe; Chamberlain, M.C.; Hansen, G.; Hibbits, K.; Showalter, M.; Filacchione, G.

    2003-01-01

    We report unusual and somewhat unexpected observations of the jovian satellite Io, showing strong methane absorption bands. These observations were made by the Cassini VIMS experiment during the Jupiter flyby of December/January 2000/2001. The explanation is straightforward: Entering or exiting from Jupiter's shadow during an eclipse, Io is illuminated by solar light which has transited the atmosphere of Jupiter. This light, therefore becomes imprinted with the spectral signature of Jupiter's upper atmosphere, which includes strong atmospheric methane absorption bands. Intercepting solar light refracted by the jovian atmosphere, Io essentially becomes a "miffor" for solar occultation events of Jupiter. The thickness of the layer where refracted solar light is observed is so large (more than 3000 km at Io's orbit), that we can foresee a nearly continuous multi-year period of similar events at Saturn, utilizing the large and bright ring system. During Cassini's 4-year nominal mission, this probing tecnique should reveal information of Saturn's atmosphere over a large range of southern latitudes and times. ?? 2003 Elsevier Inc. All rights reserved.

  9. FIRST EARTH-BASED DETECTION OF A SUPERBOLIDE ON JUPITER

    International Nuclear Information System (INIS)

    Hueso, R.; Perez-Hoyos, S.; Sanchez-Lavega, A.; Wesley, A.; Go, C.; Wong, M. H.; De Pater, I.; Fletcher, L. N.; Boslough, M. B. E.; Orton, G. S.; Yanamandra-Fisher, P. A.; Simon-Miller, A. A.; Djorgovski, S. G.; Edwards, M. L.; Hammel, H. B.; Clarke, J. T.; Noll, K. S.

    2010-01-01

    Cosmic collisions on planets cause detectable optical flashes that range from terrestrial shooting stars to bright fireballs. On 2010 June 3 a bolide in Jupiter's atmosphere was simultaneously observed from the Earth by two amateur astronomers observing Jupiter in red and blue wavelengths. The bolide appeared as a flash of 2 s duration in video recording data of the planet. The analysis of the light curve of the observations results in an estimated energy of the impact of (0.9-4.0) x 10 15 J which corresponds to a colliding body of 8-13 m diameter assuming a mean density of 2 g cm -3 . Images acquired a few days later by the Hubble Space Telescope and other large ground-based facilities did not show any signature of aerosol debris, temperature, or chemical composition anomaly, confirming that the body was small and destroyed in Jupiter's upper atmosphere. Several collisions of this size may happen on Jupiter on a yearly basis. A systematic study of the impact rate and size of these bolides can enable an empirical determination of the flux of meteoroids in Jupiter with implications for the populations of small bodies in the outer solar system and may allow a better quantification of the threat of impacting bodies to Earth. The serendipitous recording of this optical flash opens a new window in the observation of Jupiter with small telescopes.

  10. Autonomous Onboard Science Data Analysis for Comet Missions

    Science.gov (United States)

    Thompson, David R.; Tran, Daniel Q.; McLaren, David; Chien, Steve A.; Bergman, Larry; Castano, Rebecca; Doyle, Richard; Estlin, Tara; Lenda, Matthew

    2012-01-01

    Coming years will bring several comet rendezvous missions. The Rosetta spacecraft arrives at Comet 67P/Churyumov-Gerasimenko in 2014. Subsequent rendezvous might include a mission such as the proposed Comet Hopper with multiple surface landings, as well as Comet Nucleus Sample Return (CNSR) and Coma Rendezvous and Sample Return (CRSR). These encounters will begin to shed light on a population that, despite several previous flybys, remains mysterious and poorly understood. Scientists still have little direct knowledge of interactions between the nucleus and coma, their variation across different comets or their evolution over time. Activity may change on short timescales so it is challenging to characterize with scripted data acquisition. Here we investigate automatic onboard image analysis that could act faster than round-trip light time to capture unexpected outbursts and plume activity. We describe one edge-based method for detect comet nuclei and plumes, and test the approach on an existing catalog of comet images. Finally, we quantify benefits to specific measurement objectives by simulating a basic plume monitoring campaign.

  11. Forming Hot Jupiters: Observational Constraints on Gas Giant Formation and migration

    Science.gov (United States)

    Becker, Juliette; Vanderburg, Andrew; Adams, Fred C.; Khain, Tali; Bryan, Marta

    2018-04-01

    Since the first extrasolar planets were detected, the existence of hot Jupiters has challenged prevailing theories of planet formation. The three commonly considered pathways for hot Jupiter formation are in situ formation, runaway accretion in the outer disk followed by disk migration, and tidal migration (occurring after the disk has dissipated). None of these explains the entire observed sample of hot Jupiters, suggesting that different selections of systems form via different pathways. The way forward is to use observational data to constrain the migration pathways of particular classes of systems, and subsequently assemble these results into a coherent picture of hot Jupiter formation. We present constraints on the migratory pathway for one particular type of system: hot Jupiters orbiting cool stars (T< 6200 K). Using the full observational sample, we find that the orbits of most wide planetary companions to hot Jupiters around these cool stars must be well aligned with the orbits of the hot Jupiters and the spins of the host stars. The population of systems containing both a hot Jupiter and an exterior companion around a cool star thus generally exist in roughly coplanar configurations, consistent with the idea that disk-driven migratory mechanisms have assembled most of this class of systems. We then discuss the overall applicability of this result to a wider range of systems and the broader implications on planet formation.

  12. Jupiter's Aurora Observed With HST During Juno Orbits 3 to 7

    Science.gov (United States)

    Grodent, Denis; Bonfond, B.; Yao, Z.; Gérard, J.-C.; Radioti, A.; Dumont, M.; Palmaerts, B.; Adriani, A.; Badman, S. V.; Bunce, E. J.; Clarke, J. T.; Connerney, J. E. P.; Gladstone, G. R.; Greathouse, T.; Kimura, T.; Kurth, W. S.; Mauk, B. H.; McComas, D. J.; Nichols, J. D.; Orton, G. S.; Roth, L.; Saur, J.; Valek, P.

    2018-05-01

    A large set of observations of Jupiter's ultraviolet aurora was collected with the Hubble Space Telescope concurrently with the NASA-Juno mission, during an eight-month period, from 30 November 2016 to 18 July 2017. These Hubble observations cover Juno orbits 3 to 7 during which Juno in situ and remote sensing instruments, as well as other observatories, obtained a wealth of unprecedented information on Jupiter's magnetosphere and the connection with its auroral ionosphere. Jupiter's ultraviolet aurora is known to vary rapidly, with timescales ranging from seconds to one Jovian rotation. The main objective of the present study is to provide a simplified description of the global ultraviolet auroral morphology that can be used for comparison with other quantities, such as those obtained with Juno. This represents an entirely new approach from which logical connections between different morphologies may be inferred. For that purpose, we define three auroral subregions in which we evaluate the auroral emitted power as a function of time. In parallel, we define six auroral morphology families that allow us to quantify the variations of the spatial distribution of the auroral emission. These variations are associated with changes in the state of the Jovian magnetosphere, possibly influenced by Io and the Io plasma torus and by the conditions prevailing in the upstream interplanetary medium. This study shows that the auroral morphology evolved differently during the five 2 week periods bracketing the times of Juno perijove (PJ03 to PJ07), suggesting that during these periods, the Jovian magnetosphere adopted various states.

  13. What's Causing the Activity on Comet 67P?

    Science.gov (United States)

    Kohler, Susanna

    2015-09-01

    Comet 67P/ChuryumovGerasimenko made famous by the explorations of the Rosetta mission has been displaying puzzling activity as it hurtles toward the Sun. However, recent modeling of the comet by a group of scientists from the Cte dAzur University may now explain whats causing 67Ps activity.Shadowed ActivityA model of comet 67P, with the colors indicating the rate of change of the temperature on the comets surface. The most rapid temperature changes are seen at the comets neck, in the same locations as the early activity seen in the Rosetta images. [Al-Lagoa et al. 2015] Between June and September of 2014, Rosetta observed comet 67P displaying early activity in the form of jets of dust emitted from near the neck of the comet (its narrowest point). Such activity is usually driven by the sublimation of volatiles from the comets surface as a result of sun exposure. But the neck of the comet is frequently shadowed as the comet rotates, and it receives significantly less sunlight than the rest of the comet. So why would the early activity originate from the comets neck?The authors of a recent study, led by Victor Al-Lagoa, hypothesize that its precisely because the neck is receiving alternating sunlight/shadows that its displaying activity. They suggest that thermal cracking of the surface of the comet is happening faster in this region, due to the rapid changes in temperature that result from the shadows cast by the surrounding terrain. The cracking exposes subsurface ices in the neck faster than in other regions, and the ensuing sublimation of that ice is what creates the activity were seeing.Temperature Models: To test their hypothesis, the authors study the surface temperatures on comet 67P by means of a thermophysical model a model used to calculate the temperatures on an airless body, both on and below the surface. The model takes into account factors like thermal inertia (how quickly the bodys temperature responds to changes in the incident energy), shadowing, and

  14. A retrograde object near Jupiter's orbit

    Science.gov (United States)

    Connors, M.; Wiegert, P.

    2018-02-01

    Asteroid 2007 VW266 is among the rare objects with a heliocentric retrograde orbit, and its semimajor axis is within a Hill sphere radius of that of Jupiter. This raised the interesting possibility that it could be in co-orbital retrograde resonance with Jupiter, a second "counter-orbital" object in addition to recently discovered 2015 BZ509. We find instead that the object is in 13/14 retrograde mean motion resonance (also referred to as 13/-14). The object is shown to have entered its present orbit about 1700 years ago, and it will leave it in about 8000 years, both through close approach to Jupiter. Entry and exit states both avoid 1:1 retrograde resonance, but the retrograde nature is preserved. The temporary stable state is due to an elliptic orbit with high inclination keeping nodal passages far from the associated planet. We discuss the motion of this unusual object based on modeling and theory, and its observational prospects.

  15. Jupiter and planet Earth

    International Nuclear Information System (INIS)

    1975-01-01

    The evolution of Jupiter and Earth are discussed along with their atmospheres, the radiation belts around both planets, natural satellites, the evolution of life, and the Pioneer 10. Educational study projects are also included

  16. Gas flow in the solar nebula leading to the formation of Jupiter

    International Nuclear Information System (INIS)

    Sekiya, Minoru; Miyama, Shoken M.; Hayashi, Chushiro.

    1987-01-01

    The three-dimensional gas flow in the solar nebula, which is subject to the gravity of the Sun and proto-Jupiter, is numerically calculated using a three-dimensional hydrodynamic code i.e., the so-called smoothed-particle method. The flow is circulating around the Sun as well as falling into the potential well of proto-Jupiter. The results for various masses of proto-Jupiter show that the e-folding growth time of proto-Jupiter by accretion of the nebular gas is as short as about 300 years in stages where the mass of proto-Jupiter is 0.2 ∼ 0.5 times the present Jovian mass and that proto-Jupiter begins to push away the nebular gas from the orbit of proto-Jupiter and form a gap around the orbit, when its mass is about 0.7 times the present Jovian mass. It is possible that this pushing-away process determined the present Jovian mass

  17. The COMET Sleep Research Platform.

    Science.gov (United States)

    Nichols, Deborah A; DeSalvo, Steven; Miller, Richard A; Jónsson, Darrell; Griffin, Kara S; Hyde, Pamela R; Walsh, James K; Kushida, Clete A

    2014-01-01

    The Comparative Outcomes Management with Electronic Data Technology (COMET) platform is extensible and designed for facilitating multicenter electronic clinical research. Our research goals were the following: (1) to conduct a comparative effectiveness trial (CET) for two obstructive sleep apnea treatments-positive airway pressure versus oral appliance therapy; and (2) to establish a new electronic network infrastructure that would support this study and other clinical research studies. The COMET platform was created to satisfy the needs of CET with a focus on creating a platform that provides comprehensive toolsets, multisite collaboration, and end-to-end data management. The platform also provides medical researchers the ability to visualize and interpret data using business intelligence (BI) tools. COMET is a research platform that is scalable and extensible, and which, in a future version, can accommodate big data sets and enable efficient and effective research across multiple studies and medical specialties. The COMET platform components were designed for an eventual move to a cloud computing infrastructure that enhances sustainability, overall cost effectiveness, and return on investment.

  18. Comet Halley and its historic passages during the past millennium

    International Nuclear Information System (INIS)

    Legrand, J.P.

    1986-01-01

    The March 12, 1759 return of Comet Halley verified Halley's hypothesis on the existence of periodic comets and supported Newton's principle of universal attraction. Comet Halley's appearances before the 16th century are traced and it is noted that the length of the comet's tail has varied greatly. The comet's rendezvous with ESA's satellite Giotto is discussed briefly

  19. The Comet Halley Handbook: An Observer's Guide. Second Edition.

    Science.gov (United States)

    Yeomans, Donald K.

    This handbook contains information on: (1) the orbit of comet Halley; (2) the expected physical behavior of comet Halley in 1985-1986, considering brightness estimates, coma diameters, and tail lengths; (3) observing conditions for comet Halley in 1985-1986; and (4) observing conditions for the dust tail of comet Halley in 1985-1986. Additional…

  20. 67P, Singing Comet

    Science.gov (United States)

    Smirnova, Ekaterina

    2017-04-01

    I would like to propose to present a short science-art-music collaboration film called "67P, Singing Comet" (5:27 min). If time of the session will allow, prior to the film I would like to make a slide show introduction to this project, highlighting the inspiration - the mission Rosetta by the European Space Agency (ESA) - and the artistic collaboration that took place in creating this piece. Inspired by the ESA Rosetta mission to the comet 67P, Ekaterina Smirnova (artist and project director, New York), Lee Mottram (clarinetist, Wales), Takuto Fukuda (composer, Japan) and Brian Hekker (video editor, New York) collaborated to create a unique atmospheric piece. Water and the origins of life throughout the Universe (specifically the Earth) is an element of the mission and the focus of Ekaterina's artistic vision. Ekaterina literally and figuratively paints a sensory assemblage using a combination of synthetic and natural elements to shape this artistic creation. To paint her watercolor works she is using a replica of the water found on the comet and implementing her own heartbeat into the music to create a recognizable inward sound of life. The Electro-Acoustic composition by Takuto Fukuda features an electronically manipulated performance by clarinetist Lee Mottram. The piece ceremoniously begins with reverberant bursts of low-register atonal bells transporting the listener to their ethereal inner origins of body and mind. The imagination takes the experience to an unknown destination as it gains speed gliding through the visual and audible textures of space and time. The comet's water similarly reacts with an ebb and flow thawing ice to potentially give life a chance as it is thrust along an orbit around the Sun. Near then far from the heat the comet forms frozen particles from vapors as it reaches it's furthest stretches creating an aerodynamic tail of icicles that slowly dissipate in a cycle that repeats itself until the comet's ultimate collision with an

  1. Study of Comets Composition and Structure

    Science.gov (United States)

    Khalaf, S. Z.; Selman, A. A.; Ali, H. S.

    2008-12-01

    The present paper focuses on the nature of the different interactions between cometary nucleus and tail with solar wind. The dynamics of the comet will impose many features that provide unique behavior of the comet when entering the solar system. These features are reviewed in this paper and few investigations are made. The calculations made in this work represent the analysis and interpretation of the different features of the comet, such as perihelion and eccentricity dependence on the gas production rate, and the dependence of the latter on the composition of the comet nucleus. The dependences of the heliocentric, bow shock, contact surface, and stand-off distances with gas production rate for many types of comets that cover linear and non-linear types are studied in this work. Important results are obtained which indicated the different physical interactions between cometary ions and solar wind. Furthermore, the important relation between mean molecular weight and gas production rate are analyzed and studied in this work and a conclusion is made that, as the gas production rate increases, the mean molecular weight will decrease exponentially. A detailed discussion for this unique relation is given.

  2. Comet assay on mice testicular cells

    Directory of Open Access Journals (Sweden)

    Anoop Kumar Sharma

    2015-05-01

    Full Text Available Heritable mutations may result in a variety of adverse outcomes including genetic disease in the offspring. In recent years the focus on germ cell mutagenicity has increased and the “Globally Harmonized System of Classification and Labelling of Chemicals (GHS” has published classification criteria for germ cell mutagens (Speit et al., 2009. The in vivo Comet assay is considered a useful tool for investigating germ cell genotoxicity. In the present study DNA strand breaks in testicular cells of mice were investigated. Different classes of chemicals were tested in order to evaluate the sensitivity of the comet assay in testicular cells. The chemicals included environmentally relevant substances such as Bisphenol A, PFOS and Tetrabrombisphenol A. Statistical power calculations will be presented to aid in the design of future Comet assay studies on testicular cells. Power curves were provided with different fold changes in % tail DNA, different number of cells scored and different number of gels (Hansen et al., 2014. An example is shown in Figure 1. A high throughput version of the Comet assay was used. Samples were scored with a fully automatic comet assay scoring system that provided faster scoring of randomly selected cells.

  3. A GREAT search for Deuterium in Comets

    Science.gov (United States)

    Mumma, Michael

    2013-10-01

    Comets are understood to be the most pristine bodies in the Solar System. Their compositions reflect the chemical state of materials at the very earliest evolutionary stages of the protosolar nebula and, as such, they provide detailed insight into the physical and chemical processes operating in planet-forming disks. Isotopic fractionation ratios of the molecular ices in the nucleus are regarded as signatures of formation processes. These ratios provide unique information on the natal heritage of those ices, and can also test the proposal that Earth's water and other volatiles were delivered by cometary bombardment. Measurement of deuterium fractionation ratios is thus a major goal in contemporary cometary science and the D/H ratio of water - the dominant volatile in comets - holds great promise for testing the formation history of cometary matter. The D/H ratio in cometary water has been measured in only eight comets. Seven were from the Oort Cloud reservoir and the D/H ratio was about twice that of the Earth's oceans. However, the recent Herschel measurement of HDO/H2O in 103P/Hartley-2 (the first from the Kuiper Belt) was consistent with exogenous delivery of Earth's water by comets. Outstanding questions remain: are cometary HDO/H2O ratios consistent with current theories of nebular chemical evolution or with an interstellar origin? Does the HDO/H2O ratio vary substantially among comet populations? Hartley-2 is the only Kuiper Belt comet with measured HDO/H2O, are there comets with similar ratios in the Oort cloud? These questions can only be addressed by measuring HDO/H2O ratios in many more suitable bright comets. We therefore propose to measure the D/H ratio in water in a suitable target-of-opportunity comet by performing observations of HDO and OH with the GREAT spectrometer on SOFIA. A multi-wavelength, ground-based observing campaign will also be conducted in support of the airborne observations.

  4. Dust ablation on the giant planets: Consequences for stratospheric photochemistry

    Science.gov (United States)

    Moses, Julianne I.; Poppe, Andrew R.

    2017-11-01

    Ablation of interplanetary dust supplies oxygen to the upper atmospheres of Jupiter, Saturn, Uranus, and Neptune. Using recent dynamical model predictions for the dust influx rates to the giant planets (Poppe et al., 2016), we calculate the ablation profiles and investigate the subsequent coupled oxygen-hydrocarbon neutral photochemistry in the stratospheres of these planets. We find that dust grains from the Edgeworth-Kuiper Belt, Jupiter-family comets, and Oort-cloud comets supply an effective oxygen influx rate of 1.0-0.7+2.2 ×107 O atoms cm-2 s-1 to Jupiter, 7.4-5.1+16 ×104 cm-2 s-1 to Saturn, 8.9-6.1+19 ×104 cm-2 s-1 to Uranus, and 7.5-5.1+16 ×105 cm-2 s-1 to Neptune. The fate of the ablated oxygen depends in part on the molecular/atomic form of the initially delivered products, and on the altitude at which it was deposited. The dominant stratospheric products are CO, H2O, and CO2, which are relatively stable photochemically. Model-data comparisons suggest that interplanetary dust grains deliver an important component of the external oxygen to Jupiter and Uranus but fall far short of the amount needed to explain the CO abundance currently seen in the middle stratospheres of Saturn and Neptune. Our results are consistent with the theory that all of the giant planets have experienced large cometary impacts within the last few hundred years. Our results also suggest that the low background H2O abundance in Jupiter's stratosphere is indicative of effective conversion of meteoric oxygen to CO during or immediately after the ablation process - photochemistry alone cannot efficiently convert the H2O into CO on the giant planets.

  5. A quantitative comet infection assay for influenza virus

    Science.gov (United States)

    Lindsay, Stephen M.; Timm, Andrea; Yin, John

    2011-01-01

    Summary The virus comet assay is a cell-based virulence assay used to evaluate an antiviral drug or antibody against a target virus. The comet assay differs from the plaque assay in allowing spontaneous flows in 6-well plates to spread virus. When implemented quantitatively the comet assay has been shown to have an order-of-magnitude greater sensitivity to antivirals than the plaque assay. In this study, a quantitative comet assay for influenza virus is demonstrated, and is shown to have a 13-fold increase in sensitivity to ribavirin. AX4 cells (MDCK cells with increased surface concentration of α2–6 sialic acid, the influenza virus receptor) have reduced the comet size variability relative to MDCK cells, making them a better host cell for use in this assay. Because of enhanced antiviral sensitivity in flow-based assays, less drug is required, which could lead to lower reagent costs, reduced cytotoxicity, and fewer false-negative drug screen results. The comet assay also serves as a readout of flow conditions in the well. Observations from comets formed at varying humidity levels indicate a role for evaporation in the mechanism of spontaneous fluid flow in wells. PMID:22155578

  6. First Earth-Based Detection of a Superbolide on Jupiter

    Science.gov (United States)

    Hueso, R.; Wesley, A.; Go, C.; Perez-Hoyos, S.; Wong, M. H.; Fletcher, L. N.; Sanchez-Lavega, A.; Boslough, M. B.; DePater, I.; Orton, G. S.; hide

    2010-01-01

    Cosmic collisions can planets cause detectable optical flashes that range from terrestrial shooting stars to bright fireballs. On 2010 June 3 a bolide in Jupiter's atmosphere was simultaneously observed from the Earth by two amateur astronomers observing Jupiter in red and blue wavelengths, The bolide appeared as a flash of 2 s duration in video recording data of the planet. The analysis of the light carve of the observations results in an estimated energy of the impact of (0.9-4,0) x 10(exp 15) J which corresponds to a colliding body of 8-13 m diameter assuming a mean density of 2 g/cu cm. Images acquired a few days later by the Hubble Space Telescope and other large ground-based facilities did not show any signature of aerosol debris, temperature, or chemical composition anomaly, confirming that the body was small and destroyed in Jupiter's upper atmosphere. Several collisions of this size may happen on Jupiter on a yearly basis. A systematic study of the impact rate and size of these bolides can enable an empirical determination. of the flux of meteoroids in Jupiter with implications for the populations of small bodies in the outer solar system and may allow a better quantification of the threat of impacting bodies to Earth. The serendipitous recording of this optical flash opens a new window in the observation of Jupiter with small telescopes.

  7. DISCOVERY OF MAIN-BELT COMET P/2006 VW{sub 139} BY Pan-STARRS1

    Energy Technology Data Exchange (ETDEWEB)

    Hsieh, Henry H.; Yang Bin; Haghighipour, Nader; Kaluna, Heather M.; Denneau, Larry; Jedicke, Robert; Wainscoat, Richard J.; Armstrong, James D.; Micheli, Marco; Keane, Jacqueline V.; Urban, Laurie; Riesen, Timm; Meech, Karen J. [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); Fitzsimmons, Alan [Astrophysics Research Centre, Queens University Belfast, Belfast BT7 1NN (United Kingdom); Novakovic, Bojan [Department of Astronomy, Faculty of Mathematics, University of Belgrade, Studentski trg 16, 11000 Belgrade (Serbia); Duddy, Samuel R.; Lowry, Stephen C. [Centre for Astrophysics and Planetary Science, The University of Kent, Canterbury CT2 7NH (United Kingdom); Trujillo, Chadwick A. [Gemini Observatory, Northern Operations Center, 670 N. Aohoku Place, Hilo, HI 96720 (United States); Abe, Shinsuke; Cheng, Yu-Chi, E-mail: hsieh@ifa.hawaii.edu [Institute of Astronomy, National Central University, 300 Jhongda Rd, Jhongli 32001, Taiwan (China); and others

    2012-03-20

    The main-belt asteroid (300163) 2006 VW{sub 139} (later designated P/2006 VW{sub 139}) was discovered to exhibit comet-like activity by the Pan-STARRS1 (PS1) survey telescope using automated point-spread-function analyses performed by PS1's Moving Object Processing System. Deep follow-up observations show both a short ({approx}10'') antisolar dust tail and a longer ({approx}60'') dust trail aligned with the object's orbit plane, similar to the morphology observed for another main-belt comet (MBC), P/2010 R2 (La Sagra), and other well-established comets, implying the action of a long-lived, sublimation-driven emission event. Photometry showing the brightness of the near-nucleus coma remaining constant over {approx}30 days provides further evidence for this object's cometary nature, suggesting it is in fact an MBC, and not a disrupted asteroid. A spectroscopic search for CN emission was unsuccessful, though we find an upper limit CN production rate of Q{sub CN} < 1.3 Multiplication-Sign 10{sup 24} mol s{sup -1}, from which we infer a water production rate of Q{sub H{sub 2O}}<10{sup 26} mol s{sup -1}. We also find an approximately linear optical spectral slope of 7.2%/1000 A, similar to other cometary dust comae. Numerical simulations indicate that P/2006 VW{sub 139} is dynamically stable for >100 Myr, while a search for a potential asteroid family around the object reveals a cluster of 24 asteroids within a cutoff distance of 68 m s{sup -1}. At 70 m s{sup -1}, this cluster merges with the Themis family, suggesting that it could be similar to the Beagle family to which another MBC, 133P/Elst-Pizarro, belongs.

  8. A Bayesian, generalized frailty model for comet assays.

    Science.gov (United States)

    Ghebretinsae, Aklilu Habteab; Faes, Christel; Molenberghs, Geert; De Boeck, Marlies; Geys, Helena

    2013-05-01

    This paper proposes a flexible modeling approach for so-called comet assay data regularly encountered in preclinical research. While such data consist of non-Gaussian outcomes in a multilevel hierarchical structure, traditional analyses typically completely or partly ignore this hierarchical nature by summarizing measurements within a cluster. Non-Gaussian outcomes are often modeled using exponential family models. This is true not only for binary and count data, but also for, example, time-to-event outcomes. Two important reasons for extending this family are for (1) the possible occurrence of overdispersion, meaning that the variability in the data may not be adequately described by the models, which often exhibit a prescribed mean-variance link, and (2) the accommodation of a hierarchical structure in the data, owing to clustering in the data. The first issue is dealt with through so-called overdispersion models. Clustering is often accommodated through the inclusion of random subject-specific effects. Though not always, one conventionally assumes such random effects to be normally distributed. In the case of time-to-event data, one encounters, for example, the gamma frailty model (Duchateau and Janssen, 2007 ). While both of these issues may occur simultaneously, models combining both are uncommon. Molenberghs et al. ( 2010 ) proposed a broad class of generalized linear models accommodating overdispersion and clustering through two separate sets of random effects. Here, we use this method to model data from a comet assay with a three-level hierarchical structure. Although a conjugate gamma random effect is used for the overdispersion random effect, both gamma and normal random effects are considered for the hierarchical random effect. Apart from model formulation, we place emphasis on Bayesian estimation. Our proposed method has an upper hand over the traditional analysis in that it (1) uses the appropriate distribution stipulated in the literature; (2) deals

  9. The "silent world" of Comet 15P/Finlay

    CERN Document Server

    Beech, M; Jones, J

    1999-01-01

    Comet 15P/Finlay is unusual in that, contrary to ab initio expectations, it demonstrates no apparent linkage to any known meteor shower. Using data contained within the Electronic Atlas of Dynamical Evolutions of Short-Period Comets, the authors evaluate theoretical shower radiants for Comet 15P/Finlay, but find no evidence to link it to any meteoric anomalies in recorded antiquity. This result, however, must be tempered by the fact that any Comet 15P/Finlay- derived meteoroids will have a low, 16 km s/sup -1/, encounter velocity with Earth's atmosphere. Typically, therefore, one would expect mostly faint meteors to be produced during an encounter with a Comet 15P/Finlay-derived meteoroid stream. they have conducted a D- criterion survey of meteoroid orbits derived from three southern hemisphere meteor radar surveys conducted during the 1960s, and again they find no evidence for any Comet 15P/Finlay-related activity. Numerical calculations following the orbital evolution of hypothetical meteoroids ejected fro...

  10. Stardust: Catching a Comet and Bringing it Home

    Science.gov (United States)

    Brownlee, Donald E.

    2007-01-01

    The NASA STARDUST mission collected thousands of particles from Comet Wild 2 that are now being studied by two hundred scientists around the world. The spacecraft captured the samples during a close flyby of the comet in 2004 and returned them to Earth with a dramatic entry into the atmosphere early in 2006. The precious cargo of comet dust is being studied to determine new information about the origin of the Sun and planets. The comet formed at the edge of the solar system, beyond the orbit of Neptune, and is a sample of the material from which the solar system was formed. One of the most dramatic early findings from the mission was that a comet that formed in the coldest place in the solar system contained minerals that formed in the hottest place in the solar system. The comet samples are telling stories of fire and ice and they providing fascinating and unexpected information about our origins.

  11. The Jupiter system through the eyes of Voyager 1

    Science.gov (United States)

    Smith, B.A.; Soderblom, L.A.; Johnson, T.V.; Ingersoll, A.P.; Collins, S.A.; Shoemaker, E.M.; Hunt, G.E.; Masursky, H.; Carr, M.H.; Davies, M.E.; Cook, A.F.; Boyce, J.; Danielson, G.E.; Owen, Timothy W.; Sagan, C.; Beebe, R.F.; Veverka, J.; Strom, R.G.; McCauley, J.F.; Morrison, D.; Briggs, G.A.; Suomi, V.E.

    1979-01-01

    The cameras aboard Voyager I have provided a closeup view of the Jupiter system, revealing heretofore unknown characteristics and phenomena associated with the planet's atmosphere and the surfaces of its five major satellites. On Jupiter itself, atmospheric motions-the interaction of cloud systems-display complex vorticity. On its dark side, lightning and auroras are observed. A ring was discovered surrounding Jupiter. The satellite surfaces display dramatic differences including extensive active volcanismn on Io, complex tectonism on Ganymnede and possibly Europa, and flattened remnants of enormous impact features on Callisto. Copyright ?? 1979 AAAS.

  12. Comets, Asteroids, and the Origin of the Biosphere

    Science.gov (United States)

    Hoover, Richard B.

    2006-01-01

    During the past few decades, the role of comets in the delivery of water, organics, and prebiotic chemicals to the Biosphere of Earth during the Hadean (4.5-3.8 Ga) period of heavy bombardment has become more widely accepted. However comets are still largely regarded as frigid, pristine bodies of protosolar nebula material that are entirely devoid of liquid water and consequently unsuitable for life in any form. Complex organic compounds have been observed comets and on the water rich asteroid 1998 KY26, which has color and radar reflectivity similar to the carbonaceous meteorites. Near infrared observations have indicated the presence of crystalline water ice and ammonia hydrate on the large Kuiper Belt object (50000) Quaoar with resurfacing that may indicate cryovolcanic outgassing and the Cassini spacecraft has detected water-ice geysers on Saturn s moon Enceladus. Spacecraft observations of the chemical compositions and characteristics of the nuclei of several comets (Halley, Borrelly, Wild 2, and Tempel 1) have now firmly established that comets contain a suite of complex organic chemicals; water is the predominant volatile; and that extremely high temperatures (approx.350-400 K) can be reached on the surface of the very black (albedo-0.03) nuclei when the comets are with 1.5 AU from the Sun. Impact craters and pinnacles observed on comet Wild 2 suggest a thick crust and episodic outbursts and jets observed on the nuclei of several comets are interpreted as indications that localized regimes of liquid water and water vapor can periodically exist beneath the crust of some comets. The Deep Impact observations indicate that the temperature on the nucleus of of comet Tempel 1 at 1.5 AU varied from 330K on the sunlit side to a minimum of 280+/-8 K. It is interesting that even the coldest region of the comet surface was slightly above the ice/liquid water phase transition temperature. These results suggest that pools and films of liquid water can exist in a wide

  13. ACTIVITY OF 50 LONG-PERIOD COMETS BEYOND 5.2 au

    Energy Technology Data Exchange (ETDEWEB)

    Sárneczky, K.; Szabó, Gy. M.; Csák, B.; Kelemen, J.; Pál, A.; Szakáts, R.; Szegedi-Elek, E.; Vida, K.; Vinkó, J.; Kiss, L. L. [Konkoly Observatory, Research Centre for Astronomy and Earth Sciences, Hungarian Academy of Sciences, H-1121 Budapest, Konkoly Thege Miklós út 15-17 (Hungary); Marschalkó, G. [Eötvös Loránd Tudományegyetem, H-1117 Pázmány Péter sétány 1/A, Budapest (Hungary); Szalai, T. [Department of Optics and Quantum Electronics, University of Szeged, H-6720 Szeged, Dóm tér 9 (Hungary); Székely, P. [Department of Experimental Physics, University of Szeged, Szeged H-6720, Dóm tér 9 (Hungary)

    2016-12-01

    Remote investigations of ancient matter in the solar system have traditionally been carried out through observations of long-period (LP) comets, which are less affected by solar irradiation than their short-period counterparts orbiting much closer to the Sun. Here we summarize the results of our decade-long survey of the distant activity of LP comets. We found that the most important separation in the data set is based on the dynamical nature of the objects. Dynamically new comets are characterized by a higher level of activity on average: the most active new comets in our sample can be characterized by Afρ values >3–4, higher than those for our most active returning comets. New comets develop more symmetric comae, suggesting a generally isotropic outflow. In contrast to this, the comae of recurrent comets can be less symmetrical, ocassionally exhibiting negative slope parameters, which suggest sudden variations in matter production. The morphological appearance of the observed comets is rather diverse. A surprisingly large fraction of the comets have long, tenuous tails, but the presence of impressive tails does not show a clear correlation with the brightness of the comets.

  14. ACTIVITY OF 50 LONG-PERIOD COMETS BEYOND 5.2 au

    International Nuclear Information System (INIS)

    Sárneczky, K.; Szabó, Gy. M.; Csák, B.; Kelemen, J.; Pál, A.; Szakáts, R.; Szegedi-Elek, E.; Vida, K.; Vinkó, J.; Kiss, L. L.; Marschalkó, G.; Szalai, T.; Székely, P.

    2016-01-01

    Remote investigations of ancient matter in the solar system have traditionally been carried out through observations of long-period (LP) comets, which are less affected by solar irradiation than their short-period counterparts orbiting much closer to the Sun. Here we summarize the results of our decade-long survey of the distant activity of LP comets. We found that the most important separation in the data set is based on the dynamical nature of the objects. Dynamically new comets are characterized by a higher level of activity on average: the most active new comets in our sample can be characterized by Afρ values >3–4, higher than those for our most active returning comets. New comets develop more symmetric comae, suggesting a generally isotropic outflow. In contrast to this, the comae of recurrent comets can be less symmetrical, ocassionally exhibiting negative slope parameters, which suggest sudden variations in matter production. The morphological appearance of the observed comets is rather diverse. A surprisingly large fraction of the comets have long, tenuous tails, but the presence of impressive tails does not show a clear correlation with the brightness of the comets.

  15. Giacobini-Zinner comet: polarimetric and physical observations

    International Nuclear Information System (INIS)

    Martel, M.T.; Maines, P.; Grudzinska, S.; Stawikowski, A.

    1984-10-01

    The results of observations of the Giacobini-Zinner comet on 25 and 31 October 1959 are presented. The magnitude of the comet was measured photoelectrically in two spectral regions. The radius is on the order of one kilometer. The photoelectric measurements of comets 1959b and 1957c were used to measure the abundances of the CN and C2 radicals and of solid particles in the heads

  16. SECULAR CHAOS AND THE PRODUCTION OF HOT JUPITERS

    International Nuclear Information System (INIS)

    Wu Yanqin; Lithwick, Yoram

    2011-01-01

    In a planetary system with two or more well-spaced, eccentric, inclined planets, secular interactions may lead to chaos. The innermost planet may gradually become very eccentric and/or inclined as a result of the secular degrees of freedom drifting toward equipartition of angular momentum deficit. Secular chaos is known to be responsible for the eventual destabilization of Mercury in our own solar system. Here we focus on systems with three giant planets. We characterize the secular chaos and demonstrate the criterion for it to occur, but leave a detailed understanding of secular chaos to a companion paper. After an extended period of eccentricity diffusion, the inner planet's pericenter can approach the star to within a few stellar radii. Strong tidal interactions and ensuing tidal dissipation extract orbital energy from the planet and pull it inward, creating a hot Jupiter. In contrast to other proposed channels for the production of hot Jupiters, such a scenario (which we term 'secular migration') explains a range of observations: the pile-up of hot Jupiters at 3 day orbital periods, the fact that hot Jupiters are in general less massive than other radial velocity planets, that they may have misaligned inclinations with respect to stellar spin, and that they have few easily detectable companions (but may have giant companions in distant orbits). Secular migration can also explain close-in planets as low in mass as Neptune; and an aborted secular migration can explain the 'warm Jupiters' at intermediate distances. In addition, the frequency of hot Jupiters formed via secular migration increases with stellar age. We further suggest that secular chaos may be responsible for the observed eccentricities of giant planets at larger distances and that these planets could exhibit significant spin-orbit misalignment.

  17. On the origin of comets

    Science.gov (United States)

    Mendis, A.; Alfven, H.

    1976-01-01

    Physico-chemical processes leading to the dynamic formation and physical evolution of comets are reviewed in relationship to the various theories that propose solar origins, protoplanetary origins, planetary origins and interstellar origins. Evidence points to the origins of comets by the growth and agglomeration of small particles from gas and dust at very low temperatures at undetermined regions in space.

  18. Jupiter

    Science.gov (United States)

    1990-01-01

    This processed color image of Jupiter was produced in 1990 by the U.S. Geological Survey from a Voyager image captured in 1979. The colors have been enhanced to bring out detail. Zones of light-colored, ascending clouds alternate with bands of dark, descending clouds. The clouds travel around the planet in alternating eastward and westward belts at speeds of up to 540 kilometers per hour. Tremendous storms as big as Earthly continents surge around the planet. The Great Red Spot (oval shape toward the lower-left) is an enormous anticyclonic storm that drifts along its belt, eventually circling the entire planet.

  19. Random, double- and single-strand DNA breaks can be differentiated in the method of Comet assay by the shape of the comet image.

    Science.gov (United States)

    Georgieva, Milena; Zagorchev, Plamen; Miloshev, George

    2015-10-01

    Comet assay is an invaluable tool in DNA research. It is widely used to detect DNA damage as an indicator of exposure to genotoxic stress. A canonical set of parameters and specialized software programs exist for Comet assay data quantification and analysis. None of them so far has proven its potential to employ a computer-based algorithm for assessment of the shape of the comet as an indicator of the exact mechanism by which the studied genotoxins cut in the molecule of DNA. Here, we present 14 unique measurements of the comet image based on the comet morphology. Their mathematical derivation and statistical analysis allowed precise description of the shape of the comet image which in turn discriminated the cause of genotoxic stress. This algorithm led to the development of the "CometShape" software which allowed easy discrimination among different genotoxins depending on the type of DNA damage they induce. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. A dynamical study on extrasolar comets

    Science.gov (United States)

    Loibnegger, B.; Dvorak, R.

    2017-09-01

    Since the detection of absorption features in spectra of beta Pictoris varying on short time scales it is known that comets exist in other stellar systems. We investigate the dynamics of comets in two differently build systems (HD 10180 and HIP 14810). The outcomes of the scattering process, as there are collisions with the planets, captures and ejections from the systems are analysed statistically. Collisions and close encounters with the planets are investigated in more detail in order to conclude about transport of water and organic material. We will also investigate the possibility of detection of comets in other planetary systems.

  1. Mechanism for the Coupled Photochemistry of Ammonia and Acetylene: Implications for Giant Planets, Comets and Interstellar Organic Synthesis.

    Science.gov (United States)

    Keane, Thomas C

    2017-09-01

    Laboratory studies provide a fundamental understanding of photochemical processes in planetary atmospheres. Photochemical reactions taking place on giant planets like Jupiter and possibly comets and the interstellar medium are the subject of this research. Reaction pathways are proposed for the coupled photochemistry of NH 3 (ammonia) and C 2 H 2 (acetylene) within the context Jupiter's atmosphere. We then extend the discussion to the Great Red Spot, Extra-Solar Giant Planets, Comets and Interstellar Organic Synthesis. Reaction rates in the form of quantum yields were measured for the decomposition of reactants and the formation of products and stable intermediates: HCN (hydrogen cyanide), CH 3 CN (acetonitrile), CH 3 CH = N-N = CHCH 3 (acetaldazine), CH 3 CH = N-NH 2 (acetaldehyde hydrazone), C 2 H 5 NH 2 (ethylamine), CH 3 NH 2 (methylamine) and C 2 H 4 (ethene) in the photolysis of NH 3 /C 2 H 2 mixtures. Some of these compounds, formed in our investigation of pathways for HCN synthesis, were not encountered previously in observational, theoretical or laboratory photochemical studies. The quantum yields obtained allowed for the formulation of a reaction mechanism that attempts to explain the observed results under varying experimental conditions. In general, the results of this work are consistent with the initial observations of Ferris and Ishikawa (1988). However, their proposed reaction pathway which centers on the photolysis of CH 3 CH = N-N = CHCH 3 does not explain all of the results obtained in this study. The formation of CH 3 CH = N-N = CHCH 3 by a radical combination reaction of CH 3 CH = N• was shown in this work to be inconsistent with other experiments where the CH 3 CH = N• radical is thought to form but where no CH 3 CH = N-N = CHCH 3 was detected. The importance of the role of H atom abstraction reactions was demonstrated and an alternative pathway for CH 3 CH = N-N = CHCH 3 formation involving nucleophilic reaction

  2. Phosphorus Chemistry in the Atmosphere of Jupiter: A Reassessment

    Science.gov (United States)

    Borunov, Sergei; Dorofeeva, Vera; Khodakovsky, Igor; Drossart, Pierre; Lellouch, Emmanuel; Encrenaz, Thérèse

    1995-02-01

    A new distribution of phosphorus compounds in the atmosphere of Jupiter is given, using revised values for the chemical constants. In contrast with previous works, it is shown that phosphine PH 3 remains the most abundant equilibrium gaseous compound even at the upper levels of Jupiter's troposphere. The observed PH 3 abundance is equal to the equilibrium value, at all temperatures above 535 K for solar P and O elemental abundances, and above 600 K for a reasonable range of P and O abundances. P 4O 6 does not take part in the phosphorus cycle on Jupiter.

  3. Strong tidal dissipation in Io and Jupiter from astrometric observations.

    Science.gov (United States)

    Lainey, Valéry; Arlot, Jean-Eudes; Karatekin, Ozgür; Van Hoolst, Tim

    2009-06-18

    Io is the volcanically most active body in the Solar System and has a large surface heat flux. The geological activity is thought to be the result of tides raised by Jupiter, but it is not known whether the current tidal heat production is sufficiently high to generate the observed surface heat flow. Io's tidal heat comes from the orbital energy of the Io-Jupiter system (resulting in orbital acceleration), whereas dissipation of energy in Jupiter causes Io's orbital motion to decelerate. Here we report a determination of the tidal dissipation in Io and Jupiter through its effect on the orbital motions of the Galilean moons. Our results show that the rate of internal energy dissipation in Io (k(2)/Q = 0.015 +/- 0.003, where k(2) is the Love number and Q is the quality factor) is in good agreement with the observed surface heat flow, and suggest that Io is close to thermal equilibrium. Dissipation in Jupiter (k(2)/Q = (1.102 +/- 0.203) x 10(-5)) is close to the upper bound of its average value expected from the long-term evolution of the system, and dissipation in extrasolar planets may be higher than presently assumed. The measured secular accelerations indicate that Io is evolving inwards, towards Jupiter, and that the three innermost Galilean moons (Io, Europa and Ganymede) are evolving out of the exact Laplace resonance.

  4. Lucy: Navigating a Jupiter Trojan Tour

    Science.gov (United States)

    Stanbridge, Dale; Williams, Ken; Williams, Bobby; Jackman, Coralie; Weaver, Hal; Berry, Kevin; Sutter, Brian; Englander, Jacob

    2017-01-01

    In January 2017, NASA selected the Lucy mission to explore six Jupiter Trojan asteroids. These six bodies, remnants of the primordial material that formed the outer planets, were captured in the Sun-Jupiter L4 and L5 Lagrangian regions early in the solar system formation. These particular bodies were chosen because of their diverse spectral properties and the chance to observe up close for the first time two orbiting approximately equal mass binaries, Patroclus and Menoetius. KinetX, Inc. is the primary navigation supplier for the Lucy mission. This paper describes preliminary navigation analyses of the approach phase for each Trojan encounter.

  5. Catastrophic Disruption of Comet ISON

    Science.gov (United States)

    Keane, Jacqueline V.; Milam, Stefanie N.; Coulson, Iain M.; Kleyna, Jan T.; Sekanina, Zdenek; Kracht, Rainer; Riesen, Timm-Emmanuel; Meech, Karen J.; Charnley, Steven B.

    2016-01-01

    We report submillimeter 450 and 850 microns dust continuum observations for comet C/2012 S1 (ISON) obtained at heliocentric distances 0.31-0.08 au prior to perihelion on 2013 November 28 (rh?=?0.0125 au). These observations reveal a rapidly varying dust environment in which the dust emission was initially point-like. As ISON approached perihelion, the continuum emission became an elongated dust column spread out over as much as 60? (greater than 10(exp 5) km in the anti-solar direction. Deconvolution of the November 28.04 850 microns image reveals numerous distinct clumps consistent with the catastrophic disruption of comet ISON, producing approximately 5.2?×?10(exp 10) kg of submillimeter-sized dust. Orbital computations suggest that the SCUBA-2 emission peak coincides with the comet's residual nucleus.

  6. Hyakutake, Hale-Bopp and the chemistry of comets

    International Nuclear Information System (INIS)

    Bachiller, R.; Planesas, P.

    1997-01-01

    Comets can be regarded as messengers from the primitive solar system which can provide precious pieces of information on the composition of the protosolar nebula. Physical and chemical phenomena within comets (shock waves, photodissociation caused by solar radiation, some endothermic chemical reactions, etc) are of the highest interest and cannot be reproduced at terrestrial laboratories in many cases. The passage of Hyakutake in 1996 and that of Hale-Bopp in 1997 are allowing remarkable progress in the understanding of the physico-chemistry of comets. Observations of such comets can be crucial in the study of the origin of life on Earth. (Author)

  7. Discovery of Diffuse Hard X-ray Emission associated with Jupiter

    Science.gov (United States)

    Ezoe, Y.; Miyoshi, Y.; Ishikawa, K.; Ohashi, T.; Terada, N.; Uchiyama, Y.; Negoro, H.

    2009-12-01

    Our discovery of diffuse hard (1-5 keV) X-ray emission around Jupiter is reported. Recent Chandra and XMM-Newton observations revealed several types of X-rays in the vicinity of Jupiter such as auroral and disk emission from Jupiter and faint diffuse X-rays from the Io Plasma Torus (see Bhardwaj et al. 2007 for review). To investigate possible diffuse hard X-ray emission around Jupiter with the highest sensitivity, we conducted data analysis of Suzaku XIS observations of Jupiter on Feb 2006. After removing satellite and planetary orbital motions, we detected a significant diffuse X-ray emission extending to ~6 x 3 arcmin with the 1-5 keV X-ray luminosity of ~3e15 erg/s. The emitting region very well coincided with the Jupiter's radiation belts. The 1-5 keV X-ray spectrum was represented by a simple power law model with a photon index of 1.4. Such a flat continuum strongly suggests non-thermal origin. Although such an emission can be originated from multiple background point sources, its possibility is quite low. We hence examined three mechanisms, assuming that the emission is truly diffuse: bremsstrahlung by keV electrons, synchrotron emission by TeV electrons, and inverse Compton scattering of solar photons by MeV electrons. The former two can be rejected because of the X-ray spectral shape and implausible existence of TeV electrons around Jupiter, respectively. The last possibility was found to be possible because tens MeV electrons, which have been confirmed in inner radiation belts (Bolton et al. 2002), can kick solar photons to the keV energy range and provide a simple power-law continuum. We estimated an average electron density from the X-ray luminosity assuming the oblate spheroid shaped emitting region with 8 x 8 x 4 Jovian radii. The necessary density was 0.02 1/cm3 for 50 MeV electrons. Hence, our results may suggest a new particle acceleration phenomenon around Jupiter.

  8. The PACA Project Observing Campaigns: From Comets to the Sun

    Science.gov (United States)

    Yanamandra-Fisher, Padma A.; PACA Project

    2017-10-01

    The Pro-Am Collaborative Astronomy (PACA) project evolved from the observational campaign of C/2012 S1 or C/ISON in 2013, and has expanded to pro-am observing campaigns of planets, polarimetric exploration and recently, polarization of the inner solar corona during the 2017 US Continental Total Solar Eclipse (TSE). The evolving need for individual customized observing campaigns has been incorporated into the evolution of PACA portal: supporting observing campaigns of current comets, legacy data, historical comets, planets, solar corona, interconnected with social media and a set of shareable documents addressing observational strategies; consistent standards for data; data access, use, and storage, to align with the needs of professional observers. Given the volume of data generated for each campaign, new ways of rapid data analysis, mining access and storage are needed. Several interesting results emerged from the synergistic inclusion of both social media and amateur astronomers: (1) the establishment of a network of astronomers and related professionals, that can be galvanized into action on short notice to support observing campaigns; (2) assist in various science investigations pertinent to the campaign; (3) provide an alert-sounding mechanism should the need arise; (4) immediate outreach and dissemination of results via our media/blogger members; (5) provide a forum for discussions between the imagers and modelers to help strategize the observing campaign for maximum benefit. Some recent PACA campaigns of note are: C/2013 A1 (C/SidingSpring) ; 67P/Churyumov-Gerasimenko (CG), target for ESA/Rosetta mission; PACA_Jupiter (and for other planets Mars, Saturn, Uranus and Neptune); polarimetry and current campaign PACA_PolNet, a multi-site polarimetric network to be implemented in August 2017, in partnership with the project Citizen CATE. I will highlight key aspects of various PACA campaigns, especially the current PACA_PolNet for the 2017 Total Solar Eclipse and

  9. HUBBLE CLICKS IMAGES OF IO SWEEPING ACROSS JUPITER

    Science.gov (United States)

    2002-01-01

    While hunting for volcanic plumes on Io, NASA's Hubble Space Telescope captured these images of the volatile moon sweeping across the giant face of Jupiter. Only a few weeks before these dramatic images were taken, the orbiting telescope snapped a portrait of one of Io's volcanoes spewing sulfur dioxide 'snow.' These stunning images of the planetary duo are being released to commemorate the ninth anniversary of the Hubble telescope's launch on April 24, 1990. All of these images were taken with the Wide Field and Planetary Camera 2. The three overlapping snapshots show in crisp detail Io passing above Jupiter's turbulent clouds. The close-up picture of Io (bottom right) reveal a 120-mile-high (200-kilometer) plume of sulfur dioxide 'snow' emanating from Pillan, one of the moon's active volcanoes. 'Other observations have inferred sulfur dioxide 'snow' in Io's plumes, but this image offers direct observational evidence for sulfur dioxide 'snow' in an Io plume,' explains John R. Spencer of Lowell Observatory in Flagstaff, Ariz. A Trip Around Jupiter The three snapshots of the volcanic moon rounding Jupiter were taken over a 1.8-hour time span. Io is roughly the size of Earth's moon but 2,000 times farther away. In two of the images, Io appears to be skimming Jupiter's cloud tops, but it's actually 310,000 miles (500,000 kilometers) away. Io zips around Jupiter in 1.8 days, whereas the moon circles Earth every 28 days. The conspicuous black spot on Jupiter is Io's shadow and is about the size of the moon itself (2,262 miles or 3,640 kilometers across). This shadow sails across the face of Jupiter at 38,000 mph (17 kilometers per second). The smallest details visible on Io and Jupiter measure 93 miles (150 kilometers) across, or about the size of Connecticut. These images were further sharpened through image reconstruction techniques. The view is so crisp that one would have to stand on Io to see this much detail on Jupiter with the naked eye. The bright patches on Io

  10. A nebula of gases from Io surrounding Jupiter.

    Science.gov (United States)

    Krimigis, Stamatios M; Mitchell, Donald G; Hamilton, Douglas C; Dandouras, Jannis; Armstrong, Thomas P; Bolton, Scott J; Cheng, Andrew F; Gloeckler, George; Hsieh, K C; Keath, Edwin P; Krupp, Norbert; Lagg, Andreas; Lanzerotti, Louis J; Livi, Stefano; Mauk, Barry H; McEntire, Richard W; Roelof, Edmond C; Wilken, Berend; Williams, Donald J

    2002-02-28

    Several planetary missions have reported the presence of substantial numbers of energetic ions and electrons surrounding Jupiter; relativistic electrons are observable up to several astronomical units (au) from the planet. A population of energetic (>30[?]keV) neutral particles also has been reported, but the instrumentation was not able to determine the mass or charge state of the particles, which were subsequently labelled energetic neutral atoms. Although images showing the presence of the trace element sodium were obtained, the source and identity of the neutral atoms---and their overall significance relative to the loss of charged particles from Jupiter's magnetosphere---were unknown. Here we report the discovery by the Cassini spacecraft of a fast (>103[?]km[?]s-1) and hot magnetospheric neutral wind extending more than 0.5[?]au from Jupiter, and the presence of energetic neutral atoms (both hot and cold) that have been accelerated by the electric field in the solar wind. We suggest that these atoms originate in volcanic gases from Io, undergo significant evolution through various electromagnetic interactions, escape Jupiter's magnetosphere and then populate the environment around the planet. Thus a 'nebula' is created that extends outwards over hundreds of jovian radii.

  11. The spacecraft encounters of Comet Halley

    Science.gov (United States)

    Asoka Mendis, D.; Tsurutani, Bruce T.

    1986-01-01

    The characteristics of the Comet Halley spacecraft 'fleet' (VEGA 1 and VEGA 2, Giotto, Suisei, and Sakigake) are presented. The major aims of these missions were (1) to discover and characterize the nucleus, (2) to characterize the atmosphere and ionosphere, (3) to characterize the dust, and (4) to characterize the nature of the large-scale comet-solar wind interaction. While the VEGA and Giotto missions were designed to study all four areas, Suisei addressed the second and fourth. Sakigake was designed to study the solar wind conditions upstream of the comet. It is noted that NASA's Deep Space Network played an important role in spacecraft tracking.

  12. Observations and models of the decimetric radio emission from Jupiter

    International Nuclear Information System (INIS)

    Pater, I. de.

    1980-01-01

    The high energy electron distribution as a function of energy, pitch angle and spatial coordinates in Jupiter's inner magnetosphere was derived from a comparison of radio data and model calculations of Jupiter's synchrotron radiation. (Auth.)

  13. Search for the radio occulation flash at Jupiter

    International Nuclear Information System (INIS)

    Martin, J.M.; Tyler, G.L.; Eshleman, V.R.; Wood, G.E.; Lindall, G.F.

    1981-01-01

    The 'evolute flash' a focusing effect caused by the curvature of a planet's limb, was sought in the radio data taken during the occulation of Voyager 1 by Jupiter, using a modified matched-filter technique. The expected frequency structure of the flash signal is double branched, while the intensity structure is highly localized in time. The search for the signal was carried out over a 6.4 s period. The signal parameters were varied to span the uncertainties introduced by imperfect knowledge of the orbit of the spacecraft and the shape of Jupiter. Several peaks at the 8 standard deviation level were present in the filter output. However, these peaks were separated in time by up to 3.3 s, and none could be identified as the flash. From this negative result a lower bound on the absorption along a ray with periapsis near the 4 bar level in Jupiter's atmosphere can be established at 25 dB. Employing the new Voyager results on the structure of the atmosphere of Jupiter and the mixing ratio of the absorbent ammonia, as well as the improved knowledge of flash characteristics resulting from this study, we estimate that the flash would have been detected if the distance behind the planet where the spacecraft trajectory crossed the evolute were at least 20 Jupiter radii, as compared with a value near 7 in the experiment. For focusing at this greater distance, the atmospheric pressure at the ray periapsis would be between 1.5 and 2 bar

  14. Unveiling the formation and evolution of comets

    Science.gov (United States)

    Lasue, J.; Levasseur-Regourd, A. C.; Botet, R.; Coradini, A.; Desanctis, M. C.; Kofman, W.

    2007-08-01

    Comet nuclei are considered as the most pristine bodies of the solar system and consequently their study sheds an important light on the processes occurring during the initial stages of the solar system formation. The analysis of the porosity and bulk density of such primordial bodies is especially important to understand their capacity to retain volatile components (organics and ices) present in the early solar nebula. Typical tensile strengths deduced for comet nuclei range from below 102N.m-2 from the Deep Impact mission [1] up to 104N.m-2 from the study of comet C/1999 S4 LINEAR breakup [2] and meteoroids [3]. A bulk density of about 350 kg/m3 has been obtained for 9P/Tempel 1 from the Deep Impact mission [4]. Moreover the properties of dust released from the comets strongly confirm such values. Instruments flying-by comet 1P/Halley had discovered the presence of organics, and pointed out the dust low albedo and extremely low density while analyses of Interplanetary Dust Particles collected in the stratosphere and remote spectroscopic observations have indicated that cometary dust consists of an un-equilibrated heterogeneous mixture of organic refractory materials and of amorphous and crystalline silicate minerals [5], as recently confirmed by Stardust [6]. Observations of the solar scattered light, together with elaborate simulations, give an estimation of the mass ratio between silicates and absorbing organics, the size distribution and the structure of the dust particles, suggesting that a fair amount consists in fluffy aggregates built up from submicronic grains [7,8], as recently confirmed by the analysis of dust craters and aerogel tracks on Stardust collector showing for some large particles (up to 100 μm) an extraordinary fluffy structure [9]. Simulations have been developed in our teams to describe the aspects of comet aggregation and evolution that have not been thoroughly explained yet. Particle aggregation simulations taking into account cohesive

  15. The Frequency of Hot Jupiters in the Galaxy

    Directory of Open Access Journals (Sweden)

    Sackett P. D.

    2011-02-01

    Full Text Available The frequency of Hot Jupiters around Galactic dwarf stars is determined from the results of the SuperLupus transit survey and realistic Monte Carlo simulations of the survey efficiency. We find that for Hot Jupiters with mean radii of 1.1RJ and periods between 1 and 10 days, the frequency around dwarf stars is just 0.16±0.60.2%.

  16. Comet 67P Through the Lens of Art

    Science.gov (United States)

    Smirnova, Ekaterina

    2017-04-01

    My proposal is to share my artistic exploration of a comet through the bodily senses, while finding inspiration in scientific data. I will present my artwork as a slideshow, showcasing: large scale paintings, ceramic sculptures, music and interactive augmented reality. The Rosetta mission of the European Space Agency (ESA) to comet 67P/ Churyumov-Gerasimenko is remarkable. The scientific investigation of the comet's composition, atmosphere, dust, vapor, surface and internal structure are crucial to help researchers understand the origin of the solar system and our own planet. Sight: Paintings Rosetta mission discovered that the water on the comet is different from the water on Earth; as measured with the ROSINA-DFMS instrument on Rosetta, water on 67P contains approximately 3 times more hydrogen­deuterium oxide - HDO, than found in Earth's oceans. In the art studio I re-create water that is close in composition to the water on the comet, by concentrating the level of HDO. With this water I paint large scale watermedia paintings, based on the photographs by Rosetta (OSIRIS, Nav. Cam.). Touch: Sculptures While exploring the comet's three-dimensional form, I focus more deeply on the composition of the comet. Stoneware clay and my choice of a glaze both include iron oxide, a common constituent of meteorites and comets. Hearing: Music An audio piece "A Singing Comet", by Manuel Senfft, based on the Rosetta Plasma Consortium data, inspired me to make a musical piece. In collaboration with clarinetist Lee Mottram (Wales) and composer Takuto Fukuda (Japan) we created an electro­acoustic composition in which we tell the story of comets visiting our Solar System, repeating their cycle, curving around the sun and releasing water, carrying away dust to form their tails. Smell In collaboration with The Open University, UK, postcards with a smell of the comet were created, introducing the chemical components of the comet. The smell was recreated by combining several molecules

  17. On possible life on Jupiter's satellite Io

    Science.gov (United States)

    Vidmachenko, A. P.

    2018-05-01

    Some of the satellites of Jupiter may well be suitable both for mastering, and for finding possible traces of life there. Among them such satellite like Io - nearest Galilean satellite of Jupiter, and one of the most volcanically active bodies in the solar system. Warming of the mantle is caused by a powerful tidal force from the side of Jupiter. This leads to the heating of some parts of the mantle to a temperature above 1800 K, with an average surface temperature of about 140 K. But under its surface can be safe and even comfortable shelters, where life could once have come from the outside (even in a very primitive form), and could survive to this day. Moreover, according to some model's assumptions, Io could sometime be formed in another part of the Solar system, where the water could exist. Note that on neighboring Galilean satellites now exist significant amounts of water .

  18. Near equality of ion phase space densities at earth, Jupiter, and Saturn

    Science.gov (United States)

    Cheng, A. F.; Krimigis, S. M.; Armstrong, T. P.

    1985-01-01

    Energetic-ion phase-space density profiles are strikingly similar in the inner magnetospheres of earth, Jupiter, and Saturn for ions of first adiabatic invariant near 100 MeV/G and small mirror latitudes. Losses occur inside L approximately equal to 7 for Jupiter and Saturn and inside L approximately equal to 5 at earth. At these L values there exist steep plasma-density gradients at all three planets, associated with the Io plasma torus at Jupiter, the Rhea-Dione-Tethys torus at Saturn, and the plasmasphere at earth. Measurements of ion flux-tube contents at Jupiter and Saturn by the low-energy charged-particle experiment show that these are similar (for O ions at L = 5-9) to those at earth (for protons at L = 2-6). Furthermore, the thermal-ion flux-tube contents from Voyager plasma-science data at Jupiter and Saturn are also very nearly equal, and again similar to those at earth, differing by less than a factor of 3 at the respective L values. The near equality of energetic and thermal ion flux-tube contents at earth, Jupiter, and Saturn suggests the possibility of strong physical analogies in the interaction between plasma and energetic particles at the plasma tori/plasma sheets of Jupiter and Saturn and the plasmasphere of earth.

  19. CATASTROPHIC DISRUPTION OF COMET ISON

    Energy Technology Data Exchange (ETDEWEB)

    Keane, Jacqueline V.; Kleyna, Jan T.; Riesen, Timm-Emmanuel; Meech, Karen J. [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); Milam, Stefanie N.; Charnley, Steven B. [Astrochemistry Laboratory, NASA GSFC, MS 690, Greenbelt, MD 20771 (United States); Coulson, Iain M. [Joint Astronomy Center, 660 North Aohoku Place, Hilo, HI 96720 (United States); Sekanina, Zdenek [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States); Kracht, Rainer, E-mail: keane@ifa.hawaii.edu [Ostlandring 53, D-25335 Elmshorn, Schleswig-Holstein (Germany)

    2016-11-10

    We report submillimeter 450 and 850 μ m dust continuum observations for comet C/2012 S1 (ISON) obtained at heliocentric distances 0.31–0.08 au prior to perihelion on 2013 November 28 ( r {sub h} = 0.0125 au). These observations reveal a rapidly varying dust environment in which the dust emission was initially point-like. As ISON approached perihelion, the continuum emission became an elongated dust column spread out over as much as 60″ (>10{sup 5} km) in the anti-solar direction. Deconvolution of the November 28.04 850 μ m image reveals numerous distinct clumps consistent with the catastrophic disruption of comet ISON, producing ∼5.2 × 10{sup 10} kg of submillimeter-sized dust. Orbital computations suggest that the SCUBA-2 emission peak coincides with the comet's residual nucleus.

  20. An Overview of the Jupiter Europa Orbiter Concept's Europa Science Phase Orbit Design

    Science.gov (United States)

    Lock, Robert E.; Ludwinski, Jan M.; Petropoulos, Anastassios E.; Clark, Karla B.; Pappalardo, Robert T.

    2009-01-01

    Jupiter Europa Orbiter (JEO), the proposed NASA element of the proposed joint NASA-ESA Europa Jupiter System Mission (EJSM), could launch in February 2020 and conceivably arrive at Jupiter in December of 2025. The concept is to perform a multi-year study of Europa and the Jupiter system, including 30 months of Jupiter system science and a comprehensive Europa orbit phase of 9 months. This paper provides an overview of the JEO concept and describes the Europa Science phase orbit design and the related science priorities, model pay-load and operations scenarios needed to conduct the Europa Science phase. This overview is for planning and discussion purposes only.

  1. Capture of irregular satellites at Jupiter

    International Nuclear Information System (INIS)

    Nesvorný, David; Vokrouhlický, David; Deienno, Rogerio

    2014-01-01

    The irregular satellites of outer planets are thought to have been captured from heliocentric orbits. The exact nature of the capture process, however, remains uncertain. We examine the possibility that irregular satellites were captured from the planetesimal disk during the early solar system instability when encounters between the outer planets occurred. Nesvorný et al. already showed that the irregular satellites of Saturn, Uranus, and Neptune were plausibly captured during planetary encounters. Here we find that the current instability models present favorable conditions for capture of irregular satellites at Jupiter as well, mainly because Jupiter undergoes a phase of close encounters with an ice giant. We show that the orbital distribution of bodies captured during planetary encounters provides a good match to the observed distribution of irregular satellites at Jupiter. The capture efficiency for each particle in the original transplanetary disk is found to be (1.3-3.6) × 10 –8 . This is roughly enough to explain the observed population of jovian irregular moons. We also confirm Nesvorný et al.'s results for the irregular satellites of Saturn, Uranus, and Neptune.

  2. NEBULAR WATER DEPLETION AS THE CAUSE OF JUPITER'S LOW OXYGEN ABUNDANCE

    International Nuclear Information System (INIS)

    Mousis, Olivier; Lunine, Jonathan I.; Madhusudhan, Nikku; Johnson, Torrence V.

    2012-01-01

    Motivated by recent spectroscopic observations suggesting that atmospheres of some extrasolar giant planets are carbon-rich, i.e., carbon/oxygen ratio (C/O) ≥ 1, we find that the whole set of compositional data for Jupiter is consistent with the hypothesis that it should be a carbon-rich giant planet. We show that the formation of Jupiter in the cold outer part of an oxygen-depleted disk (C/O ∼ 1) reproduces the measured Jovian elemental abundances at least as well as the hitherto canonical model of Jupiter formed in a disk of solar composition (C/O 0.54). The resulting O abundance in Jupiter's envelope is then moderately enriched by a factor of ∼2 × solar (instead of ∼7 × solar) and is found to be consistent with values predicted by thermochemical models of the atmosphere. That Jupiter formed in a disk with C/O ∼ 1 implies that water ice was heterogeneously distributed over several AU beyond the snow line in the primordial nebula and that the fraction of water contained in icy planetesimals was a strong function of their formation location and time. The Jovian oxygen abundance to be measured by NASA's Juno mission en route to Jupiter will provide a direct and strict test of our predictions.

  3. Comet showers and Nemesis, the death star

    International Nuclear Information System (INIS)

    Hills, J.G.

    1984-01-01

    The recently proposed hypothesis that the periodic extinctions of terrestrial species are the result of comet showers catalyzed by a hypothetical distant solar companion, Nemesis, a tale of global death by comet bombardment of the earth, is discussed

  4. Comments on comet shapes and aggregation processes

    International Nuclear Information System (INIS)

    Hartmann, W.K.

    1989-01-01

    An important question for a comet mission is whether comet nuclei preserve information clarifying aggregation processes of planetary matter. New observational evidence shows that Trojan asteroids, as a group, display a higher fraction of highly-elongated objects than the belt. More recently evidence has accumulated that comet nuclei, as a group, also display highly-elongated shapes at macro-scale. This evidence comes from the several comets whose nuclear lightcurves or shapes have been well studied. Trojans and comet nuclei share other properties. Both groups have extremely low albedos and reddish-to neutral-black colors typical of asteroids of spectral class D, P, and C. Both groups may have had relatively low collision frequencies. An important problem to resolve with spacecraft imaging is whether these elongated shapes are primordial, or due to evolution of the objects. Two hypotheses that might be tested by a combination of global-scale and close-up imaging from various directions are: (1) The irregular shapes are primordial and related to the fact that these bodies have had lower collision frequencies than belt asteroids; or (2) The irregular shapes may be due to volatile loss

  5. COMET SHOWERS ARE NOT INDUCED BY INTERSTELLAR CLOUDS

    Energy Technology Data Exchange (ETDEWEB)

    Morris, D.E.

    1985-11-01

    Encounters with interstellar clouds (IC) have been proposed by Rampino and Stothers as a cause of quasi-periodic intense comet showers leading to earth impacts, in order to explain the periodicity in marine mass extinctions found by Raup and Sepkoski. The model was described further, criticized and defended. The debate has centered on the question of whether the scale height of the clouds is small enough (in comparison to the amplitude of the oscillation of the solar system about the plane of the Galaxy) to produce a modulation in the rate of encounters. We wish to point out another serious, we believe fatal, defect in this model - the tidal fields of ICs are not strong enough to produce intense comet showers leading to earth impacts by bringing comets of the postulated inner Oort cloud into earth crossing orbits, except possibly during very rare encounters with very dense clouds. We will show that encounters with abundant clouds of low density cannot produce comet showers; cloud density N > 10{sup 3} atoms cm{sup -3} is needed to produce an intense comet shower leading to earth impacts. Furthermore, the tidal field of a dense cloud during a distant encounter is too weak to produce such showers. As a consequence, comet showers induced by ICs will be far less frequent than showers caused by passing stars. This conclusion is independent of assumptions about the radial distribution of comets in the inner Oort cloud.

  6. New Application of the Comet Assay

    Science.gov (United States)

    Cortés-Gutiérrez, Elva I.; Dávila-Rodríguez, Martha I.; Fernández, José Luís; López-Fernández, Carmen; Gosálbez, Altea; Gosálvez, Jaime

    2011-01-01

    The comet assay is a well-established, simple, versatile, visual, rapid, and sensitive tool used extensively to assess DNA damage and DNA repair quantitatively and qualitatively in single cells. The comet assay is most frequently used to analyze white blood cells or lymphocytes in human biomonitoring studies, although other cell types have been examined, including buccal, nasal, epithelial, and placental cells and even spermatozoa. This study was conducted to design a protocol that can be used to generate comets in subnuclear units, such as chromosomes. The new technique is based on the chromosome isolation protocols currently used for whole chromosome mounting in electron microscopy, coupled to the alkaline variant of the comet assay, to detect DNA damage. The results show that migrant DNA fragments can be visualized in whole nuclei and isolated chromosomes and that they exhibit patterns of DNA migration that depend on the level of DNA damage produced. This protocol has great potential for the highly reproducible study of DNA damage and repair in specific chromosomal domains. PMID:21540337

  7. Thermal tides on a hot Jupiter

    Directory of Open Access Journals (Sweden)

    Hsieh H.-F.

    2011-07-01

    Full Text Available Following the linear analysis laid out by Gu & Ogilvie 2009 (hereafter GO09, we investigate the dynamical response of a non-synchronized hot Jupiter to stellar irradiation. Besides the internal and Rossby waves considered by GO09, we study the Kelvin waves excited by the diurnal Fourier harmonic of the prograde stellar irradiation. We also present a 2-dimensional plot of internal waves excited by the semi-diurnal component of the stellar irradiation and postulate that thermal bulges may arise in a hot Jupiter. Whether our postulation is valid and is consistent with the recent results from Arras & Socrates (2009b requires further investigation.

  8. Comet LINEAR C/1999 S4 - an absolutely well-behaved comet before breakup

    Science.gov (United States)

    Peschke, S. B.; Lisse, C. M.; Fernandez, Y. R.; Ressler, M.; Stickel, M.; Kaminski, C.; Golish, B.

    2000-10-01

    We present results from infrared imaging of comet LINEAR C/1999 S4 on June 17 - 19, 2000 (pre-breakup), using the near-IR camera NSFCAM and the mid-IR camera MIRLIN at the 3m NASA/IRTF. Images and multi-wavelength spectroscopy were obtained in the zJHK'L'MNQ bands, and were used to create a 1.0 - 25 μ m SED of the comet's dust and nucleus. The coma's contribution at each wavelength was modeled using spatial fitting (Fernandez 1999, PhD thesis; Lisse et al. 1999, Icarus 140, 189). The resulting comatic and nuclear SEDs were then modeled using modified Mie theory (Lisse et al. 1998, ApJ 496, 971) and the standard nuclear thermal models (Lebofsky and Spencer 1989, Asteroids II, 128), respectively. We report the resulting dust PSD, mass loss rate, and albedo, as well as the nuclear radius, and we compare these results to those obtained by others from optical data both before and after the comet's breakup in late July 2000.

  9. The shortage of long-period comets in elliptical orbits

    International Nuclear Information System (INIS)

    Everhart, E.

    1979-01-01

    Based on the number of 'new' comets seen on near-parabolic orbits, one can predict the number of comets that should be found on definitely elliptical orbits on their subsequent returns. The author shows that about three out of four of these returning comets are not observed. (Auth.)

  10. Extreme all-cause mortality in JUPITER requires reexamination of vital records.

    Science.gov (United States)

    Serebruany, Victor L

    2011-01-01

    To compare all-cause mortality in JUPITER with other statin trials at 21 months of follow-up. Outcome advantages including all-cause mortality reduction yielded from the JUPITER trial support aggressive use of rosuvastatin and, perhaps by extension, other statins for primary prevention. Despite enrolling apparently healthy subjects and early trial termination at 21 months of mean follow-up, JUPITER revealed very high all-cause mortality in both the placebo (2.8%) and rosuvastatin (2.2%) arms. Comparison of all-cause mortality prorated for 21 months in 10 primary prevention studies and 1 acute coronary syndromes statin trial. The all-cause mortality in JUPITER was more than twice that of the average of primary prevention studies, matching well only with specific trials designed in diabetics (ASPEN or CARDS), early hypertension studies (ALLHAT-LLT) or a trial in patients with acute coronary syndromes (PROVE IT). Since the 'play of chance' is unlikely to explain these discrepancies due to excellent baseline match, excess death rates and all-cause mortality rates in both JUPITER arms must be questioned. It may be important that the study sponsor self-monitored sites. Excess all-cause mortality rates in the apparently relatively healthy JUPITER population are alarming and require independent verification. If, indeed, the surprising outcomes in JUPITER are successfully challenged, and considering established harm of statins with regard to rhabdomyolysis as well as, potentially, diabetes, millions of patients may find better and safer options for primary prevention of vascular events. Copyright © 2011 S. Karger AG, Basel.

  11. Assessment and reduction of comet assay variation in relation to DNA damage: studies from the European Comet Assay Validation Group

    DEFF Research Database (Denmark)

    Møller, Peter; Möller, Lennart; Godschalk, Roger W L

    2010-01-01

    The alkaline single cell gel electrophoresis (comet) assay has become a widely used method for the detection of DNA damage and repair in cells and tissues. Still, it has been difficult to compare results from different investigators because of differences in assay conditions and because the data...... are reported in different units. The European Comet Assay Validation Group (ECVAG) was established for the purpose of validation of the comet assay with respect to measures of DNA damage formation and its repair. The results from this inter-laboratory validation trail showed a large variation in measured level...... reliability for the measurement of DNA damage by the comet assay but there is still a need for further validation to reduce both assay and inter-laboratory variation....

  12. Chemical fingerprints of hot Jupiter planet formation

    Science.gov (United States)

    Maldonado, J.; Villaver, E.; Eiroa, C.

    2018-05-01

    Context. The current paradigm to explain the presence of Jupiter-like planets with small orbital periods (P involves their formation beyond the snow line following inward migration, has been challenged by recent works that explore the possibility of in situ formation. Aims: We aim to test whether stars harbouring hot Jupiters and stars with more distant gas-giant planets show any chemical peculiarity that could be related to different formation processes. Methods: Our methodology is based on the analysis of high-resolution échelle spectra. Stellar parameters and abundances of C, O, Na, Mg, Al, Si, S, Ca, Sc, Ti, V, Cr, Mn, Co, Ni, Cu, and Zn for a sample of 88 planet hosts are derived. The sample is divided into stars hosting hot (a 0.1 au) Jupiter-like planets. The metallicity and abundance trends of the two sub-samples are compared and set in the context of current models of planet formation and migration. Results: Our results show that stars with hot Jupiters have higher metallicities than stars with cool distant gas-giant planets in the metallicity range +0.00/+0.20 dex. The data also shows a tendency of stars with cool Jupiters to show larger abundances of α elements. No abundance differences between stars with cool and hot Jupiters are found when considering iron peak, volatile elements or the C/O, and Mg/Si ratios. The corresponding p-values from the statistical tests comparing the cumulative distributions of cool and hot planet hosts are 0.20, products from observations made with ESO Telescopes at the La Silla Paranal Observatory under programme ID 072.C-0033(A), 072.C-0488(E), 074.B-0455(A), 075.C-0202(A), 077.C-0192(A), 077.D-0525(A), 078.C-0378(A), 078.C-0378(B), 080.A-9021(A), 082.C-0312(A) 082.C-0446(A), 083.A-9003(A), 083.A-9011(A), 083.A-9011(B), 083.A-9013(A), 083.C-0794(A), 084.A-9003(A), 084.A-9004(B), 085.A-9027(A), 085.C-0743(A), 087.A-9008(A), 088.C-0892(A), 089.C-0440(A), 089.C-0444(A), 089.C-0732(A), 090.C-0345(A), 092.A-9002(A), 192.C-0852

  13. MULTIPLE-PLANET SCATTERING AND THE ORIGIN OF HOT JUPITERS

    International Nuclear Information System (INIS)

    Beaugé, C.; Nesvorný, D.

    2012-01-01

    Doppler and transit observations of exoplanets show a pile-up of Jupiter-size planets in orbits with a 3 day period. A fraction of these hot Jupiters have retrograde orbits with respect to the parent star's rotation, as evidenced by the measurements of the Rossiter-McLaughlin effect. To explain these observations we performed a series of numerical integrations of planet scattering followed by the tidal circularization and migration of planets that evolved into highly eccentric orbits. We considered planetary systems having three and four planets initially placed in successive mean-motion resonances, although the angles were taken randomly to ensure orbital instability in short timescales. The simulations included the tidal and relativistic effects, and precession due to stellar oblateness. Our results show the formation of two distinct populations of hot Jupiters. The inner population (Population I) is characterized by semimajor axis a 1 Gyr and fits nicely the observed 3 day pile-up. A comparison between our three-planet and four-planet runs shows that the formation of hot Jupiters is more likely in systems with more initial planets. Due to the large-scale chaoticity that dominates the evolution, high eccentricities and/or high inclinations are generated mainly by close encounters between the planets and not by secular perturbations (Kozai or otherwise). The relative proportion of retrograde planets seems of be dependent on the stellar age. Both the distribution of almost aligned systems and the simulated 3 day pile-up also fit observations better in our four-planet simulations. This may suggest that the planetary systems with observed hot Jupiters were originally rich in the number of planets, some of which were ejected. In a broad perspective, our work therefore hints on an unexpected link between the hot Jupiters and recently discovered free floating planets.

  14. Comet West: a view from the HELIOS zodiacal light photometers

    International Nuclear Information System (INIS)

    Benensohn, R.M.; Jackson, B.V.

    1987-01-01

    Comet West passed through perihelion on February 25, 1976. The comet crossed the HELIOS A and B spacecraft zodiacal light photometer fields of view as the spacecraft orbited the Sun, allowing them to record the brightness, polarization, and color of the comet and its surrounding interplanetary medium. Data from the U, B, and V photometers across the tail shows a distinct bluing followed by a slight reddening corresponding to the ion and dust tails, respectively, entering the field of view. The non-Earth perspective of the HELIOS photometers allows a comparison of the tail with Earth observations at the same time. Precise location of the nucleus and tail allow the photometer data to be searched for evidence of the comet bow shock and orbital dust. A brightness bump present in the data before the comet reaches some photometer positions, can be shown to approximately form a parabolic shape Sunward and ahead of the orbital motion of the Comet West nucleus. If this is the comet bow shock or bow compression, then it corresponds to a density enhancement of the ambient medium by 1.5 to 2 times in the vicinity of the comet. The distance of the brightness increase from the nucleus by comparison with Comet Halley implies a neutral gas production rate of approximately 3 times that of Halley

  15. Wild 2 grains characterized combining MIR/FIR/Raman micro-spectroscopy and FE-SEM/EDS analyses

    Science.gov (United States)

    Ferrari, M.; Rotundi, A.; Rietmeijer, F. J. M.; Della Corte, V.; Baratta, G. A.; Brunetto, R.; Dartois, E.; Djouadi, Z.; Merouane, S.; Borg, J.; Brucato, J. R.; Le Sergeant d'Hendecourt, L.; Mennella, V.; Palumbo, M. E.; Palumbo, P.

    We present the results of the analyses \\cite{Rotundi14} of two bulk terminal particles (TPs), C2112,7,171,0,0 (TP2) and C2112,9,171,0,0 (TP3), derived from the Jupiter-Family comet 81P/Wild 2 returned by the NASA Stardust mission \\cite{Brownlee06}. Each particle, embedded in a slab of silica aerogel, was pressed in a diamond cell. Aerogel is usually cause of problems when characterizing the minerals and organic materials present in the embedded particles. We overcame this common issue by means of the combination of FE-SEM/EDS, IR and Raman mu -spectroscopy, three non-destructive analytical techniques, which provided bulk mineralogical and organic information on TP2 and TP3. This approach proved to be a practical solution for preliminary characterization, i.e. scanning particles for chemical and mineralogical heterogeneity. Using this type of bulk characterization prior to more detailed studies, could be taken into account as a standard procedure to be followed for selecting Stardust particles-of-interest. TP2 and TP3 are dominated by Ca-free and low-Ca, Mg-rich, Mg,Fe-olivine. The presence of melilite in both particles is supported by IR mu -spectroscopy and corroborated by FE-SEM/EDS analyses, but is not confirmed by Raman mu -spectroscopy possibly because the amount of this mineral is too small to be detected. TP2 and TP3 show similar silicate mineral compositions, but Ni-free, low-Ni, sub-sulfur (Fe,Ni)S grains are present only in TP2. TP2 contains indigenous amorphous carbon hot spots, while no indigenous carbon was identified in TP3. These non-chondritic particles probably originated in a differentiated body. The presence of high temperature melilite group minerals (incl. gehlenite) in TP2 and TP3 reinforces the notion that collisionally-ejected refractory debris from differentiated asteroids may be common in Jupiter-Family comets. This raises the question whether similar debris and other clearly asteroidal particles could be present in Halley-type comets

  16. The hot plasma environment at jupiter: ulysses results.

    Science.gov (United States)

    Lanzerotti, L J; Armstrong, T P; Gold, R E; Anderson, K A; Krimigis, S M; Lin, R P; Pick, M; Roelof, E C; Sarris, E T; Simnett, G M; Maclennan, C G; Choo, H T; Tappin, S J

    1992-09-11

    Measurements of the hot plasma environment during the Ulysses flyby of Jupiter have revealed several new discoveries related to this large rotating astrophysical system. The Jovian magnetosphere was found by Ulysses to be very extended, with the day-side magnetopause located at approximately 105 Jupiter radii. The heavy ion (sulfur, oxygen, and sodium) population in the day-side magnetosphere increased sharply at approximately 86 Jupiter radii. This is somewhat more extended than the "inner" magnetosphere boundary region identified by the Voyager hot plasma measurements. In the day-side magnetosphere, the ion fluxes have the anisotropy direction expected for corotation with the planet, with the magnitude of the anisotropy increasing when the spacecraft becomes more immersed in the hot plasma sheet. The relative abundances of sulfur, oxygen, and sodium to helium decreased somewhat with decreasing radial distance from the planet on the day-side, which suggests that the abundances of the Jupiter-derived species are dependent on latitude. In the dusk-side, high-latitude region, intense fluxes of counter-streaming ions and electrons were discovered from the edge of the plasma sheet to the dusk-side magnetopause. These beams of electrons and ions were found to be very tightly aligned with the magnetic field and to be superimposed on a time- and space-variable isotropic hot plasma background. The currents carried by the measured hot plasma particles are typically approximately 1.6 x 10(-4) microamperes per square meter or approximately 8 x 10(5) amperes per squared Jupiter radius throughout the high-latitude magnetosphere volume. It is likely that the intense particle beams discovered at high Jovian latitudes produce auroras in the polar caps of the planet.

  17. The comet rendezvous asteroid flyby mission

    International Nuclear Information System (INIS)

    Morrison, D.; Neugebauer, M.; Weissman, P.R.

    1989-01-01

    The Comet Rendezvous Asteroid Flyby (CRAF) mission is designed to answer the many questions raised by the Halley missions by exploring a cometary nucleus in detail, following it around its orbit and studying its changing activity as it moves closer to and then away from the Sun. In addition, on its way to rendezvous with the comet, CRAF will fly by a large, primitive class main belt asteroid and will return valuable data for comparison with the comet results. The selected asteroid is 449 Hamburga with a diameter of 88 km and a surface composition of carbonaceous chondrite meteorites. The expected flyby date is January, 1998. The CRAF spacecraft will continue to make measurements in orbit around the cometary nucleus as they both move closer to the Sun, until the dust and gas hazard becomes unsafe. At that point the spacecraft will move in and out between 50 and 2,500 kilometers to study the inner coma and the cometary ionosphere, and to collect dust and gas samples for onboard analysis. Following perihelion, the spacecraft will make a 50,000 km excursion down the comet's tail, further investigating the solar wind interaction with the cometary atmosphere. The spacecraft will return to the vicinity of the nucleus about four months after perihelion to observe the changes that have taken place. If the spacecraft remains healthy and adequate fuel is still onboard, an extended mission to follow the comet nucleus out to aphelion is anticipated

  18. Hummingbird Comet Nucleus Analysis Mission

    Science.gov (United States)

    Kojiro, Daniel; Carle, Glenn C.; Lasher, Larry E.

    2000-01-01

    Hummingbird is a highly focused scientific mission, proposed to NASA s Discovery Program, designed to address the highest priority questions in cometary science-that of the chemical composition of the cometary nucleus. After rendezvous with the comet, Hummingbird would first methodically image and map the comet, then collect and analyze dust, ice and gases from the cometary atmosphere to enrich characterization of the comet and support landing site selection. Then, like its namesake, Hummingbird would carefully descend to a pre-selected surface site obtaining a high-resolution image, gather a surface material sample, acquire surface temperature and then immediately return to orbit for detailed chemical and elemental analyses followed by a high resolution post-sampling image of the site. Hummingbird s analytical laboratory contains instrumentation for a comprehensive molecular and elemental analysis of the cometary nucleus as well as an innovative surface sample acquisition device.

  19. Rocket Detection of Argon in Comet Hale-Bopp

    Science.gov (United States)

    Stern, S. A.; Festou, M. C.; Parker, J. Wm.; Slater, D. C.; Gladstone, G. R.; A'Hearn, M. F.

    1998-12-01

    The EUVS planetary sounding rocket spectrograph was flown on 30.2 March 1997 (UT) from White Sands, New Mexico to observe comet Hale-Bopp in the bandpass from 830--1120 A. At the time of launch the comet was near perihelion, 0.915 AU from the Sun, 1.340 AU from Earth, and traveling at a heliocentric radial velocity of +0.70 km/s. EUVS obtained its primary spectra of the comet at resolution near 12 A, collecting 9340 counts over approximately 330 seconds of integration time. To our knowledge, the resulting dataset is both the most sensitive and the highest spectral resolution probe of a comet in the UV below 1200 A as yet achieved, and contains signatures of both the 1048.2 A and 1066.7 A Ar I resonance lines. These features represent the first-ever detections of any noble gas in a comet. The spectrum also includes significant detections which we tentatively attribute to due to 834 A 0 II, 972 A Lyman gamma, 989 A O I, the 1026 A H I Lyman beta/O I. We will discuss the Ar features, retrieve the Ar column in the coma, and discuss the implications of the total Ar/O abundance ratio in Hale-Bopp for the comet's origin.

  20. Outbursting comet P/2010 V1 (Ikeya-Murakami): A miniature comet Holmes

    Energy Technology Data Exchange (ETDEWEB)

    Ishiguro, Masateru [Department of Physics and Astronomy, Seoul National University, Gwanak, Seoul 151-742 (Korea, Republic of); Jewitt, David [Department of Earth, Planetary and Space Sciences, University of California at Los Angeles, 595 Charles Young Drive East, Los Angeles, CA 90095-1567 (United States); Hanayama, Hidekazu; Miyaji, Takeshi; Fukushima, Hideo; Watanabe, Jun-ichi [Ishigakijima Astronomical Observatory, National Astronomical Observatory of Japan, Ishigaki, Okinawa 907-0024 (Japan); Usui, Fumihiko [Department of Astronomy, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Sekiguchi, Tomohiko [Department of Teacher Training, Hokkaido University of Education, 9 Hokumon, Asahikawa 070-8621 (Japan); Yanagisawa, Kenshi; Kuroda, Daisuke [Okayama Astrophysical Observatory, National Astronomical Observatory of Japan, Asaguchi, Okayama 719-0232 (Japan); Yoshida, Michitoshi [Hiroshima Astrophysical Science Center, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526 (Japan); Ohta, Kouji [Department of Astronomy, Kyoto University, Kyoto 606-8502 (Japan); Kawai, Nobuyuki [Department of Physics, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551 (Japan)

    2014-05-20

    The short-period comet P/2010 V1 (Ikeya-Murakami, hereafter {sup V}1{sup )} was discovered visually by two amateur astronomers. The appearance of the comet was peculiar, consisting of an envelope, a spherical coma near the nucleus and a tail extending in the anti-solar direction. We investigated the brightness and the morphological development of the comet by taking optical images with ground-based telescopes. Our observations show that V1 experienced a large-scale explosion between UT 2010 October 31 and November 3. The color of the comet was consistent with the Sun (g' – R {sub C} = 0.61 ± 0.20, R {sub C} – I {sub C} = 0.20 ± 0.20, and B – R {sub C} = 0.93 ± 0.25), suggesting that dust particles were responsible for the brightening. We used a dynamical model to understand the peculiar morphology, and found that the envelope consisted of small grains (0.3-1 μm) expanding at a maximum speed of 500 ± 40 m s{sup –1}, while the tail and coma were composed of a wider range of dust particle sizes (0.4-570 μm) and expansion speeds 7-390 m s{sup –1}. The total mass of ejecta is ∼5 × 10{sup 8} kg and kinetic energy ∼5 × 10{sup 12} J. These values are much smaller than in the historic outburst of 17P/Holmes in 2007, but the energy per unit mass (1 × 10{sup 4} J kg{sup –1}) is comparable. The energy per unit mass is about 10% of the energy released during the crystallization of amorphous water ice suggesting that crystallization of buried amorphous ice can supply the mass and energy of the outburst ejecta.

  1. The high albedo of the hot Jupiter Kepler-7b

    DEFF Research Database (Denmark)

    Demory, B.-O.; Seager, S.; Madhusudhan, N.

    2011-01-01

    Hot Jupiters are expected to be dark from both observations (albedo upper limits) and theory (alkali metals and/or TiO and VO absorption). However, only a handful of hot Jupiters have been observed with high enough photometric precision at visible wavelengths to investigate these expectations....... The NASA Kepler mission provides a means to widen the sample and to assess the extent to which hot Jupiter albedos are low. We present a global analysis of Kepler-7 b based on Q0-Q4 data, published radial velocities, and asteroseismology constraints. We measure an occultation depth in the Kepler bandpass...

  2. The Comet Assay: Tails of the (Unexpected. Use of the comet assay in pharmaceutical development.

    Directory of Open Access Journals (Sweden)

    Bas-jan Van Der Leede

    2015-08-01

    Full Text Available In genotoxicity testing of pharmaceuticals the rodent alkaline comet assay is being increasingly used as a second in vivo assay in addition to the in vivo micronucleus assay to mitigate in vitro positive results as recommended by regulatory guidance. In this presentation we want to give insight into the circumstances in vivo comet assay is deployed in a Genetic Toxicology Department of a pharmaceutical company. As the in vivo comet assay is a salvage assay, it means that some events have occurred in an in vitro assay and that the compound (or metabolite responsible for this signal is potentially deselected for further development. More than often the decision to perform an in vivo comet assay is at a very early stage in development and the first time that the compound will be tested in vivo at high/toxic dose levels. As almost no toxicokinetic data and tissue distribution data are available a careful design with maximizes the chances for successful mitigation is necessary. Decisions on acute or repeated dosing need to be made and arrangements for combining the in vivo comet assay with the in vivo micronucleus assay are to be considered. Often synthesis methods need to be scaled up fast to provide the required amount of compound and information on suitable formulations needs to be in place. As exposure data is crucial for interpretation of results, analytical methods need to be brought in place rapidly. An experienced multi skilled and communicative team needs to be available to deploy successfully this kind of assays at an early stage of development. We will present a few scenarios on study conduct and demonstrate how this assay can make a difference for the further development of a new drug.

  3. Eligibility for statin therapy by the JUPITER trial criteria and subsequent mortality.

    Science.gov (United States)

    Cushman, Mary; McClure, Leslie A; Lakoski, Susan G; Jenny, Nancy S

    2010-01-01

    Justification for the Use of Statins in Primary Prevention: An Intervention Trial Using Rosuvastatin (JUPITER) reported reduced cardiovascular and all-cause mortality with statin treatment in patients with elevated C-reactive protein (CRP) and average cholesterol levels who were not eligible for lipid-lowering treatment on the basis of existing guidelines. The aim of this study was to determine the prevalence of eligibility and mortality in a general population sample on the basis of eligibility for statin treatment using the JUPITER criteria. The study group consisted of 30,229 participants in the REasons for Geographic and Racial Differences in Stroke (REGARDS) cohort, an observational study of US African American and white participants aged > or =45 years, enrolled in their homes from 2003 to 2007 and followed biannually by telephone. Among 11,339 participants age eligible for JUPITER and without vascular diagnoses or using lipid-lowering treatment, 21% (n = 2,342) met JUPITER entry criteria. Compared with JUPITER participants, they had similar low-density lipoprotein cholesterol and CRP levels, were more often women, were more often black, had metabolic syndrome, and used aspirin for cardioprotection. Over 3.5 years of follow-up, the mortality rate in REGARDS participants eligible for JUPITER was 1.17 per 100 patient-years (95% confidence interval 0.94 to 1.42). Compared with those otherwise JUPITER eligible who had CRP levels or =2 mg/L had a multivariate-adjusted relative risk of 1.5 (95% confidence interval 1.1 to 2.2) for total mortality. In conclusion, 21% not otherwise eligible would be newly eligible for lipid lowering treatment on the basis of JUPITER trial eligibility.

  4. Time-dependent injection of Oort Cloud comets into earth-crossing orbits

    International Nuclear Information System (INIS)

    Fernandez, J.A.; Ip, W.H.; Max-Planck-Institut fuer Aeronomie, Katlenburg-Lindau, West Germany)

    1987-01-01

    The present consideration of close stellar encounter-induced modulations of the influx rate of Oort Cloud comets notes that comet showers sufficiently intense for emergence in cratering statistics are produced at 80-Myr intervals, on the assumption of an Oort Cloud heavy comet core. Numerical simulations of the time evolution of comet showers or bursts indicate that a long tail of residual shower comets follows the major event with an intensity of about 0.01 of the peak rate after 20-30 Myr, thereby suggesting that residual comet showers are primarily clustered in certain areas of the sky, rendering them observable at virtually any time. 33 references

  5. Observations of faint comets at McDonald Observatory: 1978-1980

    Science.gov (United States)

    Barker, E. S.; Cochran, A. L.; Rybski, P. M.

    1981-01-01

    Modern observational techniques, developed for spectroscopy and photometry of faint galaxies and quasars, successfully applied to faint comets on the 2.7 m telescope. The periodic comets Van Biesbrock, Ashbrook-Jackson, Schwassmann-Wachmann 1, Tempel 2, Encke, Forbes, Brooks 2, Stephan-Oterma and the new comets Bradfield (19791), Bowell (1980b), Chernis-Petrauskas (1980k) were observed. The comets ranged in magnitude from 10th to 20th magnitude. For comets fainter than 19th magnitude, reflectance spectra at 100A resolution and area photometry were obtained. On comets of 17th or 18th magnitude, spectrometric scans (6A resolution) of the nucleus or inner coma region. On those comets which are brighter than 16th magnitude spatial spectrophotometric (6A resolution) studies of the inner and extended comae were done. An extensive spatial study of the comae of P/Encke and P/Stephen-Oterma, correlated with heliocentric distance is taking place. The observing process used is described and examples of the results obtained to date are discussed.

  6. Comets, Asteroids, Meteorites, and the Origin of the Biosphere

    Science.gov (United States)

    Hoover, Richard B.

    2006-01-01

    During the past few decades, the delivery of water, organics, and prebiotic chemicals to the Biosphere of Earth during the Hadean (4.5-3.8 Ga) period of heavy bombardment by comets and asteroids has become more widely accepted. Comets are still largely regarded as frigid, pristine bodies of protosolar nebula material that are devoid of liquid water and therefore unsuitable for life. Complex organic compounds have been observed in comets and on the water-rich asteroid 1998 KY26 and near IR observations have indicated the presence of crystalline water ice and ammonia hydrate on the large Kuiper Belt object (50000) Quaoar that has resurfacing suggesting cryovolcanic outgassing. Spacecraft observations of the chemical compositions and characteristics of the nuclei of several comets (Halley, Borrelly, Wild 2, and Tempel 1) have shown that comets contain complex organic chemicals; that water is the predominant volatile; and that extremely high temperatures (approx. 350-400 K) can be reached on the surfae of the very black (albedo approx. 0.03) nuclei of comets when they approach the Sun. Impact craters and pinnacles observed on comet Wild 2 suggest a thick crust. Episodic outbursts and jets from the nuclei of several comets indicate that localized regimes of liquid water and water vapor can periodically exist beneath the comet crust. The Deep Impact mission found the temperature of the nucleus of comet Tempel 1 at 1.5 AU varied from a minimum of 280 plus or minus 8 K the 330K (57 C) on the sunlit side. In this paper it is argued that that pools and films of liquid water exist (within a wide range of temperatures) in cavities and voids just beneath the hot, black crust. The possibility of liquid water existing over a wide range of temperatures significantly enhances the possibility that comets might contain niches suitable for the growth of microbial communities and ecosystems. These regimes would be ideal for the growth of psychrophilic, mesophilic, and thermophilic

  7. Atmospheres of Jupiter and Saturn

    International Nuclear Information System (INIS)

    Hunt, G.E.

    1981-01-01

    In this paper the current knowledge of the atmospheres of Jupiter and Saturn are reviewed making use of the extensive telescopic studies, International Ultraviolet Explorer Satellite observations and the measurements made during the recent Pioneer and Voyager flybys which have been supported by detailed theoretical studies. A detailed discussion is given of the composition of these atmospheres and the abundance ratios which provide insight into their original state and their evolution. The Voyager observations indicate a surprisingly close similarity between the weather systems of the Earth and the giant planets. Although both Jupiter and Saturn have internal heat sources, and are therefore star-like in their interiors, they appear to produce terrestrial-style weather systems. A detailed discussion is given of this work, which forms a major study of the Laboratory for Planetary Atmospheres at University College London. (author)

  8. The Composition of Comet C/2012 K1 (PanSTARRS) and the Distribution of Primary Volatile Abundances Among Comets

    Energy Technology Data Exchange (ETDEWEB)

    Roth, Nathan X.; Gibb, Erika L. [Department of Physics and Astronomy, University of Missouri-St. Louis, 503 Benton Hall, One University Blvd., St. Louis, MO 63121 (United States); Bonev, Boncho P.; DiSanti, Michael A.; Mumma, Michael J.; Villanueva, Geronimo L.; Paganini, Lucas, E-mail: nxrq67@mail.umsl.edu [Goddard Center for Astrobiology, NASA Goddard Space Flight Center, Mail Stop 690, Greenbelt, MD 20771 (United States)

    2017-04-01

    On 2014 May 22 and 24 we characterized the volatile composition of the dynamically new Oort cloud comet C/2012 K1 (PanSTARRS) using the long-slit, high resolution ( λ /Δ λ  ≈ 25,000) near-infrared echelle spectrograph (NIRSPEC) at the 10 m Keck II telescope on Maunakea, Hawaii. We detected fluorescent emission from six primary volatiles (H{sub 2}O, HCN, CH{sub 4}, C{sub 2}H{sub 6}, CH{sub 3}OH, and CO). Upper limits were derived for C{sub 2}H{sub 2}, NH{sub 3}, and H{sub 2}CO. We report rotational temperatures, production rates, and mixing ratios (relative to water). Compared with median abundance ratios for primary volatiles in other sampled Oort cloud comets, trace gas abundance ratios in C/2012 K1 (PanSTARRS) for CO and HCN are consistent, but CH{sub 3}OH and C{sub 2}H{sub 6} are enriched while H{sub 2}CO, CH{sub 4}, and possibly C{sub 2}H{sub 2} are depleted. When placed in context with comets observed in the near-infrared to date, the data suggest a continuous distribution of abundances of some organic volatiles (HCN, C{sub 2}H{sub 6}, CH{sub 3}OH, CH{sub 4}) among the comet population. The level of “enrichment” or “depletion” in a given comet does not necessarily correlate across all molecules sampled, suggesting that chemical diversity among comets may be more complex than the simple organics-enriched, organics-normal, and organics-depleted framework.

  9. Searching sequences of resonant orbits between a spacecraft and Jupiter

    International Nuclear Information System (INIS)

    Formiga, J K S; Prado, A F B A

    2013-01-01

    This research shows a study of the dynamical behavior of a spacecraft that performs a series of close approaches with the planet Jupiter. The main idea is to find a sequence of resonant orbits that allows the spacecraft to stay in the region of the space near the orbit of Jupiter around the Sun gaining energy from each passage by the planet. The dynamical model considers the existence of only two massive bodies in the systems, which are the Sun and Jupiter. They are assumed to be in circular orbits around their center of mass. Analytical equations are used to obtain the values of the parameters required to get this sequence of close approaches. Those equations are useful, because they show which orbits are physically possible when taking into account that the periapsis distances have to be above the surface of the Sun and that the closest approach distances during the passage by Jupiter have to be above its surface

  10. Disintegration phenomena in Comet West

    Science.gov (United States)

    Sekanina, Z.

    1976-01-01

    Two peculiarities of Comet West, the multiple splitting of the nucleus as seen in telescope observations and the complex structure of the dust tail, are discussed. A method of analysis based on the premise that the observed rate of separation of a fragment from the principal nucleus is determined by the difference in effective solar attraction acting on the bodies is applied to investigate the motion of the four fragments that separated from the nucleus of Comet West. The predicted motion of the fragments is in good agreement with available observations. It is suggested that the 'synchronic' bands of the dust tail consist of tiny fragments from relatively large particles that burst after release from the comet. The unusual orientation of these bands and their high surface brightness relative to the diffuse tail are explained by a sudden increase in the particle acceleration and in the total scattering surface as the result of the disintegration of the larger particles.

  11. Origin of comets - implications for planetary formation

    International Nuclear Information System (INIS)

    Weissman, P.R.; Arizona Univ., Tucson)

    1985-01-01

    Primordial and episodic theories for the origin of comets are discussed. The implications of the former type for the origin of the solar system are considered. Candidate sites for the formation of comets are compared. The possible existence of a massive inner Oort cloud is discussed

  12. Learned modesty and the first lady's comet: a commentary on Caroline Herschel (1787) 'An account of a new comet'.

    Science.gov (United States)

    Winterburn, Emily

    2015-04-13

    Long before women were allowed to become Fellows of the Royal Society, or obtain university degrees, one woman managed to get her voice heard, her discovery verified and her achievement celebrated. That woman was Caroline Herschel, who, as this paper will discuss, managed to find ways to fit comet discoveries into her domestic life, and present them in ways that were socially acceptable. Caroline lived in a time when strict rules dictated how women (and men) should behave and present themselves and their work. Caroline understood these rules, and used them carefully as she announced each discovery, starting with this comet which she found in 1786. Caroline discovered her comets at a time when astronomers were mainly concerned with position, identifying where things were and how they were moving. Since her discoveries, research has moved on, as astronomers, using techniques from other fields, and most recently sending experiments into space, have learned more about what comets are and what they can tell us about our solar system. Caroline's paper marks one small, early step in this much bigger journey to understand comets. This commentary was written to celebrate the 350th anniversary of the journal Philosophical Transactions of the Royal Society.

  13. New Observations of Comet Hale-Bopp from La Silla

    Science.gov (United States)

    1998-10-01

    (-257 o C). At perihelion (0.9 AU from the Sun), the corresponding temperature was of the order of 110 K (-163 o C). The expansion velocity has also considerably decreased since perihelion, from 1.1 km/sec to 0.5 km/sec. There is also evidence of anisotropic outgassing : more gas is seen to be flowing out from the sunlit hemisphere of the nucleus. Observations continue The monitoring of Comet Hale-Bopp at the SEST telescope will continue, at least until March 1999. The comet will then be nearly 1,200 million km (7.9 AU) from the Sun. ESO PR Photo 40c/98 ESO PR Photo 40c/98 [Preview - JPEG: 800 x 933 pix - 432k] [High-Res - JPEG: 3000 x 3498 pix - 2.5Mb] PR Photo 40c/98 shows Comet Hale-Bopp, as imaged on October 19, 1998, in visible light and with the DFOSC instrument at the Danish 1.5-m telescope on La Silla. At this time, the comet was about 1,000 million kilometer (6.7 AU) from the Earth and the Sun. Although well beyond Jupiter's orbit, it is very obvious that strong nucleus activity is still present - the large coma extends well beyond the field of view (200 x 200 arcsec or about 1 million km at the distance of the comet). The image mostly depicts cometary dust that reflects the sunlight. The coma is very asymmetric with more material in the northern hemisphere (above). There are also some jets embedded in the coma which indicate that some of the dust is emitted from active regions on the surface of the nucleus. The background stars are slightly elongated since the telescope followed the motion of the comet in the sky during the exposure. Technical information : 5-min exposure through a broadband V-filtre. North is up, East is left. Observers: Kirsten Kraiberg Knudsen (Copenhagen University, Denmark) and Hermann Boehnhardt (ESO/Chile) Observations are also made from time to time with other telescopes at La Silla. As an example, Photo 40c/98 was obtained a few days ago with the Danish 1.5-m telescope. It shows that a very complex coma structure is still present. Due

  14. The C-12/C-13 abundance ratio in Comet Halley

    International Nuclear Information System (INIS)

    Wyckoff, S.; Lindholm, E.; Wehinger, P.A.; Peterson, B.A.; Zucconi, J.M.

    1989-01-01

    The individual (C-13)N rotational lines in Comet Halley are resolved using high-resolution spectra of the CN B2Sigma(+)-X2Sigma(+) (0,0) band. The observe C-12/C-13 abundance ratio excludes a site of origin for the comet near Uranus and Neptune and suggests a condensation environment quite distinct from other solar system bodies. Two theories are presented for the origin of Comet Halley. One theory suggest that the comet originated 4.5 Gyr ago in an inner Oort cloud at a heliocentric distance greater than 100 AU where chemical fractionation led to the C-13 enrichment in the CN parent molecule prior to condensation of the comet nucleus. According to the other, more plausible theory, the comet nucleus condensed relatively recently from the interstellar medium which has become enriches in C-13 and was subsequently gravitationally captured by the solar system. 107 refs

  15. On the nature of the Halley comet

    International Nuclear Information System (INIS)

    Dobrovol'skij, O.V.; Ioffe, Z.M.

    1987-01-01

    The results of study of the Halley comet by means of the ''Vega'', ''Suisej'', ''Sakigaki'' and ''Jotton'' space probes are presented in the popular form. The form and composition of the comet nucleus, its atmosphere and processes ocurring when moving in the near-the-solar space are described

  16. First Earth-based Detection of a Superbolide on Jupiter

    Science.gov (United States)

    Hueso, Ricardo; Wesley, A.; Go, C.; Perez-Hoyos, S.; Wong, M. H.; Fletcher, L. N.; Sanchez-Lavega, A.; Boslough, M. B. E.; de Pater, I.; Orton, G. S.; Simon-Miller, A. A.; Djorgovski, S. G.; Edwards, M. L.; Hammel, H. B.; Clarke, J. T.; Noll, K. S.; Yanamandra-Fisher, P. A.

    2010-10-01

    On June 3, 2010 a bolide in Jupiter's atmosphere was observed from the Earth for the first time. The flash was detected by amateur astronomers A. Wesley and C. Go observing in two wavelength ranges. We present an analysis of the light curve of those observations that allow estimating the size of the object to be significantly smaller than the SL9 and the July 2009 Jupiter impact. Observations obtained a few days later by large telescopes including HST, VLT, Keck and Gemini showed no signature of the impact in Jupiter atmosphere confirming the small size of the impact body. A nearly continuous observation campaign based on several small telescopes by amateurs astronomers might allow an empirical determination of the flux of meteoroids in Jupiter with implications for the populations of small bodies in the outer solar system and may allow a better quantification of the threat of impacting bodies to Earth. Acknowledgements: RH, ASL and SPH are supported by the Spanish MICIIN AYA2009-10701 with FEDER and Grupos Gobierno Vasco IT-464-07. LNF is supported by a Glasstone Science Fellowship at the University of Oxford.

  17. The exploration of Halley's comet - An example of international cooperation

    Science.gov (United States)

    Rahe, Jurgen H.; Newburn, Ray L., Jr.

    1987-01-01

    The history of international cooperation in studies of comets started with observations in 1577 and 1680, when Tycho Brahe and Newton, respectively, collected position measurements made in different countries to determine the paths of the comets observed. In the fall of 1979, a worldwide Comet Halley watch was proposed. As a result of international cooperation, Comet Halley was explored during its recent appearance from the ground, earth orbit, Venus orbit, interplanetary space, and from within the comet itself. The various activities in space were coordinated by the ESA, the USSR Intercosmos, the Japanese ISAS, and NASA, through the Inter-Agency Consultative Group. The activities of the ground-based observers were coordinated by the International Halley Watch.

  18. Ulysses at jupiter: an overview of the encounter.

    Science.gov (United States)

    Smith, E J; Wenzel, K P; Page, D E

    1992-09-11

    In February 1992, the Ulysses spacecraft flew through the giant magnetosphere of Jupiter. The primary objective of the encounter was to use the gravity field of Jupiter to redirect the spacecraft to the sun's polar regions, which will now be traversed in 1994 and 1995. However, the Ulysses scientific investigations were well suited to observations of the Jovian magnetosphere, and the encounter has resulted in a major contribution to our understanding of this complex and dynamic plasma environment. Among the more exciting results are (i) possible entry into the polar cap, (ii) the identification of magnetospheric ions originating from Jupiter's ionosphere, lo, and the solar wind, (iii) observation of longitudinal asymmetries in density and discrete wave-emitting regions of the lo plasma torus, (iv) the presence of counter-streaming ions and electrons, field-aligned currents, and energetic electron and radio bursts in the dusk sector on high-latitude magnetic field lines, and (v) the identification of the direction of the magnetic field in the dusk sector, which is indicative of tailward convection. This overview serves as an introduction to the accompanying reports that present the preliminary scientific findings. Aspects of the encounter that are common to all of the investigations, such as spacecraft capabilities, the flight path past Jupiter, and unique aspects of the encounter, are presented herein.

  19. Trajectories for spacecraft encounters with Comet Honda-Mrkos-Pajdusakova in 1996

    Science.gov (United States)

    Dunham, David W.; Jen, Shao-Chiang; Farquhar, Robert W.

    1989-01-01

    Early in 1996, the relatively bright short-period Comet Honda-Mrkos-Pajdusakova (HMP) will pass only 0.17 astronomical unit from the earth, providing both an unusually favorable apparition for ground-based observers and an opportunity for a spacecraft to reach Comet HMP on relatively low-energy trajectories. The Japanense Institute of Space and Astronautical Sciences Sakigake spacecraft is expected to fly by Comet HMP on February 3, 1996, after utilizing four earth swingbys to modify its orbit. If the camera on the ESA Giotto spacecraft is inoperable, Giotto may also be sent to Comet HMP. In addition, 1-year earth-return trajectories to Comet HMP are described, along with some that can be extended to encounter Comet Giacobini-Zinner in 1998.

  20. On the observed excess of retrograde orbits among long-period comets

    International Nuclear Information System (INIS)

    Fernandez, J.A.

    1981-01-01

    The distribution of orbital inclinations of the observed long-period comets is analysed. An excess of retrograde orbits is found which increases with the perihelion distance, except for the range 1.1 10 3 A U) has the same behaviour as the total sample. It is thus suggested that the excess of retrograde orbits among long-period comets is related to an already existent excess among the incoming new comets (i.e. comets driven into the planetary region by stellar perturbations). Using theoretical considerations and a numerical model it is proposed that an important fraction of the so-called new comets are actually repeating passages through the planetary region. Nearly a half of the new comets with q > 2 A U may be repeating passages. An important consequence of the presence of comets repeating passages among the new ones is the production of an excess of retrograde orbits in the whole sample. (author)

  1. On the relationship between gas and dust in 15 comets: an application to Comet 103P/Hartley 2 target of the NASA EPOXI mission of opportunity

    Science.gov (United States)

    Sanzovo, G. C.; Sanzovo, D. Trevisan; de Almeida, A. A.

    After the success of Deep Impact mission to hit the nucleus of Comet 9P/Tempel 1 with an impactor, the concerns are turned now to the possible reutilization of this dormant flyby spacecraft in the study of another comet, for only about 10% of the cost of the original mission. Comet 103P/Hartley 2 on UT 2010 October 11 is the most attractive target in terms of available fuel at rendezvous and arrival time at the comet. In addition, the comet has a low inclination so that major orbital plane changes in the spacecraft trajectory are unnecessary. In an effort to provide information concerning the planning of this new NASA EPOXI space mission of opportunity, we use in this work, visual magnitudes measurements available from International Comet Quarterly (ICQ) to obtain, applying the Semi-Empirical Method of Visual Magnitudes - SEMVM (de Almeida, Singh, & Huebner 1997), the water production rates (in molecules/s) related to its perihelion passage of 1997. When associated to the water vaporization theory of Delsemme (1982), these rates allowed the acquisition of the minimum dimension for the effective nuclear radius of the comet. The water production rates were then converted into gas production rates (in g/s) so that, with the help of the strong correlation between gas and dust found for 12 periodic comets and 3 non-period comets (Trevisan Sanzovo 2006), we obtained the dust loss rates (in g/s), its behavior with the heliocentric distance and the dust-to-gas ratios in this physically attractive rendezvous target-comet to Deep Impact spacecraft at a closest approach of 700 km.

  2. Halley comet position in structure of the comet origin general scheme

    International Nuclear Information System (INIS)

    Davydov, V.D.

    1988-01-01

    Attempt to explain data on the Halley comet nucleus figure by photographes received from space probes in 1986 was undertaken. Peanut-like nucleus might be formed from two bodies former system under specific conditions. This hypothesis preliminary development is made; solution way for the problem about quantitative characteristics of collision and destruction is found. Quantitative assessments confirm retention possibility of two space icebergs original form after their ''docking'' within relative velocity range up to a few meters per second. Then complex with visible saddle point between two jointed fragments is formed. The hypothesis suggested is well inscribed in the origin general scheme of comets with nucleus different types, and from general scheme one may draw up the most important details to this hypothesis (for example, power mechanism of binary system formation and reasons of its destabilization)

  3. Effects of Dissociation/Recombination on the Day–Night Temperature Contrasts of Ultra-hot Jupiters

    Science.gov (United States)

    Komacek, Thaddeus D.; Tan, Xianyu

    2018-05-01

    Secondary eclipse observations of ultra-hot Jupiters have found evidence that hydrogen is dissociated on their daysides. Additionally, full-phase light curve observations of ultra-hot Jupiters show a smaller day-night emitted flux contrast than that expected from previous theory. Recently, it was proposed by Bell & Cowan (2018) that the heat intake to dissociate hydrogen and heat release due to recombination of dissociated hydrogen can affect the atmospheric circulation of ultra-hot Jupiters. In this work, we add cooling/heating due to dissociation/recombination into the analytic theory of Komacek & Showman (2016) and Zhang & Showman (2017) for the dayside-nightside temperature contrasts of hot Jupiters. We find that at high values of incident stellar flux, the day-night temperature contrast of ultra-hot Jupiters may decrease with increasing incident stellar flux due to dissociation/recombination, the opposite of that expected without including the effects of dissociation/recombination. We propose that a combination of a greater number of full-phase light curve observations of ultra-hot Jupiters and future General Circulation Models that include the effects of dissociation/recombination could determine in detail how the atmospheric circulation of ultra-hot Jupiters differs from that of cooler planets.

  4. Migration of Trans-Neptunian Objects to a Near-Earth Space

    Science.gov (United States)

    Ipatov, S. I.; Mather, J. C.; Oegerle, William (Technical Monitor)

    2002-01-01

    Our estimates of the migration of trans-Neptunian objects (TNOs) to a near-Earth space are based on the results of investigations of orbital evolution of TNOs and Jupiter-crossing objects (JCOs). The orbital evolution of TNOs was considered in many papers. Recently we investigated the evolution for intervals of at least 5-10 Myr of 2500 JCOs under the gravitational influence of all planets, except for Mercury and Pluto (without dissipative factors). In the first series we considered N=2000 orbits near the orbits of 30 real Jupiter-family comets with period P(sub alpha)less than 10 yr, and in the second series we took N=500 orbits close to the orbit of Comet 10P Tempel 2 (alpha=3.1 AU, e=0.53, i=12 deg). We calculated the probabilities of collisions of objects with the terrestrial planets, using orbital elements obtained with a step equal to 500 yr, and then summarized the results for all time intervals and all bodies, obtaining the total probability P(sub sigma) of collisions with a planet and the total time interval T(sub sigma) during which perihelion distance q of bodies was less than a semimajor axis of the planet.

  5. The comet assay: ready for 30 more years.

    Science.gov (United States)

    Møller, Peter

    2018-02-24

    During the last 30 years, the comet assay has become widely used for the measurement of DNA damage and repair in cells and tissues. A landmark achievement was reached in 2016 when the Organization for Economic Co-operation and Development adopted a comet assay guideline for in vivo testing of DNA strand breaks in animals. However, the comet assay has much more to offer than being an assay for testing DNA strand breaks in animal organs. The use of repair enzymes increases the range of DNA lesions that can be detected with the assay. It can also be modified to measure DNA repair activity. Still, despite the long-term use of the assay, there is a need for studies that assess the impact of variation in specific steps of the procedure. This is particularly important for the on-going efforts to decrease the variation between experiments and laboratories. The articles in this Special Issue of Mutagenesis cover important technical issues of the comet assay procedure, nanogenotoxicity and ionising radiation sensitivity on plant cells. The included biomonitoring studies have assessed seasonal variation and certain predictors for the basal level of DNA damage in white blood cells. Lastly, the comet assay has been used in studies on genotoxicity of environmental and occupational exposures in human biomonitoring studies and animal models. Overall, the articles in this Special Issue demonstrate the versatility of the comet assay and they hold promise that the assay is ready for the next 30 years.

  6. 77 FR 63722 - Special Local Regulations; Palm Beach World Championship, Atlantic Ocean; Jupiter, FL

    Science.gov (United States)

    2012-10-17

    ...-AA08 Special Local Regulations; Palm Beach World Championship, Atlantic Ocean; Jupiter, FL AGENCY... offshore of Jupiter, Florida during the Palm Beach World Championship, a high speed power boat race. The... Atlantic Ocean, just offshore of Jupiter, Florida. The high speed power boat race event will include...

  7. Comet Kohoutek, 1973-1974, A Teachers' Guide with Student Activities.

    Science.gov (United States)

    Chapman, Robert D.

    This teacher's guide provides background information, curriculum source materials, and suggested class activities for class discussion and study. Information related to the discovery of the comet is presented as well as photographic and schematic pictures showing the sky through which the comet travels. Historical data regarding comets of the past…

  8. An analysis of the BVRI colors of 22 active comets

    Science.gov (United States)

    Betzler, A. S.; Almeida, R. S.; Cerqueira, W. J.; Araujo, L. A.; Prazeres, C. J. M.; Jesus, J. N.; Bispo, P. A. S.; Andrade, V. B.; Freitas, Y. A. S.; Betzler, L. B. S.

    2017-08-01

    Our aim was to analyze the variation of Johnson-Kron-Cousins BVRI color indexes of a sample with 22 active comets of various dynamic groups with the time, geometrical, observational and dynamical parameters. We performed photometric observations of 16 comets between 2010 and 2014, using robotic telescopes in three continents. In addition to the sample, we used data of six comets available in the literature. A statistical comparison between the distributions of color indexes was performed using the Kruskal-Wallis H-test. The color indexes of active comets can vary a few tenths up to a magnitude on time scales that range from hours to weeks. Using the B-V colors of the observed comets, we generated a relationship that correlates the cometary visual and CCD magnitudes. We did not identify any relationship between B-V and V-R colors with heliocentric distance and phase angle. The color B-V is correlated with the photometric aperture that can be described by a logarithmic function. We did not identify any differences in the distribution of B-V color among the comets analyzed at a confidence level equal to or greater than 95%. The mean color of active comets are B-R = 1.20 ± 0.24 , B-V = 0.76 ± 0.16 and V-R = 0.42 ± 0.16 . Active comets with V-R colors outside the three standard deviation interval can be considered objects with unusual physical characteristics.

  9. The Rotation Temperature of Methanol in Comet 103P/Hartley 2

    Science.gov (United States)

    Chuang, Yo-Ling; Kuan, Yi-Jehng; Milam, Stefanie; Charnley, Steven B.; Coulson, Iain M.

    2012-01-01

    Considered to be relics from Solar System formation, comets may provide the vital information connecting Solar Nebula and its parent molecular cloud. Study of chemical and physical properties of comets is thus important for our better understanding of the formation of Solar System. In addition, observing organic molecules in comets may provide clues fundamental to our knowledge on the formation of prebiotically important organic molecules in interstellar space, hence, may shed light on the origin of life on the early Earth. Comet 103PIHartley 2 was fIrst discovered in 1986 and had gone through apparitions in 1991, 1997, and 2004 with an orbital period of about 6 years, before its latest return in 2010. 2010 was also a special year for Comet 103PIHartley 2 because of the NASA EPOXI comet-flyby mission.

  10. Silicate emission feature in the spectrum of comet Mueller 1993a

    Science.gov (United States)

    Hanner, Martha S.; Hackwell, John A.; Russell, Ray W.; Lynch, David K.

    1994-01-01

    An 8- to 13-micron spectrum of comet Mueller 1993a, a dynamically new comet, was acquired when the comet was at R = 2 AU. Strong, structured silicate emission is present, closely resembling that seen in Comet P/Halley at smaller R. For the first time in a new comet, the 11.2-micron peak of crystalline olivine was detected, demonstrating that crystalline olivine particles were widespread in the solar nebula. Crystalline olivine particles could have formed in the inner protosolar nebula at temperatures greater than 1200 K; extensive radial mixing would have been required to transport these grains to the region of comet formation. Either there was more radial mixing in the solar nebula than some current theories predict or the olivine grains have a presolar origin.

  11. Physical conditions for Jupiter-like dynamo models

    Science.gov (United States)

    Duarte, Lúcia D. V.; Wicht, Johannes; Gastine, Thomas

    2018-01-01

    The Juno mission will measure Jupiter's magnetic field with unprecedented precision and provide a wealth of additional data that will allow us to constrain the planet's interior structure and dynamics. Here we analyse 66 different numerical simulations in order to explore the sensitivity of the dynamo-generated magnetic field to the planets interior properties. Jupiter field models based on pre-Juno data and up-to-date interior models based on ab initio simulations serve as benchmarks. Our results suggest that Jupiter-like magnetic fields can be found for a number of different models. These complement the steep density gradients in the outer part of the simulated shell with an electrical conductivity profile that mimics the low conductivity in the molecular hydrogen layer and thus renders the dynamo action in this region largely unimportant. We find that whether we assume an ideal gas or use the more realistic interior model based on ab initio simulations makes no difference. However, two other factors are important. A low Rayleigh number leads to a too strong axial dipole contribution while the axial dipole dominance is lost altogether when the convective driving is too strong. The required intermediate range that yields Jupiter-like magnetic fields depends on the other system properties. The second important factor is the convective magnetic Reynolds number radial profile Rmc(r), basically a product of the non-axisymmetric flow velocity and electrical conductivity. We find that the depth where Rmc exceeds about 50 is a good proxy for the top of the dynamo region. When the dynamo region sits too deep, the axial dipole is once more too dominant due to geometric reasons. Extrapolating our results to Jupiter and the result suggests that the Jovian dynamo extends to 95% of the planetary radius. The zonal flow system in our simulations is dominated by an equatorial jet which remains largely confined to the molecular layer. Where the jet reaches down to higher

  12. The persistent coma of Comet P/Schwassmann-Wachmann 1

    International Nuclear Information System (INIS)

    Jewitt, D.

    1990-01-01

    Time-series photometry of Comet P/Schwassmann-Wachmann 1 in both 1987 and 1988 shows that this comet is continually active despite its large heliocentric distance. The observed activity, upon which the famous outbursts of this comet are superposed, may be driven by the sublimation of crystalline water ice at the nucleus surface. A simple model which accounts for both the continuous activity and the sporadic outbursts is suggested. 34 refs

  13. RE-INFLATED WARM JUPITERS AROUND RED GIANTS

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, Eric D. [Institute for Astronomy, Royal Observatory Edinburgh, University of Edinburgh, Blackford Hill, Edinburgh (United Kingdom); Fortney, Jonathan J. [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States)

    2016-02-10

    Since the discovery of the first transiting hot Jupiters, models have sought to explain the anomalously large radii of highly irradiated gas giants. We now know that the size of hot Jupiter radius anomalies scales strongly with a planet's level of irradiation and numerous models like tidal heating, ohmic dissipation, and thermal tides have since been developed to help explain these inflated radii. In general, however, these models can be grouped into two broad categories: models that directly inflate planetary radii by depositing a fraction of the incident irradiation into the interior and models that simply slow a planet's radiative cooling, allowing it to retain more heat from formation and thereby delay contraction. Here we present a new test to distinguish between these two classes of models. Gas giants orbiting at moderate orbital periods around post-main-sequence stars will experience enormous increases to their irradiation as their host stars move up the sub-giant and red-giant branches. If hot Jupiter inflation works by depositing irradiation into the planet's deep interiors then planetary radii should increase in response to the increased irradiation. This means that otherwise non-inflated gas giants at moderate orbital periods of >10 days can re-inflate as their host stars evolve. Here we explore the circumstances that can lead to the creation of these “re-inflated” gas giants and examine how the existence or absence of such planets can be used to place unique constraints on the physics of the hot Jupiter inflation mechanism. Finally, we explore the prospects for detecting this potentially important undiscovered population of planets.

  14. Radio Emission from Red-Giant Hot Jupiters

    Science.gov (United States)

    Fujii, Yuka; Spiegel, David S.; Mroczkowski, Tony; Nordhaus, Jason; Zimmerman, Neil T.; Parsons, Aaron R.; Mirbabayi, Mehrdad; Madhusudhan, Nikku

    2016-01-01

    When planet-hosting stars evolve off the main sequence and go through the red-giant branch, the stars become orders of magnitudes more luminous and, at the same time, lose mass at much higher rates than their main sequence counterparts. Accordingly, if planetary companions exist around these stars at orbital distances of a few au, they will be heated up to the level of canonical hot Jupiters and also be subjected to a dense stellar wind. Given that magnetized planets interacting with stellar winds emit radio waves, such "Red-Giant Hot Jupiters" (RGHJs) may also be candidate radio emitters. We estimate the spectral auroral radio intensity of RGHJs based on the empirical relation with the stellar wind as well as a proposed scaling for planetary magnetic fields. RGHJs might be intrinsically as bright as or brighter than canonical hot Jupiters and about 100 times brighter than equivalent objects around main-sequence stars. We examine the capabilities of low-frequency radio observatories to detect this emission and find that the signal from an RGHJ may be detectable at distances up to a few hundred parsecs with the Square Kilometer Array.

  15. The development and validation of EpiComet-Chip, a modified high-throughput comet assay for the assessment of DNA methylation status.

    Science.gov (United States)

    Townsend, Todd A; Parrish, Marcus C; Engelward, Bevin P; Manjanatha, Mugimane G

    2017-08-01

    DNA damage and alterations in global DNA methylation status are associated with multiple human diseases and are frequently correlated with clinically relevant information. Therefore, assessing DNA damage and epigenetic modifications, including DNA methylation, is critical for predicting human exposure risk of pharmacological and biological agents. We previously developed a higher-throughput platform for the single cell gel electrophoresis (comet) assay, CometChip, to assess DNA damage and genotoxic potential. Here, we utilized the methylation-dependent endonuclease, McrBC, to develop a modified alkaline comet assay, "EpiComet," which allows single platform evaluation of genotoxicity and global DNA methylation [5-methylcytosine (5-mC)] status of single-cell populations under user-defined conditions. Further, we leveraged the CometChip platform to create an EpiComet-Chip system capable of performing quantification across simultaneous exposure protocols to enable unprecedented speed and simplicity. This system detected global methylation alterations in response to exposures which included chemotherapeutic and environmental agents. Using EpiComet-Chip on 63 matched samples, we correctly identified single-sample hypermethylation (≥1.5-fold) at 87% (20/23), hypomethylation (≥1.25-fold) at 100% (9/9), with a 4% (2/54) false-negative rate (FNR), and 10% (4/40) false-positive rate (FPR). Using a more stringent threshold to define hypermethylation (≥1.75-fold) allowed us to correctly identify 94% of hypermethylation (17/18), but increased our FPR to 16% (7/45). The successful application of this novel technology will aid hazard identification and risk characterization of FDA-regulated products, while providing utility for investigating epigenetic modes of action of agents in target organs, as the assay is amenable to cultured cells or nucleated cells from any tissue. Environ. Mol. Mutagen. 58:508-521, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  16. CAPTURE OF TROJANS BY JUMPING JUPITER

    International Nuclear Information System (INIS)

    Nesvorný, David; Vokrouhlický, David; Morbidelli, Alessandro

    2013-01-01

    Jupiter Trojans are thought to be survivors of a much larger population of planetesimals that existed in the planetary region when planets formed. They can provide important constraints on the mass and properties of the planetesimal disk, and its dispersal during planet migration. Here, we tested a possibility that the Trojans were captured during the early dynamical instability among the outer planets (aka the Nice model), when the semimajor axis of Jupiter was changing as a result of scattering encounters with an ice giant. The capture occurs in this model when Jupiter's orbit and its Lagrange points become radially displaced in a scattering event and fall into a region populated by planetesimals (that previously evolved from their natal transplanetary disk to ∼5 AU during the instability). Our numerical simulations of the new capture model, hereafter jump capture, satisfactorily reproduce the orbital distribution of the Trojans and their total mass. The jump capture is potentially capable of explaining the observed asymmetry in the number of leading and trailing Trojans. We find that the capture probability is (6-8) × 10 –7 for each particle in the original transplanetary disk, implying that the disk contained (3-4) × 10 7 planetesimals with absolute magnitude H disk ∼ 14-28 M Earth , is consistent with the mass deduced from recent dynamical simulations of the planetary instability.

  17. Plasma Waves Associated with Mass-Loaded Comets

    Science.gov (United States)

    Tsurutani, Bruce; Glassmeier, Karl-Heinz

    2015-01-01

    Plasma waves and instabilities are integrally involved with the plasma "pickup" process and the mass loading of the solar wind (thus the formation of ion tails and the magnetic tails). Anisotropic plasmas generated by solar wind-comet interactions (the bow shock, magnetic field pileup) cause the generation of plasma waves which in turn "smooth out" these discontinuities. The plasma waves evolve and form plasma turbulence. Comets are perhaps the best "laboratories" to study waves and turbulence because over time (and distance) one can identify the waves and their evolution. We will argue that comets in some ways are better laboratories than magnetospheres, interplanetary space and fusion devices to study nonlinear waves and their evolution.

  18. New Image of Comet Halley in the Cold

    Science.gov (United States)

    2003-09-01

    VLT Observes Famous Traveller at Record Distance Summary Seventeen years after the last passage of Comet Halley , the ESO Very Large Telescope at Paranal (Chile) has captured a unique image of this famous object as it cruises through the outer solar system. It is completely inactive in this cold environment. No other comet has ever been observed this far - 4200 million km from the Sun - or that faint - nearly 1000 million times fainter than what can be perceived with the unaided eye. This observation is a byproduct of a dedicated search [1] for small Trans-Neptunian Objects, a population of icy bodies of which more than 600 have been found during the past decade. PR Photo 27a/03 : VLT image (cleaned) of Comet Halley PR Photo 27b/03 : Sky field in which Comet Halley was observed PR Photo 27c/03 : Combined VLT image with star trails and Comet Halley The Halley image ESO PR Photo 27a/03 ESO PR Photo 27a/03 [Preview - JPEG: 546 x 400 pix - 207k] [Normal - JPEG: 1092 x 800 pix - 614k] [FullRes - JPEG: 1502 x 1100 pix - 1.1M] Caption : PR Photo 27a/03 shows the faint, star-like image of Comet Halley (centre), observed with the ESO Very Large Telescope (VLT) at the Paranal Observatory on March 6-8, 2003. 81 individual exposures from three of the four 8.2-m VLT telescopes with a total exposure time of about 9 hours were combined to show the magnitude 28.2 object. At this time, Comet Halley was about 4200 million km from the Sun (28.06 AU) and 4080 million km (27.26 AU) from the Earth. All images of stars and galaxies in the field were removed during the extensive image processing needed to produce this unique image. Due to the remaining, unavoidable "background noise", it is best to view the comet image from some distance. The field measures 60 x 40 arcsec 2 ; North is up and East is left. Remember Comet Halley - the famous "haired star" that has been observed with great regularity - about once every 76 years - during more than two millennia? Which was visited by an

  19. Chemical evolution of the coma of comet P/Stephan-Oterma

    International Nuclear Information System (INIS)

    Cochran, A.L.

    1982-01-01

    Observations of comet P/Stephan-Oterma were made with an Intensified Dissector Scanner spectrograph on the McDonald Observatory 2.7m telescope during the period from July, 1980 to February, 1981. These spectra covered a range of heliocentric distances from 2.3 au pre-perihelion to 1.8 au post-perihelion. A study of the spatial distribution of the gasses in the coma was conducted. Column densities of the observed cometary emissions (CN, C 3 , CH, and C 2 ) were calculated. It was shown that Stephan-Oterma was very nearly sperically symmetric. A computer code to calculate the time dependent non-equilibrium chemistry taking place within the coma was developed. This code incorporates over 1200 chemical reactions involving 125 species. Models were calculated for pure gas-phase chemistry and for gas-phase chemistry plus grain photolysis. It was shown that: (1) HCN is the parent for CN; (2) C 2 H 2 is a parent for C 2 ; (3) pure gas-phase chemistry cannot adequately reproduce the observed C 3 but a single-step process such as grain photolysis can; (4) there must be much more CH 4 in this comet than had previously been envisioned for any comet; and (5) at least prior to perihelion, the vaporization rate seems to have been controlled by water vaporization. The model of Haser (1957) is discussed and it is shown that a family of solutions for this model exist which can reproduce the observed CN gas distribution. The implications for solar system formation of the large CH 4 abundance are discussed. Present data taking methods are reviewed. Future work is suggested

  20. Results from the UMD physical properties of comets survey

    Science.gov (United States)

    Lisse, Carey M.; A'Hearn, Michael F.; Fernandez, Yanga R.

    2005-01-01

    We report on an ongoing statistical study of the emitted dust and exposed nuclei of a survey of the brightest near-Earth comets over the last 13 years. Combined thermal infrared and optical observations are analyzed using dynamical spectral and morphological coma models [123] to update and improve dust emission rates [4] and nucleus size estimates [5]. Using these results we show that 1) there is more than enough dust emitted from short period comets into bound solar system orbits to create and support the current interplanetary dust cloud (IPD); 2) that a population of dormant or extinct comets in the solar system is quite plausible; and 3) that the lifetime versus sublimation for the short period comets is much longer than their dynamical lifetime. [1] C.M. Lisse et al. (1998) Ap J 496 971. [2] C.M. Lisse et al. (1999) Icarus 140 189. [3] Y.R. Fernandez et al. (2000) Icarus 147 145 [4] L. Kresak and M. Kresakova (1987) in Symposium on Diversity and Similarity of Comets ESA SP-278 739 [5] D.C.Jewitt (1991) in Comets in the Post-Halley Era (R.L. Newburn M. Neugebauer and J. Rahe Eds.) Kluwer Academic Dordecht 19.

  1. Physical Mechanism of Comet Outbursts: The Movie

    Science.gov (United States)

    Hartmann, William K.

    2014-11-01

    During experiments conducted in 1976 at the NASA Ames Research Center’s Vertical Gun Facility (VGF), the author studied low velocity impacts into simulated regolith powders and gravels, in order to examine physics of low-velocity collisions during early solar system planetesimal formation. In one “accidental” experiment, the bucket of powder remained gas-charged during evacuation of the VGF vacuum chamber. The impactor, moving at 5.5 m/s, disturbed the surface, initiating eruptions of dust-charged gas, shooting in jets from multiple vents at speeds up to about 3 m/s, with sporadic venting until 17 seconds after the impact. This experiment was described in [1], which concluded that it simulated comet eruption phenomena. In this hypothesis, a comet nucleus develops a lag deposit of regolith in at least some regions. At a certain distance from the sun, the thermal wave penetrates to an ice-rich depth, causing sublimation. Gas rises into the regolith, collects in pore spaces, and creates a gas-charged powder, as in our experiment. Any surface disturbance, such as a meteoroid, may initiate a temporary eruption, or eventually the gas pressure becomes sufficient to blow off the overburden. Our observed ejection speed would be sufficient to launch dust off of a kilometer-scale comet nucleus.Film (100 frames/s) of the event was obtained, but was partially torn up in a projector. It has recently been reconstituted (Centric Photo Labs, Tucson) and dramatically illustrates various cometary phenomena. Parabolic curtains of erupted material resemble curtains of material photographed from earth in real comet comas, “falling back” under solar wind forces. In retrospect, the mechanism photographed here helps explain:*sporadic eruptions in Comet P/Schwassmann-Wachmann 1 (near-circular orbit at ~6 A.U., where repeated recharge may occur).*sporadic eruptions on “asteroid” 2060 Chiron (which stays beyond 8.5 A.U.). *the thicker dust curtain (and longer eruption?) than

  2. Competitive Memory Training (COMET) for OCD: a self-treatment approach to obsessions.

    Science.gov (United States)

    Schneider, Brooke C; Wittekind, Charlotte E; Talhof, Alina; Korrelboom, Kees; Moritz, Steffen

    2015-01-01

    Competitive Memory Training (COMET) is a cognitive intervention that aims to change the maladaptive cognitive-emotional networks underlying obsessive-compulsive disorder (OCD). COMET has not been previously tried as a self-help intervention. The present study tested the preliminary feasibility, acceptability, and effectiveness of COMET for OCD implemented as a self-help intervention. Sixty-five participants with OCD recruited through online OCD self-help fora completed an online baseline assessment including measures of OCD symptoms, self-esteem, and depression. Participants were randomly assigned to either COMET or a wait-list control group. All participants were approached 4 weeks later to complete an online post-assessment. There was no evidence for a greater decline of OCD symptoms or depression under COMET. When analyses were limited to only those participants who reported reading the entire manual at least once, self-esteem was higher at post-assessment in the COMET group. Although 78.1% of patients in the COMET group rated it as appropriate for self-administration, only 56.5% performed COMET exercises regularly and 26.4% read the entire manual at least once. The feasibility and effectiveness of COMET as a self-help internet intervention for OCD was not supported in this study. Further work is needed to better understand if modifications to our implementation of COMET may yield improved outcomes.

  3. Galileo's first images of Jupiter and the Galilean satellites

    Science.gov (United States)

    Belton, M.J.S.; Head, J. W.; Ingersoll, A.P.; Greeley, R.; McEwen, A.S.; Klaasen, K.P.; Senske, D.; Pappalardo, R.; Collins, G.; Vasavada, A.R.; Sullivan, R.; Simonelli, D.; Geissler, P.; Carr, M.H.; Davies, M.E.; Veverka, J.; Gierasch, P.J.; Banfield, D.; Bell, M.; Chapman, C.R.; Anger, C.; Greenberg, R.; Neukum, G.; Pilcher, C.B.; Beebe, R.F.; Burns, J.A.; Fanale, F.; Ip, W.; Johnson, T.V.; Morrison, D.; Moore, J.; Orton, G.S.; Thomas, P.; West, R.A.

    1996-01-01

    The first images of Jupiter, Io, Europa, and Ganymede from the Galileo spacecraft reveal new information about Jupiter's Great Red Spot (GRS) and the surfaces of the Galilean satellites. Features similar to clusters of thunderstorms were found in the GRS. Nearby wave structures suggest that the GRS may be a shallow atmospheric feature. Changes in surface color and plume distribution indicate differences in resurfacing processes near hot spots on lo. Patchy emissions were seen while Io was in eclipse by Jupiter. The outer margins of prominent linear markings (triple bands) on Europa are diffuse, suggesting that material has been vented from fractures. Numerous small circular craters indicate localized areas of relatively old surface. Pervasive brittle deformation of an ice layer appears to have formed grooves on Ganymede. Dark terrain unexpectedly shows distinctive albedo variations to the limit of resolution.

  4. Recommendations for safety testing with the in vivo comet assay.

    Science.gov (United States)

    Vasquez, Marie Z

    2012-08-30

    While the in vivo comet assay increases its role in regulatory safety testing, deliberations about the interpretation of comet data continue. Concerns can arise regarding comet assay publications with limited data from non-blind testing of positive control compounds and using protocols (e.g. dose concentrations, sample times, and tissues) known to give an expected effect. There may be a tendency towards bias when the validation or interpretation of comet assay data is based on results generated by widely accepted but non-validated assays. The greatest advantages of the comet assay are its sensitivity and its ability to detect genotoxicity in tissues and at sample times that could not previously be evaluated. Guidelines for its use and interpretation in safety testing should take these factors into account. Guidelines should be derived from objective review of data generated by blind testing of unknown compounds dosed at non-toxic concentrations and evaluated in a true safety-testing environment, where the experimental design and conclusions must be defensible. However, positive in vivo comet findings with such compounds are rarely submitted to regulatory agencies and this data is typically unavailable for publication due to its proprietary nature. To enhance the development of guidelines for safety testing with the comet assay, and with the permission of several sponsors, this paper presents and discusses relevant data from multiple GLP comet studies conducted blind, with unknown pharmaceuticals and consumer products. Based on these data and the lessons we have learned through the course of conducting these studies, I suggest significant adjustments to the current conventions, and I provide recommendations for interpreting in vivo comet assay results in situations where risk must be evaluated in the absence of carcinogenicity or clinical data. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Improved orbits of two periodic comets: Tsuchinshan 1 and Tsuchinshan 2

    International Nuclear Information System (INIS)

    Szutowicz, S.

    1986-01-01

    The observations made during four apparitions of two comets were collected and the orbits of the comets were improved; 86 observations of Comet Tsuchinshan 1 and 50 observations of Comet Tsuchinshan 2 made in the period 1965-1985 were used. The orbit of Comet Tsuchinshan 1 was improved taking into account nongravitational effects in its motion as well as a displacement of the photometric center from the center of mass. The following values of nongravitational parameters and of observational parameter D were obtained: A 1 = 0.75953 x 10 -8 , A 2 0.00375 x 10 -8 , D = 0.34698 x 10 -3 . To link all observations of Comet Tsuchinshan 2 by one system of elements it was sufficient to add observational effects as a displacement of the photometric center from the center of mass. The following value of parameter D was obtained: D = 1.00200 x 10 -3 . The equations of motion of both comets were integrated backwards and forwards till 1992. Ephemerides for their next returns were computed. 6 refs., 5 tabs. (author)

  6. MASCARA-1 b. A hot Jupiter transiting a bright mV = 8.3 A-star in a misaligned orbit

    Science.gov (United States)

    Talens, G. J. J.; Albrecht, S.; Spronck, J. F. P.; Lesage, A.-L.; Otten, G. P. P. L.; Stuik, R.; Van Eylen, V.; Van Winckel, H.; Pollacco, D.; McCormac, J.; Grundahl, F.; Fredslund Andersen, M.; Antoci, V.; Snellen, I. A. G.

    2017-10-01

    We report the discovery of MASCARA-1 b, which is the first exoplanet discovered with the Multi-site All-Sky CAmeRA (MASCARA). This exoplanet is a hot Jupiter orbiting a bright mV = 8.3, rapidly rotating (vsini⋆ > 100 km s-1) A8 star with a period of 2.148780 ± 8 × 10-6 days. The planet has a mass and radius of 3.7 ± 0.9 MJup and 1.5 ± 0.3 RJup, respectively. As with most hot Jupiters transiting early-type stars, we find a misalignment between the planet orbital axis and the stellar spin axis, which may be a signature of the formation and migration histories of this family of planets. MASCARA-1 b has a mean density of 1.5 ± 0.9 g cm-3 and an equilibrium temperature of 2570+50-30K, that is one of the highest temperatures known for a hot Jupiter to date. The system is reminiscent of WASP-33, but the host star lacks apparent delta-scuti variations, making the planet an ideal target for atmospheric characterization. We expect this to be the first of a series of hot Jupiters transiting bright early-type stars that will be discovered by MASCARA. Tables of the photometry and the reduced spectra as FITS files are only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/606/A73

  7. Clinical implications of JUPITER in a contemporary European population: the EPIC-Norfolk prospective population study.

    Science.gov (United States)

    Sondermeijer, Brigitte M; Boekholdt, S Matthijs; Rana, Jamal S; Kastelein, John J P; Wareham, Nicholas J; Khaw, Kay-Tee

    2013-05-01

    Justification for the Use of statins in Prevention: an Intervention Trial Evaluating Rosuvastatin (JUPITER) has raised several points of debate. We quantified the proportion of individuals meeting the JUPITER criteria, determined their risk profile, and their risk of coronary heart disease (CHD) events during a long-term follow-up in a contemporary European cohort. A total of 25 639 participants aged between 45 and 79 years were followed for 11.4 ± 2.8 years in EPIC-Norfolk population cohort. A total of 8397 individuals with complete data available were considered potentially eligible for primary prevention. A total of 846 (10.1%) individuals fulfilled the JUPITER criteria [low-density lipoprotein cholesterol-C (LDL-C) JUPITER criteria had significantly higher CHD risk compared with those with LDL-C ≥ 3.4 mmol/L and C-reactive protein JUPITER criteria. In this European cohort, JUPITER-eligible individuals had significantly higher event rates compared with those with LDL-C JUPITER criteria qualified almost one-fifth of the population for statin therapy that otherwise would not have qualified based on SCORE or ATP III criteria.

  8. Comets Nature, Dynamics, Origin, and their Cosmogonical Relevance

    CERN Document Server

    Fernández, Julio Angel

    2005-01-01

    The book covers the most recent ideas about the nature and dynamics of comets, including a thorough discussion on Oort cloud dynamics which has not received due attention in other books on the subject. It also discusses the most relevant aspects of the physics and chemistry of comet nuclei, highlighting their importance as relics of the protoplanetary disk and, perhaps, as carriers of water and organics that permitted the development of life on Earth. The book contains several tables with useful data, and an ample bibliography covering the most recent work as well as some historical key contributions to the subject. It may be suitable as a textbook for graduate students with some basic knowledge of celestial mechanics and astrophysics, as well as a consult book for comet researchers, or researchers from other related fields willing to start working on comets, or get an updated view of the subject.

  9. CINE: Comet INfrared Excitation

    Science.gov (United States)

    de Val-Borro, Miguel; Cordiner, Martin A.; Milam, Stefanie N.; Charnley, Steven B.

    2017-08-01

    CINE calculates infrared pumping efficiencies that can be applied to the most common molecules found in cometary comae such as water, hydrogen cyanide or methanol. One of the main mechanisms for molecular excitation in comets is the fluorescence by the solar radiation followed by radiative decay to the ground vibrational state. This command-line tool calculates the effective pumping rates for rotational levels in the ground vibrational state scaled by the heliocentric distance of the comet. Fluorescence coefficients are useful for modeling rotational emission lines observed in cometary spectra at sub-millimeter wavelengths. Combined with computational methods to solve the radiative transfer equations based, e.g., on the Monte Carlo algorithm, this model can retrieve production rates and rotational temperatures from the observed emission spectrum.

  10. Jupiter Icy Moons Explorer (JUICE) : Science Objectives, Mission and Instruments (abstract)

    NARCIS (Netherlands)

    Gurvits, L.; Plaut, J.J.; Barabash, S.; Bruzzone, L.; Dougherty, M.; Erd, C.; Fletcher, L.; Gladstone, R.; Grasset, O.; Hartogh, P.; Hussmann, H.; Iess, L.; Jaumann, R.; Langevin, Y.; Palumbo, P.; Piccioni, G.; Titov, D.; Wahlund, J.E.

    2014-01-01

    The JUpiter ICy Moons Explorer (JUICE) is a European Space Agency mission that will fly by and observe the Galilean satellites Europa, Ganymede and Callisto, characterize the Jovian system in a lengthy Jupiter-orbit phase, and ultimately orbit Ganymede for in-depth studies of habitability, evolution

  11. Spiral arms, comets and terrestrial catastrophism

    International Nuclear Information System (INIS)

    Clube, S.V.M.; Napier, W.M.

    1982-01-01

    A review is presented of an hypothesis of terrestrial catastrophism in which comets grow in molecular clouds and are captured by the Sun as it passes through the spiral arms of the Galaxy. Assuming that comets are a major supplier of the Earth-crossing (Appollo) asteroid population, the latter fluctuates correspondingly and leads to episodes of terrestrial bombardment. Changes in the rotational momentum of core and mantle, generated by impacts, lead to episodes of magnetic field reversal and tectonic activity, while surface phenomena lead to ice-ages and mass extinctions. An episodic geophysical history with an interstellar connection is thus implied. If comets in spiral arms are necessary intermediaries in the process of star formation, the theory also has implications relating to early solar system history and galactic chemistry. These aspects are briefly discussed with special reference to the nature of spiral arms. (author)

  12. Mission to a comet that could save earth

    CERN Multimedia

    Utton, T

    2003-01-01

    Scientists are going to attempt to land a probe on the comet Wirtanen. The GBP640million unmanned craft will travel four billion miles before catching up with the comet Wirtanen and launching a robotic lander called Rosetta, on to its surface (1/2 page).

  13. Terrestrial cometary tail and lunar corona induced by small comets: Predictions for Galileo

    International Nuclear Information System (INIS)

    Dessler, A.J.; Sandel, B.R.; Vasyliunas, V.M.

    1990-01-01

    A search for small comets near 1 AU is an objective of the Galileo mission. If small comets are as numerous and behave as has been proposed, two near-Earth signatures of small comets should be observable by the UVS experiment on the Earth flybys of Galileo; (1) a comet-like tail of Earth created by small comets that come close to Earth, break up and vaporize, but just miss the atmosphere and proceed back into interplanetary space, and (2) a corona surrounding the Moon induced by lunar impact of small comets

  14. Infrared imaging and photometry of Comet Giacobini-Zinner

    International Nuclear Information System (INIS)

    Campins, H.

    1986-01-01

    Infrared images and photometry were obtained to determine the spatial distribution and physical characteristics (temperature, albedo, size distribution, total mass, etc.) of the grains in the coma of Comet GZ. A 10.8 m image of Comet GZ obtained on August 4 represents the first ground-based thermal-infrared image of a Comet. Among the most significant results are: (1) an estimate of the number of grains that the ICE spacecraft must have encountered, which led the plasma wave team to conclude that they could only detect impacts on the antennae and not on the whole body of the ICE spacecraft; (2) the discovery of a population of large grains (radius > 100 micrometer), not observed in most other comets, which formed a curved tail near the nucleus (within 80 arcsec or 34,000 km); and (3) the detection of structure in the spatial distribution in the coma of the particle albedo, which was tentatively attributed to the presence of very fluffy grains which are likely to have multiple internal scattering of incident sunlight. The albedo map of Comet GZ was obtained by combining the 10.8 micrometer image shown with a simultaneous image taken at 0.68 micrometer, a bandpass which isolates the scattered continuum

  15. Catastrophic disruptions as the origin of bilobate comets

    Science.gov (United States)

    Schwartz, Stephen R.; Michel, Patrick; Jutzi, Martin; Marchi, Simone; Zhang, Yun; Richardson, Derek C.

    2018-05-01

    Several comets observed at close range have bilobate shapes1, including comet 67P/Churyumov-Gerasimenko (67P/C-G), which was imaged by the European Space Agency's Rosetta mission2,3. Bilobate comets are thought to be primordial because they are rich in supervolatiles (for example, N2 and CO) and have a low bulk density, which implies that their formation requires a very low-speed accretion of two bodies. However, slow accretion does not only occur during the primordial phase of the Solar System; it can also occur at later epochs as part of the reaccumulation process resulting from the collisional disruption of a larger body4, so this cannot directly constrain the age of bilobate comets. Here, we show by numerical simulation that 67P/C-G and other elongated or bilobate comets can be formed in the wake of catastrophic collisional disruptions of larger bodies while maintaining their volatiles and low density throughout the process. Since this process can occur at any epoch of our Solar System's history, from early on through to the present day5, there is no need for these objects to be formed primordially. These findings indicate that observed prominent geological features, such as pits and stratified surface layers4,5, may not be primordial.

  16. Comet mission hopes to uncover Earth's origins

    CERN Multimedia

    Henderson, M

    2004-01-01

    "A European spacecraft that will hunt down a comet in search of clues to the origin of life on Earth will blast off tomorrow from the Kourou spaceport in French Guiana. The Rosetta probe will take 12 years to catch up with Churyumov-Gerasimenko before becoming the first spacecraft to make a soft, controlled landing on a comet's nucleus" (1 page).

  17. Strange Isotope Ratios in Jupiter

    Science.gov (United States)

    Manuel, O.; Ragland, D.; Windler, K.; Zirbel, J.; Johannes, L.; Nolte, A.

    1998-05-01

    At the January AAS meeting, Dr. Daniel Goldin ordered the release of isotopic data from the 1995 Galileo probe into Jupiter. This probe took mass readings for mass numbers 2-150, which includes all of the noble gas isotopes. A certain few noble gas isotopes, specifically those at mass/charge = 21, 40, 78, 124, and 126, are difficult to distinguish from background, while interference causes some variation in signals for noble gas isotopes at mass/charge = 20, 22, 36, 38, 40, 80, 82, 83, 84 and 86. Some contamination was caused by incomplete adsorption of low mass hydrocarbons by Carbosieve, the material used in the concentration cells [Space Sci. Rev. 60, 120 (1992)]. Thus, preliminary results are most reliable in the high mass region that includes xenon. The Galileo Probe provided the first direct measurements from a planet with a chemical composition drastically different from Earth. Our preliminary analyses indicate that Jupiter contains Xe-X [Nature 240, 99 (1972)], which differs significantly from Earth's xenon. Xe-X and primordial He are tightly coupled on the microscopic scale of meteorite minerals [Science 195, 208 (1977); Meteoritics 15, 117 (1980)]. The presence today of Xe-X in the He-rich atmosphere of Jupiter suggests that the primordial linkage of Xe-X with He extended across the protosolar nebula, on a planetary scale [Comments Astrophys. 18, 335 (1997)]. Contamination by hydrocarbons and other gases does not necessarily remove light noble gases from further consideration. Currently, isolation of signals of these elements from interference continues and may result in the presentation of many other interesting observations at the conference.

  18. Astronomers find distant planet like Jupiter

    CERN Multimedia

    2003-01-01

    Astronomers searching for planetary systems like our solar system have found a planet similar to Jupiter orbiting a nearby star similar to our Sun, about 90 light-years from Earth, according to researchers (1/2 page).

  19. Dynamics of comets: their origin and evolution

    International Nuclear Information System (INIS)

    Carusi, A.; Valsecchi, G.B.

    1985-01-01

    Comets can be considered as remnants of the original population of planetesimals and the study of their origin and dynamical histories can provide insight into the accretion phenomena; the original mass, energy and angular momentum distribution across the solar system; the collisional fragmentation of minor bodies; the impact rates on planets and the nature of impacting bodies. The interaction of comets with other solar system bodies certainly provides one of the best possibilities for a deeper understanding of the dynamics of the whole system, and a challenging test for all theories of celestial mechanics dealing with the gravitational behaviour of multiple-body systems. Comets could also be considered as the last footprints left by the interaction of the protosun and its original galactic environment. (orig.)

  20. 78 FR 32696 - Jupiter Enterprises, Inc., Order of Suspension of Trading

    Science.gov (United States)

    2013-05-31

    ... SECURITIES AND EXCHANGE COMMISSION [File No. 500-1] Jupiter Enterprises, Inc., Order of Suspension of Trading May 29, 2013. It appears to the Securities and Exchange Commission that there is a lack of current and accurate information concerning the securities of Jupiter Enterprises, Inc. because it has not...

  1. Comet Hyakutake to Approach the Earth in Late March 1996

    Science.gov (United States)

    1996-03-01

    Astronomers Prepare for a Rare Event In the early morning of January 31, 1996, Japanese amateur astronomer Yuji Hyakutake made his second comet discovery within five weeks. He found the new comet near the border between the southern constellations of Hydra (The Water-Snake) and Libra (The Scales), amazingly just three degrees from the position where he detected another comet on December 26, 1995. After two weeks of hectic activity among amateur and professional astronomers all over the world, much interesting information has now been gathered about the new comet which has been designated C/1996 B2 (Hyakutake) . In particular, it has been found to move in a near-parabolic orbit that will bring it unusually close to the Earth next month. It is then expected to become bright enough to be seen with the unaided eye and to remain so during several weeks thereafter. Preparations are now made to observe the celestial visitor with a large number of telescopes, on the ground and in space. This event offers a rare opportunity to study the immediate surroundings of a cometary nucleus in detail and the specialists intend to make the most of it. Discovery and orbit Yuji Hyakutake, of profession photoengraver and a well-known amateur astronomer, announced his new discovery without delay, and within 24 hours, it had been sighted by several other observers in Japan and Australia. Experienced comet-watchers described its appearance as `diffuse with central condensation and of magnitude 11-12', i.e. a little more than 100 times fainter than what can be seen with the unaided eye. This brightness is not unusual for a comet discovered by an amateur, although it would probably have been missed, had it been just a little fainter. In the present case, the decisive factors for Hyakutake's success were undoubtedly his very powerful equipment (25 x 150 binoculars) and the advantageous combination of the comet's southern position in the sky and his location in Kagoshima, the southernmost

  2. A New Approach to Modeling Jupiter's Magnetosphere

    Science.gov (United States)

    Fukazawa, K.; Katoh, Y.; Walker, R. J.; Kimura, T.; Tsuchiya, F.; Murakami, G.; Kita, H.; Tao, C.; Murata, K. T.

    2017-12-01

    The scales in planetary magnetospheres range from 10s of planetary radii to kilometers. For a number of years we have studied the magnetospheres of Jupiter and Saturn by using 3-dimensional magnetohydrodynamic (MHD) simulations. However, we have not been able to reach even the limits of the MHD approximation because of the large amount of computer resources required. Recently thanks to the progress in supercomputer systems, we have obtained the capability to simulate Jupiter's magnetosphere with 1000 times the number of grid points used in our previous simulations. This has allowed us to combine the high resolution global simulation with a micro-scale simulation of the Jovian magnetosphere. In particular we can combine a hybrid (kinetic ions and fluid electrons) simulation with the MHD simulation. In addition, the new capability enables us to run multi-parameter survey simulations of the Jupiter-solar wind system. In this study we performed a high-resolution simulation of Jovian magnetosphere to connect with the hybrid simulation, and lower resolution simulations under the various solar wind conditions to compare with Hisaki and Juno observations. In the high-resolution simulation we used a regular Cartesian gird with 0.15 RJ grid spacing and placed the inner boundary at 7 RJ. From these simulation settings, we provide the magnetic field out to around 20 RJ from Jupiter as a background field for the hybrid simulation. For the first time we have been able to resolve Kelvin Helmholtz waves on the magnetopause. We have investigated solar wind dynamic pressures between 0.01 and 0.09 nPa for a number of IMF values. These simulation data are open for the registered users to download the raw data. We have compared the results of these simulations with Hisaki auroral observations.

  3. COMET concept

    International Nuclear Information System (INIS)

    Alsmeyer, H.; Tromm, W.

    1995-01-01

    Studies of the COMET core catcher concept developed for a future PWR have been continued. The concept is based on the spreading of a core melt on a sacrificial layer and its erosion, until a subsequent addition of water from below causes a fragmentation of the melt. A porous solidification of the melt would then admit a complete flooding within a short period. (orig.)

  4. Launch Opportunities for Jupiter Missions Using the Gravity Assist

    Directory of Open Access Journals (Sweden)

    Young-Joo Song

    2004-06-01

    Full Text Available Interplanetary trajectories using the gravity assists are studied for future Korean interplanetary missions. Verifications of the developed softwares and results were performed by comparing data from ESA's Mars Express mission and previous results. Among the Jupiter exploration mission scenarios, multi-planet gravity assist mission to Jupiter (Earth-Mars-Earth-Jupiter Gravity Assist, EMEJGA trajectory requires minimum launch energy (C3 of 29.231 km2/s2 with 4.6 years flight times. Others, such as direct mission and single-planet(Mars gravity assist mission, requires launch energy (C3 of 75.656 km^2/s^2 with 2.98 years flight times and 63.590 km2/s2 with 2.33 years flight times, respectively. These results show that the planetary gravity assists can reduce launch energy, while EMEJGA trajectory requires the longer flight time than the other missions.

  5. Stellar by Day, Planetary by Night: Atmospheres of Ultra-Hot Jupiters

    Science.gov (United States)

    Hensley, Kerry

    2018-06-01

    Move over, hot Jupiters theres an even stranger kind of giant planet in the universe! Ultra-hot Jupiters are so strongly irradiated that the molecules in their atmospheres split apart. What does this mean for heat transport on these planets?Atmospheres of Exotic PlanetsA diagram showing the orbit of an ultra-hot Jupiter and the longitudes at which dissociation and recombination occur. [Bell Cowan 2018]Similar to hot Jupiters, ultra-hot Jupiters are gas giants with atmospheres dominated by molecular hydrogen. What makes them interesting is that their dayside atmospheres are so hot that the molecules dissociate into individual hydrogen atoms more like the atmospheres of stars than planets.Because of the intense stellar irradiation, there is also an extreme temperature difference between the day and night sides of these planets potentially more than 1,000 K! As the stellar irradiation increases, the dayside atmosphere becomes hotter and hotter and the temperature difference between the day and night sides increases.When hot atomic hydrogen is transported into cooler regions (by winds, for instance), it recombines to form H2 molecules and heats the gas, effectively transporting heat from one location to another. This is similar to how the condensation of water redistributes heat in Earths atmosphere but what effect does this phenomenon have on the atmospheres of ultra-hot Jupiters?Maps of atmospheric temperature of molecular hydrogen dissociation fraction for three wind speeds. Click to enlarge. [Bell Cowan 2018]Modeling Heat RedistributionTaylor Bell and Nicolas Cowan (McGill University) used an energy-balance model to estimate the effects of H2 dissociation and recombination on heat transport in ultra-hot Jupiter atmospheres. In particular, they explored the redistribution of heat and how it affects the resultant phase curve the curve that describes the combination of reflected and thermally emitted light from the planet, observed as a function of its phase angle

  6. Jupiter's Mid-Infrared Aurora: Solar Connection and Minor Constituents

    Science.gov (United States)

    Kostiuk, Theodore; Livengood, T.A.; Fast, K.E.; Hewagama, T.; Schmilling, F.; Sonnabend, G.; Delgado, J.

    2009-01-01

    High spectral resolution in the 12 pin region of the polar regions of Jupiter reveal unique information on auroral phenomena and upper stratospheric composition. Polar aurorae in Jupiter's atmosphere radiate; throughout the electromagnetic spectrum from X-ray through mid-infrared (mid-IR, 5 - 20 micron wavelength). Voyager IRIS data and ground-based. spectroscopic measurements of Jupiter's northern mid-IR aurora acquired since 1982, reveal a correlation between auroral brightness and solar activity that has not been observed in Jovian aurora at other wavelengths. Over nearly three solar cycles, Jupiter auroral ethane, emission brightness and solar 10.7-cm radar flux and sunspot number are positively correlated with high confidence. Ethane line emission intensity varies over tenfold between low and high scalar activity periods. Detailed measurements have been made using the GSFC HIPWAC spectrometer at the NASA IRTF since the last solar maximum, following the mid-IR emission through the declining phase toward solar minimum. An even more convincing correlation with solar activity is evident in these data. The spectra measured contain features that cannot be attributed to ethane and are most likely spectra of minor constituents whose molecular bands overlap the v9 band of ethane. Possible candidates are allene, propane, and other higher order hydrocarbons. These features appear to be enhanced in the active polar regions. Laboratory measurements at comparable spectral resolution of spectra of candidate molecules will be used to identify the constituents. Current analyses of these results will be described, including planned measurements on polar ethane line emission scheduled through the rise of the next solar maximum beginning in 2009, with a steep gradient to a maximum in 2012. This work is relevant to the Juno mission and to the development of the NASA/ESA Europa Jupiter System Mission.

  7. 76 FR 24513 - Public Land Order No. 7765; Partial Revocation Jupiter Inlet Lighthouse Withdrawal; Florida

    Science.gov (United States)

    2011-05-02

    ...] Public Land Order No. 7765; Partial Revocation Jupiter Inlet Lighthouse Withdrawal; Florida AGENCY... as part of the Jupiter Inlet Lighthouse Outstanding Natural Area. DATES: Effective Date: May 2, 2011... U.S.C. 1787), which created the Jupiter Inlet Lighthouse Outstanding Natural Area, and which...

  8. Kelvin-Helmholtz instability in type-1 comet tails and associated phenomena

    International Nuclear Information System (INIS)

    Ershkovich, A.I.

    1980-01-01

    Selected problems of the solar wind - comet tail coupling that are currently accessible to quantitative analysis are reviewed. The model of a comet tail as a plasma cylinder separated by a tangential discontinuity surface from the solar wind is discussed in detail. This model is compatible with the well-known Alfven mechanism of formation of the comet tail. The stability problem of the comet tail boundary (considered as a discontinuity surface) is solved. Under typical conditions a comet tail boundary can undergo the Kelvin-Helmholtz instability. With finite amplitude the stabilizing effect of the magnetic field increases, and waves become stabilized. This model supplies a detailed quantitative description of helical waves observed in type-1 comet tails. A more general model of the tail boundary as a transition layer with a continuous change of the plasma parameters within it is also considered. This theory, in principle, enables us to solve one of the fundamental problems of cometary physics: the magnetic field of the comet tail can be derived from the observations of helical waves. This field turns out to be of the order of the interplanetary field. Various other considerations, discussed in this review also support this conclusion. (orig.)

  9. Application of the DNA comet assay for detection of irradiated meat

    International Nuclear Information System (INIS)

    Kruszewski, M.; Iwanenko, T.; Wojewodzka, M.; Malec-Czechowska, K.; Dancewicz, A. M.; Szot, Z.

    1998-01-01

    Radiation induces damage to the DNA. This damage (fragmentation) can be assessed in the irradiated food using Single Cell Gel Electrophoresis (SCGE), known as DNA comet assay. Fragmentation of DNA may also be caused by improper storage of meat and repeated freezing and thawing. This makes identification of irradiated meat by this assay not reliable enough. In order to know the scale of the processes imitating radiation effects in DNA of the comets, their shape and lengths were examined in both irradiated and unirradiated fresh meat (D = 1.5 or 3.0 kGy) stored at 4 o C or frozen (-21 o ) up to 5 months. Comets formed upon SCGE were stained with DAPI or silver and examined in fluorescent or light microscope. They were divided arbitrarily into 4 classes. Comets of IV class were found quite often in fresh meat stored at 4 o C. In meat samples that were irradiated and stored frozen, comets of class I, II and III were observed. The negative comet test is univocal. Positive comet test, however, needs confirmation. The meat should be subjected to further analysis with other validated methods. (author)

  10. On the formation of meteor showers of comet Halley

    International Nuclear Information System (INIS)

    Babadzhanov, P.B.; Obrubov, J.V.; Pushkarev, A.N.; Hajduk, A.

    1987-01-01

    The orbits of test particles ejected from the nucleus of Halley comet at its perihelion passage in 1910 with different velocities are studied for the next three passages of the comet up to 2134 taking into consideration perturbations from all planets. Some characteristics of the stream formation are presented. The calculations show that the return of the comet to its perihelion cannot produce an immediate influence on the activity of its meteor showers. (author). 2 figs., 1 tab., 13 refs

  11. COMET Multimedia modules and objects in the digital library system

    Science.gov (United States)

    Spangler, T. C.; Lamos, J. P.

    2003-12-01

    Over the past ten years of developing Web- and CD-ROM-based training materials, the Cooperative Program for Operational Meteorology, Education and Training (COMET) has created a unique archive of almost 10,000 multimedia objects and some 50 web based interactive multimedia modules on various aspects of weather and weather forecasting. These objects and modules, containing illustrations, photographs, animations,video sequences, audio files, are potentially a valuable resource for university faculty and students, forecasters, emergency managers, public school educators, and other individuals and groups needing such materials for educational use. The COMET Modules are available on the COMET educational web site http://www.meted.ucar.edu, and the COMET Multimedia Database (MMDB) makes a collection of the multimedia objects available in a searchable online database for viewing and download over the Internet. Some 3200 objects are already available at the MMDB Website: http://archive.comet.ucar.edu/moria/

  12. Exterior Companions to Hot Jupiters Orbiting Cool Stars Are Coplanar

    Science.gov (United States)

    Becker, Juliette C.; Vanderburg, Andrew; Adams, Fred C.; Khain, Tali; Bryan, Marta

    2017-12-01

    The existence of hot Jupiters has challenged theories of planetary formation since the first extrasolar planets were detected. Giant planets are generally believed to form far from their host stars, where volatile materials like water exist in their solid phase, making it easier for giant planet cores to accumulate. Several mechanisms have been proposed to explain how giant planets can migrate inward from their birth sites to short-period orbits. One such mechanism, called Kozai-Lidov migration, requires the presence of distant companions in orbits inclined by more than ˜40° with respect to the plane of the hot Jupiter’s orbit. The high occurrence rate of wide companions in hot-Jupiter systems lends support to this theory for migration. However, the exact orbital inclinations of these detected planetary and stellar companions is not known, so it is not clear whether the mutual inclination of these companions is large enough for the Kozai-Lidov process to operate. This paper shows that in systems orbiting cool stars with convective outer layers, the orbits of most wide planetary companions to hot Jupiters must be well aligned with the orbits of the hot Jupiters and the spins of the host stars. For a variety of possible distributions for the inclination of the companion, the width of the distribution must be less than ˜20° to recreate the observations with good fidelity. As a result, the companion orbits are likely well aligned with those of the hot Jupiters, and the Kozai-Lidov mechanism does not enforce migration in these systems.

  13. Radiation analysis for manned missions to the Jupiter system.

    Science.gov (United States)

    De Angelis, G; Clowdsley, M S; Nealy, J E; Tripathi, R K; Wilson, J W

    2004-01-01

    An analysis for manned missions targeted to the Jovian system has been performed in the framework of the NASA RASC (Revolutionary Aerospace Systems Concepts) program on Human Exploration beyond Mars. The missions were targeted to the Jupiter satellite Callisto. The mission analysis has been divided into three main phases, namely the interplanetary cruise, the Jupiter orbital insertion, and the surface landing and exploration phases. The interplanetary phase is based on departure from the Earth-Moon L1 point. Interplanetary trajectories based on the use of different propulsion systems have been considered, with resulting overall cruise phase duration varying between two and five years. The Jupiter-approach and the orbital insertion trajectories are considered in detail, with the spacecraft crossing the Jupiter radiation belts and staying around the landing target. In the surface exploration phase the stay on the Callisto surface is considered. The satellite surface composition has been modeled based on the most recent results from the GALILEO spacecraft. In the transport computations the surface backscattering has been duly taken into account. Particle transport has been performed with the HZETRN heavy ion code for hadrons and with an in-house developed transport code for electrons and bremsstrahlung photons. The obtained doses have been compared to dose exposure limits. c2004 COSPAR. Published by Elsevier Ltd. All rights reserved.

  14. Characterizing Outbursts and Nucleus Properties of Comet 29P/Schwassmann-Wachmann 1

    Science.gov (United States)

    Fernandez, Yanga

    2015-10-01

    Today's comets are remnant bodies leftover from the era of planet formation in our own Solar System. Therefore characterizing cometary structure and composition can give clues to the thermal, physical, and chemical environment of the protoplanetary disk. However before this long-term 'holy grail' of planetary astronomy can be achieved, we must understand cometary evolution so that we can know how comets have changed since their formation. The phenomenon of cometary activity, where a porous matrix of icy and rocky material turns into the gases and the dust grains we see in a comet's coma, remains a poorly-understood puzzle of short-term cometary evolution. We are in the midst of an ongoing project to understand cometary activity in a particular comet, 29P/Schwassmann-Wachmann 1, by taking advantage of existing imaging datasets that show the comet in outburst. Outbursts are useful for constraining the nucleus's spin state and the location of active areas. We propose here to analyze archival WFPC2 images of comet 29P obtained in March 1996 (Cycle 5, Project 5829), spanning 21 hours, that show the comet in outburst. These data are the highest-resolution imaging of this comet ever obtained while it was in outburst. We will analyze the morphology of the comet's dust coma to constrain properties of the nucleus and of the dust grains themselves. Additionally, we will analyze images taken in May 2000 (Cycle 8, Project 8274) that show the comet at its steady-state level of activity but may also allow us to place further constraints on the nucleus's active regions.

  15. In-Situ Sampling Analysis of a Jupiter Trojan Asteroid by High Resolution Mass Spectrometry in the Solar Power Sail Mission

    Science.gov (United States)

    Kebukawa, Y.; Aoki, J.; Ito, M.; Kawai, Y.; Okada, T.; Matsumoto, J.; Yano, H.; Yurimoto, H.; Terada, K.; Toyoda, M.; Yabuta, H.; Nakamura, R.; Cottin, H.; Grand, N.; Mori, O.

    2017-12-01

    The Solar Power Sail (SPS) mission is one of candidates for the upcoming strategic middle-class space exploration to demonstrate the first outer Solar System journey of Japan. The mission concept includes in-situ sampling analysis of the surface and subsurface (up to 1 m) materials of a Jupiter Trojan asteroid using high resolution mass spectrometry (HRMS). The candidates for the HRMS are multi-turn time-of-flight mass spectrometer (MULTUM) type and Cosmorbitrap type. We plan to analyze isotopic and elemental compositions of volatile materials from organic matter, hydrated minerals, and ice (if any), in order to understand origin and evolution of the Jupiter Trojan asteroids. It will provide insights into planet formation/migration theories, evolution and distribution of volatiles in the Solar System, and missing link between asteroids and comets on evolutional. The HRMS system allows to measure H, N, C, O isotopic compositions and elemental compositions of molecules prepared by various pre-MS procedures including stepwise heating up to 600ºC, gas chromatography (GC), and high-temperature pyrolysis with catalyst to decompose the samples into simple gaseous molecules (e.g., H2, CO, and N2) for isotopic ratio analysis. The required mass resolution should be at least 30,000 for analyzing isotopic ratios for simple gaseous molecules. For elemental compositions, mass accuracy of 10 ppm is required to determine elemental compositions for molecules with m/z up to 300 (as well as compound specific isotopic compositions for smaller molecules). Our planned analytical sequences consist of three runs for both surface and subsurface samples. In addition, `sniff mode' which simply introduces environmental gaseous molecules into a HRMS will be done by the system.

  16. The Hottest Hot Jupiters May Host Atmospheric Dynamos

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, T. M. [Department of Mathematics and Statistics, Newcastle University, Newcastle upon Tyne (United Kingdom); McElwaine, J. N. [Planetary Science Institute, Tucson, AZ 85721 (United States)

    2017-06-01

    Hot Jupiters have proven themselves to be a rich class of exoplanets that test our theories of planetary evolution and atmospheric dynamics under extreme conditions. Here, we present three-dimensional magnetohydrodynamic simulations and analytic results that demonstrate that a dynamo can be maintained in the thin, stably stratified atmosphere of a hot Jupiter, independent of the presumed deep-seated dynamo. This dynamo is maintained by conductivity variations arising from strong asymmetric heating from the planets’ host star. The presence of a dynamo significantly increases the surface magnetic field strength and alters the overall planetary magnetic field geometry, possibly affecting star–planet magnetic interactions.

  17. Detection of garlic gamma-irradiated by assay comet

    International Nuclear Information System (INIS)

    Moreno Alvarez, Damaris L.; Miranda, Enrique F. Prieto; Carro, Sandra; Iglesias Enrique, Isora; Matos, Wilberto

    2009-01-01

    The garlic samples were irradiated in a facility with 60 Co sources, at absorbed dose values of 0-0,15 kGy. The detection method utilized for the identification of the irradiated garlic was biological comet assay. The samples were classified post-irradiation several times. The irradiated samples showed high strand breaks of DNA exhibiting comets of several forms, while the not irradiated and lower dose samples showed a behavior like round shape and light comets. Significant differences were found for higher absorbed dose values at 0.06 kGy, this absorbed dose value is corresponding with the applied dose value at this food in order to avoid the germination. (author)

  18. Comets As Objects of High Energy Astrophysics

    Science.gov (United States)

    Ibadov, S.

    2000-10-01

    Strong soft X-ray emission from comet Hyakutake C/1996 B2 was discovered with ROSAT in March 27, 1996 (Lisse et al. 1996, Science 274, 205-209) and the results of a theoretical approach (Ibadov 1990, Icarus 86, 283-288) served as a motive for that observations (Dennerl, Lisse and Truemper 1998, Private Communications). It is now well established that comets emit EUV and X-rays regularly (Dennerl, Englhauser and Truemper 1997, Science 277, 1625-1630; Dennerl 1998, Proc. 16th Int. Conf. Atomic Physics, Windsor, Ontario, Canada). To explain this phenomenon different theoretical models were proposed (Krasnopolsky 1997, Icarus 128, 365-385; Ibadov 1998, Proc. First XMM Workshop, Noordwijk, The Netherlands, and references therein). In the paper the problem of identifying X-ray generation mechanisms in comets will be considered.

  19. Autonomous Navigation Performance During The Hartley 2 Comet Flyby

    Science.gov (United States)

    Abrahamson, Matthew J; Kennedy, Brian A.; Bhaskaran, Shyam

    2012-01-01

    On November 4, 2010, the EPOXI spacecraft performed a 700-km flyby of the comet Hartley 2 as follow-on to the successful 2005 Deep Impact prime mission. EPOXI, an extended mission for the Deep Impact Flyby spacecraft, returned a wealth of visual and infrared data from Hartley 2, marking the fifth time that high-resolution images of a cometary nucleus have been captured by a spacecraft. The highest resolution science return, captured at closest approach to the comet nucleus, was enabled by use of an onboard autonomous navigation system called AutoNav. AutoNav estimates the comet-relative spacecraft trajectory using optical measurements from the Medium Resolution Imager (MRI) and provides this relative position information to the Attitude Determination and Control System (ADCS) for maintaining instrument pointing on the comet. For the EPOXI mission, AutoNav was tasked to enable continuous tracking of a smaller, more active Hartley 2, as compared to Tempel 1, through the full encounter while traveling at a higher velocity. To meet the mission goal of capturing the comet in all MRI science images, position knowledge accuracies of +/- 3.5 km (3-?) cross track and +/- 0.3 seconds (3-?) time of flight were required. A flight-code-in-the-loop Monte Carlo simulation assessed AutoNav's statistical performance under the Hartley 2 flyby dynamics and determined optimal configuration. The AutoNav performance at Hartley 2 was successful, capturing the comet in all of the MRI images. The maximum residual between observed and predicted comet locations was 20 MRI pixels, primarily influenced by the center of brightness offset from the center of mass in the observations and attitude knowledge errors. This paper discusses the Monte Carlo-based analysis that led to the final AutoNav configuration and a comparison of the predicted performance with the flyby performance.

  20. Isotopic ratios in outbursting comet C/2015 ER61

    Science.gov (United States)

    Yang, Bin; Hutsemékers, Damien; Shinnaka, Yoshiharu; Opitom, Cyrielle; Manfroid, Jean; Jehin, Emmanuël; Meech, Karen J.; Hainaut, Olivier R.; Keane, Jacqueline V.; Gillon, Michaël

    2018-02-01

    Isotopic ratios in comets are critical to understanding the origin of cometary material and the physical and chemical conditions in the early solar nebula. Comet C/2015 ER61 (PANSTARRS) underwent an outburst with a total brightness increase of 2 magnitudes on the night of 2017 April 4. The sharp increase in brightness offered a rare opportunity to measure the isotopic ratios of the light elements in the coma of this comet. We obtained two high-resolution spectra of C/2015 ER61 with UVES/VLT on the nights of 2017 April 13 and 17. At the time of our observations, the comet was fading gradually following the outburst. We measured the nitrogen and carbon isotopic ratios from the CN violet (0, 0) band and found that 12C/13C = 100 ± 15, 14N/15N = 130 ± 15. In addition, we determined the 14N/15N ratio from four pairs of NH2 isotopolog lines and measured 14N/15N = 140 ± 28. The measured isotopic ratios of C/2015 ER61 do not deviate significantly from those of other comets.

  1. Comet Halley - Chapter I in cometary exploration

    International Nuclear Information System (INIS)

    Newburn, R.L. Jr.

    1986-01-01

    The information gained on the Comet Halley by the international probe studies is presented. The new information includes data on the true size and shape of the cometary nucleus and the mass of its dust grains, the chemical composition of the nucleus, and the characteristics of the bow wave of the comet. The requirements of future missions for solving the many questions that are still open are discussed

  2. NEBULAR WATER DEPLETION AS THE CAUSE OF JUPITER'S LOW OXYGEN ABUNDANCE

    Energy Technology Data Exchange (ETDEWEB)

    Mousis, Olivier [Universite de Franche-Comte, Institut UTINAM, CNRS/INSU, UMR 6213, Observatoire des Sciences de l' Univers de Besancon (France); Lunine, Jonathan I. [Center for Radiophysics and Space Research, Space Sciences Building, Cornell University, Ithaca, NY 14853 (United States); Madhusudhan, Nikku [Yale Center for Astronomy and Astrophysics, Department of Physics, Yale University, New Haven, CT 06511 (United States); Johnson, Torrence V., E-mail: olivier.mousis@obs-besancon.fr [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States)

    2012-05-20

    Motivated by recent spectroscopic observations suggesting that atmospheres of some extrasolar giant planets are carbon-rich, i.e., carbon/oxygen ratio (C/O) {>=} 1, we find that the whole set of compositional data for Jupiter is consistent with the hypothesis that it should be a carbon-rich giant planet. We show that the formation of Jupiter in the cold outer part of an oxygen-depleted disk (C/O {approx} 1) reproduces the measured Jovian elemental abundances at least as well as the hitherto canonical model of Jupiter formed in a disk of solar composition (C/O 0.54). The resulting O abundance in Jupiter's envelope is then moderately enriched by a factor of {approx}2 Multiplication-Sign solar (instead of {approx}7 Multiplication-Sign solar) and is found to be consistent with values predicted by thermochemical models of the atmosphere. That Jupiter formed in a disk with C/O {approx} 1 implies that water ice was heterogeneously distributed over several AU beyond the snow line in the primordial nebula and that the fraction of water contained in icy planetesimals was a strong function of their formation location and time. The Jovian oxygen abundance to be measured by NASA's Juno mission en route to Jupiter will provide a direct and strict test of our predictions.

  3. THE NEOWISE-DISCOVERED COMET POPULATION AND THE CO + CO{sub 2} PRODUCTION RATES

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, James M.; Stevenson, Rachel; Kramer, Emily; Mainzer, A. K.; Masiero, Joseph R.; Weissman, Paul R.; Nugent, Carrie R.; Sonnett, Sarah [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, MS 183-401, Pasadena, CA 91109 (United States); Grav, Tommy [Planetary Science Institute, 1700 East Fort Lowell, Suite 106, Tucson, AZ 85719-2395 (United States); Fernández, Yan R. [Department of Physics, University of Central Florida, 4000 Central Florida Blvd., P.S. Building, Orlando, FL 32816-2385 (United States); Cutri, Roc M.; Dailey, John W.; Masci, Frank J.; Blair, Nathan; Lucas, Andrew [Infrared Processing and Analysis Center, California Institute of Technology, Pasadena, CA 91125 (United States); Meech, Karen J. [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Dr., Manoa, HI 96822 (United States); Walker, Russel [Monterey Institute for Research in Astronomy, 200 Eighth Street, Marina, CA 93933 (United States); Lisse, C. M. [Applied Physics Laboratory, Johns Hopkins University, 11100 Johns Hopkins Road Laurel, MD 20723-6099 (United States); McMillan, Robert S. [Lunar and Planetary Laboratory, University of Arizona, 1629 East University Blvd., Kuiper Space Science Bldg. 92, Tucson, AZ 85721-0092 (United States); Wright, Edward L., E-mail: bauer@scn.jpl.nasa.gov [Department of Physics and Astronomy, University of California, P.O. Box 91547, Los Angeles, CA 90095-1547 (United States); Collaboration: WISE and NEOWISE Teams

    2015-12-01

    The 163 comets observed during the WISE/NEOWISE prime mission represent the largest infrared survey to date of comets, providing constraints on dust, nucleus size, and CO + CO{sub 2} production. We present detailed analyses of the WISE/NEOWISE comet discoveries, and discuss observations of the active comets showing 4.6 μm band excess. We find a possible relation between dust and CO + CO{sub 2} production, as well as possible differences in the sizes of long and short period comet nuclei.

  4. The Meteoroid Fluence at Mars Due to Comet Siding Spring

    Science.gov (United States)

    Moorhead, Althea V.

    2014-01-01

    Long-period comet C/2013 A1 (Siding Spring) is headed for a close encounter with Mars on 2014 Oct 19. A collision between the comet and the planet has been ruled out, but the comets coma may envelop Mars and its man-made satellites. We present an analytic model of the dust component of cometary comae that describes the spatial distribution of cometary dust and meteoroids and their size distribution. If the coma reaches Mars, we estimate a total incident particle fluence on the planet and its satellites of 0.01 particles per square meter. We compare our model with numerical simulations, data from past comet missions, and recent Siding Spring observations.

  5. Comet assay optimization for assessment of DNA damage due to radiation exposure

    International Nuclear Information System (INIS)

    Dwi Ramadhani; Devita Tetriana; Viria Agesti Suvifan

    2016-01-01

    Comet assay can be used to measure the deoxyribonucleic acid (DNA) damage level caused by ionizing radiation exposure in peripheral blood lymphocytes. The principle of the comet assay is based on the amount of denatured DNA fragments that migrated out of the cell nucleus during electrophoresis. There are several aspects that must be concerned when doing the comet assay. For example the agarose concentration, duration of alkaline incubation, electrophoresis conditions (time, temperature, and voltage gradient), and the measurement parameters that used in analyze the comet. Percentage of DNA in the comet tail (% tail DNA) is strongly recommended as a parameter when analyze the comet because it can be converted to lesions per 106 base pairs (bp) using calibration curve that show relationship between the dose of ionizing radiation and % tail DNA. To obtain an accurate result, the calibration curve must be made and comet should be analyzing using image processing analysis software since it can be increase the precision and reduce the subjectivity of the measurement process. (author)

  6. Comet 2001 Q2

    Czech Academy of Sciences Publication Activity Database

    Pravec, Petr; Kušnirák, Peter; Bouma, R. J.; Raymundo, P. M.

    č. 7687 (2001), s. 1 ISSN 0081-0304 R&D Projects: GA ČR GA205/99/0255 Institutional research plan: CEZ:AV0Z1003909 Keywords : comet s * astrometry Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics

  7. Properties of comet Halley derived from thermal models and astrometric data

    International Nuclear Information System (INIS)

    Hechler, F.W.; Morley, T.A.; Mahr, P.

    1986-01-01

    The motion of a comet nucleus is influenced by outgassing forces. The orbit determination from astrometric data of comet Halley using empiric force and observation bias models and the incorporation of thermal models developed at ESOC into the orbit determination allows to draw some conclusions on the comet Halley dynamics and physics. 21 references

  8. Encounters between degenerate stars and extrasolar comet clouds

    International Nuclear Information System (INIS)

    Pineault, S.; Poisson, E.

    1989-01-01

    Under the assumption that the presence of comet clouds around otherwise normal stars is a common occurrence in the Galaxy, the observational consequences of random penetration encounters between the general Galactic population of degenerate stars and these comet clouds is considered. The only case considered is where the compact stars is a single star. For this scenario, encounters involving neutron stars (NSs) result in impact rates 1000-10,000 times slower than in the model of Tremaine and Zytkow (1986). The rate for white dwarfs (WDs) is larger than the one for NSs by a factor of about 30 times the ratio of the degenerate star number densities. The mean impact rate is significantly increased if the number of comets in a cloud is nearly independent of the mass of the central star. It is concluded that some of the observed gamma-ray bursts may be caused by accretion of comets onto NSs and that this scenario, but with a WD as the accretor, probably contributes to the optical flash background rate. 38 refs

  9. Detectability of Sungrazing Comet Soft X-ray Irradiance

    Directory of Open Access Journals (Sweden)

    Su Yeon Oh

    2007-12-01

    Full Text Available Originating from the Oort cloud, some comets disappear to impact against the Sun or to split up by strong gravitational force. Then they don't go back to the Oort cloud. They are called sungrazing comets. The comets are detected by sublimation of ices and ejection of gas and dust through solar heat close to the Sun. There exists the charge transfer from heavy ions in the solar wind to neutral atoms in the cometary atmosphere by interaction with the solar wind. Cometary atoms would be excited to high electronic levels and their de-excitation would result in X-ray emission, or it would be scattering of solar X-ray emission by very small cometary grains. We calculated the X-ray emission applying the model suggested by Mendis & Flammer (1984 and Cravens (1997. In our estimation, the sungrazing comet whose nucleus size is about 1 km in radius might be detectable within a distance of 3 solar radius from the sun on soft X-ray solar camera.

  10. Detection of garlic gamma-irradiated by assay comet

    Energy Technology Data Exchange (ETDEWEB)

    Moreno Alvarez, Damaris L.; Miranda, Enrique F. Prieto; Carro, Sandra; Iglesias Enrique, Isora; Matos, Wilberto [Centro de Aplicaciones Tecnologicas y Desarrollo Nuclear (CEADEN), Ciudad de La Habana (Cuba)], e-mail: damaris@ceaden.edu.cu

    2009-07-01

    The garlic samples were irradiated in a facility with {sup 60}Co sources, at absorbed dose values of 0-0,15 kGy. The detection method utilized for the identification of the irradiated garlic was biological comet assay. The samples were classified post-irradiation several times. The irradiated samples showed high strand breaks of DNA exhibiting comets of several forms, while the not irradiated and lower dose samples showed a behavior like round shape and light comets. Significant differences were found for higher absorbed dose values at 0.06 kGy, this absorbed dose value is corresponding with the applied dose value at this food in order to avoid the germination. (author)

  11. Rationalization of Comet Halley's periods

    Science.gov (United States)

    Belton, Michael J. S.

    1990-01-01

    The sense of long axis orientation of Comet Halley during the Vega 1 encounter must be reversed from that deduced by Sagdeev et al. (1986) in order to harmonize the comet nucleus' Vega/Giotto-observed orientations with periodicities extracted from time-series brightness data. It is also demonstrated that Vega/Giotto observations can be satisfied by either a 2.2- or 3.7-day long-axis free precession period. A novel Fourier algorithm is used to reanalyze five independent data sets; strong evidence is adduced for periods harmonically related to a 7.4-day period. The preferred candidate models for Halley's nuclear rotation are characterized by a long-axis precession period of 3.7 days.

  12. Comet Assay in Cancer Chemoprevention.

    Science.gov (United States)

    Santoro, Raffaela; Ferraiuolo, Maria; Morgano, Gian Paolo; Muti, Paola; Strano, Sabrina

    2016-01-01

    The comet assay can be useful in monitoring DNA damage in single cells caused by exposure to genotoxic agents, such as those causing air, water, and soil pollution (e.g., pesticides, dioxins, electromagnetic fields) and chemo- and radiotherapy in cancer patients, or in the assessment of genoprotective effects of chemopreventive molecules. Therefore, it has particular importance in the fields of pharmacology and toxicology, and in both environmental and human biomonitoring. It allows the detection of single strand breaks as well as double-strand breaks and can be used in both normal and cancer cells. Here we describe the alkali method for comet assay, which allows to detect both single- and double-strand DNA breaks.

  13. Radar observations of Comet Halley

    International Nuclear Information System (INIS)

    Campbell, D.B.; Harmon, J.K.; Shapiro, I.I.

    1989-01-01

    Five nights of Arecibo radar observations of Comet Halley are reported which reveal a feature in the overall average spectrum which, though weak, seems consistent with being an echo from the comet. The large radar cross section and large bandwidth of the feature suggest that the echo is predominantly from large grains which have been ejected from the nucleus. Extrapolation of the dust particle size distribution to large grain sizes gives a sufficient number of grains to account for the echo. The lack of a detectable echo from the nucleus, combined with estimates of its size and rotation rate from spacecraft encounters and other data, indicate that the nucleus has a surface of relatively high porosity. 33 references

  14. An analysis of Jupiter data from the RAE-1 satellite

    Science.gov (United States)

    Carr, T. D.

    1974-01-01

    The analysis of Radio Astronomy Explorer Satellite data are presented. Radio bursts from Jupiter are reported in the frequency range 4700 KHz to 45 KHz. Strong correlations with lo were found at 4700, 3930, and 2200 KHz, while an equally strong Europa effect was observed at 1300, 900, and 700 KHz. Histograms indicating the relative probability and the successful identification of Jupiter activity were plotted, using automatic computer and visual search techniques.

  15. FRIENDS OF HOT JUPITERS. II. NO CORRESPONDENCE BETWEEN HOT-JUPITER SPIN-ORBIT MISALIGNMENT AND THE INCIDENCE OF DIRECTLY IMAGED STELLAR COMPANIONS

    Energy Technology Data Exchange (ETDEWEB)

    Ngo, Henry; Knutson, Heather A.; Hinkley, Sasha; Batygin, Konstantin [Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA (United States); Crepp, Justin R.; Bechter, Eric B. [Department of Physics, University of Notre Dame, Notre Dame, IN (United States); Howard, Andrew W. [Institute for Astronomy, University of Hawaii at Manoa, Honolulu, HI (United States); Johnson, John A. [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA (United States); Morton, Timothy D. [Cahill Center for Astronomy and Astrophysics, California Institute of Technology, Pasadena, CA (United States); Muirhead, Philip S., E-mail: hngo@caltech.edu [Department of Astronomy, Boston University, Boston, MA (United States)

    2015-02-20

    Multi-star systems are common, yet little is known about a stellar companion's influence on the formation and evolution of planetary systems. For instance, stellar companions may have facilitated the inward migration of hot Jupiters toward to their present day positions. Many observed short-period gas giant planets also have orbits that are misaligned with respect to their star's spin axis, which has also been attributed to the presence of a massive outer companion on a non-coplanar orbit. We present the results of a multi-band direct imaging survey using Keck NIRC2 to measure the fraction of short-period gas giant planets found in multi-star systems. Over three years, we completed a survey of 50 targets ('Friends of Hot Jupiters') with 27 targets showing some signature of multi-body interaction (misaligned or eccentric orbits) and 23 targets in a control sample (well-aligned and circular orbits). We report the masses, projected separations, and confirmed common proper motion for the 19 stellar companions found around 17 stars. Correcting for survey incompleteness, we report companion fractions of 48% ± 9%, 47% ± 12%, and 51% ± 13% in our total, misaligned/eccentric, and control samples, respectively. This total stellar companion fraction is 2.8σ larger than the fraction of field stars with companions approximately 50-2000 AU. We observe no correlation between misaligned/eccentric hot Jupiter systems and the incidence of stellar companions. Combining this result with our previous radial velocity survey, we determine that 72% ± 16% of hot Jupiters are part of multi-planet and/or multi-star systems.

  16. The space-age solar system

    International Nuclear Information System (INIS)

    Baugher, J.F.

    1988-01-01

    This book is a description of the sun, planets, moons, asteroids, and comets in the solar system. Discussion is based heavily on results obtained from recent space probes to Mercury, Venus, Mars Jupiter, Saturn, and Uranus. Offers detailed descriptions of the moons of Jupiter and Saturn, and the results of the recent probes of Halley's comet. A discussion of meteorites leads to a description of the current models of the solar system. Introductory chapters present theories of the solar system from the ancient Greeks to the present day. Other topics covered include the sun, its structure, and how it generates energy; the surfaces, internal structures, and histories of the planets, from innermost Mercury to farthest Pluto, and their moons

  17. Jupiter Environmental Research & Field Studies Academy.

    Science.gov (United States)

    Huttemeyer, Bob

    1996-01-01

    Describes the development and workings of the Jupiter Environmental Research and Field Studies Academy that focuses on enabling both teachers and students to participate in real-life learning experiences. Discusses qualifications for admittance, curriculum, location, ongoing projects, students, academics, preparation for life, problem solving, and…

  18. Analysis of JUPITER critical experiments by JENDL-3.2

    International Nuclear Information System (INIS)

    Ishikawa, Makoto

    1996-01-01

    Applicability of the JENDL-3.2 library to large FBR cores was evaluated using JUPITER experimental data. The nuclear characteristics treated in the present report include criticality, reaction rate ratio, space dependency of C/E values, sodium void reactivity and Doppler reactivity. As a conclusion, JENDL-3.2 is judged to be a well-balanced library for prediction of large FBR core parameters. The unification of integral experimental information from JUPITER and differential nuclear data of JENDL-3.2 will enhance the accuracy and reliability of large FBR core design. (author)

  19. Epithelial cells as alternative human biomatrices for comet assay.

    Science.gov (United States)

    Rojas, Emilio; Lorenzo, Yolanda; Haug, Kristiane; Nicolaissen, Bjørn; Valverde, Mahara

    2014-01-01

    The comet assay is a valuable experimental tool aimed at mapping DNA damage in human cells in vivo for environmental and occupational monitoring, as well as for therapeutic purposes, such as storage prior to transplant, during tissue engineering, and in experimental ex vivo assays. Furthermore, due to its great versatility, the comet assay allows to explore the use of alternative cell types to assess DNA damage, such as epithelial cells. Epithelial cells, as specialized components of many organs, have the potential to serve as biomatrices that can be used to evaluate genotoxicity and may also serve as early effect biomarkers. Furthermore, 80% of solid cancers are of epithelial origin, which points to the importance of studying DNA damage in these tissues. Indeed, studies including comet assay in epithelial cells have either clear clinical applications (lens and corneal epithelial cells) or examine genotoxicity within human biomonitoring and in vitro studies. We here review improvements in determining DNA damage using the comet assay by employing lens, corneal, tear duct, buccal, and nasal epithelial cells. For some of these tissues invasive sampling procedures are needed. Desquamated epithelial cells must be obtained and dissociated prior to examination using the comet assay, and such procedures may induce varying amounts of DNA damage. Buccal epithelial cells require lysis enriched with proteinase K to obtain free nucleosomes. Over a 30 year period, the comet assay in epithelial cells has been little employed, however its use indicates that it could be an extraordinary tool not only for risk assessment, but also for diagnosis, prognosis of treatments and diseases.

  20. Comets: Role and importance to exobiology

    Science.gov (United States)

    Delsemme, Armand H.

    1992-01-01

    The transfer of organic compounds from interstellar space to the outskirts of a protoplanetary disk, their accretion into cometary objects, and the transport of the latter into the inner solar system by orbital diffusion throw a new light on the central problem of exobiology. It suggests the existence of a cosmic mechanism, working everywhere, that can supply prebiotic compounds to ubiquitous rocky planets, in search of the proper environment to start life in many places in the Universe. Under the heading of chemistry of the cometary nucleus, the following topics are covered: radial homogeneity of the nucleus; the dust-to-ice ratio; nature of the dust grains; origin of the dust in comets; nature of the volatile fraction; the CO distribution in comet Halley; dust contribution to the volatile fraction; elemental balance sheet of comet Halley; quantitative molecular analysis of the volatile fraction; and isotopic ratios. Under the heading of exogenous origin of carbon on terrestrial planets the following topics are covered: evidence for a high-temperature phase; from planetesimals to planets; a veneer of volatile and organic material; and cometary contribution.

  1. Asteroids, meteorites, and comets

    CERN Document Server

    Elkins-Tanton, Linda T

    2010-01-01

    Asteroids, Comets, and Meteorites provides students, researchers, and general readers with the most up-to-date information on this fascinating field. From the days of the dinosaurs to our modern environment, this book explores all aspects of these cosmic invaders.

  2. Death of a comet

    CERN Multimedia

    Hawkes, N

    2000-01-01

    The comet Linear dissolved as it made its closest approach to the sun on July 25th. The first stages of its breakup had been witnessed by the Hubble telescope when it threw off a piece of its crust (3 paragraphs).

  3. Highly Depleted Ethane and Mildly Depleted Methanol in Comet 21P/Giacobini-Zinner: Application of a New Empirical nu(sub 2) Band Model for CH30H Near 50 K

    Science.gov (United States)

    DiSanti, M. A.; Bonev, B. P.; Villanueva, G. L.; Mumma, M. J.

    2012-01-01

    Infrared spectra of Comet 2lP/Giacobini-Zinner (hereafter 2IP/GZ) were obtained using NIRSPEC at Keck II on UT 2005 June 03, approximately one month before perihelion, that simultaneously measured H2O, C2H6, and CH3OH. For H2O, the production rate of 3.8 x 10(exp 28) molecules / S was consistent with that measured during other apparitions of 21P/GZ retrieved from optical, infrared, and mm-wavelength observations. The water analysis also provided values for rotational temperature (T(sub rot) = 55(epx +3) /-.2 K) and the abundance ratio of ortho- and para-water (3.00 +/-0.15, implying a spin temperature exceeding 50 K). Six Q-branches in the V7 band of C2H6 provided a production rate (5.27 +/- 0.90 x 10(exp 25)/S) that corresponded to an abundance ratio of 0.139 +/- 0.024 % relative to H2O, confirming the previously reported strong depletion of C2H6 from IR observations during the 1998 apparition, and in qualitative agreement with the depletion in C2 known from optical studies. For CH30H, we applied our recently published ab initia model for the v3 band to obtain a rotational temperature (48(exp + 10) / -7 K) consistent with that obtained for H2O. In addition we applied a newly developed empirical model for the CH30H v2 band, and obtained a production rate consistent with that obtained from the v3 band. Combining results from both v2 and v3 bands provided a production rate (47.5 +/- 4.4 x 10(exp 25) / S) that corresponded to an abundance ratio of 1.25 +/- 0.12 % relative to H2O in 21P/GZ. Our study provides the first measure of primary volatile production rates for any Jupiter family comet over multiple apparitions using high resolution IR spectroscopy.

  4. Serum levels of C-reactive protein in patients with stable coronary artery disease: JUPITER in perspective.

    Science.gov (United States)

    Saely, Christoph H; Rein, Philipp; Vonbank, Alexander; Drexel, Heinz

    2010-10-29

    The JUPITER trial has recently demonstrated an outstanding reduction of cardiovascular events by 20 mg rosuvastatin/day in subjects with high CRP who were apparently healthy at baseline. However, absence of atherosclerosis in JUPITER was based on the subjects' history and not proven objectively. To put the results of JUPITER in perspective, we evaluated serum CRP in a consecutive series of 703 statin-naïve Caucasian patients with angiographically proven stable CAD. From these stable CAD patients, only 69.2% met the ≥2.0 mg/l serum CRP inclusion criterion of the JUPITER trial. Median CRP [interquartile range] in our CAD patients was 3.3 [1.6-6.6] mg/l, which was significantly (pJUPITER (4.2 mg/l). Our results point to considerable subclinical atherosclerosis in the patients studied in JUPITER. The impressive results of that trial may not be generalizable to healthy populations all over the world. Copyright © 2009 Elsevier Ireland Ltd. All rights reserved.

  5. Nonlinear low frequency (LF) waves - Comets and foreshock phenomena

    Science.gov (United States)

    Tsurutani, Bruce T.

    1991-01-01

    A review is conducted of LF wave nonlinear properties at comets and in the earth's foreshock, engaging such compelling questions as why there are no cometary cyclotron waves, the physical mechanism responsible for 'dispersive whiskers', and the character of a general description of linear waves. Attention is given to the nonlinear properties of LF waves, whose development is illustrated by examples of waves and their features at different distances from the comet, as well as by computer simulation results. Also discussed is a curious wave mode detected from Comet Giacobini-Zinner, both at and upstream of the bow shock/wave.

  6. A hot Jupiter orbiting a 2-million-year-old solar-mass T Tauri star.

    Science.gov (United States)

    Donati, J F; Moutou, C; Malo, L; Baruteau, C; Yu, L; Hébrard, E; Hussain, G; Alencar, S; Ménard, F; Bouvier, J; Petit, P; Takami, M; Doyon, R; Collier Cameron, A

    2016-06-30

    Hot Jupiters are giant Jupiter-like exoplanets that orbit their host stars 100 times more closely than Jupiter orbits the Sun. These planets presumably form in the outer part of the primordial disk from which both the central star and surrounding planets are born, then migrate inwards and yet avoid falling into their host star. It is, however, unclear whether this occurs early in the lives of hot Jupiters, when they are still embedded within protoplanetary disks, or later, once multiple planets are formed and interact. Although numerous hot Jupiters have been detected around mature Sun-like stars, their existence has not yet been firmly demonstrated for young stars, whose magnetic activity is so intense that it overshadows the radial velocity signal that close-in giant planets can induce. Here we report that the radial velocities of the young star V830 Tau exhibit a sine wave of period 4.93 days and semi-amplitude 75 metres per second, detected with a false-alarm probability of less than 0.03 per cent, after filtering out the magnetic activity plaguing the spectra. We find that this signal is unrelated to the 2.741-day rotation period of V830 Tau and we attribute it to the presence of a planet of mass 0.77 times that of Jupiter, orbiting at a distance of 0.057 astronomical units from the host star. Our result demonstrates that hot Jupiters can migrate inwards in less than two million years, probably as a result of planet–disk interactions.

  7. Baby Jupiters Must Gain Weight Fast

    Science.gov (United States)

    2009-01-01

    This photograph from NASA's Spitzer Space Telescope shows the young star cluster NGC 2362. By studying it, astronomers found that gas giant planet formation happens very rapidly and efficiently, within less than 5 million years, meaning that Jupiter-like worlds experience a growth spurt in their infancy.

  8. A Learning Organization approach for Knowledge Management at Jupiter Design.

    OpenAIRE

    Jones, Timothy John

    2006-01-01

    This report has been carried out by a student studying for the degree of a Masters in Business Administration at Nottingham University Business School. The focus of the report is to suggest a knowledge management framework for the client Jupiter Design Limited. Jupiter has experienced considerable success and growth over recent years, evolving from a relatively small but well respected design agency into one of the largest agencies operating outside of London. Due to an expanding clie...

  9. DNA comet assay for rice seeds treated with low energy electrons ('soft-electrons')

    International Nuclear Information System (INIS)

    Todoriki, Setsuko; Hayashi, Toru

    1999-01-01

    As rice seeds are sometimes contaminated with phytopathogenic organisms such as blast disease fungi and nematodes, a novel non-chemical disinfection method for rice seeds is highly required. In order to develop a disinfection method, the effect of low energy electron ('soft-electrons') on seed DNA was examined by using the neutral comet assay. Rice seeds (whole grain) were treated with electrons of different acceleration voltages (180 kV to 1 MV) at a dose of 5 kGy. Nucleus suspensions were prepared from whole brown rice and subjected to electrophoresis. DNA from un-irradiated (control) seeds relaxed and produced comets with a short tail, most of the comets distributed within the range of comet length between 30 μm to 70 μm. In the case of seeds treated with electrons at acceleration voltages up to 190 kV, cells without seed coats were not damaged and the frequency histograms of comet length showed almost the same pattern as that for control. At acceleration voltages higher than 200 kV, the cells were distributed into two categories; DNA comets with a short tail (with little DNA damages, less than 70 μm in the comet length) and DNA comets with long tails (with sever strand breaks, more than 130 μm in the comet length). The ratios of damaged cells increased with increasing acceleration voltage. The growths of rice seedlings were not affected by the treatment with electrons at up to 200 kV. On the contrary, the cells of gamma-irradiated seed showed small variations in the comet length, and which were depending on radiation dose. The individual cells of gamma-irradiated seeds at 1 kGy showed shorter comet than the damaged cells with soft electron, seed treated with gamma rays (1-5 kGy) did not shoot nor root. (author)

  10. Tilting Saturn without Tilting Jupiter: Constraints on Giant Planet Migration

    Science.gov (United States)

    Brasser, R.; Lee, Man Hoi

    2015-11-01

    The migration and encounter histories of the giant planets in our solar system can be constrained by the obliquities of Jupiter and Saturn. We have performed secular simulations with imposed migration and N-body simulations with planetesimals to study the expected obliquity distribution of migrating planets with initial conditions resembling those of the smooth migration model, the resonant Nice model and two models with five giant planets initially in resonance (one compact and one loose configuration). For smooth migration, the secular spin-orbit resonance mechanism can tilt Saturn’s spin axis to the current obliquity if the product of the migration timescale and the orbital inclinations is sufficiently large (exceeding 30 Myr deg). For the resonant Nice model with imposed migration, it is difficult to reproduce today’s obliquity values, because the compactness of the initial system raises the frequency that tilts Saturn above the spin precession frequency of Jupiter, causing a Jupiter spin-orbit resonance crossing. Migration timescales sufficiently long to tilt Saturn generally suffice to tilt Jupiter more than is observed. The full N-body simulations tell a somewhat different story, with Jupiter generally being tilted as often as Saturn, but on average having a higher obliquity. The main obstacle is the final orbital spacing of the giant planets, coupled with the tail of Neptune’s migration. The resonant Nice case is barely able to simultaneously reproduce the orbital and spin properties of the giant planets, with a probability ˜ 0.15%. The loose five planet model is unable to match all our constraints (probability <0.08%). The compact five planet model has the highest chance of matching the orbital and obliquity constraints simultaneously (probability ˜0.3%).

  11. Measurement of plasma and energetic charged particles in the proximity of Halley's comet

    International Nuclear Information System (INIS)

    Erdoes, Geza; Gombosi, Tamas; Kecskemety, Karoly; Somogyi, Antal; Tatrallyay, Mariella; Varga, Andras

    1987-01-01

    The instrumentation aboard the space probe VEGA for the exploration of Halley's comet contained the particle analyzers PLAZMAG and TUENDE-M. PLAZMAG was used for the measurement of the interaction between the low-energy solar plasma and the heavy ions from the comet. From the energy spectra measured near the nucleus of the comet the density distribution of ion groups can also be determined. TUENDE-M recorded the distribution of energetic heavy ions from the comet. The properties of various plasma regions within the 10 million km range from the comet's nucleus are discussed in detail. (R.P.)

  12. Evaluation of irradiation in foods using DNA comet assay

    International Nuclear Information System (INIS)

    Khawar, Affaf; Bhatti, Ijaz Ahmad; Khan, Q.M.; Ali, T.; Khan, A.I.; Asi, M.R.

    2011-01-01

    Comet assay is a rapid, inexpensive and sensitive biological technique to detect DNA damage in food stuffs by irradiation. In this study the Comet assay is applied on foods of plant and animal origins. Samples were irradiated by using 60 Co gamma-radiation source. The applied doses were 2, 6 and 10 kGy for food of plant origin and 0.5, 1 and 2 kGy for meat items. The un-irradiated and irradiated samples were clearly differentiated on the basis of DNA fragmentation. During the electrophoresis study, it was found that in un-irradiated cells DNA remained intact and appeared as Comets without tail whereas in irradiated cells Comets with tails were visible due to stretching of fragmented DNA. Moreover, it was also revealed that the DNA tail length was dose dependent. Dry food stuffs (seeds) showed good results as compared to moist foods (meat, fruits and vegetables) due to the absence of background damage. (author)

  13. A HOT GAP AROUND JUPITER'S ORBIT IN THE SOLAR NEBULA

    Energy Technology Data Exchange (ETDEWEB)

    Turner, N. J.; Choukroun, M.; Castillo-Rogez, J.; Bryden, G., E-mail: neal.turner@jpl.nasa.gov [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States)

    2012-04-01

    The Sun was an order of magnitude more luminous during the first few hundred thousand years of its existence, due in part to the gravitational energy released by material accreting from the solar nebula. If Jupiter was already near its present mass, the planet's tides opened an optically thin gap in the nebula. Using Monte Carlo radiative transfer calculations, we show that sunlight absorbed by the nebula and re-radiated into the gap raised temperatures well above the sublimation threshold for water ice, with potentially drastic consequences for the icy bodies in Jupiter's feeding zone. Bodies up to a meter in size were vaporized within a single orbit if the planet was near its present location during this early epoch. Dust particles lost their ice mantles, and planetesimals were partially to fully devolatilized, depending on their size. Scenarios in which Jupiter formed promptly, such as those involving a gravitational instability of the massive early nebula, must cope with the high temperatures. Enriching Jupiter in the noble gases through delivery trapped in clathrate hydrates will be more difficult, but might be achieved by either forming the planet much farther from the star or capturing planetesimals at later epochs. The hot gap resulting from an early origin for Jupiter also would affect the surface compositions of any primordial Trojan asteroids.

  14. Asteroid-comet continuum objects in the solar system.

    Science.gov (United States)

    Hsieh, Henry H

    2017-07-13

    In this review presented at the Royal Society meeting, 'Cometary science after Rosetta', I present an overview of studies of small solar system objects that exhibit properties of both asteroids and comets (with a focus on so-called active asteroids). Sometimes referred to as 'transition objects', these bodies are perhaps more appropriately described as 'continuum objects', to reflect the notion that rather than necessarily representing actual transitional evolutionary states between asteroids and comets, they simply belong to the general population of small solar system bodies that happen to exhibit a continuous range of observational, physical and dynamical properties. Continuum objects are intriguing because they possess many of the properties that make classical comets interesting to study (e.g. relatively primitive compositions, ejection of surface and subsurface material into space where it can be more easily studied, and orbital properties that allow us to sample material from distant parts of the solar system that would otherwise be inaccessible), while allowing us to study regions of the solar system that are not sampled by classical comets.This article is part of the themed issue 'Cometary science after Rosetta'. © 2017 The Author(s).

  15. Comet assay as a cold chain control tool

    International Nuclear Information System (INIS)

    Duarte, Renato Cesar

    2009-01-01

    Bearing in mind an ever more demanding market regarding the quality of food, it has been necessary to develop processes that meet the demands of consumers. Within the existing processes the cold chain and irradiation stand out. The cold chain comprises all the stages of conserving food from production, cooling, freezing, storing and transportation to the final consumer. Irradiation, as a means of conserving food, prolongs the shelf life, inhibits budding and reduces pathogenic contamination among other benefits. Is very important the identification of food degradation in function of failure on the processes which they were subjected. The comet assay is a screening test widely studied, considerate fast and with low cost. By the fact of the test identify breaks on the DNA, may be possible use the comet test on the control of cold chain failures that degrade de food. The labels and stamp, do not consider the previous food situation and indicate failures from the moment where they be placed in contact with the product. With the comet assay is possible to check the degradation that has occurred in liver chicken samples until the moment of comet's test realization. (author)

  16. Comet Dust: The Diversity of Primitive Particles and Implications

    Science.gov (United States)

    John Bradley; Zolensky, Michael E.

    2016-01-01

    Comet dust is primitive and shows significant diversity. Our knowledge of the properties of primitive particles has expanded significantly through microscale investigations of cosmic dust samples (IDPs and AMMs) and of comet dust samples (Stardust and Rosetta's COSIMA), as well as through remote sensing (spectroscopy and imaging) via Spitzer and via spacecraft encounters with 103P/Hartley 2 and 67P/Churyumov-Gerasimenko. Microscale investigations show that comet dust and cosmic dust are particles of unequilibrated materials, including aggregates of materials unequilibrated at submicron scales. We call unequilibrated materials "primitive" and we deduce they were incorporated into ice-­-rich (H2O-, CO2-, and CO-ice) parent bodies that remained cold, i.e., into comets, because of the lack of aqueous or thermal alteration since particle aggregation; yet some Stardust olivines suggest mild thermal metamorphism. Primitive particles exhibit a diverse range of: structure and typology; size and size distribution of constituents; concentration and form of carbonaceous and organic matter; D-, N-, and O- isotopic enhancements over solar; Mg-, Fe-contentsof thesilicate minerals; the compositions and concentrations of sulfides, and of less abundant mineral species such as chondrules, CAIs and carbonates. The unifomity within a group of samples points to: aerodynamic sorting of particles and/or particle constituents; the inclusion of a limited range of oxygen fugacities; the inclusion or exclusion of chondrules; a selection of organics. The properites of primitive particles imply there were disk processes that resulted in different comets having particular selections of primitive materials. The diversity of primitive particles has implications for the diversity of materials in the protoplanetary disk present at the time and in the region where the comets formed.

  17. Teetering Stars: Resonant Excitation of Stellar Obliquities by Hot and Warm Jupiters with External Companions

    Science.gov (United States)

    Anderson, Kassandra; Lai, Dong

    2018-04-01

    Stellar spin-orbit misalignments (obliquities) in hot Jupiter systems have been extensively probed in recent years thanks to Rossiter-McLaughlin observations. Such obliquities may reveal clues about hot Jupiter dynamical and migration histories. Common explanations for generating stellar obliquities include high-eccentricity migration, or primordial disk misalignment. This talk investigates another mechanism for producing stellar spin-orbit misalignments in systems hosting a close-in giant planet with an external, inclined planetary companion. Spin-orbit misalignment may be excited due to a secular resonance, occurring when the precession rate of the stellar spin axis (due to the inner orbit) becomes comparable to the precession rate of the inner orbital axis (due to the outer companion). Due to the spin-down of the host star via magnetic braking, this resonance may be achieved at some point during the star's main sequence lifetime for a wide range of giant planet masses and orbital architectures. We focus on both hot Jupiters (with orbital periods less than ten days) and warm Jupiters (with orbital periods around tens of days), and identify the outer perburber properties needed to generate substantial obliquities via resonant excitation, in terms of mass, separation, and inclination. For hot Jupiters, the stellar spin axis is strongly coupled to the orbital axis, and resonant excitation of obliquity requires a close perturber, located within 1-2 AU. For warm Jupiters, the spin and orbital axes are more weakly coupled, and the resonance may be achieved for more distant perturbers (at several to tens of AU). Resonant excitation of the stellar obliquity is accompanied by a decrease in the planets' mutual orbital inclination, and can thus erase high mutual inclinations in two-planet systems. Since many warm Jupiters are known to have outer planetary companions at several AU or beyond, stellar obliquities in warm Jupiter systems may be common, regardless of the

  18. Jupiter's magnetosphere and radiation belts

    Science.gov (United States)

    Kennel, C. F.; Coroniti, F. V.

    1979-01-01

    Radioastronomy and Pioneer data reveal the Jovian magnetosphere as a rotating magnetized source of relativistic particles and radio emission, comparable to astrophysical cosmic ray and radio sources, such as pulsars. According to Pioneer data, the magnetic field in the outer magnetosphere is radially extended into a highly time variable disk-shaped configuration which differs fundamentally from the earth's magnetosphere. The outer disk region, and the energetic particles confined in it, are modulated by Jupiter's 10 hr rotation period. The entire outer magnetosphere appears to change drastically on time scales of a few days to a week. In addition to its known modulation of the Jovian decametric radio bursts, Io was found to absorb some radiation belt particles and to accelerate others, and most importantly, to be a source of neutral atoms, and by inference, a heavy ion plasma which may significantly affect the hydrodynamic flow in the magnetosphere. Another important Pioneer finding is that the Jovian outer magnetosphere generates, or permits to escape, fluxes of relativistic electrons of such intensities that Jupiter may be regarded as the dominant source of 1 to 30 MeV cosmic ray electrons in the heliosphere.

  19. Disruption of microtubule network rescues aberrant actin comets in dynamin2-depleted cells.

    Directory of Open Access Journals (Sweden)

    Yuji Henmi

    Full Text Available A large GTPase dynamin, which is required for endocytic vesicle formation, regulates the actin cytoskeleton through its interaction with cortactin. Dynamin2 mutants impair the formation of actin comets, which are induced by Listeria monocytogenes or phosphatidylinositol-4-phosphate 5-kinase. However, the role of dynamin2 in the regulation of the actin comet is still unclear. Here we show that aberrant actin comets in dynamin2-depleted cells were rescued by disrupting of microtubule networks. Depletion of dynamin2, but not cortactin, significantly reduced the length and the speed of actin comets induced by Listeria. This implies that dynamin2 may regulate the actin comet in a cortactin-independent manner. As dynamin regulates microtubules, we investigated whether perturbation of microtubules would rescue actin comet formation in dynamin2-depleted cells. Treatment with taxol or colchicine created a microtubule-free space in the cytoplasm, and made no difference between control and dynamin2 siRNA cells. This suggests that the alteration of microtubules by dynamin2 depletion reduced the length and the speed of the actin comet.

  20. Comet 81P/Wild 2 under a microscope

    Energy Technology Data Exchange (ETDEWEB)

    Brownlee, D; Tsou, P; Aleon, J; Alexander, C; Araki, T; Bajt, S; Baratta, G A; Bastien, R; Bland, P; Bleuet, P; Borg, J; Bradley, J P; Brearley, A; Brenker, F; Brennan, S; Bridges, J C; Browning, N; Brucato, J R; Bullock, E; Burchell, M J; Busemann, H; Butterworth, A; Chaussidon, M; Cheuvront, A; Chi, M; Cintala, M J; Clark, B C; Clemett, S J; Cody, G; Colangeli, L; Cooper, G; Cordier, P; Daghlian, C; Dai, Z R; D' Hendecourt, L; Djouadi, Z; Dominguez, G; Duxbury, T; Dworkin, J P; Ebel, D; Economou, T E; Fairey, S J; Fallon, S; Ferrini, G; Ferroir, T; Fleckenstein, H; Floss, C; Flynn, G; Franchi, I A; Fries, M; Gainsforth, Z; Gallien, J; Genge, M; Gilles, M K; Gillet, P; Gilmour, J; Glavin, D P; Gounelle, M; Grady, M M; Graham, G A; Grant, P G; Green, S F; Grossemy, F; Grossman, L; Grossman, J; Guan, Y; Hagiya, K; Harvey, R; Heck, P; Herzog, G F; Hoppe, P; Horz, F; Huth, J; Hutcheon, I D; Ishii, H; Ito, M; Jacob, D; Jacobsen, C; Jacobsen, S; Joswiak, D; Kearsley, A T; Keller, L; Khodja, H; Kilcoyne, A D; Kissel, J; Krot, A; Langenhorst, F; Lanzirotti, A; Le, L; Leshin, L; Leitner, J; Lemelle, L; Leroux, H; Liu, M; Luening, K; Lyon, I; MacPherson, G; Marcus, M A; Marhas, K; Matrajt, G; Meibom, A; Mennella, V; Messenger, K; Mikouchi, T; Mostefaoui, S; Nakamura, T; Nakano, T; Newville, M; Nittler, L R; Ohnishi, I; Ohsumi, K; Okudaira, K; Papanastassiou, D A; Palma, R; Palumbo, M E; Pepin, R O; Perkins, D; Perronnet, M; Pianetta, P; Rao, W; Rietmeijer, F; Robert, F; Rost, D; Rotundi, A; Ryan, R; Sandford, S A; Schwandt, C S; See, T H; Schlutter, D; Sheffield-Parker, J; Simionovici, A; Simon, S; Sitnitsky, I; Snead, C J; Spencer, M K; Stadermann, F J; Steele, A; Stephan, T; Stroud, R; Susini, J; Sutton, S R; Taheri, M; Taylor, S; Teslich, N; Tomeoka, K; Tomioka, N; Toppani, A; Trigo-Rodriguez, J M; Troadec, D; Tsuchiyama, A; Tuzolino, A J; Tyliszczak, T; Uesugi, K; Velbel, M; Vellenga, J; Vicenzi, E; Vincze, L; Warren, J; Weber, I; Weisberg, M; Westphal, A J; Wirick, S; Wooden, D; Wopenka, B; Wozniakiewicz, P; Wright, I; Yabuta, K; Yano, H; Young, E D; Zare, R N; Zega, T

    2006-10-12

    The Stardust spacecraft collected thousands of particles from comet 81P/Wild 2 and returned them to Earth for laboratory study. The preliminary examination of these samples shows that the nonvolatile portion of the comet is an unequilibrated assortment of materials that have both presolar and solar system origin. The comet contains an abundance of silicate grains that are much larger than predictions of interstellar grain models, and many of these are high-temperature minerals that appear to have formed in the inner regions of the solar nebula. Their presence in a comet proves that the formation of the solar system included mixing on the grandest scales. Stardust was the first mission to return solid samples from a specific astronomical body other than the Moon. The mission, part of the NASA Discovery program, retrieved samples from a comet that is believed to have formed at the outer fringe of the solar nebula, just beyond the most distant planet. The samples, isolated from the planetary region of the solar system for billions of years, provide new insight into the formation of the solar system. The samples provide unprecedented opportunities both to corroborate astronomical (remote sensing) and sample analysis information (ground truth) on a known primitive solar system body and to compare preserved building blocks from the edge of the planetary system with sample-derived and astronomical data for asteroids, small bodies that formed more than an order of magnitude closer to the Sun. The asteroids, parents of most meteorites, formed by accretion of solids in warmer, denser, more collisionally evolved inner regions of the solar nebula where violent nebular events were capable of flash-melting millimeter-sized rocks, whereas comets formed in the coldest, least dense region. The samples collected by Stardust are the first primitive materials from a known body, and as such they provide contextual insight for all primitive meteoritic samples. About 200 investigators

  1. ISO celebrates its prolonged life with a video of Jupiter

    Science.gov (United States)

    1997-07-01

    This is excellent news for astronomers and especially for the multinational teams, with leaders in France, Germany, the Netherlands and the United Kingdom, who spent many years devising the four instruments served by ISO's telescope. The camera ISOCAM, the photometer ISOPHOT, the Short Wavelength Spectrometer and the Long Wavelength Spectrometer span between them an unprecedented range of infrared wavelengths from 2 to 200 microns. The atmosphere of Jupiter is one of the cool and cloudy places attracting ISO's attention, and ESA today releases a video of unprecedented images of Jupiter. The planet changes its appearance drastically as the camera ISOCAM scans a range of 90 different infrared wavelengths. Picture by picture, ISOCAM picks out different features of the atmosphere's composition and behaviour. These and other results from ISO will enable scientists to sharpen their ideas about how Jupiter's weather works. "ISO is giving us a new impression of the giant planets of the Solar System," comments Roger Bonnet, ESA's director of science. "Not just Jupiter, but Saturn, Uranus and Neptune too. By observing the planets across its very wide range of infrared wavelengths, ISO can see features overlooked even by spacecraft visiting the planets. The remarkable movie of Jupiter released today represents only a few per cent of ISO's wavelength range, yet every image tells its own story." More information about the Jupiter video appears later in this Information Note. How ISO's cold telescope beat the calendar The need to keep ISO's telescope and instruments chilled to a very low temperature sets a limit to their useful operating life. ISO was supplied with more than 2000 litres of superfluid helium to cool it. Slow evaporation maintains key parts of the spacecraft at temperatures close to absolute zero, below minus 271 degrees C. The rate of loss of helium was expected to be about 3 litres a day, but the cryogenic system could not be tested in exactly the conditions

  2. Comet Dust: The Story of Planet Formation as Told by the Tiniest of Particles

    Science.gov (United States)

    Wooden, D. H.

    2005-01-01

    Our planetary system formed out of a gas-rich disk-shaped nebula with the early Sun at its center. Many small icy bodies were consumed by the formation of the giant planets. However, many km-size icy bodies were tossed out of the giant-planet region to the cold, distant reaches of our solar system. Comets remained in their places of cold storage until perturbed into orbits that carry them into the inner solar system where they pass relatively close to the Sun. Comets are warmed by the Sun and shed material from their outer layers. The ices and gases shed by comets reveal simple and complex organic molecules were present at the time and in the region of the formation of the giant planets. Where the Earth was forming was too hot and had too intense sunlight for many of these ices and molecules to survive. The dust shed by comets tells us that some stardust survived unaltered but much of the dust was heated and crystallized before becoming part of the comet. Therefore, comet dust grains tell of large radial migrations from the cold outer reaches near Neptune into the hot regions near the forming Sun, and then back out to the cold regions where icy comets were accreting and forming. On 2005 July 4, the NASA Deep Impact Mission hit a comet and ejected primitive materials fiom its interior. These materials were not released into the comet s coma during normal activity. Despite the many passages of this comet close to the Sun, these primitive volatile gases and dust grains survived in its interior. Comet dust grains show that cold and hot materials were mixed into the same tiny particle very early in the formation of the solar system, and these aggregate dust grains never saw high temperatures again. The survival of primitive materials in comet nuclei suggests comets could have delivered organic molecules and primitive dust grains to early Earth.

  3. Main magnetic field of Jupiter and its implications for future orbiter missions

    Science.gov (United States)

    Acuna, M. H.; Ness, N. F.

    1975-01-01

    A very strong planetary magnetic field and an enormous magnetosphere with extremely intense radiation belts exist at Jupiter. Pioneer 10 and 11 fly-bys confirmed and extended the earlier ground based estimates of many of these characteristics but left unanswered or added to the list of several important and poorly understood features: the source mechanism and location of decametric emissions, and the absorption effects by the natural satellites Amalthea, Io, Europa and Ganymede. High inclination orbits (exceeding 60 deg) with low periapses (less than 2 Jupiter radii) are required to map the radiation belts and main magnetic field of Jupiter accurately so as to permit full investigation of these and associated phenomena.

  4. Infrared Spectroscopy of Parent Volatiles in Comets: Implications for Astrobiology

    Science.gov (United States)

    DiSanti, Michael A.

    2010-01-01

    Current cometary orbits provide information on their recent dynamical history. However, determining a given comet's formation region from its current dynamical state alone is complicated by radial migration in the proto-planetary disk and by dynamical interactions with the growing giant planets. Because comets reside for long periods of time in the outer Solar System, the ices contained in their nuclei (native ices) retain a relatively well-preserved footprint of when and where they formed, and this in turn can provide clues to conditions in the formation epoch. As a comet approaches the Sun, sublimation of its native ices releases parent volatiles into the coma where they can be measured spectroscopically. The past to - 15 years have seen the advent of infrared spectrometers with high sensitivity between about 2.8 and 5.0 micron, enabling a taxonomy among comets based on abundances of parent volatiles (e.g., H2O, CO, CH4, C2H6, HCN, CH30H, H2CO, NH3). Such molecules are of keen interest to Astrobiology, as they include important pre-biotic species that likely were required for the emergence of life on Earth and perhaps elsewhere. Approximately 20 comets have thus far been characterized, beginning with C/1996 82 (Hyakutake) in 1996. Molecular production rates are established through comparison of observed emission line intensities with those predicted by quantum mechanical fluorescence models. Abundances of parent volatiles (relative to H2O) vary among even the relatively small number of comets sampled, with the most volatile species (CO and CH4) displaying the largest variations. Techniques developed for measuring parent volatile abundances in comets will be discussed, as will possible implications for their formation.

  5. The Interiors of Jupiter and Saturn

    Science.gov (United States)

    Helled, Ravit

    2018-05-01

    Probing the interiors of the giant planets in our Solar System is not an easy task. This requires a set of observations combined with theoretical models that are used to infer the planetary composition and its depth dependence. The masses of Jupiter and Saturn are 318 and 96 Earth masses, respectively, and since a few decades, we know that they mostly consist of hydrogen and helium. It is the mass of heavy elements (all elements heavier than helium) that is not well determined, as well as its distribution within the planets. While the heavy elements are not the dominating materials in Jupiter and Saturn, they are the key for our understanding of their formation and evolution histories. The planetary internal structure is inferred to fit the available observational constraints including the planetary masses, radii, 1-bar temperatures, rotation rates, and gravitational fields. Then, using theoretical equations of states (EOSs) for hydrogen, helium, their mixtures, and heavier elements (typically rocks and/or ices), a structure model is developed. However, there is no unique solution for the planetary structure, and the results depend on the used EOSs and the model assumptions imposed by the modeler. Standard interior models of Jupiter and Saturn include three main regions: (1) the central region (core) that consists of heavy elements, (2) an inner metallic hydrogen envelope that is helium rich, and (3) an outer molecular hydrogen envelope depleted with helium. The distribution of heavy elements can be either homogenous or discontinuous between the two envelopes. Major model assumptions that can affect the derived internal structure include the number of layers, the heat transport mechanism within the planet (and its entropy), the nature of the core (compact vs. diluted), and the location/pressure where the envelopes are divided. Alternative structure models assume a less distinct division between the layers and/or a less non-homogenous distribution of the heavy

  6. Extension of the comet method to 2-D hexagonal geometry

    International Nuclear Information System (INIS)

    Connolly, Kevin John; Rahnema, Farzad; Zhang, Dingkang

    2011-01-01

    The capability of the heterogeneous coarse mesh radiation transport (COMET) method developed at Georgia Tech has been expanded. COMET is now able to treat hexagonal geometry in two dimensions, allowing reactor problems to be solved for those next-generation reactors which utilize prismatic block structure and hexagonal lattice geometry in their designs. The COMET method is used to solve whole core reactor analysis problems without resorting to homogenization or low-order transport approximations. The eigenvalue and fission density distribution of the reactor are determined iteratively using response functions. The method has previously proven accurate in solving PWR, BWR, and CANDU eigenvalue problems. In this paper, three simple test cases inspired by high temperature test reactor material cross sections and fuel block geometry are presented. These cases are given not in an attempt to model realistic nuclear power systems, but in order to test the ability of the improved method. Solutions determined by the new hexagonal version of COMET, COMET-Hex, are compared with solutions determined by MCNP5, and the results show the accuracy and efficiency of the improved COMET-Hex method in calculating the eigenvalue and fuel pin fission density in sample full-core problems. COMETHex determines the eigenvalues of these simple problems to an order of within 50 pcm of the reference solutions and all pin fission densities to an average error of 0.2%, and it requires fewer than three minutes to produce these results. (author)

  7. Spectroscopic Profiles of Comets Garradd and McNaught

    Science.gov (United States)

    Harris, Ien; Pierce, Donna M.; Cochran, Anita L.

    2017-10-01

    We have used the integral-field unit spectrograph (the George and Cynthia Mitchell Spectrograph) on the 2.7m Harlan J. Smith telescope at McDonald Observatory to obtain spectroscopic images of the comae of several comets. The images were obtained for various radical species (C2, C3, CN, NH2). Radial and azimuthal average profiles of the radical species were created to enhance any observed cometary coma morphological features. We compare the observed coma features across the observed species and over the different observation periods in order to constrain possible rotational states of the observed comets, as well as determine possible source differences in the coma between the observed radical species. We will present results for several comets, including C/2009 P1 (Garradd) and 260P (McNaught).

  8. Dynamics of landslides on comets of irregular shape

    Science.gov (United States)

    Czechowski, Leszek

    2017-04-01

    Landslides were observed on a few comet's nuclei, e.g. [1], [2]. The mechanism of their origin is not obvious because of very low gravity. According to [2] fluidization and multiphase transport of cometary material could be an explanation. We investigate here motion of the mass on a comet of irregular shape. The mechanism responsible for the low friction is not considered here. In fact, mass motion often occurs without contact with the surface. The motion could be triggered by meteoroids impacts or by the tidal forces. Comets nuclei are believed to be built of soft materials like snow and dust. The landing of Philae on the comet 67P/Czuriumow-Gierasimienko indicates a different situation. According to [1]: "thermal probe did not fully penetrate the near-surface layers, suggesting a local resistance of the ground to penetration of >4 megapascals, equivalent to >2 megapascal uniaxial compressive strength". Here we assume that elastic properties of comet's nuclei could be similar to elastic properties of dry snow, namely Young modulus is assumed to be 1 - 100 MPa, see [3] and [4]. We consider nucleus of the shape of 67P/Churyumov-Gerasimenko with density 470 kg/m3. The impact or tidal forces result in changing of rotation of the comet. In general, the vector of angular velocity will be a subject to nutation that results in changing of centrifugal force, and consequently could be a factor triggering landslides. Note that nucleus' shape does not resemble the shape of surface of constant value of gravitational potential (i.e. 'geoid'). Our numerical models indicate the parts of the nucleus where landslides start and other parts where landslides stop. Of course, the regolith from the first type of regions would be removed to the regions of the second class. The motion of the mass is often complicated because of complicated distribution of the gravity and complicated shape of the nucleus. Acknowledgement: The research is partly supported by Polish National Science Centre

  9. Polycyclic aromatic hydrocarbons in the atmospheres of Titan and Jupiter

    Science.gov (United States)

    Sagan, Carl; Khare, B. N.; Thompson, W. R.; Mcdonald, G. D.; Wing, Michael R.; Bada, Jeffrey L.; Vo-Dinh, Tuan; Arakawa, E. T.

    1993-01-01

    PAHs are important components of the interstellar medium and carbonaceous chondrites, but have never been identified in the reducing atmospheres of the outer solar system. Incompletely characterized complex organic solids (tholins) produced by irradiating simulated Titan atmospheres reproduce well the observed UV/visible/IR optical constants of the Titan stratospheric haze. Titan tholin and a tholin generated in a crude simulation of the atmosphere of Jupiter are examined by two-step laser desorption/multiphoton ionization mass spectrometry. A range of two- to four-ring PAHs, some with one to four alkylation sites, are identified, with a net abundance of about 0.0001 g/g (grams per gram) of tholins produced. Synchronous fluorescence techniques confirm this detection. Titan tholins have proportionately more one- and two-ring PAHs than do Jupiter tholins, which in turn have more four-ring and larger PAHs. The four-ringed PAH chrysene, prominent in some discussions of interstellar grains, is found in Jupiter tholins.

  10. Identifying the Source of Large-Scale Atmospheric Variability in Jupiter

    Science.gov (United States)

    Orton, Glenn

    2011-01-01

    We propose to use the unique mid-infrared filtered imaging and spectroscopic capabilities of the Subaru COMICS instrument to determine the mechanisms associated with recent unusual rapid albedo and color transformations of several of Jupiter's bands, particularly its South Equatorial Belt (SEB), as a means to understand the coupling between its dynamics and chemistry. These observations will characterize the temperature, degree of cloud cover, and distribution of minor gases that serve as indirect tracers of vertical motions in regions that will be undergoing unusual large-scale changes in dynamics and chemistry: the SEB, as well as regions near the equator and Jupiter's North Temperate Belt. COMICS is ideal for this investigation because of its efficiency in doing both imaging and spectroscopy, its 24.5-mum filter that is unique to 8-meter-class telescopes, its wide field of view that allows imaging of nearly all of Jupiter's disk, coupled with a high diffraction-limited angular resolution and optimal mid-infrared atmospheric transparency.

  11. Architectural and chemical insights into the origin of hot Jupiters

    Science.gov (United States)

    Schlaufman, Kevin C.

    2015-10-01

    The origin of Jupiter-mass planets with orbital periods of only a few days is still uncertain. This problem has been with us for 20 years, long enough for significant progress to have been made, and also for a great deal of ``lore" to have accumulated about the properties of these planets. Among this lore is the widespread belief that hot Jupiters are less likely to be in multiple giant planet systems than longer-period giant planets. I will show that in this case the lore is not supported by the best data available today: hot Jupiters are not lonely. I will also show that stellar sodium abundance is inversely proportional to the probability that a star hosts a short-period giant planet. This observation is best explained by the effect of decreasing sodium abundance on protoplanetary disk structure and reveals that planetesimal-disk or planet-disk interactions are critical for the existence of short-period giant planets.

  12. Detection of irradiation treatment of foods using DNA 'comet assay'

    International Nuclear Information System (INIS)

    Khan, Hasan M.; Delincee, Henry

    1998-01-01

    Microgel electrophoresis of single cells (DNA comet assay) has been investigated to detect irradiation treatment of some food samples. These samples of fresh and frozen rainbow trout, red lentil, gram and sliced almonds were irradiated to 1 or 2 kGy using 10 MeV electron beam from a linear accelerator. Rainbow trout samples yielded good results with samples irradiated to 1 or 2 kGy showing fragmentation of DNA and, therefore, longer comets with no intact cells. Unirradiated samples showed shorter comets with a significant number of intact cells. For rainbow trout stored in a freezer for 11 days the irradiated samples can still be discerned by electrophoresis from unirradiated samples, however, the unirradiated trouts also showed some longer comets besides some intact cells. Radiation treatment of red lentils can also be detected by this method, i.e. no intact cells in 1 or 2 kGy irradiated samples and shorter comets and some intact cells in unirradiated samples. However, the results for gram and sliced almond samples were not satisfactory since some intact DNA cells were observed in irradiated samples as well. Probably, incomplete lysis has led to these deviating results

  13. Secular chaos and its application to Mercury, hot Jupiters, and the organization of planetary systems.

    Science.gov (United States)

    Lithwick, Yoram; Wu, Yanqin

    2014-09-02

    In the inner solar system, the planets' orbits evolve chaotically, driven primarily by secular chaos. Mercury has a particularly chaotic orbit and is in danger of being lost within a few billion years. Just as secular chaos is reorganizing the solar system today, so it has likely helped organize it in the past. We suggest that extrasolar planetary systems are also organized to a large extent by secular chaos. A hot Jupiter could be the end state of a secularly chaotic planetary system reminiscent of the solar system. However, in the case of the hot Jupiter, the innermost planet was Jupiter (rather than Mercury) sized, and its chaotic evolution was terminated when it was tidally captured by its star. In this contribution, we review our recent work elucidating the physics of secular chaos and applying it to Mercury and to hot Jupiters. We also present results comparing the inclinations of hot Jupiters thus produced with observations.

  14. Secular chaos and its application to Mercury, hot Jupiters, and the organization of planetary systems

    Science.gov (United States)

    Lithwick, Yoram; Wu, Yanqin

    2014-01-01

    In the inner solar system, the planets’ orbits evolve chaotically, driven primarily by secular chaos. Mercury has a particularly chaotic orbit and is in danger of being lost within a few billion years. Just as secular chaos is reorganizing the solar system today, so it has likely helped organize it in the past. We suggest that extrasolar planetary systems are also organized to a large extent by secular chaos. A hot Jupiter could be the end state of a secularly chaotic planetary system reminiscent of the solar system. However, in the case of the hot Jupiter, the innermost planet was Jupiter (rather than Mercury) sized, and its chaotic evolution was terminated when it was tidally captured by its star. In this contribution, we review our recent work elucidating the physics of secular chaos and applying it to Mercury and to hot Jupiters. We also present results comparing the inclinations of hot Jupiters thus produced with observations. PMID:24367108

  15. Dekametric and hectometric observations of Jupiter from the RAE-1 satellite

    Science.gov (United States)

    Desch, M. D.; Carr, T. D.

    1974-01-01

    Analysis of RAE-1 satellite data has revealed the presence of radio bursts from Jupiter in the frequency range from 4700 kHz to 450 kHz. Variations in the activity with respect to the planet's system III longitude are presented at seven frequencies. A merge of ground-based and satellite-acquired data indicates that the long-sought-for peak in Jupiter's low-frequency flux spectrum occurs at about 8 MHz.

  16. Juno's first peek at Jupiter's interior

    Science.gov (United States)

    Guillot, Tristan; Miguel, Yamila; Hubbard, William B.; Kaspi, Yohai; Reese, Daniel; Helled, Ravit; Galanti, Eli; Militzer, Burkhard; Wahl, Sean; Folkner, William M.; Anderson, John; Iess, Luciano; Durante, Daniele; Parisi, Marzia; Stevenson, David J.

    2017-04-01

    The first orbits of Juno around Jupiter have led to a considerable improvement in the measurement of the planet's even gravitational moments. We will discuss how this leads to better constraints on jovian interior models, and how internal differential rotation and equations of state play an important part in the analysis.

  17. Remote comets and related bodies - VJHK colorimetry and surface materials

    Science.gov (United States)

    Hartmann, W. K.; Cruikshank, D. P.; Degewij, J.

    1982-01-01

    VJHK colors for a number of asteroids and eight comets at various solar distances and levels of activity were obtained, and the observations are interpreted in terms of a two-component mixing model in which outer solar system interplanetary bodies are viewed as mixtures of ice and dark carbonaceous-type (RD and C) dirt. It is inferred that the observed comets have comae, and perhaps surfaces, of dirty ice or ice dirt grains colored by an RD-dirt component. This inference is supported by systematics of an 'alpha index' based on VJHK colors and empirically correlated with albedo and ice/dirt ratio. Among comets the alpha index correlates with solar distance in a way that suggests comets emit dirty ice grains which are stable at large solar distance but from which the ice component sublimes and leaves dirt grains at small solar distance.

  18. Outbursts and diamagnetic cavities in comet 67P/Churyumov-Gerasimenko

    Science.gov (United States)

    Voelzke, M. R.

    2018-03-01

    On 2014 August 06 the Rosetta spacecraft arrived at comet 67P/Churyumov-Gerasimenko. Since then, the spacecraft accompanied the comet on its journey around the Sun (Glassmeier et al. 2007), until the end of the mission on 2016 September 30. This work tries to understand the possible connections between the 665 reported diamagnetic regions (Goetz et al. 2016), detected from April 2015 to February 2016 around the comet 67P/Churyumov-Gerasimenko, with the fluxgate magnetometer of the Rosetta Plasma Consortium (RPC-MAG), when the heliocentric distance of the comet from the sun varied from 1.8 to 2.4 AU and the 34 reported outbursts (Vincent et al. 2016), detected from July to September 2015, with the Optical, Spectroscopic, and Infrared Remote Imaging System (OSIRIS) cameras, when the ESA's Rosetta spacecraft changed the cometocentric distance from 155 to 817 km.

  19. MULTI-WAVELENGTH OBSERVATIONS OF COMET C/2011 L4 (PAN-STARRS)

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Bin; Keane, Jacqueline; Meech, Karen [NASA Astrobiology Institute, University of Hawaii, Honolulu, HI 96822 (United States); Owen, Tobias; Wainscoat, Richard, E-mail: yangbin@ifa.hawaii.edu [Institute for Astronomy, University of Hawaii, Honolulu, HI 96822 (United States)

    2014-04-01

    The dynamically new comet C/2011 L4 (Pan-STARRS) is one of the brightest comets observed since the great comet C/1995 O1 (Hale-Bopp). Here, we present our multi-wavelength observations of C/2011 L4 during its in-bound passage to the inner solar system. A strong absorption band of water ice at 2.0 μm was detected in the near-infrared spectra, obtained with the 8 m Gemini-North and 3 m Infrared Telescope Facility Telescopes. The companion 1.5 μm band of water ice, however, was not observed. Spectral modeling shows that the absence of the 1.5 μm feature can be explained by the presence of sub-micron-sized fine ice grains. No gas lines (i.e., CN, HCN, or CO) were observed pre-perihelion in either the optical or the submillimeter. We derived 3σ upper limits for the CN and CO production rates. The comet exhibited a very strong continuum in the optical and its slope seemed to become redder as the comet approached the Sun. Our observations suggest that C/2011 L4 is an unusually dust-rich comet with a dust-to-gas mass ratio >4.

  20. IUE observations of the evolution of Comet Wilson (1986l) - comparison with P/Halley

    International Nuclear Information System (INIS)

    Roettger, E.E.; Feldman, P.D.; A'hearn, M.F.; Festou, M.C.; Mcfadden, L.A.

    1989-01-01

    IUE observations of Comet Wilson from September 1986 to November 1987, through perihelion, allow a comparison to be conducted between this 'new' comet and the highly evolved P/Halley, at comparable heliocentric distances. The temporal decreases of both OH and dust in Comet Wilson near perihelion were monotonic and slow, by contrast to Comet Halley's rapid fluctuations. Despite these differences, relative gas abundances were similar within a factor of about 2 for comparable heliocentric and geocentric distances; this indicates that P/Halley's in situ gas measurements may be typical of comets generally. 33 refs

  1. Comet Dust: The Diversity of "Primitive" Particles and Implications

    Science.gov (United States)

    Wooden, Diane H.; Ishii, Hope A.; Bradley, John P.; Zolensky, Michael E.

    2016-01-01

    Comet dust is primitive and shows significant diversity. Our knowledge of the properties of primitive particles has expanded significantly through microscale investigations of cosmic dust samples ( IDP's(Interplanetary Dust Particles) and AMM's (Antarctic Micrometeorites)) and of comet dust samples (Stardust and Rosetta's COSIMA), as well as through remote sensing (spectroscopy and imaging) via Spitzer and via spacecraft encounters with 103P/Hartley 2 and 67P/Churyumov-Gerasimenko. Microscale investigations show that comet dust and cosmic dust are particles of unequilibrated materials, including aggregates of materials unequilibrated at submicron scales. We call unequilibrated materials "primitive" and we deduce they were incorporated into ice-rich (H2O-, CO2-, and CO-ice) parent bodies that remained cold, i.e., into comets, because of the lack of aqueous or thermal alteration since particle aggregation; yet some Stardust olivines suggest mild thermal metamorphism. Primitive particles exhibit a diverse range of: structure and typology; size and size distribution of constituents; concentration and form of carbonaceous and organic matter; D-, N-, and O- isotopic enhancements over solar; Mg-, Fe-contents of the silicate minerals; the compositions and concentrations of sulfides, and of less abundant mineral species such as chondrules, CAIs and carbonates. The uniformity within a group of samples points to: aerodynamic sorting of particles and/or particle constituents; the inclusion of a limited range of oxygen fugacities; the inclusion or exclusion of chondrules; a selection of organics. The properties of primitive particles imply there were disk processes that resulted in different comets having particular selections of primitive materials. The diversity of primitive particles has implications for the diversity of materials in the protoplanetary disk present at the time and in the region where the comets formed.

  2. JUPITER PROJECT - MERGING INVERSE PROBLEM FORMULATION TECHNOLOGIES

    Science.gov (United States)

    The JUPITER (Joint Universal Parameter IdenTification and Evaluation of Reliability) project seeks to enhance and build on the technology and momentum behind two of the most popular sensitivity analysis, data assessment, calibration, and uncertainty analysis programs used in envi...

  3. Analysis of JUPITER experiment in ZPPR-9

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1980-09-15

    Information and data from the ZPPR-9 reactor JUPITER experiment are presented concerning a general description of data and methods; criticality; reaction rate ratio and reaction rate distribution; Doppler and sample reactivity worth; sodium void worth; and control rod worth.

  4. Spectrophotometry of Dust in Comet Hale-Bopp

    Science.gov (United States)

    Witteborn, Fred C. (Technical Monitor)

    1997-01-01

    Comets, such as Hale-Bopp (C/1995 O1), are frozen reservoirs of primitive solar nebula dust grains and ices. Analysis of the composition of cometary dust grains from infrared spectroscopic techniques permits an estimation of the types of organic and inorganic materials that constituted the early primitive solar nebula. In addition, the cometary bombardment of the Earth (approximately 3.5 Gy ago) supplied the water for the oceans and brought organic materials to Earth which may have been biogenic. Spectroscopic observations of comet Hale-Bopp suggest the possible presence of organic hydrocarbon species, silicate and olivine dust grains, and water ice. Spectroscopy near 3 microns obtained in Nov 1996 r=2.393 AU, delta=3.034 AU) shows a feature which we attribute to PAH emission. The spatial morphology of the 3.28 microns PAH feature is also presented. Optical and infrared spectrophotometric observations of comets convey valuable information about the spatial distribution and properties of dust and gas within the inner coma. In the optical and NIR shortward of 2 microns, the observed light is primarily scattered sunlight from the dust grains. At longer wavelengths, particularly in the 10 gm window, thermal emission from these grains dominates the radiation allowing an accurate estimate of grain sizes and chemical composition. Here we present an initial analysis of spectra taken with the NASA HIFOGS at 7-14 microns as part of a multiwavelength temporal study of the "comet of the century".

  5. Use of statistical analysis to validate ecogenotoxicology findings arising from various comet assay components.

    Science.gov (United States)

    Hussain, Bilal; Sultana, Tayyaba; Sultana, Salma; Al-Ghanim, Khalid Abdullah; Masoud, Muhammad Shahreef; Mahboob, Shahid

    2018-04-01

    Cirrhinus mrigala, Labeo rohita, and Catla catla are economically important fish for human consumption in Pakistan, but industrial and sewage pollution has drastically reduced their population in the River Chenab. Statistics are an important tool to analyze and interpret comet assay results. The specific aims of the study were to determine the DNA damage in Cirrhinus mrigala, Labeo rohita, and Catla catla due to chemical pollution and to assess the validity of statistical analyses to determine the viability of the comet assay for a possible use with these freshwater fish species as a good indicator of pollution load and habitat degradation. Comet assay results indicated a significant (P comet head diameter, comet tail length, and % DNA damage. Regression analysis and correlation matrices conducted among the parameters of the comet assay affirmed the precision and the legitimacy of the results. The present study, therefore, strongly recommends that genotoxicological studies conduct appropriate analysis of the various components of comet assays to offer better interpretation of the assay data.

  6. Direct imaging and spectrophotometry of Comet P/Tempel 2

    International Nuclear Information System (INIS)

    Boehnhardt, H.; Beisser, K.; Vanysek, V.; Mueller, B.E.A.; Weiss, M.

    1990-01-01

    Both direct imaging and spectrophotometry of Comet P/Tempel 2 during May-November 1988 have led to a nuclear diameter determination of the order of about 10 km. Sekanina's (1987) spin-vector model for this comet is judged capable of qualitatively accounting for both the visual light curve of the comet during this period, which exhibited a steep increase perihelion despite the normal, moderate-decrease perihelion, and an asymmetric extension of the fanlike coma in the solar direction. The late activity onset, the possible constant visual brightness immediately afterward, and the deviation of the fan axis orientation from the predicted value in May 1988, may all furnish additional constraints for P/Tempel 2 nucleus modeling. 24 refs

  7. Rosuvastatin and the JUPITER trial: critical appraisal of a lifeless planet in the galaxy of primary prevention.

    Science.gov (United States)

    López, Antonio; Wright, James M

    2012-01-01

    In November 2008, the JUPITER trial was published in the New England Journal of Medicine. JUPITER is an acronym for Justification for the Use of Statins in Prevention: an Intervention Trial Evaluating Rosuvastatin. It was an AstraZeneca sponsored randomized double-blind trial comparing rosuvastatin 20 mg with placebo in 17,802 apparently healthy men and women with LDL cholesterol JUPITER trial have been widely publicized, and based on the trial, the main regulatory agencies have approved rosuvastatin for the indication of primary prevention of vascular events. However, the interpretation and clinical implications of the JUPITER trial have been questioned and remain controversial. The objective of this commentary is to evaluate the relevance, design, results, and conclusions of the JUPITER study.

  8. Blazing a ghostly trail ISON and great comets of the past and future

    CERN Document Server

    Grego, Peter

    2014-01-01

    A special celestial event climaxes towards the end of 2013, the arrival, fresh from the Oort Cloud, of Comet C/2012 S1 (ISON). By all predictions, this comet was set to be one of the most dazzling comets seen in modern history.   Sky watchers will have already been primed for C/2012 (ISON) earlier in 2013 with the apparition of another naked-eye comet, C/2011 L4 (PanSTARRS), and following C/2012 S1 (ISON) there is the prospect of 2012 K1 (PanSTARRS) reaching naked-eye visibility in August 2014. And there will be other bright cometary prospects in the near future, if we take into account the latest predictions.   This book sets the scene for the arrival of Comet C/2012 S1 and those comets following it over the next few years. It explains how sky watchers and amateur astronomers can practically follow comets, observe them, and record them. This is also a guide on how to keep abreast of the latest cometary discoveries and how to use publications, websites, programs, and apps to visualize and plan observations....

  9. Irradiation detection of food by DNA Comet Assay

    International Nuclear Information System (INIS)

    Khan, A.A.; Delincee, H.

    1999-01-01

    Microgel electrophoresis of single cells or nuclei (DNA Comet Assay) has been investigated to detect irradiation treatment of more than 50 food commodities e.g. meats, seafood, cereals, pulses, nuts, fruits and vegetables, and spices. The foodstuffs have been exposed to radiation doses covering the range of potential commercial irradiation for inactivation of pathogenic and spoilage micro-organisms, for insect disinfestation and for shelf-life extension. The Comet Assay is based on detection of DNA fragments presumptive to irradiation. For most of the food items investigated, the assay can be applied successfully for irradiation detection by working out different conditions of the assay. However, with some of the foods difficulties arose due to - lack of discrimination between the irradiated and unirradiated food samples due to the presence of the same kinds of comets in both cases and the total absence of the typical intact cells in unirradiated samples. - Sufficient DNA material was not available from some of the foods. - Insufficient lysis of the cell walls in case of some plant foods. In conclusion, the DNA Comet Assay can help to detect the irradiation treatment of several varieties of foods using low-cost equipment in a short time of analysis. (orig.)

  10. Triple F - A Comet Nucleus Sample Return Mission

    Science.gov (United States)

    Kueppers, Michael; Keller, Horst Uwe; Kuhrt, Ekkehard; A'Hearn, Michael; Altwegg, Kathrin; Betrand, Regis; Busemann, Henner; Capria, Maria Teresa; Colangeli, Luigi

    2008-01-01

    The Triple F (Fresh From the Fridge) mission, a Comet Nucleus Sample Return, has been proposed to ESA s Cosmic Vision program. A sample return from a comet enables us to reach the ultimate goal of cometary research. Since comets are the least processed bodies in the solar system, the proposal goes far beyond cometary science topics (like the explanation of cometary activity) and delivers invaluable information about the formation of the solar system and the interstellar molecular cloud from which it formed. The proposed mission would extract three samples of the upper 50 cm from three locations on a cometary nucleus and return them cooled to Earth for analysis in the laboratory. The simple mission concept with a touch-and-go sampling by a single spacecraft was proposed as an M-class mission in collaboration with the Russian space agency ROSCOSMOS.

  11. Physical activity of the selected nearly isotropic comets with perihelia at large heliocentric distance

    Science.gov (United States)

    Kulyk, I.; Rousselot, P.; Korsun, P. P.; Afanasiev, V. L.; Sergeev, A. V.; Velichko, S. F.

    2018-03-01

    Context. The systematic investigation of comets in a wide range of heliocentric distances can contribute to a better understanding of the physical mechanisms that trigger activity at large distances from the Sun and reveals possible differences in the composition of outer solar system bodies belonging to various dynamical groups. Aims: We seek to analyze the dust environment of the selected nearly isotropic comets with a perihelion distance between 4.5 and 9.1 au, where sublimation of water ice is considered to be negligible. Methods: We present results of multicolor broadband photometric observations for 14 distant active objects conducted between 2008 and 2015 with various telescopes. Images obtained with broadband filters were used to investigate optical colors of the cometary comae and to quantify physical activity of the comet nuclei. Results: The activity level was estimated with Afρ parameters ranging between 95 ± 10 cm and 9600 ± 300 cm. Three returning comets were less active than the dynamically new comets. Dust production rates of the comet nuclei were estimated between 1 and 100 kg s-1 based on some assumptions about the physical properties of dust particles populating comae. The measured colors point out reddening of the continuum for all the comets. The mean values of a normalized reflectivity gradient within the group of the comets amount to 14 ± 2% per 1000 Å and 3 ± 2% per 1000 Å in the BV and VR spectral domains, respectively. The comae of the dynamically new comets, which were observed on their inbound legs, may be slightly redder in the blue spectral interval than comae of the comets observed after the perihelion passages. The dynamically new comets observed both pre- and post-perihelion, seem to have higher production rates post-perihelion than pre-perihelion for similar heliocentric distances.

  12. JUPITER-3実験解析(4)

    OpenAIRE

    三田 敏男

    1990-01-01

    本報告書は、技術開発部プラント工学室で組識しているJUPITERサブワーキングGrの平成元年度の成果をまとめたものである。JUPITERサブワーキングGrは、動燃事業団が米国エネルギー省(DOE)との共同研究としてアルゴンヌ国立研究所(ANL-W)の大型臨界実験装置ZPPRで実施した大型高速炉臨界実験(JUPITER-III)の計画、実験解析を行うためのワーキンググループである。JUPITER-IIIは電気出力65万kW級の軸方向非均質炉心模擬実験(ZPPR-17シリーズ)と100万kW級の均質炉心模擬実験(ZPPR-18シリーズ)からなる。JUPITER-III実験解析は本年度で終了し、その成果を過去のJUPITER-I,II(電気出力60万sim80万kW級の均質、径方向非均質炉心模擬実験)の解析結果と比較してJUPITER実験解析を総合評価した。本年度の主な成果は下記の通りである。(1) JUPITER実験解析法をセル計算を中心に検討して現状の最新解析法をまとめると共に、これらに基づく炉心設計法を設定した。...

  13. Recent Simulations of the Late Stages Growth of Jupiter

    Science.gov (United States)

    Lissauer, Jack J.; D'Angelo, Gennaro; Hubickyj, Olenka

    2012-01-01

    Presented by Lissauer et al. (2009, Icarus 199, 338) are used to test the model of capture of Jupiter's irregular satellites within proto-Jupiter's distended and thermally-supported envelope. We find such capture highly unlikely, since the envelope shrinks too slowly for a large number of moons to be retained, and many of those that would be retained would orbit closer to the planet than do the observed Jovian irregulars. Our calculations do not address (and therefore do not exclude) the possibility that the irregular satellites were captured as a result of gas drag within a circumjovian disk. Support for this research from NASA Outer Planets Research Program is gratefully acknowledged.

  14. Ultraviolet Studies of Jupiter's Hydrocarbons and Aerosols from Galileo

    Science.gov (United States)

    Gladstone, G. Randall

    2001-01-01

    This is the final report for this project. The purpose of this project was to support PI Wayne Pryor's effort to reduce and analyze Galileo UVS (Ultraviolet Spectrometer) data under the JSDAP program. The spectral observations made by the Galileo UVS were to be analyzed to determine mixing ratios for important hydrocarbon species (and aerosols) in Jupiter's stratosphere as a function of location on Jupiter. Much of this work is still ongoing. To date, we have concentrated on analyzing the variability of the auroral emissions rather than the absorption signatures of hydrocarbons, although we have done some work in this area with related HST-STIS data.

  15. Origin and evolution of Jupiter and Saturn

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, S S [Virginia Univ., Charlottesville (USA)

    1977-07-01

    Arguments are presented which make it very unlikely that Jupiter and Saturn were formed by contraction from initially extended gaseous states. Formation of these and other planets (in the solar system) by the mechanism of accretion does not appear to present any difficulties.

  16. Meteorite Dichotomy Implies that Jupiter Formed Early

    Science.gov (United States)

    Kruijer, T. S.; Burkhardt, C.; Budde, G.; Kleine, T.

    2018-05-01

    Meteorites derive from two distinct nebular reservoirs that co-existed and remained spatially separated between 1 and 3–4 Ma after CAIs. This can most easily be explained if Jupiter acted as a barrier and formed early, within less than 1 Ma.

  17. Assessment of Genotoxicity of Ionizing radiation using Tradescantia-Comet assay

    Energy Technology Data Exchange (ETDEWEB)

    Han, Min; Ryu, Tae Ho; Hyun, Kyung Man; Kim, Jin Kyu [Korea Atomic Energy Research Institute, Jeongeup (Korea, Republic of); Wilhelmova, Nad [Institute of Experimental Botany, Prague (Czech Republic)

    2010-05-15

    Over the last two decades, several new methodologies for the detection of DNA damage have been developed. The comet assay is currently used in different areas of biological sciences to detect DNA damage. The comet assay, also called the single cell gel electrophoresis (SCGE) was first introduced by Ostling and Johanson as a microelectrophoretic technique for the direct visualization of DNA damage in individual cells. The comet assay, due to its simplicity, sensitivity and need of a few cells, is ideal as a short-term genotoxicity test. The comet assay can theoretically be applied to every type of eukaryotic cell, including plant cells. Plants are very useful as monitors of genetic effects caused by pollution in the atmosphere, water and soil. Although the genotoxic effects detected by Tradescantia tests cannot be associated with mutagenesis or even carcinogenesis in humans, these bioassays are very useful tools for screening the mutagenic potential in the environment. Experiments were conducted to study the genotoxic effects of ionizing radiations on the genome integrity, particularly of Tradescantia. The increasingly frequent use of Tradescantia as a sensitive environmental bioindicator of genotoxic effects. This study was designed to assess the genotoxicity of ionizing radiation using Tradescnatia-comet assay

  18. Comet C/2001 J1

    Czech Academy of Sciences Publication Activity Database

    Pravec, Petr; Helin, E.; Lawrence, K.; Kotková, Lenka; Tichá, J.; Tichý, M.

    č. 7623 (2001), s. 1 ISSN 0081-0304 R&D Projects: GA ČR GA205/99/0255 Institutional research plan: CEZ:AV0Z1003909 Keywords : comet s * astrometry Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics

  19. COMET- co-ordination and implementation of a pan-European instrument for radioecology - COMET- co-ordination and implementation of a pan-European project for radioecology

    Energy Technology Data Exchange (ETDEWEB)

    Vandenhove, Hildegarde [SCK.CEN, Belgian Nuclear Research Centre, Boeretang 200, 2400 Mol (Belgium); Muikku, Maarit [STUK, Radiation and Nuclear Safety Authority, P.O. Box 14, FI-00881 Helsinki (Finland); Liland, Astrid [NRPA, Norwegian Radiation Protection Authority, Grini Naeringspark 13, Oesteraas, 1332 (Norway); Adam-Guillermin, Christelle [IRSN-Institut de Radioprotection et de Surete Nucleaire, 31, Avenue de la Division Leclerc, 92260 Fontenay-Aux-Roses (France); Howard, Brenda [NERC Centre for Ecology and Hydrology, Lancaster Environment Centre, Library Av., Bailrigg, Lancaster, LA1 4AP (United Kingdom)

    2014-07-01

    The EC-FP7 project COMET (June 2013 - May 2017) intends to strengthen the pan-European research initiative on the impact of radiation on man and the environment by facilitating the integration of 'radioecological' research. The COMET consortium currently has thirteen partners; eight from EU member states, two from Norway, two from Ukraine and one from Japan. COMET operates in close association with the FP7-STAR Network of Excellence[1]and the Radioecology Alliance[2], COMET will develop initiatives to encourage organisations from the European (and larger) radioecological research community to join the Radioecology Alliance to help address the priorities identified in the Strategic Research Agenda (SRA) for radioecological research. Capacity, competence and skills in radioecology will thus be strengthened at a pan-European level. Mechanisms for knowledge exchange, dissemination and training will be established to enhance and maintain European capacity, competence and skills in radioecology, partially through an open access web site, topical workshops and training activities. COMET will develop innovative mechanisms for joint programming and implementation of radioecological research. Mechanisms for planning and carrying out joint research activities in radioecology will be developed based on the scientific requirements identified in the SRA and via interaction with a wide range of stakeholders. COMET will strengthen the bridge with other radiation protection and ecological communities. A roadmap and associated implementation plan is being developed in collaboration with the Radioecology Alliance and the allied platforms on low dose risk research (MELODI[3]), and emergency management research (NERIS[4]) and the radioecology community at large who is invited to become associated to the development of roadmap and implementation plan. COMET will initiate innovative research on key needs identified by the radioecology community, the (post) emergency management

  20. Comparison of high-energy trapped particle environments at the Earth and Jupiter.

    Science.gov (United States)

    Jun, Insoo; Garrett, Henry B

    2005-01-01

    The 'Van Allen belts' of the trapped energetic particles in the Earth's magnetosphere were discovered by the Explorer I satellite in 1958. In addition, in 1959, it was observed that UHF radio emissions from Jupiter probably had a similar source--the Jovian radiation belts. In this paper, the global characteristics of these two planets' trapped radiation environments and respective magnetospheres are compared and state-of-the-art models used to generate estimates of the high-energy electron (> or = 100 keV) and proton (> or = 1 MeV) populations--the dominant radiation particles in these environments. The models used are the AP8/AE8 series for the Earth and the Divine-Garrett/GIRE model for Jupiter. To illustrate the relative magnitude of radiation effects at each planet, radiation transport calculations were performed to compute the total ionising dose levels at the geosynchronous orbit for the Earth and at Europa (Jupiter's 4th largest moon) for Jupiter. The results show that the dose rates are -0.1 krad(Si) d(-1) at the geosynchronous orbit and -30 krad(Si) d((-1) at Europa for a 2.5 mm spherical shell aluminium shield--a factor of -300 between the two planets.

  1. Comparison of the orbital properties of Jupiter Trojan asteroids and Trojan dust

    Science.gov (United States)

    Liu, Xiaodong; Schmidt, Jrgen

    2018-06-01

    In a previous paper we simulated the orbital evolution of dust particles from the Jupiter Trojan asteroids ejected by the impacts of interplanetary particles, and evaluated their overall configuration in the form of dust arcs. Here we compare the orbital properties of these Trojan dust particles and the Trojan asteroids. Both Trojan asteroids and most of the dust particles are trapped in the Jupiter 1:1 resonance. However, for dust particles, this resonance is modified because of the presence of solar radiation pressure, which reduces the peak value of the semi-major axis distribution. We find also that some particles can be trapped in the Saturn 1:1 resonance and higher order resonances with Jupiter. The distributions of the eccentricity, the longitude of pericenter, and the inclination for Trojans and the dust are compared. For the Trojan asteroids, the peak in the longitude of pericenter distribution is about 60 degrees larger than the longitude of pericenter of Jupiter; in contrast, for Trojan dust this difference is smaller than 60 degrees, and it decreases with decreasing grain size. For the Trojan asteroids and most of the Trojan dust, the Tisserand parameter is distributed in the range of two to three.

  2. Reigniting the Debate: First Spectroscopic Evidence for Stratospheres In Hot Jupiters

    Science.gov (United States)

    Mandell, Avi M.; Haynes, Korey; Madhusudhan, Nikku; Deming, Drake; Knutson, Heather

    2015-12-01

    Hot Jupiters represent an extreme end of the exoplanet distribution: they orbit very close to their host stars, which subjects them to an intense heating from stellar radiation. An inverted temperature structure (i.e. a stratosphere) was an early observable prediction from atmospheric models of these planets, which demonstrated that high-temperature absorbers such as TiO and VO could reprocess incident UV/visible irradiation to heat the upper layers of the atmosphere.Evidence for such thermal inversions began with the first secondary eclipse measurements of transiting hot Jupiters taken with the IRAC camera on Spitzer, offering the chance to physical processe at work in the atmospheres of hot exoplanets. However, these efforts have been stymied by recent revelations of significant systematic biases and uncertainties buried within older Spitzer results, calling into question whether or not temperature inversions are actually present in hot Jupiters.We have recently published spectroscopy of secondary eclipses of the extrasolar planet WASP-33b using the Wide Field Camera 3 (WFC3) on the Hubble Space Telescope, which allow us to constrain the temperature structure and composition of its dayside atmosphere. WASP-33b is one of the most highly irradiated hot Jupiters discovered to date and orbits a relatively inactive A star, making it an excellent candidate for eclipse spectroscopy at NIR wavelengths (1.1 - 1.7 µm). We find that a fit to combined data from HST, Spitzer and ground-based photometry can rule out models without a temperature inversion; additionally, we find that our measured spectrum displays excess in the measured flux toward short wavelengths that is best explained as emission from TiO.This discovery re-opens the debate on the presence and origin of stratospheres in hot Jupiters, but it also confirms that the combination of HST spectroscopy and a robust analysis of Spitzer and ground-based photometry can conclusively detect thermally inverted atmospheres

  3. Micropatterned comet assay enables high throughput and sensitive DNA damage quantification.

    Science.gov (United States)

    Ge, Jing; Chow, Danielle N; Fessler, Jessica L; Weingeist, David M; Wood, David K; Engelward, Bevin P

    2015-01-01

    The single cell gel electrophoresis assay, also known as the comet assay, is a versatile method for measuring many classes of DNA damage, including base damage, abasic sites, single strand breaks and double strand breaks. However, limited throughput and difficulties with reproducibility have limited its utility, particularly for clinical and epidemiological studies. To address these limitations, we created a microarray comet assay. The use of a micrometer scale array of cells increases the number of analysable comets per square centimetre and enables automated imaging and analysis. In addition, the platform is compatible with standard 24- and 96-well plate formats. Here, we have assessed the consistency and sensitivity of the microarray comet assay. We showed that the linear detection range for H2O2-induced DNA damage in human lymphoblastoid cells is between 30 and 100 μM, and that within this range, inter-sample coefficient of variance was between 5 and 10%. Importantly, only 20 comets were required to detect a statistically significant induction of DNA damage for doses within the linear range. We also evaluated sample-to-sample and experiment-to-experiment variation and found that for both conditions, the coefficient of variation was lower than what has been reported for the traditional comet assay. Finally, we also show that the assay can be performed using a 4× objective (rather than the standard 10× objective for the traditional assay). This adjustment combined with the microarray format makes it possible to capture more than 50 analysable comets in a single image, which can then be automatically analysed using in-house software. Overall, throughput is increased more than 100-fold compared to the traditional assay. Together, the results presented here demonstrate key advances in comet assay technology that improve the throughput, sensitivity, and robustness, thus enabling larger scale clinical and epidemiological studies. © The Author 2014. Published by

  4. Precise VLA positions and flux-density measurements of the Jupiter system

    International Nuclear Information System (INIS)

    Muhleman, D.O.; Berge, G.L.; Rudy, D.; Niell, A.E.

    1986-01-01

    VLA C array configuration observations at 2 and 6 cm are presented for Europa, Ganymede, and Callisto at eastern and western elongations with respect to Jupiter, which allowed measurements in right ascension and declination of the satellites with an rms precision of about + or - 0.03 arcsec. The transfer of the mean offsets of Ganymede to Jupiter yields offsets of -0.185 + or - 0.03 arcsec and -0.06 + or - 0.03 arcsec, with respect to JPL-DE-200, at the mean epoch of April 28, 1983; the large offset in right ascension is a combination of the Jupiter ephemeris error and the error in the frame tie of the Jovian planets with the VLBI system of precise positions which was used as the absolute reference frame for the observations. A significant error is noted in the orbital position of Callisto with respect to Ganymede. 12 references

  5. Jupiter's X-ray Auroral Pulsations and Spectra During Juno Perijove 7

    Science.gov (United States)

    Dunn, W.; Branduardi-Raymont, G.; Ray, L. C.; Jackman, C. M.; Kraft, R.; Gladstone, R.; Yao, Z.; Rae, J.; Gray, R.; Elsner, R.; Grodent, D. C.; Nichols, J. D.; Ford, P. G.; Ness, J. U.; Kammer, J.; Rodriguez, P.

    2017-12-01

    Jupiter's X-ray aurora is concentrated into a bright and dynamic hot spot that is produced by precipitating 10 MeV ions [Gladstone et al. 2002; Elsner et al. 2005; Branduardi-Raymont et al. 2007]. These highly energetic emissions exhibit pulsations over timescales of 10s of minutes and change morphology, intensity and precipitating particle populations from observation to observation and pole to pole [e.g. Dunn et al. 2016; in-press]. The acceleration process/es that allow Jupiter to produce these high-energy ion charge exchange emissions are not well understood, but are concentrated in the most poleward regions of the aurora, where field lines map to the outer magnetosphere and possibly beyond [Vogt et al. 2015; Kimura et al. 2016]. On July 11th 2017, NASA's Juno spacecraft conducted its 7th perijove flyby of Jupiter and is predicted to have flown directly through field lines that map to the Northern and Southern X-ray hot spots. During this unique flight, the XMM-Newton observatory conducted 40 hours of continuous time-tagged X-ray observations. We present the results from these X-ray observations, showing that Jupiter's X-ray aurora varies significantly from one planetary rotation to the next and that the spectral signatures, indicative of the precipitating ion and electron populations producing the emission, also vary. We measure the Doppler broadening of the spectral lines to calculate the ion energies at the point when they impact the ionosphere, in order that these might be compared with in-situ data to constrain Jovian auroral acceleration processes. Finally, we compare X-ray signatures from the last decade of observations with UV polar emissions at similar times to further enrich multi-wavelength connections and deepen our understanding of how Jupiter is able to generate its highly energetic polar auroral precipitations.

  6. Hierarchical Bayesian calibration of tidal orbit decay rates among hot Jupiters

    Science.gov (United States)

    Collier Cameron, Andrew; Jardine, Moira

    2018-05-01

    Transiting hot Jupiters occupy a wedge-shaped region in the mass ratio-orbital separation diagram. Its upper boundary is eroded by tidal spiral-in of massive, close-in planets and is sensitive to the stellar tidal dissipation parameter Q_s^'. We develop a simple generative model of the orbital separation distribution of the known population of transiting hot Jupiters, subject to tidal orbital decay, XUV-driven evaporation and observational selection bias. From the joint likelihood of the observed orbital separations of hot Jupiters discovered in ground-based wide-field transit surveys, measured with respect to the hyperparameters of the underlying population model, we recover narrow posterior probability distributions for Q_s^' in two different tidal forcing frequency regimes. We validate the method using mock samples of transiting planets with known tidal parameters. We find that Q_s^' and its temperature dependence are retrieved reliably over five orders of magnitude in Q_s^'. A large sample of hot Jupiters from small-aperture ground-based surveys yields log _{10} Q_s^' }=(8.26± 0.14) for 223 systems in the equilibrium-tide regime. We detect no significant dependence of Q_s^' on stellar effective temperature. A further 19 systems in the dynamical-tide regime yield log _{10} Q_s^' }=7.3± 0.4, indicating stronger coupling. Detection probabilities for transiting planets at a given orbital separation scale inversely with the increase in their tidal migration rates since birth. The resulting bias towards younger systems explains why the surface gravities of hot Jupiters correlate with their host stars' chromospheric emission fluxes. We predict departures from a linear transit-timing ephemeris of less than 4 s for WASP-18 over a 20-yr baseline.

  7. Kepler-424 b: A "Lonely" Hot Jupiter that Found a Companion

    Science.gov (United States)

    Endl, Michael; Caldwell, Douglas A.; Barclay, Thomas; Huber, Daniel; Isaacson, Howard; Buchhave, Lars A.; Brugamyer, Erik; Robertson, Paul; Cochran, William D.; MacQueen, Phillip J.; Havel, Mathieu; Lucas, Phillip; Howell, Steve B.; Fischer, Debra; Quintana, Elisa; Ciardi, David R.

    2014-11-01

    Hot Jupiter systems provide unique observational constraints for migration models in multiple systems and binaries. We report on the discovery of the Kepler-424 (KOI-214) two-planet system, which consists of a transiting hot Jupiter (Kepler-424b) in a 3.31 day orbit accompanied by a more massive outer companion in an eccentric (e = 0.3) 223 day orbit. The outer giant planet, Kepler-424c, is not detected transiting the host star. The masses of both planets and the orbital parameters for the second planet were determined using precise radial velocity (RV) measurements from the Hobby-Eberly Telescope (HET) and its High Resolution Spectrograph (HRS). In stark contrast to smaller planets, hot Jupiters are predominantly found to be lacking any nearby additional planets; they appear to be "lonely". This might be a consequence of these systems having a highly dynamical past. The Kepler-424 planetary system has a hot Jupiter in a multiple system, similar to \\upsilon Andromedae. We also present our results for Kepler-422 (KOI-22), Kepler-77 (KOI-127), Kepler-43 (KOI-135), and Kepler-423 (KOI-183). These results are based on spectroscopic data collected with the Nordic Optical Telescope (NOT), the Keck 1 telescope, and HET. For all systems, we rule out false positives based on various follow-up observations, confirming the planetary nature of these companions. We performed a comparison with planetary evolutionary models which indicate that these five hot Jupiters have heavy element contents between 20 and 120 M ⊕. Based on observations obtained with the Hobby-Eberly Telescope, which is a joint project of the University of Texas at Austin, the Pennsylvania State University, Stanford University, Ludwig-Maximilians-Universität München, and Georg-August-Universität Göttingen.

  8. Alkaline Comet Assay for Assessing DNA Damage in Individual Cells.

    Science.gov (United States)

    Pu, Xinzhu; Wang, Zemin; Klaunig, James E

    2015-08-06

    Single-cell gel electrophoresis, commonly called a comet assay, is a simple and sensitive method for assessing DNA damage at the single-cell level. It is an important technique in genetic toxicological studies. The comet assay performed under alkaline conditions (pH >13) is considered the optimal version for identifying agents with genotoxic activity. The alkaline comet assay is capable of detecting DNA double-strand breaks, single-strand breaks, alkali-labile sites, DNA-DNA/DNA-protein cross-linking, and incomplete excision repair sites. The inclusion of digestion of lesion-specific DNA repair enzymes in the procedure allows the detection of various DNA base alterations, such as oxidative base damage. This unit describes alkaline comet assay procedures for assessing DNA strand breaks and oxidative base alterations. These methods can be applied in a variety of cells from in vitro and in vivo experiments, as well as human studies. Copyright © 2015 John Wiley & Sons, Inc.

  9. Halley's Comet: A Bibliography.

    Science.gov (United States)

    Freitag, Ruth S., Comp.

    Included in this bibliography are over 3,200 references to publications on Halley's Comet, its history, orbital motion, and physical characteristics, meteor streams associated with it, preparations for space missions to study it in 1986, and popular reaction to its appearances. Also cited are a few papers that, although they devote little…

  10. The comet assay: assessment of in vitro and in vivo DNA damage.

    Science.gov (United States)

    Bajpayee, Mahima; Kumar, Ashutosh; Dhawan, Alok

    2013-01-01

    Rapid industrialization and pursuance of a better life have led to an increase in the amount of chemicals in the environment, which are deleterious to human health. Pesticides, automobile exhausts, and new chemical entities all add to air pollution and have an adverse effect on all living organisms including humans. Sensitive test systems are thus required for accurate hazard identification and risk assessment. The Comet assay has been used widely as a simple, rapid, and sensitive tool for assessment of DNA damage in single cells from both in vitro and in vivo sources as well as in humans. Already, the in vivo comet assay has gained importance as the preferred test for assessing DNA damage in animals for some international regulatory guidelines. The advantages of the in vivo comet assay are its ability to detect DNA damage in any tissue, despite having non-proliferating cells, and its sensitivity to detect genotoxicity. The recommendations from the international workshops held for the comet assay have resulted in establishment of guidelines. The in vitro comet assay conducted in cultured cells and cell lines can be used for screening large number of compounds and at very low concentrations. The in vitro assay has also been automated to provide a high-throughput screening method for new chemical entities, as well as environmental samples. This chapter details the in vitro comet assay using the 96-well plate and in vivo comet assay in multiple organs of the mouse.

  11. Can the comet assay be used reliably to detect nanoparticle-induced genotoxicity?

    Science.gov (United States)

    Karlsson, Hanna L; Di Bucchianico, Sebastiano; Collins, Andrew R; Dusinska, Maria

    2015-03-01

    The comet assay is a sensitive method to detect DNA strand breaks as well as oxidatively damaged DNA at the level of single cells. Today the assay is commonly used in nano-genotoxicology. In this review we critically discuss possible interactions between nanoparticles (NPs) and the comet assay. Concerns for such interactions have arisen from the occasional observation of NPs in the "comet head", which implies that NPs may be present while the assay is being performed. This could give rise to false positive or false negative results, depending on the type of comet assay endpoint and NP. For most NPs, an interaction that substantially impacts the comet assay results is unlikely. For photocatalytically active NPs such as TiO2 , on the other hand, exposure to light containing UV can lead to increased DNA damage. Samples should therefore not be exposed to such light. By comparing studies in which both the comet assay and the micronucleus assay have been used, a good consistency between the assays was found in general (69%); consistency was even higher when excluding studies on TiO2 NPs (81%). The strong consistency between the comet and micronucleus assays for a range of different NPs-even though the two tests measure different endpoints-implies that both can be trusted in assessing the genotoxicity of NPs, and that both could be useful in a standard battery of test methods. © 2014 Wiley Periodicals, Inc.

  12. Colour, albedo and nucleus size of Halley's comet

    Science.gov (United States)

    Cruikshank, D. P.; Tholen, D. J.; Hartmann, W. K.

    1985-01-01

    Photometry of Halley's comet in the B, J, V, and K broadband filters during a time when the coma was very weak and presumed to contribute negligibly to the broadband photometry is reported. The V-J and J-K colors suggest that the color of the nucleus of Halley's comet is similar to that of the D-type asteroids, which in turn suggests that the surface of the nucleus has an albedo less than 0.1.

  13. Reference cells and ploidy in the comet assay

    Directory of Open Access Journals (Sweden)

    Gunnar eBrunborg

    2015-02-01

    Full Text Available In the comet assay, single cells are analyzed with respect to their level of DNA damage. Discrimination of the individual cell or cell type based on DNA content, with concomitant scoring of the DNA damage, is useful since this may allow analysis of mixtures of cells. Different cells can then be characterized based on their ploidy, cell cycle stage, or genome size. We here describe two applications of such a cell type-specific comet assay: (i Testicular cell suspensions, analyzed on the basis of their ploidy during spermatogenesis; and (ii reference cells in the form of fish erythrocytes which can be included as internal standards to correct for inter-assay variations. With standard fluorochromes used in the comet assay, the total staining signal from each cell – whether damaged or undamaged – was found to be associated with the cell’s DNA content. Analysis of the fluorescence intensity of single cells is straightforward since these data are available in scoring systems based on image analysis. The analysis of testicular cell suspensions provides information on cell type specific composition, susceptibility to genotoxicants, and DNA repair. Internal reference cells, either untreated or carrying defined numbers of lesions induced by ionizing radiation, are useful for investigation of experimental factors that can cause variation in comet assay results, and for routine inclusion in experiments to facilitate standardization of methods and comparison of comet assay data obtained in different experiments or in different laboratories. They can also be used - in combination with a reference curve - to quantify the DNA lesions induced by a certain treatment. Fish cells of a range of genome sizes, both greater and smaller than human, are suitable for this purpose and they are inexpensive.

  14. Emitted Power of Jupiter Based on Cassini CIRS and VIMS Observations

    Science.gov (United States)

    Li, Liming; Baines, Kevin H.; Smith, Mark A.; West, Robert A.; Perez-Hoyos, Santiago; Trammel, Harold J.; Simon-Miller, Amy A.; Conrath, Barney J.; Gierasch, Peter J.; Orton, Glenn S.; hide

    2012-01-01

    The emitted power of Jupiter and its meridional distribution are determined from observations by the Composite Infrared Spectrometer (CIRS) and Visual and Infrared Spectrometer (VIMS) onboard Cassini during its flyby en route to Saturn in late 2000 and early 2001. Jupiter's global- average emitted power and effective temperature are measured to be 14.10+/-0.03 W/sq m and 125.57+/-0.07 K, respectively. On a global scale, Jupiter's 5-micron thermal emission contributes approx. 0.7+/-0.1 % to the total emitted power at the global scale, but it can reach approx. 1.9+/-0.6% at 15degN. The meridional distribution of emitted power shows a significant asymmetry between the two hemispheres with the emitted power in the northern hemisphere 3.0+/-0.3% larger than that in the southern hemisphere. Such an asymmetry shown in the Cassini epoch (2000-01) is not present during the Voyager epoch (1979). In addition, the global-average emitted power increased approx. 3.8+/-1.0% between the two epochs. The temporal variation of Jupiter's total emitted power is mainly due to the warming of atmospheric layers around the pressure level of 200 mbar. The temporal variation of emitted power was also discovered on Saturn (Li et al., 2010). Therefore, we suggest that the varying emitted power is a common phenomenon on the giant planets.

  15. Cometary Defense with Directed Energy

    Science.gov (United States)

    Zhang, Q.; Lubin, P. M.; Hughes, G. B.

    2016-12-01

    Cometary impacts pose a long-term hazard to humans on Earth. Due to their comparative rarity, most planetary defense schemes neglect the comet threat, choosing instead to focus exclusively on mitigating asteroid impacts. Methods like kinetic impactors may be suitable for deflecting near-Earth asteroids (NEAs) and Jupiter-family comets (JFCs), both of which are characterized by low inclination orbits and short orbital periods which favor early detection—characteristics ideal for an interception mission. In contrast, Halley-type comets (HTCs) and long-period comets (LPCs) are often found in high inclination orbits rarely more than 2 yr prior to reaching Earth's orbit. Unless discovered and identified in a prior apparition—often centuries or millennia earlier, if ever—timely interception of a threatening HTC or LPC is improbable even with preparation, with missions demanding delta-v budgets often in excess of 30 km/s. Active comets, however, are already naturally perturbed from purely gravitational trajectories through solar-driven sublimation of volatiles. Further deflection may be achieved by supplementing the solar radiation with an artificial directed energy source such as by one or more laser arrays positioned on or near Earth. Simulations were developed with models derived from the known solar nongravitational perturbations of typical comets. Results suggest that a diffraction-limited 500 m array operating at 10 GW for 10 min/day may be sufficient to divert a typical active 500 m comet from an impact given 1 yr. A larger 1 km array operating at 100 GW for 100 s/day is similarly effective. Care must be taken to ensure the target remains intact throughout the deflection period due to comets' low compressive strength and resulting propensity for disintegration at high incident flux.

  16. Jupiter's interior and deep atmosphere: The initial pole-to-pole passes with the Juno spacecraft

    DEFF Research Database (Denmark)

    Bolton, S. J.; Adriani, Alberto; Adumitroaie, V.

    2017-01-01

    On 27 August 2016, the Juno spacecraft acquired science observations of Jupiter, passing less than 5000 kilometers above the equatorial cloud tops. Images of Jupiter's poles show a chaotic scene, unlike Saturn's poles. Microwave sounding reveals weather features at pressures deeper than 100 bars,...... of magnitude more precise. This has implications for the distribution of heavy elements in the interior, including the existence and mass of Jupiter's core. The observed magnetic field exhibits smaller spatial variations than expected, indicative of a rich harmonic content....

  17. Hyperactivity and Dust Composition of Comet 103P/Hartley 2 During the EPOXI Encounter

    Science.gov (United States)

    Harker, David E.; Woodward, Charles E.; Kelley, Michael S. P.; Wooden, Diane H.

    2018-05-01

    Short-period comet 103P/Hartley 2 (103P) was the flyby target of the Deep Impact eXtended Investigation on 2010 November 4 UT. This comet has a small hyperactive nucleus, i.e., it has a high water production rate for its surface area. The underlying cause of the hyperactivity is unknown; the relative abundances of volatiles in the coma of 103P are not unusual. However, the dust properties of this comet have not been fully explored. We present four epochs of mid-infrared spectra and images of comet 103P observed from Gemini-South +T-ReCS on 2010 November 5, 7, 21 and December 13 UT, near and after the spacecraft encounter. Comet 103P exhibited a weak 10 μm emission feature ≃1.14 ± 0.01 above the underlying local 10 μm continuum. Thermal dust grain modeling of the spectra shows the grain composition (mineralogy) was dominated by amorphous carbon and amorphous pyroxene with evidence for Mg-rich crystalline olivine. The grain size has a peak grain radius range of a peak ∼ 0.5–0.9 μm. On average, the crystalline silicate mass fraction is ≃0.24, fairly typical of other short-period comets. In contrast, the silicate-to-carbon ratio of ≃0.48–0.64 is lower compared to other short-period comets, which indicates that the flux measured in the 10 μm region of 103P was dominated by amorphous carbon grains. We conclude that the hyperactivity in comet 103P is not revealing dust properties similar to the small grains seen with the Deep Impact experiment on comet 9P/Tempel 1 or from comet C/1995 O1 (Hale–Bopp).

  18. Comets, Charisma, and Celebrity: Reflections on Their Deep Impact

    Science.gov (United States)

    Olson, R. J. M.; Pasachoff, J. M.

    In celebration of the Deep Impact Mission, this essay explores the influence of comets on the arts and sciences since the beginning of recorded time. Through images, ranging from the sublime to the humorous, it probes the reasons why comets are among the most charismatic visual spectacles in the universe and why, even as scientific missions unmask their mysteries, they remain iconic symbols and harbingers of change.

  19. Unmasking Europa the search for life on Jupiter's ocean moon

    CERN Document Server

    Greenberg, Richard

    2008-01-01

    Jupiter's ice moon Europa is widely regarded as the most likely place to find extraterrestrial life. This book tells the engaging story of Europa, the oceanic moon. It features a large number of stunning images of the ocean moon's surface, clearly displaying the spectacular crack patterns, extensive rifts and ridges, and refrozen pools of exposed water filled with rafts of displaced ice. Coverage also features firsthand accounts of Galileo's mission to Jupiter and its moons. The book tells the rough and tumble inside story of a very human enterprise in science that lead to the discovery of a f

  20. Photometric Modeling of a Cometary Nucleus: Taking Hapke Modeling to the Limit

    Science.gov (United States)

    Buratti, B. J.; Hicks, M. D.; Soderblom, L.; Hillier, J.; Britt, D.

    2002-01-01

    In the past two decades, photometric models developed by Bruce Hapke have been fit to a wide range of bodies in the Solar System: The Moon, Mercury, several asteroids, and many icy and rocky satellites. These models have enabled comparative descriptions of the physical attributes of planetary surfaces, including macroscopic roughness, particle size and size-distribution, the single scattering albedo, and the compaction state of the optically active portion of the regolith. One challenging type of body to observe and model, a cometary nucleus, awaited the first space based mission to obtain images unobscured by coma. The NASA-JPL Deep Space 1 Mission (DS1) encountered the short-period Jupiter-family comet 19/P Borrelly on September 22, 2001, about 8 days after perihelion. Prior to its closest approach of 2171 km, the remote-sensing package on the spacecraft obtained 25 CCD images of the comet, representing the first closeup, unobscured view of a comet's nucleus. At closest approach, corresponding to a resolution of 47 meters per pixel, the intensity of the coma was less than 1% of that of the nucleus. An unprecedented range of high solar phase angles (52-89 degrees), viewing geometries that are in general attainable only when a comet is active, enabled the first quantitative and disk-resolved modeling of surface photometric physical parameters.