WorldWideScience

Sample records for juneau alaska responsible

  1. Energy Efficiency, Water Efficiency, and Renewable Energy Site Assessment: Mendenhall Glacier Visitor Center, Juneau, Alaska

    Energy Technology Data Exchange (ETDEWEB)

    Salasovich, James [National Renewable Energy Lab. (NREL), Golden, CO (United States); LoVullo, David [National Renewable Energy Lab. (NREL), Golden, CO (United States); Kandt, Alicen [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-01-21

    This report summarizes results from the energy efficiency, water efficiency, and renewable energy site assessment of the Mendenhall Glacier Visitor Center and site in Juneau, Alaska. The assessment is an American Society of Heating, Refrigerating, and Air-Conditioning Engineers Level 2 audit and meets Energy Independence and Security Act requirements. A team led by the U.S. Department of Energy's National Renewable Energy Laboratory conducted the assessment with U.S. Forest Service personnel August 19-20, 2015, as part of ongoing efforts by USFS to reduce energy and water use.

  2. Simulating Glacial Outburst Lake Releases for Suicide Basin, Mendenhall Glacier, Juneau, Alaska

    Science.gov (United States)

    Jacobs, A. B.; Moran, T.; Hood, E. W.

    2017-12-01

    Glacial Lake outbursts from Suicide Basin are recent phenomenon first characterized in 2011. The 2014 event resulted in record river stage and moderate flooding on the Mendenhall River in Juneau. Recognizing that these events can adversely impact residential areas of Juneau's Mendenhall Valley, the Alaska-Pacific River Forecast Center developed a real-time modeling technique capable of forecasting the timing and magnitude of the flood-wave crest due to releases from Suicide Basin. The 2014 event was estimated at about 37,000 acre feet with water levels cresting within 36 hours from the time the flood wave hit Mendenhall Lake. Given the magnitude of possible impacts to the public, accurate hydrological forecasting is essential for public safety and Emergency Managers. However, the data needed to effectively forecast magnitudes of specific jökulhlaup events are limited. Estimating this event as related to river stage depended upon three variables: 1) the timing of the lag between Suicide Basin water level declines and the related rise of Mendenhall Lake, 2) continuous monitoring of Mendenhall Lake water levels, and 3) estimating the total water volume stored in Suicide Basin. Real-time modeling of the event utilized a Time of Concentration hydrograph with independent power equations representing the rising and falling limbs of the hydrograph. The initial accuracy of the model — as forecasted about 24 hours prior to crest — resulted in an estimated crest within 0.5 feet of the actual with a timing error of about six hours later than the actual crest.

  3. Accelerated electricity conservation in Juneau, Alaska: A study of household activities that reduced demand 25%

    International Nuclear Information System (INIS)

    Leighty, Wayne; Meier, Alan

    2011-01-01

    An avalanche destroyed the main hydroelectric transmission line to Juneau, Alaska in April, 2008. Diesel-generated electricity was substituted, causing electricity prices to increase 500% for 45 days. Electricity demand fell by 25% during the supply disruption. Most of the reduction occurred before the higher rates were implemented. Some conservation - about 8% of historic consumption - persisted after the transmission line was repaired and prices returned to normal. Consumers reduced energy use through a combination of new habits and technical improvements. A survey of residential consumers indicated that the average household undertook 10 conservation actions, with major changes in lighting, space heating, fuel switching, and water and appliance use. We propose a method for prioritizing conservation actions for promotion according to their impact in electricity savings (as a function of popularity, effectiveness, and persistence) and a dynamic framework for electricity use before, during, and after a supply disruption (i.e., both the magnitude and rates of change in electricity conservation). - Research highlights: → An electricity supply disruption caused prices to increase 500% for 45 days. → Electricity conservation of 25% occurred in a matter of days. → Electricity conservation of 8% persisted after the supply disruption was repaired. → Conservation occurred through behavior change and technology adoption. → The disruption induced consumers to try new behaviors that became new habits.

  4. Geochemical reanalysis of historical U.S. Geological Survey sediment samples from the Haines area, Juneau and Skagway quadrangles, southeast Alaska

    Science.gov (United States)

    Werdon, Melanie B.; Granitto, Matthew; Azain, Jaime S.

    2015-01-01

    The State of Alaska’s Strategic and Critical Minerals (SCM) Assessment project, a State-funded Capital Improvement Project (CIP), is designed to evaluate Alaska’s statewide potential for SCM resources. The SCM Assessment is being implemented by the Alaska Division of Geological & Geophysical Surveys (DGGS), and involves obtaining new airborne-geophysical, geological, and geochemical data. As part of the SCM Assessment, thousands of historical geochemical samples from DGGS, U.S. Geological Survey (USGS), and U.S. Bureau of Mines archives are being reanalyzed by DGGS using modern, quantitative, geochemical-analytical methods. The objective is to update the statewide geochemical database to more clearly identify areas in Alaska with SCM potential. The USGS is also undertaking SCM-related geologic studies in Alaska through the federally funded Alaska Critical Minerals cooperative project. DGGS and USGS share the goal of evaluating Alaska’s strategic and critical minerals potential and together created a Letter of Agreement (signed December 2012) and a supplementary Technical Assistance Agreement (#14CMTAA143458) to facilitate the two agencies’ cooperative work. Under these agreements, DGGS contracted the USGS in Denver to reanalyze historical USGS sediment samples from Alaska. For this report, DGGS funded reanalysis of 212 historical USGS sediment samples from the statewide Alaska Geochemical Database Version 2.0 (AGDB2; Granitto and others, 2013). Samples were chosen from the Chilkat, Klehini, Tsirku, and Takhin river drainages, as well as smaller drainages flowing into Chilkat and Chilkoot Inlets near Haines, Skagway Quadrangle, Southeast Alaska. Additionally some samples were also chosen from the Juneau gold belt, Juneau Quadrangle, Southeast Alaska (fig. 1). The USGS was responsible for sample retrieval from the National Geochemical Sample Archive (NGSA) in Denver, Colorado through the final quality assurance/quality control (QA/QC) of the geochemical

  5. 2012 USGS Lidar: Juneau (AK)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This task order is for planning, acquisition, processing, and derivative products of LiDAR data to be collected for Juneau, Alaska. LiDAR data, and derivative...

  6. Brief communication: Unabated wastage of the Juneau and Stikine icefields (southeast Alaska) in the early 21st century

    Science.gov (United States)

    Berthier, Etienne; Larsen, Christopher; Durkin, William J.; Willis, Michael J.; Pritchard, Matthew E.

    2018-04-01

    The large Juneau and Stikine icefields (Alaska) lost mass rapidly in the second part of the 20th century. Laser altimetry, gravimetry and field measurements suggest continuing mass loss in the early 21st century. However, two recent studies based on time series of Shuttle Radar Topographic Mission (SRTM) and Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) digital elevation models (DEMs) indicate a slowdown in mass loss after 2000. Here, the ASTER-based geodetic mass balances are recalculated carefully avoiding the use of the SRTM DEM because of the unknown penetration depth of the C-band radar signal. We find strongly negative mass balances from 2000 to 2016 (-0.68 ± 0.15 m w.e. a-1 for the Juneau Icefield and -0.83 ± 0.12 m w.e. a-1 for the Stikine Icefield), in agreement with laser altimetry, confirming that mass losses are continuing at unabated rates for both icefields. The SRTM DEM should be avoided or used very cautiously to estimate glacier volume change, especially in the North Hemisphere and over timescales of less than ˜ 20 years.

  7. Brief communication: Unabated wastage of the Juneau and Stikine icefields (southeast Alaska in the early 21st century

    Directory of Open Access Journals (Sweden)

    E. Berthier

    2018-04-01

    Full Text Available The large Juneau and Stikine icefields (Alaska lost mass rapidly in the second part of the 20th century. Laser altimetry, gravimetry and field measurements suggest continuing mass loss in the early 21st century. However, two recent studies based on time series of Shuttle Radar Topographic Mission (SRTM and Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER digital elevation models (DEMs indicate a slowdown in mass loss after 2000. Here, the ASTER-based geodetic mass balances are recalculated carefully avoiding the use of the SRTM DEM because of the unknown penetration depth of the C-band radar signal. We find strongly negative mass balances from 2000 to 2016 (−0.68 ± 0.15 m w.e. a−1 for the Juneau Icefield and −0.83 ± 0.12 m w.e. a−1 for the Stikine Icefield, in agreement with laser altimetry, confirming that mass losses are continuing at unabated rates for both icefields. The SRTM DEM should be avoided or used very cautiously to estimate glacier volume change, especially in the North Hemisphere and over timescales of less than  ∼  20 years.

  8. Modeling winter precipitation over the Juneau Icefield, Alaska, using a linear model of orographic precipitation

    Science.gov (United States)

    Roth, Aurora; Hock, Regine; Schuler, Thomas V.; Bieniek, Peter A.; Pelto, Mauri; Aschwanden, Andy

    2018-03-01

    Assessing and modeling precipitation in mountainous areas remains a major challenge in glacier mass balance modeling. Observations are typically scarce and reanalysis data and similar climate products are too coarse to accurately capture orographic effects. Here we use the linear theory of orographic precipitation model (LT model) to downscale winter precipitation from a regional climate model over the Juneau Icefield, one of the largest ice masses in North America (>4000 km2), for the period 1979-2013. The LT model is physically-based yet computationally efficient, combining airflow dynamics and simple cloud microphysics. The resulting 1 km resolution precipitation fields show substantially reduced precipitation on the northeastern portion of the icefield compared to the southwestern side, a pattern that is not well captured in the coarse resolution (20 km) WRF data. Net snow accumulation derived from the LT model precipitation agrees well with point observations across the icefield. To investigate the robustness of the LT model results, we perform a series of sensitivity experiments varying hydrometeor fall speeds, the horizontal resolution of the underlying grid, and the source of the meteorological forcing data. The resulting normalized spatial precipitation pattern is similar for all sensitivity experiments, but local precipitation amounts vary strongly, with greatest sensitivity to variations in snow fall speed. Results indicate that the LT model has great potential to provide improved spatial patterns of winter precipitation for glacier mass balance modeling purposes in complex terrain, but ground observations are necessary to constrain model parameters to match total amounts.

  9. Mendenhall Glacier (Juneau, Alaska) icequake seismicity and its relationship to the 2012 outburst flood and other environmental forcing

    Science.gov (United States)

    Morgan, P. M.; Walter, J. I.; Peng, Z.; Amundson, J. M.; Meng, X.

    2013-12-01

    Glacial outburst floods occur when ice-dammed lakes or other reservoirs on the glacier release large volumes of water usually due to the failure of an ice dam. In 2011 and 2012 these types of floods have occurred at Mendenhall Glacier in Southeast Alaska, 15 km northwest of Juneau. The floods emanated from a lake within a remnant branch of Mendenhall Glacier, called Suicide Basin, and rapidly changed the levels of Mendenhall Lake. Homes on the shore of Mendenhall Lake were threatened by rapidly rising lake levels during such floods. We analyze data from a set of 4 short and broadband period seismometers placed in ice-boreholes in an array on Mendenhall Glacier for a period of 4 months in 2012. We also examine the outburst flood that occurred between July 4th and 8th 2012. We first manually pick icequakes as high-frequency bursts recorded by at least two stations. Next, we use a matched-filter technique to help complete the icequake record by detecting missed events with similar waveforms to those hand-picked events. While high-frequency noise was present during the flooding, the impulsive icequake activity did not appear to be modulated significantly during periods of flooding, suggesting that the flooding does not significantly deform the overlying ice. Impulsive icequake activity appears to show strongly diurnal periodicity, indicating that the icequakes were mainly caused by expansion/contraction of ice during daytime. We also analyze the activity in concert with GPS velocity and meteorological data from the area. By analyzing the temporal and spatial patterns of the events we hope to reveal more about the fundamental processes occurring beneath Mendenhall Glacier.

  10. 77 FR 1973 - Environmental Impact Statement: In the Vicinity of the City and Borough of Juneau, AK

    Science.gov (United States)

    2012-01-12

    ... Vicinity of the City and Borough of Juneau, AK AGENCY: Alaska Department of Transportation and Public..., in cooperation with DOT&PF, will prepare a supplemental environmental impact statement (SEIS) for... from Juneau within the Lynn Canal corridor to provide travel flexibility, capacity to meet demand, and...

  11. Forest science research and scientific communities in Alaska: a history of the origins and evolution of USDA Forest Service research in Juneau, Fairbanks, and Anchorage.

    Science.gov (United States)

    Max G. Geier

    1998-01-01

    Research interest in the forests of Alaska can be traced from the 1990s back to 1741, when Georg Steller, the surgeon on Vitus Bering's Russian expedition, visited Kayak Island, collected plants, and recorded his observations. Given the scope and scale of potential research needs and relatively high expenses for travel and logistics in Alaska, support for forest...

  12. Juneau, Alaska Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) to support individual coastal States as part of the...

  13. McDonaldization and commercial outdoor recreation and tourism in Alaska

    Science.gov (United States)

    Sera J. Zegre; Mark D. Needham; Linda E. Kruger; Randall S. Rosenberger

    2012-01-01

    This article uses perceptions of commercial tour operators in Juneau, Alaska, to examine the extent to which the commercial outdoor recreation and tourism industry in this area reflects principles of McDonaldization—efficiency, calculability, predictability and control. Data from interviews with 23 operators suggest that this industry in Juneau illustrates these...

  14. 78 FR 4435 - BLM Director's Response to the Alaska Governor's Appeal of the BLM Alaska State Director's...

    Science.gov (United States)

    2013-01-22

    ... Bureau of Land Management (BLM) is publishing this notice to explain why the BLM Director is rejecting... Director's Response to the Alaska Governor's Appeal of the BLM Alaska State Director's Governor's... the BLM Alaska State Director. The State Director determined the Governor's Finding was outside the...

  15. 77 FR 13253 - Fisheries of the Exclusive Economic Zone Off Alaska; Bering Sea and Aleutian Islands Management...

    Science.gov (United States)

    2012-03-06

    ... Fisheries Division, Alaska Region NMFS, Attn: Ellen Sebastian. Mail comments to P.O. Box 21668, Juneau, AK... comments to 709 West 9th Street, Room 420A, Juneau, AK. Instructions: Comments must be submitted by one of... certificate of documentation consistent with 46 U.S.C. 12113 and MARAD regulations at 46 CFR 356.47. Under...

  16. Wildlife response on the Alaska North Slope

    International Nuclear Information System (INIS)

    Costanzo, D.; McKenzie, B.

    1992-01-01

    Recognizing the need for a comprehensive plan to deal with potentially oiled wildlife on the Alaskan North Slope, a multifaceted wildlife protection strategy was developed and implemented during 1991. The strategy incorporated all aspects of wildlife response including protection of critical habitat, hazing, capture and stabilization, long term rehabilitation, and release. The primary wildlife response strategy emphasizes controlling of the release and spreading of spilled oil at the source to prevent or reduce contamination of potentially affected species and/or their habitat. A secondary response strategy concentrates on keeping potentially affected wildlife away from an oiled area through the use of deterrent techniques. Tertiary response involves the capture and treatment of oiled wildlife. Implementation of the strategy included the development of specialized training, the procurement of equipment, and the construction of a bird stabilization center. The result of this initiative is a comprehensive wildlife response capability on the Alaskan North Slope. 1 ref., 5 figs., 3 tabs

  17. Response planning and environmental risk analysis, state of Alaska

    International Nuclear Information System (INIS)

    Gundlach, E.R.; Marben, G.M.

    1993-01-01

    Under the sponsorship of the Alaska Dept. of Environmental Conservation (ADEC), a multitasked study was undertaken to determine the relative risk of noncrude oil transport (including marine and freshwater), the status of spill response capability in the state, and the need and most appropriate locations for siting spill response deposits. The project used multidisciplinary transport and environmental data analyzed in a geographic information system (GIS) to enable various scenarios and data changes to be easily visualized. The evaluation concerned (a) designation of significant environmental risk areas, (b) environmentally sensitive areas and fish and wildlife likely to be affected, (c) the level of response capability appropriate for protecting the environment, (d) the adequacy of current capabilities for noncrude vessels, (e) the feasibility of establishing one or more response cooperatives for use by multiple carriers, and (f) other steps that could be taken to reduce the risk of a spill and facilitate control and cleanup

  18. 2014 volcanic activity in Alaska: Summary of events and response of the Alaska Volcano Observatory

    Science.gov (United States)

    Cameron, Cheryl E.; Dixon, James P.; Neal, Christina A.; Waythomas, Christopher F.; Schaefer, Janet R.; McGimsey, Robert G.

    2017-09-07

    The Alaska Volcano Observatory (AVO) responded to eruptions, possible eruptions, volcanic unrest or suspected unrest, and seismic events at 18 volcanic centers in Alaska during 2014. The most notable volcanic activity consisted of intermittent ash eruptions from long-active Cleveland and Shishaldin Volcanoes in the Aleutian Islands, and two eruptive episodes at Pavlof Volcano on the Alaska Peninsula. Semisopochnoi and Akutan volcanoes had seismic swarms, both likely the result of magmatic intrusion. The AVO also installed seismometers and infrasound instruments at Mount Cleveland during 2014.

  19. Applying an orographic precipitation model to improve mass balance modeling of the Juneau Icefield, AK

    Science.gov (United States)

    Roth, A. C.; Hock, R.; Schuler, T.; Bieniek, P.; Aschwanden, A.

    2017-12-01

    Mass loss from glaciers in Southeast Alaska is expected to alter downstream ecological systems as runoff patterns change. To investigate these potential changes under future climate scenarios, distributed glacier mass balance modeling is required. However, the spatial resolution gap between global or regional climate models and the requirements for glacier mass balance modeling studies must be addressed first. We have used a linear theory of orographic precipitation model to downscale precipitation from both the Weather Research and Forecasting (WRF) model and ERA-Interim to the Juneau Icefield region over the period 1979-2013. This implementation of the LT model is a unique parameterization that relies on the specification of snow fall speed and rain fall speed as tuning parameters to calculate the cloud time delay, τ. We assessed the LT model results by considering winter precipitation so the effect of melt was minimized. The downscaled precipitation pattern produced by the LT model captures the orographic precipitation pattern absent from the coarse resolution WRF and ERA-Interim precipitation fields. Observational data constraints limited our ability to determine a unique parameter combination and calibrate the LT model to glaciological observations. We established a reference run of parameter values based on literature and performed a sensitivity analysis of the LT model parameters, horizontal resolution, and climate input data on the average winter precipitation. The results of the reference run showed reasonable agreement with the available glaciological measurements. The precipitation pattern produced by the LT model was consistent regardless of parameter combination, horizontal resolution, and climate input data, but the precipitation amount varied strongly with these factors. Due to the consistency of the winter precipitation pattern and the uncertainty in precipitation amount, we suggest a precipitation index map approach to be used in combination with

  20. 76 FR 51022 - Juneau Hydropower, Inc.; Notice of Scoping Meeting and Site Visit and Soliciting Scoping Comments...

    Science.gov (United States)

    2011-08-17

    ... Hydropower, Inc.; Notice of Scoping Meeting and Site Visit and Soliciting Scoping Comments for an Applicant...: Alternative Licensing Process. b. Project No.: 13563-001. c. Applicant: Juneau Hydropower, Inc. d. Name of... Mitchell, Business Manager, Juneau Hydropower, Inc., P.O. Box 22775, Juneau, AK 99802; 907-789-2775, e...

  1. 78 FR 12050 - Juneau Hydropower, Inc.; Notice of Successive Preliminary Permit Application Accepted for Filing...

    Science.gov (United States)

    2013-02-21

    ...-diameter stream diversion tunnel that would be converted to reservoir outlet works after project... afterbay to an outlet structure on a tributary to Sweetheart Creek; and an existing tributary stream... Mitchell, Business Manager, Juneau Hydropower, Inc. P.O. Box 22775, Juneau, AK 99802; email: duff.mitchell...

  2. 78 FR 2990 - Juneau Hydropower, Inc.; Notice of Successive Preliminary Permit Application Accepted for Filing...

    Science.gov (United States)

    2013-01-15

    ...-diameter stream diversion tunnel that would be converted to reservoir outlet works after project... afterbay to an outlet structure on a tributary to Sweetheart Creek; and an existing tributary stream... Mitchell, Business Manager, Juneau Hydropower, Inc. P.O. Box 22775, Juneau, AK 99802; email: duff.mitchell...

  3. 78 FR 64493 - Juneau Hydropower, Inc.; Notice of Subsequent Draft License Application (DLA) and Draft...

    Science.gov (United States)

    2013-10-29

    ... Hydropower, Inc.; Notice of Subsequent Draft License Application (DLA) and Draft Preliminary Draft... Hydropower, Inc. e. Name of Project: Sweetheart Lake Hydroelectric Project. f. Location: At the confluence of..., Business Manager, Juneau Hydropower, Inc., P.O. Box 22775, Juneau, AK 99802; 907-789-2775, email: duff...

  4. A Survey of Spatial and Seasonal Water Isotope Variability on the Juneau Icefield, Alaksa

    Science.gov (United States)

    Dennis, D.; Carter, A.; Clinger, A. E.; Eads, O. L.; Gotwals, S.; Gunderson, J.; Hollyday, A. E.; Klein, E. S.; Markle, B. R.; Timms, J. R.

    2015-12-01

    The depletion of stable oxygen-hydrogen isotopes (δ18O and δH) is well correlated with temperature change, which is driven by variation in topography, climate, and atmospheric circulation. This study presents a survey of the spatial and seasonal variability of isotopic signatures on the Juneau Icefield (JI), Alaska, USA which spans over 3,000 square-kilometers. To examine small scale variability in the previous year's accumulation, samples were taken at regular intervals from snow pits and a one square-kilometer surficial grid. Surface snow samples were collected across the icefield to evaluate large scale variability, ranging approximately 1,000 meters in elevation and 100 kilometers in distance. Individual precipitation events were also sampled to track percolation throughout the snowpack and temperature correlations. A survey of this extent has never been undertaken on the JI. Samples were analyzed in the field using a Los Gatos laser isotope analyzer. This survey helps us better understand isotope fractionation on temperate glaciers in coastal environments and provides preliminary information on the suitability of the JI for a future ice core drilling project.

  5. Marine spill response planning for the non-persistent oil transportation industry in Alaska

    International Nuclear Information System (INIS)

    Taylor, E.; Egland, L.

    1998-01-01

    The unique difficulties that face oil spill response planning for the oil transportation industry in Alaska were discussed. Three levels of response strategies and actions proposed by the Alaska Petroleum Distributors and Transporters (APD and T) member companies were reviewed. They were: (1) immediate response (on-board resources), (2) in-region response (caches in Subareas), and (3) out-of-region cascaded resources (from Anchorage and other sources). The strategies and levels of capability were proposed as emergency measures in addition to the more important prevention measures already instituted to prevent discharges of non-persistent oil. 5 refs., 2 tabs., 9 figs

  6. Juneau Icefield Mass Balance Program 1946-2011

    Science.gov (United States)

    Pelto, M.; Kavanaugh, J.; McNeil, C.

    2013-11-01

    The annual surface mass balance records of the Lemon Creek Glacier and Taku Glacier observed by the Juneau Icefield Research Program are the longest continuous glacier annual mass balance data sets in North America. Annual surface mass balance (Ba) measured on Taku Glacier averaged +0.40 m a-1 from 1946-1985, and -0.08 m a-1 from 1986-2011. The recent annual mass balance decline has resulted in the cessation of the long-term thickening of the glacier. Mean Ba on Lemon Creek Glacier has declined from -0.30 m a-1 for the 1953-1985 period to -0.60 m a-1 during the 1986-2011 period. The cumulative change in annual surface mass balance is -26.6 m water equivalent, a 29 m of ice thinning over the 55 yr. Snow-pit measurements spanning the accumulation zone, and probing transects above the transient snow line (TSL) on Taku Glacier, indicate a consistent surface mass balance gradient from year to year. Observations of the rate of TSL rise on Lemon Creek Glacier and Taku Glacier indicate a comparatively consistent migration rate of 3.8 to 4.1 m d-1. The relationship between TSL on Lemon Creek Glacier and Taku Glacier to other Juneau Icefield glaciers (Norris, Mendenhall, Herbert, and Eagle) is strong, with correlations exceeding 0.82 in all cases. doi:10.5065/D6NZ85N3

  7. Estimating wildfire response costs in Alaska's changing climate

    Science.gov (United States)

    Climate change is altering wildfire activity across Alaska, with increased area burned projected for the future. Changes in wildfire are expected to affect the need for management and suppression resources, however the potential economic implications of these needs have not been ...

  8. Approach to downstream planning for nearshore response and sensitive areas protection outside Prince William Sound, Alaska

    International Nuclear Information System (INIS)

    DeCola, E.G.; Robertson, T.L.; Robertson, R.; Banta, J.

    2004-01-01

    This study assessed the need for an oil spill response plan for downstream coastal communities that could be affected by oil spilled from tankers travelling in Prince William Sound, Alaska. For the purpose of oil spill contingency planning, the State of Alaska has been divided into the Kodiak and Cook Inlet sub-areas that are at risk for downstream impacts from a Prince William Sound oil spill. The 1989 Exxon Valdez oil spill provided an example of a worst-case scenario oil spill from a tanker in Prince William Sound, but the oil spill planning system that has evolved in Alaska does not adequately plan for on oil spill that originates in one sub-area of the state, but impacts other sub-areas in the downstream spill path. This study analyzed the gaps that exist in the current response planning system in the Prince William Sound, Cook Inlet and Kodiak sub-areas. A method was proposed to improve the existing response plans so that emergency response teams are better prepared to manage cross-boundary oil spills originating in Prince William Sound. The proposed method focuses on nearshore response and sensitive areas protection for coastlines and communities that are at risk for oil spills from a tanker travelling the Trans-Alaska Pipeline System (TAPS). 11 refs., 3 figs

  9. Consumer and purchasing agent response to terms used to describe forest products from southeast Alaska

    Science.gov (United States)

    Allen M. Brackley; Valerie Barber

    2007-01-01

    This study surveys 204 consumers and purchasing agents and reports their reaction to terms used to describe forest products from southeast Alaska. Although 67 percent of the respondents would purchase products from old-growth trees, purchasing agents were more likely to refuse to purchase such products (negative response from 12 percent of consumers vs. 29 percent for...

  10. 75 FR 61474 - Juneau Hydropower, Inc.; Notice of Intent To File License Application, Filing of Pre-Application...

    Science.gov (United States)

    2010-10-05

    ... Hydropower, Inc.; Notice of Intent To File License Application, Filing of Pre-Application Document, and....: 13563-001. c. Dated Filed: July 28, 2010. d. Submitted By: Juneau Hydropower, Inc. e. Name of Project... Commission's regulations. h. Potential Applicant Contact: Duff W. Mitchell, Juneau Hydropower, Inc., P.O. Box...

  11. Transport of lead and diesel fuel through a peat soil near Juneau, AK: a pilot study.

    Science.gov (United States)

    Julian Deiss; Carl Byers; Dave Clover; Dave D' Amore; Alan Love; Malcolm A. Menzies; J. Powell; Todd M. Walter

    2004-01-01

    A set of peat column experiments was used to determine the transport potential of lead (Pb) and diesel range organics (DRO) in palustrine slope wetlands near Juneau, AK. This project is important to southeast Alaskan communities because limited land resources are forcing development of regional wetlands. This study was instigated by concerns that proposed modifications...

  12. 77 FR 63301 - Juneau Hydropower, Inc.; Notice of Draft License Application and Preliminary Draft Environmental...

    Science.gov (United States)

    2012-10-16

    .... 791(a)-825(r). h. Applicant Contact: Duff Mitchell, Business Manager, Juneau Hydropower, Inc., P.O... information at the end of your comments. For assistance, please contact FERC Online Support at FERCOnline... access the document. For assistance, contact FERC Online Support. You may also register online at http...

  13. Recognizing Non-Stationary Climate Response in Tree Growth for Southern Coastal Alaska, USA

    Science.gov (United States)

    Wiles, G. C.; Jarvis, S. K.; D'Arrigo, R.; Vargo, L. J.; Appleton, S. N.

    2012-12-01

    Stationarity in growth response of trees to climate over time is assumed in dendroclimatic studies. Recent studies of Alaskan yellow-cedar (Chamaecyparis nootkatensis (D. Don) Spach) have identified warming-induced early loss of insulating snowpack and frost damage as a mechanism that can lead to decline in tree growth, which for this species is documented over the last century. A similar stress may be put on temperature-sensitive mountain hemlock (Tsuga mertensiana (Bong.) Carrière) trees at low elevations, which in some cases show a decline in tree growth with warming temperatures. One of the challenges of using tree-ring based SAT, SST, PDO and PNA-related reconstructions for southern coastal Alaska has been understanding the response of tree-ring chronologies to the warming temperatures over the past 50 years. Comparisons of tree growth with long meteorological records from Sitka Alaska that extend back to 1830 suggest many mountain hemlock sites at low elevations are showing decreasing ring-widths, at mid elevations most sites show a steady increasing growth tracking warming, and at treeline a release is documented. The recognition of this recent divergence or decoupling of tree-ring and temperature trends allows for divergence-free temperature reconstructions using trees from moderate elevations. These reconstructions now provide a better perspective for comparing recent warming to Medieval warming and a better understanding of forest dynamics as biomes shift in response to the transition from the Little Ice Age to contemporary warming. Reconstructed temperatures are consistent with well-established, entirely independent tree-ring dated ice advances of land-terminating glaciers along the Gulf of Alaska providing an additional check for stationarity in the reconstructed interval.

  14. Oil spill response planning, training and facilities for wildlife in Prince William Sound, Alaska

    International Nuclear Information System (INIS)

    Hillman, S.O.

    1996-01-01

    The special provisions of the SERVS System of the Alyeska Pipeline Service Company concerning the treatment of wildlife in the event of an oil spill, were described. The Company is prepared to mobilize a rapid response for protection and treatment of wildlife in the event of an oil spill anywhere along the trans-Alaska pipeline or in Prince William Sound. Equipment for hazing, capture, and treatment is pre-assembled and staged at facilities at the Valdez Marine Terminal. Veterinarians and wildlife treatment specialists are under contract for treating oiled birds. This complex of wildlife response capabilities meets or exceeds the guidelines and response planning standards set by wildlife agencies. 7 refs., 6 figs

  15. Environmental Audit of the Alaska Power Administration

    International Nuclear Information System (INIS)

    1992-10-01

    This report documents the results of the Comprehensive Baseline Environmental Audit of the Alaska Power Administration (APA) headquartered in Juneau, Alaska. This Audit was conducted by the US Department of Energy's (DOE's) Office of Environmental Audit (EH-24) from August 24 to December 8, 1992. The scope of the Audit was comprehensive, covering all environmental programs and activities with the exception of those relating to the National Environmental Policy Act (NEPA). Specifically considered was the compliance status of APA regarding Federal, state, and local statutes and regulations, DOE Orders and Directives, and best management practices. The technical disciplines addressed by the Audit were: air, surface water/drinking water, groundwater, waste management, toxic and chemical materials, quality assurance, inactive waste sites, and environmental management. Due to the nature of the activities carried out at the two Federal hydroelectric projects operated by APA, the area of radiation was not investigated during the Audit

  16. Vulnerability of white spruce tree growth in interior Alaska in response to climate variability: dendrochronological, demographic, and experimental perspectives

    Science.gov (United States)

    A.D. McGuire; R.W. Ruess; A. Lloyd; J. Yarie; J.S. Clein; G.P. Juday

    2010-01-01

    This paper integrates dendrochronological, demographic, and experimental perspectives to improve understanding of the response of white spruce (Picea glauca (Moench) Voss) tree growth to climatic variability in interior Alaska. The dendrochronological analyses indicate that climate warming has led to widespread declines in white spruce growth...

  17. NOAA/West coast and Alaska Tsunami warning center Atlantic Ocean response criteria

    Science.gov (United States)

    Whitmore, P.; Refidaff, C.; Caropolo, M.; Huerfano-Moreno, V.; Knight, W.; Sammler, W.; Sandrik, A.

    2009-01-01

    West Coast/Alaska Tsunami Warning Center (WCATWC) response criteria for earthquakesoccurring in the Atlantic and Caribbean basins are presented. Initial warning center decisions are based on an earthquake's location, magnitude, depth, distance from coastal locations, and precomputed threat estimates based on tsunami models computed from similar events. The new criteria will help limit the geographical extent of warnings and advisories to threatened regions, and complement the new operational tsunami product suite. Criteria are set for tsunamis generated by earthquakes, which are by far the main cause of tsunami generation (either directly through sea floor displacement or indirectly by triggering of sub-sea landslides).The new criteria require development of a threat data base which sets warning or advisory zones based on location, magnitude, and pre-computed tsunami models. The models determine coastal tsunami amplitudes based on likely tsunami source parameters for a given event. Based on the computed amplitude, warning and advisory zones are pre-set.

  18. Photosynthetic response of Eriophorum vaginatum to in situ shrub shading in tussock tundra of northern Alaska

    Science.gov (United States)

    Anderson-Smith, A.; Pattison, R.; Sullivan, P.; Welker, J. M.

    2009-12-01

    Eriophorum vaginatum (Cotton Grass) is an important component of moist acidic tussock tundra, a plant community that appears to be undergoing changes in species composition associated with climate warming. This species is one of the most abundant in the arctic tundra, and provides important forage for caribou in their calving grounds on the Arctic Coastal Plain and along their migratory route through the foothills of Alaska. Recently, remote sensing data, repeat photography and plot-level measurements have indicated that shrub abundance is increasing while Eriophorum abundance is either constant or decreasing. One possible explanation for the reduction of Eriophorum while Betula nana is increasing, is that lower light levels in the taller Betula canopy may be constraining Eriophorum photosynthesis and subsequently reducing plant growth. This study measured the effect of shading on the light response of Eriphorum leaf photosynthesis in four different sites near Toolik Lake Alaska during the summer of 2009. Measurements were taken in: 1) a shrub patch within the drift zone of the ITEX long term snow fence experiment, 2) an LTER shade house (50% shading) built in 1989, 3) water track site 1 and water track site 2 (i.e. control areas with no experimental manipulations) Average photosynthetic rates for Eriophorum at a light level of 800 PAR varied from 3.8 to 10.9 umol m-2 s-1 and were not significantly different in shaded and unshaded areas. This study indicates that shading by shrubs does not appear to be altering the light response of Eriophorum nor does long-term shading by itself eliminate Eriophorum from the community. An alternative explanation for the decline of Eriophorum while Betula increases in abundance under changing climates may be related to plant and soil mineral nutrition, plant water relations or biotic processes involving herbivores.

  19. Drivers and environmental responses to the changing annual snow cycle of northern Alaska

    Science.gov (United States)

    Cox, Christopher J.; Stone, Robert S.; Douglas, David C.; Stanitski, Diane; Divoky, George J.; Dutton, Geoff S.; Sweeney, Colm; George, J. Craig; Longenecker, David U.

    2017-01-01

    On the North Slope of Alaska, earlier spring snowmelt and later onset of autumn snow accumulation are tied to atmospheric dynamics and sea ice conditions, and result in environmental responses.Linkages between atmospheric, ecological and biogeochemical variables in the changing Arctic are analyzed using long-term measurements near Utqiaġvik (formerly Barrow), Alaska. Two key variables are the date when snow disappears in spring, as determined primarily by atmospheric dynamics, precipitation, air temperature, winter snow accumulation and cloud cover, as well as the date of onset of snowpack in autumn that is additionally influenced by ocean temperature and sea ice extent. In 2015 and 2016 the snow melted early at Utqiaġvik due mainly to anomalous warmth during May of both years attributed to atmospheric circulation patterns, with 2016 having the record earliest snowmelt. These years are discussed in the context of a 115-year snowmelt record at Utqiaġvik with a trend toward earlier melting since the mid- 1970s (-2.86 days/decade, 1975-2016). At nearby Cooper Island, where a colony of seabirds, Black Guillemots, have been monitored since 1975, timing of egg laying is correlated with Utqiaġvik snowmelt with 2015 and 2016 being the earliest years in the 42-year record. Ice-out at a nearby freshwater lagoon is also correlated with Utqiaġvik snowmelt. The date when snow begins to accumulate in autumn at Utqiaġvik shows a trend towards later dates (+4.6 days/decade, 1975-2016), with 2016 the latest on record. The relationships between the lengthening snow-free season and regional phenology, soil temperatures, fluxes of gases from the tundra, and to regional sea ice conditions are discussed. Better understanding of these interactions is needed to predict the annual snow cycles in the region at seasonal to decadal scales, and to anticipate coupled environmental responses.

  20. Varying boreal forest response to Arctic environmental change at the Firth River, Alaska

    International Nuclear Information System (INIS)

    Andreu-Hayles, Laia; D'Arrigo, Rosanne; Anchukaitis, Kevin J; Beck, Pieter S A; Goetz, Scott; Frank, David

    2011-01-01

    The response of boreal forests to anthropogenic climate change remains uncertain, with potentially significant impacts for the global carbon cycle, albedo, canopy evapotranspiration and feedbacks into further climate change. Here, we focus on tree-ring data from the Firth River site at treeline in northeastern Alaska, in a tundra–forest transition region where pronounced warming has already occurred. Both tree-ring width (TRW) and maximum latewood density (MXD) chronologies were developed to identify the nature of tree growth and density responses to climatic and environmental changes in white spruce (Picea glauca), a dominant Arctic treeline species. Good agreement was found between the interannual fluctuations in the TRW chronology and summer temperatures from 1901 to 1950, whereas no significant relationships were found from 1951 to 2001, supporting evidence of significant divergence between TRW and summer temperature in the second half of the 20th century. In contrast to this unstable climatic response in the TRW record, the high frequency July–August temperature signal in the MXD series seems reasonably stable through the 20th century. Wider and denser rings were more frequent during the 20th century, particularly after 1950, than in previous centuries. Finally, comparison between the tree-ring proxies and a satellite-derived vegetation index suggests that TRW and MXD correlate with vegetation productivity at the landscape level at different times of the growing season.

  1. Uniform shrub growth response to June temperature across the North Slope of Alaska

    Science.gov (United States)

    Ackerman, Daniel E.; Griffin, Daniel; Hobbie, Sarah E.; Popham, Kelly; Jones, Erin; Finlay, Jacques C.

    2018-04-01

    The expansion of woody shrubs in arctic tundra alters many aspects of high-latitude ecosystems, including carbon cycling and wildlife habitat. Dendroecology, the study of annual growth increments in woody plants, has shown promise in revealing how climate and environmental conditions interact with shrub growth to affect these key ecosystem properties. However, a predictive understanding of how shrub growth response to climate varies across the heterogeneous landscape remains elusive. Here we use individual-based mixed effects modeling to analyze 19 624 annual growth ring measurements in the stems of Salix pulchra (Cham.), a rapidly expanding deciduous shrub. Stem samples were collected at six sites throughout the North Slope of Alaska. Sites spanned four landscapes that varied in time since glaciation and hence in soil properties, such as nutrient availability, that we expected would modulate shrub growth response to climate. Ring growth was remarkably coherent among sites and responded positively to mean June temperature. The strength of this climate response varied slightly among glacial landscapes, but in contrast to expectations, this variability was not systematically correlated with landscape age. Additionally, shrubs at all sites exhibited diminishing marginal growth gains in response to increasing temperatures, indicative of alternative growth limiting mechanisms in particularly warm years, such as temperature-induced moisture limitation. Our results reveal a regionally-coherent and robust shrub growth response to early season growing temperature, with local soil properties contributing only a minor influence on shrub growth. Our conclusions strengthen predictions of changes to wildlife habitat and improve the representation of tundra vegetation dynamics in earth systems models in response to future arctic warming.

  2. NOAA/WEST COAST AND ALASKA TSUNAMI WARNING CENTER PACIFIC OCEAN RESPONSE CRITERIA

    Directory of Open Access Journals (Sweden)

    Garry Rogers

    2008-01-01

    Full Text Available New West Coast/Alaska Tsunami Warning Center (WCATWC response criteria for earthquakes occurring in the Pacific basin are presented. Initial warning decisions are based on earthquake location, magnitude, depth, and - dependent on magnitude - either distance from source or pre- computed threat estimates generated from tsunami models. The new criteria will help limit the geographical extent of warnings and advisories to threatened regions, and complement the new operational tsunami product suite.Changes to the previous criteria include: adding hypocentral depth dependence, reducing geographical warning extent for the lower magnitude ranges, setting special criteria for areas not well-connected to the open ocean, basing warning extent on pre-computed threat levels versus tsunami travel time for very large events, including the new advisory product, using the advisory product for far-offshore events in the lower magnitude ranges, and specifying distances from the coast for on-shore events which may be tsunamigenic.This report sets a baseline for response criteria used by the WCATWC considering its processing and observational data capabilities as well as its organizational requirements. Criteria are set for tsunamis generated by earthquakes, which are by far the main cause of tsunami generation (either directly through sea floor displacement or indirectly by triggering of slumps. As further research and development provides better tsunami source definition, observational data streams, and improved analysis tools, the criteria will continue to adjust. Future lines of research and development capable of providing operational tsunami warning centers with better tools are discussed.

  3. Preparing culturally responsive teachers of science, technology, engineering, and math using the Geophysical Institute Framework for Professional Development in Alaska

    Science.gov (United States)

    Berry Bertram, Kathryn

    2011-12-01

    The Geophysical Institute (GI) Framework for Professional Development was designed to prepare culturally responsive teachers of science, technology, engineering, and math (STEM). Professional development programs based on the framework are created for rural Alaskan teachers who instruct diverse classrooms that include indigenous students. This dissertation was written in response to the question, "Under what circumstances is the GI Framework for Professional Development effective in preparing culturally responsive teachers of science, technology, engineering, and math?" Research was conducted on two professional development programs based on the GI Framework: the Arctic Climate Modeling Program (ACMP) and the Science Teacher Education Program (STEP). Both programs were created by backward design to student learning goals aligned with Alaska standards and rooted in principles of indigenous ideology. Both were created with input from Alaska Native cultural knowledge bearers, Arctic scientists, education researchers, school administrators, and master teachers with extensive instructional experience. Both provide integrated instruction reflective of authentic Arctic research practices, and training in diverse methods shown to increase indigenous student STEM engagement. While based on the same framework, these programs were chosen for research because they offer distinctly different training venues for K-12 teachers. STEP offered two-week summer institutes on the UAF campus for more than 175 teachers from 33 Alaska school districts. By contrast, ACMP served 165 teachers from one rural Alaska school district along the Bering Strait. Due to challenges in making professional development opportunities accessible to all teachers in this geographically isolated district, ACMP offered a year-round mix of in-person, long-distance, online, and local training. Discussion centers on a comparison of the strategies used by each program to address GI Framework cornerstones, on

  4. 2015 Volcanic activity in Alaska—Summary of events and response of the Alaska Volcano Observatory

    Science.gov (United States)

    Dixon, James P.; Cameron, Cheryl E.; Iezzi, Alexandra M.; Wallace, Kristi

    2017-09-28

    The Alaska Volcano Observatory (AVO) responded to eruptions, volcanic unrest or suspected unrest, and seismic events at 14 volcanic centers in Alaska during 2015. The most notable volcanic activity consisted of continuing intermittent ash eruptions from Cleveland and Shishaldin volcanoes in the Aleutian Islands. Two eruptive episodes, at Veniaminof and Pavlof, on the Alaska Peninsula ended in 2015. During 2015, AVO re-established the seismograph network at Aniakchak, installed six new broadband seismometers throughout the Aleutian Islands, and added a Multiple component Gas Analyzer System (MultiGAS) station on Augustine.

  5. Redistribution of calving caribou in response to oil field development on the Arctic slope of Alaska

    International Nuclear Information System (INIS)

    Cameron, R.D.; Reed, D.J.; Smith, W.T.; Dau, J.R.

    1992-01-01

    Aerial surveys were conducted annually in June 1978-87 near Prudhoe Bay, Alaska, to determine changes in the distribution of calving caribou (Rangifer tarandus granti) that accompanied petroleum-related development. With construction of an oil field access road through a calving concentration area, mean caribou density (no./km 2 ) decreased from 1.41 to 0.31 within 1 km and increased from 1.41 to 4.53, 5-6 km from the road. Concurrently, relative caribou use of the adjacent area declined apparently in response to increasing surface development. It is suggested that perturbed distribution associated with roads reduced the capacity of the nearby area to sustain parturient females and that insufficient spacing of roads may have depressed overall calving activity. Use of traditional calving grounds and of certain areas therein appears to favor calf survival, principally through lower predation risk and improved foraging conditions. Given the possible loss of those habitats through displacement and the crucial importance of the reproductive process, a cautious approach to petroleum development on the Arctic Slope is warranted. 37 refs., 3 figs., 2 tabs

  6. The Juneau County Inventors & Entrepreneurs Club Experience: Catch the Culture! Rural Research Report. Volume 21, Issue 4, Fall 2010

    Science.gov (United States)

    Whipple, Terry

    2010-01-01

    Working from the premise that innovation and entrepreneurship will thrive if cultivated in a supportive environment, the Juneau County Economic Development Corporation (JCEDC) introduced a "club concept" as a key component of its strategic plan. The Wisconsin-based development corporation created the Inventors & Entrepreneurs Club…

  7. Response of barley to grasshopper defoliation in interior Alaska: dry matter and grain yield.

    Science.gov (United States)

    Begna, Sultan H; Fielding, Dennis J

    2005-12-01

    Barley, Hordeum vulgare L., is well adapted to subarctic Alaska growing conditions, but little is known about its response to grasshopper defoliation. A field experiment was conducted to study dry matter and grain yield in response to a combination of grasshopper defoliation and weeds in 2002 and 2003 near Delta Junction, AK (63 degrees 55' N, 145 degrees 20' W). Barley plants at third to fourth leaf stage were exposed to a combination of two levels of weeds (present or absent) and four densities of grasshoppers (equivalent to 0, 25, 50, and 75 grasshoppers per m2) of third to fourth instars of Melanoplus sanguinipes (F). Dry matter accumulation by the barley plants was determined at three times during the growing seasons: approximately 10 d after introduction of the grasshoppers, shortly after anthesis, and at maturity. Dry matter accumulation and grain yield were much lower in 2003 than in 2002, probably due to very low levels of soil moisture early in the growing season of 2003. Head clipping accounted for a greater portion of yield loss in 2003 than in 2002. The percentage of reduction in harvestable yield due to grasshoppers remained fairly constant between years (1.9 and 1.4 g per grasshopper per m2 in 2002 and 2003, respectively) despite a large difference in overall yield. Examination of the yield components suggest that yields were reduced by the early season drought in 2003 primarily through fewer seeds per head, whereas grasshoppers in both years reduced average seed weight, but not numbers of seeds.

  8. Recorded earthquake responses from the integrated seismic monitoring network of the Atwood Building, Anchorage, Alaska

    Science.gov (United States)

    Celebi, M.

    2006-01-01

    An integrated seismic monitoring system with a total of 53 channels of accelerometers is now operating in and at the nearby free-field site of the 20-story steel-framed Atwood Building in highly seismic Anchorage, Alaska. The building has a single-story basement and a reinforced concrete foundation without piles. The monitoring system comprises a 32-channel structural array and a 21-channel site array. Accelerometers are deployed on 10 levels of the building to assess translational, torsional, and rocking motions, interstory drift (displacement) between selected pairs of adjacent floors, and average drift between floors. The site array, located approximately a city block from the building, comprises seven triaxial accelerometers, one at the surface and six in boreholes ranging in depths from 15 to 200 feet (???5-60 meters). The arrays have already recorded low-amplitude shaking responses of the building and the site caused by numerous earthquakes at distances ranging from tens to a couple of hundred kilometers. Data from an earthquake that occurred 186 km away traces the propagation of waves from the deepest borehole to the roof of the building in approximately 0.5 seconds. Fundamental structural frequencies [0.58 Hz (NS) and 0.47 Hz (EW)], low damping percentages (2-4%), mode coupling, and beating effects are identified. The fundamental site frequency at approximately 1.5 Hz is close to the second modal frequencies (1.83 Hz NS and 1.43 EW) of the building, which may cause resonance of the building. Additional earthquakes prove repeatability of these characteristics; however, stronger shaking may alter these conclusions. ?? 2006, Earthquake Engineering Research Institute.

  9. The long term response of stream flow to climatic warming in headwater streams of interior Alaska

    Science.gov (United States)

    Jeremy B. Jones; Amanda J. Rinehart

    2010-01-01

    Warming in the boreal forest of interior Alaska will have fundamental impacts on stream ecosystems through changes in stream hydrology resulting from upslope loss of permafrost, alteration of availability of soil moisture, and the distribution of vegetation. We examined stream flow in three headwater streams of the Caribou-Poker Creeks Research Watershed (CPCRW) in...

  10. Earthquake Hazard and Risk in Alaska

    Science.gov (United States)

    Black Porto, N.; Nyst, M.

    2014-12-01

    loss exceedance probability curve used by insurers to address their solvency and manage their portfolio risk. We analyze risk profile changes in areas with large population density and for structures of economic and financial importance: the Trans-Alaska pipeline, industrial facilities in Valdez, and typical residential wood buildings in Anchorage, Fairbanks and Juneau.

  11. Logistic Requirements and Capabilities for Response to Oil Pollution in Alaska

    Science.gov (United States)

    1975-03-01

    C-118 (Liftmaster) • C-124 (Globemaster) • C-131 (Cargomaster) • C-130 ( Hercules ) • HH-3 helicopter I Air force planes are stationed at either...St. Marys S - S S - Red Devil S S S Pairbanks Fairbanks Hdqts. P p p p p Big Delta P s S s F Tanacross P p p s p Fort Yukon P p p s - Bettles ...Alaska (1) in 1970: Anchorage Aniak Annette Bethel Big Delta Cold Bay Bettles Cordova Fairbanks Farewell Fort Yukon Galena Gulkana Homer

  12. Alaska High School Students Integrate Forest Ecology, Glacial Landscape Dynamics, and Human Maritime History in a Field Mapping Course at Cape Decision Lighthouse, Kuiu Island, Southeast Alaska

    Science.gov (United States)

    Connor, C. L.; Carstensen, R.; Domke, L.; Donohoe, S.; Clark, A.; Cordero, D.; Otsea, C.; Hakala, M.; Parks, R.; Lanwermeyer, S.; Discover Design Research (Ddr)

    2010-12-01

    Alaskan 10th and 11th graders earned college credit at Cape Decision Lighthouse as part of a 12-day, summer field research experience. Students and faculty flew to the southern tip of Kuiu Island located 388 km south of Juneau. Kuiu is the largest uninhabited island in southeastern Alaska. This field-based, introduction-to-research course was designed to engage students in the sciences and give them skills in technology, engineering, and mathematics. Two faculty, a forest naturalist and a geologist, introduced the students to the use of hand held GPS receivers, GIS map making, field note-taking and documentary photography, increment borer use, and soil studies techniques. Daily surveys across the region, provided onsite opportunities for the faculty to introduce the high schoolers to the many dimensions of forest ecology and plant succession. Students collected tree cores using increment borers to determine “release dates” providing clues to past wind disturbance. They discovered the influence of landscape change on the forest by digging soil pits and through guided interpretation of bedrock outcrops. The students learned about glacially influenced hydrology in forested wetlands during peat bog hikes. They developed an eye for geomorphic features along coastal traverses, which helped them to understand the influences of uplift through faulting and isostatic rebound in this tectonically active and once glaciated area. They surveyed forest patches to distinguish between regions of declining yellow-cedar from wind-disturbed spruce forests. The students encountered large volumes of primarily plastic marine debris, now stratified by density and wave energy, throughout the southern Kuiu intertidal zone. They traced pre-European Alaska Native subsistence use of the area, 19th and 20th century Alaska Territorial Maritime history, and learned about the 21st century radio tracking of over 10,000 commercial vessels by the Marine Exchange of Alaska from its many stations

  13. Visitor, State of Alaska

    Science.gov (United States)

    /Fishing License Get a Birth Certificate, Marriage License, etc. Alaska Permanent Fund Dividend Statewide Library Alaska Historical Society Alaska State Museum Sheldon Jackson Museum Industry Facts Agriculture

  14. Edaphic and microclimatic controls over permafrost response to fire in interior Alaska

    International Nuclear Information System (INIS)

    Nossov, Dana R; Kielland, Knut; Torre Jorgenson, M; Kanevskiy, Mikhail Z

    2013-01-01

    Discontinuous permafrost in the North American boreal forest is strongly influenced by the effects of ecological succession on the accumulation of surface organic matter, making permafrost vulnerable to degradation resulting from fire disturbance. To assess factors affecting permafrost degradation after wildfire, we compared vegetation composition and soil properties between recently burned and unburned sites across three soil landscapes (rocky uplands, silty uplands, and sandy lowlands) situated within the Yukon Flats and Yukon-Tanana Uplands in interior Alaska. Mean annual air temperatures at our study sites from 2011 to 2012 were relatively cold (−5.5 ° C) and favorable to permafrost formation. Burning of mature evergreen forests with thick moss covers caused replacement by colonizing species in severely burned areas and recovery of pre-fire understory vegetation in moderately burned areas. Surface organic layer thickness strongly affected thermal regimes and thaw depths. On average, fire caused a five-fold decrease in mean surface organic layer thickness, a doubling of water storage in the active layer, a doubling of thaw depth, an increase in soil temperature at the surface (−0.6 to +2.1 ° C) and at 1 m depth (−1.7 to +0.4 ° C), and a two-fold increase in net soil heat input. Degradation of the upper permafrost occurred at all burned sites, but differences in soil texture and moisture among soil landscapes allowed permafrost to persist beneath the active layer in the silty uplands, whereas a talik of unknown depth developed in the rocky uplands and a thin talik developed in the sandy lowlands. A changing climate and fire regime would undoubtedly influence permafrost in the boreal forest, but the patterns of degradation or stabilization would vary considerably across the discontinuous permafrost zone due to differences in microclimate, successional patterns, and soil characteristics. (letter)

  15. Exploring the links between transient water inputs and glacier velocity in a small temperate glacier in southeastern Alaska

    Science.gov (United States)

    Heavner, M.; Habermann, M.; Hood, E. W.; Fatland, D. R.

    2009-12-01

    Glaciers along the Gulf of Alaska are thinning and retreating rapidly. An important control on the rate at which ice is being lost is basal motion because higher glacier velocities increase the rate at which ice is delivered to ablation zones. Recent research has focused on understanding the effects of sub-glacial water storage on glacier basal motion. In this study, we examined two seasons of the effect of hydrologic controls (from large rainfall events as well as a glacier lake outburst floods) on the velocity of the Lemon Creek Glacier in southeastern Alaska. Lemon Creek Glacier is a moderately sized (~16~km2) temperate glacier at the margin of the Juneau Icefield. An ice-marginal lake forms at the head of the glacier and catastrophically drains once or twice every melt season. We have instrumented the glacier with two meteorological stations: one at the head of the glacier near the ice-marginal lake and another several kilometers below the terminus. These stations measure temperature, relative humidity, precipitation, incoming solar radiation and wind speed and direction. Lake stage in the ice-marginal lake was monitored with a pressure transducer. In addition, Lemon Creek was instrumented with a water quality sonde at the location of a US Geological Survey gaging station approximately 3 km downstream from the glacier terminus. The sonde provides continuous measurements of water temperature, dissolved oxygen, turbidity and conductivity. Finally, multiple Trimble NetRS dual frequency, differential GPS units were deployed on the glacier along the centerline of the glacier. All of the instruments were run continuously from May-September 2008 and May-September 2009 and captured threee outburst floods associated with the ice-marginal lake drainage as well as several large (>3~cm) rainfall events associated with frontal storms off of the Gulf of Alaska in late summer. Taken together, these data allow us to test the hypothesis that water inputs which overwhelm

  16. Oceanographic studies in Harrison Bay and the Colville River Delta, Alaska, to support the development of oil spill response strategies

    International Nuclear Information System (INIS)

    Owens, E.H.; Taylor, E.; Hale, B.

    2003-01-01

    The risk of an oil spill resulting from the development of the Alpine oil field is considered to be low. The field is located on the North Slope of Alaska adjacent to the Alaskan Beaufort Sea and reaches coastal waters from the distributary channels of the Colville River Delta. The physical environmental (hydrodynamic) conditions that would affect the transport and fate of spilled oil was investigated to further reduce the risk. During the open-water season of 2001 in Harrison Bay, near shore current meters were deployed and data on weather and surface currents was analyzed. Ocean current and wind measurements were examined to evaluate the relationship between meteorology and water levels during the open-water season. The objective was to gain a better understanding of the near shore hydrodynamic processes at play in Harrison Bay, in order to plan the most appropriate spill response strategies. The results obtained indicate that surface currents within the bay adjacent to the Colville Delta are variable. They respond to wind forces as well as other possible mechanisms like estuarine circulation. The surface currents reach maximum speeds of 0.26 metre per second. For the late July-September deployment, the calculated net surface drift was a 0.02 metre per second current to the east southeast. In both Harrison Bay and Colville Delta, prevailing southwest and northeast winds, respectively, induced water level changes of more than 0.5 metre above and below the average. 7 refs., 3 tabs., 7 figs

  17. Managing forest disturbances and community responses: lessons from the Kenai Peninsula, Alaska.

    Science.gov (United States)

    Courtney G. Flint; Richard. Haynes

    2006-01-01

    Managing forest disturbances can be complicated by diverse human community responses. Interview and quantitative analysis of mail surveys were used to assess risk perceptions and community actions in response to forest disturbance by spruce bark beetles. Despite high risk perception of immediate threats to personal safety and property, risk perceptions of broader...

  18. The response of soil organic carbon of a rich fen peatland in interior Alaska to projected climate change.

    Science.gov (United States)

    Fan, Zhaosheng; David McGuire, Anthony; Turetsky, Merritt R; Harden, Jennifer W; Michael Waddington, James; Kane, Evan S

    2013-02-01

    It is important to understand the fate of carbon in boreal peatland soils in response to climate change because a substantial change in release of this carbon as CO2 and CH4 could influence the climate system. The goal of this research was to synthesize the results of a field water table manipulation experiment conducted in a boreal rich fen into a process-based model to understand how soil organic carbon (SOC) of the rich fen might respond to projected climate change. This model, the peatland version of the dynamic organic soil Terrestrial Ecosystem Model (peatland DOS-TEM), was calibrated with data collected during 2005-2011 from the control treatment of a boreal rich fen in the Alaska Peatland Experiment (APEX). The performance of the model was validated with the experimental data measured from the raised and lowered water-table treatments of APEX during the same period. The model was then applied to simulate future SOC dynamics of the rich fen control site under various CO2 emission scenarios. The results across these emissions scenarios suggest that the rate of SOC sequestration in the rich fen will increase between year 2012 and 2061 because the effects of warming increase heterotrophic respiration less than they increase carbon inputs via production. However, after 2061, the rate of SOC sequestration will be weakened and, as a result, the rich fen will likely become a carbon source to the atmosphere between 2062 and 2099. During this period, the effects of projected warming increase respiration so that it is greater than carbon inputs via production. Although changes in precipitation alone had relatively little effect on the dynamics of SOC, changes in precipitation did interact with warming to influence SOC dynamics for some climate scenarios. © 2012 Blackwell Publishing Ltd.

  19. Biological responses of Crested and Least auklets to volcanic destruction of nesting habitat in the Aleutian Islands, Alaska

    Science.gov (United States)

    Drew, Gary S.; Piatt, John F.; Williams, Jeffrey C.

    2018-01-01

    Crested Auklets (Aethia cristatella) and Least Auklets (A. pusilla) are crevice-nesting birds that breed in large mixed colonies at relatively few sites in the Aleutian Island archipelago, Bering Sea, Gulf of Alaska, and Sea of Okhotsk. Many of these colonies are located on active volcanic islands. The eruption of Kasatochi volcano, in the central Aleutians, on August 7, 2008, completely buried all crevice-nesting seabird habitat on the island. This provided an opportunity to examine the response of a large, mixed auklet colony to a major geological disturbance. Time-lapse imagery of nesting habitat indicated that both species returned to the largest pre-eruption colony site for several years, but subsequently abandoned it within 5 yr after the eruption. In 2010, a rockfall site in a cove north of the old colony site began to accumulate talus, and groups of auklets were observed using the site in 2011. Use of the new colony appeared to coincide with the abandonment of the old colony site by both species, though surface counts suggested that Least Auklets shifted to the new colony sooner than Crested Auklets. At-sea surveys of seabirds before and after the eruption indicated that both Crested and Least auklets shifted their at-sea distributions from the waters around Kasatochi Island to nearby Koniuji Island. In combination, at-sea counts and colony time-lapse imagery indicated that Crested and Least auklets using Kasatochi responded to the volcanic disturbance and complete loss of nesting habitat at the main colony on Kasatochi with dispersal either to newly created habitat on Kasatochi or to an alternate colony on a nearby island.

  20. The response of soil organic carbon of a rich fen peatland in interior Alaska to projected climate change

    Science.gov (United States)

    Fan, Zhaosheng; McGuire, Anthony David; Turetsky, Merritt R.; Harden, Jennifer W.; Waddington, James Michael; Kane, Evan S.

    2013-01-01

    It is important to understand the fate of carbon in boreal peatland soils in response to climate change because a substantial change in release of this carbon as CO2 and CH4 could influence the climate system. The goal of this research was to synthesize the results of a field water table manipulation experiment conducted in a boreal rich fen into a process-based model to understand how soil organic carbon (SOC) of the rich fen might respond to projected climate change. This model, the peatland version of the dynamic organic soil Terrestrial Ecosystem Model (peatland DOS-TEM), was calibrated with data collected during 2005–2011 from the control treatment of a boreal rich fen in the Alaska Peatland Experiment (APEX). The performance of the model was validated with the experimental data measured from the raised and lowered water-table treatments of APEX during the same period. The model was then applied to simulate future SOC dynamics of the rich fen control site under various CO2 emission scenarios. The results across these emissions scenarios suggest that the rate of SOC sequestration in the rich fen will increase between year 2012 and 2061 because the effects of warming increase heterotrophic respiration less than they increase carbon inputs via production. However, after 2061, the rate of SOC sequestration will be weakened and, as a result, the rich fen will likely become a carbon source to the atmosphere between 2062 and 2099. During this period, the effects of projected warming increase respiration so that it is greater than carbon inputs via production. Although changes in precipitation alone had relatively little effect on the dynamics of SOC, changes in precipitation did interact with warming to influence SOC dynamics for some climate scenarios.

  1. Alaska GRIN project : development of geospatial data management interface for oil spill and emergency response

    Energy Technology Data Exchange (ETDEWEB)

    Catalano, S. [Cook Inlet Regional Citizens Advisory Council, Kenai, AK (United States); Robertson, T.L. [Nuka Research and Planning Group LLC, Seldovia, AK (United States); DeCola, E. [Nuka Research and Planning Group LLC, Plymouth, MA (United States)

    2009-07-01

    A geographic response network (GRIN) project was conducted in 2005 to develop a computer-based tool for organizing maps and data related to oil spill and emergency response logistics and community resources. Originally conceived as an html-based website where information was organized based on incident command system divisions of responsibility, open source mapping applications are also being added to crate an interactive map interface with geospatially referenced information. GRIN information is organized by community. A locator map is embedded in the lower right-hand corner of each map. GRIN includes categories of information related to emergency management, air logistics, law enforcement, marine logistics, and shore-side logistics. A project is now being conducted by the Cook Inlet Regional Citizens' Advisory Council to convert the html-based GRIN into a geospatial data management tool. A prototype has now been populated with data for several Cook Inlet communities. GRIN can also be accessed on only computer with an Internet browser. It was concluded that the use of open source programming will make GRIN an easy tool for planners and emergency responders. 5 refs., 6 figs.

  2. State of Alaska

    Science.gov (United States)

    Assistance Center Occupations Requiring Licenses Corporations Employer Information Alaska's Job Bank/Alaska Assistance Center Alaska's Job Bank Occupations Requiring Licenses Corporations Unemployment Insurance Tax Child Care Child Protection Denali KidCare Food Stamps Poison Control Seasonal Flu Immunization

  3. Interactions between soil thermal and hydrological dynamics in the response of Alaska ecosystems to fire disturbance

    Science.gov (United States)

    Yi, Shuhua; McGuire, A. David; Harden, Jennifer; Kasischke, Eric; Manies, Kristen L.; Hinzman, Larry; Liljedahl, Anna K.; Randerson, J.; Liu, Heping; Romanovsky, Vladimir E.; Marchenko, Sergey S.; Kim, Yongwon

    2009-01-01

    Soil temperature and moisture are important factors that control many ecosystem processes. However, interactions between soil thermal and hydrological processes are not adequately understood in cold regions, where the frozen soil, fire disturbance, and soil drainage play important roles in controlling interactions among these processes. These interactions were investigated with a new ecosystem model framework, the dynamic organic soil version of the Terrestrial Ecosystem Model, that incorporates an efficient and stable numerical scheme for simulating soil thermal and hydrological dynamics within soil profiles that contain a live moss horizon, fibrous and amorphous organic horizons, and mineral soil horizons. The performance of the model was evaluated for a tundra burn site that had both preburn and postburn measurements, two black spruce fire chronosequences (representing space-for-time substitutions in well and intermediately drained conditions), and a poorly drained black spruce site. Although space-for-time substitutions present challenges in model-data comparison, the model demonstrates substantial ability in simulating the dynamics of evapotranspiration, soil temperature, active layer depth, soil moisture, and water table depth in response to both climate variability and fire disturbance. Several differences between model simulations and field measurements identified key challenges for evaluating/improving model performance that include (1) proper representation of discrepancies between air temperature and ground surface temperature; (2) minimization of precipitation biases in the driving data sets; (3) improvement of the measurement accuracy of soil moisture in surface organic horizons; and (4) proper specification of organic horizon depth/properties, and soil thermal conductivity.

  4. Temperature response of respiration across heterogeneous microtopography in the Arctic tundra, Utqiaġvik, Alaska

    Science.gov (United States)

    Wilkman, E.; Zona, D.; Tang, Y.; Gioli, B.; Lipson, D.; Oechel, W. C.

    2017-12-01

    The response of ecosystem respiration to warming in the Arctic is not well constrained, partly due to the presence of ice-wedge polygons in continuous permafrost areas. These formations lead to substantial variation in vegetation, soil moisture, water table, and active layer depth over the meter scale that can drive respiratory carbon loss. Accurate calculations of in-situ temperature sensitivities (Q10) are vital for the prediction of future Arctic emissions, and while the eddy covariance technique has commonly been used to determine the diurnal and season patterns of net ecosystem exchange (NEE) of CO2, the lack of suitable dark periods in the Arctic summer has limited our ability to estimate and interpret ecosystem respiration. To therefore improve our understanding of and define controls on ecosystem respiration, we directly compared CO2 fluxes measured from automated chambers across the main local polygonised landscape forms (high and low centers, polygon rims, and polygon troughs) to estimates from an adjacent eddy covariance tower. Low-centered polygons and polygon troughs had the greatest cumulative respiration rates, and ecosystem type appeared to be the most important explanatory variable for these rates. Despite the difference in absolute respiration rates, Q10 was surprisingly similar across all microtopographic features, despite contrasting water levels and vegetation types. Conversely, Q10 varied temporally, with higher values during the early and late summer and lower values during the peak growing season. Finally, good agreement was found between chamber and tower based Q10 estimates during the peak growing season. Overall, this study suggests that it is possible to simplify estimates of the temperature sensitivity of respiration across heterogeneous landscapes, but that seasonal changes in Q10 should be incorporated into current and future model simulations.

  5. CSI : Alaska

    International Nuclear Information System (INIS)

    Letwin, S.

    2005-01-01

    This presentation emphasized the need for northern gas supply at a time when conventional natural gas supplies are decreasing and demand is growing. It highlighted the unique qualifications of Enbridge Inc. in creating an infrastructure to move the supply to where it is in most demand. Enbridge has substantial northern experience and has a unique approach for the construction of the Alaskan Gas Pipeline which entails cooperation, stability and innovation (CSI). Enbridge's role in the joint venture with AltaGas and Inuvialuit Petroleum was discussed along with its role in the construction of the first Canadian pipeline in 1985. The 540 mile pipeline was buried in permafrost. A large percentage of Enbridge employees are of indigenous descent. Enbridge recognizes that the amount of capital investment and the associated risk needed for the Alaska Gas Pipeline will necessitate a partnership of producers, pipeline companies, Native organizations, the State of Alaska, market participants and other interested parties. 9 figs

  6. Business, State of Alaska

    Science.gov (United States)

    Investment Advisors Business Law Charitable Gaming Division of Banking & Securities Laws Relating to Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska State Government Jobs Federal Jobs Starting a Small Business Living Get a Driver License Get a Hunting

  7. Alaska Community Transit

    Science.gov (United States)

    Grant Information Human Services Funding 5310 5316 (Repealed) 5317 (Repealed) Alaska Mental Health Trust Department of Transportation & Public Facilities/ Alaska Community Transit Search DOT&PF State of Alaska Photo banner DOT&PF> Program Development > Alaska Community Transit Home About Us

  8. Alaska State Trails Program

    Science.gov (United States)

    Recreation Search DNR State of Alaska Home Menu Parks Home Alaska State Trails Boating Safety Design and Home / Alaska State Trails Alaska State Trails Program Trails in the Spotlight Glacier Lake and Saddle Trails in Kachemak State Park Glacier Lake A Popular route joins the Saddle and Glacier Lake Trails. The

  9. Dynamic response to strike-slip tectonic control on the deposition and evolution of the Baranof Fan, Gulf of Alaska

    Science.gov (United States)

    Walton, Maureen A. L.; Gulick, Sean P. S.; Reece, Robert S.; Barth, Ginger A.; Christeson, Gail L.; VanAvendonk, Harm J.

    2014-01-01

    The Baranof Fan is one of three large deep-sea fans in the Gulf of Alaska, and is a key component in understanding large-scale erosion and sedimentation patterns for southeast Alaska and western Canada. We integrate new and existing seismic reflection profiles to provide new constraints on the Baranof Fan area, geometry, volume, and channel development. We estimate the fan’s area and total sediment volume to be ∼323,000 km2 and ∼301,000 km3, respectively, making it among the largest deep-sea fans in the world. We show that the Baranof Fan consists of channel-levee deposits from at least three distinct aggradational channel systems: the currently active Horizon and Mukluk channels, and the waning system we call the Baranof channel. The oldest sedimentary deposits are in the northern fan, and the youngest deposits at the fan’s southern extent; in addition, the channels seem to avulse southward consistently through time. We suggest that Baranof Fan sediment is sourced from the Coast Mountains in southeastern Alaska, transported offshore most recently via fjord to glacial sea valley conduits. Because of the translation of the Pacific plate northwest past sediment sources on the North American plate along the Queen Charlotte strike-slip fault, we suggest that new channel formation, channel beheadings, and southward-migrating channel avulsions have been influenced by regional tectonics. Using a simplified tectonic reconstruction assuming a constant Pacific plate motion of 4.4 cm/yr, we estimate that Baranof Fan deposition initiated ca. 7 Ma.

  10. Speaking out about physical harms from tobacco use: response to graphic warning labels among American Indian/Alaska Native communities

    OpenAIRE

    Patterson Silver Wolf, David A; Tovar, Molly; Thompson, Kellie; Ishcomer, Jamie; Kreuter, Matthew W; Caburnay, Charlene; Boyum, Sonia

    2016-01-01

    Objective This study is the first to explore the impact of graphic cigarette labels with physical harm images on members of American Indian/Alaska Native (AI/AN) communities. The aim of this article is to investigate how AI/AN respond to particular graphic warning labels. Methods The parent study recruited smokers, at-risk smokers and non-smokers from three different age groups (youths aged 13?17?years, young adults aged 18?24?years and adults aged 25+ years) and five population subgroups wit...

  11. Interdisciplinary approach to hydrological hazard mitigation and disaster response and effects of climate change on the occurrence of flood severity in central Alaska

    Science.gov (United States)

    Kontar, Y. Y.; Bhatt, U. S.; Lindsey, S. D.; Plumb, E. W.; Thoman, R. L.

    2015-06-01

    In May 2013, a massive ice jam on the Yukon River caused flooding that destroyed much of the infrastructure in the Interior Alaska village of Galena and forced the long-term evacuation of nearly 70% of its residents. This case study compares the communication efforts of the out-of-state emergency response agents with those of the Alaska River Watch program, a state-operated flood preparedness and community outreach initiative. For over 50 years, the River Watch program has been fostering long-lasting, open, and reciprocal communication with flood prone communities, as well as local emergency management and tribal officials. By taking into account cultural, ethnic, and socioeconomic features of rural Alaskan communities, the River Watch program was able to establish and maintain a sense of partnership and reliable communication patterns with communities at risk. As a result, officials and residents in these communities are open to information and guidance from the River Watch during the time of a flood, and thus are poised to take prompt actions. By informing communities of existing ice conditions and flood threats on a regular basis, the River Watch provides effective mitigation efforts in terms of ice jam flood effects reduction. Although other ice jam mitigation attempts had been made throughout US and Alaskan history, the majority proved to be futile and/or cost-ineffective. Galena, along with other rural riverine Alaskan communities, has to rely primarily on disaster response and recovery strategies to withstand the shock of disasters. Significant government funds are spent on these challenging efforts and these expenses might be reduced through an improved understanding of both the physical and climatological principals behind river ice breakup and risk mitigation. This study finds that long term dialogue is critical for effective disaster response and recovery during extreme hydrological events connected to changing climate, timing of river ice breakup, and

  12. Interdisciplinary approach to hydrological hazard mitigation and disaster response and effects of climate change on the occurrence of flood severity in central Alaska

    Directory of Open Access Journals (Sweden)

    Y. Y. Kontar

    2015-06-01

    Full Text Available In May 2013, a massive ice jam on the Yukon River caused flooding that destroyed much of the infrastructure in the Interior Alaska village of Galena and forced the long-term evacuation of nearly 70% of its residents. This case study compares the communication efforts of the out-of-state emergency response agents with those of the Alaska River Watch program, a state-operated flood preparedness and community outreach initiative. For over 50 years, the River Watch program has been fostering long-lasting, open, and reciprocal communication with flood prone communities, as well as local emergency management and tribal officials. By taking into account cultural, ethnic, and socioeconomic features of rural Alaskan communities, the River Watch program was able to establish and maintain a sense of partnership and reliable communication patterns with communities at risk. As a result, officials and residents in these communities are open to information and guidance from the River Watch during the time of a flood, and thus are poised to take prompt actions. By informing communities of existing ice conditions and flood threats on a regular basis, the River Watch provides effective mitigation efforts in terms of ice jam flood effects reduction. Although other ice jam mitigation attempts had been made throughout US and Alaskan history, the majority proved to be futile and/or cost-ineffective. Galena, along with other rural riverine Alaskan communities, has to rely primarily on disaster response and recovery strategies to withstand the shock of disasters. Significant government funds are spent on these challenging efforts and these expenses might be reduced through an improved understanding of both the physical and climatological principals behind river ice breakup and risk mitigation. This study finds that long term dialogue is critical for effective disaster response and recovery during extreme hydrological events connected to changing climate, timing of

  13. Gravity measurements in southeastern Alaska reveal negative gravity rate of change caused by glacial isostatic adjustment

    Science.gov (United States)

    Sun, W.; Miura, S.; Sato, T.; Sugano, T.; Freymueller, J.; Kaufman, M.; Larsen, C. F.; Cross, R.; Inazu, D.

    2010-12-01

    For the past 300 years, southeastern Alaska has undergone rapid ice-melting and land uplift attributable to global warming. Corresponding crustal deformation (3 cm/yr) caused by the Little Ice Age retreat is detectable with modern geodetic techniques such as GPS and tidal gauge measurements. Geodetic deformation provides useful information for assessing ice-melting rates, global warming effects, and subcrustal viscosity. Nevertheless, integrated geodetic observations, including gravity measurements, are important. To detect crustal deformation caused by glacial isostatic adjustment and to elucidate the viscosity structure in southeastern Alaska, Japanese and U.S. researchers began a joint 3-year project in 2006 using GPS, Earth tide, and absolute gravity measurements. A new absolute gravity network was established, comprising five sites around Glacier Bay, near Juneau, Alaska. This paper reports the network's gravity measurements during 2006-2008. The bad ocean model in this area hindered ocean loading correction: Large tidal residuals remain in the observations. Accurate tidal correction necessitated on-site tidal observation. Results show high observation precision for all five stations: day ice thickness changes. A gravity bias of about -13.2 ± 0.1 mGal exists between the Potsdam and current FG5 gravity data.

  14. Analysis of Seasonal Variability in Gulf of Alaska Glacier Mass Balance using GRACE

    Science.gov (United States)

    Arendt, A. A.; Luthcke, S. B.; Oneel, S.; Gardner, A. S.; Hill, D. F.

    2011-12-01

    Mass variations of glaciers in Alaska/northwestern Canada must be quantified in order to assess impacts on ecosystems, human infrastructure, and global sea level. Here we combine Gravity Recovery and Climate Experiment (GRACE) observations with a wide range of satellite and field data to investigate drivers of these recent changes, with a focus on seasonal variations. Our central focus will be the exceptionally high mass losses of 2009, which do not correlate with weather station temperature and precipitation data, but may be linked to ash fall from the March 31, 2009 eruption of Mt. Redoubt. The eruption resulted in a significant decrease in MODIS-derived surface albedo over many Alaska glacier regions, and likely contributed to some of the 2009 anomalous mass loss observed by GRACE. We also focus on the Juneau and Stikine Icefield regions that are far from the volcanic eruption but experienced the largest mass losses of any region in 2009. Although rapid drawdown of tidewater glaciers was occurring in southeast Alaska during 2009, we show these changes were probably not sufficiently widespread to explain all of the GRACE signal in those regions. We examine additional field and satellite datasets to quantify potential errors in the climate and GRACE fields that could result in the observed discrepancy.

  15. Civil Division - Alaska Department of Law

    Science.gov (United States)

    Attorney General Opinions Executive Branch Ethics Criminal Justice Alaska Medicaid Fraud Control Anchorage department and other agencies on the management, retention, communication, and disclosure of information matters. In addition, the legislative liaison coordinates responses to media requests. Natural Resources

  16. Alaska Child Support Services Division

    Science.gov (United States)

    Payments Online! The CSSD Business Services Portal offers employers the convenience of paying child support ://my.Alaska.gov. Reporting online will save you time and money! If your business already has a myAlaska account Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska

  17. Tularemia in Alaska, 1938 - 2010

    Directory of Open Access Journals (Sweden)

    Hansen Cristina M

    2011-11-01

    Full Text Available Abstract Tularemia is a serious, potentially life threatening zoonotic disease. The causative agent, Francisella tularensis, is ubiquitous in the Northern hemisphere, including Alaska, where it was first isolated from a rabbit tick (Haemophysalis leporis-palustris in 1938. Since then, F. tularensis has been isolated from wildlife and humans throughout the state. Serologic surveys have found measurable antibodies with prevalence ranging from F. tularensis isolates from Alaska were analyzed using canonical SNPs and a multi-locus variable-number tandem repeats (VNTR analysis (MLVA system. The results show that both F. t. tularensis and F. t. holarctica are present in Alaska and that subtype A.I, the most virulent type, is responsible for most recently reported human clinical cases in the state.

  18. Speaking out about physical harms from tobacco use: response to graphic warning labels among American Indian/Alaska Native communities.

    Science.gov (United States)

    Patterson Silver Wolf, David A; Tovar, Molly; Thompson, Kellie; Ishcomer, Jamie; Kreuter, Matthew W; Caburnay, Charlene; Boyum, Sonia

    2016-03-23

    This study is the first to explore the impact of graphic cigarette labels with physical harm images on members of American Indian/Alaska Native (AI/AN) communities. The aim of this article is to investigate how AI/AN respond to particular graphic warning labels. The parent study recruited smokers, at-risk smokers and non-smokers from three different age groups (youths aged 13-17 years, young adults aged 18-24 years and adults aged 25+ years) and five population subgroups with high smoking prevalence or smoking risk. Using nine graphic labels, this study collected participant data in the field via an iPad-administered survey and card sorting of graphic warning labels. This paper reports on findings for AI/AN participants. After viewing graphic warning labels, participants rated their likelihood of talking about smoking risks to friends, parents and siblings higher than their likelihood of talking to teachers and doctors. Further, this study found that certain labels (eg, the label of the toddler in the smoke cloud) made them think about their friends and family who smoke. Given the influence of community social networks on health beliefs and attitudes, health communication using graphic warning labels could effect change in the smoking habits of AI/AN community members. Study findings suggest that graphic labels could serve as stimuli for conversations about the risks of smoking among AI/AN community members, and could be an important element of a peer-to-peer smoking cessation effort. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  19. The Response of Tundra to Biophysical Changes Ten Years Following the Anaktuvuk River Fire, Arctic Foothills, Alaska.

    Science.gov (United States)

    Jones, B. M.; Miller, E. A.; Jandt, R.; Baughman, C. A.

    2017-12-01

    Ten years following a large and severe wildfire in the arctic foothills of the Brooks Range, Alaska, tundra is experiencing rapid biophysical changes. Plant communities are responding to primary disturbance by fire but also to ground-ice melt, terrain subsidence, and apparent increase in soil drainage or evapotranspiration.The Anaktuvuk River Fire burned about 104,000 ha in 2007, spreading over broad ranges in soils, topography, hydrography, and permafrost features. Fourteen marked transects were measured between 2008-2011 and again in 2017 for cover of ground-layer vegetation, tall shrub abundance, thaw depth, and soil properties. A complementary set of 11 reference transects surrounding the burn was also sampled.We observed much higher rates of thermokarst inside the burn than out. Even low severity burn areas experienced noticeable thaw subsidence. Mean annual ground temperature at 1 m depth has warmed 1.5°C relative to unburned tundra. In cases ice wedge troughs have deepened by more than 1 m in areas underlain by yedoma soils. Troughs were characterized by cracking soil and slumping tussocks, often into ponded water. Troughs and degraded ice features appear to be draining adjacent polygon centers leading to a general drying of the tundra. Tussockgrasses inside the burn continue to grow and flower vigorously, suggesting a continued flush of soil nutrients. Post-fire accumulation of organic material is generally fire greatly accelerates this succession. Records and observations suggest that lightning and ignitions are becoming more frequent north of the Brooks Range.Our monitoring of this burn over the last ten years reveals a story much more complicated than our team can tell, inviting involvement of other disciplines, particularly hydrology, soil and landform science, remote sensing, and wildlife and subsistence resource management.

  20. Modeling Behavior by Coastal River Otter (Lontra Canadensis in Response to Prey Availability in Prince William Sound, Alaska: A Spatially-Explicit Individual-Based Approach.

    Directory of Open Access Journals (Sweden)

    Shannon E Albeke

    Full Text Available Effects of climate change on animal behavior and cascading ecosystem responses are rarely evaluated. In coastal Alaska, social river otters (Lontra Canadensis, largely males, cooperatively forage on schooling fish and use latrine sites to communicate group associations and dominance. Conversely, solitary otters, mainly females, feed on intertidal-demersal fish and display mutual avoidance via scent marking. This behavioral variability creates "hotspots" of nutrient deposition and affects plant productivity and diversity on the terrestrial landscape. Because the abundance of schooling pelagic fish is predicted to decline with climate change, we developed a spatially-explicit individual-based model (IBM of otter behavior and tested six scenarios based on potential shifts to distribution patterns of schooling fish. Emergent patterns from the IBM closely mimicked observed otter behavior and landscape use in the absence of explicit rules of intraspecific attraction or repulsion. Model results were most sensitive to rules regarding spatial memory and activity state following an encounter with a fish school. With declining availability of schooling fish, the number of social groups and the time simulated otters spent in the company of conspecifics declined. Concurrently, model results suggested an elevation of defecation rate, a 25% increase in nitrogen transport to the terrestrial landscape, and significant changes to the spatial distribution of "hotspots" with declines in schooling fish availability. However, reductions in availability of schooling fish could lead to declines in otter density over time.

  1. Fire history and fire management implications in the Yukon Flats National Wildlife Refuge, interior Alaska

    Science.gov (United States)

    S. A. Drury; P. J. Grissom

    2008-01-01

    We conducted this investigation in response to criticisms that the current Alaska Interagency Fire Management Plans are allowing too much of the landscape in interior Alaska to burn annually. To address this issue, we analyzed fire history patterns within the Yukon Flats National Wildlife Refuge, interior Alaska. We dated 40 fires on 27 landscape points within the...

  2. Alaska Public Offices Commission, Department of Administration, State of

    Science.gov (United States)

    Visiting Alaska State Employees State of Alaska Department of Administration Alaska Public Offices Commission Alaska Department of Administration, Alaska Public Offices Commission APOC Home Commission Filer ; AO's Contact Us Administration > Alaska Public Offices Commission Alaska Public Offices Commission

  3. Alaska Kids' Corner, State of Alaska

    Science.gov (United States)

    /Fishing License Get a Birth Certificate, Marriage License, etc. Alaska Permanent Fund Dividend Statewide shocks of wheat represent Alaskan agriculture. The fish and the seals signify the importance of fishing

  4. Recent climate warming forces contrasting growth responses of white spruce at treeline in Alaska through temperature thresholds

    Science.gov (United States)

    Martin Wilmking; Glenn P. Juday; Valerie A. Barber; Harold S.J. Zald

    2004-01-01

    Northern and high-latitude alpine treelines are generally thought to be limited by available warmth. Most studies of tree-growth-climate interaction at treeline as well as climate reconstructions using dendrochronology report positive growth response of treeline trees to warmer temperatures. However, population-wide responses of treeline trees to climate remain largely...

  5. Alaska Consumer Protection Unit

    Science.gov (United States)

    Drafting Manual Attorney General Opinions Executive Branch Ethics Criminal Justice Alaska Medicaid Fraud make wise purchasing decisions and avoid becoming victims of consumer fraud. The site also includes

  6. Regulatory Commission of Alaska

    Science.gov (United States)

    Map Help Regulatory Commission of Alaska Login Forgot Password Arrow Image Forgot password? View Cart login Procedures for Requesting Login For Consumers General Information Telephone Electric Natural Gas

  7. The response of soil organic carbon of a rich fen peatland in interior Alaska to projecte climate change

    Science.gov (United States)

    Zhaosheng Fan; David McGuire; Merritt R. Turetsky; Jennifer W. Harden; James Michael Waddington; Evan S. Kane

    2013-01-01

    It is important to understand the fate of carbon in boreal peatland soils in response to climate change because a substantial change in release of this carbon as CO2 and CH4 could influence the climate system. The goal of this research was to synthesize the results of a field water table manipulation experiment conducted in...

  8. Tourism in rural Alaska

    Science.gov (United States)

    Katrina Church-Chmielowski

    2007-01-01

    Tourism in rural Alaska is an education curriculum with worldwide relevance. Students have started small businesses, obtained employment in the tourism industry and gotten in touch with their people. The Developing Alaska Rural Tourism collaborative project has resulted in student scholarships, workshops on website development, marketing, small...

  9. Renewable Energy in Alaska

    Energy Technology Data Exchange (ETDEWEB)

    2013-03-01

    This report examines the opportunities, challenges, and costs associated with renewable energy implementation in Alaska and provides strategies that position Alaska's accumulating knowledge in renewable energy development for export to the rapidly growing energy/electric markets of the developing world.

  10. Alaska Administrative Manual

    Science.gov (United States)

    Search the Division of Finance site DOF State of Alaska Finance Home Content Area Accounting Charge Cards Division of Finance is to provide accounting, payroll, and travel services for State government Top Department of Administration logo Alaska Department of Administration Division of Finance Search

  11. LearnAlaska Portal

    Science.gov (United States)

    Search the Division of Finance site DOF State of Alaska Finance Home Content Area Accounting Charge Cards Mission Statement The mission of the Division of Finance is to provide accounting, payroll, and travel Top Department of Administration logo Alaska Department of Administration Division of Finance Search

  12. Successful aging through the eyes of Alaska Natives: exploring generational differences among Alaska Natives.

    Science.gov (United States)

    Lewis, Jordan P

    2010-12-01

    There is very little research on Alaska Native (AN) elders and how they subjectively define a successful older age. The lack of a culturally-specific definition often results in the use of a generic definition that portrays Alaska Native elders as aging less successfully than their White counterparts. However, there is a very limited understanding of a diverse array of successful aging experiences across generations. This research explores the concept of successful aging from an Alaska Native perspective, or what it means to age well in Alaska Native communities. An adapted Explanatory Model (EM) approach was used to gain a sense of the beliefs about aging from Alaska Natives. Research findings indicate that aging successfully is based on local understandings about personal responsibility and making the conscious decision to live a clean and healthy life, abstaining from drugs and alcohol. The findings also indicate that poor aging is often characterized by a lack of personal responsibility, or not being active, not being able to handle alcohol, and giving up on oneself. Most participants stated that elder status is not determined by reaching a certain age (e.g., 65), but instead is designated when an individual has demonstrated wisdom because of the experiences he or she has gained throughout life. This research seeks to inform future studies on rural aging that prioritizes the perspectives of elders to impact positively on the delivery of health care services and programs in rural Alaska.

  13. Glaciers of North America - Glaciers of Alaska

    Science.gov (United States)

    Molnia, Bruce F.

    2008-01-01

    Glaciers cover about 75,000 km2 of Alaska, about 5 percent of the State. The glaciers are situated on 11 mountain ranges, 1 large island, an island chain, and 1 archipelago and range in elevation from more than 6,000 m to below sea level. Alaska's glaciers extend geographically from the far southeast at lat 55 deg 19'N., long 130 deg 05'W., about 100 kilometers east of Ketchikan, to the far southwest at Kiska Island at lat 52 deg 05'N., long 177 deg 35'E., in the Aleutian Islands, and as far north as lat 69 deg 20'N., long 143 deg 45'W., in the Brooks Range. During the 'Little Ice Age', Alaska's glaciers expanded significantly. The total area and volume of glaciers in Alaska continue to decrease, as they have been doing since the 18th century. Of the 153 1:250,000-scale topographic maps that cover the State of Alaska, 63 sheets show glaciers. Although the number of extant glaciers has never been systematically counted and is thus unknown, the total probably is greater than 100,000. Only about 600 glaciers (about 1 percent) have been officially named by the U.S. Board on Geographic Names (BGN). There are about 60 active and former tidewater glaciers in Alaska. Within the glacierized mountain ranges of southeastern Alaska and western Canada, 205 glaciers (75 percent in Alaska) have a history of surging. In the same region, at least 53 present and 7 former large ice-dammed lakes have produced jokulhlaups (glacier-outburst floods). Ice-capped volcanoes on mainland Alaska and in the Aleutian Islands have a potential for jokulhlaups caused by subglacier volcanic and geothermal activity. Because of the size of the area covered by glaciers and the lack of large-scale maps of the glacierized areas, satellite imagery and other satellite remote-sensing data are the only practical means of monitoring regional changes in the area and volume of Alaska's glaciers in response to short- and long-term changes in the maritime and continental climates of the State. A review of the

  14. Social implications of alternatives to clearcutting on the Tongass National Forest: an exploratory study of residents' responses to alternative silvicultural treatments at Hanus Bay, Alaska.

    Science.gov (United States)

    James A. Burchfield; Jeffrey M. Miller; Stewart Allen; Robert F. Schroeder; Theron. Miller

    2003-01-01

    After a series of eight harvest treatments were completed at Hanus Bay, Alaska, on the Tongass National Forest in 1998, 27 respondents representing nine interest groups were interviewed to understand their reactions to the various harvest patterns in the eight treatment areas. Harvests patterns included three stands with 25 percent retention of basal area; three stands...

  15. 40 CFR 81.302 - Alaska.

    Science.gov (United States)

    2010-07-01

    ... Date Type Anchorage Community of Eagle River 11/15/90 Nonattainment 11/15/90 Moderate Juneau City of... river. Also, Township 1 South, Range 1 East, Sections 7, 8, and 18 and the portion of Section 19 north... urban area designated Nonattainment Kobuk Election District Nome Election District North Slope Election...

  16. 1964 Great Alaska Earthquake: a photographic tour of Anchorage, Alaska

    Science.gov (United States)

    Thoms, Evan E.; Haeussler, Peter J.; Anderson, Rebecca D.; McGimsey, Robert G.

    2014-01-01

    On March 27, 1964, at 5:36 p.m., a magnitude 9.2 earthquake, the largest recorded earthquake in U.S. history, struck southcentral Alaska (fig. 1). The Great Alaska Earthquake (also known as the Good Friday Earthquake) occurred at a pivotal time in the history of earth science, and helped lead to the acceptance of plate tectonic theory (Cox, 1973; Brocher and others, 2014). All large subduction zone earthquakes are understood through insights learned from the 1964 event, and observations and interpretations of the earthquake have influenced the design of infrastructure and seismic monitoring systems now in place. The earthquake caused extensive damage across the State, and triggered local tsunamis that devastated the Alaskan towns of Whittier, Valdez, and Seward. In Anchorage, the main cause of damage was ground shaking, which lasted approximately 4.5 minutes. Many buildings could not withstand this motion and were damaged or collapsed even though their foundations remained intact. More significantly, ground shaking triggered a number of landslides along coastal and drainage valley bluffs underlain by the Bootlegger Cove Formation, a composite of facies containing variably mixed gravel, sand, silt, and clay which were deposited over much of upper Cook Inlet during the Late Pleistocene (Ulery and others, 1983). Cyclic (or strain) softening of the more sensitive clay facies caused overlying blocks of soil to slide sideways along surfaces dipping by only a few degrees. This guide is the document version of an interactive web map that was created as part of the commemoration events for the 50th anniversary of the 1964 Great Alaska Earthquake. It is accessible at the U.S. Geological Survey (USGS) Alaska Science Center website: http://alaska.usgs.gov/announcements/news/1964Earthquake/. The website features a map display with suggested tour stops in Anchorage, historical photographs taken shortly after the earthquake, repeat photography of selected sites, scanned documents

  17. Alaska Resource Data File, Nabesna quadrangle, Alaska

    Science.gov (United States)

    Hudson, Travis L.

    2003-01-01

    Descriptions of the mineral occurrences shown on the accompanying figure follow. See U.S. Geological Survey (1996) for a description of the information content of each field in the records. The data presented here are maintained as part of a statewide database on mines, prospects and mineral occurrences throughout Alaska.

  18. Soil bacterial community and functional shifts in response to altered snowpack in moist acidic tundra of northern Alaska

    Science.gov (United States)

    Ricketts, Michael P.; Poretsky, Rachel S.; Welker, Jeffrey M.; Gonzalez-Meler, Miquel A.

    2016-09-01

    Soil microbial communities play a central role in the cycling of carbon (C) in Arctic tundra ecosystems, which contain a large portion of the global C pool. Climate change predictions for Arctic regions include increased temperature and precipitation (i.e. more snow), resulting in increased winter soil insulation, increased soil temperature and moisture, and shifting plant community composition. We utilized an 18-year snow fence study site designed to examine the effects of increased winter precipitation on Arctic tundra soil bacterial communities within the context of expected ecosystem response to climate change. Soil was collected from three pre-established treatment zones representing varying degrees of snow accumulation, where deep snow ˜ 100 % and intermediate snow ˜ 50 % increased snowpack relative to the control, and low snow ˜ 25 % decreased snowpack relative to the control. Soil physical properties (temperature, moisture, active layer thaw depth) were measured, and samples were analysed for C concentration, nitrogen (N) concentration, and pH. Soil microbial community DNA was extracted and the 16S rRNA gene was sequenced to reveal phylogenetic community differences between samples and determine how soil bacterial communities might respond (structurally and functionally) to changes in winter precipitation and soil chemistry. We analysed relative abundance changes of the six most abundant phyla (ranging from 82 to 96 % of total detected phyla per sample) and found four (Acidobacteria, Actinobacteria, Verrucomicrobia, and Chloroflexi) responded to deepened snow. All six phyla correlated with at least one of the soil chemical properties (% C, % N, C : N, pH); however, a single predictor was not identified, suggesting that each bacterial phylum responds differently to soil characteristics. Overall, bacterial community structure (beta diversity) was found to be associated with snow accumulation treatment and all soil chemical properties. Bacterial

  19. Phytomass in southeast Alaska.

    Science.gov (United States)

    Bert R. Mead

    1998-01-01

    Phytomass tables are presented for the southeast Alaska archipelago. Average phytomass for each sampled species of tree, shrub, grass, forb, lichen, and moss in 10 forest and 4 nonforest vegetation types is shown.

  20. Geothermal Technologies Program: Alaska

    Energy Technology Data Exchange (ETDEWEB)

    2005-02-01

    This fact sheets provides a summary of geothermal potential, issues, and current development in Alaska. This fact sheet was developed as part of DOE's GeoPowering the West initiative, part of the Geothermal Technologies Program.

  1. Employee, State of Alaska

    Science.gov (United States)

    Business Resources Division of Corporations, Business & Professional Licensing Dept. of Commerce Benefits Resources State Employee Directory State Calendar State Training: LearnAlaska State Travel Manager) Web Mail (Outlook) Login Who to Call Health Insurance Insurance Benefits Health and Optional

  2. Dissolved organic matter export in glacial and non-glacial streams along the Gulf of Alaska

    Science.gov (United States)

    Hood, E. W.; Scott, D.; Jeffery, A.; Schreiber, S.; Heavner, M.; Edwards, R.; D'Amore, D. V.; Fellman, J.

    2009-12-01

    The Gulf of Alaska drainage basin contains more than 75,000 km2 of glaciers, many of which are rapidly thinning and receding. We are using a paired watershed approach to evaluate how changes in glacier ecosystems will impact the export dissolved organic matter (DOM) into the Gulf of Alaska. Our primary study watersheds, Lemon Creek and Montana Creek, are similar in size, bedrock lithology and elevation range and extend from near sea level to the margin or interior of the Juneau Icefield. Lemon Creek has a glacial coverage of ~60%, while Montana Creek is free of glacier ice. Our goal is to evaluate seasonal differences in the quantity, chemical character and reactivity of DOM being exported from these watersheds to downstream near-shore marine ecosystems. In addition, we are monitoring a variety of physical parameters that influence instream DOM metabolism in both watersheds. Our initial results from the 2009 runoff season indicate that concentrations of dissolved organic carbon (DOC) are substantially higher in the non-glacial watershed. However, fluorescence analyses indicate that DOM from the glacier watershed has a higher protein and lower humic material content compared to DOM from the non-glacial watershed. After the spring snowmelt season, physical parameters between the two watersheds diverged, with higher streamflow and turbidity as well as colder water temperatures in the glacial watershed. Although our previous yield calculations show significantly higher DOC fluxes from the forested watershed, our results here suggest that glacier watersheds may be an important source of labile carbon to the near shore marine ecosystem. The contrast in the physical habitat between the two rivers (e.g glacier stream = cold, low light penetration, unstable substrate) supports the hypothesis that that in-stream DOM processing is limited within glacier dominated rivers, therefore delivering a higher percentage of labile DOM downstream.

  3. Source Characterization and Temporal Variation of Methane Seepage from Thermokarst Lakes on the Alaska North Slope in Response to Arctic Climate Change

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2012-09-30

    The goals of this research were to characterize the source, magnitude and temporal variability of methane seepage from thermokarst lakes (TKL) within the Alaska North Slope gas hydrate province, assess the vulnerability of these areas to ongoing and future arctic climate change and determine if gas hydrate dissociation resulting from permafrost melting is contributing to the current lake emissions. Analyses were focused on four main lake locations referred to in this report: Lake Qalluuraq (referred to as Lake Q) and Lake Teshekpuk (both on Alaska's North Slope) and Lake Killarney and Goldstream Bill Lake (both in Alaska's interior). From analyses of gases coming from lakes in Alaska, we showed that ecological seeps are common in Alaska and they account for a larger source of atmospheric methane today than geologic subcap seeps. Emissions from the geologic source could increase with potential implications for climate warming feedbacks. Our analyses of TKL sites showing gas ebullition were complemented with geophysical surveys, providing important insight about the distribution of shallow gas in the sediments and the lake bottom manifestation of seepage (e.g., pockmarks). In Lake Q, Chirp data were limited in their capacity to image deeper sediments and did not capture the thaw bulb. The failure to capture the thaw bulb at Lake Q may in part be related to the fact that the present day lake is a remnant of an older, larger, and now-partially drained lake. These suggestions are consistent with our analyses of a dated core of sediment from the lake that shows that a wetland has been present at the site of Lake Q since approximately 12,000 thousand years ago. Chemical analyses of the core indicate that the availability of methane at the site has changed during the past and is correlated with past environmental changes (i.e. temperature and hydrology) in the Arctic. Discovery of methane seeps in Lake Teshekpuk in the northernmost part of the lake during 2009

  4. Asthma and American Indians/Alaska Natives

    Science.gov (United States)

    ... Minority Population Profiles > American Indian/Alaska Native > Asthma Asthma and American Indians/Alaska Natives In 2015, 240, ... Native American adults reported that they currently have asthma. American Indian/Alaska Native children are 60% more ...

  5. Current Ethnomusicology in Alaska.

    Science.gov (United States)

    Johnston, Thomas F.

    The systematic study of Eskimo, Indian, and Aleut musical sound and behavior in Alaska, though conceded to be an important part of white efforts to foster understanding between different cultural groups and to maintain the native cultural heritage, has received little attention from Alaskan educators. Most existing ethnomusical studies lack one or…

  6. Phytomass in southwest Alaska.

    Science.gov (United States)

    Bert R. Mead

    2000-01-01

    Phytomass tables are presented for southwest Alaska. The methods used to estimate plant weight and occurrence in the river basin are described and discussed. Average weight is shown for each sampled species of tree, shrub, grass, forb, lichen, and moss in 19 forest and 48 nonforest vegetation types. Species frequency of occurrence and species constancy within the type...

  7. EPA Research in Alaska

    Science.gov (United States)

    EPA’s collaboration with the DEC and the Air Force on PFAS sampling and analytical methods is key to ensuring valid, defensible data are collected on these emerging contaminants that are being found in soil, groundwater and drinking water in Alaska.

  8. Seismology Outreach in Alaska

    Science.gov (United States)

    Gardine, L.; Tape, C.; West, M. E.

    2014-12-01

    Despite residing in a state with 75% of North American earthquakes and three of the top 15 ever recorded, most Alaskans have limited knowledge about the science of earthquakes. To many, earthquakes are just part of everyday life, and to others, they are barely noticed until a large event happens, and often ignored even then. Alaskans are rugged, resilient people with both strong independence and tight community bonds. Rural villages in Alaska, most of which are inaccessible by road, are underrepresented in outreach efforts. Their remote locations and difficulty of access make outreach fiscally challenging. Teacher retention and small student bodies limit exposure to science and hinder student success in college. The arrival of EarthScope's Transportable Array, the 50th anniversary of the Great Alaska Earthquake, targeted projects with large outreach components, and increased community interest in earthquake knowledge have provided opportunities to spread information across Alaska. We have found that performing hands-on demonstrations, identifying seismological relevance toward career opportunities in Alaska (such as natural resource exploration), and engaging residents through place-based experience have increased the public's interest and awareness of our active home.

  9. 76 FR 81873 - Fisheries of the Exclusive Economic Zone Off Alaska; Inseason Adjustment to the 2012 Bering Sea...

    Science.gov (United States)

    2011-12-29

    ... NMFS, Attn: Ellen Sebastian. Mail comments to P.O. Box 21668, Juneau, AK 99802-1668. Fax: Address... 420A, Juneau, AK. Instructions: Comments must be submitted by one of the above methods to ensure that... more than 47% of ABC, and Atka mackerel harvests for Amendment 80 cooperatives and CDQ groups within...

  10. The evolving Alaska mapping program.

    Science.gov (United States)

    Brooks, P.D.; O'Brien, T. J.

    1986-01-01

    This paper describes the development of mapping in Alaska, the current status of the National Mapping Program, and future plans for expanding and improving the mapping coverage. Research projects with Landsat Multispectral Scanner and Return Vidicon imagery and real- and synthetic-aperture radar; image mapping programs; digital mapping; remote sensing projects; the Alaska National Interest Lands Conservation Act; and the Alaska High-Altitude Aerial Photography Program are also discussed.-from Authors

  11. The geophysical character of southern Alaska - Implications for crustal evolution

    Science.gov (United States)

    Saltus, R.W.; Hudson, T.L.; Wilson, Frederic H.

    2007-01-01

    The southern Alaska continental margin has undergone a long and complicated history of plate convergence, subduction, accretion, and margin-parallel displacements. The crustal character of this continental margin is discernible through combined analysis of aeromagnetic and gravity data with key constraints from previous seismic interpretation. Regional magnetic data are particularly useful in defining broad geophysical domains. One of these domains, the south Alaska magnetic high, is the focus of this study. It is an intense and continuous magnetic high up to 200 km wide and ∼1500 km long extending from the Canadian border in the Wrangell Mountains west and southwest through Cook Inlet to the Bering Sea shelf. Crustal thickness beneath the south Alaska magnetic high is commonly 40–50 km. Gravity analysis indicates that the south Alaska magnetic high crust is dense. The south Alaska magnetic high spatially coincides with the Peninsular and Wrangellia terranes. The thick, dense, and magnetic character of this domain requires significant amounts of mafic rocks at intermediate to deep crustal levels. In Wrangellia these mafic rocks are likely to have been emplaced during Middle and (or) Late Triassic Nikolai Greenstone volcanism. In the Peninsular terrane, the most extensive period of mafic magmatism now known was associated with the Early Jurassic Talkeetna Formation volcanic arc. Thus the thick, dense, and magnetic character of the south Alaska magnetic high crust apparently developed as the response to mafic magmatism in both extensional (Wrangellia) and subduction-related arc (Peninsular terrane) settings. The south Alaska magnetic high is therefore a composite crustal feature. At least in Wrangellia, the crust was probably of average thickness (30 km) or greater prior to Triassic mafic magmatism. Up to 20 km (40%) of its present thickness may be due to the addition of Triassic mafic magmas. Throughout the south Alaska magnetic high, significant crustal growth

  12. The Mount Edgecumbe tephra deposits, a marker horizon in southeastern Alaska near the Pleistocene-Holocene boundary

    Science.gov (United States)

    Riehle, J.R.; Mann, D.H.; Peteet, D.M.; Engstrom, D.R.; Brew, D.A.; Meyer, C.E.

    1992-01-01

    Late Pleistocene tephra deposits found from Sitka to Juneau and Lituya Bay are assigned to a source at the Mount Edgecumbe volcanic field, based on similarity of glass compositions to nearvent deposits and on thinning away from Kruzof Island. The sequence of near-vent layers is basaltic andesite and andesite at the base, rhyolite, and mixed dacite and rhyolite on top. The only breaks in the tephra sequence are two 1-mm-thick silt partings in a lake-sediment core, indicating a depositional interval from basaltic andesite to dacite of no more than about a millennium. Tephra deposits at sites >30 km from the vent are solely dacite and rhyolite and are 10,600 to 11,400 14C yr old based on interpretation of 18 radiocarbon ages, including 5 by accelerator mass spectrometry (AMS). Basaltic andesite and andesite deposits nearer the vent are as much as 12,000 yr old. Discrepancy among radiocarbon ages of upland tephra deposits provisionally correlated as the same grainfall is resolvable within ??2 ?? of analytical uncertainty. Comparison of bulk and AMS ages in one sediment core indicates a systematic bias of +600 to +1100 yr for the bulk ages; correlation of tephra deposits among upland and lacustrine sites implies an additional discrepancy of 200-400 yr between upland (relatively too young) and lacustrine ages. In any case, the Mount Edgecumbe tephra deposits are a widespread, latest Pleistocene stratigraphic marker that serves to emphasize the uncertainty in dating biogenic material from southeastern Alaska. ?? 1992.

  13. Alaska's nest egg

    International Nuclear Information System (INIS)

    Stauffer, Thomas.

    1997-01-01

    Twenty years ago, the Alaska Permanent Fund was established to receive a substantial share of the state's oil receipts and to invest these monies each year. Four key aspects are unique to Alaska's providential fund among oil-producing states. Firstly a constitutional amendment is needed to touch the assets so the capital is safe from encroachment by the government. Secondly, each Alaskan gets a detailed breakdown of what is invested and what is earned. In the third place, and most importantly, each Alaskan receives an annual dividend from the Fund. Fourthly, the funds have been prudently invested almost entirely outside Alaska rather than in unremunerative vanity infrastructure projects. Now, however, oil production is falling and revenues per barrel from new fields with higher costs are projected to decline as well. Given the budget shortfall, there is now a debate about whether the dividends paid directly to the people, should be shifted, at least in part to the state budget. Although the Fund's capital cannot be touched by the government, the Legislature does have the right to dispose of the income. The arguments in this debate over policy and political philosophy are examined. (UK)

  14. Alaska Department of Health and Social Services

    Science.gov (United States)

    marijuana means for Alaska and you. Careline: 1-877-266-HELP (4357) Alaska's Tobacco Quitline Learn the Twitter Find us on Facebook Quicklinks Alaska Opioid Policy Task Force "Spice" Synthetic Marijuana Health Information Alaska State Plan for Senior Services, FY 2016-FY 2019 Get health insurance at

  15. Rural Alaska Mentoring Project (RAMP)

    Science.gov (United States)

    Cash, Terry

    2011-01-01

    For over two years the National Dropout Prevention Center (NDPC) at Clemson University has been supporting the Lower Kuskokwim School District (LKSD) in NW Alaska with their efforts to reduce high school dropout in 23 remote Yup'ik Eskimo villages. The Rural Alaska Mentoring Project (RAMP) provides school-based E-mentoring services to 164…

  16. Alaska, Gulf spills share similarities

    International Nuclear Information System (INIS)

    Usher, D.

    1991-01-01

    The accidental Exxon Valdez oil spill in Alaska and the deliberate dumping of crude oil into the Persian Gulf as a tactic of war contain both glaring differences and surprising similarities. Public reaction and public response was much greater to the Exxon Valdez spill in pristine Prince William Sound than to the war-related tragedy in the Persian Gulf. More than 12,000 workers helped in the Alaskan cleanup; only 350 have been involved in Kuwait. But in both instances, environmental damages appear to be less than anticipated. Natures highly effective self-cleansing action is primarily responsible for minimizing the damages. One positive action growing out of the two incidents is increased international cooperation and participation in oil-spill clean-up efforts. In 1990, in the aftermath of the Exxon Valdez spill, 94 nations signed an international accord on cooperation in future spills. The spills can be historic environmental landmarks leading to creation of more sophisticated response systems worldwide

  17. Alaska exceptionality hypothesis: Is Alaska wilderness really different?

    Science.gov (United States)

    Gregory Brown

    2002-01-01

    The common idiom of Alaska as “The Last Frontier” suggests that the relative remoteness and unsettled character of Alaska create a unique Alaskan identity, one that is both a “frontier” and the “last” of its kind. The frontier idiom portrays the place and people of Alaska as exceptional or different from the places and people who reside in the Lower Forty- Eight States...

  18. Engineering Geology | Alaska Division of Geological & Geophysical Surveys

    Science.gov (United States)

    Alaska's Mineral Industry Reports AKGeology.info Rare Earth Elements WebGeochem Engineering Geology Alaska content Engineering Geology Additional information Engineering Geology Posters and Presentations Alaska Alaska MAPTEACH Tsunami Inundation Mapping Engineering Geology Staff Projects The Engineering Geology

  19. 2005 Alaska Division of Geological & Geophysical Surveys Lidar: Unalakleet, Alaska

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This report is a summary of a LiDAR data collection over the community of Unalakleet, in the Norton Sound region of Alaska. The original data were collected on...

  20. Procurement and Contracting, Transportation & Public Facilities, State of

    Science.gov (United States)

    Visiting Alaska State Employees Alaska Department of Transportation & Public Facilities header image Alaska Department of Transportation & Public Facilities / Procurement and Contracting Search DOT& pages Department of Transportation & Public Facilities PO Box 112500 3132 Channel Drive Juneau

  1. Investigation of Alaska's uranium potential

    International Nuclear Information System (INIS)

    Eakins, G.R.

    1975-01-01

    Of the various geographical regions in Alaska that were examined in an exhaustive literary search for the possibility of uranium--either vein type or sedimentary--six offer encouragement: the Copper River Basin, the alkaline intrusive belt of west-central Alaska and Selawik Basin area, the Seward Peninsula, the Susitna Lowland, the coal-bearing basins of the north flank of the Alaska Range, the Precambrian gneisses of the USGS 1:250,000 Goodnews quadrangle, and Southeastern Alaska, which has the sole operating uranium mine in the state. Other areas that may be favorable for the presence of uranium include the Yukon Flats area, the Cook Inlet Basin, and the Galena Basin

  2. Kevadel Alaska talves / Tiiu Ehrenpreis

    Index Scriptorium Estoniae

    Ehrenpreis, Tiiu

    2007-01-01

    Autori muljeid 22.-25. märtsini Fairbanksis toimunud Alaska Ülikooli ja Ülemaailmse Arktika Uurimise Keskuse (IARC) juhtimisel GLOBE'i programmi uue projekti "Aastaajad ja bioomid" koolitusseminarist

  3. Interior Alaska Bouguer Gravity Anomaly

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A 1 kilometer Complete Bouguer Anomaly gravity grid of interior Alaska. All grid cells within the rectangular data area (from 61 to 66 degrees North latitude and...

  4. Interior Alaska Bouguer Gravity Anomaly

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A 1 kilometer Complete Bouguer Anomaly gravity grid of interior Alaska. Only those grid cells within 10 kilometers of a gravity data point have gravity values....

  5. Level III Ecoregions of Alaska

    Data.gov (United States)

    U.S. Environmental Protection Agency — Ecoregions denote areas of general similarity in ecosystems and in the type, quality, and quantity of environmental resources. The ecoregions of Alaska are a...

  6. Alaska Geoid Heights (GEOID96)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This 2' x 4' geoid height grid for Alaska is distributed as a GEOID96 model. The computation used 1.1 million terrestrial and marine gravity data held in the...

  7. Alternatives to clearcutting in the old-growth forests of southeast Alaska: study plan and establishment report.

    Science.gov (United States)

    Michael H. McClellan; Douglas N. Swanston; Paul E. Hennon; Robert L. Deal; Toni L. de Santo; Mark S. Wipfli

    2000-01-01

    Much is known about the ecological effects, economics, and social impacts of clearcutting, but little documented experience with other silvicultural systems exists in southeast Alaska. The Pacific Northwest Research Station and the Alaska Region of the USDA Forest Service have cooperatively established an interdisciplinary study of ecosystem and social responses to...

  8. Rural Alaska Science and Mathematics Network

    National Research Council Canada - National Science Library

    Brunk, Blanche R

    2005-01-01

    ...), are awarded to Alaska Native students. Academic preparation, lack of exposure to science careers in rural Alaska, and little connection between western science and Native traditional life have combined to impede Native students' interest...

  9. Life cycle costs for Alaska bridges.

    Science.gov (United States)

    2014-08-01

    A study was implemented to assist the Alaska Department of Transportation and Public Facilities (ADOT&PF) with life cycle costs for : the Alaska Highway Bridge Inventory. The study consisted of two parts. Part 1 involved working with regional offices...

  10. Publications - Geospatial Data | Alaska Division of Geological &

    Science.gov (United States)

    from rocks collected in the Richardson mining district, Big Delta Quadrangle, Alaska: Alaska Division Island 2009 topography: Alaska Division of Geological & Geophysical Surveys Miscellaneous Publication , Geologic map of portions of the Livengood B-3, B-4, C-3, and C-4 quadrangles, Tolovana mining district

  11. Harvesting morels after wildfire in Alaska.

    Science.gov (United States)

    Tricia L. Wurtz; Amy L. Wiita; Nancy S. Weber; David Pilz

    2005-01-01

    Morels are edible, choice wild mushrooms that sometimes fruit prolifically in the years immediately after an area has been burned by wildfire. Wildfires are common in interior Alaska; an average of 708,700 acres burned each year in interior Alaska between 1961 and 2000, and in major fire years, over 2 million acres burned. We discuss Alaska's boreal forest...

  12. Climate change and health effects in Northwest Alaska

    Directory of Open Access Journals (Sweden)

    Michael Brubaker

    2011-10-01

    Full Text Available This article provides examples of adverse health effects, including weather-related injury, food insecurity, mental health issues, and water infrastructure damage, and the responses to these effects that are currently being applied in two Northwest Alaska communities.In Northwest Alaska, warming is resulting in a broad range of unusual weather and environmental conditions, including delayed freeze-up, earlier breakup, storm surge, coastal erosion, and thawing permafrost. These are just some of the climate impacts that are driving concerns about weather-related injury, the spread of disease, mental health issues, infrastructure damage, and food and water security. Local leaders are challenged to identify appropriate adaptation strategies to address climate impacts and related health effects.The tribal health system is combining local observations, traditional knowledge, and western science to perform community-specific climate change health impact assessments. Local leaders are applying this information to develop adaptation responses.The Alaska Native Tribal Health Consortium will describe relationships between climate impacts and health effects and provide examples of community-scaled adaptation actions currently being applied in Northwest Alaska.Climate change is increasing vulnerability to injury, disease, mental stress, food insecurity, and water insecurity. Northwest communities are applying adaptation approaches that are both specific and appropriate.The health impact assessment process is effective in raising awareness, encouraging discussion, engaging partners, and implementing adaptation planning. With community-specific information, local leaders are applying health protective adaptation measures.

  13. Emergency management response to a warning-level Alaska-source tsunami impacting California: Chapter J in The SAFRR (Science Application for Risk Reduction) Tsunami Scenario

    Science.gov (United States)

    Miller, Kevin M.; Long, Kate

    2013-01-01

    This chapter is directed towards two audiences: Firstly, it targets nonemergency management readers, providing them with insight on the process and challenges facing emergency managers in responding to tsunami Warning, particularly given this “short fuse” scenario. It is called “short fuse” because there is only a 5.5-hour window following the earthquake before arrival of the tsunami within which to evaluate the threat, disseminate alert and warning messages, and respond. This action initiates a period when crisis communication is of paramount importance. An additional dynamic that is important to note is that within 15 minutes of the earthquake, the National Oceanic and Atmospheric Administration (NOAA) and the National Weather Service (NWS) will issue alert bulletins for the entire Pacific Coast. This is one-half the time actually presented by recent tsunamis from Japan, Chile, and Samoa. Second, the chapter provides emergency managers at all levels with insights into key considerations they may need to address in order to augment their existing plans and effectively respond to tsunami events. We look at emergency management response to the tsunami threat from three perspectives:“Top Down” (Threat analysis and Alert/Warning information from the Federal agency charged with Alert and Warning) “Bottom Up” (Emergency management’s Incident Command approach to responding to emergencies and disasters based on the needs of impacted local jurisdictions) “Across Time” (From the initiating earthquake event through emergency response) We focus on these questions: What are the government roles, relationships, and products that support Tsunami Alert and Warning dissemination? (Emergency Planning and Preparedness.) What roles, relationships, and products support emergency management response to Tsunami Warning and impact? (Engendering prudent public safety response.) What are the key emergency management activities, considerations, and challenges brought

  14. Alaska Dental Health Aide Program.

    Science.gov (United States)

    Shoffstall-Cone, Sarah; Williard, Mary

    2013-01-01

    In 1999, An Oral Health Survey of American Indian and Alaska Native (AI/AN) Dental Patients found that 79% of 2- to 5-year-olds had a history of tooth decay. The Alaska Native Tribal Health Consortium in collaboration with Alaska's Tribal Health Organizations (THO) developed a new and diverse dental workforce model to address AI/AN oral health disparities. This paper describes the workforce model and some experience to date of the Dental Health Aide (DHA) Initiative that was introduced under the federally sanctioned Community Health Aide Program in Alaska. These new dental team members work with THO dentists and hygienists to provide education, prevention and basic restorative services in a culturally appropriate manner. The DHA Initiative introduced 4 new dental provider types to Alaska: the Primary Dental Health Aide, the Expanded Function Dental Health Aide, the Dental Health Aide Hygienist and the Dental Health Aide Therapist. The scope of practice between the 4 different DHA providers varies vastly along with the required training and education requirements. DHAs are certified, not licensed, providers. Recertification occurs every 2 years and requires the completion of 24 hours of continuing education and continual competency evaluation. Dental Health Aides provide evidence-based prevention programs and dental care that improve access to oral health care and help address well-documented oral health disparities.

  15. 76 FR 1539 - Fisheries of the Exclusive Economic Zone Off Alaska; Inseason Adjustment to the 2011 Bering Sea...

    Science.gov (United States)

    2011-01-11

    ....gov . Mail: P.O. Box 21668, Juneau, AK 99802. Fax: (907) 586-7557. Hand delivery to the Federal Building: 709 West 9th Street, Room 420A, Juneau, AK. All comments received are a part of the public record... 679.20(a)(8)(ii)(C) requires the TAC in area 542 shall be no more than 47% of ABC, and Amendment 80...

  16. 77 FR 438 - Fisheries of the Exclusive Economic Zone Off Alaska; Inseason Adjustment to the 2012 Gulf of...

    Science.gov (United States)

    2012-01-05

    ..., Juneau, AK 99802-1668. Fax: Address written comments to Glenn Merrill, Assistant Regional Administrator... 709 West 9th Street, Room 420A, Juneau, AK. Instructions: Comments must be submitted by one of the...) 9,338 (36.47%) 7,282 (28.44%) 8,986 (35.10%) 25,606 D (Oct 1-Nov 1) 9,338 (36.47%) 7,282 (28.44%) 8...

  17. Geochemical reanalysis of historical U.S. Geological Survey sediment samples from the northeastern Alaska Range, Healy, Mount Hayes, Nabesna, and Tanacross quadrangles, Alaska

    Science.gov (United States)

    Werdon, Melanie B.; Granitto, Matthew; Azain, Jaime S.

    2015-01-01

    The State of Alaska’s Strategic and Critical Minerals (SCM) Assessment project, a State-funded Capital Improvement Project (CIP), is designed to evaluate Alaska’s statewide potential for SCM resources. The SCM Assessment is being implemented by the Alaska Division of Geological & Geophysical Surveys (DGGS), and involves obtaining new airborne-geophysical, geological, and geochemical data. As part of the SCM Assessment, thousands of historical geochemical samples from DGGS, U.S. Geological Survey (USGS), and U.S. Bureau of Mines archives are being reanalyzed by DGGS using modern, quantitative, geochemical-analytical methods. The objective is to update the statewide geochemical database to more clearly identify areas in Alaska with SCM potential. The USGS is also undertaking SCM-related geologic studies in Alaska through the federally funded Alaska Critical Minerals cooperative project. DGGS and USGS share the goal of evaluating Alaska’s strategic and critical minerals potential and together created a Letter of Agreement (signed December 2012) and a supplementary Technical Assistance Agreement (#14CMTAA143458) to facilitate the two agencies’ cooperative work. Under these agreements, DGGS contracted the USGS in Denver to reanalyze historical USGS sediment samples from Alaska. For this report, DGGS funded reanalysis of 670 historical USGS sediment samples from the statewide Alaska Geochemical Database Version 2.0 (AGDB2; Granitto and others, 2013). Samples were chosen from the northeastern Alaska Range, in the Healy, Mount Hayes, Nabesna, and Tanacross quadrangles, Alaska (fig. 1). The USGS was responsible for sample retrieval from the National Geochemical Sample Archive (NGSA) in Denver, Colorado through the final quality assurance/quality control (QA/QC) of the geochemical analyses obtained through the USGS contract lab. The new geochemical data are published in this report as a coauthored DGGS report, and will be incorporated into the statewide geochemical

  18. Alaska volcanoes guidebook for teachers

    Science.gov (United States)

    Adleman, Jennifer N.

    2011-01-01

    Alaska’s volcanoes, like its abundant glaciers, charismatic wildlife, and wild expanses inspire and ignite scientific curiosity and generate an ever-growing source of questions for students in Alaska and throughout the world. Alaska is home to more than 140 volcanoes, which have been active over the last 2 million years. About 90 of these volcanoes have been active within the last 10,000 years and more than 50 of these have been active since about 1700. The volcanoes in Alaska make up well over three-quarters of volcanoes in the United States that have erupted in the last 200 years. In fact, Alaska’s volcanoes erupt so frequently that it is almost guaranteed that an Alaskan will experience a volcanic eruption in his or her lifetime, and it is likely they will experience more than one. It is hard to imagine a better place for students to explore active volcanism and to understand volcanic hazards, phenomena, and global impacts. Previously developed teachers’ guidebooks with an emphasis on the volcanoes in Hawaii Volcanoes National Park (Mattox, 1994) and Mount Rainier National Park in the Cascade Range (Driedger and others, 2005) provide place-based resources and activities for use in other volcanic regions in the United States. Along the lines of this tradition, this guidebook serves to provide locally relevant and useful resources and activities for the exploration of numerous and truly unique volcanic landscapes in Alaska. This guidebook provides supplemental teaching materials to be used by Alaskan students who will be inspired to become educated and prepared for inevitable future volcanic activity in Alaska. The lessons and activities in this guidebook are meant to supplement and enhance existing science content already being taught in grade levels 6–12. Correlations with Alaska State Science Standards and Grade Level Expectations adopted by the Alaska State Department of Education and Early Development (2006) for grades six through eleven are listed at

  19. Alaska Resource Data File, McCarthy quadrangle, Alaska

    Science.gov (United States)

    Hudson, Travis L.

    2003-01-01

    Descriptions of the mineral occurrences shown on the accompanying figure follow. See U.S. Geological Survey (1996) for a description of the information content of each field in the records. The data presented here are maintained as part of a statewide database on mines, prospects and mineral occurrences throughout Alaska.

  20. Geologic framework of the Alaska Peninsula, southwest Alaska, and the Alaska Peninsula terrane

    Science.gov (United States)

    Wilson, Frederic H.; Detterman, Robert L.; DuBois, Gregory D.

    2015-01-01

    The Alaska Peninsula is composed of the late Paleozoic to Quaternary sedimentary, igneous, and minor metamorphic rocks that record the history of a number of magmatic arcs. These magmatic arcs include an unnamed Late Triassic(?) and Early Jurassic island arc, the early Cenozoic Meshik arc, and the late Cenozoic Aleutian arc. Also found on the Alaska Peninsula is one of the most complete nonmetamorphosed, fossiliferous, marine Jurassic sedimentary sections known. As much as 8,500 m of section of Mesozoic sedimentary rocks record the growth and erosion of the Early Jurassic island arc.

  1. Infant Mortality and American Indians/Alaska Natives

    Science.gov (United States)

    ... American Indian/Alaska Native > Infant Health & Mortality Infant Mortality and American Indians/Alaska Natives American Indian/Alaska ... as compared to non-Hispanic white mothers. Infant Mortality Rate: Infant mortality rate per 1,000 live ...

  2. Tuberculosis among Children in Alaska.

    Science.gov (United States)

    Gessner, Bradford D.

    1997-01-01

    The incidence of tuberculosis among Alaskan children under 15 was more than twice the national rate, with Alaska Native children showing a much higher incidence. Children with household exposure to adults with active tuberculosis had a high risk of infection. About 22 percent of pediatric tuberculosis cases were identified through school…

  3. Alaska Dental Health Aide Program

    Directory of Open Access Journals (Sweden)

    Sarah Shoffstall-Cone

    2013-08-01

    Full Text Available Background. In 1999, An Oral Health Survey of American Indian and Alaska Native (AI/AN Dental Patients found that 79% of 2- to 5-year-olds had a history of tooth decay. The Alaska Native Tribal Health Consortium in collaboration with Alaska’s Tribal Health Organizations (THO developed a new and diverse dental workforce model to address AI/AN oral health disparities. Objectives. This paper describes the workforce model and some experience to date of the Dental Health Aide (DHA Initiative that was introduced under the federally sanctioned Community Health Aide Program in Alaska. These new dental team members work with THO dentists and hygienists to provide education, prevention and basic restorative services in a culturally appropriate manner. Results. The DHA Initiative introduced 4 new dental provider types to Alaska: the Primary Dental Health Aide, the Expanded Function Dental Health Aide, the Dental Health Aide Hygienist and the Dental Health Aide Therapist. The scope of practice between the 4 different DHA providers varies vastly along with the required training and education requirements. DHAs are certified, not licensed, providers. Recertification occurs every 2 years and requires the completion of 24 hours of continuing education and continual competency evaluation. Conclusions. Dental Health Aides provide evidence-based prevention programs and dental care that improve access to oral health care and help address well-documented oral health disparities.

  4. Red alder potential in Alaska

    Science.gov (United States)

    Allen Brackley; David Nicholls; Mike Hannan

    2010-01-01

    Over the past several decades, red alder has established itself as a commercially important species in the Pacific Northwest. Once considered a weed species, red alder now commands respect within many markets, including furniture, architectural millwork, and other secondary manufactured products. Although red alder's natural range extends to southeast Alaska, an...

  5. Alaska's indigenous muskoxen: a history

    Directory of Open Access Journals (Sweden)

    Peter C. Lent

    1998-03-01

    Full Text Available Muskoxen (Ovibos moschatus were widespread in northern and interior Alaska in the late Pleistocene but were never a dominant component of large mammal faunas. After the end of the Pleistocene they were even less common. Most skeletal finds have come from the Arctic Coastal Plain and the foothills of the Brooks Range. Archaeological evidence, mainly from the Point Barrow area, suggests that humans sporadically hunted small numbers of muskoxen over about 1500 years from early Birnirk culture to nineteenth century Thule culture. Skeletal remains found near Kivalina represent the most southerly Holocene record for muskoxen in Alaska. Claims that muskoxen survived into the early nineteenth century farther south in the Selawik - Buckland River region are not substantiated. Remains of muskox found by Beechey's party in Eschscholtz Bay in 1826 were almost certainly of Pleistocene age, not recent. Neither the introduction of firearms nor overwintering whalers played a significant role in the extinction of Alaska's muskoxen. Inuit hunters apparently killed the last muskoxen in northwestern Alaska in the late 1850s. Several accounts suggest that remnant herds survived in the eastern Brooks Range into the 1890s. However, there is no physical evidence or independent confirmation of these reports. Oral traditions regarding muskoxen survived among the Nunamiut and the Chandalar Kutchin. With human help, muskoxen have successfully recolonized their former range from the Seward Peninsula north, across the Arctic Slope and east into the northern Yukon Territory.

  6. Home Page, Alaska Department of Labor and Workforce Development

    Science.gov (United States)

    Employment and Training Services Alaska Labor Relations Agency Labor Standards and Safety Vocational Rehabilitation Workers' Compensation Of Interest Alaska's Job Bank Job Fairs, Recruitments, and Workshops Finding

  7. Alaska's renewable energy potential.

    Energy Technology Data Exchange (ETDEWEB)

    2009-02-01

    This paper delivers a brief survey of renewable energy technologies applicable to Alaska's climate, latitude, geography, and geology. We first identify Alaska's natural renewable energy resources and which renewable energy technologies would be most productive. e survey the current state of renewable energy technologies and research efforts within the U.S. and, where appropriate, internationally. We also present information on the current state of Alaska's renewable energy assets, incentives, and commercial enterprises. Finally, we escribe places where research efforts at Sandia National Laboratories could assist the state of Alaska with its renewable energy technology investment efforts.

  8. Geomorphic consequences of volcanic eruptions in Alaska: A review

    Science.gov (United States)

    Waythomas, Christopher F.

    2015-01-01

    Eruptions of Alaska volcanoes have significant and sometimes profound geomorphic consequences on surrounding landscapes and ecosystems. The effects of eruptions on the landscape can range from complete burial of surface vegetation and preexisting topography to subtle, short-term perturbations of geomorphic and ecological systems. In some cases, an eruption will allow for new landscapes to form in response to the accumulation and erosion of recently deposited volcaniclastic material. In other cases, the geomorphic response to a major eruptive event may set in motion a series of landscape changes that could take centuries to millennia to be realized. The effects of volcanic eruptions on the landscape and how these effects influence surface processes has not been a specific focus of most studies concerned with the physical volcanology of Alaska volcanoes. Thus, what is needed is a review of eruptive activity in Alaska in the context of how this activity influences the geomorphology of affected areas. To illustrate the relationship between geomorphology and volcanic activity in Alaska, several eruptions and their geomorphic impacts will be reviewed. These eruptions include the 1912 Novarupta–Katmai eruption, the 1989–1990 and 2009 eruptions of Redoubt volcano, the 2008 eruption of Kasatochi volcano, and the recent historical eruptions of Pavlof volcano. The geomorphic consequences of eruptive activity associated with these eruptions are described, and where possible, information about surface processes, rates of landscape change, and the temporal and spatial scale of impacts are discussed.A common feature of volcanoes in Alaska is their extensive cover of glacier ice, seasonal snow, or both. As a result, the generation of meltwater and a variety of sediment–water mass flows, including debris-flow lahars, hyperconcentrated-flow lahars, and sediment-laden water floods, are typical outcomes of most types of eruptive activity. Occasionally, such flows can be quite

  9. State of Alaska Department of Environmental Conservation oil spill research and development program

    International Nuclear Information System (INIS)

    Pearson, L.A.

    1992-01-01

    In 1990, the Sixteenth Alaska Legislature reviewed issues related to response action and planning involved in the release or threatened release of oil or hazardous substance. One of the outcomes of that review was the passage of House Bill 566, which established the Alaska State Emergency Response Commission (SERC) and within the SERC the Hazardous Substance Spill Technology Review Council. The Council was organized in the spring of 1991 and meets quarterly. The Council is responsible to assist in the identification of containment and clean up products and procedures for arctic and sub-arctic hazardous substance releases and to make recommendations to state agencies regarding their use and deployment. Appendix I explains additional duties of the Council. Members of the Council include the deputy commissioner of the Alaska Department of Environmental Conservation, representatives of the Department of Military and Veterans Affairs, the governor's senior science advisor, the U.S. Coast Guard, the Environmental Protection Agency, the University of Alaska, Prince William Sound Science Center and representatives from Alaska judicial districts

  10. Mendenhall Glacier Visitor Center vehicular and pedestrian traffic congestion study

    Science.gov (United States)

    2007-05-01

    The Mendenhall Glacier Visitor Center of Tongass National Forest in Juneau, Alaska is experiencing vehicular and pedestrian congestion. This study was initiated by the United States Forest Service, Alaska Region, in cooperation with Western Federal L...

  11. Economic growth and change in southeast Alaska.

    Science.gov (United States)

    Rhonda Mazza

    2004-01-01

    This report focuses on economic trends since the 1970s in rural southeast Alaska. These trends are compared with those in the Nation and in nonmetropolitan areas of the country to determine the extent to which the economy in rural southeast Alaska is affected by regional activity and by larger market forces. Many of the economic changes occurring in rural southeast...

  12. The State of Alaska Agency Directory

    Science.gov (United States)

    Administrative Services Division of Banking and Securities Division of Community & Regional Affairs Division Services Public Notices Alaska Communities Resident Working Finding Work in Alaska Private Industry Jobs Development Environmental Conservation Fish and Game Governor's Office Health and Social Services Labor and

  13. Alaska Plant Materials Center | Division of Agriculture

    Science.gov (United States)

    Management Plan for Alaska, 2005 2017 AK Potato Seed Certification Handbook Tobacco Rattle Virus in Peonies Virus and Thrips Vectors Resources Pacific Northwest Plant Disease Management Handbook Pacific Northwest Potato Production Disease Risk Monitoring Publications and Reports Late Blight Management Plan for Alaska

  14. Nontimber forest product opportunities in Alaska.

    Science.gov (United States)

    David Pilz; Susan J. Alexander; Jerry Smith; Robert Schroeder; Jim. Freed

    2006-01-01

    Nontimber forest products from southern Alaska (also called special forest products) have been used for millennia as resources vital to the livelihoods and culture of Alaska Natives and, more recently, as subsistence resources for the welfare of all citizens. Many of these products are now being sold, and Alaskans seek additional income opportunities through...

  15. Potential for forest products in interior Alaska.

    Science.gov (United States)

    George R. Sampson; Willem W.S. van Hees; Theodore S. Setzer; Richard C. Smith

    1988-01-01

    Future opportunities for producing Alaska forest products were examined from the perspective of timber supply as reported in timber inventory reports and past studies of forest products industry potential. The best prospects for increasing industrial production of forest products in interior Alaska are for softwood lumber. Current softwood lumber production in the...

  16. Administrative Services Division - Alaska Department of Law

    Science.gov (United States)

    accounting practices and procedures. JoAnn Pelayo Finance Officer Email: joann.pelayo@alaska.gov Tel: (907 @alaska.gov Tel: (907) 465-3674 Fiscal and Accounting Provide centralized fiscal and accounting functions for , inter-departmental payments for core services, payroll accounting adjustments and oversight, and grant

  17. Alaska State Legislature

    Science.gov (United States)

    Standing Committees Finance Committees Special Committees Joint Committees Conference Committees Other , administrative support to the Legislature and all divisions, and has the responsibility for accounting, payroll Information Offices within the state. Accounting Santé Lesh, Administrative Operations Manager 465-3852

  18. The Alaska Coastal Communities Cooperative: The concept and feasibility

    International Nuclear Information System (INIS)

    Hann, R.W.

    1992-01-01

    A new initiative is described which further prepares Alaska to deal with oil spills in the future by focusing on the needs of shoreline protection and nearshore response. The Alaskan Coastal Communities Cooperative (ACCC) has been formed to organize local resources and provide appropriate training, equipment, and coordination to deal with both small spills, local product spills, and catastrophic spills. Advantages of the ACCC to industry and governments include a significant enhancement of oil spill response capability in Alaska. For example, the ACCC will ensure that the response equipment it acquires is compatible with existing resources, thus creating maximum response capability at minimum cost. Other advantages include greater public trust, low costs, ability to provide a combination of local knowledge and technical knowledge, provision of a pooling of spill response resources, and the ability of the ACCC to handle contracting of local fishing and other vessels used in oil spill response. The ACCC organizational structure and vessel contracting program are described along with its equipment and operating format. 1 fig

  19. A Framework for Culturally Relevant Online Learning: Lessons from Alaska's Tribal Health Workers.

    Science.gov (United States)

    Cueva, Katie; Cueva, Melany; Revels, Laura; Lanier, Anne P; Dignan, Mark; Viswanath, K; Fung, Teresa T; Geller, Alan C

    2018-03-22

    Culturally relevant health promotion is an opportunity to reduce health inequities in diseases with modifiable risks, such as cancer. Alaska Native people bear a disproportionate cancer burden, and Alaska's rural tribal health workers consequently requested cancer education accessible online. In response, the Alaska Native Tribal Health Consortium cancer education team sought to create a framework for culturally relevant online learning to inform the creation of distance-delivered cancer education. Guided by the principles of community-based participatory action research and grounded in empowerment theory, the project team conducted a focus group with 10 Alaska Native education experts, 12 culturally diverse key informant interviews, a key stakeholder survey of 62 Alaska Native tribal health workers and their instructors/supervisors, and a literature review on distance-delivered education with Alaska Native or American Indian people. Qualitative findings were analyzed in Atlas.ti, with common themes presented in this article as a framework for culturally relevant online education. This proposed framework includes four principles: collaborative development, interactive content delivery, contextualizing learning, and creating connection. As an Alaskan tribal health worker shared "we're all in this together. All about conversations, relationships. Always learn from you/with you, together what we know and understand from the center of our experience, our ways of knowing, being, caring." The proposed framework has been applied to support cancer education and promote cancer control with Alaska Native people and has motivated health behavior change to reduce cancer risk. This framework may be adaptable to other populations to guide effective and culturally relevant online interventions.

  20. Alaska Village Electric Load Calculator

    Energy Technology Data Exchange (ETDEWEB)

    Devine, M.; Baring-Gould, E. I.

    2004-10-01

    As part of designing a village electric power system, the present and future electric loads must be defined, including both seasonal and daily usage patterns. However, in many cases, detailed electric load information is not readily available. NREL developed the Alaska Village Electric Load Calculator to help estimate the electricity requirements in a village given basic information about the types of facilities located within the community. The purpose of this report is to explain how the load calculator was developed and to provide instructions on its use so that organizations can then use this model to calculate expected electrical energy usage.

  1. BAROMETRIC PRESSURE and Other Data from ALPHA HELIX From Prince William Sound (Gulf of Alaska) from 1989-05-05 to 1989-05-11 (NODC Accession 8900192)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The University of Alaska, Institute of Marine Science is responsible for this data collected aboard the R/V Alpha Helix on cruise number HX123 between May 5, 1989 to...

  2. Natural resource trust funds : a comparison of Alberta and Alaska resource funds

    Energy Technology Data Exchange (ETDEWEB)

    Warrack, A.A.; Keddie, R.R. [Alberta Univ., Edmonton, AB (Canada)

    2002-09-01

    Alberta and Alaska both have an economy based largely on natural resources. The cyclical nature of their economies poses a challenge to stability and sustained prosperity. During the oil crisis of 1973-1974, Alberta and Alaska began receiving oil and gas royalties. The idea of an endowment-type fund began taking shape. This fund would assist in the gradual transition from dependence on non-renewable resources to the responsible management of these resources. Both the Alberta Heritage Savings Trust Fund and the Alaska Permanent Fund were created in 1976. The governments of both jurisdictions set aside revenues from natural resource royalties to provide economic stability. Both jurisdictions followed different policies in terms of management, structure, governance, and objectives. In this paper, the authors compared both funds, examining the policy options which had an impact on their growth and successes. The results showed that in Alaska, monies are paid directly to eligible persons, while allocation decisions in Alberta have been made by the government. The government manages the fund in Alberta, while in Alaska, the fund is managed by a separate entity. The Alaskan fund continues to grow, while the the size of the Alberta fund has remained unchanged for a number of years and is not growing. 21 refs., 5 figs.

  3. The species velocity of trees in Alaska

    Science.gov (United States)

    Morrison, B. D.; Napier, J.; de Lafontaine, G.; Heath, K.; Li, B.; Hu, F.; Greenberg, J. A.

    2017-12-01

    Anthropogenic climate change has motivated interest in the paleo record to enhance our knowledge about past vegetation responses to climate change and help understand potential responses in the future. Additionally, polar regions currently experience the most rapid rates of climate change globally, prompting concern over changes in the ecological composition of high latitude ecosystems. Recent analyses have attempted to construct methods to estimate a species' ability to track climate change by computing climate velocity; a measure of the rate of climate displacement across a landscape which may indicate the speed an organism must migrate to keep pace with climate change. However, a challenge to using climate velocity in understanding range shifts is a lack of species-specificity in the velocity calculations: climate velocity does not actually use any species data in its analysis. To solve the shortcomings of climate velocity in estimating species displacement rates, we computed the "species velocity" of white spruce, green and grey alder populations across the state of Alaska from the Last Glacial Maximum (LGM) to today. Species velocity represents the rate and direction a species is required to migrate to keep pace with a changing climate following the LGM. We used a species distribution model to determine past and present white spruce and alder distributions using statistically downscaled climate data at 60m. Species velocity was then derived from the change in species distribution per year by the change in distribution over Alaska (km/yr). High velocities indicate locations where the species environmental envelope is changing drastically and must disperse rapidly to survive climate change. As a result, high velocity regions are more vulnerable to distribution shifts and higher risk of local extinction. Conversely, low species velocities indicate locations where the local climate envelope is shifting relatively slowly, reducing the stress to disperse quickly

  4. Ground Water Atlas of the United States: Segment 13, Alaska, Hawaii, Puerto Rico, and the U.S. Virgin Islands

    Science.gov (United States)

    Miller, James A.; Whitehead, R.L.; Oki, Delwyn S.; Gingerich, Stephen B.; Olcott, Perry G.

    1997-01-01

    Alaska is the largest State in the Nation and has an area of about 586,400 square miles, or about one-fifth the area of the conterminous United States. The State is geologically and topographically diverse and is characterized by wild, scenic beauty. Alaska contains abundant natural resources, including ground water and surface water of chemical quality that is generally suitable for most uses.The central part of Alaska is drained by the Yukon River and its tributaries, the largest of which are the Porcupine, the Tanana, and the Koyukuk Rivers. The Yukon River originates in northwestern Canada and, like the Kuskokwim River, which drains a large part of southwestern Alaska , discharges into the Bering Sea. The Noatak River in northwestern Alaska discharges into the Chukchi Sea. Major rivers in southern Alaska include the Susitna and the Matanuska Rivers, which discharge into Cook Inlet, and the Copper River, which discharges into the Gulf of Alaska . North of the Brooks Range, the Colville and the Sagavanirktok Rivers and numerous smaller streams discharge into the Arctic Ocean.In 1990, Alaska had a population of about 552,000 and, thus , is one of the least populated States in the Nation. Most of the population is concentrated in the cities of Anchorage, Fairbanks, and Juneau, all of which are located in lowland areas. The mountains, the frozen Arctic desert, the interior plateaus, and the areas covered with glaciers lack major population centers. Large parts of Alaska are uninhabited and much of the State is public land. Ground-water development has not occurred over most of these remote areas.The Hawaiian islands are the exposed parts of the Hawaiian Ridge, which is a large volcanic mountain range on the sea floor. Most of the Hawaiian Ridge is below sea level (fig. 31) . The State of Hawaii consists of a group of 132 islands, reefs, and shoals that extend for more than 1 ,500 miles from southeast to northwest across the central Pacific Ocean between about 155

  5. 78 FR 16849 - Alaska Energy Authority; Notice of Dispute Resolution Panel Meeting and Technical Conference

    Science.gov (United States)

    2013-03-19

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 14241-000] Alaska Energy Authority; Notice of Dispute Resolution Panel Meeting and Technical Conference On March 8, 2013, Commission staff, in response to the filing of a notice of [[Page 16850

  6. Market opportunities for kitchen cabinets made from Alaska hardwoods: a synthesis and review of recent research.

    Science.gov (United States)

    David L. Nicholls; Maria C. Stiefel

    2007-01-01

    The kitchen cabinet industry has shown significant growth recently, with expanding residential markets, new cabinet styles, and larger kitchens. This industry represents an opportunity for small Alaska wood producers to create high-value secondary products. In response to recent trends in kitchen cabinet manufacturing and the need to identify opportunities for...

  7. 76 FR 41987 - Interagency Working Group on Coordination of Domestic Energy Development and Permitting in Alaska

    Science.gov (United States)

    2011-07-15

    ... associated infrastructure in Alaska and to help reduce our dependence on foreign oil, it is hereby ordered as... Response Framework; the National Oil and Hazardous Substances Pollution Contingency Plan (National... Federal engagement with States, localities, and tribal governments, as it relates to energy development...

  8. Fire behavior, weather, and burn severity of the 2007 Anaktuvuk River tundra fire, North Slope, Alaska

    Science.gov (United States)

    Benjamin M. Jones; Crystal A. Kolden; Randi Jandt; John T. Abatzoglu; Frank Urban; Christopher D. Arp

    2009-01-01

    In 2007, the Anaktuvuk River Fire (ARF) became the largest recorded tundra fire on the North Slope of Alaska. The ARF burned for nearly three months, consuming more than 100,000 ha. At its peak in early September, the ARF burned at a rate of 7000 ha d-1. The conditions potentially responsible for this large tundra fire include modeled record high...

  9. Recruiting first generation college students into the Geosciences: Alaska's EDGE project

    Science.gov (United States)

    Prakash, A.; Connor, C.

    2008-12-01

    Funded in 2005-2008, by the National Science Foundation's Geoscience Education Division, the Experiential Discoveries in Geoscience Education (EDGE) project was designed to use glacier and watershed field experiences as venues for geospatial data collected by Alaska's grade 6-12 middle and high school teachers and their students. EDGE participants were trained in GIS and learned to analyze geospatial data to answer questions about the warming Alaska environment and to determine rates of ongoing glacier recession. Important emphasis of the program was the recruitment of Alaska Native students of Inupiat, Yup'ik, Athabascan, and Tlingit populations, living in both rural and urban areas around the state. Twelve of Alaska's 55 school districts have participated in the EDGE program. To engage EDGE students in the practice of scientific inquiry, each was required to carry out a semester scale research project using georeferenced data, guided by their EDGE teacher and mentor. Across Alaska students investigated several Earth systems processes including freezing conditions of lake ice; the changes in water quality in storm drains after rainfall events; movements of moose, bears, and bison across Alaskan landscapes; changes in permafrost depth in western Alaska; and the response of migrating waterfowl to these permafrost changes. Students correlated the substrate beneath their schools with known earthquake intensities; measured cutbank and coastal erosion on northern rivers and southeastern shorelines; tracked salmon infiltration of flooded logging roads; noted the changing behavior of eagles during late winter salmon runs; located good areas for the use of tidal power for energy production; tracked the extent and range of invasive plant species with warming; and the change of forests following deglaciation. Each cohort of EDGE students and teachers finished the program by attended a 3-day EDGE symposium at which students presented their research projects first in a

  10. Sitka, Alaska 9 arc-second DEM

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Sitka, Alaska Elevation Grid provides bathymetric data in ASCII raster format of 9 arc-second resolution in geographic coordinates. This grid is strictly for...

  11. North Slope, Alaska ESI: FISH (Fish Polygons)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for marine, estuarine, anadromous, and freshwater fish species for the North Slope of Alaska. Vector...

  12. Homer, Alaska 8 arc-second DEM

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The 8-second Homer Alaska Elevation Grid provides bathymetric data in ASCII raster format of 8-second resolution in geographic coordinates. This grid is strictly for...

  13. Western Alaska ESI: FISHL (Fish Lines)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for anadromous fish species in Western Alaska. Vector lines in this data set represent species occurrences...

  14. Gravity Data for Southwestern Alaska #2

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The gravity station data (1294 records) were compiled by the Alaska Geological Survey and the U.S. Geological Survey, Menlo Park, California. This data base was...

  15. Prince William Sound, Alaska ESI: HYDRO (Hydrology)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set comprises the Environmental Sensitivity Index (ESI) data for Prince William Sound, Alaska. ESI data characterize estuarine environments and wildlife by...

  16. Southeast Alaska ESI: SOCECON (Socioeconomic Resource Points)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains human-use resource data for airports, aquaculture sites, boat ramps, marinas, heliports, and log storage areas in Southeast Alaska. Vector...

  17. Alaska North-South Deflections (DEFLEC96)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This 2' x 4' surface deflection of the vertical grid for Alaska is the DEFLEC96 model. The computation used about 1.1 million terrestrial and marine gravity data...

  18. Klawock Lagoon, Alaska Benthic Habitats 2011 Geoform

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Klawock River on Alaska's Prince of Wales Island drains a 29,061 acre watershed with 132 miles of streambed habitat supporting seven salmon and trout species....

  19. Klawock Lagoon, Alaska Benthic Habitats 2011 Substrate

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Klawock River on Alaska's Prince of Wales Island drains a 29,061 acre watershed with 132 miles of streambed habitat supporting seven salmon and trout species....

  20. Alaska Steller Sea Lion Food Habits Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains food habits samples, usually scats, collected opportunistically on Steller sea lion rookeries and haulouts in Alaska from 1985 to present....

  1. Alaska Steller Sea Lion Pup Count Database

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This database contains counts of Steller sea lion pups on rookeries in Alaska made between 1961 and 2015. Pup counts are conducted in late June-July. Pups are...

  2. Western Alaska ESI: LAKES (Lake Polygons)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains vector polygons representing lakes and land masses used in the creation of the Environmental Sensitivity Index (ESI) for Western Alaska. The...

  3. North Slope, Alaska ESI: BIRDS (Bird Polygons)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for diving birds, gulls and terns, seabirds, shorebirds, and waterfowl for the North Slope of Alaska....

  4. Alaska East-West Deflections (DEFLEC96)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This 2' x 4' surface deflection of the vertical grid for Alaska is the DEFLEC96 model. The computation used about 1.1 millionterrestrial and marine gravity data held...

  5. Alaska1(ak1_wpn) Gravity Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The gravity station data (10,578 records) were compiled by the U.S. Geological Survey and the State of Alaska Division of Geological & Geophysical Surveys. This...

  6. ANWR and Alaska Peninsula Gravity Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The gravity station data (1252 records) were compiled by the U.S. Geological Survey and the State of Alaska Division of Geological & Geophysical Surveys. This...

  7. Prince William Sound, Alaska ESI: INVERT (Invertebrates)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set comprises the Environmental Sensitivity Index (ESI) data for Prince William Sound, Alaska. ESI data characterize estuarine environments and wildlife by...

  8. Klawock Lagoon, Alaska Benthic Habitats 2011 Geodatabase

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Klawock River on Alaska's Prince of Wales Island drains a 29,061 acre watershed with 132 miles of streambed habitat supporting seven salmon and trout species....

  9. Central Gulf of Alaska Rockfish Permit Program

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The North Pacific Fishery Management Council adopted the Central Gulf of Alaska Rockfish Program (Rockfish Program) on June 14, 2010, to replace the expiring Pilot...

  10. Southeast Alaska ESI: BIRDS (Bird Polygons)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains biological resource data for waterfowl in Southeast Alaska. Vector polygons in this data set represent locations of foraging and rafting...

  11. Seldovia, Alaska 3 arc-second DEM

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The 3-second Seldovia Alaska Elevation Grid provides bathymetric data in ASCII raster format of 3-second resolution in geographic coordinates. This grid is strictly...

  12. Sitka, Alaska 1 arc-second DEM

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Sitka, Alaska Elevation Grid provides bathymetric data in ASCII raster format of 1 arc-second resolution in geographic coordinates. This grid is strictly for...

  13. Sitka, Alaska 3 arc-second DEM

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Sitka, Alaska Elevation Grid provides bathymetric data in ASCII raster format of 3 arc-second resolution in geographic coordinates. This grid is strictly for...

  14. 2 minute Southcentral Alaska Elevation Grid

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The 2-minute Southcentral Alaska Elevation Grid provides bathymetric data in ASCII raster format of 2-minute resolution in geographic coordinates. This grid is...

  15. Seward, Alaska 3 arc-second DEM

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The 3 arc-second Seward Alaska Elevation Grid provides bathymetric data in ASCII raster format of 2.67-second resolution in geographic coordinates. This grid is...

  16. Southeast Alaska ESI: MGT (Management Area Polygons)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains management area data for National Parks, Wildlife Refuges, and areas designated as Critical Habitat in Southeast Alaska. Vector polygons in...

  17. Seldovia, Alaska 1 arc-second DEM

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Seldovia, Alaska Elevation Grid provides bathymetric data in ASCII raster format of 1 arc-second resolution in geographic coordinates. This grid is strictly for...

  18. Kodiak, Alaska 3 arc-second DEM

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The 3-second Kodiak Alaska Elevation Grid provides bathymetric data in ASCII raster format of 2.67-second resolution in geographic coordinates. This grid is strictly...

  19. Avian Habitat Data; Seward Peninsula, Alaska, 2012

    Data.gov (United States)

    Department of the Interior — This data product contains avian habitat data collected on the Seward Peninsula, Alaska, USA, during 21 May – 10 June 2012. We conducted replicated 10-min surveys...

  20. Klawock Lagoon, Alaska Benthic Habitats 2011 Biotic

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Klawock River on Alaska's Prince of Wales Island drains a 29,061 acre watershed with 132 miles of streambed habitat supporting seven salmon and trout species....

  1. Southeast Alaska ESI: FISHPT (Fish Points)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains biological resource data for anadromous fish streams in Southeast Alaska. Vector points in this data set represent locations of fish streams....

  2. Prince William Sound, Alaska ESI: INDEX

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set comprises the Environmental Sensitivity Index (ESI) data for Prince William Sound, Alaska. ESI data characterize estuarine environments and wildlife by...

  3. Western Alaska ESI: FISH (Fish Polygons)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for marine, estuarine, and anadromous fish species in Western Alaska. Vector polygons in this data set...

  4. North Slope, Alaska ESI: FACILITY (Facility Points)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains data for oil field facilities for the North Slope of Alaska. Vector points in this data set represent oil field facility locations. This data...

  5. Southeast Alaska ESI: NESTS (Nest Points)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains biological resource data for alcids, shorebirds, waterfowl, diving birds, pelagic birds, gulls, and terns in Southeast Alaska. Points in this...

  6. Southeast Alaska ESI: FISH (Fish Polygons)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains biological resource data for estuarine, benthic, and pelagic fish in Southeast Alaska. Vector polygons in this data set represent locations of...

  7. 14 CFR 99.45 - Alaska ADIZ.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Alaska ADIZ. 99.45 Section 99.45 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR TRAFFIC... Zones § 99.45 Alaska ADIZ. The area is bounded by a line from 54°00′N; 136°00′W; 56°57′N; 144°00′W; 57...

  8. Crustal Structure beneath Alaska from Receiver Functions

    Science.gov (United States)

    Zhang, Y.; Li, A.

    2017-12-01

    The crustal structure in Alaska has not been well resolved due to the remote nature of much of the state. The USArray Transportable Array (TA), which is operating in Alaska and northwestern Canada, significantly increases the coverage of broadband seismic stations in the region and allows for a more comprehensive study of the crust. We have analyzed P-receiver functions from earthquake data recorded by 76 stations of the TA and AK networks. Both common conversion point (CCP) and H-K methods are used to estimate the mean crustal thickness. The results from the CCP stacking method show that the Denali fault marks a sharp transition from thick crust in the south to thin crust in the north. The thickest crust up to 52 km is located in the St. Elias Range, which has been formed by oblique collision between the Yakutat microplate and North America. A thick crust of 48 km is also observed beneath the eastern Alaska Range. These observations suggest that high topography in Alaska is largely compensated by the thick crust root. The Moho depth ranges from 28 km to 35 km beneath the northern lowlands and increases to 40-45 km under the Books Range. The preliminary crustal thickness from the H-K method generally agrees with that from the CCP stacking with thicker crust beneath high mountain ranges and thinner crust beneath lowlands and basins. However, the offshore part is not well constrained due to the limited coverage of stations. The mean Vp/Vs ratio is around 1.7 in the Yukon-Tanana terrane and central-northern Alaska. The ratio is about 1.9 in central and southern Alaska with higher values at the Alaska Range, Wrangell Mountains, and St. Elias Range. Further data analyses are needed for obtaining more details of the crustal structure in Alaska to decipher the origin and development of different tectonic terranes.

  9. Reconnaissance for radioactive deposits in Alaska, 1953

    Science.gov (United States)

    Matzko, John J.; Bates, Robert G.

    1955-01-01

    During the summer of 1953 the areas investigated for radioactive deposits in Alaska were on Nikolai Creek near Tyonek and on Likes Creek near Seward in south-central Alaska where carnotite-type minerals had been reported; in the headwaters of the Peace River in the eastern part of the Seward Peninsula and at Gold Bench on the South Fork of the Koyukuk River in east-central Alaska, where uranothorianite occurs in places associated with base metal sulfides and hematite; in the vicinity of Port Malmesbury in southeastern Alaska to check a reported occurrence of pitchblende; and, in the Miller House-Circle Hot Springs area of east-central Alaska where geochemical studies were made. No significant lode deposits of radioactive materials were found. However, the placer uranothorianite in the headwaters of the Peace River yet remains as an important lead to bedrock radioactive source materials in Alaska. Tundra cover prevents satisfactory radiometric reconnaissance of the area, and methods of geochemical prospecting such as soil and vegetation sampling may ultimately prove more fruitful in the search for the uranothorianite-sulfide lode source than geophysical methods.

  10. Vulnerability and adaptation to climate-related fire impacts in rural and urban interior Alaska

    Science.gov (United States)

    Trainor, Sarah F.; Calef, Monika; Natcher, David; Chapin, F. Stuart; McGuire, A. David; Huntington, Orville; Duffy, Paul A.; Rupp, T. Scott; DeWilde, La'Ona; Kwart, Mary; Fresco, Nancy; Lovecraft, Amy Lauren

    2009-01-01

    This paper explores whether fundamental differences exist between urban and rural vulnerability to climate-induced changes in the fire regime of interior Alaska. We further examine how communities and fire managers have responded to these changes and what additional adaptations could be put in place. We engage a variety of social science methods, including demographic analysis, semi-structured interviews, surveys, workshops and observations of public meetings. This work is part of an interdisciplinary study of feedback and interactions between climate, vegetation, fire and human components of the Boreal forest social–ecological system of interior Alaska. We have learned that although urban and rural communities in interior Alaska face similar increased exposure to wildfire as a result of climate change, important differences exist in their sensitivity to these biophysical, climate-induced changes. In particular, reliance on wild foods, delayed suppression response, financial resources and institutional connections vary between urban and rural communities. These differences depend largely on social, economic and institutional factors, and are not necessarily related to biophysical climate impacts per se. Fire management and suppression action motivated by political, economic or other pressures can serve as unintentional or indirect adaptation to climate change. However, this indirect response alone may not sufficiently reduce vulnerability to a changing fire regime. More deliberate and strategic responses may be required, given the magnitude of the expected climate change and the likelihood of an intensification of the fire regime in interior Alaska.

  11. Systems Performance Analyses of Alaska Wind-Diesel Projects; Kotzebue, Alaska (Fact Sheet)

    Energy Technology Data Exchange (ETDEWEB)

    Baring-Gould, I.

    2009-04-01

    This fact sheet summarizes a systems performance analysis of the wind-diesel project in Kotzebue, Alaska. Data provided for this project include wind turbine output, average wind speed, average net capacity factor, and optimal net capacity factor based on Alaska Energy Authority wind data, estimated fuel savings, and wind system availability.

  12. 75 FR 3888 - Migratory Bird Subsistence Harvest in Alaska; Harvest Regulations for Migratory Birds in Alaska...

    Science.gov (United States)

    2010-01-25

    ...-0082; 91200-1231-9BPP-L2] RIN 1018-AW67 Migratory Bird Subsistence Harvest in Alaska; Harvest Regulations for Migratory Birds in Alaska During the 2010 Season AGENCY: Fish and Wildlife Service, Interior... Service, are reopening the public comment period on our proposed rule to establish migratory bird...

  13. 78 FR 75321 - Migratory Bird Subsistence Harvest in Alaska; Harvest Regulations for Migratory Birds in Alaska...

    Science.gov (United States)

    2013-12-11

    ... the taking of migratory birds and the collection of their eggs, by the indigenous inhabitants of the... particular land ownership, but applies to the harvesting of migratory bird resources throughout Alaska. A... ensure an effective and meaningful role for Alaska's indigenous inhabitants in the conservation of...

  14. 76 FR 17353 - Migratory Bird Subsistence Harvest in Alaska; Harvest Regulations for Migratory Birds in Alaska...

    Science.gov (United States)

    2011-03-29

    ... the collection of their eggs, by the indigenous inhabitants of the State of Alaska, shall be permitted... implications. This rule is not specific to particular land ownership, but applies to the harvesting of... the creation of management bodies to ensure an effective and meaningful role for Alaska's indigenous...

  15. Alaska Native Languages: Past, Present, and Future. Alaska Native Language Center Research Papers No. 4.

    Science.gov (United States)

    Krauss, Michael E.

    Three papers (1978-80) written for the non-linguistic public about Alaska Native languages are combined here. The first is an introduction to the prehistory, history, present status, and future prospects of all Alaska Native languages, both Eskimo-Aleut and Athabaskan Indian. The second and third, presented as appendixes to the first, deal in…

  16. 76 FR 303 - Alaska: Adequacy of Alaska's Municipal Solid Waste Landfill Permit Program

    Science.gov (United States)

    2011-01-04

    ... ENVIRONMENTAL PROTECTION AGENCY 40 CFR Parts 239 and 258 [EPA-EPA-R10-RCRA-2010-0953; FRL-9247-5] Alaska: Adequacy of Alaska's Municipal Solid Waste Landfill Permit Program AGENCY: Environmental... modification of its approved Municipal Solid Waste Landfill (MSWLF) permit program. On March 22, 2004, EPA...

  17. 76 FR 270 - Alaska: Adequacy of Alaska Municipal Solid Waste Landfill Permit Program

    Science.gov (United States)

    2011-01-04

    ...] Alaska: Adequacy of Alaska Municipal Solid Waste Landfill Permit Program AGENCY: Environmental Protection... approved Municipal Solid Waste Landfill (MSWLF) permit program. The approved modification allows the State..., EPA issued a final rule (69 FR 13242) amending the Municipal Solid Waste Landfill (MSWLF) criteria in...

  18. Dictionary of Alaska place names

    Science.gov (United States)

    Orth, Donald J.

    1971-01-01

    This work is an alphabetical list of the geographic names that are now applied and have been applied to places and features of the Alaska landscape. Principal names, compiled from modem maps and charts and printed in boldface type, generally reflect present-day local usage. They conform to the principles of the U.S. Board on Geographic Names for establishing standard names for use on Government maps and in other Government publications. Each name entry gives the present-day spelling along with variant spellings and names; identifies the feature named; presents the origin and history of the name; and, where possible, gives the meaning of an Eskimo, Aleut, Indian, or foreign name. Variant, obsolete, and doubtful names are alphabetically listed and are cross referenced, where necessary, to the principal entries.

  19. Authropogenic Warming in North Alaska?.

    Science.gov (United States)

    Michaels, Patrick J.; Sappington, David E.; Stooksbury, David E.

    1988-09-01

    Using permafrost boreholes, Lachenbruch and Marshall recently reported evidence for a 2°-4°C warming in North Alaska occurring at some undetermined time during the last century. Popular accounts suggest their findings are evidence for anthropogenic warming caused by trace gases. Analyses of North Alaskan 1000-500 mb thickness onwards back to 1948 indicate that the warming was prior to that date. Relatively sparse thermometric data for the early twentieth century from Jones et al. are too noisy to support any trend since the data record begins in 1910, or to apply to any subperiod of climatic significance. Any warming detected from the permafrost record therefore occurred before the major emissions of thermally active trace gases.

  20. Aviation and Airports, Transportation & Public Facilities, State of Alaska

    Science.gov (United States)

    State Employees Alaska Department of Transportation & Public Facilities header image Alaska Department of Transportation & Public Facilities / Aviation and Airports Search DOT&PF State of pages view official DOT&PF Flickr pages Department of Transportation & Public Facilities PO Box

  1. Alaska Native Villages and Rural Communities Water Grant Program

    Science.gov (United States)

    Significant human health and water quality problems exist in Alaska Native Village and other rural communities in the state due to lack of sanitation. To address these issues, EPA created the Alaska Rural and Native Villages Grant Program.

  2. Tobacco Industry Promotional Strategies Targeting American Indians/Alaska Natives and Exploiting Tribal Sovereignty.

    Science.gov (United States)

    Lempert, Lauren K; Glantz, Stanton A

    2018-03-12

    American Indians/Alaska Natives have the highest commercial tobacco use in the United States, resulting in higher tobacco-caused deaths and diseases than the general population. Some American Indians/Alaska Natives use commercial tobacco for ceremonial as well as recreational uses. Because federally-recognized Tribal lands are sovereign, they are not subject to state cigarette taxes and smokefree laws. This study analyzes tobacco industry promotional efforts specifically targeting American Indians/Alaska Natives and exploiting Tribal lands to understand appropriate policy responses in light of American Indians'/Alaska Natives' unique sovereign status and culture. We analyzed previously secret tobacco industry documents available at the Truth Tobacco Documents Library (https://industrydocuments.library.ucsf.edu/tobacco/). Tobacco companies used promotional strategies targeting American Indians/Alaska Natives and exploiting Tribal lands that leveraged the federally-recognized Tribes' unique sovereign status exempting them from state cigarette taxes and smokefree laws, and exploited some Tribes' existing traditional uses of ceremonial tobacco and poverty. Tactics included price reductions, coupons, giveaways, gaming promotions, charitable contributions and sponsorships. Additionally, tobacco companies built alliances with Tribal leaders to help improve their corporate image, advance ineffective "youth smoking prevention" programs, and defeat tobacco control policies. The industry's promotional tactics likely contribute to disparities in smoking prevalence and smoking-related diseases among American Indians//Alaska Natives. Proven policy interventions to address these disparities including tobacco price increases, cigarette taxes, comprehensive smokefree laws, and industry denormalization campaigns to reduce smoking prevalence and smoking-related disease could be considered by Tribal communities. The sovereign status of federally-recognized Tribes does not prevent them

  3. Alaska

    Science.gov (United States)

    Chapin, F. Stuart; Trainor, Sarah F.; Cochran, Patricia; Huntington, Henry; Markon, Carl J.; McCammon, Molly; McGuire, A. David; Serreze, Mark; Melillo, J.M.; Richmond, Terese; Yohe, G.W.

    2014-01-01

    Key Messages Arctic summer sea ice is receding faster than previously projected and is expected to virtually disappear before mid-century. This is altering marine ecosystems and leading to greater ship access, offshore development opportunity, and increased community vulnerability to coastal erosion.

  4. Northern gas : Arctic Canada and Alaska

    International Nuclear Information System (INIS)

    Constantin, D.

    2005-01-01

    This paper discusses supply challenges in relation to Northern gas availability in Arctic Canada and Alaska. A background of BP Canada Energy Company was provided. It was suggested that gas from traditional North American basins would not meet demand, and that incremental sources of supply would be needed. A map of traditional and non-tradition supply sources was presented along with details of supply and infrastructure investment requirements from 2003-2025. The roles of producers, local distribution companies, pipelines and policy makers in infrastructure development were examined. Potential resources in Alaska and the Mackenzie Delta were discussed, along with details of the Mackenzie Valley Pipeline project and exploration activities. Alaska's North Slope gas resource was reviewed. Several large projects devolving from the Alaska Gas Pipeline represent an anticipated total investment of $20 billion. Various regulatory and economic conditions necessary for the successful completion of the project include the Alaska Fiscal Contract; Alaska gas provisions in the Federal Energy Bill; details of the Canadian regulatory process; and cost reductions and market outlooks. It was concluded that the Alaska Gas Pipeline would provide thousands of jobs and provide stability of long-term gas prices as well as meeting North America's energy needs. In addition, the pipeline would provide $16 billion in Canadian government revenues and $40 billion in US government revenues. The pipeline would provide 4.5 billion cubic feet per day of clean energy, with half the carbon dioxide emissions of coal. It would also provide hundreds of billions of dollars in consumer savings. tabs, figs

  5. Alaska - Russian Far East connection in volcano research and monitoring

    Science.gov (United States)

    Izbekov, P. E.; Eichelberger, J. C.; Gordeev, E.; Neal, C. A.; Chebrov, V. N.; Girina, O. A.; Demyanchuk, Y. V.; Rybin, A. V.

    2012-12-01

    The Kurile-Kamchatka-Alaska portion of the Pacific Rim of Fire spans for nearly 5400 km. It includes more than 80 active volcanoes and averages 4-6 eruptions per year. Resulting ash clouds travel for hundreds to thousands of kilometers defying political borders. To mitigate volcano hazard to aviation and local communities, the Alaska Volcano Observatory (AVO) and the Institute of Volcanology and Seismology (IVS), in partnership with the Kamchatkan Branch of the Geophysical Survey of the Russian Academy of Sciences (KBGS), have established a collaborative program with three integrated components: (1) volcano monitoring with rapid information exchange, (2) cooperation in research projects at active volcanoes, and (3) volcanological field schools for students and young scientists. Cooperation in volcano monitoring includes dissemination of daily information on the state of volcanic activity in neighboring regions, satellite and visual data exchange, as well as sharing expertise and technologies between AVO and the Kamchatkan Volcanic Eruption Response Team (KVERT) and Sakhalin Volcanic Eruption Response Team (SVERT). Collaboration in scientific research is best illustrated by involvement of AVO, IVS, and KBGS faculty and graduate students in mutual international studies. One of the most recent examples is the NSF-funded Partnerships for International Research and Education (PIRE)-Kamchatka project focusing on multi-disciplinary study of Bezymianny volcano in Kamchatka. This international project is one of many that have been initiated as a direct result of a bi-annual series of meetings known as Japan-Kamchatka-Alaska Subduction Processes (JKASP) workshops that we organize together with colleagues from Hokkaido University, Japan. The most recent JKASP meeting was held in August 2011 in Petropavlovsk-Kamchatsky and brought together more than 130 scientists and students from Russia, Japan, and the United States. The key educational component of our collaborative program

  6. 24 CFR 598.515 - Alaska and Hawaii.

    Science.gov (United States)

    2010-04-01

    ... 24 Housing and Urban Development 3 2010-04-01 2010-04-01 false Alaska and Hawaii. 598.515 Section 598.515 Housing and Urban Development Regulations Relating to Housing and Urban Development (Continued....515 Alaska and Hawaii. A nominated area in Alaska or Hawaii is deemed to satisfy the criteria of...

  7. 33 CFR 110.233 - Prince William Sound, Alaska.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Prince William Sound, Alaska. 110... ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.233 Prince William Sound, Alaska. (a) The anchorage grounds. In Prince William Sound, Alaska, beginning at a point at latitude 60°40′00″ N., longitude 146°40...

  8. Wilderness insights From Alaska: Past, present, and future

    Science.gov (United States)

    Deborah L. Williams

    2007-01-01

    For many reasons, a significant percentage of Alaska’s wildlands have been successfully protected. The passage of the Alaska National Interest Lands Conservation Act (ANILCA), in particular, represents one of the greatest land protection measures in human history. Numerous important factors have contributed to Alaska’s conservation successes, and many of these factors...

  9. Reality Investing | Alaska Division of Retirement and Benefits

    Science.gov (United States)

    Skip to main content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Comp All Other Programs Features Empower Retirement Account Info Online myRnB Member Services Seminars Benefits > Reality Investing Online Counselor Scheduler Empower Retirement Account Info Online myRnB

  10. 77 FR 4578 - Alaska Region's Subsistence Resource Commission (SRC) Program

    Science.gov (United States)

    2012-01-30

    ... DEPARTMENT OF THE INTERIOR National Park Service [NPS-AKR-ANIA; 9924-PYS] Alaska Region's... public meeting for the National Park Service (NPS) Alaska Region's Subsistence Resource Commission (SRC..., Alaska Region. [FR Doc. 2012-1860 Filed 1-27-12; 8:45 am] BILLING CODE 4310-HE-P ...

  11. 77 FR 4579 - Alaska Region's Subsistence Resource Commission (SRC) Program

    Science.gov (United States)

    2012-01-30

    ... DEPARTMENT OF THE INTERIOR National Park Service [NPS-AKR-DENA; 9924-PYS] Alaska Region's... public meeting for the National Park Service (NPS) Alaska Region's Subsistence Resource Commission (SRC..., Associate Regional Director, Resources and Subsistence, Alaska Region. [FR Doc. 2012-1877 Filed 1-27-12; 8...

  12. 77 FR 4581 - Alaska Region's Subsistence Resource Commission (SRC) Program

    Science.gov (United States)

    2012-01-30

    ... DEPARTMENT OF THE INTERIOR National Park Service [NPS-AKR-LACL; 9924-PYS] Alaska Region's... public meeting for the National Park Service (NPS) Alaska Region's Subsistence Resource Commission (SRC... Meeting Debora R. Cooper, Associate Regional Director, Resources and Subsistence, Alaska Region. [FR Doc...

  13. Stopover habitats of spring migrating surf scoters in southeast Alaska

    Science.gov (United States)

    Lok, E.K.; Esler, Daniel; Takekawa, John Y.; De La Cruz, S.W.; Sean, Boyd W.; Nysewander, D.R.; Evenson, J.R.; Ward, D.H.

    2011-01-01

    Habitat conditions and nutrient reserve levels during spring migration have been suggested as important factors affecting population declines in waterfowl, emphasizing the need to identify key sites used during spring and understand habitat features and resource availability at stopover sites. We used satellite telemetry to identify stopover sites used by surf scoters migrating through southeast Alaska during spring. We then contrasted habitat features of these sites to those of random sites to determine habitat attributes corresponding to use by migrating scoters. We identified 14 stopover sites based on use by satellite tagged surf scoters from several wintering sites. We identified Lynn Canal as a particularly important stopover site for surf scoters originating throughout the Pacific winter range; approximately half of tagged coastally migrating surf scoters used this site, many for extended periods. Stopover sites were farther from the mainland coast and closer to herring spawn sites than random sites, whereas physical shoreline habitat attributes were generally poor predictors of site use. The geography and resource availability within southeast Alaska provides unique and potentially critical stopover habitat for spring migrating surf scoters. Our work identifies specific sites and habitat resources that deserve conservation and management consideration. Aggregations of birds are vulnerable to human activity impacts such as contaminant spills and resource management decisions. This information is of value to agencies and organizations responsible for emergency response planning, herring fisheries management, and bird and ecosystem conservation. Copyright ?? 2011 The Wildlife Society.

  14. Vegetation Change in Interior Alaska Over the Last Four Decades

    Science.gov (United States)

    Huhman, H.; Dewitz, J.; Cristobal, J.; Prakash, A.

    2017-12-01

    The Arctic has become a generally warmer place over the past decades leading to earlier snowmelt, permafrost degradation and changing plant communities. One area in particular, vegetation change, is responding relatively rapidly to climate change, impacting the surrounding environment with changes to forest fire regime, forest type, forest resiliency, habitat availability for subsistence flora and fauna, hydrology, among others. To quantify changes in vegetation in the interior Alaska boreal forest over the last four decades, this study uses the National Land Cover Database (NLCD) decision-tree based classification methods, using both C5 and ERDAS Imagine software, to classify Landsat Surface Reflectance Images into the following NLCD-consistent vegetation classes: planted, herbaceous, shrubland, and forest (deciduous, evergreen and mixed). The results of this process are a total of four vegetation cover maps, that are freely accessible to the public, one for each decade in the 1980's, 1990's, 2000's, and a current map for 2017. These maps focus on Fairbanks, Alaska and the surrounding area covering approximately 36,140 square miles. The maps are validated with over 4,000 ground truth points collected through organizations such as the Landfire Project and the Long Term Ecological Research Network, as well as vegetation and soil spectra collected from the study area concurrent with the Landsat satellite over-passes with a Spectral Evolution PSR+ 3500 spectro-radiometer (0.35 - 2.5 μm). We anticipate these maps to be viewed by a wide user-community and may aid in preparing the residents of Alaska for changes in their subsistence food sources and will contribute to the scientific community in understanding the variety of changes that can occur in response to changing vegetation.

  15. The 1964 Great Alaska Earthquake and tsunamis: a modern perspective and enduring legacies

    Science.gov (United States)

    Brocher, Thomas M.; Filson, John R.; Fuis, Gary S.; Haeussler, Peter J.; Holzer, Thomas L.; Plafker, George; Blair, J. Luke

    2014-01-01

    examines the advances in knowledge and technology that have helped to improve earthquake preparation and response both in Alaska and around the world.

  16. Offshore Wind Energy Resource Assessment for Alaska

    Energy Technology Data Exchange (ETDEWEB)

    Doubrawa Moreira, Paula [National Renewable Energy Lab. (NREL), Golden, CO (United States); Scott, George N. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Musial, Walter D. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Kilcher, Levi F. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Draxl, Caroline [National Renewable Energy Lab. (NREL), Golden, CO (United States); Lantz, Eric J. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2018-01-02

    This report quantifies Alaska's offshore wind resource capacity while focusing on its unique nature. It is a supplement to the existing U.S. Offshore Wind Resource Assessment, which evaluated the offshore wind resource for all other U.S. states. Together, these reports provide the foundation for the nation's offshore wind value proposition. Both studies were developed by the National Renewable Energy Laboratory. The analysis presented herein represents the first quantitative evidence of the offshore wind energy potential of Alaska. The technical offshore wind resource area in Alaska is larger than the technical offshore resource area of all other coastal U.S. states combined. Despite the abundant wind resource available, significant challenges inhibit large-scale offshore wind deployment in Alaska, such as the remoteness of the resource, its distance from load centers, and the wealth of land available for onshore wind development. Throughout this report, the energy landscape of Alaska is reviewed and a resource assessment analysis is performed in terms of gross and technical offshore capacity and energy potential.

  17. 77 FR 55453 - Juneau Resource Advisory Committee

    Science.gov (United States)

    2012-09-10

    ... purpose of the committee is to improve collaborative relationships and to provide advice and... that will meet the purposes of improving or maintaining existing infrastructure (roads & trails... District. Please call ahead to (907) 586-8800 to facilitate entry into the building to view comments. FOR...

  18. 76 FR 31935 - Juneau Resource Advisory Committee

    Science.gov (United States)

    2011-06-02

    ...; [email protected] . Individuals who use telecommunication devices for the deaf (TDD) may call the Federal... business will be conducted: (1) development and agreement on scoring criteria for project proposals, and (2...

  19. Floodplain Mapping Submission for Juneau County, Wisconsin

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — The Floodplain Mapping/Redelineation study deliverables depict and quantify the flood risks for the study area. The primary risk classifications used are the...

  20. Robotic weather balloon launchers spread in Alaska

    Science.gov (United States)

    Rosen, Julia

    2018-04-01

    Last week, things began stirring inside the truck-size box that sat among melting piles of snow at the airport in Fairbanks, Alaska. Before long, the roof of the box yawned open and a weather balloon took off into the sunny afternoon, instruments dangling. The entire launch was triggered with the touch of a button, 5 kilometers away at an office of the National Weather Service (NWS). The flight was smooth, just one of hundreds of twice-daily balloon launches around the world that radio back crucial data for weather forecasts. But most of those balloons are launched by people; the robotic launchers, which are rolling out across Alaska, are proving to be controversial. NWS says the autolaunchers will save money and free up staff to work on more pressing matters. But representatives of the employee union question their reliability, and say they will hasten the end of Alaska's remote weather offices, where forecasting duties and hours have already been slashed.

  1. Amchitka, Alaska Site Fact Sheet

    International Nuclear Information System (INIS)

    2011-01-01

    Amchitka Island is near the western end of the Aleutian Island chain and is the largest island in the Rat Island Group that is located about 1,340 miles west-southwest of Anchorage, Alaska, and 870 miles east of the Kamchatka Peninsula in eastern Russia. The island is 42 miles long and 1 to 4 miles wide, with an area of approximately 74,240 acres. Elevations range from sea level to more than 1,100 feet above sea level. The coastline is rugged; sea cliffs and grassy slopes surround nearly the entire island. Vegetation on the island is low-growing, meadow-like tundra grasses at lower elevations. No trees grow on Amchitka. The lowest elevations are on the eastern third of the island and are characterized by numerous shallow lakes and heavily vegetated drainages. The central portion of the island has higher elevations and fewer lakes. The westernmost 3 miles of the island contains a windswept rocky plateau with sparse vegetation

  2. 50 CFR 679.21 - Prohibited species bycatch management.

    Science.gov (United States)

    2010-10-01

    ..., NMFS, P.O. Box 21668, Juneau, AK 99802; by courier to the Office of the Regional Administrator, 709 West 9th St., Juneau, AK 99801; or by fax to 907-586-7465. Forms are available on the NMFS Alaska... sectors, listed in paragraph (f)(3)(ii) of this section, a portion of either the 47,591 Chinook salmon PSC...

  3. Consumer willingness to pay a price premium for standing-dead Alaska yellow-cedar.

    Science.gov (United States)

    Geoffrey H. Donovan

    2004-01-01

    Alaska yellow-cedar has declined in Southeast Alaska over the past 100 years, resulting in half a million acres of dead or dying trees. The natural decay resistance of Alaska yellow-cedar means that many of these trees are still merchantable. However, the topography of Southeast Alaska is such that selectively harvesting Alaska yellow-cedar may often require helicopter...

  4. 78 FR 63951 - Fisheries of the Exclusive Economic Zone Off Alaska; Bering Sea and Aleutian Islands Management...

    Science.gov (United States)

    2013-10-25

    ... Sebastian. Mail comments to P.O. Box 21668, Juneau, AK 99802-1668. Fax: Address written comments to Glenn....47(a) and (c). These vessels are able to participate in the fishery because they received a fishery... management measures in accordance with regulations implementing the AFA at 46 CFR 356.47, to allow vessels...

  5. 77 FR 72791 - Fisheries of the Exclusive Economic Zone Off Alaska; Bering Sea and Aleutian Islands; 2013 and...

    Science.gov (United States)

    2012-12-06

    .../processors within the action area, and entities receiving direct allocations of groundfish. Catcher vessels... following methods: Electronic Submission: Submit all electronic public comments via the Federal e-Rulemaking... 420A, Juneau, AK. Instructions: Comments must be submitted by one of the above methods to ensure that...

  6. Geochemical reanalysis of historical U.S. Geological Survey sediment samples from the Tonsina area, Valdez Quadrangle, Alaska

    Science.gov (United States)

    Werdon, Melanie B.; Granitto, Matthew; Azain, Jaime S.

    2015-01-01

    The State of Alaska’s Strategic and Critical Minerals (SCM) Assessment project, a State-funded Capital Improvement Project (CIP), is designed to evaluate Alaska’s statewide potential for SCM resources. The SCM Assessment is being implemented by the Alaska Division of Geological & Geophysical Surveys (DGGS), and involves obtaining new airborne-geophysical, geological, and geochemical data. As part of the SCM Assessment, thousands of historical geochemical samples from DGGS, U.S. Geological Survey (USGS), and U.S. Bureau of Mines archives are being reanalyzed by DGGS using modern, quantitative, geochemical-analytical methods. The objective is to update the statewide geochemical database to more clearly identify areas in Alaska with SCM potential. The USGS is also undertaking SCM-related geologic studies in Alaska through the federally funded Alaska Critical Minerals cooperative project. DGGS and USGS share the goal of evaluating Alaska’s strategic and critical minerals potential and together created a Letter of Agreement (signed December 2012) and a supplementary Technical Assistance Agreement (#14CMTAA143458) to facilitate the two agencies’ cooperative work. Under these agreements, DGGS contracted the USGS in Denver to reanalyze historical USGS sediment samples from Alaska. For this report, DGGS funded reanalysis of 128 historical USGS sediment samples from the statewide Alaska Geochemical Database Version 2.0 (AGDB2; Granitto and others, 2013). Samples were chosen from the Tonsina area in the Chugach Mountains, Valdez quadrangle, Alaska (fig. 1). The USGS was responsible for sample retrieval from the National Geochemical Sample Archive (NGSA) in Denver, Colorado through the final quality assurance/quality control (QA/QC) of the geochemical analyses obtained through the USGS contract lab. The new geochemical data are published in this report as a coauthored DGGS report, and will be incorporated into the statewide geochemical databases of both agencies

  7. Geochemical reanalysis of historical U.S. Geological Survey sediment samples from the Zane Hills, Hughes and Shungnak quadrangles, Alaska

    Science.gov (United States)

    Werdon, Melanie B.; Granitto, Matthew; Azain, Jaime S.

    2015-01-01

    The State of Alaska’s Strategic and Critical Minerals (SCM) Assessment project, a State-funded Capital Improvement Project (CIP), is designed to evaluate Alaska’s statewide potential for SCM resources. The SCM Assessment is being implemented by the Alaska Division of Geological & Geophysical Surveys (DGGS), and involves obtaining new airborne-geophysical, geological, and geochemical data. As part of the SCM Assessment, thousands of historical geochemical samples from DGGS, U.S. Geological Survey (USGS), and U.S. Bureau of Mines archives are being reanalyzed by DGGS using modern, quantitative, geochemical-analytical methods. The objective is to update the statewide geochemical database to more clearly identify areas in Alaska with SCM potential.The USGS is also undertaking SCM-related geologic studies in Alaska through the federally funded Alaska Critical Minerals cooperative project. DGGS and USGS share the goal of evaluating Alaska’s strategic and critical minerals potential and together created a Letter of Agreement (signed December 2012) and a supplementary Technical Assistance Agreement (#14CMTAA143458) to facilitate the two agencies’ cooperative work. Under these agreements, DGGS contracted the USGS in Denver to reanalyze historical USGS sediment samples from Alaska.For this report, DGGS funded reanalysis of 105 historical USGS sediment samples from the statewide Alaska Geochemical Database Version 2.0 (AGDB2; Granitto and others, 2013). Samples were chosen from the Zane Hills area in the Hughes and Shungnak quadrangles, Alaska (fig. 1). The USGS was responsible for sample retrieval from the National Geochemical Sample Archive (NGSA) in Denver, Colorado through the final quality assurance/quality control (QA/QC) of the geochemical analyses obtained through the USGS contract lab. The new geochemical data are published in this report as a coauthored DGGS report, and will be incorporated into the statewide geochemical databases of both agencies.

  8. Human disturbances of denning polar bears in Alaska

    International Nuclear Information System (INIS)

    Amstrup, S.C.

    1993-01-01

    Polar bears (Ursus maritimus) give birth in dens of snow and ice. The altricial neonates cannot leave the den for >2 months post-partum and are potentially vulnerable to disturbances near dens. The coastal plain (1002) area of Alaska's Arctic National Wildlife Refuge (ANWR) lies in a region of known polar bear denning and also may contain >9 billion barrels of recoverable oil. Polar bears in dens could be affected in many ways by hydrocarbon development. The distribution of dens on ANWR was documented between 1981 and 1992 and responses of bears in dens to various anthropogenic disturbances were observed. Of 44 dens located by radiotelemetry on the mainland coast of Alaska and Canada, 20 (45%) were on ANWR and 15 (34%) were within the 1002 area. Thus, development of ANWR will increase the potential that denning polar bears are disturbed by human activities. However, perturbations resulting from capture, marking, and radiotracking maternal bears did not affect litter sizes or stature of cubs produced. Likewise, 10 of 12 denned polar bears tolerated exposure to exceptional levels of activity. This tolerance and the fact that investment in the denning effort increases through the winter indicated that spatial and temporal restrictions on developments could prevent the potential for many disruptions of denned bears from being realized. 16 refs., 1 fig., 2 tabs

  9. 2012 Alaska Division of Geological and Geophysical Surveys (DGGS) Lidar: Whittier, Alaska

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — In support of geologic mapping and hazards evaluation in and near Whittier, Alaska, the Division of Geological and Geophysical Surveys (DGGS) acquired, and is making...

  10. Digital Shaded-Relief Image of Alaska

    Science.gov (United States)

    Riehle, J.R.; Fleming, Michael D.; Molnia, B.F.; Dover, J.H.; Kelley, J.S.; Miller, M.L.; Nokleberg, W.J.; Plafker, George; Till, A.B.

    1997-01-01

    Introduction One of the most spectacular physiographic images of the conterminous United States, and the first to have been produced digitally, is that by Thelin and Pike (USGS I-2206, 1991). The image is remarkable for its crispness of detail and for the natural appearance of the artificial land surface. Our goal has been to produce a shaded-relief image of Alaska that has the same look and feel as the Thelin and Pike image. The Alaskan image could have been produced at the same scale as its lower 48 counterpart (1:3,500,000). But by insetting the Aleutian Islands into the Gulf of Alaska, we were able to print the Alaska map at a larger scale (1:2,500,000) and about the same physical size as the Thelin and Pike image. Benefits of the 1:2,500,000 scale are (1) greater resolution of topographic features and (2) ease of reference to the U.S. Geological Survey (USGS) (1987) Alaska Map E and the statewide geologic map (Beikman, 1980), which are both 1:2,500,000 scale. Manually drawn, shaded-relief images of Alaska's land surface have long been available (for example, Department of the Interior, 1909; Raisz, 1948). The topography depicted on these early maps is mainly schematic. Maps showing topographic contours were first available for the entire State in 1953 (USGS, 1:250,000) (J.H. Wittmann, USGS, written commun., 1996). The Alaska Map E was initially released in 1954 in both planimetric (revised in 1973 and 1987) and shaded-relief versions (revised in 1973, 1987, and 1996); topography depicted on the shaded-relief version is based on the 1:250,000-scale USGS topographic maps. Alaska Map E was later modified to include hypsometric tinting by Raven Maps and Images (1989, revised 1993) as copyrighted versions. Other shaded-relief images were produced for The National Geographic Magazine (LaGorce, 1956; 1:3,000,000) or drawn by Harrison (1970; 1:7,500,000) for The National Atlas of the United States. Recently, the State of Alaska digitally produced a shaded-relief image

  11. Deep-seated gravitational slope deformations near the Trans-Alaska Pipeline, east-central Alaska Range, Alaska, USA

    Science.gov (United States)

    Newman, S. D.; Clague, J. J.; Rabus, B.; Stead, D.

    2013-12-01

    Multiple, active, deep-seated gravitational slope deformations (DSGSD) are present near the Trans-Alaska Pipeline and Richardson Highway in the east-central Alaska Range, Alaska, USA. We documented spatial and temporal variations in rates of surface movement of the DSGSDs between 2003 and 2011 using RADARSAT-1 and RADARSAT-2 D-InSAR images. Deformation rates exceed 10 cm/month over very large areas (>1 km2) of many rock slopes. Recent climatic change and strong seismic shaking, especially during the 2002 M 7.9 Denali Fault earthquake, appear to have exacerbated slope deformation. We also mapped DSGSD geological and morphological characteristics using field- and GIS-based methods, and constructed a conceptual 2D distinct-element numerical model of one of the DSGSDs. Preliminary results indicate that large-scale buckling or kink-band slumping may be occurring. The DSGSDs are capable of generating long-runout landslides that might impact the Trans-Alaska Pipeline and Richardson Highway. They could also block tributary valleys, thereby impounding lakes that might drain suddenly. Wrapped 24-day RADARSAT-2 descending spotlight interferogram showing deformation north of Fels Glacier. The interferogram is partially transparent and is overlaid on a 2009 WorldView-1 panchromatic image. Acquisition interval: August 2 - August 26, 2011. UTM Zone 6N.

  12. Cloud amount/frequency, NITRATE and other data from ALPHA HELIX in the Gulf of Alaska from 1988-09-14 to 1988-09-29 (NODC Accession 8800279)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The University of Alaska, Institute of Marine Science is responsible for this data collected aboard the R/V Alpha Helix on cruise number HX118 between September 14,...

  13. USGS US topo maps for Alaska

    Science.gov (United States)

    Anderson, Becci; Fuller, Tracy

    2014-01-01

    In July 2013, the USGS National Geospatial Program began producing new topographic maps for Alaska, providing a new map series for the state known as US Topo. Prior to the start of US Topo map production in Alaska, the most detailed statewide USGS topographic maps were 15-minute 1:63,360-scale maps, with their original production often dating back nearly fifty years. The new 7.5-minute digital maps are created at 1:25,000 map scale, and show greatly increased topographic detail when compared to the older maps. The map scale and data specifications were selected based on significant outreach to various map user groups in Alaska. This multi-year mapping initiative will vastly enhance the base topographic maps for Alaska and is possible because of improvements to key digital map datasets in the state. The new maps and data are beneficial in high priority applications such as safety, planning, research and resource management. New mapping will support science applications throughout the state and provide updated maps for parks, recreation lands and villages.

  14. 76 FR 3156 - Alaska Native Claims Selection

    Science.gov (United States)

    2011-01-19

    ... located in: Seward Meridian, Alaska T. 26 N., R. 47 W., Sec. 3, those lands formerly within mining claim... claim recordation AA- 32365. Containing approximately 155 acres. T. 27 N., R. 47 W., Sec. 34, those... e-mail at ak[email protected] , or by telecommunication device (TTD) through the Federal...

  15. 75 FR 13297 - Alaska Native Claims Selection

    Science.gov (United States)

    2010-03-19

    ... for 118.47 acres, located southeast of the Native village of Hughes, Alaska. Notice of the decision...: The Bureau of Land Management by phone at 907-271-5960, or by e-mail at ak[email protected]ak.blm.gov...

  16. Alaska Terrain Corrected Free Air Anomalies (96)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This 2' x 4' gravity anomaly grid for Alaska is NOT the input data set used in development of the GEOID96 model. This gravity grid models the 1.1 million terrestrial...

  17. Alaska midgrade logs: supply and offshore demand.

    Science.gov (United States)

    Donald F. Flora; Wendy J. McGinnis

    1989-01-01

    The outlook for shipments and prices of export logs from Alaska differs significantly by grade (quality class). For the majority lying in the middle of the value range, the trend of prices is projected to increase $200 per thousand board feet, or about 55 percent, by 2000. Shipments are expected to rise about 30 percent by 1995 and then subside about 10 percent. These...

  18. Kids Count Alaska Data Book: 1996.

    Science.gov (United States)

    Alaska Univ., Anchorage. Inst. of Social and Economic Research.

    This statistical report examines findings on 15 indicators of children's well-being in Alaska: (1) percent of births with low birth weight; (2) infant mortality rate; (3) child poverty rate; (4) children in single parent families; (5) births to teenagers age 15 to 17; (6) teen (age 16 to 19) high school dropout rate; (7) teens not in school and…

  19. Discovering Alaska's Salmon: A Children's Activity Book.

    Science.gov (United States)

    Devaney, Laurel

    This children's activity book helps students discover Alaska's salmon. Information is provided about salmon and where they live. The salmon life cycle and food chains are also discussed. Different kinds of salmon such as Chum Salmon, Chinook Salmon, Coho Salmon, Sockeye Salmon, and Pink Salmon are introduced, and various activities on salmon are…

  20. University of Alaska 1997 Facilities Inventory.

    Science.gov (United States)

    Alaska Univ., Fairbanks. Statewide Office of Institutional Research.

    This facilities inventory report presents a comprehensive listing of physical assets owned and operated by the University of Alaska and includes, for each asset, data on average age, weighted average age, gross square footage, original total project funding, and the asset's plant investment value adjusted to the current year. Facilities are listed…

  1. Tobacco use prevalence – disentangling associations between Alaska Native race, low socio-economic status and rural disparities

    Directory of Open Access Journals (Sweden)

    Julia A. Dilley

    2013-08-01

    Full Text Available Background . Tobacco use rates are exceptionally high among indigenous people in North America. Alaska Native, low socio-economic status (SES and rural communities are high-priority populations for Alaska's Tobacco Control program. Design . For the purpose of better informing tobacco control interventions, we conducted a descriptive study to describe high-priority groups using prevalence-based and proportion-based approaches. Methods . With data from 22,311 adults interviewed for Alaska's 2006–2010 Behavioral Risk Factor Surveillance System (BRFSS, we used stratified analysis and logistic regression models to describe the current use of cigarettes and smokeless tobacco (SLT (including iq'mik, a unique Alaska Native SLT product among the 3 populations of interest. Results . “Population segments” were created with combinations of responses for Alaska Native race, SES and community type. We identified the highest prevalence and highest proportion of tobacco users for each type of tobacco by “segment.” For cigarette smoking, while the largest proportion (nearly one-third of the state's smokers are non-Native, high SES and live in urban settings, this group also has lower smoking prevalence than most other groups. Alaska Native, low SES, rural residents had both high smoking prevalence (48% and represented a large proportion of the state's smokers (nearly 10%. Patterns were similar for SLT, with non-Native high-SES urban residents making up the largest proportion of users despite lower prevalence, and Alaska Native, low SES, rural residents having high prevalence and making up a large proportion of users. For iq'mik use, Alaska Native people in rural settings were both the highest prevalence and proportion of users. Conclusion . While Alaska Native race, low SES status and community of residence can be considered alone when developing tobacco control interventions, creating “population segments” based on combinations of factors may be

  2. Tundra Rehabilitation in Alaska's Arctic

    Science.gov (United States)

    Lynn, L. A.

    2012-12-01

    Oil exploration in Alaska's Arctic has been conducted for more than 40 years, resulting in over 3,640 ha of gravel fill placed for roads, pads, and airstrips to support the industry. Likewise, tundra disturbance from burying power lines and by tundra vehicle travel are also common. Rehabilitation of disturbed sites began around 2002, with well over 150 ha that has been previously treated or is currently being rehabilitated. Two primary goals of rehabilitation efforts have been 1) revegetation by indigenous species, and 2) limiting thermokarst. Early efforts were concerned that removing gravel and having exposed bare ground would lead to extensive subsidence and eolian erosion. Native grass cultivars (e.g. Poa glauca, Arctagrostis latifolia, and Festuca rubra) were seeded to create vegetation cover quickly with the expectation that these grasses would survive only temporarily. The root masses and leaf litter were also expected to trap indigenous seed to enhance natural recolonization by indigenous plants. Due to the remote location of these sites, many of which are only accessible by helicopter, most are visited only two to three times following cultivation treatments, providing a limited data pool. At many sites, the total live seeded grass cover declined about 15% over the first 5¬-6 years (from around 30% to 15% cover), while total live indigenous vascular cover increased from no or trace cover to an average of 10% cover in that time. Cover of indigenous vascular plants at sites that were not seeded with native grass cultivars averaged just less than 10% after 10 years, showing no appreciable difference between the two approaches. Final surface elevations at the sites affect local hydrology and soil moisture. Other factors that influence the success of vegetation cover are proximity to the Arctic coast (salt effects), depth of remaining gravel, and changes in characteristics of the near-surface soil. Further development of rehabilitation techniques and the

  3. Tundra vegetation change near Barrow, Alaska (1972–2010)

    International Nuclear Information System (INIS)

    Villarreal, S; Johnson, D R; Lara, M J; Tweedie, C E; Hollister, R D; Webber, P J

    2012-01-01

    Knowledge of how arctic plant communities will respond to change has been largely derived from plot level experimental manipulation, not from trends of decade time scale environmental observations. This study documents plant community change in 330 marked plots at 33 sites established during the International Biological Program near Barrow, Alaska in 1972. Plots were resampled in 1999, 2008 and 2010 for species cover and presence. Cluster analysis identified nine plant communities in 1972. Non-metric multidimensional scaling (NMS) indicates that plant communities have changed in different ways over time, and that wet communities have changed more than dry communities. The relative cover of lichens increased over time, while the response of other plant functional groups varied. Species richness and diversity also increased over time. The most dramatic changes in the cover of bryophytes, graminoids and bare ground coincided with a lemming high in 2008. (letter)

  4. Fiscal Year 1988 program report: Alaska Water Research Center

    International Nuclear Information System (INIS)

    Kane, D.L.

    1990-01-01

    The contents of this study includes: water problems and issues of Alaska; program goals and priorities; research project synopses are: radium levels in, and removal from, ground waters of interior alaska; assessment of stream-flow sediment transport for engineering projects; productivity within deep glacial gravels under subarctic Alaska rivers; nitrogen-cycle dynamics in a subarctic lake; and the use of peat mounds for treatment of household waste water

  5. Geothermal energy in Alaska: site data base and development status

    Energy Technology Data Exchange (ETDEWEB)

    Markle, D.

    1979-04-01

    The following are presented: the history of geothermal energy in Alaska; a history of Alaska land ownership; legal and institutional barriers; and economics. Development, the socio-economic and physical data concerning geothermal energy are documented by regions. The six regions presented are those of the present Alaska State Planning Activities and those of the Federal Land Use Commission. Site data summaries of the one hundred and four separate geothermal spring locations are presented by these regions. (MHR)

  6. Response

    Science.gov (United States)

    Higgins, Chris

    2012-01-01

    This article presents the author's response to the reviews of his book, "The Good Life of Teaching: An Ethics of Professional Practice." He begins by highlighting some of the main concerns of his book. He then offers a brief response, doing his best to address the main criticisms of his argument and noting where the four reviewers (Charlene…

  7. Variability in the Geographic Distribution of Fires in Interior Alaska Considering Cause, Human Proximity, and Level of Suppression

    Science.gov (United States)

    Calef, M. P.; Varvak, A.; McGuire, A. D.; Chapin, T.

    2015-12-01

    The boreal forest of Interior Alaska is characterized by frequent extensive wildfires that have been mapped for the past 70 years. Simple predictions based on this record indicate that area burned will increase as a response to climate warming in Alaska. However, two additional factors have affected the area burned in this time record: the Pacific Decadal Oscillation (PDO) switched from cool and moist to warm and dry in the late 1970s and the Alaska Fire Service instituted a fire suppression policy in the late 1980s. Using Geographic Information Systems (GIS) and statistics, this presentation evaluates the variability in area burned and fire ignitions in Interior Alaska in space and time with particular emphasis on the human influence via ignition and suppression. Our analysis shows that while area burned has been increasing by 2.4% per year, the number of lightning ignitions has decreased by 1.9 ignitions per year. Human ignitions account for 50% of all fire ignitions in Interior Alaska and are clearly influenced by human proximity: human fires mostly occur close to settlements, highways and in intense fire suppression zones (which are in turn close to human settlements and roads); fires close to settlements, highways and in intense fire suppression zones burn much shorter than fires further away from this sphere of human influence; and 60% of all human fire ignitions in Interior Alaska are concentrated in the Fairbanks area and thereby strongly influence regional analyses. Fire suppression has effectively reduced area burned since it was implemented but the PDO change has also had some influence. Finally, we found that human fires start earlier in the year and burn for a shorter duration than lightning fires. This study provides insights into the importance of human behavior as well as regional climate patterns as large-scale controls on fires over time and across the Alaskan boreal forest.

  8. Environmental Impact Statement for the Modernization and Enhancement of Ranges, Airspace, and Training Areas in the Joint Pacific Alaska Range Complex in Alaska. Volume 2 - Appendices A through L

    Science.gov (United States)

    2013-06-01

    Spenard Road, Anchorage, Alaska. Tuesday , January 18, 2011:6:30-8:30 p.m., Caribou Hotel, Mile 186.5 Grand Highway, Glenallen, Alaska. Wednesday...Highway, Healy, Alaska. Tuesday , january 25, 2011:6:30-8:30 p.m., Swiss Alaska Inn, 22056 South F Street, Talkeetna, Alaska. Wednesday, january...Board of Fisheries Mel Morris , Board Member, Alaska Board of Fisheries Mike Smith, Board Member, Alaska Board of Fisheries Cliff Judkins, Chair

  9. Alaska Highway bibliography, 3rd edition

    DEFF Research Database (Denmark)

    Prange, Laurie

    Since the early 20th century various schemes were considered for the construction of roads, trails or railways 71 to link the Yukon, northern British Columbia and Alaska to the “outside.” These schemes were motivated by economic interests, including mining, lumber and tourism concerns. During...... the 1920s and 1930s a small but vocal group of “builders” began to campaign for a highway, either a coastal or inland route, to improve the northwest’s economic base. With the impending threat of war in the late 1930s, there was an increasing awareness by the American and Canadian governments...... increasing military needs. The unexpected bombing of Pearl Harbour in December 1941 stimulated interest in the construction of the Alaska Highway by the American government. The U.S. Army Corps of Engineers selected a route based on the location of the NWSR airfields and the military needs for an alternative...

  10. The Alaska North Slope spill analysis

    International Nuclear Information System (INIS)

    Pearson, Leslie; Robertson, Tim L.; DeCola, Elise; Rosen, Ira

    2011-01-01

    This paper reports Alaska North Slope crude oil spills, provides information to help operators identify risks and presents recommendations for future risk reduction and mitigation measures that may reduce the frequency and severity of future spills from piping infrastructure integrity loss. The North Slope spills analysis project was conducted during 2010 by compiling available spill data, and analyzing the cause of past spills in wells and associated piping, flowlines, process centers with their associated piping and above ground storage tanks, and crude oil transmission pipelines. An expert panel, established to provide independent review of this analysis and the presented data, identified seven recommendations on measures, programs, and practices to monitor and address common causes of failures while considering information provided from regulators and operators. These recommendations must be evaluated by the State of Alaska which will consider implementation options to move forward. Based on the study observations, future analyses may show changes to some of the observed trends.

  11. Year-round Regional CO2 Fluxes from Boreal and Tundra Ecosystems in Alaska

    Science.gov (United States)

    Commane, R.; Lindaas, J.; Benmergui, J. S.; Luus, K. A.; Chang, R. Y. W.; Daube, B. C.; Euskirchen, E. S.; Henderson, J.; Karion, A.; Miller, J. B.; Miller, S. M.; Parazoo, N.; Randerson, J. T.; Sweeney, C.; Tans, P. P.; Thoning, K. W.; Veraverbeke, S.; Miller, C. E.; Wofsy, S. C.

    2016-12-01

    High-latitude ecosystems could release large amounts of carbon dioxide (CO2) to the atmosphere in a warmer climate. We derive temporally and spatially resolved year-round CO2 fluxes in Alaska from a synthesis of airborne and tower CO2 observations in 2012-2014. We find that tundra ecosystems were net sources of atmospheric CO2. We discuss these flux estimates in the context of long-term CO2 measurements at Barrow, AK, to asses the long term trend in carbon fluxes in the Arctic. Many Earth System Models incorrectly simulate net carbon uptake in Alaska presently. Our results imply that annual net emission of CO2 to the atmosphere may have increased markedly in this region of the Arctic in response to warming climate, supporting the view that climate-carbon feedback is strongly positive in the high Arctic.

  12. Southwest Alaska Regional Geothermal Energy Projec

    Energy Technology Data Exchange (ETDEWEB)

    Holdmann, Gwen [Univ. of Alaska, Fairbanks, AK (United States)

    2015-04-30

    Drilling and temperature logging campaigns between the late 1970's and early 1980’s measured temperatures at Pilgrim Hot Springs in excess of 90°C. Between 2010 and 2014 the University of Alaska used a variety of methods including geophysical surveys, remote sensing techniques, heat budget modeling, and additional drilling to better understand the resource and estimate the available geothermal energy.

  13. 76 FR 16804 - Alaska Native Claims Selection

    Science.gov (United States)

    2011-03-25

    ... DEPARTMENT OF THE INTERIOR Bureau of Land Management [AA-8102-05, AA-8102-08, AA-8102-10, AA-8102-25, AA-8102-28, AA-8102- 37, AA-8102-47; LLAK965000-L14100000-KC0000-P] Alaska Native Claims... phone at 907-271-5960, by e-mail at ak[email protected] , or by telecommunication device (TTD...

  14. Wildlife disease and environmental health in Alaska

    Science.gov (United States)

    Van Hemert, Caroline; Pearce, John; Oakley, Karen; Whalen, Mary

    2013-01-01

    Environmental health is defined by connections between the physical environment, ecological health, and human health. Current research within the U.S. Geological Survey (USGS) recognizes the importance of this integrated research philosophy, which includes study of disease and pollutants as they pertain to wildlife and humans. Due to its key geographic location and significant wildlife resources, Alaska is a critical area for future study of environmental health.

  15. Bedrock geologic map of the northern Alaska Peninsula area, southwestern Alaska

    Science.gov (United States)

    Wilson, Frederic H.; Blodgett, Robert B.; Blome, Charles D.; Mohadjer, Solmaz; Preller, Cindi C.; Klimasauskas, Edward P.; Gamble, Bruce M.; Coonrad, Warren L.

    2017-03-03

    The northern Alaska Peninsula is a region of transition from the classic magmatic arc geology of the Alaska Peninsula to a Proterozoic and early Paleozoic carbonate platform and then to the poorly understood, tectonically complex sedimentary basins of southwestern Alaska. Physiographically, the region ranges from the high glaciated mountains of the Alaska-Aleutian Range to the coastal lowlands of Cook Inlet on the east and Bristol Bay on the southwest. The lower Ahklun Mountains and finger lakes on the west side of the map area show strong effects from glaciation. Structurally, a number of major faults cut the map area. Most important of these are the Bruin Bay Fault that parallels the coast of Cook Inlet, the Lake Clark Fault that cuts diagonally northeast to southwest across the eastern part of the map area, and the presently active Holitna Fault to the northwest that cuts surficial deposits.Distinctive rock packages assigned to three provinces are overlain by younger sedimentary rocks and intruded by widely dispersed latest Cretaceous and (or) early Tertiary granitic rocks. Much of the east half of the map area lies in the Alaska-Aleutian Range province; the Jurassic to Tertiary Alaska-Aleutian Range batholith and derivative Jurassic sedimentary rocks form the core of this province, which is intruded and overlain by the Aleutian magmatic arc. The Lime Hills province, the carbonate platform, occurs in the north-central part of the map area. The Paleozoic and Mesozoic Ahklun Mountains province in the western part of the map area includes abundant chert, argillite, and graywacke and lesser limestone, basalt, and tectonic mélange. The Kuskokwim Group, an Upper Cretaceous turbidite sequence, is extensively exposed and bounds all three provinces in the west-central part of the map area.

  16. A global change policy for Alaska

    International Nuclear Information System (INIS)

    Cole, H.

    1993-01-01

    The Alaska Science and Engineering Advisory Committee attempted to formulate a suitable state policy for global climate change. The main elements and rationale for this policy are described, along with lessons learned from the Montreal protocol on global ozone and the policy itself. A discussion of issues relating to public presentation and reaction to a climate change policy indicates that elements necessary for a strategy presenting a case for global change needs to be credible, simple, and unambiguous, with risks clearly defined. Society and business must see themselves as stakeholders in the issue, and policies must be formulated accordingly. The Montreal protocol provides an example of success in advanced planning on a major global issue. The six main components of the Alaskan policy relate to fossil fuel production and marketing, the economic mix of energy production for in-state use, the efficiency and effectiveness of energy end-use services, the impact of climatic change on Alaska as a geographic unit, Alaska as a high-latitude site for climate change monitoring and analysis, and Alaskan participation with other countries in research and policy development. 7 refs

  17. Bears and pipeline construction in Alaska

    Energy Technology Data Exchange (ETDEWEB)

    Follmann, E.H.; Hechtel, J.L. (Univ. of Alaska Fairbanks, AK (USA))

    1990-06-01

    Serious problems were encountered with bears during construction of the 1274-km trans-Alaska oil pipeline between Prudhoe Bay and Valdez. This multi-billion-dollar project traversed both black bear (Ursus americanus Pallas) and grizzly bear (U. arctos L.) habitat throughtout its entire length. Plans for dealing with anticipated problems with bears were often inadequate. Most (71%) problems occurred north of the Yukon River in a previously roadless wilderness where inadequate refuse disposal and widespread animal feeding created dangerous situations. Of the 192 officially reported bear problems associated with the Trans-Alaska Pipeline System (TAPS) (1971-1979), about 65% involved the presence of bears in camps or dumps, 13% the feeding of bears on garbage or handouts, 10% property damage or economic loss, 7% bears under and in buildings, and only 5% charges by bears. Remarkably, no bear-related injuries were reported, suggesting that bears became accustomed to people and did not regard them as a threat. Following construction of the TAPS there have been proposals for pipelines to transport natural gas from Prudhoe Bay to southern and Pacific-rim markets. Based on past experience, some animal control measures were developed during the planning phase for the authorized gas pipeline route in Alaska. Fences installed around 100-person survey camps were found to be effective in deterring bears in two traditionally troublesome areas. 16 refs., 7 figs., 1 tab.

  18. Sustainable Energy Solutions for Rural Alaska

    Energy Technology Data Exchange (ETDEWEB)

    Allen, Riley [Regulatory Assistance Project, Montpelier, VT (United States); Brutkoski, Donna [Regulatory Assistance Project, Montpelier, VT (United States); Farnsworth, David [Regulatory Assistance Project, Montpelier, VT (United States); Larsen, Peter [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2016-04-22

    The state of Alaska recognizes the challenges these rural communities face and provides financial support via the Power Cost Equalization (PCE) program. The PCE subsidizes the electricity prices paid by customers of these high-cost utilities. The PCE program is designed to spread the benefits of Alaska’s natural resources more evenly throughout the state. Yet even with this subsidy, electricity is still much more expensive for these rural customers. And beyond the PCE, other forms of assistance to rural utilities are becoming scarce given the state’s current fiscal environment. Nearly 90 percent of Alaska’s unrestricted budget funds in recent years have been tied to oil royalties—a sector experiencing significant declines in production and oil prices. Consequently, as Alaska looks to tighten budgets, the challenge of lowering rural utility costs, while encouraging self-sufficiency, has become more urgent.This study examines reliability, capital and strategic planning, management, workforce development, governance, financial performance and system efficiency in the various communities visited by the research team. Using those attributes, a tier system was developed to categorize rural Alaska utilities into Leading and Innovating Systems (Tier I), Advanced Diesel Systems (Tier II), Basic Systems (Tier III), and Underperforming Systems (Tier IV). The tier approach is not meant to label specific utilities, but rather to provide a general set of benchmarks and guideposts for improvement.

  19. Triggered tremor sweet spots in Alaska

    Science.gov (United States)

    Gomberg, Joan; Prejean, Stephanie

    2013-01-01

    To better understand what controls fault slip along plate boundaries, we have exploited the abundance of seismic and geodetic data available from the richly varied tectonic environments composing Alaska. A search for tremor triggered by 11 large earthquakes throughout all of seismically monitored Alaska reveals two tremor “sweet spots”—regions where large-amplitude seismic waves repeatedly triggered tremor between 2006 and 2012. The two sweet spots locate in very different tectonic environments—one just trenchward and between the Aleutian islands of Unalaska and Akutan and the other in central mainland Alaska. The Unalaska/Akutan spot corroborates previous evidence that the region is ripe for tremor, perhaps because it is located where plate-interface frictional properties transition between stick-slip and stably sliding in both the dip direction and laterally. The mainland sweet spot coincides with a region of complex and uncertain plate interactions, and where no slow slip events or major crustal faults have been noted previously. Analyses showed that larger triggering wave amplitudes, and perhaps lower frequencies (tremor. However, neither the maximum amplitude in the time domain or in a particular frequency band, nor the geometric relationship of the wavefield to the tremor source faults alone ensures a high probability of triggering. Triggered tremor at the two sweet spots also does not occur during slow slip events visually detectable in GPS data, although slow slip below the detection threshold may have facilitated tremor triggering.

  20. Bryophytes from Tuxedni Wilderness area, Alaska

    Science.gov (United States)

    Schofield, W.B.; Talbot, S. S.; Talbot, S.L.

    2002-01-01

    The bryoflora of two small maritime islands, Chisik and Duck Island (2,302 ha), comprising Tuxedni Wilderness in western lower Cook Inlet, Alaska, was examined to determine species composition in an area where no previous collections had been reported. The field study was conducted from sites selected to represent the totality of environmental variation within Tuxedni Wilderness. Data were analyzed using published reports to compare the bryophyte distribution patterns at three levels, the Northern Hemisphere, North America, and Alaska. A total of 286 bryophytes were identified: 230 mosses and 56 liverworts. Bryum miniatum, Dichodontium olympicum, and Orthotrichum pollens are new to Alaska. The annotated list of species for Tuxedni Wilderness expands the known range for many species and fills distribution gaps within Hulte??n's Central Pacific Coast district. Compared with bryophyte distribution in the Northern Hemisphere, the bryoflora of Tuxedni Wilderness primarily includes taxa of boreal (61%), montane (13%), temperate (11%), arctic-alpine (7%), cosmopolitan (7%), distribution; 4% of the total moss flora are North America endemics. A brief summary of the botanical exploration of the general area is provided, as is a description of the bryophytes present in the vegetation and habitat types of Chisik and Duck Islands.

  1. The geochemical atlas of Alaska, 2016

    Science.gov (United States)

    Lee, Gregory K.; Yager, Douglas B.; Mauk, Jeffrey L.; Granitto, Matthew; Denning, Paul; Wang, Bronwen; Werdon, Melanie B.

    2016-06-21

    A rich legacy of geochemical data produced since the early 1960s covers the great expanse of Alaska; careful treatment of such data may provide significant and revealing geochemical maps that may be used for landscape geochemistry, mineral resource exploration, and geoenvironmental investigations over large areas. To maximize the spatial density and extent of data coverage for statewide mapping of element distributions, we compiled and integrated analyses of more than 175,000 sediment and soil samples from three major, separate sources: the U.S. Geological Survey, the National Uranium Resource Evaluation program, and the Alaska Division of Geological & Geophysical Surveys geochemical databases. Various types of heterogeneity and deficiencies in these data presented major challenges to our development of coherently integrated datasets for modeling and mapping of element distributions. Researchers from many different organizations and disparate scientific studies collected samples that were analyzed using highly variable methods throughout a time period of more than 50 years, during which many changes in analytical techniques were developed and applied. Despite these challenges, the U.S. Geological Survey has produced a new systematically integrated compilation of sediment and soil geochemical data with an average sample site density of approximately 1 locality per 10 square kilometers (km2) for the entire State of Alaska, although density varies considerably among different areas. From that compilation, we have modeled and mapped the distributions of 68 elements, thus creating an updated geochemical atlas for the State.

  2. Introduced northern pike predation on salmonids in southcentral Alaska

    Science.gov (United States)

    Sepulveda, Adam J.; Rutz, David S.; Ivey, Sam S.; Dunker, Kristine J.; Gross, Jackson A.

    2013-01-01

    Northern pike (Esox lucius) are opportunistic predators that can switch to alternative prey species after preferred prey have declined. This trophic adaptability allows invasive pike to have negative effects on aquatic food webs. In Southcentral Alaska, invasive pike are a substantial concern because they have spread to important spawning and rearing habitat for salmonids and are hypothesised to be responsible for recent salmonid declines. We described the relative importance of salmonids and other prey species to pike diets in the Deshka River and Alexander Creek in Southcentral Alaska. Salmonids were once abundant in both rivers, but they are now rare in Alexander Creek. In the Deshka River, we found that juvenile Chinook salmon (Oncorhynchus tshawytscha) and coho salmon (O. kisutch) dominated pike diets and that small pike consumed more of these salmonids than large pike. In Alexander Creek, pike diets reflected the distribution of spawning salmonids, which decrease with distance upstream. Although salmonids dominated pike diets in the lowest reach of the stream, Arctic lamprey (Lampetra camtschatica) and slimy sculpin (Cottus cognatus) dominated pike diets in the middle and upper reaches. In both rivers, pike density did not influence diet and pike consumed smaller prey items than predicted by their gape-width. Our data suggest that (1) juvenile salmonids are a dominant prey item for pike, (2) small pike are the primary consumers of juvenile salmonids and (3) pike consume other native fish species when juvenile salmonids are less abundant. Implications of this trophic adaptability are that invasive pike can continue to increase while driving multiple species to low abundance.

  3. Obesity and sexual abuse in American Indians and Alaska Natives.

    Science.gov (United States)

    Levine, James A; McCrady-Spitzer, Shelly K; Bighorse, William

    2016-08-01

    Mainstream American culture frequently minimizes the prevalence and significance of sexual abuse. Unfortunately, this denial of extensive victimization of women is also present in many underserved populations. In June 2007, Amnesty International released its report on sexual abuse in indigenous women, which states that, "One in three Native American or Alaska Native women will be raped at some point in their lives. Most do not seek justice because they know they will be met with inaction or indifference." This report highlighted an infrequently discussed issue namely, very high levels of sexual abuse in Native American and Alaska Native women. The relationship between sexual abuse and obesity has been delineated in several studies; overall about one quarter to one half of women with high levels of obesity have been sexually abused and it has been postulated that weight-gain serves as an adaptive response for many survivors of sexual abuse. It is also well known in Native American and Alaskan Native women that there is a high prevalence of obesity (about 40% greater than the population average) and that this obesity is associated with a many-fold greater risk of diabetes and increased risks of hypertension, cancer and cardiovascular disease. The link between the concomitantly high rates of sexual abuse and obesity in this population may or may not be partial causality but the issue is nonetheless important. If approaches are to succeed in reversing the trend of increasing levels of obesity in Native American and Alaskan Native women, the high prevalence of sexual abuse will need to be specifically and comprehensively addressed.

  4. Factors affecting spruce establishment and recruitment near western treeline, Alaska

    Science.gov (United States)

    Miller, A. E.; Sherriff, R.; Wilson, T. L.

    2015-12-01

    Regional warming and increases in tree growth are contributing to increased productivity near the western forest margin in Alaska. The effects of warming on seedling recruitment has received little attention, in spite of forecasted forest expansion near western treeline. Here, we used stand structure and environmental data from white spruce (Picea glauca) stands (n = 95) sampled across a longitudinal gradient to explore factors influencing white spruce growth, establishment and recruitment in southwest Alaska. Using tree-ring chronologies developed from a subset of the plots (n = 30), we estimated establishment dates and basal area increment (BAI) for trees of all age classes across a range of site conditions. We used GLMs (generalized linear models) to explore the relationship between tree growth and temperature in undisturbed, low elevation sites along the gradient, using BAI averaged over the years 1975-2000. In addition, we examined the relationship between growing degree days (GDD) and seedling establishment over the previous three decades. We used total counts of live seedlings, saplings and live and dead trees, representing four cohorts, to evaluate whether geospatial, climate, and measured plot covariates predicted abundance of the different size classes. We hypothesized that the relationship between abundance and longitude would vary by size class, and that this relationship would be mediated by growing season temperature. We found that mean BAI for trees in undisturbed, low elevation sites increased with July maximum temperature, and that the slope of the relationship with temperature changed with longitude (interaction significant with 90% confidence). White spruce establishment was positively associated with longer summers and/or greater heat accumulation, as inferred from GDD. Seedling, sapling and tree abundance were also positively correlated with temperature across the study area. The response to longitude was mixed, with smaller size classes

  5. National Response Framework: Annexes

    Science.gov (United States)

    2008-01-01

    response Environmental short- and long-term cleanup ESF #11 – Agriculture and Natural Resources Nutrition assistance Animal and plant disease and pest ...continental United States, the Virgin Islands and Puerto Rico, and other U.S. territories and possession other than Alaska and U.S. territories in the...on the Pacific, Atlantic , and Gulf coasts, to provide response capabilities, technical advice, documentation and support assistance, communications

  6. 47 CFR 80.705 - Hours of service of Alaska-public fixed stations.

    Science.gov (United States)

    2010-10-01

    ... SPECIAL RADIO SERVICES STATIONS IN THE MARITIME SERVICES Alaska Fixed Stations § 80.705 Hours of service of Alaska-public fixed stations. Each Alaska-public fixed station whose hours of service are not... 47 Telecommunication 5 2010-10-01 2010-10-01 false Hours of service of Alaska-public fixed...

  7. 76 FR 32142 - Proposed Information Collection; Comment Request; Alaska Saltwater Sportfishing Economic Survey

    Science.gov (United States)

    2011-06-03

    ... marine sport species in Alaska (e.g., lingcod and rockfish). The data collected from the survey will be... a survey to collect data for conducting economic analyses of marine sport fishing in Alaska. This... management of the Pacific halibut sport fishery off Alaska, while the State of Alaska manages the salmon...

  8. 75 FR 62460 - Revocation and Establishment of Class E Airspace; Northeast Alaska, AK

    Science.gov (United States)

    2010-10-12

    ...-0445; Airspace Docket No. 10-AAL-13] Revocation and Establishment of Class E Airspace; Northeast Alaska... removes redundant Class E airspace in Northeast Alaska and establishes Class E airspace near Eagle, Alaska... proposed rulemaking in the Federal Register to remove some Class E airspace in Northeast Alaska and...

  9. Demography of Dall's sheep in northwestern Alaska

    Science.gov (United States)

    Kleckner, Christopher; Udevitz, Mark S.; Adams, Layne G.; Shults, Brad S.

    2003-01-01

    Dall’s sheep in northwestern Alaska declined in the early 1990s following the severe 1989-90 and 1990-91 winters. In the Baird Mountains of Noatak National Preserve, estimates of adult sheep declined by 50% from 800 in 1989 to under 400 in 1991. Population counts remained low throughout 1991 to 1996, reaching a minimum of 244 adult sheep in 1996. Few lambs were observed during annual midsummer aerial surveys in 1991 to 1994. We suspect that these declines resulted from a combination of poorer nutritional condition and increased vulnerability of sheep to predation resulting from severe winter conditions.As a result of these declines, both subsistence and sport hunting seasons were closed by emergency order in 1991, resulting in substantial management controversy. The affected publics, although willing to accept the closures, questioned the validity of the sheep survey data and strongly emphasized their interest in restoring harvests as soon as populations increased sufficiently. In 1995 the Northwest Arctic Regional Advisory Council, the local advisory committee for the Federal Subsistence Board, passed a motion supporting efforts to initiate research on sheep populations in the region to better understand the factors limiting sheep populations and to evaluate sheep survey methodologies.Currently estimates of Dall’s sheep population size and composition in the western Brooks Range are based on intensive fixed-wing aerial surveys conducted annually since 1986 in areas including the Baird Mountains. The annual variation in recent Baird Mountains aerial counts cannot be explained with reasonable assumptions about reproduction and survival, suggesting that there is some variability in the proportion of the population observed each year or that a substantial number of sheep move during the survey. Prior to our research, no attempt had been made to estimate visibility bias or precision for these surveys.Our understanding of Dall’s sheep population biology comes

  10. Alaska Seismic Network Upgrade and Expansion

    Science.gov (United States)

    Sandru, J. M.; Hansen, R. A.; Estes, S. A.; Fowler, M.

    2009-12-01

    AEIC (Alaska Earthquake Information Center) has begun the task of upgrading the older regional seismic monitoring sites that have been in place for a number of years. Many of the original sites (some dating to the 1960's) are still single component analog technology. This was a very reasonable and ultra low power reliable system for its day. However with the advanced needs of today's research community, AEIC has begun upgrading to Broadband and Strong Motion Seismometers, 24 bit digitizers and high-speed two-way communications, while still trying to maintain the utmost reliability and maintaining low power consumption. Many sites have been upgraded or will be upgraded from single component to triaxial broad bands and triaxial accerometers. This provided much greater dynamic range over the older antiquated technology. The challenge is compounded by rapidly changing digital technology. Digitizersand data communications based on analog phone lines utilizing 9600 baud modems and RS232 are becoming increasingly difficult to maintain and increasingly expensive compared to current methods that use Ethernet, TCP/IP and UDP connections. Gaining a reliable Internet connection can be as easy as calling up an ISP and having a DSL connection installed or may require installing our own satellite uplink, where other options don't exist. LANs are accomplished with a variety of communications devices such as spread spectrum 900 MHz radios or VHF radios for long troublesome shots. WANs are accomplished with a much wider variety of equipment. Traditional analog phone lines are being used in some instances, however 56K lines are much more desirable. Cellular data links have become a convenient option in semiurban environments where digital cellular coverage is available. Alaska is slightly behind the curve on cellular technology due to its low population density and vast unpopulated areas but has emerged into this new technology in the last few years. Partnerships with organizations

  11. Alaska oil and gas: Energy wealth or vanishing opportunity

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, C.P.; Doughty, T.C.; Faulder, D.D.; Harrison, W.E.; Irving, J.S.; Jamison, H.C.; White, G.J.

    1991-01-01

    The purpose of the study was to systematically identify and review (a) the known and undiscovered reserves and resources of arctic Alaska, (b) the economic factors controlling development, (c) the risks and environmental considerations involved in development, and (d) the impacts of a temporary shutdown of the Alaska North Slope Oil Delivery System (ANSODS). 119 refs., 45 figs., 41 tabs.

  12. Downed woody material in southeast Alaska forest stands.

    Science.gov (United States)

    Frederic R. Larson

    1992-01-01

    Data collected in conjunction with the multiresource inventory of southeast Alaska in 1985-86 included downed wood along 234 transects at 60 locations. Transects occurred in 11 forest types and 19 plant associations within the entire southeastern Alaska archipelago. Downed wood weights in forest types ranged from 1232 kilograms per hectare (0.6 ton per acre) in muskeg...

  13. 75 FR 8396 - Izembek National Wildlife Refuge, Cold Bay, Alaska

    Science.gov (United States)

    2010-02-24

    ...] Izembek National Wildlife Refuge, Cold Bay, Alaska AGENCY: U.S. Fish and Wildlife Service, Interior..., we will hold public scoping meetings in King Cove, Cold Bay, Sand Point, and Nelson Lagoon in Alaska... Aleutian arc chain of volcanoes. Landforms include mountains, active volcanoes, U-shaped valleys, glacial...

  14. Tradeoffs and interdependence in the Alaska cant and log markets.

    Science.gov (United States)

    Donald Flora; Una Woller; Michael. Neergaard

    1990-01-01

    During the 1980s, log exports from Alaska have risen while cant (lumber) exports have declined. Eight explanations for the difference between cant and log market behavior are explored. It seems that declining demand for wood products in Japan and a surge of private-sector log harvests in Alaska are enough to account for the apparent substitution of logs for cants. It...

  15. Resilience of Athabascan subsistence systems to interior Alaska's changing climate

    Science.gov (United States)

    Gary P. Kofinas; F. Stuart Chapin; Shauna BurnSilver; Jennifer I. Schmidt; Nancy L. Fresco; Knut Kielland; Stephanie Martin; Anna Springsteen; T. Scott Rupp

    2010-01-01

    Subsistence harvesting and wild food production by Athabascan peoples is part of an integrated social-ecological system of interior Alaska. We describe effects of recent trends and future climate change projections on the boreal ecosystem of interior Alaska and relate changes in ecosystem services to Athabascan subsistence. We focus primarily on moose, a keystone...

  16. Developing a mariculture business in Alaska: information and resources.

    OpenAIRE

    RaLonde, Ray; Paust, Brian

    1993-01-01

    This booklet provides information needed to start a mariculture business in Alaska, including agency resources and lists of publications. Everything you need to know about permits, planning, and financing is presented in an easy to follow layout. From preliminary steps to marketable product, this booklet will help the aquaculturist with all species farmed in Alaska, including oysters, mussels, scallops, clams, and seaweed. (41pp.)

  17. Satellite Sounder Data Assimilation for Improving Alaska Region Weather Forecast

    Science.gov (United States)

    Zhu, Jiang; Stevens, E.; Zavodsky, B. T.; Zhang, X.; Heinrichs, T.; Broderson, D.

    2014-01-01

    Data assimilation has been demonstrated very useful in improving both global and regional numerical weather prediction. Alaska has very coarser surface observation sites. On the other hand, it gets much more satellite overpass than lower 48 states. How to utilize satellite data to improve numerical prediction is one of hot topics among weather forecast community in Alaska. The Geographic Information Network of Alaska (GINA) at University of Alaska is conducting study on satellite data assimilation for WRF model. AIRS/CRIS sounder profile data are used to assimilate the initial condition for the customized regional WRF model (GINA-WRF model). Normalized standard deviation, RMSE, and correlation statistic analysis methods are applied to analyze one case of 48 hours forecasts and one month of 24-hour forecasts in order to evaluate the improvement of regional numerical model from Data assimilation. The final goal of the research is to provide improved real-time short-time forecast for Alaska regions.

  18. 76 FR 78642 - TransCanada Alaska Company, LLC; Notice of Public Scoping Meetings for the Planned Alaska...

    Science.gov (United States)

    2011-12-19

    ... Project (APP). The APP is a planned natural gas pipeline system that would transport gas produced on the Alaska North Slope to the Alaska-Canada border to connect with a pipeline system in Canada for onward..., 2051 Barter Avenue Kaktovik, AK. Dated: December 9, 2011. Kimberly D. Bose, Secretary. [FR Doc. 2011...

  19. 78 FR 11988 - Migratory Bird Subsistence Harvest in Alaska; Harvest Regulations for Migratory Birds in Alaska...

    Science.gov (United States)

    2013-02-21

    ..., accomplishments since the Migratory Bird Treaties with Canada and Mexico were amended, and a history, was... purposes during the spring and summer months. The Canada and Mexico migratory bird treaties were amended...-0066; FF09M21200-123-FXMB1231099BPP0L2] RIN 1018-AY70 Migratory Bird Subsistence Harvest in Alaska...

  20. 75 FR 18764 - Migratory Bird Subsistence Harvest in Alaska; Harvest Regulations for Migratory Birds in Alaska...

    Science.gov (United States)

    2010-04-13

    ... rulemaking, accomplishments since the Migratory Bird Treaties with Canada and Mexico were amended, and a... the spring and summer months. The Canada and Mexico migratory bird treaties were recently amended for... rural Alaska. The amendments to the Migratory Bird Treaties with Canada and Mexico recognize the...

  1. Natality and calf mortality of the Northern Alaska Peninsula and Southern Alaska Peninsula caribou herds

    Directory of Open Access Journals (Sweden)

    Richard A. Sellers

    2003-04-01

    Full Text Available We studied natality in the Northern Alaska Peninsula (NAP and Southern Alaska Peninsula (SAP caribou (Rangifer tarandus granti herds during 1996-1999, and mortality and weights of calves during 1998 and 1999- Natality was lower in the NAP than the SAP primarily because most 3-year-old females did not produce calves in the NAP Patterns of calf mortality in the NAP and SAP differed from those in Interior Alaska primarily because neonatal (i.e., during the first 2 weeks of life mortality was relatively low, but mortality continued to be significant through August in both herds, and aggregate annual mortality was extreme (86% in the NAP Predators probably killed more neonatal calves in the SAP, primarily because a wolf den (Canis lupus was located on the calving area. Despite the relatively high density of brown bears (Ursus arctos and bald eagles (Haliaeetus leucocephalus, these predators killed surprisingly few calves. Golden eagles (Aquila chrysaetos were uncommon on the Alaska Peninsula. At least 2 calves apparently died from pneu¬monia in the range of the NAP but none were suspected to have died from disease in the range of the SAP. Heavy scav¬enging by bald eagles complicated determining cause of death of calves in both the NAP and SAP.

  2. 77 FR 17353 - Migratory Bird Subsistence Harvest in Alaska; Harvest Regulations for Migratory Birds in Alaska...

    Science.gov (United States)

    2012-03-26

    ... was that the Kodiak Island representative expressed concerns that he was not familiar with the AMBCC process and was not familiar with the history of the regional regulations. The Kodiak Archipelago... ensure an effective and meaningful role for Alaska's indigenous inhabitants in [[Page 17358

  3. Net carbon exchange across the Arctic tundra-boreal forest transition in Alaska 1981-2000

    Science.gov (United States)

    Thompson, Catharine Copass; McGuire, A.D.; Clein, Joy S.; Chapin, F. S.; Beringer, J.

    2006-01-01

    Shifts in the carbon balance of high-latitude ecosystems could result from differential responses of vegetation and soil processes to changing moisture and temperature regimes and to a lengthening of the growing season. Although shrub expansion and northward movement of treeline should increase carbon inputs, the effects of these vegetation changes on net carbon exchange have not been evaluated. We selected low shrub, tall shrub, and forest tundra sites near treeline in northwestern Alaska, representing the major structural transitions expected in response to warming. In these sites, we measured aboveground net primary production (ANPP) and vegetation and soil carbon and nitrogen pools, and used these data to parameterize the Terrestrial Ecosystem Model. We simulated the response of carbon balance components to air temperature and precipitation trends during 1981-2000. In areas experiencing warmer and dryer conditions, Net Primary Production (NPP) decreased and heterotrophic respiration (R H ) increased, leading to a decrease in Net Ecosystem Production (NEP). In warmer and wetter conditions NPP increased, but the response was exceeded by an increase in R H ; therefore, NEP also decreased. Lastly, in colder and wetter regions, the increase in NPP exceeded a small decline in R H , leading to an increase in NEP. The net effect for the region was a slight gain in ecosystem carbon storage over the 20 year period. This research highlights the potential importance of spatial variability in ecosystem responses to climate change in assessing the response of carbon storage in northern Alaska over the last two decades. ?? Springer 2005.

  4. Resilience of Athabascan subsistence systems to interior Alaska's changing climate

    Energy Technology Data Exchange (ETDEWEB)

    Kofinas, G.P. [Alaska Univ., Fairbanks, AK (United States). School of Natural Resources and Agricultural Sciences; Alaska Univ., Fairbanks, AK (United States). Inst. of Arctic Biology; Chapin, F.S. III; Schmidt, J.I.; Kielland, K. [Alaska Univ., Fairbanks, AK (United States). Inst. of Arctic Biology; BurnSilver, S. [Alaska Univ., Fairbanks, AK (United States). School of Natural Resources and Agricultural Sciences; Fresco, N.L.; Springsteen, A.; Rupp, T.S. [Alaska Univ., Fairbanks, AK (United States). Scenarios Network for Alaska Planning; Martin, S. [Alaska Univ., Fairbanks, AK (United States). Inst. of Social and Economic Research

    2010-07-15

    Indigenous peoples have occupied interior Alaska for 6000 to 9000 years. The arrival of different cultural groups, or Athabascan Peoples, preceded or coincided with the arrival of black spruce dominated fire-prone vegetation that developed in interior Alaska about 6000 years ago. The Athabascan subsistence hunting system of interior Alaska is a tightly integrated social-ecological system in which people depend on nature for a wide range of ecosystem services such as subsistence resources, protection from fire risk, and cultural ties to their traditional lands. This paper described the effects of recent trends and future climate change projections on the boreal ecosystem of the region and depicted the changes in ecosystem services to Athabascan subsistence. The study focused primarily on moose because of the high dependence on moose by village households. The vulnerability of Athabascan subsistence systems to climatic change has increased in some respects, but has also improved aspects of village resilience. Communities facing future climate and socioeconomic changes, have limited but potentially effective mitigation and adaptation opportunities, but the extent to which they can be realized depends on the responsiveness of institutions to meet local needs through effective management strategies. 1 tab., 6 figs.

  5. Culture, cash and communication: the Inupiat encounter with oil development in Northern Alaska

    International Nuclear Information System (INIS)

    Ahmaogak, G.

    2001-01-01

    Oil and gas development in Alaska coincided with the political awakening of the Inupiat Eskimo people of Alaska. In this presentation, the author detailed some of the characteristics and challenges facing the Alaska Natives as they strive to protect their heritage and gain experience in government. The socio-economic conditions that existed prior to oil and gas development in Alaska were briefly reviewed, as was the situation that led to the formation of the North Slope Borough, which was established in 1972 and effectively created regional government in the area. The first few tentative steps in forming a relationship with industry were described, as industry saw the borough as just an additional level of taxation and government interference. The benefits resulting from the borough materialized in the form of vastly improved living conditions, at the expense of enormous socio-cultural challenges. The resource taxes were discussed, along with community infrastructure development that took place during the most productive years of Prudhoe Bay. Land use management was examined. In the next section, cooperative relationships were reviewed from three perspectives: engagement with industry, agency cooperation, and the role of native corporations. Some of the current challenges are onshore versus offshore development, risks and responses. A quick outline about the North Slope oil and gas outlook was provided. The author concluded the presentation with two major points: (1) assertive Native participation during all phases of development, and (2) a real commitment by government and industry to understand and respond to the social and cultural impacts on Native residents, as being the driving factors for the successful coexistence of Native people and resource industries

  6. The Alaska Commercial Fisheries Water Quality Sampling Methods and Procedures Manual

    Energy Technology Data Exchange (ETDEWEB)

    Folley, G.; Pearson, L.; Crosby, C. [Alaska Dept. of Environmental Conservation, Soldotna, AK (United States); DeCola, E.; Robertson, T. [Nuka Research and Planning Group, Seldovia, AK (United States)

    2006-07-01

    A comprehensive water quality sampling program was conducted in response to the oil spill that occurred when the M/V Selendang Ayu ship ran aground near a major fishing port at Unalaska Island, Alaska in December 2004. In particular, the sampling program focused on the threat of spilled oil to the local commercial fisheries resources. Spill scientists were unable to confidently model the movement of oil away from the wreck because of limited oceanographic data. In order to determine which fish species were at risk of oil contamination, a real-time assessment of how and where the oil was moving was needed, because the wreck became a continual source of oil release for several weeks after the initial grounding. The newly developed methods and procedures used to detect whole oil during the sampling program will be presented in the Alaska Commercial Fisheries Water Quality Sampling Methods and Procedures Manual which is currently under development. The purpose of the manual is to provide instructions to spill managers while they try to determine where spilled oil has or has not been encountered. The manual will include a meaningful data set that can be analyzed in real time to assess oil movement and concentration. Sections on oil properties and processes will be included along with scientific water quality sampling methods for whole and dissolved phase oil to assess potential contamination of commercial fishery resources and gear in Alaska waters during an oil spill. The manual will present a general discussion of factors that should be considered when designing a sampling program after a spill. In order to implement Alaska's improved seafood safety measures, the spatial scope of spilled oil must be known. A water quality sampling program can provide state and federal fishery managers and food safety inspectors with important information as they identify at-risk fisheries. 11 refs., 7 figs.

  7. Geochemical reanalysis of historical U.S. Geological Survey sediment samples from the Kougarok area, Bendeleben and Teller quadrangles, Seward Peninsula, Alaska

    Science.gov (United States)

    Werdon, Melanie B.; Granitto, Matthew; Azain, Jaime S.

    2015-01-01

    The State of Alaska’s Strategic and Critical Minerals (SCM) Assessment project, a State-funded Capital Improvement Project (CIP), is designed to evaluate Alaska’s statewide potential for SCM resources. The SCM Assessment is being implemented by the Alaska Division of Geological & Geophysical Surveys (DGGS), and involves obtaining new airborne-geophysical, geological, and geochemical data. As part of the SCM Assessment, thousands of historical geochemical samples from DGGS, U.S. Geological Survey (USGS), and U.S. Bureau of Mines archives are being reanalyzed by DGGS using modern, quantitative, geochemical-analytical methods. The objective is to update the statewide geochemical database to more clearly identify areas in Alaska with SCM potential. The USGS is also undertaking SCM-related geologic studies in Alaska through the federally funded Alaska Critical Minerals cooperative project. DGGS and USGS share the goal of evaluating Alaska’s strategic and critical minerals potential and together created a Letter of Agreement (signed December 2012) and a supplementary Technical Assistance Agreement (#14CMTAA143458) to facilitate the two agencies’ cooperative work. Under these agreements, DGGS contracted the USGS in Denver to reanalyze historical USGS sediment samples from Alaska. For this report, DGGS funded reanalysis of 302 historical USGS sediment samples from the statewide Alaska Geochemical Database Version 2.0 (AGDB2; Granitto and others, 2013). Samples were chosen from the Kougarok River drainage as well as smaller adjacent drainages in the Bendeleben and Teller quadrangles, Seward Peninsula, Alaska (fig. 1). The USGS was responsible for sample retrieval from the National Geochemical Sample Archive (NGSA) in Denver, Colorado through the final quality assurance/quality control (QA/QC) of the geochemical analyses obtained through the USGS contract lab. The new geochemical data are published in this report as a coauthored DGGS report, and will be incorporated

  8. Use of new and old technologies and methods by the Alaska Volcano Observatory during the 2006 eruption of Augustine Volcano, Alaska

    Science.gov (United States)

    Murray, T. L.; Nye, C. J.; Eichelberger, J. C.

    2006-12-01

    The recent eruption of Augustine Volcano was the first significant volcanic event in Cook Inlet, Alaska since 1992. In contrast to eruptions at remote Alaskan volcanoes that mainly affect aviation, ash from previous eruptions of Augustine has affected communities surrounding Cook Inlet, home to over half of Alaska's population. The 2006 eruption validated much of AVO's advance preparation, underscored the need to quickly react when a problem or opportunity developed, and once again demonstrated that while technology provides us with wonderful tools, professional relationships, especially during times of crisis, are still important. Long-term multi-parametric instrumental monitoring and background geological and geophysical studies represent the most fundamental aspect of preparing for any eruption. Once significant unrest was detected, AVO augmented the existing real-time network with additional instrumentation including web cameras. GPS and broadband seismometers that recorded data on site were also quickly installed as their data would be crucial for post-eruption research. Prior to 2006, most of most of AVO's eruption response plans and protocols had focused on the threat to aviation rather than ground-based hazards. However, the relationships and protocols developed for the aviation threat were sufficient to be adapted to the ash fall hazard, though it is apparent that more work, both scientific and with response procedures, is needed. Similarly, protocols were quickly developed for warning of a flank- collapse induced tsunami. Information flow within the observatory was greatly facilitated by an internal web site that had been developed and refined specifically for eruption response. Because AVO is a partnership of 3 agencies (U.S. Geological Survey, University of Alaska Fairbanks Geophysical Institute, and the Alaska Division of Geological and Geophysical Surveys) with offices in both Fairbanks and Anchorage, web and internet-facing data servers provided

  9. Monitoring Start of Season in Alaska

    Science.gov (United States)

    Robin, J.; Dubayah, R.; Sparrow, E.; Levine, E.

    2006-12-01

    In biomes that have distinct winter seasons, start of spring phenological events, specifically timing of budburst and green-up of leaves, coincides with transpiration. Seasons leave annual signatures that reflect the dynamic nature of the hydrologic cycle and link the different spheres of the Earth system. This paper evaluates whether continuity between AVHRR and MODIS normalized difference vegetation index (NDVI) is achievable for monitoring land surface phenology, specifically start of season (SOS), in Alaska. Additionally, two thresholds, one based on NDVI and the other on accumulated growing degree-days (GDD), are compared to determine which most accurately predicts SOS for Fairbanks. Ratio of maximum greenness at SOS was computed from biweekly AVHRR and MODIS composites for 2001 through 2004 for Anchorage and Fairbanks regions. SOS dates were determined from annual green-up observations made by GLOBE students. Results showed that different processing as well as spectral characteristics of each sensor restrict continuity between the two datasets. MODIS values were consistently higher and had less inter-annual variability during the height of the growing season than corresponding AVHRR values. Furthermore, a threshold of 131-175 accumulated GDD was a better predictor of SOS for Fairbanks than a NDVI threshold applied to AVHRR and MODIS datasets. The NDVI threshold was developed from biweekly AVHRR composites from 1982 through 2004 and corresponding annual green-up observations at University of Alaska-Fairbanks (UAF). The GDD threshold was developed from 20+ years of historic daily mean air temperature data and the same green-up observations. SOS dates computed with the GDD threshold most closely resembled actual green-up dates observed by GLOBE students and UAF researchers. Overall, biweekly composites and effects of clouds, snow, and conifers limit the ability of NDVI to monitor phenological changes in Alaska.

  10. Ground-Based Midcourse Defense (GMD) Sea-Based X-Band Radar (SBX) Placement and Operation, Adak, Alaska

    Science.gov (United States)

    2005-08-03

    Zielinski , Environmental Specialist, EDAW, Inc. B.S., 1984, Biology, University of Alabama in Birmingham Years of Experience: 20 6-2 GMD SBX Placement...Management and Division of Water Permitting Juneau AK Anchorage AK Leroy Phillips Dave Jensen US Army Corps of Engineers The Aleut Corporation Elmendorf AFB AK...Army Corps of Engineers Office of Habitat Management and Elmendorf AFB AK Permitting Anchorage AK Dave Jensen Lari Belisle The Aleut Corporation Federal

  11. The planned Alaska SAR Facility - An overview

    Science.gov (United States)

    Carsey, Frank; Weeks, Wilford

    1987-01-01

    The Alaska SAR Facility (ASF) is described in an overview fashion. The facility consists of three major components, a Receiving Ground System, a SAR Processing System and an Analysis and Archiving System; the ASF Program also has a Science Working Team and the requisite management and operations systems. The ASF is now an approved and fully funded activity; detailed requirements and science background are presented for the facility to be implemented for data from the European ERS-1, the Japanese ERS-1 and Radarsat.

  12. Improving Sanitation and Health in Rural Alaska

    Science.gov (United States)

    Bubenheim, David L.

    2013-01-01

    In rural Alaskan communities personal health is threatened by energy costs and limited access to clean water, wastewater management, and adequate nutrition. Fuel-­-based energy systems are significant factors in determining local accessibility to clean water, sanitation and food. Increasing fuel costs induce a scarcity of access and impact residents' health. The University of Alaska Fairbanks (UAF) School of Natural Resources and Agricultural Sciences (SNRAS), NASA's Ames Research Center, and USDA Agricultural Research Service (ARS) have joined forces to develop high-efficiency, low­-energy consuming techniques for water treatment and food production in rural circumpolar communities. Methods intended for exploration of space and establishment of settlements on the Moon or Mars will ultimately benefit Earth's communities in the circumpolar north. The initial phase of collaboration is completed. Researchers from NASA Ames Research Center and SNRAS, funded by the USDA­-ARS, tested a simple, reliable, low-energy sewage treatment system to recycle wastewater for use in food production and other reuse options in communities. The system extracted up to 70% of the water from sewage and rejected up to 92% of ions in the sewage with no carryover of toxic effects. Biological testing showed that plant growth using recovered water in the nutrient solution was equivalent to that using high-purity distilled water. With successful demonstration that the low energy consuming wastewater treatment system can provide safe water for communities and food production, the team is ready to move forward to a full-scale production testbed. The SNRAS/NASA team (including Alaska students) will design a prototype to match water processing rates and food production to meet rural community sanitation needs and nutritional preferences. This system would be operated in Fairbanks at the University of Alaska through SNRAS. Long­-term performance will be validated and operational needs of the

  13. Alaska's rare earth deposits and resource potential

    Science.gov (United States)

    Barker, James C.; Van Gosen, Bradley S.

    2012-01-01

    Alaska’s known mineral endowment includes some of the largest and highest grade deposits of various metals, including gold, copper and zinc. Recently, Alaska has also been active in the worldwide search for sources of rare earth elements (REE) to replace exports now being limitedby China. Driven by limited supply of the rare earths, combined with their increasing use in new ‘green’ energy, lighting, transportation, and many other technological applications, the rare earth metals neodymium, europium and, in particular, the heavy rare earth elements terbium, dysprosium and yttrium are forecast to soon be in critical short supply (U.S. Department of Energy, 2010).

  14. Surface-water investigations at Barrow, Alaska

    Science.gov (United States)

    Jones, Stanley H.

    1972-01-01

    The U.S. Public Health Service is currently developing plans for a long-term water supply and sewage treatment system for the village of Barrow, Alaska. To assist in planning, the U.S. Geological Survey was requested to initiate a cooperative streamflow data-collection program with the U.S. Public Health Service in June 1972 to determine the availability of surface water and the areal distribution of runoff in the Barrow area. This basic-data report summarizes the streamflow data collected from June 1 through July 10, 1972, at three gaging stations in the Barrow area (fig. 1) and discusses the future data-collection program.

  15. A Decade of Shear-Wave Splitting Observations in Alaska

    Science.gov (United States)

    Bellesiles, A. K.; Christensen, D. H.; Abers, G. A.; Hansen, R. A.; Pavlis, G. L.; Song, X.

    2010-12-01

    Over the last decade four PASSCAL experiments have been conducted in different regions of Alaska. ARCTIC, BEAAR and MOOS form a north-south transect across the state, from the Arctic Ocean to Price Williams Sound, while the STEEP experiment is currently deployed to the east of that line in the St Elias Mountains of Southeastern Alaska. Shear-wave splitting observations from these networks in addition to several permanent stations of the Alaska Earthquake Information Center were determined in an attempt to understand mantle flow under Alaska in a variety of different geologic settings. Results show two dominant splitting patterns in Alaska, separated by the subducted Pacific Plate. North of the subducted Pacific Plate fast directions are parallel to the trench (along strike of the subducted Pacific Plate) indicating large scale mantle flow in the northeast-southwest direction with higher anisotropy (splitting times) within the mantle wedge. Within or below the Pacific Plate fast directions are normal to the trench in the direction of Pacific Plate convergence. In addition to these two prominent splitting patterns there are several regions that do not match either of these trends. These more complex regions which include the results from STEEP could be due to several factors including effects from the edge of the Pacific Plate. The increase of station coverage that Earthscope will bring to Alaska will aid in developing a more complete model for anisotropy and mantle flow in Alaska.

  16. Reconnecting Alaska: Mexican Movements and the Last Frontier

    Directory of Open Access Journals (Sweden)

    Sara V. Komarnisky

    2012-06-01

    Full Text Available This paper discusses the initial findings of on-going research with Mexican migrants and immigrants to Alaska. The paper outlines the historical and on-going connections between Alaska and Mexico and explores how and why those connections have been obscured or ignored. Powerful imaginaries are associated with places: Alaska, and 'the north' more generally, and Latin America, and Mexico specifically. My research shows how interesting things happen when they are brought together through movement. People from Acuitzio del Canje, Michoacán began travelling to Alaska (Anchorage, and elsewhere to work in the 1950s, and movement between Mexico and Alaska has continued across generations since then. Today, many Acuitzences who live in Anchorage maintain a close relationship with friends and family members in Acuitzio, and travel back and forth regularly. However, this movement is obscured by ideological work that makes Alaska seem separate, isolated, wild, and a place where Mexicans are not imagined to be. Mexican movements into Alaska over time disrupt this vision, showing how Alaska is connected to multiple other geographies, and making the US-Mexico border a salient reference point in everyday life in Anchorage. When the South moves into the North, it can make us think about both 'Alaska' and 'Mexico' in different ways. When the US-Mexico border is relocated to Anchorage, if only for a moment, it can elicit a reaction of humour or surprise. Why is that? And what does this have to do with how people actually live in an interconnected place?

  17. Pre-spill shoreline mapping in Prince William Sound, Alaska

    International Nuclear Information System (INIS)

    Owens, E.H.; Lamarche, A.; Reimer, P.D.; Marchant, S.O.; O'Brien, D.K.

    2003-01-01

    A long-term shoreline mapping program has been initiated in Prince William Sound, Alaska, to generate pre-spill data to assist in the planning activities for oil spill response in the area. Low-altitude aerial videotape surveys and video images form the basis for the mapping effort. The coast was initially divided into alongshore segments. The physical shore-zone is relatively homogeneous within each segment. A pre-spill Shoreline Cleanup Assessment Team (SCAT) database, using the ShoreData software, was created based on this initial detailed mapping. The SCAT field teams are therefore equipped with a detailed analysis of the shore-zone character. The same information was also used to develop a separate database for use by planning and response operations groups. The data is entered into the Graphical Resource Database (GRD), and a Geographic Information System (GIS). A simplified characterization of the primary features of each segment is then made available through interpretation of the data. In the event of an oil spill, the SCAT data in the ShoreData files can be combined with field data on shoreline oiling conditions using a second software package called ShoreAccess R which provides summaries of the main parameters required by the planning group. It can also be used as a data storage and management tool. As part of this program, more than 1700 kilometres of shoreline in Prince William Sound have already been mapped. 24 refs., 4 tabs., 5 figs

  18. Financing Opportunities for Renewable Energy Development in Alaska

    Energy Technology Data Exchange (ETDEWEB)

    Ardani, K.; Hillman, D.; Busche, S.

    2013-04-01

    This technical report provides an overview of existing and potential financing structures for renewable energy project development in Alaska with a focus on four primary sources of project funding: government financed or supported (the most commonly used structure in Alaska today), developer equity capital, commercial debt, and third-party tax-equity investment. While privately funded options currently have limited application in Alaska, their implementation is theoretically possible based on successful execution in similar circumstances elsewhere. This report concludes that while tax status is a key consideration in determining appropriate financing structure, there are opportunities for both taxable and tax-exempt entities to participate in renewable energy project development.

  19. Biogeochemistry of a treeline watershed, northwestern Alaska.

    Science.gov (United States)

    Stottlemyer, R

    2001-01-01

    Since 1950, mean annual temperatures in northwestern Alaska have increased. Change in forest floor and soil temperature or moisture could alter N mineralization rates, production of dissolved organic carbon (DOC) and organic nitrogen (DON), and their export to the aquatic ecosystem. In 1990, we began study of nutrient cycles in the 800-ha Asik watershed, located at treeline in the Noatak National Preserve, northwestern Alaska. This paper summarizes relationships between topographic aspect, soil temperature and moisture, inorganic and organic N pools, C pools, CO2 efflux, growing season net N mineralization rates, and stream water chemistry. Forest floor (O2) C/N ratios, C pools, temperature, and moisture were greater on south aspects. More rapid melt of the soil active layer (zone of annual freeze-thaw) and permafrost accounted for the higher moisture. The O2 C and N content were correlated with moisture, inorganic N pools, CO2 efflux, and inversely with temperature. Inorganic N pools were correlated with temperature and CO2 efflux. Net N mineralization rates were positive in early summer, and correlated with O2 moisture, temperature, and C and N pools. Net nitrification rates were inversely correlated with moisture, total C and N. The CO2 efflux increased with temperature and moisture, and was greater on south aspects. Stream ion concentrations declined and DOC increased with discharge. Stream inorganic nitrogen (DIN) output exceeded input by 70%. Alpine stream water nitrate (NO3-) and DOC concentrations indicated substantial contributions to the watershed DIN and DOC budgets.

  20. Occupational safety and health training in Alaska.

    Science.gov (United States)

    Hild, C M

    1992-01-01

    We have eleven years of experience delivering a wide variety of worker education programs in cross-cultural settings to reduce the levels of occupational fatalities and injuries in Alaska. We published an instructional manual and informational poster for workers, on Alaska's "Right-To-Know" law regarding chemical and physical hazards. The "Job Hazard Recognition Program" curriculum for high school students has received national acclaim for being proactive in dealing with worker safety education before the student becomes a member of the work force. Adult educational programs and materials have been designed to include less lecture and formal presentation, and more practical "hands on" and on-the-job experience for specific trades and hazards. New industry specific manuals deal with hazardous waste reduction as a method to reduce harm to the employee. Difficulty in getting instructors and training equipment to rural locations is dealt with by becoming creative in scheduling classes, using locally available equipment, and finding regional contacts who support the overall program. Alternative approaches to funding sources include building on regional long-term plans and establishing complementary program objectives.

  1. Global change and its implications for Alaska

    International Nuclear Information System (INIS)

    Weller, G.

    1993-01-01

    In the 1980s versions of climate models, the Arctic and Antarctic regions were considered crucial in understanding and predicting climate change, and there is also agreement that climate change will have large impacts in the Arctic since the climate signal is amplified at high latitudes. The earlier climate change scenarios are re-examined for the case of Alaska, in light of more recent information. Observational evidence in the Arctic over the last few decades agrees well with predictions of a current global climate model, including temperature increase over land masses of up to 1 degree C per decade in winter, with smaller changes in summer. Other indirect evidence of a warmer Arctic climate includes receding glaciers and warmer permafrost temperatures. It is predicted that after the CO 2 content of the atmosphere doubles, winter temperatures in Alaska will increase 6-8 degree C. In much of the interior, mean annual temperature will rise above freezing, leading to disappearance of discontinuous permafrost. The growing season would be lengthened by about three weeks, vegetation types and the abundance and distribution of mammals will change, and there will be less sea ice along coastal areas. Impacts on human activities will be both adverse and favorable; for example, in the petroleum industry, maintenance of pipelines and roads will be more difficult but offshore exploration and marine supply operations will be made easier. 6 refs., 3 tabs

  2. The role of driving factors in historical and projected carbon dynamics of upland ecosystems in Alaska

    Science.gov (United States)

    Genet, Hélène; He, Yujie; Lyu, Zhou; McGuire, A. David; Zhuang, Qianlai; Clein, Joy S.; D'Amore, David; Bennett, Alec; Breen, Amy; Biles, Frances; Euskirchen, Eugénie S.; Johnson, Kristofer; Kurkowski, Tom; Schroder, Svetlana (Kushch); Pastick, Neal J.; Rupp, T. Scott; Wylie, Bruce K.; Zhang, Yujin; Zhou, Xiaoping; Zhu, Zhiliang

    2018-01-01

    It is important to understand how upland ecosystems of Alaska, which are estimated to occupy 84% of the state (i.e., 1,237,774 km2), are influencing and will influence state‐wide carbon (C) dynamics in the face of ongoing climate change. We coupled fire disturbance and biogeochemical models to assess the relative effects of changing atmospheric carbon dioxide (CO2), climate, logging and fire regimes on the historical and future C balance of upland ecosystems for the four main Landscape Conservation Cooperatives (LCCs) of Alaska. At the end of the historical period (1950–2009) of our analysis, we estimate that upland ecosystems of Alaska store ~50 Pg C (with ~90% of the C in soils), and gained 3.26 Tg C/yr. Three of the LCCs had gains in total ecosystem C storage, while the Northwest Boreal LCC lost C (−6.01 Tg C/yr) because of increases in fire activity. Carbon exports from logging affected only the North Pacific LCC and represented less than 1% of the state's net primary production (NPP). The analysis for the future time period (2010–2099) consisted of six simulations driven by climate outputs from two climate models for three emission scenarios. Across the climate scenarios, total ecosystem C storage increased between 19.5 and 66.3 Tg C/yr, which represents 3.4% to 11.7% increase in Alaska upland's storage. We conducted additional simulations to attribute these responses to environmental changes. This analysis showed that atmospheric CO2 fertilization was the main driver of ecosystem C balance. By comparing future simulations with constant and with increasing atmospheric CO2, we estimated that the sensitivity of NPP was 4.8% per 100 ppmv, but NPP becomes less sensitive to CO2increase throughout the 21st century. Overall, our analyses suggest that the decreasing CO2 sensitivity of NPP and the increasing sensitivity of heterotrophic respiration to air temperature, in addition to the increase in C loss from wildfires weakens the C sink from upland

  3. The Role of Driving Factors in Historical and Projected Carbon Dynamics in Wetland Ecosystems of Alaska

    Science.gov (United States)

    Lyu, Z.; Helene, G.; He, Y.; Zhuang, Q.; McGuire, A. D.; Bennett, A.; Breen, A. L.; Clein, J.; Euskirchen, E. S.; Johnson, K. D.; Kurkowski, T. A.; Pastick, N. J.; Rupp, S. T.; Wylie, B. K.; Zhu, Z.

    2017-12-01

    Wetlands are important terrestrial ecosystems in Alaska. It is important to understand and assess their role in the regional carbon dynamics in response to historical and projected environmental conditions. A coupled modeling framework that incorporates a fire disturbance model and two biogeochemical models was used to assess the relative influence of changing climate, atmospheric carbon dioxide (CO2) concentration, and fire regime on the historical and future carbon balance in wetland ecosystems of the four main Landscape Conservation Cooperatives (LCCs) of Alaska. Simulations were conducted for the historical period (1950-2009) and future projection period (2010-2099). These simulations estimate that the total carbon (C) storage in wetland ecosystems of Alaska is 5556 Tg C in 2009, with 89% of the C stored in soils. An estimated 175 Tg C was lost during the historical period, which is attributed to greater C lost from the Northwest Boreal LCC than C gained from the other three LCCs. The simulations for the projection period were conducted for six different scenarios driven by climate forcings from two different climate models for each of three CO2 emission scenarios. The mean total carbon storage increased 3.94 Tg C/yr by 2099, with variability among the simulations ranging from 2.02 Tg C/yr to 4.42 Tg C/yr. Across the four LCCs, the largest relative C storage increase occurred in the Arctic and North Pacific LCCs. These increases were primarily driven by increases in net primary production (NPP) that were greater than increases in heterotrophic respiration and fire emissions. Our analysis further indicates that NPP increase was primarily driven by CO2 fertilization ( 5% per 100 ppmv increase) as well as by increases in air temperature ( 1% per ° increase). Increases air temperature were estimated to be the primary cause for a projected 47.7% mean increase in wetlands biogenic CH4 emissions among the simulations ( 15% per ° increase). The combined effects of

  4. The role of driving factors in historical and projected carbon dynamics of upland ecosystems in Alaska.

    Science.gov (United States)

    Genet, Hélène; He, Yujie; Lyu, Zhou; McGuire, A David; Zhuang, Qianlai; Clein, Joy; D'Amore, David; Bennett, Alec; Breen, Amy; Biles, Frances; Euskirchen, Eugénie S; Johnson, Kristofer; Kurkowski, Tom; Kushch Schroder, Svetlana; Pastick, Neal; Rupp, T Scott; Wylie, Bruce; Zhang, Yujin; Zhou, Xiaoping; Zhu, Zhiliang

    2018-01-01

    It is important to understand how upland ecosystems of Alaska, which are estimated to occupy 84% of the state (i.e., 1,237,774 km 2 ), are influencing and will influence state-wide carbon (C) dynamics in the face of ongoing climate change. We coupled fire disturbance and biogeochemical models to assess the relative effects of changing atmospheric carbon dioxide (CO 2 ), climate, logging and fire regimes on the historical and future C balance of upland ecosystems for the four main Landscape Conservation Cooperatives (LCCs) of Alaska. At the end of the historical period (1950-2009) of our analysis, we estimate that upland ecosystems of Alaska store ~50 Pg C (with ~90% of the C in soils), and gained 3.26 Tg C/yr. Three of the LCCs had gains in total ecosystem C storage, while the Northwest Boreal LCC lost C (-6.01 Tg C/yr) because of increases in fire activity. Carbon exports from logging affected only the North Pacific LCC and represented less than 1% of the state's net primary production (NPP). The analysis for the future time period (2010-2099) consisted of six simulations driven by climate outputs from two climate models for three emission scenarios. Across the climate scenarios, total ecosystem C storage increased between 19.5 and 66.3 Tg C/yr, which represents 3.4% to 11.7% increase in Alaska upland's storage. We conducted additional simulations to attribute these responses to environmental changes. This analysis showed that atmospheric CO 2 fertilization was the main driver of ecosystem C balance. By comparing future simulations with constant and with increasing atmospheric CO 2 , we estimated that the sensitivity of NPP was 4.8% per 100 ppmv, but NPP becomes less sensitive to CO 2 increase throughout the 21st century. Overall, our analyses suggest that the decreasing CO 2 sensitivity of NPP and the increasing sensitivity of heterotrophic respiration to air temperature, in addition to the increase in C loss from wildfires weakens the C sink from upland

  5. Solvent extraction treatment of PCB contaminated soil at Sparrevohn Long Range Radar Station, Alaska

    International Nuclear Information System (INIS)

    Weimer, L. D.

    1999-01-01

    On-site soil treatment at a long range radar station in Alaska, which was contaminated with between 50 and 350 mg/kg of polychlorinated biphenyls (PCBs) is described. The stock-piled soil was treated by the Terra Kleen Response Group, using a solvent extraction process. After the treatment, PCB concentrations in the treated soil were found to have been reduced to less than the target treatment level of 15 mg/kg. Not only was the process successful, it also saved the government about $ 1 million over what hauling and off-site treatment and disposal would have cost. 1 tab

  6. Lidar data for the community of Golovin, Alaska

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This publication presents lidar data collected over the community of Golovin, on the southern coast of the Seward Peninsula in western Alaska (fig. 1). The original...

  7. AFSC/REFM: Atka mackerel Tagging Studies, Aleutian Islands, Alaska

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — From 1999-2015, approximately 130,000 Atka mackerel have been tagged and released in the Aleutian Islands, Alaska, specifically at Seguam Pass, Tanaga Pass, Amchitka...

  8. Western Alaska ESI: M_MAMMAL (Marine Mammal Polygons)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for seals, whales, dolphins, walruses, and Steller sea lions in Western Alaska. Vector polygons in this...

  9. Sitka, Alaska Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Sitka, Alaska Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST is...

  10. 78 FR 15669 - Marine Mammals: Alaska Harbor Seal Habitats

    Science.gov (United States)

    2013-03-12

    .... 2007; Womble et al. 2010). Vessel-based tourism in Alaska has been increasing rapidly over the last few... collaboration with the Yakutat Tlingit Tribe and Northwest Cruise Ship Association examined the effects of...

  11. North Slope, Alaska ESI: T_MAMMAL (Terrestrial Mammal Polygons)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for brown bears, caribou, and muskoxen for the North Slope, Alaska. Vector polygons in this data set...

  12. North Slope, Alaska ESI: M_MAMMAL (Marine Mammal Polygons)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for whales, seals, walruses, and polar bears for the North Slope of Alaska. Vector polygons in this data...

  13. AFSC/REFM: Alaska groundfish AGEDATA database,1982 to present

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The AFSC AGEDATA database is a collection of historic and ongoing fish ageing efforts by the Alaska Fisheries Science Center's Age and Growth Program from 1982 to...

  14. Cook Inlet and Kenai Peninsula, Alaska ESI: VOLCANOS (Volcano Points)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains the locations of volcanos in Cook Inlet and Kenai Peninsula, Alaska. Vector points in the data set represent the location of the volcanos....

  15. AFSC/NMML: Southeast Alaska Cetacean Vessel Surveys, 1991 - 2012

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — In 1991, NMML initiated cetacean studies with vessel coverage throughout inland waters of Southeast Alaska. Between 1991 and 1993, line-transect methodology was used...

  16. Southeast Alaska ESI: T_MAMMAL (Terrestrial Mammal Polygons)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains biological resource data for brown bears in Southeast Alaska. Vector polygons in this data set represent locations of bear concentrations....

  17. Shemya, Alaska Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Shemya, Alaska Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST is...

  18. Northern fur seal pup weights, Pribilof Islands, Alaska, 1957-present

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This database contains northern fur seal pup mass and length data by date, island, rookery and sex on the Pribilof Islands, Alaska, collected between 1957-2012. Mass...

  19. Alaska Steller sea lion Count Database (Non-pups)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This database contains counts of adult and juvenile (non-pup) Steller sea lions on rookeries and haulouts in Alaska made between 1904 and 2015. Non-pup counts have...

  20. Alaska Phocid Argos Telemetry Archive (2004-2013)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Polar Ecosystems Program conducts research and monitoring on phocid seals in the East Bering Sea, West Bering Sea, Gulf of Alaska, Beaufort Sea, and Chukchi Sea...

  1. Kodiak, Alaska Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Kodiak, Alaska Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST is...

  2. 24 arc-second Kenai Peninsula Bororugh Alaska Elevation Grid

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The 24 arc-second Kenai Peninsula Bororugh Alaska Elevation Grid provides bathymetric data in ASCII raster format of 24 second resolution in geographic coordinates....

  3. Sand Point, Alaska Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Sand Point, Alaska Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model....

  4. Radionuclide Site Survey Report Salchaket (Eielson), Alaska (RN-76)

    National Research Council Canada - National Science Library

    Walker, Frank

    1999-01-01

    The purpose of this report is to validate that the Eielson, Alaska, site will fulfill treaty requirements as set forth by the Preparatory Commission for the Comprehensive Test Ban Treaty Organization...

  5. Gravity Data for Southwestern Alaska (1294 records compiled)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The gravity station data (1294 records) were compiled by the Alaska Geological Survey and the U.S. Geological Survey, Menlo Park, California. This data base was...

  6. Alaska Gravity Data per 2 x 4 min Cell (96)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This 2' x 4' gravity density grid for Alaska displays the distribution of about 1.1 million terrestrial and marine gravity data held in the National Geodetic Survey...

  7. Cordova, Alaska Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Cordova, Alaska Forecast Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST is a...

  8. Unalaska, Alaska Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Unalaska, Alaska Forecast Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST is a...

  9. Cook Inlet and Kenai Peninsula, Alaska ESI: INVERT (Invertebrate Polygons)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains biological resource data for razor clams in Cook Inlet and Kenai Peninsula, Alaska. Vector polygons in this data set represent locations of...

  10. Seward, Alaska Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Seward, Alaska Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST is...

  11. Adak, Alaska Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Adak, Alaska Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST is a...

  12. Cook Inlet and Kenai Peninsula, Alaska ESI: FISH (Fish Polygons)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains biological resource data for herring spawning areas in Cook Inlet and Kenai Peninsula, Alaska. Vector polygons in this data set represent...

  13. Cook Inlet and Kenai Peninsula, Alaska ESI: FISHL (Fish Lines)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains biological resource data for anadromous fish streams in Cook Inlet and Kenai Peninsula, Alaska. Vector lines in this data set represent...

  14. Southeast Alaska ESI: M_MAMPT (Marine Mammal Points)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains biological resource data for seals and sea lions in Southeast Alaska. Points in this data set represent locations of haulout and rookery...

  15. Homer, Alaska Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Homer, Alaska Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST is...

  16. AFSC/ABL: Ocean Acidification in Southeast Alaska

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This database contains information from one primary project a Southeast Alaska (SEAK) environmental monitoring study. It also includes support analyses for Kodiak...

  17. Nikolski, Alaska Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Nikolski, Alaska Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST...

  18. Soda Creek springs - metamorphic waters in the eastern Alaska Range

    Science.gov (United States)

    Richter, D.H.; Donaldson, D.E.; Lamarre, R.A.

    1973-01-01

    The Soda Creek springs are a group of small, cold mineral springs on the southern flank of the eastern Alaska Range. The spring waters contain anomalous concentrations of carbon dioxide, sodium, chlorine, sulfate, boron, and ammonia and are actively precipitating deposits of calcite and aragonite. Sparingly present in these deposits are mixed-layer illite-montmorillonite clays and zeolite minerals. Low-temperaturemetamorphic reactions in subjacent marine sedimentary rocks of Jurassic and Cretaceous age may have produced the fluids and silicate minerals. With only a few exceptions, cool bicarbonate-rich springs in Alaska are concentrated south of the Denali fault system in south-central Alaska, southeastern Alaska, and along the Kaltag-Tintina fault system. These areas are characterized by active or recently activetectonism, major faults and folds, and an abundance of marine sedimentary rocks.

  19. AFSC/REFM: Alaska Saltwater Sport Fishing Charter Business Survey

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The purpose of this project was to collect cost, earning, and employment information from the Alaska saltwater sport fishing charter business sector during the...

  20. Western Alaska ESI: SOCECON (Socioeconomic Resource Points and Lines)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains human-use resource data for airports, mining sites, area boundaries, and scenic rivers in Western Alaska. Vector points and lines in this data...

  1. Prince William Sound, Alaska ESI: NESTS (Bird Nests)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set comprises the Environmental Sensitivity Index (ESI) data for Prince William Sound, Alaska. ESI data characterize estuarine environments and wildlife by...

  2. Prince William Sound, Alaska ESI: FISH (Fish Polygons)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set comprises the Environmental Sensitivity Index (ESI) data for Prince William Sound, Alaska. ESI data characterize estuarine environments and wildlife by...

  3. Geothermal energy in Alaska: site data base and development status

    Energy Technology Data Exchange (ETDEWEB)

    Markle, D.R.

    1979-04-01

    The various factors affecting geothermal resource development are summarized for Alaska including: resource data base, geological description, reservoir characteristics, environmental character, base and development status, institutional factors, economics, population and market, and development potential. (MHR)

  4. Port Alexander, Alaska Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Port Alexander, Alaska Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model....

  5. Elfin Cove, Alaska Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Elfin Cove, Alaska Forecast Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST is a...

  6. Winter banding of passerines on the Alaska Peninsula

    Data.gov (United States)

    Department of the Interior — Between February 1969 and May 1973, bait traps were operated during winter at Cold Bay (55° 12' N, 162° 43' W), Alaska, headquarters of the Izembek National Wildlife...

  7. 76 FR 11978 - Proposed Amendment of Federal Airways; Alaska

    Science.gov (United States)

    2011-03-04

    ... Federal airways in Alaska. Due to construction of wind turbines on Fire Island, AK, the Anchorage VOR is... to assign the use of the airspace necessary to ensure the safety of aircraft and the efficient use of...

  8. Bringing It All Together: The Southeast Alaska Music Festival.

    Science.gov (United States)

    Howey, Brad

    2003-01-01

    Describes the Southeast Alaska Music Festival discussing topics such as the role of the host school, the communities and schools within the region, and scoring procedures at the Festival. Includes a festival schedule. (CMK)

  9. Chignik, Alaska Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Chignik, Alaska Forecast Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST is a...

  10. Population dynamics of caribou herds in southwestern Alaska

    Directory of Open Access Journals (Sweden)

    Patrick Valkenburg

    2003-04-01

    Full Text Available The five naturally occurring and one transplanted caribou (Rangifer tarandus granti herd in southwestern Alaska composed about 20% of Alaska's caribou population in 2001. All five of the naturally occurring herds fluctuated considerably in size between the late 1800s and 2001 and for some herds the data provide an indication of long-term periodic (40-50 year fluctuations. At the present time, the Unimak (UCH and Southern Alaska Peninsula (SAP are recovering from population declines, the Northern Alaska Peninsula Herd (NAP appears to be nearing the end of a protracted decline, and the Mulchatna Herd (MCH appears to now be declining after 20 years of rapid growth. The remaining naturally occurring herd (Kilbuck has virtually disappeared. Nutrition had a significant effect on the size of 4-month-old and 10-month-old calves in the NAP and the Nushagak Peninsula Herd (NPCH and probably also on population growth in at least 4 (SAP, NAP, NPCH, and MCH of the six caribou herds in southwestern Alaska. Predation does not appear to be sufficient to keep caribou herds in southwestern Alaska from expanding, probably because rabies is endemic in red foxes (Vulpes vulpes and is periodically transferred to wolves (Canis lupus and other canids. However, we found evidence that pneumonia and hoof rot may result in significant mortality of caribou in southwestern Alaska, whereas there is no evidence that disease is important in the dynamics of Interior herds. Cooperative conservation programs, such as the Kilbuck Caribou Management Plan, can be successful in restraining traditional harvest and promoting growth in caribou herds. In southwestern Alaska we also found evidence that small caribou herds can be swamped and assimilated by large herds, and fidelity to traditional calving areas can be lost.

  11. Shear-wave splitting observations of mantle anisotropy beneath Alaska

    Science.gov (United States)

    Bellesiles, A. K.; Christensen, D. H.; Entwistle, E.; Litherland, M.; Abers, G. A.; Song, X.

    2009-12-01

    Observations of seismic anisotropy were obtained from three different PASSCAL broadband experiments throughout Alaska, using shear-wave splitting from teleseismic SKS phases. The MOOS (Multidisciplinary Observations Of Subduction), BEAAR (Broadband Experiment Across the Alaska Range), and ARCTIC (Alaska Receiving Cross-Transects for the Inner Core) networks were used along with selected permanent broadband stations operated by AEIC (Alaska Earthquake Information Center) to produce seismic anisotropy results for the state of Alaska along a north south transect from the active subduction zone in the south, through continental Alaska, to the passive margin in the north. The BEAAR network is in-between the ARCTIC and MOOS networks above the subducting Pacific Plate and mantle wedge and shows a tight ~90 degree rotation of anisotropy above the 70km contour of the subducting plate. The southern stations in BEAAR yield anisotropy results that are subparallel to the Pacific Plate motion as it subducts under North America. These stations have an average fast direction of -45 degrees and 1.03 seconds of delay on average. The MOOS network in south central Alaska yielded similar results with an average fast direction of -30 degrees and delay times of .9 seconds. In the north portion of the BEAAR network the anisotropy is along strike of the subduction zone and has an average fast direction of 27 degrees with an average delay time of 1.4 seconds, although the delay times above the mantle wedge range from 1 to 2.5 seconds and are directly correlated to the length of ray path in the mantle wedge. This general trend NE/SW is seen in the ARCTIC stations to the north although the furthest north stations are oriented more NNE compared to those in BEAAR. The average fast direction for the ARCTIC network is 40 degrees with an average delay time of 1.05 seconds. These results show two distinct orientations of anisotropy in Alaska separated by the subducting Pacific Plate.

  12. The 2014 eruptions of Pavlof Volcano, Alaska

    Science.gov (United States)

    Waythomas, Christopher F.; Haney, Matthew M.; Wallace, Kristi; Cameron, Cheryl E.; Schneider, David J.

    2017-12-22

    Pavlof Volcano is one of the most frequently active volcanoes in the Aleutian Island arc, having erupted more than 40 times since observations were first recorded in the early 1800s . The volcano is located on the Alaska Peninsula (lat 55.4173° N, long 161.8937° W), near Izembek National Wildlife Refuge. The towns and villages closest to the volcano are Cold Bay, Nelson Lagoon, Sand Point, and King Cove, which are all within 90 kilometers (km) of the volcano (fig. 1). Pavlof is a symmetrically shaped stratocone that is 2,518 meters (m) high, and has about 2,300 m of relief. The volcano supports a cover of glacial ice and perennial snow roughly 2 to 4 cubic kilometers (km3) in volume, which is mantled by variable amounts of tephra fall, rockfall debris, and pyroclastic-flow deposits produced during historical eruptions. Typical Pavlof eruptions are characterized by moderate amounts of ash emission, lava fountaining, spatter-fed lava flows, explosions, and the accumulation of unstable mounds of spatter on the upper flanks of the volcano. The accumulation and subsequent collapse of spatter piles on the upper flanks of the volcano creates hot granular avalanches, which erode and melt snow and ice, and thereby generate watery debris-flow and hyperconcentrated-flow lahars. Seismic instruments were first installed on Pavlof Volcano in the early 1970s, and since then eruptive episodes have been better characterized and specific processes have been documented with greater certainty. The application of remote sensing techniques, including the use of infrasound data, has also aided the study of more recent eruptions. Although Pavlof Volcano is located in a remote part of Alaska, it is visible from Cold Bay, Sand Point, and Nelson Lagoon, making distal observations of eruptive activity possible, weather permitting. A busy air-travel corridor that is utilized by a numerous transcontinental and regional air carriers passes near Pavlof Volcano. The frequency of air travel

  13. Reconnaissance study of the Taylor Mountains pluton, southwestern Alaska

    Science.gov (United States)

    Hudson, Travis L.; Miller, Marti L.; Klimasauskas, Edward P.; Layer, Paul W.

    2010-01-01

    The Taylor Mountains pluton is a Late Cretaceous to early Tertiary (median age 65 + or ? 2 Ma) epizonal, composite biotite granite stock located about 235 km (145 mi) northeast of Dillingham in southwestern Alaska. This 30 km2 (12 mi2) pluton has sharp and discordant contacts with hornfels that developed in Upper Cretaceous clastic sedimentary rocks of the Kuskokwim Group. The three intrusive phases in the Taylor Mountains pluton, in order of emplacement, are (1) porphyritic granite containing large K-feldspar phenocrysts in a coarse-grained groundmass, (2) porphyritic granite containing large K-feldspar and smaller, but still coarse, plagioclase, quartz, and biotite phenocrysts in a fine-grained groundmass, and (3) fine-grained, leucocratic, equigranular granite. The porphyritic granites have different emplacement histories, but similar compositions; averages are 69.43 percent SiO2, 1.62 percent CaO, 5.23 percent FeO+MgO, 3.11 percent Na2O, and 4.50 percent K2O. The fine-grained, equigranular granite is distinctly felsic compared to porphyritic granite; it averages 75.3 percent SiO2, 0.49 percent CaO, 1.52 percent FeO+MgO, 3.31 percent Na2O, and 4.87 percent K2O. Many trace elements including Ni, Cr, Sc, V, Ba, Sr, Zr, Y, Nb, La, Ce, Th, and Nd are strongly depleted in fine-grained equigranular granite. Trace elements are not highly enriched in any of the granites. Known hydrothermal alteration is limited to one tourmaline-quartz replacement zone in porphyritic granite. Mineral deposits in the Taylor Mountains area are primarily placer gold (plus wolframite, cassiterite, and cinnabar); sources for these likely include scattered veins in hornfels peripheral to the Taylor Mountain pluton. The granite magmas that formed the Taylor Mountains pluton are thought to represent melted continental crust that possibly formed in response to high heat flow in the waning stage of Late Cretaceous subduction beneath interior Alaska.

  14. Engaging Elements of Cancer-Related Digital Stories in Alaska

    Science.gov (United States)

    Cueva, Melany; Kuhnley, Regina; Revels, Laura; Schoenberg, Nancy E.; Lanier, Anne; Dignan, Mark

    2015-01-01

    The tradition of storytelling is an integral part of Alaska Native cultures that continues to be a way of passing on knowledge. Using a story-based approach to share cancer education is grounded in Alaska Native traditions and people’s experiences and has the potential to positively impact cancer knowledge, understandings, and wellness choices. Community health workers (CHWs) in Alaska created a personal digital story as part of a 5-day, in-person cancer education course. To identify engaging elements of digital stories among Alaska Native people, one focus group was held in each of three different Alaska communities with a total of 29 adult participants. After viewing CHWs’ digital stories created during CHW cancer education courses, focus group participants commented verbally and in writing about cultural relevance, engaging elements, information learned, and intent to change health behavior. Digital stories were described by Alaska focus group participants as being culturally respectful, informational, inspiring, and motivational. Viewers shared that they liked digital stories because they were short (only 2–3 min); nondirective and not preachy; emotional, told as a personal story and not just facts and figures; and relevant, using photos that showed Alaskan places and people. PMID:25865400

  15. Exploring Alaska's Seamounts on RV Atlantis in North Pacific Ocean and Gulf of Alaska between 20040730 and 20040823

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Five seamounts (Denson, Dickins, Pratt, Welker and Giacomini) in the Gulf of Alaska that had not previously been observed by manned submersible or ROV were...

  16. 75 FR 38452 - Fisheries of the Exclusive Economic Zone Off Alaska; Central Gulf of Alaska License Limitation...

    Science.gov (United States)

    2010-07-02

    ... for the Southeast Outside District (SEO), Central Gulf of Alaska which includes the West Yakutat...). This proposed action does not include modifications to SEO endorsed licenses because fishing in this...

  17. High precision relocation of earthquakes at Iliamna Volcano, Alaska

    Science.gov (United States)

    Statz-Boyer, P.; Thurber, C.; Pesicek, J.; Prejean, S.

    2009-01-01

    In August 1996, a period of elevated seismicity commenced beneath Iliamna Volcano, Alaska. This activity lasted until early 1997, consisted of over 3000 earthquakes, and was accompanied by elevated emissions of volcanic gases. No eruption occurred and seismicity returned to background levels where it has remained since. We use waveform alignment with bispectrum-verified cross-correlation and double-difference methods to relocate over 2000 earthquakes from 1996 to 2005 with high precision (~ 100??m). The results of this analysis greatly clarify the distribution of seismic activity, revealing distinct features previously hidden by location scatter. A set of linear earthquake clusters diverges upward and southward from the main group of earthquakes. The events in these linear clusters show a clear southward migration with time. We suggest that these earthquakes represent either a response to degassing of the magma body, circulation of fluids due to exsolution from magma or heating of ground water, or possibly the intrusion of new dikes beneath Iliamna's southern flank. In addition, we speculate that the deeper, somewhat diffuse cluster of seismicity near and south of Iliamna's summit indicates the presence of an underlying magma body between about 2 and 4??km depth below sea level, based on similar features found previously at several other Alaskan volcanoes. ?? 2009 Elsevier B.V.

  18. Holocene geologic and climatic history around the Gulf of Alaska

    Science.gov (United States)

    Mann, D.H.; Crowell, A.L.; Hamilton, T.D.; Finney, B.P.

    1998-01-01

    Though not as dramatic as during the last Ice Age, pronounced climatic changes occurred in the northeastern Pacific over the last 10,000 years. Summers warmer and drier than today's accompanied a Hypsithermal interval between 9 and 6 ka. Subsequent Neoglaciation was marked by glacier expansion after 5-6 ka and the assembly of modern-type plant communities by 3-4 ka. The Neoglacial interval contained alternating cold and warm intervals, each lasting several hundred years to one millennium, and including both the Medieval Warm Period (ca. AD 900-1350) and the Little Ice Age (ca. AD 1350-1900). Salmon abundance fluctuated during the Little Ice Age in response to local glaciation and probably also to changes in the intensity of the Aleutian Low. Although poorly understood at present, climate fluctuations at all time scales were intimately connected with oceanographic changes in the North Pacific Ocean. The Gulf of Alaska region is tectonically highly active, resulting in a history of frequent geological catastrophes during the Holocene. Twelve to 14 major volcanic eruptions occurred since 12 ka. At intervals of 20-100 years, large earthquakes have raised and lowered sea level instantaneously by meters and generated destructive tsunamis. Sea level has often varied markedly between sites only 50-100 km apart due to tectonism and the isostatic effects of glacier fluctuations.

  19. Emergency towing systems for the Aleutian Islands, Alaska

    International Nuclear Information System (INIS)

    Pearson, L.A.; Brown, J.; Folley, G.; Robertson, T.; Bryant, B.

    2009-01-01

    Several incidents related to distressed or stricken vessels have occurred in the Aleutian Islands of Alaska, where vessel groundings have caused environmental and economic impacts. A disabled vessel workgroup was formed to discuss local emergency response solutions in the region, particularly for larger tramper or cargo vessels carrying fuel in bottom tanks. The Aleutian emergency towing system (ETS) group developed emergency towing capabilities for disabled vessels in the Aleutian Island sub-area using tugboats in conjunction with ETS equipment stationed in the town of Unalaska. Emergency towing systems were also purchased to serve a wider range of vessels. The ETS consisted of a lightweight towline, a messenger line to assist in deploying the towline, a line-launcher, a lighted buoy, and chafing gear. The components can be configured to deploy a disabled ship from the stern of a tugboat, or air-dropped via helicopter to a ship's deck. A procedures manual and training DVD has been published, and mobilization and deployment exercises are conducted annually. 1 ref., 2 figs

  20. Augustine Volcano, Cook Inlet, Alaska (January 12, 2006)

    Science.gov (United States)

    2006-01-01

    Since last spring, the U.S. Geological Survey's Alaska Volcano Observatory (AVO) has detected increasing volcanic unrest at Augustine Volcano in Cook Inlet, Alaska near Anchorage. Based on all available monitoring data, AVO regards that an eruption similar to 1976 and 1986 is the most probable outcome. During January, activity has been episodic, and characterized by emission of steam and ash plumes, rising to altitudes in excess of 9,000 m (30,000 ft), and posing hazards to aircraft in the vicinity. An ASTER image was acquired at 12:42 AST on January 12, 2006, during an eruptive phase of Augustine. The perspective rendition shows the eruption plume derived from the ASTER image data. ASTER's stereo viewing capability was used to calculate the 3-dimensional topography of the eruption cloud as it was blown to the south by prevailing winds. From a maximum height of 3060 m (9950 ft), the plume cooled and its top descended to 1900 m (6175 ft). The perspective view shows the ASTER data draped over the plume top topography, combined with a base image acquired in 2000 by the Landsat satellite, that is itself draped over ground elevation data from the Shuttle Radar Topography Mission. The topographic relief has been increased 1.5 times for this illustration. Comparison of the ASTER plume topography data with ash dispersal models and weather radar data will allow the National Weather Service to validate and improve such models. These models are used to forecast volcanic ash plume trajectories and provide hazard alerts and warnings to aircraft in the Alaska region. ASTER is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. The broad spectral coverage and high spectral resolution of ASTER provides scientists in numerous disciplines with

  1. Geologic map of Saint Lawrence Island, Alaska

    Science.gov (United States)

    Patton, William W.; Wilson, Frederic H.; Taylor, Theresa A.

    2011-01-01

    Saint Lawrence Island is located in the northern Bering Sea, 190 km southwest of the tip of the Seward Peninsula, Alaska, and 75 km southeast of the Chukotsk Peninsula, Russia (see index map, map sheet). It lies on a broad, shallow-water continental shelf that extends from western Alaska to northeastern Russia. The island is situated on a northwest-trending structural uplift exposing rocks as old as Paleozoic above sea level. The submerged shelf between the Seward Peninsula and Saint Lawrence Island is covered mainly with Cenozoic deposits (Dundo and Egiazarov, 1982). Northeast of the island, the shelf is underlain by a large structural depression, the Norton Basin, which contains as much as 6.5 km of Cenozoic strata (Grim and McManus, 1970; Fisher and others, 1982). Sparse test-well data indicate that the Cenozoic strata are underlain by Paleozoic and Proterozoic rocks, similar to those exposed on the Seward Peninsula (Turner and others, 1983). Saint Lawrence Island is 160 km long in an east-west direction and from 15 km to 55 km wide in a north-south direction. The east end of the island consists largely of a wave-cut platform, which has been elevated as much as 30 m above sea level. Isolated upland areas composed largely of granitic plutons rise as much as 550 m above the wave-cut platform. The central part of the island is dominated by the Kookooligit Mountains, a large Quaternary shield volcano that extends over an area of 850 km2 and rises to an elevation of 630 m. The west end of the island is composed of the Poovoot Range, a group of barren, rubble-covered hills as high as 450 m that extend from Boxer Bay on the southwest coast to Taphook Mountain on the north coast. The Poovoot Range is flanked on the southeast by the Putgut Plateau, a nearly flat, lake-dotted plain that stands 30?60 m above sea level. The west end of the island is marked by uplands underlain by the Sevuokuk pluton (unit Kg), a long narrow granite body that extends from Gambell on the

  2. Southwest Alaska Regional Geothermal Energy Project

    Energy Technology Data Exchange (ETDEWEB)

    Holdmann, Gwen [Univ. of Alaska, Fairbanks, AK (United States)

    2015-04-30

    The village of Elim, Alaska is 96 miles west of Nome, on the Seward Peninsula. The Darby Mountains north of the village are rich with hydrothermal systems associated with the Darby granitic pluton(s). In addition to the hot springs that have been recorded and studied over the last 100 years, additional hot springs exist. They are known through a rich oral history of the region, though they are not labeled on geothermal maps. This research primarily focused on Kwiniuk Hot Springs, Clear Creek Hot Springs and Molly’s Hot Springs. The highest recorded surface temperatures of these resources exist at Clear Creek Hot Springs (67°C). Repeated water sampling of the resources shows that maximum temperatures at all of the systems are below boiling.

  3. AFSC/REFM: Community Profiles for North Pacific Fisheries, Alaska 2011

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — In 2005, the Alaska Fisheries Science Center (AFSC) compiled baseline socioeconomic information about 136 Alaska communities most involved in commercial fisheries....

  4. Remediating and Monitoring White Phosphorus Contamination at Eagle River Flats (Operable Unit C), Fort Richardson, Alaska

    National Research Council Canada - National Science Library

    Walsh, M. E; Racine, C. H; Collins, C. M; Walsh, M. R; Bailey, R. N

    2001-01-01

    .... Army Engineer District, Alaska, and U.S. Army Alaska, Public Works, describing the results of research, monitoring, and remediation efforts addressing the white phosphorus contamination in Eagle River Flats, an 865-ha estuarine salt marsh...

  5. 76 FR 3120 - Native American and Alaska Native Children in School Program; Office of English Language...

    Science.gov (United States)

    2011-01-19

    ... DEPARTMENT OF EDUCATION Native American and Alaska Native Children in School Program; Office of English Language Acquisition, Language Enhancement, and Academic Achievement for Limited English Proficient Students; Overview Information; Native American and Alaska Native Children in School Program...

  6. 77 FR 11564 - Draft Policy on Consultation With Alaska Native Claims Settlement Act Corporations

    Science.gov (United States)

    2012-02-27

    ... Claims Settlement Act Corporations AGENCY: Office of the Secretary, Interior. ACTION: Notice of... draft policy on consultation with Alaska Native Claims Settlement Act corporations. DATES: Submit...-199, this consultation policy also applies to corporations established under the Alaska Native Claims...

  7. Cost-Effectiveness Analysis of the Residential Provisions of the 2015 IECC for Alaska

    Energy Technology Data Exchange (ETDEWEB)

    Mendon, Vrushali V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhao, Mingjie [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Taylor, Zachary T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Poehlman, Eric A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-02-15

    The 2015 IECC provides cost-effective savings for residential buildings in Alaska. Moving to the 2015 IECC from the 2009 IECC base code is cost-effective for residential buildings in all climate zones in Alaska.

  8. Alaska Steller Sea Lion and Northern Fur Seal Argos Telemetry Data Archive

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Alaska Ecosystems Program of the NOAA Alaska Fisheries Science Center National Marine Mammal Laboratory conducts research and monitoring on Steller sea lions and...

  9. Enhancing Cancer Education through the Arts: Building Connections with Alaska Native People, Cultures and Communities

    Science.gov (United States)

    Cueva, Melany; Kuhnley, Regina; Cueva, Katie

    2012-01-01

    Building upon the dynamic traditions of Alaska Native people, which include the arts as a viable way of knowing, the expressive arts were woven into a five-day cancer education course for Alaska village-based Community Health Workers (CHWs). Cancer is the leading cause of mortality for Alaska Native people. Course learning modalities included…

  10. Institutional innovation in less than ideal conditions: management of commons by an Alaska Native village corporation

    Science.gov (United States)

    Dixie Dayo; Gary Kofinas

    2010-01-01

    Alaska Natives have experienced less than ideal conditions for engaging in management of their homeland commons. During the first 100 years after the Treaty of Cession of 1867, Alaska Natives received limited recognition by the United States. The Alaska Native Claims Settlement Act of 1971 (ANCSA) was signed into law by President Richard Nixon after tedious...

  11. Timber products output and timber harvests in Alaska: projections for 1992-2010.

    Science.gov (United States)

    D.J. Brooks; R.W. Haynes

    1994-01-01

    Projections of Alaska timber products output, the derived demand for raw material, and timber harvest by owner are developed from a trend-based analysis. By using a spread-sheet model, material flows in the Alaska forest sectorare fully accounted for. Demand for Alaska national forest timber is projected and depends on product output and harvest by other owners. Key...

  12. Wood energy for residential heating in Alaska: current conditions, attitudes, and expected use

    Science.gov (United States)

    David L. Nicholls; Allen M. Brackley; Valerie. Barber

    2010-01-01

    This study considered three aspects of residential wood energy use in Alaska: current conditions and fuel consumption, knowledge and attitudes, and future use and conditions. We found that heating oil was the primary fuel for home heating in southeast and interior Alaska, whereas natural gas was used most often in south-central Alaska (Anchorage). Firewood heating...

  13. 77 FR 41754 - Fishing Capacity Reduction Program for the Southeast Alaska Purse Seine Salmon Fishery

    Science.gov (United States)

    2012-07-16

    ... Capacity Reduction Program for the Southeast Alaska Purse Seine Salmon Fishery AGENCY: National Marine... program in the Southeast Alaska purse seine salmon fishery. NMFS conducted a referendum to approve the..., Chief, Financial Services Division, NMFS, Attn: SE Alaska Purse Seine Salmon Buyback, 1315 East-West...

  14. 78 FR 33810 - Fishing Capacity Reduction Program for the Southeast Alaska Purse Seine Salmon Fishery

    Science.gov (United States)

    2013-06-05

    ... Capacity Reduction Program for the Southeast Alaska Purse Seine Salmon Fishery AGENCY: National Marine... reduction loan for the fishing capacity reduction program in the Southeast Alaska purse seine salmon fishery... July 22, 2012. Since then, all harvesters of Southeast Alaska purse seine salmon must pay the fee and...

  15. 77 FR 26744 - Fishing Capacity Reduction Program for the Southeast Alaska Purse Seine Salmon Fishery

    Science.gov (United States)

    2012-05-07

    ... Capacity Reduction Program for the Southeast Alaska Purse Seine Salmon Fishery AGENCY: National Marine... of reduction payment tender of Southeast Alaska purse seine salmon permits. SUMMARY: The National... Southeast Alaska purse seine salmon fishery. The program authorizes NMFS to make payments to permit holders...

  16. 77 FR 12568 - Fishing Capacity Reduction Program for the Southeast Alaska Purse Seine Salmon Fishery

    Science.gov (United States)

    2012-03-01

    ... Capacity Reduction Program for the Southeast Alaska Purse Seine Salmon Fishery AGENCY: National Marine... Salmon Fishery. NMFS will hold a series of public meetings with Southeast Alaska purse seine salmon... to Paul Marx, Chief, Financial Services Division, NMFS, Attn: SE Alaska Purse Seine Salmon Buyback...

  17. 76 FR 58263 - Kenai Pipe Line Company; Tesoro Alaska Company; Tesoro Logistics Operations, LLC; Notice of...

    Science.gov (United States)

    2011-09-20

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. OR11-21-000] Kenai Pipe Line Company; Tesoro Alaska Company; Tesoro Logistics Operations, LLC; Notice of Request for Jurisdictional..., 2011, Kenai Pipe Line Company (KPL), Tesoro Alaska Company (Tesoro Alaska), and Tesoro Logistics, LLC...

  18. 7 CFR 318.13-21 - Avocados from Hawaii to Alaska.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 5 2010-01-01 2010-01-01 false Avocados from Hawaii to Alaska. 318.13-21 Section 318... Articles From Hawaii and the Territories § 318.13-21 Avocados from Hawaii to Alaska. Avocados may be moved... marking requirements. The avocados may be moved interstate for distribution in Alaska only, the boxes of...

  19. 76 FR 41763 - Proposed Information Collection; Comment Request; Alaska Region Logbook Family of Forms

    Science.gov (United States)

    2011-07-15

    ... Collection; Comment Request; Alaska Region Logbook Family of Forms AGENCY: National Oceanic and Atmospheric... (NMFS) Alaska Region manages the United States (U.S.) groundfish fisheries of the Exclusive Economic.... NMFS Alaska Region requests information from participating groundfish participants. This information...

  20. 25 CFR 142.8 - Is economy of operation a requirement for the Alaska Resupply Operation?

    Science.gov (United States)

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false Is economy of operation a requirement for the Alaska... FINANCIAL ACTIVITIES ALASKA RESUPPLY OPERATION § 142.8 Is economy of operation a requirement for the Alaska..., or cooperative arrangements. Whenever possible joint arrangements for economy will be entered into...

  1. Bacterial community structure and soil properties of a subarctic tundra soil in Council, Alaska.

    Science.gov (United States)

    Kim, Hye Min; Jung, Ji Young; Yergeau, Etienne; Hwang, Chung Yeon; Hinzman, Larry; Nam, Sungjin; Hong, Soon Gyu; Kim, Ok-Sun; Chun, Jongsik; Lee, Yoo Kyung

    2014-08-01

    The subarctic region is highly responsive and vulnerable to climate change. Understanding the structure of subarctic soil microbial communities is essential for predicting the response of the subarctic soil environment to climate change. To determine the composition of the bacterial community and its relationship with soil properties, we investigated the bacterial community structure and properties of surface soil from the moist acidic tussock tundra in Council, Alaska. We collected 70 soil samples with 25-m intervals between sampling points from 0-10 cm to 10-20 cm depths. The bacterial community was analyzed by pyrosequencing of 16S rRNA genes, and the following soil properties were analyzed: soil moisture content (MC), pH, total carbon (TC), total nitrogen (TN), and inorganic nitrogen (NH4+ and NO3-). The community compositions of the two different depths showed that Alphaproteobacteria decreased with soil depth. Among the soil properties measured, soil pH was the most significant factor correlating with bacterial community in both upper and lower-layer soils. Bacterial community similarity based on jackknifed unweighted unifrac distance showed greater similarity across horizontal layers than through the vertical depth. This study showed that soil depth and pH were the most important soil properties determining bacterial community structure of the subarctic tundra soil in Council, Alaska. © 2014 The Authors. FEMS Microbiology Ecology published by John Wiley & Sons Ltd on behalf of the Federation of European Microbiological Societies.

  2. Historical and contemporary imagery to assess ecosystem change on the Arctic coastal plain of northern Alaska

    Science.gov (United States)

    Tape, Ken D.; Pearce, John M.; Walworth, Dennis; Meixell, Brandt W.; Fondell, Tom F.; Gustine, David D.; Flint, Paul L.; Hupp, Jerry W.; Schmutz, Joel A.; Ward, David H.

    2014-01-01

    The Arctic Coastal Plain of northern Alaska is a complex landscape of lakes, streams, and wetlands scattered across low-relief tundra that is underlain by permafrost. This region of the Arctic has experienced a warming trend over the past three decades leading to thawing of on-shore permafrost and the disappearance of sea ice at unprecedented rates. The U.S. Geological Survey’s (USGS) Changing Arctic Ecosystems (CAE) research initiative was developed to investigate and forecast these rapid changes in the physical environment of the Arctic, and the associated changes to wildlife populations, in order to inform key management decisions by the U.S. Department of the Interior and other agencies. Forecasting future wildlife responses to changes in the Arctic can benefit greatly from historical records that inform what changes have already occurred. Several Arctic wildlife and plant species have already responded to climatic and physical changes to the Arctic Coastal Plain of northern Alaska. Thus, we located historical aerial imagery to improve our understanding of recent habitat changes and the associated response to such changes by wildlife populations.

  3. Paleoseismic study of the Cathedral Rapids fault in the northern Alaska Range near Tok, Alaska

    Science.gov (United States)

    Koehler, R. D.; Farrell, R.; Carver, G. A.

    2010-12-01

    The Cathedral Rapids fault extends ~40 km between the Tok and Robertson River valleys and is the easternmost fault in a series of active south-dipping imbricate thrust faults which bound the northern flank of the Alaska Range. Collectively, these faults accommodate a component of convergence transferred north of the Denali fault and related to the westward (counterclockwise) rotation of the Wrangell Block driven by relative Pacific/North American plate motion along the eastern Aleutian subduction zone and Fairweather fault system. To the west, the system has been defined as the Northern Foothills Fold and Thrust Belt (NFFTB), a 50-km-wide zone of east-west trending thrust faults that displace Quaternary deposits and have accommodated ~3 mm/yr of shortening since latest Pliocene time (Bemis, 2004). Over the last several years, the eastward extension of the NFFTB between Delta Junction and the Canadian border has been studied by the Alaska Division of Geological & Geophysical Surveys to better characterize faults that may affect engineering design of the proposed Alaska-Canada natural gas pipeline and other infrastructure. We summarize herein reconnaissance field observations along the western part of the Cathedral Rapids fault. The western part of the Cathedral Rapids fault extends 21 km from Sheep Creek to Moon Lake and is characterized by three roughly parallel sinuous traces that offset glacial deposits of the Illinoian to early Wisconsinan Delta glaciations and the late Wisconsinan Donnelly glaciation, as well as, Holocene alluvial deposits. The northern trace of the fault is characterized by an oversteepened, beveled, ~2.5-m-high scarp that obliquely cuts a Holocene alluvial fan and projects into the rangefront. Previous paleoseismic studies along the eastern part of the Cathedral Rapids fault and Dot “T” Johnson fault indicate multiple latest Pleistocene and Holocene earthquakes associated with anticlinal folding and thrust faulting (Carver et al., 2010

  4. Alaska Center for Unmanned Aircraft Systems Integration (ACUASI): Operational Support and Geoscience Research

    Science.gov (United States)

    Webley, P. W.; Cahill, C. F.; Rogers, M.; Hatfield, M. C.

    2016-12-01

    Unmanned Aircraft Systems (UAS) have enormous potential for use in geoscience research and supporting operational needs from natural hazard assessment to the mitigation of critical infrastructure failure. They provide a new tool for universities, local, state, federal, and military organizations to collect new measurements not readily available from other sensors. We will present on the UAS capabilities and research of the Alaska Center for Unmanned Aircraft Systems Integration (ACUASI, http://acuasi.alaska.edu/). Our UAS range from the Responder with its dual visible/infrared payload that can provide simultaneous data to our new SeaHunter UAS with 90 lb. payload and multiple hour flight time. ACUASI, as a designated US Federal Aviation Administration (FAA) test center, works closely with the FAA on integrating UAS into the national airspace. ACUASI covers all aspects of working with UAS from pilot training, airspace navigation, flight operations, and remote sensing analysis to payload design and integration engineers and policy experts. ACUASI's recent missions range from supporting the mapping of sea ice cover for safe passage of Alaskans across the hazardous winter ice to demonstrating how UAS can be used to provide support during oil spill response. Additionally, we will present on how ACUASI has worked with local authorities in Alaska to integrate UAS into search and rescue operations and with NASA and the FAA on their UAS Transport Management (UTM) project to fly UAS within the manned airspace. ACUASI is also working on developing new capabilities to sample volcanic plumes and clouds, map forest fire impacts and burn areas, and develop a new citizen network for monitoring snow extent and depth during Northern Hemisphere winters. We will demonstrate how UAS can be integrated in operational support systems and at the same time be used in geoscience research projects to provide high precision, accurate, and reliable observations.

  5. Characterizing permafrost active layer dynamics and sensitivity to landscape spatial heterogeneity in Alaska

    Science.gov (United States)

    Yi, Yonghong; Kimball, John S.; Chen, Richard H.; Moghaddam, Mahta; Reichle, Rolf H.; Mishra, Umakant; Zona, Donatella; Oechel, Walter C.

    2018-01-01

    An important feature of the Arctic is large spatial heterogeneity in active layer conditions, which is generally poorly represented by global models and can lead to large uncertainties in predicting regional ecosystem responses and climate feedbacks. In this study, we developed a spatially integrated modeling and analysis framework combining field observations, local-scale ( ˜ 50 m resolution) active layer thickness (ALT) and soil moisture maps derived from low-frequency (L + P-band) airborne radar measurements, and global satellite environmental observations to investigate the ALT sensitivity to recent climate trends and landscape heterogeneity in Alaska. Modeled ALT results show good correspondence with in situ measurements in higher-permafrost-probability (PP ≥ 70 %) areas (n = 33; R = 0.60; mean bias = 1.58 cm; RMSE = 20.32 cm), but with larger uncertainty in sporadic and discontinuous permafrost areas. The model results also reveal widespread ALT deepening since 2001, with smaller ALT increases in northern Alaska (mean trend = 0.32±1.18 cm yr-1) and much larger increases (> 3 cm yr-1) across interior and southern Alaska. The positive ALT trend coincides with regional warming and a longer snow-free season (R = 0.60 ± 0.32). A spatially integrated analysis of the radar retrievals and model sensitivity simulations demonstrated that uncertainty in the spatial and vertical distribution of soil organic carbon (SOC) was the largest factor affecting modeled ALT accuracy, while soil moisture played a secondary role. Potential improvements in characterizing SOC heterogeneity, including better spatial sampling of soil conditions and advances in remote sensing of SOC and soil moisture, will enable more accurate predictions of active layer conditions and refinement of the modeling framework across a larger domain.

  6. Slowness Anomalies of PKP Phases Recorded at the Seismic Array in Eielson, Alaska (ILAR)

    Science.gov (United States)

    Koper, K. D.; Parker, V.

    2005-12-01

    The Eielson, Alaska seismic array (ILAR) is well situated to record PKPDF waves from earthquakes occurring in the South Sandwich Islands (SSI) region. Such ray paths are nearly aligned with Earth's rotation axis and are useful for constraining models of inner core anisotropy. The many previous studies of PKPDF waves traversing the SSI-Alaska corridor generally find waves that arrive several seconds faster than expected, with highly attenuated and often complicated shapes. Simple radially or cylindrically symmetric Earth models cannot explain these observations, and it may be the case that mantle heterogeneities are biasing the SSI-Alaska PKPDF waves. In this study, we take advantage of the small aperture of ILAR to make independent measurements of differential PKPDF-PKPBC travel times and differential PKPDF-PKPBC horizontal slowness vectors for 37 SSI earthquakes that occurred from 1996-2004. Anomalies in slowness (ray parameter and backazimuth) of a phase reflect heterogeneous Earth structure in a manner complementary to travel time anomalies. At a reference distance of 152°, we find a mean differential travel time residual of 3.1 ± 0.1~s, a mean differential ray parameter of 2.9±0.2~s/deg, and that PKPDF waves arrive from a backazimuth rotated approximately 10° counterclockwise relative to corresponding PKPBC waves. Joint modeling of the differential travel times and differential ray parameters indicates that (1) lower mantle heterogeneities are not responsible for the properties of PKPDF from SSI-ILAR, (2) the lower several hundred kilometers of the outer core has a slightly lower velocity, and/or velocity gradient, than current reference models, and (3) there is a strong, radial velocity gradient within the inner core at a radius of 600-900~km. However, the differential slowness anomalies cannot be fully explained by variations in deep Earth structure, implying that local site effects at ILAR are somewhat different for PKPDF and PKPBC phases.

  7. Fire severity filters regeneration traits to shape community assembly in Alaska's boreal forest.

    Directory of Open Access Journals (Sweden)

    Teresa N Hollingsworth

    Full Text Available Disturbance can both initiate and shape patterns of secondary succession by affecting processes of community assembly. Thus, understanding assembly rules is a key element of predicting ecological responses to changing disturbance regimes. We measured the composition and trait characteristics of plant communities early after widespread wildfires in Alaska to assess how variations in disturbance characteristics influenced the relative success of different plant regeneration strategies. We compared patterns of post-fire community composition and abundance of regeneration traits across a range of fire severities within a single pre-fire forest type- black spruce forests of Interior Alaska. Patterns of community composition, as captured by multivariate ordination with nonmetric multidimensional scaling, were primarily related to gradients in fire severity (biomass combustion and residual vegetation and secondarily to gradients in soil pH and regional climate. This pattern was apparent in both the full dataset (n = 87 sites and for a reduced subset of sites (n = 49 that minimized the correlation between site moisture and fire severity. Changes in community composition across the fire-severity gradient in Alaska were strongly correlated to variations in plant regeneration strategy and rooting depth. The tight coupling of fire severity with regeneration traits and vegetation composition after fire supports the hypothesis that disturbance characteristics influence patterns of community assembly by affecting the relative success of different regeneration strategies. This study further demonstrated that variations in disturbance characteristics can dominate over environmental constraints in determining early patterns of community assembly. By affecting the success of regeneration traits, changes in fire regime directly shape the outcomes of community assembly, and thus may override the effects of slower environmental change on boreal forest

  8. Hydrological Modeling in Alaska with WRF-Hydro

    Science.gov (United States)

    Elmer, N. J.; Zavodsky, B.; Molthan, A.

    2017-12-01

    The operational National Water Model (NWM), implemented in August 2016, is an instantiation of the Weather Research and Forecasting hydrological extension package (WRF-Hydro). Currently, the NWM only covers the contiguous United States, but will be expanded to include an Alaska domain in the future. It is well known that Alaska presents several hydrological modeling challenges, including unique arctic/sub-arctic hydrological processes not observed elsewhere in the United States and a severe lack of in-situ observations for model initialization. This project sets up an experimental version of WRF-Hydro in Alaska mimicking the NWM to gauge the ability of WRF-Hydro to represent hydrological processes in Alaska and identify model calibration challenges. Recent and upcoming launches of hydrology-focused NASA satellite missions such as the Soil Moisture Active Passive (SMAP) and Surface Water Ocean Topography (SWOT) expand the spatial and temporal coverage of observations in Alaska, so this study also lays the groundwork for assimilating these NASA datasets into WRF-Hydro in the future.

  9. Sobriety and alcohol use among rural Alaska Native elders

    Directory of Open Access Journals (Sweden)

    Monica C. Skewes

    2016-02-01

    Full Text Available Background: Although notable health disparities related to alcohol use persist among Alaska Native people living in rural communities, there is a paucity of research examining drinking behaviour in particular segments of this population, including elders. One explanation for this is the distrust of behavioural health research in general and alcohol research in particular following the legacy of the Barrow Alcohol Study, still regarded as a notable example of ethics violations in cross-cultural research. Objective: The present study reports findings from one of the first research studies asking directly about alcohol abuse among rural Alaska Natives (AN since the study in Barrow took place in 1979. Design: We report findings regarding self-reported alcohol use included in an elder needs assessment conducted with 134 Alaska Native elders from 5 rural villages off the road system in Alaska. Data were collected in partnership between academic researchers and community members in accordance with the principles of Community-Based Participatory Research. Results: Findings showed very high rates of sobriety and low rates of alcohol use, contradicting stereotypes of widespread alcohol abuse among AN. Possible explanations and future research directions are discussed. Conclusions: This research represents one step forward in mending academic–community relationships in rural Alaska to further research on alcohol use and related health disparities.

  10. On the Precipitation and Precipitation Change in Alaska

    Directory of Open Access Journals (Sweden)

    Gerd Wendler

    2017-12-01

    Full Text Available Alaska observes very large differences in precipitation throughout the state; southeast Alaska experiences consistently wet conditions, while northern Arctic Alaska observes very dry conditions. The maximum mean annual precipitation of 5727 mm is observed in the southeastern panhandle at Little Port Arthur, while the minimum of 92 mm occurs on the North Slope at Kuparuk. Besides explaining these large differences due to geographic and orographic location, we discuss the changes in precipitation with time. Analyzing the 18 first-order National Weather Service stations, we found that the total average precipitation in the state increased by 17% over the last 67 years. The observed changes in precipitation are furthermore discussed as a function of the observed temperature increase of 2.1 °C, the mean temperature change of the 18 stations over the same period. This observed warming of Alaska is about three times the magnitude of the mean global warming and allows the air to hold more water vapor. Furthermore, we discuss the effect of the Pacific Decadal Oscillation (PDO, which has a strong influence on both the temperature and precipitation in Alaska.

  11. Earthquake source studies and seismic imaging in Alaska

    Science.gov (United States)

    Tape, C.; Silwal, V.

    2015-12-01

    Alaska is one of the world's most seismically and tectonically active regions. Its enhanced seismicity, including slab seismicity down to 180 km, provides opportunities (1) to characterize pervasive crustal faulting and slab deformation through the estimation of moment tensors and (2) to image subsurface structures to help understand the tectonic evolution of Alaska. Most previous studies of earthquakes and seismic imaging in Alaska have emphasized earthquake locations and body-wave travel-time tomography. In the past decade, catalogs of seismic moment tensors have been established, while seismic surface waves, active-source data, and potential field data have been used to improve models of seismic structure. We have developed moment tensor catalogs in the regions of two of the largest sedimentary basins in Alaska: Cook Inlet forearc basin, west of Anchorage, and Nenana basin, west of Fairbanks. Our moment tensor solutions near Nenana basin suggest a transtensional tectonic setting, with the basin developing in a stepover of a left-lateral strike-slip fault system. We explore the effects of seismic wave propagation from point-source and finite-source earthquake models by performing three-dimensional wavefield simulations using seismic velocity models that include major sedimentary basins. We will use our catalog of moment tensors within an adjoint-based, iterative inversion to improve the three-dimensional tomographic model of Alaska.

  12. Local sources of pollution and their impacts in Alaska (Invited)

    Science.gov (United States)

    Molders, N.

    2013-12-01

    The movie 'Into the Wilde' evoke the impression of the last frontier in a great wide and pristine land. With over half a million people living in Alaska an area as larger as the distance from the US West to the East Coast, this idea comes naturally. The three major cities are the main emission source in an otherwise relative clean atmosphere. On the North Slope oil drilling and production is the main anthropogenic emission sources. Along Alaska's coasts ship traffic including cruises is another anthropogenic emission source that is expected to increase as sea-ice recedes. In summer, wildfires in Alaska, Canada and/or Siberia may cause poor air quality. In winter inversions may lead poor air quality and in spring. In spring, aged polluted air is often advected into Alaska. These different emission sources yield quite different atmospheric composition and air quality impacts. While this may make understanding Alaska's atmospheric composition at-large a challenging task, it also provides great opportunities to examine impacts without co-founders. The talk will give a review of the performed research, and insight into the challenges.

  13. NASA SPoRT JPSS PG Activities in Alaska

    Science.gov (United States)

    Berndt, Emily; Molthan, Andrew; Fuell, Kevin; McGrath, Kevin; Smith, Matt; LaFontaine, Frank; Leroy, Anita; White, Kris

    2018-01-01

    SPoRT (NASA's Short-term Prediction Research and Transition Center) has collaboratively worked with Alaska WFOs (Weather Forecast Offices) to introduce RGB (Red/Green/Blue false color image) imagery to prepare for NOAA-20 (National Oceanic and Atmospheric Administration, JPSS (Joint Polar Satellite System) series-20 satellite) VIIRS (Visible Infrared Imaging Radiometer Suite) and improve forecasting aviation-related hazards. Last R2O/O2R (Research-to-Operations/Operations-to-Research) steps include incorporating NOAA-20 VIIRS in RGB suite and fully transitioning client-side RGB processing to GINA (Geographic Information Network of Alaska) and Alaska Region. Alaska Region WFOs have been part of the successful R2O/O2R story to assess the use of NESDIS (National Environmental Satellite, Data, and Information Service) Snowfall Rate product in operations. SPoRT introduced passive microwave rain rate and IMERG (Integrated Multi-satellitE Retrievals for GPM (Global Precipitation Measurement)) (IMERG) to Alaska WFOs for use in radar-void areas and assessing flooding potential. SPoRT has been part of the multi-organization collaborative effort to introduce Gridded NUCAPS (NOAA Unique CrIS/ATMS (Crosstrack Infrared Sounder/Advanced Technology Microwave Sounder) Processing System) to the Anchorage CWSU (Center Weather Service Unit) to assess Cold Air Aloft events, [and as part of NOAA's PG (Product Generation) effort].

  14. Exotic Members of Southern Alaska's Jurassic Arc

    Science.gov (United States)

    Todd, E.; Jones, J. V., III; Karl, S. M.; Box, S.; Haeussler, P. J.

    2017-12-01

    The Jurassic Talkeetna arc and contemporaneous plutonic rocks of the Alaska-Aleutian Range batholith (ARB) are key components of the Peninsular terrane of southern Alaska. The Talkeetna arc, considered to be a type example of an intra-oceanic arc, was progressively accreted to northwestern North America in the Jurassic to Late Cretaceous, together with associated components of the Wrangellia Composite terrane. Older Paleozoic and Mesozoic rock successions closely associated with the ARB suggest that at least part of the Peninsular terrane might be an overlap succession built on pre-existing crust, possibly correlative with the Wrangellia terrane to the east. However, the relationship between the Talkeetna arc, ARB, and any pre-existing crust remains incompletely understood. Field investigations focused on the petrogenesis of the ARB near Lake Clark National Park show that Jurassic to Late Cretaceous plutonic rocks commonly host a diverse range of mineralogically distinct xenolith inclusions, ranging in size from several cm to hundreds of meters. The modal fraction of these inclusions ranges from 50% in some outcrops. They are generally mafic in composition and, with few exceptions, are more mafic than host plutonic rocks, although they are observed as both igneous (e.g., gabbro cumulate, diorite porphyry) and metamorphic types (e.g., amphibolite, gneiss and quartzite). Inclusion shapes range from angular to rounded with sharp to diffuse boundaries and, in some instances, are found as planar, compositionally distinct bands or screens containing high-temperature ductile shear fabrics. Other planar bands are more segmented, consistent with lower-temperature brittle behavior. Comparison of age, geochemical fractionation trends, and isotope systematics between the inclusions and host plutons provides a critical test of whether they are co-genetic with host plutons. Where they are related, mafic inclusions provide clues about magmatic evolution and fractionation history

  15. Assessing Historical and Projected Carbon Balance of Alaska: A Synthesis of Results and Policy/Management Implications.

    Science.gov (United States)

    McGuire, A David; Genet, Hélène; Lyu, Zhou; Pastick, Neal; Stackpoole, Sarah; Birdsey, Richard; D'Amore, David; He, Yujie; Rupp, T Scott; Striegl, Robert; Wylie, Bruce K; Zhou, Xiaoping; Zhuang, Qianlai; Zhu, Zhiliang

    2018-06-20

    We summarize the results of a recent interagency assessment of land carbon dynamics in Alaska, in which carbon dynamics were estimated for all major terrestrial and aquatic ecosystems for the historical period (1950-2009) and a projection period (2010-2099). Between 1950 and 2009, upland and wetland (i.e., terrestrial) ecosystems of the State gained 0.4 Tg C yr -1 (0.1% of net primary production, NPP), resulting in a cumulative greenhouse gas radiative forcing of 1.68 x 10 -3 W m -2 . The change in carbon storage is spatially variable with the region of the Northwest Boreal Landscape Conservation Cooperative (LCC) losing carbon because of fire disturbance. The combined carbon transport via various pathways through inland aquatic ecosystems of Alaska was estimated to be 41.3 Tg C yr -1 (17% of terrestrial NPP). During the projection period (2010-2099), carbon storage of terrestrial ecosystems of Alaska was projected to increase (22.5 to 70.0 Tg C yr -1 ), primarily because of NPP increases of 10 to 30% associated with responses to rising atmospheric CO 2 , increased nitrogen cycling, and longer growing seasons. Although carbon emissions to the atmosphere from wildfire and wetland CH 4 were projected to increase for all of the climate projections, the increases in NPP more than compensated for those losses at the statewide level. Carbon dynamics of terrestrial ecosystems continue to warm the climate for four of the six future projections, and cool the climate for only one of the projections. The attribution analyses we conducted indicated that the response of NPP in terrestrial ecosystems to rising atmospheric CO 2 (~5% per 100 ppmv CO 2 ) saturates as CO 2 increases (between approximately +150 and +450 ppmv among projections). This response, along with the expectation that permafrost thaw would be much greater and release large quantities of permafrost carbon after 2100, suggests that projected carbon gains in terrestrial ecosystems of Alaska may not be sustained

  16. U.S. Geological Survey Activities Related to American Indians and Alaska Natives: Fiscal Year 2005

    Science.gov (United States)

    Marcus, Susan M.

    2007-01-01

    Introduction This report describes the activities that the U.S. Geological Survey (USGS) conducted with American Indian and Alaska Native governments, educational institutions, and individuals during Federal fiscal year (FY) 2005. Most of these USGS activities were collaborations with Tribes, Tribal organizations, or professional societies. Others were conducted cooperatively with the Bureau of Indian Affairs (BIA) or other Federal entities. The USGS is the earth and natural science bureau within the U.S. Department of the Interior (DOI). The USGS does not have regulatory or land management responsibilities. As described in this report, there are many USGS activities that are directly relevant to American Indians, Alaska Natives, and to Native lands. A USGS website, dedicated to making USGS more accessible to American Indians, Alaska Natives, their governments, and institutions, is available at www.usgs.gov/indian. This website includes information on how to contact USGS American Indian/Alaska Native Liaisons, training opportunities, and links to other information resources. This report and previous editions are also available through the website. The USGS realizes that Native knowledge and cultural traditions of living in harmony with nature result in unique Native perspectives that enrich USGS studies. USGS seeks to increase the sensitivity and openness of its scientists to the breadth of Native knowledge, expanding the information on which their research is based. USGS scientific studies include data collection, mapping, natural resource modeling, and research projects. These projects typically last 2 or 3 years, although some are parts of longer-term activities. Some projects are funded cooperatively, with USGS funds matched or supplemented by individual Tribal governments, or by the BIA. These projects may also receive funding from the U.S. Environmental Protection Agency (USEPA), the Indian Health Service (part of the Department of Health and Human Services

  17. The pipe dream of gold in Alaska; La quimera del oro en Alaska

    Energy Technology Data Exchange (ETDEWEB)

    Lovins, Amory B; Lovins, L Hunter [Rocky Mountain Institute (United States)

    2001-10-01

    Since 1973, the Alaska's politicians have been used all the crude oil price rises in order to put pressure in favour of the Artic National Wildlife Refuge's perforations. However, without taking into account the environment-friendly issues, the refuge's crude oil is unnecessary and quiet unsafe, besides, isn't economic-friendly and becomes a distraction to the real energy discussion. The solutions aimed to the market point to increase the efficiency; therefore, they can assure a safety and environment-friendly energy supply at very less cost. [Spanish] Desde 1973, los politicos de Alaska se han valido de todas las alzas en los precios del petroleo para presionar a favor de las perforaciones en el Refugio Nacional de Vida Silvestre del Artico. Pero incluso si se dejan de lado las cuestiones ambientales, el petroleo del refugio es innecesario, poco seguro, economicamente riesgoso e implica una distraccion del verdadero debate energetico. Las soluciones orientadas al mercado que apuntan a aumentar la eficiencia pueden garantizar un suministro de energia seguro y limpio a un costo mucho menor.

  18. Landsat time series analysis documents beaver migration into permafrost landscapes of arctic Alaska

    Science.gov (United States)

    Jones, B. M.; Tape, K. D.; Nitze, I.; Arp, C. D.; Grosse, G.; Zimmerman, C. E.

    2017-12-01

    Landscape-scale impacts of climate change in the Arctic include increases in growing season length, shrubby vegetation, winter river discharge, snowfall, summer and winter water temperatures, and decreases in river and lake ice thickness. Combined, these changes may have created conditions that are suitable for beaver colonization of low Arctic tundra regions. We developed a semi-automated workflow that analyzes Landsat imagery time series to determine the extent to which beavers may have colonized permafrost landscapes in arctic Alaska since 1999. We tested this approach on the Lower Noatak, Wulik, and Kivalina river watersheds in northwest Alaska and identified 83 locations representing potential beaver activity. Seventy locations indicated wetting trends and 13 indicated drying trends. Verification of each site using high-resolution satellite imagery showed that 80 % of the wetting locations represented beaver activity (damming and pond formation), 11 % were unrelated to beavers, and 9 % could not readily be distinguished as being beaver related or not. For the drying locations, 31 % represented beaver activity (pond drying due to dam abandonment), 62 % were unrelated to beavers, and 7 % were undetermined. Comparison of the beaver activity database with historic aerial photography from ca. 1950 and ca. 1980 indicates that beavers have recently colonized or recolonized riparian corridors in northwest Alaska. Remote sensing time series observations associated with the migration of beavers in permafrost landscapes in arctic Alaska include thermokarst lake expansion and drainage, thaw slump initiation, ice wedge degradation, thermokarst shore fen development, and possibly development of lake and river taliks. Additionally, beaver colonization in the Arctic may alter channel courses, thermal regimes, hyporheic flow, riparian vegetation, and winter ice regimes that could impact ecosystem structure and function in this region. In particular, the combination of beaver

  19. Oil pollution issues: an overview of U.S. law under the Oil Pollution Act of 1990, and Alaska State law

    International Nuclear Information System (INIS)

    Davis, D.R.

    1997-01-01

    Part One of this paper presents details of the U.S. Oil Pollution Act of 1990 (OPA). The Act defines the responsible party for a vessel or facility from which oil is spilled, or which poses a threat of a spill into US waters, assigns liability for removal costs and damages, defines limitations of liability, outlines financial responsibility and contingency plan requirements, and describes civil and criminal penalties for violations. Part Two of the paper discusses the corresponding Alaska statutes and regulations which are essentially similar to the OPA. It also provides details of the Alaska requirement of certificates of financial responsibility and contingency plans which are separate from those required under federal law

  20. Ichthyophonus in sport-caught groundfishes from southcentral Alaska.

    Science.gov (United States)

    Harris, Bradley P; Webster, Sarah R; Wolf, Nathan; Gregg, Jacob L; Hershberger, Paul K

    2018-05-07

    This report of Ichthyophonus in common sport-caught fishes throughout the marine waters of southcentral Alaska represents the first documentation of natural Ichthyophonus infections in lingcod Ophiodon elongates and yelloweye rockfish Sebastes ruberrimus. In addition, the known geographic range of Ichthyophonus in black rockfish S. melanops has been expanded northward to include southcentral Alaska. Among all species surveyed, the infection prevalence was highest (35%, n = 334) in Pacific halibut Hippoglossus stenolepis. There were no gross indications of high-level infections or clinically diseased individuals. These results support the hypothesis that under typical conditions Ichthyophonus can occur at high infection prevalence accompanied with low-level infection among a variety of fishes throughout the eastern North Pacific Ocean, including southcentral Alaska.

  1. Ichthyophonus in sport-caught groundfishes from southcentral Alaska

    Science.gov (United States)

    Harris, Bradley P.; Webster, Sarah R.; Wolf, Nathan; Gregg, Jacob L.; Hershberger, Paul

    2018-01-01

    This report of Ichthyophonus in common sport-caught fishes throughout the marine waters of southcentral Alaska represents the first documentation of natural Ichthyophonus infections in lingcod Ophiodon elongates and yelloweye rockfish Sebastes ruberrimus. In addition, the known geographic range of Ichthyophonus in black rockfish S. melanops has been expanded northward to include southcentral Alaska. Among all species surveyed, the infection prevalence was highest (35%, n = 334) in Pacific halibut Hippoglossus stenolepis. There were no gross indications of high-level infections or clinically diseased individuals. These results support the hypothesis that under typical conditions Ichthyophonus can occur at high infection prevalence accompanied with low-level infection among a variety of fishes throughout the eastern North Pacific Ocean, including southcentral Alaska.

  2. Black brant from Alaska staging and wintering in Japan

    Science.gov (United States)

    Derksen, Dirk V.; Bollinger, K.S.; Ward, David H.; Sedinger, J.S.; Miyabayashi, Y.

    1996-01-01

    Black brant (Branta bernicla nigricans) nest in colonies in arctic Canada, Alaska, and Russia (Derksen and Ward 1993, Sedinger et al. 1993). Virtually the entire population stages in fall at Izembek Lagoon near the tip of the Alaska Peninsula (Bellrose 1976) before southward migration (Dau 1992) to winter habitats in British Columbia, Washington, Oregon, California, and Baja California (Subcommittee on Black Brant 1992). A small number of black brant winter in Japan, Korea, and China (Owen 1980). In Japan 3,000–5,000 brant of unknown origin stop over in fall, and a declining population (in the northern islands (Brazil 1991, Miyabayashi et al. 1994). Here, we report sightings of brant in Japan that were marked in Alaska and propose a migration route based on historical and recent observations and weather patterns.

  3. Catalog of earthquake hypocenters at Redoubt Volcano and Mt. Spurr, Alaska: October 12, 1989 - December 31, 1990

    Science.gov (United States)

    Power, John A.; March, Gail D.; Lahr, John C.; Jolly, Arthur D.; Cruse, Gina R.

    1993-01-01

    The Alaska Volcano Observatory (AVO), a cooperative program of the U.S. Geological Survey, the Geophysical Institute of the University of Alaska, Fairbanks, and the Alaska Division of Geological and Geophysical Surveys, began a program of seismic monitoring at potentially active volcanoes in the Cook Inlet region in 1988. Seismic monitoring of this area was previously accomplished by two independent seismic networks operated by the U.S. Geological Survey (Northern Cook Inlet) and the Geophysical Institute (Southern Cook Inlet). In 1989 the AVO seismic program consisted of three small-aperture networks of six, five, and six stations on Mt. Spurr, Redoubt Volcano, and Augustine Volcano respectively. Thirty-five other stations were operated in the Cook Inlet region as part of the AVO program. During 1990 six additional stations were added to the Redoubt network in response to eruptive activity, and three stations were installed at Iliamna Volcano. The principal objectives of the AVO program have been the seismic surveillance of the Cook Inlet volcanoes and the investigation of seismic processes associated with active volcanism.

  4. Textural improvement of salt-reduced Alaska pollack (Theragra chalcogramma) roe product by CaCl2.

    Science.gov (United States)

    Chen, Chaoping; Okazaki, Emiko; Osako, Kazufumi

    2016-12-15

    Salt-reduced Alaska pollack roe benefits public health by decreasing NaCl intake; however, it has a poor texture with low breaking strength. This study addresses the feasibility of NaCl reduction in salted roe products, with focusing on the improvement of breaking strength using CaCl2. Salted roe products were prepared by immersing Alaska pollack roe in either NaCl solutions (3.5, 7.0, 15.0, 20.0, and 25.0%) or 7.0% NaCl solutions with added CaCl2 (0.0, 0.5, 1.0, 2.0, and 3.0%). Breaking strength, moisture and salt contents, eggshell protein composition of the salted roe products, as well as total endogenous transglutaminase (TGase) activity in various NaCl and CaCl2 concentrations were analyzed. CaCl2 addition enhanced eggshell protein crosslinking and breaking strength of the salt-reduced roe products. An acyl transfer reaction catalyzed by calcium-dependent TGase may be responsible for the eggshell protein crosslinking and improved texture. Thus, we successfully developed a salt-reduced Alaska roe product using CaCl2. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Cambrian trilobites with Siberian affinities, southwestern Alaska

    Energy Technology Data Exchange (ETDEWEB)

    Palmer, A.R.; Egbert, R.M.; Sullivan, R.; Knoth, J.S.

    1985-02-01

    Cambrian trilobites occur in two levels (about 7 m apart) in the core of a large, complex anticlinal structure in the area between the Taylor Mountains and the Hoholitna River in southwestern Alaska. The lower collection contains Erbia, Macannaia (a species close to Soviet forms described as Pagetia ferox Lermontova), two species of Kootenia (including one perhaps cospecific with forms from the central Brooks range), and several species of ptychoparioid trilobites. It is clear that biogeographic affinities are with the transitional facies of the eastern Siberian platform and the south Siberian foldbelt. In Soviet terms, the age of the collection falls in a disputed interval called latest Early Cambrian (Tojonian) by some authors, and earliest Middle Cambrian (Amgan) by others. In North American terms, Macannaia is known only from early Middle Cambrian beds. The younger collection contains abundant agnostids, a variety of conocoryphids, Paradoxides, and several species of ptychoparioid trilobites. This is an assemblage of undoubted late Middle Cambrian age, comparable to faunas described from the Maya State of the Siberian platform and the Paradoxides paradoxissimus Stage of the Baltic region. Both faunas are from ocean-facing or outer shelf environments. None of the key non-agnostid or non-pagetiid elements have been seen previously in deposits of Cambrian North America.

  6. A new tectonic model for southern Alaska

    Science.gov (United States)

    Reeder, J. W.

    2013-12-01

    S Alaska consists of a complex tectonic boundary that is gradational from subduction of Pacific Plate (PAC) beneath N American Plate (NA) in the W to a transform fault between these two plates in the SE. Adding complexity, the Yakutat Plate (YAK) is in between. The YAK is exposed in NE Gulf of Alaska and has been well mapped (Plafker, 1987). It is bound by the NA to the E at the Fairweather fault and by the PAC to the S. Relative to NA, YAK is moving 47 mm/yr N30°W and PAC is moving 51 mm/yr N20°W (Fletcher & Freymueller, 2003). The YAK and deeper PAC extend NW beneath the NA as flat slabs (Brocher et al., 1994). They subduct to the W and NW in Cook Inlet region (Ratchkovsky et al., 1997), resulting in the Cook Inlet volcanic arc. They also subduct farther NNW toward the Denali volcanic gap and fault. The subducted part of the YAK is split by a transform fault exposed at Montana Creek (MC) at 62°06'N to 62°10'N at 150°W. It extends S60°W toward the most N Cook Inlet volcano, Hayes, and extends N60°E beyond Talkeetna Mts. Right-lateral WSW motion and thick fault gauge have been documented by McGee (1978) on MC and a S60°W fault scarp cutting Quaternary deposits has been mapped (Reed & Nelson, 1980). Fuis et al. (2008) seismically recognized 110 km of missing YAP NW of Talkeetna Mts, which he thought was due to a 'tear' in the YAK to the far S. Nikoli Greenstone has been found in the Talkeetna Mts just S of this transform (Schmidt, 2003) that is 70 km SW of any other mapped Nikoli. This fault offset is also shown by 7.8 km/sec Vp depth contours, which represent the YAK (Eberhart-Phillips et al., 2006), as 110 km at N60°W. Based on magnetic data (Csejtey & Griscom, 1978; Saltus et al., 2007), the fault is regionally recognized as a 10× km zone on the WSW margin of the large S Alaska magnetic high. The fault zone has narrow WSW magnetic highs and depressions. This fault is also recognized on digital relief (Riehle et al., 1996); but, another pronounced N60

  7. Receiver Function Imaging of Mantle Transition Zone Discontinuities Beneath Alaska

    Science.gov (United States)

    Dahm, Haider Hassan Faraj

    Subduction of tectonic plates is one of the most important tectonic processes, yet many aspects of subduction zone geodynamics remain unsolved and poorly understood, such as the depth extent of the subducted slab and its geometry. The Alaska subduction zone, which is associated with the subduction of the Pacific Plate beneath the North America plate, has a complex tectonic setting and carries a series of subduction episodes, and represents an excellent target to study such plate tectonic processes. Previous seismological studies in Alaska have proposed different depth estimations and geometry for the subducted slab. The Mantle transition zone discontinuities of the 410km and the 660 km provide independent constraints on the depth extent of the subducted slabs. We conducted a receiver function study to map the topography of the 410 km and the 660 km discontinuities beneath Alaska and its adjacent areas by taking advantage of the teleseismic data from the new USArray deployment in Alaska and northwestern Canada. Stacking over 75,000 high-quality radial receiver functions recorded in Alaska with more than 40 years of recording period, the topographies of the 410 km and 660 km are mapped. The depths of both d410 and d660 show systematic spatial variations, the mean depth of d410 and d660 are within 6 km and 6 km from the global average, respectively. The mean MTZ thickness of the entire study area is within -2 km from the global average of 250 km, suggesting normal MTZ conditions on average. Central and south-central Alaska are characterized by a larger than normal MTZ thickness, suggesting that the subducting Pacific slab is thermally interacted with the MTZ. This study shows that lateral upper mantle velocity variations contribute the bulk of the observed apparent undulations of the MTZ discontinuities.

  8. Acoustic effects of oil-production activities on bowhead and white whales visible during spring migration near Pt. Barrow, Alaska-1990 phase: sound propagation and whale responses to playbacks of continuous drilling noise from an ice platform, as studied in pack ice conditions. Final report

    International Nuclear Information System (INIS)

    Richardson, W.J.; Greene, C.R.; Koski, W.R.; Smultea, M.A.; Cameron, G.

    1991-10-01

    The report concerns the effects of underwater noise from simulated oil production operations on the movements and behavior of bowhead and white whales migrating around northern Alaska in spring. An underwater sound projector suspended from pack ice was used to introduce recorded drilling noise and other test sounds into leads through the pack ice. These sounds were received and measured at various distances to determine the rate of sound attenuation with distance and frequency. The movements and behavior of bowhead and white whales approaching the operating projector were studied by aircraft- and ice-based observers. Some individuals of both species were observed to approach well within the ensonified area. However, behavioral changes and avoidance reactions were evident when the received sound level became sufficiently high. Reactions to aircraft are also discussed

  9. The Alaska earthquake, March 27, 1964: effects on communities

    Science.gov (United States)

    Hansen, Wallace R.; Kachadoorian, Reuben; Coulter, Henry W.; Migliaccio, Ralph R.; Waller, Roger M.; Stanley, Kirk W.; Lemke, Richard W.; Plafker, George; Eckel, Edwin B.; Mayo, Lawrence R.

    1969-01-01

    This is the second in a series of six reports that the U.S. Geological Survey published on the results of a comprehensive geologic study that began, as a reconnaissance survey, within 24 hours after the March 27, 1964, Magnitude 9.2 Great Alaska Earthquake and extended, as detailed investigations, through several field seasons. The 1964 Great Alaska earthquake was the largest earthquake in the U.S. since 1700. Professional Paper 542, in 7 parts, describes the effects of the earthquake on Alaskan communities.

  10. Renewable energy and sustainable communities: Alaska's wind generator experience†

    Directory of Open Access Journals (Sweden)

    R. Steven Konkel

    2013-08-01

    Full Text Available Background . In 1984, the Alaska Department of Commerce and Economic Development (DCED issued the State's first inventory/economic assessment of wind generators, documenting installed wind generator capacity and the economics of replacing diesel-fuel-generated electricity. Alaska's wind generation capacity had grown from hundreds of installed kilowatts to over 15.3 megawatts (MW by January 2012. Method . This article reviews data and conclusions presented in “Alaska's Wind Energy Systems; Inventory and Economic Assessment” (1. (Alaska Department of Commerce and Economic Development, S. Konkel, 1984. It provides a foundation and baseline for understanding the development of this renewable energy source. Results . Today's technologies have evolved at an astonishing pace; a typical generator in an Alaska wind farm now is likely rated at 1.5-MW capacity, compared to the single-kilowatt (kW machines present in 1984. Installed capacity has mushroomed, illustrated by Unalakleet's 600-kW wind farm dwarfing the original three 10-kW machines included in the 1984 inventory. Kodiak Electric had three 1.5-MW turbines installed at Pillar Mountain in 2009, with three additional turbines of 4.5-MW capacity installed in 2012. Utilities now actively plan for wind generation and compete for state funding. Discussion . State of Alaska energy policy provides the context for energy project decision-making. Substantial renewable energy fund (REF awards – $202,000,000 to date for 227 REF projects in the first 5 cycles of funding – along with numerous energy conservation programs – are now in place. Increasing investment in wind is driven by multiple factors. Stakeholders have interests both in public policy and meeting private investment objectives. Wind generator investors should consider project economics and potential impacts of energy decisions on human health. Specifically this article considers: a. changing environmental conditions in remote Alaska

  11. Checklist of beetles (Coleoptera of Canada and Alaska. Second edition

    Directory of Open Access Journals (Sweden)

    Yves Bousquet

    2013-12-01

    Full Text Available All 8237 species-group taxa of Coleoptera known to occur in Canada and Alaska are recorded by province/territory or state, along with their author(s and year of publication, in a classification framework. Only presence of taxa in each Canadian province or territory and Alaska is noted. Labrador is considered a distinct geographical entity. Adventive and Holarctic species-group taxa are indicated. References to pertinent identification keys are given under the corresponding supraspecific taxa in the data archive.

  12. A survey of radioactive fallout data in Alaska

    International Nuclear Information System (INIS)

    DePhillips, M.P.

    1995-01-01

    Considerable attention has been directed by the scientific community to assessing the levels and fate of radionuclides in Arctic ecosystems. The following text and tables present available data and discussion of radionuclide fallout in Alaska. A literature search of 23 on-line databases (Table 1) using Alaska, Strontium (Sr), Cesium (Cs), Plutonium (Pu) and Radionuclide as constraint terms responded with 177 possible citations. After eliminating duplicate citations, 31 articles were available: 17 were relevant to the subject matter; the remainder addressed geologic issues. All of the cited literature addressed 137 Cs, 90 Sr and 239,240 Pu as a result of radionuclide fallout from nuclear testing or accidental release

  13. Renewable energy and sustainable communities: Alaska's wind generator experience.

    Science.gov (United States)

    Konkel, R Steven

    2013-01-01

    In 1984, the Alaska Department of Commerce and Economic Development (DCED) issued the State's first inventory/economic assessment of wind generators, documenting installed wind generator capacity and the economics of replacing diesel-fuel-generated electricity. Alaska's wind generation capacity had grown from hundreds of installed kilowatts to over 15.3 megawatts (MW) by January 2012. This article reviews data and conclusions presented in "Alaska's Wind Energy Systems; Inventory and Economic Assessment" (1). (Alaska Department of Commerce and Economic Development, S. Konkel, 1984). It provides a foundation and baseline for understanding the development of this renewable energy source. Today's technologies have evolved at an astonishing pace; a typical generator in an Alaska wind farm now is likely rated at 1.5-MW capacity, compared to the single-kilowatt (kW) machines present in 1984. Installed capacity has mushroomed, illustrated by Unalakleet's 600-kW wind farm dwarfing the original three 10-kW machines included in the 1984 inventory. Kodiak Electric had three 1.5-MW turbines installed at Pillar Mountain in 2009, with three additional turbines of 4.5-MW capacity installed in 2012. Utilities now actively plan for wind generation and compete for state funding. State of Alaska energy policy provides the context for energy project decision-making. Substantial renewable energy fund (REF) awards--$202,000,000 to date for 227 REF projects in the first 5 cycles of funding--along with numerous energy conservation programs--are now in place. Increasing investment in wind is driven by multiple factors. Stakeholders have interests both in public policy and meeting private investment objectives. Wind generator investors should consider project economics and potential impacts of energy decisions on human health. Specifically this article considers: changing environmental conditions in remote Alaska villages, impacts associated with climate change on human health, progress in

  14. Renewable energy and sustainable communities: Alaska's wind generator experience†

    Science.gov (United States)

    Konkel, R. Steven

    2013-01-01

    Background In 1984, the Alaska Department of Commerce and Economic Development (DCED) issued the State's first inventory/economic assessment of wind generators, documenting installed wind generator capacity and the economics of replacing diesel-fuel-generated electricity. Alaska's wind generation capacity had grown from hundreds of installed kilowatts to over 15.3 megawatts (MW) by January 2012. Method This article reviews data and conclusions presented in “Alaska's Wind Energy Systems; Inventory and Economic Assessment” (1). (Alaska Department of Commerce and Economic Development, S. Konkel, 1984). It provides a foundation and baseline for understanding the development of this renewable energy source. Results Today's technologies have evolved at an astonishing pace; a typical generator in an Alaska wind farm now is likely rated at 1.5-MW capacity, compared to the single-kilowatt (kW) machines present in 1984. Installed capacity has mushroomed, illustrated by Unalakleet's 600-kW wind farm dwarfing the original three 10-kW machines included in the 1984 inventory. Kodiak Electric had three 1.5-MW turbines installed at Pillar Mountain in 2009, with three additional turbines of 4.5-MW capacity installed in 2012. Utilities now actively plan for wind generation and compete for state funding. Discussion State of Alaska energy policy provides the context for energy project decision-making. Substantial renewable energy fund (REF) awards – $202,000,000 to date for 227 REF projects in the first 5 cycles of funding – along with numerous energy conservation programs – are now in place. Increasing investment in wind is driven by multiple factors. Stakeholders have interests both in public policy and meeting private investment objectives. Wind generator investors should consider project economics and potential impacts of energy decisions on human health. Specifically this article considers:changing environmental conditions in remote Alaska villages,impacts associated

  15. Shelf break circulation in the Northern Gulf of Alaska

    Energy Technology Data Exchange (ETDEWEB)

    Niebauer, H.J.; Roberts, J.; Royer, T.C.

    1981-05-20

    Current observations from a mooring on the continental shelf near the shelf break in the Gulf of Alaska, with supporting hydrographic and metorological data, are discussed for the period 1976 to March 1977. The described features suggest strong influence by the cyclonic Alaska Gyre for the periods April--June 1976 and October 1976 to March 1977. From July--September 1976 there is evidence of current veering and rotation. It is hypothesized that these current fluctuations are eddies which are important in mixing processes across the shelf.

  16. The Alaska earthquake, March 27, 1964: effects on hydrologic regimen

    Science.gov (United States)

    Waller, Roger M.; Coble, R.W.; Post, Austin; McGarr, Arthur; Vorhis, Robert C.

    1966-01-01

    This is the fourth in a series of six reports that the U.S. Geological Survey published on the results of a comprehensive geologic study that began, as a reconnaissance survey, within 24 hours after the March 27, 1964, Magnitude 9.2 Great Alaska Earthquake and extended, as detailed investigations, through several field seasons. The 1964 Great Alaska earthquake was the largest earthquake in the U.S. since 1700. Professional Paper 544, in 5 parts, describes the effects on hydrologic regimen.

  17. Geochemical reanalysis of historical U.S. Geological Survey sediment samples from the Inmachuk, Kugruk, Kiwalik, and Koyuk River drainages, Granite Mountain, and the northern Darby Mountains, Bendeleben, Candle, Kotzebue, and Solomon quadrangles, Alaska

    Science.gov (United States)

    Werdon, Melanie B.; Granitto, Matthew; Azain, Jaime S.

    2015-01-01

    The State of Alaska’s Strategic and Critical Minerals (SCM) Assessment project, a State-funded Capital Improvement Project (CIP), is designed to evaluate Alaska’s statewide potential for SCM resources. The SCM Assessment is being implemented by the Alaska Division of Geological & Geophysical Surveys (DGGS), and involves obtaining new airborne-geophysical, geological, and geochemical data. As part of the SCM Assessment, thousands of historical geochemical samples from DGGS, U.S. Geological Survey (USGS), and U.S. Bureau of Mines archives are being reanalyzed by DGGS using modern, quantitative, geochemical-analytical methods. The objective is to update the statewide geochemical database to more clearly identify areas in Alaska with SCM potential. The USGS is also undertaking SCM-related geologic studies in Alaska through the federally funded Alaska Critical Minerals cooperative project. DGGS and USGS share the goal of evaluating Alaska’s strategic and critical minerals potential and together created a Letter of Agreement (signed December 2012) and a supplementary Technical Assistance Agreement (#14CMTAA143458) to facilitate the two agencies’ cooperative work. Under these agreements, DGGS contracted the USGS in Denver to reanalyze historical USGS sediment samples from Alaska. For this report, DGGS funded reanalysis of 653 historical USGS sediment samples from the statewide Alaska Geochemical Database Version 2.0 (AGDB2; Granitto and others, 2013). Samples were chosen from an area covering portions of the Inmachuk, Kugruk, Kiwalik, and Koyuk river drainages, Granite Mountain, and the northern Darby Mountains, located in the Bendeleben, Candle, Kotzebue, and Solomon quadrangles of eastern Seward Peninsula, Alaska (fig. 1). The USGS was responsible for sample retrieval from the National Geochemical Sample Archive (NGSA) in Denver, Colorado through the final quality assurance/quality control (QA/QC) of the geochemical analyses obtained through the USGS contract

  18. Range Expansion of Moose in Arctic Alaska Linked to Warming and Increased Shrub Habitat.

    Directory of Open Access Journals (Sweden)

    Ken D Tape

    Full Text Available Twentieth century warming has increased vegetation productivity and shrub cover across northern tundra and treeline regions, but effects on terrestrial wildlife have not been demonstrated on a comparable scale. During this period, Alaskan moose (Alces alces gigas extended their range from the boreal forest into tundra riparian shrub habitat; similar extensions have been observed in Canada (A. a. andersoni and Eurasia (A. a. alces. Northern moose distribution is thought to be limited by forage availability above the snow in late winter, so the observed increase in shrub habitat could be causing the northward moose establishment, but a previous hypothesis suggested that hunting cessation triggered moose establishment. Here, we use recent changes in shrub cover and empirical relationships between shrub height and growing season temperature to estimate available moose habitat in Arctic Alaska c. 1860. We estimate that riparian shrubs were approximately 1.1 m tall c. 1860, greatly reducing the available forage above the snowpack, compared to 2 m tall in 2009. We believe that increases in riparian shrub habitat after 1860 allowed moose to colonize tundra regions of Alaska hundreds of kilometers north and west of previous distribution limits. The northern shift in the distribution of moose, like that of snowshoe hares, has been in response to the spread of their shrub habitat in the Arctic, but at the same time, herbivores have likely had pronounced impacts on the structure and function of these shrub communities. These northward range shifts are a bellwether for other boreal species and their associated predators.

  19. Characterization and Antioxidant Properties of the Condensed Tannins from Alaska Cedar Inner Bark

    Directory of Open Access Journals (Sweden)

    Martha Rosales-Castro

    2014-05-01

    Full Text Available The structure and antioxidant activity of condensed tannins isolated from Alaska Cedar inner bark have been investigated. Oligomers of flavan-3-ol were purified by column chromatography (Sephadex LH-20 and analyzed by 13CNMR and MALDI-TOF MS spectrometries. Their antioxidant activities were measured using 1,1’-diphenyl-2-picrylhydrazyl (DPPH, 2,2-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS free radicals scavenging, ferric reducing/antioxidant power (FRAP, and β-carotene-linoleic acid model system (β-CLAMS assays. Results showed that the condensed tannins consents of both homogeneous and heterogeneous oligomers of procyanidins (catechin/epicatechin and prodelphinidins (gallocatechin/ epigallocatechin flavan-3-ol units; and oligomers from trimmers to heptamers with dominant interflavan linkages B-type as it is most common in proanthocyanidins. Condensed tannins showed significant ntioxidant activity as the median inhibition capacity IC 50 is comparable to the catechin control response. Alaska Cedar inner bark oligomers show high antioxidant capacity, evaluated by both methods based on electron transfer mechanisms and hydrogen atom transfer reactions. This bark may be considered as a new source of natural antioxidants for nutraceutical ingredients.

  20. Glacial runoff strongly influences food webs in Gulf of Alaska fjords

    Science.gov (United States)

    Arimitsu, M.; Piatt, J. F.; Mueter, F. J.

    2015-12-01

    Melting glaciers contribute large volumes of freshwater to the Gulf of Alaska coast. Rates of glacier volume loss have increased markedly in recent decades, raising concern about the eventual loss of glaciers as a source of freshwater in coastal waters. To better understand the influence of glacier melt water on fjord ecosystems, we sampled oceanography, nutrients, zooplankton, forage fish, and seabirds within four fjords in the coastal Gulf of Alaska. We used generalized additive models and geostatistics to identify the range of influence of glacier runoff in fjords of varying estuarine and topographic complexity. We also modeled the responses of chlorophyll a concentration, copepod biomass, fish and seabird abundance to physical, nutrient and biotic predictor variables. Physical and nutrient signatures of glacial runoff extended 10-20 km into coastal fjords. Glacially modified physical gradients and among-fjord differences explained 66% of the variation in phytoplankton abundance, which drives ecosystem structure at higher trophic levels. Copepod, euphausiid, fish and seabird distribution and abundance were also related to environmental gradients that could be traced to glacial freshwater input. Seabird density was predicted by prey availability and silica concentrations, which may indicate upwelling areas where this nutrient is in excess. Similarities in ecosystem structure among fjords were due to influx of cold, fresh, sediment and nutrient laden water, while differences were due to fjord topography and the relative importance of estuarine vs. ocean influences. We anticipate continued changes in the volume and magnitude of glacial runoff will affect coastal marine food webs in the future.

  1. Soil Surface Organic Layers in Alaska's Arctic Foothills: Development, Distribution and Microclimatic Feedbacks

    Science.gov (United States)

    Baughman, C. A.; Mann, D. H.; Verbyla, D.; Valentine, D.; Kunz, M. L.; Heiser, P. A.

    2013-12-01

    Accumulated organic matter at the ground surface plays an important role in arctic ecosystems. These soil surface organic layers (SSOLs) influence temperature, moisture, and chemistry in the underlying mineral soil and, on a global basis, comprise enormous stores of labile carbon. Understanding the dynamics of SSOLs is prerequisite to modeling the responses of arctic ecosystem processes to climate changes. Here, we ask three questions regarding SSOLs in the Arctic Foothills in northern Alaska: 1) What environmental factors control their spatial distribution? 2) How long do they take to form? 3) What is the relationship between SSOL thickness and mineral soil temperature through the growing season? The best topographically-controlled predictors of SSOL thickness and spatial distribution are duration of sunlight during the growing-season, upslope drainage area, slope gradient, and elevation. SSOLs begin to form within several decades following disturbance but require 500-700 years to reach equilibrium states. Once formed, mature SSOLs lower peak growing-season temperature and mean annual temperature in the underlying mineral horizon by 8° and 3° C respectively, which reduces available growing degree days within the upper mineral soil by nearly 80%. How ongoing climate change in northern Alaska will affect the region's SSOLs is an open and potentially crucial question.

  2. Spatial and temporal variation in marine birds in the north Gulf of Alaska: The value of marine bird monitoring within Gulf Watch Alaska

    Science.gov (United States)

    Kuletz, Kathy J.; Esler, Daniel N.

    2015-01-01

    Birds offer useful insights into marine ecosystems. Marine birds are responsive to spatial and temporal variation in the environment, that often originates with fluctuations in oceanographic and climatic drivers and permeates up through food webs to conspicuous top predators such as seabirds (Coyle and Pinchuk 2005, Speckman et al. 2005, Gonzales-Solis et al. 2009, Cushing et al., this report). In that way, marine birds are excellent assimilators, samplers, and indicators of the status of marine environments (Montevecchi 1993, Piatt et al. 2007b, Zador et al. 2013). Marine bird responses to dynamic marine ecosystems can be detected in a variety of metrics, including abundance, distribution, and productivity. For example, in the northern Gulf of Alaska (GOA), decadal-scale variation in oceanographic conditions has been associated with dramatic shifts in prey composition and abundance (Anderson and Piatt 1999). In turn, these shifts were more closely correlated with changes in abundance of fish-eating birds of Prince William Sound (PWS), such as pigeon guillemots (Golet et al. 2002) and marbled and Kittlitz’s murrelets (Kuletz et al. 2011a, 2011b), than in the abundance of species that primarily consume plankton or benthic prey (Agler et al. 1999, Cushing et al., this report). Birds also are responsive to anthropogenic influences in marine environments, including commercial fishing, contamination, introduction of non-native species, coastal development, offshore resource extraction, and vessel traffic. A major anthropogenic perturbation in the northern GOA was the 1989 Exxon Valdez oil spill, in which marine birds suffered high immediate mortality (Piatt and Ford 1996). Additionally, several species showed long-term evidence of declines in the oiled areas of PWS (Lance et al. 2001), as well as impacts to reproductive success years later (Golet et al. 2002). However, the degree of direct impact and vulnerability to chronic injury, which was related to exposure to

  3. Tracking and unpacking rapid Arctic change: Indicators of community health and sustainability in northern Alaska and links to cryospheric change

    Science.gov (United States)

    Eicken, H.; Sam, J. M.; Mueller-stoffels, M.; Lovecraft, A. L.; Fresco, N. L.

    2017-12-01

    Tracking and responding to rapid Arctic change benefits from time series of indicator variables that describe the state of the system and can inform anticipatory action. A key challenge is to identify and monitor sets of indicators that capture relevant variability, trends, and transitions in social-environmental systems. We present findings from participatory scenarios focused on community health and sustainability in northern Alaska. In a series of workshops in 2015 and 2016 (Kotzebue workshop photo shown below), over 50 experts, mostly local, identified determinants of community health and sustainability by 2040 in the Northwest Arctic and North Slope Boroughs, Alaska. Drawing on further research, an initial set of factors and uncertainties was refined and prioritized into a total of 20 key drivers, ranging from governance issues to socio-economic and environmental factors. The research team then developed sets of future projections that describe plausible outcomes by mid-century for each of these drivers. A plausibility and consistency analysis of all pairwise combinations of these projections (following Mueller-Stoffels and Eicken, In: North by 2020 - Perspectives on Alaska's Changing Social-Ecological Systems, University of Alaska Press, 2011) resulted in the identification of robust scenarios. The latter were further reviewed by workshop participants, and a set of indicator variables, including indicators of relevant cryospheric change, was identified to help track trajectories towards plausible future states. Publically accessible recorded data only exist for a subset of the more than 70 indicators, reaching back a few years to several decades. For several indicators, the sampling rate or time series length are insufficient for tracking of and response to change. A core set of variables has been identified that meets indicator requirements and can serve as a tool for Alaska Arctic communities in adapting to or mitigating rapid change affecting community

  4. Spatial and temporal variation in winter condition of juvenile Pacific herring (Clupea pallasii) in Prince William Sound, Alaska: Oceanographic exchange with the Gulf of Alaska

    Science.gov (United States)

    Gorman, Kristen B.; Kline, Thomas C.; Roberts, Megan E.; Sewall, Fletcher F.; Heintz, Ron A.; Pegau, W. Scott

    2018-01-01

    Spatial variability in early and late winter measures of whole body energy density of juvenile (age-0) Pacific herring (Clupea pallasii) of Prince William Sound (PWS), Alaska was examined over nine years of study. Pacific herring in this region remain considered as an injured resource over the 25 years following the Exxon Valdez oil spill, however factors responsible for the lack of recovery by herring in PWS are a source of ongoing debate. Given the species' key ecological role in energy transfer to higher predators, and its economic role in a historical commercial fishery within the region, significant research effort has focused on understanding environmental factors that shape nutritional processes and the quality of these young forage fish. During November (early winter), factors such as juvenile herring body size, hydrological region of PWS, year, and the interaction between carbon (δ13C‧) or nitrogen (δ15N) stable isotope signature and hydrological region were all important predictors of juvenile herring energy density. In particular, analyses indicated that in the northern and western regions of PWS, juvenile herring with more depleted δ13C‧ values (which reflect a Gulf of Alaska carbon source) were more energy dense. Results suggest that intrusion of water derived from the Gulf of Alaska enhances the condition of age-0 herring possibly through alterations in zooplankton community structure and abundance, particularly in the northern and western regions of PWS in the fall, which is consistent with regional circulation. During March (late winter), factors such as juvenile herring body size, year, and the interaction between δ13C‧ or δ15N isotope signature and year were all important predictors of juvenile herring energy density. Results differed for early and late winter regarding the interaction between stable isotope signatures and region or year, suggesting important seasonal aspects of circulation contribute to variation in PWS juvenile

  5. Mechanics of Formation of Forearc Basins of Indonesia and Alaska

    Science.gov (United States)

    Cassola, T.; Willett, S.; Kopp, H.

    2010-12-01

    of studies of the Alaska margin were conducted in the 1990s based out of GEOMAR. One important aspect of these margins is the presence of a dynamic backstop, characterized by older accreted material, that, although deformed during and after accretion, later becomes a stable part of the upper plate. We argue that, following critical wedge theory, it entered into the stability field of a wedge either by steepening or weakening of the underlying detachment. As a stable wedge, this older segment of the wedge acts as a mechanical backstop for the frontal deforming wedge. This dynamic backstop moves seaward in time, in response to isostatic loading by the growing wedge, or due to seaward retreat of the slab with a consequent steepening of the base of the wedge.

  6. The Triassic upwelling system of Arctic Alaska

    Science.gov (United States)

    Yurchenko, I.; Graham, S. A.

    2017-12-01

    The Middle to Upper Triassic Shublik Formation of Arctic Alaska is a laterally and vertically heterogeneous rock unit that has been analyzed both in outcrop and in the subsurface. The Shublik Formation sediments are distinguished by a characteristic set of lithologies that include glauconitic, phosphatic, organic-rich, and cherty facies consistent with a coastal upwelling zone deposition interpretation. It is often recognized by abundance of impressions and shells of distinctive Triassic bivalves. To understand main controls on lithofacies distributions, this study reviews and refines lithologic and paleoenvironmental interpretations of the Shublik Formation, and incorporates the newly acquired detailed geochemical analyses of two complete Shublik cores. This work focuses on organic geochemistry (analyses of biomarkers and diamondoids), chemostratigraphy (hand-held XRF), and iron speciation analysis to reconstruct paleoproductivity and redox conditions. Based on the available evidence, during Shublik deposition, an upwelling-influenced open shelf resulted in high nutrient supply that stimulated algal blooms leading to high net organic productivity, reduced water transparency, oxygen deficiency, and water column stratification. Evidence of such eutrophic conditions is indicated by the lack of photic benthic organisms, bioturbation and trace fossils, and dominance of the monospecific light-independent epibenthic bivalves. The flat, subcircular, thin shells of these carbonate-secreting organisms allowed them to adapt to dysoxic conditions, and float on soft, soupy, muddy substrate. The distinctive clay- and organic-rich facies with abundant bivalves occurred on the mid to outer stable broad shelf, and were deposited when organic productivity at times overlapped with periods of increased siliciclastic input controlled by sea level and changes in local sediment dispersal systems, and therefore are more spatially and temporally localized than the widespread clay

  7. Cancer survival among Alaska Native people.

    Science.gov (United States)

    Nash, Sarah H; Meisner, Angela L W; Zimpelman, Garrett L; Barry, Marc; Wiggins, Charles L

    2018-03-26

    Recent cancer survival trends among American Indian and Alaska Native (AN) people are not well understood; survival has not been reported among AN people since 2001. This study examined cause-specific survival among AN cancer patients for lung, colorectal, female breast, prostate, and kidney cancers. It evaluated whether survival differed between cancers diagnosed in 1992-2002 (the earlier period) and cancers diagnosed in 2003-2013 (the later period) and by the age at diagnosis (<65 vs ≥65 years), stage at diagnosis (local or regional/distant/unknown), and sex. Kaplan-Meier and Cox proportional hazards models were used to estimate univariate and multivariate-adjusted cause-specific survival for each cancer. An improvement was observed in 5-year survival over time from lung cancer (hazard ratio [HR] for the later period vs the earlier period, 0.83; 95% confidence interval [CI], 0.72-0.97), and a marginally nonsignificant improvement was observed for colorectal cancer (HR, 0.81; 95% CI, 0.66-1.01). Site-specific differences in survival were observed by age and stage at diagnosis. This study presents the first data on cancer survival among AN people in almost 2 decades. During this time, AN people have experienced improvements in survival from lung and colorectal cancers. The reasons for these improvements may include increased access to care (including screening) as well as improvements in treatment. Improving cancer survival should be a priority for reducing the burden of cancer among AN people and eliminating cancer disparities. Cancer 2018. © 2018 American Cancer Society. © 2018 American Cancer Society.

  8. Climate science informs participatory scenario development and applications to decision making in Alaska

    Science.gov (United States)

    Welling, L. A.; Winfree, R.; Mow, J.

    2012-12-01

    Climate change presents unprecedented challenges for managing natural and cultural resources into the future. Impacts are expected to be highly consequential but specific effects are difficult to predict, requiring a flexible process for adaptation planning that is tightly coupled to climate science delivery systems. Scenario planning offers a tool for making science-based decisions under uncertainty. The National Park Service (NPS) is working with the Department of the Interior Climate Science Centers (CSCs), the NOAA Regional Integrated Science and Assessment teams (RISAs), and other academic, government, non-profit, and private partners to develop and apply scenarios to long-range planning and decision frameworks. In April 2012, Alaska became the first region of the NPS to complete climate change scenario planning for every national park, preserve, and monument. These areas, which collectively make up two-thirds of the total area of the NPS, are experiencing visible and measurable effects attributable to climate change. For example, thawing sea ice, glaciers and permafrost have resulted in coastal erosion, loss of irreplaceable cultural sites, slope failures, flooding of visitor access routes, and infrastructure damage. With higher temperatures and changed weather patterns, woody vegetation has expanded into northern tundra, spruce and cedar diebacks have occurred in southern Alaska, and wildland fire severity has increased. Working with partners at the Alaska Climate Science Center and the Scenario Network for Alaska Planning the NPS integrates quantitative, model-driven data with qualitative, participatory techniques to scenario creation. The approach enables managers to access and understand current climate change science in a form that is relevant for their decision making. Collaborative workshops conducted over the past two years grouped parks from Alaska's southwest, northwest, southeast, interior and central areas. The emphasis was to identify and connect

  9. Spatial Variation of Slip Behavior Beneath the Alaska Peninsula Along Alaska-Aleutian Subduction Zone

    Science.gov (United States)

    Li, Shanshan; Freymueller, Jeffrey T.

    2018-04-01

    We resurveyed preexisting campaign Global Positioning System (GPS) sites and estimated a highly precise GPS velocity field for the Alaska Peninsula. We use the TDEFNODE software to model the slip deficit distribution using the new GPS velocities. We find systematic misfits to the vertical velocities from the optimal model that fits the horizontal velocities well, which cannot be explained by altering the slip distribution, so we use only the horizontal velocities in the study. Locations of three boundaries that mark significant along-strike change in the locking distribution are identified. The Kodiak segment is strongly locked, the Semidi segment is intermediate, the Shumagin segment is weakly locked, and the Sanak segment is dominantly creeping. We suggest that a change in preexisting plate fabric orientation on the downgoing plate has an important control on the along-strike variation in the megathrust locking distribution and subduction seismicity.

  10. Measuring fuel moisture content in Alaska: standard methods and procedures.

    Science.gov (United States)

    Rodney A. Norum; Melanie. Miller

    1984-01-01

    Methods and procedures are given for collecting and processing living and dead plant materials for the purpose of determining their water content. Wild-land fuels in Alaska are emphasized, but the methodology is applicable elsewhere. Guides are given for determining the number of samples needed to attain a chosen precision. Detailed procedures are presented for...

  11. Native Cultures and Language: Challenges for Land Managers in Alaska

    Science.gov (United States)

    Thomas J. Gallagher

    1992-01-01

    Many of the Aleuts, Inuits, and Indians of Alaska continue to live a traditional lifestyle. Eighty-eight percent of the land they use for subsistence activities, however, is managed by federal or state agencies. Clear communication across cultures is essential if Native people are to be represented in agency land management decisions. Problems in communication relate...

  12. Environmental assessment: Kotzebue Wind Installation Project, Kotzebue, Alaska

    International Nuclear Information System (INIS)

    1998-05-01

    The DOE is proposing to provide financial assistance to the Kotzebue Electric Association to expand its existing wind installation near Kotzebue, Alaska. Like many rural Alaska towns, Kotzebue uses diesel-powered generators to produce its electricity, the high cost of which is currently subsidized by the Alaska State government. In an effort to provide a cost effective and clean source of electricity, reduce dependence on diesel fuel, and reduce air pollutants, the DOE is proposing to fund an experimental wind installation to test commercially available wind turbines under Arctic conditions. The results would provide valuable information to other Alaska communities experiencing similar dependence on diesel-powered generators. The environmental assessment for the proposed wind installation assessed impacts to biological resources, land use, electromagnetic interference, coastal zone, air quality, cultural resources, and noise. It was determined that the project does not constitute a major Federal action significantly affecting the quality of the human environment. Therefore, the preparation of an environmental impact statement is not required, and DOE has issued a Finding of No Significant Impact

  13. Synoptic-scale fire weather conditions in Alaska

    Science.gov (United States)

    Hayasaka, Hiroshi; Tanaka, Hiroshi L.; Bieniek, Peter A.

    2016-09-01

    Recent concurrent widespread fires in Alaska are evaluated to assess their associated synoptic-scale weather conditions. Several periods of high fire activity from 2003 to 2015 were identified using Moderate Resolution Imaging Spectroradiometer (MODIS) hotspot data by considering the number of daily hotspots and their continuity. Fire weather conditions during the top six periods of high fire activity in the fire years of 2004, 2005, 2009, and 2015 were analyzed using upper level (500 hPa) and near surface level (1000 hPa) atmospheric reanalysis data. The top four fire-periods occurred under similar unique high-pressure fire weather conditions related to Rossby wave breaking (RWB). Following the ignition of wildfires, fire weather conditions related to RWB events typically result in two hotspot peaks occurring before and after high-pressure systems move from south to north across Alaska. A ridge in the Gulf of Alaska resulted in southwesterly wind during the first hotspot peak. After the high-pressure system moved north under RWB conditions, the Beaufort Sea High developed and resulted in relatively strong easterly wind in Interior Alaska and a second (largest) hotspot peak during each fire period. Low-pressure-related fire weather conditions occurring under cyclogenesis in the Arctic also resulted in high fire activity under southwesterly wind with a single large hot-spot peak.

  14. A scoping review of traditional food security in Alaska.

    Science.gov (United States)

    Walch, Amanda; Bersamin, Andrea; Loring, Philip; Johnson, Rhonda; Tholl, Melissa

    2018-12-01

    Food insecurity is a public health concern. Food security includes the pillars of food access, availability and utilisation. For some indigenous peoples, this may also include traditional foods. To conduct a scoping review on traditional foods and food security in Alaska. Google Scholar and the High North Research Documents were used to search for relevant primary research using the following terms: "traditional foods", "food security", "access", "availability", "utilisation", "Alaska", "Alaska Native" and "indigenous". Twenty four articles from Google Scholar and four articles from the High North Research Documents were selected. The articles revealed three types of research approaches, those that quantified traditional food intake (n=18), those that quantified food security (n=2), and qualitative articles that addressed at least one pillar of food security (n=8). Limited primary research is available on food security in Alaskan. Few studies directly measure food security while most provide a review of food security factors. Research investigating dietary intake of traditional foods is more prevalent, though many differences exist among participant age groups and geographical areas. Future research should include direct measurements of traditional food intake and food security to provide a more complete picture of traditional food security in Alaska.

  15. Modeling Alaska boreal forests with a controlled trend surface approach

    Science.gov (United States)

    Mo Zhou; Jingjing Liang

    2012-01-01

    An approach of Controlled Trend Surface was proposed to simultaneously take into consideration large-scale spatial trends and nonspatial effects. A geospatial model of the Alaska boreal forest was developed from 446 permanent sample plots, which addressed large-scale spatial trends in recruitment, diameter growth, and mortality. The model was tested on two sets of...

  16. Digital Learning Compass: Distance Education State Almanac 2017. Alaska

    Science.gov (United States)

    Seaman, Julia E.; Seaman, Jeff

    2017-01-01

    This brief report uses data collected under the U.S. Department of Education's National Center for Educational Statistics (NCES) Integrated Postsecondary Education Data System (IPEDS) Fall Enrollment survey to highlight distance education data in the state of Alaska. The sample for this analysis is comprised of all active, degree-granting…

  17. Regional biomass stores and dynamics in forests of coastal Alaska

    Science.gov (United States)

    Mikhaill A. Yatskov; Mark E. Harmon; Olga N. Krankina; Tara M. Barrett; Kevin R. Dobelbower; Andrew N. Gray; Becky Fasth; Lori Trummer; Toni L. Hoyman; Chana M. Dudoit

    2015-01-01

    Coastal Alaska is a vast forested region (6.2 million ha) with the potential to store large amounts of carbon in live and dead biomass thus influencing continental and global carbon dynamics. The main objectives of this study were to assess regional biomass stores, examine the biomass partitioning between live and dead pools, and evaluate the effect of disturbance on...

  18. Economics of wild salmon ecosystems: Bristol Bay, Alaska

    Science.gov (United States)

    John W. Duffield; Christopher J. Neher; David A. Patterson; Oliver S. Goldsmith

    2007-01-01

    This paper provides an estimate of the economic value of wild salmon ecosystems in the major watershed of Bristol Bay, Alaska. The analysis utilizes both regional economic and social benefit-cost accounting frameworks. Key sectors analyzed include subsistence, commercial fishing, sport fishing, hunting, and nonconsumptive wildlife viewing and tourism. The mixed cash-...

  19. Environmental assessment: Kotzebue Wind Installation Project, Kotzebue, Alaska

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-05-01

    The DOE is proposing to provide financial assistance to the Kotzebue Electric Association to expand its existing wind installation near Kotzebue, Alaska. Like many rural Alaska towns, Kotzebue uses diesel-powered generators to produce its electricity, the high cost of which is currently subsidized by the Alaska State government. In an effort to provide a cost effective and clean source of electricity, reduce dependence on diesel fuel, and reduce air pollutants, the DOE is proposing to fund an experimental wind installation to test commercially available wind turbines under Arctic conditions. The results would provide valuable information to other Alaska communities experiencing similar dependence on diesel-powered generators. The environmental assessment for the proposed wind installation assessed impacts to biological resources, land use, electromagnetic interference, coastal zone, air quality, cultural resources, and noise. It was determined that the project does not constitute a major Federal action significantly affecting the quality of the human environment. Therefore, the preparation of an environmental impact statement is not required, and DOE has issued a Finding of No Significant Impact.

  20. Current Conditions in American Indian and Alaska Native Communities.

    Science.gov (United States)

    Szasz, Margaret Connell

    The school experience of American Indian and Alaska Native children hinges on the context in which their schooling takes place. This context includes the health and well-being of their families, communities, and governments, as well as the relationship between Native and non-Native people. Many Native children are in desperate straits because of…

  1. Staff - Kenneth R. Papp | Alaska Division of Geological & Geophysical

    Science.gov (United States)

    Surveys Home About Us Director's Office Alaska Statutes Annual Reports Employment Staff Directory and Facilities Staff Seismic and Well Data Data Reports Contact Us Frequently Asked Questions Ask a Facebook DGGS News Natural Resources Geological & Geophysical Surveys Staff - Kenneth R. Papp main

  2. Edge-glued panels from Alaska hardwoods: retail manager perspectives

    Science.gov (United States)

    David Nicholls; Matthew Bumgardner; Valerie Barber

    2010-01-01

    In Alaska, red alder (Alnus rubra Bong.) and paper birch (Betula papyrifera Marsh.) are both lesser-known hardwoods grown, harvested, and manufactured into appearance products, with potential for increased utilization. The production of edgeglued panels from red alder and paper birch offers one expansion opportunity for wood...

  3. Modeling population dynamics and woody biomass of Alaska coastal forest

    Science.gov (United States)

    Randy L. Peterson; Jingjing Liang; Tara M. Barrett

    2014-01-01

    Alaska coastal forest, 6.2 million ha in size, has been managed in the past mainly through clearcutting. Declining harvest and dwindling commercial forest resources over the past 2 decades have led to increased interest in management of young-growth stands and utilization of woody biomass for bioenergy. However, existing models to support these new management systems...

  4. Changing Forest Disturbance Regimes and Risk Perceptions in Homer, Alaska

    Science.gov (United States)

    Courtney G. F1int

    2007-01-01

    Forest disturbances caused by insects can lead to other disturbances, risks, and changes across landscapes. Evaluating the human dimensions of such disturbances furthers understanding of integrated changes in natural and social systems. This article examines the effects of changing forest disturbance regimes on local risk perceptions and attitudes in Homer, Alaska....

  5. Alaska's timber harvest and forest products industry, 2005

    Science.gov (United States)

    Jeff M. Halbrook; Todd A. Morgan; Jason P. Brandt; Charles E. Keegan; Thale Dillon; Tara M. Barrett

    2009-01-01

    This report traces the flow of timber harvested in Alaska during calendar year 2005, describes the composition and operations of the state's primary forest products industry, and quantifies volumes and uses of wood fiber. Historical wood products industry changes are discussed, as well as trends in timber harvest, production, and sales of primary wood products....

  6. Alcohol Problems in Alaska Natives: Lessons from the Inuit

    Science.gov (United States)

    Seale, J. Paul; Shellenberger, Sylvia; Spence, John

    2006-01-01

    In this Alaska Native study, cultural "insiders" analyzed problems associated with increased alcohol availability, factors which have reduced alcohol-related problems, and ideas for improving treatment in an Inuit community. Participants described frequent bingeing, blackouts, family violence, suicide, loss of child custody, and feelings…

  7. The forest ecosystem of southeast Alaska: 5. Soil mass movement.

    Science.gov (United States)

    Douglas N. Swanston

    1974-01-01

    Research in southeast Alaska has identified soil mass movement as the dominant erosion process, with debris avalanches and debris flows the most frequent events on characteristically steep, forested slopes. Periodically high soil water levels and steep slopes are controlling factors. Bedrock structure and the rooting characteristics of trees and other vegetation exert...

  8. Mitochondrial DNA phylogeography of least cisco Coregonus sardinella in Alaska.

    Science.gov (United States)

    Padula, V M; Causey, D; López, J A

    2017-03-01

    This study presents the first detailed analysis of the mitochondrial DNA diversity of least cisco Coregonus sardinella in Alaska using a 678 bp segment of the control region (D-loop) of the mitochondrial genome. Findings suggest that the history of C. sardinella in Alaska differs from that of other species of Coregonus present in the state and surrounding regions. The examined populations of C. sardinella are genetically diverse across Alaska. Sixty-eight distinct mitochondrial haplotypes were identified among 305 individuals sampled from nine locations. The haplotype minimum spanning network and phylogeny showed a modest level of geographic segregation among haplotypes, suggesting high levels of on-going or recent connectivity among distant populations. Observed Φ ST values and the results of homogeneity and AMOVAs indicate incipient genetic differentiation between aggregations in three broad regional groups. Sites north of the Brooks Range formed one group, sites in the Yukon and Selawik Rivers formed a second group and sites south of the Yukon drainage formed the third group. Overall, the sequence data showed that a large proportion of mtDNA genetic variation in C. sardinella is shared across Alaska, but this variation is not homogeneously distributed across all regions and for all haplotype groups. © 2017 The Fisheries Society of the British Isles.

  9. Application of geotechnical data to resource planning in southeast Alaska.

    Science.gov (United States)

    W.L. Schroeder; D.N. Swanston

    1987-01-01

    Recent quantification of engineering properties and index values of dominant soil types in the Alexander Archipelago, southeast Alaska, have revealed consistent diagnostic characteristics useful to evaluating landslide risk and subgrade material stability before timber harvesting and low-volume road construction. Shear strength data are summarized and grouped by Soil...

  10. The forest ecosystem of southeast Alaska: 8. Water.

    Science.gov (United States)

    Donald C. Schmiege; Austin E. Helmers; Daniel M. Bishop

    1974-01-01

    One of the most striking characteristics of southeast Alaska is the abundance of water. Large glaciers, icefields, and thousands of streams result from heavy precipitation throughout the year. Published and unpublished data on water regimen, temperature, sedimentation, and chemistry are combined. These serve as a basis for understanding how this valuable resource may...

  11. EarthScope Transportable Array Siting Outreach Activities in Alaska and Western Canada

    Science.gov (United States)

    Dorr, P. M.; Gardine, L.; Tape, C.; McQuillan, P.; Cubley, J. F.; Samolczyk, M. A.; Taber, J.; West, M. E.; Busby, R.

    2015-12-01

    The EarthScope Transportable Array is deploying about 260 stations in Alaska and western Canada. IRIS and EarthScope are partnering with the Alaska Earthquake Center, part of the University of Alaska's Geophysical Institute, and Yukon College to spread awareness of earthquakes in Alaska and western Canada and the benefits of the Transportable Array for people living in these regions. We provide an update of ongoing education and outreach activities in Alaska and Canada as well as continued efforts to publicize the Transportable Array in the Lower 48. Nearly all parts of Alaska and portions of western Canada are tectonically active. The tectonic and seismic variability of Alaska, in particular, requires focused attention at the regional level, and the remoteness and inaccessibility of most Alaskan and western Canadian villages and towns often makes frequent visits difficult. When a community is accessible, every opportunity to engage the residents is made. Booths at state fairs and large cultural gatherings, such as the annual convention of the Alaska Federation of Natives, are excellent venues to distribute earthquake information and to demonstrate a wide variety of educational products and web-based applications related to seismology and the Transportable Array that residents can use in their own communities. Meetings and interviews with Alaska Native Elders and tribal councils discussing past earthquakes has led to a better understanding of how Alaskans view and understand earthquakes. Region-specific publications have been developed to tie in a sense of place for residents of Alaska and the Yukon. The Alaska content for IRIS's Active Earth Monitor emphasizes the widespread tectonic and seismic features and offers not just Alaska residents, but anyone interested in Alaska, a glimpse into what is going on beneath their feet. The concerted efforts of the outreach team will have lasting effects on Alaskan and Canadian understanding of the seismic hazard and

  12. Spatiotemporal remote sensing of ecosystem change and causation across Alaska.

    Science.gov (United States)

    Pastick, Neal J; Jorgenson, M Torre; Goetz, Scott J; Jones, Benjamin M; Wylie, Bruce K; Minsley, Burke J; Genet, Hélène; Knight, Joseph F; Swanson, David K; Jorgenson, Janet C

    2018-05-28

    Contemporary climate change in Alaska has resulted in amplified rates of press and pulse disturbances that drive ecosystem change with significant consequences for socio-environmental systems. Despite the vulnerability of Arctic and boreal landscapes to change, little has been done to characterize landscape change and associated drivers across northern high-latitude ecosystems. Here we characterize the historical sensitivity of Alaska's ecosystems to environmental change and anthropogenic disturbances using expert knowledge, remote sensing data, and spatiotemporal analyses and modeling. Time-series analysis of moderate-and high-resolution imagery was used to characterize land- and water-surface dynamics across Alaska. Some 430,000 interpretations of ecological and geomorphological change were made using historical air photos and satellite imagery, and corroborate land-surface greening, browning, and wetness/moisture trend parameters derived from peak-growing season Landsat imagery acquired from 1984 to 2015. The time series of change metrics, together with climatic data and maps of landscape characteristics, were incorporated into a modeling framework for mapping and understanding of drivers of change throughout Alaska. According to our analysis, approximately 13% (~174,000 ± 8700 km 2 ) of Alaska has experienced directional change in the last 32 years (±95% confidence intervals). At the ecoregions level, substantial increases in remotely sensed vegetation productivity were most pronounced in western and northern foothills of Alaska, which is explained by vegetation growth associated with increasing air temperatures. Significant browning trends were largely the result of recent wildfires in interior Alaska, but browning trends are also driven by increases in evaporative demand and surface-water gains that have predominately occurred over warming permafrost landscapes. Increased rates of photosynthetic activity are associated with stabilization and recovery

  13. On the climate and climate change of Sitka, Southeast Alaska

    Science.gov (United States)

    Wendler, Gerd; Galloway, Kevin; Stuefer, Martin

    2016-10-01

    Sitka, located in southeastern coastal Alaska, is the only meteorological station in Alaska and northern coastal British Columbia, with a long climatological record, going back to the first half of the nineteenth century. Sitka was the capital of Alaska, when it was part of the Russian Empire, to which Alaska belonged until 1867, when the American government purchased it. In 1827, the Russian established an observatory on Baranof Island, Sitka Harbor, which made 17-hourly observations, later extended to 19 and thereafter to all hours of the day. When analyzing the data, the 12-day time difference between the Russian (Julian) calendar, at which the observations were made, and ours (Gregorian) has to be considered. The climate of Sitka is maritime, with relative warm winter temperatures—there is no month with a mean temperature below freezing—and moderately warm summer temperatures with 4 months above the 10 °C level and plentiful precipitation all-year long. It is the warmest zone of Alaska. Even though there is a substantial break in observations in the late nineteenth century, these are the only observation, which started so early in the nineteenth century. Systematic US-based observations commenced much later normally in connection with the gold rush, whaling in Northern Alaska, and the fur trade, predominantly along the Yukon River. During the 186 years of observations from 1827 to 2013, the best linear fit gave a temperature increase of 1.56 °C for the whole period or 0.86 °C per century, somewhat lower than expected for the relatively high latitudes. The increase was nonlinear, with several multi-decadal variations. However, when comparing the first normal (1831-1860) to the last normal (1981-2010) and assuming a linear trend, a higher value of 1.06 °C per century was calculated. The discrepancy might be explained by nonlinearity and the fact that during the late nineteenth and early twentieth centuries, observations were sporadic. Furthermore, the

  14. Stream network geomorphology mediates predicted vulnerability of anadromous fish habitat to hydrologic change in southeast Alaska.

    Science.gov (United States)

    Sloat, Matthew R; Reeves, Gordon H; Christiansen, Kelly R

    2017-02-01

    In rivers supporting Pacific salmon in southeast Alaska, USA, regional trends toward a warmer, wetter climate are predicted to increase mid- and late-21st-century mean annual flood size by 17% and 28%, respectively. Increased flood size could alter stream habitats used by Pacific salmon for reproduction, with negative consequences for the substantial economic, cultural, and ecosystem services these fish provide. We combined field measurements and model simulations to estimate the potential influence of future flood disturbance on geomorphic processes controlling the quality and extent of coho, chum, and pink salmon spawning habitat in over 800 southeast Alaska watersheds. Spawning habitat responses varied widely across watersheds and among salmon species. Little variation among watersheds in potential spawning habitat change was explained by predicted increases in mean annual flood size. Watershed response diversity was mediated primarily by topographic controls on stream channel confinement, reach-scale geomorphic associations with spawning habitat preferences, and complexity in the pace and mode of geomorphic channel responses to altered flood size. Potential spawning habitat loss was highest for coho salmon, which spawn over a wide range of geomorphic settings, including steeper, confined stream reaches that are more susceptible to streambed scour during high flows. We estimated that 9-10% and 13-16% of the spawning habitat for coho salmon could be lost by the 2040s and 2080s, respectively, with losses occurring primarily in confined, higher-gradient streams that provide only moderate-quality habitat. Estimated effects were lower for pink and chum salmon, which primarily spawn in unconfined floodplain streams. Our results illustrate the importance of accounting for valley and reach-scale geomorphic features in watershed assessments of climate vulnerability, especially in topographically complex regions. Failure to consider the geomorphic context of stream

  15. 76 FR 15826 - Fisheries of the Exclusive Economic Zone Off Alaska; Gulf of Alaska License Limitation Program

    Science.gov (United States)

    2011-03-22

    ... Islands (AI); Southeast Outside District (SEO); Central Gulf of Alaska (CG), which includes the West... LLP licenses could resume fishing under the licenses in the future and thereby adversely affect active... BS or AI regulatory areas because a Pacific cod endorsement requirement has already been established...

  16. 75 FR 43118 - Fisheries of the Exclusive Economic Zone Off Alaska; Gulf of Alaska License Limitation Program

    Science.gov (United States)

    2010-07-23

    ...: The Bering Sea (BS), Aleutian Islands (AI); Southeast Outside District (SEO); Central Gulf of Alaska... holders of latent fixed-gear endorsed LLP licenses could resume fishing under the licenses in the future... how fishery effort may shift in the future, but a large number of latent LLP licenses do exist, and...

  17. 75 FR 11749 - Fisheries of the Exclusive Economic Zone Off Alaska; Gulf of Alaska; Final 2010 and 2011 Harvest...

    Science.gov (United States)

    2010-03-12

    ...: Effective at 1200 hrs, Alaska local time (A.l.t.), March 12, 2010, through 2400 hrs, A.l.t., December 31...). The apportionment of TAC amounts among gear types, processing sectors, and seasons is discussed below... data reflecting catch-per-unit-effort provides rational input for stock distribution assessments. NMFS...

  18. 75 FR 76352 - Fisheries of the Exclusive Economic Zone Off Alaska; Gulf of Alaska; Proposed 2011 and 2012...

    Science.gov (United States)

    2010-12-08

    ... season (July 1-September 1) deep-water category halibut PSC apportionment. At this time, this amount is... through a single source such as the Alaska Fisheries Information Network. The development of this data... information is currently available and will be incorporated into the final 2010 SAFE report, the development...

  19. Metallogenesis and tectonics of the Russian Far East, Alaska, and the Canadian Cordillera

    Science.gov (United States)

    Nokleberg, Warren J.; Bundtzen, Thomas K.; Eremin, Roman A.; Ratkin, Vladimir V.; Dawson, Kenneth M.; Shpikerman, Vladimir I.; Goryachev, Nikolai A.; Byalobzhesky, Stanislav G.; Frolov, Yuri F.; Khanchuk, Alexander I.; Koch, Richard D.; Monger, James W.H.; Pozdeev, Anany I.; Rozenblum, Ilya S.; Rodionov, Sergey M.; Parfenov, Leonid M.; Scotese, Christopher R.; Sidorov, Anatoly A.

    2005-01-01

    The Proterozoic and Phanerozoic metallogenic and tectonic evolution of the Russian Far East, Alaska, and the Canadian Cordillera is recorded in the cratons, craton margins, and orogenic collages of the Circum-North Pacific mountain belts that separate the North Pacific from the eastern North Asian and western North American Cratons. The collages consist of tectonostratigraphic terranes and contained metallogenic belts, which are composed of fragments of igneous arcs, accretionary-wedge and subduction-zone complexes, passive continental margins, and cratons. The terranes are overlapped by continental-margin-arc and sedimentary-basin assemblages and contained metallogenic belts. The metallogenic and geologic history of terranes, overlap assemblages, cratons, and craton margins has been complicated by postaccretion dismemberment and translation during strike-slip faulting that occurred subparallel to continental margins. Seven processes overlapping in time were responsible for most of metallogenic and geologic complexities of the region (1) In the Early and Middle Proterozoic, marine sedimentary basins developed on major cratons and were the loci for ironstone (Superior Fe) deposits and sediment-hosted Cu deposits that occur along both the North Asia Craton and North American Craton Margin. (2) In the Late Proterozoic, Late Devonian, and Early Carboniferous, major periods of rifting occurred along the ancestral margins of present-day Northeast Asia and northwestern North America. The rifting resulted in fragmentation of each continent, and formation of cratonal and passive continental-margin terranes that eventually migrated and accreted to other sites along the evolving margins of the original or adjacent continents. The rifting also resulted in formation of various massive-sulfide metallogenic belts. (3) From about the late Paleozoic through the mid-Cretaceous, a succession of island arcs and contained igneous-arc-related metallogenic belts and tectonically paired

  20. Biodegradation of Alaska North Slope crude oil enhanced by commercial bioremediation agents

    International Nuclear Information System (INIS)

    Aldrett, S.; Bonner, J.S.; Mills, M.A.; McDonald, T.J.; Autenrieth, R.L.

    1996-01-01

    The biodegradation of crude oil was studied. Tests were conducted in which natural unpolluted seawater was collected and then contaminated with Alaska North Slope crude oil. The oil was weathered by heating it to 521 degrees F to remove the light-end hydrocarbons. A total of 13 different bioremediation agents were tested, each one separately. Three samples per treatment were destructively analysed for petroleum chemistry. The thirteen treatments were analyzed for oil and grease. It was found that microbial degradation of petroleum hydrocarbons was enhanced by the addition of bioremediation agents, but it was not possible to identify the intermediate products responsible for the increase of resolved petroleum hydrocarbons through time. It was suggested that caution be used when interpreting results since the protocols used to test the products were prone to uncontrollable variations. 11 refs., 5 tabs., 6 figs

  1. Increasing Insect Reactions in Alaska: Is this Related to Changing Climate?

    OpenAIRE

    Jeffrey Demain; Bradford Gessner; Joseph McLaughlin; Derek Sikes; Timothy Foote

    2008-01-01

    During the summer of 2006, Fairbanks Alaska experienced its first two known cases of fatal anaphylaxis as a result of Hymenoptera stings, presumably from yellowjackets. An increase in insect bites and stings has been observed throughout the state.Has there been an increased incidence of medical visits due to insect bites and stings in Alaska in recent years? We conducted a retrospective review of three independent patient databases in Alaska to identify trends of patients seeking medical care...

  2. Aeolian stratigraphy describes ice-age paleoenvironments in unglaciated Arctic Alaska

    Science.gov (United States)

    Gaglioti, Benjamin V.; Mann, Daniel H.; Groves, Pamela; Kunz, Michael L.; Farquharson, Louise M.; Reanier, Richard E.; Jones, Benjamin M.; Wooller, Matthew J.

    2018-02-01

    Terrestrial paleoenvironmental records with high dating resolution extending into the last ice age are rare from the western Arctic. Such records can test the synchronicity and extent of ice-age climatic events and define how Arctic landscapes respond to rapid climate changes. Here we describe the stratigraphy and sedimentology of a yedoma deposit in Arctic Alaska (the Carter Section) dating to between 37,000 and 9000 calibrated radiocarbon years BP (37-9 ka) and containing detailed records of loess and sand-sheet sedimentation, soil development, carbon storage, and permafrost dynamics. Alternation between sand-sheet and loess deposition provides a proxy for the extent and activity of the Ikpikpuk Sand Sea (ISS), a large dune field located immediately upwind. Warm, moist interstadial times (ca. 37, 36.3-32.5, and 15-13 ka) triggered floodplain aggradation, permafrost thaw, reduced loess deposition, increased vegetation cover, and rapid soil development accompanied by enhanced carbon storage. During the Last Glacial Maximum (LGM, ca. 28-18 ka), rapid loess deposition took place on a landscape where vegetation was sparse and non-woody. The most intense aeolian activity occurred after the LGM between ca. 18 and 15 ka when sand sheets fringing the ISS expanded over the site, possibly in response to increasingly droughty conditions as summers warmed and active layers deepened. With the exception of this lagged LGM response, the record of aeolian activity at the Carter Section correlates with other paleoenvironmental records from unglaciated Siberia and Alaska. Overall, rapid shifts in geomorphology, soils, vegetation, and permafrost portray an ice-age landscape where, in contrast to the Holocene, environmental change was chronic and dominated by aeolian processes.

  3. Blood politics, ethnic identity, and racial misclassification among American Indians and Alaska Natives.

    Science.gov (United States)

    Haozous, Emily A; Strickland, Carolyn J; Palacios, Janelle F; Solomon, Teshia G Arambula

    2014-01-01

    Misclassification of race in medical and mortality records has long been documented as an issue in American Indian/Alaska Native data. Yet, little has been shared in a cohesive narrative which outlines why misclassification of American Indian/Alaska Native identity occurs. The purpose of this paper is to provide a summary of the current state of the science in racial misclassification among American Indians and Alaska Natives. We also provide a historical context on the importance of this problem and describe the ongoing political processes that both affect racial misclassification and contribute to the context of American Indian and Alaska Native identity.

  4. Pre-ABoVE: Arctic Alaska Vegetation, Geobotanical, Physiographic Data, 1993-2005

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set provides the spatial distributions of vegetation types, geobotanical characteristics, and physiographic features for the Arctic tundra region of Alaska...

  5. Tribal implementation of a patient-centred medical home model in Alaska accompanied by decreased hospital use

    Directory of Open Access Journals (Sweden)

    Janet M. Johnston

    2013-08-01

    Full Text Available Background. Between 1995 and 1998, tribally owned Southcentral Foundation (SCF incrementally assumed responsibility from the Indian Health Service (IHS for primary care services on the Alaska Native Medical Center (ANMC campus in Anchorage, Alaska. In 1999, SCF began implementing components of a Patient-Centered Medical Home (PCMH model to improve access and continuity of care. Objective. To evaluate hospitalisation trends before, during and after PCMH implementation. Design. Time series analysis of aggregated medical record data. Methods. Regression analysis with correlated errors was used to estimate trends over time for the percent of customer-owners hospitalised overall and for specific conditions during 4 time periods (March 1996–July 1999: SCF assumes responsibility for primary care; August 1999–July 2000: PCMH implementation starts; August 2000–April 2005: early post-PCMH implementation; May 2005–December 2009: later post-PCMH implementation. Analysis was restricted to individuals residing in Southcentral Alaska and receiving health care at ANMC. Results. The percent of SCF customer-owners hospitalised per month for any reason was steady before and during PCMH implementation, declined steadily immediately following implementation and subsequently stabilised. The percent hospitalised per month for unintentional injury or poisoning also declined during and after the PCMH implementation. Among adult asthma patients, the percent hospitalised annually for asthma declined prior to and during implementation and remained lower thereafter. The percent of heart failure patients hospitalised annually for heart failure remained relatively constant throughout the study period while the percent of hypertension patients hospitalised for hypertension shifted higher between 1999 and 2002 compared to earlier and later years. Conclusion. Implementation of PCMH at SCF was accompanied by decreases in the percent of customer-owners hospitalised monthly

  6. juneau_ak_8_15s.grd

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NGDC builds and distributes high-resolution, coastal digital elevation models (DEMs) that integrate ocean bathymetry and land topography to support NOAA's mission to...

  7. Environmental Limits of Tall Shrubs in Alaska's Arctic National Parks.

    Science.gov (United States)

    Swanson, David K

    2015-01-01

    We sampled shrub canopy volume (height times area) and environmental factors (soil wetness, soil depth of thaw, soil pH, mean July air temperature, and typical date of spring snow loss) on 471 plots across five National Park Service units in northern Alaska. Our goal was to determine the environments where tall shrubs thrive and use this information to predict the location of future shrub expansion. The study area covers over 80,000 km2 and has mostly tundra vegetation. Large canopy volumes were uncommon, with volumes over 0.5 m3/m2 present on just 8% of plots. Shrub canopy volumes were highest where mean July temperatures were above 10.5°C and on weakly acid to neutral soils (pH of 6 to 7) with deep summer thaw (>80 cm) and good drainage. On many sites, flooding helped maintain favorable soil conditions for shrub growth. Canopy volumes were highest where the typical snow loss date was near 20 May; these represent sites that are neither strongly wind-scoured in the winter nor late to melt from deep snowdrifts. Individual species varied widely in the canopy volumes they attained and their response to the environmental factors. Betula sp. shrubs were the most common and quite tolerant of soil acidity, cold July temperatures, and shallow thaw depths, but they did not form high-volume canopies under these conditions. Alnus viridis formed the largest canopies and was tolerant of soil acidity down to about pH 5, but required more summer warmth (over 12°C) than the other species. The Salix species varied widely from S. pulchra, tolerant of wet and moderately acid soils, to S. alaxensis, requiring well-drained soils with near neutral pH. Nearly half of the land area in ARCN has mean July temperatures of 10.5 to 12.5°C, where 2°C of warming would bring temperatures into the range needed for all of the potential tall shrub species to form large canopies. However, limitations in the other environmental factors would probably prevent the formation of large shrub canopies

  8. Environmental Limits of Tall Shrubs in Alaska's Arctic National Parks.

    Directory of Open Access Journals (Sweden)

    David K Swanson

    Full Text Available We sampled shrub canopy volume (height times area and environmental factors (soil wetness, soil depth of thaw, soil pH, mean July air temperature, and typical date of spring snow loss on 471 plots across five National Park Service units in northern Alaska. Our goal was to determine the environments where tall shrubs thrive and use this information to predict the location of future shrub expansion. The study area covers over 80,000 km2 and has mostly tundra vegetation. Large canopy volumes were uncommon, with volumes over 0.5 m3/m2 present on just 8% of plots. Shrub canopy volumes were highest where mean July temperatures were above 10.5°C and on weakly acid to neutral soils (pH of 6 to 7 with deep summer thaw (>80 cm and good drainage. On many sites, flooding helped maintain favorable soil conditions for shrub growth. Canopy volumes were highest where the typical snow loss date was near 20 May; these represent sites that are neither strongly wind-scoured in the winter nor late to melt from deep snowdrifts. Individual species varied widely in the canopy volumes they attained and their response to the environmental factors. Betula sp. shrubs were the most common and quite tolerant of soil acidity, cold July temperatures, and shallow thaw depths, but they did not form high-volume canopies under these conditions. Alnus viridis formed the largest canopies and was tolerant of soil acidity down to about pH 5, but required more summer warmth (over 12°C than the other species. The Salix species varied widely from S. pulchra, tolerant of wet and moderately acid soils, to S. alaxensis, requiring well-drained soils with near neutral pH. Nearly half of the land area in ARCN has mean July temperatures of 10.5 to 12.5°C, where 2°C of warming would bring temperatures into the range needed for all of the potential tall shrub species to form large canopies. However, limitations in the other environmental factors would probably prevent the formation of large

  9. 75 FR 48298 - Groundfish Fisheries of the Exclusive Economic Zone Off Alaska; Bering Sea/Aleutian Islands Crab...

    Science.gov (United States)

    2010-08-10

    ... exclusion memorandum may be obtained from the Alaska Region website at http://alaskafisheries.noaa.gov... 680-SHELLFISH FISHERIES OF THE EXCLUSIVE ECONOMIC ZONE OFF ALASKA 1. The authority citation for part...

  10. Geologic map of the Big Delta B-2 quadrangle, east-central Alaska

    Science.gov (United States)

    Day, Warren C.; Aleinikoff, John N.; Roberts, Paul; Smith, Moira; Gamble, Bruce M.; Henning, Mitchell W.; Gough, Larry P.; Morath, Laurie C.

    2003-01-01

    New 1:63,360-scale geologic mapping of the Big Delta B-2 quadrangle provides important data on the structural setting and age of geologic units, as well as on the timing of gold mineralization plutonism within the Yukon-Tanana Upland of east-central Alaska. Gold exploration has remained active throughout the region in response to the discovery of the Pogo gold deposit, which lies within the northwestern part of the quadrangle near the south bank of the Goodpaster River. Geologic mapping and associated geochronological and geochemical studies by the U.S. Geological Survey (USGS) and the Alaska Department of Natural Resources, Division of Mining and Water Management, provide baseline data to help understand the regional geologic framework. Teck Cominco Limited geologists have provided the geologic mapping for the area that overlies the Pogo gold deposit as well as logistical support, which has lead to a much improved and informative product. The Yukon-Tanana Upland lies within the Tintina province in Alaska and consists of Paleozoic and possibly older(?) supracrustal rocks intruded by Paleozoic (Devonian to Mississippian) and Cretaceous plutons. The oldest rocks in the Big Delta B-2 quadrangle are Paleozoic gneisses of both plutonic and sedimentary origin. Paleozoic deformation, potentially associated with plutonism, was obscured by intense Mesozoic deformation and metamorphism. At least some of the rocks in the quadrangle underwent tectonism during the Middle Jurassic (about 188 Ma), and were subsequently deformed in an Early Cretaceous contractional event between about 130 and 116 Ma. New U-Pb SHRIMP data presented here on zircons from the Paleozoic biotite gneisses record inherited cores that range from 363 Ma to about 2,130 Ma and have rims of euhedral Early Cretaceous metamorphic overgrowths (116 +/- 4 Ma), interpreted to record recrystallization during Cretaceous west-northwest-directed thrusting and folding. U-Pb SHRIMP dating of monazite from a Paleozoic

  11. Changes in forest productivity across Alaska consistent with biome shift.

    Science.gov (United States)

    Beck, Pieter S A; Juday, Glenn P; Alix, Claire; Barber, Valerie A; Winslow, Stephen E; Sousa, Emily E; Heiser, Patricia; Herriges, James D; Goetz, Scott J

    2011-04-01

    Global vegetation models predict that boreal forests are particularly sensitive to a biome shift during the 21st century. This shift would manifest itself first at the biome's margins, with evergreen forest expanding into current tundra while being replaced by grasslands or temperate forest at the biome's southern edge. We evaluated changes in forest productivity since 1982 across boreal Alaska by linking satellite estimates of primary productivity and a large tree-ring data set. Trends in both records show consistent growth increases at the boreal-tundra ecotones that contrast with drought-induced productivity declines throughout interior Alaska. These patterns support the hypothesized effects of an initiating biome shift. Ultimately, tree dispersal rates, habitat availability and the rate of future climate change, and how it changes disturbance regimes, are expected to determine where the boreal biome will undergo a gradual geographic range shift, and where a more rapid decline. © 2011 Blackwell Publishing Ltd/CNRS.

  12. Subsurface temperatures and geothermal gradients on the North Slope, Alaska

    Science.gov (United States)

    Collett, Timothy S.; Bird, Kenneth J.; Magoon, Leslie B.

    1989-01-01

    Geothermal gradients as interpreted from a series of high-resolution stabilized well-bore-temperature surveys from 46 North Slope, Alaska, wells vary laterally and vertically throughout the near-surface sediment (0-2,000 m). The data from these surveys have been used in conjunction with depths of ice-bearing permafrost, as interpreted from 102 well logs, to project geothermal gradients within and below the ice-bearing permafrost sequence. The geothermal gradients calculated from the projected temperature profiles are similar to the geothermal gradients measured in the temperature surveys. Measured and projected geothermal gradients in the ice-bearing permafrost sequence range from 1.5??C/100m in the Prudhoe Bay area to 5.1??C/100m in the National Petroleum Reserve in Alaska (NPRA).

  13. Surficial geologic map of the Dillingham quadrangle, southwestern Alaska

    Science.gov (United States)

    Wilson, Frederic H.

    2018-05-14

    The geologic map of the Dillingham quadrangle in southwestern Alaska shows surficial unconsolidated deposits, many of which are alluvial or glacial in nature. The map area, part of Alaska that was largely not glaciated during the late Wisconsin glaciation, has a long history reflecting local and more distant glaciations. Late Wisconsin glacial deposits have limited extent in the eastern part of the quadrangle, but are quite extensive in the western part of the quadrangle. This map and accompanying digital files are the result of the interpretation of black and white aerial photographs from the 1950s as well as more modern imagery. Limited new field mapping in the area was conducted as part of a bedrock mapping project in the northeastern part of the quadrangle; however, extensive aerial photographic interpretation represents the bulk of the mapping effort.

  14. Global climate model performance over Alaska and Greenland

    DEFF Research Database (Denmark)

    Walsh, John E.; Chapman, William L.; Romanovsky, Vladimir

    2008-01-01

    The performance of a set of 15 global climate models used in the Coupled Model Intercomparison Project is evaluated for Alaska and Greenland, and compared with the performance over broader pan-Arctic and Northern Hemisphere extratropical domains. Root-mean-square errors relative to the 1958...... to narrowing the uncertainty and obtaining more robust estimates of future climate change in regions such as Alaska, Greenland, and the broader Arctic....... of the models are generally much larger than the biases of the composite output, indicating that the systematic errors differ considerably among the models. There is a tendency for the models with smaller errors to simulate a larger greenhouse warming over the Arctic, as well as larger increases of Arctic...

  15. Development of a unified federal/state coastal/inland oil and hazardous substance contingency plan for the state of Alaska

    International Nuclear Information System (INIS)

    Lautenberger, C.; Pearson, L.

    1993-01-01

    Passage of the US Oil Pollution Act (OPA) of 1990 expanded the existing federal planning and response framework in several ways. The OPA created a new requirement for facility and tank vessel response plans and creates an area-level planning and coordination structure to help supplement federal, regional, and local planning efforts. The OPA amended the existing Clean Water Act's section 311(j)(4), which establishes area committees and area contingency plans as primary components of this structure. In 1980, the Alaska legislature enacted legislation which defines the state's policies regarding oil spills. Following the 1989 Exxon Valdez spill, additional legislation was passed to expand and strengthen the state's oil spill program. Specifically, in 1989 the Senate Bill 261 required the Alaska Department of Environmental Conservation to develop, annually review, and revise the State Oil and Hazardous Substance Contingency Plans (State Master and Regional Plans). State regional plans serve as annexes to the State Master Plan. The coordinated and cooperative efforts by government agencies and local entities toward creating a unified federal/state, coastal/inland Oil and Hazardous Substance Contingency Plan are presented, along with the development and progress of unified area/regional contingency plans for Alaska. 3 figs

  16. Numerical modeling of the 1964 Alaska tsunami in western Passage Canal and Whittier, Alaska

    Directory of Open Access Journals (Sweden)

    D. J. Nicolsky

    2010-12-01

    Full Text Available A numerical model of the wave dynamics in Passage Canal, Alaska during the Mw 9.2 megathrust earthquake is presented. During the earthquake, several types of waves were identified at the city of Whittier, located at the head of Passage Canal. The first wave is thought to have been a seiche, while the other two waves were probably triggered by submarine landslides. We model the seiche wave, landslide-generated tsunami, and tectonic tsunami in Passage Canal and compute inundation by each type of wave during the 1964 event. Modeled results are compared with eyewitness reports and an observed inundation line. Results of the numerical experiments let us identify where the submarine landslides might have occurred during the 1964 event. We identify regions at the head and along the northern shore of Passage Canal, where landslides triggered a wave that caused most of the damage in Whittier. An explanation of the fact that the 1964 tectonic tsunami in Whittier was unnoticed is presented as well. The simulated inundation by the seiche, landslide-generated tsunami, and tectonic tsunami can help to mitigate tsunami hazards and prepare Whittier for a potential tsunami.

  17. Updating the USGS seismic hazard maps for Alaska

    Science.gov (United States)

    Mueller, Charles; Briggs, Richard; Wesson, Robert L.; Petersen, Mark D.

    2015-01-01

    The U.S. Geological Survey makes probabilistic seismic hazard maps and engineering design maps for building codes, emergency planning, risk management, and many other applications. The methodology considers all known earthquake sources with their associated magnitude and rate distributions. Specific faults can be modeled if slip-rate or recurrence information is available. Otherwise, areal sources are developed from earthquake catalogs or GPS data. Sources are combined with ground-motion estimates to compute the hazard. The current maps for Alaska were developed in 2007, and included modeled sources for the Alaska-Aleutian megathrust, a few crustal faults, and areal seismicity sources. The megathrust was modeled as a segmented dipping plane with segmentation largely derived from the slip patches of past earthquakes. Some megathrust deformation is aseismic, so recurrence was estimated from seismic history rather than plate rates. Crustal faults included the Fairweather-Queen Charlotte system, the Denali–Totschunda system, the Castle Mountain fault, two faults on Kodiak Island, and the Transition fault, with recurrence estimated from geologic data. Areal seismicity sources were developed for Benioff-zone earthquakes and for crustal earthquakes not associated with modeled faults. We review the current state of knowledge in Alaska from a seismic-hazard perspective, in anticipation of future updates of the maps. Updated source models will consider revised seismicity catalogs, new information on crustal faults, new GPS data, and new thinking on megathrust recurrence, segmentation, and geometry. Revised ground-motion models will provide up-to-date shaking estimates for crustal earthquakes and subduction earthquakes in Alaska.

  18. Ocean acidification risk assessment for Alaska's fishery sector

    Science.gov (United States)

    Mathis, J. T.; Cooley, S. R.; Lucey, N.; Colt, S.; Ekstrom, J.; Hurst, T.; Hauri, C.; Evans, W.; Cross, J. N.; Feely, R. A.

    2015-08-01

    The highly productive fisheries of Alaska are located in seas projected to experience strong global change, including rapid transitions in temperature and ocean acidification-driven changes in pH and other chemical parameters. Many of the marine organisms that are most intensely affected by ocean acidification (OA) contribute substantially to the state's commercial fisheries and traditional subsistence way of life. Prior studies of OA's potential impacts on human communities have focused only on possible direct economic losses from specific scenarios of human dependence on commercial harvests and damages to marine species. However, other economic and social impacts, such as changes in food security or livelihoods, are also likely to result from climate change. This study evaluates patterns of dependence on marine resources within Alaska that could be negatively impacted by OA and current community characteristics to assess the potential risk to the fishery sector from OA. Here, we used a risk assessment framework based on one developed by the Intergovernmental Panel on Climate Change to analyze earth-system global ocean model hindcasts and projections of ocean chemistry, fisheries harvest data, and demographic information. The fisheries examined were: shellfish, salmon and other finfish. The final index incorporates all of these data to compare overall risk among Alaska's federally designated census areas. The analysis showed that regions in southeast and southwest Alaska that are highly reliant on fishery harvests and have relatively lower incomes and employment alternatives likely face the highest risk from OA. Although this study is an intermediate step toward our full understanding, the results presented here show that OA merits consideration in policy planning, as it may represent another challenge to Alaskan communities, some of which are already under acute socio-economic strains.

  19. Timber resource statistics for the Yakataga inventory unit, Alaska, 1976.

    Science.gov (United States)

    Willem W.S. van Hees

    1985-01-01

    Statistics on forest area, total gross and net timber volumes, and annual net growth and mortality are presented from the 1976 timber inventory of the Yakataga unit, Alaska. Timberland area is estimated at 209.3 thousand acres (84.7 thousand ha), net growing stock volume at 917.1 million cubic feet (26.0 million m3), and annual net growth and...

  20. Agro-climate Projections for a Warming Alaska

    Science.gov (United States)

    Lader, R.; Walsh, J. E.; Bhatt, U. S.; Bieniek, P.

    2017-12-01

    In the context of greenhouse warming, agro-meteorological indices suggest widespread disruption to current food supply chains during the coming decades. Much of the western United States is projected to have more dry days, and the southern states are likely to experience greater plant heat stress. Considering these difficulties, it could become necessary for more northerly locations, including Alaska, to increase agricultural production to support local communities and offset supply shortages. This study employs multiple dynamically downscaled regional climate model simulations from the CMIP5 to investigate projected changes to agro-climate conditions across Alaska. The metric used here, the start-of-field operations index (SFO), identifies the date during which the sum of daily average temperature, starting from January 1st and excluding negative values, exceeds 200 ˚C. Using the current trajectory of greenhouse radiative forcing, RCP 8.5, this study indicates a doubling to 71,960 km2 of Alaska land area that meets the required thermal accumulation for crop production when comparing a historical period (1981-2010) to the future (2071-2100). The SFO shows a correlation coefficient of 0.91 with the independently produced green-up index for Fairbanks from 1981-2010. Among the land areas that currently reach the necessary thermal accumulation, there is a projected increase in growing season length (63-82 days), earlier date of last spring frost (28-48 days), and later date of first autumn frost (24-47 days) across the five USDA Census of Agriculture areas for Alaska. Both an average statewide decrease of annual frost days (71 fewer), and an increase in days with extreme warmth (28 more) are also projected.