WorldWideScience

Sample records for junctions interestingly bioinformatic

  1. Phylogenetic and bioinformatic analysis of gap junction-related proteins, innexins, pannexins and connexins.

    Science.gov (United States)

    Fushiki, Daisuke; Hamada, Yasuo; Yoshimura, Ryoichi; Endo, Yasuhisa

    2010-04-01

    All multi-cellular animals, including hydra, insects and vertebrates, develop gap junctions, which communicate directly with neighboring cells. Gap junctions consist of protein families called connexins in vertebrates and innexins in invertebrates. Connexins and innexins have no homology in their amino acid sequence, but both are thought to have some similar characteristics, such as a tetra-membrane-spanning structure, formation of a channel by hexamer, and transmission of small molecules (e.g. ions) to neighboring cells. Pannexins were recently identified as a homolog of innexins in vertebrate genomes. Although pannexins are thought to share the function of intercellular communication with connexins and innexins, there is little information about the relationship among these three protein families of gap junctions. We phylgenetically and bioinformatically examined these protein families and other tetra-membrane-spanning proteins using a database and three analytical softwares. The clades formed by pannexin families do not belong to the species classification but do to paralogs of each member of pannexins. Amino acid sequences of pannexins are closely related to those of innexins but less to those of connexins. These data suggest that innexins and pannexins have a common origin, but the relationship between innexins/pannexins and connexins is as slight as that of other tetra-membrane-spanning members.

  2. The Use of Next Generation Sequencing and Junction Sequence Analysis Bioinformatics to Achieve Molecular Characterization of Crops Improved Through Modern Biotechnology

    Directory of Open Access Journals (Sweden)

    David Kovalic

    2012-11-01

    Full Text Available The assessment of genetically modified (GM crops for regulatory approval currently requires a detailed molecular characterization of the DNA sequence and integrity of the transgene locus. In addition, molecular characterization is a critical component of event selection and advancement during product development. Typically, molecular characterization has relied on Southern blot analysis to establish locus and copy number along with targeted sequencing of polymerase chain reaction products spanning any inserted DNA to complete the characterization process. Here we describe the use of next generation (NexGen sequencing and junction sequence analysis bioinformatics in a new method for achieving full molecular characterization of a GM event without the need for Southern blot analysis. In this study, we examine a typical GM soybean [ (L. Merr.] line and demonstrate that this new method provides molecular characterization equivalent to the current Southern blot-based method. We also examine an event containing in vivo DNA rearrangement of multiple transfer DNA inserts to demonstrate that the new method is effective at identifying complex cases. Next generation sequencing and bioinformatics offers certain advantages over current approaches, most notably the simplicity, efficiency, and consistency of the method, and provides a viable alternative for efficiently and robustly achieving molecular characterization of GM crops.

  3. The 2016 Bioinformatics Open Source Conference (BOSC).

    Science.gov (United States)

    Harris, Nomi L; Cock, Peter J A; Chapman, Brad; Fields, Christopher J; Hokamp, Karsten; Lapp, Hilmar; Muñoz-Torres, Monica; Wiencko, Heather

    2016-01-01

    Message from the ISCB: The Bioinformatics Open Source Conference (BOSC) is a yearly meeting organized by the Open Bioinformatics Foundation (OBF), a non-profit group dedicated to promoting the practice and philosophy of Open Source software development and Open Science within the biological research community. BOSC has been run since 2000 as a two-day Special Interest Group (SIG) before the annual ISMB conference. The 17th annual BOSC ( http://www.open-bio.org/wiki/BOSC_2016) took place in Orlando, Florida in July 2016. As in previous years, the conference was preceded by a two-day collaborative coding event open to the bioinformatics community. The conference brought together nearly 100 bioinformatics researchers, developers and users of open source software to interact and share ideas about standards, bioinformatics software development, and open and reproducible science.

  4. When process mining meets bioinformatics

    NARCIS (Netherlands)

    Jagadeesh Chandra Bose, R.P.; Aalst, van der W.M.P.; Nurcan, S.

    2011-01-01

    Process mining techniques can be used to extract non-trivial process related knowledge and thus generate interesting insights from event logs. Similarly, bioinformatics aims at increasing the understanding of biological processes through the analysis of information associated with biological

  5. The 2015 Bioinformatics Open Source Conference (BOSC 2015).

    Science.gov (United States)

    Harris, Nomi L; Cock, Peter J A; Lapp, Hilmar; Chapman, Brad; Davey, Rob; Fields, Christopher; Hokamp, Karsten; Munoz-Torres, Monica

    2016-02-01

    The Bioinformatics Open Source Conference (BOSC) is organized by the Open Bioinformatics Foundation (OBF), a nonprofit group dedicated to promoting the practice and philosophy of open source software development and open science within the biological research community. Since its inception in 2000, BOSC has provided bioinformatics developers with a forum for communicating the results of their latest efforts to the wider research community. BOSC offers a focused environment for developers and users to interact and share ideas about standards; software development practices; practical techniques for solving bioinformatics problems; and approaches that promote open science and sharing of data, results, and software. BOSC is run as a two-day special interest group (SIG) before the annual Intelligent Systems in Molecular Biology (ISMB) conference. BOSC 2015 took place in Dublin, Ireland, and was attended by over 125 people, about half of whom were first-time attendees. Session topics included "Data Science;" "Standards and Interoperability;" "Open Science and Reproducibility;" "Translational Bioinformatics;" "Visualization;" and "Bioinformatics Open Source Project Updates". In addition to two keynote talks and dozens of shorter talks chosen from submitted abstracts, BOSC 2015 included a panel, titled "Open Source, Open Door: Increasing Diversity in the Bioinformatics Open Source Community," that provided an opportunity for open discussion about ways to increase the diversity of participants in BOSC in particular, and in open source bioinformatics in general. The complete program of BOSC 2015 is available online at http://www.open-bio.org/wiki/BOSC_2015_Schedule.

  6. Josephson junction arrays

    International Nuclear Information System (INIS)

    Bindslev Hansen, J.; Lindelof, P.E.

    1985-01-01

    In this review we intend to cover recent work involving arrays of Josephson junctions. The work on such arrays falls naturally into three main areas of interest: 1. Technical applications of Josephson junction arrays for high-frequency devices. 2. Experimental studies of 2-D model systems (Kosterlitz-Thouless phase transition, commensurate-incommensurate transition in frustrated (flux) lattices). 3. Investigations of phenomena associated with non-equilibrium superconductivity in and around Josephson junctions (with high current density). (orig./BUD)

  7. Optimized Exon-Exon Junction Library and its Application on Rodents' Brain Transcriptome Analysis

    Directory of Open Access Journals (Sweden)

    Tong-Hai Dou

    2017-05-01

    Full Text Available ABSTRACT Background: Alternative splicing (AS, which plays an important role in gene expression and functional regulation, has been analyzed on genome-scale by various bioinformatic approaches based on RNA-seq data. Compared with the huge number of studies on mouse, the AS researches approaching the rat, whose genome is intermedia between mouse and human, were still limited. To enrich the knowledge on AS events in rodents' brain, we perfomed a comprehensive analysis on four transcriptome libraries (mouse cerebrum, mouse cerebellum, rat cerebrum, and rat cerebellum, recruiting high-throughput sequencing technology. An optimized exon-exon junction library approach was introduced to adapt the longer RNA-seq reads and to improve mapping efficiency. Results: In total, 7,106 mouse genes and 2,734 rat genes were differentially expressed between cerebrum and cerebellum, while 7,125 mouse genes and 1,795 rat genes exhibited varieties on transcript variant level. Only half of the differentially expressed exon-exon junctions could be reflected at gene expression level. Functional cluster analysis showed that 32 pathways in mouse and 9 pathways in rat were significantly enriched, and 6 of them were in both. Interestingly, some differentially expressed transcript variants did not show difference on gene expression level, such as PLCβ1 and Kcnma1. Conclusion: Our work provided a case study of a novel exon-exon junction strategy to analyze the expression of genes and isoforms, helping us understand which transcript contributes to the overall expression and further functional change.

  8. Engineering bioinformatics: building reliability, performance and productivity into bioinformatics software.

    Science.gov (United States)

    Lawlor, Brendan; Walsh, Paul

    2015-01-01

    There is a lack of software engineering skills in bioinformatic contexts. We discuss the consequences of this lack, examine existing explanations and remedies to the problem, point out their shortcomings, and propose alternatives. Previous analyses of the problem have tended to treat the use of software in scientific contexts as categorically different from the general application of software engineering in commercial settings. In contrast, we describe bioinformatic software engineering as a specialization of general software engineering, and examine how it should be practiced. Specifically, we highlight the difference between programming and software engineering, list elements of the latter and present the results of a survey of bioinformatic practitioners which quantifies the extent to which those elements are employed in bioinformatics. We propose that the ideal way to bring engineering values into research projects is to bring engineers themselves. We identify the role of Bioinformatic Engineer and describe how such a role would work within bioinformatic research teams. We conclude by recommending an educational emphasis on cross-training software engineers into life sciences, and propose research on Domain Specific Languages to facilitate collaboration between engineers and bioinformaticians.

  9. Engineering bioinformatics: building reliability, performance and productivity into bioinformatics software

    Science.gov (United States)

    Lawlor, Brendan; Walsh, Paul

    2015-01-01

    There is a lack of software engineering skills in bioinformatic contexts. We discuss the consequences of this lack, examine existing explanations and remedies to the problem, point out their shortcomings, and propose alternatives. Previous analyses of the problem have tended to treat the use of software in scientific contexts as categorically different from the general application of software engineering in commercial settings. In contrast, we describe bioinformatic software engineering as a specialization of general software engineering, and examine how it should be practiced. Specifically, we highlight the difference between programming and software engineering, list elements of the latter and present the results of a survey of bioinformatic practitioners which quantifies the extent to which those elements are employed in bioinformatics. We propose that the ideal way to bring engineering values into research projects is to bring engineers themselves. We identify the role of Bioinformatic Engineer and describe how such a role would work within bioinformatic research teams. We conclude by recommending an educational emphasis on cross-training software engineers into life sciences, and propose research on Domain Specific Languages to facilitate collaboration between engineers and bioinformaticians. PMID:25996054

  10. Extending Asia Pacific bioinformatics into new realms in the "-omics" era.

    Science.gov (United States)

    Ranganathan, Shoba; Eisenhaber, Frank; Tong, Joo Chuan; Tan, Tin Wee

    2009-12-03

    The 2009 annual conference of the Asia Pacific Bioinformatics Network (APBioNet), Asia's oldest bioinformatics organisation dating back to 1998, was organized as the 8th International Conference on Bioinformatics (InCoB), Sept. 7-11, 2009 at Biopolis, Singapore. Besides bringing together scientists from the field of bioinformatics in this region, InCoB has actively engaged clinicians and researchers from the area of systems biology, to facilitate greater synergy between these two groups. InCoB2009 followed on from a series of successful annual events in Bangkok (Thailand), Penang (Malaysia), Auckland (New Zealand), Busan (South Korea), New Delhi (India), Hong Kong and Taipei (Taiwan), with InCoB2010 scheduled to be held in Tokyo, Japan, Sept. 26-28, 2010. The Workshop on Education in Bioinformatics and Computational Biology (WEBCB) and symposia on Clinical Bioinformatics (CBAS), the Singapore Symposium on Computational Biology (SYMBIO) and training tutorials were scheduled prior to the scientific meeting, and provided ample opportunity for in-depth learning and special interest meetings for educators, clinicians and students. We provide a brief overview of the peer-reviewed bioinformatics manuscripts accepted for publication in this supplement, grouped into thematic areas. In order to facilitate scientific reproducibility and accountability, we have, for the first time, introduced minimum information criteria for our pubilcations, including compliance to a Minimum Information about a Bioinformatics Investigation (MIABi). As the regional research expertise in bioinformatics matures, we have delineated a minimum set of bioinformatics skills required for addressing the computational challenges of the "-omics" era.

  11. A bioinformatics potpourri.

    Science.gov (United States)

    Schönbach, Christian; Li, Jinyan; Ma, Lan; Horton, Paul; Sjaugi, Muhammad Farhan; Ranganathan, Shoba

    2018-01-19

    The 16th International Conference on Bioinformatics (InCoB) was held at Tsinghua University, Shenzhen from September 20 to 22, 2017. The annual conference of the Asia-Pacific Bioinformatics Network featured six keynotes, two invited talks, a panel discussion on big data driven bioinformatics and precision medicine, and 66 oral presentations of accepted research articles or posters. Fifty-seven articles comprising a topic assortment of algorithms, biomolecular networks, cancer and disease informatics, drug-target interactions and drug efficacy, gene regulation and expression, imaging, immunoinformatics, metagenomics, next generation sequencing for genomics and transcriptomics, ontologies, post-translational modification, and structural bioinformatics are the subject of this editorial for the InCoB2017 supplement issues in BMC Genomics, BMC Bioinformatics, BMC Systems Biology and BMC Medical Genomics. New Delhi will be the location of InCoB2018, scheduled for September 26-28, 2018.

  12. Ferromagnetic Josephson Junctions for Cryogenic Memory

    Science.gov (United States)

    Niedzielski, Bethany M.; Gingrich, Eric C.; Khasawneh, Mazin A.; Loloee, Reza; Pratt, William P., Jr.; Birge, Norman O.

    2015-03-01

    Josephson junctions containing ferromagnetic materials are of interest for both scientific and technological purposes. In principle, either the amplitude of the critical current or superconducting phase shift across the junction can be controlled by the relative magnetization directions of the ferromagnetic layers in the junction. Our approach concentrates on phase control utilizing two junctions in a SQUID geometry. We will report on efforts to control the phase of junctions carrying either spin-singlet or spin-triplet supercurrent for cryogenic memory applications. Supported by Northorp Grumman Corporation and by IARPA under SPAWAR Contract N66001-12-C-2017.

  13. Bioinformatics education in high school: implications for promoting science, technology, engineering, and mathematics careers.

    Science.gov (United States)

    Kovarik, Dina N; Patterson, Davis G; Cohen, Carolyn; Sanders, Elizabeth A; Peterson, Karen A; Porter, Sandra G; Chowning, Jeanne Ting

    2013-01-01

    We investigated the effects of our Bio-ITEST teacher professional development model and bioinformatics curricula on cognitive traits (awareness, engagement, self-efficacy, and relevance) in high school teachers and students that are known to accompany a developing interest in science, technology, engineering, and mathematics (STEM) careers. The program included best practices in adult education and diverse resources to empower teachers to integrate STEM career information into their classrooms. The introductory unit, Using Bioinformatics: Genetic Testing, uses bioinformatics to teach basic concepts in genetics and molecular biology, and the advanced unit, Using Bioinformatics: Genetic Research, utilizes bioinformatics to study evolution and support student research with DNA barcoding. Pre-post surveys demonstrated significant growth (n = 24) among teachers in their preparation to teach the curricula and infuse career awareness into their classes, and these gains were sustained through the end of the academic year. Introductory unit students (n = 289) showed significant gains in awareness, relevance, and self-efficacy. While these students did not show significant gains in engagement, advanced unit students (n = 41) showed gains in all four cognitive areas. Lessons learned during Bio-ITEST are explored in the context of recommendations for other programs that wish to increase student interest in STEM careers.

  14. Data mining for bioinformatics applications

    CERN Document Server

    Zengyou, He

    2015-01-01

    Data Mining for Bioinformatics Applications provides valuable information on the data mining methods have been widely used for solving real bioinformatics problems, including problem definition, data collection, data preprocessing, modeling, and validation. The text uses an example-based method to illustrate how to apply data mining techniques to solve real bioinformatics problems, containing 45 bioinformatics problems that have been investigated in recent research. For each example, the entire data mining process is described, ranging from data preprocessing to modeling and result validation. Provides valuable information on the data mining methods have been widely used for solving real bioinformatics problems Uses an example-based method to illustrate how to apply data mining techniques to solve real bioinformatics problems Contains 45 bioinformatics problems that have been investigated in recent research.

  15. Nispero: a cloud-computing based Scala tool specially suited for bioinformatics data processing

    OpenAIRE

    Evdokim Kovach; Alexey Alekhin; Eduardo Pareja Tobes; Raquel Tobes; Eduardo Pareja; Marina Manrique

    2014-01-01

    Nowadays it is widely accepted that the bioinformatics data analysis is a real bottleneck in many research activities related to life sciences. High-throughput technologies like Next Generation Sequencing (NGS) have completely reshaped the biology and bioinformatics landscape. Undoubtedly NGS has allowed important progress in many life-sciences related fields but has also presented interesting challenges in terms of computation capabilities and algorithms. Many kinds of tasks related with NGS...

  16. Deep learning in bioinformatics.

    Science.gov (United States)

    Min, Seonwoo; Lee, Byunghan; Yoon, Sungroh

    2017-09-01

    In the era of big data, transformation of biomedical big data into valuable knowledge has been one of the most important challenges in bioinformatics. Deep learning has advanced rapidly since the early 2000s and now demonstrates state-of-the-art performance in various fields. Accordingly, application of deep learning in bioinformatics to gain insight from data has been emphasized in both academia and industry. Here, we review deep learning in bioinformatics, presenting examples of current research. To provide a useful and comprehensive perspective, we categorize research both by the bioinformatics domain (i.e. omics, biomedical imaging, biomedical signal processing) and deep learning architecture (i.e. deep neural networks, convolutional neural networks, recurrent neural networks, emergent architectures) and present brief descriptions of each study. Additionally, we discuss theoretical and practical issues of deep learning in bioinformatics and suggest future research directions. We believe that this review will provide valuable insights and serve as a starting point for researchers to apply deep learning approaches in their bioinformatics studies. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. Meeting review: 2002 O'Reilly Bioinformatics Technology Conference.

    Science.gov (United States)

    Counsell, Damian

    2002-01-01

    At the end of January I travelled to the States to speak at and attend the first O'Reilly Bioinformatics Technology Conference. It was a large, well-organized and diverse meeting with an interesting history. Although the meeting was not a typical academic conference, its style will, I am sure, become more typical of meetings in both biological and computational sciences.Speakers at the event included prominent bioinformatics researchers such as Ewan Birney, Terry Gaasterland and Lincoln Stein; authors and leaders in the open source programming community like Damian Conway and Nat Torkington; and representatives from several publishing companies including the Nature Publishing Group, Current Science Group and the President of O'Reilly himself, Tim O'Reilly. There were presentations, tutorials, debates, quizzes and even a 'jam session' for musical bioinformaticists.

  18. Systems Bioinformatics: increasing precision of computational diagnostics and therapeutics through network-based approaches.

    Science.gov (United States)

    Oulas, Anastasis; Minadakis, George; Zachariou, Margarita; Sokratous, Kleitos; Bourdakou, Marilena M; Spyrou, George M

    2017-11-27

    Systems Bioinformatics is a relatively new approach, which lies in the intersection of systems biology and classical bioinformatics. It focuses on integrating information across different levels using a bottom-up approach as in systems biology with a data-driven top-down approach as in bioinformatics. The advent of omics technologies has provided the stepping-stone for the emergence of Systems Bioinformatics. These technologies provide a spectrum of information ranging from genomics, transcriptomics and proteomics to epigenomics, pharmacogenomics, metagenomics and metabolomics. Systems Bioinformatics is the framework in which systems approaches are applied to such data, setting the level of resolution as well as the boundary of the system of interest and studying the emerging properties of the system as a whole rather than the sum of the properties derived from the system's individual components. A key approach in Systems Bioinformatics is the construction of multiple networks representing each level of the omics spectrum and their integration in a layered network that exchanges information within and between layers. Here, we provide evidence on how Systems Bioinformatics enhances computational therapeutics and diagnostics, hence paving the way to precision medicine. The aim of this review is to familiarize the reader with the emerging field of Systems Bioinformatics and to provide a comprehensive overview of its current state-of-the-art methods and technologies. Moreover, we provide examples of success stories and case studies that utilize such methods and tools to significantly advance research in the fields of systems biology and systems medicine. © The Author 2017. Published by Oxford University Press.

  19. Emerging strengths in Asia Pacific bioinformatics.

    Science.gov (United States)

    Ranganathan, Shoba; Hsu, Wen-Lian; Yang, Ueng-Cheng; Tan, Tin Wee

    2008-12-12

    The 2008 annual conference of the Asia Pacific Bioinformatics Network (APBioNet), Asia's oldest bioinformatics organisation set up in 1998, was organized as the 7th International Conference on Bioinformatics (InCoB), jointly with the Bioinformatics and Systems Biology in Taiwan (BIT 2008) Conference, Oct. 20-23, 2008 at Taipei, Taiwan. Besides bringing together scientists from the field of bioinformatics in this region, InCoB is actively involving researchers from the area of systems biology, to facilitate greater synergy between these two groups. Marking the 10th Anniversary of APBioNet, this InCoB 2008 meeting followed on from a series of successful annual events in Bangkok (Thailand), Penang (Malaysia), Auckland (New Zealand), Busan (South Korea), New Delhi (India) and Hong Kong. Additionally, tutorials and the Workshop on Education in Bioinformatics and Computational Biology (WEBCB) immediately prior to the 20th Federation of Asian and Oceanian Biochemists and Molecular Biologists (FAOBMB) Taipei Conference provided ample opportunity for inducting mainstream biochemists and molecular biologists from the region into a greater level of awareness of the importance of bioinformatics in their craft. In this editorial, we provide a brief overview of the peer-reviewed manuscripts accepted for publication herein, grouped into thematic areas. As the regional research expertise in bioinformatics matures, the papers fall into thematic areas, illustrating the specific contributions made by APBioNet to global bioinformatics efforts.

  20. BioShaDock: a community driven bioinformatics shared Docker-based tools registry.

    Science.gov (United States)

    Moreews, François; Sallou, Olivier; Ménager, Hervé; Le Bras, Yvan; Monjeaud, Cyril; Blanchet, Christophe; Collin, Olivier

    2015-01-01

    Linux container technologies, as represented by Docker, provide an alternative to complex and time-consuming installation processes needed for scientific software. The ease of deployment and the process isolation they enable, as well as the reproducibility they permit across environments and versions, are among the qualities that make them interesting candidates for the construction of bioinformatic infrastructures, at any scale from single workstations to high throughput computing architectures. The Docker Hub is a public registry which can be used to distribute bioinformatic software as Docker images. However, its lack of curation and its genericity make it difficult for a bioinformatics user to find the most appropriate images needed. BioShaDock is a bioinformatics-focused Docker registry, which provides a local and fully controlled environment to build and publish bioinformatic software as portable Docker images. It provides a number of improvements over the base Docker registry on authentication and permissions management, that enable its integration in existing bioinformatic infrastructures such as computing platforms. The metadata associated with the registered images are domain-centric, including for instance concepts defined in the EDAM ontology, a shared and structured vocabulary of commonly used terms in bioinformatics. The registry also includes user defined tags to facilitate its discovery, as well as a link to the tool description in the ELIXIR registry if it already exists. If it does not, the BioShaDock registry will synchronize with the registry to create a new description in the Elixir registry, based on the BioShaDock entry metadata. This link will help users get more information on the tool such as its EDAM operations, input and output types. This allows integration with the ELIXIR Tools and Data Services Registry, thus providing the appropriate visibility of such images to the bioinformatics community.

  1. Biggest challenges in bioinformatics.

    Science.gov (United States)

    Fuller, Jonathan C; Khoueiry, Pierre; Dinkel, Holger; Forslund, Kristoffer; Stamatakis, Alexandros; Barry, Joseph; Budd, Aidan; Soldatos, Theodoros G; Linssen, Katja; Rajput, Abdul Mateen

    2013-04-01

    The third Heidelberg Unseminars in Bioinformatics (HUB) was held on 18th October 2012, at Heidelberg University, Germany. HUB brought together around 40 bioinformaticians from academia and industry to discuss the 'Biggest Challenges in Bioinformatics' in a 'World Café' style event.

  2. Biggest challenges in bioinformatics

    OpenAIRE

    Fuller, Jonathan C; Khoueiry, Pierre; Dinkel, Holger; Forslund, Kristoffer; Stamatakis, Alexandros; Barry, Joseph; Budd, Aidan; Soldatos, Theodoros G; Linssen, Katja; Rajput, Abdul Mateen

    2013-01-01

    The third Heidelberg Unseminars in Bioinformatics (HUB) was held in October at Heidelberg University in Germany. HUB brought together around 40 bioinformaticians from academia and industry to discuss the ‘Biggest Challenges in Bioinformatics' in a ‘World Café' style event.

  3. Establishing bioinformatics research in the Asia Pacific

    Directory of Open Access Journals (Sweden)

    Tammi Martti

    2006-12-01

    Full Text Available Abstract In 1998, the Asia Pacific Bioinformatics Network (APBioNet, Asia's oldest bioinformatics organisation was set up to champion the advancement of bioinformatics in the Asia Pacific. By 2002, APBioNet was able to gain sufficient critical mass to initiate the first International Conference on Bioinformatics (InCoB bringing together scientists working in the field of bioinformatics in the region. This year, the InCoB2006 Conference was organized as the 5th annual conference of the Asia-Pacific Bioinformatics Network, on Dec. 18–20, 2006 in New Delhi, India, following a series of successful events in Bangkok (Thailand, Penang (Malaysia, Auckland (New Zealand and Busan (South Korea. This Introduction provides a brief overview of the peer-reviewed manuscripts accepted for publication in this Supplement. It exemplifies a typical snapshot of the growing research excellence in bioinformatics of the region as we embark on a trajectory of establishing a solid bioinformatics research culture in the Asia Pacific that is able to contribute fully to the global bioinformatics community.

  4. Preface to Introduction to Structural Bioinformatics

    NARCIS (Netherlands)

    Feenstra, K. Anton; Abeln, Sanne

    2018-01-01

    While many good textbooks are available on Protein Structure, Molecular Simulations, Thermodynamics and Bioinformatics methods in general, there is no good introductory level book for the field of Structural Bioinformatics. This book aims to give an introduction into Structural Bioinformatics, which

  5. Bioinformatics for whole-genome shotgun sequencing of microbial communities.

    Directory of Open Access Journals (Sweden)

    Kevin Chen

    2005-07-01

    Full Text Available The application of whole-genome shotgun sequencing to microbial communities represents a major development in metagenomics, the study of uncultured microbes via the tools of modern genomic analysis. In the past year, whole-genome shotgun sequencing projects of prokaryotic communities from an acid mine biofilm, the Sargasso Sea, Minnesota farm soil, three deep-sea whale falls, and deep-sea sediments have been reported, adding to previously published work on viral communities from marine and fecal samples. The interpretation of this new kind of data poses a wide variety of exciting and difficult bioinformatics problems. The aim of this review is to introduce the bioinformatics community to this emerging field by surveying existing techniques and promising new approaches for several of the most interesting of these computational problems.

  6. Peltier cooling in molecular junctions

    Science.gov (United States)

    Cui, Longji; Miao, Ruijiao; Wang, Kun; Thompson, Dakotah; Zotti, Linda Angela; Cuevas, Juan Carlos; Meyhofer, Edgar; Reddy, Pramod

    2018-02-01

    The study of thermoelectricity in molecular junctions is of fundamental interest for the development of various technologies including cooling (refrigeration) and heat-to-electricity conversion1-4. Recent experimental progress in probing the thermopower (Seebeck effect) of molecular junctions5-9 has enabled studies of the relationship between thermoelectricity and molecular structure10,11. However, observations of Peltier cooling in molecular junctions—a critical step for establishing molecular-based refrigeration—have remained inaccessible. Here, we report direct experimental observations of Peltier cooling in molecular junctions. By integrating conducting-probe atomic force microscopy12,13 with custom-fabricated picowatt-resolution calorimetric microdevices, we created an experimental platform that enables the unified characterization of electrical, thermoelectric and energy dissipation characteristics of molecular junctions. Using this platform, we studied gold junctions with prototypical molecules (Au-biphenyl-4,4'-dithiol-Au, Au-terphenyl-4,4''-dithiol-Au and Au-4,4'-bipyridine-Au) and revealed the relationship between heating or cooling and charge transmission characteristics. Our experimental conclusions are supported by self-energy-corrected density functional theory calculations. We expect these advances to stimulate studies of both thermal and thermoelectric transport in molecular junctions where the possibility of extraordinarily efficient energy conversion has been theoretically predicted2-4,14.

  7. COMPARISON OF POPULAR BIOINFORMATICS DATABASES

    OpenAIRE

    Abdulganiyu Abdu Yusuf; Zahraddeen Sufyanu; Kabir Yusuf Mamman; Abubakar Umar Suleiman

    2016-01-01

    Bioinformatics is the application of computational tools to capture and interpret biological data. It has wide applications in drug development, crop improvement, agricultural biotechnology and forensic DNA analysis. There are various databases available to researchers in bioinformatics. These databases are customized for a specific need and are ranged in size, scope, and purpose. The main drawbacks of bioinformatics databases include redundant information, constant change, data spread over m...

  8. Behavior of tight-junction, adherens-junction and cell polarity proteins during HNF-4α-induced epithelial polarization

    International Nuclear Information System (INIS)

    Satohisa, Seiro; Chiba, Hideki; Osanai, Makoto; Ohno, Shigeo; Kojima, Takashi; Saito, Tsuyoshi; Sawada, Norimasa

    2005-01-01

    We previously reported that expression of tight-junction molecules occludin, claudin-6 and claudin-7, as well as establishment of epithelial polarity, was triggered in mouse F9 cells expressing hepatocyte nuclear factor (HNF)-4α [H. Chiba, T. Gotoh, T. Kojima, S. Satohisa, K. Kikuchi, M. Osanai, N. Sawada. Hepatocyte nuclear factor (HNF)-4α triggers formation of functional tight junctions and establishment of polarized epithelial morphology in F9 embryonal carcinoma cells, Exp. Cell Res. 286 (2003) 288-297]. Using these cells, we examined in the present study behavior of tight-junction, adherens-junction and cell polarity proteins and elucidated the molecular mechanism behind HNF-4α-initiated junction formation and epithelial polarization. We herein show that not only ZO-1 and ZO-2, but also ZO-3, junctional adhesion molecule (JAM)-B, JAM-C and cell polarity proteins PAR-3, PAR-6 and atypical protein kinase C (aPKC) accumulate at primordial adherens junctions in undifferentiated F9 cells. In contrast, CRB3, Pals1 and PATJ appeared to exhibit distinct subcellular localization in immature cells. Induced expression of HNF-4α led to translocation of these tight-junction and cell polarity proteins to beltlike tight junctions, where occludin, claudin-6 and claudin-7 were assembled, in differentiated cells. Interestingly, PAR-6, aPKC, CRB3 and Pals1, but not PAR-3 or PATJ, were also concentrated on the apical membranes in differentiated cells. These findings indicate that HNF-4α provokes not only expression of tight-junction adhesion molecules, but also modulation of subcellular distribution of junction and cell polarity proteins, resulting in junction formation and epithelial polarization

  9. Computational biology and bioinformatics in Nigeria.

    Science.gov (United States)

    Fatumo, Segun A; Adoga, Moses P; Ojo, Opeolu O; Oluwagbemi, Olugbenga; Adeoye, Tolulope; Ewejobi, Itunuoluwa; Adebiyi, Marion; Adebiyi, Ezekiel; Bewaji, Clement; Nashiru, Oyekanmi

    2014-04-01

    Over the past few decades, major advances in the field of molecular biology, coupled with advances in genomic technologies, have led to an explosive growth in the biological data generated by the scientific community. The critical need to process and analyze such a deluge of data and turn it into useful knowledge has caused bioinformatics to gain prominence and importance. Bioinformatics is an interdisciplinary research area that applies techniques, methodologies, and tools in computer and information science to solve biological problems. In Nigeria, bioinformatics has recently played a vital role in the advancement of biological sciences. As a developing country, the importance of bioinformatics is rapidly gaining acceptance, and bioinformatics groups comprised of biologists, computer scientists, and computer engineers are being constituted at Nigerian universities and research institutes. In this article, we present an overview of bioinformatics education and research in Nigeria. We also discuss professional societies and academic and research institutions that play central roles in advancing the discipline in Nigeria. Finally, we propose strategies that can bolster bioinformatics education and support from policy makers in Nigeria, with potential positive implications for other developing countries.

  10. Computational biology and bioinformatics in Nigeria.

    Directory of Open Access Journals (Sweden)

    Segun A Fatumo

    2014-04-01

    Full Text Available Over the past few decades, major advances in the field of molecular biology, coupled with advances in genomic technologies, have led to an explosive growth in the biological data generated by the scientific community. The critical need to process and analyze such a deluge of data and turn it into useful knowledge has caused bioinformatics to gain prominence and importance. Bioinformatics is an interdisciplinary research area that applies techniques, methodologies, and tools in computer and information science to solve biological problems. In Nigeria, bioinformatics has recently played a vital role in the advancement of biological sciences. As a developing country, the importance of bioinformatics is rapidly gaining acceptance, and bioinformatics groups comprised of biologists, computer scientists, and computer engineers are being constituted at Nigerian universities and research institutes. In this article, we present an overview of bioinformatics education and research in Nigeria. We also discuss professional societies and academic and research institutions that play central roles in advancing the discipline in Nigeria. Finally, we propose strategies that can bolster bioinformatics education and support from policy makers in Nigeria, with potential positive implications for other developing countries.

  11. Establishing bioinformatics research in the Asia Pacific

    OpenAIRE

    Ranganathan, Shoba; Tammi, Martti; Gribskov, Michael; Tan, Tin Wee

    2006-01-01

    Abstract In 1998, the Asia Pacific Bioinformatics Network (APBioNet), Asia's oldest bioinformatics organisation was set up to champion the advancement of bioinformatics in the Asia Pacific. By 2002, APBioNet was able to gain sufficient critical mass to initiate the first International Conference on Bioinformatics (InCoB) bringing together scientists working in the field of bioinformatics in the region. This year, the InCoB2006 Conference was organized as the 5th annual conference of the Asia-...

  12. Generalized Centroid Estimators in Bioinformatics

    Science.gov (United States)

    Hamada, Michiaki; Kiryu, Hisanori; Iwasaki, Wataru; Asai, Kiyoshi

    2011-01-01

    In a number of estimation problems in bioinformatics, accuracy measures of the target problem are usually given, and it is important to design estimators that are suitable to those accuracy measures. However, there is often a discrepancy between an employed estimator and a given accuracy measure of the problem. In this study, we introduce a general class of efficient estimators for estimation problems on high-dimensional binary spaces, which represent many fundamental problems in bioinformatics. Theoretical analysis reveals that the proposed estimators generally fit with commonly-used accuracy measures (e.g. sensitivity, PPV, MCC and F-score) as well as it can be computed efficiently in many cases, and cover a wide range of problems in bioinformatics from the viewpoint of the principle of maximum expected accuracy (MEA). It is also shown that some important algorithms in bioinformatics can be interpreted in a unified manner. Not only the concept presented in this paper gives a useful framework to design MEA-based estimators but also it is highly extendable and sheds new light on many problems in bioinformatics. PMID:21365017

  13. Introduction to bioinformatics.

    Science.gov (United States)

    Can, Tolga

    2014-01-01

    Bioinformatics is an interdisciplinary field mainly involving molecular biology and genetics, computer science, mathematics, and statistics. Data intensive, large-scale biological problems are addressed from a computational point of view. The most common problems are modeling biological processes at the molecular level and making inferences from collected data. A bioinformatics solution usually involves the following steps: Collect statistics from biological data. Build a computational model. Solve a computational modeling problem. Test and evaluate a computational algorithm. This chapter gives a brief introduction to bioinformatics by first providing an introduction to biological terminology and then discussing some classical bioinformatics problems organized by the types of data sources. Sequence analysis is the analysis of DNA and protein sequences for clues regarding function and includes subproblems such as identification of homologs, multiple sequence alignment, searching sequence patterns, and evolutionary analyses. Protein structures are three-dimensional data and the associated problems are structure prediction (secondary and tertiary), analysis of protein structures for clues regarding function, and structural alignment. Gene expression data is usually represented as matrices and analysis of microarray data mostly involves statistics analysis, classification, and clustering approaches. Biological networks such as gene regulatory networks, metabolic pathways, and protein-protein interaction networks are usually modeled as graphs and graph theoretic approaches are used to solve associated problems such as construction and analysis of large-scale networks.

  14. Bioinformatics clouds for big data manipulation.

    Science.gov (United States)

    Dai, Lin; Gao, Xin; Guo, Yan; Xiao, Jingfa; Zhang, Zhang

    2012-11-28

    As advances in life sciences and information technology bring profound influences on bioinformatics due to its interdisciplinary nature, bioinformatics is experiencing a new leap-forward from in-house computing infrastructure into utility-supplied cloud computing delivered over the Internet, in order to handle the vast quantities of biological data generated by high-throughput experimental technologies. Albeit relatively new, cloud computing promises to address big data storage and analysis issues in the bioinformatics field. Here we review extant cloud-based services in bioinformatics, classify them into Data as a Service (DaaS), Software as a Service (SaaS), Platform as a Service (PaaS), and Infrastructure as a Service (IaaS), and present our perspectives on the adoption of cloud computing in bioinformatics. This article was reviewed by Frank Eisenhaber, Igor Zhulin, and Sandor Pongor.

  15. Bioinformatics and systems biology research update from the 15th International Conference on Bioinformatics (InCoB2016).

    Science.gov (United States)

    Schönbach, Christian; Verma, Chandra; Bond, Peter J; Ranganathan, Shoba

    2016-12-22

    The International Conference on Bioinformatics (InCoB) has been publishing peer-reviewed conference papers in BMC Bioinformatics since 2006. Of the 44 articles accepted for publication in supplement issues of BMC Bioinformatics, BMC Genomics, BMC Medical Genomics and BMC Systems Biology, 24 articles with a bioinformatics or systems biology focus are reviewed in this editorial. InCoB2017 is scheduled to be held in Shenzen, China, September 20-22, 2017.

  16. Designing XML schemas for bioinformatics.

    Science.gov (United States)

    Bruhn, Russel Elton; Burton, Philip John

    2003-06-01

    Data interchange bioinformatics databases will, in the future, most likely take place using extensible markup language (XML). The document structure will be described by an XML Schema rather than a document type definition (DTD). To ensure flexibility, the XML Schema must incorporate aspects of Object-Oriented Modeling. This impinges on the choice of the data model, which, in turn, is based on the organization of bioinformatics data by biologists. Thus, there is a need for the general bioinformatics community to be aware of the design issues relating to XML Schema. This paper, which is aimed at a general bioinformatics audience, uses examples to describe the differences between a DTD and an XML Schema and indicates how Unified Modeling Language diagrams may be used to incorporate Object-Oriented Modeling in the design of schema.

  17. Bioinformatics

    DEFF Research Database (Denmark)

    Baldi, Pierre; Brunak, Søren

    , and medicine will be particularly affected by the new results and the increased understanding of life at the molecular level. Bioinformatics is the development and application of computer methods for analysis, interpretation, and prediction, as well as for the design of experiments. It has emerged...

  18. A Quick Guide for Building a Successful Bioinformatics Community

    Science.gov (United States)

    Budd, Aidan; Corpas, Manuel; Brazas, Michelle D.; Fuller, Jonathan C.; Goecks, Jeremy; Mulder, Nicola J.; Michaut, Magali; Ouellette, B. F. Francis; Pawlik, Aleksandra; Blomberg, Niklas

    2015-01-01

    “Scientific community” refers to a group of people collaborating together on scientific-research-related activities who also share common goals, interests, and values. Such communities play a key role in many bioinformatics activities. Communities may be linked to a specific location or institute, or involve people working at many different institutions and locations. Education and training is typically an important component of these communities, providing a valuable context in which to develop skills and expertise, while also strengthening links and relationships within the community. Scientific communities facilitate: (i) the exchange and development of ideas and expertise; (ii) career development; (iii) coordinated funding activities; (iv) interactions and engagement with professionals from other fields; and (v) other activities beneficial to individual participants, communities, and the scientific field as a whole. It is thus beneficial at many different levels to understand the general features of successful, high-impact bioinformatics communities; how individual participants can contribute to the success of these communities; and the role of education and training within these communities. We present here a quick guide to building and maintaining a successful, high-impact bioinformatics community, along with an overview of the general benefits of participating in such communities. This article grew out of contributions made by organizers, presenters, panelists, and other participants of the ISMB/ECCB 2013 workshop “The ‘How To Guide’ for Establishing a Successful Bioinformatics Network” at the 21st Annual International Conference on Intelligent Systems for Molecular Biology (ISMB) and the 12th European Conference on Computational Biology (ECCB). PMID:25654371

  19. Bioinformatics clouds for big data manipulation

    Directory of Open Access Journals (Sweden)

    Dai Lin

    2012-11-01

    Full Text Available Abstract As advances in life sciences and information technology bring profound influences on bioinformatics due to its interdisciplinary nature, bioinformatics is experiencing a new leap-forward from in-house computing infrastructure into utility-supplied cloud computing delivered over the Internet, in order to handle the vast quantities of biological data generated by high-throughput experimental technologies. Albeit relatively new, cloud computing promises to address big data storage and analysis issues in the bioinformatics field. Here we review extant cloud-based services in bioinformatics, classify them into Data as a Service (DaaS, Software as a Service (SaaS, Platform as a Service (PaaS, and Infrastructure as a Service (IaaS, and present our perspectives on the adoption of cloud computing in bioinformatics. Reviewers This article was reviewed by Frank Eisenhaber, Igor Zhulin, and Sandor Pongor.

  20. Bioinformatics clouds for big data manipulation

    KAUST Repository

    Dai, Lin

    2012-11-28

    As advances in life sciences and information technology bring profound influences on bioinformatics due to its interdisciplinary nature, bioinformatics is experiencing a new leap-forward from in-house computing infrastructure into utility-supplied cloud computing delivered over the Internet, in order to handle the vast quantities of biological data generated by high-throughput experimental technologies. Albeit relatively new, cloud computing promises to address big data storage and analysis issues in the bioinformatics field. Here we review extant cloud-based services in bioinformatics, classify them into Data as a Service (DaaS), Software as a Service (SaaS), Platform as a Service (PaaS), and Infrastructure as a Service (IaaS), and present our perspectives on the adoption of cloud computing in bioinformatics.This article was reviewed by Frank Eisenhaber, Igor Zhulin, and Sandor Pongor. 2012 Dai et al.; licensee BioMed Central Ltd.

  1. Interdisciplinary Introductory Course in Bioinformatics

    Science.gov (United States)

    Kortsarts, Yana; Morris, Robert W.; Utell, Janine M.

    2010-01-01

    Bioinformatics is a relatively new interdisciplinary field that integrates computer science, mathematics, biology, and information technology to manage, analyze, and understand biological, biochemical and biophysical information. We present our experience in teaching an interdisciplinary course, Introduction to Bioinformatics, which was developed…

  2. Navigating the changing learning landscape: perspective from bioinformatics.ca.

    Science.gov (United States)

    Brazas, Michelle D; Ouellette, B F Francis

    2013-09-01

    With the advent of YouTube channels in bioinformatics, open platforms for problem solving in bioinformatics, active web forums in computing analyses and online resources for learning to code or use a bioinformatics tool, the more traditional continuing education bioinformatics training programs have had to adapt. Bioinformatics training programs that solely rely on traditional didactic methods are being superseded by these newer resources. Yet such face-to-face instruction is still invaluable in the learning continuum. Bioinformatics.ca, which hosts the Canadian Bioinformatics Workshops, has blended more traditional learning styles with current online and social learning styles. Here we share our growing experiences over the past 12 years and look toward what the future holds for bioinformatics training programs.

  3. Taking Bioinformatics to Systems Medicine.

    Science.gov (United States)

    van Kampen, Antoine H C; Moerland, Perry D

    2016-01-01

    Systems medicine promotes a range of approaches and strategies to study human health and disease at a systems level with the aim of improving the overall well-being of (healthy) individuals, and preventing, diagnosing, or curing disease. In this chapter we discuss how bioinformatics critically contributes to systems medicine. First, we explain the role of bioinformatics in the management and analysis of data. In particular we show the importance of publicly available biological and clinical repositories to support systems medicine studies. Second, we discuss how the integration and analysis of multiple types of omics data through integrative bioinformatics may facilitate the determination of more predictive and robust disease signatures, lead to a better understanding of (patho)physiological molecular mechanisms, and facilitate personalized medicine. Third, we focus on network analysis and discuss how gene networks can be constructed from omics data and how these networks can be decomposed into smaller modules. We discuss how the resulting modules can be used to generate experimentally testable hypotheses, provide insight into disease mechanisms, and lead to predictive models. Throughout, we provide several examples demonstrating how bioinformatics contributes to systems medicine and discuss future challenges in bioinformatics that need to be addressed to enable the advancement of systems medicine.

  4. Crowdsourcing for bioinformatics.

    Science.gov (United States)

    Good, Benjamin M; Su, Andrew I

    2013-08-15

    Bioinformatics is faced with a variety of problems that require human involvement. Tasks like genome annotation, image analysis, knowledge-base population and protein structure determination all benefit from human input. In some cases, people are needed in vast quantities, whereas in others, we need just a few with rare abilities. Crowdsourcing encompasses an emerging collection of approaches for harnessing such distributed human intelligence. Recently, the bioinformatics community has begun to apply crowdsourcing in a variety of contexts, yet few resources are available that describe how these human-powered systems work and how to use them effectively in scientific domains. Here, we provide a framework for understanding and applying several different types of crowdsourcing. The framework considers two broad classes: systems for solving large-volume 'microtasks' and systems for solving high-difficulty 'megatasks'. Within these classes, we discuss system types, including volunteer labor, games with a purpose, microtask markets and open innovation contests. We illustrate each system type with successful examples in bioinformatics and conclude with a guide for matching problems to crowdsourcing solutions that highlights the positives and negatives of different approaches.

  5. Is there room for ethics within bioinformatics education?

    Science.gov (United States)

    Taneri, Bahar

    2011-07-01

    When bioinformatics education is considered, several issues are addressed. At the undergraduate level, the main issue revolves around conveying information from two main and different fields: biology and computer science. At the graduate level, the main issue is bridging the gap between biology students and computer science students. However, there is an educational component that is rarely addressed within the context of bioinformatics education: the ethics component. Here, a different perspective is provided on bioinformatics education, and the current status of ethics is analyzed within the existing bioinformatics programs. Analysis of the existing undergraduate and graduate programs, in both Europe and the United States, reveals the minimal attention given to ethics within bioinformatics education. Given that bioinformaticians speedily and effectively shape the biomedical sciences and hence their implications for society, here redesigning of the bioinformatics curricula is suggested in order to integrate the necessary ethics education. Unique ethical problems awaiting bioinformaticians and bioinformatics ethics as a separate field of study are discussed. In addition, a template for an "Ethics in Bioinformatics" course is provided.

  6. Rising Strengths Hong Kong SAR in Bioinformatics.

    Science.gov (United States)

    Chakraborty, Chiranjib; George Priya Doss, C; Zhu, Hailong; Agoramoorthy, Govindasamy

    2017-06-01

    Hong Kong's bioinformatics sector is attaining new heights in combination with its economic boom and the predominance of the working-age group in its population. Factors such as a knowledge-based and free-market economy have contributed towards a prominent position on the world map of bioinformatics. In this review, we have considered the educational measures, landmark research activities and the achievements of bioinformatics companies and the role of the Hong Kong government in the establishment of bioinformatics as strength. However, several hurdles remain. New government policies will assist computational biologists to overcome these hurdles and further raise the profile of the field. There is a high expectation that bioinformatics in Hong Kong will be a promising area for the next generation.

  7. EURASIP journal on bioinformatics & systems biology

    National Research Council Canada - National Science Library

    2006-01-01

    "The overall aim of "EURASIP Journal on Bioinformatics and Systems Biology" is to publish research results related to signal processing and bioinformatics theories and techniques relevant to a wide...

  8. Field modulation of the critical current in magnetic Josephson junctions

    International Nuclear Information System (INIS)

    Blamire, M G; Smiet, C B; Banerjee, N; Robinson, J W A

    2013-01-01

    The dependence of the critical current of a simple Josephson junction on the applied magnetic field is well known and, for a rectangular junction, gives rise to the classic ‘Fraunhofer’ modulation with periodic zeros at the fields that introduce a flux quantum into the junction region. Much recent work has been performed on Josephson junctions that contain magnetic layers. The magnetization of such layers introduces additional flux into the junction and, for large junction areas or strong magnetic materials, can significantly distort the modulation of the critical current and strongly suppress the maximum critical current. The growing interest in junctions that induce odd-frequency triplet pairing in a ferromagnet, and the need to make quantitative comparisons with theory, mean that a full understanding of the role of magnetic barriers in controlling the critical current is necessary. This paper analyses the effect of magnetism and various magnetic configurations on Josephson critical currents; the overall treatment applies to junctions of general shape, but the specific cases of square and rectangular junctions are considered. (paper)

  9. MicroRNA from tuberculosis RNA: A bioinformatics study

    OpenAIRE

    Wiwanitkit, Somsri; Wiwanitkit, Viroj

    2012-01-01

    The role of microRNA in the pathogenesis of pulmonary tuberculosis is the interesting topic in chest medicine at present. Recently, it was proposed that the microRNA can be a useful biomarker for monitoring of pulmonary tuberculosis and might be the important part in pathogenesis of disease. Here, the authors perform a bioinformatics study to assess the microRNA within known tuberculosis RNA. The microRNA part can be detected and this can be important key information in further study of the p...

  10. Virtual Bioinformatics Distance Learning Suite

    Science.gov (United States)

    Tolvanen, Martti; Vihinen, Mauno

    2004-01-01

    Distance learning as a computer-aided concept allows students to take courses from anywhere at any time. In bioinformatics, computers are needed to collect, store, process, and analyze massive amounts of biological and biomedical data. We have applied the concept of distance learning in virtual bioinformatics to provide university course material…

  11. Bioinformatics in translational drug discovery.

    Science.gov (United States)

    Wooller, Sarah K; Benstead-Hume, Graeme; Chen, Xiangrong; Ali, Yusuf; Pearl, Frances M G

    2017-08-31

    Bioinformatics approaches are becoming ever more essential in translational drug discovery both in academia and within the pharmaceutical industry. Computational exploitation of the increasing volumes of data generated during all phases of drug discovery is enabling key challenges of the process to be addressed. Here, we highlight some of the areas in which bioinformatics resources and methods are being developed to support the drug discovery pipeline. These include the creation of large data warehouses, bioinformatics algorithms to analyse 'big data' that identify novel drug targets and/or biomarkers, programs to assess the tractability of targets, and prediction of repositioning opportunities that use licensed drugs to treat additional indications. © 2017 The Author(s).

  12. Promoting synergistic research and education in genomics and bioinformatics.

    Science.gov (United States)

    Yang, Jack Y; Yang, Mary Qu; Zhu, Mengxia Michelle; Arabnia, Hamid R; Deng, Youping

    2008-01-01

    Bioinformatics and Genomics are closely related disciplines that hold great promises for the advancement of research and development in complex biomedical systems, as well as public health, drug design, comparative genomics, personalized medicine and so on. Research and development in these two important areas are impacting the science and technology.High throughput sequencing and molecular imaging technologies marked the beginning of a new era for modern translational medicine and personalized healthcare. The impact of having the human sequence and personalized digital images in hand has also created tremendous demands of developing powerful supercomputing, statistical learning and artificial intelligence approaches to handle the massive bioinformatics and personalized healthcare data, which will obviously have a profound effect on how biomedical research will be conducted toward the improvement of human health and prolonging of human life in the future. The International Society of Intelligent Biological Medicine (http://www.isibm.org) and its official journals, the International Journal of Functional Informatics and Personalized Medicine (http://www.inderscience.com/ijfipm) and the International Journal of Computational Biology and Drug Design (http://www.inderscience.com/ijcbdd) in collaboration with International Conference on Bioinformatics and Computational Biology (Biocomp), touch tomorrow's bioinformatics and personalized medicine throughout today's efforts in promoting the research, education and awareness of the upcoming integrated inter/multidisciplinary field. The 2007 international conference on Bioinformatics and Computational Biology (BIOCOMP07) was held in Las Vegas, the United States of American on June 25-28, 2007. The conference attracted over 400 papers, covering broad research areas in the genomics, biomedicine and bioinformatics. The Biocomp 2007 provides a common platform for the cross fertilization of ideas, and to help shape knowledge and

  13. Navigating the changing learning landscape: perspective from bioinformatics.ca

    OpenAIRE

    Brazas, Michelle D.; Ouellette, B. F. Francis

    2013-01-01

    With the advent of YouTube channels in bioinformatics, open platforms for problem solving in bioinformatics, active web forums in computing analyses and online resources for learning to code or use a bioinformatics tool, the more traditional continuing education bioinformatics training programs have had to adapt. Bioinformatics training programs that solely rely on traditional didactic methods are being superseded by these newer resources. Yet such face-to-face instruction is still invaluable...

  14. Electrical analog of a Josephson junction

    International Nuclear Information System (INIS)

    Goldman, A.M.

    1979-01-01

    It is noted that a mathematical description of the phase-coupling of two oscillators synchronized by a phase-lock-loop under the influence of thermal white noise is analogous to that of the phase coupling of two superconductors in a Josephson junction also under the influence of noise. This analogy may be useful in studying threshold instabilities of the Josephson junction in regimes not restricted to the case of large damping. This is of interest because the behavior of the mean voltage near the threshold current can be characterized by critical exponents which resemble those exhibited by an order parameter of a continuous phase transition. As it is possible to couple a collection of oscillators together in a chain, the oscillator analogy may also be useful in exploring the dynamics and statistical mechanics of coupled junctions

  15. Bioinformatics for cancer immunotherapy target discovery

    DEFF Research Database (Denmark)

    Olsen, Lars Rønn; Campos, Benito; Barnkob, Mike Stein

    2014-01-01

    therapy target discovery in a bioinformatics analysis pipeline. We describe specialized bioinformatics tools and databases for three main bottlenecks in immunotherapy target discovery: the cataloging of potentially antigenic proteins, the identification of potential HLA binders, and the selection epitopes...

  16. Magnetic field behavior of current steps in long Josephson junctions

    International Nuclear Information System (INIS)

    Costabile, G.; Cucolo, A.M.; Pace, S.; Parmentier, R.D.; Savo, B.; Vaglio, R.

    1980-01-01

    The zero-field steps, or dc current singularities, in the current-voltage characteristics of long Josephson tunnel junctions, first reported by Chen et al., continue to attract research interest both because their study can provide fundamental information on the dynamics of fluxons in such junctions and because they are accompanied by the emission of microwave radiation from the junction, which may be exploitable in practical oscillator applications. The purpose of this paper is to report some experimental observations of the magnetic field behavior of the steps in junctions fabricated in our Laboratory and to offer a qualitative explanation for this behavior. Measurements have been made both for very long (L >> lambdasub(J)) and for slightly long (L approx. >= lambdasub(J)) junctions with a view toward comparing our results with those of other workers. (orig./WRI)

  17. Bioinformatics Education in High School: Implications for Promoting Science, Technology, Engineering, and Mathematics Careers

    Science.gov (United States)

    Kovarik, Dina N.; Patterson, Davis G.; Cohen, Carolyn; Sanders, Elizabeth A.; Peterson, Karen A.; Porter, Sandra G.; Chowning, Jeanne Ting

    2013-01-01

    We investigated the effects of our Bio-ITEST teacher professional development model and bioinformatics curricula on cognitive traits (awareness, engagement, self-efficacy, and relevance) in high school teachers and students that are known to accompany a developing interest in science, technology, engineering, and mathematics (STEM) careers. The…

  18. Bioinformatics for Exploration

    Science.gov (United States)

    Johnson, Kathy A.

    2006-01-01

    For the purpose of this paper, bioinformatics is defined as the application of computer technology to the management of biological information. It can be thought of as the science of developing computer databases and algorithms to facilitate and expedite biological research. This is a crosscutting capability that supports nearly all human health areas ranging from computational modeling, to pharmacodynamics research projects, to decision support systems within autonomous medical care. Bioinformatics serves to increase the efficiency and effectiveness of the life sciences research program. It provides data, information, and knowledge capture which further supports management of the bioastronautics research roadmap - identifying gaps that still remain and enabling the determination of which risks have been addressed.

  19. A bioinformatics approach for identifying transgene insertion sites using whole genome sequencing data.

    Science.gov (United States)

    Park, Doori; Park, Su-Hyun; Ban, Yong Wook; Kim, Youn Shic; Park, Kyoung-Cheul; Kim, Nam-Soo; Kim, Ju-Kon; Choi, Ik-Young

    2017-08-15

    Genetically modified crops (GM crops) have been developed to improve the agricultural traits of modern crop cultivars. Safety assessments of GM crops are of paramount importance in research at developmental stages and before releasing transgenic plants into the marketplace. Sequencing technology is developing rapidly, with higher output and labor efficiencies, and will eventually replace existing methods for the molecular characterization of genetically modified organisms. To detect the transgenic insertion locations in the three GM rice gnomes, Illumina sequencing reads are mapped and classified to the rice genome and plasmid sequence. The both mapped reads are classified to characterize the junction site between plant and transgene sequence by sequence alignment. Herein, we present a next generation sequencing (NGS)-based molecular characterization method, using transgenic rice plants SNU-Bt9-5, SNU-Bt9-30, and SNU-Bt9-109. Specifically, using bioinformatics tools, we detected the precise insertion locations and copy numbers of transfer DNA, genetic rearrangements, and the absence of backbone sequences, which were equivalent to results obtained from Southern blot analyses. NGS methods have been suggested as an effective means of characterizing and detecting transgenic insertion locations in genomes. Our results demonstrate the use of a combination of NGS technology and bioinformatics approaches that offers cost- and time-effective methods for assessing the safety of transgenic plants.

  20. The GMOD Drupal bioinformatic server framework.

    Science.gov (United States)

    Papanicolaou, Alexie; Heckel, David G

    2010-12-15

    Next-generation sequencing technologies have led to the widespread use of -omic applications. As a result, there is now a pronounced bioinformatic bottleneck. The general model organism database (GMOD) tool kit (http://gmod.org) has produced a number of resources aimed at addressing this issue. It lacks, however, a robust online solution that can deploy heterogeneous data and software within a Web content management system (CMS). We present a bioinformatic framework for the Drupal CMS. It consists of three modules. First, GMOD-DBSF is an application programming interface module for the Drupal CMS that simplifies the programming of bioinformatic Drupal modules. Second, the Drupal Bioinformatic Software Bench (biosoftware_bench) allows for a rapid and secure deployment of bioinformatic software. An innovative graphical user interface (GUI) guides both use and administration of the software, including the secure provision of pre-publication datasets. Third, we present genes4all_experiment, which exemplifies how our work supports the wider research community. Given the infrastructure presented here, the Drupal CMS may become a powerful new tool set for bioinformaticians. The GMOD-DBSF base module is an expandable community resource that decreases development time of Drupal modules for bioinformatics. The biosoftware_bench module can already enhance biologists' ability to mine their own data. The genes4all_experiment module has already been responsible for archiving of more than 150 studies of RNAi from Lepidoptera, which were previously unpublished. Implemented in PHP and Perl. Freely available under the GNU Public License 2 or later from http://gmod-dbsf.googlecode.com.

  1. High-Tc SNS Junctions: A New Generation of Proximity-Coupled Josephson Devices

    Science.gov (United States)

    Kleinsasser, A. W.

    1997-01-01

    This paper reviews this evolution of proximity - coupled Josephson jucntion from the early investigations on low temperature superconductor-normal -superconductor junctions through the introduction of hybrid superconductor-semiconductor devices and the resulting interest in mesoscopic Josephson junctions, to the recent development of high temperature devices.

  2. Two-dimensional non-volatile programmable p-n junctions

    Science.gov (United States)

    Li, Dong; Chen, Mingyuan; Sun, Zhengzong; Yu, Peng; Liu, Zheng; Ajayan, Pulickel M.; Zhang, Zengxing

    2017-09-01

    Semiconductor p-n junctions are the elementary building blocks of most electronic and optoelectronic devices. The need for their miniaturization has fuelled the rapid growth of interest in two-dimensional (2D) materials. However, the performance of a p-n junction considerably degrades as its thickness approaches a few nanometres and traditional technologies, such as doping and implantation, become invalid at the nanoscale. Here we report stable non-volatile programmable p-n junctions fabricated from the vertically stacked all-2D semiconductor/insulator/metal layers (WSe2/hexagonal boron nitride/graphene) in a semifloating gate field-effect transistor configuration. The junction exhibits a good rectifying behaviour with a rectification ratio of 104 and photovoltaic properties with a power conversion efficiency up to 4.1% under a 6.8 nW light. Based on the non-volatile programmable properties controlled by gate voltages, the 2D p-n junctions have been exploited for various electronic and optoelectronic applications, such as memories, photovoltaics, logic rectifiers and logic optoelectronic circuits.

  3. Majorana splitting from critical currents in Josephson junctions

    Science.gov (United States)

    Cayao, Jorge; San-Jose, Pablo; Black-Schaffer, Annica M.; Aguado, Ramón; Prada, Elsa

    2017-11-01

    A semiconducting nanowire with strong Rashba spin-orbit coupling and coupled to a superconductor can be tuned by an external Zeeman field into a topological phase with Majorana zero modes. Here we theoretically investigate how this exotic topological superconductor phase manifests in Josephson junctions based on such proximitized nanowires. In particular, we focus on critical currents in the short junction limit (LN≪ξ , where LN is the junction length and ξ is the superconducting coherence length) and show that they contain important information about nontrivial topology and Majoranas. This includes signatures of the gap inversion at the topological transition and a unique oscillatory pattern that originates from Majorana interference. Interestingly, this pattern can be modified by tuning the transmission across the junction, thus providing complementary evidence of Majoranas and their energy splittings beyond standard tunnel spectroscopy experiments, while offering further tunability by virtue of the Josephson effect.

  4. Emergent Computation Emphasizing Bioinformatics

    CERN Document Server

    Simon, Matthew

    2005-01-01

    Emergent Computation is concerned with recent applications of Mathematical Linguistics or Automata Theory. This subject has a primary focus upon "Bioinformatics" (the Genome and arising interest in the Proteome), but the closing chapter also examines applications in Biology, Medicine, Anthropology, etc. The book is composed of an organized examination of DNA, RNA, and the assembly of amino acids into proteins. Rather than examine these areas from a purely mathematical viewpoint (that excludes much of the biochemical reality), the author uses scientific papers written mostly by biochemists based upon their laboratory observations. Thus while DNA may exist in its double stranded form, triple stranded forms are not excluded. Similarly, while bases exist in Watson-Crick complements, mismatched bases and abasic pairs are not excluded, nor are Hoogsteen bonds. Just as there are four bases naturally found in DNA, the existence of additional bases is not ignored, nor amino acids in addition to the usual complement of...

  5. Component-Based Approach for Educating Students in Bioinformatics

    Science.gov (United States)

    Poe, D.; Venkatraman, N.; Hansen, C.; Singh, G.

    2009-01-01

    There is an increasing need for an effective method of teaching bioinformatics. Increased progress and availability of computer-based tools for educating students have led to the implementation of a computer-based system for teaching bioinformatics as described in this paper. Bioinformatics is a recent, hybrid field of study combining elements of…

  6. Fractional Solitons in Excitonic Josephson Junctions

    Science.gov (United States)

    Su, Jung-Jung; Hsu, Ya-Fen

    The Josephson effect is especially appealing because it reveals macroscopically the quantum order and phase. Here we study this effect in an excitonic Josephson junction: a conjunct of two exciton condensates with a relative phase ϕ0 applied. Such a junction is proposed to take place in the quantum Hall bilayer (QHB) that makes it subtler than in superconductor because of the counterflow of excitonic supercurrent and the interlayer tunneling in QHB. We treat the system theoretically by first mapping it into a pseudospin ferromagnet then describing it by the Landau-Lifshitz-Gilbert equation. In the presence of interlayer tunneling, the excitonic Josephson junction can possess a family of fractional sine-Gordon solitons that resemble the static fractional Josephson vortices in the extended superconducting Josephson junctions. Interestingly, each fractional soliton carries a topological charge Q which is not necessarily a half/full integer but can vary continuously. The resultant current-phase relation (CPR) shows that solitons with Q =ϕ0 / 2 π are the lowest energy states for small ϕ0. When ϕ0 > π , solitons with Q =ϕ0 / 2 π - 1 take place - the polarity of CPR is then switched.

  7. Phylogenetic trees in bioinformatics

    Energy Technology Data Exchange (ETDEWEB)

    Burr, Tom L [Los Alamos National Laboratory

    2008-01-01

    Genetic data is often used to infer evolutionary relationships among a collection of viruses, bacteria, animal or plant species, or other operational taxonomic units (OTU). A phylogenetic tree depicts such relationships and provides a visual representation of the estimated branching order of the OTUs. Tree estimation is unique for several reasons, including: the types of data used to represent each OTU; the use ofprobabilistic nucleotide substitution models; the inference goals involving both tree topology and branch length, and the huge number of possible trees for a given sample of a very modest number of OTUs, which implies that fmding the best tree(s) to describe the genetic data for each OTU is computationally demanding. Bioinformatics is too large a field to review here. We focus on that aspect of bioinformatics that includes study of similarities in genetic data from multiple OTUs. Although research questions are diverse, a common underlying challenge is to estimate the evolutionary history of the OTUs. Therefore, this paper reviews the role of phylogenetic tree estimation in bioinformatics, available methods and software, and identifies areas for additional research and development.

  8. The GMOD Drupal Bioinformatic Server Framework

    Science.gov (United States)

    Papanicolaou, Alexie; Heckel, David G.

    2010-01-01

    Motivation: Next-generation sequencing technologies have led to the widespread use of -omic applications. As a result, there is now a pronounced bioinformatic bottleneck. The general model organism database (GMOD) tool kit (http://gmod.org) has produced a number of resources aimed at addressing this issue. It lacks, however, a robust online solution that can deploy heterogeneous data and software within a Web content management system (CMS). Results: We present a bioinformatic framework for the Drupal CMS. It consists of three modules. First, GMOD-DBSF is an application programming interface module for the Drupal CMS that simplifies the programming of bioinformatic Drupal modules. Second, the Drupal Bioinformatic Software Bench (biosoftware_bench) allows for a rapid and secure deployment of bioinformatic software. An innovative graphical user interface (GUI) guides both use and administration of the software, including the secure provision of pre-publication datasets. Third, we present genes4all_experiment, which exemplifies how our work supports the wider research community. Conclusion: Given the infrastructure presented here, the Drupal CMS may become a powerful new tool set for bioinformaticians. The GMOD-DBSF base module is an expandable community resource that decreases development time of Drupal modules for bioinformatics. The biosoftware_bench module can already enhance biologists' ability to mine their own data. The genes4all_experiment module has already been responsible for archiving of more than 150 studies of RNAi from Lepidoptera, which were previously unpublished. Availability and implementation: Implemented in PHP and Perl. Freely available under the GNU Public License 2 or later from http://gmod-dbsf.googlecode.com Contact: alexie@butterflybase.org PMID:20971988

  9. A Mathematical Optimization Problem in Bioinformatics

    Science.gov (United States)

    Heyer, Laurie J.

    2008-01-01

    This article describes the sequence alignment problem in bioinformatics. Through examples, we formulate sequence alignment as an optimization problem and show how to compute the optimal alignment with dynamic programming. The examples and sample exercises have been used by the author in a specialized course in bioinformatics, but could be adapted…

  10. Bioinformatics and Cancer

    Science.gov (United States)

    Researchers take on challenges and opportunities to mine "Big Data" for answers to complex biological questions. Learn how bioinformatics uses advanced computing, mathematics, and technological platforms to store, manage, analyze, and understand data.

  11. Josephson tunnel junctions with ferromagnetic interlayer

    International Nuclear Information System (INIS)

    Weides, M.P.

    2006-01-01

    Superconductivity and ferromagnetism are well-known physical properties of solid states that have been widely studied and long thought about as antagonistic phenomena due to difference in spin ordering. It turns out that the combination of both superconductor and ferromagnet leads to a very rich and interesting physics. One particular example, the phase oscillations of the superconducting order parameter inside the ferromagnet, will play a major role for the devices discussed in this work. In this thesis, I present Josephson junctions with a thin Al 2 O 3 tunnel barrier and a ferromagnetic interlayer, i.e. superconductor-insulator-ferromagnet-superconductor (SIFS) stacks. The fabrication of junctions was optimized regarding the insulation of electrodes and the homogeneity of the current transport. The junctions were either in the 0 or π coupled ground state, depending on the thickness of the ferromagnetic layer and on temperature. The influence of ferromagnetic layer thickness on the transport properties and the coupling (0, π) of SIFS tunnel junctions was studied. Furthermore, using a stepped ferromagnetic layer with well-chosen thicknesses, I obtained the so-called 0-π Josephson junction. At a certain temperature this 0-π junction can be made perfectly symmetric. In this case the ground state corresponds to a vortex of supercurrent creating a magnetic flux which is a fraction of the magnetic flux quantum Φ 0 . Such structures allow to study the physics of fractional vortices and to build various electronic circuits based on them. The SIFS junctions presented here have an exponentially vanishing damping at T → 0. The SIFS technology developed within the framework of this work may be used to construct classical and quantum devices such as oscillators, memory cells and qubits. (orig.)

  12. Josephson tunnel junctions with ferromagnetic interlayer

    Energy Technology Data Exchange (ETDEWEB)

    Weides, M.P.

    2006-07-01

    Superconductivity and ferromagnetism are well-known physical properties of solid states that have been widely studied and long thought about as antagonistic phenomena due to difference in spin ordering. It turns out that the combination of both superconductor and ferromagnet leads to a very rich and interesting physics. One particular example, the phase oscillations of the superconducting order parameter inside the ferromagnet, will play a major role for the devices discussed in this work. In this thesis, I present Josephson junctions with a thin Al{sub 2}O{sub 3} tunnel barrier and a ferromagnetic interlayer, i.e. superconductor-insulator-ferromagnet-superconductor (SIFS) stacks. The fabrication of junctions was optimized regarding the insulation of electrodes and the homogeneity of the current transport. The junctions were either in the 0 or {pi} coupled ground state, depending on the thickness of the ferromagnetic layer and on temperature. The influence of ferromagnetic layer thickness on the transport properties and the coupling (0, {pi}) of SIFS tunnel junctions was studied. Furthermore, using a stepped ferromagnetic layer with well-chosen thicknesses, I obtained the so-called 0-{pi} Josephson junction. At a certain temperature this 0-{pi} junction can be made perfectly symmetric. In this case the ground state corresponds to a vortex of supercurrent creating a magnetic flux which is a fraction of the magnetic flux quantum {phi}{sub 0}. Such structures allow to study the physics of fractional vortices and to build various electronic circuits based on them. The SIFS junctions presented here have an exponentially vanishing damping at T {yields} 0. The SIFS technology developed within the framework of this work may be used to construct classical and quantum devices such as oscillators, memory cells and qubits. (orig.)

  13. Biology in 'silico': The Bioinformatics Revolution.

    Science.gov (United States)

    Bloom, Mark

    2001-01-01

    Explains the Human Genome Project (HGP) and efforts to sequence the human genome. Describes the role of bioinformatics in the project and considers it the genetics Swiss Army Knife, which has many different uses, for use in forensic science, medicine, agriculture, and environmental sciences. Discusses the use of bioinformatics in the high school…

  14. Bioinformatics research in the Asia Pacific: a 2007 update.

    Science.gov (United States)

    Ranganathan, Shoba; Gribskov, Michael; Tan, Tin Wee

    2008-01-01

    We provide a 2007 update on the bioinformatics research in the Asia-Pacific from the Asia Pacific Bioinformatics Network (APBioNet), Asia's oldest bioinformatics organisation set up in 1998. From 2002, APBioNet has organized the first International Conference on Bioinformatics (InCoB) bringing together scientists working in the field of bioinformatics in the region. This year, the InCoB2007 Conference was organized as the 6th annual conference of the Asia-Pacific Bioinformatics Network, on Aug. 27-30, 2007 at Hong Kong, following a series of successful events in Bangkok (Thailand), Penang (Malaysia), Auckland (New Zealand), Busan (South Korea) and New Delhi (India). Besides a scientific meeting at Hong Kong, satellite events organized are a pre-conference training workshop at Hanoi, Vietnam and a post-conference workshop at Nansha, China. This Introduction provides a brief overview of the peer-reviewed manuscripts accepted for publication in this Supplement. We have organized the papers into thematic areas, highlighting the growing contribution of research excellence from this region, to global bioinformatics endeavours.

  15. BioShaDock: a community driven bioinformatics shared Docker-based tools registry [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    François Moreews

    2015-12-01

    Full Text Available Linux container technologies, as represented by Docker, provide an alternative to complex and time-consuming installation processes needed for scientific software. The ease of deployment and the process isolation they enable, as well as the reproducibility they permit across environments and versions, are among the qualities that make them interesting candidates for the construction of bioinformatic infrastructures, at any scale from single workstations to high throughput computing architectures. The Docker Hub is a public registry which can be used to distribute bioinformatic software as Docker images. However, its lack of curation and its genericity make it difficult for a bioinformatics user to find the most appropriate images needed. BioShaDock is a bioinformatics-focused Docker registry, which provides a local and fully controlled environment to build and publish bioinformatic software as portable Docker images. It provides a number of improvements over the base Docker registry on authentication and permissions management, that enable its integration in existing bioinformatic infrastructures such as computing platforms. The metadata associated with the registered images are domain-centric, including for instance concepts defined in the EDAM ontology, a shared and structured vocabulary of commonly used terms in bioinformatics. The registry also includes user defined tags to facilitate its discovery, as well as a link to the tool description in the ELIXIR registry if it already exists. If it does not, the BioShaDock registry will synchronize with the registry to create a new description in the Elixir registry, based on the BioShaDock entry metadata. This link will help users get more information on the tool such as its EDAM operations, input and output types. This allows integration with the ELIXIR Tools and Data Services Registry, thus providing the appropriate visibility of such images to the bioinformatics community.

  16. Challenge: A Multidisciplinary Degree Program in Bioinformatics

    Directory of Open Access Journals (Sweden)

    Mudasser Fraz Wyne

    2006-06-01

    Full Text Available Bioinformatics is a new field that is poorly served by any of the traditional science programs in Biology, Computer science or Biochemistry. Known to be a rapidly evolving discipline, Bioinformatics has emerged from experimental molecular biology and biochemistry as well as from the artificial intelligence, database, pattern recognition, and algorithms disciplines of computer science. While institutions are responding to this increased demand by establishing graduate programs in bioinformatics, entrance barriers for these programs are high, largely due to the significant prerequisite knowledge which is required, both in the fields of biochemistry and computer science. Although many schools currently have or are proposing graduate programs in bioinformatics, few are actually developing new undergraduate programs. In this paper I explore the blend of a multidisciplinary approach, discuss the response of academia and highlight challenges faced by this emerging field.

  17. When cloud computing meets bioinformatics: a review.

    Science.gov (United States)

    Zhou, Shuigeng; Liao, Ruiqi; Guan, Jihong

    2013-10-01

    In the past decades, with the rapid development of high-throughput technologies, biology research has generated an unprecedented amount of data. In order to store and process such a great amount of data, cloud computing and MapReduce were applied to many fields of bioinformatics. In this paper, we first introduce the basic concepts of cloud computing and MapReduce, and their applications in bioinformatics. We then highlight some problems challenging the applications of cloud computing and MapReduce to bioinformatics. Finally, we give a brief guideline for using cloud computing in biology research.

  18. Application of machine learning methods in bioinformatics

    Science.gov (United States)

    Yang, Haoyu; An, Zheng; Zhou, Haotian; Hou, Yawen

    2018-05-01

    Faced with the development of bioinformatics, high-throughput genomic technology have enabled biology to enter the era of big data. [1] Bioinformatics is an interdisciplinary, including the acquisition, management, analysis, interpretation and application of biological information, etc. It derives from the Human Genome Project. The field of machine learning, which aims to develop computer algorithms that improve with experience, holds promise to enable computers to assist humans in the analysis of large, complex data sets.[2]. This paper analyzes and compares various algorithms of machine learning and their applications in bioinformatics.

  19. Biowep: a workflow enactment portal for bioinformatics applications.

    Science.gov (United States)

    Romano, Paolo; Bartocci, Ezio; Bertolini, Guglielmo; De Paoli, Flavio; Marra, Domenico; Mauri, Giancarlo; Merelli, Emanuela; Milanesi, Luciano

    2007-03-08

    effective workflows can significantly improve automation of in-silico analysis. Biowep is available for interested researchers as a reference portal. They are invited to submit their workflows to the workflow repository. Biowep is further being developed in the sphere of the Laboratory of Interdisciplinary Technologies in Bioinformatics - LITBIO.

  20. Biowep: a workflow enactment portal for bioinformatics applications

    Directory of Open Access Journals (Sweden)

    Romano Paolo

    2007-03-01

    databases and analysis software and the creation of effective workflows can significantly improve automation of in-silico analysis. Biowep is available for interested researchers as a reference portal. They are invited to submit their workflows to the workflow repository. Biowep is further being developed in the sphere of the Laboratory of Interdisciplinary Technologies in Bioinformatics – LITBIO.

  1. CHSalign: A Web Server That Builds upon Junction-Explorer and RNAJAG for Pairwise Alignment of RNA Secondary Structures with Coaxial Helical Stacking.

    Directory of Open Access Journals (Sweden)

    Lei Hua

    Full Text Available RNA junctions are important structural elements of RNA molecules. They are formed when three or more helices come together in three-dimensional space. Recent studies have focused on the annotation and prediction of coaxial helical stacking (CHS motifs within junctions. Here we exploit such predictions to develop an efficient alignment tool to handle RNA secondary structures with CHS motifs. Specifically, we build upon our Junction-Explorer software for predicting coaxial stacking and RNAJAG for modelling junction topologies as tree graphs to incorporate constrained tree matching and dynamic programming algorithms into a new method, called CHSalign, for aligning the secondary structures of RNA molecules containing CHS motifs. Thus, CHSalign is intended to be an efficient alignment tool for RNAs containing similar junctions. Experimental results based on thousands of alignments demonstrate that CHSalign can align two RNA secondary structures containing CHS motifs more accurately than other RNA secondary structure alignment tools. CHSalign yields a high score when aligning two RNA secondary structures with similar CHS motifs or helical arrangement patterns, and a low score otherwise. This new method has been implemented in a web server, and the program is also made freely available, at http://bioinformatics.njit.edu/CHSalign/.

  2. Bioinformatics Training: A Review of Challenges, Actions and Support Requirements

    DEFF Research Database (Denmark)

    Schneider, M.V.; Watson, J.; Attwood, T.

    2010-01-01

    As bioinformatics becomes increasingly central to research in the molecular life sciences, the need to train non-bioinformaticians to make the most of bioinformatics resources is growing. Here, we review the key challenges and pitfalls to providing effective training for users of bioinformatics...... services, and discuss successful training strategies shared by a diverse set of bioinformatics trainers. We also identify steps that trainers in bioinformatics could take together to advance the state of the art in current training practices. The ideas presented in this article derive from the first...

  3. Dynamics of fractional vortices in long Josephson junctions

    International Nuclear Information System (INIS)

    Gaber, Tobias

    2007-01-01

    In this thesis static and dynamic properties of fractional vortices in long Josephson junctions are investigated. Fractional vortices are circulating supercurrents similar to the well-known Josephson fluxons. Yet, they show the distinguishing property of carrying only a fraction of the magnetic flux quantum. Fractional vortices are interesting non-linear objects. They spontaneously appear and are pinned at the phase discontinuity points of so called 0-κ junctions but can be bend or flipped by external forces like bias currents or magnetic fields. 0-κ junctions and fractional vortices are generalizations of the well-known 0-π junctions and semifluxons, where not only phase jumps of pi but arbitrary values denoted by kappa are considered. By using so-called artificial 0-κ junctions that are based on standard Nb-AlO x -Nb technology the classical dynamics of fractional vortices has been investigated experimentally for the very first time. Here, half-integer zero field steps could be observed. These voltage steps on the junction's current-voltage characteristics correspond to the periodic flipping/hopping of fractional vortices. In addition, the oscillatory eigenmodes of fractional vortices were investigated. In contrast to fluxons fractional vortices have an oscillatory eigenmode with a frequency within the plasma gap. Using resonance spectroscopy the dependence of the eigenmode frequency on the flux carried by the vortex and an applied bias current was determined. (orig.)

  4. Bioinformatics Training Network (BTN): a community resource for bioinformatics trainers

    DEFF Research Database (Denmark)

    Schneider, Maria V.; Walter, Peter; Blatter, Marie-Claude

    2012-01-01

    and clearly tagged in relation to target audiences, learning objectives, etc. Ideally, they would also be peer reviewed, and easily and efficiently accessible for downloading. Here, we present the Bioinformatics Training Network (BTN), a new enterprise that has been initiated to address these needs and review...

  5. Planning bioinformatics workflows using an expert system

    Science.gov (United States)

    Chen, Xiaoling; Chang, Jeffrey T.

    2017-01-01

    Abstract Motivation: Bioinformatic analyses are becoming formidably more complex due to the increasing number of steps required to process the data, as well as the proliferation of methods that can be used in each step. To alleviate this difficulty, pipelines are commonly employed. However, pipelines are typically implemented to automate a specific analysis, and thus are difficult to use for exploratory analyses requiring systematic changes to the software or parameters used. Results: To automate the development of pipelines, we have investigated expert systems. We created the Bioinformatics ExperT SYstem (BETSY) that includes a knowledge base where the capabilities of bioinformatics software is explicitly and formally encoded. BETSY is a backwards-chaining rule-based expert system comprised of a data model that can capture the richness of biological data, and an inference engine that reasons on the knowledge base to produce workflows. Currently, the knowledge base is populated with rules to analyze microarray and next generation sequencing data. We evaluated BETSY and found that it could generate workflows that reproduce and go beyond previously published bioinformatics results. Finally, a meta-investigation of the workflows generated from the knowledge base produced a quantitative measure of the technical burden imposed by each step of bioinformatics analyses, revealing the large number of steps devoted to the pre-processing of data. In sum, an expert system approach can facilitate exploratory bioinformatic analysis by automating the development of workflows, a task that requires significant domain expertise. Availability and Implementation: https://github.com/jefftc/changlab Contact: jeffrey.t.chang@uth.tmc.edu PMID:28052928

  6. Using ion irradiation to make high-Tc Josephson junctions

    International Nuclear Information System (INIS)

    Bergeal, N.; Lesueur, J.; Sirena, M.; Faini, G.; Aprili, M.; Contour, J. P.; Leridon, B.

    2007-01-01

    In this article we describe the effect of ion irradiation on high-T c superconductor thin film and its interest for the fabrication of Josephson junctions. In particular, we show that these alternative techniques allow to go beyond most of the limitations encountered in standard junction fabrication methods, both in the case of fundamental and technological purposes. Two different geometries are presented: a planar one using a single high-T c film and a mesa one defined in a trilayer structure

  7. Fine structures on zero-field steps in low-loss Josephson tunnel junctions

    DEFF Research Database (Denmark)

    Monaco, Roberto; Barbara, Paola; Mygind, Jesper

    1993-01-01

    The first zero-field step in the current-voltage characteristic of intermediate-length, high-quality, low-loss Nb/Al-AlOx/Nb Josephson tunnel junctions has been carefully investigated as a function of temperature. When decreasing the temperature, a number of structures develop in the form...... of regular and slightly hysteretic steps whose voltage position depends on the junction temperature and length. This phenomenon is interesting for the study of nonlinear dynamics and for application of long Josephson tunnel junctions as microwave and millimeter-wavelength oscillators....

  8. Continuing Education Workshops in Bioinformatics Positively Impact Research and Careers.

    Science.gov (United States)

    Brazas, Michelle D; Ouellette, B F Francis

    2016-06-01

    Bioinformatics.ca has been hosting continuing education programs in introductory and advanced bioinformatics topics in Canada since 1999 and has trained more than 2,000 participants to date. These workshops have been adapted over the years to keep pace with advances in both science and technology as well as the changing landscape in available learning modalities and the bioinformatics training needs of our audience. Post-workshop surveys have been a mandatory component of each workshop and are used to ensure appropriate adjustments are made to workshops to maximize learning. However, neither bioinformatics.ca nor others offering similar training programs have explored the long-term impact of bioinformatics continuing education training. Bioinformatics.ca recently initiated a look back on the impact its workshops have had on the career trajectories, research outcomes, publications, and collaborations of its participants. Using an anonymous online survey, bioinformatics.ca analyzed responses from those surveyed and discovered its workshops have had a positive impact on collaborations, research, publications, and career progression.

  9. Bioinformatics education dissemination with an evolutionary problem solving perspective.

    Science.gov (United States)

    Jungck, John R; Donovan, Samuel S; Weisstein, Anton E; Khiripet, Noppadon; Everse, Stephen J

    2010-11-01

    Bioinformatics is central to biology education in the 21st century. With the generation of terabytes of data per day, the application of computer-based tools to stored and distributed data is fundamentally changing research and its application to problems in medicine, agriculture, conservation and forensics. In light of this 'information revolution,' undergraduate biology curricula must be redesigned to prepare the next generation of informed citizens as well as those who will pursue careers in the life sciences. The BEDROCK initiative (Bioinformatics Education Dissemination: Reaching Out, Connecting and Knitting together) has fostered an international community of bioinformatics educators. The initiative's goals are to: (i) Identify and support faculty who can take leadership roles in bioinformatics education; (ii) Highlight and distribute innovative approaches to incorporating evolutionary bioinformatics data and techniques throughout undergraduate education; (iii) Establish mechanisms for the broad dissemination of bioinformatics resource materials and teaching models; (iv) Emphasize phylogenetic thinking and problem solving; and (v) Develop and publish new software tools to help students develop and test evolutionary hypotheses. Since 2002, BEDROCK has offered more than 50 faculty workshops around the world, published many resources and supported an environment for developing and sharing bioinformatics education approaches. The BEDROCK initiative builds on the established pedagogical philosophy and academic community of the BioQUEST Curriculum Consortium to assemble the diverse intellectual and human resources required to sustain an international reform effort in undergraduate bioinformatics education.

  10. Linker-dependent Junction Formation Probability in Single-Molecule Junctions

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Pil Sun; Kim, Taekyeong [HankukUniversity of Foreign Studies, Yongin (Korea, Republic of)

    2015-01-15

    We compare the junction formation probabilities of single-molecule junctions with different linker molecules by using a scanning tunneling microscope-based break-junction technique. We found that the junction formation probability varies as SH > SMe > NH2 for the benzene backbone molecule with different types of anchoring groups, through quantitative statistical analysis. These results are attributed to different bonding forces according to the linker groups formed with Au atoms in the electrodes, which is consistent with previous works. Our work allows a better understanding of the contact chemistry in the metal.molecule junction for future molecular electronic devices.

  11. Using "Arabidopsis" Genetic Sequences to Teach Bioinformatics

    Science.gov (United States)

    Zhang, Xiaorong

    2009-01-01

    This article describes a new approach to teaching bioinformatics using "Arabidopsis" genetic sequences. Several open-ended and inquiry-based laboratory exercises have been designed to help students grasp key concepts and gain practical skills in bioinformatics, using "Arabidopsis" leucine-rich repeat receptor-like kinase (LRR…

  12. Development of Bioinformatics Infrastructure for Genomics Research.

    Science.gov (United States)

    Mulder, Nicola J; Adebiyi, Ezekiel; Adebiyi, Marion; Adeyemi, Seun; Ahmed, Azza; Ahmed, Rehab; Akanle, Bola; Alibi, Mohamed; Armstrong, Don L; Aron, Shaun; Ashano, Efejiro; Baichoo, Shakuntala; Benkahla, Alia; Brown, David K; Chimusa, Emile R; Fadlelmola, Faisal M; Falola, Dare; Fatumo, Segun; Ghedira, Kais; Ghouila, Amel; Hazelhurst, Scott; Isewon, Itunuoluwa; Jung, Segun; Kassim, Samar Kamal; Kayondo, Jonathan K; Mbiyavanga, Mamana; Meintjes, Ayton; Mohammed, Somia; Mosaku, Abayomi; Moussa, Ahmed; Muhammd, Mustafa; Mungloo-Dilmohamud, Zahra; Nashiru, Oyekanmi; Odia, Trust; Okafor, Adaobi; Oladipo, Olaleye; Osamor, Victor; Oyelade, Jellili; Sadki, Khalid; Salifu, Samson Pandam; Soyemi, Jumoke; Panji, Sumir; Radouani, Fouzia; Souiai, Oussama; Tastan Bishop, Özlem

    2017-06-01

    Although pockets of bioinformatics excellence have developed in Africa, generally, large-scale genomic data analysis has been limited by the availability of expertise and infrastructure. H3ABioNet, a pan-African bioinformatics network, was established to build capacity specifically to enable H3Africa (Human Heredity and Health in Africa) researchers to analyze their data in Africa. Since the inception of the H3Africa initiative, H3ABioNet's role has evolved in response to changing needs from the consortium and the African bioinformatics community. H3ABioNet set out to develop core bioinformatics infrastructure and capacity for genomics research in various aspects of data collection, transfer, storage, and analysis. Various resources have been developed to address genomic data management and analysis needs of H3Africa researchers and other scientific communities on the continent. NetMap was developed and used to build an accurate picture of network performance within Africa and between Africa and the rest of the world, and Globus Online has been rolled out to facilitate data transfer. A participant recruitment database was developed to monitor participant enrollment, and data is being harmonized through the use of ontologies and controlled vocabularies. The standardized metadata will be integrated to provide a search facility for H3Africa data and biospecimens. Because H3Africa projects are generating large-scale genomic data, facilities for analysis and interpretation are critical. H3ABioNet is implementing several data analysis platforms that provide a large range of bioinformatics tools or workflows, such as Galaxy, the Job Management System, and eBiokits. A set of reproducible, portable, and cloud-scalable pipelines to support the multiple H3Africa data types are also being developed and dockerized to enable execution on multiple computing infrastructures. In addition, new tools have been developed for analysis of the uniquely divergent African data and for

  13. Fuzzy Logic in Medicine and Bioinformatics

    Directory of Open Access Journals (Sweden)

    Angela Torres

    2006-01-01

    Full Text Available The purpose of this paper is to present a general view of the current applications of fuzzy logic in medicine and bioinformatics. We particularly review the medical literature using fuzzy logic. We then recall the geometrical interpretation of fuzzy sets as points in a fuzzy hypercube and present two concrete illustrations in medicine (drug addictions and in bioinformatics (comparison of genomes.

  14. Online Bioinformatics Tutorials | Office of Cancer Genomics

    Science.gov (United States)

    Bioinformatics is a scientific discipline that applies computer science and information technology to help understand biological processes. The NIH provides a list of free online bioinformatics tutorials, either generated by the NIH Library or other institutes, which includes introductory lectures and "how to" videos on using various tools.

  15. Long Josephson tunnel junctions with doubly connected electrodes

    DEFF Research Database (Denmark)

    Monaco, R.; Mygind, J.; Koshelets, V. P.

    2012-01-01

    of such experiments, the number of magnetic flux quanta spontaneously trapped in a superconducting loop was measured by means of a long Josephson tunnel junction built on top of the loop itself. We have analyzed this system and found a number of interesting features not occurring in the conventional case with simply...... connected electrodes. In particular, the fluxoid quantization results in a frustration of the Josephson phase, which, in turn, reduces the junction critical current. Further, the possible stable states of the system are obtained by a self-consistent application of the principle of minimum energy...

  16. The development and application of bioinformatics core competencies to improve bioinformatics training and education.

    Science.gov (United States)

    Mulder, Nicola; Schwartz, Russell; Brazas, Michelle D; Brooksbank, Cath; Gaeta, Bruno; Morgan, Sarah L; Pauley, Mark A; Rosenwald, Anne; Rustici, Gabriella; Sierk, Michael; Warnow, Tandy; Welch, Lonnie

    2018-02-01

    Bioinformatics is recognized as part of the essential knowledge base of numerous career paths in biomedical research and healthcare. However, there is little agreement in the field over what that knowledge entails or how best to provide it. These disagreements are compounded by the wide range of populations in need of bioinformatics training, with divergent prior backgrounds and intended application areas. The Curriculum Task Force of the International Society of Computational Biology (ISCB) Education Committee has sought to provide a framework for training needs and curricula in terms of a set of bioinformatics core competencies that cut across many user personas and training programs. The initial competencies developed based on surveys of employers and training programs have since been refined through a multiyear process of community engagement. This report describes the current status of the competencies and presents a series of use cases illustrating how they are being applied in diverse training contexts. These use cases are intended to demonstrate how others can make use of the competencies and engage in the process of their continuing refinement and application. The report concludes with a consideration of remaining challenges and future plans.

  17. The development and application of bioinformatics core competencies to improve bioinformatics training and education

    Science.gov (United States)

    Brooksbank, Cath; Morgan, Sarah L.; Rosenwald, Anne; Warnow, Tandy; Welch, Lonnie

    2018-01-01

    Bioinformatics is recognized as part of the essential knowledge base of numerous career paths in biomedical research and healthcare. However, there is little agreement in the field over what that knowledge entails or how best to provide it. These disagreements are compounded by the wide range of populations in need of bioinformatics training, with divergent prior backgrounds and intended application areas. The Curriculum Task Force of the International Society of Computational Biology (ISCB) Education Committee has sought to provide a framework for training needs and curricula in terms of a set of bioinformatics core competencies that cut across many user personas and training programs. The initial competencies developed based on surveys of employers and training programs have since been refined through a multiyear process of community engagement. This report describes the current status of the competencies and presents a series of use cases illustrating how they are being applied in diverse training contexts. These use cases are intended to demonstrate how others can make use of the competencies and engage in the process of their continuing refinement and application. The report concludes with a consideration of remaining challenges and future plans. PMID:29390004

  18. 4273π: bioinformatics education on low cost ARM hardware.

    Science.gov (United States)

    Barker, Daniel; Ferrier, David Ek; Holland, Peter Wh; Mitchell, John Bo; Plaisier, Heleen; Ritchie, Michael G; Smart, Steven D

    2013-08-12

    Teaching bioinformatics at universities is complicated by typical computer classroom settings. As well as running software locally and online, students should gain experience of systems administration. For a future career in biology or bioinformatics, the installation of software is a useful skill. We propose that this may be taught by running the course on GNU/Linux running on inexpensive Raspberry Pi computer hardware, for which students may be granted full administrator access. We release 4273π, an operating system image for Raspberry Pi based on Raspbian Linux. This includes minor customisations for classroom use and includes our Open Access bioinformatics course, 4273π Bioinformatics for Biologists. This is based on the final-year undergraduate module BL4273, run on Raspberry Pi computers at the University of St Andrews, Semester 1, academic year 2012-2013. 4273π is a means to teach bioinformatics, including systems administration tasks, to undergraduates at low cost.

  19. OpenHelix: bioinformatics education outside of a different box.

    Science.gov (United States)

    Williams, Jennifer M; Mangan, Mary E; Perreault-Micale, Cynthia; Lathe, Scott; Sirohi, Neeraj; Lathe, Warren C

    2010-11-01

    The amount of biological data is increasing rapidly, and will continue to increase as new rapid technologies are developed. Professionals in every area of bioscience will have data management needs that require publicly available bioinformatics resources. Not all scientists desire a formal bioinformatics education but would benefit from more informal educational sources of learning. Effective bioinformatics education formats will address a broad range of scientific needs, will be aimed at a variety of user skill levels, and will be delivered in a number of different formats to address different learning styles. Informal sources of bioinformatics education that are effective are available, and will be explored in this review.

  20. Translational Bioinformatics and Clinical Research (Biomedical) Informatics.

    Science.gov (United States)

    Sirintrapun, S Joseph; Zehir, Ahmet; Syed, Aijazuddin; Gao, JianJiong; Schultz, Nikolaus; Cheng, Donavan T

    2015-06-01

    Translational bioinformatics and clinical research (biomedical) informatics are the primary domains related to informatics activities that support translational research. Translational bioinformatics focuses on computational techniques in genetics, molecular biology, and systems biology. Clinical research (biomedical) informatics involves the use of informatics in discovery and management of new knowledge relating to health and disease. This article details 3 projects that are hybrid applications of translational bioinformatics and clinical research (biomedical) informatics: The Cancer Genome Atlas, the cBioPortal for Cancer Genomics, and the Memorial Sloan Kettering Cancer Center clinical variants and results database, all designed to facilitate insights into cancer biology and clinical/therapeutic correlations. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Giant electroresistance of super-tetragonal BiFeO3-based ferroelectric tunnel junctions.

    Science.gov (United States)

    Yamada, Hiroyuki; Garcia, Vincent; Fusil, Stéphane; Boyn, Sören; Marinova, Maya; Gloter, Alexandre; Xavier, Stéphane; Grollier, Julie; Jacquet, Eric; Carrétéro, Cécile; Deranlot, Cyrile; Bibes, Manuel; Barthélémy, Agnès

    2013-06-25

    Ferroelectric tunnel junctions enable a nondestructive readout of the ferroelectric state via a change of resistance induced by switching the ferroelectric polarization. We fabricated submicrometer solid-state ferroelectric tunnel junctions based on a recently discovered polymorph of BiFeO3 with giant axial ratio ("T-phase"). Applying voltage pulses to the junctions leads to the highest resistance changes (OFF/ON ratio >10,000) ever reported with ferroelectric tunnel junctions. Along with the good retention properties, this giant effect reinforces the interest in nonvolatile memories based on ferroelectric tunnel junctions. We also show that the changes in resistance scale with the nucleation and growth of ferroelectric domains in the ultrathin BiFeO3 (imaged by piezoresponse force microscopy), thereby suggesting potential as multilevel memory cells and memristors.

  2. Development of a cloud-based Bioinformatics Training Platform.

    Science.gov (United States)

    Revote, Jerico; Watson-Haigh, Nathan S; Quenette, Steve; Bethwaite, Blair; McGrath, Annette; Shang, Catherine A

    2017-05-01

    The Bioinformatics Training Platform (BTP) has been developed to provide access to the computational infrastructure required to deliver sophisticated hands-on bioinformatics training courses. The BTP is a cloud-based solution that is in active use for delivering next-generation sequencing training to Australian researchers at geographically dispersed locations. The BTP was built to provide an easy, accessible, consistent and cost-effective approach to delivering workshops at host universities and organizations with a high demand for bioinformatics training but lacking the dedicated bioinformatics training suites required. To support broad uptake of the BTP, the platform has been made compatible with multiple cloud infrastructures. The BTP is an open-source and open-access resource. To date, 20 training workshops have been delivered to over 700 trainees at over 10 venues across Australia using the BTP. © The Author 2016. Published by Oxford University Press.

  3. NbN-AlN-NbN Josephson junctions on different substrates

    Energy Technology Data Exchange (ETDEWEB)

    Merker, Michael; Bohn, Christian; Voellinger, Marvin; Ilin, Konstantin; Siegel, Michael [KIT, Karlsruhe (Germany)

    2016-07-01

    Josephson junction technology is important for the realization of high quality cryogenic devices such as SQUIDs, RSFQ or SIS-mixers. The material system based on NbN/AlN/NbN tri-layer has gained a lot of interest, because it offers higher gap voltages and critical current densities compared to the well-established Nb/Al-AlOx/Nb technology. However, the realization of high quality Josephson junctions is more challenging. We developed a technology of Josephson junctions on a variety of substrates such as Silicon, Sapphire and Magnesium oxide and compared the quality parameters of these junctions at 4.2 K. The gap voltages achieved a range from 4 mV (for the junctions on Si) to 5.8 mV (in case of MgO substrates) which is considerably higher than those obtained from Nb based Josephson junctions. Another key parameter is the ratio of the subgap resistance to the normal state resistance. This so-called subgap ratio corresponds to the losses in a Josephson junction which have to be minimized. So far, subgap ratios of 26 have been achieved. Further careful optimization of the deposition conditions is required to maximize this ratio, The details of the optimization of technology and of characterization of NbN/AlN/NbN junctions will be presented and discussed.

  4. Microsoft Biology Initiative: .NET Bioinformatics Platform and Tools

    Science.gov (United States)

    Diaz Acosta, B.

    2011-01-01

    The Microsoft Biology Initiative (MBI) is an effort in Microsoft Research to bring new technology and tools to the area of bioinformatics and biology. This initiative is comprised of two primary components, the Microsoft Biology Foundation (MBF) and the Microsoft Biology Tools (MBT). MBF is a language-neutral bioinformatics toolkit built as an extension to the Microsoft .NET Framework—initially aimed at the area of Genomics research. Currently, it implements a range of parsers for common bioinformatics file formats; a range of algorithms for manipulating DNA, RNA, and protein sequences; and a set of connectors to biological web services such as NCBI BLAST. MBF is available under an open source license, and executables, source code, demo applications, documentation and training materials are freely downloadable from http://research.microsoft.com/bio. MBT is a collection of tools that enable biology and bioinformatics researchers to be more productive in making scientific discoveries.

  5. Temperature behavior of SNS-like Nb/Al-AlO x/Nb Josephson junctions

    International Nuclear Information System (INIS)

    Lacquaniti, V.; Andreone, D.; Maggi, S.; Rocci, R.; Sosso, A.; Steni, R.

    2006-01-01

    Overdamped Nb/Al-AlO x /Nb Josephson junctions are an intermediate state between the SIS and SNS Josephson junctions. Stable and reproducible non-hysteretic current-voltage characteristics have been obtained with a proper choice of the fabrication parameters, featuring critical current densities J c up to 25 kA/cm 2 and characteristic voltages up to 450 μV. While these values make the junctions interesting for RSFQ electronic circuits, their response to an RF signal at 70 GHz has demonstrated their suitability for both programmable and ac voltage standard. In these work we analyse the temperature behavior of these junctions up to T/T c = 1, T c being the niobium critical temperature, which gives relevant information on the junction structure and, especially, on the oxide insulator/metallic film barrier, which is the key for the reproducible transition from an hysteretic to a non-hysteretic behavior. The results are also compared with other data of hysteretic and overdamped junctions

  6. Concepts and introduction to RNA bioinformatics

    DEFF Research Database (Denmark)

    Gorodkin, Jan; Hofacker, Ivo L.; Ruzzo, Walter L.

    2014-01-01

    RNA bioinformatics and computational RNA biology have emerged from implementing methods for predicting the secondary structure of single sequences. The field has evolved to exploit multiple sequences to take evolutionary information into account, such as compensating (and structure preserving) base...... for interactions between RNA and proteins.Here, we introduce the basic concepts of predicting RNA secondary structure relevant to the further analyses of RNA sequences. We also provide pointers to methods addressing various aspects of RNA bioinformatics and computational RNA biology....

  7. Innovative architecture design for high performance organic and hybrid multi-junction solar cells

    Science.gov (United States)

    Li, Ning; Spyropoulos, George D.; Brabec, Christoph J.

    2017-08-01

    The multi-junction concept is especially attractive for the photovoltaic (PV) research community owing to its potential to overcome the Schockley-Queisser limit of single-junction solar cells. Tremendous research interests are now focused on the development of high-performance absorbers and novel device architectures for emerging PV technologies, such as organic and perovskite PVs. It has been predicted that the multi-junction concept is able to boost the organic and perovskite PV technologies approaching the 20% and 30% benchmarks, respectively, showing a bright future of commercialization of the emerging PV technologies. In this contribution, we will demonstrate innovative architecture design for solution-processed, highly functional organic and hybrid multi-junction solar cells. A simple but elegant approach to fabricating organic and hybrid multi-junction solar cells will be introduced. By laminating single organic/hybrid solar cells together through an intermediate layer, the manufacturing cost and complexity of large-scale multi-junction solar cells can be significantly reduced. This smart approach to balancing the photocurrents as well as open circuit voltages in multi-junction solar cells will be demonstrated and discussed in detail.

  8. Quantitatively accurate calculations of conductance and thermopower of molecular junctions

    DEFF Research Database (Denmark)

    Markussen, Troels; Jin, Chengjun; Thygesen, Kristian Sommer

    2013-01-01

    Thermopower measurements of molecular junctions have recently gained interest as a characterization technique that supplements the more traditional conductance measurements. Here we investigate the electronic conductance and thermopower of benzenediamine (BDA) and benzenedicarbonitrile (BDCN...

  9. Adapting bioinformatics curricula for big data

    Science.gov (United States)

    Greene, Anna C.; Giffin, Kristine A.; Greene, Casey S.

    2016-01-01

    Modern technologies are capable of generating enormous amounts of data that measure complex biological systems. Computational biologists and bioinformatics scientists are increasingly being asked to use these data to reveal key systems-level properties. We review the extent to which curricula are changing in the era of big data. We identify key competencies that scientists dealing with big data are expected to possess across fields, and we use this information to propose courses to meet these growing needs. While bioinformatics programs have traditionally trained students in data-intensive science, we identify areas of particular biological, computational and statistical emphasis important for this era that can be incorporated into existing curricula. For each area, we propose a course structured around these topics, which can be adapted in whole or in parts into existing curricula. In summary, specific challenges associated with big data provide an important opportunity to update existing curricula, but we do not foresee a wholesale redesign of bioinformatics training programs. PMID:25829469

  10. Aspects of stochastic resonance in Josephson junction, bimodal

    Indian Academy of Sciences (India)

    We present the results of extensive numerical studies on stochastic resonance and its characteristic features in three model systems, namely, a model for Josephson tunnel junctions, the bistable cubic map and a coupled map lattice formed by coupling the cubic maps. Some interesting features regarding the mechanism ...

  11. Aspects of stochastic resonance in Josephson junction, bimodal ...

    Indian Academy of Sciences (India)

    Abstract. We present the results of extensive numerical studies on stochastic resonance and its characteristic features in three model systems, namely, a model for Josephson tunnel junctions, the bistable cubic map and a coupled map lattice formed by coupling the cubic maps. Some interesting features regarding the ...

  12. Gap Junctions

    Science.gov (United States)

    Nielsen, Morten Schak; Axelsen, Lene Nygaard; Sorgen, Paul L.; Verma, Vandana; Delmar, Mario; Holstein-Rathlou, Niels-Henrik

    2013-01-01

    Gap junctions are essential to the function of multicellular animals, which require a high degree of coordination between cells. In vertebrates, gap junctions comprise connexins and currently 21 connexins are known in humans. The functions of gap junctions are highly diverse and include exchange of metabolites and electrical signals between cells, as well as functions, which are apparently unrelated to intercellular communication. Given the diversity of gap junction physiology, regulation of gap junction activity is complex. The structure of the various connexins is known to some extent; and structural rearrangements and intramolecular interactions are important for regulation of channel function. Intercellular coupling is further regulated by the number and activity of channels present in gap junctional plaques. The number of connexins in cell-cell channels is regulated by controlling transcription, translation, trafficking, and degradation; and all of these processes are under strict control. Once in the membrane, channel activity is determined by the conductive properties of the connexin involved, which can be regulated by voltage and chemical gating, as well as a large number of posttranslational modifications. The aim of the present article is to review our current knowledge on the structure, regulation, function, and pharmacology of gap junctions. This will be supported by examples of how different connexins and their regulation act in concert to achieve appropriate physiological control, and how disturbances of connexin function can lead to disease. © 2012 American Physiological Society. Compr Physiol 2:1981-2035, 2012. PMID:23723031

  13. Droplet formation in Hele-Shaw T-junction.

    Science.gov (United States)

    Ricouvier, Joshua; Yazhgur, Pavel; Leshansky, Alexander; Tabeling, Patrick; Microflusa Team

    The development of digital microfluidics has attracted considerable interest towards generation of highly monodisperse microdroplets. T-junction has become an essential element of most of microfluidic chips. Despite its importance, theoretical analysis of droplet formation at T-junction is still incomplete due to complexity of physics involved. We focused on droplet generation at the Hele-Shaw T-junction. The effect of various experimental parameters, such as channel geometry, flow rates, surface tension and fluid viscosities, was thoroughly investigated. Our results show that the experimental system exhibits three distinct regimes (squeezing, dripping and jetting regimes) and point out the effect of confinement on the transitions. We demonstrate that the size of the ''plug'' droplet depends not only on the flow rate ratio (as described in the literature), but also on the capillary number and the channel cross-section aspect ratio. Quasi-2D flow equations allow us to perform numerical simulations and to compare them with experimental results. The Microflusa project receives funding from the European Union's Horizon 2020 research and innovation programme under Grant Agreement No. 664823.

  14. Developing library bioinformatics services in context: the Purdue University Libraries bioinformationist program.

    Science.gov (United States)

    Rein, Diane C

    2006-07-01

    Purdue University is a major agricultural, engineering, biomedical, and applied life science research institution with an increasing focus on bioinformatics research that spans multiple disciplines and campus academic units. The Purdue University Libraries (PUL) hired a molecular biosciences specialist to discover, engage, and support bioinformatics needs across the campus. After an extended period of information needs assessment and environmental scanning, the specialist developed a week of focused bioinformatics instruction (Bioinformatics Week) to launch system-wide, library-based bioinformatics services. The specialist employed a two-tiered approach to assess user information requirements and expectations. The first phase involved careful observation and collection of information needs in-context throughout the campus, attending laboratory meetings, interviewing department chairs and individual researchers, and engaging in strategic planning efforts. Based on the information gathered during the integration phase, several survey instruments were developed to facilitate more critical user assessment and the recovery of quantifiable data prior to planning. Given information gathered while working with clients and through formal needs assessments, as well as the success of instructional approaches used in Bioinformatics Week, the specialist is developing bioinformatics support services for the Purdue community. The specialist is also engaged in training PUL faculty librarians in bioinformatics to provide a sustaining culture of library-based bioinformatics support and understanding of Purdue's bioinformatics-related decision and policy making.

  15. Relaxation towards phase-locked dynamics in long Josephson junctions

    DEFF Research Database (Denmark)

    Salerno, M.; Grønbech-Jensen, Niels; Samuelsen, Mogens Rugholm

    1995-01-01

    We study the relaxation phenomenon towards phase-locked dynamics in long Josephson junctions. In particular the dependence of the relaxation frequency for the equal time of flight solution on the junction parameters is derived. The analysis is based on a phase-locked map and is compared with direct...... numerical experiments performed both on the map and on the perturbed sine-Gordon equation. As an interesting result we find that very close to a bifurcation the relaxation frequency is exactly equal to the half of the step frequency, i.e., the frequency characterizing the period-one solution....

  16. LXtoo: an integrated live Linux distribution for the bioinformatics community.

    Science.gov (United States)

    Yu, Guangchuang; Wang, Li-Gen; Meng, Xiao-Hua; He, Qing-Yu

    2012-07-19

    Recent advances in high-throughput technologies dramatically increase biological data generation. However, many research groups lack computing facilities and specialists. This is an obstacle that remains to be addressed. Here, we present a Linux distribution, LXtoo, to provide a flexible computing platform for bioinformatics analysis. Unlike most of the existing live Linux distributions for bioinformatics limiting their usage to sequence analysis and protein structure prediction, LXtoo incorporates a comprehensive collection of bioinformatics software, including data mining tools for microarray and proteomics, protein-protein interaction analysis, and computationally complex tasks like molecular dynamics. Moreover, most of the programs have been configured and optimized for high performance computing. LXtoo aims to provide well-supported computing environment tailored for bioinformatics research, reducing duplication of efforts in building computing infrastructure. LXtoo is distributed as a Live DVD and freely available at http://bioinformatics.jnu.edu.cn/LXtoo.

  17. Concepts Of Bioinformatics And Its Application In Veterinary ...

    African Journals Online (AJOL)

    Bioinformatics has advanced the course of research and future veterinary vaccines development because it has provided new tools for identification of vaccine targets from sequenced biological data of organisms. In Nigeria, there is lack of bioinformatics training in the universities, expect for short training courses in which ...

  18. Realistic-contact-induced enhancement of rectifying in carbon-nanotube/graphene-nanoribbon junctions

    International Nuclear Information System (INIS)

    Zhang, Xiang-Hua; Li, Xiao-Fei; Wang, Ling-Ling; Xu, Liang; Luo, Kai-Wu

    2014-01-01

    Carbon-nanotube/graphene-nanoribbon junctions were recently fabricated by the controllable etching of single-walled carbon-nanotubes [Wei et al., Nat. Commun. 4, 1374 (2013)] and their electronic transport properties were studied here. First principles results reveal that the transmission function of the junctions show a heavy dependence on the shape of contacts, but rectifying is an inherent property which is insensitive to the details of contacts. Interestingly, the rectifying ratio is largely enhanced in the junction with a realistic contact and the enhancement is insensitive to the details of contact structures. The stability of rectifying suggests a significant feasibility to manufacture realistic all-carbon rectifiers in nanoelectronics

  19. BioWarehouse: a bioinformatics database warehouse toolkit.

    Science.gov (United States)

    Lee, Thomas J; Pouliot, Yannick; Wagner, Valerie; Gupta, Priyanka; Stringer-Calvert, David W J; Tenenbaum, Jessica D; Karp, Peter D

    2006-03-23

    This article addresses the problem of interoperation of heterogeneous bioinformatics databases. We introduce BioWarehouse, an open source toolkit for constructing bioinformatics database warehouses using the MySQL and Oracle relational database managers. BioWarehouse integrates its component databases into a common representational framework within a single database management system, thus enabling multi-database queries using the Structured Query Language (SQL) but also facilitating a variety of database integration tasks such as comparative analysis and data mining. BioWarehouse currently supports the integration of a pathway-centric set of databases including ENZYME, KEGG, and BioCyc, and in addition the UniProt, GenBank, NCBI Taxonomy, and CMR databases, and the Gene Ontology. Loader tools, written in the C and JAVA languages, parse and load these databases into a relational database schema. The loaders also apply a degree of semantic normalization to their respective source data, decreasing semantic heterogeneity. The schema supports the following bioinformatics datatypes: chemical compounds, biochemical reactions, metabolic pathways, proteins, genes, nucleic acid sequences, features on protein and nucleic-acid sequences, organisms, organism taxonomies, and controlled vocabularies. As an application example, we applied BioWarehouse to determine the fraction of biochemically characterized enzyme activities for which no sequences exist in the public sequence databases. The answer is that no sequence exists for 36% of enzyme activities for which EC numbers have been assigned. These gaps in sequence data significantly limit the accuracy of genome annotation and metabolic pathway prediction, and are a barrier for metabolic engineering. Complex queries of this type provide examples of the value of the data warehousing approach to bioinformatics research. BioWarehouse embodies significant progress on the database integration problem for bioinformatics.

  20. Charge transport in junctions between d-wave superconductors

    International Nuclear Information System (INIS)

    Barash, Y.S.; Galaktionov, A.V.; Zaikin, A.D.

    1995-01-01

    We develop a microscopic analysis of superconducting and dissipative currents in junctions between superconductors with d-wave symmetry of the order parameter. We study the proximity effect in such superconductors and show that for certain crystal orientations the superconducting order parameter can be essentially suppressed in the vicinity of a nontransparent specularly reflecting boundary. This effect strongly influences the value and the angular dependence of the dc Josephson current j S . At T∼T c it leads to a crossover between j S ∝T c -T and j S ∝(T c -T) 2 respectively for homogeneous and nonhomogeneous distribution of the order parameter in the vicinity of a tunnel junction. We show that at low temperatures the current-phase relation j S (cphi) for superconductor--normal-metal--superconductor junctions and short weak links between d-wave superconductors is essentially nonharmonic and contains a discontinuity at cphi=0. This leads to further interesting features of such systems which can be used for pairing symmetry tests in high-temperature superconductors (HTSC). We also investigated the low-temperature I-V curves of normal-metal--superconductor and superconductor-superconductor tunnel junctions and demonstrated that depending on the junction type and crystal orientation these curves show zero-bias anomalies I∝V 2 , I∝V 2 ln(1/V), and I∝V 3 caused by the gapless behavior of the order parameter in d-wave superconductors. Many of our results agree well with recent experimental findings for HTSC compounds

  1. Bioinformatics approaches for identifying new therapeutic bioactive peptides in food

    Directory of Open Access Journals (Sweden)

    Nora Khaldi

    2012-10-01

    Full Text Available ABSTRACT:The traditional methods for mining foods for bioactive peptides are tedious and long. Similar to the drug industry, the length of time to identify and deliver a commercial health ingredient that reduces disease symptoms can take anything between 5 to 10 years. Reducing this time and effort is crucial in order to create new commercially viable products with clear and important health benefits. In the past few years, bioinformatics, the science that brings together fast computational biology, and efficient genome mining, is appearing as the long awaited solution to this problem. By quickly mining food genomes for characteristics of certain food therapeutic ingredients, researchers can potentially find new ones in a matter of a few weeks. Yet, surprisingly, very little success has been achieved so far using bioinformatics in mining for food bioactives.The absence of food specific bioinformatic mining tools, the slow integration of both experimental mining and bioinformatics, and the important difference between different experimental platforms are some of the reasons for the slow progress of bioinformatics in the field of functional food and more specifically in bioactive peptide discovery.In this paper I discuss some methods that could be easily translated, using a rational peptide bioinformatics design, to food bioactive peptide mining. I highlight the need for an integrated food peptide database. I also discuss how to better integrate experimental work with bioinformatics in order to improve the mining of food for bioactive peptides, therefore achieving a higher success rates.

  2. Four-junction superconducting circuit

    Science.gov (United States)

    Qiu, Yueyin; Xiong, Wei; He, Xiao-Ling; Li, Tie-Fu; You, J. Q.

    2016-01-01

    We develop a theory for the quantum circuit consisting of a superconducting loop interrupted by four Josephson junctions and pierced by a magnetic flux (either static or time-dependent). In addition to the similarity with the typical three-junction flux qubit in the double-well regime, we demonstrate the difference of the four-junction circuit from its three-junction analogue, including its advantages over the latter. Moreover, the four-junction circuit in the single-well regime is also investigated. Our theory provides a tool to explore the physical properties of this four-junction superconducting circuit. PMID:27356619

  3. Genetic and bioinformatic analysis of 41C and the 2R heterochromatin of Drosophila melanogaster: a window on the heterochromatin-euchromatin junction.

    OpenAIRE

    Myster, Steven H; Wang, Fei; Cavallo, Robert; Christian, Whitney; Bhotika, Seema; Anderson, Charles T; Peifer, Mark

    2004-01-01

    Genomic sequences provide powerful new tools in genetic analysis, making it possible to combine classical genetics with genomics to characterize the genes in a particular chromosome region. These approaches have been applied successfully to the euchromatin, but analysis of the heterochromatin has lagged somewhat behind. We describe a combined genetic and bioinformatics approach to the base of the right arm of the Drosophila melanogaster second chromosome, at the boundary between pericentric h...

  4. Vertical and Horizontal Integration of Bioinformatics Education: A Modular, Interdisciplinary Approach

    Science.gov (United States)

    Furge, Laura Lowe; Stevens-Truss, Regina; Moore, D. Blaine; Langeland, James A.

    2009-01-01

    Bioinformatics education for undergraduates has been approached primarily in two ways: introduction of new courses with largely bioinformatics focus or introduction of bioinformatics experiences into existing courses. For small colleges such as Kalamazoo, creation of new courses within an already resource-stretched setting has not been an option.…

  5. Adapting bioinformatics curricula for big data.

    Science.gov (United States)

    Greene, Anna C; Giffin, Kristine A; Greene, Casey S; Moore, Jason H

    2016-01-01

    Modern technologies are capable of generating enormous amounts of data that measure complex biological systems. Computational biologists and bioinformatics scientists are increasingly being asked to use these data to reveal key systems-level properties. We review the extent to which curricula are changing in the era of big data. We identify key competencies that scientists dealing with big data are expected to possess across fields, and we use this information to propose courses to meet these growing needs. While bioinformatics programs have traditionally trained students in data-intensive science, we identify areas of particular biological, computational and statistical emphasis important for this era that can be incorporated into existing curricula. For each area, we propose a course structured around these topics, which can be adapted in whole or in parts into existing curricula. In summary, specific challenges associated with big data provide an important opportunity to update existing curricula, but we do not foresee a wholesale redesign of bioinformatics training programs. © The Author 2015. Published by Oxford University Press.

  6. Application of Bioinformatics in Chronobiology Research

    Directory of Open Access Journals (Sweden)

    Robson da Silva Lopes

    2013-01-01

    Full Text Available Bioinformatics and other well-established sciences, such as molecular biology, genetics, and biochemistry, provide a scientific approach for the analysis of data generated through “omics” projects that may be used in studies of chronobiology. The results of studies that apply these techniques demonstrate how they significantly aided the understanding of chronobiology. However, bioinformatics tools alone cannot eliminate the need for an understanding of the field of research or the data to be considered, nor can such tools replace analysts and researchers. It is often necessary to conduct an evaluation of the results of a data mining effort to determine the degree of reliability. To this end, familiarity with the field of investigation is necessary. It is evident that the knowledge that has been accumulated through chronobiology and the use of tools derived from bioinformatics has contributed to the recognition and understanding of the patterns and biological rhythms found in living organisms. The current work aims to develop new and important applications in the near future through chronobiology research.

  7. A new clan of CBM families based on bioinformatics of starch-binding domains from families CBM20 and CBM21

    DEFF Research Database (Denmark)

    Marhovic, M.; Svensson, Birte; MacGregor, E. A.

    2005-01-01

    many nonamylolytic proteins have been recognized as possessing sequence segments that exhibit similarities with the experimentally observed CBM20 and CBM21. These facts have stimulated interest in carrying out a rigorous bioinformatics analysis of the two CBM families. The present analysis showed...

  8. Skate Genome Project: Cyber-Enabled Bioinformatics Collaboration

    Science.gov (United States)

    Vincent, J.

    2011-01-01

    The Skate Genome Project, a pilot project of the North East Cyber infrastructure Consortium, aims to produce a draft genome sequence of Leucoraja erinacea, the Little Skate. The pilot project was designed to also develop expertise in large scale collaborations across the NECC region. An overview of the bioinformatics and infrastructure challenges faced during the first year of the project will be presented. Results to date and lessons learned from the perspective of a bioinformatics core will be highlighted.

  9. BioWarehouse: a bioinformatics database warehouse toolkit

    Directory of Open Access Journals (Sweden)

    Stringer-Calvert David WJ

    2006-03-01

    Full Text Available Abstract Background This article addresses the problem of interoperation of heterogeneous bioinformatics databases. Results We introduce BioWarehouse, an open source toolkit for constructing bioinformatics database warehouses using the MySQL and Oracle relational database managers. BioWarehouse integrates its component databases into a common representational framework within a single database management system, thus enabling multi-database queries using the Structured Query Language (SQL but also facilitating a variety of database integration tasks such as comparative analysis and data mining. BioWarehouse currently supports the integration of a pathway-centric set of databases including ENZYME, KEGG, and BioCyc, and in addition the UniProt, GenBank, NCBI Taxonomy, and CMR databases, and the Gene Ontology. Loader tools, written in the C and JAVA languages, parse and load these databases into a relational database schema. The loaders also apply a degree of semantic normalization to their respective source data, decreasing semantic heterogeneity. The schema supports the following bioinformatics datatypes: chemical compounds, biochemical reactions, metabolic pathways, proteins, genes, nucleic acid sequences, features on protein and nucleic-acid sequences, organisms, organism taxonomies, and controlled vocabularies. As an application example, we applied BioWarehouse to determine the fraction of biochemically characterized enzyme activities for which no sequences exist in the public sequence databases. The answer is that no sequence exists for 36% of enzyme activities for which EC numbers have been assigned. These gaps in sequence data significantly limit the accuracy of genome annotation and metabolic pathway prediction, and are a barrier for metabolic engineering. Complex queries of this type provide examples of the value of the data warehousing approach to bioinformatics research. Conclusion BioWarehouse embodies significant progress on the

  10. 5th HUPO BPP Bioinformatics Meeting at the European Bioinformatics Institute in Hinxton, UK--Setting the analysis frame.

    Science.gov (United States)

    Stephan, Christian; Hamacher, Michael; Blüggel, Martin; Körting, Gerhard; Chamrad, Daniel; Scheer, Christian; Marcus, Katrin; Reidegeld, Kai A; Lohaus, Christiane; Schäfer, Heike; Martens, Lennart; Jones, Philip; Müller, Michael; Auyeung, Kevin; Taylor, Chris; Binz, Pierre-Alain; Thiele, Herbert; Parkinson, David; Meyer, Helmut E; Apweiler, Rolf

    2005-09-01

    The Bioinformatics Committee of the HUPO Brain Proteome Project (HUPO BPP) meets regularly to execute the post-lab analyses of the data produced in the HUPO BPP pilot studies. On July 7, 2005 the members came together for the 5th time at the European Bioinformatics Institute (EBI) in Hinxton, UK, hosted by Rolf Apweiler. As a main result, the parameter set of the semi-automated data re-analysis of MS/MS spectra has been elaborated and the subsequent work steps have been defined.

  11. Current-voltage characteristic of a Josephson junction with randomly distributed Abrikosov vortices

    International Nuclear Information System (INIS)

    Fistul, M.V.; Giuliani, G.F.

    1997-01-01

    We have developed a theory of the current-voltage characteristic of a Josephson junction in the presence of randomly distributed, pinned misaligned Abrikosov vortices oriented perpendicularly to the junction plane. Under these conditions the Josephson phase difference var-phi acquires an interesting stochastic dependence on the position in the plane of the junction. In this situation it is possible to define an average critical current which is determined by the spatial correlations of this function. Due to the inhomogeneity, we find that for finite voltage bias the electromagnetic waves propagating in the junction display a broad spectrum of wavelengths. This is at variance with the situation encountered in homogeneous junctions. The amplitude of these modes is found to decrease as the bias is increased. We predict that the presence of these excitations is directly related to a remarkable feature in the current-voltage characteristic. The dependence of the position and the magnitude of this feature on the vortex concentration has been determined. copyright 1997 The American Physical Society

  12. Scale resolved simulations of the OECD/NEA–Vattenfall T-junction benchmark

    Energy Technology Data Exchange (ETDEWEB)

    Höhne, Thomas, E-mail: t.hoehne@hzdr.de

    2014-04-01

    Mixing of fluids in T-junction geometries is of significant interest for nuclear safety research. The most prominent example is the thermal striping phenomena in piping T-junctions, where hot and cold streams join and turbulently mix, however not completely or not immediately at the T-junction. This result in significant temperature fluctuations near the piping wall, either at the side of the secondary pipe branch or at the opposite side of the main branch pipe. The wall temperature fluctuation can cause cyclical thermal stresses and subsequently fatigue cracking of the wall. Thermal mixing in a T-junction has been studied for validation of CFD-calculations. A T-junction thermal mixing test was carried out at the Älvkarleby Laboratory of Vattenfall Research and Development (VRD) in Sweden. Data from this test have been reserved specifically for a OECD CFD benchmark exercise. The computational results show that RANS fail to predict a realistic mixing between the fluids. The results were significantly better with scale-resolving methods such as LES, showing fairly good predictions of the velocity field and mean temperatures. The calculation predicts also similar fluctuations and frequencies observed in the model test.

  13. Evaluating an Inquiry-Based Bioinformatics Course Using Q Methodology

    Science.gov (United States)

    Ramlo, Susan E.; McConnell, David; Duan, Zhong-Hui; Moore, Francisco B.

    2008-01-01

    Faculty at a Midwestern metropolitan public university recently developed a course on bioinformatics that emphasized collaboration and inquiry. Bioinformatics, essentially the application of computational tools to biological data, is inherently interdisciplinary. Thus part of the challenge of creating this course was serving the needs and…

  14. Report on the EMBER Project--A European Multimedia Bioinformatics Educational Resource

    Science.gov (United States)

    Attwood, Terri K.; Selimas, Ioannis; Buis, Rob; Altenburg, Ruud; Herzog, Robert; Ledent, Valerie; Ghita, Viorica; Fernandes, Pedro; Marques, Isabel; Brugman, Marc

    2005-01-01

    EMBER was a European project aiming to develop bioinformatics teaching materials on the Web and CD-ROM to help address the recognised skills shortage in bioinformatics. The project grew out of pilot work on the development of an interactive web-based bioinformatics tutorial and the desire to repackage that resource with the help of a professional…

  15. Microstructure of Josephson junctions: Effect on supercurrent transport in YBCO grain boundary and barrier layer junctions

    International Nuclear Information System (INIS)

    Merkle, K.L.; Huang, Y.

    1998-01-01

    The electric transport of high-temperature superconductors, such as YBa 2 Cu 3 O 7-x (YBCO), can be strongly restricted by the presence of high-angle grain boundaries (GB). This weak-link behavior is governed by the macroscopic GB geometry and the microscopic grain boundary structure and composition at the atomic level. Whereas grain boundaries present a considerable impediment to high current applications of high T c materials, there is considerable commercial interest in exploiting the weak-link-nature of grain boundaries for the design of microelectronic devices, such as superconducting quantum interference devices (SQUIDs). The Josephson junctions which form the basis of this technology can also be formed by introducing artificial barriers into the superconductor. The authors have examined both types of Josephson junctions by EM techniques in an effort to understand the connection between microstructure/chemistry and electrical transport properties. This knowledge is a valuable resource for the design and production of improved devices

  16. An Overview of Bioinformatics Tools and Resources in Allergy.

    Science.gov (United States)

    Fu, Zhiyan; Lin, Jing

    2017-01-01

    The rapidly increasing number of characterized allergens has created huge demands for advanced information storage, retrieval, and analysis. Bioinformatics and machine learning approaches provide useful tools for the study of allergens and epitopes prediction, which greatly complement traditional laboratory techniques. The specific applications mainly include identification of B- and T-cell epitopes, and assessment of allergenicity and cross-reactivity. In order to facilitate the work of clinical and basic researchers who are not familiar with bioinformatics, we review in this chapter the most important databases, bioinformatic tools, and methods with relevance to the study of allergens.

  17. Tunneling explains efficient electron transport via protein junctions.

    Science.gov (United States)

    Fereiro, Jerry A; Yu, Xi; Pecht, Israel; Sheves, Mordechai; Cuevas, Juan Carlos; Cahen, David

    2018-05-15

    Metalloproteins, proteins containing a transition metal ion cofactor, are electron transfer agents that perform key functions in cells. Inspired by this fact, electron transport across these proteins has been widely studied in solid-state settings, triggering the interest in examining potential use of proteins as building blocks in bioelectronic devices. Here, we report results of low-temperature (10 K) electron transport measurements via monolayer junctions based on the blue copper protein azurin (Az), which strongly suggest quantum tunneling of electrons as the dominant charge transport mechanism. Specifically, we show that, weakening the protein-electrode coupling by introducing a spacer, one can switch the electron transport from off-resonant to resonant tunneling. This is a consequence of reducing the electrode's perturbation of the Cu(II)-localized electronic state, a pattern that has not been observed before in protein-based junctions. Moreover, we identify vibronic features of the Cu(II) coordination sphere in transport characteristics that show directly the active role of the metal ion in resonance tunneling. Our results illustrate how quantum mechanical effects may dominate electron transport via protein-based junctions.

  18. Ballistic Graphene Josephson Junctions from the Short to the Long Junction Regimes.

    Science.gov (United States)

    Borzenets, I V; Amet, F; Ke, C T; Draelos, A W; Wei, M T; Seredinski, A; Watanabe, K; Taniguchi, T; Bomze, Y; Yamamoto, M; Tarucha, S; Finkelstein, G

    2016-12-02

    We investigate the critical current I_{C} of ballistic Josephson junctions made of encapsulated graphene-boron-nitride heterostructures. We observe a crossover from the short to the long junction regimes as the length of the device increases. In long ballistic junctions, I_{C} is found to scale as ∝exp(-k_{B}T/δE). The extracted energies δE are independent of the carrier density and proportional to the level spacing of the ballistic cavity. As T→0 the critical current of a long (or short) junction saturates at a level determined by the product of δE (or Δ) and the number of the junction's transversal modes.

  19. Equivalent Josephson junctions

    International Nuclear Information System (INIS)

    Boyadzhiev, T.L.; ); Semerdzhieva, E.G.; Shukrinov, Yu.M.; Fiziko-Tekhnicheskij Inst., Dushanbe

    2008-01-01

    The magnetic field dependences of critical current are numerically constructed for a long Josephson junction with a shunt- or resistor-type microscopic inhomogeneities and compared to the critical curve of a junction with exponentially varying width. The numerical results show that it is possible to replace the distributed inhomogeneity of a long Josephson junction by an inhomogeneity localized at one of its ends, which has certain technological advantages. It is also shown that the critical curves of junctions with exponentially varying width and inhomogeneities localized at the ends are unaffected by the mixed fluxon-antifluxon distributions of the magnetic flux [ru

  20. Recent developments in life sciences research: Role of bioinformatics

    African Journals Online (AJOL)

    Life sciences research and development has opened up new challenges and opportunities for bioinformatics. The contribution of bioinformatics advances made possible the mapping of the entire human genome and genomes of many other organisms in just over a decade. These discoveries, along with current efforts to ...

  1. Current status and future perspectives of bioinformatics in Tanzania ...

    African Journals Online (AJOL)

    The main bottleneck in advancing genomics in present times is the lack of expertise in using bioinformatics tools and approaches for data mining in raw DNA sequences generated by modern high throughput technologies such as next generation sequencing. Although bioinformatics has been making major progress and ...

  2. Buying in to bioinformatics: an introduction to commercial sequence analysis software.

    Science.gov (United States)

    Smith, David Roy

    2015-07-01

    Advancements in high-throughput nucleotide sequencing techniques have brought with them state-of-the-art bioinformatics programs and software packages. Given the importance of molecular sequence data in contemporary life science research, these software suites are becoming an essential component of many labs and classrooms, and as such are frequently designed for non-computer specialists and marketed as one-stop bioinformatics toolkits. Although beautifully designed and powerful, user-friendly bioinformatics packages can be expensive and, as more arrive on the market each year, it can be difficult for researchers, teachers and students to choose the right software for their needs, especially if they do not have a bioinformatics background. This review highlights some of the currently available and most popular commercial bioinformatics packages, discussing their prices, usability, features and suitability for teaching. Although several commercial bioinformatics programs are arguably overpriced and overhyped, many are well designed, sophisticated and, in my opinion, worth the investment. If you are just beginning your foray into molecular sequence analysis or an experienced genomicist, I encourage you to explore proprietary software bundles. They have the potential to streamline your research, increase your productivity, energize your classroom and, if anything, add a bit of zest to the often dry detached world of bioinformatics. © The Author 2014. Published by Oxford University Press.

  3. Mathematics and evolutionary biology make bioinformatics education comprehensible

    Science.gov (United States)

    Weisstein, Anton E.

    2013-01-01

    The patterns of variation within a molecular sequence data set result from the interplay between population genetic, molecular evolutionary and macroevolutionary processes—the standard purview of evolutionary biologists. Elucidating these patterns, particularly for large data sets, requires an understanding of the structure, assumptions and limitations of the algorithms used by bioinformatics software—the domain of mathematicians and computer scientists. As a result, bioinformatics often suffers a ‘two-culture’ problem because of the lack of broad overlapping expertise between these two groups. Collaboration among specialists in different fields has greatly mitigated this problem among active bioinformaticians. However, science education researchers report that much of bioinformatics education does little to bridge the cultural divide, the curriculum too focused on solving narrow problems (e.g. interpreting pre-built phylogenetic trees) rather than on exploring broader ones (e.g. exploring alternative phylogenetic strategies for different kinds of data sets). Herein, we present an introduction to the mathematics of tree enumeration, tree construction, split decomposition and sequence alignment. We also introduce off-line downloadable software tools developed by the BioQUEST Curriculum Consortium to help students learn how to interpret and critically evaluate the results of standard bioinformatics analyses. PMID:23821621

  4. Mathematics and evolutionary biology make bioinformatics education comprehensible.

    Science.gov (United States)

    Jungck, John R; Weisstein, Anton E

    2013-09-01

    The patterns of variation within a molecular sequence data set result from the interplay between population genetic, molecular evolutionary and macroevolutionary processes-the standard purview of evolutionary biologists. Elucidating these patterns, particularly for large data sets, requires an understanding of the structure, assumptions and limitations of the algorithms used by bioinformatics software-the domain of mathematicians and computer scientists. As a result, bioinformatics often suffers a 'two-culture' problem because of the lack of broad overlapping expertise between these two groups. Collaboration among specialists in different fields has greatly mitigated this problem among active bioinformaticians. However, science education researchers report that much of bioinformatics education does little to bridge the cultural divide, the curriculum too focused on solving narrow problems (e.g. interpreting pre-built phylogenetic trees) rather than on exploring broader ones (e.g. exploring alternative phylogenetic strategies for different kinds of data sets). Herein, we present an introduction to the mathematics of tree enumeration, tree construction, split decomposition and sequence alignment. We also introduce off-line downloadable software tools developed by the BioQUEST Curriculum Consortium to help students learn how to interpret and critically evaluate the results of standard bioinformatics analyses.

  5. Bioinformatics of cardiovascular miRNA biology.

    Science.gov (United States)

    Kunz, Meik; Xiao, Ke; Liang, Chunguang; Viereck, Janika; Pachel, Christina; Frantz, Stefan; Thum, Thomas; Dandekar, Thomas

    2015-12-01

    MicroRNAs (miRNAs) are small ~22 nucleotide non-coding RNAs and are highly conserved among species. Moreover, miRNAs regulate gene expression of a large number of genes associated with important biological functions and signaling pathways. Recently, several miRNAs have been found to be associated with cardiovascular diseases. Thus, investigating the complex regulatory effect of miRNAs may lead to a better understanding of their functional role in the heart. To achieve this, bioinformatics approaches have to be coupled with validation and screening experiments to understand the complex interactions of miRNAs with the genome. This will boost the subsequent development of diagnostic markers and our understanding of the physiological and therapeutic role of miRNAs in cardiac remodeling. In this review, we focus on and explain different bioinformatics strategies and algorithms for the identification and analysis of miRNAs and their regulatory elements to better understand cardiac miRNA biology. Starting with the biogenesis of miRNAs, we present approaches such as LocARNA and miRBase for combining sequence and structure analysis including phylogenetic comparisons as well as detailed analysis of RNA folding patterns, functional target prediction, signaling pathway as well as functional analysis. We also show how far bioinformatics helps to tackle the unprecedented level of complexity and systemic effects by miRNA, underlining the strong therapeutic potential of miRNA and miRNA target structures in cardiovascular disease. In addition, we discuss drawbacks and limitations of bioinformatics algorithms and the necessity of experimental approaches for miRNA target identification. This article is part of a Special Issue entitled 'Non-coding RNAs'. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Junction and circuit fabrication

    International Nuclear Information System (INIS)

    Jackel, L.D.

    1980-01-01

    Great strides have been made in Josephson junction fabrication in the four years since the first IC SQUID meeting. Advances in lithography have allowed the production of devices with planar dimensions as small as a few hundred angstroms. Improved technology has provided ultra-high sensitivity SQUIDS, high-efficiency low-noise mixers, and complex integrated circuits. This review highlights some of the new fabrication procedures. The review consists of three parts. Part 1 is a short summary of the requirements on junctions for various applications. Part 2 reviews intergrated circuit fabrication, including tunnel junction logic circuits made at IBM and Bell Labs, and microbridge radiation sources made at SUNY at Stony Brook. Part 3 describes new junction fabrication techniques, the major emphasis of this review. This part includes a discussion of small oxide-barrier tunnel junctions, semiconductor barrier junctions, and microbridge junctions. Part 3 concludes by considering very fine lithography and limitations to miniaturization. (orig.)

  7. Improvement of the banana "Musa acuminata" reference sequence using NGS data and semi-automated bioinformatics methods.

    Science.gov (United States)

    Martin, Guillaume; Baurens, Franc-Christophe; Droc, Gaëtan; Rouard, Mathieu; Cenci, Alberto; Kilian, Andrzej; Hastie, Alex; Doležel, Jaroslav; Aury, Jean-Marc; Alberti, Adriana; Carreel, Françoise; D'Hont, Angélique

    2016-03-16

    Recent advances in genomics indicate functional significance of a majority of genome sequences and their long range interactions. As a detailed examination of genome organization and function requires very high quality genome sequence, the objective of this study was to improve reference genome assembly of banana (Musa acuminata). We have developed a modular bioinformatics pipeline to improve genome sequence assemblies, which can handle various types of data. The pipeline comprises several semi-automated tools. However, unlike classical automated tools that are based on global parameters, the semi-automated tools proposed an expert mode for a user who can decide on suggested improvements through local compromises. The pipeline was used to improve the draft genome sequence of Musa acuminata. Genotyping by sequencing (GBS) of a segregating population and paired-end sequencing were used to detect and correct scaffold misassemblies. Long insert size paired-end reads identified scaffold junctions and fusions missed by automated assembly methods. GBS markers were used to anchor scaffolds to pseudo-molecules with a new bioinformatics approach that avoids the tedious step of marker ordering during genetic map construction. Furthermore, a genome map was constructed and used to assemble scaffolds into super scaffolds. Finally, a consensus gene annotation was projected on the new assembly from two pre-existing annotations. This approach reduced the total Musa scaffold number from 7513 to 1532 (i.e. by 80%), with an N50 that increased from 1.3 Mb (65 scaffolds) to 3.0 Mb (26 scaffolds). 89.5% of the assembly was anchored to the 11 Musa chromosomes compared to the previous 70%. Unknown sites (N) were reduced from 17.3 to 10.0%. The release of the Musa acuminata reference genome version 2 provides a platform for detailed analysis of banana genome variation, function and evolution. Bioinformatics tools developed in this work can be used to improve genome sequence assemblies in

  8. An innovative approach for testing bioinformatics programs using metamorphic testing

    Directory of Open Access Journals (Sweden)

    Liu Huai

    2009-01-01

    Full Text Available Abstract Background Recent advances in experimental and computational technologies have fueled the development of many sophisticated bioinformatics programs. The correctness of such programs is crucial as incorrectly computed results may lead to wrong biological conclusion or misguide downstream experimentation. Common software testing procedures involve executing the target program with a set of test inputs and then verifying the correctness of the test outputs. However, due to the complexity of many bioinformatics programs, it is often difficult to verify the correctness of the test outputs. Therefore our ability to perform systematic software testing is greatly hindered. Results We propose to use a novel software testing technique, metamorphic testing (MT, to test a range of bioinformatics programs. Instead of requiring a mechanism to verify whether an individual test output is correct, the MT technique verifies whether a pair of test outputs conform to a set of domain specific properties, called metamorphic relations (MRs, thus greatly increases the number and variety of test cases that can be applied. To demonstrate how MT is used in practice, we applied MT to test two open-source bioinformatics programs, namely GNLab and SeqMap. In particular we show that MT is simple to implement, and is effective in detecting faults in a real-life program and some artificially fault-seeded programs. Further, we discuss how MT can be applied to test programs from various domains of bioinformatics. Conclusion This paper describes the application of a simple, effective and automated technique to systematically test a range of bioinformatics programs. We show how MT can be implemented in practice through two real-life case studies. Since many bioinformatics programs, particularly those for large scale simulation and data analysis, are hard to test systematically, their developers may benefit from using MT as part of the testing strategy. Therefore our work

  9. Assessment of a Bioinformatics across Life Science Curricula Initiative

    Science.gov (United States)

    Howard, David R.; Miskowski, Jennifer A.; Grunwald, Sandra K.; Abler, Michael L.

    2007-01-01

    At the University of Wisconsin-La Crosse, we have undertaken a program to integrate the study of bioinformatics across the undergraduate life science curricula. Our efforts have included incorporating bioinformatics exercises into courses in the biology, microbiology, and chemistry departments, as well as coordinating the efforts of faculty within…

  10. Incorporating Genomics and Bioinformatics across the Life Sciences Curriculum

    Energy Technology Data Exchange (ETDEWEB)

    Ditty, Jayna L.; Kvaal, Christopher A.; Goodner, Brad; Freyermuth, Sharyn K.; Bailey, Cheryl; Britton, Robert A.; Gordon, Stuart G.; Heinhorst, Sabine; Reed, Kelynne; Xu, Zhaohui; Sanders-Lorenz, Erin R.; Axen, Seth; Kim, Edwin; Johns, Mitrick; Scott, Kathleen; Kerfeld, Cheryl A.

    2011-08-01

    Undergraduate life sciences education needs an overhaul, as clearly described in the National Research Council of the National Academies publication BIO 2010: Transforming Undergraduate Education for Future Research Biologists. Among BIO 2010's top recommendations is the need to involve students in working with real data and tools that reflect the nature of life sciences research in the 21st century. Education research studies support the importance of utilizing primary literature, designing and implementing experiments, and analyzing results in the context of a bona fide scientific question in cultivating the analytical skills necessary to become a scientist. Incorporating these basic scientific methodologies in undergraduate education leads to increased undergraduate and post-graduate retention in the sciences. Toward this end, many undergraduate teaching organizations offer training and suggestions for faculty to update and improve their teaching approaches to help students learn as scientists, through design and discovery (e.g., Council of Undergraduate Research [www.cur.org] and Project Kaleidoscope [www.pkal.org]). With the advent of genome sequencing and bioinformatics, many scientists now formulate biological questions and interpret research results in the context of genomic information. Just as the use of bioinformatic tools and databases changed the way scientists investigate problems, it must change how scientists teach to create new opportunities for students to gain experiences reflecting the influence of genomics, proteomics, and bioinformatics on modern life sciences research. Educators have responded by incorporating bioinformatics into diverse life science curricula. While these published exercises in, and guidelines for, bioinformatics curricula are helpful and inspirational, faculty new to the area of bioinformatics inevitably need training in the theoretical underpinnings of the algorithms. Moreover, effectively integrating bioinformatics

  11. Electron and Phonon Transport in Molecular Junctions

    DEFF Research Database (Denmark)

    Li, Qian

    Molecular electronics provide the possibility to investigate electron and phonon transport at the smallest imaginable scale, where quantum effects can be investigated and exploited directly in the design. In this thesis, we study both electron transport and phonon transport in molecular junctions....... The system we are interested in here are π-stacked molecules connected with two semi-infinite leads. π-stacked aromatic rings, connected via π-π electronic coupling, provides a rather soft mechanical bridge while maintaining high electronic conductivity. We investigate electron transport...... transmission at the Fermi energy. We propose and analyze a way of using π   stacking to design molecular junctions to control heat transport. We develop a simple model system to identify optimal parameter regimes and then use density functional theory (DFT) to extract model parameters for a number of specific...

  12. Bioinformatics-Aided Venomics

    Directory of Open Access Journals (Sweden)

    Quentin Kaas

    2015-06-01

    Full Text Available Venomics is a modern approach that combines transcriptomics and proteomics to explore the toxin content of venoms. This review will give an overview of computational approaches that have been created to classify and consolidate venomics data, as well as algorithms that have helped discovery and analysis of toxin nucleic acid and protein sequences, toxin three-dimensional structures and toxin functions. Bioinformatics is used to tackle specific challenges associated with the identification and annotations of toxins. Recognizing toxin transcript sequences among second generation sequencing data cannot rely only on basic sequence similarity because toxins are highly divergent. Mass spectrometry sequencing of mature toxins is challenging because toxins can display a large number of post-translational modifications. Identifying the mature toxin region in toxin precursor sequences requires the prediction of the cleavage sites of proprotein convertases, most of which are unknown or not well characterized. Tracing the evolutionary relationships between toxins should consider specific mechanisms of rapid evolution as well as interactions between predatory animals and prey. Rapidly determining the activity of toxins is the main bottleneck in venomics discovery, but some recent bioinformatics and molecular modeling approaches give hope that accurate predictions of toxin specificity could be made in the near future.

  13. Spin nutation effects in molecular nanomagnet–superconductor tunnel junctions

    International Nuclear Information System (INIS)

    Abouie, J; Abdollahipour, B; Rostami, A A

    2013-01-01

    We study the spin nutation effects of a molecular nanomagnet on the Josephson current through a superconductor|molecular nanomagnet|superconductor tunnel junction. We explicitly demonstrate that, due to the spin nutation of the molecular nanomagnet, two oscillatory terms emerge in the ac Josephson current in addition to the conventional ac Josephson current. Some resonances occur in the junction due to the interactions of the transported quasiparticles with the bias voltage and molecular nanomagnet spin dynamics. Their appearance indicates that the energy exchanged during these interactions is in the range of the superconducting energy gap. We also show that the spin nutation is able to convert the ac Josephson current to a dc current, which is interesting for applications. (paper)

  14. A Bioinformatics Facility for NASA

    Science.gov (United States)

    Schweighofer, Karl; Pohorille, Andrew

    2006-01-01

    Building on an existing prototype, we have fielded a facility with bioinformatics technologies that will help NASA meet its unique requirements for biological research. This facility consists of a cluster of computers capable of performing computationally intensive tasks, software tools, databases and knowledge management systems. Novel computational technologies for analyzing and integrating new biological data and already existing knowledge have been developed. With continued development and support, the facility will fulfill strategic NASA s bioinformatics needs in astrobiology and space exploration. . As a demonstration of these capabilities, we will present a detailed analysis of how spaceflight factors impact gene expression in the liver and kidney for mice flown aboard shuttle flight STS-108. We have found that many genes involved in signal transduction, cell cycle, and development respond to changes in microgravity, but that most metabolic pathways appear unchanged.

  15. Comprehensive decision tree models in bioinformatics.

    Directory of Open Access Journals (Sweden)

    Gregor Stiglic

    Full Text Available PURPOSE: Classification is an important and widely used machine learning technique in bioinformatics. Researchers and other end-users of machine learning software often prefer to work with comprehensible models where knowledge extraction and explanation of reasoning behind the classification model are possible. METHODS: This paper presents an extension to an existing machine learning environment and a study on visual tuning of decision tree classifiers. The motivation for this research comes from the need to build effective and easily interpretable decision tree models by so called one-button data mining approach where no parameter tuning is needed. To avoid bias in classification, no classification performance measure is used during the tuning of the model that is constrained exclusively by the dimensions of the produced decision tree. RESULTS: The proposed visual tuning of decision trees was evaluated on 40 datasets containing classical machine learning problems and 31 datasets from the field of bioinformatics. Although we did not expected significant differences in classification performance, the results demonstrate a significant increase of accuracy in less complex visually tuned decision trees. In contrast to classical machine learning benchmarking datasets, we observe higher accuracy gains in bioinformatics datasets. Additionally, a user study was carried out to confirm the assumption that the tree tuning times are significantly lower for the proposed method in comparison to manual tuning of the decision tree. CONCLUSIONS: The empirical results demonstrate that by building simple models constrained by predefined visual boundaries, one not only achieves good comprehensibility, but also very good classification performance that does not differ from usually more complex models built using default settings of the classical decision tree algorithm. In addition, our study demonstrates the suitability of visually tuned decision trees for datasets

  16. Comprehensive decision tree models in bioinformatics.

    Science.gov (United States)

    Stiglic, Gregor; Kocbek, Simon; Pernek, Igor; Kokol, Peter

    2012-01-01

    Classification is an important and widely used machine learning technique in bioinformatics. Researchers and other end-users of machine learning software often prefer to work with comprehensible models where knowledge extraction and explanation of reasoning behind the classification model are possible. This paper presents an extension to an existing machine learning environment and a study on visual tuning of decision tree classifiers. The motivation for this research comes from the need to build effective and easily interpretable decision tree models by so called one-button data mining approach where no parameter tuning is needed. To avoid bias in classification, no classification performance measure is used during the tuning of the model that is constrained exclusively by the dimensions of the produced decision tree. The proposed visual tuning of decision trees was evaluated on 40 datasets containing classical machine learning problems and 31 datasets from the field of bioinformatics. Although we did not expected significant differences in classification performance, the results demonstrate a significant increase of accuracy in less complex visually tuned decision trees. In contrast to classical machine learning benchmarking datasets, we observe higher accuracy gains in bioinformatics datasets. Additionally, a user study was carried out to confirm the assumption that the tree tuning times are significantly lower for the proposed method in comparison to manual tuning of the decision tree. The empirical results demonstrate that by building simple models constrained by predefined visual boundaries, one not only achieves good comprehensibility, but also very good classification performance that does not differ from usually more complex models built using default settings of the classical decision tree algorithm. In addition, our study demonstrates the suitability of visually tuned decision trees for datasets with binary class attributes and a high number of possibly

  17. Macroscopic quantum tunneling in Josephson tunnel junctions and Coulomb blockade in single small tunnel junctions

    International Nuclear Information System (INIS)

    Cleland, A.N.

    1991-04-01

    Experiments investigating the process of macroscopic quantum tunneling in a moderately-damped, resistively shunted, Josephson junction are described, followed by a discussion of experiments performed on very small capacitance normal-metal tunnel junctions. The experiments on the resistively-shunted Josephson junction were designed to investigate a quantum process, that of the tunneling of the Josephson phase variable under a potential barrier, in a system in which dissipation plays a major role in the dynamics of motion. All the parameters of the junction were measured using the classical phenomena of thermal activation and resonant activation. Theoretical predictions are compared with the experimental results, showing good agreement with no adjustable parameters; the tunneling rate in the moderately damped (Q ∼ 1) junction is seen to be reduced by a factor of 300 from that predicted for an undamped junction. The phase is seen to be a good quantum-mechanical variable. The experiments on small capacitance tunnel junctions extend the measurements on the larger-area Josephson junctions from the region in which the phase variable has a fairly well-defined value, i.e. its wavefunction has a narrow width, to the region where its value is almost completely unknown. The charge on the junction becomes well-defined and is predicted to quantize the current through the junction, giving rise to the Coulomb blockade at low bias. I present the first clear observation of the Coulomb blockade in single junctions. The electrical environment of the tunnel junction, however, strongly affects the behavior of the junction: higher resistance leads are observed to greatly sharpen the Coulomb blockade over that seen with lower resistance leads. I present theoretical descriptions of how the environment influences the junctions; comparisons with the experimental results are in reasonable agreement

  18. 9th International Conference on Practical Applications of Computational Biology and Bioinformatics

    CERN Document Server

    Rocha, Miguel; Fdez-Riverola, Florentino; Paz, Juan

    2015-01-01

    This proceedings presents recent practical applications of Computational Biology and  Bioinformatics. It contains the proceedings of the 9th International Conference on Practical Applications of Computational Biology & Bioinformatics held at University of Salamanca, Spain, at June 3rd-5th, 2015. The International Conference on Practical Applications of Computational Biology & Bioinformatics (PACBB) is an annual international meeting dedicated to emerging and challenging applied research in Bioinformatics and Computational Biology. Biological and biomedical research are increasingly driven by experimental techniques that challenge our ability to analyse, process and extract meaningful knowledge from the underlying data. The impressive capabilities of next generation sequencing technologies, together with novel and ever evolving distinct types of omics data technologies, have put an increasingly complex set of challenges for the growing fields of Bioinformatics and Computational Biology. The analysis o...

  19. Bioconductor: open software development for computational biology and bioinformatics

    DEFF Research Database (Denmark)

    Gentleman, R.C.; Carey, V.J.; Bates, D.M.

    2004-01-01

    The Bioconductor project is an initiative for the collaborative creation of extensible software for computational biology and bioinformatics. The goals of the project include: fostering collaborative development and widespread use of innovative software, reducing barriers to entry into interdisci......The Bioconductor project is an initiative for the collaborative creation of extensible software for computational biology and bioinformatics. The goals of the project include: fostering collaborative development and widespread use of innovative software, reducing barriers to entry...... into interdisciplinary scientific research, and promoting the achievement of remote reproducibility of research results. We describe details of our aims and methods, identify current challenges, compare Bioconductor to other open bioinformatics projects, and provide working examples....

  20. Peer Mentoring for Bioinformatics presentation

    OpenAIRE

    Budd, Aidan

    2014-01-01

    A handout used in a HUB (Heidelberg Unseminars in Bioinformatics) meeting focused on career development for bioinformaticians. It describes an activity for use to help introduce the idea of peer mentoring, potnetially acting as an opportunity to create peer-mentoring groups.

  1. Nanofibrous p-n Junction and Its Rectifying Characteristics

    Directory of Open Access Journals (Sweden)

    Jian Fang

    2013-01-01

    Full Text Available Randomly oriented tin oxide (SnO2 nanofibers and poly(3,4-ethylenedioxythiophene-poly(styrenesulfonate/polyvinylpyrrolidone (PEDOT:PSS/PVP nanofibers were prepared by a two-step electrospinning technique to form a layered fibrous mat. The current-voltage measurement revealed that the fibrous mat had an obvious diode-rectifying characteristic. The thickness of the nanofiber layers was found to have a considerable influence on the device resistance and rectifying performance. Such an interesting rectifying property was attributed to the formation of a p-n junction between the fibrous SnO2 and PEDOT:PSS/PVP layers. This is the first report that a rectifying junction can be formed between two layers of electrospun nanofiber mats, and the resulting nanofibrous diode rectifier may find applications in sensors, energy harvest, and electronic textiles.

  2. PubData: search engine for bioinformatics databases worldwide

    OpenAIRE

    Vand, Kasra; Wahlestedt, Thor; Khomtchouk, Kelly; Sayed, Mohammed; Wahlestedt, Claes; Khomtchouk, Bohdan

    2016-01-01

    We propose a search engine and file retrieval system for all bioinformatics databases worldwide. PubData searches biomedical data in a user-friendly fashion similar to how PubMed searches biomedical literature. PubData is built on novel network programming, natural language processing, and artificial intelligence algorithms that can patch into the file transfer protocol servers of any user-specified bioinformatics database, query its contents, retrieve files for download, and adapt to the use...

  3. Bioinformatics and its application in animal health: a review | Soetan ...

    African Journals Online (AJOL)

    Bioinformatics is an interdisciplinary subject, which uses computer application, statistics, mathematics and engineering for the analysis and management of biological information. It has become an important tool for basic and applied research in veterinary sciences. Bioinformatics has brought about advancements into ...

  4. Progress in the development of metamorphic multi-junction III-V space solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Sinharoy, S.; Patton, M.O.; Valko, T.M.; Weizer, V.G. [Essential Research Inc., Cleveland, OH (United States)

    2002-07-01

    Theoretical calculations have shown that highest-efficiency III-V multi-junction solar cells require alloy structures that cannot be grown on a lattice-matched substrate. Ever since the first demonstration of high efficiency metamorphic single-junction 1.1 and 1.2 eV InGaAs solar cells, interest has grown in the development of multi-junction cells of this type, using graded buffer layer technology. Essential Research Incorporated (ERI) is currently developing a dual-junction 1.6 eV InGaP/1.1 eV InGaAs tandem cell (projected practical air-mass zero (AMO), one-sun efficiency of 27%, and 100-sun efficiency of 31.1%) under a Ballistic Missile Defense Command (BMDO) SBIR Phase II program. A second ongoing research effort involves the development of a 2.1 eV A1GaInP/1.6 eV InGaAsP/1.2 eV InGaAs triple-junction concentrator tandem cell (projected practical AMO efficiency 36.5% under 100 suns) under a SBIR Phase II program funded by the Air Force. We are in the process of optimizing the dual-junction cell performance. For the triple-junction cell, we have developed the bottom and the middle cell, and are in the process of developing the layer structures needed for the top cell. A progress report is presented in this paper. (author)

  5. Fabrication of tunnel junction-based molecular electronics and spintronics devices

    International Nuclear Information System (INIS)

    Tyagi, Pawan

    2012-01-01

    Tunnel junction-based molecular devices (TJMDs) are highly promising for realizing futuristic electronics and spintronics devices for advanced logic and memory operations. Under this approach, ∼2.5 nm molecular device elements bridge across the ∼2-nm thick insulator of a tunnel junction along the exposed side edge(s). This paper details the efforts and insights for producing a variety of TJMDs by resolving multiple device fabrication and characterization issues. This study specifically discusses (i) compatibility between tunnel junction test bed and molecular solutions, (ii) optimization of the exposed side edge profile and insulator thickness for enhancing the probability of molecular bridging, (iii) effect of fabrication process-induced mechanical stresses, and (iv) minimizing electrical bias-induced instability after the device fabrication. This research will benefit other researchers interested in producing TJMDs efficiently. TJMD approach offers an open platform to test virtually any combination of magnetic and nonmagnetic electrodes, and promising molecules such as single molecular magnets, porphyrin, DNA, and molecular complexes.

  6. Assessment of Data Reliability of Wireless Sensor Network for Bioinformatics

    Directory of Open Access Journals (Sweden)

    Ting Dong

    2017-09-01

    Full Text Available As a focal point of biotechnology, bioinformatics integrates knowledge from biology, mathematics, physics, chemistry, computer science and information science. It generally deals with genome informatics, protein structure and drug design. However, the data or information thus acquired from the main areas of bioinformatics may not be effective. Some researchers combined bioinformatics with wireless sensor network (WSN into biosensor and other tools, and applied them to such areas as fermentation, environmental monitoring, food engineering, clinical medicine and military. In the combination, the WSN is used to collect data and information. The reliability of the WSN in bioinformatics is the prerequisite to effective utilization of information. It is greatly influenced by factors like quality, benefits, service, timeliness and stability, some of them are qualitative and some are quantitative. Hence, it is necessary to develop a method that can handle both qualitative and quantitative assessment of information. A viable option is the fuzzy linguistic method, especially 2-tuple linguistic model, which has been extensively used to cope with such issues. As a result, this paper introduces 2-tuple linguistic representation to assist experts in giving their opinions on different WSNs in bioinformatics that involve multiple factors. Moreover, the author proposes a novel way to determine attribute weights and uses the method to weigh the relative importance of different influencing factors which can be considered as attributes in the assessment of the WSN in bioinformatics. Finally, an illustrative example is given to provide a reasonable solution for the assessment.

  7. Reproducible Bioinformatics Research for Biologists

    Science.gov (United States)

    This book chapter describes the current Big Data problem in Bioinformatics and the resulting issues with performing reproducible computational research. The core of the chapter provides guidelines and summaries of current tools/techniques that a noncomputational researcher would need to learn to pe...

  8. Bioinformatics of genomic association mapping

    NARCIS (Netherlands)

    Vaez Barzani, Ahmad

    2015-01-01

    In this thesis we present an overview of bioinformatics-based approaches for genomic association mapping, with emphasis on human quantitative traits and their contribution to complex diseases. We aim to provide a comprehensive walk-through of the classic steps of genomic association mapping

  9. Bioinformatic tools for PCR Primer design

    African Journals Online (AJOL)

    ES

    Bioinformatics is an emerging scientific discipline that uses information ... complex biological questions. ... and computer programs for various purposes of primer ..... polymerase chain reaction: Human Immunodeficiency Virus 1 model studies.

  10. PayDIBI: Pay-as-you-go data integration for bioinformatics

    NARCIS (Netherlands)

    Wanders, B.

    2012-01-01

    Background: Scientific research in bio-informatics is often data-driven and supported by biolog- ical databases. In a growing number of research projects, researchers like to ask questions that require the combination of information from more than one database. Most bio-informatics papers do not

  11. Roles of gap junctions, connexins and pannexins in epilepsy

    Directory of Open Access Journals (Sweden)

    Shanthini eMylvaganam

    2014-05-01

    Full Text Available Enhanced gap junctional communication (GJC between neurons is considered a major factor underlying the neuronal synchrony driving seizure activity. In addition, the hippocampal sharp wave ripple complexes, associated with learning and seizures, are diminished by GJC blocking agents. Although gap junctional blocking drugs inhibit experimental seizures, they all have other nonspecific actions. Besides interneuronal GJC between dendrites, inter-axonal and inter-glial GJC is also considered important for seizure generation. Interestingly, in most studies of cerebral tissue from animal seizure models and from human patients with epilepsy, there is up-regulation of glial, but not neuronal gap junctional mRNA and protein. Significant changes in the expression and post-translational modification of the astrocytic connexin Cx43, and Panx1 were observed in an in vitro Co++ seizure model, further supporting a role for glia in seizure-genesis, although the reasons for this remain unclear. Further suggesting an involvement of astrocytic GJC in epilepsy, is the fact that the expression of astrocytic Cx mRNAs (Cxs 30 and 43 is several fold higher than that of neuronal Cx mRNAs (Cxs 36 and 45, and the number of glial cells outnumber neuronal cells in mammalian hippocampal and cortical tissue. Pannexin expression is also increased in both animal and human epileptic tissues. Specific Cx43 mimetic peptides, Gap 27 and SLS, inhibit the docking of astrocytic connexin Cx43 proteins from forming intercellular gap junctions, diminishing spontaneous seizures. Besides GJs, Cx membrane hemichannels in glia and Panx membrane channels in neurons and glia are also inhibited by gap junctional pharmacological blockers. Although there is no doubt that connexin-based gap junctions and hemichannels, and pannexin-based membrane channels are related to epilepsy, the specific details of how they are involved and how we can modulate their function for therapeutic purposes remain to

  12. Electronic thermometry in tunable tunnel junction

    Science.gov (United States)

    Maksymovych, Petro

    2016-03-15

    A tunable tunnel junction thermometry circuit includes a variable width tunnel junction between a test object and a probe. The junction width is varied and a change in thermovoltage across the junction with respect to the change in distance across the junction is determined. Also, a change in biased current with respect to a change in distance across the junction is determined. A temperature gradient across the junction is determined based on a mathematical relationship between the temperature gradient, the change in thermovoltage with respect to distance and the change in biased current with respect to distance. Thermovoltage may be measured by nullifying a thermoelectric tunneling current with an applied voltage supply level. A piezoelectric actuator may modulate the probe, and thus the junction width, to vary thermovoltage and biased current across the junction. Lock-in amplifiers measure the derivatives of the thermovoltage and biased current modulated by varying junction width.

  13. Intracellular trafficking pathways of Cx43 gap junction channels.

    Science.gov (United States)

    Epifantseva, Irina; Shaw, Robin M

    2018-01-01

    Gap Junction (GJ) channels, including the most common Connexin 43 (Cx43), have fundamental roles in excitable tissues by facilitating rapid transmission of action potentials between adjacent cells. For instance, synchronization during each heartbeat is regulated by these ion channels at the cardiomyocyte cell-cell border. Cx43 protein has a short half-life, and rapid synthesis and timely delivery of those proteins to particular subdomains are crucial for the cellular organization of gap junctions and maintenance of intracellular coupling. Impairment in gap junction trafficking contributes to dangerous complications in diseased hearts such as the arrhythmias of sudden cardiac death. Of recent interest are the protein-protein interactions with the Cx43 carboxy-terminus. These interactions have significant impact on the full length Cx43 lifecycle and also contribute to trafficking of Cx43 as well as possibly other functions. We are learning that many of the known non-canonical roles of Cx43 can be attributed to the recently identified six endogenous Cx43 truncated isoforms which are produced by internal translation. In general, alternative translation is a new leading edge for proteome expansion and therapeutic drug development. This review highlights recent mechanisms identified in the trafficking of gap junction channels, involvement of other proteins contributing to the delivery of channels to the cell-cell border, and understanding of possible roles of the newly discovered alternatively translated isoforms in Cx43 biology. This article is part of a Special Issue entitled: Gap Junction Proteins edited by Jean Claude Herve. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Numerical investigation of gas separation in T-junction

    Science.gov (United States)

    Pao, William; Hashim, Fakhruldin M.; Ming, Low Huei

    2015-05-01

    T-junctions are commonly used in distributing two-phase flow by piping networks especially in oil and gas industries. Understanding the behavior of two-phase flow through a T-junction is very important as it has significant effect on the operation, maintenance and efficiency of the components downstream from the junction. The objective of this paper is to determine the effect of ratio of side arm to main arm diameters, initial inlet gas saturation and gas density variation on passive separation performance in T-junction. Via computational fluid dynamics tool, preliminary investigation found that separation efficiency is proportional to diameter ratio in between 0.5-0.75. Beyond diameter ratio 0.75, there is a flattening of separation efficiency. The change of fraction of gas taken off is inversely proportional to initial inlet gas saturation and the trend is almost inversely linear for diameter ratio 0.5. Beyond that, the relationship between initial inlet gas saturation and separation efficiency exhibits mild non-linearity behavior. For diameter ratios 0.75-1.0, the fraction of gas taken off is almost similar as far as the initial gas saturation is concerned. Gas density affects phase separation efficiency when the initial gas saturation is low. Interestingly, the effects of the inlet flow velocity and gravity distribution is almost negligible relative to the mass split ratio, side to main arm diameter ratio, initial gas saturation and density differential.

  15. Generative Topic Modeling in Image Data Mining and Bioinformatics Studies

    Science.gov (United States)

    Chen, Xin

    2012-01-01

    Probabilistic topic models have been developed for applications in various domains such as text mining, information retrieval and computer vision and bioinformatics domain. In this thesis, we focus on developing novel probabilistic topic models for image mining and bioinformatics studies. Specifically, a probabilistic topic-connection (PTC) model…

  16. Taking Bioinformatics to Systems Medicine

    NARCIS (Netherlands)

    van Kampen, Antoine H. C.; Moerland, Perry D.

    2016-01-01

    Systems medicine promotes a range of approaches and strategies to study human health and disease at a systems level with the aim of improving the overall well-being of (healthy) individuals, and preventing, diagnosing, or curing disease. In this chapter we discuss how bioinformatics critically

  17. Metagenomics and Bioinformatics in Microbial Ecology: Current Status and Beyond.

    Science.gov (United States)

    Hiraoka, Satoshi; Yang, Ching-Chia; Iwasaki, Wataru

    2016-09-29

    Metagenomic approaches are now commonly used in microbial ecology to study microbial communities in more detail, including many strains that cannot be cultivated in the laboratory. Bioinformatic analyses make it possible to mine huge metagenomic datasets and discover general patterns that govern microbial ecosystems. However, the findings of typical metagenomic and bioinformatic analyses still do not completely describe the ecology and evolution of microbes in their environments. Most analyses still depend on straightforward sequence similarity searches against reference databases. We herein review the current state of metagenomics and bioinformatics in microbial ecology and discuss future directions for the field. New techniques will allow us to go beyond routine analyses and broaden our knowledge of microbial ecosystems. We need to enrich reference databases, promote platforms that enable meta- or comprehensive analyses of diverse metagenomic datasets, devise methods that utilize long-read sequence information, and develop more powerful bioinformatic methods to analyze data from diverse perspectives.

  18. Bioinformatics Education in Pathology Training: Current Scope and Future Direction

    Directory of Open Access Journals (Sweden)

    Michael R Clay

    2017-04-01

    Full Text Available Training anatomic and clinical pathology residents in the principles of bioinformatics is a challenging endeavor. Most residents receive little to no formal exposure to bioinformatics during medical education, and most of the pathology training is spent interpreting histopathology slides using light microscopy or focused on laboratory regulation, management, and interpretation of discrete laboratory data. At a minimum, residents should be familiar with data structure, data pipelines, data manipulation, and data regulations within clinical laboratories. Fellowship-level training should incorporate advanced principles unique to each subspecialty. Barriers to bioinformatics education include the clinical apprenticeship training model, ill-defined educational milestones, inadequate faculty expertise, and limited exposure during medical training. Online educational resources, case-based learning, and incorporation into molecular genomics education could serve as effective educational strategies. Overall, pathology bioinformatics training can be incorporated into pathology resident curricula, provided there is motivation to incorporate, institutional support, educational resources, and adequate faculty expertise.

  19. Dynamics of Josephson junction arrays

    International Nuclear Information System (INIS)

    Hadley, P.

    1989-01-01

    The dynamics of Josephson junction arrays is a topic that lies at the intersection of the fields of nonlinear dynamics and Josephson junction technology. The series arrays considered here consist of several rapidly oscillating Josephson junctions where each junction is coupled equally to every other junction. The purpose of this study is to understand phaselocking and other cooperative dynamics of this system. Previously, little was known about high dimensional nonlinear systems of this sort. Numerical simulations are used to study the dynamics of these arrays. Three distinct types of periodic solutions to the array equations were observed as well as period doubled and chaotic solutions. One of the periodic solutions is the symmetric, in-phase solution where all of the junctions oscillate identically. The other two periodic solutions are symmetry-broken solutions where all of the junction do not oscillate identically. The symmetry-broken solutions are highly degenerate. As many as (N - 1) stable solutions can coexist for an array of N junctions. Understanding the stability of these several solutions and the transitions among them is vital to the design of useful devices

  20. Best practices in bioinformatics training for life scientists

    DEFF Research Database (Denmark)

    Via, Allegra; Blicher, Thomas; Bongcam-Rudloff, Erik

    2013-01-01

    their data efficiently, and progress their research, is a challenge across the globe. Delivering good training goes beyond traditional lectures and resource-centric demos, using interactivity, problem-solving exercises and cooperative learning to substantially enhance training quality and learning outcomes...... to environmental researchers, a common theme is the need not just to use, and gain familiarity with, bioinformatics tools and resources but also to understand their underlying fundamental theoretical and practical concepts. Providing bioinformatics training to empower life scientists to handle and analyse...

  1. Teaching Bioinformatics and Neuroinformatics by Using Free Web-Based Tools

    Science.gov (United States)

    Grisham, William; Schottler, Natalie A.; Valli-Marill, Joanne; Beck, Lisa; Beatty, Jackson

    2010-01-01

    This completely computer-based module's purpose is to introduce students to bioinformatics resources. We present an easy-to-adopt module that weaves together several important bioinformatic tools so students can grasp how these tools are used in answering research questions. Students integrate information gathered from websites dealing with…

  2. Fast, clash-free RNA conformational morphing using molecular junctions.

    Science.gov (United States)

    Héliou, Amélie; Budday, Dominik; Fonseca, Rasmus; van den Bedem, Henry

    2017-07-15

    Non-coding ribonucleic acids (ncRNA) are functional RNA molecules that are not translated into protein. They are extremely dynamic, adopting diverse conformational substates, which enables them to modulate their interaction with a large number of other molecules. The flexibility of ncRNA provides a challenge for probing their complex 3D conformational landscape, both experimentally and computationally. Despite their conformational diversity, ncRNAs mostly preserve their secondary structure throughout the dynamic ensemble. Here we present a kinematics-based procedure to morph an RNA molecule between conformational substates, while avoiding inter-atomic clashes. We represent an RNA as a kinematic linkage, with fixed groups of atoms as rigid bodies and rotatable bonds as degrees of freedom. Our procedure maintains RNA secondary structure by treating hydrogen bonds between base pairs as constraints. The constraints define a lower-dimensional, secondary-structure constraint manifold in conformation space, where motions are largely governed by molecular junctions of unpaired nucleotides. On a large benchmark set, we show that our morphing procedure compares favorably to peer algorithms, and can approach goal conformations to within a low all-atom RMSD by directing fewer than 1% of its atoms. Our results suggest that molecular junctions can modulate 3D structural rearrangements, while secondary structure elements guide large parts of the molecule along the transition to the correct final conformation. The source code, binaries and data are available at https://simtk.org/home/kgs . amelie.heliou@polytechnique.edu or vdbedem@stanford.edu. Supplementary data are available at Bioinformatics online. © The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  3. Exploring Hot Gas at Junctions of Galaxy Filaments

    Science.gov (United States)

    Mitsuishi, Ikuyuki; Yamasaki, Noriko; Kawahara, Hajime; Sekiya, Norio; Sasaki, Shin; Sousbie, Thierry

    Because galaxies are forced to follow the strong gravitational potential created by the underlying cosmic web of the dark matter, their distribution reflects its filamentary structures. By identifying the filamentary structures, one can therefore recover a map of the network that drives structure formation. Filamentary junctions are regions of particular interest as they identify places where mergers and other interesting astrophysical phenomena have high chances to occur. We identified the galaxy filaments by our original method (Sousbie (2011) & Sousbie et al. (2011)) and X-ray pointing observations were conducted for the six fields locating in the junctions of the galaxy filaments where no specific diffuse X-ray emissions had previously been detected so far. We discovered significant X-ray signals in their images and spectra of the all regions. Spectral analysis demonstrated that six sources originate from diffuse emissions associated with optically bright galaxies, group-scale, or cluster-scale X-ray halos with kT˜1-4 keV, while the others are compact object origin. Interestingly, all of the newly discovered three intracluster media show peculiar features such as complex or elongated morphologies in X-ray and/or optical and hot spot involved in ongoing merger events (Kawahara et al. (2011) & Mitsuishi et al. (2014)). In this conference, results of follow-up radio observations for the merging groups as well as the details of the X-ray observations will be reported.

  4. Photodetection in p–n junctions formed by electrolyte-gated transistors of two-dimensional crystals

    KAUST Repository

    Kozawa, Daichi

    2016-11-16

    Transition metal dichalcogenide monolayers have attracted much attention due to their strong light absorption and excellent electronic properties. These advantages make this type of two-dimensional crystal a promising one for optoelectronic device applications. In the case of photoelectric conversion devices such as photodetectors and photovoltaic cells, p–n junctions are one of the most important devices. Here, we demonstrate photodetection with WSe2 monolayer films. We prepare the electrolyte-gated ambipolar transistors and electrostatic p–n junctions are formed by the electrolyte-gating technique at 270 K. These p-n junctions are cooled down to fix the ion motion (and p-n junctions) and we observed the reasonable photocurrent spectra without the external bias, indicating the formation of p-n junctions. Very interestingly, two-terminal devices exhibit higher photoresponsivity than that of three-terminal ones, suggesting the formation of highly balanced anion and cation layers. The maximum photoresponsivity reaches 5 mA/W in resonance with the first excitonic peak. Our technique provides important evidence for optoelectronics in atomically thin crystals.

  5. Photodetection in p–n junctions formed by electrolyte-gated transistors of two-dimensional crystals

    KAUST Repository

    Kozawa, Daichi; Pu, Jiang; Shimizu, Ryo; Kimura, Shota; Chiu, Ming-Hui; Matsuki, Keiichiro; Wada, Yoshifumi; Sakanoue, Tomo; Iwasa, Yoshihiro; Li, Lain-Jong; Takenobu, Taishi

    2016-01-01

    Transition metal dichalcogenide monolayers have attracted much attention due to their strong light absorption and excellent electronic properties. These advantages make this type of two-dimensional crystal a promising one for optoelectronic device applications. In the case of photoelectric conversion devices such as photodetectors and photovoltaic cells, p–n junctions are one of the most important devices. Here, we demonstrate photodetection with WSe2 monolayer films. We prepare the electrolyte-gated ambipolar transistors and electrostatic p–n junctions are formed by the electrolyte-gating technique at 270 K. These p-n junctions are cooled down to fix the ion motion (and p-n junctions) and we observed the reasonable photocurrent spectra without the external bias, indicating the formation of p-n junctions. Very interestingly, two-terminal devices exhibit higher photoresponsivity than that of three-terminal ones, suggesting the formation of highly balanced anion and cation layers. The maximum photoresponsivity reaches 5 mA/W in resonance with the first excitonic peak. Our technique provides important evidence for optoelectronics in atomically thin crystals.

  6. Bioinformatics and the Undergraduate Curriculum

    Science.gov (United States)

    Maloney, Mark; Parker, Jeffrey; LeBlanc, Mark; Woodard, Craig T.; Glackin, Mary; Hanrahan, Michael

    2010-01-01

    Recent advances involving high-throughput techniques for data generation and analysis have made familiarity with basic bioinformatics concepts and programs a necessity in the biological sciences. Undergraduate students increasingly need training in methods related to finding and retrieving information stored in vast databases. The rapid rise of…

  7. Bringing Web 2.0 to bioinformatics.

    Science.gov (United States)

    Zhang, Zhang; Cheung, Kei-Hoi; Townsend, Jeffrey P

    2009-01-01

    Enabling deft data integration from numerous, voluminous and heterogeneous data sources is a major bioinformatic challenge. Several approaches have been proposed to address this challenge, including data warehousing and federated databasing. Yet despite the rise of these approaches, integration of data from multiple sources remains problematic and toilsome. These two approaches follow a user-to-computer communication model for data exchange, and do not facilitate a broader concept of data sharing or collaboration among users. In this report, we discuss the potential of Web 2.0 technologies to transcend this model and enhance bioinformatics research. We propose a Web 2.0-based Scientific Social Community (SSC) model for the implementation of these technologies. By establishing a social, collective and collaborative platform for data creation, sharing and integration, we promote a web services-based pipeline featuring web services for computer-to-computer data exchange as users add value. This pipeline aims to simplify data integration and creation, to realize automatic analysis, and to facilitate reuse and sharing of data. SSC can foster collaboration and harness collective intelligence to create and discover new knowledge. In addition to its research potential, we also describe its potential role as an e-learning platform in education. We discuss lessons from information technology, predict the next generation of Web (Web 3.0), and describe its potential impact on the future of bioinformatics studies.

  8. Bioinformatics meets user-centred design: a perspective.

    Directory of Open Access Journals (Sweden)

    Katrina Pavelin

    Full Text Available Designers have a saying that "the joy of an early release lasts but a short time. The bitterness of an unusable system lasts for years." It is indeed disappointing to discover that your data resources are not being used to their full potential. Not only have you invested your time, effort, and research grant on the project, but you may face costly redesigns if you want to improve the system later. This scenario would be less likely if the product was designed to provide users with exactly what they need, so that it is fit for purpose before its launch. We work at EMBL-European Bioinformatics Institute (EMBL-EBI, and we consult extensively with life science researchers to find out what they need from biological data resources. We have found that although users believe that the bioinformatics community is providing accurate and valuable data, they often find the interfaces to these resources tricky to use and navigate. We believe that if you can find out what your users want even before you create the first mock-up of a system, the final product will provide a better user experience. This would encourage more people to use the resource and they would have greater access to the data, which could ultimately lead to more scientific discoveries. In this paper, we explore the need for a user-centred design (UCD strategy when designing bioinformatics resources and illustrate this with examples from our work at EMBL-EBI. Our aim is to introduce the reader to how selected UCD techniques may be successfully applied to software design for bioinformatics.

  9. Rectified tunneling current response of bio-functionalized metal-bridge-metal junctions.

    Science.gov (United States)

    Liu, Yaqing; Offenhäusser, Andreas; Mayer, Dirk

    2010-01-15

    Biomolecular bridged nanostructures allow direct electrical addressing of electroactive biomolecules, which is of interest for the development of bioelectronic and biosensing hybrid junctions. In the present paper, the electroactive biomolecule microperoxidase-11 (MP-11) was integrated into metal-bridge-metal (MBM) junctions assembled from a scanning tunneling microscope (STM) setup. Before immobilization of MP-11, the Au working electrode was first modified by a self-assembled monolayer of 1-undecanethiol (UDT). A symmetric and potential independent response of current-bias voltage (I(t)/V(b)) was observed for the Au (substrate)/UDT/Au (tip) junction. However, the I(t)/V(b) characteristics became potential dependent and asymmetrical after binding of MP-11 between the electrodes of the junction. The rectification ratio of the asymmetric current response varies with gate electrode modulation. A resonant tunneling process between metal electrode and MP-11 enhances the tunneling current and is responsible for the observed rectification. Our investigations demonstrated that functional building blocks of proteins can be reassembled into new conceptual devices with operation modes deviating from their native function, which could prove highly useful in the design of future biosensors and bioelectronic devices. Copyright 2009 Elsevier B.V. All rights reserved.

  10. Bioinformatics on the Cloud Computing Platform Azure

    Science.gov (United States)

    Shanahan, Hugh P.; Owen, Anne M.; Harrison, Andrew P.

    2014-01-01

    We discuss the applicability of the Microsoft cloud computing platform, Azure, for bioinformatics. We focus on the usability of the resource rather than its performance. We provide an example of how R can be used on Azure to analyse a large amount of microarray expression data deposited at the public database ArrayExpress. We provide a walk through to demonstrate explicitly how Azure can be used to perform these analyses in Appendix S1 and we offer a comparison with a local computation. We note that the use of the Platform as a Service (PaaS) offering of Azure can represent a steep learning curve for bioinformatics developers who will usually have a Linux and scripting language background. On the other hand, the presence of an additional set of libraries makes it easier to deploy software in a parallel (scalable) fashion and explicitly manage such a production run with only a few hundred lines of code, most of which can be incorporated from a template. We propose that this environment is best suited for running stable bioinformatics software by users not involved with its development. PMID:25050811

  11. Tight junctions and human diseases.

    Science.gov (United States)

    Sawada, Norimasa; Murata, Masaki; Kikuchi, Keisuke; Osanai, Makoto; Tobioka, Hirotoshi; Kojima, Takashi; Chiba, Hideki

    2003-09-01

    Tight junctions are intercellular junctions adjacent to the apical end of the lateral membrane surface. They have two functions, the barrier (or gate) function and the fence function. The barrier function of tight junctions regulates the passage of ions, water, and various macromolecules, even of cancer cells, through paracellular spaces. The barrier function is thus relevant to edema, jaundice, diarrhea, and blood-borne metastasis. On the other hand, the fence function maintains cell polarity. In other words, tight junctions work as a fence to prevent intermixing of molecules in the apical membrane with those in the lateral membrane. This function is deeply involved in cancer cell biology, in terms of loss of cell polarity. Of the proteins comprising tight junctions, integral membrane proteins occludin, claudins, and JAMs have been recently discovered. Of these molecules, claudins are exclusively responsible for the formation of tight-junction strands and are connected with the actin cytoskeleton mediated by ZO-1. Thus, both functions of tight junctions are dependent on the integrity of the actin cytoskeleton as well as ATP. Mutations in the claudin14 and the claudin16 genes result in hereditary deafness and hereditary hypomagnesemia, respectively. Some pathogenic bacteria and viruses target and affect the tight-junction function, leading to diseases. In this review, the relationship between tight junctions and human diseases is summarized.

  12. Fundamentals of bioinformatics and computational biology methods and exercises in matlab

    CERN Document Server

    Singh, Gautam B

    2015-01-01

    This book offers comprehensive coverage of all the core topics of bioinformatics, and includes practical examples completed using the MATLAB bioinformatics toolbox™. It is primarily intended as a textbook for engineering and computer science students attending advanced undergraduate and graduate courses in bioinformatics and computational biology. The book develops bioinformatics concepts from the ground up, starting with an introductory chapter on molecular biology and genetics. This chapter will enable physical science students to fully understand and appreciate the ultimate goals of applying the principles of information technology to challenges in biological data management, sequence analysis, and systems biology. The first part of the book also includes a survey of existing biological databases, tools that have become essential in today’s biotechnology research. The second part of the book covers methodologies for retrieving biological information, including fundamental algorithms for sequence compar...

  13. A single-gradient junction technique to replace multiple-junction shifts for craniospinal irradiation treatment

    International Nuclear Information System (INIS)

    Hadley, Austin; Ding, George X.

    2014-01-01

    Craniospinal irradiation (CSI) requires abutting fields at the cervical spine. Junction shifts are conventionally used to prevent setup error–induced overdosage/underdosage from occurring at the same location. This study compared the dosimetric differences at the cranial-spinal junction between a single-gradient junction technique and conventional multiple-junction shifts and evaluated the effect of setup errors on the dose distributions between both techniques for a treatment course and single fraction. Conventionally, 2 lateral brain fields and a posterior spine field(s) are used for CSI with weekly 1-cm junction shifts. We retrospectively replanned 4 CSI patients using a single-gradient junction between the lateral brain fields and the posterior spine field. The fields were extended to allow a minimum 3-cm field overlap. The dose gradient at the junction was achieved using dose painting and intensity-modulated radiation therapy planning. The effect of positioning setup errors on the dose distributions for both techniques was simulated by applying shifts of ± 3 and 5 mm. The resulting cervical spine doses across the field junction for both techniques were calculated and compared. Dose profiles were obtained for both a single fraction and entire treatment course to include the effects of the conventional weekly junction shifts. Compared with the conventional technique, the gradient-dose technique resulted in higher dose uniformity and conformity to the target volumes, lower organ at risk (OAR) mean and maximum doses, and diminished hot spots from systematic positioning errors over the course of treatment. Single-fraction hot and cold spots were improved for the gradient-dose technique. The single-gradient junction technique provides improved conformity, dose uniformity, diminished hot spots, lower OAR mean and maximum dose, and one plan for the entire treatment course, which reduces the potential human error associated with conventional 4-shifted plans

  14. Macroscopic quantum tunneling in Josephson tunnel junctions and Coulomb blockade in single small tunnel junctions

    International Nuclear Information System (INIS)

    Cleland, A.N.

    1991-01-01

    Experiments investigated the process of macroscopic quantum tunneling in a moderately-damped, resistively shunted, Josephson junction are described, followed by a discussion of experiments performed on very-small-capacitance normal-metal tunnel junctions. The experiments on the resistively-shunted Josephson junction were designed to investigate a quantum process, that of the tunneling of the Josephson-phase variable under a potential barrier, in a system in which dissipation plays a major role in the dynamics of motion. All the parameters of the junction were measured using the classical phenomena of thermal activation and resonant activation. Theoretical predictions are compared with the experimental results, showing good agreement with no adjustable parameters. The experiments on small-capacitance tunnel junctions extend the measurements on the large-area Josephson junctions from the region in which the phase variable has a fairly well-defined value, i.e. its wave function has a narrow width, to the region where its value is almost completely unknown. The charge on the junction becomes well-defined and is predicted to quantize the current through the junction, giving rise to the Coulomb blockade at low bias

  15. Increasing gap junctional coupling: a tool for dissecting the role of gap junctions

    DEFF Research Database (Denmark)

    Axelsen, Lene Nygaard; Haugan, Ketil; Stahlhut, Martin

    2007-01-01

    Much of our current knowledge about the physiological and pathophysiological role of gap junctions is based on experiments where coupling has been reduced by either chemical agents or genetic modification. This has brought evidence that gap junctions are important in many physiological processes....... In a number of cases, gap junctions have been implicated in the initiation and progress of disease, and experimental uncoupling has been used to investigate the exact role of coupling. The inverse approach, i.e., to increase coupling, has become possible in recent years and represents a new way of testing...... the role of gap junctions. The aim of this review is to summarize the current knowledge obtained with agents that selectively increase gap junctional intercellular coupling. Two approaches will be reviewed: increasing coupling by the use of antiarrhythmic peptide and its synthetic analogs...

  16. Bioinformatics Methods for Interpreting Toxicogenomics Data: The Role of Text-Mining

    NARCIS (Netherlands)

    Hettne, K.M.; Kleinjans, J.; Stierum, R.H.; Boorsma, A.; Kors, J.A.

    2014-01-01

    This chapter concerns the application of bioinformatics methods to the analysis of toxicogenomics data. The chapter starts with an introduction covering how bioinformatics has been applied in toxicogenomics data analysis, and continues with a description of the foundations of a specific

  17. Influenza research database: an integrated bioinformatics resource for influenza virus research

    Science.gov (United States)

    The Influenza Research Database (IRD) is a U.S. National Institute of Allergy and Infectious Diseases (NIAID)-sponsored Bioinformatics Resource Center dedicated to providing bioinformatics support for influenza virus research. IRD facilitates the research and development of vaccines, diagnostics, an...

  18. BioStar: an online question & answer resource for the bioinformatics community

    Science.gov (United States)

    Although the era of big data has produced many bioinformatics tools and databases, using them effectively often requires specialized knowledge. Many groups lack bioinformatics expertise, and frequently find that software documentation is inadequate and local colleagues may be overburdened or unfamil...

  19. A Survey of Scholarly Literature Describing the Field of Bioinformatics Education and Bioinformatics Educational Research

    Science.gov (United States)

    Magana, Alejandra J.; Taleyarkhan, Manaz; Alvarado, Daniela Rivera; Kane, Michael; Springer, John; Clase, Kari

    2014-01-01

    Bioinformatics education can be broadly defined as the teaching and learning of the use of computer and information technology, along with mathematical and statistical analysis for gathering, storing, analyzing, interpreting, and integrating data to solve biological problems. The recent surge of genomics, proteomics, and structural biology in the…

  20. Junction detection and pathway selection

    Science.gov (United States)

    Peck, Alex N.; Lim, Willie Y.; Breul, Harry T.

    1992-02-01

    The ability to detect junctions and make choices among the possible pathways is important for autonomous navigation. In our script-based navigation approach where a journey is specified as a script of high-level instructions, actions are frequently referenced to junctions, e.g., `turn left at the intersection.' In order for the robot to carry out these kind of instructions, it must be able (1) to detect an intersection (i.e., an intersection of pathways), (2) know that there are several possible pathways it can take, and (3) pick the pathway consistent with the high level instruction. In this paper we describe our implementation of the ability to detect junctions in an indoor environment, such as corners, T-junctions and intersections, using sonar. Our approach uses a combination of partial scan of the local environment and recognition of sonar signatures of certain features of the junctions. In the case where the environment is known, we use additional sensor information (such as compass bearings) to help recognize the specific junction. In general, once a junction is detected and its type known, the number of possible pathways can be deduced and the correct pathway selected. Then the appropriate behavior for negotiating the junction is activated.

  1. The growing need for microservices in bioinformatics

    Directory of Open Access Journals (Sweden)

    Christopher L Williams

    2016-01-01

    Full Text Available Objective: Within the information technology (IT industry, best practices and standards are constantly evolving and being refined. In contrast, computer technology utilized within the healthcare industry often evolves at a glacial pace, with reduced opportunities for justified innovation. Although the use of timely technology refreshes within an enterprise′s overall technology stack can be costly, thoughtful adoption of select technologies with a demonstrated return on investment can be very effective in increasing productivity and at the same time, reducing the burden of maintenance often associated with older and legacy systems. In this brief technical communication, we introduce the concept of microservices as applied to the ecosystem of data analysis pipelines. Microservice architecture is a framework for dividing complex systems into easily managed parts. Each individual service is limited in functional scope, thereby conferring a higher measure of functional isolation and reliability to the collective solution. Moreover, maintenance challenges are greatly simplified by virtue of the reduced architectural complexity of each constitutive module. This fact notwithstanding, rendered overall solutions utilizing a microservices-based approach provide equal or greater levels of functionality as compared to conventional programming approaches. Bioinformatics, with its ever-increasing demand for performance and new testing algorithms, is the perfect use-case for such a solution. Moreover, if promulgated within the greater development community as an open-source solution, such an approach holds potential to be transformative to current bioinformatics software development. Context: Bioinformatics relies on nimble IT framework which can adapt to changing requirements. Aims: To present a well-established software design and deployment strategy as a solution for current challenges within bioinformatics Conclusions: Use of the microservices framework

  2. The growing need for microservices in bioinformatics.

    Science.gov (United States)

    Williams, Christopher L; Sica, Jeffrey C; Killen, Robert T; Balis, Ulysses G J

    2016-01-01

    Within the information technology (IT) industry, best practices and standards are constantly evolving and being refined. In contrast, computer technology utilized within the healthcare industry often evolves at a glacial pace, with reduced opportunities for justified innovation. Although the use of timely technology refreshes within an enterprise's overall technology stack can be costly, thoughtful adoption of select technologies with a demonstrated return on investment can be very effective in increasing productivity and at the same time, reducing the burden of maintenance often associated with older and legacy systems. In this brief technical communication, we introduce the concept of microservices as applied to the ecosystem of data analysis pipelines. Microservice architecture is a framework for dividing complex systems into easily managed parts. Each individual service is limited in functional scope, thereby conferring a higher measure of functional isolation and reliability to the collective solution. Moreover, maintenance challenges are greatly simplified by virtue of the reduced architectural complexity of each constitutive module. This fact notwithstanding, rendered overall solutions utilizing a microservices-based approach provide equal or greater levels of functionality as compared to conventional programming approaches. Bioinformatics, with its ever-increasing demand for performance and new testing algorithms, is the perfect use-case for such a solution. Moreover, if promulgated within the greater development community as an open-source solution, such an approach holds potential to be transformative to current bioinformatics software development. Bioinformatics relies on nimble IT framework which can adapt to changing requirements. To present a well-established software design and deployment strategy as a solution for current challenges within bioinformatics. Use of the microservices framework is an effective methodology for the fabrication and

  3. The growing need for microservices in bioinformatics

    Science.gov (United States)

    Williams, Christopher L.; Sica, Jeffrey C.; Killen, Robert T.; Balis, Ulysses G. J.

    2016-01-01

    Objective: Within the information technology (IT) industry, best practices and standards are constantly evolving and being refined. In contrast, computer technology utilized within the healthcare industry often evolves at a glacial pace, with reduced opportunities for justified innovation. Although the use of timely technology refreshes within an enterprise's overall technology stack can be costly, thoughtful adoption of select technologies with a demonstrated return on investment can be very effective in increasing productivity and at the same time, reducing the burden of maintenance often associated with older and legacy systems. In this brief technical communication, we introduce the concept of microservices as applied to the ecosystem of data analysis pipelines. Microservice architecture is a framework for dividing complex systems into easily managed parts. Each individual service is limited in functional scope, thereby conferring a higher measure of functional isolation and reliability to the collective solution. Moreover, maintenance challenges are greatly simplified by virtue of the reduced architectural complexity of each constitutive module. This fact notwithstanding, rendered overall solutions utilizing a microservices-based approach provide equal or greater levels of functionality as compared to conventional programming approaches. Bioinformatics, with its ever-increasing demand for performance and new testing algorithms, is the perfect use-case for such a solution. Moreover, if promulgated within the greater development community as an open-source solution, such an approach holds potential to be transformative to current bioinformatics software development. Context: Bioinformatics relies on nimble IT framework which can adapt to changing requirements. Aims: To present a well-established software design and deployment strategy as a solution for current challenges within bioinformatics Conclusions: Use of the microservices framework is an effective

  4. ZBIT Bioinformatics Toolbox: A Web-Platform for Systems Biology and Expression Data Analysis.

    Science.gov (United States)

    Römer, Michael; Eichner, Johannes; Dräger, Andreas; Wrzodek, Clemens; Wrzodek, Finja; Zell, Andreas

    2016-01-01

    Bioinformatics analysis has become an integral part of research in biology. However, installation and use of scientific software can be difficult and often requires technical expert knowledge. Reasons are dependencies on certain operating systems or required third-party libraries, missing graphical user interfaces and documentation, or nonstandard input and output formats. In order to make bioinformatics software easily accessible to researchers, we here present a web-based platform. The Center for Bioinformatics Tuebingen (ZBIT) Bioinformatics Toolbox provides web-based access to a collection of bioinformatics tools developed for systems biology, protein sequence annotation, and expression data analysis. Currently, the collection encompasses software for conversion and processing of community standards SBML and BioPAX, transcription factor analysis, and analysis of microarray data from transcriptomics and proteomics studies. All tools are hosted on a customized Galaxy instance and run on a dedicated computation cluster. Users only need a web browser and an active internet connection in order to benefit from this service. The web platform is designed to facilitate the usage of the bioinformatics tools for researchers without advanced technical background. Users can combine tools for complex analyses or use predefined, customizable workflows. All results are stored persistently and reproducible. For each tool, we provide documentation, tutorials, and example data to maximize usability. The ZBIT Bioinformatics Toolbox is freely available at https://webservices.cs.uni-tuebingen.de/.

  5. Supramolecular tunneling junctions

    NARCIS (Netherlands)

    Wimbush, K.S.

    2012-01-01

    In this study a variety of supramolecular tunneling junctions were created. The basis of these junctions was a self-assembled monolayer of heptathioether functionalized ß-cyclodextrin (ßCD) formed on an ultra-flat Au surface, i.e., the bottom electrode. This gave a well-defined hexagonally packed

  6. A Portable Bioinformatics Course for Upper-Division Undergraduate Curriculum in Sciences

    Science.gov (United States)

    Floraino, Wely B.

    2008-01-01

    This article discusses the challenges that bioinformatics education is facing and describes a bioinformatics course that is successfully taught at the California State Polytechnic University, Pomona, to the fourth year undergraduate students in biological sciences, chemistry, and computer science. Information on lecture and computer practice…

  7. Computer Programming and Biomolecular Structure Studies: A Step beyond Internet Bioinformatics

    Science.gov (United States)

    Likic, Vladimir A.

    2006-01-01

    This article describes the experience of teaching structural bioinformatics to third year undergraduate students in a subject titled "Biomolecular Structure and Bioinformatics." Students were introduced to computer programming and used this knowledge in a practical application as an alternative to the well established Internet bioinformatics…

  8. Phase diagrams of particles with dissimilar patches: X-junctions and Y-junctions

    International Nuclear Information System (INIS)

    Tavares, J M; Teixeira, P I C

    2012-01-01

    We use Wertheim’s first-order perturbation theory to investigate the phase behaviour and the structure of coexisting fluid phases for a model of patchy particles with dissimilar patches (two patches of type A and f B patches of type B). A patch of type α = {A,B} can bond to a patch of type β = {A,B} in a volume v αβ , thereby decreasing the internal energy by ε αβ . We analyse the range of model parameters where AB bonds, or Y-junctions, are energetically disfavoured (ε AB AA /2) but entropically favoured (v AB ≫ v αα ), and BB bonds, or X-junctions, are energetically favoured (ε BB > 0). We show that, for low values of ε BB /ε AA , the phase diagram has three different regions: (i) close to the critical temperature a low-density liquid composed of long chains and rich in Y-junctions coexists with a vapour of chains; (ii) at intermediate temperatures there is coexistence between a vapour of short chains and a liquid of very long chains with X- and Y-junctions; (iii) at low temperatures an ideal gas coexists with a high-density liquid with all possible AA and BB bonds formed. It is also shown that in region (i) the liquid binodal is reentrant (its density decreases with decreasing temperature) for the lower values of ε BB /ε AA . The existence of these three regions is a consequence of the competition between the formation of X- and Y-junctions: X-junctions are energetically favoured and thus dominate at low temperatures, whereas Y-junctions are entropically favoured and dominate at higher temperatures. (paper)

  9. Chapter 16: text mining for translational bioinformatics.

    Science.gov (United States)

    Cohen, K Bretonnel; Hunter, Lawrence E

    2013-04-01

    Text mining for translational bioinformatics is a new field with tremendous research potential. It is a subfield of biomedical natural language processing that concerns itself directly with the problem of relating basic biomedical research to clinical practice, and vice versa. Applications of text mining fall both into the category of T1 translational research-translating basic science results into new interventions-and T2 translational research, or translational research for public health. Potential use cases include better phenotyping of research subjects, and pharmacogenomic research. A variety of methods for evaluating text mining applications exist, including corpora, structured test suites, and post hoc judging. Two basic principles of linguistic structure are relevant for building text mining applications. One is that linguistic structure consists of multiple levels. The other is that every level of linguistic structure is characterized by ambiguity. There are two basic approaches to text mining: rule-based, also known as knowledge-based; and machine-learning-based, also known as statistical. Many systems are hybrids of the two approaches. Shared tasks have had a strong effect on the direction of the field. Like all translational bioinformatics software, text mining software for translational bioinformatics can be considered health-critical and should be subject to the strictest standards of quality assurance and software testing.

  10. A decade of Web Server updates at the Bioinformatics Links Directory: 2003-2012.

    Science.gov (United States)

    Brazas, Michelle D; Yim, David; Yeung, Winston; Ouellette, B F Francis

    2012-07-01

    The 2012 Bioinformatics Links Directory update marks the 10th special Web Server issue from Nucleic Acids Research. Beginning with content from their 2003 publication, the Bioinformatics Links Directory in collaboration with Nucleic Acids Research has compiled and published a comprehensive list of freely accessible, online tools, databases and resource materials for the bioinformatics and life science research communities. The past decade has exhibited significant growth and change in the types of tools, databases and resources being put forth, reflecting both technology changes and the nature of research over that time. With the addition of 90 web server tools and 12 updates from the July 2012 Web Server issue of Nucleic Acids Research, the Bioinformatics Links Directory at http://bioinformatics.ca/links_directory/ now contains an impressive 134 resources, 455 databases and 1205 web server tools, mirroring the continued activity and efforts of our field.

  11. Applying Instructional Design Theories to Bioinformatics Education in Microarray Analysis and Primer Design Workshops

    Science.gov (United States)

    Shachak, Aviv; Ophir, Ron; Rubin, Eitan

    2005-01-01

    The need to support bioinformatics training has been widely recognized by scientists, industry, and government institutions. However, the discussion of instructional methods for teaching bioinformatics is only beginning. Here we report on a systematic attempt to design two bioinformatics workshops for graduate biology students on the basis of…

  12. BOWS (bioinformatics open web services) to centralize bioinformatics tools in web services.

    Science.gov (United States)

    Velloso, Henrique; Vialle, Ricardo A; Ortega, J Miguel

    2015-06-02

    Bioinformaticians face a range of difficulties to get locally-installed tools running and producing results; they would greatly benefit from a system that could centralize most of the tools, using an easy interface for input and output. Web services, due to their universal nature and widely known interface, constitute a very good option to achieve this goal. Bioinformatics open web services (BOWS) is a system based on generic web services produced to allow programmatic access to applications running on high-performance computing (HPC) clusters. BOWS intermediates the access to registered tools by providing front-end and back-end web services. Programmers can install applications in HPC clusters in any programming language and use the back-end service to check for new jobs and their parameters, and then to send the results to BOWS. Programs running in simple computers consume the BOWS front-end service to submit new processes and read results. BOWS compiles Java clients, which encapsulate the front-end web service requisitions, and automatically creates a web page that disposes the registered applications and clients. Bioinformatics open web services registered applications can be accessed from virtually any programming language through web services, or using standard java clients. The back-end can run in HPC clusters, allowing bioinformaticians to remotely run high-processing demand applications directly from their machines.

  13. Common features of a vortex structure in long exponentially shaped Josephson junctions and Josephson junctions with inhomogeneities

    International Nuclear Information System (INIS)

    Boyadjiev, T.L.; Semerdjieva, E.G.; Shukrinov, Yu.M.

    2007-01-01

    We study the vortex structure in three different models of the long Josephson junction: the exponentially shaped Josephson junction and the Josephson junctions with the resistor and the shunt inhomogeneities in the barrier layer. For these three models the critical curves 'critical current-magnetic field' are numerically constructed. We develop the idea of the equivalence of the exponentially shaped Josephson junction and the rectangular junction with the distributed inhomogeneity and demonstrate that at some parameters of the shunt and the resistor inhomogeneities in the ends of the junction the corresponding critical curves are very close to the exponentially shaped one

  14. SPECIES DATABASES AND THE BIOINFORMATICS REVOLUTION.

    Science.gov (United States)

    Biological databases are having a growth spurt. Much of this results from research in genetics and biodiversity, coupled with fast-paced developments in information technology. The revolution in bioinformatics, defined by Sugden and Pennisi (2000) as the "tools and techniques for...

  15. BioSmalltalk: a pure object system and library for bioinformatics.

    Science.gov (United States)

    Morales, Hernán F; Giovambattista, Guillermo

    2013-09-15

    We have developed BioSmalltalk, a new environment system for pure object-oriented bioinformatics programming. Adaptive end-user programming systems tend to become more important for discovering biological knowledge, as is demonstrated by the emergence of open-source programming toolkits for bioinformatics in the past years. Our software is intended to bridge the gap between bioscientists and rapid software prototyping while preserving the possibility of scaling to whole-system biology applications. BioSmalltalk performs better in terms of execution time and memory usage than Biopython and BioPerl for some classical situations. BioSmalltalk is cross-platform and freely available (MIT license) through the Google Project Hosting at http://code.google.com/p/biosmalltalk hernan.morales@gmail.com Supplementary data are available at Bioinformatics online.

  16. Negative differential resistance behavior in phosphorus-doped armchair graphene nanoribbon junctions

    International Nuclear Information System (INIS)

    Zhou, Yuhong; Zhang, Daoli; Zhang, Jianbing; Miao, Xiangshui; Ye, Cong

    2014-01-01

    In this present work, we investigate the electronic transport properties of phosphorus-doped armchair graphene nanoribbon (AGNR) junctions by employing nonequilibrium Green's functions in combination with the density-function theory. Two phosphorus (P) atoms are considered to substitute the central carbon atom with the different width of AGNRs. The results indicate that the electronic transport behaviors are strongly dependent on the width of the P-doped graphene nanoribbons. The current-voltage characteristics of the doped AGNR junctions reveal an interesting negative differential resistance (NDR) and exhibit three distinct family (3 n, 3 n + 1, 3 n + 2) behaviors. These results display that P doping is a very good way to achieve NDR of the graphene nanoribbon devices

  17. Bioclipse: an open source workbench for chemo- and bioinformatics

    Directory of Open Access Journals (Sweden)

    Wagener Johannes

    2007-02-01

    Full Text Available Abstract Background There is a need for software applications that provide users with a complete and extensible toolkit for chemo- and bioinformatics accessible from a single workbench. Commercial packages are expensive and closed source, hence they do not allow end users to modify algorithms and add custom functionality. Existing open source projects are more focused on providing a framework for integrating existing, separately installed bioinformatics packages, rather than providing user-friendly interfaces. No open source chemoinformatics workbench has previously been published, and no sucessful attempts have been made to integrate chemo- and bioinformatics into a single framework. Results Bioclipse is an advanced workbench for resources in chemo- and bioinformatics, such as molecules, proteins, sequences, spectra, and scripts. It provides 2D-editing, 3D-visualization, file format conversion, calculation of chemical properties, and much more; all fully integrated into a user-friendly desktop application. Editing supports standard functions such as cut and paste, drag and drop, and undo/redo. Bioclipse is written in Java and based on the Eclipse Rich Client Platform with a state-of-the-art plugin architecture. This gives Bioclipse an advantage over other systems as it can easily be extended with functionality in any desired direction. Conclusion Bioclipse is a powerful workbench for bio- and chemoinformatics as well as an advanced integration platform. The rich functionality, intuitive user interface, and powerful plugin architecture make Bioclipse the most advanced and user-friendly open source workbench for chemo- and bioinformatics. Bioclipse is released under Eclipse Public License (EPL, an open source license which sets no constraints on external plugin licensing; it is totally open for both open source plugins as well as commercial ones. Bioclipse is freely available at http://www.bioclipse.net.

  18. Quantum dynamics of small Josephson junctions: an application to superconductivity in granular films

    International Nuclear Information System (INIS)

    Fisher, M.P.A.

    1986-01-01

    This thesis is devoted to a study of the quantum dynamics of small Josephson junctions. Of interest are those features of the junction's behavior which depend explicitly on the quantum mechanical nature of the phase difference phi between the superconductors. In Chapters I and II several calculations are described which focus on the junction's DC resistance. A fully quantum mechanical Hamiltonian is employed that incorporates the dissipative effects due to the unpaired electrons by coupling to a bath of harmonic oscillators. It is shown that the model exhibits a novel zero temperature phase transition as a function of the strength of the dissipation. In the low dissipation regime the phase is free to tunnel quantum mechanically and the junction's resistance is finite; in response to an external current, tunnelling induces successive 2π phase slips leading to a finite voltage state. In contrast, in the high dissipation regime, tunnelling is suppressed and the junction behaves as a superconductor carrying current with no resistive losses. In Chapters III and IV, these results are applied in an attempt to explain the recent observation that in ultra thin Sn films there is apparently a universal normal state sheet resistance above which superconductivity cannot be established

  19. Phase Sensitive Measurements of Ferromagnetic Josephson Junctions for Cryogenic Memory Applications

    Science.gov (United States)

    Niedzielski, Bethany Maria

    A Josephson junction is made up of two superconducting layers separated by a barrier. The original Josephson junctions, studied in the early 1960's, contained an insulating barrier. Soon thereafter, junctions with normal-metal barriers were also studied. Ferromagnetic materials were not even theoretically considered as a barrier layer until around 1980, due to the competing order between ferromagnetic and superconducting systems. However, many exciting physical phenomena arise in hybrid superconductor/ferromagnetic devices, including devices where the ground state phase difference between the two superconductors is shifted by pi. Since their experimental debut in 2001, so-called pi junctions have been demonstrated by many groups, including my own, in systems with a single ferromagnetic layer. In this type of system, the phase of the junction can be set to either 0 or pi depending on the thickness of the ferromagnetic layer. Of interest, however, is the ability to control the phase of a single junction between the 0 and pi states. This was theoretically shown to be possible in a system containing two ferromagnetic layers (spin-valve junctions). If the materials and their thicknesses are properly chosen to manipulate the electron pair correlation function, then the phase state of a spin-valve Josephson junction should be capable of switching between the 0 and ? phase states when the magnetization directions of the two ferromagnetic layers are oriented in the antiparallel and parallel configurations, respectively. Such a phase-controllable junction would have immediate applications in cryogenic memory, which is a necessary component to an ultra-low power superconducting computer. A fully superconducting computer is estimated to be orders of magnitude more energy-efficient than current semiconductor-based supercomputers. The goal of this work was to experimentally verify this prediction for a phase-controllable ferromagnetic Josephson junction. To address this

  20. Flexible 2D layered material junctions

    Science.gov (United States)

    Balabai, R.; Solomenko, A.

    2018-03-01

    Within the framework of the methods of the electron density functional and the ab initio pseudopotential, we have obtained the valence electron density spatial distribution, the densities of electron states, the widths of band gaps, the charges on combined regions, and the Coulomb potentials for graphene-based flexible 2D layered junctions, using author program complex. It is determined that the bending of the 2D layered junctions on the angle α leads to changes in the electronic properties of these junctions. In the graphene/graphane junction, there is clear charge redistribution with different signs in the regions of junctions. The presence in the heterojunctions of charge regions with different signs leads to the formation of potential barriers. The greatest potential jump is in the graphene/fluorographene junction. The greatest value of the band gap width is in the graphene/graphane junction.

  1. LEMONS - A Tool for the Identification of Splice Junctions in Transcriptomes of Organisms Lacking Reference Genomes.

    Directory of Open Access Journals (Sweden)

    Liron Levin

    Full Text Available RNA-seq is becoming a preferred tool for genomics studies of model and non-model organisms. However, DNA-based analysis of organisms lacking sequenced genomes cannot rely on RNA-seq data alone to isolate most genes of interest, as DNA codes both exons and introns. With this in mind, we designed a novel tool, LEMONS, that exploits the evolutionary conservation of both exon/intron boundary positions and splice junction recognition signals to produce high throughput splice-junction predictions in the absence of a reference genome. When tested on multiple annotated vertebrate mRNA data, LEMONS accurately identified 87% (average of the splice-junctions. LEMONS was then applied to our updated Mediterranean chameleon transcriptome, which lacks a reference genome, and predicted a total of 90,820 exon-exon junctions. We experimentally verified these splice-junction predictions by amplifying and sequencing twenty randomly selected genes from chameleon DNA templates. Exons and introns were detected in 19 of 20 of the positions predicted by LEMONS. To the best of our knowledge, LEMONS is currently the only experimentally verified tool that can accurately predict splice-junctions in organisms that lack a reference genome.

  2. Bioinformatics in New Generation Flavivirus Vaccines

    Directory of Open Access Journals (Sweden)

    Penelope Koraka

    2010-01-01

    Full Text Available Flavivirus infections are the most prevalent arthropod-borne infections world wide, often causing severe disease especially among children, the elderly, and the immunocompromised. In the absence of effective antiviral treatment, prevention through vaccination would greatly reduce morbidity and mortality associated with flavivirus infections. Despite the success of the empirically developed vaccines against yellow fever virus, Japanese encephalitis virus and tick-borne encephalitis virus, there is an increasing need for a more rational design and development of safe and effective vaccines. Several bioinformatic tools are available to support such rational vaccine design. In doing so, several parameters have to be taken into account, such as safety for the target population, overall immunogenicity of the candidate vaccine, and efficacy and longevity of the immune responses triggered. Examples of how bio-informatics is applied to assist in the rational design and improvements of vaccines, particularly flavivirus vaccines, are presented and discussed.

  3. The Dissolution of Double Holliday Junctions

    DEFF Research Database (Denmark)

    Bizard, Anna H; Hickson, Ian D

    2014-01-01

    as "double Holliday junction dissolution." This reaction requires the cooperative action of a so-called "dissolvasome" comprising a Holliday junction branch migration enzyme (Sgs1/BLM RecQ helicase) and a type IA topoisomerase (Top3/TopoIIIα) in complex with its OB (oligonucleotide/oligosaccharide binding......Double Holliday junctions (dHJS) are important intermediates of homologous recombination. The separate junctions can each be cleaved by DNA structure-selective endonucleases known as Holliday junction resolvases. Alternatively, double Holliday junctions can be processed by a reaction known......) fold containing accessory factor (Rmi1). This review details our current knowledge of the dissolution process and the players involved in catalyzing this mechanistically complex means of completing homologous recombination reactions....

  4. ISEV position paper: extracellular vesicle RNA analysis and bioinformatics

    Directory of Open Access Journals (Sweden)

    Andrew F. Hill

    2013-12-01

    Full Text Available Extracellular vesicles (EVs are the collective term for the various vesicles that are released by cells into the extracellular space. Such vesicles include exosomes and microvesicles, which vary by their size and/or protein and genetic cargo. With the discovery that EVs contain genetic material in the form of RNA (evRNA has come the increased interest in these vesicles for their potential use as sources of disease biomarkers and potential therapeutic agents. Rapid developments in the availability of deep sequencing technologies have enabled the study of EV-related RNA in detail. In October 2012, the International Society for Extracellular Vesicles (ISEV held a workshop on “evRNA analysis and bioinformatics.” Here, we report the conclusions of one of the roundtable discussions where we discussed evRNA analysis technologies and provide some guidelines to researchers in the field to consider when performing such analysis.

  5. Quantum Junction Solar Cells

    KAUST Repository

    Tang, Jiang

    2012-09-12

    Colloidal quantum dot solids combine convenient solution-processing with quantum size effect tuning, offering avenues to high-efficiency multijunction cells based on a single materials synthesis and processing platform. The highest-performing colloidal quantum dot rectifying devices reported to date have relied on a junction between a quantum-tuned absorber and a bulk material (e.g., TiO 2); however, quantum tuning of the absorber then requires complete redesign of the bulk acceptor, compromising the benefits of facile quantum tuning. Here we report rectifying junctions constructed entirely using inherently band-aligned quantum-tuned materials. Realizing these quantum junction diodes relied upon the creation of an n-type quantum dot solid having a clean bandgap. We combine stable, chemically compatible, high-performance n-type and p-type materials to create the first quantum junction solar cells. We present a family of photovoltaic devices having widely tuned bandgaps of 0.6-1.6 eV that excel where conventional quantum-to-bulk devices fail to perform. Devices having optimal single-junction bandgaps exhibit certified AM1.5 solar power conversion efficiencies of 5.4%. Control over doping in quantum solids, and the successful integration of these materials to form stable quantum junctions, offers a powerful new degree of freedom to colloidal quantum dot optoelectronics. © 2012 American Chemical Society.

  6. Dynamics of fractional vortices in long Josephson junctions; Dynamik fraktionaler Flusswirbel in langen Josephsonkontakten

    Energy Technology Data Exchange (ETDEWEB)

    Gaber, Tobias

    2007-07-01

    In this thesis static and dynamic properties of fractional vortices in long Josephson junctions are investigated. Fractional vortices are circulating supercurrents similar to the well-known Josephson fluxons. Yet, they show the distinguishing property of carrying only a fraction of the magnetic flux quantum. Fractional vortices are interesting non-linear objects. They spontaneously appear and are pinned at the phase discontinuity points of so called 0-{kappa} junctions but can be bend or flipped by external forces like bias currents or magnetic fields. 0-{kappa} junctions and fractional vortices are generalizations of the well-known 0-{pi} junctions and semifluxons, where not only phase jumps of pi but arbitrary values denoted by kappa are considered. By using so-called artificial 0-{kappa} junctions that are based on standard Nb-AlO{sub x}-Nb technology the classical dynamics of fractional vortices has been investigated experimentally for the very first time. Here, half-integer zero field steps could be observed. These voltage steps on the junction's current-voltage characteristics correspond to the periodic flipping/hopping of fractional vortices. In addition, the oscillatory eigenmodes of fractional vortices were investigated. In contrast to fluxons fractional vortices have an oscillatory eigenmode with a frequency within the plasma gap. Using resonance spectroscopy the dependence of the eigenmode frequency on the flux carried by the vortex and an applied bias current was determined. (orig.)

  7. Bioinformatics programs are 31-fold over-represented among the highest impact scientific papers of the past two decades.

    Science.gov (United States)

    Wren, Jonathan D

    2016-09-01

    To analyze the relative proportion of bioinformatics papers and their non-bioinformatics counterparts in the top 20 most cited papers annually for the past two decades. When defining bioinformatics papers as encompassing both those that provide software for data analysis or methods underlying data analysis software, we find that over the past two decades, more than a third (34%) of the most cited papers in science were bioinformatics papers, which is approximately a 31-fold enrichment relative to the total number of bioinformatics papers published. More than half of the most cited papers during this span were bioinformatics papers. Yet, the average 5-year JIF of top 20 bioinformatics papers was 7.7, whereas the average JIF for top 20 non-bioinformatics papers was 25.8, significantly higher (P papers, bioinformatics journals tended to have higher Gini coefficients, suggesting that development of novel bioinformatics resources may be somewhat 'hit or miss'. That is, relative to other fields, bioinformatics produces some programs that are extremely widely adopted and cited, yet there are fewer of intermediate success. jdwren@gmail.com Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  8. Development and evaluation of a bioinformatics approach for designing molecular assays for viral detection.

    Directory of Open Access Journals (Sweden)

    Pierre H H Schneeberger

    Full Text Available Viruses belonging to the Flaviviridae and Bunyaviridae families show considerable genetic diversity. However, this diversity is not necessarily taken into account when developing diagnostic assays, which are often based on the pairwise alignment of a limited number of sequences. Our objective was to develop and evaluate a bioinformatics workflow addressing two recurrent issues of molecular assay design: (i the high intraspecies genetic diversity in viruses and (ii the potential for cross-reactivity with close relatives.The workflow developed herein was based on two consecutive BLASTn steps; the first was utilized to select highly conserved regions among the viral taxon of interest, and the second was employed to assess the degree of similarity of these highly-conserved regions to close relatives. Subsequently, the workflow was tested on a set of eight viral species, including various strains from the Flaviviridae and Bunyaviridae families.The genetic diversity ranges from as low as 0.45% variable sites over the complete genome of the Japanese encephalitis virus to more than 16% of variable sites on segment L of the Crimean-Congo hemorrhagic fever virus. Our proposed bioinformatics workflow allowed the selection-based on computing scores-of the best target for a diagnostic molecular assay for the eight viral species investigated.Our bioinformatics workflow allowed rapid selection of highly conserved and specific genomic fragments among the investigated viruses, while considering up to several hundred complete genomic sequences. The pertinence of this workflow will increase in parallel to the number of sequences made publicly available. We hypothesize that our workflow might be utilized to select diagnostic molecular markers for higher organisms with more complex genomes, provided the sequences are made available.

  9. BIRCH: A user-oriented, locally-customizable, bioinformatics system

    Science.gov (United States)

    Fristensky, Brian

    2007-01-01

    Background Molecular biologists need sophisticated analytical tools which often demand extensive computational resources. While finding, installing, and using these tools can be challenging, pipelining data from one program to the next is particularly awkward, especially when using web-based programs. At the same time, system administrators tasked with maintaining these tools do not always appreciate the needs of research biologists. Results BIRCH (Biological Research Computing Hierarchy) is an organizational framework for delivering bioinformatics resources to a user group, scaling from a single lab to a large institution. The BIRCH core distribution includes many popular bioinformatics programs, unified within the GDE (Genetic Data Environment) graphic interface. Of equal importance, BIRCH provides the system administrator with tools that simplify the job of managing a multiuser bioinformatics system across different platforms and operating systems. These include tools for integrating locally-installed programs and databases into BIRCH, and for customizing the local BIRCH system to meet the needs of the user base. BIRCH can also act as a front end to provide a unified view of already-existing collections of bioinformatics software. Documentation for the BIRCH and locally-added programs is merged in a hierarchical set of web pages. In addition to manual pages for individual programs, BIRCH tutorials employ step by step examples, with screen shots and sample files, to illustrate both the important theoretical and practical considerations behind complex analytical tasks. Conclusion BIRCH provides a versatile organizational framework for managing software and databases, and making these accessible to a user base. Because of its network-centric design, BIRCH makes it possible for any user to do any task from anywhere. PMID:17291351

  10. BIRCH: A user-oriented, locally-customizable, bioinformatics system

    Directory of Open Access Journals (Sweden)

    Fristensky Brian

    2007-02-01

    Full Text Available Abstract Background Molecular biologists need sophisticated analytical tools which often demand extensive computational resources. While finding, installing, and using these tools can be challenging, pipelining data from one program to the next is particularly awkward, especially when using web-based programs. At the same time, system administrators tasked with maintaining these tools do not always appreciate the needs of research biologists. Results BIRCH (Biological Research Computing Hierarchy is an organizational framework for delivering bioinformatics resources to a user group, scaling from a single lab to a large institution. The BIRCH core distribution includes many popular bioinformatics programs, unified within the GDE (Genetic Data Environment graphic interface. Of equal importance, BIRCH provides the system administrator with tools that simplify the job of managing a multiuser bioinformatics system across different platforms and operating systems. These include tools for integrating locally-installed programs and databases into BIRCH, and for customizing the local BIRCH system to meet the needs of the user base. BIRCH can also act as a front end to provide a unified view of already-existing collections of bioinformatics software. Documentation for the BIRCH and locally-added programs is merged in a hierarchical set of web pages. In addition to manual pages for individual programs, BIRCH tutorials employ step by step examples, with screen shots and sample files, to illustrate both the important theoretical and practical considerations behind complex analytical tasks. Conclusion BIRCH provides a versatile organizational framework for managing software and databases, and making these accessible to a user base. Because of its network-centric design, BIRCH makes it possible for any user to do any task from anywhere.

  11. mORCA: sailing bioinformatics world with mobile devices.

    Science.gov (United States)

    Díaz-Del-Pino, Sergio; Falgueras, Juan; Perez-Wohlfeil, Esteban; Trelles, Oswaldo

    2018-03-01

    Nearly 10 years have passed since the first mobile apps appeared. Given the fact that bioinformatics is a web-based world and that mobile devices are endowed with web-browsers, it seemed natural that bioinformatics would transit from personal computers to mobile devices but nothing could be further from the truth. The transition demands new paradigms, designs and novel implementations. Throughout an in-depth analysis of requirements of existing bioinformatics applications we designed and deployed an easy-to-use web-based lightweight mobile client. Such client is able to browse, select, compose automatically interface parameters, invoke services and monitor the execution of Web Services using the service's metadata stored in catalogs or repositories. mORCA is available at http://bitlab-es.com/morca/app as a web-app. It is also available in the App store by Apple and Play Store by Google. The software will be available for at least 2 years. ortrelles@uma.es. Source code, final web-app, training material and documentation is available at http://bitlab-es.com/morca. © The Author(s) 2017. Published by Oxford University Press.

  12. p3d--Python module for structural bioinformatics.

    Science.gov (United States)

    Fufezan, Christian; Specht, Michael

    2009-08-21

    High-throughput bioinformatic analysis tools are needed to mine the large amount of structural data via knowledge based approaches. The development of such tools requires a robust interface to access the structural data in an easy way. For this the Python scripting language is the optimal choice since its philosophy is to write an understandable source code. p3d is an object oriented Python module that adds a simple yet powerful interface to the Python interpreter to process and analyse three dimensional protein structure files (PDB files). p3d's strength arises from the combination of a) very fast spatial access to the structural data due to the implementation of a binary space partitioning (BSP) tree, b) set theory and c) functions that allow to combine a and b and that use human readable language in the search queries rather than complex computer language. All these factors combined facilitate the rapid development of bioinformatic tools that can perform quick and complex analyses of protein structures. p3d is the perfect tool to quickly develop tools for structural bioinformatics using the Python scripting language.

  13. Best practices in bioinformatics training for life scientists.

    KAUST Repository

    Via, Allegra

    2013-06-25

    The mountains of data thrusting from the new landscape of modern high-throughput biology are irrevocably changing biomedical research and creating a near-insatiable demand for training in data management and manipulation and data mining and analysis. Among life scientists, from clinicians to environmental researchers, a common theme is the need not just to use, and gain familiarity with, bioinformatics tools and resources but also to understand their underlying fundamental theoretical and practical concepts. Providing bioinformatics training to empower life scientists to handle and analyse their data efficiently, and progress their research, is a challenge across the globe. Delivering good training goes beyond traditional lectures and resource-centric demos, using interactivity, problem-solving exercises and cooperative learning to substantially enhance training quality and learning outcomes. In this context, this article discusses various pragmatic criteria for identifying training needs and learning objectives, for selecting suitable trainees and trainers, for developing and maintaining training skills and evaluating training quality. Adherence to these criteria may help not only to guide course organizers and trainers on the path towards bioinformatics training excellence but, importantly, also to improve the training experience for life scientists.

  14. A global perspective on evolving bioinformatics and data science training needs.

    Science.gov (United States)

    Attwood, Teresa K; Blackford, Sarah; Brazas, Michelle D; Davies, Angela; Schneider, Maria Victoria

    2017-08-29

    Bioinformatics is now intrinsic to life science research, but the past decade has witnessed a continuing deficiency in this essential expertise. Basic data stewardship is still taught relatively rarely in life science education programmes, creating a chasm between theory and practice, and fuelling demand for bioinformatics training across all educational levels and career roles. Concerned by this, surveys have been conducted in recent years to monitor bioinformatics and computational training needs worldwide. This article briefly reviews the principal findings of a number of these studies. We see that there is still a strong appetite for short courses to improve expertise and confidence in data analysis and interpretation; strikingly, however, the most urgent appeal is for bioinformatics to be woven into the fabric of life science degree programmes. Satisfying the relentless training needs of current and future generations of life scientists will require a concerted response from stakeholders across the globe, who need to deliver sustainable solutions capable of both transforming education curricula and cultivating a new cadre of trainer scientists. © The Author 2017. Published by Oxford University Press.

  15. Bioinformatic tools for PCR Primer design

    African Journals Online (AJOL)

    ES

    reaction (PCR), oligo hybridization and DNA sequencing. Proper primer design is actually one of the most important factors/steps in successful DNA sequencing. Various bioinformatics programs are available for selection of primer pairs from a template sequence. The plethora programs for PCR primer design reflects the.

  16. Molecular electronic junction transport

    DEFF Research Database (Denmark)

    Solomon, Gemma C.; Herrmann, Carmen; Ratner, Mark

    2012-01-01

    Whenasinglemolecule,oracollectionofmolecules,isplacedbetween two electrodes and voltage is applied, one has a molecular transport junction. We discuss such junctions, their properties, their description, and some of their applications. The discussion is qualitative rather than quantitative, and f...

  17. Gap junctions and motor behavior

    DEFF Research Database (Denmark)

    Kiehn, Ole; Tresch, Matthew C.

    2002-01-01

    The production of any motor behavior requires coordinated activity in motor neurons and premotor networks. In vertebrates, this coordination is often assumed to take place through chemical synapses. Here we review recent data suggesting that electrical gap-junction coupling plays an important role...... in coordinating and generating motor outputs in embryonic and early postnatal life. Considering the recent demonstration of a prevalent expression of gap-junction proteins and gap-junction structures in the adult mammalian spinal cord, we suggest that neuronal gap-junction coupling might also contribute...... to the production of motor behavior in adult mammals....

  18. Introductory Bioinformatics Exercises Utilizing Hemoglobin and Chymotrypsin to Reinforce the Protein Sequence-Structure-Function Relationship

    Science.gov (United States)

    Inlow, Jennifer K.; Miller, Paige; Pittman, Bethany

    2007-01-01

    We describe two bioinformatics exercises intended for use in a computer laboratory setting in an upper-level undergraduate biochemistry course. To introduce students to bioinformatics, the exercises incorporate several commonly used bioinformatics tools, including BLAST, that are freely available online. The exercises build upon the students'…

  19. Advance in structural bioinformatics

    CERN Document Server

    Wei, Dongqing; Zhao, Tangzhen; Dai, Hao

    2014-01-01

    This text examines in detail mathematical and physical modeling, computational methods and systems for obtaining and analyzing biological structures, using pioneering research cases as examples. As such, it emphasizes programming and problem-solving skills. It provides information on structure bioinformatics at various levels, with individual chapters covering introductory to advanced aspects, from fundamental methods and guidelines on acquiring and analyzing genomics and proteomics sequences, the structures of protein, DNA and RNA, to the basics of physical simulations and methods for conform

  20. Electronic noise of superconducting tunnel junction detectors

    International Nuclear Information System (INIS)

    Jochum, J.; Kraus, H.; Gutsche, M.; Kemmather, B.; Feilitzsch, F. v.; Moessbauer, R.L.

    1994-01-01

    The optimal signal to noise ratio for detectors based on superconducting tunnel junctions is calculated and compared for the cases of a detector consisting of one single tunnel junction, as well as of series and of parallel connections of such tunnel junctions. The influence of 1 / f noise and its dependence on the dynamical resistance of tunnel junctions is discussed quantitatively. A single tunnel junction yields the minimum equivalent noise charge. Such a tunnel junction exhibits the best signal to noise ratio if the signal charge is independent of detector size. In case, signal charge increases with detector size, a parallel or a series connection of tunnel junctions would provide the optimum signal to noise ratio. The equivalent noise charge and the respective signal to noise ratio are deduced as functions of tunnel junction parameters such as tunneling time, quasiparticle lifetime, etc. (orig.)

  1. Bioinformatics in the Netherlands: the value of a nationwide community.

    Science.gov (United States)

    van Gelder, Celia W G; Hooft, Rob W W; van Rijswijk, Merlijn N; van den Berg, Linda; Kok, Ruben G; Reinders, Marcel; Mons, Barend; Heringa, Jaap

    2017-09-15

    This review provides a historical overview of the inception and development of bioinformatics research in the Netherlands. Rooted in theoretical biology by foundational figures such as Paulien Hogeweg (at Utrecht University since the 1970s), the developments leading to organizational structures supporting a relatively large Dutch bioinformatics community will be reviewed. We will show that the most valuable resource that we have built over these years is the close-knit national expert community that is well engaged in basic and translational life science research programmes. The Dutch bioinformatics community is accustomed to facing the ever-changing landscape of data challenges and working towards solutions together. In addition, this community is the stable factor on the road towards sustainability, especially in times where existing funding models are challenged and change rapidly. © The Author 2017. Published by Oxford University Press.

  2. Similarities between normal- and super-currents in topological insulator magnetic tunnel junctions

    International Nuclear Information System (INIS)

    Soodchomshom, Bumned; Chantngarm, Peerasak

    2010-01-01

    This work compares the normal-current in a NM/Fi/NM junction with the super-current in a SC/Fi/SC junction, where both are topological insulator systems. NM and Fi are normal region and ferromagnetic region of thickness d with exchange energy m playing a role of the mass of the Dirac electrons and with the gate voltage V G , respectively. SC is superconducting region induced by a s-wave superconductor. We show that, interestingly, the critical super-current passing through a SC/Fi/SC junction behaves quite similar to the normal-current passing through a NM/Fi/NM junction. The normal-current and super-current exhibit N-peak oscillation, found when currents are plotted as a function of the magnetic barrier strength χ ∼ md/hv F . With the barrier strength Z ∼ V G d/hv F , the number of peaks N is determined through the relation Z ∼ Nπ + σπ (with 0 < σ≤1 for χ < Z). The normal- and the super-currents also exhibit oscillating with the same height for all of peaks, corresponding to the Dirac fermion tunneling behavior. These anomalous oscillating currents due to the interplay between gate voltage and magnetic field in the barrier were not found in graphene-based NM/Fi/NM and SC/Fi/SC junctions. This is due to the different magnetic effect between the Dirac fermions in topological insulator and graphene.

  3. What is bioinformatics? A proposed definition and overview of the field.

    Science.gov (United States)

    Luscombe, N M; Greenbaum, D; Gerstein, M

    2001-01-01

    The recent flood of data from genome sequences and functional genomics has given rise to new field, bioinformatics, which combines elements of biology and computer science. Here we propose a definition for this new field and review some of the research that is being pursued, particularly in relation to transcriptional regulatory systems. Our definition is as follows: Bioinformatics is conceptualizing biology in terms of macromolecules (in the sense of physical-chemistry) and then applying "informatics" techniques (derived from disciplines such as applied maths, computer science, and statistics) to understand and organize the information associated with these molecules, on a large-scale. Analyses in bioinformatics predominantly focus on three types of large datasets available in molecular biology: macromolecular structures, genome sequences, and the results of functional genomics experiments (e.g. expression data). Additional information includes the text of scientific papers and "relationship data" from metabolic pathways, taxonomy trees, and protein-protein interaction networks. Bioinformatics employs a wide range of computational techniques including sequence and structural alignment, database design and data mining, macromolecular geometry, phylogenetic tree construction, prediction of protein structure and function, gene finding, and expression data clustering. The emphasis is on approaches integrating a variety of computational methods and heterogeneous data sources. Finally, bioinformatics is a practical discipline. We survey some representative applications, such as finding homologues, designing drugs, and performing large-scale censuses. Additional information pertinent to the review is available over the web at http://bioinfo.mbb.yale.edu/what-is-it.

  4. An overview of topic modeling and its current applications in bioinformatics.

    Science.gov (United States)

    Liu, Lin; Tang, Lin; Dong, Wen; Yao, Shaowen; Zhou, Wei

    2016-01-01

    With the rapid accumulation of biological datasets, machine learning methods designed to automate data analysis are urgently needed. In recent years, so-called topic models that originated from the field of natural language processing have been receiving much attention in bioinformatics because of their interpretability. Our aim was to review the application and development of topic models for bioinformatics. This paper starts with the description of a topic model, with a focus on the understanding of topic modeling. A general outline is provided on how to build an application in a topic model and how to develop a topic model. Meanwhile, the literature on application of topic models to biological data was searched and analyzed in depth. According to the types of models and the analogy between the concept of document-topic-word and a biological object (as well as the tasks of a topic model), we categorized the related studies and provided an outlook on the use of topic models for the development of bioinformatics applications. Topic modeling is a useful method (in contrast to the traditional means of data reduction in bioinformatics) and enhances researchers' ability to interpret biological information. Nevertheless, due to the lack of topic models optimized for specific biological data, the studies on topic modeling in biological data still have a long and challenging road ahead. We believe that topic models are a promising method for various applications in bioinformatics research.

  5. "Extreme Programming" in a Bioinformatics Class

    Science.gov (United States)

    Kelley, Scott; Alger, Christianna; Deutschman, Douglas

    2009-01-01

    The importance of Bioinformatics tools and methodology in modern biological research underscores the need for robust and effective courses at the college level. This paper describes such a course designed on the principles of cooperative learning based on a computer software industry production model called "Extreme Programming" (EP).…

  6. Bioinformatics in Undergraduate Education: Practical Examples

    Science.gov (United States)

    Boyle, John A.

    2004-01-01

    Bioinformatics has emerged as an important research tool in recent years. The ability to mine large databases for relevant information has become increasingly central to many different aspects of biochemistry and molecular biology. It is important that undergraduates be introduced to the available information and methodologies. We present a…

  7. The psychostimulant modafinil enhances gap junctional communication in cortical astrocytes.

    Science.gov (United States)

    Liu, Xinhe; Petit, Jean-Marie; Ezan, Pascal; Gyger, Joël; Magistretti, Pierre; Giaume, Christian

    2013-12-01

    Sleep-wake cycle is characterized by changes in neuronal network activity. However, for the last decade there is increasing evidence that neuroglial interaction may play a role in the modulation of sleep homeostasis and that astrocytes have a critical impact in this process. Interestingly, astrocytes are organized into communicating networks based on their high expression of connexins, which are the molecular constituents of gap junction channels. Thus, neuroglial interactions should also be considered as the result of the interplay between neuronal and astroglial networks. Here, we investigate the effect of modafinil, a wakefulness-promoting agent, on astrocyte gap junctional communication. We report that in the cortex modafinil injection increases the expression of mRNA and protein of connexin 30 but not those of connexin 43, the other major astroglial connexin. These increases are correlated with an enhancement of intercellular dye coupling in cortical astrocytes, which is abolished when neuronal activity is silenced by tetrodotoxin. Moreover, gamma-hydroxybutyric acid, which at a millimolar concentration induces sleep, has an opposite effect on astroglial gap junctions in an activity-independent manner. These results support the proposition that astroglia may play an important role in complex physiological brain functions, such as sleep regulation, and that neuroglial networking interaction is modified during sleep-wake cycle. This article is part of the Special Issue Section entitled 'Current Pharmacology of Gap Junction Channels and Hemichannels'. Copyright © 2013. Published by Elsevier Ltd.

  8. Modern bioinformatics meets traditional Chinese medicine.

    Science.gov (United States)

    Gu, Peiqin; Chen, Huajun

    2014-11-01

    Traditional Chinese medicine (TCM) is gaining increasing attention with the emergence of integrative medicine and personalized medicine, characterized by pattern differentiation on individual variance and treatments based on natural herbal synergism. Investigating the effectiveness and safety of the potential mechanisms of TCM and the combination principles of drug therapies will bridge the cultural gap with Western medicine and improve the development of integrative medicine. Dealing with rapidly growing amounts of biomedical data and their heterogeneous nature are two important tasks among modern biomedical communities. Bioinformatics, as an emerging interdisciplinary field of computer science and biology, has become a useful tool for easing the data deluge pressure by automating the computation processes with informatics methods. Using these methods to retrieve, store and analyze the biomedical data can effectively reveal the associated knowledge hidden in the data, and thus promote the discovery of integrated information. Recently, these techniques of bioinformatics have been used for facilitating the interactional effects of both Western medicine and TCM. The analysis of TCM data using computational technologies provides biological evidence for the basic understanding of TCM mechanisms, safety and efficacy of TCM treatments. At the same time, the carrier and targets associated with TCM remedies can inspire the rethinking of modern drug development. This review summarizes the significant achievements of applying bioinformatics techniques to many aspects of the research in TCM, such as analysis of TCM-related '-omics' data and techniques for analyzing biological processes and pharmaceutical mechanisms of TCM, which have shown certain potential of bringing new thoughts to both sides. © The Author 2013. Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  9. Atomic-scaled characterization of graphene PN junctions

    Science.gov (United States)

    Zhou, Xiaodong; Wang, Dennis; Dadgar, Ali; Agnihotri, Pratik; Lee, Ji Ung; Reuter, Mark C.; Ross, Frances M.; Pasupathy, Abhay N.

    Graphene p-n junctions are essential devices for studying relativistic Klein tunneling and the Veselago lensing effect in graphene. We have successfully fabricated graphene p-n junctions using both lithographically pre-patterned substrates and the stacking of vertical heterostructures. We then use our 4-probe STM system to characterize the junctions. The ability to carry out scanning electron microscopy (SEM) in our STM instrument is essential for us to locate and measure the junction interface. We obtain both the topography and dI/dV spectra at the junction area, from which we track the shift of the graphene chemical potential with position across the junction interface. This allows us to directly measure the spatial width and roughness of the junction and its potential barrier height. We will compare the junction properties of devices fabricated by the aforementioned two methods and discuss their effects on the performance as a Veselago lens.

  10. The Bioinformatics of Integrative Medical Insights: Proposals for an International Psycho-Social and Cultural Bioinformatics Project

    Directory of Open Access Journals (Sweden)

    Ernest Rossi

    2006-01-01

    Full Text Available We propose the formation of an International Psycho-Social and Cultural Bioinformatics Project (IPCBP to explore the research foundations of Integrative Medical Insights (IMI on all levels from the molecular-genomic to the psychological, cultural, social, and spiritual. Just as The Human Genome Project identified the molecular foundations of modern medicine with the new technology of sequencing DNA during the past decade, the IPCBP would extend and integrate this neuroscience knowledge base with the technology of gene expression via DNA/proteomic microarray research and brain imaging in development, stress, healing, rehabilitation, and the psychotherapeutic facilitation of existentional wellness. We anticipate that the IPCBP will require a unique international collaboration of, academic institutions, researchers, and clinical practioners for the creation of a new neuroscience of mind-body communication, brain plasticity, memory, learning, and creative processing during optimal experiential states of art, beauty, and truth. We illustrate this emerging integration of bioinformatics with medicine with a videotape of the classical 4-stage creative process in a neuroscience approach to psychotherapy.

  11. The Bioinformatics of Integrative Medical Insights: Proposals for an International PsychoSocial and Cultural Bioinformatics Project

    Directory of Open Access Journals (Sweden)

    Ernest Rossi

    2006-01-01

    Full Text Available We propose the formation of an International PsychoSocial and Cultural Bioinformatics Project (IPCBP to explore the research foundations of Integrative Medical Insights (IMI on all levels from the molecular-genomic to the psychological, cultural, social, and spiritual. Just as The Human Genome Project identified the molecular foundations of modern medicine with the new technology of sequencing DNA during the past decade, the IPCBP would extend and integrate this neuroscience knowledge base with the technology of gene expression via DNA/proteomic microarray research and brain imaging in development, stress, healing, rehabilitation, and the psychotherapeutic facilitation of existentional wellness. We anticipate that the IPCBP will require a unique international collaboration of, academic institutions, researchers, and clinical practioners for the creation of a new neuroscience of mind-body communication, brain plasticity, memory, learning, and creative processing during optimal experiential states of art, beauty, and truth. We illustrate this emerging integration of bioinformatics with medicine with a videotape of the classical 4-stage creative process in a neuroscience approach to psychotherapy.

  12. Incorporating a Collaborative Web-Based Virtual Laboratory in an Undergraduate Bioinformatics Course

    Science.gov (United States)

    Weisman, David

    2010-01-01

    Face-to-face bioinformatics courses commonly include a weekly, in-person computer lab to facilitate active learning, reinforce conceptual material, and teach practical skills. Similarly, fully-online bioinformatics courses employ hands-on exercises to achieve these outcomes, although students typically perform this work offsite. Combining a…

  13. A Summer Program Designed to Educate College Students for Careers in Bioinformatics

    Science.gov (United States)

    Krilowicz, Beverly; Johnston, Wendie; Sharp, Sandra B.; Warter-Perez, Nancy; Momand, Jamil

    2007-01-01

    A summer program was created for undergraduates and graduate students that teaches bioinformatics concepts, offers skills in professional development, and provides research opportunities in academic and industrial institutions. We estimate that 34 of 38 graduates (89%) are in a career trajectory that will use bioinformatics. Evidence from…

  14. Magnetic tunnel junctions with AlN and AlNxOy barriers

    International Nuclear Information System (INIS)

    Schwickert, M. M.; Childress, J. R.; Fontana, R. E.; Kellock, A. J.; Rice, P. M.; Ho, M. K.; Thompson, T. J.; Gurney, B. A.

    2001-01-01

    Nonoxide tunnel barriers such as AlN are of interest for magnetic tunnel junctions to avoid the oxidation of the magnetic electrodes. We have investigated the fabrication and properties of thin AlN-based barriers for use in low resistance magnetic tunnel junctions. Electronic, magnetic and structural data of tunnel valves of the form Ta (100 Aa)/PtMn (300 Aa)/CoFe 20 (20 Aa - 25 Aa)/barrier/CoFe 20 (10 - 20 Aa)/NiFe 16 (35 - 40 Aa)/Ta (100 Aa) are presented, where the barrier consists of AlN, AlN x O y or AlN/AlO x with total thicknesses between 8 and 15 Aa. The tunnel junctions were sputter deposited and then lithographically patterned down to 2 x 2μm 2 devices. AlN was deposited by reactive sputtering from an Al target with 20% - 35% N 2 in the Ar sputter gas at room temperature, resulting in stoichiometric growth of AlN x (x=0.50±0.05), as determined by RBS. TEM analysis shows that the as-deposited AlN barrier is crystalline. For AlN barriers and AlN followed by natural O 2 oxidation, we obtain tunnel magnetoresistance >10% with specific junction resistance R j down to 60Ωμm 2 . [copyright] 2001 American Institute of Physics

  15. Junctional transfer in cultured vascular endothelium: II. Dye and nucleotide transfer

    International Nuclear Information System (INIS)

    Larson, D.M.; Sheridan, J.D.

    1985-01-01

    Vascular endothelial cultures, derived from large vessels, retain many of the characteristics of their in vivo counterparts. However, the observed reduction in size and complexity of intercellular gap and tight junctions in these cultured cells suggests that important functions, thought to be mediated by these structures, may be altered in vitro. In continuing studies on intercellular communication in vessel wall cells, the authors have quantitated the extent of junctional transfer of small molecular tracers (the fluorescent dye Lucifer Yellow CH and tritiated uridine nucleotides) in confluent cultures of calf aortic (BAEC) and umbilical vein (BVEC) endothelium. Both BAEC and BVEC show extensive (and quantitatively equivalent) dye and nucleotide transfer. As an analogue of intimal endothelium, the authors have also tested dye transfer in freshly isolated sheets of endothelium. Transfer in BAEC and BVEC sheets was more rapid, extensive and homogeneous than in the cultured cells, implying a reduction in molecular coupling as endothelium adapts to culture conditions. In addition, they have documented heterocellular nucleotide transfer between cultured endothelium and vascular smooth muscle cells, of particular interest considering the prevalence of ''myo-endothelial'' junctions in vivo. These data yield further information on junctional transfer in cultured vascular endothelium and have broad implications for the functional integration of the vessel wall in the physiology and pathophysiology of the vasculature

  16. Relax with CouchDB - Into the non-relational DBMS era of Bioinformatics

    Science.gov (United States)

    Manyam, Ganiraju; Payton, Michelle A.; Roth, Jack A.; Abruzzo, Lynne V.; Coombes, Kevin R.

    2012-01-01

    With the proliferation of high-throughput technologies, genome-level data analysis has become common in molecular biology. Bioinformaticians are developing extensive resources to annotate and mine biological features from high-throughput data. The underlying database management systems for most bioinformatics software are based on a relational model. Modern non-relational databases offer an alternative that has flexibility, scalability, and a non-rigid design schema. Moreover, with an accelerated development pace, non-relational databases like CouchDB can be ideal tools to construct bioinformatics utilities. We describe CouchDB by presenting three new bioinformatics resources: (a) geneSmash, which collates data from bioinformatics resources and provides automated gene-centric annotations, (b) drugBase, a database of drug-target interactions with a web interface powered by geneSmash, and (c) HapMap-CN, which provides a web interface to query copy number variations from three SNP-chip HapMap datasets. In addition to the web sites, all three systems can be accessed programmatically via web services. PMID:22609849

  17. Keemei: cloud-based validation of tabular bioinformatics file formats in Google Sheets.

    Science.gov (United States)

    Rideout, Jai Ram; Chase, John H; Bolyen, Evan; Ackermann, Gail; González, Antonio; Knight, Rob; Caporaso, J Gregory

    2016-06-13

    Bioinformatics software often requires human-generated tabular text files as input and has specific requirements for how those data are formatted. Users frequently manage these data in spreadsheet programs, which is convenient for researchers who are compiling the requisite information because the spreadsheet programs can easily be used on different platforms including laptops and tablets, and because they provide a familiar interface. It is increasingly common for many different researchers to be involved in compiling these data, including study coordinators, clinicians, lab technicians and bioinformaticians. As a result, many research groups are shifting toward using cloud-based spreadsheet programs, such as Google Sheets, which support the concurrent editing of a single spreadsheet by different users working on different platforms. Most of the researchers who enter data are not familiar with the formatting requirements of the bioinformatics programs that will be used, so validating and correcting file formats is often a bottleneck prior to beginning bioinformatics analysis. We present Keemei, a Google Sheets Add-on, for validating tabular files used in bioinformatics analyses. Keemei is available free of charge from Google's Chrome Web Store. Keemei can be installed and run on any web browser supported by Google Sheets. Keemei currently supports the validation of two widely used tabular bioinformatics formats, the Quantitative Insights into Microbial Ecology (QIIME) sample metadata mapping file format and the Spatially Referenced Genetic Data (SRGD) format, but is designed to easily support the addition of others. Keemei will save researchers time and frustration by providing a convenient interface for tabular bioinformatics file format validation. By allowing everyone involved with data entry for a project to easily validate their data, it will reduce the validation and formatting bottlenecks that are commonly encountered when human-generated data files are

  18. Low temperature properties of spin filter NbN/GdN/NbN Josephson junctions

    Energy Technology Data Exchange (ETDEWEB)

    Massarotti, D., E-mail: dmassarotti@na.infn.it [Dipartimento di Ingegneria Industriale e dell’Informazione, Seconda Università di Napoli, via Roma 29, 81031 Aversa (CE) (Italy); CNR-SPIN UOS Napoli, Complesso Universitario di Monte Sant’Angelo, via Cinthia, 80126 Napoli (Italy); Caruso, R. [Dipartimento di Fisica, Università degli Studi di Napoli Federico II, Via Cinthia, 80126 Napoli (Italy); CNR-SPIN UOS Napoli, Complesso Universitario di Monte Sant’Angelo, via Cinthia, 80126 Napoli (Italy); Pal, A. [Department of Materials Science and Metallurgy, University of Cambridge, Cambridge CB3 0FS (United Kingdom); Rotoli, G. [Dipartimento di Ingegneria Industriale e dell’Informazione, Seconda Università di Napoli, via Roma 29, 81031 Aversa (CE) (Italy); Longobardi, L. [Dipartimento di Ingegneria Industriale e dell’Informazione, Seconda Università di Napoli, via Roma 29, 81031 Aversa (CE) (Italy); American Physical Society, 1 Research Road, Ridge, New York 11961 (United States); Pepe, G.P. [Dipartimento di Fisica, Università degli Studi di Napoli Federico II, Via Cinthia, 80126 Napoli (Italy); CNR-SPIN UOS Napoli, Complesso Universitario di Monte Sant’Angelo, via Cinthia, 80126 Napoli (Italy); Blamire, M.G. [Department of Materials Science and Metallurgy, University of Cambridge, Cambridge CB3 0FS (United Kingdom); Tafuri, F. [Dipartimento di Ingegneria Industriale e dell’Informazione, Seconda Università di Napoli, via Roma 29, 81031 Aversa (CE) (Italy); CNR-SPIN UOS Napoli, Complesso Universitario di Monte Sant’Angelo, via Cinthia, 80126 Napoli (Italy)

    2017-02-15

    Highlights: • We study the phase dynamics of ferromagnetic NbN/GdN/NbN Josephson junctions. • The ferromagnetic insulator GdN barrier generates spin-filtering properties. • Spin filter junctions fall in the underdamped regime. • MQT occurs with the same phenomenology as in conventional Josephson junctions. • Dissipation is studied in a wide range of critical current density values. - Abstract: A ferromagnetic Josephson junction (JJ) represents a special class of hybrid system where different ordered phases meet and generate novel physics. In this work we report on the transport measurements of underdamped ferromagnetic NbN/GdN/NbN JJs at low temperatures. In these junctions the ferromagnetic insulator gadolinium nitride barrier generates spin-filtering properties and a dominant second harmonic component in the current-phase relation. These features make spin filter junctions quite interesting also in terms of fundamental studies on phase dynamics and dissipation. We discuss the fingerprints of spin filter JJs, through complementary transport measurements, and their implications on the phase dynamics, through standard measurements of switching current distributions. NbN/GdN/NbN JJs, where spin filter properties can be controllably tuned along with the critical current density (J{sub c}), turn to be a very relevant term of reference to understand phase dynamics and dissipation in an enlarged class of JJs, not necessarily falling in the standard tunnel limit characterized by low J{sub c} values.

  19. Stability of large-area molecular junctions

    NARCIS (Netherlands)

    Akkerman, Hylke B.; Kronemeijer, Auke J.; Harkema, Jan; van Hal, Paul A.; Smits, Edsger C. P.; de Leeuw, Dago M.; Blom, Paul W. M.

    The stability of molecular junctions is crucial for any application of molecular electronics. Degradation of molecular junctions when exposed to ambient conditions is regularly observed. In this report the stability of large-area molecular junctions under ambient conditions for more than two years

  20. Superconducting flux qubits with π-junctions

    International Nuclear Information System (INIS)

    Shcherbakova, Anastasia

    2014-01-01

    In this thesis, we present a fabrication technology of Al/AlO x /Al Josephson junctions on Nb pads. The described technology gives the possibility of combining a variety of Nb-based superconducting circuits, like pi-junction phase-shifters with sub-micron Al/AlO x /Al junctions. Using this approach, we fabricated hybrid Nb/Al flux qubits with and without the SFS-junctions and studied dispersive magnetic field response of these qubits as well as their spectroscopy characteristics.

  1. Resonance Transport of Graphene Nanoribbon T-Shaped Junctions

    International Nuclear Information System (INIS)

    Xiao-Lan, Kong; Yong-Jian, Xiong

    2010-01-01

    We investigate the transport properties of T-shaped junctions composed of armchair graphene nanoribbons of different widths. Three types of junction geometries are considered. The junction conductance strongly depends on the atomic features of the junction geometry. When the shoulders of the junction have zigzag type edges, sharp conductance resonances usually appear in the low energy region around the Dirac point, and a conductance gap emerges. When the shoulders of the junction have armchair type edges, the conductance resonance behavior is weakened significantly, and the metal-metal-metal junction structures show semimetallic behaviors. The contact resistance also changes notably due to the various interface geometries of the junction

  2. Josephson junctions with ferromagnetic interlayer

    International Nuclear Information System (INIS)

    Wild, Georg Hermann

    2012-01-01

    We report on the fabrication of superconductor/insulator/ferromagnetic metal/superconductor (Nb/AlO x /Pd 0.82 Ni 0.18 /Nb) Josephson junctions (SIFS JJs) with high critical current densities, large normal resistance times area products, and high quality factors. For these junctions, a transition from 0- to π-coupling is observed for a thickness d F =6 nm of the ferromagnetic Pd 0.82 Ni 0.18 interlayer. The magnetic field dependence of the critical current of the junctions demonstrates good spatial homogeneity of the tunneling barrier and ferromagnetic interlayer. Magnetic characterization shows that the Pd 0.82 Ni 0.18 has an out-of-plane anisotropy and large saturation magnetization indicating negligible dead layers at the interfaces. A careful analysis of Fiske modes up to about 400 GHz provides valuable information on the junction quality factor and the relevant damping mechanisms. Whereas losses due to quasiparticle tunneling dominate at low frequencies, at high frequencies the damping is explained by the finite surface resistance of the junction electrodes. High quality factors of up to 30 around 200 GHz have been achieved. They allow to study the junction dynamics, in particular the switching probability from the zero-voltage into the voltage state with and without microwave irradiation. The experiments with microwave irradiation are well explained within semi-classical models and numerical simulations. In contrast, at mK temperature the switching dynamics without applied microwaves clearly shows secondary quantum effects. Here, we could observe for the first time macroscopic quantum tunneling in Josephson junctions with a ferromagnetic interlayer. This observation excludes fluctuations of the critical current as a consequence of an unstable magnetic domain structure of the ferromagnetic interlayer and affirms the suitability of SIFS Josephson junctions for quantum information processing.

  3. Josephson junctions with ferromagnetic interlayer

    Energy Technology Data Exchange (ETDEWEB)

    Wild, Georg Hermann

    2012-03-04

    We report on the fabrication of superconductor/insulator/ferromagnetic metal/superconductor (Nb/AlO{sub x}/Pd{sub 0.82}Ni{sub 0.18}/Nb) Josephson junctions (SIFS JJs) with high critical current densities, large normal resistance times area products, and high quality factors. For these junctions, a transition from 0- to {pi}-coupling is observed for a thickness d{sub F}=6 nm of the ferromagnetic Pd{sub 0.82}Ni{sub 0.18} interlayer. The magnetic field dependence of the critical current of the junctions demonstrates good spatial homogeneity of the tunneling barrier and ferromagnetic interlayer. Magnetic characterization shows that the Pd{sub 0.82}Ni{sub 0.18} has an out-of-plane anisotropy and large saturation magnetization indicating negligible dead layers at the interfaces. A careful analysis of Fiske modes up to about 400 GHz provides valuable information on the junction quality factor and the relevant damping mechanisms. Whereas losses due to quasiparticle tunneling dominate at low frequencies, at high frequencies the damping is explained by the finite surface resistance of the junction electrodes. High quality factors of up to 30 around 200 GHz have been achieved. They allow to study the junction dynamics, in particular the switching probability from the zero-voltage into the voltage state with and without microwave irradiation. The experiments with microwave irradiation are well explained within semi-classical models and numerical simulations. In contrast, at mK temperature the switching dynamics without applied microwaves clearly shows secondary quantum effects. Here, we could observe for the first time macroscopic quantum tunneling in Josephson junctions with a ferromagnetic interlayer. This observation excludes fluctuations of the critical current as a consequence of an unstable magnetic domain structure of the ferromagnetic interlayer and affirms the suitability of SIFS Josephson junctions for quantum information processing.

  4. Topological Phases in Graphene Nanoribbons: Junction States, Spin Centers, and Quantum Spin Chains

    Science.gov (United States)

    Cao, Ting; Zhao, Fangzhou; Louie, Steven G.

    2017-08-01

    We show that semiconducting graphene nanoribbons (GNRs) of different width, edge, and end termination (synthesizable from molecular precursors with atomic precision) belong to different electronic topological classes. The topological phase of GNRs is protected by spatial symmetries and dictated by the terminating unit cell. We have derived explicit formulas for their topological invariants and shown that localized junction states developed between two GNRs of distinct topology may be tuned by lateral junction geometry. The topology of a GNR can be further modified by dopants, such as a periodic array of boron atoms. In a superlattice consisting of segments of doped and pristine GNRs, the junction states are stable spin centers, forming a Heisenberg antiferromagnetic spin 1 /2 chain with tunable exchange interaction. The discoveries here not only are of scientific interest for studies of quasi-one-dimensional systems, but also open a new path for design principles of future GNR-based devices through their topological characters.

  5. Chaos synchronization in RCL-shunted Josephson junction via active control

    International Nuclear Information System (INIS)

    Ucar, Ahmet; Lonngren, Karl E.; Bai, E.-W.

    2007-01-01

    This paper investigates the synchronization of coupled RCL-shunted Josephson junction that is of interest in high-frequency applications. A nonlinear controller is developed in order to achieve the desired behavior. The synchronization is obtained using the slave-master technique and the controller ensures that the states of the controlled chaotic slave system exponentially synchronize with the state of the master system. Numerical simulations are illustrate and verify the proposed method

  6. New Link in Bioinformatics Services Value Chain: Position, Organization and Business Model

    Directory of Open Access Journals (Sweden)

    Mladen Čudanov

    2012-11-01

    Full Text Available This paper presents development in the bioinformatics services industry value chain, based on cloud computing paradigm. As genome sequencing costs per Megabase exponentially drop, industry needs to adopt. Paper has two parts: theoretical analysis and practical example of Seven Bridges Genomics Company. We are focused on explaining organizational, business and financial aspects of new business model in bioinformatics services, rather than technical side of the problem. In the light of that we present twofold business model fit for core bioinformatics research and Information and Communication Technologie (ICT support in the new environment, with higher level of capital utilization and better resistance to business risks.

  7. Bioinformatics in High School Biology Curricula: A Study of State Science Standards

    Science.gov (United States)

    Wefer, Stephen H.; Sheppard, Keith

    2008-01-01

    The proliferation of bioinformatics in modern biology marks a modern revolution in science that promises to influence science education at all levels. This study analyzed secondary school science standards of 49 U.S. states (Iowa has no science framework) and the District of Columbia for content related to bioinformatics. The bioinformatics…

  8. XML schemas for common bioinformatic data types and their application in workflow systems.

    Science.gov (United States)

    Seibel, Philipp N; Krüger, Jan; Hartmeier, Sven; Schwarzer, Knut; Löwenthal, Kai; Mersch, Henning; Dandekar, Thomas; Giegerich, Robert

    2006-11-06

    Today, there is a growing need in bioinformatics to combine available software tools into chains, thus building complex applications from existing single-task tools. To create such workflows, the tools involved have to be able to work with each other's data--therefore, a common set of well-defined data formats is needed. Unfortunately, current bioinformatic tools use a great variety of heterogeneous formats. Acknowledging the need for common formats, the Helmholtz Open BioInformatics Technology network (HOBIT) identified several basic data types used in bioinformatics and developed appropriate format descriptions, formally defined by XML schemas, and incorporated them in a Java library (BioDOM). These schemas currently cover sequence, sequence alignment, RNA secondary structure and RNA secondary structure alignment formats in a form that is independent of any specific program, thus enabling seamless interoperation of different tools. All XML formats are available at http://bioschemas.sourceforge.net, the BioDOM library can be obtained at http://biodom.sourceforge.net. The HOBIT XML schemas and the BioDOM library simplify adding XML support to newly created and existing bioinformatic tools, enabling these tools to interoperate seamlessly in workflow scenarios.

  9. XML schemas for common bioinformatic data types and their application in workflow systems

    Science.gov (United States)

    Seibel, Philipp N; Krüger, Jan; Hartmeier, Sven; Schwarzer, Knut; Löwenthal, Kai; Mersch, Henning; Dandekar, Thomas; Giegerich, Robert

    2006-01-01

    Background Today, there is a growing need in bioinformatics to combine available software tools into chains, thus building complex applications from existing single-task tools. To create such workflows, the tools involved have to be able to work with each other's data – therefore, a common set of well-defined data formats is needed. Unfortunately, current bioinformatic tools use a great variety of heterogeneous formats. Results Acknowledging the need for common formats, the Helmholtz Open BioInformatics Technology network (HOBIT) identified several basic data types used in bioinformatics and developed appropriate format descriptions, formally defined by XML schemas, and incorporated them in a Java library (BioDOM). These schemas currently cover sequence, sequence alignment, RNA secondary structure and RNA secondary structure alignment formats in a form that is independent of any specific program, thus enabling seamless interoperation of different tools. All XML formats are available at , the BioDOM library can be obtained at . Conclusion The HOBIT XML schemas and the BioDOM library simplify adding XML support to newly created and existing bioinformatic tools, enabling these tools to interoperate seamlessly in workflow scenarios. PMID:17087823

  10. Electron optics with ballistic graphene junctions

    Science.gov (United States)

    Chen, Shaowen

    Electrons transmitted across a ballistic semiconductor junction undergo refraction, analogous to light rays across an optical boundary. A pn junction theoretically provides the equivalent of a negative index medium, enabling novel electron optics such as negative refraction and perfect (Veselago) lensing. In graphene, the linear dispersion and zero-gap bandstructure admit highly transparent pn junctions by simple electrostatic gating, which cannot be achieved in conventional semiconductors. Robust demonstration of these effects, however, has not been forthcoming. Here we employ transverse magnetic focusing to probe propagation across an electrostatically defined graphene junction. We find perfect agreement with the predicted Snell's law for electrons, including observation of both positive and negative refraction. Resonant transmission across the pn junction provides a direct measurement of the angle dependent transmission coefficient, and we demonstrate good agreement with theory. Comparing experimental data with simulation reveals the crucial role played by the effective junction width, providing guidance for future device design. Efforts toward sharper pn junction and possibility of zero field Veselago lensing will also be discussed. This work is supported by the Semiconductor Research Corporations NRI Center for Institute for Nanoelectronics Discovery and Exploration (INDEX).

  11. Genomics and bioinformatics resources for translational science in Rosaceae.

    Science.gov (United States)

    Jung, Sook; Main, Dorrie

    2014-01-01

    Recent technological advances in biology promise unprecedented opportunities for rapid and sustainable advancement of crop quality. Following this trend, the Rosaceae research community continues to generate large amounts of genomic, genetic and breeding data. These include annotated whole genome sequences, transcriptome and expression data, proteomic and metabolomic data, genotypic and phenotypic data, and genetic and physical maps. Analysis, storage, integration and dissemination of these data using bioinformatics tools and databases are essential to provide utility of the data for basic, translational and applied research. This review discusses the currently available genomics and bioinformatics resources for the Rosaceae family.

  12. Quantitative description of hysteresis loops induced by rf radiation in long Josephson junctions

    DEFF Research Database (Denmark)

    Olsen, Ole H.; Samuelsen, Mogens Rugholm

    1991-01-01

    The effect of an applied rf signal on the radiation emitted from a long Josephson junction is examined by means of a model based on the sine-Gordon equation. This system exhibits a variety of interesting phenomena, e.g., chaos and hysteresis. The hysteresis loop is examined in detail. These simple...

  13. Dynamics of pi-junction interferometer circuits

    DEFF Research Database (Denmark)

    Kornkev, V.K.; Mozhaev, P.B.; Borisenko, I.V.

    2002-01-01

    The pi-junction superconducting circuit dynamics was studied by means of numerical simulation technique. Parallel arrays consisting of Josephson junctions of both 0- and pi-type were studied as a model of high-T-c grain-boundary Josephson junction. The array dynamics and the critical current depe...

  14. Implementing bioinformatic workflows within the bioextract server

    Science.gov (United States)

    Computational workflows in bioinformatics are becoming increasingly important in the achievement of scientific advances. These workflows typically require the integrated use of multiple, distributed data sources and analytic tools. The BioExtract Server (http://bioextract.org) is a distributed servi...

  15. Two-dimensional dopant profiling of gallium nitride p-n junctions by scanning capacitance microscopy

    Science.gov (United States)

    Lamhamdi, M.; Cayrel, F.; Frayssinet, E.; Bazin, A. E.; Yvon, A.; Collard, E.; Cordier, Y.; Alquier, D.

    2016-04-01

    Two-dimensional imaging of dopant profiles for n and p-type regions are relevant for the development of new power semiconductors, especially for gallium nitride (GaN) for which classical profiling techniques are not adapted. This is a challenging task since it needs a technique with simultaneously good sensitivity, high spatial resolution and high dopant gradient resolution. To face these challenges, scanning capacitance microscopy combined with Atomic Force Microscopy is a good candidate, presenting reproducible results, as demonstrated in literature. In this work, we attempt to distinguish reliably and qualitatively the various doping concentrations and type at p-n and unipolar junctions. For both p-n and unipolar junctions three kinds of samples were prepared and measured separately. The space-charge region of the p-n metallurgical junction, giving rise to different contrasts under SCM imaging, is clearly observed, enlightening the interest of the SCM technique.

  16. Two-dimensional dopant profiling of gallium nitride p–n junctions by scanning capacitance microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Lamhamdi, M. [GREMAN UMR 7347-Université de Tours, 10 Rue Thales de Milet, BP 7155, 37071 Tours (France); Ecole national des sciences appliquées khouribga, Université Hassan 1er, 26000 Settat (Morocco); Cayrel, F. [GREMAN UMR 7347-Université de Tours, 10 Rue Thales de Milet, BP 7155, 37071 Tours (France); Frayssinet, E. [CRHEA-CNRS, Rue Bernard Grégory, Sophia Antipolis, 06560 Valbonne (France); Bazin, A.E.; Yvon, A.; Collard, E. [STMicroelectronics, 16 Rue Pierre et Marie Curie, BP 7155, 37071 Tours (France); Cordier, Y. [CRHEA-CNRS, Rue Bernard Grégory, Sophia Antipolis, 06560 Valbonne (France); Alquier, D. [GREMAN UMR 7347-Université de Tours, 10 Rue Thales de Milet, BP 7155, 37071 Tours (France)

    2016-04-01

    Two-dimensional imaging of dopant profiles for n and p-type regions are relevant for the development of new power semiconductors, especially for gallium nitride (GaN) for which classical profiling techniques are not adapted. This is a challenging task since it needs a technique with simultaneously good sensitivity, high spatial resolution and high dopant gradient resolution. To face these challenges, scanning capacitance microscopy combined with Atomic Force Microscopy is a good candidate, presenting reproducible results, as demonstrated in literature. In this work, we attempt to distinguish reliably and qualitatively the various doping concentrations and type at p–n and unipolar junctions. For both p–n and unipolar junctions three kinds of samples were prepared and measured separately. The space-charge region of the p–n metallurgical junction, giving rise to different contrasts under SCM imaging, is clearly observed, enlightening the interest of the SCM technique.

  17. Geodynamical simulation of the RRF triple junction

    Science.gov (United States)

    Wang, Z.; Wei, D.; Liu, M.; Shi, Y.; Wang, S.

    2017-12-01

    Triple junction is the point at which three plate boundaries meet. Three plates at the triple junction form a complex geological tectonics, which is a natural laboratory to study the interactions of plates. This work studies a special triple junction, the oceanic transform fault intersects the collinear ridges with different-spreading rates, which is free of influence of ridge-transform faults and nearby hotspots. First, we build 3-D numerical model of this triple junction used to calculate the stead-state velocity and temperature fields resulting from advective and conductive heat transfer. We discuss in detail the influence of the velocity and temperature fields of the triple junction from viscosity, spreading rate of the ridge. The two sides of the oceanic transform fault are different sensitivities to the two factors. And, the influence of the velocity mainly occurs within 200km of the triple junction. Then, we modify the model by adding a ridge-transform fault to above model and directly use the velocity structure of the Macquarie triple junction. The simulation results show that the temperature at both sides of the oceanic transform fault decreases gradually from the triple junction, but the temperature difference between the two sides is a constant about 200°. And, there is little effect of upwelling velocity away from the triple junction 100km. The model results are compared with observational data. The heat flux and thermal topography along the oceanic transform fault of this model are consistent with the observed data of the Macquarie triple junction. The earthquakes are strike slip distributed along the oceanic transform fault. Their depths are also consistent with the zone of maximum shear stress. This work can help us to understand the interactions of plates of triple junctions and help us with the foundation for the future study of triple junctions.

  18. Bioinformatics in Middle East Program Curricula--A Focus on the Arabian Gulf

    Science.gov (United States)

    Loucif, Samia

    2014-01-01

    The purpose of this paper is to investigate the inclusion of bioinformatics in program curricula in the Middle East, focusing on educational institutions in the Arabian Gulf. Bioinformatics is a multidisciplinary field which has emerged in response to the need for efficient data storage and retrieval, and accurate and fast computational and…

  19. Loss models for long Josephson junctions

    DEFF Research Database (Denmark)

    Olsen, O. H.; Samuelsen, Mogens Rugholm

    1984-01-01

    A general model for loss mechanisms in long Josephson junctions is presented. An expression for the zero-field step is found for a junction of overlap type by means of a perturbation method. Comparison between analytic solution and perturbation result shows good agreement.......A general model for loss mechanisms in long Josephson junctions is presented. An expression for the zero-field step is found for a junction of overlap type by means of a perturbation method. Comparison between analytic solution and perturbation result shows good agreement....

  20. Dynamics of the Josephson multi-junction system with junctions characterized by non-sinusoidal current - phase relationship

    International Nuclear Information System (INIS)

    Abal'osheva, I.; Lewandowski, S.J.

    2004-01-01

    It is shown that the inclusion of junctions characterized by non-sinusoidal current - phase relationship in the systems composed of multiple Josephson junctions - results in the appearance of additional system phase states. Numerical simulations and stability considerations confirm that those phase states can be realized in practice. Moreover, spontaneous formation of the grain boundary junctions in high-T c superconductors with non-trivial current-phase relations due to the d-wave symmetry of the order parameter is probable. Switching between the phase states of multiple grain boundary junction systems can lead to additional 1/f noise in high-T c superconductors. (author)

  1. Theoretical and experimental investigations on synchronization in many-junction arrays of HTSC Josephson junctions. Final report

    International Nuclear Information System (INIS)

    Seidel, P.; Heinz, E.; Pfuch, A.; Machalett, F.; Krech, W.; Basler, M.

    1996-06-01

    Different many-junction arrays of Josephson junctions were studied theoretically to analyse the mechanisms of synchronization, the influence of internal and external parameters and the maximal allowed spread of parameters for the single junctions. Concepts to realize arrays using standard high-T c superconductor technology were created, e.g. the new arrangement of multijunction superconducting loops (MSL). First experimental results show the relevance of this concept. Intrinsic one-dimensional arrays in thin film technology were prepared as mesas out of Bi or Tl 2212 films. to characterize HTSC Josephson junctions methods based on the analysis of microwave-induced steps were developed. (orig.) [de

  2. Single P-N junction tandem photovoltaic device

    Science.gov (United States)

    Walukiewicz, Wladyslaw [Kensington, CA; Ager, III, Joel W.; Yu, Kin Man [Lafayette, CA

    2011-10-18

    A single P-N junction solar cell is provided having two depletion regions for charge separation while allowing the electrons and holes to recombine such that the voltages associated with both depletion regions of the solar cell will add together. The single p-n junction solar cell includes an alloy of either InGaN or InAlN formed on one side of the P-N junction with Si formed on the other side in order to produce characteristics of a two junction (2J) tandem solar cell through only a single P-N junction. A single P-N junction solar cell having tandem solar cell characteristics will achieve power conversion efficiencies exceeding 30%.

  3. Combining medical informatics and bioinformatics toward tools for personalized medicine.

    Science.gov (United States)

    Sarachan, B D; Simmons, M K; Subramanian, P; Temkin, J M

    2003-01-01

    Key bioinformatics and medical informatics research areas need to be identified to advance knowledge and understanding of disease risk factors and molecular disease pathology in the 21 st century toward new diagnoses, prognoses, and treatments. Three high-impact informatics areas are identified: predictive medicine (to identify significant correlations within clinical data using statistical and artificial intelligence methods), along with pathway informatics and cellular simulations (that combine biological knowledge with advanced informatics to elucidate molecular disease pathology). Initial predictive models have been developed for a pilot study in Huntington's disease. An initial bioinformatics platform has been developed for the reconstruction and analysis of pathways, and work has begun on pathway simulation. A bioinformatics research program has been established at GE Global Research Center as an important technology toward next generation medical diagnostics. We anticipate that 21 st century medical research will be a combination of informatics tools with traditional biology wet lab research, and that this will translate to increased use of informatics techniques in the clinic.

  4. GOBLET: the Global Organisation for Bioinformatics Learning, Education and Training.

    Science.gov (United States)

    Attwood, Teresa K; Atwood, Teresa K; Bongcam-Rudloff, Erik; Brazas, Michelle E; Corpas, Manuel; Gaudet, Pascale; Lewitter, Fran; Mulder, Nicola; Palagi, Patricia M; Schneider, Maria Victoria; van Gelder, Celia W G

    2015-04-01

    In recent years, high-throughput technologies have brought big data to the life sciences. The march of progress has been rapid, leaving in its wake a demand for courses in data analysis, data stewardship, computing fundamentals, etc., a need that universities have not yet been able to satisfy--paradoxically, many are actually closing "niche" bioinformatics courses at a time of critical need. The impact of this is being felt across continents, as many students and early-stage researchers are being left without appropriate skills to manage, analyse, and interpret their data with confidence. This situation has galvanised a group of scientists to address the problems on an international scale. For the first time, bioinformatics educators and trainers across the globe have come together to address common needs, rising above institutional and international boundaries to cooperate in sharing bioinformatics training expertise, experience, and resources, aiming to put ad hoc training practices on a more professional footing for the benefit of all.

  5. GOBLET: The Global Organisation for Bioinformatics Learning, Education and Training

    Science.gov (United States)

    Atwood, Teresa K.; Bongcam-Rudloff, Erik; Brazas, Michelle E.; Corpas, Manuel; Gaudet, Pascale; Lewitter, Fran; Mulder, Nicola; Palagi, Patricia M.; Schneider, Maria Victoria; van Gelder, Celia W. G.

    2015-01-01

    In recent years, high-throughput technologies have brought big data to the life sciences. The march of progress has been rapid, leaving in its wake a demand for courses in data analysis, data stewardship, computing fundamentals, etc., a need that universities have not yet been able to satisfy—paradoxically, many are actually closing “niche” bioinformatics courses at a time of critical need. The impact of this is being felt across continents, as many students and early-stage researchers are being left without appropriate skills to manage, analyse, and interpret their data with confidence. This situation has galvanised a group of scientists to address the problems on an international scale. For the first time, bioinformatics educators and trainers across the globe have come together to address common needs, rising above institutional and international boundaries to cooperate in sharing bioinformatics training expertise, experience, and resources, aiming to put ad hoc training practices on a more professional footing for the benefit of all. PMID:25856076

  6. A Survey of Bioinformatics Database and Software Usage through Mining the Literature.

    Directory of Open Access Journals (Sweden)

    Geraint Duck

    Full Text Available Computer-based resources are central to much, if not most, biological and medical research. However, while there is an ever expanding choice of bioinformatics resources to use, described within the biomedical literature, little work to date has provided an evaluation of the full range of availability or levels of usage of database and software resources. Here we use text mining to process the PubMed Central full-text corpus, identifying mentions of databases or software within the scientific literature. We provide an audit of the resources contained within the biomedical literature, and a comparison of their relative usage, both over time and between the sub-disciplines of bioinformatics, biology and medicine. We find that trends in resource usage differs between these domains. The bioinformatics literature emphasises novel resource development, while database and software usage within biology and medicine is more stable and conservative. Many resources are only mentioned in the bioinformatics literature, with a relatively small number making it out into general biology, and fewer still into the medical literature. In addition, many resources are seeing a steady decline in their usage (e.g., BLAST, SWISS-PROT, though some are instead seeing rapid growth (e.g., the GO, R. We find a striking imbalance in resource usage with the top 5% of resource names (133 names accounting for 47% of total usage, and over 70% of resources extracted being only mentioned once each. While these results highlight the dynamic and creative nature of bioinformatics research they raise questions about software reuse, choice and the sharing of bioinformatics practice. Is it acceptable that so many resources are apparently never reused? Finally, our work is a step towards automated extraction of scientific method from text. We make the dataset generated by our study available under the CC0 license here: http://dx.doi.org/10.6084/m9.figshare.1281371.

  7. Long Josephson tunnel junctions with doubly connected electrodes

    Science.gov (United States)

    Monaco, R.; Mygind, J.; Koshelets, V. P.

    2012-03-01

    In order to mimic the phase changes in the primordial Big Bang, several cosmological solid-state experiments have been conceived, during the last decade, to investigate the spontaneous symmetry breaking in superconductors and superfluids cooled through their transition temperature. In one of such experiments, the number of magnetic flux quanta spontaneously trapped in a superconducting loop was measured by means of a long Josephson tunnel junction built on top of the loop itself. We have analyzed this system and found a number of interesting features not occurring in the conventional case with simply connected electrodes. In particular, the fluxoid quantization results in a frustration of the Josephson phase, which, in turn, reduces the junction critical current. Further, the possible stable states of the system are obtained by a self-consistent application of the principle of minimum energy. The theoretical findings are supported by measurements on a number of samples having different geometrical configuration. The experiments demonstrate that a very large signal-to-noise ratio can be achieved in the flux quanta detection.

  8. Relax with CouchDB--into the non-relational DBMS era of bioinformatics.

    Science.gov (United States)

    Manyam, Ganiraju; Payton, Michelle A; Roth, Jack A; Abruzzo, Lynne V; Coombes, Kevin R

    2012-07-01

    With the proliferation of high-throughput technologies, genome-level data analysis has become common in molecular biology. Bioinformaticians are developing extensive resources to annotate and mine biological features from high-throughput data. The underlying database management systems for most bioinformatics software are based on a relational model. Modern non-relational databases offer an alternative that has flexibility, scalability, and a non-rigid design schema. Moreover, with an accelerated development pace, non-relational databases like CouchDB can be ideal tools to construct bioinformatics utilities. We describe CouchDB by presenting three new bioinformatics resources: (a) geneSmash, which collates data from bioinformatics resources and provides automated gene-centric annotations, (b) drugBase, a database of drug-target interactions with a web interface powered by geneSmash, and (c) HapMap-CN, which provides a web interface to query copy number variations from three SNP-chip HapMap datasets. In addition to the web sites, all three systems can be accessed programmatically via web services. Copyright © 2012 Elsevier Inc. All rights reserved.

  9. Using registries to integrate bioinformatics tools and services into workbench environments

    DEFF Research Database (Denmark)

    Ménager, Hervé; Kalaš, Matúš; Rapacki, Kristoffer

    2016-01-01

    The diversity and complexity of bioinformatics resources presents significant challenges to their localisation, deployment and use, creating a need for reliable systems that address these issues. Meanwhile, users demand increasingly usable and integrated ways to access and analyse data, especially......, a software component that will ease the integration of bioinformatics resources in a workbench environment, using their description provided by the existing ELIXIR Tools and Data Services Registry....

  10. The anatomical locus of T-junction processing.

    Science.gov (United States)

    Schirillo, James A

    2009-07-01

    Inhomogeneous surrounds can produce either asymmetrical or symmetrical increment/decrement induction by orienting T-junctions to selectively group a test patch with surrounding regions [Melfi, T., & Schirillo, J. (2000). T-junctions in inhomogeneous surrounds. Vision Research, 40, 3735-3741]. The current experiments aimed to determine where T-junctions are processed by presenting each eye with a different image so that T-junctions exist only in the fused percept. Only minor differences were found between retinal and cortical versus cortical-only conditions, indicating that T-junctions are processed cortically.

  11. Josephson effect in SIFS junctions at arbitrary scattering

    International Nuclear Information System (INIS)

    Pugach, N. G.; Kupriyanov, M. Yu.; Goldobin, E.; Koelle, D.; Kleiner, R.

    2011-01-01

    Full text: The interplay between dirty and clean limits in Superconductor-Ferromagnet-Superconductor (SFS) Josephson junctions is a subject of intensive theoretical studies. SIFS junctions, containing an additional insulator (I) barrier are interesting as potential logic elements in superconducting circuits, since their critical current I c can be tuned over a wide range, still keeping a high I c R N product, where R N is the normal resistance of the junction. They are also a convenient model system for a comparative study of the 0-π transitions for arbitrary relations between characteristic lengths of the F-layer: the layer thickness d, the mean free path l, the magnetic length ξ H =v F /2H, and the nonmagnetic coherence length ξ 0 =v F /2πT, where v F is the Fermi velocity, H is the exchange magnetic energy, and T is the temperature. The spatial variations of the order parameter are described by the complex coherent length in the ferromagnet ξ F -1 = ξ 1 -1 + iξ 2 -1 . It is well known, that in the dirty limit (l 1,2 ) described by the Usadel equations both ξ 1 2 = ξ 2 2 = v F l/3H. In this work the spatial distribution of the anomalous Green's functions and the Josephson current in the SIFS junction are calculated. The linearized Eilenberger equations are solved together with the Zaitsev boundary conditions. This allows comparing the dirty and the clean limits, investigating a moderate disorder, and establishing the applicability limits of the Usadel equations for such structures. We demonstrate that for an arbitrary relation between l, ξ H , and d the spatial distribution of the anomalous Green's function can be approximated by a single exponent with reasonable accuracy, and we find its effective decay length and oscillation period for several values of ξ H , l and d. The role of different types of the FS interface is analyzed. The applicability range of the Usadel equation is established. The results of calculations have been applied to the

  12. Temperature-Dependent Asymmetry of Anisotropic Magnetoresistance in Silicon p-n Junctions.

    Science.gov (United States)

    Yang, D Z; Wang, T; Sui, W B; Si, M S; Guo, D W; Shi, Z; Wang, F C; Xue, D S

    2015-09-01

    We report a large but asymmetric magnetoresistance in silicon p-n junctions, which contrasts with the fact of magnetoresistance being symmetric in magnetic metals and semiconductors. With temperature decreasing from 293 K to 100 K, the magnetoresistance sharply increases from 50% to 150% under a magnetic field of 2 T. At the same time, an asymmetric magnetoresistance, which manifests itself as a magnetoresistance voltage offset with respect to the sign of magnetic field, occurs and linearly increases with magnetoresistance. More interestingly, in contrast with other materials, the lineshape of anisotropic magnetoresistance in silicon p-n junctions significantly depends on temperature. As temperature decreases from 293 K to 100 K, the width of peak shrinks from 90° to 70°. We ascribe these novel magnetoresistance to the asymmetric geometry of the space charge region in p-n junction induced by the magnetic field. In the vicinity of the space charge region the current paths are deflected, contributing the Hall field to the asymmetric magnetoresistance. Therefore, the observed temperature-dependent asymmetry of magnetoresistance is proved to be a direct consequence of the spatial configuration evolution of space charge region with temperature.

  13. Mixing in T-junctions

    NARCIS (Netherlands)

    Kok, Jacobus B.W.; van der Wal, S.

    1996-01-01

    The transport processes that are involved in the mixing of two gases in a T-junction mixer are investigated. The turbulent flow field is calculated for the T-junction with the k- turbulence model by FLOW3D. In the mathematical model the transport of species is described with a mixture fraction

  14. The status of intercellular junctions in established lens epithelial cell lines.

    Science.gov (United States)

    Dave, Alpana; Craig, Jamie E; Sharma, Shiwani

    2012-01-01

    Cataract is the major cause of vision-related disability worldwide. Mutations in the crystallin genes are the most common known cause of inherited congenital cataract. Mutations in the genes associated with intercellular contacts, such as Nance-Horan Syndrome (NHS) and Ephrin type A receptor-2 (EPHA2), are other recognized causes of congenital cataract. The EPHA2 gene has been also associated with age-related cataract, suggesting that intercellular junctions are important in not only lens development, but also in maintaining lens transparency. The purpose of this study was to analyze the expression and localization of the key cell junction and cytoskeletal proteins, and of NHS and EPHA2, in established lens epithelial cell lines to determine their suitability as model epithelial systems for the functional investigation of genes involved in intercellular contacts and implicated in cataract. The expression and subcellular localization of occludin and zona occludens protein-1 (ZO-1), which are associated with tight junctions; E-cadherin, which is associated with adherence junctions; and the cytoskeletal actin were analyzed in monolayers of a human lens epithelial cell line (SRA 01/04) and a mouse lens epithelial cell line (αTN4). In addition, the expression and subcellular localization of the NHS and EPHA2 proteins were analyzed in these cell lines. Protein or mRNA expression was respectively determined by western blotting or reverse transcription-polymerase chain reaction (RT-PCR), and localization was determined by immunofluorescence labeling. Human SRA 01/04 and mouse αTN4 lens epithelial cells expressed either the proteins of interest or their encoding mRNA. Occludin, ZO-1, and NHS proteins localized to the cellular periphery, whereas E-cadherin, actin, and EPHA2 localized in the cytoplasm in these cell lines. The human SRA 01/04 and mouse αTN4 lens epithelial cells express the key junctional proteins. The localization patterns of these proteins suggest that

  15. Rapid prototyping of magnetic tunnel junctions with focused ion beam processes

    International Nuclear Information System (INIS)

    Persson, Anders; Thornell, Greger; Nguyen, Hugo

    2010-01-01

    Submicron-sized magnetic tunnel junctions (MTJs) are most often fabricated by time-consuming and expensive e-beam lithography. From a research and development perspective, a short lead time is one of the major concerns. Here, a rapid process scheme for fabrication of micrometre size MTJs with focused ion beam processes is presented. The magnetic properties of the fabricated junctions are investigated in terms of magnetic domain structure, tunnelling magnetoresistance (TMR) and coercivity, with extra attention given to the effect of Ga implantation from the ion beam. In particular, the effect of the implantation on the minimum junction size and the magnetization of the sensing layer are studied. In the latter case, magnetic force microscopy and micromagnetic simulations, with the object-oriented micromagnetic framework (OOMMF), are used to study the magnetization reversal. The fabricated junctions show considerable coercivity both along their hard and easy axes. Interestingly, the sensing layer exhibits two remanent states: one with a single and one with a double domain. The hard axis TMR loop has kinks at about ±20 mT which is attributed to a non-uniform lateral coercivity, where the rim of the junctions, which is subjected to Ga implantation from the flank of the ion beam, is more coercive than the unirradiated centre. The width of the coercive rim is estimated to be 160 nm from the hard axis TMR loop. The easy axis TMR loop shows more coercivity than an unirradiated junction and, this too, is found to stem from the coercive rim, as seen from the simulations. It is concluded that the process scheme has three major advantages. Firstly, it has a high lateral and depth resolution—the depth resolution is enhanced by end point detection—and is capable of making junctions of sizes down towards the limit set by the width of the irradiated rim. Secondly, the most delicate process steps are performed in the unbroken vacuum enabling the use of materials prone to

  16. p3d – Python module for structural bioinformatics

    Directory of Open Access Journals (Sweden)

    Fufezan Christian

    2009-08-01

    Full Text Available Abstract Background High-throughput bioinformatic analysis tools are needed to mine the large amount of structural data via knowledge based approaches. The development of such tools requires a robust interface to access the structural data in an easy way. For this the Python scripting language is the optimal choice since its philosophy is to write an understandable source code. Results p3d is an object oriented Python module that adds a simple yet powerful interface to the Python interpreter to process and analyse three dimensional protein structure files (PDB files. p3d's strength arises from the combination of a very fast spatial access to the structural data due to the implementation of a binary space partitioning (BSP tree, b set theory and c functions that allow to combine a and b and that use human readable language in the search queries rather than complex computer language. All these factors combined facilitate the rapid development of bioinformatic tools that can perform quick and complex analyses of protein structures. Conclusion p3d is the perfect tool to quickly develop tools for structural bioinformatics using the Python scripting language.

  17. A comparison of common programming languages used in bioinformatics.

    Science.gov (United States)

    Fourment, Mathieu; Gillings, Michael R

    2008-02-05

    The performance of different programming languages has previously been benchmarked using abstract mathematical algorithms, but not using standard bioinformatics algorithms. We compared the memory usage and speed of execution for three standard bioinformatics methods, implemented in programs using one of six different programming languages. Programs for the Sellers algorithm, the Neighbor-Joining tree construction algorithm and an algorithm for parsing BLAST file outputs were implemented in C, C++, C#, Java, Perl and Python. Implementations in C and C++ were fastest and used the least memory. Programs in these languages generally contained more lines of code. Java and C# appeared to be a compromise between the flexibility of Perl and Python and the fast performance of C and C++. The relative performance of the tested languages did not change from Windows to Linux and no clear evidence of a faster operating system was found. Source code and additional information are available from http://www.bioinformatics.org/benchmark/. This benchmark provides a comparison of six commonly used programming languages under two different operating systems. The overall comparison shows that a developer should choose an appropriate language carefully, taking into account the performance expected and the library availability for each language.

  18. Bioinformatics process management: information flow via a computational journal

    Directory of Open Access Journals (Sweden)

    Lushington Gerald

    2007-12-01

    Full Text Available Abstract This paper presents the Bioinformatics Computational Journal (BCJ, a framework for conducting and managing computational experiments in bioinformatics and computational biology. These experiments often involve series of computations, data searches, filters, and annotations which can benefit from a structured environment. Systems to manage computational experiments exist, ranging from libraries with standard data models to elaborate schemes to chain together input and output between applications. Yet, although such frameworks are available, their use is not widespread–ad hoc scripts are often required to bind applications together. The BCJ explores another solution to this problem through a computer based environment suitable for on-site use, which builds on the traditional laboratory notebook paradigm. It provides an intuitive, extensible paradigm designed for expressive composition of applications. Extensive features facilitate sharing data, computational methods, and entire experiments. By focusing on the bioinformatics and computational biology domain, the scope of the computational framework was narrowed, permitting us to implement a capable set of features for this domain. This report discusses the features determined critical by our system and other projects, along with design issues. We illustrate the use of our implementation of the BCJ on two domain-specific examples.

  19. The eBioKit, a stand-alone educational platform for bioinformatics.

    Science.gov (United States)

    Hernández-de-Diego, Rafael; de Villiers, Etienne P; Klingström, Tomas; Gourlé, Hadrien; Conesa, Ana; Bongcam-Rudloff, Erik

    2017-09-01

    Bioinformatics skills have become essential for many research areas; however, the availability of qualified researchers is usually lower than the demand and training to increase the number of able bioinformaticians is an important task for the bioinformatics community. When conducting training or hands-on tutorials, the lack of control over the analysis tools and repositories often results in undesirable situations during training, as unavailable online tools or version conflicts may delay, complicate, or even prevent the successful completion of a training event. The eBioKit is a stand-alone educational platform that hosts numerous tools and databases for bioinformatics research and allows training to take place in a controlled environment. A key advantage of the eBioKit over other existing teaching solutions is that all the required software and databases are locally installed on the system, significantly reducing the dependence on the internet. Furthermore, the architecture of the eBioKit has demonstrated itself to be an excellent balance between portability and performance, not only making the eBioKit an exceptional educational tool but also providing small research groups with a platform to incorporate bioinformatics analysis in their research. As a result, the eBioKit has formed an integral part of training and research performed by a wide variety of universities and organizations such as the Pan African Bioinformatics Network (H3ABioNet) as part of the initiative Human Heredity and Health in Africa (H3Africa), the Southern Africa Network for Biosciences (SAnBio) initiative, the Biosciences eastern and central Africa (BecA) hub, and the International Glossina Genome Initiative.

  20. Investigations on mixing phenomena in single-phase flow in a T-junction geometry

    International Nuclear Information System (INIS)

    Walker, C.; Simiano, M.; Zboray, R.; Prasser, H.-M.

    2009-01-01

    The paper deals with T-junction mixing experiments carried out with wire-mesh sensors. The mixing of coolant streams of different temperature in pipe junctions leads to temperature fluctuations that may cause thermal fatigue in the pipe wall. This is practical background for an increased interest in measuring and predicting the transient flow field and the turbulent mixing pattern downstream of a T-junction. Experiments were carried out at a perpendicular connection of two pipes of 51 mm inner diameter. The straight and the side branches were supplied by water of different electrical conductivity, which replaced the temperature in the thermal mixing process. A set of three wire-mesh sensors with a grid of 16 x 16 measuring points each was used to record conductivity distributions downstream of the T-junction. Besides the measurement of profiles of the time averaged mixing scalar over extended measuring domains, the high resolution in time and space of the mesh sensors allow a statistic characterization of the stochastic fluctuations of the mixing scalar in a wide range of frequencies. Information on the scale of turbulent mixing patterns is obtained by cross-correlating the signal fluctuations recorded at different locations within the measuring plane of a sensor

  1. The structural bioinformatics library: modeling in biomolecular science and beyond.

    Science.gov (United States)

    Cazals, Frédéric; Dreyfus, Tom

    2017-04-01

    Software in structural bioinformatics has mainly been application driven. To favor practitioners seeking off-the-shelf applications, but also developers seeking advanced building blocks to develop novel applications, we undertook the design of the Structural Bioinformatics Library ( SBL , http://sbl.inria.fr ), a generic C ++/python cross-platform software library targeting complex problems in structural bioinformatics. Its tenet is based on a modular design offering a rich and versatile framework allowing the development of novel applications requiring well specified complex operations, without compromising robustness and performances. The SBL involves four software components (1-4 thereafter). For end-users, the SBL provides ready to use, state-of-the-art (1) applications to handle molecular models defined by unions of balls, to deal with molecular flexibility, to model macro-molecular assemblies. These applications can also be combined to tackle integrated analysis problems. For developers, the SBL provides a broad C ++ toolbox with modular design, involving core (2) algorithms , (3) biophysical models and (4) modules , the latter being especially suited to develop novel applications. The SBL comes with a thorough documentation consisting of user and reference manuals, and a bugzilla platform to handle community feedback. The SBL is available from http://sbl.inria.fr. Frederic.Cazals@inria.fr. Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

  2. Effect of junction configurations on microdroplet formation in a T-junction microchannel

    Science.gov (United States)

    Lih, F. L.; Miao, J. M.

    2015-03-01

    This study investigates the dynamic formation process of water microdroplets in a silicon oil flow in a T-junction microchannel. Segmented water microdroplets are formed at the junction when the water flow is perpendicularly injected into the silicon oil flow in a straight rectangular microchannel. This study further presents the effects of the water flow inlet geometry on hydrodynamic characteristics of water microdroplet formation. A numerical multiphase volume of fluid (VOF) scheme is coupled to solve the unsteady three-dimensional laminar Navier-Stokes equations to depict the droplet formation phenomena at the junction. Predicted results on the length and generated frequency of the microdroplets agree well with experimental results in a T-junction microchannel with straight and flat inlets (the base model) for both fluid flows. Empirical correlations are reported between the volumetric flow ratio and the dimensionless microdroplet length or dimensionless frequency of droplet generation at a fixed capillary number of 4.7 · 10-3. The results of this study indicate a reduction in the droplet length of approximately 21% if the straight inlet for the water flow is modified to a downstream sudden contraction inlet for the water flow.

  3. The SIB Swiss Institute of Bioinformatics' resources: focus on curated databases

    OpenAIRE

    Bultet, Lisandra Aguilar; Aguilar Rodriguez, Jose; Ahrens, Christian H; Ahrne, Erik Lennart; Ai, Ni; Aimo, Lucila; Akalin, Altuna; Aleksiev, Tyanko; Alocci, Davide; Altenhoff, Adrian; Alves, Isabel; Ambrosini, Giovanna; Pedone, Pascale Anderle; Angelina, Paolo; Anisimova, Maria

    2016-01-01

    The SIB Swiss Institute of Bioinformatics (www.isb-sib.ch) provides world-class bioinformatics databases, software tools, services and training to the international life science community in academia and industry. These solutions allow life scientists to turn the exponentially growing amount of data into knowledge. Here, we provide an overview of SIB's resources and competence areas, with a strong focus on curated databases and SIB's most popular and widely used resources. In particular, SIB'...

  4. Green Fluorescent Protein-Focused Bioinformatics Laboratory Experiment Suitable for Undergraduates in Biochemistry Courses

    Science.gov (United States)

    Rowe, Laura

    2017-01-01

    An introductory bioinformatics laboratory experiment focused on protein analysis has been developed that is suitable for undergraduate students in introductory biochemistry courses. The laboratory experiment is designed to be potentially used as a "stand-alone" activity in which students are introduced to basic bioinformatics tools and…

  5. Rough-fuzzy pattern recognition applications in bioinformatics and medical imaging

    CERN Document Server

    Maji, Pradipta

    2012-01-01

    Learn how to apply rough-fuzzy computing techniques to solve problems in bioinformatics and medical image processing Emphasizing applications in bioinformatics and medical image processing, this text offers a clear framework that enables readers to take advantage of the latest rough-fuzzy computing techniques to build working pattern recognition models. The authors explain step by step how to integrate rough sets with fuzzy sets in order to best manage the uncertainties in mining large data sets. Chapters are logically organized according to the major phases of pattern recognition systems dev

  6. Poster - Thur Eve - 57: Craniospinal irradiation with jagged-junction IMRT approach without beam edge matching for field junctions.

    Science.gov (United States)

    Cao, F; Ramaseshan, R; Corns, R; Harrop, S; Nuraney, N; Steiner, P; Aldridge, S; Liu, M; Carolan, H; Agranovich, A; Karva, A

    2012-07-01

    Craniospinal irradiation were traditionally treated the central nervous system using two or three adjacent field sets. A intensity-modulated radiotherapy (IMRT) plan (Jagged-Junction IMRT) which overcomes problems associated with field junctions and beam edge matching, improves planning and treatment setup efficiencies with homogenous target dose distribution was developed. Jagged-Junction IMRT was retrospectively planned on three patients with prescription of 36 Gy in 20 fractions and compared to conventional treatment plans. Planning target volume (PTV) included the whole brain and spinal canal to the S3 vertebral level. The plan employed three field sets, each with a unique isocentre. One field set with seven fields treated the cranium. Two field sets treated the spine, each set using three fields. Fields from adjacent sets were overlapped and the optimization process smoothly integrated the dose inside the overlapped junction. For the Jagged-Junction IMRT plans vs conventional technique, average homogeneity index equaled 0.08±0.01 vs 0.12±0.02, and conformity number equaled 0.79±0.01 vs 0.47±0.12. The 95% isodose surface covered (99.5±0.3)% of the PTV vs (98.1±2.0)%. Both Jagged-Junction IMRT plans and the conventional plans had good sparing of the organs at risk. Jagged-Junction IMRT planning provided good dose homogeneity and conformity to the target while maintaining a low dose to the organs at risk. Jagged-Junction IMRT optimization smoothly distributed dose in the junction between field sets. Since there was no beam matching, this treatment technique is less likely to produce hot or cold spots at the junction in contrast to conventional techniques. © 2012 American Association of Physicists in Medicine.

  7. Bioinformatics and moonlighting proteins

    Directory of Open Access Journals (Sweden)

    Sergio eHernández

    2015-06-01

    Full Text Available Multitasking or moonlighting is the capability of some proteins to execute two or more biochemical functions. Usually, moonlighting proteins are experimentally revealed by serendipity. For this reason, it would be helpful that Bioinformatics could predict this multifunctionality, especially because of the large amounts of sequences from genome projects. In the present work, we analyse and describe several approaches that use sequences, structures, interactomics and current bioinformatics algorithms and programs to try to overcome this problem. Among these approaches are: a remote homology searches using Psi-Blast, b detection of functional motifs and domains, c analysis of data from protein-protein interaction databases (PPIs, d match the query protein sequence to 3D databases (i.e., algorithms as PISITE, e mutation correlation analysis between amino acids by algorithms as MISTIC. Programs designed to identify functional motif/domains detect mainly the canonical function but usually fail in the detection of the moonlighting one, Pfam and ProDom being the best methods. Remote homology search by Psi-Blast combined with data from interactomics databases (PPIs have the best performance. Structural information and mutation correlation analysis can help us to map the functional sites. Mutation correlation analysis can only be used in very specific situations –it requires the existence of multialigned family protein sequences - but can suggest how the evolutionary process of second function acquisition took place. The multitasking protein database MultitaskProtDB (http://wallace.uab.es/multitask/, previously published by our group, has been used as a benchmark for the all of the analyses.

  8. BioMaS: a modular pipeline for Bioinformatic analysis of Metagenomic AmpliconS.

    Science.gov (United States)

    Fosso, Bruno; Santamaria, Monica; Marzano, Marinella; Alonso-Alemany, Daniel; Valiente, Gabriel; Donvito, Giacinto; Monaco, Alfonso; Notarangelo, Pasquale; Pesole, Graziano

    2015-07-01

    Substantial advances in microbiology, molecular evolution and biodiversity have been carried out in recent years thanks to Metagenomics, which allows to unveil the composition and functions of mixed microbial communities in any environmental niche. If the investigation is aimed only at the microbiome taxonomic structure, a target-based metagenomic approach, here also referred as Meta-barcoding, is generally applied. This approach commonly involves the selective amplification of a species-specific genetic marker (DNA meta-barcode) in the whole taxonomic range of interest and the exploration of its taxon-related variants through High-Throughput Sequencing (HTS) technologies. The accessibility to proper computational systems for the large-scale bioinformatic analysis of HTS data represents, currently, one of the major challenges in advanced Meta-barcoding projects. BioMaS (Bioinformatic analysis of Metagenomic AmpliconS) is a new bioinformatic pipeline designed to support biomolecular researchers involved in taxonomic studies of environmental microbial communities by a completely automated workflow, comprehensive of all the fundamental steps, from raw sequence data upload and cleaning to final taxonomic identification, that are absolutely required in an appropriately designed Meta-barcoding HTS-based experiment. In its current version, BioMaS allows the analysis of both bacterial and fungal environments starting directly from the raw sequencing data from either Roche 454 or Illumina HTS platforms, following two alternative paths, respectively. BioMaS is implemented into a public web service available at https://recasgateway.ba.infn.it/ and is also available in Galaxy at http://galaxy.cloud.ba.infn.it:8080 (only for Illumina data). BioMaS is a friendly pipeline for Meta-barcoding HTS data analysis specifically designed for users without particular computing skills. A comparative benchmark, carried out by using a simulated dataset suitably designed to broadly represent

  9. Best practices in bioinformatics training for life scientists.

    KAUST Repository

    Via, Allegra; Blicher, Thomas; Bongcam-Rudloff, Erik; Brazas, Michelle D; Brooksbank, Cath; Budd, Aidan; De Las Rivas, Javier; Dreyer, Jacqueline; Fernandes, Pedro L; van Gelder, Celia; Jacob, Joachim; Jimenez, Rafael C; Loveland, Jane; Moran, Federico; Mulder, Nicola; Nyrö nen, Tommi; Rother, Kristian; Schneider, Maria Victoria; Attwood, Teresa K

    2013-01-01

    concepts. Providing bioinformatics training to empower life scientists to handle and analyse their data efficiently, and progress their research, is a challenge across the globe. Delivering good training goes beyond traditional lectures and resource

  10. Privacy Preserving PCA on Distributed Bioinformatics Datasets

    Science.gov (United States)

    Li, Xin

    2011-01-01

    In recent years, new bioinformatics technologies, such as gene expression microarray, genome-wide association study, proteomics, and metabolomics, have been widely used to simultaneously identify a huge number of human genomic/genetic biomarkers, generate a tremendously large amount of data, and dramatically increase the knowledge on human…

  11. Engaging Students in a Bioinformatics Activity to Introduce Gene Structure and Function

    Directory of Open Access Journals (Sweden)

    Barbara J. May

    2013-02-01

    Full Text Available Bioinformatics spans many fields of biological research and plays a vital role in mining and analyzing data. Therefore, there is an ever-increasing need for students to understand not only what can be learned from this data, but also how to use basic bioinformatics tools.  This activity is designed to provide secondary and undergraduate biology students to a hands-on activity meant to explore and understand gene structure with the use of basic bioinformatic tools.  Students are provided an “unknown” sequence from which they are asked to use a free online gene finder program to identify the gene. Students then predict the putative function of this gene with the use of additional online databases.

  12. Rise and demise of bioinformatics? Promise and progress.

    Directory of Open Access Journals (Sweden)

    Christos A Ouzounis

    Full Text Available The field of bioinformatics and computational biology has gone through a number of transformations during the past 15 years, establishing itself as a key component of new biology. This spectacular growth has been challenged by a number of disruptive changes in science and technology. Despite the apparent fatigue of the linguistic use of the term itself, bioinformatics has grown perhaps to a point beyond recognition. We explore both historical aspects and future trends and argue that as the field expands, key questions remain unanswered and acquire new meaning while at the same time the range of applications is widening to cover an ever increasing number of biological disciplines. These trends appear to be pointing to a redefinition of certain objectives, milestones, and possibly the field itself.

  13. Valley dependent transport in graphene L junction

    Science.gov (United States)

    Chan, K. S.

    2018-05-01

    We studied the valley dependent transport in graphene L junctions connecting an armchair lead and a zigzag lead. The junction can be used in valleytronic devices and circuits. Electrons injected from the armchair lead into the junction is not valley polarized, but they can become valley polarized in the zigzag lead. There are Fermi energies, where the current in the zigzag lead is highly valley polarized and the junction is an efficient generator of valley polarized current. The features of the valley polarized current depend sensitively on the widths of the two leads, as well as the number of dimers in the armchair lead, because this number has a sensitive effect on the band structure of the armchair lead. When an external potential is applied to the junction, the energy range with high valley polarization is enlarged enhancing its function as a generator of highly valley polarized current. The scaling behavior found in other graphene devices is also found in L junctions, which means that the results presented here can be extended to junctions with larger dimensions after appropriate scaling of the energy.

  14. Method of manufacturing Josephson junction integrated circuits

    International Nuclear Information System (INIS)

    Jillie, D.W. Jr.; Smith, L.N.

    1985-01-01

    Josephson junction integrated circuits of the current injection type and magnetically controlled type utilize a superconductive layer that forms both Josephson junction electrode for the Josephson junction devices on the integrated circuit as well as a ground plane for the integrated circuit. Large area Josephson junctions are utilized for effecting contact to lower superconductive layers and islands are formed in superconductive layers to provide isolation between the groudplane function and the Josephson junction electrode function as well as to effect crossovers. A superconductor-barrier-superconductor trilayer patterned by local anodization is also utilized with additional layers formed thereover. Methods of manufacturing the embodiments of the invention are disclosed

  15. delta-biased Josephson tunnel junctions

    DEFF Research Database (Denmark)

    Monaco, R.; Mygind, Jesper; Koshelet, V.

    2010-01-01

    Abstract: The behavior of a long Josephson tunnel junction drastically depends on the distribution of the dc bias current. We investigate the case in which the bias current is fed in the central point of a one-dimensional junction. Such junction configuration has been recently used to detect...... the persistent currents circulating in a superconducting loop. Analytical and numerical results indicate that the presence of fractional vortices leads to remarkable differences from the conventional case of uniformly distributed dc bias current. The theoretical findings are supported by detailed measurements...

  16. Managing Conflicting Stakeholder Interests: An Exploratory Case Analysis of the Formulation of Corporate Social Responsibility Standards in the Netherlands

    NARCIS (Netherlands)

    Ingenbleek, P.T.M.; Immink, V.M.

    2010-01-01

    The formulation of corporate social responsibility standards must deal with conflicting interests among stakeholders. The standards formulation process occurs at the junction between market stakeholders and special interest groups, which implies that it may help increase understanding of the

  17. Junction depth measurement using carrier illumination

    International Nuclear Information System (INIS)

    Borden, Peter

    2001-01-01

    Carrier Illumination [trade mark] (CI) is a new method recently developed to meet the need for a non-destructive, high throughput junction depth measurement on patterned wafers. A laser beam creates a quasi-static excess carrier profile in the semiconductor underlying the activated junction. The excess carrier profile is fairly constant below the junction, and drops rapidly in the junction, creating a steep index of refraction gradient at the junction edge. Interference with light reflected from this index gradient provides a signal that is analyzed to determine the junction depth. The paper summarizes evaluation of performance in full NMOS and PMOS process flows, on both bare and patterned wafers. The aims have been to validate (1) performance in the presence of underlying layers typically found at the source/drain (S/D) process steps and (2) measurement on patterned wafers. Correlation of CI measurements to SIMS and transistor drive current are shown. The data were obtained from NMOS structures using As S/D and LDD implants. Correlations to SRP, SIMS and sheet resistance are shown for PMOS structures using B 11 LDD implants. Gage capability measurements are also presented

  18. A lightweight, flow-based toolkit for parallel and distributed bioinformatics pipelines

    Directory of Open Access Journals (Sweden)

    Cieślik Marcin

    2011-02-01

    Full Text Available Abstract Background Bioinformatic analyses typically proceed as chains of data-processing tasks. A pipeline, or 'workflow', is a well-defined protocol, with a specific structure defined by the topology of data-flow interdependencies, and a particular functionality arising from the data transformations applied at each step. In computer science, the dataflow programming (DFP paradigm defines software systems constructed in this manner, as networks of message-passing components. Thus, bioinformatic workflows can be naturally mapped onto DFP concepts. Results To enable the flexible creation and execution of bioinformatics dataflows, we have written a modular framework for parallel pipelines in Python ('PaPy'. A PaPy workflow is created from re-usable components connected by data-pipes into a directed acyclic graph, which together define nested higher-order map functions. The successive functional transformations of input data are evaluated on flexibly pooled compute resources, either local or remote. Input items are processed in batches of adjustable size, all flowing one to tune the trade-off between parallelism and lazy-evaluation (memory consumption. An add-on module ('NuBio' facilitates the creation of bioinformatics workflows by providing domain specific data-containers (e.g., for biomolecular sequences, alignments, structures and functionality (e.g., to parse/write standard file formats. Conclusions PaPy offers a modular framework for the creation and deployment of parallel and distributed data-processing workflows. Pipelines derive their functionality from user-written, data-coupled components, so PaPy also can be viewed as a lightweight toolkit for extensible, flow-based bioinformatics data-processing. The simplicity and flexibility of distributed PaPy pipelines may help users bridge the gap between traditional desktop/workstation and grid computing. PaPy is freely distributed as open-source Python code at http://muralab.org/PaPy, and

  19. NbN tunnel junctions

    International Nuclear Information System (INIS)

    Villegier, J.C.; Vieux-Rochaz, L.; Goniche, M.; Renard, P.; Vabre, M.

    1984-09-01

    All-niobium nitride Josephon junctions have been prepared successfully using a new processing called SNOP: Selective Niobium (nitride) Overlap Process. Such a process involves the ''trilayer'' deposition on the whole wafer before selective patterning of the electrodes by optically controlled dry reactive ion etching. Only two photomask levels are need to define an ''overlap'' or a ''cross-type'' junction with a good accuracy. The properties of the niobium nitride films deposited by DC-magnetron sputtering and the surface oxide growth are analysed. The most critical point to obtain high quality and high gap value junctions resides in the early stage of the NbN counterelectrode growth. Some possibilities to overcome such a handicap exist even if the fabrication needs substrate temperatures below 250 0 C

  20. Hysteresis development in superconducting Josephson junctions

    International Nuclear Information System (INIS)

    Refai, T.F.; Shehata, L.N.

    1988-09-01

    The resistively and capacitive shunted junction model is used to investigate hysteresis development in superconducting Josephson junctions. Two empirical formulas that relate the hysteresis width and the quasi-particle diffusion length in terms of the junctions electrical parameters, temperature and frequency are obtained. The obtained formulas provide a simple tool to investigate the full potentials of the hysteresis phenomena. (author). 9 refs, 3 figs

  1. RISE OF BIOINFORMATICS AND COMPUTATIONAL BIOLOGY IN INDIA: A LOOK THROUGH PUBLICATIONS

    Directory of Open Access Journals (Sweden)

    Anjali Srivastava

    2017-09-01

    Full Text Available Computational biology and bioinformatics have been part and parcel of biomedical research for few decades now. However, the institutionalization of bioinformatics research took place with the establishment of Distributed Information Centres (DISCs in the research institutions of repute in various disciplines by the Department of Biotechnology, Government of India. Though, at initial stages, this endeavor was mainly focused on providing infrastructure for using information technology and internet based communication and tools for carrying out computational biology and in-silico assisted research in varied arena of research starting from disease biology to agricultural crops, spices, veterinary science and many more, the natural outcome of establishment of such facilities resulted into new experiments with bioinformatics tools. Thus, Biotechnology Information Systems (BTIS grew into a solid movement and a large number of publications started coming out of these centres. In the end of last century, bioinformatics started developing like a full-fledged research subject. In the last decade, a need was felt to actually make a factual estimation of the result of this endeavor of DBT which had, by then, established about two hundred centres in almost all disciplines of biomedical research. In a bid to evaluate the efforts and outcome of these centres, BTIS Centre at CSIR-CDRI, Lucknow was entrusted with collecting and collating the publications of these centres. However, when the full data was compiled, the DBT task force felt that the study must include Non-BTIS centres also so as to expand the report to have a glimpse of bioinformatics publications from the country.

  2. Astrocytic gap junctional networks suppress cellular damage in an in vitro model of ischemia

    International Nuclear Information System (INIS)

    Shinotsuka, Takanori; Yasui, Masato; Nuriya, Mutsuo

    2014-01-01

    Highlights: • Astrocytes exhibit characteristic changes in [Ca 2+ ] i under OGD. • Astrocytic [Ca 2+ ] i increase is synchronized with a neuronal anoxic depolarization. • Gap junctional couplings protect neurons as well as astrocytes during OGD. - Abstract: Astrocytes play pivotal roles in both the physiology and the pathophysiology of the brain. They communicate with each other via extracellular messengers as well as through gap junctions, which may exacerbate or protect against pathological processes in the brain. However, their roles during the acute phase of ischemia and the underlying cellular mechanisms remain largely unknown. To address this issue, we imaged changes in the intracellular calcium concentration ([Ca 2+ ] i ) in astrocytes in mouse cortical slices under oxygen/glucose deprivation (OGD) condition using two-photon microscopy. Under OGD, astrocytes showed [Ca 2+ ] i oscillations followed by larger and sustained [Ca 2+ ] i increases. While the pharmacological blockades of astrocytic receptors for glutamate and ATP had no effect, the inhibitions of gap junctional intercellular coupling between astrocytes significantly advanced the onset of the sustained [Ca 2+ ] i increase after OGD exposure. Interestingly, the simultaneous recording of the neuronal membrane potential revealed that the onset of the sustained [Ca 2+ ] i increase in astrocytes was synchronized with the appearance of neuronal anoxic depolarization. Furthermore, the blockade of gap junctional coupling resulted in a concurrent faster appearance of neuronal depolarizations, which remain synchronized with the sustained [Ca 2+ ] i increase in astrocytes. These results indicate that astrocytes delay the appearance of the pathological responses of astrocytes and neurons through their gap junction-mediated intercellular network under OGD. Thus, astrocytic gap junctional networks provide protection against tissue damage during the acute phase of ischemia

  3. Fabrication of Josephson Junction without shadow evaporation

    Science.gov (United States)

    Wu, Xian; Ku, Hsiangsheng; Long, Junling; Pappas, David

    We developed a new method of fabricating Josephson Junction (Al/AlOX/Al) without shadow evaporation. Statistics from room temperature junction resistance and measurement of qubits are presented. Unlike the traditional ``Dolan Bridge'' technique, this method requires two individual lithographies and straight evaporations of Al. Argon RF plasma is used to remove native AlOX after the first evaporation, followed by oxidation and second Al evaporation. Junction resistance measured at room temperature shows linear dependence on Pox (oxidation pressure), √{tox} (oxidation time), and inverse proportional to junction area. We have seen 100% yield of qubits made with this method. This method is promising because it eliminates angle dependence during Junction fabrication, facilitates large scale qubits fabrication.

  4. Quantum synchronization effects in intrinsic Josephson junctions

    International Nuclear Information System (INIS)

    Machida, M.; Kano, T.; Yamada, S.; Okumura, M.; Imamura, T.; Koyama, T.

    2008-01-01

    We investigate quantum dynamics of the superconducting phase in intrinsic Josephson junctions of layered high-T c superconductors motivated by a recent experimental observation for the switching rate enhancement in the low temperature quantum regime. We pay attention to only the capacitive coupling between neighboring junctions and perform large-scale simulations for the Schroedinger equation derived from the Hamiltonian considering the capacitive coupling alone. The simulation focuses on an issue whether the switching of a junction induces those of the other junctions or not. The results reveal that the superconducting phase dynamics show synchronous behavior with increasing the quantum character, e.g., decreasing the junction plane area and effectively the temperature. This is qualitatively consistent with the experimental result

  5. A review of bioinformatics training applied to research in molecular medicine, agriculture and biodiversity in Costa Rica and Central America.

    Science.gov (United States)

    Orozco, Allan; Morera, Jessica; Jiménez, Sergio; Boza, Ricardo

    2013-09-01

    Today, Bioinformatics has become a scientific discipline with great relevance for the Molecular Biosciences and for the Omics sciences in general. Although developed countries have progressed with large strides in Bioinformatics education and research, in other regions, such as Central America, the advances have occurred in a gradual way and with little support from the Academia, either at the undergraduate or graduate level. To address this problem, the University of Costa Rica's Medical School, a regional leader in Bioinformatics in Central America, has been conducting a series of Bioinformatics workshops, seminars and courses, leading to the creation of the region's first Bioinformatics Master's Degree. The recent creation of the Central American Bioinformatics Network (BioCANET), associated to the deployment of a supporting computational infrastructure (HPC Cluster) devoted to provide computing support for Molecular Biology in the region, is providing a foundational stone for the development of Bioinformatics in the area. Central American bioinformaticians have participated in the creation of as well as co-founded the Iberoamerican Bioinformatics Society (SOIBIO). In this article, we review the most recent activities in education and research in Bioinformatics from several regional institutions. These activities have resulted in further advances for Molecular Medicine, Agriculture and Biodiversity research in Costa Rica and the rest of the Central American countries. Finally, we provide summary information on the first Central America Bioinformatics International Congress, as well as the creation of the first Bioinformatics company (Indromics Bioinformatics), spin-off the Academy in Central America and the Caribbean.

  6. Bioinformatics: A History of Evolution "In Silico"

    Science.gov (United States)

    Ondrej, Vladan; Dvorak, Petr

    2012-01-01

    Bioinformatics, biological databases, and the worldwide use of computers have accelerated biological research in many fields, such as evolutionary biology. Here, we describe a primer of nucleotide sequence management and the construction of a phylogenetic tree with two examples; the two selected are from completely different groups of organisms:…

  7. Protein raftophilicity. How bioinformatics can help membranologists

    DEFF Research Database (Denmark)

    Nielsen, Henrik; Sperotto, Maria Maddalena

    )-based bioinformatics approach. The ANN was trained to recognize feature-based patterns in proteins that are considered to be associated with lipid rafts. The trained ANN was then used to predict protein raftophilicity. We found that, in the case of α-helical membrane proteins, their hydrophobic length does not affect...

  8. Development and implementation of a bioinformatics online ...

    African Journals Online (AJOL)

    Thus, there is the need for appropriate strategies of introducing the basic components of this emerging scientific field to part of the African populace through the development of an online distance education learning tool. This study involved the design of a bioinformatics online distance educative tool an implementation of ...

  9. H3ABioNet, a sustainable pan-African bioinformatics network for human heredity and health in Africa

    Science.gov (United States)

    Mulder, Nicola J.; Adebiyi, Ezekiel; Alami, Raouf; Benkahla, Alia; Brandful, James; Doumbia, Seydou; Everett, Dean; Fadlelmola, Faisal M.; Gaboun, Fatima; Gaseitsiwe, Simani; Ghazal, Hassan; Hazelhurst, Scott; Hide, Winston; Ibrahimi, Azeddine; Jaufeerally Fakim, Yasmina; Jongeneel, C. Victor; Joubert, Fourie; Kassim, Samar; Kayondo, Jonathan; Kumuthini, Judit; Lyantagaye, Sylvester; Makani, Julie; Mansour Alzohairy, Ahmed; Masiga, Daniel; Moussa, Ahmed; Nash, Oyekanmi; Ouwe Missi Oukem-Boyer, Odile; Owusu-Dabo, Ellis; Panji, Sumir; Patterton, Hugh; Radouani, Fouzia; Sadki, Khalid; Seghrouchni, Fouad; Tastan Bishop, Özlem; Tiffin, Nicki; Ulenga, Nzovu

    2016-01-01

    The application of genomics technologies to medicine and biomedical research is increasing in popularity, made possible by new high-throughput genotyping and sequencing technologies and improved data analysis capabilities. Some of the greatest genetic diversity among humans, animals, plants, and microbiota occurs in Africa, yet genomic research outputs from the continent are limited. The Human Heredity and Health in Africa (H3Africa) initiative was established to drive the development of genomic research for human health in Africa, and through recognition of the critical role of bioinformatics in this process, spurred the establishment of H3ABioNet, a pan-African bioinformatics network for H3Africa. The limitations in bioinformatics capacity on the continent have been a major contributory factor to the lack of notable outputs in high-throughput biology research. Although pockets of high-quality bioinformatics teams have existed previously, the majority of research institutions lack experienced faculty who can train and supervise bioinformatics students. H3ABioNet aims to address this dire need, specifically in the area of human genetics and genomics, but knock-on effects are ensuring this extends to other areas of bioinformatics. Here, we describe the emergence of genomics research and the development of bioinformatics in Africa through H3ABioNet. PMID:26627985

  10. Entropy Flow Through Near-Critical Quantum Junctions

    Science.gov (United States)

    Friedan, Daniel

    2017-05-01

    This is the continuation of Friedan (J Stat Phys, 2017. doi: 10.1007/s10955-017-1752-8). Elementary formulas are derived for the flow of entropy through a circuit junction in a near-critical quantum circuit close to equilibrium, based on the structure of the energy-momentum tensor at the junction. The entropic admittance of a near-critical junction in a bulk-critical circuit is expressed in terms of commutators of the chiral entropy currents. The entropic admittance at low frequency, divided by the frequency, gives the change of the junction entropy with temperature—the entropic "capacitance". As an example, and as a check on the formalism, the entropic admittance is calculated explicitly for junctions in bulk-critical quantum Ising circuits (free fermions, massless in the bulk), in terms of the reflection matrix of the junction. The half-bit of information capacity per end of critical Ising wire is re-derived by integrating the entropic "capacitance" with respect to temperature, from T=0 to T=∞.

  11. Ballistic Josephson junctions based on CVD graphene

    Science.gov (United States)

    Li, Tianyi; Gallop, John; Hao, Ling; Romans, Edward

    2018-04-01

    Josephson junctions with graphene as the weak link between superconductors have been intensely studied in recent years, with respect to both fundamental physics and potential applications. However, most of the previous work was based on mechanically exfoliated graphene, which is not compatible with wafer-scale production. To overcome this limitation, we have used graphene grown by chemical vapour deposition (CVD) as the weak link of Josephson junctions. We demonstrate that very short, wide CVD-graphene-based Josephson junctions with Nb electrodes can work without any undesirable hysteresis in their electrical characteristics from 1.5 K down to a base temperature of 320 mK, and their gate-tuneable critical current shows an ideal Fraunhofer-like interference pattern in a perpendicular magnetic field. Furthermore, for our shortest junctions (50 nm in length), we find that the normal state resistance oscillates with the gate voltage, consistent with the junctions being in the ballistic regime, a feature not previously observed in CVD-graphene-based Josephson junctions.

  12. Overlap junctions for high coherence superconducting qubits

    Science.gov (United States)

    Wu, X.; Long, J. L.; Ku, H. S.; Lake, R. E.; Bal, M.; Pappas, D. P.

    2017-07-01

    Fabrication of sub-micron Josephson junctions is demonstrated using standard processing techniques for high-coherence, superconducting qubits. These junctions are made in two separate lithography steps with normal-angle evaporation. Most significantly, this work demonstrates that it is possible to achieve high coherence with junctions formed on aluminum surfaces cleaned in situ by Ar plasma before junction oxidation. This method eliminates the angle-dependent shadow masks typically used for small junctions. Therefore, this is conducive to the implementation of typical methods for improving margins and yield using conventional CMOS processing. The current method uses electron-beam lithography and an additive process to define the top and bottom electrodes. Extension of this work to optical lithography and subtractive processes is discussed.

  13. Surface-Enhanced Raman Scattering in Molecular Junctions.

    Science.gov (United States)

    Iwane, Madoka; Fujii, Shintaro; Kiguchi, Manabu

    2017-08-18

    Surface-enhanced Raman scattering (SERS) is a surface-sensitive vibrational spectroscopy that allows Raman spectroscopy on a single molecular scale. Here, we present a review of SERS from molecular junctions, in which a single molecule or molecules are made to have contact from the top to the bottom of metal surfaces. The molecular junctions are nice platforms for SERS as well as transport measurement. Electronic characterization based on the transport measurements of molecular junctions has been extensively studied for the development of miniaturized electronic devices. Simultaneous SERS and transport measurement of the molecular junctions allow both structural (geometrical) and electronic information on the single molecule scale. The improvement of SERS measurement on molecular junctions open the door toward new nanoscience and nanotechnology in molecular electronics.

  14. Analysis of requirements for teaching materials based on the course bioinformatics for plant metabolism

    Science.gov (United States)

    Balqis, Widodo, Lukiati, Betty; Amin, Mohamad

    2017-05-01

    A way to improve the quality of learning in the course of Plant Metabolism in the Department of Biology, State University of Malang, is to develop teaching materials. This research evaluates the needs of bioinformatics-based teaching material in the course Plant Metabolism by the Analyze, Design, Develop, Implement, and Evaluate (ADDIE) development model. Data were collected through questionnaires distributed to the students in the Plant Metabolism course of the Department of Biology, University of Malang, and analysis of the plan of lectures semester (RPS). Learning gains of this course show that it is not yet integrated into the field of bioinformatics. All respondents stated that plant metabolism books do not include bioinformatics and fail to explain the metabolism of a chemical compound of a local plant in Indonesia. Respondents thought that bioinformatics can explain examples and metabolism of a secondary metabolite analysis techniques and discuss potential medicinal compounds from local plants. As many as 65% of the respondents said that the existing metabolism book could not be used to understand secondary metabolism in lectures of plant metabolism. Therefore, the development of teaching materials including plant metabolism-based bioinformatics is important to improve the understanding of the lecture material in plant metabolism.

  15. A BIOINFORMATIC STRATEGY TO RAPIDLY CHARACTERIZE CDNA LIBRARIES

    Science.gov (United States)

    A Bioinformatic Strategy to Rapidly Characterize cDNA LibrariesG. Charles Ostermeier1, David J. Dix2 and Stephen A. Krawetz1.1Departments of Obstetrics and Gynecology, Center for Molecular Medicine and Genetics, & Institute for Scientific Computing, Wayne State Univer...

  16. Dynamical photo-induced electronic properties of molecular junctions

    Science.gov (United States)

    Beltako, K.; Michelini, F.; Cavassilas, N.; Raymond, L.

    2018-03-01

    Nanoscale molecular-electronic devices and machines are emerging as promising functional elements, naturally flexible and efficient, for next-generation technologies. A deeper understanding of carrier dynamics in molecular junctions is expected to benefit many fields of nanoelectronics and power devices. We determine time-resolved charge current flowing at the donor-acceptor interface in molecular junctions connected to metallic electrodes by means of quantum transport simulations. The current is induced by the interaction of the donor with a Gaussian-shape femtosecond laser pulse. Effects of the molecular internal coupling, metal-molecule tunneling, and light-donor coupling on photocurrent are discussed. We then define the time-resolved local density of states which is proposed as an efficient tool to describe the absorbing molecule in contact with metallic electrodes. Non-equilibrium reorganization of hybridized molecular orbitals through the light-donor interaction gives rise to two phenomena: the dynamical Rabi shift and the appearance of Floquet-like states. Such insights into the dynamical photoelectronic structure of molecules are of strong interest for ultrafast spectroscopy and open avenues toward the possibility of analyzing and controlling the internal properties of quantum nanodevices with pump-push photocurrent spectroscopy.

  17. Primary Tunnel Junction Thermometry

    International Nuclear Information System (INIS)

    Pekola, Jukka P.; Holmqvist, Tommy; Meschke, Matthias

    2008-01-01

    We describe the concept and experimental demonstration of primary thermometry based on a four-probe measurement of a single tunnel junction embedded within four arrays of junctions. We show that in this configuration random sample specific and environment-related errors can be avoided. This method relates temperature directly to Boltzmann constant, which will form the basis of the definition of temperature and realization of official temperature scales in the future

  18. Ginzburg–Landau theory of mesoscopic multi-band Josephson junctions

    Energy Technology Data Exchange (ETDEWEB)

    Romeo, F.; De Luca, R., E-mail: rdeluca@unisa.it

    2017-05-15

    Highlights: • We generalize, in the realm of the Ginzburg–Landau theory, the de Gennes matching-matrix method for the interface order parameters to describe the superconducting properties of multi-band mesoscopic Josephson junctions. • The results are in agreement with a microscopic treatment of nanobridge junctions. • Thermal stability of the nanobridge junction is discussed in connection with recent experiments on iron-based grain-boundary junctions. - Abstract: A Ginzburg–Landau theory for multi-band mesoscopic Josephson junctions has been developed. The theory, obtained by generalizing the de Gennes matching-matrix method for the interface order parameters, allows the study of the phase dynamics of various types of mesoscopic Josephson junctions. As a relevant application, we studied mesoscopic double-band junctions also in the presence of a superconducting nanobridge interstitial layer. The results are in agreement with a microscopic treatment of the same system. Furthermore, thermal stability of the nanobridge junction is discussed in connection with recent experiments on iron-based grain-boundary junctions.

  19. Personalized cloud-based bioinformatics services for research and education: use cases and the elasticHPC package.

    Science.gov (United States)

    El-Kalioby, Mohamed; Abouelhoda, Mohamed; Krüger, Jan; Giegerich, Robert; Sczyrba, Alexander; Wall, Dennis P; Tonellato, Peter

    2012-01-01

    Bioinformatics services have been traditionally provided in the form of a web-server that is hosted at institutional infrastructure and serves multiple users. This model, however, is not flexible enough to cope with the increasing number of users, increasing data size, and new requirements in terms of speed and availability of service. The advent of cloud computing suggests a new service model that provides an efficient solution to these problems, based on the concepts of "resources-on-demand" and "pay-as-you-go". However, cloud computing has not yet been introduced within bioinformatics servers due to the lack of usage scenarios and software layers that address the requirements of the bioinformatics domain. In this paper, we provide different use case scenarios for providing cloud computing based services, considering both the technical and financial aspects of the cloud computing service model. These scenarios are for individual users seeking computational power as well as bioinformatics service providers aiming at provision of personalized bioinformatics services to their users. We also present elasticHPC, a software package and a library that facilitates the use of high performance cloud computing resources in general and the implementation of the suggested bioinformatics scenarios in particular. Concrete examples that demonstrate the suggested use case scenarios with whole bioinformatics servers and major sequence analysis tools like BLAST are presented. Experimental results with large datasets are also included to show the advantages of the cloud model. Our use case scenarios and the elasticHPC package are steps towards the provision of cloud based bioinformatics services, which would help in overcoming the data challenge of recent biological research. All resources related to elasticHPC and its web-interface are available at http://www.elasticHPC.org.

  20. The influence of junction conformation on RNA cleavage by the hairpin ribozyme in its natural junction form.

    Science.gov (United States)

    Thomson, J B; Lilley, D M

    1999-01-01

    In the natural form of the hairpin ribozyme the two loop-carrying duplexes that comprise the majority of essential bases for activity form two adjacent helical arms of a four-way RNA junction. In the present work we have manipulated the sequence around the junction in a way known to perturb the global folding properties. We find that replacement of the junction by a different sequence that has the same conformational properties as the natural sequence gives closely similar reaction rate and Arrhenius activation energy for the substrate cleavage reaction. By comparison, rotation of the natural sequence in order to alter the three-dimensional folding of the ribozyme leads to a tenfold reduction in the kinetics of cleavage. Replacement with the U1 four-way junction that is resistant to rotation into the antiparallel structure required to allow interaction between the loops also gives a tenfold reduction in cleavage rate. The results indicate that the conformation of the junction has a major influence on the catalytic activity of the ribozyme. The results are all consistent with a role for the junction in the provision of a framework by which the loops are presented for interaction in order to create the active form of the ribozyme. PMID:10024170

  1. Exploring Cystic Fibrosis Using Bioinformatics Tools: A Module Designed for the Freshman Biology Course

    Science.gov (United States)

    Zhang, Xiaorong

    2011-01-01

    We incorporated a bioinformatics component into the freshman biology course that allows students to explore cystic fibrosis (CF), a common genetic disorder, using bioinformatics tools and skills. Students learn about CF through searching genetic databases, analyzing genetic sequences, and observing the three-dimensional structures of proteins…

  2. 2nd Colombian Congress on Computational Biology and Bioinformatics

    CERN Document Server

    Cristancho, Marco; Isaza, Gustavo; Pinzón, Andrés; Rodríguez, Juan

    2014-01-01

    This volume compiles accepted contributions for the 2nd Edition of the Colombian Computational Biology and Bioinformatics Congress CCBCOL, after a rigorous review process in which 54 papers were accepted for publication from 119 submitted contributions. Bioinformatics and Computational Biology are areas of knowledge that have emerged due to advances that have taken place in the Biological Sciences and its integration with Information Sciences. The expansion of projects involving the study of genomes has led the way in the production of vast amounts of sequence data which needs to be organized, analyzed and stored to understand phenomena associated with living organisms related to their evolution, behavior in different ecosystems, and the development of applications that can be derived from this analysis.  .

  3. Design of thin InGaAsN(Sb) n-i-p junctions for use in four-junction concentrating photovoltaic devices

    Science.gov (United States)

    Wilkins, Matthew M.; Gupta, James; Jaouad, Abdelatif; Bouzazi, Boussairi; Fafard, Simon; Boucherif, Abderraouf; Valdivia, Christopher E.; Arès, Richard; Aimez, Vincent; Schriemer, Henry P.; Hinzer, Karin

    2017-04-01

    Four-junction solar cells for space and terrestrial applications require a junction with a band gap of ˜1 eV for optimal performance. InGaAsN or InGaAsN(Sb) dilute nitride junctions have been demonstrated for this purpose, but in achieving the 14 mA/cm2 short-circuit current needed to match typical GaInP and GaAs junctions, the open-circuit voltage (VOC) and fill factor of these junctions are compromised. In multijunction devices incorporating materials with short diffusion lengths, we study the use of thin junctions to minimize sensitivity to varying material quality and ensure adequate transmission into lower junctions. An n-i-p device with 0.65-μm absorber thickness has sufficient short-circuit current, however, it relies less heavily on field-aided collection than a device with a 1-μm absorber. Our standard cell fabrication process, which includes a rapid thermal anneal of the contacts, yields a significant improvement in diffusion length and device performance. By optimizing a four-junction cell around a smaller 1-sun short-circuit current of 12.5 mA/cm2, we produced an InGaAsN(Sb) junction with open-circuit voltage of 0.44 V at 1000 suns (1 sun=100 mW/cm2), diode ideality factor of 1.4, and sufficient light transmission to allow >12.5 mA/cm2 in all four subcells.

  4. Harmonic synchronization in resistively coupled Josephson junctions

    International Nuclear Information System (INIS)

    Blackburn, J.A.; Gronbech-Jensen, N.; Smith, H.J.T.

    1994-01-01

    The oscillations of two resistively coupled Josephson junctions biased only by a single dc current source are shown to lock harmonically in a 1:2 mode over a significant range of bias current, even when the junctions are identical. The dependence of this locking on both junction and coupling parameters is examined, and it is found that, for this particular two-junction configuration, 1:1 locking can never occur, and also that a minimum coupling coefficient is needed to support harmonic locking. Some issues related to subharmonic locking are also discussed

  5. Development of NbN Josephson junctions with TaxN semi-metal barrier; application to RSFQ circuits

    International Nuclear Information System (INIS)

    Setzu, R.

    2007-11-01

    This thesis research, brought to the development and optimization of SNS (Superconductor / Normal Metal / Superconductor) Josephson junctions with NbN electrodes and a high resistivity Ta x N barrier. We were able to point out Josephson oscillations for frequencies above 1 THz and operation temperatures up to 10 K, which constituted the original goal of the project. This property makes these junctions unique and well adapted for realizing ultra-fast RSFQ (Rapid Single Flux Quantum) logic circuits suitable for spatial telecommunications. We showed a good reproducibility of Ta x N film properties as a function of the sputtering parameters. The NbN/Ta x N/NbN tri-layers exhibit high critical temperature (16 K). The junctions showed a clear dependence of the R n I c product as a function of the partial nitrogen pressure inside the reactive plasma; the R n I c is the product between the junction critical current and its normal resistance, and indicates the upper limit Josephson frequency. We have also obtained some really high R n I c products, up to 3.74 mV at 4.2 K for critical current densities of about 15 kA/cm 2 . Junctions show the expected Josephson behaviors, respectively Fraunhofer diffraction and Shapiro steps. up to 14 K. This allows expecting good circuit operations in a relaxed cryogenics environment (with respect to the niobium circuits limited at 4.2 K). The junctions appear to be self-shunted. The SNOP junctions J c -temperature dependence has been fitted by using the long SNS junction model in the dirty limit, which gives a normal metal coherence length of about 3.8 nm at 4.2 K. We have finally studied a multilayer fabrication process, including a common ground plane and bias resistors, suitable for RSFQ logic basic circuits. To conclude we have been able to show the performance superiority of NbN/Ta x N/NbN junctions over the actual niobium junctions, as well as their interest for realizing compact RSFQ logic circuits. In fact these junctions do not

  6. KBWS: an EMBOSS associated package for accessing bioinformatics web services.

    Science.gov (United States)

    Oshita, Kazuki; Arakawa, Kazuharu; Tomita, Masaru

    2011-04-29

    The availability of bioinformatics web-based services is rapidly proliferating, for their interoperability and ease of use. The next challenge is in the integration of these services in the form of workflows, and several projects are already underway, standardizing the syntax, semantics, and user interfaces. In order to deploy the advantages of web services with locally installed tools, here we describe a collection of proxy client tools for 42 major bioinformatics web services in the form of European Molecular Biology Open Software Suite (EMBOSS) UNIX command-line tools. EMBOSS provides sophisticated means for discoverability and interoperability for hundreds of tools, and our package, named the Keio Bioinformatics Web Service (KBWS), adds functionalities of local and multiple alignment of sequences, phylogenetic analyses, and prediction of cellular localization of proteins and RNA secondary structures. This software implemented in C is available under GPL from http://www.g-language.org/kbws/ and GitHub repository http://github.com/cory-ko/KBWS. Users can utilize the SOAP services implemented in Perl directly via WSDL file at http://soap.g-language.org/kbws.wsdl (RPC Encoded) and http://soap.g-language.org/kbws_dl.wsdl (Document/literal).

  7. KBWS: an EMBOSS associated package for accessing bioinformatics web services

    Directory of Open Access Journals (Sweden)

    Tomita Masaru

    2011-04-01

    Full Text Available Abstract The availability of bioinformatics web-based services is rapidly proliferating, for their interoperability and ease of use. The next challenge is in the integration of these services in the form of workflows, and several projects are already underway, standardizing the syntax, semantics, and user interfaces. In order to deploy the advantages of web services with locally installed tools, here we describe a collection of proxy client tools for 42 major bioinformatics web services in the form of European Molecular Biology Open Software Suite (EMBOSS UNIX command-line tools. EMBOSS provides sophisticated means for discoverability and interoperability for hundreds of tools, and our package, named the Keio Bioinformatics Web Service (KBWS, adds functionalities of local and multiple alignment of sequences, phylogenetic analyses, and prediction of cellular localization of proteins and RNA secondary structures. This software implemented in C is available under GPL from http://www.g-language.org/kbws/ and GitHub repository http://github.com/cory-ko/KBWS. Users can utilize the SOAP services implemented in Perl directly via WSDL file at http://soap.g-language.org/kbws.wsdl (RPC Encoded and http://soap.g-language.org/kbws_dl.wsdl (Document/literal.

  8. Supramolecular Systems and Chemical Reactions in Single-Molecule Break Junctions.

    Science.gov (United States)

    Li, Xiaohui; Hu, Duan; Tan, Zhibing; Bai, Jie; Xiao, Zongyuan; Yang, Yang; Shi, Jia; Hong, Wenjing

    2017-04-01

    The major challenges of molecular electronics are the understanding and manipulation of the electron transport through the single-molecule junction. With the single-molecule break junction techniques, including scanning tunneling microscope break junction technique and mechanically controllable break junction technique, the charge transport through various single-molecule and supramolecular junctions has been studied during the dynamic fabrication and continuous characterization of molecular junctions. This review starts from the charge transport characterization of supramolecular junctions through a variety of noncovalent interactions, such as hydrogen bond, π-π interaction, and electrostatic force. We further review the recent progress in constructing highly conductive molecular junctions via chemical reactions, the response of molecular junctions to external stimuli, as well as the application of break junction techniques in controlling and monitoring chemical reactions in situ. We suggest that beyond the measurement of single molecular conductance, the single-molecule break junction techniques provide a promising access to study molecular assembly and chemical reactions at the single-molecule scale.

  9. Implementing a Web-Based Introductory Bioinformatics Course for Non-Bioinformaticians That Incorporates Practical Exercises

    Science.gov (United States)

    Vincent, Antony T.; Bourbonnais, Yves; Brouard, Jean-Simon; Deveau, Hélène; Droit, Arnaud; Gagné, Stéphane M.; Guertin, Michel; Lemieux, Claude; Rathier, Louis; Charette, Steve J.; Lagüe, Patrick

    2018-01-01

    A recent scientific discipline, bioinformatics, defined as using informatics for the study of biological problems, is now a requirement for the study of biological sciences. Bioinformatics has become such a powerful and popular discipline that several academic institutions have created programs in this field, allowing students to become…

  10. Statistical modelling in biostatistics and bioinformatics selected papers

    CERN Document Server

    Peng, Defen

    2014-01-01

    This book presents selected papers on statistical model development related mainly to the fields of Biostatistics and Bioinformatics. The coverage of the material falls squarely into the following categories: (a) Survival analysis and multivariate survival analysis, (b) Time series and longitudinal data analysis, (c) Statistical model development and (d) Applied statistical modelling. Innovations in statistical modelling are presented throughout each of the four areas, with some intriguing new ideas on hierarchical generalized non-linear models and on frailty models with structural dispersion, just to mention two examples. The contributors include distinguished international statisticians such as Philip Hougaard, John Hinde, Il Do Ha, Roger Payne and Alessandra Durio, among others, as well as promising newcomers. Some of the contributions have come from researchers working in the BIO-SI research programme on Biostatistics and Bioinformatics, centred on the Universities of Limerick and Galway in Ireland and fu...

  11. Naturally selecting solutions: the use of genetic algorithms in bioinformatics.

    Science.gov (United States)

    Manning, Timmy; Sleator, Roy D; Walsh, Paul

    2013-01-01

    For decades, computer scientists have looked to nature for biologically inspired solutions to computational problems; ranging from robotic control to scheduling optimization. Paradoxically, as we move deeper into the post-genomics era, the reverse is occurring, as biologists and bioinformaticians look to computational techniques, to solve a variety of biological problems. One of the most common biologically inspired techniques are genetic algorithms (GAs), which take the Darwinian concept of natural selection as the driving force behind systems for solving real world problems, including those in the bioinformatics domain. Herein, we provide an overview of genetic algorithms and survey some of the most recent applications of this approach to bioinformatics based problems.

  12. Reproducible fabrication and characterization of YBa2Cu3O7 Josephson junctions and SQUIDs on SrTiO3 bi-crystal substrates

    International Nuclear Information System (INIS)

    Kromann, R.; Vase, P.; Shen, Y.Q.; Freltoft, T.

    1993-01-01

    The fabrication of Josephson junctions and SQUIDs using ceramic high T c superconductors continues to be a subject of great interest and activity. In the case of the YBCO family of superconductors, most of the research effort has been concentrated on the grain boundary junctions. This type of junction can be fabricated in a controlled way by a variety of approaches, such as the bi-crystal technique, the bi-epitaxial technique or the step-edge technique. From a fabrication point of view, the bi-crystal technique is by far the simplest of the three. The availability of (100) SrTiO 3 bi-crystals on a commercial basis has lead to the possibility of making Josephson junctions by a simple process involving only one deposition and one patterning step. Reproducibility of the junction parameters between junctions on the same chip is a key point for electronic applications of Josephson junctions requiring a large amount of Josephson junctions working at the same time, as for example in the voltage standard. Another key point is the uniformity of the barrier, i.e. the extent to which the junction behaves as an ideal SIS junction. In this work junction uniformity has been studied by Frauenhofer diffraction patterns. The Josephson junctions have also been used in the fabrication of dc SQUIDs. In this work we have tried to optimize the magnitude of the voltage modulation from the SQUID by varying the design parameters. The SQUIDs have been characterized in terms of I c , R n , voltage modulation and noise properties. (orig.)

  13. Josephson junctions of multiple superconducting wires

    Science.gov (United States)

    Deb, Oindrila; Sengupta, K.; Sen, Diptiman

    2018-05-01

    We study the spectrum of Andreev bound states and Josephson currents across a junction of N superconducting wires which may have s - or p -wave pairing symmetries and develop a scattering matrix based formalism which allows us to address transport across such junctions. For N ≥3 , it is well known that Berry curvature terms contribute to the Josephson currents; we chart out situations where such terms can have relatively large effects. For a system of three s -wave or three p -wave superconductors, we provide analytic expressions for the Andreev bound-state energies and study the Josephson currents in response to a constant voltage applied across one of the wires; we find that the integrated transconductance at zero temperature is quantized to integer multiples of 4 e2/h , where e is the electron charge and h =2 π ℏ is Planck's constant. For a sinusoidal current with frequency ω applied across one of the wires in the junction, we find that Shapiro plateaus appear in the time-averaged voltage across that wire for any rational fractional multiple (in contrast to only integer multiples in junctions of two wires) of 2 e /(ℏ ω ) . We also use our formalism to study junctions of two p -wave and one s -wave wires. We find that the corresponding Andreev bound-state energies depend on the spin of the Bogoliubov quasiparticles; this produces a net magnetic moment in such junctions. The time variation of these magnetic moments may be controlled by an external voltage applied across the junction. We discuss experiments which may test our theory.

  14. Astrocytic gap junctional networks suppress cellular damage in an in vitro model of ischemia

    Energy Technology Data Exchange (ETDEWEB)

    Shinotsuka, Takanori; Yasui, Masato; Nuriya, Mutsuo, E-mail: mnuriya@z2.keio.jp

    2014-02-07

    Highlights: • Astrocytes exhibit characteristic changes in [Ca{sup 2+}]{sub i} under OGD. • Astrocytic [Ca{sup 2+}]{sub i} increase is synchronized with a neuronal anoxic depolarization. • Gap junctional couplings protect neurons as well as astrocytes during OGD. - Abstract: Astrocytes play pivotal roles in both the physiology and the pathophysiology of the brain. They communicate with each other via extracellular messengers as well as through gap junctions, which may exacerbate or protect against pathological processes in the brain. However, their roles during the acute phase of ischemia and the underlying cellular mechanisms remain largely unknown. To address this issue, we imaged changes in the intracellular calcium concentration ([Ca{sup 2+}]{sub i}) in astrocytes in mouse cortical slices under oxygen/glucose deprivation (OGD) condition using two-photon microscopy. Under OGD, astrocytes showed [Ca{sup 2+}]{sub i} oscillations followed by larger and sustained [Ca{sup 2+}]{sub i} increases. While the pharmacological blockades of astrocytic receptors for glutamate and ATP had no effect, the inhibitions of gap junctional intercellular coupling between astrocytes significantly advanced the onset of the sustained [Ca{sup 2+}]{sub i} increase after OGD exposure. Interestingly, the simultaneous recording of the neuronal membrane potential revealed that the onset of the sustained [Ca{sup 2+}]{sub i} increase in astrocytes was synchronized with the appearance of neuronal anoxic depolarization. Furthermore, the blockade of gap junctional coupling resulted in a concurrent faster appearance of neuronal depolarizations, which remain synchronized with the sustained [Ca{sup 2+}]{sub i} increase in astrocytes. These results indicate that astrocytes delay the appearance of the pathological responses of astrocytes and neurons through their gap junction-mediated intercellular network under OGD. Thus, astrocytic gap junctional networks provide protection against tissue damage

  15. CLIMB (the Cloud Infrastructure for Microbial Bioinformatics): an online resource for the medical microbiology community.

    Science.gov (United States)

    Connor, Thomas R; Loman, Nicholas J; Thompson, Simon; Smith, Andy; Southgate, Joel; Poplawski, Radoslaw; Bull, Matthew J; Richardson, Emily; Ismail, Matthew; Thompson, Simon Elwood-; Kitchen, Christine; Guest, Martyn; Bakke, Marius; Sheppard, Samuel K; Pallen, Mark J

    2016-09-01

    The increasing availability and decreasing cost of high-throughput sequencing has transformed academic medical microbiology, delivering an explosion in available genomes while also driving advances in bioinformatics. However, many microbiologists are unable to exploit the resulting large genomics datasets because they do not have access to relevant computational resources and to an appropriate bioinformatics infrastructure. Here, we present the Cloud Infrastructure for Microbial Bioinformatics (CLIMB) facility, a shared computing infrastructure that has been designed from the ground up to provide an environment where microbiologists can share and reuse methods and data.

  16. Bioboxes: standardised containers for interchangeable bioinformatics software.

    Science.gov (United States)

    Belmann, Peter; Dröge, Johannes; Bremges, Andreas; McHardy, Alice C; Sczyrba, Alexander; Barton, Michael D

    2015-01-01

    Software is now both central and essential to modern biology, yet lack of availability, difficult installations, and complex user interfaces make software hard to obtain and use. Containerisation, as exemplified by the Docker platform, has the potential to solve the problems associated with sharing software. We propose bioboxes: containers with standardised interfaces to make bioinformatics software interchangeable.

  17. Molecular Diffusion through Cyanobacterial Septal Junctions.

    Science.gov (United States)

    Nieves-Morión, Mercedes; Mullineaux, Conrad W; Flores, Enrique

    2017-01-03

    Heterocyst-forming cyanobacteria grow as filaments in which intercellular molecular exchange takes place. During the differentiation of N 2 -fixing heterocysts, regulators are transferred between cells. In the diazotrophic filament, vegetative cells that fix CO 2 through oxygenic photosynthesis provide the heterocysts with reduced carbon and heterocysts provide the vegetative cells with fixed nitrogen. Intercellular molecular transfer has been traced with fluorescent markers, including calcein, 5-carboxyfluorescein, and the sucrose analogue esculin, which are observed to move down their concentration gradient. In this work, we used fluorescence recovery after photobleaching (FRAP) assays in the model heterocyst-forming cyanobacterium Anabaena sp. strain PCC 7120 to measure the temperature dependence of intercellular transfer of fluorescent markers. We find that the transfer rate constants are directly proportional to the absolute temperature. This indicates that the "septal junctions" (formerly known as "microplasmodesmata") linking the cells in the filament allow molecular exchange by simple diffusion, without any activated intermediate state. This constitutes a novel mechanism for molecular transfer across the bacterial cytoplasmic membrane, in addition to previously characterized mechanisms for active transport and facilitated diffusion. Cyanobacterial septal junctions are functionally analogous to the gap junctions of metazoans. Although bacteria are frequently considered just as unicellular organisms, there are bacteria that behave as true multicellular organisms. The heterocyst-forming cyanobacteria grow as filaments in which cells communicate. Intercellular molecular exchange is thought to be mediated by septal junctions. Here, we show that intercellular transfer of fluorescent markers in the cyanobacterial filament has the physical properties of simple diffusion. Thus, cyanobacterial septal junctions are functionally analogous to metazoan gap junctions

  18. The extracellular matrix component laminin promotes gap junction formation in the rat anterior pituitary gland.

    Science.gov (United States)

    Horiguchi, Kotaro; Kouki, Tom; Fujiwara, Ken; Kikuchi, Motoshi; Yashiro, Takashi

    2011-03-01

    Folliculo-stellate (FS) cells in the anterior pituitary gland are believed to have multifunctional properties. FS cells connect to each other not only by mechanical means, but also by gap junctional cell-to-cell communication. Using transgenic rats that express green fluorescent protein (GFP) specifically in FS cells in the anterior pituitary gland (S100b-GFP rats), we recently revealed that FS cells in primary culture markedly change their shape, and form numerous interconnections with neighboring FS cells in the presence of laminin, an extracellular matrix (ECM) component of the basement membrane. Morphological and functional changes in cells are believed to be partly modified by matricrine signaling, by which ECM components function as cellular signals. In the present study, we examined whether gap junction formation between FS cells is affected by matricrine cues. A cell sorter was used to isolate FS cells from male S100b-GFP rat anterior pituitary for primary culture. We observed that mRNA and protein levels of connexin 43 in gap junction channels were clearly higher in the presence of laminin. In addition, we confirmed the formation of gap junctions between FS cells in primary culture by electron microscopy. Interestingly, we also observed that FS cells in the presence of laminin displayed well-developed rough endoplasmic reticulum and Golgi apparatus. Our findings suggest that, in anterior pituitary gland, FS cells may facilitate functional roles such as gap junctional cell-to-cell communication by matricrine signaling.

  19. Making Bioinformatics Projects a Meaningful Experience in an Undergraduate Biotechnology or Biomedical Science Programme

    Science.gov (United States)

    Sutcliffe, Iain C.; Cummings, Stephen P.

    2007-01-01

    Bioinformatics has emerged as an important discipline within the biological sciences that allows scientists to decipher and manage the vast quantities of data (such as genome sequences) that are now available. Consequently, there is an obvious need to provide graduates in biosciences with generic, transferable skills in bioinformatics. We present…

  20. Comparative Proteome Bioinformatics: Identification of Phosphotyrosine Signaling Proteins in the Unicellular Protozoan Ciliate Tetrahymena

    DEFF Research Database (Denmark)

    Gammeltoft, Steen; Christensen, Søren Tvorup; Joachimiak, Marcin

    2005-01-01

    Tetrahymena, bioinformatics, cilia, evolution, signaling, TtPTK1, PTK, Grb2, SH-PTP 2, Plcy, Src, PTP, PI3K, SH2, SH3, PH......Tetrahymena, bioinformatics, cilia, evolution, signaling, TtPTK1, PTK, Grb2, SH-PTP 2, Plcy, Src, PTP, PI3K, SH2, SH3, PH...

  1. Josephson tunnel junctions in niobium films

    International Nuclear Information System (INIS)

    Wiik, Tapio.

    1976-12-01

    A method of fabricating stable Josephson tunnel junctions with reproducible characteristics is described. The junctions have a sandwich structure consisting of a vacuum evaporated niobium film, a niobium oxide layer produced by the glow discharge method and a lead film deposited by vacuum evaporation. Difficulties in producing thin-film Josephson junctions are discussed. Experimental results suggest that the lower critical field of the niobium film is the most essential parameter when evaluating the quality of these junctions. The dependence of the lower critical field on the film thickness and on the Ginzburg-Landau parameter of the film is studied analytically. Comparison with the properties of the evaporated films and with the previous calculations for bulk specimens shows that the presented model is applicable for most of the prepared samples. (author)

  2. Josephson junctions with ferromagnetic alloy interlayer

    Energy Technology Data Exchange (ETDEWEB)

    Himmel, Nico

    2015-07-23

    Josephson junctions are used as active devices in superconducting electronics and quantum information technology. Outstanding properties are their distinct non-linear electrical characteristics and a usually sinusoidal relation between the current and the superconducting phase difference across the junction. In general the insertion of ferromagnetic material in the barrier of a Josephson junction is associated with a suppression of superconducting correlations. But also new phenomena can arise which may allow new circuit layouts and enhance the performance of applications. This thesis presents a systematic investigation for two concepts to fabricate Josephson junctions with a rather uncommon negative critical current. Such devices exhibit an intrinsic phase slip of π between the electrodes, so they are also known as π junctions. Both studies go well beyond existing experiments and in one system a π junction is shown for the first time. All the thin film junctions are based on superconducting Nb electrodes. In a first approach, barriers made from Si and Fe were investigated with respect to the realisation of π junctions by spin-flip processes. The distribution of Fe in the Si matrix was varied from pure layers to disperse compounds. The systematic fabrication of alloy barriers was facilitated by the development of a novel timing-based combinatorial sputtering technique for planetary deposition systems. An orthogonal gradient approach allowed to create binary layer libraries with independent variations of thickness and composition. Second, Nb vertical stroke AlO{sub x} vertical stroke Nb vertical stroke Ni{sub 60}Cu{sub 40} vertical stroke Nb (SIsFS) double barrier junctions were experimentally studied for the occurrence of proximity effect induced order parameter oscillations. Detailed dependencies of the critical current density on the thickness of s-layer and F-layer were acquired and show a remarkable agreement to existing theoretical predictions. Especially

  3. Josephson junctions with ferromagnetic alloy interlayer

    International Nuclear Information System (INIS)

    Himmel, Nico

    2015-01-01

    Josephson junctions are used as active devices in superconducting electronics and quantum information technology. Outstanding properties are their distinct non-linear electrical characteristics and a usually sinusoidal relation between the current and the superconducting phase difference across the junction. In general the insertion of ferromagnetic material in the barrier of a Josephson junction is associated with a suppression of superconducting correlations. But also new phenomena can arise which may allow new circuit layouts and enhance the performance of applications. This thesis presents a systematic investigation for two concepts to fabricate Josephson junctions with a rather uncommon negative critical current. Such devices exhibit an intrinsic phase slip of π between the electrodes, so they are also known as π junctions. Both studies go well beyond existing experiments and in one system a π junction is shown for the first time. All the thin film junctions are based on superconducting Nb electrodes. In a first approach, barriers made from Si and Fe were investigated with respect to the realisation of π junctions by spin-flip processes. The distribution of Fe in the Si matrix was varied from pure layers to disperse compounds. The systematic fabrication of alloy barriers was facilitated by the development of a novel timing-based combinatorial sputtering technique for planetary deposition systems. An orthogonal gradient approach allowed to create binary layer libraries with independent variations of thickness and composition. Second, Nb vertical stroke AlO x vertical stroke Nb vertical stroke Ni 60 Cu 40 vertical stroke Nb (SIsFS) double barrier junctions were experimentally studied for the occurrence of proximity effect induced order parameter oscillations. Detailed dependencies of the critical current density on the thickness of s-layer and F-layer were acquired and show a remarkable agreement to existing theoretical predictions. Especially a variation of

  4. Facilitating the use of large-scale biological data and tools in the era of translational bioinformatics

    DEFF Research Database (Denmark)

    Kouskoumvekaki, Irene; Shublaq, Nour; Brunak, Søren

    2014-01-01

    As both the amount of generated biological data and the processing compute power increase, computational experimentation is no longer the exclusivity of bioinformaticians, but it is moving across all biomedical domains. For bioinformatics to realize its translational potential, domain experts need...... access to user-friendly solutions to navigate, integrate and extract information out of biological databases, as well as to combine tools and data resources in bioinformatics workflows. In this review, we present services that assist biomedical scientists in incorporating bioinformatics tools...... into their research.We review recent applications of Cytoscape, BioGPS and DAVID for data visualization, integration and functional enrichment. Moreover, we illustrate the use of Taverna, Kepler, GenePattern, and Galaxy as open-access workbenches for bioinformatics workflows. Finally, we mention services...

  5. Molecular series-tunneling junctions.

    Science.gov (United States)

    Liao, Kung-Ching; Hsu, Liang-Yan; Bowers, Carleen M; Rabitz, Herschel; Whitesides, George M

    2015-05-13

    Charge transport through junctions consisting of insulating molecular units is a quantum phenomenon that cannot be described adequately by classical circuit laws. This paper explores tunneling current densities in self-assembled monolayer (SAM)-based junctions with the structure Ag(TS)/O2C-R1-R2-H//Ga2O3/EGaIn, where Ag(TS) is template-stripped silver and EGaIn is the eutectic alloy of gallium and indium; R1 and R2 refer to two classes of insulating molecular units-(CH2)n and (C6H4)m-that are connected in series and have different tunneling decay constants in the Simmons equation. These junctions can be analyzed as a form of series-tunneling junctions based on the observation that permuting the order of R1 and R2 in the junction does not alter the overall rate of charge transport. By using the Ag/O2C interface, this system decouples the highest occupied molecular orbital (HOMO, which is localized on the carboxylate group) from strong interactions with the R1 and R2 units. The differences in rates of tunneling are thus determined by the electronic structure of the groups R1 and R2; these differences are not influenced by the order of R1 and R2 in the SAM. In an electrical potential model that rationalizes this observation, R1 and R2 contribute independently to the height of the barrier. This model explicitly assumes that contributions to rates of tunneling from the Ag(TS)/O2C and H//Ga2O3 interfaces are constant across the series examined. The current density of these series-tunneling junctions can be described by J(V) = J0(V) exp(-β1d1 - β2d2), where J(V) is the current density (A/cm(2)) at applied voltage V and βi and di are the parameters describing the attenuation of the tunneling current through a rectangular tunneling barrier, with width d and a height related to the attenuation factor β.

  6. Workflows in bioinformatics: meta-analysis and prototype implementation of a workflow generator

    Directory of Open Access Journals (Sweden)

    Thoraval Samuel

    2005-04-01

    Full Text Available Abstract Background Computational methods for problem solving need to interleave information access and algorithm execution in a problem-specific workflow. The structures of these workflows are defined by a scaffold of syntactic, semantic and algebraic objects capable of representing them. Despite the proliferation of GUIs (Graphic User Interfaces in bioinformatics, only some of them provide workflow capabilities; surprisingly, no meta-analysis of workflow operators and components in bioinformatics has been reported. Results We present a set of syntactic components and algebraic operators capable of representing analytical workflows in bioinformatics. Iteration, recursion, the use of conditional statements, and management of suspend/resume tasks have traditionally been implemented on an ad hoc basis and hard-coded; by having these operators properly defined it is possible to use and parameterize them as generic re-usable components. To illustrate how these operations can be orchestrated, we present GPIPE, a prototype graphic pipeline generator for PISE that allows the definition of a pipeline, parameterization of its component methods, and storage of metadata in XML formats. This implementation goes beyond the macro capacities currently in PISE. As the entire analysis protocol is defined in XML, a complete bioinformatic experiment (linked sets of methods, parameters and results can be reproduced or shared among users. Availability: http://if-web1.imb.uq.edu.au/Pise/5.a/gpipe.html (interactive, ftp://ftp.pasteur.fr/pub/GenSoft/unix/misc/Pise/ (download. Conclusion From our meta-analysis we have identified syntactic structures and algebraic operators common to many workflows in bioinformatics. The workflow components and algebraic operators can be assimilated into re-usable software components. GPIPE, a prototype implementation of this framework, provides a GUI builder to facilitate the generation of workflows and integration of heterogeneous

  7. Analyzing the field of bioinformatics with the multi-faceted topic modeling technique.

    Science.gov (United States)

    Heo, Go Eun; Kang, Keun Young; Song, Min; Lee, Jeong-Hoon

    2017-05-31

    Bioinformatics is an interdisciplinary field at the intersection of molecular biology and computing technology. To characterize the field as convergent domain, researchers have used bibliometrics, augmented with text-mining techniques for content analysis. In previous studies, Latent Dirichlet Allocation (LDA) was the most representative topic modeling technique for identifying topic structure of subject areas. However, as opposed to revealing the topic structure in relation to metadata such as authors, publication date, and journals, LDA only displays the simple topic structure. In this paper, we adopt the Tang et al.'s Author-Conference-Topic (ACT) model to study the field of bioinformatics from the perspective of keyphrases, authors, and journals. The ACT model is capable of incorporating the paper, author, and conference into the topic distribution simultaneously. To obtain more meaningful results, we use journals and keyphrases instead of conferences and bag-of-words.. For analysis, we use PubMed to collected forty-six bioinformatics journals from the MEDLINE database. We conducted time series topic analysis over four periods from 1996 to 2015 to further examine the interdisciplinary nature of bioinformatics. We analyze the ACT Model results in each period. Additionally, for further integrated analysis, we conduct a time series analysis among the top-ranked keyphrases, journals, and authors according to their frequency. We also examine the patterns in the top journals by simultaneously identifying the topical probability in each period, as well as the top authors and keyphrases. The results indicate that in recent years diversified topics have become more prevalent and convergent topics have become more clearly represented. The results of our analysis implies that overtime the field of bioinformatics becomes more interdisciplinary where there is a steady increase in peripheral fields such as conceptual, mathematical, and system biology. These results are

  8. Performance of single-junction and dual-junction InGaP/GaAs solar cells under low concentration ratios

    International Nuclear Information System (INIS)

    Khan, Aurangzeb; Yamaguchi, Masafumi; Takamoto, Tatsuya

    2004-01-01

    A study of the performance of single-junction InGaP/GaAs and dual-junction InGaP/GaAs tandem cells under low concentration ratios (up to 15 suns), before and after 1 MeV electron irradiation is presented. Analysis of the tunnel junction parameters under different concentrated light illuminations reveals that the peak current (J P ) and valley current (J V ) densities should be greater than the short-circuit current density (J sc ) for better performance. The tunnel junction behavior against light intensity improved after irradiation. This led to the suggestion that the peak current density (J P ) and valley current density (J V ) of the tunnel junction were enhanced after irradiation or the peak current was shifted to higher concentration. The recovery of the radiation damage under concentrated light illumination conditions suggests that the performance of the InGaP/GaAs tandem solar cell can be enhanced even under low concentration ratios

  9. Current noise in tunnel junctions

    Energy Technology Data Exchange (ETDEWEB)

    Frey, Moritz; Grabert, Hermann [Physikalisches Institut, Universitaet Freiburg, Hermann-Herder-Strasse 3, 79104, Freiburg (Germany)

    2017-06-15

    We study current fluctuations in tunnel junctions driven by a voltage source. The voltage is applied to the tunneling element via an impedance providing an electromagnetic environment of the junction. We use circuit theory to relate the fluctuations of the current flowing in the leads of the junction with the voltage fluctuations generated by the environmental impedance and the fluctuations of the tunneling current. The spectrum of current fluctuations is found to consist of three parts: a term arising from the environmental Johnson-Nyquist noise, a term due to the shot noise of the tunneling current and a third term describing the cross-correlation between these two noise sources. Our phenomenological theory reproduces previous results based on the Hamiltonian model for the dynamical Coulomb blockade and provides a simple understanding of the current fluctuation spectrum in terms of circuit theory and properties of the average current. Specific results are given for a tunnel junction driven through a resonator. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  10. libcov: A C++ bioinformatic library to manipulate protein structures, sequence alignments and phylogeny

    OpenAIRE

    Butt, Davin; Roger, Andrew J; Blouin, Christian

    2005-01-01

    Background An increasing number of bioinformatics methods are considering the phylogenetic relationships between biological sequences. Implementing new methodologies using the maximum likelihood phylogenetic framework can be a time consuming task. Results The bioinformatics library libcov is a collection of C++ classes that provides a high and low-level interface to maximum likelihood phylogenetics, sequence analysis and a data structure for structural biological methods. libcov can be used ...

  11. Effect of parallel transport currents on the d-wave Josephson junction

    International Nuclear Information System (INIS)

    Rashedi, Gholamreza

    2009-01-01

    In this paper, the non-local mixing of coherent current states in d-wave superconducting banks is investigated. The superconducting banks are connected via a ballistic point contact. The banks have mis-orientation and phase difference. Furthermore, they are subjected to a tangential transport current along the ab plane of d-wave crystals and parallel to the interface between the superconductors. The effects of mis-orientation and external transport current on the current-phase relations and current distributions are the subjects of this paper. It is observed that, at values of phase difference close to 0, π and 2π, the current distribution may have a vortex-like form in the vicinity of the point contact. The current distribution of the above-mentioned junction between d-wave superconductors is totally different from the junction between s-wave superconductors. The interesting result which this study shows is that spontaneous and Josephson currents are observed for the case of φ = 0.

  12. MACBenAbim: A Multi-platform Mobile Application for searching keyterms in Computational Biology and Bioinformatics.

    Science.gov (United States)

    Oluwagbemi, Olugbenga O; Adewumi, Adewole; Esuruoso, Abimbola

    2012-01-01

    Computational biology and bioinformatics are gradually gaining grounds in Africa and other developing nations of the world. However, in these countries, some of the challenges of computational biology and bioinformatics education are inadequate infrastructures, and lack of readily-available complementary and motivational tools to support learning as well as research. This has lowered the morale of many promising undergraduates, postgraduates and researchers from aspiring to undertake future study in these fields. In this paper, we developed and described MACBenAbim (Multi-platform Mobile Application for Computational Biology and Bioinformatics), a flexible user-friendly tool to search for, define and describe the meanings of keyterms in computational biology and bioinformatics, thus expanding the frontiers of knowledge of the users. This tool also has the capability of achieving visualization of results on a mobile multi-platform context. MACBenAbim is available from the authors for non-commercial purposes.

  13. Establishing a distributed national research infrastructure providing bioinformatics support to life science researchers in Australia.

    Science.gov (United States)

    Schneider, Maria Victoria; Griffin, Philippa C; Tyagi, Sonika; Flannery, Madison; Dayalan, Saravanan; Gladman, Simon; Watson-Haigh, Nathan; Bayer, Philipp E; Charleston, Michael; Cooke, Ira; Cook, Rob; Edwards, Richard J; Edwards, David; Gorse, Dominique; McConville, Malcolm; Powell, David; Wilkins, Marc R; Lonie, Andrew

    2017-06-30

    EMBL Australia Bioinformatics Resource (EMBL-ABR) is a developing national research infrastructure, providing bioinformatics resources and support to life science and biomedical researchers in Australia. EMBL-ABR comprises 10 geographically distributed national nodes with one coordinating hub, with current funding provided through Bioplatforms Australia and the University of Melbourne for its initial 2-year development phase. The EMBL-ABR mission is to: (1) increase Australia's capacity in bioinformatics and data sciences; (2) contribute to the development of training in bioinformatics skills; (3) showcase Australian data sets at an international level and (4) enable engagement in international programs. The activities of EMBL-ABR are focussed in six key areas, aligning with comparable international initiatives such as ELIXIR, CyVerse and NIH Commons. These key areas-Tools, Data, Standards, Platforms, Compute and Training-are described in this article. © The Author 2017. Published by Oxford University Press.

  14. Bioinformatics Meets Virology: The European Virus Bioinformatics Center's Second Annual Meeting.

    Science.gov (United States)

    Ibrahim, Bashar; Arkhipova, Ksenia; Andeweg, Arno C; Posada-Céspedes, Susana; Enault, François; Gruber, Arthur; Koonin, Eugene V; Kupczok, Anne; Lemey, Philippe; McHardy, Alice C; McMahon, Dino P; Pickett, Brett E; Robertson, David L; Scheuermann, Richard H; Zhernakova, Alexandra; Zwart, Mark P; Schönhuth, Alexander; Dutilh, Bas E; Marz, Manja

    2018-05-14

    The Second Annual Meeting of the European Virus Bioinformatics Center (EVBC), held in Utrecht, Netherlands, focused on computational approaches in virology, with topics including (but not limited to) virus discovery, diagnostics, (meta-)genomics, modeling, epidemiology, molecular structure, evolution, and viral ecology. The goals of the Second Annual Meeting were threefold: (i) to bring together virologists and bioinformaticians from across the academic, industrial, professional, and training sectors to share best practice; (ii) to provide a meaningful and interactive scientific environment to promote discussion and collaboration between students, postdoctoral fellows, and both new and established investigators; (iii) to inspire and suggest new research directions and questions. Approximately 120 researchers from around the world attended the Second Annual Meeting of the EVBC this year, including 15 renowned international speakers. This report presents an overview of new developments and novel research findings that emerged during the meeting.

  15. Curved Josephson junction

    International Nuclear Information System (INIS)

    Dobrowolski, Tomasz

    2012-01-01

    The constant curvature one and quasi-one dimensional Josephson junction is considered. On the base of Maxwell equations, the sine–Gordon equation that describes an influence of curvature on the kink motion was obtained. It is showed that the method of geometrical reduction of the sine–Gordon model from three to lower dimensional manifold leads to an identical form of the sine–Gordon equation. - Highlights: ► The research on dynamics of the phase in a curved Josephson junction is performed. ► The geometrical reduction is applied to the sine–Gordon model. ► The results of geometrical reduction and the fundamental research are compared.

  16. Bioinformatics and Microarray Data Analysis on the Cloud.

    Science.gov (United States)

    Calabrese, Barbara; Cannataro, Mario

    2016-01-01

    High-throughput platforms such as microarray, mass spectrometry, and next-generation sequencing are producing an increasing volume of omics data that needs large data storage and computing power. Cloud computing offers massive scalable computing and storage, data sharing, on-demand anytime and anywhere access to resources and applications, and thus, it may represent the key technology for facing those issues. In fact, in the recent years it has been adopted for the deployment of different bioinformatics solutions and services both in academia and in the industry. Although this, cloud computing presents several issues regarding the security and privacy of data, that are particularly important when analyzing patients data, such as in personalized medicine. This chapter reviews main academic and industrial cloud-based bioinformatics solutions; with a special focus on microarray data analysis solutions and underlines main issues and problems related to the use of such platforms for the storage and analysis of patients data.

  17. Protecting innovation in bioinformatics and in-silico biology.

    Science.gov (United States)

    Harrison, Robert

    2003-01-01

    Commercial success or failure of innovation in bioinformatics and in-silico biology requires the appropriate use of legal tools for protecting and exploiting intellectual property. These tools include patents, copyrights, trademarks, design rights, and limiting information in the form of 'trade secrets'. Potentially patentable components of bioinformatics programmes include lines of code, algorithms, data content, data structure and user interfaces. In both the US and the European Union, copyright protection is granted for software as a literary work, and most other major industrial countries have adopted similar rules. Nonetheless, the grant of software patents remains controversial and is being challenged in some countries. Current debate extends to aspects such as whether patents can claim not only the apparatus and methods but also the data signals and/or products, such as a CD-ROM, on which the programme is stored. The patentability of substances discovered using in-silico methods is a separate debate that is unlikely to be resolved in the near future.

  18. Mechanically Stacked Dual-Junction and Triple-Junction III-V/Si-IBC Cells with Efficiencies Exceeding 31.5% and 35.4%: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Schnabel, Manuel [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Tamboli, Adele C [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Warren, Emily L [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Schulte-Huxel, Henning [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Klein, Talysa [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Van Hest, Marinus F [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Geisz, John F [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Stradins, Paul [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Steiner, Myles A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Rienaecker, Michael [Institute for Solar Energy Research Hamelin (ISFH); Merkle, Agnes [Institute for Solar Energy Research Hamelin (ISFH); Kajari-Schroeder, S. [Institute for Solar Energy Research Hamelin (ISFH); Niepelt, Raphael [Institute for Solar Energy Research Hamelin (ISFH); Schmidt, Jan [Institute for Solar Energy Research Hamelin (ISFH); Leibniz Universitat Hannover; Brendel, Rolf [Institute for Solar Energy Research Hamelin (ISFH); Leibniz Universitat Hannover; Peibst, Robby [Institute for Solar Energy Research Hamelin (ISFH); Leibniz Universitat Hannover

    2017-10-02

    Despite steady advancements in the efficiency of crystalline Silicon (c-Si) photovoltaics (PV) within the last decades, the theoretical efficiency limit of 29.4 percent depicts an insurmountable barrier for silicon-based single-junction solar cells. Combining the Si cell with a second absorber material on top in a dual junction tandem or triple junction solar cell is an attractive option to surpass this limit significantly. We demonstrate a mechanically stacked GaInP/Si dual-junction cell with an in-house measured efficiency of 31.5 percent and a GaInP/GaAs/Si triple-junction cell with a certified efficiency of 35.4 percent.

  19. Pay-as-you-go data integration for bio-informatics

    NARCIS (Netherlands)

    Wanders, B.

    2012-01-01

    Scientific research in bio-informatics is often data-driven and supported by numerous biological databases. A biological database contains factual information collected from scientific experiments and computational analyses about areas including genomics, proteomics, metabolomics, microarray gene

  20. Electromagnetic waves in single- and multi-Josephson junctions

    International Nuclear Information System (INIS)

    Matsumoto, Hideki; Koyama, Tomio; Machida, Masahiko

    2008-01-01

    The terahertz wave emission from the intrinsic Josephson junctions is one of recent topics in high T c superconductors. We investigate, by numerical simulation, properties of the electromagnetic waves excited by a constant bias current in the single- and multi-Josephson junctions. Nonlinear equations of phase-differences are solved numerically by treating the effects of the outside electromagnetic fields as dynamical boundary conditions. It is shown that the emitted power of the electromagnetic wave can become large near certain retrapping points of the I-V characteristics. An instability of the inside phase oscillation is related to large amplitude of the oscillatory waves. In the single- (or homogeneous mutli-) Josephson junctions, electromagnetic oscillations can occur either in a form of standing waves (shorter junctions) or by formation of vortex-antivortex pairs (longer junctions). How these two effects affects the behavior of electromagnetic waves in the intrinsic Josephson junctions is discussed

  1. Tunable Nitride Josephson Junctions.

    Energy Technology Data Exchange (ETDEWEB)

    Missert, Nancy A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Henry, Michael David [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Lewis, Rupert M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Howell, Stephen W. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Wolfley, Steven L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Brunke, Lyle Brent [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Wolak, Matthaeus [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-12-01

    We have developed an ambient temperature, SiO2/Si wafer - scale process for Josephson junctions based on Nb electrodes and Ta x N barriers with tunable electronic properties. The films are fabricated by magnetron sputtering. The electronic properties of the TaxN barriers are controlled by adjusting the nitrogen flow during sputtering. This technology offers a scalable alternative to the more traditional junctions based on AlOx barriers for low - power, high - performance computing.

  2. Scattering theory of superconductive tunneling in quantum junctions

    International Nuclear Information System (INIS)

    Shumeiko, V.S.; Bratus', E.N.

    1997-01-01

    A consistent theory of superconductive tunneling in single-mode junctions within a scattering formulation of Bogolyubov-de Gennes quantum mechanics is presented. The dc Josephson effect and dc quasiparticle transport in the voltage-biased junctions are considered. Elastic quasiparticle scattering by the junction determines the equilibrium Josephson current. The origin of Andreev bound states in tunnel junctions and their role in equilibrium Josephson transport are discussed. In contrast, quasiparticle tunneling in voltage-biased junctions is determined by inelastic scattering. A general expression for inelastic scattering amplitudes is derived and the quasiparticle current is calculated at all voltages with emphasis on a discussion of the properties of sub gap tunnel current and the nature of subharmonic gap structure

  3. Effects induced by γ-radiation on the noise in junction field-effect transistors belonging to monolithic processes

    International Nuclear Information System (INIS)

    Manfredi, P.F.; Re, V.; Manfredi, P.F.; Speziali, V.; Re, V.; Manfredi, P.F.; Speziali, V.

    1999-01-01

    The effects of γ-rays on the noise characteristics of junction field-effect transistors belonging to three monolithic technologies have been investigated. A substantially different behavior of the radiation-induced noise in N and P -channel JFETs was observed. This may result in interesting design considerations. (authors)

  4. PATRIC, the bacterial bioinformatics database and analysis resource.

    Science.gov (United States)

    Wattam, Alice R; Abraham, David; Dalay, Oral; Disz, Terry L; Driscoll, Timothy; Gabbard, Joseph L; Gillespie, Joseph J; Gough, Roger; Hix, Deborah; Kenyon, Ronald; Machi, Dustin; Mao, Chunhong; Nordberg, Eric K; Olson, Robert; Overbeek, Ross; Pusch, Gordon D; Shukla, Maulik; Schulman, Julie; Stevens, Rick L; Sullivan, Daniel E; Vonstein, Veronika; Warren, Andrew; Will, Rebecca; Wilson, Meredith J C; Yoo, Hyun Seung; Zhang, Chengdong; Zhang, Yan; Sobral, Bruno W

    2014-01-01

    The Pathosystems Resource Integration Center (PATRIC) is the all-bacterial Bioinformatics Resource Center (BRC) (http://www.patricbrc.org). A joint effort by two of the original National Institute of Allergy and Infectious Diseases-funded BRCs, PATRIC provides researchers with an online resource that stores and integrates a variety of data types [e.g. genomics, transcriptomics, protein-protein interactions (PPIs), three-dimensional protein structures and sequence typing data] and associated metadata. Datatypes are summarized for individual genomes and across taxonomic levels. All genomes in PATRIC, currently more than 10,000, are consistently annotated using RAST, the Rapid Annotations using Subsystems Technology. Summaries of different data types are also provided for individual genes, where comparisons of different annotations are available, and also include available transcriptomic data. PATRIC provides a variety of ways for researchers to find data of interest and a private workspace where they can store both genomic and gene associations, and their own private data. Both private and public data can be analyzed together using a suite of tools to perform comparative genomic or transcriptomic analysis. PATRIC also includes integrated information related to disease and PPIs. All the data and integrated analysis and visualization tools are freely available. This manuscript describes updates to the PATRIC since its initial report in the 2007 NAR Database Issue.

  5. An Adaptive Hybrid Multiprocessor technique for bioinformatics sequence alignment

    KAUST Repository

    Bonny, Talal; Salama, Khaled N.; Zidan, Mohammed A.

    2012-01-01

    Sequence alignment algorithms such as the Smith-Waterman algorithm are among the most important applications in the development of bioinformatics. Sequence alignment algorithms must process large amounts of data which may take a long time. Here, we

  6. Short chain molecular junctions: Charge transport versus dipole moment

    International Nuclear Information System (INIS)

    Ikram, I. Mohamed; Rabinal, M.K.

    2015-01-01

    Graphical abstract: - Highlights: • The role of dipole moment of organic molecules on molecular junctions has been studied. • Molecular junctions constituted using propargyl molecules of different dipole moments. • The electronic properties of the molecules were calculated using Gaussian software. • Junctions show varying rectification due to their varying dipole moment and orientation. - Abstract: The investigation of the influence of dipole moment of short chain organic molecules having three carbon atoms varying in end group on silicon surface was carried on. Here, we use three different molecules of propargyl series varying in dipole moment and its orientation to constitute molecular junctions. The charge transport mechanism in metal–molecules–semiconductor (MMS) junction obtained from current–voltage (I–V) characteristics shows the rectification behavior for two junctions whereas the other junction shows a weak rectification. The electronic properties of the molecules were calculated using Gaussian software package. The observed rectification behavior of these junctions is examined and found to be accounted to the orientation of dipole moment and electron cloud density distribution inside the molecules

  7. Some chaotic features of intrinsically coupled Josephson junctions

    International Nuclear Information System (INIS)

    Kolahchi, M.R.; Shukrinov, Yu.M.; Hamdipour, M.; Botha, A.E.; Suzuki, M.

    2013-01-01

    Highlights: ► Intrinsically coupled Josephson junctions model a high-T c superconductor. ► Intrinsically coupled Josephson junctions can act as a chaotic nonlinear system. ► Chaos could be due to resonance overlap. ► Avoiding parameters that lead to chaos is important for the design of resonators. -- Abstract: We look for chaos in an intrinsically coupled system of Josephson junctions. This study has direct applications for the high-T c resonators which require coherence amongst the junctions

  8. 'Students-as-partners' scheme enhances postgraduate students' employability skills while addressing gaps in bioinformatics education.

    Science.gov (United States)

    Mello, Luciane V; Tregilgas, Luke; Cowley, Gwen; Gupta, Anshul; Makki, Fatima; Jhutty, Anjeet; Shanmugasundram, Achchuthan

    2017-01-01

    Teaching bioinformatics is a longstanding challenge for educators who need to demonstrate to students how skills developed in the classroom may be applied to real world research. This study employed an action research methodology which utilised student-staff partnership and peer-learning. It was centred on the experiences of peer-facilitators, students who had previously taken a postgraduate bioinformatics module, and had applied knowledge and skills gained from it to their own research. It aimed to demonstrate to peer-receivers, current students, how bioinformatics could be used in their own research while developing peer-facilitators' teaching and mentoring skills. This student-centred approach was well received by the peer-receivers, who claimed to have gained improved understanding of bioinformatics and its relevance to research. Equally, peer-facilitators also developed a better understanding of the subject and appreciated that the activity was a rare and invaluable opportunity to develop their teaching and mentoring skills, enhancing their employability.

  9. The B[a]P-increased intercellular communication via translocation of connexin-43 into gap junctions reduces apoptosis

    International Nuclear Information System (INIS)

    Tekpli, X.; Rivedal, E.; Gorria, M.; Landvik, N.E.; Rissel, M.; Dimanche-Boitrel, M.-T.; Baffet, G.; Holme, J.A.; Lagadic-Gossmann, D.

    2010-01-01

    Gap junctions are channels in plasma membrane composed of proteins called connexins. These channels are organized in special domains between cells, and provide for direct gap junctional intercellular communication (GJIC), allowing diffusion of signalling molecules < 1 kD. GJIC regulates cell homeostasis and notably the balance between proliferation, cell cycle arrest, cell survival and apoptosis. Here, we have investigated benzo[a]pyrene (B[a]P) effects on GJIC and on the subcellular localization of the major protein of gap junction: connexin-43 (Cx43). Our results showed that B[a]P increased GJIC between mouse hepatoma Hepa1c1c7 cells via translocation of Cx43 from Golgi apparatus and lipid rafts into gap junction plaques. Interestingly, inhibition of GJIC by chlordane or small interference RNA directed against Cx43 enhanced B[a]P-induced apoptosis in Hepa1c1c7 cells. The increased apoptosis caused by inhibition of GJIC appeared to be mediated by ERK/MAPK pathway. It is suggested that B[a]P could induce transfer of cell survival signal or dilute cell death signal via regulation of ERK/MAPK through GJIC.

  10. A bioinformatics-based overview of protein Lys-Ne-acetylation

    Science.gov (United States)

    Among posttranslational modifications, there are some conceptual similarities between Lys-N'-acetylation and Ser/Thr/Tyr O-phosphorylation. Herein we present a bioinformatics-based overview of reversible protein Lys-acetylation, including some comparisons with reversible protein phosphorylation. T...

  11. Gap junctions and connexin-interacting proteins

    NARCIS (Netherlands)

    Giepmans, Ben N G

    2004-01-01

    Gap junctions form channels between adjacent cells. The core proteins of these channels are the connexins. Regulation of gap junction communication (GJC) can be modulated by connexin-associating proteins, such as regulatory protein phosphatases and protein kinases, of which c-Src is the

  12. jORCA: easily integrating bioinformatics Web Services.

    Science.gov (United States)

    Martín-Requena, Victoria; Ríos, Javier; García, Maximiliano; Ramírez, Sergio; Trelles, Oswaldo

    2010-02-15

    Web services technology is becoming the option of choice to deploy bioinformatics tools that are universally available. One of the major strengths of this approach is that it supports machine-to-machine interoperability over a network. However, a weakness of this approach is that various Web Services differ in their definition and invocation protocols, as well as their communication and data formats-and this presents a barrier to service interoperability. jORCA is a desktop client aimed at facilitating seamless integration of Web Services. It does so by making a uniform representation of the different web resources, supporting scalable service discovery, and automatic composition of workflows. Usability is at the top of the jORCA agenda; thus it is a highly customizable and extensible application that accommodates a broad range of user skills featuring double-click invocation of services in conjunction with advanced execution-control, on the fly data standardization, extensibility of viewer plug-ins, drag-and-drop editing capabilities, plus a file-based browsing style and organization of favourite tools. The integration of bioinformatics Web Services is made easier to support a wider range of users. .

  13. Missing "Links" in Bioinformatics Education: Expanding Students' Conceptions of Bioinformatics Using a Biodiversity Database of Living and Fossil Reef Corals

    Science.gov (United States)

    Nehm, Ross H.; Budd, Ann F.

    2006-01-01

    NMITA is a reef coral biodiversity database that we use to introduce students to the expansive realm of bioinformatics beyond genetics. We introduce a series of lessons that have students use this database, thereby accessing real data that can be used to test hypotheses about biodiversity and evolution while targeting the "National Science …

  14. G2LC: Resources Autoscaling for Real Time Bioinformatics Applications in IaaS

    Directory of Open Access Journals (Sweden)

    Rongdong Hu

    2015-01-01

    Full Text Available Cloud computing has started to change the way how bioinformatics research is being carried out. Researchers who have taken advantage of this technology can process larger amounts of data and speed up scientific discovery. The variability in data volume results in variable computing requirements. Therefore, bioinformatics researchers are pursuing more reliable and efficient methods for conducting sequencing analyses. This paper proposes an automated resource provisioning method, G2LC, for bioinformatics applications in IaaS. It enables application to output the results in a real time manner. Its main purpose is to guarantee applications performance, while improving resource utilization. Real sequence searching data of BLAST is used to evaluate the effectiveness of G2LC. Experimental results show that G2LC guarantees the application performance, while resource is saved up to 20.14%.

  15. Planar Josephson tunnel junctions in a transverse magnetic field

    DEFF Research Database (Denmark)

    Monacoa, R.; Aarøe, Morten; Mygind, Jesper

    2007-01-01

    demagnetization effects imposed by the tunnel barrier and electrodes geometry are important. Measurements of the junction critical current versus magnetic field in planar Nb-based high-quality junctions with different geometry, size, and critical current density show that it is advantageous to use a transverse......Traditionally, since the discovery of the Josephson effect in 1962, the magnetic diffraction pattern of planar Josephson tunnel junctions has been recorded with the field applied in the plane of the junction. Here we discuss the static junction properties in a transverse magnetic field where...

  16. Penalized feature selection and classification in bioinformatics

    OpenAIRE

    Ma, Shuangge; Huang, Jian

    2008-01-01

    In bioinformatics studies, supervised classification with high-dimensional input variables is frequently encountered. Examples routinely arise in genomic, epigenetic and proteomic studies. Feature selection can be employed along with classifier construction to avoid over-fitting, to generate more reliable classifier and to provide more insights into the underlying causal relationships. In this article, we provide a review of several recently developed penalized feature selection and classific...

  17. Particle detection with superconducting tunnel junctions

    International Nuclear Information System (INIS)

    Jany, P.

    1990-08-01

    At the Institute of Experimental Nuclear Physics of the University of Karlsruhe (TH) and at the Institute for Nuclear Physics of the Kernforschungszentrum Karlsruhe we started to produce superconducting tunnel junctions and to investigate them for their suitability as particle detectors. The required facilities for the production of tunnel junctions and the experimental equipments to carry out experiments with them were erected. Experiments are presented in which radiations of different kinds of particles could successfully be measured with the tunnel junctions produced. At first we succeeded in detectioning light pulses of a laser. In experiments with alpha-particles of an energy of 4,6 MeV the alpha-particles were detected with an energy resolution of 1,1%, and it was shown in specific experiments that the phonons originating from the deposition of energy by an alpha-particle in the substrate can be detected with superconducting tunnel junctions at the surface. On that occasion it turned out that the signals could be separated with respect to their point of origin (tunnel junction, contact leads, substrate). Finally X-rays with an energy of 6 keV were detected with an energy resolution of 8% in a test arrangement that makes use of the so-called trapping effect to read out a larger absorber volume. (orig.) [de

  18. Effect of solar-cell junction geometry on open-circuit voltage

    Science.gov (United States)

    Weizer, V. G.; Godlewski, M. P.

    1985-01-01

    Simple analytical models have been found that adequately describe the voltage behavior of both the stripe junction and dot junction grating cells as a function of junction area. While the voltage in the former case is found to be insensitive to junction area reduction, significant voltage increases are shown to be possible for the dot junction cell. With regard to cells in which the junction area has been increased in a quest for better performance, it was found that (1) texturation does not affect the average saturation current density J0, indicating that the texturation process is equivalent to a simple extension of junction area by a factor of square root of 3 and (2) the vertical junction cell geometry produces a sizable decrease in J0 that, unfortunately, is more than offset by the effects of attendant areal increases.

  19. Advance of Mechanically Controllable Break Junction for Molecular Electronics.

    Science.gov (United States)

    Wang, Lu; Wang, Ling; Zhang, Lei; Xiang, Dong

    2017-06-01

    Molecular electronics stands for the ultimate size of functional elements, keeping up with an unstoppable trend over the past few decades. As a vital component of molecular electronics, single molecular junctions have attracted significant attention from research groups all over the world. Due to its pronounced superiority, the mechanically controllable break junctions (MCBJ) technique has been widely applied to characterize the dynamic performance of single molecular junctions. This review presents a system analysis for single-molecule junctions and offers an overview of four test-beds for single-molecule junctions, thus offering more insight into the mechanisms of electron transport. We mainly focus on the development of state-of-the-art mechanically controlled break junctions. The three-terminal gated MCBJ approaches are introduced to manipulate the electron transport of molecules, and MCBJs are combined with characterization techniques. Additionally, applications of MCBJs and remarkable properties of single molecules are addressed. Finally, the challenges and perspective for the mechanically controllable break junctions technique are provided.

  20. Microwave phase locking of Josephson-junction fluxon oscillators

    DEFF Research Database (Denmark)

    Salerno, M.; Samuelsen, Mogens Rugholm; Filatrella, G.

    1990-01-01

    Application of the classic McLaughlin-Scott soliton perturbation theory to a Josephson-junction fluxon subjected to a microwave field that interacts with the fluxon only at the junction boundaries reduces the problem of phase locking of the fluxon oscillation to the study of a two-dimensional fun......Application of the classic McLaughlin-Scott soliton perturbation theory to a Josephson-junction fluxon subjected to a microwave field that interacts with the fluxon only at the junction boundaries reduces the problem of phase locking of the fluxon oscillation to the study of a two...

  1. The critical current of point symmetric Josephson tunnel junctions

    International Nuclear Information System (INIS)

    Monaco, Roberto

    2016-01-01

    Highlights: • We disclose some geometrical properties of the critical current field dependence that apply to a large class of Josephson junctions characterized by a point symmetric shape. • The developed theory is valid for any orientation of the applied magnetic field, therefore it allows the determine the consequences of field misalignment in the experimental setups. • We also address that the threshold curves of Josephson tunnel junctions with complex shapes can be expressed as a linear combination of the threshold curves of junctions with simpler point symmetric shapes. - Abstract: The physics of Josephson tunnel junctions drastically depends on their geometrical configurations. The shape of the junction determines the specific form of the magnetic-field dependence of its Josephson current. Here we address the magnetic diffraction patterns of specially shaped planar Josephson tunnel junctions in the presence of an in-plane magnetic field of arbitrary orientations. We focus on a wide ensemble of junctions whose shape is invariant under point reflection. We analyze the implications of this type of isometry and derive the threshold curves of junctions whose shape is the union or the relative complement of two point symmetric plane figures.

  2. Solar cell junction temperature measurement of PV module

    KAUST Repository

    Huang, B.J.

    2011-02-01

    The present study develops a simple non-destructive method to measure the solar cell junction temperature of PV module. The PV module was put in the environmental chamber with precise temperature control to keep the solar PV module as well as the cell junction in thermal equilibrium with the chamber. The open-circuit voltage of PV module Voc is then measured using a short pulse of solar irradiation provided by a solar simulator. Repeating the measurements at different environment temperature (40-80°C) and solar irradiation S (200-1000W/m2), the correlation between the open-circuit voltage Voc, the junction temperature Tj, and solar irradiation S is derived.The fundamental correlation of the PV module is utilized for on-site monitoring of solar cell junction temperature using the measured Voc and S at a short time instant with open circuit. The junction temperature Tj is then determined using the measured S and Voc through the fundamental correlation. The outdoor test results show that the junction temperature measured using the present method, Tjo, is more accurate. The maximum error using the average surface temperature Tave as the junction temperature is 4.8 °C underestimation; while the maximum error using the present method is 1.3 °C underestimation. © 2010 Elsevier Ltd.

  3. Toward Personalized Pressure Ulcer Care Planning: Development of a Bioinformatics System for Individualized Prioritization of Clinical Pratice Guideline

    Science.gov (United States)

    2016-10-01

    AWARD NUMBER: W81XWH-15-1-0342 TITLE: Toward Personalized Pressure Ulcer Care Planning: Development of a Bioinformatics System for Individualized...Planning: Development of a Bioinformatics System for Individualized Prioritization of Clinical Pratice Guideline 5a. CONTRACT NUMBER 5b. GRANT...recommendations of CPG has been identified by experts in the field. We will use bioinformatics to enable data extraction, storage, and analysis to support

  4. Soliton excitations in Josephson tunnel junctions

    DEFF Research Database (Denmark)

    Lomdahl, P. S.; Sørensen, O. H.; Christiansen, Peter Leth

    1982-01-01

    A detailed numerical study of a sine-Gordon model of the Josephson tunnel junction is compared with experimental measurements on junctions with different L / λJ ratios. The soliton picture is found to apply well on both relatively long (L / λJ=6) and intermediate (L / λJ=2) junctions. We find good...... agreement for the current-voltage characteristics, power output, and for the shape and height of the zero-field steps (ZFS). Two distinct modes of soliton oscillations are observed: (i) a bunched or congealed mode giving rise to the fundamental frequency f1 on all ZFS's and (ii) a "symmetric" mode which...... on the Nth ZFS yields the frequency Nf1 Coexistence of two adjacent frequencies is found on the third ZFS of the longer junction (L / λJ=6) in a narrow range of bias current as also found in the experiments. Small asymmetries in the experimental environment, a weak magnetic field, e.g., is introduced via...

  5. Constructing carbon nanotube junctions by Ar ion beam irradiation

    International Nuclear Information System (INIS)

    Ishaq, Ahmad; Ni Zhichun; Yan Long; Gong Jinlong; Zhu Dezhang

    2010-01-01

    Carbon nanotubes (CNTs) irradiated by Ar ion beams at elevated temperature were studied. The irradiation-induced defects in CNTs are greatly reduced by elevated temperature. Moreover, the two types of CNT junctions, the crossing junction and the parallel junction, were formed. And the CNT networks may be fabricated by the two types of CNT junctions. The formation process and the corresponding mechanism of CNT networks are discussed.

  6. Prediction of quantum interference in molecular junctions using a parabolic diagram: Understanding the origin of Fano and anti-resonances

    DEFF Research Database (Denmark)

    Nozaki, Daijiro; Avdoshenko, Stanislav M.; Sevincli, Haldun

    2013-01-01

    Recently the interest in quantum interference (QI) phenomena in molecular devices (molecular junctions) has been growing due to the unique features observed in the transmission spectra. In order to design single molecular devices exploiting QI effects as desired, it is necessary to provide simple...... rules for predicting the appearance of QI effects such as anti-resonances or Fano line shapes and for controlling them. In this study, we derive a transmission function of a generic molecular junction with a side group (T-shaped molecular junction) using a minimal toy model. We developed a simple method...... to predict the appearance of quantum interference, Fano resonances or anti- resonances, and its position in the conductance spectrum by introducing a simple graphical representation (parabolic model). Using it we can easily visualize the relation between the key electronic parameters and the positions...

  7. Shunted-Josephson-junction model. II. The nonautonomous case

    DEFF Research Database (Denmark)

    Belykh, V. N.; Pedersen, Niels Falsig; Sørensen, O. H.

    1977-01-01

    The shunted-Josephson-junction model with a monochromatic ac current drive is discussed employing the qualitative methods of the theory of nonlinear oscillations. As in the preceding paper dealing with the autonomous junction, the model includes a phase-dependent conductance and a shunt capacitance....... The mathematical discussion makes use of the phase-space representation of the solutions to the differential equation. The behavior of the trajectories in phase space is described for different characteristic regions in parameter space and the associated features of the junction IV curve to be expected are pointed...... out. The main objective is to provide a qualitative understanding of the junction behavior, to clarify which kinds of properties may be derived from the shunted-junction model, and to specify the relative arrangement of the important domains in the parameter-space decomposition....

  8. Observation of supercurrent in graphene-based Josephson junction

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Libin; Li, Sen; Kang, Ning [Key Laboratory for the Physics and Chemistry of Nanodevices and Department of Electronics, Peking University, Beijing 100871 (China); Xu, Chuan; Ren, Wencai [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China)

    2015-07-01

    Josephson junctions with a normal metal region sandwiched between two superconductors (S) are known as superconductor- normal-superconductor (SNS) structures. It has attracted significant attention especially when changing the normal metal with graphene, which allow for high tunability with the gate voltage and to study the proximity effect of the massless Dirac fermions. Here we report our work on graphene-based Josephson junction with a new two dimensional superconductor crystal, which grown directly on graphene, as superconducting electrodes. At low temperature, we observer proximity effect induced supercurrent flowing through the junction. The temperature and the magnetic field dependences of the critical current characteristics of the junction are also studied. The critical current exhibits a Fraunhofer-type diffraction pattern against magnetic field. Our experiments provided a new route of fabrication of graphene-based Josephson junction.

  9. Josephson junction arrays and superconducting wire networks

    International Nuclear Information System (INIS)

    Lobb, C.J.

    1992-01-01

    Techniques used to fabricate integrated circuits make it possible to construct superconducting networks containing as many as 10 6 wires or Josephson junctions. Such networks undergo phase transitions from resistive high-temperature states to ordered low-resistance low-temperature states. The nature of the phase transition depends strongly on controllable parameters such as the strength of the superconductivity in each wire or junction and the external magnetic field. This paper will review the physics of these phase transitions, starting with the simplest zero-magnetic field case. This leads to a Kosterlitz-Thouless transition when the junctions or wires are weak, and a simple mean-field fransition when the junctions or wires are strong. Rich behavior, resulting from frustration, occurs in the presence of a magnetic field. (orig.)

  10. Effect of low and staggered gap quantum wells inserted in GaAs tunnel junctions

    Science.gov (United States)

    Louarn, K.; Claveau, Y.; Marigo-Lombart, L.; Fontaine, C.; Arnoult, A.; Piquemal, F.; Bounouh, A.; Cavassilas, N.; Almuneau, G.

    2018-04-01

    In this article, we investigate the impact of the insertion of either a type I InGaAs or a type II InGaAs/GaAsSb quantum well on the performances of MBE-grown GaAs tunnel junctions (TJs). The devices are designed and simulated using a quantum transport model based on the non-equilibrium Green’s function formalism and a 6-band k.p Hamiltonian. We experimentally observe significant improvements of the peak tunneling current density on both heterostructures with a 460-fold increase for a moderately doped GaAs TJ when the InGaAs QW is inserted at the junction interface, and a 3-fold improvement on a highly doped GaAs TJ integrating a type II InGaAs/GaAsSb QW. Thus, the simple insertion of staggered band lineup heterostructures enables us to reach a tunneling current well above the kA cm‑2 range, equivalent to the best achieved results for Si-doped GaAs TJs, implying very interesting potential for TJ-based components, such as multi-junction solar cells, vertical cavity surface emitting lasers and tunnel-field effect transistors.

  11. Phenomenological approach to bistable behavior of Josephson junctions

    International Nuclear Information System (INIS)

    Nishi, K.; Nara, S.; Hamanaka, K.

    1985-01-01

    The interaction of unbiased Josephson junction with external electromagnetic field in the presence of externally applied uniform magnetic field is theoretically examined by means of phenomenological treatment. It is proposed that an irradiated junction with suitably chosen parameters shows a bistable behavior of voltage across the junction as a function of the radiation intensity

  12. Multiplication in Silicon p-n Junctions

    DEFF Research Database (Denmark)

    Moll, John L.

    1965-01-01

    Multiplication values were measured in the collector junctions of silicon p-n-p and n-p-n transistors before and after bombardment by 1016 neutrons/cm2. Within experimental error there was no change either in junction fields, as deduced from capacitance measurements, or in multiplication values i...

  13. Anchored PKA as a gatekeeper for gap junctions.

    Science.gov (United States)

    Pidoux, Guillaume; Taskén, Kjetil

    2015-01-01

    Anchored protein kinase A (PKA) bound to A Kinase Anchoring Protein (AKAP) mediates effects of localized increases in cAMP in defined subcellular microdomains and retains the specificity in cAMP-PKA signaling to distinct extracellular stimuli. Gap junctions are pores between adjacent cells constituted by connexin proteins that provide means of communication and transfer of small molecules. While the PKA signaling is known to promote human trophoblast cell fusion, the gap junction communication through connexin 43 (Cx43) is a prerequisite for this process. We recently demonstrated that trophoblast fusion is regulated by ezrin, a known AKAP, which binds to Cx43 and delivers PKA in the vicinity gap junctions. We found that disruption of the ezrin-Cx43 interaction abolished PKA-dependent phosphorylation of Cx43 as well as gap junction communication and subsequently cell fusion. We propose that the PKA-ezrin-Cx43 macromolecular complex regulating gap junction communication constitutes a general mechanism to control opening of Cx43 gap junctions by phosphorylation in response to cAMP signaling in various cell types.

  14. Heat Transport in Graphene Ferromagnet-Insulator-Superconductor Junctions

    Institute of Scientific and Technical Information of China (English)

    LI Xiao-Wei

    2011-01-01

    We study heat transport in a graphene ferromagnet-insulator-superconducting junction. It is found that the thermal conductance of the graphene ferromagnet-insulator-superconductor (FIS) junction is an oscillatory function of the barrier strength x in the thin-barrier limit. The gate potential U0 decreases the amplitude of thermal conductance oscillation. Both the amplitude and phase of the thermal conductance oscillation varies with the exchange energy Eh. The thermal conductance of a graphene FIS junction displays the usual exponential dependence on temperature, reflecting the s-wave symmetry of superconducting graphene.%@@ We study heat transport in a graphene ferromagnet-insulator-superconducting junction.It is found that the thermal conductance of the graphene ferromagnet-insulator-superconductor(FIS)junction is an oscillatory function of the barrier strength X in the thin-barrier limit.The gate potential Uo decreases the amplitude of thermal conductance oscillation.Both the amplitude and phase of the thermal conductance oscillation varies with the exchange energy Eh.The thermal conductance of a graphene FIS junction displays the usual exponential dependence on temperature, reflecting the s-wave symmetry of superconducting graphene.

  15. Read-Split-Run: an improved bioinformatics pipeline for identification of genome-wide non-canonical spliced regions using RNA-Seq data.

    Science.gov (United States)

    Bai, Yongsheng; Kinne, Jeff; Donham, Brandon; Jiang, Feng; Ding, Lizhong; Hassler, Justin R; Kaufman, Randal J

    2016-08-22

    algorithm in heterozygote (Het) samples from both Thapsigargin (Tg) and Dithiothreitol (Dtt) treated experiments but absent in the negative control Ire1α knock-out (KO) samples. Applying different combinations of parameters to the mouse MEF RNA-Seq data, we suggest a General Linear Model (GLM) for both Tg and Dtt treated experiments. We also ran RSR for a human ENCODE RNA-Seq dataset and identified 32,597 spliced regions for regular chromosomes. TopHat (Trapnell et al., Bioinformatics 25:1105-1111, 2009) and Alt Event Finder (Zhou et al., BMC Genomics 13:S10, 2012) identified 237,155 spliced junctions and 9,129 exon skipping events (excluding chr14), respectively. Our Read-Split-Run algorithm also outperformed others in the context of ranking Xbp1 gene as the top cleavage target present in Ire1α (+/-) but absent in Ire1α (-/-) MEF samples. The RSR package including source codes is available at http://bioinf1.indstate.edu/RSR and its pipeline source codes are also freely available at https://github.com/xuric/read-split-run for academic use. Our new RSR algorithm has the capability of processing massive amounts of human ENCODE RNA-Seq data for identifying novel splice junction sites at a genome-wide level in a much more efficient manner when compared to the previous RSW algorithm. Our proposed model can also predict the number of spliced regions under any combinations of parameters. Our pipeline can detect novel spliced sites for other species using RNA-Seq data generated under similar conditions.

  16. Terahertz Responses of Intrinsic Josephson Junctions in High TC Superconductors

    International Nuclear Information System (INIS)

    Wang, H. B.; Wu, P. H.; Yamashita, T.

    2001-01-01

    High frequency responses of intrinsic Josephson junctions up to 2.5THz, including the observation of Shapiro steps under various conditions, are reported and discussed in this Letter. The sample was an array of intrinsic Josephson junctions singled out from inside a high T C superconducting Bi 2 Sr 2 CaCu 2 O 8+x single crystal, with a bow-tie antenna integrated to it. The number of junctions in the array was controllable, the junctions were homogeneous, the distribution of applied irradiation among the junctions was even, and the junctions could synchronously respond to high frequency irradiation

  17. Architecture exploration of FPGA based accelerators for bioinformatics applications

    CERN Document Server

    Varma, B Sharat Chandra; Balakrishnan, M

    2016-01-01

    This book presents an evaluation methodology to design future FPGA fabrics incorporating hard embedded blocks (HEBs) to accelerate applications. This methodology will be useful for selection of blocks to be embedded into the fabric and for evaluating the performance gain that can be achieved by such an embedding. The authors illustrate the use of their methodology by studying the impact of HEBs on two important bioinformatics applications: protein docking and genome assembly. The book also explains how the respective HEBs are designed and how hardware implementation of the application is done using these HEBs. It shows that significant speedups can be achieved over pure software implementations by using such FPGA-based accelerators. The methodology presented in this book may also be used for designing HEBs for accelerating software implementations in other domains besides bioinformatics. This book will prove useful to students, researchers, and practicing engineers alike.

  18. A review on all-perovskite multiferroic tunnel junctions

    Directory of Open Access Journals (Sweden)

    Yuewei Yin

    2017-12-01

    Full Text Available Although the basic concept was proposed only about 10 years ago, multiferroic tunnel junctions (MFTJs with a ferroelectric barrier sandwiched between two ferromagnetic electrodes have already drawn considerable interests, driven mainly by its potential applications in multi-level memories and electric field controlled spintronics. The purpose of this article is to review the recent progress of all-perovskite MFTJs. Starting from the key functional properties of the tunneling magnetoresistance, tunneling electroresistance, and tunneling electromagnetoresistance effects, we discuss the main origins of the tunneling electroresistance effect, recent progress in achieving multilevel resistance states in a single device, and the electrical control of spin polarization and transport through the ferroelectric polarization reversal of the tunneling barrier.

  19. Long Josephson Junction Stack Coupled to a Cavity

    DEFF Research Database (Denmark)

    Madsen, Søren Peder; Pedersen, Niels Falsig; Groenbech-Jensen, N.

    2007-01-01

    A stack of inductively coupled long Josephson junctions are modeled as a system of coupled sine-Gordon equations. One boundary of the stack is coupled electrically to a resonant cavity. With one fluxon in each Josephson junction, the inter-junction fluxon forces are repulsive. We look at a possible...... transition, induced by the cavity, to a bunched state....

  20. Structural Origins of Conductance Fluctuations in Gold–Thiolate Molecular Transport Junctions

    KAUST Repository

    French, William R.

    2013-03-21

    We report detailed atomistic simulations combined with high-fidelity conductance calculations to probe the structural origins of conductance fluctuations in thermally evolving Au-benzene-1,4-dithiolate-Au junctions. We compare the behavior of structurally ideal junctions (where the electrodes are modeled as flat surfaces) to structurally realistic, experimentally representative junctions resulting from break-junction simulations. The enhanced mobility of metal atoms in structurally realistic junctions results in significant changes to the magnitude and origin of the conductance fluctuations. Fluctuations are larger by a factor of 2-3 in realistic junctions compared to ideal junctions. Moreover, in junctions with highly deformed electrodes, the conductance fluctuations arise primarily from changes in the Au geometry, in contrast to results for junctions with nondeformed electrodes, where the conductance fluctuations are dominated by changes in the molecule geometry. These results provide important guidance to experimentalists developing strategies to control molecular conductance, and also to theoreticians invoking simplified structural models of junctions to predict their behavior. © 2013 American Chemical Society.

  1. Structural Origins of Conductance Fluctuations in Gold–Thiolate Molecular Transport Junctions

    KAUST Repository

    French, William R.; Iacovella, Christopher R.; Rungger, Ivan; Souza, Amaury Melo; Sanvito, Stefano; Cummings, Peter T.

    2013-01-01

    We report detailed atomistic simulations combined with high-fidelity conductance calculations to probe the structural origins of conductance fluctuations in thermally evolving Au-benzene-1,4-dithiolate-Au junctions. We compare the behavior of structurally ideal junctions (where the electrodes are modeled as flat surfaces) to structurally realistic, experimentally representative junctions resulting from break-junction simulations. The enhanced mobility of metal atoms in structurally realistic junctions results in significant changes to the magnitude and origin of the conductance fluctuations. Fluctuations are larger by a factor of 2-3 in realistic junctions compared to ideal junctions. Moreover, in junctions with highly deformed electrodes, the conductance fluctuations arise primarily from changes in the Au geometry, in contrast to results for junctions with nondeformed electrodes, where the conductance fluctuations are dominated by changes in the molecule geometry. These results provide important guidance to experimentalists developing strategies to control molecular conductance, and also to theoreticians invoking simplified structural models of junctions to predict their behavior. © 2013 American Chemical Society.

  2. Silicon fiber with p-n junction

    International Nuclear Information System (INIS)

    Homa, D.; Cito, A.; Pickrell, G.; Hill, C.; Scott, B.

    2014-01-01

    In this study, we fabricated a p-n junction in a fiber with a phosphorous doped silicon core and fused silica cladding. The fibers were fabricated via a hybrid process of the core-suction and melt-draw techniques and maintained overall diameters ranging from 200 to 900 μm and core diameters of 20–800 μm. The p-n junction was formed by doping the fiber with boron and confirmed via the current-voltage characteristic. The demonstration of a p-n junction in a melt-drawn silicon core fiber paves the way for the seamless integration of optical and electronic devices in fibers.

  3. Quasiparticle current in superconductor-semiconductor-superconductor junctions

    International Nuclear Information System (INIS)

    Tartakovskij, A.V.; Fistul', M.V.

    1988-01-01

    It is shown that the quasiparticle current in a superconductor-semiconductor-superconductor junction may significantly increase as a result of resonant passage of the quasiparticle along particular trajectories from periodically situated localized centers. A prediction of the theory is that with increasing junction resistance there should be a change from an excessive current to a insufficient current on the current-voltage characteristics (at high voltages). The effect of transparency of the boundaries on resonance tunneling in such junctions is also investigated

  4. Transport properties of molecular junctions

    CERN Document Server

    Zimbovskaya, Natalya A

    2013-01-01

    A comprehensive overview of the physical mechanisms that control electron transport and the characteristics of metal-molecule-metal (MMM) junctions is presented. As far as possible, methods and formalisms presented elsewhere to analyze electron transport through molecules are avoided. This title introduces basic concepts—a description of the electron transport through molecular junctions—and briefly describes relevant experimental methods. Theoretical methods commonly used to analyze the electron transport through molecules are presented. Various effects that manifest in the electron transport through MMMs, as well as the basics of density-functional theory and its applications to electronic structure calculations in molecules are presented. Nanoelectronic applications of molecular junctions and similar systems are discussed as well. Molecular electronics is a diverse and rapidly growing field. Transport Properties of Molecular Junctions presents an up-to-date survey of the field suitable for researchers ...

  5. Bioinformatics analysis identify novel OB fold protein coding genes in C. elegans.

    Directory of Open Access Journals (Sweden)

    Daryanaz Dargahi

    Full Text Available BACKGROUND: The C. elegans genome has been extensively annotated by the WormBase consortium that uses state of the art bioinformatics pipelines, functional genomics and manual curation approaches. As a result, the identification of novel genes in silico in this model organism is becoming more challenging requiring new approaches. The Oligonucleotide-oligosaccharide binding (OB fold is a highly divergent protein family, in which protein sequences, in spite of having the same fold, share very little sequence identity (5-25%. Therefore, evidence from sequence-based annotation may not be sufficient to identify all the members of this family. In C. elegans, the number of OB-fold proteins reported is remarkably low (n=46 compared to other evolutionary-related eukaryotes, such as yeast S. cerevisiae (n=344 or fruit fly D. melanogaster (n=84. Gene loss during evolution or differences in the level of annotation for this protein family, may explain these discrepancies. METHODOLOGY/PRINCIPAL FINDINGS: This study examines the possibility that novel OB-fold coding genes exist in the worm. We developed a bioinformatics approach that uses the most sensitive sequence-sequence, sequence-profile and profile-profile similarity search methods followed by 3D-structure prediction as a filtering step to eliminate false positive candidate sequences. We have predicted 18 coding genes containing the OB-fold that have remarkably partially been characterized in C. elegans. CONCLUSIONS/SIGNIFICANCE: This study raises the possibility that the annotation of highly divergent protein fold families can be improved in C. elegans. Similar strategies could be implemented for large scale analysis by the WormBase consortium when novel versions of the genome sequence of C. elegans, or other evolutionary related species are being released. This approach is of general interest to the scientific community since it can be used to annotate any genome.

  6. Staff Scientist - RNA Bioinformatics | Center for Cancer Research

    Science.gov (United States)

    The newly established RNA Biology Laboratory (RBL) at the Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH) in Frederick, Maryland is recruiting a Staff Scientist with strong expertise in RNA bioinformatics to join the Intramural Research Program’s mission of high impact, high reward science. The RBL is the equivalent of an

  7. Open discovery: An integrated live Linux platform of Bioinformatics tools.

    Science.gov (United States)

    Vetrivel, Umashankar; Pilla, Kalabharath

    2008-01-01

    Historically, live linux distributions for Bioinformatics have paved way for portability of Bioinformatics workbench in a platform independent manner. Moreover, most of the existing live Linux distributions limit their usage to sequence analysis and basic molecular visualization programs and are devoid of data persistence. Hence, open discovery - a live linux distribution has been developed with the capability to perform complex tasks like molecular modeling, docking and molecular dynamics in a swift manner. Furthermore, it is also equipped with complete sequence analysis environment and is capable of running windows executable programs in Linux environment. Open discovery portrays the advanced customizable configuration of fedora, with data persistency accessible via USB drive or DVD. The Open Discovery is distributed free under Academic Free License (AFL) and can be downloaded from http://www.OpenDiscovery.org.in.

  8. Spatial inhomogeneous barrier heights at graphene/semiconductor Schottky junctions

    Science.gov (United States)

    Tomer, Dushyant

    Graphene, a semimetal with linear energy dispersion, forms Schottky junction when interfaced with a semiconductor. This dissertation presents temperature dependent current-voltage and scanning tunneling microscopy/spectroscopy (STM/S) measurements performed on graphene Schottky junctions formed with both three and two dimensional semiconductors. To fabricate Schottky junctions, we transfer chemical vapor deposited monolayer graphene onto Si- and C-face SiC, Si, GaAs and MoS2 semiconducting substrates using polymer assisted chemical method. We observe three main type of intrinsic spatial inhomogeneities, graphene ripples, ridges and semiconductor steps in STM imaging that can exist at graphene/semiconductor junctions. Tunneling spectroscopy measurements reveal fluctuations in graphene Dirac point position, which is directly related to the Schottky barrier height. We find a direct correlation of Dirac point variation with the topographic undulations of graphene ripples at the graphene/SiC junction. However, no such correlation is established at graphene/Si and Graphene/GaAs junctions and Dirac point variations are attributed to surface states and trapped charges at the interface. In addition to graphene ripples and ridges, we also observe atomic scale moire patterns at graphene/MoS2 junction due to van der Waals interaction at the interface. Periodic topographic modulations due to moire pattern do not lead to local variation in graphene Dirac point, indicating that moire pattern does not contribute to fluctuations in electronic properties of the heterojunction. We perform temperature dependent current-voltage measurements to investigate the impact of topographic inhomogeneities on electrical properties of the Schottky junctions. We observe temperature dependence in junction parameters, such as Schottky barrier height and ideality factor, for all types of Schottky junctions in forward bias measurements. Standard thermionic emission theory which assumes a perfect

  9. Porous silicon formation by hole injection from a back side p+/n junction for electrical insulation applications

    International Nuclear Information System (INIS)

    Fèvre, A; Menard, S; Defforge, T; Gautier, G

    2016-01-01

    In this paper, we propose to study the formation of porous silicon (PS) in low doped (1 × 10 14 cm −3 ) n-type silicon through hole injection from a back side p + /n junction in the dark. This technique is investigated within the framework of electrical insulation. Three different types of junctions are investigated. The first one is an epitaxial n-type layer grown on p + doped silicon wafer. The two other junctions are carried out by boron diffusion leading to p + regions with junction depths of 20 and 115 μm. The resulting PS morphology is a double layer with a nucleation layer (NL) and macropores fully filled with mesoporous material. This result is unusual for low doped n-type silicon. Morphology variations are described depending on the junction formation process, the electrolyte composition, the anodization current density and duration. In order to validate the more interesting industrial potentialities of the p + /n injection technique, a comparison is achieved with back side illumination in terms of resulting morphology and experiments confirm comparable results. Electrical characterizations of the double layer, including NL and fully filled macropores, are then performed. To our knowledge, this is the first electrical investigation in low doped n type silicon with this morphology. Compared to the bulk silicon, the measured electrical resistivities are 6–7 orders of magnitude higher at 373 K. (paper)

  10. ‘Students-as-partners’ scheme enhances postgraduate students’ employability skills while addressing gaps in bioinformatics education

    Science.gov (United States)

    Mello, Luciane V.; Tregilgas, Luke; Cowley, Gwen; Gupta, Anshul; Makki, Fatima; Jhutty, Anjeet; Shanmugasundram, Achchuthan

    2017-01-01

    Abstract Teaching bioinformatics is a longstanding challenge for educators who need to demonstrate to students how skills developed in the classroom may be applied to real world research. This study employed an action research methodology which utilised student–staff partnership and peer-learning. It was centred on the experiences of peer-facilitators, students who had previously taken a postgraduate bioinformatics module, and had applied knowledge and skills gained from it to their own research. It aimed to demonstrate to peer-receivers, current students, how bioinformatics could be used in their own research while developing peer-facilitators’ teaching and mentoring skills. This student-centred approach was well received by the peer-receivers, who claimed to have gained improved understanding of bioinformatics and its relevance to research. Equally, peer-facilitators also developed a better understanding of the subject and appreciated that the activity was a rare and invaluable opportunity to develop their teaching and mentoring skills, enhancing their employability. PMID:29098185

  11. Bioinformatics tools for development of fast and cost effective simple ...

    African Journals Online (AJOL)

    Bioinformatics tools for development of fast and cost effective simple sequence repeat ... comparative mapping and exploration of functional genetic diversity in the ... Already, a number of computer programs have been implemented that aim at ...

  12. Virginia Bioinformatics Institute to expand cyberinfrastructure education and outreach project

    OpenAIRE

    Whyte, Barry James

    2008-01-01

    The National Science Foundation has awarded the Virginia Bioinformatics Institute at Virginia Tech $918,000 to expand its education and outreach program in Cyberinfrastructure - Training, Education, Advancement and Mentoring, commonly known as the CI-TEAM.

  13. Systematic study of shallow junction formation on germanium substrates

    DEFF Research Database (Denmark)

    Hellings, Geert; Rosseel, Erik; Clarysse, Trudo

    2011-01-01

    Published results on Ge junctions are benchmarked systematically using RS–XJ plots. The electrical activation level required to meet the ITRS targets is calculated. Additionally, new results are presented on shallow furnace-annealed B junctions and shallow laser-annealed As junctions. Co-implanting...

  14. Turbulent penetration in T-junction branch lines with leakage flow

    Energy Technology Data Exchange (ETDEWEB)

    Kickhofel, John, E-mail: kickhofel@lke.mavt.ethz.ch; Valori, Valentina, E-mail: v.valori@tudelft.nl; Prasser, H.-M., E-mail: prasser@lke.mavt.ethz.ch

    2014-09-15

    Highlights: • New T-junction facility designed for adiabatic high velocity ratio mixing studies. • Trends in scalar mixing RMS and average in branch line presented and discussed. • Turbulent penetration has unique power spectrum relevant to thermal fatigue. • Forced flow oscillations translate to peaks in power spectrum in branch line. - Abstract: While the study of T-junction mixing with branch velocity ratios of near 1, so called cross flow mixing, is well advanced, to the point of realistic reactor environment fluid–structure interaction experiments and CFD benchmarking, turbulent penetration studies remain an under-researched threat to primary circuit piping. A new facility has been constructed for the express purpose of studying turbulent penetration in branch lines of T-junctions in the context of the high cycle thermal fatigue problem in NPPs. Turbulent penetration, which may be the result of a leaking valve in a branch line or an unisolable branch with heat losses, induces a thermal cycling region which may result in high cycle fatigue damage and failures. Leakage flow experiments have been performed in a perpendicular T-junction in a horizontal orientation with 50 mm diameter main pipe and branch pipe at velocity ratios (main/branch) up to 400. Wire mesh sensors are used as a means of measuring the mixing scalar in adiabatic tests with deionized and tap water. The near-wall region of highest scalar fluctuations is seen to vary circumferentially and in depth in the branch a great deal depending on the velocity ratio. The power spectra of the mixing scalar in the region of turbulent penetration are found to be dominated by high amplitude fluctuations at low frequencies, of particular interest to thermal fatigue. Artificial velocity oscillations in the main pipe manifest in the mixing spectra in the branch line in the form of a peak, the magnitude of which grows with increasing local RMS.

  15. 6th International Conference on Practical Applications of Computational Biology & Bioinformatics

    CERN Document Server

    Luscombe, Nicholas; Fdez-Riverola, Florentino; Rodríguez, Juan; Practical Applications of Computational Biology & Bioinformatics

    2012-01-01

    The growth in the Bioinformatics and Computational Biology fields over the last few years has been remarkable.. The analysis of the datasets of Next Generation Sequencing needs new algorithms and approaches from fields such as Databases, Statistics, Data Mining, Machine Learning, Optimization, Computer Science and Artificial Intelligence. Also Systems Biology has also been emerging as an alternative to the reductionist view that dominated biological research in the last decades. This book presents the results of the  6th International Conference on Practical Applications of Computational Biology & Bioinformatics held at University of Salamanca, Spain, 28-30th March, 2012 which brought together interdisciplinary scientists that have a strong background in the biological and computational sciences.

  16. Junction Potentials Bias Measurements of Ion Exchange Membrane Permselectivity.

    Science.gov (United States)

    Kingsbury, Ryan S; Flotron, Sophie; Zhu, Shan; Call, Douglas F; Coronell, Orlando

    2018-04-17

    Ion exchange membranes (IEMs) are versatile materials relevant to a variety of water and waste treatment, energy production, and industrial separation processes. The defining characteristic of IEMs is their ability to selectively allow positive or negative ions to permeate, which is referred to as permselectivity. Measured values of permselectivity that equal unity (corresponding to a perfectly selective membrane) or exceed unity (theoretically impossible) have been reported for cation exchange membranes (CEMs). Such nonphysical results call into question our ability to correctly measure this crucial membrane property. Because weighing errors, temperature, and measurement uncertainty have been shown to not explain these anomalous permselectivity results, we hypothesized that a possible explanation are junction potentials that occur at the tips of reference electrodes. In this work, we tested this hypothesis by comparing permselectivity values obtained from bare Ag/AgCl wire electrodes (which have no junction) to values obtained from single-junction reference electrodes containing two different electrolytes. We show that permselectivity values obtained using reference electrodes with junctions were greater than unity for CEMs. In contrast, electrodes without junctions always produced permselectivities lower than unity. Electrodes with junctions also resulted in artificially low permselectivity values for AEMs compared to electrodes without junctions. Thus, we conclude that junctions in reference electrodes introduce two biases into results in the IEM literature: (i) permselectivity values larger than unity for CEMs and (ii) lower permselectivity values for AEMs compared to those for CEMs. These biases can be avoided by using electrodes without a junction.

  17. On simulation of local fluxes in molecular junctions

    Science.gov (United States)

    Cabra, Gabriel; Jensen, Anders; Galperin, Michael

    2018-05-01

    We present a pedagogical review of the current density simulation in molecular junction models indicating its advantages and deficiencies in analysis of local junction transport characteristics. In particular, we argue that current density is a universal tool which provides more information than traditionally simulated bond currents, especially when discussing inelastic processes. However, current density simulations are sensitive to the choice of basis and electronic structure method. We note that while discussing the local current conservation in junctions, one has to account for the source term caused by the open character of the system and intra-molecular interactions. Our considerations are illustrated with numerical simulations of a benzenedithiol molecular junction.

  18. Integration of Bioinformatics into an Undergraduate Biology Curriculum and the Impact on Development of Mathematical Skills

    Science.gov (United States)

    Wightman, Bruce; Hark, Amy T.

    2012-01-01

    The development of fields such as bioinformatics and genomics has created new challenges and opportunities for undergraduate biology curricula. Students preparing for careers in science, technology, and medicine need more intensive study of bioinformatics and more sophisticated training in the mathematics on which this field is based. In this…

  19. Shunted-Josephson-junction model. I. The autonomous case

    DEFF Research Database (Denmark)

    Belykh, V. N.; Pedersen, Niels Falsig; Sørensen, O. H.

    1977-01-01

    The shunted-Josephson-junction model: the parallel combination of a capacitance, a phase-dependent conductance, and an ideal junction element biased by a constant current, is discussed for arbitrary values of the junction parameters. The main objective is to provide a qualitative understanding...... current-voltage curves are presented. The case with a time-dependent monochromatic bias current is treated in a similar fashion in the companion paper....

  20. Joint diseases: from connexins to gap junctions.

    Science.gov (United States)

    Donahue, Henry J; Qu, Roy W; Genetos, Damian C

    2017-12-19

    Connexons form the basis of hemichannels and gap junctions. They are composed of six tetraspan proteins called connexins. Connexons can function as individual hemichannels, releasing cytosolic factors (such as ATP) into the pericellular environment. Alternatively, two hemichannel connexons from neighbouring cells can come together to form gap junctions, membrane-spanning channels that facilitate cell-cell communication by enabling signalling molecules of approximately 1 kDa to pass from one cell to an adjacent cell. Connexins are expressed in joint tissues including bone, cartilage, skeletal muscle and the synovium. Indicative of their importance as gap junction components, connexins are also known as gap junction proteins, but individual connexin proteins are gaining recognition for their channel-independent roles, which include scaffolding and signalling functions. Considerable evidence indicates that connexons contribute to the function of bone and muscle, but less is known about the function of connexons in other joint tissues. However, the implication that connexins and gap junctional channels might be involved in joint disease, including age-related bone loss, osteoarthritis and rheumatoid arthritis, emphasizes the need for further research into these areas and highlights the therapeutic potential of connexins.

  1. Electrochemically assisted mechanically controllable break junction studies on the stacking configurations of oligo(phenylene ethynylene)s molecular junctions

    International Nuclear Information System (INIS)

    Zheng, Jue-Ting; Yan, Run-Wen; Tian, Jing-Hua; Liu, Jun-Yang; Pei, Lin-Qi; Wu, De-Yin; Dai, Ke; Yang, Yang; Jin, Shan

    2016-01-01

    Highlights: • I-V characteristics of a series of oligo(phenylene ethynylene)s molecular junctions were measured. • Conductance values were found to be dependent on molecular length and substituent group. • The measured low conductance values were explained by theoretical calculations. • EC-MCBJ is feasible to fabricate and characterize molecular junctions. - Abstract: We demonstrate an electrochemically assisted mechanically controllable break junction (EC-MCBJ) approach for current-voltage characteristic (I-V curve) measurements of metal/molecule/metal junctions. A series of oligo(phenylene ethynylene)s compounds (OPEs), including those involving electron withdrawing substituent group and different backbone lengths, had been successfully designed, synthesized, and placed onto the fabricated nanogap to form molecular junctions. The observed evolution in the measured conductances of OPEs indicates that there is a dependence of conductance on molecular length and substituent group. Compared with those extracted from conductance histogram construction, the conductances of OPEs measured from I-V curves are considerably lower. Based on the transmission spectra of OPEs that calculated by density functional theory (DFT) combined with non-equilibrium Green’s function (NEGF) method, this difference was attributed to our distinct experimental operation, which may give rise to a stacking configuration of two OPE molecules.

  2. ALTERNATIVE MATERIALS FOR RAMP-EDGE SNS JUNCTIONS

    International Nuclear Information System (INIS)

    Jia, Q.; Fan, Y.; Gim, Y.

    1999-01-01

    We report on the processing optimization and fabrication of ramp-edge high-temperature superconducting junctions by using alternative materials for both superconductor electrodes and normal-metal barrier. By using Ag-doped YBa 2 Cu 3 O 7-x (Ag:YBCO) as electrodes and a cation-modified compound of (Pr y Gd 0.6-y )Ca 0.4 Ba 1.6 La 0.4 Cu 3 O 7 (y = 0.4, 0.5, and 0.6) as a normal-metal barrier, high-temperature superconducting Josephson junctions have been fabricated in a ramp-edge superconductor/normal-metal/superconductor (SNS) configuration. By using Ag:YBCO as electrodes, we have found that the processing controllability /reproducibility and the stability of the SNS junctions are improved substantially. The junctions fabricated with these alternative materials show well-defined RSJ-like current vs voltage characteristics at liquid nitrogen temperature

  3. Electron-beam damaged high-temperature superconductor Josephson junctions

    International Nuclear Information System (INIS)

    Pauza, A.J.; Booij, W.E.; Herrmann, K.; Moore, D.F.; Blamire, M.G.; Rudman, D.A.; Vale, L.R.

    1997-01-01

    Results are presented on the fabrication and characterization of high critical temperature Josephson junctions in thin films of YBa 2 Cu 3 O 7-δ produced by the process of focused electron-beam irradiation using 350 keV electrons. The junctions so produced have uniform spatial current densities, can be described in terms of the resistive shunted junction model, and their current densities can be tailored for a given operating temperature. The physical properties of the damaged barrier can be described as a superconducting material of either reduced or zero critical temperature (T c ), which has a length of ∼15nm. The T c reduction is caused primarily by oxygen Frenkel defects in the Cu - O planes. The large beam currents used in the fabrication of the junctions mean that the extent of the barrier is limited by the incident electron-beam diameter, rather than by scattering within the film. The properties of the barrier can be calculated using a superconductor/normal/superconductor (SNS) junction model with no boundary resistance. From the SNS model, we can predict the scaling of the critical current resistance (I c R n ) product and gain insight into the factors controlling the junction properties, T c , and reproducibility. From the measured I c R n scaling data, we can predict the I c R n product of a junction at a given operating temperature with a given current density. I c R n products of ∼2mV can be achieved at 4.2 K. The reproducibility of several junctions in a number of samples can be characterized by the ratio of the maximum-to-minimum critical currents on the same substrate of less than 1.4. Stability over several months has been demonstrated at room and refrigerator temperatures (297 and 281 K) for junctions that have been initially over damaged and then annealed at temperatures ∼380K. (Abstract Truncated)

  4. PATRIC, the bacterial bioinformatics database and analysis resource

    Science.gov (United States)

    Wattam, Alice R.; Abraham, David; Dalay, Oral; Disz, Terry L.; Driscoll, Timothy; Gabbard, Joseph L.; Gillespie, Joseph J.; Gough, Roger; Hix, Deborah; Kenyon, Ronald; Machi, Dustin; Mao, Chunhong; Nordberg, Eric K.; Olson, Robert; Overbeek, Ross; Pusch, Gordon D.; Shukla, Maulik; Schulman, Julie; Stevens, Rick L.; Sullivan, Daniel E.; Vonstein, Veronika; Warren, Andrew; Will, Rebecca; Wilson, Meredith J.C.; Yoo, Hyun Seung; Zhang, Chengdong; Zhang, Yan; Sobral, Bruno W.

    2014-01-01

    The Pathosystems Resource Integration Center (PATRIC) is the all-bacterial Bioinformatics Resource Center (BRC) (http://www.patricbrc.org). A joint effort by two of the original National Institute of Allergy and Infectious Diseases-funded BRCs, PATRIC provides researchers with an online resource that stores and integrates a variety of data types [e.g. genomics, transcriptomics, protein–protein interactions (PPIs), three-dimensional protein structures and sequence typing data] and associated metadata. Datatypes are summarized for individual genomes and across taxonomic levels. All genomes in PATRIC, currently more than 10 000, are consistently annotated using RAST, the Rapid Annotations using Subsystems Technology. Summaries of different data types are also provided for individual genes, where comparisons of different annotations are available, and also include available transcriptomic data. PATRIC provides a variety of ways for researchers to find data of interest and a private workspace where they can store both genomic and gene associations, and their own private data. Both private and public data can be analyzed together using a suite of tools to perform comparative genomic or transcriptomic analysis. PATRIC also includes integrated information related to disease and PPIs. All the data and integrated analysis and visualization tools are freely available. This manuscript describes updates to the PATRIC since its initial report in the 2007 NAR Database Issue. PMID:24225323

  5. Shot noise in YBCO bicrystal Josephson junctions

    DEFF Research Database (Denmark)

    Constantinian, K.Y.; Ovsyannikov, G.A.; Borisenko, I.V.

    2003-01-01

    We measured spectral noise density in YBCO symmetric bicrystal Josephson junctions on sapphire substrates at bias voltages up to 100 mV and T 4.2 K. Normal state resistance of the Josephson junctions, R-N = 20-90 Omega and ICRN up to 2.2 mV have been observed in the experimental samples. Noise...... may explain the experimentally measured linewidth broadening of Josephson oscillations at mm and submm wave frequencies in high-Tc superconducting junctions. Experimental results are discussed in terms of bound states existing at surfaces of d-wave superconducting electrodes....

  6. Polarized-photon frequency filter in double-ferromagnetic barrier silicene junction

    Energy Technology Data Exchange (ETDEWEB)

    Chantngarm, Peerasak; Yamada, Kou [Domain of Mechanical Science and Technology, Graduate School of Science and Technology, Gunma University, Gunma (Japan); Soodchomshom, Bumned, E-mail: Bumned@hotmail.com [Department of Physics, Faculty of Science, Kasetsart University Bangkok 10900 (Thailand)

    2017-05-01

    We present an analytical study of effects from circularly polarized light illumination on controlling spin-valley currents in a dual ferromagnetic-gated silicene. Two different perpendicular electric fields are applied into the ferromagnetic (FM) gates and the photo-irradiated normal (NM) area between the gates. One parallel (P) and two anti-parallel (AP) configurations of exchange fields applied along with chemical potential to the gates are used in this investigation. Interestingly, the studied junction might give rise to polarized-photon frequency filter. Spin-valley filtering can be achieved at the off-resonant frequency region with appropriate direction of electric fields and the configuration of exchange fields (AP-1 or AP-2). Under the photo irradiation, this study found that tunneling magnetoresistance (TMR) is controllable to achieve giant magnetoresistance (GMR) by adjusting electric fields or chemical potentials. Our study suggests the potential of photo-sensing devices in spin-valleytronics realm. - Highlights: • Photon-frequency control of spin-valley currents in silicene is investigated. • Complete photon frequency filtering effect is predicted. • Giant magnetoresistance induced by polarized photon is also found. • The junction is applicable for photo-sensing devices in spin-valleytronics realm.

  7. Intraepithelial lymphocytes express junctional molecules in murine small intestine

    International Nuclear Information System (INIS)

    Inagaki-Ohara, Kyoko; Sawaguchi, Akira; Suganuma, Tatsuo; Matsuzaki, Goro; Nawa, Yukifumi

    2005-01-01

    Intestinal intraepithelial lymphocytes (IEL) that reside at basolateral site regulate the proliferation and differentiation of epithelial cells (EC) for providing a first line of host defense in intestine. However, it remains unknown how IEL interact and communicate with EC. Here, we show that IEL express junctional molecules like EC. We identified mRNA expression of the junctional molecules in IEL such as zonula occludens (ZO)-1, occludin and junctional adhesion molecule (JAM) (tight junction), β-catenin and E-cadherin (adherens junction), and connexin26 (gap junction). IEL constitutively expressed occludin and E-cadherin at protein level, while other T cells in the thymus, spleen, liver, mesenteric lymph node, and Peyer's patches did not. γδ IEL showed higher level of these expressions than αβ IEL. The expression of occludin was augmented by anti-CD3 Ab stimulation. These results suggest the possibility of a novel role of IEL concerning epithelial barrier and communication between IEL and EC

  8. Affordance-based individuation of junctions in Open Street Map

    Directory of Open Access Journals (Sweden)

    Simon Scheider

    2012-06-01

    Full Text Available We propose an algorithm that can be used to identify automatically the subset of street segments of a road network map that corresponds to a junction. The main idea is to use turn-compliant locomotion affordances, i.e., restricted patterns of supported movement, in order to specify junctions independently of their data representation, and in order to motivate tractable individuation and classification strategies. We argue that common approaches based solely on geometry or topology of the street segment graph are useful but insufficient proxies. They miss certain turn restrictions essential to junctions. From a computational viewpoint, the main challenge of affordance-based individuation of junctions lies in its complex recursive definition. In this paper, we show how Open Street Map data can be interpreted into locomotion affordances, and how the recursive junction definition can be translated into a deterministic algorithm. We evaluate this algorithm by applying it to small map excerpts in order to delineate the contained junctions.

  9. STIM proteins and the endoplasmic reticulum-plasma membrane junctions.

    Science.gov (United States)

    Carrasco, Silvia; Meyer, Tobias

    2011-01-01

    Eukaryotic organelles can interact with each other through stable junctions where the two membranes are kept in close apposition. The junction that connects the endoplasmic reticulum to the plasma membrane (ER-PM junction) is unique in providing a direct communication link between the ER and the PM. In a recently discovered signaling process, STIM (stromal-interacting molecule) proteins sense a drop in ER Ca(2+) levels and directly activate Orai PM Ca(2+) channels across the junction space. In an inverse process, a voltage-gated PM Ca(2+) channel can directly open ER ryanodine-receptor Ca(2+) channels in striated-muscle cells. Although ER-PM junctions were first described 50 years ago, their broad importance in Ca(2+) signaling, as well as in the regulation of cholesterol and phosphatidylinositol lipid transfer, has only recently been realized. Here, we discuss research from different fields to provide a broad perspective on the structures and unique roles of ER-PM junctions in controlling signaling and metabolic processes.

  10. Towards understanding the lifespan extension by reduced insulin signaling: bioinformatics analysis of DAF-16/FOXO direct targets in Caenorhabditis elegans.

    Science.gov (United States)

    Li, Yan-Hui; Zhang, Gai-Gai

    2016-04-12

    DAF-16, the C. elegans FOXO transcription factor, is an important determinant in aging and longevity. In this work, we manually curated FOXODB http://lyh.pkmu.cn/foxodb/, a database of FOXO direct targets. It now covers 208 genes. Bioinformatics analysis on 109 DAF-16 direct targets in C. elegans found interesting results. (i) DAF-16 and transcription factor PQM-1 co-regulate some targets. (ii) Seventeen targets directly regulate lifespan. (iii) Four targets are involved in lifespan extension induced by dietary restriction. And (iv) DAF-16 direct targets might play global roles in lifespan regulation.

  11. Bioinformatics for Undergraduates: Steps toward a Quantitative Bioscience Curriculum

    Science.gov (United States)

    Chapman, Barbara S.; Christmann, James L.; Thatcher, Eileen F.

    2006-01-01

    We describe an innovative bioinformatics course developed under grants from the National Science Foundation and the California State University Program in Research and Education in Biotechnology for undergraduate biology students. The project has been part of a continuing effort to offer students classroom experiences focused on principles and…

  12. Bioinformatic tools and guideline for PCR primer design | Abd ...

    African Journals Online (AJOL)

    Bioinformatics has become an essential tool not only for basic research but also for applied research in biotechnology and biomedical sciences. Optimal primer sequence and appropriate primer concentration are essential for maximal specificity and efficiency of PCR. A poorly designed primer can result in little or no ...

  13. Morphological variation of the kidney secondary to junctional parenchyma on ultrasound

    International Nuclear Information System (INIS)

    Lee, Ji Yoon; Park, Byeong Ho; Nam, Kyeong Jin; Choi, Jong Cheol; Koo, Bong Sig; Kim, Jou Yeoun; Ahn, Seung Eon; Lee, Yung Il

    1996-01-01

    To evaluate the prevalance of morphological variation of the kidney secondary to junctional parenchyma, as well as to analyze the ultrasonographic features of junctional parenchyma. Two hundred and eighty two kidneys of 141 patient without clinical or radiologic evidence of renal disease were prospectively analysed using ultrasound. In all patients, ultrasonograms were obtained in sagittal, coronal and transaxial planes. The kidney was considered to have morphological variation if the ultrasonogram demonstrated junctional parenchymal defect of line ; those showing such variation were classified as one of three types : continuous, discontinuous, or junctional parenchymal line or defect without junctional parenchyma. The prevalance and ultrasonographic features of the kidneys were evaluated. Morphological variation was noted in 71 cases(25%). the continuous type accounted for 54% of these, the discontinuous type for 38%, and junctional parenchymal defect or line without junctional parenchyma for 8%. In all cases, junctional parenchyma was located approximately at the junction of the upper and middle third of the kidney, and had the same echogenecity as the renal cortex. An understanding of the morphological variation of the kidney resulting from junctional renal parenchyma would be helpful in differentiating pseudotumor from true renal neoplasm

  14. Bioinformatics analysis and detection of gelatinase encoded gene in Lysinibacillussphaericus

    Science.gov (United States)

    Repin, Rul Aisyah Mat; Mutalib, Sahilah Abdul; Shahimi, Safiyyah; Khalid, Rozida Mohd.; Ayob, Mohd. Khan; Bakar, Mohd. Faizal Abu; Isa, Mohd Noor Mat

    2016-11-01

    In this study, we performed bioinformatics analysis toward genome sequence of Lysinibacillussphaericus (L. sphaericus) to determine gene encoded for gelatinase. L. sphaericus was isolated from soil and gelatinase species-specific bacterium to porcine and bovine gelatin. This bacterium offers the possibility of enzymes production which is specific to both species of meat, respectively. The main focus of this research is to identify the gelatinase encoded gene within the bacteria of L. Sphaericus using bioinformatics analysis of partially sequence genome. From the research study, three candidate gene were identified which was, gelatinase candidate gene 1 (P1), NODE_71_length_93919_cov_158.931839_21 which containing 1563 base pair (bp) in size with 520 amino acids sequence; Secondly, gelatinase candidate gene 2 (P2), NODE_23_length_52851_cov_190.061386_17 which containing 1776 bp in size with 591 amino acids sequence; and Thirdly, gelatinase candidate gene 3 (P3), NODE_106_length_32943_cov_169.147919_8 containing 1701 bp in size with 566 amino acids sequence. Three pairs of oligonucleotide primers were designed and namely as, F1, R1, F2, R2, F3 and R3 were targeted short sequences of cDNA by PCR. The amplicons were reliably results in 1563 bp in size for candidate gene P1 and 1701 bp in size for candidate gene P3. Therefore, the results of bioinformatics analysis of L. Sphaericus resulting in gene encoded gelatinase were identified.

  15. Contribution to the theoretical and experimental study of the electron-volt effect in N-P junctions

    International Nuclear Information System (INIS)

    Nguyen Van, Dong

    1959-07-01

    The proposed aim of this work is to study the behaviour of a semi-conducting junction under the action of β radiation. These studies were directed on the one hand to direct conversion of the energy radiated by a radioactive source to electric energy usable by means of N-P junctions, and on the other hand to the kinetics of defects produced in the semi-conductor crystals by high energy β rays. In the first part of this work, an attempt has been made to complete the earlier theories of the electron-volt effect in junctions by analysing the effect mathematically. This has led to a single equation containing the electrical and geometric parameters of the semi-conductor and of the junction, and the properties of the incident radiation. Apart from this, the diffusion current of the charge carriers created by the bombardment has been studied in more detail, taking into account all the factors which play a part in the expression of the efficiency of charge collection of a junction. In the second part, where experiments on the irradiation of N-P junctions have been carried out with a 90 Sr- 90 Y source, mention is made of the particular advantages of a gallium arsenide junction capable of operating at relatively high temperatures (in the region of 100 deg. C). The third part presents the study of defects created in a semi-conductor crystal by high-energy β rays, according to the method of electron-volt effect. It is shown here that from a study of the degradation of the short-circuit current of the junction it may be possible to determine the recombination level and the probabilities of electron and hole capture, as from a study of the lifetime decay of minority carriers in a crystal of known type. Experiments on the bombardment of Ge junctions by 2 MeV electrons were performed with a Van de Graaff. Very clear anomalies of the electron-volt effect at 100 deg. K were observed. An attempt was made at interpretation of these anomalies in the junction, taking into account

  16. Visualizing supercurrents in 0-{pi} ferromagnetic Josephson tunnel junctions

    Energy Technology Data Exchange (ETDEWEB)

    Goldobin, Edward; Guerlich, Christian; Gaber, Tobias; Koelle, Dieter; Kleiner, Reinhold [Physikalisches Institut and Center for Collective Quantum Phenomena, Universitaet Tuebingen (Germany); Weides, Martin; Kohlstedt, Hermann [Institute of Solid State Physics, Reserch Center Juelich (Germany)

    2009-07-01

    So-called 0 and {pi} Josephson junctions can be treated as having positive and negative critical currents. This implies that the same phase shift applied to a Josephson junction causes counterflow of supercurrents in 0 and in {pi} junctions connected in parallel provided they are short in comparison with Josephson penetration depth {lambda}{sub J}. We have fabricated several 0, {pi}, 0-{pi}, 0-{pi}-0 and 20 x (0-{pi}-) planar superconductor-insulator-ferromagnet-superconductor Josephson junctions and studied the spatial supercurrent density distribution j{sub s}(x,y) across the junction area using low temperature scanning electron microscopy. At zero magnetic field we clearly see counterflow of the supercurrents in 0 and {pi} regions. The picture also changes consistently in the applied magnetic field.

  17. Integration of Proteomics, Bioinformatics, and Systems Biology in Traumatic Brain Injury Biomarker Discovery

    Science.gov (United States)

    Guingab-Cagmat, J.D.; Cagmat, E.B.; Hayes, R.L.; Anagli, J.

    2013-01-01

    Traumatic brain injury (TBI) is a major medical crisis without any FDA-approved pharmacological therapies that have been demonstrated to improve functional outcomes. It has been argued that discovery of disease-relevant biomarkers might help to guide successful clinical trials for TBI. Major advances in mass spectrometry (MS) have revolutionized the field of proteomic biomarker discovery and facilitated the identification of several candidate markers that are being further evaluated for their efficacy as TBI biomarkers. However, several hurdles have to be overcome even during the discovery phase which is only the first step in the long process of biomarker development. The high-throughput nature of MS-based proteomic experiments generates a massive amount of mass spectral data presenting great challenges in downstream interpretation. Currently, different bioinformatics platforms are available for functional analysis and data mining of MS-generated proteomic data. These tools provide a way to convert data sets to biologically interpretable results and functional outcomes. A strategy that has promise in advancing biomarker development involves the triad of proteomics, bioinformatics, and systems biology. In this review, a brief overview of how bioinformatics and systems biology tools analyze, transform, and interpret complex MS datasets into biologically relevant results is discussed. In addition, challenges and limitations of proteomics, bioinformatics, and systems biology in TBI biomarker discovery are presented. A brief survey of researches that utilized these three overlapping disciplines in TBI biomarker discovery is also presented. Finally, examples of TBI biomarkers and their applications are discussed. PMID:23750150

  18. Bioinformatics Evaluation of Plant Chlorophyllase, the Key Enzyme in Chlorophyll Degradation

    Directory of Open Access Journals (Sweden)

    Ebrahim Sharafi

    2017-06-01

    Full Text Available Background and Objective: Chlorophyllase catalyzes the hydrolysis of chlorophylls to chlorophyllide and phytol. Recently, several applications including removal of chlorophylls from vegetable oils, use in laundry detergents and production of chlorophyllides have been described for chlorophyllase. However, there is little information about the biochemical characteristics of chlorophyllases.Material and Methods: 35 chlorophyllase protein sequences were obtained from the National Centre for Biotechnology Information database. All of the sequences were analyzed using bioinformatics tools for their conserved domain, phylogenetic relationships and biochemical characteristics.Results and Conclusion: The overall domain architecture of chlorophyllases consisted of the esterases/lipases superfamily domain over their full length and the alpha/beta hydrolase family domain over the middle part of their sequences. Plant chlorophyllases could be classified into 4 clades. Molecular weight and pI of the chlorophyllases ranged 32.65-37.77 kDa and 4.80-8.97, respectively. The most stable chlorophyllase is probably obtained from Malus domestica. Chlorophyllases form Solanum pennellii, Triticum aestivum, Triticum urartu, Arabidopsis lyrata, Pachira macrocarpa, Prunus mume and Malus domestica were predicted to be soluble upon overexpression in Escherichia coli, Beta vulgaris and Chenopodium album chlorophyllases were predicted to form no disulfide bond. Chlorophyllases from Jatropha curcas, Amborella trichopod, Setaria italica, Piper betle, Triticum urartu and Arabidopsis thaliana were predicted to be in non-N-glycosylated form.Conflict of interest: The authors declare no conflict of interest.

  19. Fabrication of magnetic tunnel junctions with epitaxial and textured ferromagnetic layers

    Science.gov (United States)

    Chang, Y. Austin; Yang, Jianhua Joshua

    2008-11-11

    This invention relates to magnetic tunnel junctions and methods for making the magnetic tunnel junctions. The magnetic tunnel junctions include a tunnel barrier oxide layer sandwiched between two ferromagnetic layers both of which are epitaxial or textured with respect to the underlying substrate upon which the magnetic tunnel junctions are grown. The magnetic tunnel junctions provide improved magnetic properties, sharper interfaces and few defects.

  20. Spin, Vibrations and Radiation in Superconducting Junctions

    NARCIS (Netherlands)

    Padurariu, C.

    2013-01-01

    This thesis presents the theoretical study of superconducting transport in several devices based on superconducting junctions. The important feature of these devices is that the transport properties of the junction are modified by the interaction with another physical system integrated in the

  1. Regulation of Tight Junctions in Upper Airway Epithelium

    Directory of Open Access Journals (Sweden)

    Takashi Kojima

    2013-01-01

    Full Text Available The mucosal barrier of the upper respiratory tract including the nasal cavity, which is the first site of exposure to inhaled antigens, plays an important role in host defense in terms of innate immunity and is regulated in large part by tight junctions of epithelial cells. Tight junction molecules are expressed in both M cells and dendritic cells as well as epithelial cells of upper airway. Various antigens are sampled, transported, and released to lymphocytes through the cells in nasal mucosa while they maintain the integrity of the barrier. Expression of tight junction molecules and the barrier function in normal human nasal epithelial cells (HNECs are affected by various stimuli including growth factor, TLR ligand, and cytokine. In addition, epithelial-derived thymic stromal lymphopoietin (TSLP, which is a master switch for allergic inflammatory diseases including allergic rhinitis, enhances the barrier function together with an increase of tight junction molecules in HNECs. Furthermore, respiratory syncytial virus infection in HNECs in vitro induces expression of tight junction molecules and the barrier function together with proinflammatory cytokine release. This paper summarizes the recent progress in our understanding of the regulation of tight junctions in the upper airway epithelium under normal, allergic, and RSV-infected conditions.

  2. In silico cloning and bioinformatic analysis of PEPCK gene in ...

    African Journals Online (AJOL)

    Phosphoenolpyruvate carboxykinase (PEPCK), a critical gluconeogenic enzyme, catalyzes the first committed step in the diversion of tricarboxylic acid cycle intermediates toward gluconeogenesis. According to the relative conservation of homologous gene, a bioinformatics strategy was applied to clone Fusarium ...

  3. Spin-dependent quasiparticle tunneling in junction superconductor-isolator-ferromagnetic

    International Nuclear Information System (INIS)

    Shlapak, Yu.V.; Shaternik, V.E.; Rudenko, E.M.

    2001-01-01

    The influence of Andreev reflection of quasiparticles in transparent tunnel junctions of superconductor-isolator-ferromagnetic on electric-current transport is studied within the framework of the Blonder-Tinkham-Klapwijk (BTK) model. It's obtained that current and signal-to-noise ratio can be increased for the memory cell by using in it the double-barrier tunnel junction ferromagnetic-isolator-superconductor-isolator-ferromagnetic instead off the usual tunnel junction ferromagnetic-isolator-ferromagnetic. The evolution of non-linear (tunnel-type) current-voltage characteristics with increasing of the junction transparency is described. (orig.)

  4. mockrobiota: a Public Resource for Microbiome Bioinformatics Benchmarking.

    Science.gov (United States)

    Bokulich, Nicholas A; Rideout, Jai Ram; Mercurio, William G; Shiffer, Arron; Wolfe, Benjamin; Maurice, Corinne F; Dutton, Rachel J; Turnbaugh, Peter J; Knight, Rob; Caporaso, J Gregory

    2016-01-01

    Mock communities are an important tool for validating, optimizing, and comparing bioinformatics methods for microbial community analysis. We present mockrobiota, a public resource for sharing, validating, and documenting mock community data resources, available at http://caporaso-lab.github.io/mockrobiota/. The materials contained in mockrobiota include data set and sample metadata, expected composition data (taxonomy or gene annotations or reference sequences for mock community members), and links to raw data (e.g., raw sequence data) for each mock community data set. mockrobiota does not supply physical sample materials directly, but the data set metadata included for each mock community indicate whether physical sample materials are available. At the time of this writing, mockrobiota contains 11 mock community data sets with known species compositions, including bacterial, archaeal, and eukaryotic mock communities, analyzed by high-throughput marker gene sequencing. IMPORTANCE The availability of standard and public mock community data will facilitate ongoing method optimizations, comparisons across studies that share source data, and greater transparency and access and eliminate redundancy. These are also valuable resources for bioinformatics teaching and training. This dynamic resource is intended to expand and evolve to meet the changing needs of the omics community.

  5. Ileocolic junction resection in dogs and cats: 18 cases.

    Science.gov (United States)

    Fernandez, Yordan; Seth, Mayank; Murgia, Daniela; Puig, Jordi

    2017-12-01

    There is limited veterinary literature about dogs or cats with ileocolic junction resection and its long-term follow-up. To evaluate the long-term outcome in a cohort of dogs and cats that underwent resection of the ileocolic junction without extensive (≥50%) small or large bowel resection. Medical records of dogs and cats that had the ileocolic junction resected were reviewed. Follow-up information was obtained either by telephone interview or e-mail correspondence with the referring veterinary surgeons. Nine dogs and nine cats were included. The most common cause of ileocolic junction resection was intussusception in dogs (5/9) and neoplasia in cats (6/9). Two dogs with ileocolic junction lymphoma died postoperatively. Only 2 of 15 animals, for which long-term follow-up information was available, had soft stools. However, three dogs with suspected chronic enteropathy required long-term treatment with hypoallergenic diets alone or in combination with medical treatment to avoid the development of diarrhoea. Four of 6 cats with ileocolic junction neoplasia were euthanised as a consequence of progressive disease. Dogs and cats undergoing ileocolic junction resection and surviving the perioperative period may have a good long-term outcome with mild or absent clinical signs but long-term medical management may be required.

  6. Antireflection coating design for series interconnected multi-junction solar cells

    International Nuclear Information System (INIS)

    Aiken, Daniel J.

    1999-01-01

    AR coating design for multi-junction solar cells can be more challenging than in the single junction case. Reasons for this are discussed. Analytical expressions used to optimize AR coatings for single junction solar cells are extended for use in monolithic, series interconnected multi-junction solar cell AR coating design. The result is an analytical expression which relates the solar cell performance (through J(sub SC)) directly to the AR coating design through the device reflectance. It is also illustrated how AR coating design can be used to provide an additional degree of freedom for current matching multi-junction devices

  7. Holographic s-wave and p-wave Josephson junction with backreaction

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yong-Qiang; Liu, Shuai [Institute of Theoretical Physics, Lanzhou University,Lanzhou 730000, People’s Republic of (China)

    2016-11-22

    In this paper, we study the holographic models of s-wave and p-wave Josephoson junction away from probe limit in (3+1)-dimensional spacetime, respectively. With the backreaction of the matter, we obtained the anisotropic black hole solution with the condensation of matter fields. We observe that the critical temperature of Josephoson junction decreases with increasing backreaction. In addition to this, the tunneling current and condenstion of Josephoson junction become smaller as backreaction grows larger, but the relationship between current and phase difference still holds for sine function. Moreover, condenstion of Josephoson junction deceases with increasing width of junction exponentially.

  8. Functional anatomy of the human ureterovesical junction

    NARCIS (Netherlands)

    Roshani, H.; Dabhoiwala, N. F.; Verbeek, F. J.; Lamers, W. H.

    1996-01-01

    BACKGROUND: The valve function of the ureterovesical-junction (UVJ) is responsible for protection of the low pressure upper urinary tract from the refluxing of urine from the bladder. Controversy about the microanatomy of the human ureterovesical-junction persists. METHODS: Ten (3 male and 7 female)

  9. The Revolution in Viral Genomics as Exemplified by the Bioinformatic Analysis of Human Adenoviruses

    Directory of Open Access Journals (Sweden)

    Sarah Torres

    2010-06-01

    Full Text Available Over the past 30 years, genomic and bioinformatic analysis of human adenoviruses has been achieved using a variety of DNA sequencing methods; initially with the use of restriction enzymes and more currently with the use of the GS FLX pyrosequencing technology. Following the conception of DNA sequencing in the 1970s, analysis of adenoviruses has evolved from 100 base pair mRNA fragments to entire genomes. Comparative genomics of adenoviruses made its debut in 1984 when nucleotides and amino acids of coding sequences within the hexon genes of two human adenoviruses (HAdV, HAdV–C2 and HAdV–C5, were compared and analyzed. It was determined that there were three different zones (1-393, 394-1410, 1411-2910 within the hexon gene, of which HAdV–C2 and HAdV–C5 shared zones 1 and 3 with 95% and 89.5% nucleotide identity, respectively. In 1992, HAdV-C5 became the first adenovirus genome to be fully sequenced using the Sanger method. Over the next seven years, whole genome analysis and characterization was completed using bioinformatic tools such as blastn, tblastx, ClustalV and FASTA, in order to determine key proteins in species HAdV-A through HAdV-F. The bioinformatic revolution was initiated with the introduction of a novel species, HAdV-G, that was typed and named by the use of whole genome sequencing and phylogenetics as opposed to traditional serology. HAdV bioinformatics will continue to advance as the latest sequencing technology enables scientists to add to and expand the resource databases. As a result of these advancements, how novel HAdVs are typed has changed. Bioinformatic analysis has become the revolutionary tool that has significantly accelerated the in-depth study of HAdV microevolution through comparative genomics.

  10. Double-well potential in annular Josephson junction

    International Nuclear Information System (INIS)

    Shaju, P.D.; Kuriakose, V.C.

    2004-01-01

    A double-well potential suitable for quantum-coherent vortex tunnelling can be created in an annular Josephson junction by inserting a microshort in the junction and by applying an in-plane dc magnetic field. Analysis shows that the intensity of the magnetic field determines the depth of the potential well and the strength of the microshort controls the potential barrier height while a dc bias across the junction tilts the potential well. At milli-Kelvin temperatures, the system is expected to behave as a quantum two-level system and may be useful in designing vortex qubits

  11. Parametric frequency conversion in long Josephson junctions

    International Nuclear Information System (INIS)

    Irie, F.; Ashihara, S.; Yoshida, K.

    1976-01-01

    Current steps at voltages corresponding to the parametric coupling between an applied r.f. field and junction resonant modes have been observed in long Josephson tunnel junctions in the flux-flow state. The observed periodic variations of the step height due to the applied magnetic field are explained quantitatively by a perturbational analysis using Josephson phase equations. The present study demonstrates that the moving vortex array can serve as a coherent pump wave for signal waves propagating in the barrier region, which indicates, as a result, the possibility of traveling-wave parametric devices with long Josephson tunnel junctions. (author)

  12. Bioinformatics in the Netherlands : The value of a nationwide community

    NARCIS (Netherlands)

    van Gelder, Celia W.G.; Hooft, Rob; van Rijswijk, Merlijn; van den Berg, Linda; Kok, Ruben; Reinders, M.J.T.; Mons, Barend; Heringa, Jaap

    2017-01-01

    This review provides a historical overview of the inception and development of bioinformatics research in the Netherlands. Rooted in theoretical biology by foundational figures such as Paulien Hogeweg (at Utrecht University since the 1970s), the developments leading to organizational structures

  13. Current-induced magnetization switching in atom-thick tungsten engineered perpendicular magnetic tunnel junctions with large tunnel magnetoresistance.

    Science.gov (United States)

    Wang, Mengxing; Cai, Wenlong; Cao, Kaihua; Zhou, Jiaqi; Wrona, Jerzy; Peng, Shouzhong; Yang, Huaiwen; Wei, Jiaqi; Kang, Wang; Zhang, Youguang; Langer, Jürgen; Ocker, Berthold; Fert, Albert; Zhao, Weisheng

    2018-02-14

    Perpendicular magnetic tunnel junctions based on MgO/CoFeB structures are of particular interest for magnetic random-access memories because of their excellent thermal stability, scaling potential, and power dissipation. However, the major challenge of current-induced switching in the nanopillars with both a large tunnel magnetoresistance ratio and a low junction resistance is still to be met. Here, we report spin transfer torque switching in nano-scale perpendicular magnetic tunnel junctions with a magnetoresistance ratio up to 249% and a resistance area product as low as 7.0 Ω µm 2 , which consists of atom-thick W layers and double MgO/CoFeB interfaces. The efficient resonant tunnelling transmission induced by the atom-thick W layers could contribute to the larger magnetoresistance ratio than conventional structures with Ta layers, in addition to the robustness of W layers against high-temperature diffusion during annealing. The critical switching current density could be lower than 3.0 MA cm -2 for devices with a 45-nm radius.

  14. An overview of the Hadoop/MapReduce/HBase framework and its current applications in bioinformatics

    International Nuclear Information System (INIS)

    Taylor, Ronald C.

    2010-01-01

    Bioinformatics researchers are increasingly confronted with analysis of ultra large-scale data sets, a problem that will only increase at an alarming rate in coming years. Recent developments in open source software, that is, the Hadoop project and associated software, provide a foundation for scaling to petabyte scale data warehouses on Linux clusters, providing fault-tolerant parallelized analysis on such data using a programming style named MapReduce. An overview is given of the current usage within the bioinformatics community of Hadoop, a top-level Apache Software Foundation project, and of associated open source software projects. The concepts behind Hadoop and the associated HBase project are defined, and current bioinformatics software that employ Hadoop is described. The focus is on next-generation sequencing, as the leading application area to date.

  15. Gravitation at the Josephson Junction

    Directory of Open Access Journals (Sweden)

    Victor Atanasov

    2018-01-01

    Full Text Available A geometric potential from the kinetic term of a constrained to a curved hyperplane of space-time quantum superconducting condensate is derived. An energy conservation relation involving the geometric field at every material point in the superconductor is demonstrated. At a Josephson junction the energy conservation relation implies the possibility of transforming electric energy into geometric field energy, that is, curvature of space-time. Experimental procedures to verify that the Josephson junction can act as a voltage-to-curvature converter are discussed.

  16. The cranial-spinal junction in medulloblastoma: does it matter?

    International Nuclear Information System (INIS)

    Narayana, Ashwatha; Jeswani, Sam; Paulino, Arnold C.

    1999-01-01

    Purpose: Late effects of treatment in children and young adults with medulloblastoma can be influenced by the technique employed in radiating the craniospinal axis. The purpose of this study is to determine whether the placement of the cranial-spinal junction has an impact on dose to the cervical spinal cord and surrounding organs. Methods and Materials: Five patients underwent computed tomography (CT) simulation in the prone position for craniospinal irradiation. A dose of 36 Gy was prescribed to the entire neuraxis. The doses to the cervical spinal cord and surrounding organs were calculated using a cranial-spinal junction at the C1-C2 vertebral interspace (high junction) or at the lowest point in the neck, with exclusion of the shoulders in the lateral cranial fields (low junction).The volume of critical organs at risk, as well as dose to these structures using the cranial and spinal field(s) were outlined and calculated using the CMS FOCUS 3-dimensional treatment planning system. Results: The average dose to the cervical spinal cord was 11.9% higher than the prescribed dose with the low junction, and 6.7% higher with the high junction. However, doses to the thyroid gland, mandible, pharynx, and larynx were increased by an average of 29.6%, 75.8%, 70.6%, and 227.7%, respectively, by the use of the high junction compared to the low junction. Conclusion: A higher dose to the cervical spinal cord can be minimized by using a high junction. However, this would be at the cost of substantially increased doses to surrounding organs such as the thyroid gland, mandible, pharynx, and larynx. This can be critical in children and young adults, where hypothyroidism, mandibular hypoplasia, and development of second malignancies may be a late sequela of radiation therapy

  17. Terahertz Mixing Characteristics of NbN Superconducting Tunnel Junctions and Related Astronomical Observations

    Science.gov (United States)

    Li, J.

    2010-01-01

    High-sensitivity superconducting SIS (superconductor-insulator-superconductor) mixers are playing an increasingly important role in the terahertz (THz) astronomical observation, which is an emerging research frontier in modern astrophysics. Superconducting SIS mixers with niobium (Nb) tunnel junctions have reached a sensitivity close to the quantum limit, but have a frequency limit about 0.7 THz (i.e., gap frequency of Nb tunnel junctions). Beyond this frequency Nb superconducting films will absorb energetic photons (i.e., energy loss) to break Cooper pairs, thereby resulting in significant degradation of the mixer performance. Therefore, it is of particular interest to develop THz superconducting SIS mixers incorporating tunnel junctions with a larger energy gap. Niobium-nitride (NbN) superconducting tunnel junctions have been long known for their large energy gap, almost double that of Nb ones. With the introduction of epitaxially grown NbN films, the fabrication technology of NbN superconducting tunnel junctions has been considerably improved in the recent years. Nevertheless, their performances are still not as good as Nb ones, and furthermore they are not yet demonstrated in real astronomical applications. Given the facts mentioned above, in this paper we systematically study the quantum mixing behaviors of NbN superconducting tunnel junctions in the THz regime and demonstrate an astronomical testing observation with a 0.5 THz superconducting SIS mixer developed with NbN tunnel junctions. The main results of this study include: (1) successful design and fabrication of a 0.4˜0.6 THz waveguide mixing circuit with the high-dielectric-constant MgO substrate; (2) successful fabrication of NbN superconducting tunnel junctions with the gap voltage reaching 5.6 mV and the quality factor as high as 15; (3) demonstration of a 0.5 THz waveguide NbN superconducting SIS mixer with a measured receiver noise temperature (no correction) as low as five times the quantum limit

  18. Learning Genetics through an Authentic Research Simulation in Bioinformatics

    Science.gov (United States)

    Gelbart, Hadas; Yarden, Anat

    2006-01-01

    Following the rationale that learning is an active process of knowledge construction as well as enculturation into a community of experts, we developed a novel web-based learning environment in bioinformatics for high-school biology majors in Israel. The learning environment enables the learners to actively participate in a guided inquiry process…

  19. Chirality effect in disordered graphene ribbon junctions

    International Nuclear Information System (INIS)

    Long Wen

    2012-01-01

    We investigate the influence of edge chirality on the electronic transport in clean or disordered graphene ribbon junctions. By using the tight-binding model and the Landauer-Büttiker formalism, the junction conductance is obtained. In the clean sample, the zero-magnetic-field junction conductance is strongly chirality-dependent in both unipolar and bipolar ribbons, whereas the high-magnetic-field conductance is either chirality-independent in the unipolar or chirality-dependent in the bipolar ribbon. Furthermore, we study the disordered sample in the presence of magnetic field and find that the junction conductance is always chirality-insensitive for both unipolar and bipolar ribbons with adequate disorders. In addition, the disorder-induced conductance plateaus can exist in all chiral bipolar ribbons provided the disorder strength is moderate. These results suggest that we can neglect the effect of edge chirality in fabricating electronic devices based on the magnetotransport in a disordered graphene ribbon. (paper)

  20. Atlas – a data warehouse for integrative bioinformatics

    Directory of Open Access Journals (Sweden)

    Yuen Macaire MS

    2005-02-01

    Full Text Available Abstract Background We present a biological data warehouse called Atlas that locally stores and integrates biological sequences, molecular interactions, homology information, functional annotations of genes, and biological ontologies. The goal of the system is to provide data, as well as a software infrastructure for bioinformatics research and development. Description The Atlas system is based on relational data models that we developed for each of the source data types. Data stored within these relational models are managed through Structured Query Language (SQL calls that are implemented in a set of Application Programming Interfaces (APIs. The APIs include three languages: C++, Java, and Perl. The methods in these API libraries are used to construct a set of loader applications, which parse and load the source datasets into the Atlas database, and a set of toolbox applications which facilitate data retrieval. Atlas stores and integrates local instances of GenBank, RefSeq, UniProt, Human Protein Reference Database (HPRD, Biomolecular Interaction Network Database (BIND, Database of Interacting Proteins (DIP, Molecular Interactions Database (MINT, IntAct, NCBI Taxonomy, Gene Ontology (GO, Online Mendelian Inheritance in Man (OMIM, LocusLink, Entrez Gene and HomoloGene. The retrieval APIs and toolbox applications are critical components that offer end-users flexible, easy, integrated access to this data. We present use cases that use Atlas to integrate these sources for genome annotation, inference of molecular interactions across species, and gene-disease associations. Conclusion The Atlas biological data warehouse serves as data infrastructure for bioinformatics research and development. It forms the backbone of the research activities in our laboratory and facilitates the integration of disparate, heterogeneous biological sources of data enabling new scientific inferences. Atlas achieves integration of diverse data sets at two levels. First

  1. Magnetic field oscillations of the critical current in long ballistic graphene Josephson junctions

    Science.gov (United States)

    Rakyta, Péter; Kormányos, Andor; Cserti, József

    2016-06-01

    We study the Josephson current in long ballistic superconductor-monolayer graphene-superconductor junctions. As a first step, we have developed an efficient computational approach to calculate the Josephson current in tight-binding systems. This approach can be particularly useful in the long-junction limit, which has hitherto attracted less theoretical interest but has recently become experimentally relevant. We use this computational approach to study the dependence of the critical current on the junction geometry, doping level, and an applied perpendicular magnetic field B . In zero magnetic field we find a good qualitative agreement with the recent experiment of M. Ben Shalom et al. [Nat. Phys. 12, 318 (2016), 10.1038/nphys3592] for the length dependence of the critical current. For highly doped samples our numerical calculations show a broad agreement with the results of the quasiclassical formalism. In this case the critical current exhibits Fraunhofer-like oscillations as a function of B . However, for lower doping levels, where the cyclotron orbit becomes comparable to the characteristic geometrical length scales of the system, deviations from the results of the quasiclassical formalism appear. We argue that due to the exceptional tunability and long mean free path of graphene systems a new regime can be explored where geometrical and dynamical effects are equally important to understand the magnetic field dependence of the critical current.

  2. Junction depth dependence of breakdown in silicon detector diodes

    International Nuclear Information System (INIS)

    Beck, G.A.; Carter, A.A.; Carter, J.R.; Greenwood, N.M.; Lucas, A.D.; Munday, D.J.; Pritchard, T.W.; Robinson, D.; Wilburn, C.D.; Wyllie, K.

    1996-01-01

    The high voltage capability of detector diodes fabricated in the planar process is limited by the high field generated at the edge of the junction.We have fabricated diodes with increased junction depth with respect to our standard process and find a significantly higher breakdown voltage,in reasonable agreement with previous studies of junction breakdown. (orig.)

  3. The fallopian tube-peritoneal junction: a potential site of carcinogenesis.

    Science.gov (United States)

    Seidman, Jeffrey D; Yemelyanova, Anna; Zaino, Richard J; Kurman, Robert J

    2011-01-01

    Junctions between different types of epithelia are hot spots for carcinogenesis, but the junction of the peritoneal mesothelium with the fallopian tubal epithelium, the tubal-peritoneal junction, has not been characterized earlier. A total of 613 junctional foci in 228 fallopian tube specimens from 182 patients who underwent surgery for a variety of indications, including 27 risk-reducing salpingo-oophorectomy specimens, were studied. Edema, congestion, and dilated lymphatic channels were commonly present. Transitional metaplasia was found at the junction in 20% of patients and mesothelial hyperplasia in 17%. Inflammation at the junction was seen predominantly in patients with salpingitis, torsion, or tubal pregnancy. Ovarian-type stroma was found at the junction in 5% of patients, and was found elsewhere in the tubal lamina propria in an additional 27% of patients. Findings in risk-reducing salpingo-oophorectomy specimens in women with BRCA mutations, a personal history of breast cancer, and/or a family history of breast/ovarian cancer were similar to those in controls. Transitional metaplasia specifically localizes to this junction, and is the probable source of Walthard cell nests. The recently highlighted significance of fimbrial tubal epithelium in the origin of serous ovarian carcinomas and a study suggesting that mucinous and Brenner tumors may arise from transitional-type epithelium in this location suggest that the tubal-peritoneal junction may play a role in the development of these tumors. This is the first comprehensive description of a hitherto unrecognized transitional zone in the adnexa.

  4. Regulation of Endothelial Adherens Junctions by Tyrosine Phosphorylation

    Science.gov (United States)

    Adam, Alejandro Pablo

    2015-01-01

    Endothelial cells form a semipermeable, regulated barrier that limits the passage of fluid, small molecules, and leukocytes between the bloodstream and the surrounding tissues. The adherens junction, a major mechanism of intercellular adhesion, is comprised of transmembrane cadherins forming homotypic interactions between adjacent cells and associated cytoplasmic catenins linking the cadherins to the cytoskeleton. Inflammatory conditions promote the disassembly of the adherens junction and a loss of intercellular adhesion, creating openings or gaps in the endothelium through which small molecules diffuse and leukocytes transmigrate. Tyrosine kinase signaling has emerged as a central regulator of the inflammatory response, partly through direct phosphorylation and dephosphorylation of the adherens junction components. This review discusses the findings that support and those that argue against a direct effect of cadherin and catenin phosphorylation in the disassembly of the adherens junction. Recent findings indicate a complex interaction between kinases, phosphatases, and the adherens junction components that allow a fine regulation of the endothelial permeability to small molecules, leukocyte migration, and barrier resealing. PMID:26556953

  5. Towards ferromagnet/superconductor junctions on graphene

    International Nuclear Information System (INIS)

    Pakkayil, Shijin Babu

    2015-01-01

    Ever since A. Aspect et al. performed the famous 1982 experiment to prove the violation of Bell's inequality, there have been suggestions to conduct the same experiment in a solid state system. Some of those proposals involve superconductors as the source of entangled electron pair and spin depended interfaces as the optical analogue of polariser/filter. Semiconductors can serve as the best medium for such an experiment due to their long relaxation lengths. So far there are no reports on a ferromagnet/superconductor junctions on a semiconductor even though such junctions has been successfully realised in metallic systems. This thesis reports the successful fabrication of ferromagnet/superconductor junction along with characterising measurements in a perfectly two dimensional zero-gap semiconductor known as graphene. Since it's discovery in 2004, graphene has attracted prodigious interest from both academia and industry due to it's inimitable physical properties: very high mobility, high thermal and electrical conductivity, a high Young's modulus and impermeability. Graphene is also expected to have very long spin relaxation length and high spin life time because of it's low spin orbit coupling. For this reason and since researchers are always looking for novel materials and devices to comply with the high demands for better and faster data storage devices, graphene has emanated as a brand new material system for spin based devices. The very first spin injection and detection in graphene was realised in 2007 and ever since, the focal point of the research has been to improve the spin transport properties. A part of this thesis discusses a new fabrication recipe which has a high yield for successfully contacting graphene with a ferromagnet. A high starting yield for ferromagnetic contacts is a irremissible condition for combining superconducting contacts to the device to fabricate ferromagnet/superconductor junctions. Any fabrication recipe

  6. Towards ferromagnet/superconductor junctions on graphene

    Energy Technology Data Exchange (ETDEWEB)

    Pakkayil, Shijin Babu

    2015-07-01

    Ever since A. Aspect et al. performed the famous 1982 experiment to prove the violation of Bell's inequality, there have been suggestions to conduct the same experiment in a solid state system. Some of those proposals involve superconductors as the source of entangled electron pair and spin depended interfaces as the optical analogue of polariser/filter. Semiconductors can serve as the best medium for such an experiment due to their long relaxation lengths. So far there are no reports on a ferromagnet/superconductor junctions on a semiconductor even though such junctions has been successfully realised in metallic systems. This thesis reports the successful fabrication of ferromagnet/superconductor junction along with characterising measurements in a perfectly two dimensional zero-gap semiconductor known as graphene. Since it's discovery in 2004, graphene has attracted prodigious interest from both academia and industry due to it's inimitable physical properties: very high mobility, high thermal and electrical conductivity, a high Young's modulus and impermeability. Graphene is also expected to have very long spin relaxation length and high spin life time because of it's low spin orbit coupling. For this reason and since researchers are always looking for novel materials and devices to comply with the high demands for better and faster data storage devices, graphene has emanated as a brand new material system for spin based devices. The very first spin injection and detection in graphene was realised in 2007 and ever since, the focal point of the research has been to improve the spin transport properties. A part of this thesis discusses a new fabrication recipe which has a high yield for successfully contacting graphene with a ferromagnet. A high starting yield for ferromagnetic contacts is a irremissible condition for combining superconducting contacts to the device to fabricate ferromagnet/superconductor junctions. Any fabrication recipe

  7. Thermionic refrigeration at CNT-CNT junctions

    Science.gov (United States)

    Li, C.; Pipe, K. P.

    2016-10-01

    Monte Carlo (MC) simulation is used to study carrier energy relaxation following thermionic emission at the junction of two van der Waals bonded single-walled carbon nanotubes (SWCNTs). An energy-dependent transmission probability gives rise to energy filtering at the junction, which is predicted to increase the average electron transport energy by as much as 0.115 eV, leading to an effective Seebeck coefficient of 386 μV/K. MC results predict a long energy relaxation length (˜8 μm) for hot electrons crossing the junction into the barrier SWCNT. For SWCNTs of optimal length, an analytical transport model is used to show that thermionic cooling can outweigh parasitic heat conduction due to high SWCNT thermal conductivity, leading to a significant cooling capacity (2.4 × 106 W/cm2).

  8. ImageJS: Personalized, participated, pervasive, and reproducible image bioinformatics in the web browser

    Directory of Open Access Journals (Sweden)

    Jonas S Almeida

    2012-01-01

    Full Text Available Background: Image bioinformatics infrastructure typically relies on a combination of server-side high-performance computing and client desktop applications tailored for graphic rendering. On the server side, matrix manipulation environments are often used as the back-end where deployment of specialized analytical workflows takes place. However, neither the server-side nor the client-side desktop solution, by themselves or combined, is conducive to the emergence of open, collaborative, computational ecosystems for image analysis that are both self-sustained and user driven. Materials and Methods: ImageJS was developed as a browser-based webApp, untethered from a server-side backend, by making use of recent advances in the modern web browser such as a very efficient compiler, high-end graphical rendering capabilities, and I/O tailored for code migration. Results : Multiple versioned code hosting services were used to develop distinct ImageJS modules to illustrate its amenability to collaborative deployment without compromise of reproducibility or provenance. The illustrative examples include modules for image segmentation, feature extraction, and filtering. The deployment of image analysis by code migration is in sharp contrast with the more conventional, heavier, and less safe reliance on data transfer. Accordingly, code and data are loaded into the browser by exactly the same script tag loading mechanism, which offers a number of interesting applications that would be hard to attain with more conventional platforms, such as NIH′s popular ImageJ application. Conclusions : The modern web browser was found to be advantageous for image bioinformatics in both the research and clinical environments. This conclusion reflects advantages in deployment scalability and analysis reproducibility, as well as the critical ability to deliver advanced computational statistical procedures machines where access to sensitive data is controlled, that is, without

  9. ImageJS: Personalized, participated, pervasive, and reproducible image bioinformatics in the web browser.

    Science.gov (United States)

    Almeida, Jonas S; Iriabho, Egiebade E; Gorrepati, Vijaya L; Wilkinson, Sean R; Grüneberg, Alexander; Robbins, David E; Hackney, James R

    2012-01-01

    Image bioinformatics infrastructure typically relies on a combination of server-side high-performance computing and client desktop applications tailored for graphic rendering. On the server side, matrix manipulation environments are often used as the back-end where deployment of specialized analytical workflows takes place. However, neither the server-side nor the client-side desktop solution, by themselves or combined, is conducive to the emergence of open, collaborative, computational ecosystems for image analysis that are both self-sustained and user driven. ImageJS was developed as a browser-based webApp, untethered from a server-side backend, by making use of recent advances in the modern web browser such as a very efficient compiler, high-end graphical rendering capabilities, and I/O tailored for code migration. Multiple versioned code hosting services were used to develop distinct ImageJS modules to illustrate its amenability to collaborative deployment without compromise of reproducibility or provenance. The illustrative examples include modules for image segmentation, feature extraction, and filtering. The deployment of image analysis by code migration is in sharp contrast with the more conventional, heavier, and less safe reliance on data transfer. Accordingly, code and data are loaded into the browser by exactly the same script tag loading mechanism, which offers a number of interesting applications that would be hard to attain with more conventional platforms, such as NIH's popular ImageJ application. The modern web browser was found to be advantageous for image bioinformatics in both the research and clinical environments. This conclusion reflects advantages in deployment scalability and analysis reproducibility, as well as the critical ability to deliver advanced computational statistical procedures machines where access to sensitive data is controlled, that is, without local "download and installation".

  10. Response of high Tc superconducting Josephson junction to nuclear radiation

    International Nuclear Information System (INIS)

    Ding Honglin; Zhang Wanchang; Zhang Xiufeng

    1992-10-01

    The development of nuclear radiation detectors and research on high T c superconducting nuclear radiation detectors are introduced. The emphases are the principle of using thin-film and thick-film Josephson junctions (bridge junction) based on high T c YBCO superconductors to detect nuclear radiation, the fabrication of thin film and thick-film Josephson junction, and response of junction to low energy gamma-rays of 59.5 keV emitted from 241 Am and beta-rays of 546 keV. The results show that a detector for measuring nuclear radiation spectrum made of high T c superconducting thin-film or thick-film, especially, thick-film Josephson junction, certainly can be developed

  11. ‘Gap Junctions and Cancer: Communicating for 50 Years’

    Science.gov (United States)

    Aasen, Trond; Mesnil, Marc; Naus, Christian C.; Lampe, Paul D.; Laird, Dale W.

    2017-01-01

    Fifty years ago, tumour cells were found to lack electrical coupling, leading to the hypothesis that loss of direct intercellular communication is commonly associated with cancer onset and progression. Subsequent studies linked this phenomenon to gap junctions composed of connexin proteins. While many studies support the notion that connexins are tumour suppressors, recent evidence suggests that, in some tumour types, they may facilitate specific stages of tumour progression through both junctional and non-junctional signalling pathways. This Timeline article highlights the milestones connecting gap junctions to cancer, and underscores important unanswered questions, controversies and therapeutic opportunities in the field. PMID:27782134

  12. XMPP for cloud computing in bioinformatics supporting discovery and invocation of asynchronous web services.

    Science.gov (United States)

    Wagener, Johannes; Spjuth, Ola; Willighagen, Egon L; Wikberg, Jarl E S

    2009-09-04

    Life sciences make heavily use of the web for both data provision and analysis. However, the increasing amount of available data and the diversity of analysis tools call for machine accessible interfaces in order to be effective. HTTP-based Web service technologies, like the Simple Object Access Protocol (SOAP) and REpresentational State Transfer (REST) services, are today the most common technologies for this in bioinformatics. However, these methods have severe drawbacks, including lack of discoverability, and the inability for services to send status notifications. Several complementary workarounds have been proposed, but the results are ad-hoc solutions of varying quality that can be difficult to use. We present a novel approach based on the open standard Extensible Messaging and Presence Protocol (XMPP), consisting of an extension (IO Data) to comprise discovery, asynchronous invocation, and definition of data types in the service. That XMPP cloud services are capable of asynchronous communication implies that clients do not have to poll repetitively for status, but the service sends the results back to the client upon completion. Implementations for Bioclipse and Taverna are presented, as are various XMPP cloud services in bio- and cheminformatics. XMPP with its extensions is a powerful protocol for cloud services that demonstrate several advantages over traditional HTTP-based Web services: 1) services are discoverable without the need of an external registry, 2) asynchronous invocation eliminates the need for ad-hoc solutions like polling, and 3) input and output types defined in the service allows for generation of clients on the fly without the need of an external semantics description. The many advantages over existing technologies make XMPP a highly interesting candidate for next generation online services in bioinformatics.

  13. Functional Molecular Junctions Derived from Double Self-Assembled Monolayers.

    Science.gov (United States)

    Seo, Sohyeon; Hwang, Eunhee; Cho, Yunhee; Lee, Junghyun; Lee, Hyoyoung

    2017-09-25

    Information processing using molecular junctions is becoming more important as devices are miniaturized to the nanoscale. Herein, we report functional molecular junctions derived from double self-assembled monolayers (SAMs) intercalated between soft graphene electrodes. Newly assembled molecular junctions are fabricated by placing a molecular SAM/(top) electrode on another molecular SAM/(bottom) electrode by using a contact-assembly technique. Double SAMs can provide tunneling conjugation across the van der Waals gap between the terminals of each monolayer and exhibit new electrical functions. Robust contact-assembled molecular junctions can act as platforms for the development of equivalent contact molecular junctions between top and bottom electrodes, which can be applied independently to different kinds of molecules to enhance either the structural complexity or the assembly properties of molecules. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Electronic transmission through p-n and n-p-n junctions of graphene

    Energy Technology Data Exchange (ETDEWEB)

    Setare, M R [Department of Science of Bijar, University of Kurdistan, Bijar (Iran, Islamic Republic of); Jahani, D, E-mail: rezakord@ipm.co, E-mail: Dariush110@gmail.co [Department of Physics, Razi University, Kermanshah (Iran, Islamic Republic of)

    2010-06-23

    In this paper, we first evaluate the electronic transmission of Dirac fermions into a p-n junction of gapped graphene and show that the final result depends on the sign of the refractive index, n. We also, by considering the appropriate wavefunctions in the region of the electrostatic potential, show that both transmission and the reflection probability turn out to be positive and less than unity instead of the negative transmission and higher than unity reflection coefficient commonly referred to as the Klein paradox. We then obtain the transmission probability corresponding to a special p-n junction for which there exists a region in which the low energy excitations of graphene acquire a finite mass and, interestingly, find that in this case the transmission is independent of the index of refraction, in contrast with the corresponding result for gapped graphene. We then discuss the validity of the solutions reported in some of the papers cited in this work which, considering the Buettiker formula, turn out to lead to the wrong results for conductivity.

  15. Gap junctions-guards of excitability

    DEFF Research Database (Denmark)

    Stroemlund, Line Waring; Jensen, Christa Funch; Qvortrup, Klaus

    2015-01-01

    Cardiomyocytes are connected by mechanical and electrical junctions located at the intercalated discs (IDs). Although these structures have long been known, it is becoming increasingly clear that their components interact. This review describes the involvement of the ID in electrical disturbances...... of the heart and focuses on the role of the gap junctional protein connexin 43 (Cx43). Current evidence shows that Cx43 plays a crucial role in organizing microtubules at the intercalated disc and thereby regulating the trafficking of the cardiac sodium channel NaV1.5 to the membrane....

  16. PyPedia: using the wiki paradigm as crowd sourcing environment for bioinformatics protocols.

    Science.gov (United States)

    Kanterakis, Alexandros; Kuiper, Joël; Potamias, George; Swertz, Morris A

    2015-01-01

    Today researchers can choose from many bioinformatics protocols for all types of life sciences research, computational environments and coding languages. Although the majority of these are open source, few of them possess all virtues to maximize reuse and promote reproducible science. Wikipedia has proven a great tool to disseminate information and enhance collaboration between users with varying expertise and background to author qualitative content via crowdsourcing. However, it remains an open question whether the wiki paradigm can be applied to bioinformatics protocols. We piloted PyPedia, a wiki where each article is both implementation and documentation of a bioinformatics computational protocol in the python language. Hyperlinks within the wiki can be used to compose complex workflows and induce reuse. A RESTful API enables code execution outside the wiki. Initial content of PyPedia contains articles for population statistics, bioinformatics format conversions and genotype imputation. Use of the easy to learn wiki syntax effectively lowers the barriers to bring expert programmers and less computer savvy researchers on the same page. PyPedia demonstrates how wiki can provide a collaborative development, sharing and even execution environment for biologists and bioinformaticians that complement existing resources, useful for local and multi-center research teams. PyPedia is available online at: http://www.pypedia.com. The source code and installation instructions are available at: https://github.com/kantale/PyPedia_server. The PyPedia python library is available at: https://github.com/kantale/pypedia. PyPedia is open-source, available under the BSD 2-Clause License.

  17. Association of visceral adiposity with oesophageal and junctional adenocarcinomas.

    LENUS (Irish Health Repository)

    Beddy, P

    2012-02-01

    BACKGROUND: Obesity is associated with an increased incidence of oesophageal and oesophagogastric junction adenocarcinoma, in particular Siewert types I and II. This study compared abdominal fat composition in patients with oesophageal\\/junctional adenocarcinoma with that in patients with oesophageal squamous cell carcinoma and gastric adenocarcinoma, and in controls. METHOD: In total, 194 patients (110 with oesophageal\\/junctional adenocarcinoma, 38 with gastric adenocarcinoma and 46 with oesophageal squamous cell carcinoma) and 90 matched control subjects were recruited. The abdominal fat area was assessed using computed tomography (CT), and the total fat area (TFA), visceral fat area (VFA) and subcutaneous fat area (SFA) were calculated. RESULTS: Patients with oesophageal\\/junctional adenocarcinoma had significantly higher TFA and VFA values compared with controls (both P < 0.001), patients with gastric adenocarcinoma (P = 0.013 and P = 0.006 respectively) and patients with oesophageal squamous cell carcinoma (both P < 0.001). For junctional tumours, the highest TFA and VFA values were seen in patients with Siewert type I tumours (respectively P = 0.041 and P = 0.033 versus type III; P = 0.332 and P = 0.152 versus type II). CONCLUSION: Patients with oesophageal\\/junctional adenocarcinoma, in particular oesophageal and Siewert type I junctional tumours, have greater CT-defined visceral adiposity than patients with gastric adenocarcinoma or oesophageal squamous cell carcinoma, or controls.

  18. Intrageneric Primer Design: Bringing Bioinformatics Tools to the Class

    Science.gov (United States)

    Lima, Andre O. S.; Garces, Sergio P. S.

    2006-01-01

    Bioinformatics is one of the fastest growing scientific areas over the last decade. It focuses on the use of informatics tools for the organization and analysis of biological data. An example of their importance is the availability nowadays of dozens of software programs for genomic and proteomic studies. Thus, there is a growing field (private…

  19. Magnetic interaction between spatially extended superconducting tunnel junctions

    DEFF Research Database (Denmark)

    Grønbech-Jensen, Niels; Samuelsen, Mogens Rugholm

    2002-01-01

    A general description of magnetic interactions between superconducting tunnel junctions is given. The description covers a wide range of possible experimental systems, and we explicitly explore two experimentally relevant limits of coupled junctions. One is the limit of junctions with tunneling...... been considered through arrays of superconducting weak links based on semiconductor quantum wells with superconducting electrodes. We use the model to make direct interpretations of the published experiments and thereby propose that long-range magnetic interactions are responsible for the reported...

  20. Cavity syncronisation of underdamped Josephson junction arrays

    DEFF Research Database (Denmark)

    Barbara, P.; Filatrella, G.; Lobb, C.

    2003-01-01

    the junctions in the array and an electromagnetic cavity. Here we show that a model of a one-dimensional array of Josephson junctions coupled to a resonator can produce many features of the coherent be havior above threshold, including coherent radiation of power and the shape of the array current...