WorldWideScience

Sample records for junction guiding based

  1. Study of guided wave transmission through complex junction in sodium cooled reactor

    Energy Technology Data Exchange (ETDEWEB)

    Elie, Q.; Le Bourdais, F.; Jezzine, K.; Baronian, V. [Non Destructive Testing Department at the French Atomic Energy Commission (CEA), Saclay, 91191 Gif sur Yvette CEDEX, (France)

    2015-07-01

    Ultrasonic guided wave techniques are seen as suitable candidates for the inspection of welded structures within sodium cooled fast reactors (SFR), as the long range propagation of guided waves without amplitude attenuation can overcome the accessibility problem due to the liquid sodium. In the context of the development of the Advanced Sodium Test Reactor for Industrial Demonstration (ASTRID), the French Atomic Commission (CEA) investigates non-destructive testing techniques based on guided wave propagation. In this work, guided wave NDT methods are applied to control the integrity of welds located in a junction-type structure welded to the main vessel. The method presented in this paper is based on the analysis of scattering matrices peculiar to each expected defect, and takes advantage of the multi-modal and dispersive characteristics of guided wave generation. In a simulation study, an algorithm developed using the CIVA software is presented. It permits selecting appropriate incident modes to optimize detection and identification of expected flawed configurations. In the second part of this paper, experimental results corresponding to a first validation step of the simulation results are presented. The goal of the experiments is to estimate the effectiveness of the incident mode selection in plates. The results show good agreement between experience and simulation. (authors)

  2. Polyphosphonium-based ion bipolar junction transistors.

    Science.gov (United States)

    Gabrielsson, Erik O; Tybrandt, Klas; Berggren, Magnus

    2014-11-01

    Advancements in the field of electronics during the past few decades have inspired the use of transistors in a diversity of research fields, including biology and medicine. However, signals in living organisms are not only carried by electrons but also through fluxes of ions and biomolecules. Thus, in order to implement the transistor functionality to control biological signals, devices that can modulate currents of ions and biomolecules, i.e., ionic transistors and diodes, are needed. One successful approach for modulation of ionic currents is to use oppositely charged ion-selective membranes to form so called ion bipolar junction transistors (IBJTs). Unfortunately, overall IBJT device performance has been hindered due to the typical low mobility of ions, large geometries of the ion bipolar junction materials, and the possibility of electric field enhanced (EFE) water dissociation in the junction. Here, we introduce a novel polyphosphonium-based anion-selective material into npn-type IBJTs. The new material does not show EFE water dissociation and therefore allows for a reduction of junction length down to 2 μm, which significantly improves the switching performance of the ion transistor to 2 s. The presented improvement in speed as well the simplified design will be useful for future development of advanced iontronic circuits employing IBJTs, for example, addressable drug-delivery devices.

  3. Spin-crossover molecule based thermoelectric junction

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Dibyajyoti [Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064 (India); Parida, Prakash [Institute for Theoretical Physics, University of Regensburg, D-93040 Regensburg (Germany); Pati, Swapan K. [Theoretical Sciences Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064 (India)

    2015-05-11

    Using ab-initio numerical methods, we explore the spin-dependent transport and thermoelectric properties of a spin-crossover molecule (i.e., iron complex of 2-(1H-pyrazol-1-yl)-6-(1H-tetrazole-5-yl)pyridine) based nano-junction. We demonstrate a large magnetoresistance, efficient conductance-switching, and spin-filter activity in this molecule-based two-terminal device. The spin-crossover process also modulates the thermoelectric entities. It can efficiently switch the magnitude as well as spin-polarization of the thermocurrent. We find that thermocurrent is changed by ∼4 orders of magnitude upon spin-crossover. Moreover, it also substantially affects the thermopower and consequently, the device shows extremely efficient spin-crossover magnetothermopower generation. Furthermore, by tuning the chemical potential of electrodes into a certain range, a pure spin-thermopower can be achieved for the high-spin state. Finally, the reasonably large values of figure-of-merit in the presence and absence of phonon demonstrate a large heat-to-voltage conversion efficiency of the device. We believe that our study will pave an alternative way of tuning the transport and thermoelectric properties through the spin-crossover process and can have potential applications in generation of spin-dependent current, information storage, and processing.

  4. Observation of supercurrent in graphene-based Josephson junction

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Libin; Li, Sen; Kang, Ning [Key Laboratory for the Physics and Chemistry of Nanodevices and Department of Electronics, Peking University, Beijing 100871 (China); Xu, Chuan; Ren, Wencai [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China)

    2015-07-01

    Josephson junctions with a normal metal region sandwiched between two superconductors (S) are known as superconductor- normal-superconductor (SNS) structures. It has attracted significant attention especially when changing the normal metal with graphene, which allow for high tunability with the gate voltage and to study the proximity effect of the massless Dirac fermions. Here we report our work on graphene-based Josephson junction with a new two dimensional superconductor crystal, which grown directly on graphene, as superconducting electrodes. At low temperature, we observer proximity effect induced supercurrent flowing through the junction. The temperature and the magnetic field dependences of the critical current characteristics of the junction are also studied. The critical current exhibits a Fraunhofer-type diffraction pattern against magnetic field. Our experiments provided a new route of fabrication of graphene-based Josephson junction.

  5. Tracking epithelial cell junctions in C. elegans embryogenesis with active contours guided by SIFT flow.

    Science.gov (United States)

    Kang, Sukryool; Lee, Chen-Yu; Gonçalves, Monira; Chisholm, Andrew D; Cosman, Pamela C

    2015-04-01

    Quantitative analysis of cell shape in live samples is an important goal in developmental biology. Automated or semi-automated segmentation and tracking of cell nuclei has been successfully implemented in several biological systems. Segmentation and tracking of cell surfaces has been more challenging. Here, we present a new approach to tracking cell junctions in the developing epidermis of C. elegans embryos. Epithelial junctions as visualized with DLG-1::GFP form lines at the subapical circumference of differentiated epidermal cells and delineate changes in epidermal cell shape and position. We develop and compare two approaches for junction segmentation. For the first method (projection approach), 3-D cell boundaries are projected into 2D for segmentation using active contours with a nonintersecting force, and subsequently tracked using scale-invariant feature transform (SIFT) flow. The resulting 2-D tracked boundaries are then back-projected into 3-D space. The second method (volumetric approach) uses a 3-D extended version of active contours guided by SIFT flow in 3-D space. In both methods, cell junctions are manually located at the first time point and tracked in a fully automated way for the remainder of the video. Using these methods, we have generated the first quantitative description of ventral epidermal cell movements and shape changes during epidermal enclosure.

  6. Memory cell operation based on small Josephson junctions arrays

    Science.gov (United States)

    Braiman, Y.; Nair, N.; Rezac, J.; Imam, N.

    2016-12-01

    In this paper we analyze a cryogenic memory cell circuit based on a small coupled array of Josephson junctions. All the basic memory operations (e.g., write, read, and reset) are implemented on the same circuit and different junctions in the array can in principle be utilized for these operations. The presented memory operation paradigm is fundamentally different from conventional single quantum flux operation logics (SFQ). As an example, we demonstrate memory operation driven by a SFQ pulse employing an inductively coupled array of three Josephson junctions. We have chosen realistic Josephson junction parameters based on state-of-the-art fabrication capabilities and have calculated access times and access energies for basic memory cell operations. We also implemented an optimization procedure based on the simulated annealing algorithm to calculate the optimized and typical values of access times and access energies.

  7. Recognition of Nucleic Acid Junctions Using Triptycene-Based Molecules

    OpenAIRE

    Barros, Stephanie A.; Chenoweth, David M.

    2014-01-01

    Nucleic acid modulation by small molecules is an essential process across the kingdoms of life. Targeting nucleic acids with small molecules represents a significant challenge at the forefront of chemical biology. Nucleic acid junctions are ubiquitous structural motifs in nature and in designed materials. Herein, we describe a new class of structure specific nucleic acid junction stabilizers based on a triptycene scaffold. Triptycenes provide significant stabilization of DNA and RNA three-way...

  8. Magnetic tunnel junction based spintronic logic devices

    Science.gov (United States)

    Lyle, Andrew Paul

    The International Technology Roadmap for Semiconductors (ITRS) predicts that complimentary metal oxide semiconductor (CMOS) based technologies will hit their last generation on or near the 16 nm node, which we expect to reach by the year 2025. Thus future advances in computational power will not be realized from ever-shrinking device sizes, but rather by 'outside the box' designs and new physics, including molecular or DNA based computation, organics, magnonics, or spintronic. This dissertation investigates magnetic logic devices for post-CMOS computation. Three different architectures were studied, each relying on a different magnetic mechanism to compute logic functions. Each design has it benefits and challenges that must be overcome. This dissertation focuses on pushing each design from the drawing board to a realistic logic technology. The first logic architecture is based on electrically connected magnetic tunnel junctions (MTJs) that allow direct communication between elements without intermediate sensing amplifiers. Two and three input logic gates, which consist of two and three MTJs connected in parallel, respectively were fabricated and are compared. The direct communication is realized by electrically connecting the output in series with the input and applying voltage across the series connections. The logic gates rely on the fact that a change in resistance at the input modulates the voltage that is needed to supply the critical current for spin transfer torque switching the output. The change in resistance at the input resulted in a voltage margin of 50--200 mV and 250--300 mV for the closest input states for the three and two input designs, respectively. The two input logic gate realizes the AND, NAND, NOR, and OR logic functions. The three input logic function realizes the Majority, AND, NAND, NOR, and OR logic operations. The second logic architecture utilizes magnetostatically coupled nanomagnets to compute logic functions, which is the basis of

  9. Affordance-based individuation of junctions in Open Street Map

    Directory of Open Access Journals (Sweden)

    Simon Scheider

    2012-06-01

    Full Text Available We propose an algorithm that can be used to identify automatically the subset of street segments of a road network map that corresponds to a junction. The main idea is to use turn-compliant locomotion affordances, i.e., restricted patterns of supported movement, in order to specify junctions independently of their data representation, and in order to motivate tractable individuation and classification strategies. We argue that common approaches based solely on geometry or topology of the street segment graph are useful but insufficient proxies. They miss certain turn restrictions essential to junctions. From a computational viewpoint, the main challenge of affordance-based individuation of junctions lies in its complex recursive definition. In this paper, we show how Open Street Map data can be interpreted into locomotion affordances, and how the recursive junction definition can be translated into a deterministic algorithm. We evaluate this algorithm by applying it to small map excerpts in order to delineate the contained junctions.

  10. Charge Transport across DNA-Based Three-Way Junctions.

    Science.gov (United States)

    Young, Ryan M; Singh, Arunoday P N; Thazhathveetil, Arun K; Cho, Vincent Y; Zhang, Yuqi; Renaud, Nicolas; Grozema, Ferdinand C; Beratan, David N; Ratner, Mark A; Schatz, George C; Berlin, Yuri A; Lewis, Frederick D; Wasielewski, Michael R

    2015-04-22

    DNA-based molecular electronics will require charges to be transported from one site within a 2D or 3D architecture to another. While this has been shown previously in linear, π-stacked DNA sequences, the dynamics and efficiency of charge transport across DNA three-way junction (3WJ) have yet to be determined. Here, we present an investigation of hole transport and trapping across a DNA-based three-way junction systems by a combination of femtosecond transient absorption spectroscopy and molecular dynamics simulations. Hole transport across the junction is proposed to be gated by conformational fluctuations in the ground state which bring the transiently populated hole carrier nucleobases into better aligned geometries on the nanosecond time scale, thus modulating the π-π electronic coupling along the base pair sequence.

  11. Generators of the auxiliary signals based on the Josephson junctions

    Directory of Open Access Journals (Sweden)

    V. M. Kychak

    2014-06-01

    Full Text Available Introduction and problem statement. Generators based on the Josephson junctions are advisable to use to ensure the generation of signals in the wavelength range from infrared to millimeter. It is necessary to build a dependence of the phase difference of the wave functions superconductor Josephson junctions from the parameters of the equivalent circuit of the resistive shunted tunnel junction. Solution of the problem. An analytical expression for calculating the dependence of the instantaneous voltage values from the parameters of the equivalent circuit resistive shunted Josephson junction is obtained. The dependence of the oscillation period from the parameters of the equivalent circuit elements is researched and a comparison of its values with the period of the output voltage of the generator based on three Josephson junctions is carried out. Conclusions. It is shown that the synchronization leads to decrement in the line width generation and increment the output voltage. Comparison of theoretical calculations and computer modeling shows that the differences do not exceed 25% and therefore they can be used for approximate calculations.

  12. Comparative Study on Single-Molecule Junctions of Alkane- and Benzene-Based Molecules with Carboxylic Acid/Aldehyde as the Anchoring Groups

    Science.gov (United States)

    Chen, Fang; Peng, Lin-Lu; Hong, Ze-Wen; Mao, Jin-Chuan; Zheng, Ju-Fang; Shao, Yong; Niu, Zhen-Jiang; Zhou, Xiao-Shun

    2016-08-01

    We have measured the alkane and benzene-based molecules with aldehyde and carboxylic acid as anchoring groups by using the electrochemical jump-to-contact scanning tunneling microscopy break junction (ECSTM-BJ) approach. The results show that molecule with benzene backbone has better peak shape and intensity than those with alkane backbone. Typically, high junction formation probability for same anchoring group (aldehyde and carboxylic acid) with benzene backbone is found, which contributes to the stronger attractive interaction between Cu and molecules with benzene backbone. The present work shows the import role of backbone in junction, which can guide the design molecule to form effective junction for studying molecular electronics.

  13. GaInN-based tunnel junctions with graded layers

    Science.gov (United States)

    Takasuka, Daiki; Akatsuka, Yasuto; Ino, Masataka; Koide, Norikatsu; Takeuchi, Tetsuya; Iwaya, Motoaki; Kamiyama, Satoshi; Akasaki, Isamu

    2016-08-01

    We demonstrated low-resistivity GaInN-based tunnel junctions using graded GaInN layers. A systematic investigation of the samples grown by metalorganic vapor phase epitaxy revealed that a tunnel junction consisting of a 4 nm both-sides graded GaInN layer (Mg: 1 × 1020 cm-3) and a 2 nm GaN layer (Si: 7 × 1020 cm-3) showed the lowest specific series resistance of 2.3 × 10-4 Ω cm2 at 3 kA/cm2 in our experiment. The InN mole fraction in the 4 nm both-sides graded GaInN layer was changed from 0 through 0.4 to 0. The obtained resistance is comparable to those of standard p-contacts with Ni/Au and MBE-grown tunnel junctions.

  14. 77 FR 38705 - Draft Specification for Airport Light Bases, Transformer Housings, Junction Boxes, and...

    Science.gov (United States)

    2012-06-28

    ... Federal Aviation Administration Draft Specification for Airport Light Bases, Transformer Housings... comment on the Draft ``Specification for Airport Light Bases, Transformer Housings, Junction Boxes, and... recommendations for airport light bases, transformer housings, junction boxes and accessories. The FAA has...

  15. Millikelvin cooling by heavy-fermion-based tunnel junctions

    Energy Technology Data Exchange (ETDEWEB)

    Prest, Martin; Min, Gao, E-mail: Min@cardiff.ac.uk [School of Engineering, Cardiff University, Cardiff CF24 3AA (United Kingdom); Whall, Terry [Department of Physics, University of Warwick, Coventry CV4 7AL (United Kingdom)

    2015-12-28

    This paper addresses a high-performance electron-tunneling cooler based on a novel heavy-fermion/insulator/superconductor junction for millikelvin cooling applications. We show that the cooling performance of an electronic tunneling refrigerator could be significantly improved using a heavy-fermion metal to replace the normal metal in a conventional normal metal/insulator/superconductor junction. The calculation, based on typical parameters, indicates that, for a bath temperature of 300 mK, the minimum cooling temperature of an electron tunneling refrigerator is reduced from around 170 mK to below 50 mK if a heavy-fermion metal is employed in place of the normal metal. The improved cooling is attributed to an enhancement in electron tunneling due to the existence of a resonant density of states at the Fermi level.

  16. FeGa based tunneling magnetoresistance junctions and strain sensors

    OpenAIRE

    Thajudin, Ahmed Fazir

    2012-01-01

    Tunnel magnetoresistance (TMR) and inverse magnetostriction based strain gauges have gained immense importance due to their high spatial resolution and extremely high gauge factors. A TMR junction comprises of two ferromagnetic electrodes separated by an insulating barrier layer. One of the ferromagnetic layer is soft magnetic which is free to rotate its magnetization under external magnetic field, the other ferromagnet is hard magnetic and is stable under the same external field. An intentio...

  17. Graphene-Based Josephson-Junction Single-Photon Detector

    Science.gov (United States)

    Walsh, Evan D.; Efetov, Dmitri K.; Lee, Gil-Ho; Heuck, Mikkel; Crossno, Jesse; Ohki, Thomas A.; Kim, Philip; Englund, Dirk; Fong, Kin Chung

    2017-08-01

    We propose to use graphene-based Josephson junctions (GJJs) to detect single photons in a wide electromagnetic spectrum from visible to radio frequencies. Our approach takes advantage of the exceptionally low electronic heat capacity of monolayer graphene and its constricted thermal conductance to its phonon degrees of freedom. Such a system could provide high-sensitivity photon detection required for research areas including quantum information processing and radio astronomy. As an example, we present our device concepts for GJJ single-photon detectors in both the microwave and infrared regimes. The dark count rate and intrinsic quantum efficiency are computed based on parameters from a measured GJJ, demonstrating feasibility within existing technologies.

  18. Current phase relation in nanowire based Josephson junctions

    Science.gov (United States)

    Szombati, Daniel; Nadj-Perge, Stevan; Geresdi, Attila; Mourik, Vincent; Zuo, Kun; Woerkom, David; Car, Diana; Bakkers, Erik; Kouwenhoven, Leo

    2015-03-01

    Junctions based on small band-gap nanowires are convenient platform for studying Josephson effect in the presence of strong spin-orbit coupling. As predicted by theory, due to the interplay between strong Zeeman interaction and large spin orbing coupling in these nanowires, the critical current and in particular current phase relation exhibits rich set of features in the presence of external magnetic field and electrostatic gating. We study supercurrent transport through Indium Antimonide nanowires contacted using Niobium-Titanium-Nitride leads using both current and phase bias measurements. Our results provide useful insights into superconductor/semiconductor hybrid systems capable of hosting Majorana fermions, potential building blocks for topological quantum computing.

  19. Analysis of gap junctional intercellular communications using a dielectrophoresis-based microchip

    OpenAIRE

    Tellez-Gabriel, M.; Charrier, C.; Brounais-Le Royer, B; Mullard, M.; Brown, H K; F. Verrecchia(-ASI ASDC;); Heymann, D

    2017-01-01

    International audience; Please cite this article in press as: Tellez-Gabriel, M., et al., Analysis of gap junctional intercellular communications using a dielectrophoresis-based microchip. Gap junctions are transmembrane structures that directly connect the cytoplasm of adjacent cells, making intercellular communications possible. It has been shown that the behaviour of several tumours – such as bone tumours – is related to gap junction intercellular communications (GJIC). Several methodologi...

  20. Experimental realization of single electron tunneling diode based on vertical graphene two-barrier junction

    OpenAIRE

    Xu, Rui; Bai, Ke-Ke; Nie, Jia-Cai; He, Lin

    2012-01-01

    Usually, graphene is used in its horizontal directions to design novel concept devices. Here, we report a single electron tunneling diode based on quantum tunneling through a vertical graphene two-barrier junction. The junction is formed by positioning a scanning tunnelling microscopy (STM) tip above a graphene nanoribbon that was deposited on a graphite surface. Because of the asymmetry of the two-barrier junction, the electrons can unidirectional transfer from the tip to the graphene nanori...

  1. Electronic Transport in Molecular Junction Based on C20 Cages

    Institute of Scientific and Technical Information of China (English)

    OUYANG Fang-Ping; XU Hui

    2007-01-01

    Choosing closed-ended armchair(5,5)single-wall carbon nanotubes(CCNTs)as electrodes,we investigate the electron transport properties across an all-carbon molecular junction consisting of C20 molecules suspended between two semi-infinite carbon nanotubes.It is shown that the conductances are quite sensitive to the number of C20 molecules between electrodes for both configuration CFl and double-bonded models:the conductances of C20 dimers are markedly smaller than those of monomers.The physics is that incident electrons easily pass the C20 molecules and are predominantly scattered at the C20-C20 junctions.Moreover,we study the doping effect of such molecular junction by doping nitrogen atoms substitutionally.The bonding property of the molecular junction with configuration CFl has been analysed by calculating the Mulliken atomic charges.Our results have revealed that the C atoms in N-doped junctions are more ionic than those in pure-carbon ones,leading to the fact that N-doped junctions have relatively large conductance.

  2. Tunneling electroresistance of MgZnO-based tunnel junctions

    Science.gov (United States)

    Belmoubarik, Mohamed; Al-Mahdawi, Muftah; Obata, Masao; Yoshikawa, Daiki; Sato, Hideyuki; Nozaki, Tomohiro; Oda, Tatsuki; Sahashi, Masashi

    2016-10-01

    We investigated the tunneling electroresistance (TER) in metal/wurtzite-MgZnO/metal junctions for applications in nonvolatile random-access memories. A resistive switching was detected utilizing an electric-field cooling at ±1 V and exhibited a TER ratio of 360%-490% at 2 K. The extracted change in the average barrier height between the two resistance states gave an estimation of the MgZnO electric polarization at 2.5 μC/cm2 for the low-temperature limit. In addition, the temperature-dependent TER ratio and the shift of the localized states energies at the barrier interface supported the ferroelectric behavior of the MgZnO tunnel-barrier. From the first-principles calculations, we found a similar effect of the barrier height change coming from the reversal of ZnO electric polarization. The possibility of using metal electrodes and lower growth temperatures, in addition to the ferroelectric property, make the ZnO-based memory devices suitable for CMOS integration.

  3. SUPRACLAVICULAR LYMPH-NODE METASTASES IN CARCINOMA OF THE ESOPHAGUS AND GASTROESOPHAGEAL JUNCTION - ASSESSMENT WITH CT, US, AND US-GUIDED FINE-NEEDLE ASPIRATION BIOPSY

    NARCIS (Netherlands)

    VANOVERHAGEN, H; LAMERIS, JS; BERGER, MY; VANDERVOORDE, F; TILANUS, HW; KLOOSWIJK, AIJ; ZONDERLAND, HM; VANPEL, R

    The preoperative assessment of supraclavicular lymph node metastases was prospectively studied in 100 patients with carcinoma of the esophagus and gastroesophageal junction. Findings at computed tomography (CT), ultrasound (US), and palpation were compared, and US-guided fine-needle aspiration

  4. SUPRACLAVICULAR LYMPH-NODE METASTASES IN CARCINOMA OF THE ESOPHAGUS AND GASTROESOPHAGEAL JUNCTION - ASSESSMENT WITH CT, US, AND US-GUIDED FINE-NEEDLE ASPIRATION BIOPSY

    NARCIS (Netherlands)

    VANOVERHAGEN, H; LAMERIS, JS; BERGER, MY; VANDERVOORDE, F; TILANUS, HW; KLOOSWIJK, AIJ; ZONDERLAND, HM; VANPEL, R

    1991-01-01

    The preoperative assessment of supraclavicular lymph node metastases was prospectively studied in 100 patients with carcinoma of the esophagus and gastroesophageal junction. Findings at computed tomography (CT), ultrasound (US), and palpation were compared, and US-guided fine-needle aspiration biops

  5. SUPRACLAVICULAR LYMPH-NODE METASTASES IN CARCINOMA OF THE ESOPHAGUS AND GASTROESOPHAGEAL JUNCTION - ASSESSMENT WITH CT, US, AND US-GUIDED FINE-NEEDLE ASPIRATION BIOPSY

    NARCIS (Netherlands)

    VANOVERHAGEN, H; LAMERIS, JS; BERGER, MY; VANDERVOORDE, F; TILANUS, HW; KLOOSWIJK, AIJ; ZONDERLAND, HM; VANPEL, R

    1991-01-01

    The preoperative assessment of supraclavicular lymph node metastases was prospectively studied in 100 patients with carcinoma of the esophagus and gastroesophageal junction. Findings at computed tomography (CT), ultrasound (US), and palpation were compared, and US-guided fine-needle aspiration biops

  6. DNA gridiron nanostructures based on four-arm junctions.

    Science.gov (United States)

    Han, Dongran; Pal, Suchetan; Yang, Yang; Jiang, Shuoxing; Nangreave, Jeanette; Liu, Yan; Yan, Hao

    2013-03-22

    Engineering wireframe architectures and scaffolds of increasing complexity is one of the important challenges in nanotechnology. We present a design strategy to create gridiron-like DNA structures. A series of four-arm junctions are used as vertices within a network of double-helical DNA fragments. Deliberate distortion of the junctions from their most relaxed conformations ensures that a scaffold strand can traverse through individual vertices in multiple directions. DNA gridirons were assembled, ranging from two-dimensional arrays with reconfigurability to multilayer and three-dimensional structures and curved objects.

  7. Magnetoresistance of galfenol-based magnetic tunnel junction

    Science.gov (United States)

    Gobaut, B.; Vinai, G.; Castán-Guerrero, C.; Krizmancic, D.; Rafaqat, H.; Roddaro, S.; Rossi, G.; Panaccione, G.; Eddrief, M.; Marangolo, M.; Torelli, P.

    2015-12-01

    The manipulation of ferromagnetic layer magnetization via electrical pulse is driving an intense research due to the important applications that this result will have on memory devices and sensors. In this study we realized a magnetotunnel junction in which one layer is made of Galfenol (Fe1-xGax) which possesses one of the highest magnetostrictive coefficient known. The multilayer stack has been grown by molecular beam epitaxy and e-beam evaporation. Optical lithography and physical etching have been combined to obtain 20x20 micron sized pillars. The obtained structures show tunneling conductivity across the junction and a tunnel magnetoresistance (TMR) effect of up to 11.5% in amplitude.

  8. Supercurrent reversal in Josephson junctions based on bilayer graphene flakes

    Science.gov (United States)

    Rameshti, Babak Zare; Zareyan, Malek; Moghaddam, Ali G.

    2015-08-01

    We investigate the Josephson effect in a bilayer graphene flake contacted by two monolayer sheets deposited by superconducting electrodes. It is found that when the electrodes are attached to the different layers of the bilayer, the Josephson current is in a π state, if the bilayer region is undoped and there is no vertical bias. Applying doping or bias to the junction reveals π -0 transitions which can be controlled by varying the temperature and the junction length. The supercurrent reversal here is very different from the ferromagnetic Josephson junctions where the spin degree of freedom plays the key role. We argue that the scattering processes accompanied by layer and sublattice index change give rise to the scattering phases, the effect of which varies with doping and bias. Such scattering phases are responsible for the π -0 transitions. On the other hand, if both of the electrodes are coupled to the same layer of the flake or the flake has AA stacking instead of common AB, the junction will be always in 0 state since the layer or sublattice index is not changed.

  9. Community-Based Social Marketing Training Guide

    Science.gov (United States)

    The Community-Based Social Marketing (CBSM) Training Guide and recycling toolkit provides an overview of how to increase the adoption of sustainable behaviors and recycling practices with a community.

  10. Wave-Based Subsurface Guide Star

    Energy Technology Data Exchange (ETDEWEB)

    Lehman, S K

    2011-07-26

    Astronomical or optical guide stars are either natural or artificial point sources located above the Earth's atmosphere. When imaged from ground-based telescopes, they are distorted by atmospheric effects. Knowing the guide star is a point source, the atmospheric distortions may be estimated and, deconvolved or mitigated in subsequent imagery. Extending the guide star concept to wave-based measurement systems to include acoustic, seismo-acoustic, ultrasonic, and radar, a strong artificial scatterer (either acoustic or electromagnetic) may be buried or inserted, or a pre-existing or natural sub-surface point scatterer may be identified, imaged, and used as a guide star to determine properties of the sub-surface volume. That is, a data collection is performed on the guide star and the sub-surface environment reconstructed or imaged using an optimizer assuming the guide star is a point scatterer. The optimization parameters are the transceiver height and bulk sub-surface background refractive index. Once identified, the refractive index may be used in subsequent reconstructions of sub-surface measurements. The wave-base guide star description presented in this document is for a multimonostatic ground penetrating radar (GPR) but is applicable to acoustic, seismo-acoustic, and ultrasonic measurement systems operating in multimonostatic, multistatic, multibistatic, etc., modes.

  11. Magnetoresistance of galfenol-based magnetic tunnel junction

    Energy Technology Data Exchange (ETDEWEB)

    Gobaut, B., E-mail: benoit.gobaut@elettra.eu [Sincrotrone Trieste S.C.p.A., S.S. 14 Km 163.5, Area Science Park, 34149 Trieste (Italy); Vinai, G.; Castán-Guerrero, C.; Krizmancic, D.; Panaccione, G.; Torelli, P. [Laboratorio TASC, IOM-CNR, S.S. 14km 163.5, Basovizza, 34149 Trieste (Italy); Rafaqat, H. [Laboratorio TASC, IOM-CNR, S.S. 14km 163.5, Basovizza, 34149 Trieste (Italy); ICTP, Trieste (Italy); Roddaro, S. [Laboratorio TASC, IOM-CNR, S.S. 14km 163.5, Basovizza, 34149 Trieste (Italy); NEST, Scuola Normale Superiore and Istituto Nanoscienze-CNR, Piazza S. Silvestro 12, 56127 Pisa (Italy); Rossi, G. [Laboratorio TASC, IOM-CNR, S.S. 14km 163.5, Basovizza, 34149 Trieste (Italy); Dipartimento di Fisica, Università di Milano, via Celoria 16, 20133 Milano (Italy); Eddrief, M.; Marangolo, M. [Sorbonne Universités, UPMC Paris 06, CNRS-UMR 7588, Institut des Nanosciences de Paris, 75005, Paris (France)

    2015-12-15

    The manipulation of ferromagnetic layer magnetization via electrical pulse is driving an intense research due to the important applications that this result will have on memory devices and sensors. In this study we realized a magnetotunnel junction in which one layer is made of Galfenol (Fe{sub 1-x}Ga{sub x}) which possesses one of the highest magnetostrictive coefficient known. The multilayer stack has been grown by molecular beam epitaxy and e-beam evaporation. Optical lithography and physical etching have been combined to obtain 20x20 micron sized pillars. The obtained structures show tunneling conductivity across the junction and a tunnel magnetoresistance (TMR) effect of up to 11.5% in amplitude.

  12. DC SQUID based on the mesoscopic multiterminal Josephson junction

    OpenAIRE

    Amin, M. H. S.; Omelyanchouk, A. N.; Zagoskin, A. M.

    2001-01-01

    A theory is offered for a novel device, mesoscopic four-terminal SQUID. The studied system consists of a mesoscopic four-terminal junction, one pair of terminals of which is incorporated in a superconducting ring and the other one is connected with a transport circuit. The nonlocal weak coupling between the terminals leads to effects of phase dragging and magnetic flux transfer. The behaviour of a four-terminal SQUID, controlled by the external parameters, the applied magnetic flux and the tr...

  13. Guide to APA-Based Models

    Science.gov (United States)

    Robins, Robert E.; Delisi, Donald P.

    2008-01-01

    In Robins and Delisi (2008), a linear decay model, a new IGE model by Sarpkaya (2006), and a series of APA-Based models were scored using data from three airports. This report is a guide to the APA-based models.

  14. Charge transport and rectification in molecular junctions formed with carbon-based electrodes.

    Science.gov (United States)

    Kim, Taekyeong; Liu, Zhen-Fei; Lee, Chulho; Neaton, Jeffrey B; Venkataraman, Latha

    2014-07-29

    Molecular junctions formed using the scanning-tunneling-microscope-based break-junction technique (STM-BJ) have provided unique insight into charge transport at the nanoscale. In most prior work, the same metal, typically Au, Pt, or Ag, is used for both tip and substrate. For such noble metal electrodes, the density of electronic states is approximately constant within a narrow energy window relevant to charge transport. Here, we form molecular junctions using the STM-BJ technique, with an Au metal tip and a microfabricated graphite substrate, and measure the conductance of a series of graphite/amine-terminated oligophenyl/Au molecular junctions. The remarkable mechanical strength of graphite and the single-crystal properties of our substrates allow measurements over few thousand junctions without any change in the surface properties. We show that conductance decays exponentially with molecular backbone length with a decay constant that is essentially the same as that for measurements with two Au electrodes. More importantly, despite the inherent symmetry of the oligophenylamines, we observe rectification in these junctions. State-of-art ab initio conductance calculations are in good agreement with experiment, and explain the rectification. We show that the highly energy-dependent graphite density of states contributes variations in transmission that, when coupled with an asymmetric voltage drop across the junction, leads to the observed rectification. Together, our measurements and calculations show how functionality may emerge from hybrid molecular-scale devices purposefully designed with different electrodes beyond the so-called "wide band limit," opening up the possibility of assembling molecular junctions with dissimilar electrodes using layered 2D materials.

  15. IJS: An Intelligent Junction Selection Based Routing Protocol for VANET to Support ITS Services.

    Science.gov (United States)

    Bhoi, Sourav Kumar; Khilar, Pabitra Mohan

    2014-01-01

    Selecting junctions intelligently for data transmission provides better intelligent transportation system (ITS) services. The main problem in vehicular communication is high disturbances of link connectivity due to mobility and less density of vehicles. If link conditions are predicted earlier, then there is a less chance of performance degradation. In this paper, an intelligent junction selection based routing protocol (IJS) is proposed to transmit the data in a quickest path, in which the vehicles are mostly connected and have less link connectivity problem. In this protocol, a helping vehicle is set at every junction to control the communication by predicting link failures or network gaps in a route. Helping vehicle at the junction produces a score for every neighboring junction to forward the data to the destination by considering the current traffic information and selects that junction which has minimum score. IJS protocol is implemented and compared with GyTAR, A-STAR, and GSR routing protocols. Simulation results show that IJS performs better in terms of average end-to-end delay, network gap encounter, and number of hops.

  16. Sensors Based on Spectroscopy of Guided Waves

    Science.gov (United States)

    Homola, Jiří

    The last two decades have witnessed remarkable progress in the develpment of affinity biosensors and their applications in areas such as environmental protection, biotechnology, medical diagnostics, drug screening, food safety, and security. An affinity biosensor consists of a transducer and a biological recognition element which is able to interact with a selected analyte. Various optical methods have been exploited in biosensors including fluorescence spectroscopy, interferometry (reflectometric white light interferometry, modal interferometry in optical waveguide structures), and spectroscopy of guided modes of optical waveguides. Optical biosensors based on spectroscopy of guided modes of optical waveguides - grating coupler, resonant mirror, and surface plasmon resonance (SPR) - rely on the measurement of binding-induced refractive index changes and thus are label-free technologies. This paper reviews fundamentals of optical sensors based on spectroscopy of guided modes of optical waveguides and their applications.

  17. Spin-dependent thermoelectric effects in graphene-based superconductor junctions

    Science.gov (United States)

    Beiranvand, Razieh; Hamzehpour, Hossein

    2017-02-01

    Using the Bogoliubov-de Gennes formalism, we investigate the charge and spin-dependent thermoelectric effects in graphene-based superconductor junctions. The results demonstrate that despite normal-superconductor junctions, there is a temperature-dependent spin thermopower in both the graphene-based ferromagnetic-superconductor and ferromagnetic-Rashba spin-orbit region-superconductor junctions. It is also shown that in the presence of Rashba spin-orbit interaction, the charge and spin-dependent Seebeck coefficients reach their maximum up to 3.5 k B / e and 2.5 k B / e , respectively. Remarkably, these coefficients have a zero-point critical value with respect to the magnetic exchange field and chemical potential. This effect disappears when the Rashba coupling is absent. These results suggest that graphene-based superconductors can be used in spin-caloritronic devices.

  18. A rare nucleotide base tautomer in the structure of an asymmetric DNA junction.

    Science.gov (United States)

    Khuu, Patricia; Ho, P Shing

    2009-08-25

    The single-crystal structure of a DNA Holliday junction assembled from four unique sequences shows a structure that conforms to the general features of models derived from similar constructs in solution. The structure is a compact stacked-X form junction with two sets of stacked B-DNA-type arms that coaxially stack to form semicontinuous duplexes interrupted only by the crossing of the junction. These semicontinuous helices are related by a right-handed rotation angle of 56.5 degrees, which is nearly identical to the 60 degree angle in the solution model but differs from the more shallow value of approximately 40 degrees for previous crystal structures of symmetric junctions that self-assemble from single identical inverted-repeat sequences. This supports the model in which the unique set of intramolecular interactions at the trinucleotide core of the crossing strands, which are not present in the current asymmetric junction, affects both the stability and geometry of the symmetric junctions. An unexpected result, however, is that a highly wobbled A.T base pair, which is ascribed here to a rare enol tautomer form of the thymine, was observed at the end of a CCCC/GGGG sequence within the stacked B-DNA arms of this 1.9 A resolution structure. We suggest that the junction itself is not responsible for this unusual conformation but served as a vehicle for the study of this CG-rich sequence as a B-DNA duplex, mimicking the form that would be present in a replication complex. The existence of this unusual base lends credence to and defines a sequence context for the "rare tautomer hypothesis" as a mechanism for inducing transition mutations during DNA replication.

  19. Josephson current in Fe-based superconducting junctions: theory and experiment

    NARCIS (Netherlands)

    Burmistrova, A.V.; Devyatov, I.A.; Golubov, A.; Yada, K.; Tanaka, Y.; Tortello, M.; Gonnelli, R.S.; Stepanov, V.A.; Ding, X.X.; Wen, H.H.; Green, L.H.

    2015-01-01

    We present a theory of the dc Josephson effect in contacts between Fe-based and spin-singlet s-wave superconductors. The method is based on the calculation of temperature Green's function in the junction within the tight-binding model. We calculate the phase dependencies of the Josephson current for

  20. Lateral resistance reduction induced by light-controlled leak current in silicon-based Schottky junction

    Institute of Scientific and Technical Information of China (English)

    王拴虎; 张勖; 邹吕宽; 赵靓; 王文鑫; 孙继荣

    2015-01-01

    Lateral resistance of silicon-based p-type and n-type Schottky junctions is investigated. After one electrode on a metallic film is irradiated, the differential lateral resistance of the system is dependent on the direction of the bias current:it keeps constant in one direction and decreases in the opposite direction. By systematically investigating the electrical potential changes in silicon and the junction, we propose a new mechanism based on light-controlled leak current. Our work provides an insight into the nature of this phenomenon and will facilitate the advanced design of switchable devices.

  1. Experimental investigations of SiO{sub 2} based ferrite magnetic tunnel junction

    Energy Technology Data Exchange (ETDEWEB)

    Ravi, S., E-mail: sravi@mepcoeng.ac.in [Department of Physics, Mepco Schlenk Engineering College, Sivakasi (India); Karthikeyan, A. [Department of Physics, Mepco Schlenk Engineering College, Sivakasi (India); Aravindan, V. [Energy Research Institute, Nanyang Technological University (Singapore); Pugazhvadivu, K.S.; Tamilarasan, K. [Department of Physics, Kongu Engineering College, Perundurai (India)

    2013-09-01

    Highlights: • CoFe{sub 2}O{sub 4}/SiO{sub 2}/Co–NiFe{sub 2}O{sub 4} magnetic junction was fabricated using RF/DC sputtering. • Spin transport through nanostructure silicon oxide with ferrite as free and pinned layer is our first report. • Magnetization studies were done to justify the free layer and pinned layer for our multilayer. • Magnetoresistance behavior shows a sharp discriminating between parallel and antiparallel alignment with TMR value of 16%. -- Abstract: We report experimental results of ferrite based magnetic tunnel junction. Ferrite junction and spin transport through SiO{sub 2} were interesting since they can readily replace the conventional electronics. We fabricated a cobalt ferrite/SiO{sub 2}/cobalt nickel ferrite based magnetic tunnel junction over a copper coated n-silicon substrate using a RF/DC magnetron sputtering. The tunneling magnetoresistance shows a very good response to applied field and we achieved a TMR of about 16%. Although theoretically it was predicted infinite TMR for half metallic ferromagnetic junction, the deviation was explained on the basis of incoherent scattering along the interfaces.

  2. Efficient electronic coupling and improved stability with dithiocarbamate-based molecular junctions

    Science.gov (United States)

    von Wrochem, Florian; Gao, Deqing; Scholz, Frank; Nothofer, Heinz-Georg; Nelles, Gabriele; Wessels, Jurina M.

    2010-08-01

    Molecular electronic devices require stable and highly conductive contacts between the metal electrodes and molecules. Thiols and amines are widely used to attach molecules to metals, but they form poor electrical contacts and lack the robustness required for device applications. Here, we demonstrate that dithiocarbamates provide superior electrical contact and thermal stability when compared to thiols on metals. Ultraviolet photoelectron spectroscopy and density functional theory show the presence of electronic states at 0.6 eV below the Fermi level of Au, which effectively reduce the charge injection barrier across the metal-molecule interface. Charge transport measurements across oligophenylene monolayers reveal that the conductance of terphenyl-dithiocarbamate junctions is two orders of magnitude higher than that of terphenyl-thiolate junctions. The stability and low contact resistance of dithiocarbamate-based molecular junctions represent a significant step towards the development of robust, organic-based electronic circuits.

  3. Fast and efficient silicon thermo-optic switching based on reverse breakdown of pn junction.

    Science.gov (United States)

    Li, Xianyao; Xu, Hao; Xiao, Xi; Li, Zhiyong; Yu, Yude; Yu, Jinzhong

    2014-02-15

    We propose and demonstrate a fast and efficient silicon thermo-optic switch based on reverse breakdown of the pn junction. Benefiting from the direct heating of silicon waveguide by embedding the pn junction into the waveguide center, fast switching with on/off time of 330 and 450 ns and efficient thermal tuning of 0.12  nm/mW for a 20 μm radius microring resonator are achieved, indicating a high figure of merit of only 8.8  mW·μs. The results here show great potential for application in the future optical interconnects.

  4. Urea biosensor based on an extended-base bipolar junction transistor.

    Science.gov (United States)

    Sun, Tai-Ping; Shieh, Hsiu-Li; Liu, Chun-Lin; Chen, Chung-Yuan

    2014-01-01

    In this study, a urea biosensor was prepared by the immobilization of urease onto the sensitive membrane of an extended-base bipolar junction transistor. The pH variation was used to detect the concentration of urea. The SnO2/ITO glass, fabricated by sputtering SnO2 on the conductive ITO glass, was used as a pH-sensitive membrane, which was connected with a commercial bipolar junction transistor device. The gels, fabricated by the poly vinyl alcohol with pendent styrylpyridinium groups, were used to immobilize the urease. This readout circuit, fabricated in a 0.35-um CMOS 2P4M process, operated at 3.3V supply voltage. This circuit occupied an area of 1.0 mm × 0.9 mm. The dynamic range of the urea biosensor was from 1.4 to 64 mg/dl at the 10 mM phosphate buffer solution and the sensitivity of this range was about 65.8 mV/pUrea. The effect of urea biosensors with different pH values was considered, and the characteristics of urea biosensors based on EBBJT were described.

  5. Quantum interference effects at room temperature in OPV-based single-molecule junctions

    DEFF Research Database (Denmark)

    Arroyo, Carlos R.; Frisenda, Riccardo; Moth-Poulsen, Kasper;

    2013-01-01

    Interference effects on charge transport through an individual molecule can lead to a notable modulation and suppression on its conductance. In this letter, we report the observation of quantum interference effects occurring at room temperature in single-molecule junctions based on oligo(3...

  6. Radial junctions formed by conformal chemical doping for innovative hole-based solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Garozzo, C.; Giannazzo, F.; Italia, M.; La Magna, A.; Privitera, V. [Consiglio Nazionale delle Ricerche – Istituto per la Microelettronica e Microsistemi, Ottava Strada 5, Zona Industriale, 95121 Catania (Italy); Puglisi, R.A., E-mail: rosaria.puglisi@imm.cnr.it [Consiglio Nazionale delle Ricerche – Istituto per la Microelettronica e Microsistemi, Ottava Strada 5, Zona Industriale, 95121 Catania (Italy)

    2013-05-15

    In this paper an innovative approach for Si solar cells based on radial junctions is presented. It consists of fabricating the junction in quasi one-dimensional structures like holes. The hole-based architecture, while maintaining the decoupling between the light absorption and the electrical collection typical of the more common wires and rods, ensures more robustness, numerous waveguide coupling modes and possibility to form non-conformal top contact. Nanosizes also provide the possibility to tune the band gap by quantum effects. Doping of the nanoholes, like in the case of nanowires, presents critical issues like conformality and control of the dopant dose and junction depth at nanometric level. We propose to dope the nanoholes by using a chemical method based on the use of a dopant containing molecules dispersed in solution. We apply the procedure on an array of holes of micrometric sizes fabricated to test and study the method and to properly scale it down and implement it on the nanostructures. Results show that the method provides junction depths in the nm scale with dopant peak concentrations as high as 10{sup 19} cm{sup −3} and that the doping is conformal on the vertical surfaces of the hole.

  7. Effect of eccentricity on junction and junctionless based silicon nanowire and silicon nanotube FETs

    Science.gov (United States)

    Scarlet, S. Priscilla; Ambika, R.; Srinivasan, R.

    2017-07-01

    In this paper, the effect of eccentricity on Junction-based Silicon Nanowire FET, Junction-based Silicon Nanotube FET, Junctionless-based Silicon Nanowire FET, and Junctionless-based Silicon Nanotube FET is investigated. Three kinds of eccentric structures are considered here. The impact of eccentricity on effective gate oxide thickness thereby gate oxide capacitance, and effective channel width are studied using 3D numerical simulations. Average radius of an ellipse is used to generate a model which captures the impact of eccentricity on gate oxide capacitance, and verified using TCAD simulations in MOS nanowire structure. The impact of eccentricity on ON current (ION), OFF current (IOFF), ION/IOFF ratio, and Unity gain cutoff frequency are investigated. Eccentricity increases the effective gate oxide thickness, the effective channel width, ION, and IOFF but reduces ION/IOFF ratio.

  8. CMOS Interface Circuits for Spin Tunneling Junction Based Magnetic Random Access Memories

    Energy Technology Data Exchange (ETDEWEB)

    Ganesh Saripalli

    2002-12-31

    Magneto resistive memories (MRAM) are non-volatile memories which use magnetic instead of electrical structures to store data. These memories, apart from being non-volatile, offer a possibility to achieve densities better than DRAMs and speeds faster than SRAMs. MRAMs could potentially replace all computer memory RAM technologies in use today, leading to future applications like instan-on computers and longer battery life for pervasive devices. Such rapid development was made possible due to the recent discovery of large magnetoresistance in Spin tunneling junction devices. Spin tunneling junctions (STJ) are composite structures consisting of a thin insulating layer sandwiched between two magnetic layers. This thesis research is targeted towards these spin tunneling junction based Magnetic memories. In any memory, some kind of an interface circuit is needed to read the logic states. In this thesis, four such circuits are proposed and designed for Magnetic memories (MRAM). These circuits interface to the Spin tunneling junctions and act as sense amplifiers to read their magnetic states. The physical structure and functional characteristics of these circuits are discussed in this thesis. Mismatch effects on the circuits and proper design techniques are also presented. To demonstrate the functionality of these interface structures, test circuits were designed and fabricated in TSMC 0.35{micro} CMOS process. Also circuits to characterize the process mismatches were fabricated and tested. These results were then used in Matlab programs to aid in design process and to predict interface circuit's yields.

  9. CMOS Interface Circuits for Spin Tunneling Junction Based Magnetic Random Access Memories

    Energy Technology Data Exchange (ETDEWEB)

    Saripalli, Ganesh [Iowa State Univ., Ames, IA (United States)

    2002-01-01

    Magneto resistive memories (MRAM) are non-volatile memories which use magnetic instead of electrical structures to store data. These memories, apart from being non-volatile, offer a possibility to achieve densities better than DRAMs and speeds faster than SRAMs. MRAMs could potentially replace all computer memory RAM technologies in use today, leading to future applications like instan-on computers and longer battery life for pervasive devices. Such rapid development was made possible due to the recent discovery of large magnetoresistance in Spin tunneling junction devices. Spin tunneling junctions (STJ) are composite structures consisting of a thin insulating layer sandwiched between two magnetic layers. This thesis research is targeted towards these spin tunneling junction based Magnetic memories. In any memory, some kind of an interface circuit is needed to read the logic states. In this thesis, four such circuits are proposed and designed for Magnetic memories (MRAM). These circuits interface to the Spin tunneling junctions and act as sense amplifiers to read their magnetic states. The physical structure and functional characteristics of these circuits are discussed in this thesis. Mismatch effects on the circuits and proper design techniques are also presented. To demonstrate the functionality of these interface structures, test circuits were designed and fabricated in TSMC 0.35μ CMOS process. Also circuits to characterize the process mismatches were fabricated and tested. These results were then used in Matlab programs to aid in design process and to predict interface circuit's yields.

  10. Position resolution of a double junction superconductive detector based on a single material

    Science.gov (United States)

    Samedov, V. V.

    2008-02-01

    The Naples group from Istituto Nazionale di Fisica Nucleare presented the results of theoretical investigations of a new class of superconductive radiation detectors - double junction superconductive detector based on a single material [1]. In such detectors, the absorption of energy occurs in a long superconductive strip while two superconductive tunnel junctions positioned at the ends of the strip provide the readout of the signals. The main peculiarity of this type of detectors is that they are based on a single superconducting material, i.e., without trapping layers at the ends of the strip. In this paper, general approach to the position resolution of this type of detectors has been attempted. The formula for the position resolution is derived. It is shown that the application of the aluminium for the absorber may be the best possible way not only due to the small gap energy, but also mainly for STJ fabrication technology based on the aluminium oxide tunnel barrier.

  11. Properties of pseudospin polarization on a graphene-based spin singlet superconducting junction

    Institute of Scientific and Technical Information of China (English)

    Jia Shuan-Wen; Wang Jun-Tao; Yang Yan-Ling; Bai Chun-Xu

    2013-01-01

    We investigate theoretically transport characteristics in a graphene-based pseudospinmagnet/superconductor junction,including the s-wave and the d-wave pairing symmetry potential in the superconducting region.It is found that the pseudospin polarization,in sharp contrast to spin polarization in the graphene-based ferromagnet/superconductor junction,holds no influence on the specular Andreev reflection for a negligible Fermi energy.Furthermore,the Fano factor is crucially affected by the zero bias state.Therefore,we suggest here that the findings could shed light on the realization of graphene-based pseudospintronics devices and provide a new way to detect the specular Andreev reflection and the zero bias state in the actual experiments.

  12. Electronic coolers based on superconducting tunnel junctions: fundamentals and applications

    OpenAIRE

    2014-01-01

    International audience; Thermo-electric transport at the nano-scale is a rapidly developing topic, in particular in superconductor-based hybrid devices. In this review paper, we first discuss the fundamental principles of electronic cooling in mesoscopic superconducting hybrid structures, the related limitations and applications. We review recent work performed in Grenoble on the effects of Andreev reflection, photonic heat transport, phonon cooling, as well as on an innovative fabrication te...

  13. Important issues facing model-based approaches to tunneling transport in molecular junctions

    CERN Document Server

    Baldea, Ioan

    2015-01-01

    Extensive studies on thin films indicated a generic cubic current-voltage $I-V$ dependence as a salient feature of charge transport by tunneling. A quick glance at $I-V$ data for molecular junctions suggests a qualitatively similar behavior. This would render model-based studies almost irrelevant, since, whatever the model, its parameters can always be adjusted to fit symmetric (asymmetric) $I-V$ curves characterized by two (three) expansion coefficients. Here, we systematically examine popular models based on tunneling barrier or tight-binding pictures and demonstrate that, for a quantitative description at biases of interest ($V$ slightly higher than the transition voltage $V_t$), cubic expansions do not suffice. A detailed collection of analytical formulae as well as their conditions of applicability are presented to facilitate experimentalists colleagues to process and interpret their experimental data by obtained by measuring currents in molecular junctions. We discuss in detail the limits of applicabili...

  14. Photothermoelectric p-n junction photodetector with intrinsic broadband polarimetry based on macroscopic carbon nanotube films.

    Science.gov (United States)

    He, Xiaowei; Wang, Xuan; Nanot, Sébastien; Cong, Kankan; Jiang, Qijia; Kane, Alexander A; Goldsmith, John E M; Hauge, Robert H; Léonard, François; Kono, Junichiro

    2013-08-27

    Light polarization is used in the animal kingdom for communication, navigation, and enhanced scene interpretation and also plays an important role in astronomy, remote sensing, and military applications. To date, there have been few photodetector materials demonstrated to have direct polarization sensitivity, as is usually the case in nature. Here, we report the realization of a carbon-based broadband photodetector, where the polarimetry is intrinsic to the active photodetector material. The detector is based on p-n junctions formed between two macroscopic films of single-wall carbon nanotubes. A responsivity up to ~1 V/W was observed in these devices, with a broadband spectral response spanning the visible to the mid-infrared. This responsivity is about 35 times larger than previous devices without p-n junctions. A combination of experiment and theory is used to demonstrate the photothermoelectric origin of the responsivity and to discuss the performance attributes of such devices.

  15. Effect of sound on gap-junction-based intercellular signaling: Calcium waves under acoustic irradiation.

    Science.gov (United States)

    Deymier, P A; Swinteck, N; Runge, K; Deymier-Black, A; Hoying, J B

    2015-01-01

    We present a previously unrecognized effect of sound waves on gap-junction-based intercellular signaling such as in biological tissues composed of endothelial cells. We suggest that sound irradiation may, through temporal and spatial modulation of cell-to-cell conductance, create intercellular calcium waves with unidirectional signal propagation associated with nonconventional topologies. Nonreciprocity in calcium wave propagation induced by sound wave irradiation is demonstrated in the case of a linear and a nonlinear reaction-diffusion model. This demonstration should be applicable to other types of gap-junction-based intercellular signals, and it is thought that it should be of help in interpreting a broad range of biological phenomena associated with the beneficial therapeutic effects of sound irradiation and possibly the harmful effects of sound waves on health.

  16. Negative differential thermal conductance and thermal rectification effects across a graphene-based superconducting junction

    Science.gov (United States)

    Zhou, Xingfei; Zhang, Zhi

    2016-05-01

    We study the heat transport in a graphene-based normal-superconducting junction by solving the Bogoliubov-de Gennes (BdG) equation. There are two effects, the competitive and cooperative effects, which come from the interaction between the temperature-dependent energy-gap function in the superconducting region and the occupation difference of quasiparticles. It is found that the competitive effect can not only bring the negative differential thermal conductance effect but also the thermal rectification effect. By contrast, the cooperative effect just causes the thermal rectification effect. Furthermore, the thermal rectification ratio and the magnitude of heat current should be seen as two inseparable signs for characterizing the thermal rectification effect. These discoveries can add more application for the graphene-based superconducting junction, such as heat diode and heat transistor, at cryogenic temperatures.

  17. Novel Nanoelectronic Device Applications Based on the Nonlinearity of Three-Terminal Ballistic Junctions

    Science.gov (United States)

    Sun, Jie; Wallin, D.; Brusheim, P.; Maximov, I.; Wang, Z. G.; Xu, H. Q.

    2007-04-01

    Nanometer-scale electron devices containing three-terminal ballistic junctions are fabricated by electron-beam lithography on InP/InGaAs two-dimensional electron gas materials. Based on the intrinsic nonlinearity of the devices, frequency mixer, phase detector and RS flip-flop memory functioning at room temperature are successfully achieved. The devices have simple structure layout and small size, and are expected to function at high speed.

  18. LETTER TO THE EDITOR: A CrO2-based magnetic tunnel junction

    Science.gov (United States)

    Barry, A.; Coey, J. M. D.; Viret, M.

    2000-02-01

    A tunnel junction based on the half-metallic oxide CrO2 uses a native oxide barrier layer and a cobalt top electrode. The I :V characteristic is fitted to the Simmons model with icons/Journals/Common/phi" ALT="phi" ALIGN="TOP"/> = 0.76 eV and t = 2.0 nm. The magnetoresistance is positive with icons/Journals/Common/Delta" ALT="Delta" ALIGN="TOP"/> R /R = 1.0% at 77 K.

  19. Circularly polarized light detector based on ferromagnet/semiconductor junctions

    CERN Document Server

    Ikeda, H; Nishibayashi, K; Munekata, H

    2014-01-01

    Helicity-dependent photocurrent delta-I has been detected successfully under experimental configuration that a circularly polarized light beam is impinged with a right angle on a cleaved sidewall of the Fe/x-AlOx/GaAs-based n-i-p double-heterostructure. The photocurrent delta-I has showed a well-defined hysteresis loop which resembles that of the magnetization of the in-plane magnetized Fe layer in the devices. The value of delta-I has been |delta-I|~0.2 nA at 5 K under the remnant magnetization state. Study on temperature dependence of the relative delta-I value at H = 0 has revealed that it is maximized at temperatures 125 - 150 K, and is still measurable at room temperature.

  20. Magnetoresistance in antiferromagnet-based spin tunnel junctions

    Science.gov (United States)

    Jungwirth, Tomas

    2012-02-01

    To date spintronics research and applications of magnetically ordered systems have focused on ferromagnets (FMs). There are, however, fundamental physical limitations for FM materials which may make them impractical to realize the full potential of spintronics. Metal FMs offer high temperature operation but the large magnetic stray fields make them unfavorable for high-density integration and metals are unsuitable for transistor and information processing applications. FM semiconductors on the other hand do not allow for high-temperature operation. We present a concept in which these limitations are circumvented in spintronics based on antiferromagnets. The concept is based on relativistic magnetic and magneto-transport anisotropy effects in nanodevices whose common characteristics is that they are an even function of the microscopic magnetic moment vector, i.e., can be equally strong in AFMs as in FMs. As a demonstration we present our experimental observation of >100% tunneling anisotropic magnetoresistance in a device with an IrMn AFM tunnel electrode [1]. We will also discuss candidate materials for high-temperature AFM semiconductor spintronics [2].[4pt] [1] B. G. Park, J.Wunderlich, X.Marti, V.Holy, Y.Kurosaki, M.Yamada, H.Yamamoto, A.Nishide, J.Hayakawa, H.Takahashi, A.B.Shick, T.Jungwirth, Nature Mat. 10, 347 (2011). [0pt] [2] T.Jungwirth, V.Nov'ak, X.Marti, M.Cukr, F.M'aca, A.B. Shick, J.Masek, P.Horodysk'a, P.Nemec, V.Hol'y, et al., Phys. Rev. B 83, 035321 (2011).

  1. Light-modulated 0-π transition in a silicene-based Josephson junction

    Science.gov (United States)

    Zhou, Xingfei; Jin, Guojun

    2016-10-01

    We investigate the Andreev bound states (ABSs) and Josephson current in a silicene-based superconductor-normal-superconductor junction modulated by a perpendicular electric field and an off-resonant circularly polarized light. Based on the Dirac-Bogoliubov-de Gennes equation, we analytically derive the ABS levels and show they have different phase-difference dependences, which will remarkably influence the velocity of Cooper pairs and then the Josephson current. In the pristine or gated silicene, the ABS levels always show negative slope, which means that the Josephson current is irreversible because of the time-reversal symmetry. When an off-resonant circularly polarized light is applied, whether or not there is a perpendicular electric field, the ABS levels will have positive slope, leading to the emergence of reversed Josephson current due to the nonzero center-of-mass wave vector of Cooper pairs. In this light-modulated silicene-based Josephson junction, valley polarization provides an alternative mechanism for 0-π transition, very different from that for the conventional ferromagnetic Josephson junctions where the spin polarization is essential.

  2. Josephson current in Fe-based superconducting junctions: Theory and experiment

    Science.gov (United States)

    Burmistrova, A. V.; Devyatov, I. A.; Golubov, Alexander A.; Yada, Keiji; Tanaka, Yukio; Tortello, M.; Gonnelli, R. S.; Stepanov, V. A.; Ding, Xiaxin; Wen, Hai-Hu; Greene, L. H.

    2015-06-01

    We present a theory of the dc Josephson effect in contacts between Fe-based and spin-singlet s -wave superconductors. The method is based on the calculation of temperature Green's function in the junction within the tight-binding model. We calculate the phase dependencies of the Josephson current for different orientations of the junction relative to the crystallographic axes of Fe-based superconductor. Further, we consider the dependence of the Josephson current on the thickness of an insulating layer and on temperature. Experimental data for PbIn/Ba 1 -xKx (FeAs) 2 point-contact Josephson junctions are consistent with theoretical predictions for s± symmetry of an order parameter in this material. The proposed method can be further applied to calculations of the dc Josephson current in contacts with other new unconventional multiorbital superconductors, such as Sr2RuO4 and the superconducting topological insulator CuxBi2Se3 .

  3. Probing the nature and resistance of the molecule-electrode contact in SAM-based junctions

    Science.gov (United States)

    Suchand Sangeeth, C. S.; Wan, Albert; Nijhuis, Christian A.

    2015-07-01

    It is challenging to quantify the contact resistance and to determine the nature of the molecule-electrode contacts in molecular two-terminal junctions. Here we show that potentiodynamic and temperature dependent impedance measurements give insights into the nature of the SAM-electrode interface and other bottlenecks of charge transport (the capacitance of the SAM (CSAM) and the resistance of the SAM (RSAM)), unlike DC methods, independently of each other. We found that the resistance of the top-electrode-SAM contact for junctions with the form of AgTS-SCn//GaOx/EGaIn with n = 10, 12, 14, 16 or 18 is bias and temperature independent and hence Ohmic (non-rectifying) in nature, and is orders of magnitude smaller than RSAM. The CSAM and RSAM are independent of the temperature, indicating that the mechanism of charge transport in these SAM-based junctions is coherent tunneling and the charge carrier trapping at the interfaces is negligible.It is challenging to quantify the contact resistance and to determine the nature of the molecule-electrode contacts in molecular two-terminal junctions. Here we show that potentiodynamic and temperature dependent impedance measurements give insights into the nature of the SAM-electrode interface and other bottlenecks of charge transport (the capacitance of the SAM (CSAM) and the resistance of the SAM (RSAM)), unlike DC methods, independently of each other. We found that the resistance of the top-electrode-SAM contact for junctions with the form of AgTS-SCn//GaOx/EGaIn with n = 10, 12, 14, 16 or 18 is bias and temperature independent and hence Ohmic (non-rectifying) in nature, and is orders of magnitude smaller than RSAM. The CSAM and RSAM are independent of the temperature, indicating that the mechanism of charge transport in these SAM-based junctions is coherent tunneling and the charge carrier trapping at the interfaces is negligible. Electronic supplementary information (ESI) available: Detailed experimental procedure, Nyquist

  4. Analysis of junction temperatures in high-power GaN-based LEDs

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    We presented the analysis of the incomplete conduction in bonding medium in high power GaN-based light-emitting diode (LED) packages. A numerical study was carried out with parametric model to understand the junction temperature variation due to bonding medium defects. Transient thermal measurement was performed to evaluate LED’s junction temperature. Thermal resistance from chip to lead frame was 20 K/W in our sample LED. It was suggested that only 60% of the surface area of the bonding medium was involved in the thermal conduction. This result was also supported by the SEM image. Blocking of thermal path induced by ineffective area of the bonding medium was regarded as a factor of its thermal resistance. Thus, the effective area of the bonding medium should be included in the FEM model and considered as another important factor in high power LED’s thermal management.

  5. L10-MnGa based magnetic tunnel junction for high magnetic field sensor

    Science.gov (United States)

    Zhao, X. P.; Lu, J.; Mao, S. W.; Yu, Z. F.; Wang, H. L.; Wang, X. L.; Wei, D. H.; Zhao, J. H.

    2017-07-01

    We report on the investigation of the magnetic tunnel junction structure designed for high magnetic field sensors with a perpendicularly magnetized L10-MnGa reference layer and an in-plane magnetized Fe sensing layer. A large linear tunneling magnetoresistance ratio up to 27.4% and huge dynamic range up to 5600 Oe have been observed at 300 K, with a low nonlinearity of 0.23% in the optimized magnetic tunnel junction (MTJ). The field response of tunneling magnetoresistance is discussed to explain the field sensing properties in the dynamic range. These results indicate that L10-MnGa based orthogonal MTJ is a promising candidate for a high performance magnetic field sensor with a large dynamic range, high endurance and low power consumption.

  6. Paramagnetic molecule induced strong antiferromagnetic exchange coupling on a magnetic tunnel junction based molecular spintronics device.

    Science.gov (United States)

    Tyagi, Pawan; Baker, Collin; D'Angelo, Christopher

    2015-07-31

    This paper reports our Monte Carlo (MC) studies aiming to explain the experimentally observed paramagnetic molecule induced antiferromagnetic coupling between ferromagnetic (FM) electrodes. Recently developed magnetic tunnel junction based molecular spintronics devices (MTJMSDs) were prepared by chemically bonding the paramagnetic molecules between the FM electrodes along the tunnel junction's perimeter. These MTJMSDs exhibited molecule-induced strong antiferromagnetic coupling. We simulated the 3D atomic model analogous to the MTJMSD and studied the effect of molecule's magnetic couplings with the two FM electrodes. Simulations show that when a molecule established ferromagnetic coupling with one electrode and antiferromagnetic coupling with the other electrode, then theoretical results effectively explained the experimental findings. Our studies suggest that in order to align MTJMSDs' electrodes antiparallel to each other, the exchange coupling strength between a molecule and FM electrodes should be ∼50% of the interatomic exchange coupling for the FM electrodes.

  7. A Competency-Based Guided-Learning Algorithm Applied on Adaptively Guiding E-Learning

    Science.gov (United States)

    Hsu, Wei-Chih; Li, Cheng-Hsiu

    2015-01-01

    This paper presents a new algorithm called competency-based guided-learning algorithm (CBGLA), which can be applied on adaptively guiding e-learning. Computational process analysis and mathematical derivation of competency-based learning (CBL) were used to develop the CBGLA. The proposed algorithm could generate an effective adaptively guiding…

  8. Radial junction solar cells based on heterojunction with intrinsic thin layer (HIT) structure

    Science.gov (United States)

    Shen, Haoting

    conformality of a-Si:H deposited by PECVD using SiH4 and H 2 on high aspect ratio trench structures. Experimentally, it was found that the a-Si:H growth rate increased with increasing SiH4 flow rate up to a point after which it saturated at a maximum growth rate. In addition, it was found that higher SiH4 flow rates resulted in improved thickness uniformity along the trenches. A model based on gas transport and surface reaction of SiH3 in trenches was developed and was used to explain the experimental results and predict conditions that would yield improved thickness uniformity. The knowledge gained in the PECVD deposition studies was then used to prepare HIT radial junction Si pillar array solar cell devices. Deep reactive ion etching (DRIE) was used to prepare Si pillar arrays on p-type (111) c-Si wafers. A process was developed to prepare n-type a-Si:H films from SiH 4 and H2, with PH3 as doping gas. Indium tin oxide (ITO) deposited by sputter deposition and Al-doped ZnO deposited by atomic layer deposition (ALD) were evaluated as transparent conductive top contacts to the n-type a-Si:H layer. By adjusting the SiH4/H2 gas flow ratio, intrinsic a-Si:H was grown on the c-Si surface without epitaxial micro-crystalline growth. Continuous and pulsed deposition modes were investigated for deposition of the intrinsic and n-type a-Si:H layers on the c-Si pillars. The measurements of device light performance shown that slightly lower short circuit current density (Jsc, 32 mA/cm2 to 35 mA/cm 2) but higher open circuit voltage (Voc, 0.56 V to .47 V) were obtained on the pulsed devices. As the result, higher efficiency (11.6%) was achieved on the pulsed devices (10.6% on the continuous device). The improved performance of the pulsed deposition devices was explained as arising from a higher SiH3 concentration in the initial plasma which lead to a more uniform layer thickness. Planar and radial junction Si wire array HIT solar cell devices were then fabricated and the device performance

  9. Structural optimization and shear performances of the nanopins based on Y-junction carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zhong-Qiang, E-mail: zhangzq@mail.ujs.edu.cn [Micro/Nano Science and Technology Center, Jiangsu University, Zhenjiang 212013 (China); Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou 213164, Jiangsu (China); State Key Laboratory of Structural Analysis for Industrial Equipment, Department of Engineering Mechanics, Faculty of Vehicle Engineering and Mechanics, Dalian University of Technology, Dalian 116024 (China); Zhong, Jun [Micro/Nano Science and Technology Center, Jiangsu University, Zhenjiang 212013 (China); Ye, Hong-Fei [State Key Laboratory of Structural Analysis for Industrial Equipment, Department of Engineering Mechanics, Faculty of Vehicle Engineering and Mechanics, Dalian University of Technology, Dalian 116024 (China); Cheng, Guang-Gui [Micro/Nano Science and Technology Center, Jiangsu University, Zhenjiang 212013 (China); Ding, Jian-Ning, E-mail: dingjn@ujs.edu.cn [Micro/Nano Science and Technology Center, Jiangsu University, Zhenjiang 212013 (China); Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou 213164, Jiangsu (China)

    2017-01-01

    Utilizing the classical molecular dynamic, we have briefly conducted geometry optimization on several typical nanopins based on Y-junction carbon nanotubes (CNTs), and further investigated their shear performance. The service performance of the nanopin is not sensitive to the length of the inserting end, while as the height of the branch tube increases, the maximum unloading force increases firstly and then keeps relatively stable. The overlong inserting end and high branch tube can lead to the severe oscillation in unloading force due to the continuous morphology change. Moreover, results show that a small angle included in Y-junction CNTs can contribute to both of the fixity of the nanopin and instability of the uninstallation process. Further investigation indicates that the orientation of the branch tubes of the nanopin determines the maximum shear performance, while the radial stability of the CNTs plays an important role in the shear performance of the nanopin. And the microstructure of the Y-junction CNT occurred during the using process can also influence its service performance.

  10. Structural optimization and shear performances of the nanopins based on Y-junction carbon nanotubes

    Science.gov (United States)

    Zhang, Zhong-Qiang; Zhong, Jun; Ye, Hong-Fei; Cheng, Guang-Gui; Ding, Jian-Ning

    2017-01-01

    Utilizing the classical molecular dynamic, we have briefly conducted geometry optimization on several typical nanopins based on Y-junction carbon nanotubes (CNTs), and further investigated their shear performance. The service performance of the nanopin is not sensitive to the length of the inserting end, while as the height of the branch tube increases, the maximum unloading force increases firstly and then keeps relatively stable. The overlong inserting end and high branch tube can lead to the severe oscillation in unloading force due to the continuous morphology change. Moreover, results show that a small angle included in Y-junction CNTs can contribute to both of the fixity of the nanopin and instability of the uninstallation process. Further investigation indicates that the orientation of the branch tubes of the nanopin determines the maximum shear performance, while the radial stability of the CNTs plays an important role in the shear performance of the nanopin. And the microstructure of the Y-junction CNT occurred during the using process can also influence its service performance.

  11. Implantation-Free 4H-SiC Bipolar Junction Transistors with Double Base Epi-layers

    Science.gov (United States)

    2007-05-14

    gain 4H-SiC NPN power bipolar junction transistor ,” IEEE Electron Device Letters, vol. 24, pp. 327-329, May 2003. [3] C.-F. Huang and J. A. Cooper...Jr., “High current gain 4H-SiC NPN Bipolar Junction Transistors ,” IEEE Electron Device Letters, vol. 24, pp. 396-398, Jun. 2003. [4] Sumi...Implantation-Free 4H-SiC Bipolar Junction Transistors with Double Base Epi-layers Jianhui Zhang, member, IEEE, Xueqing, Li, Petre Alexandrov

  12. Magnetic Tunnel Junction-Based On-Chip Microwave Phase and Spectrum Analyzer

    Science.gov (United States)

    Fan, Xin; Chen, Yunpeng; Xie, Yunsong; Kolodzey, James; Wilson, Jeffrey D.; Simons, Rainee N.; Xiao, John Q.

    2014-01-01

    A magnetic tunnel junction (MTJ)-based microwave detector is proposed and investigated. When the MTJ is excited by microwave magnetic fields, the relative angle between the free layer and pinned layer alternates, giving rise to an average resistance change. By measuring the average resistance change, the MTJ can be utilized as a microwave power sensor. Due to the nature of ferromagnetic resonance, the frequency of an incident microwave is directly determined. In addition, by integrating a mixer circuit, the MTJ-based microwave detector can also determine the relative phase between two microwave signals. Thus, the MTJbased microwave detector can be used as an on-chip microwave phase and spectrum analyzer.

  13. MoRe-based and MgB{sub 2} -based tunnel junctions and their characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Shaternik, V; Noskov, V; Chubatyy, V [Kurdyumov Institute for Metal Physics of National Academy of Sciences of Ukraine, Vernadskii boulevard 36, 02142 Kiev (Ukraine); Larkin, S [Concern ' Nauka' , Dovnar-Zapol' skii street 2/20, 03116 Kiev (Ukraine); Belogolovskii, M, E-mail: shaternik@mail.r [Donetsk Institute for Physics and Engineering, National Academy of Sciences of Ukraine, 83114 Donetsk (Ukraine)

    2010-06-01

    Perspective Josephson Mo-Re alloy-oxide-Pb, MgB{sub 2}- oxide - Mo-Re alloy and Mo-Re alloy-normal metal-oxide- normal metal-Mo-Re alloy junctions have been fabricated and investigated. Thin ({approx}50-100 nm) MoRe superconducting films are deposited on Al{sub 2}O{sub 3} substrates by using a dc magnetron sputtering of MoRe target. Thin ({approx}50-100 nm) MgB{sub 2} superconducting films are deposited on Al{sub 2}O{sub 3} substrates by using e-beam evaporation of boron and thermal coevaporation of magnesium. To investigate a transparency spread for the fabricated junctions barriers the computer simulation of the measured quasiparticle I-V curves have been done in framework of the model of multiple Andreev reflections in double-barrier junction interfaces. It's demonstrated the investigated junctions can be described as highly asymmetric double-barrier Josephson junctions with great difference between the two barrier transparencies. Results of computer simulation of quasiparticles I-V curves of junctions are presented and discussed. The I{sub C}(T) characteristics, measured for Josephson heterostructures with different thickness of metal layer s and exposure dose E, essentially deviate from an Ambegaokar- Baratoff (A and B) I{sub C}(T) behavior and Kulik-Omelianchuck (K and O) curves, because of proximity effect caused by the comparatively high value of s (up to 100 nm).

  14. Electron transport through a spin crossover junction. Perspectives from a wavefunction-based approach

    Science.gov (United States)

    Vela, Sergi; Verot, Martin; Fromager, Emmanuel; Robert, Vincent

    2017-02-01

    The present paper reports the application of a computational framework, based on the quantum master equation, the Fermi's golden Rule, and conventional wavefunction-based methods, to describe electron transport through a spin crossover molecular junction (Fe(bapbpy) (NCS)2, 1, bapbpy = N-(6-(6-(Pyridin-2-ylamino)pyridin-2-yl)pyridin-2-yl)-pyridin-2-amine). This scheme is an alternative to the standard approaches based on the relative position and nature of the frontier orbitals, as it evaluates the junction's Green's function by means of accurate state energies and wavefunctions. In the present work, those elements are calculated for the relevant states of the high- and low-spin species of 1, and they are used to evaluate the output conductance within a given range of bias- and gate-voltages. The contribution of the ground and low-lying excited states to the current is analyzed, and inspected in terms of their 2S + 1 Ms-states. In doing so, it is shown the relevance of treating not only the ground state in its maximum-Ms projection, as usually done in most computational-chemistry packages, but the whole spectrum of low-energy states of the molecule. Such improved representation of the junction has a notable impact on the total conductivity and, more importantly, it restores the equivalence between alpha and beta transport, which means that no spin polarization is observed in the absence of Zeeman splitting. Finally, this work inspects the strong- and weak-points of the suggested theoretical framework to understand electron transport through molecular switchable materials, identifies a pathway for future improvement, and offers a new insight into concepts that play a key role in spintronics.

  15. Rectifying Properties of a Nitrogen/Boron-Doped Capped-Carbon-Nanotube-Based Molecular Junction

    Institute of Scientific and Technical Information of China (English)

    ZHAO Peng; LIU De-Sheng; ZHANG Ying; WANG Pei-Ji; ZHANG Zhong

    2011-01-01

    @@ Based on the non-equilibrium Green's function method and first-principles density functional theory calculations, we investigate the electronic transport properties of a nitrogen/boron-doped capped-single-walled carbonnanotube-based molecular junction.Obvious rectifying behavior is observed and it is strongly dependent on the doping site.The best rectifying performance can be carried out when the nitrogen/boron atom dopes at a carbon site in the second layer.Moreover, the rectifying performance can be further improved by adjusting the distance between the Cso nanotube caps.%Based on the non-equilibrium Green's function method and first-principles density functional theory calculations, we investigate the electronic transport properties of a nitrogen/boron-doped capped-single-walled carbon-nanotube-based molecular junction. Obvious rectifying behavior is observed and it is strongly dependent on the doping site. The best rectifying performance can be carried out when the nitrogen/boron atom dopes at a carbon site in the second layer. Moreover, the rectifying performance can be further improved by adjusting the distance between the C60 nanotube caps.

  16. Cryogenic Phase-Locking Loop System Based on SIS Tunnel Junction

    Science.gov (United States)

    Khudchenko, A. V.; Koshelets, V. P.; Kalashnikov, K. V.

    An ultra-wideband cryogenic phase-locking loop (CPLL) system is a new cryogenic device. The CPLL is intended for phase-locking of a Flux-Flow Oscillator (FFO) in a Superconducting Integrated Receiver (SIR) but can be used for any cryogenic terahertz oscillator. The key element of the CPLL is Cryogenic Phase Detector (CPD), a recently proposed new superconducting element. The CPD is an innovative implementation of superconductor-insulator-superconductor (SIS) tunnel junction. All components of the CPLL reside inside a cryostat at 4.2 K, with the loop length of about 50 cm and the total loop delay 5.5 ns. Such a small delay results in CPLL synchronization bandwidth as wide as 40 MHz and allows phase-locking of more than 60% of the power emitted by the FFO even for FFO linewidth of about 10 MHz. This percentage of phase-locked power three times exceeds that achieved with conventional room-temperature PLLs. Such an improvement enables reducing the FFO phase noise and extending the SIR operation range.Another new approach to the FFO phase-locking has been proposed and experimentally verified. The FFO has been synchronized by a cryogenic harmonic phase detector (CHPD) based on the SIS junction. The CHPD operates simultaneously as the harmonic mixer (HM) and phase detector. We have studied the HM based on the SIS junction theoretically; in particular we calculated 3D dependences of the HM output signal power versus the bias voltage and the LO power. Results of the calculations have been compared with experimental measurements. Good qualitative and quantitative correspondence has been achieved. The FFO phase-locking by the CHPD has been demonstrated. Such a PLL system is expected to be extra wideband. This concept is very promising for building of the multi-pixel SIR array.

  17. Dual effects of guide-based guidance on pedestrian evacuation

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Yi, E-mail: yima23-c@my.cityu.edu.hk; Lee, Eric Wai Ming; Shi, Meng

    2017-06-15

    This study investigates the effects of guide-based guidance on the pedestrian evacuation under limited visibility via the simulations based on an extended social force model. The results show that the effects of guides on the pedestrian evacuation under limited visibility are dual, and related to the neighbor density within the visual field. On the one hand, in many cases, the effects of guides are positive, particularly when the neighbor density within the visual field is moderate; in this case, a few guides can already assist the evacuation effectively and efficiently. However, when the neighbor density within the visual field is particularly small or large, the effects of guides may be adverse and make the evacuation time longer. Our results not only provide a new insight into the effects of guides on the pedestrian evacuation under limited visibility, but also give some practical suggestions as to how to assign guides to assist the evacuation under different evacuation conditions. - Highlights: • Extended social force model is used to simulate guided pedestrian evacuation. • Effects of guides on pedestrian evacuation under limited visibility are dual. • Effects of guides on pedestrian evacuation under limited visibility are related to neighbor density within visual field.

  18. Design optimization of thin-film/wafer-based tandem junction solar cells using analytical modeling

    Science.gov (United States)

    Davidson, Lauren; Toor, Fatima

    2016-03-01

    Several research groups are developing solar cells of varying designs and materials that are high efficiency as well as cost competitive with the single junction silicon (Si) solar cells commercially produced today. One of these solar cell designs is a tandem junction solar cell comprised of perovskite (CH3NH3PbI3) and silicon (Si). Loper et al.1 was able to create a 13.4% efficient tandem cell using a perovskite top cell and a Si bottom cell, and researchers are confident that the perovskite/Si tandem cell can be optimized in order to reach higher efficiencies without introducing expensive manufacturing processes. However, there are currently no commercially available software capable of modeling a tandem cell that is based on a thin-film based bottom cell and a wafer-based top cell. While PC1D2 and SCAPS3 are able to model tandem cells comprised solely of thin-film absorbers or solely of wafer-based absorbers, they result in convergence errors if a thin-film/wafer-based tandem cell, such as the perovskite/ Si cell, is modeled. The Matlab-based analytical model presented in this work is capable of modeling a thin-film/wafer-based tandem solar cell. The model allows a user to adjust the top and bottom cell parameters, such as reflectivity, material bandgaps, donor and acceptor densities, and material thicknesses, in order to optimize the short circuit current, open circuit voltage, and quantum efficiency of the tandem solar cell. Using the Matlab-based analytical model, we were able optimize a perovskite/Si tandem cell with an efficiency greater than 30%.

  19. Massive Dirac fermion transport in a gapped graphene-based magnetic tunnel junction

    Science.gov (United States)

    Soodchomshom, Bumned; Tang, I.-Ming; Hoonsawat, Rassmidara

    2009-08-01

    The spin transport in a graphene-based magnetic (NG/ferromagnetic barrier (FB)/NG) tunnel junction with the graphene sheet being grown on a SiC substrate is investigated. Zhou et al. [Nat. Mater. 6 (2007) 770] has shown that in these epitaxial grown graphene sheets, the electrons behave like massive relativistic particles with an energy gap of 2 Δ∼260 meV opening up in the energy spectrum of the massive relativistic electron. Basing on assumption that gap in graphene can occur under the influence of the magnetic field, we find that in the case of thick ferromagnetic graphene barriers, the electronic gap causes the barrier to behave as a strong insulator when the gate potential is in the range 400-130 meVswitched from a 100% spin up current to a 100% spin down current by small variation of V G from V G E f , the features of a perfect spin filtering electronic junction.

  20. Tetragonal Heusler-Like Mn-Ga Alloys Based Perpendicular Magnetic Tunnel Junctions

    Science.gov (United States)

    Ma, Qinli; Sugihara, Atsushi; Suzuki, Kazuya; Zhang, Xianmin; Miyazaki, Terunobu; Mizukami, Shigemi

    2014-10-01

    Films of the Mn-based tetragonal Heusler-like alloys, such as Mn-Ga, exhibit a large perpendicular magnetic anisotropy (PMA), small damping constant, small saturation magnetization and large spin polarizations. These properties are attractive for the application to the next generation high density spin-transfer-torque (STT) magnetic random access memory (STT-MRAM). We reviewed the structure, magnetic properties and Gilbert damping of the alloy films with large PMA, and the current status of research on tunnel magnetoresistance (TMR) in perpendicular magnetic tunnel junctions (p-MTJs) based on Mn-based tetragonal Heusler-like alloy electrode, and also discuss the issues for the application of those to STT-MRAM.

  1. Theoretical results on the tandem junction solar cell based on its Ebers-Moll transistor model

    Science.gov (United States)

    Goradia, C.; Vaughn, J.; Baraona, C. R.

    1980-01-01

    A one-dimensional theoretical model of the tandem junction solar cell (TJC) with base resistivity greater than about 1 ohm-cm and under low level injection has been derived. This model extends a previously published conceptual model which treats the TJC as an npn transistor. The model gives theoretical expressions for each of the Ebers-Moll type currents of the illuminated TJC and allows for the calculation of the spectral response, I(sc), V(oc), FF and eta under variation of one or more of the geometrical and material parameters and 1MeV electron fluence. Results of computer calculations based on this model are presented and discussed. These results indicate that for space applications, both a high beginning of life efficiency, greater than 15% AM0, and a high radiation tolerance can be achieved only with thin (less than 50 microns) TJC's with high base resistivity (greater than 10 ohm-cm).

  2. Magnetic Tunnel Junction-Based On-Chip Microwave Phase and Spectrum Analyzer

    Science.gov (United States)

    Fan, Xin; Chen, Yunpeng; Xie, Yunsong; Kolodzey, James; Wilson, Jeffrey D.; Simons, Rainee N.; Xiao, John Q.

    2014-01-01

    A magnetic tunnel junction (MTJ)-based microwave detector is proposed and investigated. When the MTJ is excited by microwave magnetic fields, the relative angle between the free layer and pinned layer alternates, giving rise to an average resistance change. By measuring the average resistance change, the MTJ can be utilized as a microwave power sensor. Due to the nature of ferromagnetic resonance, the frequency of an incident microwave is directly determined. In addition, by integrating a mixer circuit, the MTJ-based microwave detector can also determine the relative phase between two microwave signals. Thus, the MTJ-based microwave detector can be used as an on-chip microwave phase and spectrum analyzer.

  3. Utilizing collagen membranes for guided tissue regeneration-based root coverage.

    Science.gov (United States)

    Wang, Hom-Lay; Modarressi, Marmar; Fu, Jia-Hui

    2012-06-01

    Gingival recession is a common clinical problem that can result in hypersensitivity, pain, root caries and esthetic concerns. Conventional soft tissue procedures for root coverage require an additional surgical site, thereby causing additional trauma and donor site morbidity. In addition, the grafted tissues heal by repair, with formation of long junctional epithelium with some connective tissue attachment. Guided tissue regeneration-based root coverage was thus developed in an attempt to overcome these limitations while providing comparable clinical results. This paper addresses the biologic foundation of guided tissue regeneration-based root coverage, and describes the indications and contraindications for this technique, as well as the factors that influence outcomes. The step-by-step clinical techniques utilizing collagen membranes are also described. In comparison with conventional soft tissue procedures, the benefits of guided tissue regeneration-based root coverage procedures include new attachment formation, elimination of donor site morbidity, less chair-time, and unlimited availability and uniform thickness of the product. Collagen membranes, in particular, benefit from product biocompatibility with the host, while promoting chemotaxis, hemostasis, and exchange of gas and nutrients. Such characteristics lead to better wound healing by promoting primary wound coverage, angiogenesis, space creation and maintenance, and clot stability. In conclusion, collagen membranes are a reliable alternative for use in root coverage procedures.

  4. A Guide Management System Based on RFID and Bluetooth Technology

    Science.gov (United States)

    Li, Han-Sheng; Wang, Jun-Jun

    The most fundamental and important requirement of the tour guide in the tour process is to ensure the safety of tourists. In this paper, a portable guide management system is designed based on RFID technology, the Android software and blue-tooth communication technology. Through this system, the guide can get real-time information if some tourists are l behind, and send text message or dial to those tourists who are l behind immediately. The system reduces the roll-calling time on the tourists, improves the tour guide work efficiency and service quality.

  5. Anisotropy induced Kondo splitting in a mechanically stretched molecular junction: A first-principles based study

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiaoli; Hou, Dong, E-mail: houdong@ustc.edu.cn [Hefei National Laboratory for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Zheng, Xiao, E-mail: xz58@ustc.edu.cn [Hefei National Laboratory for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Guizhou Provincial Key Laboratory of Computational Nano-Material Science, Institute of Applied Physics, Guizhou Normal College, Guiyang, Guizhou 550018 (China); Yan, YiJing [Hefei National Laboratory for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), University of Science and Technology of China, Hefei, Anhui 230026 (China); Department of Chemistry, Hong Kong University of Science and Technology, Hong Kong (China)

    2016-01-21

    The magnetic anisotropy and Kondo phenomena in a mechanically stretched magnetic molecular junction are investigated by combining the density functional theory (DFT) and hierarchical equations of motion (HEOM) approach. The system is comprised of a magnetic complex Co(tpy–SH){sub 2} sandwiched between adjacent gold electrodes, which is mechanically stretched in experiments done by Parks et al. [Science 328, 1370 (2010)]. The electronic structure and mechanical property of the stretched system are investigated via the DFT calculations. The HEOM approach is then employed to characterize the Kondo resonance features, based on the Anderson impurity model parameterized from the DFT results. It is confirmed that the ground state prefers the S = 1 local spin state. The structural properties, the magnetic anisotropy, and corresponding Kondo peak splitting in the axial stretching process are systematically evaluated. The results reveal that the strong electron correlations and the local magnetic properties of the molecule magnet are very sensitive to structural distortion. This work demonstrates that the combined DFT+HEOM approach could be useful in understanding and designing mechanically controlled molecular junctions.

  6. Photoactive molecular junctions based on self-assembled monolayers of indoline dyes.

    Science.gov (United States)

    Caranzi, Lorenzo; Pace, Giuseppina; Guarnera, Simone; Canesi, Eleonora V; Brambilla, Luigi; Raavi, Sai S K; Petrozza, Annamaria; Caironi, Mario

    2014-11-26

    We demonstrate the feasibility of a photodetector based on an ensemble molecular junction, where a self-assembled monolayer of an organic donor-acceptor dye is directly sandwiched between two electrodes. In such a device, upon photoexcitation and generation of a charge-transfer state on the molecule, charges are dissociated and directly collected at the electrodes without the need of transport through a bulk phase, as in usual photodetectors. We show that the device can work in photovoltaic regime and the spectral response can be tuned by varying the light absorbing dye. Therefore, the electro-optical properties of the downscaled device can be unambiguously related to the physical-chemical properties of the molecules, a commonly difficult point to demonstrate in a molecular junction device, because of the uncertainties of the interplay between molecules and electrodes. The proposed device, which relies on a simple self-assembly process, has a strong potentiality for fast responding, downscaled detectors, ultimately limited by charge dissociation dynamics, and can be considered also as a useful tool to investigate fundamental electro-optical processes in molecular monolayers.

  7. Imaging soft x-ray spectrometers based on superconducting tunnel junctions

    Science.gov (United States)

    Verhoeve, P.; Martin, D. D. E.; Venn, R.

    2010-07-01

    X-ray detectors based on superconducting tunnel junctions (STJs) have demonstrated good energy resolution in the soft X-ray energy range 0.1-6 keV. In particular DROIDS (Distributed Read Out Imaging Devices), consisting of a superconducting absorber strip with superconducting tunnel junctions as read-out devices on either end, could combine this high resolving power with a large sensitive area and good soft X-ray detection efficiency. In this paper we present results on the spectroscopic performance of Al and Ta/Al DROIDs with different absorber materials (Ta, Re) and with variations in absorber configurations: our standard absorber integrated with the read-out structure is compared with absorbers deposited after definition of the read-out structure. The latter allows maximising the detection efficiency through thicker layers and different absorber materials. Also, absorbers which are electrically coupled to the readout structure are compared to insulated absorbers which couple to the readout structure by phonon exchange across a thin dielectric layer. New process routes have been designed for all new configurations. Whilst not all these structures have been fabricated successfully yet, our integrated absorber sofar exhibits the best performance, with 2.45 eV FWHM at 400 eV and 16.6 eV FWHM at 5.9 keV.

  8. Thermal influence on charge carrier transport in solar cells based on GaAs PN junctions

    Energy Technology Data Exchange (ETDEWEB)

    Osses-Márquez, Juan; Calderón-Muñoz, Williams R., E-mail: wicalder@ing.uchile.cl [Department of Mechanical Engineering, University of Chile, Beauchef 850, Santiago (Chile)

    2014-10-21

    The electron and hole one-dimensional transport in a solar cell based on a Gallium Arsenide (GaAs) PN junction and its dependency with electron and lattice temperatures are studied here. Electrons and heat transport are treated on an equal footing, and a cell operating at high temperatures using concentrators is considered. The equations of a two-temperature hydrodynamic model are written in terms of asymptotic expansions for the dependent variables with the electron Reynolds number as a perturbation parameter. The dependency of the electron and hole densities through the junction with the temperature is analyzed solving the steady-state model at low Reynolds numbers. Lattice temperature distribution throughout the device is obtained considering the change of kinetic energy of electrons due to interactions with the lattice and heat absorbed from sunlight. In terms of performance, higher values of power output are obtained with low lattice temperature and hot energy carriers. This modeling contributes to improve the design of heat exchange devices and thermal management strategies in photovoltaic technologies.

  9. Large magnetocapacitance effect in magnetic tunnel junctions based on Debye-Fröhlich model

    Energy Technology Data Exchange (ETDEWEB)

    Kaiju, Hideo, E-mail: kaiju@es.hokudai.ac.jp; Takei, Masashi; Misawa, Takahiro; Nishii, Junji [Research Institute for Electronic Science, Hokkaido University, Sapporo, Hokkaido 001-0020 (Japan); Nagahama, Taro [School of Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628 (Japan); Xiao, Gang [Department of Physics, Brown University, Providence, Rhode Island 02912 (United States)

    2015-09-28

    The frequency dependence of tunneling magnetocapacitance (TMC) in magnetic tunnel junctions (MTJs) is investigated theoretically and experimentally. According to the calculation based on Debye-Fröhlich model combined with Julliere formula, the TMC ratio strongly depends on the frequency and it has the maximum peak at a specific frequency. The calculated frequency dependence of TMC is in good agreement with the experimental results obtained in MgO-based MTJs with a tunneling magnetoresistance (TMR) ratio of 108%, which exhibit a large TMC ratio of 155% at room temperature. This calculation also predicts that the TMC ratio can be as large as about 1000% for a spin polarization of 87%, while the TMR ratio is 623% for the same spin polarization. These theoretical and experimental findings provide a deeper understanding on AC spin-dependent transport in the MTJs and will open up wider opportunities for device applications, such as highly sensitive magnetic sensors and impedance-tunable devices.

  10. Analyses and Simulation of V-I Characteristics for Solar Cells Based on P-N Junction

    Institute of Scientific and Technical Information of China (English)

    ZHENG Jian-bang; REN Ju; GUO Wen-ge; HOU Chao-qi

    2005-01-01

    Through theoretical analyses of the Shockley equation and the difference between a practical P-N junction and its ideal model, the mathematical models of P-N junction and solar cells had been obtained. With Matlab software, the V-I characteristics of diodes and solar cells were simulated, and a computer simulation model of the solar cells based on P-N junction was also established. Based on the simulation model, the influences of solar cell's internal resistances on open-circuit voltage and short-circuit current under certain illumination were numerically analyzed and solved. The simulation results showed that the equivalent series resistance and shunt resistance could strongly affect the V-I characteristics of solar cell, but their influence styles were different.

  11. Petri Net-Based Model of Helicobacter pylori Mediated Disruption of Tight Junction Proteins in Stomach Lining during Gastric Carcinoma

    Directory of Open Access Journals (Sweden)

    Anam Naz

    2017-09-01

    Full Text Available Tight junctions help prevent the passage of digestive enzymes and microorganisms through the space between adjacent epithelial cells lining. However, Helicobacter pylori encoded virulence factors negatively regulate these tight junctions and contribute to dysfunction of gastric mucosa. Here, we have predicted the regulation of important tight junction proteins, such as Zonula occludens-1, Claudin-2 and Connexin32 in the presence of pathogenic proteins. Molecular events such as post translational modifications and crosstalk between phosphorylation, O-glycosylation, palmitoylation and methylation are explored which may compromise the integrity of these tight junction proteins. Furthermore, the signaling pathways disrupted by dysregulated kinases, proteins and post-translational modifications are reviewed to design an abstracted computational model showing the situation-dependent dynamic behaviors of these biological processes and entities. A qualitative hybrid Petri Net model is therefore constructed showing the altered host pathways in the presence of virulence factor cytotoxin-associated gene A, leading to the disruption of tight junction proteins. The model is qualitative logic-based, which does not depend on any kinetic parameter and quantitative data and depends on knowledge derived from experiments. The designed model provides insights into the tight junction disruption and disease progression. Model is then verified by the available experimental data, nevertheless formal in vitro experimentation is a promising way to ensure its validation. The major findings propose that H. pylori activated kinases are responsible to trigger specific post translational modifications within tight junction proteins, at specific sites. These modifications may favor alterations in gastric barrier and provide a route to bacterial invasion into host cells.

  12. Effect of thermal-annealing on the magnetoresistance of manganite-based junctions

    Institute of Scientific and Technical Information of China (English)

    Xie Yan-Wu; Shen Bao-Gen; Sun Ji-Rong

    2008-01-01

    Thermal-annealing has been widely used in modulating the oxygen content of manganites. In this work, we have studied the effect of annealing on the transport properties and magnetoresistance of junctions composed of a La0.9Ca0.1MnO3+δ film and a Nb-doped SrTiO3 substrate. We have demonstrated that the magnetoresistance of junctions is strongly dependent on the annealing conditions: From the junction annealed-in-air to the junction annealed-in-vacuum, the magnetoresistance near 0-V bias can vary from ~-60% to~0. A possible mechanism accounting for this phenomenon is discussed.

  13. Mapping of single-base differences between two DNA strands in a single molecule using holliday junction nanomechanics.

    Directory of Open Access Journals (Sweden)

    Camille Brème

    Full Text Available OBJECTIVE: The aim of this work is to demonstrate a novel single-molecule DNA sequence comparison assay that is purely based on DNA mechanics. METHODS: A molecular construct that contained the two homologous but non-identical DNA sequences that were to be compared was prepared such that a four-way (Holliday junction could be formed by the formation of heteroduplexes through the inter-recombination of the strands. Magnetic tweezers were used to manipulate the force and the winding applied to this construct for inducing both the formation and the migration of a Holliday junction. The end-to-end distance of the construct was measured as a function of the winding and was used to monitor the behavior of the Holliday junction in different regions of the intra-molecular recombination. MAIN RESULTS: In the appropriate buffer, the magnet rotation induces the migration of the Holliday junction in the regions where there is no sequence difference between the recombining sequences. In contrast, even a single-base difference between the recombining sequences leads to a long-lasting blockage of the migration in the same buffer; this effect was obtained when the junction was positioned near this locus (the site of the single-base difference and forced toward the formation of heteroduplexes that comprise the locus. The migration blockages were detected through the identification of the formation of plectonemes. The detection of the presence of sequence differences and their respective mappings were obtained from the series of blockages that were detected. SIGNIFICANCE: This work presents a novel single-molecule sequence comparison assay that is based on the use of a Holliday junction as an ultra-sensitive nanomechanism; the mismatches act as blocking grains of sand in the Holliday "DNA gearbox". This approach will potentially have future applications in biotechnology.

  14. Web-Based Instruction A Guide for Libraries

    CERN Document Server

    Smith, Susan Sharpless

    2010-01-01

    Expanding on the popular, practical how-to guide for public, academic, school, and special libraries, technology expert Susan Sharpless Smith offers library instructors the confidence to take Web-based instruction into their own hands.

  15. Tribal Community-Based Social Marketing Training Guide

    Science.gov (United States)

    The Community-Based Social Marketing (CBSM) Training Guide and recycling toolkit provides an overview of how to increase the adoption of sustainable behaviors and recycling practices with a community.

  16. Properties of Contact Resistance towards Realization of Graphene-based Three-Branch Junction Device

    Science.gov (United States)

    Rahman, S. F. A.; Hashim, A. M.; Ali, N. K.; Rusop, M.; Nafarizal, N.

    2011-05-01

    A three-branch junction (TBJ) nanowire device is shown to exhibit a unique nonlinear input-output characteristics. The effect of contact resistance on such characteristics is investigated. It is shown that metal contact having small contact resistance is required so that such nonlinear characteristics of TBJ device can be maintained. The graphene-based back-gated FET device structure and transmission line method are proposed and discussed in order to determine the contact resistance of metal/graphene interface. The preparation of graphene layer and its characterization using conventional methods are presented and discussed. These basic preliminary results provide useful guidance and information for the fabrication of actual devices which are on the way.

  17. Discriminating single-molecule sensing by crown-ether-based molecular junctions

    Science.gov (United States)

    Ismael, Ali K.; Al-Jobory, Alaa; Grace, Iain; Lambert, Colin J.

    2017-02-01

    Crown-ether molecules are well known to selectively bind alkali atoms, so by incorporating these within wires, any change in electrical conductance of the wire upon binding leads to discriminating sensing. Using a density functional theory-based approach to quantum transport, we investigate the potential sensing capabilities of single-molecule junctions formed from crown ethers attached to anthraquinone units, which are in turn attached to gold electrodes via alkyl chains. We calculate the change in electrical conductance for binding of three different alkali ions (lithium, sodium, and potassium). Depending on the nature of the ionic analyte, the conductance is enhanced by different amounts. This change in electrical conductance is due to charge transfer from the ion to molecular wire causing the molecular resonances to shift closer to the electrode Fermi energy.

  18. Multiple tunnel junctions based nanowire photodetector model for single charge detection

    Science.gov (United States)

    Chatbouri, Samir; Touati, A.; Troudi, M.; Sghaier, N.; Kalboussi, A.

    2013-07-01

    In this paper we propose a new silicon nanowire photodetector model based on a single-electron transistor for single charge detection (photo-NWSET). In the first part of this work we present the two blocks of the device structure (reading and detection blocks). The presented model is consisting of two blocks capacitively coupled. The first SET (SET1) is supposed to read the charge whereas the detection block is represented by the nanowire (NW) system associated to an optical source. We modeled the NW by a series of seven islands separated by eight tunnel junctions (8TJs). In the second part of this work, we investigate the effects of photoexcitation on Id-Vg curves and we present results obtained on the output (photo-NWSET) characteristics after variation of power illumination and response time.

  19. Confined State and Electronic Transport in an Artificial Graphene-Based Tunnel Junction

    Institute of Scientific and Technical Information of China (English)

    袁建辉; 张建军; 曾奇军; 张俊佩; 成泽

    2011-01-01

    Artificial graphene structures embedded in semiconductors could open novel routes for studies of electron interactions in 1ow-dimensional systems. We propose a way to manipulate the transport properties of massless Dirac fermions in an artificial graphene-based tunnel junction. Velocity-modulation control of electron wave propagation in the different regions can be regarded as velocity barriers. Transmission probability of electron is affected profoundly by this velocity barrier. We find that there is no confinement for Dirac electron as the velocity ratio ζ is less than 1, but when the velocity ratio is larger than 1 the confined state appears in the continuum band. These localized Dirac electrons may lead to the decreasing of transmission probability.

  20. Detection of HIV-1 antigen based on magnetic tunnel junction sensor and magnetic nanoparticles

    CERN Document Server

    Li, L; Zhou, Y; Pong, P W T

    2016-01-01

    In recent years, it is evidenced that the individuals newly infected HIV are transmitting the virus prior to knowing their HIV status. Identifying individuals that are early in infection with HIV antibody negative (window period) remains problematic. In the newly infected individuals, HIV antigen p24 is usually present in their serum or plasma 7-10 days before the HIV antibody. After antibody production initiates, the p24 antigen is bound into immune complexes. That means the detectable p24 antigens in serum/plasma are short-lived, and their amount is in the pg/ml range. Thus, a rapid quantitative bio-detection system with high-sensitivity is required to achieve early disease diagnosis. Magnetoresistive (MR) biosensor with ultra-high sensitivity possesses great potential in this area. In this study, a p24 detection assay using MgO-based magnetic tunnel junction (MTJ) sensor and 20-nm magnetic nanoparticles is reported.

  1. Mechanisms of crossing for an X-junction based on dark spatial solitons

    Energy Technology Data Exchange (ETDEWEB)

    Torres-Cisneros, M [FIMEE, Universidad de Guanajuato, Salamanca, Guanajuato Mexico (Mexico); Aguilera-Cortes, L A [FIMEE, Universidad de Guanajuato, Salamanca, Guanajuato (Mexico); Meneses-Nava, M A [Optical Properties of the Matter, CIO, Leon, Gto. (Mexico); Sanchez-Mondragon, J J [Photonics and Optical Physics, INAOE, Puebla (Mexico); Torres-Cisneros, G E

    2004-05-01

    We present a fundamental study on the capability of a crossing of two optical waveguides based on dark spatial solitons to act as a controllable optical beam splitter. Our study is based on the fact that the guided beam is diffracted at the waveguide crossing by an effective phase screen formed by the soliton collision profile. We find that when the two dark solitons are immersed into the same finite bright background, the energy of a guided beam can be split into the desired optical channel according to the collision angle. We also found that even the corresponding phase diffractive screen possesses a quite different structure in the bright and dark soliton cases; the physics involved is the same.

  2. Building memristive and radiation hardness TiO{sub 2}-based junctions

    Energy Technology Data Exchange (ETDEWEB)

    Ghenzi, N., E-mail: n.ghenzi@gmail.com [Gerencia de Investigación y Aplicaciones, Comisión Nacional de Energía Atómica (Argentina); Rubi, D. [Gerencia de Investigación y Aplicaciones, Comisión Nacional de Energía Atómica (Argentina); ECyT, UNSAM, Martín de Irigoyen 3100, 1650 San Martín, Bs As (Argentina); Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) (Argentina); Mangano, E.; Gimenez, G. [Instituto Nacional de Tecnología Industrial (INTI) (Argentina); Lell, J. [Gerencia de Investigación y Aplicaciones, Comisión Nacional de Energía Atómica (Argentina); Zelcer, A. [Gerencia Química, Comisión Nacional de Energía Atómica (Argentina); ECyT, UNSAM, Martín de Irigoyen 3100, 1650 San Martín, Bs As (Argentina); Stoliar, P. [ECyT, UNSAM, Martín de Irigoyen 3100, 1650 San Martín, Bs As (Argentina); IMN, Université de Nantes, CNRS, 2 rue de la Houssinière, BP 32229, 44322 Nantes (France); and others

    2014-01-01

    We study micro-scale TiO{sub 2} junctions that are suitable to be used as resistive random-access memory nonvolatile devices with radiation hardness memristive properties. The fabrication and structural and electrical characterization of the junctions are presented. We obtained a retentivity of 10{sup 5} s, an endurance of 10{sup 4} cycles and reliable switching with short electrical pulses (time-width below 10 ns). Additionally, the devices were exposed to 25 MeV oxygen ions. Then, we performed electrical measurements comparing pristine and irradiated devices in order to check the feasibility of using these junctions as memory elements with memristive and radiation hardness properties. - Highlights: • We fabricated radiation hardness memristive metal insulator metal junctions. • We characterized the structural properties of the devices. • We showed the feasibility of the junctions as a non-volatile memory.

  3. Four logic states of tunneling magnetoelectroresistance in ferromagnetic shape memory alloy based multiferroic tunnel junctions

    Science.gov (United States)

    Singh, Kirandeep; Kaur, Davinder

    2017-07-01

    This study illustrates the approach to obtain four logic states of ferromagnetic shape memory alloy based multiferroic tunnel junction (MFTJ). In order to achieve giant tunneling electroresistance (TER) and tunneling magnetoresistance (TMR), Ni-Mn-In and Ni-Mn-Sb layers were chosen as electrodes, as well as the concept of the composite barrier was adopted using the STO/PZT [SrTiO3, Strontium Titanate/PbZr0.52Ti0.48O3 (Lead Zirconate Titanate)] (dielectric/ferroelectric) barrier layer. Equated to MFTJ with a single PZT barrier, the introduction of a STO paraelectric (dielectric) barrier is shown to be effective in improving both the TER and TMR of the MFTJs. Particularly, the TER ratio is greatly enhanced by 168% {" separators="|relative TER change: (ΔT/E R T E R =T/ER 2-TE R 1 TE R 1 ×100 }). This is described in terms of the increased asymmetry in the electrostatic modulation on the barrier potential profile with respect to the Ferroelectric (FE) polarization direction. We show that due to the coupling between FE polarization and magnetization at the junction between the barrier and the electrode of a MFTJ, the spin polarization of the tunneling electrons can be reversibly and remanently flipped by switching the FE polarization of the barrier. In addition to the analysis of memory function, the exchange bias phenomena are also studied. A negative exchange bias field of "HEB" ˜-98 Oe occurred at 300 K in these bilayers.

  4. Tunable 0–π transition by interband coupling in iron-based superconductor Josephson junctions

    Science.gov (United States)

    Tao, Y. C.; Liu, S. Y.; Bu, N.; Wang, J.; Di, Y. S.

    2016-01-01

    An extended four-component Bogoliubov–de Gennes equation is applied to study the Josephson effect in ballistic limit between either two iron-based superconductors (SCs) or an iron-based SC and a conventional s-wave SC, separated by a normal metal. A 0–π transition as a function of interband coupling strength α is always exhibited, arising from the tuning of mixing between the two trajectories with opposite phases. The novel property can be experimentally used to discriminate the {s}+/- -wave pairing symmetry in the iron-based SCs from the {s}++-wave one in MgB2. The effect of interface transparency on the 0–π transition is also presented. The 0–π transition as a function of α is wholly distinct from that as a function of barrier strength or temperature in recent theories (Linder et al 2009 Phys. Rev. B 80 020503(R)). The possible experimental probe of the phase-shift effect in iron-based SC Josephson junctions is commented on as well.

  5. Two-Dimensional Measurement of n+-p Asymmetrical Junctions in Multicrystalline Silicon Solar Cells Using AFM-Based Electrical Techniques with Nanometer Resolution: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, C. S.; Moutinho, H. R.; Li, J. V.; Al-Jassim, M. M.; Heath, J. T.

    2011-07-01

    Lateral inhomogeneities of modern solar cells demand direct electrical imaging with nanometer resolution. We show that atomic force microscopy (AFM)-based electrical techniques provide unique junction characterizations, giving a two-dimensional determination of junction locations. Two AFM-based techniques, scanning capacitance microscopy/spectroscopy (SCM/SCS) and scanning Kelvin probe force microscopy (SKPFM), were significantly improved and applied to the junction characterizations of multicrystalline silicon (mc-Si) cells. The SCS spectra were taken pixel by pixel by precisely controlling the tip positions in the junction area. The spectra reveal distinctive features that depend closely on the position relative to the electrical junction, which allows us to indentify the electrical junction location. In addition, SKPFM directly probes the built-in potential over the junction area modified by the surface band bending, which allows us to deduce the metallurgical junction location by identifying a peak of the electric field. Our results demonstrate resolutions of 10-40 nm, depending on the techniques (SCS or SKPFM). These direct electrical measurements with nanometer resolution and intrinsic two-dimensional capability are well suited for investigating the junction distribution of solar cells with lateral inhomogeneities.

  6. Evaluating In-Clique and Topological Parallelism Strategies for Junction Tree-Based Bayesian Inference Algorithm on the Cray XMT

    Energy Technology Data Exchange (ETDEWEB)

    Chin, George; Choudhury, Sutanay; Kangas, Lars J.; McFarlane, Sally A.; Marquez, Andres

    2011-09-01

    Long viewed as a strong statistical inference technique, Bayesian networks have emerged to be an important class of applications for high-performance computing. We have applied an architecture-conscious approach to parallelizing the Lauritzen-Spiegelhalter Junction Tree algorithm for exact inferencing in Bayesian networks. In optimizing the Junction Tree algorithm, we have implemented both in-clique and topological parallelism strategies to best leverage the fine-grained synchronization and massive-scale multithreading of the Cray XMT architecture. Two topological techniques were developed to parallelize the evidence propagation process through the Bayesian network. One technique involves performing intelligent scheduling of junction tree nodes based on its topology and relative size. The second technique involves decomposing the junction tree into a much finer tree-like representation to offer much more opportunities for parallelism. We evaluate these optimizations on five different Bayesian networks and report our findings and observations. Another important contribution of this paper is to demonstrate the application of massive-scale multithreading for load balancing and use of implicit parallelism-based compiler optimizations in designing scalable inferencing algorithms.

  7. Ab initio electronic transport study of two-dimensional silicon carbide-based p–n junctions

    Science.gov (United States)

    Zhou, Hanming; Lin, Xiao; Guo, Hongwei; Lin, Shisheng; Sun, Yiwei; Xu, Yang

    2017-03-01

    Two-dimensional silicon carbide (2d-SiC) is a viable material for next generation electronics due to its moderate, direct bandgap with huge potential. In particular, its potential for p–n junctions is yet to be explored. In this paper, three types of 2d-SiC-based p–n junctions with different doping configuration are modeled. The doping configurations refer to partially replacing carbon with boron or nitrogen atoms along the zigzag or armchair direction, respectively. By employing density functional theory, we calculate the transport properties of the SiC based p–n junctions and obtain negative differential resistance and high rectification ratio. We also find that the junction along the zigzag direction with lower doping density exhibits optimized rectification performance. Our study suggests that 2d-SiC is a promising candidate as a material platform for future nano-devices. Project supported by the National Science Foundation of China (Nos. 61474099, 61674127) and the ZJ-NSF (No. Z17F04003).

  8. Terahertz frequency metrology based on high-T sub c Josephson junctions

    CERN Document Server

    Chen, J; Wang, H B; Nakajima, K; Yamashita, T; Wu, P H

    2002-01-01

    Using YBa sub 2 Cu sub 3 O sub 7 /MgO bicrystal Josephson junctions operating between 6-77 K, we have studied their responses to monochromatic electromagnetic radiation from 50 GHz to 4.25 THz. We have obtained direct detections for radiation at 70 K from 50 GHz to 760 GHz and at 40 K from 300 GHz to 3.1 THz. This indicates that fast detectors can be realized to cover the 10:1 frequency band at one operation temperature, and about 100:1 can be covered by operating only one junction at two different temperatures. Both the highest response frequency and the maximum value of the normalized response are shown to be proportional to the I sub C R sub N product of the junction, where I sub C and R sub N are the critical current and the normal resistance of the junction, respectively.

  9. Highly efficient organic multi-junction solar cells with a thiophene based donor material

    Energy Technology Data Exchange (ETDEWEB)

    Meerheim, Rico, E-mail: rico.meerheim@iapp.de; Körner, Christian; Leo, Karl, E-mail: karl.leo@iapp.de [Institut für Angewandte Photophysik, Technische Universität Dresden, George-Bähr-Straße 1, 01062 Dresden (Germany)

    2014-08-11

    The efficiency of organic solar cells can be increased by serial stacked subcells even upon using the same absorber material. For the multi-junction devices presented here, we use the small molecule donor material DCV5T-Me. The subcell currents were matched by optical transfer matrix simulation, allowing an efficiency increase from 8.3% for a single junction up to 9.7% for a triple junction cell. The external quantum efficiency of the subcells, measured under appropriate light bias illumination, is spectrally shifted due to the microcavity of the complete stack, resulting in a broadband response and an increased cell current. The increase of the power conversion efficiency upon device stacking is even stronger for large area cells due to higher influence of the resistance of the indium tin oxide anode, emphasizing the advantage of multi-junction devices for large-area applications.

  10. Mo1-xWxSe2-Based Schottky Junction Photovoltaic Cells.

    Science.gov (United States)

    Yi, Sum-Gyun; Kim, Sung Hyun; Park, Sungjin; Oh, Donggun; Choi, Hwan Young; Lee, Nara; Choi, Young Jai; Yoo, Kyung-Hwa

    2016-12-14

    We developed Schottky junction photovoltaic cells based on multilayer Mo1-xWxSe2 with x = 0, 0.5, and 1. To generate built-in potentials, Pd and Al were used as the source and drain electrodes in a lateral structure, and Pd and graphene were used as the bottom and top electrodes in a vertical structure. These devices exhibited gate-tunable diode-like current rectification and photovoltaic responses. Mo0.5W0.5Se2 Schottky diodes with Pd and Al electrodes exhibited higher photovoltaic efficiency than MoSe2 and WSe2 devices with Pd and Al electrodes, likely because of the greater adjusted band alignment in Mo0.5W0.5Se2 devices. Furthermore, we showed that Mo0.5W0.5Se2-based vertical Schottky diodes yield a power conversion efficiency of ∼16% under 532 nm light and ∼13% under a standard air mass 1.5 spectrum, demonstrating their remarkable potential for photovoltaic applications.

  11. Self-powered and broadband photodetectors based on graphene/ZnO/silicon triple junctions

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Ching-Cheng; Liao, Yu-Ming; Chen, Yang-Fang, E-mail: yfchen@phys.ntu.edu.tw [Department of Physics, National Taiwan University, Taipei 10617, Taiwan (China); Zhan, Jun-Yu; Lin, Tai-Yuan [Institute of Optoelectronic Sciences, National Taiwan Ocean University, Keelung 202, Taiwan (China); Hsieh, Ya-Ping [Graduate Institute of Opto-Mechatronics, National Chung Cheng University, Chia-Yi 621, Taiwan (China)

    2016-08-01

    A self-powered photodetector with ultrahigh sensitivity, fast photoresponse, and wide spectral detectivity covering from 1000 nm to 400 nm based on graphene/ZnO/Si triple junctions has been designed, fabricated, and demonstrated. In this device, graphene serves as a transparent electrode as well as an efficient collection layer for photogenerated carriers due to its excellent tunability of Fermi energy. The ZnO layer acts as an antireflection layer to trap the incident light and enhance the light absorption. Furthermore, the insertion of the ZnO layer in between graphene and Si layers can create build-in electric field at both graphene/ZnO and ZnO/Si interfaces, which can greatly enhance the charge separation of photogenerated electron and hole pairs. As a result, the sensitivity and response time can be significantly improved. It is believed that our methodology for achieving a high-performance self-powered photodetector based on an appropriate design of band alignment and optical parameters can be implemented to many other material systems, which can be used to generate unique optoelectronic devices for practical applications.

  12. A physics-based compact model of ferroelectric tunnel junction for memory and logic design

    Science.gov (United States)

    Wang, Zhaohao; Zhao, Weisheng; Kang, Wang; Bouchenak-Khelladi, Anes; Zhang, Yue; Zhang, Youguang; Klein, Jacques-Olivier; Ravelosona, Dafiné; Chappert, Claude

    2014-01-01

    Ferroelectric tunnel junction (FTJ) is able to store non-volatile data in the spontaneous polarization direction of ferroelectric tunnel barrier. Recent progress has demonstrated its great potential to build up the next generation non-volatile memory and logic (NVM and NVL) thanks to the high OFF/ON resistance ratio, fast operation speed, low write power, non-destructive readout and so on. In this paper, we present the first physics-based compact model for Co/BTO/LSMO FTJ nanopillar, which was reported experimentally to exhibit excellent NVM performance. This model integrates related physical models of tunnel resistance, static switching voltage and dynamic switching delay. Its accuracy is shown by the good agreement between numerical model simulation and experimental measurements. This compact model has been developed in Verilog-A language and validated by single-cell simulation on Cadence Virtuoso Platform. Hybrid simulations based on 40 nm-technology node of FTJ memory arrays and non-volatile full adder were performed to demonstrate the efficiency of our compact model for the simulation and analysis of CMOS/FTJ integrated circuits.

  13. Electronic transport properties of molecular junctions based on the direct binding of aromatic ring to electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Lan, Tran Nguyen, E-mail: lantran@ims.ac.jp

    2014-01-15

    Highlights: • Transport properties of molecular junction having direct binding of aromatic ring to electrode have been investigated. • The conductance of junction with sp-type electrode is higher than that of junction with sd-type electrode. • The rectifying mechanism critically depends on the nature of benzene–electrode coupling. • The p–n junction-like can be obtained even without heteroatom doping. • The negative differential resistance effect was observed for the case of sp-type electrode. - Abstract: We have used the non-equilibrium Green’s function in combination with the density functional theory to investigate the quantum transport properties of the molecular junctions including a terminated benzene ring directly coupled to surface of metal electrodes (physisorption). The other side of molecule was connected to electrode via thiolate bond (chemisorption). Two different electrodes have been studied, namely Cu and Al. Rectification and negative differential resistance behavior have been observed. We found that the electron transport mechanism is affected by the nature of benzene–electrode coupling. In other words, the transport mechanism depends on the nature of metallic electrode. Changing from sp- to sd-metallic electrode, the molecular junction changes from the Schottky to p–n junction-like diode. The transmission spectra, projected density of state, molecular projected self-consistent Hamiltonian, transmission eigenchannel, and Muliken population have been analyzed for explanation of electronic transport properties. Understanding the transport mechanism in junction having direct coupling of π-conjugate to electrode will be useful to design the future molecular devices.

  14. In situ study of hydrogen diffusion in a-Si:H based junctions exposed to hydrogen plasma

    Energy Technology Data Exchange (ETDEWEB)

    Larbi, Fadila; Hadjadj, Aomar [Groupe de Recherche en Sciences pour l' Ingenieur (GRESPI), Universite de Reims (France); Fellah, Samira; Roca i Cabarrocas, Pere [Laboratoire de Physique des Interfaces et Couches Minces (LPICM), Ecole Polytechnique, Palaiseau (France); Dine Sib, Jamal [Laboratoire de Physique des Couches Minces et Materiaux pour l' Electronique (LPCM2E), Universite d' Oran (Algeria)

    2012-06-15

    Just after their deposition by plasma enhanced chemical vapor deposition (PECVD) process, we have exposed Cr/I/N, Cr/I/P, Cr/N/I and Cr/P/I a-Si:H based junctions to H{sub 2} plasma and followed in situ, by ellipsometry, the modifications induced by hydrogen diffusion. In the case of Cr/N/I and Cr/P/I junctions, no significant effects of the junction on the hydrogen diffusion were observed since the time-evolution of the thickness of the H-modified layer is similar to that of a single intrinsic layer. However, Cr/I/N, Cr/I/P structures present an attenuated thickness of the H-modified layer in the first few minutes of hydrogen plasma exposure. This effect should be attributed to the charges in the field regions of I/N or I/P junctions which increase the hydrogen trap concentration and restrain the hydrogen diffusion. (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  15. Building a knowledge based economy in Russia using guided entrepreneurship

    Science.gov (United States)

    Reznik, Boris N.; Daniels, Marc; Ichim, Thomas E.; Reznik, David L.

    2005-06-01

    Despite advanced scientific and technological (S&T) expertise, the Russian economy is presently based upon manufacturing and raw material exports. Currently, governmental incentives are attempting to leverage the existing scientific infrastructure through the concept of building a Knowledge Based Economy. However, socio-economic changes do not occur solely by decree, but by alteration of approach to the market. Here we describe the "Guided Entrepreneurship" plan, a series of steps needed for generation of an army of entrepreneurs, which initiate a chain reaction of S&T-driven growth. The situation in Russia is placed in the framework of other areas where Guided Entrepreneurship has been successful.

  16. Magnetotransport in MgO-based magnetic tunnel junctions grown by molecular beam epitaxy (invited)

    Energy Technology Data Exchange (ETDEWEB)

    Andrieu, S., E-mail: stephane.andrieu@univ-lorraine.fr; Bonell, F.; Hauet, T.; Montaigne, F. [Institut Jean Lamour, Nancy University/CNRS, Bd des Aiguillettes, BP239, 54506 Vandoeuvre-lès-Nancy (France); Calmels, L.; Snoeck, E. [CEMES, CNRS and Toulouse University, 29 rue Jeanne Marvig, 31055 Toulouse (France); Lefevre, P.; Bertran, F. [Synchrotron SOLEIL-CNRS, L' Orme des Merisiers, Saint-Aubin, BP48, 91192 Gif-sur-Yvette cedex (France)

    2014-05-07

    The strong impact of molecular beam epitaxy growth and Synchrotron Radiation characterization tools in the understanding of fundamental issues in nanomagnetism and spintronics is illustrated through the example of fully epitaxial MgO-based Magnetic Tunnel Junctions (MTJs). If ab initio calculations predict very high tunnel magnetoresistance (TMR) in such devices, some discrepancy between theory and experiments still exists. The influence of imperfections in real systems has thus to be considered like surface contaminations, structural defects, unexpected electronic states, etc. The influence of possible oxygen contamination at the Fe/MgO(001) interface is thus studied, and is shown to be not so detrimental to TMR as predicted by ab initio calculations. On the contrary, the decrease of dislocations density in the MgO barrier of MTJs using Fe{sub 1−x}V{sub x} electrodes is shown to significantly increase TMR. Finally, unexpected transport properties in Fe{sub 1−X}Co{sub x}/MgO/Fe{sub 1−X}Co{sub x} (001) are presented. With the help of spin and symmetry resolved photoemission and ab initio calculation, the TMR decrease for Co content higher than 25% is shown to come from the existence of an interface state and the shift of the empty Δ1 minority spin state towards the Fermi level.

  17. Perpendicular magnetic tunnel junction with a strained Mn-based nanolayer

    Science.gov (United States)

    Suzuki, K. Z.; Ranjbar, R.; Okabayashi, J.; Miura, Y.; Sugihara, A.; Tsuchiura, H.; Mizukami, S.

    2016-07-01

    A magnetic tunnel junction with a perpendicular magnetic easy-axis (p-MTJ) is a key device for spintronic non-volatile magnetoresistive random access memory (MRAM). Co-Fe-B alloy-based p-MTJs are being developed, although they have a large magnetisation and medium perpendicular magnetic anisotropy (PMA), which make it difficult to apply them to a future dense MRAM. Here, we demonstrate a p-MTJ with an epitaxially strained MnGa nanolayer grown on a unique CoGa buffer material, which exhibits a large PMA of more than 5 Merg/cm3 and magnetisation below 500 emu/cm3 these properties are sufficient for application to advanced MRAM. Although the experimental tunnel magnetoresistance (TMR) ratio is still low, first principles calculations confirm that the strain-induced crystal lattice distortion modifies the band dispersion along the tetragonal c-axis into the fully spin-polarised state; thus, a huge TMR effect can be generated in this p-MTJ.

  18. A sensitive ultraviolet light photodiode based on graphene-on-zinc oxide Schottky junction

    Directory of Open Access Journals (Sweden)

    Zhang Teng-Fei

    2016-11-01

    Full Text Available In this study, we present a simple ultraviolet (UV light photodiode by transferring a layer of graphene film on single-crystal ZnO substrate. The as-fabricated heterojunction exhibited typical rectifying behavior, with a Schottky barrier height of 0.623 eV. Further optoelectronic characterization revealed that the graphene-ZnO Schottky junction photodiode displayed obvious sensitivity to 365-nm light illumination with good reproducibility. The responsivity and photoconductive gain were estimated to be 3×104 A/W and 105, respectively, which were much higher than other ZnO nanostructure-based devices. In addition, it was found that the on/off ratio of the present device can be considerably improved from 2.09 to 12.1, when the device was passivated by a layer of AlOx film. These results suggest that the present simply structured graphene-ZnO UV photodiode may find potential application in future optoelectronic devices.

  19. Perfect GMR effect in gapped graphene-based ferromagnetic normal ferromagnetic junctions

    Institute of Scientific and Technical Information of China (English)

    Hossein Karbaschi; Gholam Reza Rashedi

    2015-01-01

    We investigate the quantum transport property in gapped graphene-based ferromagnetic/normal/ferromagnetic (FG/NG/FG) junctions by using the Dirac–Bogoliubov–de Gennes equation. The graphene is fabricated on SiC and BN substrates separately, so carriers in FG/NG/FG structures are considered as massive relativistic particles. Transmission prob-ability, charge, and spin conductances are studied as a function of exchange energy of ferromagnets (h), size of graphene gap, and thickness of normal graphene region (L) respectively. Using the experimental values of Fermi energy in the normal graphene part (EFN∼400 meV) and energy gap in graphene (260 meV for SiC and 50 meV for BN substrate), it is shown that this structure can be used for both spin-up and spin-down polarized current. The latter case has different behavior of gapped FG/NG/FG from that of gapless FG/NG/FG structures. Also perfect charge giant magnetoresistance is observed in a range of EFN−mv2F

  20. RKKY interaction in P-N junction based on surface states of 3D topological insulator

    Science.gov (United States)

    Zhang, Shuhui; Yang, Wen; Chang, Kai

    The RKKY interaction mediated by conduction electrons supplies a mechanism to realize the long-range coupling of localized spins which is desired for the spin devices. Here, we examine the controllability of RKKY interaction in P-N junction (PNJ) based on surface states of 3D topological insulator (3DTI). In this study, through quantum way but not usual classical analogy to light propagation, the intuitive picture for electron waves across the interface of PNJ is obtained, e.g., Klein tunneling, negative refraction and focusing. Moreover, we perform the numerical calculations for all kinds of RKKY interaction including the Heisenberg, Ising, and Dzyaloshinskii-Moriya terms. We find the focusing of surface states leads to the local augmentation of RKKY interaction. Most importantly, a dimension transition occurs, i.e., the decay rate of RKKY interaction from the deserved 1/R 2 to 1/ R . In addition, the quadratic gate-dependence of RKKY interaction is also beneficial to the application of 3DTI PNJ in the fields of spintronics and quantum computation. This work was supported by the MOST (Grant No. 2015CB921503, and No. 2014CB848700) and NSFC (Grant No. 11434010, No. 11274036, No. 11322542, and No. 11504018).

  1. Ab initio study of the thermopower of biphenyl-based single-molecule junctions

    Science.gov (United States)

    Bürkle, M.; Zotti, L. A.; Viljas, J. K.; Vonlanthen, D.; Mishchenko, A.; Wandlowski, T.; Mayor, M.; Schön, G.; Pauly, F.

    2012-09-01

    By employing ab initio electronic-structure calculations combined with the nonequilibrium Green's function technique, we study the dependence of the thermopower Q on the conformation in biphenyl-based single-molecule junctions. For the series of experimentally available biphenyl molecules, alkyl side chains allow us to gradually adjust the torsion angle ϕ between the two phenyl rings from 0∘ to 90∘ and to control in this way the degree of π-electron conjugation. Studying different anchoring groups and binding positions, our theory predicts that the absolute values of the thermopower decrease slightly towards larger torsion angles, following an a+bcos2ϕ dependence. The anchoring group determines the sign of Q and a,b simultaneously. Sulfur and amine groups give rise to Q,a,b>0, while for cyano, Q,a,bbinding positions can lead to substantial variations of the thermopower mostly due to changes in the alignment of the frontier molecular orbital levels and the Fermi energy. We explain our ab initio results in terms of a π-orbital tight-binding model and a minimal two-level model, which describes the pair of hybridizing frontier orbital states on the two phenyl rings. The variations of the thermopower with ϕ seem to be within experimental resolution.

  2. Brief rapid thermal treatment effect on patterned CoFeB-based magnetic tunneling junctions

    Science.gov (United States)

    Wu, Kuo-Ming; Huang, Chao-Hsien; Wang, Yung-Hung; Kao, Ming-Jer; Tsai, Ming-Jinn; Wu, Jong-Ching; Horng, Lance

    2007-05-01

    The brief thermal treatment effects on the magnetoresistance of microstructured Co60Fe20B20-based magnetic tunneling junctions have been studied. The elliptical shape of devices with long/short axis of 4/2μm was patterned out of film stack of seed layer (20)/PtMn(15)/Co60Fe20B20(3)/Al(0.7)oxide/C60Fe20B20(20)/capping layer (48) (thickness unit in nanometers) combining conventional lithography and inductively coupled plasma reactive ion beam etching technologies. The thermal annealing was carried out with device loading into a furnace with preset temperatures ranging from 100to400°C for only 5min in the absence of any external magnetic field. The magnetoresistance was found to increase with increasing annealing temperatures up to 250°C and then decrease at higher annealing temperatures. In addition, the magnetoresistance ratio of around 35%, similar to that of as-fabricated devices, sustains up to annealing temperature of 350°C. This survival of magnetoresistance at higher annealing temperature is due to boron conservation in the amorphous CoFeB ferromagnetic layer at higher annealing temperature for only a short time, which is manifested using x-ray diffractometer technique.

  3. Perpendicular magnetic tunnel junction with a strained Mn-based nanolayer.

    Science.gov (United States)

    Suzuki, K Z; Ranjbar, R; Okabayashi, J; Miura, Y; Sugihara, A; Tsuchiura, H; Mizukami, S

    2016-07-26

    A magnetic tunnel junction with a perpendicular magnetic easy-axis (p-MTJ) is a key device for spintronic non-volatile magnetoresistive random access memory (MRAM). Co-Fe-B alloy-based p-MTJs are being developed, although they have a large magnetisation and medium perpendicular magnetic anisotropy (PMA), which make it difficult to apply them to a future dense MRAM. Here, we demonstrate a p-MTJ with an epitaxially strained MnGa nanolayer grown on a unique CoGa buffer material, which exhibits a large PMA of more than 5 Merg/cm(3) and magnetisation below 500 emu/cm(3); these properties are sufficient for application to advanced MRAM. Although the experimental tunnel magnetoresistance (TMR) ratio is still low, first principles calculations confirm that the strain-induced crystal lattice distortion modifies the band dispersion along the tetragonal c-axis into the fully spin-polarised state; thus, a huge TMR effect can be generated in this p-MTJ.

  4. Optical losses in multi-junction a-Si:H based solar cells and modules

    Science.gov (United States)

    Wiedeman, S.; Morris, J.; Yang, L.

    A comprehensive optical model is described which is applicable to glass/textured CTO/a-Si:H/a-SiGe:H-based multijunction cells and allows the calculation of optical absorption in each layer of the solar cell. The major optical losses which limit the output current density of tandem cells using 1.72-eV/1.50-eV bandgap a-Si:H/a-SiGe:H and an ITO/Ag rear contact to about 20.8 mA/sq cm (sum of both junctions) are identified and discussed. It is shown that improvements in the reflectivity and scattering properties of the rear contact may be expected to result in current densities of 22.3 mA/sq cm in this type of cell using intrinsic layers of limited thickness. The use of low-cost materials, such as soda-lime glass and the aluminum rear contacts typically employed in the manufacture of large-area modules, should reduce the total current density available to 18.5 mA/sq cm.

  5. Hybrid pn-junction solar cells based on layers of inorganic nanocrystals and organic semiconductors: optimization of layer thickness by considering the width of the depletion region.

    Science.gov (United States)

    Saha, Sudip K; Guchhait, Asim; Pal, Amlan J

    2014-03-07

    We report the formation and characterization of hybrid pn-junction solar cells based on a layer of copper diffused silver indium disulfide (AgInS2@Cu) nanoparticles and another layer of copper phthalocyanine (CuPc) molecules. With copper diffusion in the nanocrystals, their optical absorption and hence the activity of the hybrid pn-junction solar cells was extended towards the near-IR region. To decrease the particle-to-particle separation for improved carrier transport through the inorganic layer, we replaced the long-chain ligands of copper-diffused nanocrystals in each monolayer with short-ones. Under illumination, the hybrid pn-junctions yielded a higher short-circuit current as compared to the combined contribution of the Schottky junctions based on the components. A wider depletion region at the interface between the two active layers in the pn-junction device as compared to that of the Schottky junctions has been considered to analyze the results. Capacitance-voltage characteristics under a dark condition supported such a hypothesis. We also determined the width of the depletion region in the two layers separately so that a pn-junction could be formed with a tailored thickness of the two materials. Such a "fully-depleted" device resulted in an improved photovoltaic performance, primarily due to lessening of the internal resistance of the hybrid pn-junction solar cells.

  6. Oscillating Guided Modes in Graphene-Based Asymmetric Waveguides

    Institute of Scientific and Technical Information of China (English)

    PENG Ping; ZHANG Peng; LIU Jian-Ke; CAO Zhen-Zhou; LI Guan-Qiang

    2012-01-01

    We investigate the guided modes in monolayer graphene-based waveguides with asymmetric quantum well structure induced by unequal dc voltages. The dispersion relation for the guided modes is obtained analytically, the structures of the guided modes are discussed under three distinct cases. For the cases of the classical motion and the Klein tunneling, the asymmetric structure does not influence the mode structures dramatically compared with that in the symmetric waveguide. But for the mixing case of the former two, the mode structures and the motion characteristics for the electron and the hole exhibit different behaviors at same condition. The results may be helpful for the practical application of graphene-based quantum devices.

  7. Circular sensing networks for guided waves based structural health monitoring

    Science.gov (United States)

    Wandowski, T.; Malinowski, P. H.; Ostachowicz, W. M.

    2016-01-01

    In this paper, results of damage localization performed for four sensing network configurations are compared. Process of damage localization is based on guided waves propagation phenomenon. Guided waves are excited using piezoelectric transducer and received by scanning laser vibrometer. Different excitation frequencies are also investigated. In experimental investigations two types of piezoelectric transducers are used as guided waves exciters. Frequency-magnitude characteristics of symmetric and antisymmetric modes are created for both types of transducers. These characteristics allow a choice of an excitation frequency for efficient generation of selected wave mode. The amplitude of second mode in this case has negligibly small value. Finally, sensing networks in the form of circle with three different diameters are realized based on piezoelectric transducers. Damage localization algorithm is prepared in MATLAB® environment as well as in C++.

  8. Sustainability Base: The Self-guided "Tour"

    Science.gov (United States)

    Grymes, Rosalind; Poll, Scott

    2012-01-01

    This series of 6 information sheets was designed to familiarize readers with the performance capabilities of Sustainability Base. The set described the design intentions and operational characteristics of this LEED Platinum facility

  9. High efficiency single Ag nanowire/p-GaN substrate Schottky junction-based ultraviolet light emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Y.; Li, X.; Xu, P.; Wang, Y.; Shen, X.; Liu, X.; Yang, Q., E-mail: qingyang@zju.edu.cn [State Key Laboratory of Modern Optical Instrumentation, Department of Optical Engineering, Zhejiang University, Hangzhou 310027 (China); Hasan, T. [Cambridge Graphene Centre, University of Cambridge, Cambridge CB3 0FA (United Kingdom)

    2015-02-02

    We report a high efficiency single Ag nanowire (NW)/p-GaN substrate Schottky junction-based ultraviolet light emitting diode (UV-LED). The device demonstrates deep UV free exciton electroluminescence at 362.5 nm. The dominant emission, detectable at ultralow (<1 μA) forward current, does not exhibit any shifts when the forward current is increased. External quantum efficiency (EQE) as high as 0.9% is achieved at 25 μA current at room temperature. Experiments and simulation analysis show that devices fabricated with thinner Ag NWs have higher EQE. However, for very thin Ag NWs (diameter < 250 nm), this trend breaks down due to heat accumulation in the NWs. Our simple device architecture offers a potentially cost-effective scheme to fabricate high efficiency Schottky junction-based UV-LEDs.

  10. Gap Junctions

    Science.gov (United States)

    Nielsen, Morten Schak; Axelsen, Lene Nygaard; Sorgen, Paul L.; Verma, Vandana; Delmar, Mario; Holstein-Rathlou, Niels-Henrik

    2013-01-01

    Gap junctions are essential to the function of multicellular animals, which require a high degree of coordination between cells. In vertebrates, gap junctions comprise connexins and currently 21 connexins are known in humans. The functions of gap junctions are highly diverse and include exchange of metabolites and electrical signals between cells, as well as functions, which are apparently unrelated to intercellular communication. Given the diversity of gap junction physiology, regulation of gap junction activity is complex. The structure of the various connexins is known to some extent; and structural rearrangements and intramolecular interactions are important for regulation of channel function. Intercellular coupling is further regulated by the number and activity of channels present in gap junctional plaques. The number of connexins in cell-cell channels is regulated by controlling transcription, translation, trafficking, and degradation; and all of these processes are under strict control. Once in the membrane, channel activity is determined by the conductive properties of the connexin involved, which can be regulated by voltage and chemical gating, as well as a large number of posttranslational modifications. The aim of the present article is to review our current knowledge on the structure, regulation, function, and pharmacology of gap junctions. This will be supported by examples of how different connexins and their regulation act in concert to achieve appropriate physiological control, and how disturbances of connexin function can lead to disease. © 2012 American Physiological Society. Compr Physiol 2:1981-2035, 2012. PMID:23723031

  11. Gap junctions.

    Science.gov (United States)

    Nielsen, Morten Schak; Axelsen, Lene Nygaard; Sorgen, Paul L; Verma, Vandana; Delmar, Mario; Holstein-Rathlou, Niels-Henrik

    2012-07-01

    Gap junctions are essential to the function of multicellular animals, which require a high degree of coordination between cells. In vertebrates, gap junctions comprise connexins and currently 21 connexins are known in humans. The functions of gap junctions are highly diverse and include exchange of metabolites and electrical signals between cells, as well as functions, which are apparently unrelated to intercellular communication. Given the diversity of gap junction physiology, regulation of gap junction activity is complex. The structure of the various connexins is known to some extent; and structural rearrangements and intramolecular interactions are important for regulation of channel function. Intercellular coupling is further regulated by the number and activity of channels present in gap junctional plaques. The number of connexins in cell-cell channels is regulated by controlling transcription, translation, trafficking, and degradation; and all of these processes are under strict control. Once in the membrane, channel activity is determined by the conductive properties of the connexin involved, which can be regulated by voltage and chemical gating, as well as a large number of posttranslational modifications. The aim of the present article is to review our current knowledge on the structure, regulation, function, and pharmacology of gap junctions. This will be supported by examples of how different connexins and their regulation act in concert to achieve appropriate physiological control, and how disturbances of connexin function can lead to disease. © 2012 American Physiological Society. Compr Physiol 2:1853-1872, 2012.

  12. Superconducting transport in single and parallel double InAs quantum dot Josephson junctions with Nb-based superconducting electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Baba, Shoji, E-mail: baba@meso.t.u-tokyo.ac.jp; Sailer, Juergen [Department of Applied Physics, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Deacon, Russell S. [Center for Emergent Matter Science (CEMS), RIKEN, Wako, Saitama 351-0198 (Japan); RIKEN Advanced Science Laboratory, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Oiwa, Akira [The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047 (Japan); Shibata, Kenji [Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505 (Japan); Department of Electronics and Intelligent Systems, Tohoku Institute of Technology, Sendai 982-8577 (Japan); Hirakawa, Kazuhiko [Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505 (Japan); JST CREST, 4-1-8 Hon-cho, Kawaguchi-shi, Saitama 332-0012 (Japan); Tarucha, Seigo [Department of Applied Physics, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Center for Emergent Matter Science (CEMS), RIKEN, Wako, Saitama 351-0198 (Japan); INQIE, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505 (Japan); QPEC, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku 113-8656 (Japan)

    2015-11-30

    We report conductance and supercurrent measurements for InAs single and parallel double quantum dot Josephson junctions contacted with Nb or NbTiN superconducting electrodes. Large superconducting gap energy, high critical field, and large switching current are observed, all reflecting the features of Nb-based electrodes. For the parallel double dots, we observe an enhanced supercurrent when both dots are on resonance, which may reflect split Cooper pair tunneling.

  13. Comprehensive and Macrospin-Based Magnetic Tunnel Junction Spin Torque Oscillator Model - Part I: Analytical Model of the MTJ STO

    OpenAIRE

    Chen, Tingsu; Eklund, Anders; Iacocca, Ezio; Rodriguez, Saul; Malm, Gunnar; Åkerman, Johan; Rusu, Ana

    2014-01-01

    Magnetic tunnel junction (MTJ) spin torque oscillators (STO) have shown the potential to be used in a wide range of microwave and sensing applications. To evaluate potential uses of MTJ STO technology in various applications, an analytical model that can capture MTJ STO's characteristics, while enabling system- and circuit-level designs, is of great importance. An analytical model based on macrospin approximation is necessary for these designs since it allows implementation in hardware descri...

  14. Tractor Mechanic--Teacher's Guide. Competency Based Education Curriculum.

    Science.gov (United States)

    McCann, Edward W.

    This teacher's guide is designed to accompany the Tractor Mechanic Competency Based Education (CBE) Curriculum (CE 022 480). The following information is included: a discussion of the uses of the Tractor Mechanic CBE curriculum; definitions of related terms; the table of contents for the Tractor Mechanic CBE curriculum; a list of competencies by…

  15. A piezoelectric vibration harvester based on clamped-guided beams

    NARCIS (Netherlands)

    Wang, Z.; Matova, S.; Elfrink, R.; Jambunathan, M.; Nooijer, C. de; Schaijk, R. van; Vullers, R.J.M.

    2012-01-01

    The paper addresses the design, modeling, fabrication and experimental results of a piezoelectric energy harvester based on clamped-guided beams. The design is featured by shorter mass displacement and higher reliability than cantilever beams. Two separate sets of capacitors allow exploiting both te

  16. Characteristics of Schottky Barrier Junction Based on Hexagonal Microtube ZnO

    Institute of Scientific and Technical Information of China (English)

    GAO Hui; LI Yan; YANG Li-ping; DENG Hong

    2005-01-01

    Hexagonal microtube ZnO was firstly grown on single crystal p-Si (111) substrates by hydrothermal method, and fabricated Ag/n-ZnO and Au/n-ZnO Schottky junction. Schottky effective barrier heights were calculated by I-V measurement. It is confirmed that the presence of a large amount of surface states related possibly to lattice imperfections existed near the surface leads to the pinning of the surface Fermi level at 0.35 eV below the conduction-band edge. Then the fabricated Schottky barrier junctions are evaluated for their use as UV photodetectors.

  17. GuideBot. A Tour Guide System Based on Mobile Robots

    Directory of Open Access Journals (Sweden)

    Joaquín López

    2013-11-01

    Full Text Available There is a growing interest in the use of tour guide mobile robots in different environments such as museums, exhibitions and fairs. This type of robot should have autonomy, robust perception and navigation systems, and should also be oriented towards close interaction with humans. In this paper we present an automatic tour guide system based on a set of mobile platforms that interact with visitors to help them in different tasks. These tasks include giving tours to visitors, helping them find points of interest in a building and providing information about elements in the stands in a fair. Over the last few years, many tour guide robots have been developed and used in museums and at events. Most of these systems are based on a single robot and they do not include mechanisms to exchange information with the building automation system. The approach presented here uses several robots connected to a central server. The system also includes different devices in the building that are connected through a fieldbus to the central server. The system was developed with the Robotics Integrated Development Environment (RIDE and was tested intensively at different events.

  18. An electronic study guide for problem-based learning.

    Science.gov (United States)

    Mooney, G A; Bligh, J G; Leinster, S F; Warenius, H M

    1995-11-01

    This paper describes the development and structure of an Electronic Study Guide for Oncology (LETSGO) for undergraduate medical students. LETSGO is aimed at clinical students learning about cancer. The subject of the guide is breast cancer and learning objectives cover structure and function, behavioural science, public health and epidemiology and professional and personal values. LETSGO is designed to follow the steps used in problem-based learning. The student is encouraged to carry out individual brainstorming around cases with the issues identified acting as the first step in an educational audit loop. Clear definition of prior knowledge is available by way of interactive features, and hyper-text links to core text and diagrams (including microscopic sections) precede definition of both broad aims and objectives for the module and specific objectives for assessment purposes. Core knowledge is available via hyper-text links. Assessment has three components: open ended questions asking for free text responses linking to 'model' answers; extended matching items linking to 'model' answers and providing peer-referenced feedback as a bar-chart distribution, and an educational audit loop referring back to the original issues identified at the beginning of the package in brainstorming. Clear mapping throughout the guide is a major feature and the student's progress is clearly displayed at each stage of the guide. The program provides dynamic access to the student's existing knowledge base and stimulates new learning based on the student's own learning needs.

  19. Potential of asymmetrical Si/Ge and Ge/Si based hetero-junction transit time devices over homo-junction counterparts for generation of high power

    Institute of Scientific and Technical Information of China (English)

    Moumita Mukherjee; Pravash R. Tripathy; S. P. Pati

    2011-01-01

    Static and dynamic properties of both complementary n-Ge/p-Si and p-Ge/n-Si hetero-junction DoubleDrift IMPATT diodes have been investigated by an advanced and realistic computer simulation technique,developed by the authors,for operation in the Ka-,V- and W-band frequencies.The results are further compared with corresponding Si and Ge homo-junction devices.The study shows high values of device efficiency,such as 23%,22% and 21.5%,for n-Ge/p-Si IMPATTs at the Ka,V and W bands,respectively.The peak device negative conductances for n-Si/p-Ge and n-Ge/p-Si hetero-junction devices found to be 50.7 × 106 S/m2 and 71.3 × 106 S/m2,which are ~3-4 times better than their Si and Ge counterparts at the V-band.The computed values of RF powerdensity for n-Ge/p-Si hetero-junction IMPATTs are 1.0 × 109,1.1 × 109 and 1.4 × 109 W/m2,respectively,for Ka-,V- and W-band operation,which can be observed to be the highest when compared with Si,Ge and n-Si/p-Ge devices.Both of the hetero-junctions,especially the n-Ge/p-Si hetero-junction diode,can thus become a superior RF-power generator over a wide range of frequencies.The present study will help the device engineers to choose a suitable material pair for the development of high-power MM-wave IMPATT for applications in the civil and defense-related arena.

  20. Performance Analysis of Si-Based Ultra-Shallow Junction Photodiodes for UV Radiation Detection

    NARCIS (Netherlands)

    Shi, L.

    2013-01-01

    This thesis presents a performance investigation of newly-developed ultra-shallow junction photodiodes (PureB-diodes) for ultraviolet (UV) radiation detection. The photodiodes are fabricated by pure boron chemical vapor deposition (PureB CVD) technology, which can provide nanometer-thin boron cappin

  1. Quantum interference effects at room temperature in OPV-based single-molecule junctions

    DEFF Research Database (Denmark)

    Arroyo, Carlos R.; Frisenda, Riccardo; Moth-Poulsen, Kasper

    2013-01-01

    )-phenylenevinylene (OPV3) derivatives, in which the central benzene ring is coupled to either para- or meta-positions. Using the break-junction technique, we find that the conductance for a single meta-OPV3 molecule wired between gold electrodes is one order of magnitude smaller than that of a para-OPV3 molecule...

  2. Impact of derivatization on electron transmission through dithienylethene-based photoswitches in molecular junctions

    NARCIS (Netherlands)

    Van Dyck, Colin; Geskin, Victor; Kronemeijer, Auke J.; de Leeuw, Dago M.; Cornil, Jerome; Cornil, Jérôme

    2013-01-01

    We report a combined Non-Equilibrium Green's Function - Density Functional Theory study of molecular junctions made of photochromic diarylethenes between gold electrodes. The impact of derivatization of the molecule on the transmission spectrum is assessed by introducing: (i) substituents on the dia

  3. Microwave oscillator based on an intrinsic BSCCO-type Josephson junction

    DEFF Research Database (Denmark)

    Pedersen, Niels Falsig; Madsen, Søren Peder

    2005-01-01

    . The resulting model is a set of coupled nonlinear partial differential equations. By direct numerical simulations we have demonstrated that the qualitative behavior of the combined intrinsic Josephson junction and cavity system can be understood on the basis of general concepts of nonlinear oscillators...

  4. The importance of Fe surface states for spintronic devices based on magnetic tunnel junctions

    Energy Technology Data Exchange (ETDEWEB)

    Chantis, Athanasios N [Los Alamos National Laboratory

    2008-01-01

    In this article we give a review of our recent theoretical studies of the influence of Fe(001) surface (interface) states on spin-polarized electron transport across magnetic tunnel junctions with Fe electrodes. We show that minority-spin surface (interface) states are responsible for at least two effects which are important for spin electronics. First, they can produce a sizable tunneling anisotropic magnetoresistance in magnetic tunnel junctions with a single Fe electrode. The effect is driven by a Rashba shift of the resonant surface band when the magnetization changes direction. This can introduce a new class of spintronic devices, namely, tunneling magnetoresistance junctions with a single ferromagnetic electrode. Second, in Fe/GaAs(001) magnetic tunnel junctions minority-spin interface states produce a strong dependence of the tunneling current spin polarization on applied electrical bias. A dramatic sign reversal within a voltage range of just a few tenths of an eV is predicted. This explains the observed sign reversal of spin polarization in recent experiments of electrical spin injection in Fe/GaAs(001) and related reversal of tunneling magnetoresistance through vertical Fe/GaAs/Fe trilayers.

  5. Schottky junction photovoltaic devices based on CdS single nanobelts.

    Science.gov (United States)

    Ye, Y; Dai, L; Wu, P C; Liu, C; Sun, T; Ma, R M; Qin, G G

    2009-09-16

    Schottky junction photovoltaic (PV) devices were fabricated on single CdS nanobelts (NBs). Au was used as the Schottky contact, and In/Au was used as the ohmic contact to CdS NB. Typically, the Schottky junction exhibits a well-defined rectifying behavior in the dark with a rectification ratio greater than 10(3) at +/- 0.3 V; and the PV device exhibits a clear PV behavior with an open circuit photovoltage of about 0.16 V, a short circuit current of about 23.8 pA, a maximum output power of about 1.6 pW, and a fill factor of 42%. Moreover, the output power can be multiplied by connecting two or more of the Schottky junction PV devices, made on a single CdS NB, in parallel or in series. This study demonstrates that the 1D Schottky junction PV devices, which have the merits of low cost, easy fabrication and material universality, can be an important candidate for power sources in nano-optoelectronic systems.

  6. Modeling superconducting networks containing Josephson junctions by means of PC-based circuit simulation software

    Energy Technology Data Exchange (ETDEWEB)

    Blackburn, J.A. (Department of Physics and Computing, Wilfrid Laurier University, Waterloo, ON (Canada)); Smith, H.J.T. (Department of Physics, University of Waterloo, Waterloo, ON (Canada))

    1990-09-01

    Software packages are now available with which complex analog electronic circuits can be simulated on desktop computers. Using Micro Cap III it is demonstrated that the modeling capabilities of such software can be extended to include {ital superconducting} networks by means of an appropriate equivalent circuit for a Josephson junction.

  7. The simulation of laser-based guided weapon engagements

    Science.gov (United States)

    Al-Jaberi, Mubarak; Richardson, Mark; Coath, John; Jenkin, Robin

    2006-05-01

    The laser is an integrated part of many weapon systems, such as laser guided bombs, laser guided missiles and laser beam-riding missiles. These systems pose a significant threat to military assets on the modern battlefield. The lasers used in beam-riding missiles are particularly hard to detect as they typically use relatively low power lasers. Beamriders are also particularly difficult to defeat as current countermeasure systems have not been optimized against this threat. Some recent field trails conducted in the United Arab Emirates desert have demonstrated poor performance of both laser beam-riding systems and the LWRs designed to detect them. The aim of this research is to build a complete evaluation tool capable of assessing all the phases of an engagement of a main battle tank or armoured fighting vehicle with a laser based guided weapon. To this end a software model has been produced using Matlab & Simulink. This complete model has been verified using lab based experimentation and by comparison to the result of the mentioned field trials. This project will enable both the evaluation and design of any generic laser warning receiver or missile seeker and specific systems if various parameters are known. Moreover, this model will be used as a guide to the development of reliable countermeasures for laser beam-riding missiles.

  8. Electronic thermometry in tunable tunnel junction

    Energy Technology Data Exchange (ETDEWEB)

    Maksymovych, Petro

    2016-03-15

    A tunable tunnel junction thermometry circuit includes a variable width tunnel junction between a test object and a probe. The junction width is varied and a change in thermovoltage across the junction with respect to the change in distance across the junction is determined. Also, a change in biased current with respect to a change in distance across the junction is determined. A temperature gradient across the junction is determined based on a mathematical relationship between the temperature gradient, the change in thermovoltage with respect to distance and the change in biased current with respect to distance. Thermovoltage may be measured by nullifying a thermoelectric tunneling current with an applied voltage supply level. A piezoelectric actuator may modulate the probe, and thus the junction width, to vary thermovoltage and biased current across the junction. Lock-in amplifiers measure the derivatives of the thermovoltage and biased current modulated by varying junction width.

  9. The electrical properties of photodiodes based on nanostructure gallium doped cadmium oxide/p-type silicon junctions

    Science.gov (United States)

    Çavaş, M.; Yakuphanoğlu, F.; Karataş, Ş.

    2017-01-01

    Gallium doped cadmium-oxide (CdO: Ga) thin films were successfully deposited by sol-gel spin coating method on p-type Si substrate. The electrical properties of the photodiode based on nanostructure Ga doped n-CdO/p-Si junctions were investigated. The current-voltage (I-V) characteristics of the structure were investigated under various light intensity and dark. It was observed that generated photocurrent of the Au/n-CdO/p-Si junctions depended on light intensity. The capacitance-voltage and conductance-voltage measurements were carried out for this diode in the frequency range between 100 and 1000 kHz at room temperature by steps of 100 kHz. The capacitance decreased with increasing frequency due to a continuous distribution of the interface states. These results suggested that the Au/n-CdO/p-Si Schottky junctions could be utilized as a photosensor. Furthermore, the voltage and frequency dependence of series resistance were calculated from the C-V and G/ω-V measurements and plotted as functions of voltage and frequency. The distribution profile of R S -V gave a peak in the depletion region at low frequencies and disappeared with increasing frequencies.

  10. A cross-functional nanostructured platform based on carbon nanotube-Si hybrid junctions: where photon harvesting meets gas sensing

    Science.gov (United States)

    Rigoni, F.; Pintossi, C.; Drera, G.; Pagliara, S.; Lanti, G.; Castrucci, P.; de Crescenzi, M.; Sangaletti, L.

    2017-03-01

    A combination of the functionalities of carbon nanotube (CNT)-Si hybrid heterojunctions is presented as a novel method to steer the efficiency of the photovoltaic (PV) cell based on these junctions, and to increase the selectivity and sensitivity of the chemiresistor gas sensor operated with the p-doped CNT layer. The electrical characteristics of the junctions have been tracked by exposing the devices to oxidizing (NO2) and reducing (NH3) molecules. It is shown that when used as PV cells, the cell efficiency can be reversibly steered by gas adsorption, providing a tool to selectively dope the p-type layer through molecular adsorption. Tracking of the current-voltage curve upon gas exposure also allowed to use these cells as gas sensors with an enhanced sensitivity as compared to that provided by a readout of the electrical signal from the CNT layer alone. In turn, the chemiresistive response was improved, both in terms of selectivity and sensitivity, by operating the system under illumination, as the photo-induced charges at the junction increase the p-doping of CNTs making them more sensitive to NH3 and less to NO2.

  11. NASIS data base management system: IBM 360 TSS implementation. Volume 8: Data base administrator user's guide

    Science.gov (United States)

    1973-01-01

    The Data Base Administrator User's Guide for the NASA Aerospace Safety Information System is presented. The subjects discussed are: (1) multi-terminal tasking, (2) data base executive, (3) utilities, (4) maintenance, (5) terminal support, and (6) retrieval subsystem.

  12. Characteristics Data Base: Programmer's guide to the High-Level Waste Data Base

    Energy Technology Data Exchange (ETDEWEB)

    Jones, K.E. (DataPhile, Inc., Knoxville, TN (USA)); Salmon, R. (Oak Ridge National Lab., TN (USA))

    1990-08-01

    The High-Level Waste Data Base is a menu-driven PC data base developed as part of OCRWM's technical data base on the characteristics of potential repository wastes, which also includes spent fuel and other materials. This programmer's guide completes the documentation for the High-Level Waste Data Base, the user's guide having been published previously. 3 figs.

  13. Simulation of characteristics of double-junction solar cells based on ZnSiP2 heterostructures on silicon substrate

    Science.gov (United States)

    Kudryashov, D. A.; Gudovskikh, A. S.; Mozharov, A. M.; Bol'shakov, A. D.; Mukhin, I. S.; Alferov, Zh. I.

    2015-12-01

    Design and operation modes of double-junction monolithic lattice-matched solar cells based on the ZnSiP2/Si system of materials have been calculated. The effect of the photoactive region thickness and minority carrier lifetime in ZnSiP2 layers on the efficiency of conversion of the incident solar light energy into electrical power was determined. It is shown that solar cells based on ZnSiP2/Si heterostructures can provide efficiencies of 28.8% at AM1.5D, 100 mW/cm2, and 33.3% at AM1.5D, 200 W/cm2.

  14. Quantum Junction Solar Cells

    KAUST Repository

    Tang, Jiang

    2012-09-12

    Colloidal quantum dot solids combine convenient solution-processing with quantum size effect tuning, offering avenues to high-efficiency multijunction cells based on a single materials synthesis and processing platform. The highest-performing colloidal quantum dot rectifying devices reported to date have relied on a junction between a quantum-tuned absorber and a bulk material (e.g., TiO 2); however, quantum tuning of the absorber then requires complete redesign of the bulk acceptor, compromising the benefits of facile quantum tuning. Here we report rectifying junctions constructed entirely using inherently band-aligned quantum-tuned materials. Realizing these quantum junction diodes relied upon the creation of an n-type quantum dot solid having a clean bandgap. We combine stable, chemically compatible, high-performance n-type and p-type materials to create the first quantum junction solar cells. We present a family of photovoltaic devices having widely tuned bandgaps of 0.6-1.6 eV that excel where conventional quantum-to-bulk devices fail to perform. Devices having optimal single-junction bandgaps exhibit certified AM1.5 solar power conversion efficiencies of 5.4%. Control over doping in quantum solids, and the successful integration of these materials to form stable quantum junctions, offers a powerful new degree of freedom to colloidal quantum dot optoelectronics. © 2012 American Chemical Society.

  15. An RTM based Distributed Simulation System for Guide Robot

    Directory of Open Access Journals (Sweden)

    Chen Peihua

    2013-10-01

    Full Text Available In order to enhance the robot system integration and development for guide robot, a distributed simulation system was developed in this study using RTM (Robot Technology Middleware technology, which is an open software platform for robot systems. The RT (robot technology system of an adapter, a controller and the robot, together with other CORBA objects, was developed to connect the graphical programing interface with 3D simulator to set up an RTM based distributed simulation system. Simultaneously, the application of the distributed simulation system also confirms the controlling of the real robot utilizing the RT system. The proposed distributed simulation system based on RTM can obviously accelerate the software component development as well as the system integration for guide robot, which will certainly lower the cost of the development of new robot application systems.

  16. Vortex beam based more stable annular laser guide star

    Science.gov (United States)

    Luo, Ruiyao; Cui, Wenda; Li, Lei; Sun, Quan; He, Yulong; Wang, Hongyan; Ning, Yu; Xu, Xiaojun

    2016-11-01

    We present an annular laser guide star (LGS) concept for large ground-based telescopes in this paper. The more stable annular LGS is generated by turbulence-resisted vortex beam. In the uplink, a vortex beam tends to wander more slightly than a Gaussian beam does in atmospheric turbulence. This may enable an annular LGS to wander more slightly than a traditional Gaussian beam generated LGS does, which would ease the burden of uplink tip-tilt mirror and benefit a dynamical closed-loop adaptive optics system. We conducted numerical simulation to validate the feasibility of this concept. And we have gotten 31% reduced variance of spot wandering of annular LGS. Besides, we set up a spatial light modulator based laser guide star simulator for beam propagation in turbulent atmosphere to experimentally test the annular LGS concept. Preliminary experimental results are given. To the best of our knowledge, it is the first time this concept is formulated.

  17. Magnetism of Semiconductor-Based Magnetic Tunnel Junctions under Electric Field from First Principles

    Energy Technology Data Exchange (ETDEWEB)

    Kan, E.; Xiang, H.; Yang, J.; Whangbo, M. H.

    2009-06-01

    Semiconductor magnetic tunnel junctions (MTJs), composed of diluted magnetic semiconductors (DMSs) sandwiching a semiconductor barrier, have potential applications in spintronics but their development has been slow due to the difficulty of controlling the magnetism of DMSs. In terms of density functional calculations for model semiconductor MTJs, (Zn,Co)O/ZnO/(Zn,Co)O and (Ga,Mn)N/GaN/(Ga,Mn)N, we show that the magnetic coupling between the transition metal ions in each DMS electrode of such semiconductor MTJs can be switched from ferromagnetic to antiferromagnetic, or vice versa, under the application of external electric field across the junctions. Our results suggest a possible avenue for the application of semiconductor MTJs.

  18. A Single-Material Logical Junction Based on 2D Crystal PdS2.

    Science.gov (United States)

    Ghorbani-Asl, Mahdi; Kuc, Agnieszka; Miró, Pere; Heine, Thomas

    2016-02-01

    A single-material logical junction with negligible contact resistance is designed by exploiting quantum-confinement effects in 1T PdS2 . The metallic bilayer serves as electrodes for the semiconducting channel monolayer, avoiding contact resistance. Heat dissipation is then governed by tunnel loss, which becomes negligible at channel lengths larger than 2.45 nm. This value marks the integration limit for a conventional 2D transistor.

  19. Andreev reflection and bound states in topological insulator based planar and step Josephson junctions

    Science.gov (United States)

    Choudhari, Tarun; Deo, Nivedita

    2017-01-01

    A superconductor-topological insulator-superconductor (S/TI/S) junction having normal region at angle θ is studied theoretically to investigate the junction angle dependency of the Andreev reflection and the formation of the Andreev bound states in the step and planar S/TI/S structures. It is found that the Andreev reflection becomes θ dependent only in the presence of the potential barrier at the TI/S interface. In particular, the step and planar TI/S junction have totally different conductive behavior with bias voltage and potential barrier in the regime of retro and specular Andreev reflection. Interestingly, we find that the elliptical cross section of Dirac cone, an important feature of topological insulator with step surface defect, affects the Fabry-Perot resonance of the Andreev reflection induced Andreev bound states (which become Majorana zero energy states at low chemical potential) in the step S/TI/S structure. Unlike the usual planar S/TI/S structures, we find these ellipticity affected Andreev bound states lead to non-monotonic Josephson super-current in the step S/TI/S structure whose non-monotonicity can be controlled with the use of the potential barrier, which may find applications in nanoelectronics.

  20. Guided Wave Tomography Based on Full-Waveform Inversion.

    Science.gov (United States)

    Rao, Jing; Ratassepp, Madis; Fan, Zheng

    2016-02-29

    In this paper, a guided wave tomography method based on Full Waveform Inversion (FWI) is developed for accurate and high resolu- tion reconstruction of the remaining wall thickness in isotropic plates. The forward model is computed in the frequency domain by solving a full-wave equation in a two-dimensional acoustic model, accounting for higher order eects such as diractions and multiple scattering. Both numerical simulations and experiments were carried out to obtain the signals of a dispersive guided mode propagating through defects. The inversion was based on local optimization of a waveform mist func- tion between modeled and measured data, and was applied iteratively to discrete frequency components from low to high frequencies. The resulting wave velocity maps were then converted to thickness maps by the dispersion characteristics of selected guided modes. The results suggest that the FWI method is capable to reconstruct the thickness map of a irregularly shaped defect accurately on a 10 mm thick plate with the thickness error within 0.5 mm.

  1. Imaging of cervicothoracic junction trauma

    Directory of Open Access Journals (Sweden)

    Wongwaisayawan S

    2013-01-01

    Full Text Available Sirote Wongwaisayawan,1 Ruedeekorn Suwannanon,2 Rathachai Kaewlai11Department of Radiology, Ramathibodi Hospital and Mahidol University, Bangkok, Thailand; 2Department of Radiology, Faculty of Medicine, Prince of Songkla University, Hat Yai, ThailandAbstract: Cervicothoracic junction trauma is an important cause of morbidity and mortality in trauma patients. Imaging has played an important role in identifying injuries and guiding appropriate, timely therapy. Computed tomography is currently a method of choice for diagnosing cervicothoracic junction trauma, in which the pattern of injuries often suggests possible mechanisms and potential injuries. In this article, the authors describe and illustrate common and uncommon injuries that can occur in the cervicothoracic junction.Keywords: cervicothoracic junction, cervical spine, trauma, imaging, radiology

  2. Zero-field spin transfer oscillators based on magnetic tunnel junction having perpendicular polarizer and planar free layer

    Science.gov (United States)

    Fang, Bin; Feng, Jiafeng; Gan, Huadong; Malmhall, Roger; Huai, Yiming; Xiong, Rongxin; Wei, Hongxiang; Han, Xiufeng; Zhang, Baoshun; Zeng, Zhongming

    2016-12-01

    We experimentally studied spin-transfer-torque induced magnetization oscillations in an asymmetric MgO-based magnetic tunnel junction device consisting of an in-plane magnetized free layer and an out-of-plane magnetized polarizer. A steady auto-oscillation was achieved at zero magnetic field and room temperature, with an oscillation frequency that was strongly dependent on bias currents, with a large frequency tunability of 1.39 GHz/mA. Our results suggest that this new structure has a high potential for new microwave device designs.

  3. Zero-field spin transfer oscillators based on magnetic tunnel junction having perpendicular polarizer and planar free layer

    Directory of Open Access Journals (Sweden)

    Bin Fang

    2016-12-01

    Full Text Available We experimentally studied spin-transfer-torque induced magnetization oscillations in an asymmetric MgO-based magnetic tunnel junction device consisting of an in-plane magnetized free layer and an out-of-plane magnetized polarizer. A steady auto-oscillation was achieved at zero magnetic field and room temperature, with an oscillation frequency that was strongly dependent on bias currents, with a large frequency tunability of 1.39 GHz/mA. Our results suggest that this new structure has a high potential for new microwave device designs.

  4. Preparation and characterization of bottom ferromagnetic electrode for graphene based magnetic junction

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Shufan, E-mail: Shu.Cheng@nrl.navy.mil; Cobas, Enrique, E-mail: Enrique.Cobas@nrl.navy.mil; Erve, Olaf M.J. van ' t, E-mail: Olaf.vantErve@nrl.navy.mil; Jonker, Berend T., E-mail: Berry.Jonker@nrl.navy.mil

    2016-03-01

    highly (111) textured. • The NiFe films on MgO are mostly single crystalline. • The NiFe films on AlN and sapphire have 60° in-plane rotational domains. • The CoFe and NiFe films retained their small H{sub c} and high M{sub r} after graphene growth. • CoFe and NiFe films are suitable as bottom electrode for Graphene based junction.

  5. Robust integration schemes for junction-based modulators in a 200mm CMOS compatible silicon photonic platform (Conference Presentation)

    Science.gov (United States)

    Szelag, Bertrand; Abraham, Alexis; Brision, Stéphane; Gindre, Paul; Blampey, Benjamin; Myko, André; Olivier, Segolene; Kopp, Christophe

    2017-05-01

    Silicon photonic is becoming a reality for next generation communication system addressing the increasing needs of HPC (High Performance Computing) systems and datacenters. CMOS compatible photonic platforms are developed in many foundries integrating passive and active devices. The use of existing and qualified microelectronics process guarantees cost efficient and mature photonic technologies. Meanwhile, photonic devices have their own fabrication constraints, not similar to those of cmos devices, which can affect their performances. In this paper, we are addressing the integration of PN junction Mach Zehnder modulator in a 200mm CMOS compatible photonic platform. Implantation based device characteristics are impacted by many process variations among which screening layer thickness, dopant diffusion, implantation mask overlay. CMOS devices are generally quite robust with respect to these processes thanks to dedicated design rules. For photonic devices, the situation is different since, most of the time, doped areas must be carefully located within waveguides and CMOS solutions like self-alignment to the gate cannot be applied. In this work, we present different robust integration solutions for junction-based modulators. A simulation setup has been built in order to optimize of the process conditions. It consist in a Mathlab interface coupling process and device electro-optic simulators in order to run many iterations. Illustrations of modulator characteristic variations with process parameters are done using this simulation setup. Parameters under study are, for instance, X and Y direction lithography shifts, screening oxide and slab thicknesses. A robust process and design approach leading to a pn junction Mach Zehnder modulator insensitive to lithography misalignment is then proposed. Simulation results are compared with experimental datas. Indeed, various modulators have been fabricated with different process conditions and integration schemes. Extensive

  6. Simulation Study on Understanding the Spin Transport in MgO Adsorbed Graphene Based Magnetic Tunnel Junction

    Science.gov (United States)

    Raturi, Ashish; Choudhary, Sudhanshu

    2016-11-01

    First principles calculations of spin-dependent electronic transport properties of magnetic tunnel junction (MTJ) consisting of MgO adsorbed graphene nanosheet sandwiched between two CrO2 half-metallic ferromagnetic (HMF) electrodes is reported. MgO adsorption on graphene opens bandgap in graphene nanosheet which makes it more suitable for use as a tunnel barrier in MTJs. It was found that MgO adsorption suppresses transmission probabilities for spin-down channel in case of parallel configuration (PC) and also suppresses transmission in antiparallel configuration (APC) for both spin-up and spin-down channel. Tunnel magneto-resistance (TMR) of 100% is obtained at all bias voltages in MgO adsorbed graphene-based MTJ which is higher than that reported in pristine graphene-based MTJ. HMF electrodes were found suitable to achieve perfect spin filtration effect and high TMR. I-V characteristics for both parallel and antiparallel magnetization states of junction are calculated. High TMR suggests its usefulness in spin valves and other spintronics-based applications.

  7. Integration of organic based Schottky junctions for crossbar non-volatile memory applications

    DEFF Research Database (Denmark)

    Katsia, E.; Tallarida, G.; Ferrari, S.

    2008-01-01

    Small size Schottky junctions using two different synthesized organic semiconductors (oligophenylene-vinylenes) were integrated by standard UV lithography into crossbar arrays. The proposed integration scheme can be applied to a wide class of organics without affecting material properties. Current......-voltage characteristics were studied in order to investigate which of the tested compounds could possibly reach the requirements for non-volatile memory applications. All the investigated devices displayed good rectifying properties, ranging from 10(2) to 10(4). On the other hand, one of the compounds reveals higher...

  8. A CFD benchmarking exercise based on flow mixing in a T-junction

    Energy Technology Data Exchange (ETDEWEB)

    Smith, B.L. [Paul Scherrer Inst., Villigen PSI (Switzerland); Mahaffy, J.H. [Wheelsmith Farm, Spring Mill, Pennsylvania (United States); Angele, K. [Vattenfall R& D, Alvkarleby (Sweden)

    2011-07-01

    The paper describes an international benchmarking exercise, sponsored by the OECD Nuclear Energy Agency, aimed at testing the ability of state-of-the-art Computational Fluid Dynamics (CFD) codes to predict the important flow parameters affecting high-cycle thermal fatigue induced by turbulent mixing in T-junctions. Numerical simulations were compared against measured data from an experiment performed at 1:2 scale by Vattenfall Research and Development, Alvkarleby, Sweden. The test data were released only at the end of the exercise. Details of the organizational procedures, the experimental set-up and instrumentation, the different modeling approaches adopted, synthesis of results and overall conclusions and perspectives are presented. (author)

  9. Anodization-based process for the fabrication of all niobium nitride Josephson junction structures

    Directory of Open Access Journals (Sweden)

    Massimiliano Lucci

    2017-03-01

    Full Text Available We studied the growth and oxidation of niobium nitride (NbN films that we used to fabricate superconductive tunnel junctions. The thin films were deposited by dc reactive magnetron sputtering using a mixture of argon and nitrogen. The process parameters were optimized by monitoring the plasma with an optical spectroscopy technique. This technique allowed us to obtain NbN as well as good quality AlN films and both were used to obtain NbN/AlN/NbN trilayers. Lift-off lithography and selective anodization of the NbN films were used, respectively, to define the main trilayer geometry and/or to separate electrically, different areas of the trilayers. The anodized films were characterized by using Auger spectroscopy to analyze compounds formed on the surface and by means of a nano-indenter in order to investigate its mechanical and adhesion properties. The transport properties of NbN/AlN/NbN Josephson junctions obtained as a result of the above described fabrication process were measured in liquid helium at 4.2 K.

  10. Organic electrodes based on grafted oligothiophene units in ultrathin, large-area molecular junctions.

    Science.gov (United States)

    Martin, Pascal; Della Rocca, Maria Luisa; Anthore, Anne; Lafarge, Philippe; Lacroix, Jean-Christophe

    2012-01-11

    Molecular junctions were fabricated with the combined use of electrochemistry and conventional CMOS tools. They consist of a 5-10 nm thick layer of oligo(1-(2-bisthienyl)benzene) between two gold electrodes. The layer was grafted onto the bottom electrode using diazonium electroreduction, which yields a stable and robust gold-oligomer interface. The top contact was obtained by direct electron-beam evaporation on the molecular layers through masks defined by electron-beam lithography. Transport mechanisms across such easily p-dopable layers were investigated by analysis of current density-voltage (J-V) curves. Application of a tunneling model led to a transport parameter (thickness of ~2.4 nm) that was not consistent with the molecular thickness measured using AFM (~7 nm). Furthermore, for these layers with thicknesses of 5-10 nm, asymmetric J-V curves were observed, with current flowing more easily when the grafted electrode was positively polarized. In addition, J-V experiments at two temperatures (4 and 300 K) showed that thermal activation occurs for such polarization but is not observed when the bias is reversed. These results indicate that simple tunneling cannot describe the charge transport in these junctions. Finally, analysis of the experimental results in term of "organic electrode" and redox chemistry in the material is discussed.

  11. Printing-based assembly of quadruple-junction four-terminal microscale solar cells and their use in high-efficiency modules

    Science.gov (United States)

    Sheng, Xing; Bower, Christopher A.; Bonafede, Salvatore; Wilson, John W.; Fisher, Brent; Meitl, Matthew; Yuen, Homan; Wang, Shuodao; Shen, Ling; Banks, Anthony R.; Corcoran, Christopher J.; Nuzzo, Ralph G.; Burroughs, Scott; Rogers, John A.

    2014-06-01

    Expenses associated with shipping, installation, land, regulatory compliance and on-going maintenance and operations of utility-scale photovoltaics can be significantly reduced by increasing the power conversion efficiency of solar modules through improved materials, device designs and strategies for light management. Single-junction cells have performance constraints defined by their Shockley-Queisser limits. Multi-junction cells can achieve higher efficiencies, but epitaxial and current matching requirements between the single junctions in the devices hinder progress. Mechanical stacking of independent multi-junction cells circumvents these disadvantages. Here we present a fabrication approach for the realization of mechanically assembled multi-junction cells using materials and techniques compatible with large-scale manufacturing. The strategy involves printing-based stacking of microscale solar cells, sol-gel processes for interlayers with advanced optical, electrical and thermal properties, together with unusual packaging techniques, electrical matching networks, and compact ultrahigh-concentration optics. We demonstrate quadruple-junction, four-terminal solar cells with measured efficiencies of 43.9% at concentrations exceeding 1,000 suns, and modules with efficiencies of 36.5%.

  12. CT-guided biopsy of thoracic lesions with a novel wire-based needle guide device - initial experiences

    Energy Technology Data Exchange (ETDEWEB)

    Kroepil, Patric; Bilk, Philip; Quentin, Michael; Miese, Falk R; Lanzman, Rotem S; Scherer, Axel (Dept. of Radiology, Medical Faculty, Univ. Duesseldorf, Duesseldorf (Germany)), email: Patric.Kroepil@med.uni-duesseldorf.de

    2011-10-15

    Background Biopsies guided by computed tomography (CT) play an important role in clinical practice. A short duration, minimal radiation dose and complication rate are of particular interest. Purpose To evaluate the potential of a novel self-manufactured wire-based needle guide device for CT-guided thoracic biopsies with respect to radiation dose, intervention time and complication rate. Material and Methods Forty patients that underwent CT-guided biopsies of thoracic lesions were included in this study and assigned to two groups. Patients in group A (n = 20, mean age 69 +- 8.4 years) underwent biopsies with a novel wire-based needle guide device, while patients in group B (n = 20, mean age 68.4 +- 10.1 years) were biopsied without a needle guide device. The novel self-manufactured needle guide device consists of an iron/zinc wire modelled to a ring with a flexible arm and an eye at the end of the arm to stabilize the biopsy needle in the optimal position during intervention. Predefined parameters (radiation dose, number of acquired CT-slices, duration of intervention, complications) were compared between both groups. Results Mean radiation dose (CTDIvol 192 mGy versus 541 mGy; P = 0.001) and the number of acquired slices during intervention (n = 49 +- 33 vs. n = 126 +- 78; P = 0.001) were significantly lower in group A compared with group B. Intervention time in group A (13.1 min) was significantly lower than in group B (18.5 min, P < 0.01). A pneumothorax as peri-interventional complication was observed less frequent after device assisted biopsies (n = 4 vs. n = 8, n.s.). Conclusion The novel wire-based needle guide device is a promising tool to facilitate CT-guided thoracic biopsies reducing radiation dose, intervention time, and related complications. Further studies are mandatory to confirm these initial results

  13. Characteristics Data Base: Programmer's guide to the LWR Quantities Data Base

    Energy Technology Data Exchange (ETDEWEB)

    Jones, K.E. (DataPhile, Inc., Knoxville, TN (USA)); Moore, R.S. (Automated Sciences Group, Inc., Oak Ridge, TN (USA))

    1990-08-01

    The LWR Quantities Data Base is a menu-driven PC data base developed as part of OCRWM's waste, technical data base on the characteristics of potential repository wastes, which also includes non-LWR spent fuel, high-level and other materials. This programmer's guide completes the documentation for the LWR Quantities Data Base, the user's guide having been published previously. The PC data base itself may be requested from the Oak Ridge National Laboratory, using the order form provided in Volume 1 of publication DOE/RW-0184.

  14. Spin Transfer Torque Switching and Perpendicular Magnetic Anisotropy in Full Heusler Alloy Co2FeAl-BASED Tunnel Junctions

    Science.gov (United States)

    Sukegawa, H.; Wen, Z. C.; Kasai, S.; Inomata, K.; Mitani, S.

    2014-12-01

    Some of Co-based full Heusler alloys have remarkable properties in spintronics, that is, high spin polarization of conduction electrons and low magnetic damping. Owing to these properties, magnetic tunnel junctions (MTJs) using Co-based full Heusler alloys are potentially of particular importance for spintronic application such as magnetoresistive random access memories (MRAMs). Recently, we have first demonstrated spin transfer torque (STT) switching and perpendicular magnetic anisotropy (PMA), which are required for developing high-density MRAMs, in full-Heusler Co2FeAl alloy-based MTJs. In this review, the main results of the experimental demonstrations are shown with referring to related issues, and the prospect of MTJs using Heusler alloys is also discussed.

  15. Loosely-guided, self-directed learning versus strictly-guided, station-based learning in gross anatomy laboratory sessions.

    Science.gov (United States)

    Kooloos, Jan G M; de Waal Malefijt, Maarten C; Ruiter, Dirk J; Vorstenbosch, Marc A T M

    2012-01-01

    Anatomy students studying dissected anatomical specimens were subjected to either a loosely-guided, self-directed learning environment or a strictly-guided, preformatted gross anatomy laboratory session. The current study's guiding questions were: (1) do strictly-guided gross anatomy laboratory sessions lead to higher learning gains than loosely-guided experiences? and (2) are there differences in the recall of anatomical knowledge between students who undergo the two types of laboratory sessions after weeks and months? The design was a randomized controlled trial. The participants were 360 second-year medical students attending a gross anatomy laboratory course on the anatomy of the hand. Half of the students, the experimental group, were subjected without prior warning to station-based laboratory sessions; the other half, the control group, to loosely-guided laboratory sessions, which was the course's prevailing educational method at the time. The recall of anatomical knowledge was measured by written reproduction of 12 anatomical names at four points in time: immediately after the laboratory experience, then one week, five weeks, and eight months later. The strictly-guided group scored higher than the loosely-guided group at all time-points. Repeated ANOVA showed no interaction between the results of the two types of laboratory sessions (P = 0.121) and a significant between-subject effect (P ≤ 0.001). Therefore, levels of anatomical knowledge retrieved were significantly higher for the strictly-guided group than for the loosely-guided group at all times. It was concluded that gross anatomy laboratory sessions with strict instructions resulted in the recall of a larger amount of anatomical knowledge, even after eight months. Copyright © 2012 American Association of Anatomists.

  16. A CFD benchmarking exercise based on flow mixing in a T-junction

    Energy Technology Data Exchange (ETDEWEB)

    Smith, B.L., E-mail: brian.smith@psi.ch [Thermal Hydraulics Laboratory, Nuclear Energy and Safety Department, Paul Scherrer Institut, CH-5232 Villigen PSI (Switzerland); Mahaffy, J.H. [Wheelsmith Farm, Spring Mill, PA (United States); Angele, K. [Vattenfall R and D, Älvkarleby (Sweden)

    2013-11-15

    The paper describes an international benchmarking exercise, sponsored by the OECD Nuclear Energy Agency (NEA), aimed at testing the ability of state-of-the-art computational fluid dynamics (CFD) codes to predict the important fluid flow parameters affecting high-cycle thermal fatigue induced by turbulent mixing in T-junctions. The results from numerical simulations are compared to measured data from an experiment performed at 1:2 scale by Vattenfall Research and Development, Älvkarleby, Sweden. The test data were released only at the end of the exercise making this a truly blind CFD-validation benchmark. Details of the organizational procedures, the experimental set-up and instrumentation, the different modeling approaches adopted, synthesis of results, and overall conclusions and perspectives are presented.

  17. Novel handheld magnetometer probe based on magnetic tunnelling junction sensors for intraoperative sentinel lymph node identification.

    Science.gov (United States)

    Cousins, A; Balalis, G L; Thompson, S K; Forero Morales, D; Mohtar, A; Wedding, A B; Thierry, B

    2015-06-03

    Using magnetic tunnelling junction sensors, a novel magnetometer probe for the identification of the sentinel lymph node using magnetic tracers was developed. Probe performance was characterised in vitro and validated in a preclinical swine model. Compared to conventional gamma probes, the magnetometer probe showed excellent spatial resolution of 4.0 mm, and the potential to detect as few as 5 μg of magnetic tracer. Due to the high sensitivity of the magnetometer, all first-tier nodes were identified in the preclinical experiments, and there were no instances of false positive or false negative detection. Furthermore, these preliminary data encourage the application of the magnetometer probe for use in more complex lymphatic environments, such as in gastrointestinal cancers, where the sentinel node is often in close proximity to other non-sentinel nodes, and high spatial resolution detection is required.

  18. Autonomous quantum refrigerator in a circuit QED architecture based on a Josephson junction

    Science.gov (United States)

    Hofer, Patrick P.; Perarnau-Llobet, Martí; Brask, Jonatan Bohr; Silva, Ralph; Huber, Marcus; Brunner, Nicolas

    2016-12-01

    An implementation of a small quantum absorption refrigerator in a circuit QED architecture is proposed. The setup consists of three harmonic oscillators coupled to a Josephson junction. The refrigerator is autonomous in the sense that it does not require any external control for cooling, but only thermal contact between the oscillators and heat baths at different temperatures. In addition, the setup features a built-in switch, which allows the cooling to be turned on and off. If timing control is available, this enables the possibility for coherence-enhanced cooling. Finally, we show that significant cooling can be achieved with experimentally realistic parameters and that our setup should be within reach of current technology.

  19. High tunneling magnetoresistance ratio in perpendicular magnetic tunnel junctions using Fe-based Heusler alloys

    Science.gov (United States)

    Wang, Yu-Pu; Lim, Sze-Ter; Han, Gu-Chang; Teo, Kie-Leong

    2015-12-01

    Heulser alloys Fe2Cr1-xCoxSi (FCCS) with different Co compositions x have been predicted to have high spin polarization. High perpendicular magnetic anisotropy (PMA) has been observed in ultra-thin FCCS films with magnetic anisotropy energy density up to 2.3 × 106 erg/cm3. The perpendicular magnetic tunnel junctions (p-MTJs) using FCCS films with different Co compositions x as the bottom electrode have been fabricated and the post-annealing effects have been investigated in details. An attractive tunneling magnetoresistance ratio as high as 51.3% is achieved for p-MTJs using Fe2CrSi (FCS) as the bottom electrode. The thermal stability Δ can be as high as 70 for 40 nm dimension devices using FCS, which is high enough to endure a retention time of over 10 years. Therefore, Heusler alloy FCS is a promising PMA candidate for p-MTJ application.

  20. Junction formation in CuInSe{sub 2}-based thin-film devices

    Energy Technology Data Exchange (ETDEWEB)

    Ramanathan, K.; Wiesner, H.; Asher, S.; Bhattacharya, R.N.; Keane, J.; Contreras, M.A.; Noufi, R. [National Center for Photovoltaics, National Renewable Energy Laboratory, 1617 Cole Boulevard, Golden, Colorado 80401 (United States)

    1999-03-01

    The nature of the interface between CuInSe{sub 2} (CIS) and the chemical bath deposited CdS layer has been investigated. We show that heat-treating the absorbers in Cd- or Zn-containing solutions in the presence of ammonium hydroxide sets up a chemical reaction which facilitates an extraction of Cu from the lattice and an in-diffusion of Cd. The characteristics of devices made in this manner suggest that the reaction generates a thin, n-doped region in the absorber. It is quite possible that the CdS/CuInSe{sub 2} device is a buried, shallow junction with a CdS window layer, rather than a heterojunction. We have used these ideas to develop methods for fabricating devices without CdS or Cd. A 14.2{percent} efficiency ZnO/CIGS device was obtained through aqueous treatment in Zn solutions. {copyright} {ital 1999 American Institute of Physics.}

  1. Junction Formation in CuInSe{sub 2} Based Thin Film Devices

    Energy Technology Data Exchange (ETDEWEB)

    Ramanathan, K.; Wiesner, H.; Asher, S.; Bhattacharya, R. N.; Keane, J.; Contreras, M.; Noufi, R.

    1998-11-18

    The nature of the interface between CuInSe{sub 2} (CIS) and the chemical bath deposited CdS layer has been investigated. We show that heat-treating the absorbers in Cd- or Zn-containing solutions in the presence of ammonium hydroxide sets up a chemical reaction which facilitates an extraction of Cu from the lattice and an in-diffusion of Cd. The characteristics of devices made in this manner suggest that the reaction generates a thin, n-doped region in the absorber. It is quite possible that the CdS/CuInSe{sub 2} device is a buried, shallow junction with a CdS window layer, rather than a heterojunction. We have used these ideas to develop methods for fabricating devices without CdS or Cd. A 14.2% efficiency ZnO/CIGS device was obtained through aqueous treatment in Zn solutions.

  2. Light-Triggered Pyroelectric Nanogenerator Based on a pn-Junction for Self-Powered Near-Infrared Photosensing.

    Science.gov (United States)

    Wang, Xingfu; Dai, Yejing; Liu, Ruiyuan; He, Xu; Li, Shuti; Wang, Zhong Lin

    2017-08-22

    A nanogenerator, as a self-powered system, can operate without an external power supply for energy harvesting, signal processing, and active sensing. Here, near-infrared (NIR) photothermal triggered pyroelectric nanogenerators based on pn-junctions are demonstrated in a p-Si/n-ZnO nanowire (NW) heterostructure for self-powered NIR photosensing. The pyroelectric-polarization potential (pyro-potential) induced within wurtzite ZnO NWs couples with the built-in electric field of the pn-junction. At the moment of turning on or off the NIR illumination, external current flow is induced by the time-varying internal electric field of the pn-heterostructure, which enables a bias-free operation of the photodetectors (PDs). The NIR PD exhibits a high on/off photocurrent ratio up to 10(7) and a fast photoresponse component with a rise time of 15 μs and a fall time of 21 μs. This work provides an unconventional strategy to achieve active NIR sensing, which may find promising applications in biological imaging, optoelectronic communications, and optothermal detections.

  3. A low power 10 V programmable array based on Nb x Si1-x Josephson junctions for metrology applications

    Science.gov (United States)

    Knipper, Richard; Anders, Solveig; Schubert, Marco; Peiselt, Katja; Scheller, Thomas; Franke, Dirk; Dellith, Jan; Meyer, Hans-Georg

    2016-09-01

    Josephson junctions generate, when subjected to microwave irradiation, voltages with a very high precision and are used in metrology applications. So-called PJVS (programmable Josephson voltage-standards) are capable of generating both AC and DC voltages of up to 10 V. Our work addresses a full fabrication scenario for 10 V PJVS arrays driven at 70 GHz to be used in low microwave-power conditions as in, but not limited to GUNN diodes or cryocooler applications. Nb x Si1-x in its function as a barrier material was characterised with AFM, RBS and reflectometry in order to establish a reliable technological foundation. A 10 V PJVS array driven with microwave power below 50 mW is further presented, which was achieved by optimising the fabrication technology regarding the degree of homogeneity of the Josephson junctions composition and thickness. Control over these parameters is crucial in choosing a stable and well-suited characteristic voltage (I c R n product) and critical current density j c. With this, a low-power operation of a PJVS array is possible without the need for liquid helium cooling, which is currently limiting the availability of PJVS based metrology.

  4. Sub-nanometer atomic layer deposition for spintronics in magnetic tunnel junctions based on graphene spin-filtering membranes.

    Science.gov (United States)

    Martin, Marie-Blandine; Dlubak, Bruno; Weatherup, Robert S; Yang, Heejun; Deranlot, Cyrile; Bouzehouane, Karim; Petroff, Frédéric; Anane, Abdelmadjid; Hofmann, Stephan; Robertson, John; Fert, Albert; Seneor, Pierre

    2014-08-26

    We report on the successful integration of low-cost, conformal, and versatile atomic layer deposited (ALD) dielectric in Ni–Al2O3–Co magnetic tunnel junctions (MTJs) where the Ni is coated with a spin-filtering graphene membrane. The ALD tunnel barriers, as thin as 0.6 nm, are grown layer-by-layer in a simple, low-vacuum, ozone-based process, which yields high-quality electron-transport barriers as revealed by tunneling characterization. Even under these relaxed conditions, including air exposure of the interfaces, a significant tunnel magnetoresistance is measured highlighting the robustness of the process. The spin-filtering effect of graphene is enhanced, leading to an almost fully inversed spin polarization for the Ni electrode of −42%. This unlocks the potential of ALD for spintronics with conformal, layer-by-layer control of tunnel barriers in magnetic tunnel junctions toward low-cost fabrication and down-scaling of tunnel resistances.

  5. Team-based learning: a practical guide: Guide Supplement 65.1--viewpoint 1.

    Science.gov (United States)

    Khogali, Shihab E

    2013-01-01

    The practical aspects and potential benefits of team-based learning (TBL) are outlined on the recent guide published by Parmelee et al. (2012). TBL provides a strategy for active student-centred collaborative learning which involves multiple small groups in a single classroom setting, incorporating many of the adult approaches to learning, more frequently seen in problem-based learning (PBL). A single teacher who is a content-expert, who need not have any experience in the group processes to deliver a successful session, instructs the student groups. Unlike PBL and traditional small group learning, TBL provides opportunities to hold each student accountable for their own performance and their individual contributions to the team (Parmelee et al. 2012). A limited search of 'PubMed' revealed that TBL is being used and evaluated internationally as an educational strategy, with virtually no published papers on TBL from the UK. This may suggest either little current interest on the use of TBL by UK medical educators or that the UK is currently not contributing a great deal to the literature on TBL. There may be a need to research the effectiveness and outcomes of TBL in a UK context of medical education.

  6. Progressive Assessment of Student Engagement with Web-Based Guided Learning

    Science.gov (United States)

    Katuk, Norliza

    2013-01-01

    Purpose: The purpose of this research is to investigate student engagement in guided web-based learning systems. It looks into students' engagement and their behavioral patterns in two types of guided learning systems (i.e. a fully- and a partially-guided). The research also aims to demonstrate how the engagement evolves from the…

  7. Competency Based Curriculum Guide for Practical Nursing Education in Virginia. Final Report.

    Science.gov (United States)

    Old Dominion Univ., Norfolk, VA. Dept. of Industrial Arts Education.

    This final report contains a three-page narrative and extensive appendixes, including correspondence, surveys, field test evaluation and guide, and the Competency-Based Curriculum Guide for Practical Nursing Education in Virginia developed by the project. The over 200-page curriculum guide presents a suggested master curriculum for a twelve or…

  8. Identification of Haptic Based Guiding Using Hard Reins

    Science.gov (United States)

    Ranasinghe, Anuradha; Dasgupta, Prokar; Althoefer, Kaspar; Nanayakkara, Thrishantha

    2015-01-01

    This paper presents identifications of human-human interaction in which one person with limited auditory and visual perception of the environment (a follower) is guided by an agent with full perceptual capabilities (a guider) via a hard rein along a given path. We investigate several identifications of the interaction between the guider and the follower such as computational models that map states of the follower to actions of the guider and the computational basis of the guider to modulate the force on the rein in response to the trust level of the follower. Based on experimental identification systems on human demonstrations show that the guider and the follower experience learning for an optimal stable state-dependent novel 3rd and 2nd order auto-regressive predictive and reactive control policies respectively. By modeling the follower’s dynamics using a time varying virtual damped inertial system, we found that the coefficient of virtual damping is most appropriate to explain the trust level of the follower at any given time. Moreover, we present the stability of the extracted guiding policy when it was implemented on a planar 1-DoF robotic arm. Our findings provide a theoretical basis to design advanced human-robot interaction algorithms applicable to a variety of situations where a human requires the assistance of a robot to perceive the environment. PMID:26201076

  9. Identification of Haptic Based Guiding Using Hard Reins.

    Directory of Open Access Journals (Sweden)

    Anuradha Ranasinghe

    Full Text Available This paper presents identifications of human-human interaction in which one person with limited auditory and visual perception of the environment (a follower is guided by an agent with full perceptual capabilities (a guider via a hard rein along a given path. We investigate several identifications of the interaction between the guider and the follower such as computational models that map states of the follower to actions of the guider and the computational basis of the guider to modulate the force on the rein in response to the trust level of the follower. Based on experimental identification systems on human demonstrations show that the guider and the follower experience learning for an optimal stable state-dependent novel 3rd and 2nd order auto-regressive predictive and reactive control policies respectively. By modeling the follower's dynamics using a time varying virtual damped inertial system, we found that the coefficient of virtual damping is most appropriate to explain the trust level of the follower at any given time. Moreover, we present the stability of the extracted guiding policy when it was implemented on a planar 1-DoF robotic arm. Our findings provide a theoretical basis to design advanced human-robot interaction algorithms applicable to a variety of situations where a human requires the assistance of a robot to perceive the environment.

  10. Silicon-on-insulator 1×2 Y-junction Optical Switch Based on Waveguide-vanishing Effect①②

    Institute of Scientific and Technical Information of China (English)

    1997-01-01

    The silicon-on-insulator(SOI)1×2Y-junction optical waveguide switch has been proposed and fabricated,which is based on the large cross-section single-mode rib waveguide condition,the waveguide-vanishing effect and the free-carrier plasma dispersion effect.In the switch,the SOI technique utilizer silicon and silicon dioxide thermal bonding and back-polishing.The insertion loss and extinction ratio of the device are measured to be less than 4.78dB and 20.8dB respectively at a wavelength of 1.3μm and an injection current of 45mA.Response time is about 160ns.

  11. Cryogenic Memories based on Spin-Singlet and Spin-Triplet Ferromagnetic Josephson Junctions

    Science.gov (United States)

    Gingrich, Eric

    The last several decades have seen an explosion in the use and size of computers for scientific applications. The US Department of Energy has set an ExaScale computing goal for high performance computing that is projected to be unattainable by current CMOS computing designs. This has led to a renewed interest in superconducting computing as a means of beating these projections. One of the primary requirements of this thrust is the development of an efficient cryogenic memory. Estimates of power consumption of early Rapid Single Flux Quantum (RSFQ) memory designs are on the order of MW, far too steep for any real application. Therefore, other memory concepts are required. S/F/S Josephson Junctions, a class of device in which two superconductors (S) are separated by one or more ferromagnetic layers (F) has shown promise as a memory element. Several different systems have been proposed utilizing either the spin-singlet or spin-triplet superconducting states. This talk will discuss the concepts underpinning these devices, and the recent work done to demonstrate their feasibility. This research is supported in part by the Office of the Director of National Intelligence (ODNI), Intelligence Advanced Research Projects Activity (IARPA), via U.S. Army Research Office Contract W911NF-14-C-0115.

  12. Polarity-tunable magnetic tunnel junctions based on ferromagnetism at oxide heterointerfaces

    Science.gov (United States)

    Ngo, Thach D. N.; Chang, Jung-Won; Lee, Kyujoon; Han, Seungju; Lee, Joon Sung; Kim, Young Heon; Jung, Myung-Hwa; Doh, Yong-Joo; Choi, Mahn-Soo; Song, Jonghyun; Kim, Jinhee

    2015-08-01

    Complex oxide systems have attracted considerable attention because of their fascinating properties, including the magnetic ordering at the conducting interface between two band insulators, such as LaAlO3 and SrTiO3. However, the manipulation of the spin degree of freedom at the LaAlO3/SrTiO3 heterointerface has remained elusive. Here, we have fabricated hybrid magnetic tunnel junctions consisting of Co and LaAlO3/SrTiO3 ferromagnets with the insertion of a Ti layer in between, which clearly exhibit magnetic switching and the tunnelling magnetoresistance effect below 10 K. The magnitude and sign of the tunnelling magnetoresistance are strongly dependent on the direction of the rotational magnetic field parallel to the LaAlO3/SrTiO3 plane, which is attributed to a strong Rashba-type spin-orbit coupling in the LaAlO3/SrTiO3 heterostructure. Our study provides a further support for the existence of the macroscopic ferromagnetism at LaAlO3/SrTiO3 heterointerfaces and opens a novel route to realize interfacial spintronics devices.

  13. GaSb based ternary and quaternary diffused junction devices for TPV applications

    Energy Technology Data Exchange (ETDEWEB)

    Sundaram, V.S.; Saban, S.B.; Morgan, M.D.; Horne, W.E.; Evans, B.D.; Ketterl, J.R. [EDTEK Inc. 7082 S. 220th Street Kent, Washington 98032 (United States); Morosini, M.B.; Patel, N.B. [Instituto de Fisica, UNICAMP, Campinas, Brasil (Brazil); Field, H. [NREL, Golden, Colorado (United States)

    1997-03-01

    In this work we report the characteristics of ternary, GaInSb (Eg=0.70eV) and quarternary, GaInAsSb (Eg=0.5eV) diffused junction photovoltaic devices. The unique feature of the quarternary device is the extended long-wavelength response to 2.1 microns enabling the efficient use of the blackbody-like thermal sources operating at 1373 K in thermophotovoltaic energy conversion systems. The ternary device was fabricated by diffusing zinc into a n-type (100) oriented GaInSb substrate. For the quarternary, a four micron thick Te doped GaInAsSb layer grown by LPE on a n-type GaSb(100) wafer was used as the starting substrate for zinc diffusion. The ternary device exhibits an open circuit voltage of 0.38 V, Fill Factor of 0.63 and a short circuit current of 0.8A/cm{sup 2}, while the corresponding values for the quarternary device are 0.25 V, 0.58 and 0.8A/cm{sup 2}, respectively. The peak internal quantum efficiency for the ternary is over 90{percent} and that of the quarternary is above 75{percent}. Process optimization should improve the performance charcateristics of the quarternary. {copyright} {ital 1997 American Institute of Physics.}

  14. Symmetry dependent spin injection from Fe/MgO in single crystal based magnetic tunnel junctions

    Energy Technology Data Exchange (ETDEWEB)

    Hehn, Michel; Greullet, Fanny; Bernos, Julien; Tiusan, Coriolan; Bellouard, Christine; Montaigne, Francois; Lacour, Daniel; Alnot, Marc; Lu, Yuan; Lengaigne, Gwladys [LPM, Vandoeuvre les Nancy (France); Halley, David; Weber, Wolfgang [IPCMS, 67 - Strasbourg (France)

    2009-07-01

    The transport in crystalline magnetic tunnel junctions (MTJ) attracted the interest of the international community after the theoretical predictions of Butler et al of giant tunnel magnetoresistance (TMR) effects. In these model systems the electrons are classified with respect to the symmetry of their associated electronic Bloch wave function. The large predicted TMR ratio is related to a symmetry dependent attenuation rate within the MgO single crystal barrier combined with a half metallic property of a specific symmetry in the Fe electrode. After a brief introduction to the physics of the transport in Fe/MgO/Fe MTJ, I show how to exploit the symmetry dependence of the tunnel conductivity to engineer novel MTJs functionalities. We demonstrate that, a suitably chosen Cr(001) epitaxial metallic spacer layer quenches the transmission of particular electronic states, therefore acting as an additional symmetry dependent tunnel barrier for electrons at the Fermi level. Moreover, we show that this ultrathin Cr metallic barrier can promote quantum well states in an adjacent Fe layer. These results confirm the transport mechanism proposed by Butler et al. Extension to other materials are also discussed.

  15. Analytical Study of 90Sr Betavoltaic Nuclear Battery Performance Based on p-n Junction Silicon

    Science.gov (United States)

    Rahastama, Swastya; Waris, Abdul

    2016-08-01

    Previously, an analytical calculation of 63Ni p-n junction betavoltaic battery has been published. As the basic approach, we reproduced the analytical simulation of 63Ni betavoltaic battery and then compared it to previous results using the same design of the battery. Furthermore, we calculated its maximum power output and radiation- electricity conversion efficiency using semiconductor analysis method.Then, the same method were applied to calculate and analyse the performance of 90Sr betavoltaic battery. The aim of this project is to compare the analytical perfomance results of 90Sr betavoltaic battery to 63Ni betavoltaic battery and the source activity influences to performance. Since it has a higher power density, 90Sr betavoltaic battery yields more power than 63Ni betavoltaic battery but less radiation-electricity conversion efficiency. However, beta particles emitted from 90Sr source could travel further inside the silicon corresponding to stopping range of beta particles, thus the 90Sr betavoltaic battery could be designed thicker than 63Ni betavoltaic battery to achieve higher conversion efficiency.

  16. High tunneling magnetoresistance ratio in perpendicular magnetic tunnel junctions using Fe-based Heusler alloys

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yu-Pu, E-mail: Vicky-sg1015@hotmail.com [Department of Electrical and Computer Engineering, National University of Singapore (Singapore); Data Storage Institute, Agency for Science, Technology and Research - A*STAR (Singapore); Lim, Sze-Ter; Han, Gu-Chang, E-mail: HAN-Guchang@dsi.a-star.edu.sg [Data Storage Institute, Agency for Science, Technology and Research - A*STAR (Singapore); Teo, Kie-Leong, E-mail: eleteokl@nus.edu.sg [Department of Electrical and Computer Engineering, National University of Singapore (Singapore)

    2015-12-21

    Heulser alloys Fe{sub 2}Cr{sub 1−x}Co{sub x}Si (FCCS) with different Co compositions x have been predicted to have high spin polarization. High perpendicular magnetic anisotropy (PMA) has been observed in ultra-thin FCCS films with magnetic anisotropy energy density up to 2.3 × 10{sup 6 }erg/cm{sup 3}. The perpendicular magnetic tunnel junctions (p-MTJs) using FCCS films with different Co compositions x as the bottom electrode have been fabricated and the post-annealing effects have been investigated in details. An attractive tunneling magnetoresistance ratio as high as 51.3% is achieved for p-MTJs using Fe{sub 2}CrSi (FCS) as the bottom electrode. The thermal stability Δ can be as high as 70 for 40 nm dimension devices using FCS, which is high enough to endure a retention time of over 10 years. Therefore, Heusler alloy FCS is a promising PMA candidate for p-MTJ application.

  17. Object-Based Attention Guided by An Invisible Object

    Directory of Open Access Journals (Sweden)

    Xilin Zhang

    2011-05-01

    Full Text Available Many studies have demonstrated that attention can be object based. One line of evidence supporting object-based attention showed that observers respond to a target faster when the target and cue are in the same object than when they are in different objects, which is called the same-object advantage. By adopting the double-rectangle cuing paradigm (Egly, Driver, & Rafal, 1994, we tested whether this advantage can occur with invisible rectangles. The original paradigm was slightly modified. Rectangles had a low luminance level against a dark background and were presented for only 10 ms, along with a cue or a target. These two characteristics rendered the rectangles invisible to subjects, as confirmed by a forced-choice test. We found a conventional object-based attention effect even when the rectangles were invisible. We also found that the object-based attention was dependent on the orientation of the rectangles presented along with the target, consistent with the finding by Ho and Yeh (2009. These results suggest that object based attention can be guided by an invisible object in an automatic way, with a minimal influence from the high level top-down control.

  18. Determination of tertiary amines based on pH junctions and field amplification in capillary electrophoresis with electrochemiluminescence detection.

    Science.gov (United States)

    Sreedhar, Mallipattu; Lin, Yang-Wei; Tseng, Wei-Lung; Chang, Huan-Tsung

    2005-08-01

    A stacking approach based on pH junction and field amplification has been developed for determining amines by capillary electrophoresis (CE) with electrochemiluminescence (ECL) detection. A two-electrode configuration was employed with an indium/tin oxide-coated glass as a working electrode and a platinum wire as a pseudoreference electrode. The ECL system also contains a flow cell (poly(dimethylsiloxane)-aluminum oxide) that was made from a mixture of Sylgard 184 silicone elastomer, a curing agent, and aluminum oxide. In order to improve the sensitivity of the present CE-ECL system using tris(2,2'-bipyridyl) ruthenium(II) (Ru(bpy)(3) (2+)), a stacking approach based on pH junctions and field amplification has been tested for the analysis of triethylamine (TEA), tripropylamine (TPA), and tributylamine (TBA). Once amines (cations) prepared in citric acid solution (pH < 4.0) migrate towards the background electrolyte (15 mM sodium borate at pH 8.0), they slow down and are stacked at the boundary as a result of deprotonation and decreases in the electric field. By applying hydrodynamic injection of the sample for 60 s, this method provides the concentration limits of detection (signal-to-noise ratio = 3) of 24, 20, and 32 nM for TEA, TPA, and TBA, respectively. The results indicate that the stacking CE-ECL system is better than CE-ECL systems using a two-electrode configuration and comparable to those using a three-electrode configuration. The potential applicability of the new and low-cost CE-ECL system has been demonstrated by the determination of 1.0 microM lidocaine, a local anesthetic drug, in urine without any tedious sample preparation.

  19. Modulations of interlayer exchange coupling through ultrathin MgO-based magnetic tunnel junctions: First-principles study

    Science.gov (United States)

    Wang, Shizhuo; Xia, Ke; Min, Tai; Ke, Youqi

    2017-07-01

    Ultrathin MgO-based magnetic tunnel junction (MTJ) features high electron/heat current density, presenting important applications in spintronics. Here, we report a first-principles study of the interlayer exchange coupling (IEC) through ultrathin MgO-based MTJs. We investigate the effects of different modulations on the IEC, including temperature, different interfacial disorders, and the type and thickness of the ferromagnetic (FM) materials. It is found that the interfacial disorders, such as oxygen vacancies, boron and carbon impurities, can significantly influence the magnitude and sign of the IEC. The presence of interfacial disorders enhances the anti-FM coupling contribution and reduces the FM coupling contribution to the total IEC, and can thus change the total IEC from FM to Anti-FM in the ultrathin MTJ. We also find that FM materials have important effects on IEC: the IEC with CoFe alloy exhibits much weaker dependence on the interfacial disorders and temperature than that with the Fe. Our first-principles results provide a good explanation for the serious inconsistency between previous experimental measurements. Moreover, by studying the junction structure Vacuum/FM1/MgO/FM2 (FM1, FM2=Fe, CoFe), we find that the ultrathin FM1 layers can dramatically enhance the FM IEC and the IEC enhancement significantly depends on the combination of FM1-FM2. We show that the enhanced FM IEC with ultrathin FM1 can be sustained with a considerable amount of surface roughness in FM1 and interfacial disorder.

  20. Extended Range Guided Munition Parameter Optimization Based on Genetic Algorithms

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Many factors influencing range of extended range guided munition (ERGM) are analyzed. The definition domain of the most important three parameters are ascertained by preparatory mathematical simulation, the optimized mathematical model of ERGM maximum range with boundary conditions is created, and parameter optimization based on genetic algorithm (GA) is adopted. In the GA design, three-point crossover is used and the best chromosome is kept so that the convergence speed becomes rapid. Simulation result shows that GA is feasible, the result is good and it can be easy to attain global optimization solution, especially when the objective function is not the convex one for independent variables and it is a multi-parameter problem.

  1. Sparsity based defect imaging in pipes using guided waves

    Science.gov (United States)

    Golato, Andrew; Santhanam, Sridhar; Ahmad, Fauzia; Amin, Moeness G.

    2016-05-01

    Pipes are used for the transport of fluids and gases in urban and industrial settings, such as buried pipelines to transport water, oil, and other resources. To ensure reliable operation, it is essential that an inspection system be in place to identify and localize damage/defects in the pipes. Unfortunately, many of the typical nondestructive evaluation techniques are inadequate due to limited pipe access; often, only the beginning and end sections of the pipe are physically accessible. As such, this problem is well suited to the use of ultrasonic guided-wave based structural health monitoring. With a limited number of transducers, ultrasonic guided waves can be used to interrogate long lengths of pipes. In this paper, we propose a damage detection and localization scheme that relies upon the inherent sparsity of defects in the pipes. A sparse array of transducers, deployed in accessible areas of the pipes, is utilized in pitch-catch mode to record signals scattered by defects in the pipe. Both the direct path scattering off the defect, and the helical modes, which are paths that spiral around the circumference of the pipe before or after interaction with the defect, are recorded. A Lamb wave based signal model is formulated that accounts for this multipath approach. The signal model is then inverted via group sparse reconstruction, in order to produce an image of the scene. The model accounts for the specificities of Lamb wave propagation through the pipe. Performance validation of the proposed approach is provided using simulated data for an aluminum pipe.

  2. Electro-thermal Modeling for Junction Temperature Cycling-Based Lifetime Prediction of a Press-Pack IGBT 3L-NPC-VSC Applied to Large Wind Turbines

    DEFF Research Database (Denmark)

    Senturk, Osman Selcuk; Munk-Nielsen, Stig; Teodorescu, Remus;

    2011-01-01

    reliability is investigated regarding IGBT lifetime based on junction temperature cycling for the grid-side press-pack IGBT 3L-NPC-VSC, which is a state-of-the art high reliability solution. In order to acquire IGBT junction temperatures for given wind power profiles and to use them in IGBT lifetime...... prediction, the converter electro-thermal model including electrical, power loss, and dynamical thermal models is developed with the main focus on the thermal modeling regarding converter topology, switch technology, and physical structure. Moreover, these models are simplified for their practical...

  3. Zinc-Based Semiconductors/Polymer Thin Films Junction for Photovoltaic Application

    Directory of Open Access Journals (Sweden)

    Souad Al-bat’hi

    2012-01-01

    Full Text Available Thin films of ZnO and ZnTe semiconductors were deposited on ITO conducting glass substrates by sputtering and electrodeposition techniques, respectively. On the other hand, thin films of ion conducting solid polymer electrolyte were prepared by solution cast technique. The polymer is a blend of 50 wt% polyethylene oxide and 50 wt% chitosan. To provide redox couple (I−/I3−, the polymer was complexed with ammonium iodide NH4I with addition of few crystals of iodine I2. Ammonium iodide NH4I was added to the solution in different amounts (wt% weight ratios to supply the charge carriers for the polymer electrolytes. The highest ionic conductivity of the polymer electrolyte was 1.18×10−5 S cm−1 at room temperature. Structural and optical properties of the semiconductor thin films were characterized by X-ray diffractometer and UV-Vis spectrophotometer. The XRD shows crystalline structures for both ZnO and ZnTe thin films. The UV-Vis shows direct energy gaps EZnO of 3.1 eV and EZnTe of 2.2 eV. The polymer film was sandwiched between the ZnO and ZnTe semiconductors to form ITO/ZnO/polymer/ZnTe/ITO double-junction photovoltaic cell, and the photovoltaic properties were studied. The highest open-circuit voltage oc, short-circuit current density sc, and fill factor FF of the fabricated cells are 0.5 V, 55 μA cm−2, and 27%, respectively.

  4. Nanotechnology-Based Approaches for Guiding Neural Regeneration.

    Science.gov (United States)

    Shah, Shreyas; Solanki, Aniruddh; Lee, Ki-Bum

    2016-01-19

    The mammalian brain is a phenomenal piece of "organic machinery" that has fascinated scientists and clinicians for centuries. The intricate network of tens of billions of neurons dispersed in a mixture of chemical and biochemical constituents gives rise to thoughts, feelings, memories, and life as we know it. In turn, subtle imbalances or damage to this system can cause severe complications in physical, motor, psychological, and cognitive function. Moreover, the inevitable loss of nerve tissue caused by degenerative diseases and traumatic injuries is particularly devastating because of the limited regenerative capabilities of the central nervous system (i.e., the brain and spinal cord). Among current approaches, stem-cell-based regenerative medicine has shown the greatest promise toward repairing and regenerating destroyed neural tissue. However, establishing controlled and reliable methodologies to guide stem cell differentiation into specialized neural cells of interest (e.g., neurons and oligodendrocytes) has been a prevailing challenge in the field. In this Account, we summarize the nanotechnology-based approaches our group has recently developed to guide stem-cell-based neural regeneration. We focus on three overarching strategies that were adopted to selectively control this process. First, soluble microenvironmental factors play a critical role in directing the fate of stem cells. Multiple factors have been developed in the form of small-molecule drugs, biochemical analogues, and DNA/RNA-based vectors to direct neural differentiation. However, the delivery of these factors with high transfection efficiency and minimal cytotoxicity has been challenging, especially to sensitive cell lines such as stem cells. In our first approach, we designed nanoparticle-based systems for the efficient delivery of such soluble factors to control neural differentiation. Our nanoparticles, comprising either organic or inorganic elements, were biocompatible and offered

  5. Investigation of the electrical and ethanol-vapour sensing properties of the junctions based on ZnO nanostructured thin film doped with copper

    Science.gov (United States)

    Dimitrov, Dimitre Tz.; Nikolaev, Nikolay K.; Papazova, Karolina I.; Krasteva, Lyudmila K.; Pronin, Igor A.; Averin, Igor A.; Bojinova, Assya S.; Georgieva, Angelina Ts.; Yakushova, Nadejda D.; Peshkova, Tatyana V.; Karmanov, Andrey A.; Kaneva, Nina V.; Moshnikov, Vyacheslav A.

    2017-01-01

    We present the investigation of ethanol sensing properties of the junctions composed by two plane-parallel nanostructured thin film electrodes. One of them consists of pure ZnO and the other one is composed of ZnO doped with Cu. The thickness of the lower layer was kept constant for all of the investigated structures. The thickness of the upper layer was varied. The samples were produced with different thickness of the top layer by changing the numbers of dip-coatings cycles. On produced junction structures we investigate the dependence of the potential difference on the temperature in the air flow and the changes that occur under exposure to flow of air with certain concentration of ethanol vapour. For ZnO/ZnO:Cu junction with top layer produced by two dip-coatings cycles, the potential difference under the air flow were getting more positive values up to 290 °C and then the values were decreasing, while for ZnO/ZnO:Cu junction with top layer produced by three dip-coatings cycles, the potential difference were getting more negative values with increasing the temperature. However in both cases the potential difference increases in value, when the structures are exposed to the vapour of ethanol. On this installation by the exchange the content of gas atmosphere at fixed temperature the ethanol concentration dependence of the potential difference of produced junction structures were evaluated. Both samples have shown nonlinear dependence of signal towards the concentration of ethanol vapour. The observed results for ZnO/ZnO:Cu were compared with those of the junctions composed by layers of ZnO doped with Ga and pure ZnO nanowires. The performed fractal analysis based on the SEM images showed a correlation between the fractal dimension of the surface of the upper layer of the samples and gas-sensitive properties of the sensing structures.

  6. Integrating evolutionary game theory into an agent-based model of ductal carcinoma in situ: Role of gap junctions in cancer progression.

    Science.gov (United States)

    Malekian, Negin; Habibi, Jafar; Zangooei, Mohammad Hossein; Aghakhani, Hojjat

    2016-11-01

    There are many cells with various phenotypic behaviors in cancer interacting with each other. For example, an apoptotic cell may induce apoptosis in adjacent cells. A living cell can also protect cells from undergoing apoptosis and necrosis. These survival and death signals are propagated through interaction pathways between adjacent cells called gap junctions. The function of these signals depends on the cellular context of the cell receiving them. For instance, a receiver cell experiencing a low level of oxygen may interpret a received survival signal as an apoptosis signal. In this study, we examine the effect of these signals on tumor growth. We make an evolutionary game theory component in order to model the signal propagation through gap junctions. The game payoffs are defined as a function of cellular context. Then, the game theory component is integrated into an agent-based model of tumor growth. After that, the integrated model is applied to ductal carcinoma in situ, a type of early stage breast cancer. Different scenarios are explored to observe the impact of the gap junction communication and parameters of the game theory component on cancer progression. We compare these scenarios by using the Wilcoxon signed-rank test. The Wilcoxon signed-rank test succeeds in proving a significant difference between the tumor growth of the model before and after considering the gap junction communication. The Wilcoxon signed-rank test also proves that the tumor growth significantly depends on the oxygen threshold of turning survival signals into apoptosis. In this study, the gap junction communication is modeled by using evolutionary game theory to illustrate its role at early stage cancers such as ductal carcinoma in situ. This work indicates that the gap junction communication and the oxygen threshold of turning survival signals into apoptosis can notably affect cancer progression. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  7. Magnetization distribution and spin transport of graphene/h-BN/graphene nanoribbon-based magnetic tunnel junction

    Science.gov (United States)

    Zhang, Y.; Yan, X. H.; Guo, Y. D.; Xiao, Y.

    2017-09-01

    Motivated by recent electronic transport measurement of boron nitride-graphene hybrid atomic layers, we studied magnetization distribution, transmission and current-bias relation of graphene/h-BN/graphene (C/BN/C) nanoribbon-based magnetic tunnel junctions (MTJ) based on density functional theory and non-equilibrium Green's function methods. Three types of MTJs, i.e. asymmetric, symmetric (S) and symmetric (SS), and two types of lead magnetization alignment, i.e. parallel (PC) and antiparallel (APC), are considered. The results show that the magnetization distribution is closely related to the interface structure. Especially for asymmetric MTJ, the B/N atoms at the C/BN interface are spin-polarized and give finite magnetic moments. More interesting, it is found that the APC transmission of asymmetric MTJ with the thinnest barrier dominates over the PC one. By analyzing the projected density of states, one finds that the unusual higher APC transmission than PC is due to the coupling of electronic states of left ZGNR and right ZGNR. By integrating transmission, we calculate the current-bias voltage relation and find that the APC current is larger than PC current at small bias voltage and therefore reproduces a negative tunnel magnetoresistance. The results reported here will be useful and important for the design of C/BN/C-based MTJ.

  8. Detection of a longitudinal defect in a pipe based on guided circumferential waves techniques

    Institute of Scientific and Technical Information of China (English)

    LI Longtao; HE Cunfu; WU Bin

    2005-01-01

    Based on elasticity theory, the multi-modes and disperse characteristics of guided circumferential waves in a pipe were investigated theoretically and experimentally, the disperse curves of guided circumferential waves were gotten by numerical calculations. The relationships between the angle of beam transducer, frequency and guided circumferential modes were analyzed by our guided wave experiment system. Then single guided circumferential mode was excited in the pipe (O.D 88.8 mm, I.D 80.8 mm). An artificial longitudinal defect (25 × 1 × 0.7 mm)on the surface of the pipe was detected by use of the single guided circumferential wave. The results show that single guided circumferential mode can be excited in the pipe by choosing special frequency and special angle beam transducer, similar to the excitation of Lamb wave in a plate, and it can be used to find the longitudinal defect on a pipe surface.

  9. Gate-modulated transport properties and mechanism for nanowire cross junction based on SnO2 semiconductor

    Science.gov (United States)

    Chen, Xi; Tong, Yanhong; Wang, Guorui; Tang, Qingxin; Liu, Yichun

    2015-12-01

    The transport properties and mechanism of the three-terminal field-effect nanowire cross junction have been systematically investigated. An interesting phenomenon, such as applied voltage bias on nanowire cross junction makes the ON/OFF current ratio of the transistor improved by over 2 orders of magnitude, has been observed. Different from the two-terminal nanowire cross junctions, the cross junction induced potential barrier in three-terminal counterparts is found to be capable to prevent the current of the top semiconductor nanowire from injecting into the bottom nanowire at off state, while to make the current of the top semiconductor nanowire contribute to the current of the bottom nanowire at on state, resulting in the current switch between on state and off state by the gate voltage modulation.

  10. Comprehensive and Macrospin-Based Magnetic Tunnel Junction Spin Torque Oscillator Model- Part II: Verilog-A Model Implementation

    Science.gov (United States)

    Chen, Tingsu; Eklund, Anders; Iacocca, Ezio; Rodriguez, Saul; Malm, B. Gunnar; Akerman, Johan; Rusu, Ana

    2015-03-01

    The rapid development of the magnetic tunnel junction (MTJ) spin torque oscillator (STO) technology demands an analytical model to enable building MTJ STO-based circuits and systems so as to evaluate and utilize MTJ STOs in various applications. In Part I of this paper, an analytical model based on the macrospin approximation, has been introduced and verified by comparing it with the measurements of three different MTJ STOs. In Part II, the full Verilog-A implementation of the proposed model is presented. To achieve a reliable model, an approach to reproduce the phase noise generated by the MTJ STO has been proposed and successfully employed. The implemented model yields a time domain signal, which retains the characteristics of operating frequency, linewidth, oscillation amplitude and DC operating point, with respect to the magnetic field and applied DC current. The Verilog-A implementation is verified against the analytical model, providing equivalent device characteristics for the full range of biasing conditions. Furthermore, a system that includes an MTJ STO and CMOS RF circuits is simulated to validate the proposed model for system- and circuit-level designs. The simulation results demonstrate that the proposed model opens the possibility to explore STO technology in a wide range of applications.

  11. Blind Source Separation Model of Earth-Rock Junctions in Dike Engineering Based on Distributed Optical Fiber Sensing Technology

    Directory of Open Access Journals (Sweden)

    Huaizhi Su

    2015-01-01

    Full Text Available Distributed temperature sensing (DTS provides an important technology support for the earth-rock junctions of dike projects (ERJD, which are binding sites between culvert, gates, and pipes and dike body and dike foundation. In this study, a blind source separation model is used for the identification of leakages based on the temperature data of DTS in leakage monitoring of ERJD. First, a denoising method is established based on the temperature monitoring data of distributed optical fiber in ERJD by a wavelet packet signal decomposition technique. The temperature monitoring messages of fibers are combined response for leakages and other factors. Its character of unclear responding mechanism is very obvious. Thus, a blind source separation technology is finally selected. Then, the rule of temperature measurement data for optical fiber is analyzed and its temporal and spatial change process is also discussed. The realization method of the blind source separation model is explored by combining independent component analysis (ICA with principal component analysis (PCA. The practical test result in an example shows that the method could efficiently locate and identify the leakage location of ERJD. This paper is expected to be useful for further scientific research and efficient applications of distributed optical fiber sensing technology.

  12. Epitaxial wurtzite-MgZnO barrier based magnetic tunnel junctions deposited on a metallic ferromagnetic electrode

    Energy Technology Data Exchange (ETDEWEB)

    Belmoubarik, M., E-mail: bmm-dhr@ecei.tohoku.ac.jp; Al-Mahdawi, M.; Sato, H.; Nozaki, T.; Sahashi, M. [Department of Electronic Engineering, Tohoku University, Sendai 890-8579 (Japan)

    2015-06-22

    An epitaxial wurtzite (WZ) Mg{sub 0.23}Zn{sub 0.77}O barrier based magnetic tunnel junction (MTJ), with electrode-barrier structure of Co{sub 0.30}Pt{sub 0.70} (111)/Mg{sub 0.23}Zn{sub 0.77}O (0001)/Co (0001), was fabricated. The good crystallinity and tunneling properties were experimentally confirmed. Electrical and magnetic investigations demonstrated its high resistance-area product of 1.05 MΩ μm{sup 2}, a maximum tunneling magneto-resistance (TMR) of 35.5%, and the existence of localized states within the tunneling barrier producing TMR rapid decrease and oscillation when increasing the applied bias voltage. The TMR value almost vanished at 200 K, which was attributed to the induced moment and strong spin-orbit coupling in Pt atoms at the Co{sub 0.30}Pt{sub 0.70}/Mg{sub 0.23}Zn{sub 0.77}O interface. Owing to the ferroelectric behavior in WZ-MgZnO materials, the fabrication of WZ-MgZnO barrier based MTJs deposited on a metallic ferromagnetic electrode will open routes for electrically controllable non-volatile devices that are compatible with CMOS technology.

  13. Optimizing performance of silicon-based p-n junction photodetectors by the piezo-phototronic effect.

    Science.gov (United States)

    Wang, Zhaona; Yu, Ruomeng; Wen, Xiaonan; Liu, Ying; Pan, Caofeng; Wu, Wenzhuo; Wang, Zhong Lin

    2014-12-23

    Silicon-based p-n junction photodetectors (PDs) play an essential role in optoelectronic applications for photosensing due to their outstanding compatibility with well-developed integrated circuit technology. The piezo-phototronic effect, a three-way coupling effect among semiconductor properties, piezoelectric polarizations, and photon excitation, has been demonstrated as an effective approach to tune/modulate the generation, separation, and recombination of photogenerated electron-hole pairs during optoelectronic processes in piezoelectric-semiconductor materials. Here, we utilize the strain-induced piezo-polarization charges in a piezoelectric n-ZnO layer to modulate the optoelectronic process initiated in a p-Si layer and thus optimize the performances of p-Si/ZnO NWs hybridized photodetectors for visible sensing via tuning the transport property of charge carriers across the Si/ZnO heterojunction interface. The maximum photoresponsivity R of 7.1 A/W and fastest rising time of 101 ms were obtained from these PDs when applying an external compressive strain of -0.10‰ on the ZnO NWs, corresponding to relative enhancement of 177% in R and shortening to 87% in response time, respectively. These results indicate a promising method to enhance/optimize the performances of non-piezoelectric semiconductor material (e.g., Si) based optoelectronic devices by the piezo-phototronic effect.

  14. Image-guided thermal ablation with MR-based thermometry.

    Science.gov (United States)

    Zhu, Mingming; Sun, Ziqi; Ng, Chin K

    2017-06-01

    Thermal ablation techniques such as radiofrequency, microwave, high intensity focused ultrasound (HIFU) and laser have been used as minimally invasive strategies for the treatment of variety of cancers. MR thermometry methods are readily available for monitoring thermal distribution and deposition in real time, leading to decrease of incidents of normal tissue damage around targeted lesion. HIFU and laser-induced thermal therapy (LITT) are the two widely accepted tumor ablation techniques because of their compatibility with MR systems. MRI provides multiple temperature dependent parameters for thermal imaging, such as signal intensity, T1, T2, diffusion coefficient, magnetization transfer, proton resonance frequency shift (PRFS, including phase imaging and spectroscopy) as well as frequency shift of temperature sensitive contrast agents. Absolute temperature mapping techniques, including both spectroscopic imaging using metabolites as a reference and phase imaging using fat as a reference, are immune to susceptibility effects and are not dependent on phase differences. These techniques are intrinsically more reliable than relative temperature measurement by phase mapping methods. If the limitation of low temporal and spatial resolution could be overcome, these methods may be preferred for MR-guided thermal ablation systems. As of today, the most popular MR thermal imaging method applied in tumor thermal ablation surgery is, however, still PRFS based phase mapping technique, which only provides relative temperature change and is prone to motion artifacts.

  15. Quantification of gap junctional intercellular communication based on digital image analysis

    DEFF Research Database (Denmark)

    Hofgaard, Johannes P; Mollerup, Sarah; Holstein-Rathlou, Niels-Henrik

    2009-01-01

    numerous cells to obtain reliable estimates of metabolic coupling. Quantification is often based on manual counting of fluorescent cells, which is time consuming and may include some degree of subjectivity. In this report, we introduce a technique based on digital image analysis, and the software...

  16. Switching Characteristics of a 4H-SiC Based Bipolar Junction Transistor to 200 C

    Science.gov (United States)

    Niedra, Janis M.

    2006-01-01

    Static curves and resistive load switching characteristics of a 600 V, 4 A rated, SiC-based NPN bipolar power transistor (BJT) were observed at selected temperatures from room to 200 C. All testing was done in a pulse mode at low duty cycle (approx.0.1 percent). Turn-on was driven by an adjustable base current pulse and turn-off was accelerated by a negative base voltage pulse of 7 V. These base drive signals were implemented by 850 V, gated power pulsers, having rise-times of roughly 10 ns, or less. Base charge sweep-out with a 7 V negative pulse did not produce the large reverse base current pulse seen in a comparably rated Si-based BJT. This may be due to a very low charge storage time. The decay of the collector current was more linear than its exponential-like rise. Switching observations were done at base drive currents (I(sub B)) up to 400 mA and collector currents (I(sub C)) up to 4 A, using a 100 Omega non-inductive load. At I(sub B) = 400 mA and I(sub C) = 4 A, turn-on times typically varied from 80 to 94 ns, over temperatures from 23 to 200 C. As expected, lowering the base drive greatly extended the turn-on time. Similarly, decreasing the load current to I(sub C) = 1 A with I(sub B) = 400 mA produced turn-on times as short as 34 ns. Over the 23 to 200 C range, with I(sub B) = 400 mA and I(sub C) = 4 A, turn-off times were in the range of 72 to 84 ns with the 7 V sweep-out.

  17. MnGa-based fully perpendicular magnetic tunnel junctions with ultrathin Co2MnSi interlayers

    Science.gov (United States)

    Mao, Siwei; Lu, Jun; Zhao, Xupeng; Wang, Xiaolei; Wei, Dahai; Liu, Jian; Xia, Jianbai; Zhao, Jianhua

    2017-01-01

    Because tetragonal structured MnGa alloy has intrinsic (not interface induced) giant perpendicular magnetic anisotropy (PMA), ultra-low damping constant and high spin polarization, it is predicted to be a kind of suitable magnetic electrode candidate in the perpendicular magnetic tunnel junction (p-MTJ) for high density spin transfer torque magnetic random access memory (STT-MRAM) applications. However, p-MTJs with both bottom and top MnGa electrodes have not been achieved yet, since high quality perpendicular magnetic MnGa films can hardly be obtained on the MgO barrier due to large lattice mismatch and surface energy difference between them. Here, a MnGa-based fully p-MTJ with the structure of MnGa/Co2MnSi/MgO/Co2MnSi/MnGa is investigated. As a result, the multilayer is with high crystalline quality, and both the top and bottom MnGa electrodes show well PMA. Meanwhile, a distinct tunneling magnetoresistance (TMR) ratio of 65% at 10 K is achieved. Ultrathin Co2MnSi films are used to optimize the interface quality between MnGa and MgO barrier. A strong antiferromagnetic coupling in MnGa/Co2MnSi bilayer is confirmed with the interfacial exchange coupling constant of −5erg/cm2. This work proposes a novel p-MTJ structure for the future STT-MRAM progress. PMID:28233780

  18. Co2FeAl based magnetic tunnel junctions with BaO and MgO/BaO barriers

    Directory of Open Access Journals (Sweden)

    J. Rogge

    2015-07-01

    Full Text Available We succeed to integrate BaO as a tunneling barrier into Co2FeAl based magnetic tunnel junctions (MTJs. By means of Auger electron spectroscopy it could be proven that the applied annealing temperatures during BaO deposition and afterwards do not cause any diffusion of Ba neither into the lower Heusler compound lead nor into the upper Fe counter electrode. Nevertheless, a negative tunnel magnetoresistance (TMR ratio of -10% is found for Co2FeAl (24 nm / BaO (5 nm / Fe (7 nm MTJs, which can be attributed to the preparation procedure and can be explained by the formation of Co- and Fe-oxides at the interfaces between the Heusler and the crystalline BaO barrier by comparing with theory. Although an amorphous structure of the BaO barrier seems to be confirmed by high-resolution transmission electron microscopy (TEM, it cannot entirely be ruled out that this is an artifact of TEM sample preparation due to the sensitivity of BaO to moisture. By replacing the BaO tunneling barrier with an MgO/BaO double layer barrier, the electric stability could effectively be increased by a factor of five. The resulting TMR effect is found to be about +20% at room temperature, although a fully antiparallel state has not been realized.

  19. Holliday junction affinity of the base excision repair factor Endo III contributes to cholera toxin phage integration.

    Science.gov (United States)

    Bischerour, Julien; Spangenberg, Claudia; Barre, François-Xavier

    2012-09-12

    Toxigenic conversion of Vibrio cholerae bacteria results from the integration of a filamentous phage, CTX phage. Integration is driven by the bacterial Xer recombinases, which catalyse the exchange of a single pair of strands between the phage single-stranded DNA and the host double-stranded DNA genomes; replication is thought to convert the resulting pseudo-Holliday junction (HJ) intermediate into the final recombination product. The natural tendency of the Xer recombinases to recycle HJ intermediates back into substrate should thwart this integration strategy, which prompted a search for additional co-factors aiding directionality of the process. Here, we show that Endo III, a ubiquitous base excision repair enzyme, facilitates CTX phage-integration in vivo. In vitro, we show that it prevents futile Xer recombination cycles by impeding new rounds of strand exchanges once the pseudo-HJ is formed. We further demonstrate that this activity relies on the unexpected ability of Endo III to bind to HJs even in the absence of the recombinases. These results explain how tandem copies of the phage genome can be created, which is crucial for subsequent virion production.

  20. Fuzzy-Logic Based Detection and Characterization of Junctions and Terminations in Fluorescence Microscopy Images of Neurons.

    Science.gov (United States)

    Radojević, Miroslav; Smal, Ihor; Meijering, Erik

    2016-04-01

    Digital reconstruction of neuronal cell morphology is an important step toward understanding the functionality of neuronal networks. Neurons are tree-like structures whose description depends critically on the junctions and terminations, collectively called critical points, making the correct localization and identification of these points a crucial task in the reconstruction process. Here we present a fully automatic method for the integrated detection and characterization of both types of critical points in fluorescence microscopy images of neurons. In view of the majority of our current studies, which are based on cultured neurons, we describe and evaluate the method for application to two-dimensional (2D) images. The method relies on directional filtering and angular profile analysis to extract essential features about the main streamlines at any location in an image, and employs fuzzy logic with carefully designed rules to reason about the feature values in order to make well-informed decisions about the presence of a critical point and its type. Experiments on simulated as well as real images of neurons demonstrate the detection performance of our method. A comparison with the output of two existing neuron reconstruction methods reveals that our method achieves substantially higher detection rates and could provide beneficial information to the reconstruction process.

  1. MnGa-based fully perpendicular magnetic tunnel junctions with ultrathin Co2MnSi interlayers.

    Science.gov (United States)

    Mao, Siwei; Lu, Jun; Zhao, Xupeng; Wang, Xiaolei; Wei, Dahai; Liu, Jian; Xia, Jianbai; Zhao, Jianhua

    2017-02-24

    Because tetragonal structured MnGa alloy has intrinsic (not interface induced) giant perpendicular magnetic anisotropy (PMA), ultra-low damping constant and high spin polarization, it is predicted to be a kind of suitable magnetic electrode candidate in the perpendicular magnetic tunnel junction (p-MTJ) for high density spin transfer torque magnetic random access memory (STT-MRAM) applications. However, p-MTJs with both bottom and top MnGa electrodes have not been achieved yet, since high quality perpendicular magnetic MnGa films can hardly be obtained on the MgO barrier due to large lattice mismatch and surface energy difference between them. Here, a MnGa-based fully p-MTJ with the structure of MnGa/Co2MnSi/MgO/Co2MnSi/MnGa is investigated. As a result, the multilayer is with high crystalline quality, and both the top and bottom MnGa electrodes show well PMA. Meanwhile, a distinct tunneling magnetoresistance (TMR) ratio of 65% at 10 K is achieved. Ultrathin Co2MnSi films are used to optimize the interface quality between MnGa and MgO barrier. A strong antiferromagnetic coupling in MnGa/Co2MnSi bilayer is confirmed with the interfacial exchange coupling constant of -5erg/cm(2). This work proposes a novel p-MTJ structure for the future STT-MRAM progress.

  2. MnGa-based fully perpendicular magnetic tunnel junctions with ultrathin Co2MnSi interlayers

    Science.gov (United States)

    Mao, Siwei; Lu, Jun; Zhao, Xupeng; Wang, Xiaolei; Wei, Dahai; Liu, Jian; Xia, Jianbai; Zhao, Jianhua

    2017-02-01

    Because tetragonal structured MnGa alloy has intrinsic (not interface induced) giant perpendicular magnetic anisotropy (PMA), ultra-low damping constant and high spin polarization, it is predicted to be a kind of suitable magnetic electrode candidate in the perpendicular magnetic tunnel junction (p-MTJ) for high density spin transfer torque magnetic random access memory (STT-MRAM) applications. However, p-MTJs with both bottom and top MnGa electrodes have not been achieved yet, since high quality perpendicular magnetic MnGa films can hardly be obtained on the MgO barrier due to large lattice mismatch and surface energy difference between them. Here, a MnGa-based fully p-MTJ with the structure of MnGa/Co2MnSi/MgO/Co2MnSi/MnGa is investigated. As a result, the multilayer is with high crystalline quality, and both the top and bottom MnGa electrodes show well PMA. Meanwhile, a distinct tunneling magnetoresistance (TMR) ratio of 65% at 10 K is achieved. Ultrathin Co2MnSi films are used to optimize the interface quality between MnGa and MgO barrier. A strong antiferromagnetic coupling in MnGa/Co2MnSi bilayer is confirmed with the interfacial exchange coupling constant of -5erg/cm2. This work proposes a novel p-MTJ structure for the future STT-MRAM progress.

  3. Bias dependence of spin transfer torque in Co2MnSi Heusler alloy based magnetic tunnel junctions

    Science.gov (United States)

    Zhang, Jie; Phung, Timothy; Pushp, Aakash; Ferrante, Yari; Jeong, Jaewoo; Rettner, Charles; Hughes, Brian P.; Yang, See-Hun; Jiang, Yong; Parkin, Stuart S. P.

    2017-04-01

    Heusler compounds are of interest as electrode materials for use in magnetic tunnel junctions (MTJs) due to their half metallic character, which leads to 100% spin polarization and high tunneling magnetoresistance. Most work to date has focused on the improvements to tunneling magnetoresistance that can stem from the use of Heusler electrodes, while there is much less work investigating the influence of Heusler electrodes on the spin transfer torque properties of MTJs. Here, we investigate the bias dependence of the anti-damping like and field-like spin transfer torque components in both symmetric (Co2MnSi/MgO/Co2MnSi) and asymmetric (Co2MnSi/MgO/CoFe) structure Heusler based MTJs using spin transfer torque ferromagnetic resonance. We find that while the damping like torque is linear with respect to bias for both MTJ structures, the asymmetric MTJ structure has an additional linear component to the ordinarily quadratic field like torque bias dependence and that these results can be accounted for by a free electron tunneling model. Furthermore, our results suggest that the low damping and low saturation magnetization properties of Heusler alloys are more likely to lead significant improvements to spin torque switching efficiency rather than their half metallic character.

  4. Barrier characteristics of biopolymer-based organic/inorganic Au/CTS/n-InP hybrid junctions

    Science.gov (United States)

    Abay, Bahattin

    2015-11-01

    Thin film of biopolymeric compound chitosan (CTS) has been surfaced on moderately doped n-InP substrate as an interfacial layer by means of spin coating for the electronic modification of Au/n-InP structure. Electrical characterization of Au/CTS/n-InP hybrid junction has been performed by I-V and C-V measurements at room temperature. An effective barrier height (BH) value of 0.678 eV and an ideality factor of n = 1.665 have been obtained for the hybrid junction. The CTS interfacial layer has been found to reduce the reverse bias leakage current of the junction by about three orders of magnitude and enhance the BH by about 0.213 eV. Furthermore, the BH value of the hybrid junction has been obtained as 0.693 eV by C-V measurement. Good performance of the device could be ascribed to the passivation effect of the CTS interfacial layer between Au and n-InP. The BH values of 0.678 and 0.693 eV for the hybrid junction have been significantly higher than that of the conventional Au/n-InP junction (~0.465 eV). The results indicated that biopolymeric thin interfacial CTS layer might lead to the modification of the potential barrier for metal/n-InP junctions. Moreover, band gap of the CTS layer has been determined as 4.60 eV via UV-vis spectroscopy.

  5. Tip-induced gating of molecular levels in carbene-based junctions

    Science.gov (United States)

    Foti, Giuseppe; Vázquez, Héctor

    2016-03-01

    We study the conductance of N-heterocyclic carbene-based (NHC) molecules on gold by means of first-principles calculations based on density-functional theory and non-equilibrium Green’s functions. We consider several tip structures and find a strong dependence of the position of the NHC molecular levels with the atomistic structure of the tip. The position of the lowest unoccupied molecular orbital (LUMO) can change by almost 0.8 eV with tip shape. Through an analysis of the net charge transfer, electron redistribution and work function for each tip structure, we rationalize the LUMO shifts in terms of the sum of the work function and the maximum electrostatic potential arising from charge rearrangement. These differences in the LUMO position, effectively gating the molecular levels, result in large conductance variations. These findings open the way to modulating the conductance of NHC-based molecular circuits through the controlled design of the tip atomistic structure.

  6. Specular Andreev reflection in graphene-based superconducting junction with substate-induced spin orbit interaction

    Science.gov (United States)

    Bai, Chunxu; Yang, Yanling

    2016-08-01

    Based on the Dirac-Bogoliubov-de Gennes equation, the chirality-resolved transport properties through a ballistic graphene-based superconducting heterojunction with both the Rashba and the Dresselhaus spin orbit interaction have been investigated. Our results show that, in contrast to the retro-Andreev reflection suppressed by the spin orbit interaction (SOI), the specular Andreev reflection (SAR) can be enhanced largely by the SOI. Moreover, the Fabry-Perot interferences in the barrier region lead to the oscillating feature of the tunneling conductance. It is anticipated to apply the qualitative different results to diagnose the SAR in single layer graphene in the presence of both kinds of the SOI.

  7. Superconducting X-ray detectors based on Nb absorbers and Nb/Al tunnel junctions

    NARCIS (Netherlands)

    Hamster, Arnout Willem

    1999-01-01

    This thesis describes the research and development of STJs based on Nb/Al technology for application as X-ray detectors in astrophysics conducted by the Low Temperature division of the University of Twente in collaboration with the Stichting Ruimteonderzoek Nederland (SRON). Three topics have been i

  8. Superconducting X-ray detectors based on Nb absorbers and Nb/Al tunnel junctions

    NARCIS (Netherlands)

    Hamster, A.W.

    1999-01-01

    This thesis describes the research and development of STJs based on Nb/Al technology for application as X-ray detectors in astrophysics conducted by the Low Temperature division of the University of Twente in collaboration with the Stichting Ruimteonderzoek Nederland (SRON). Three topics have been

  9. Cultural Transmission in Three Societies: Testing a Systems-Based Field Guide.

    Science.gov (United States)

    Dobbert, Marion Lundy; And Others

    1984-01-01

    Reports on: (1) the formulation of a holistic, systems-based theory of cultural transmission; (2) a field guide developed for gathering the precise data needed to test the theory; and (3) a pilot study, involving the collection and analysis of data about six- to 12-year-old Americans, Israelis, and Mexicans, to test both guide and theory. (CMG)

  10. The use of group participation and an enquiry-based study guide with computer assisted learning.

    Science.gov (United States)

    Botelho, M

    2001-08-01

    The aim of this investigation was to explore the use of group participation and an enquiry-based study guide to enhance the learning experience when using a computer assisted learning (CAL) program. Forty-eight students were asked to complete a CAL program on resin bonded bridges in groups of 2-4 with an enquiry-based study guide. An evaluation questionnaire of the learning experience was included with the study guide with paired positive and negative questions and open-ended questions for students to complete and return. The responses were collated and the nature of the comments qualitatively analysed. Thirty-two questionnaires were returned. There were almost three times the numbers of positive to negative responses relating to the usefulness of the enquiry based study guide, group participation and the CAL program. The majority of these positive responses related to the usefulness of the study guide and group participation in highlighting and guiding learning and creating opportunities for discussion, problem solving and peer teaching. A small number of negative responses cited the target-orientated nature of the study guide and the longer time needed for group work, due to the varying learning abilities of the participants and the need for discussion. The use of group participation and an enquiry-based study guide was reported to enhance the learning experience of CAL.

  11. Specular Andreev reflection in graphene-based superconducting junction with substate-induced spin orbit interaction

    Energy Technology Data Exchange (ETDEWEB)

    Bai, Chunxu, E-mail: chunxu_bai@semi.ac.cn [School of Physics, Anyang Normal University, Anyang 455000 (China); Yang, Yanling [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China); School of Physics, Anyang Normal University, Anyang 455000 (China)

    2016-08-26

    Based on the Dirac–Bogoliubov–de Gennes equation, the chirality-resolved transport properties through a ballistic graphene-based superconducting heterojunction with both the Rashba and the Dresselhaus spin orbit interaction have been investigated. Our results show that, in contrast to the retro-Andreev reflection suppressed by the spin orbit interaction (SOI), the specular Andreev reflection (SAR) can be enhanced largely by the SOI. Moreover, the Fabry–Perot interferences in the barrier region lead to the oscillating feature of the tunneling conductance. It is anticipated to apply the qualitative different results to diagnose the SAR in single layer graphene in the presence of both kinds of the SOI. - Highlights: • The retro-Andreev reflection in graphene is suppressed by the spin orbit interaction. • The specular Andreev reflection in graphene can be enhanced largely by the spin orbit interaction. • The Fabry–Perot interferences in the graphene-based barrier lead to the oscillating feature of the tunneling conductance. • The spin orbit interaction is also vital in diagnosing the specular Andreev reflection in graphene.

  12. Self-guided internet-based and mobile-based stress management for employees

    DEFF Research Database (Denmark)

    Ebert, D. D.; Heber, E.; Berking, M.

    2016-01-01

    Objective This randomised controlled trial (RCT) aimed to evaluate the efficacy of a self-guided internet-based stress management intervention (iSMI) for employees compared to a 6-month wait-list control group (WLC) with full access for both groups to treatment as usual. M e t h o d A sample of 2...... of stressed employees. Internet-based self-guided interventions could be an acceptable, effective and potentially costeffective approach to reduce the negative consequences associated with work-related stress.......Objective This randomised controlled trial (RCT) aimed to evaluate the efficacy of a self-guided internet-based stress management intervention (iSMI) for employees compared to a 6-month wait-list control group (WLC) with full access for both groups to treatment as usual. M e t h o d A sample of 264...... employees with elevated symptoms of perceived stress (Perceived Stress Scale, PSS-10 =22) was randomly assigned to either the iSMI or to the WLC. The iSMI consisted of seven sessions and one booster session including problem-solving and emotion regulation techniques. Self-report data were assessed...

  13. Sputtered Zn(O,S) for junction formation in chalcopyrite-based thin film solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Grimm, A.; Just, J.; Kieven, D.; Lauermann, I.; Rissom, T.; Klenk, R. [Helmholtz-Zentrum Berlin fuer Materialien und Energie, Berlin (Germany); Palm, J. [AVANCIS GmbH and Co. KG, Munich (Germany); Neisser, A. [Sulfurcell Solartechnik GmbH, Berlin (Germany)

    2010-06-15

    In an effort to eliminate the standard CdS buffer layer from chalcopyrite-based thin film solar cells we have investigated sputtered Zn(O,S) films. They were prepared by partially reactive sputtering from a ZnS target in an argon/oxygen mixture. Single phase, polycrystalline films were achieved for substrate temperatures of at least 100 C. Test devices prepared in a completely dry process showed superior blue response and active area conversion efficiencies up to 13.7%. (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  14. A Novel Design and Fabrication of Magnetic Random Access Memory Based on Nano-ring-type Magnetic Tunnel Junctions

    Institute of Scientific and Technical Information of China (English)

    X.F.Han; M. Ma; Y. Wang; Z.C. Wen; D.P. Liu; W.S.Zhan; H.X. Wei; Z.L.Peng; H.D. Yang; J.F. Feng; G.X.Du; Z.B.Sun; L.X. Jiang; Q.H. Qin

    2007-01-01

    Nano-ring-type magnetic tunnel junctions (NR-MTJs) with the layer structure of Ta(5)/Ir22Mn78(10)/Co75Fe25(2)/Ru(0.75)/Co60Fe20B20(3)/Al(0.6)-oxide/Co60Fe20B20(2.5)/Ta(3)/Ru(5) (thickness unit: nm)were nano-fabricated on the Si(100)/SiO2 substrate using magnetron sputtering deposition combined with the optical lithography, electron beam lithography (EBL) and Ar ion-beam etching techniques. The smaller NR-MTJs with the inner- and outer-diameter of around 50 and 100 nm and also their corresponding NR-MTJ arrays were nano-patterned. The tunnelling magnetoresistance (TMR & R) versus driving current (I) loops for a spin-polarized current switching were measured, and the TMR ratio of around 35% at room temperature were observed. The critical values of switching current for the free Co60Fe20B20 layer relative to the reference Co60Fe20B20 layer between parallel and anti-parallel magnetization states were between 0.50 and 0.75 mA in such NR-MTJs. It is suggested that the applicable MRAM fabrication with the density and capacity higher than 256 Mbit/inch2 even 6 Gbite/inch2 are possible using both 1 NR-MTJ+1 transistor structure and current switching mechanism based on based on our fabricated 4×4 MRAM demo devices.

  15. NASIS data base management system - IBM 360/370 OS MVT implementation. 7: Data base administrator user's guide

    Science.gov (United States)

    1973-01-01

    The Data Base Administrator User's Guide for the NASA Aerospace Safety information system is presented. The subjects discussed are: (1) multi-terminal tasking, (2) data base executive, (3) utilities, (4) maintenance, and (5) update mode functions.

  16. Thermally stable pn-junctions based on a single transparent perovskite semiconductor BaSnO3

    Science.gov (United States)

    Kim, Hoon Min; Kim, Useong; Park, Chulkwon; Kwon, Hyukwoo; Char, Kookrin

    2016-05-01

    We report p-doping of the BaSnO3 (BSO) by replacing Ba with K. The activation energy of K-dopants is estimated to be about 0.5 eV. We have fabricated pn junctions by using K-doped BSO as a p-type and La-doped BSO as an n-type semiconductor. I-V characteristics of these devices exhibit an ideal rectifying behavior of pn junctions with the ideality factor between 1 and 2, implying high integrity of the BSO materials. Moreover, the junction properties are found to be very stable after repeated high-bias and high-temperature thermal cycling, demonstrating a large potential for optoelectronic functions.

  17. Thermally stable pn-junctions based on a single transparent perovskite semiconductor BaSnO3

    Directory of Open Access Journals (Sweden)

    Hoon Min Kim

    2016-05-01

    Full Text Available We report p-doping of the BaSnO3 (BSO by replacing Ba with K. The activation energy of K-dopants is estimated to be about 0.5 eV. We have fabricated pn junctions by using K-doped BSO as a p-type and La-doped BSO as an n-type semiconductor. I-V characteristics of these devices exhibit an ideal rectifying behavior of pn junctions with the ideality factor between 1 and 2, implying high integrity of the BSO materials. Moreover, the junction properties are found to be very stable after repeated high-bias and high-temperature thermal cycling, demonstrating a large potential for optoelectronic functions.

  18. Length dependence of the thermal conductance of alkane-based single-molecule junctions: An ab initio study

    Science.gov (United States)

    Klöckner, J. C.; Bürkle, M.; Cuevas, J. C.; Pauly, F.

    2016-11-01

    Motivated by recent experiments, we present here a systematic ab initio study of the length dependence of the thermal conductance of single-molecule junctions. We make use of a combination of density functional theory with nonequilibrium Green's function techniques to investigate the length dependence of the phonon transport in single-alkane chains, contacted with gold electrodes via both thiol and amine anchoring groups. Additionally, we study the effect of the substitution of the hydrogen atoms in the alkane chains by heavier fluorine atoms to form polytetrafluoroethylenes. Our results demonstrate that (i) the room-temperature thermal conductance is fairly length independent for chains with more than 5 methylene units and (ii) the efficiency of the thermal transport is strongly influenced by the strength of the phononic metal-molecule coupling. Our study sheds light on the phonon transport in molecular junctions, and it provides clear guidelines for the design of molecular junctions for thermal management.

  19. Service design based on ITIL V3 a management guide

    CERN Document Server

    Bon, Jan van; Kolthof, Axel

    2010-01-01

    This Management Guide is a concise summary of the IT Service Management ? An Introduction. A quick, portable reference tool to the standards used within the Service Management community.What are the key service management processes? What is the ?lifecycle? approach?What are the elements of ISO20000? All this and descriptions of other popular frameworks are covered.

  20. Evidence of a Symmetry-Dependent Metallic Barrier in Fully Epitaxial MgO Based Magnetic Tunnel Junctions

    Science.gov (United States)

    Greullet, F.; Tiusan, C.; Montaigne, F.; Hehn, M.; Halley, D.; Bengone, O.; Bowen, M.; Weber, W.

    2007-11-01

    We report on the experimental observation of tunneling across an ultrathin metallic Cr spacer layer that is inserted at the interface of a Fe/MgO/Fe(001) junction. We show how this remarkable behavior in a solid-state device reflects a quenching in the transmission of particular electronic states, as expected from the symmetry-filtering properties of the MgO barrier and the band structure of the bcc Cr(001) spacer in the epitaxial junction stack. This ultrathin Cr metallic barrier can promote quantum well states in an adjacent Fe layer.

  1. A DLTS study of 4H-SiC-based p-n junctions fabricated by boron implantation

    Energy Technology Data Exchange (ETDEWEB)

    Ivanov, P. A., E-mail: Pavel.Ivanov@mail.ioffe.ru; Potapov, A. S.; Samsonova, T. P. [Russian Academy of Sciences, Ioffe Physical Technical Institute (Russian Federation); Korol' kov, O.; Sleptsuk, N. [Tallinn University of Technology, Department of Electronics (Estonia)

    2011-10-15

    Deep-level transient spectroscopy (DLTS) has been used to study p-n junctions fabricated by implantation of boron into epitaxial 4H-SiC films with n-type conductivity and the donor concentration (8-9) Multiplication-Sign 10{sup 14} cm{sup -3}. A DLTS signal anomalous in sign is observed; this signal is related to recharging of deep compensating boron-involved centers in the n-type region near the metallurgical boundary of the p-n junction.

  2. The photoirradiation induced p-n junction in naphthylamine-based organic photovoltaic cells.

    Science.gov (United States)

    Bai, Linyi; Gao, Qiang; Xia, Youyi; Ang, Chung Yen; Bose, Purnandhu; Tan, Si Yu; Zhao, Yanli

    2015-09-21

    The bulk heterojunction (BHJ) plays an indispensable role in organic photovoltaics, and thus has been investigated extensively in recent years. While a p-n heterojunction is usually fabricated using two different donor and acceptor materials such as poly(3-hexylthiophene-2,5-diyl) (P3HT) and phenyl-C61-butyric acid methyl ester (PCBM), it is really rare that such a BHJ is constructed by a single entity. Here, we presented a photoirradiation-induced p-n heterojunction in naphthylamine-based organic photovoltaic cells, where naphthylamine as a typical p-type semiconductor could be oxidized under photoirradiation and transformed into a new semiconductor with the n-type character. The p-n heterojunction was realized using both the remaining naphthylamine and its oxidative product, giving rise to the performance improvement in organic photovoltaic devices. The experimental results show that the power conversion efficiency (PCE) of the devices could be achieved up to 1.79% and 0.43% in solution and thin film processes, respectively. Importantly, this technology using naphthylamine does not require classic P3HT and PCBM to realize the p-n heterojunction, thereby simplifying the device fabrication process. The present approach opens up a promising route for the development of novel materials applicable to the p-n heterojunction.

  3. Tunneling electroresistance effect in ultrathin BiFeO3-based ferroelectric tunneling junctions

    Science.gov (United States)

    Yoong, Herng Yau; Wang, Han; Xiao, Juanxiu; Guo, Rui; Yang, Ping; Yang, Yi; Lim, Sze Ter; Wang, John; Venkatesan, T.; Chen, Jingsheng

    2016-12-01

    Tunneling electroresistance (TER) effect has been observed in high quality ultrathin BiFeO3 thin films. The growth quality of the ultrathin BiFeO3 films was confirmed using the synchrotron high resolution X-ray diffraction techniques as well as high-resolution transmission electron microscopy. Ferroelectric-based resistive switching behavior is observed down to 2 u.c. of BiFeO3 ultrathin film, which is way below the critical thickness of BiFeO3 thin films exhibiting ferroelectricity reported in the previous research works. Upon fitting mathematically using the direct tunneling model, it could be seen that there is an increase in the change in the average potential barrier height when the barrier thickness increases from 2 u.c. to 10 u.c., which also results in an increase in the TER ratio by one order of magnitude. These results are promising and pave the way for developing ultrathin BiFeO3 films to be adopted in the non-volatile memory applications.

  4. Pulse Responses of the Conducting Polymer Poly(3,4-ethylenedioxythiophene): Poly(styrenesulfonate)-Based Junctions

    Science.gov (United States)

    Zeng, Fei; Li, Xiaojun; Li, Sizhao; Chang, Chiating; Hu, Yuandong

    2017-03-01

    Pulse responses were studied for the heterojunctions within the structure of Ti/poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) (PEDOT:PSS)/Ti. The pulse response was found to resemble that of the action potential after the pulse width was modulated to a time scale of nanoseconds. Using the pulse as a stimulation protocol to simulate synaptic plasticity produced spike rate-dependent plasticity-like phenomena. Thus, the application scope of this conducting polymer-based memristor can be extended from a time scale of milliseconds to one of nanoseconds, depending on the requirement of neuromorphic circuits. Current oscillations were observed with a period within 100 ns. The mechanisms of the behavior response were analyzed according to memristor protocol. An interface barrier is thought to primarily account for the origin of the capacitive feature and the charge q, i.e., one of the basic characteristic of the memristor. The chain structure of this conducting polymer should primarily account for the origin of its inductive feature and the flux φ, i.e., another basic characteristic of the memristor.

  5. Electronic transport through dsDNA based junction: a Fibonacci model

    Directory of Open Access Journals (Sweden)

    S A Ketabi

    2014-12-01

    Full Text Available A numerical study is presented to investigate the electronic transport properties through a synthetic DNA molecule based on a quasiperiodic arrangement of its constituent nucleotides. Using a generalized Green's function technique, the electronic conduction through the poly(GACT-poly(CTGA DNA molecule in a metal/DNA/metal model structure has been studied. Making use of a renormalization scheme we transform the Hamiltonian of double-stranded DNA (dsDNA molecule to an effective Hamiltonian corresponding to a one-dimensional chain in which the effective on-site energies are arranged as a quasiperiodic lattice according to Fibonacci sequence. The room temperature current-voltage characteristic of dsDNA has been investigated in this Fibonacci model and compared with those corresponding to poly(GACT-poly(CTGA DNA molecule. Our results indicate the main effect of the quasiperiodic arrangement of the nucleotides as the Fibonacci sequence on the electronic spectrum structure of the dsDNA is that the energy band gaps of the molecule have a tendency for suppression. The room temperature I-V characteristic of the DNA Fibonacci model shows a linear and ohmic-like behavior

  6. Optimization of amorphous silicon double junction solar cells for an efficient photoelectrochemical water splitting device based on a bismuth vanadate photoanode.

    Science.gov (United States)

    Han, Lihao; Abdi, Fatwa F; Perez Rodriguez, Paula; Dam, Bernard; van de Krol, Roel; Zeman, Miro; Smets, Arno H M

    2014-03-07

    A photoelectrochemical water splitting device (PEC-WSD) was designed and fabricated based on cobalt-phosphate-catalysed and tungsten-gradient-doped bismuth vanadate (W:BiVO4) as the photoanode. A simple and cheap hydrogenated amorphous silicon (a-Si:H) double junction solar cell has been used to provide additional bias. The advantage of using thin film silicon (TF-Si) based solar cells is that this photovoltaic (PV) technology meets the crucial requirements for the PV component in PEC-WSDs based on W:BiVO4 photoanodes. TF-Si PV devices are stable in aqueous solutions, are manufactured by simple and cheap fabrication processes and their spectral response, voltage and current density show an excellent match with the photoanode. This paper is mainly focused on the optimization of the TF-Si solar cell with respect to the remaining solar spectrum transmitted through the W:BiVO4 photoanode. The current matching between the top and bottom cells is studied and optimized by varying the thickness of the a-Si:H top cell. We support the experimental optimization of the current balance between the two sub-cells with simulations of the PV devices. In addition, the impact of the light induced degradation of the a-Si:H double junction, the so-called Staebler-Wronski Effect (SWE), on the performance of the PEC-WSD has been studied. The light soaking experiments on the a-Si:H/a-Si:H double junctions over 1000 hours show that the efficiency of a stand-alone a-Si:H/a-Si:H double junction cell is significantly reduced due to the SWE. Nevertheless, the SWE has a significantly smaller effect on the performance of the PEC-WSD.

  7. Preparation and characterization of bottom ferromagnetic electrode for graphene based magnetic junction

    Science.gov (United States)

    Cheng, Shufan; Cobas, Enrique; van't Erve, Olaf M. J.; Jonker, Berend T.

    2016-03-01

    Magnetic multilayer stacks incorporating several layers of graphene have been predicted to produce very high magnetoresistance and high conductivity, a combination of properties that would be useful in magnetic sensors and future spin-based data storage and processing technologies such as MRAM. To realize the theoretically modeled heterostructures and probe their properties, a clean, high-quality graphene-ferromagnet interface, such as one that results from CVD of graphene directly on ferromagnetic films, is required. However, past works using Ni and Co films for CVD of graphene employ the ferromagnetic film as a sacrificial layer to be dissolved after graphene growth and ignore changes to its morphology and magnetic properties. Here we investigated the effect of graphene CVD growth conditions on the properties of Co, Ni, Co90Fe10 and Ni80Fe20 ferromagnetic films. The magnetic films were grown by dc magnetron sputtering with different growth conditions onto c-Al2O3, Si/AlN and MgO substrates. The crystalline orientation, surface morphology/roughness and magnetic properties of the films were measured using X-ray diffraction, atomic force microscopy and vibrating sample magnetometry, respectively. Cobalt films grown at 500 °C were found to be hcp and heteroepitaxial on c-Al2O3. CoFe, Ni, and NiFe films on c-Al2O3 were found to be fcc and to be (111) textured but with grains having in-plane rotation differing by 60°. The CoFe and NiFe films on c-Al2O3 retained their small coercivity and high remanence while the pure Co and Ni films exhibited much smaller remanence after graphene growth, making them unsuitable for magnetic memory technologies. Films on Si/AlN were found to have the same rotational domains as those on sapphire c-Al2O3. The NiFe films on (111) MgO were found to be mostly single domain.

  8. Addressing the challenges of using ferromagnetic electrodes in the magnetic tunnel junction-based molecular spintronics devices

    Science.gov (United States)

    Tyagi, Pawan; Friebe, Edward; Baker, Collin

    2015-11-01

    Addressing the challenges of using high-Curie temperature ferromagnetic (FM) electrodes is critical for molecular spintronics devices (MSDs) research. Two FM electrodes simultaneously chemically bonded with a thiol-functionalized molecule can produce novel MSDs to exploring new quantum mechanical phenomenon and computer technologies. For developing a commercially viable MSD, it is crucial to developing a device fabrication scheme that carefully considers FM electrodes' susceptibility to oxidation, chemical etching, and stress-induced deformations during fabrication and usage. This paper studies NiFe, an alloy extensively used in present-day memory devices and high-temperature engineering applications, as a candidate FM electrode for the fabrication of MSDs. Our spectroscopic reflectance studies show that NiFe oxidized aggressively after heating beyond 90 °C. The NiFe surfaces, aged for several months or heated for several minutes below 90 °C, exhibited remarkable electrochemical activity and were found suitable for chemical bonding with the thiol-functionalized molecular device elements. NiFe also demonstrated excellent etching resistance against commonly used solvents and lithography related chemicals. Additionally, NiFe mitigated the adverse effects of mechanical stress by subsiding the stress-induced deformities. A magnetic tunnel junction-based MSD approach was designed by carefully considering the merits and limitations of NiFe. The device fabrication protocol considers the safe temperature limit to avoiding irreversible surface oxidation, the effect of mechanical stresses, surface roughness, and chemical etching. This paper provides foundational experimental insights in realizing a versatile MSD allowing a wide range of transport and magnetic studies.

  9. Addressing the challenges of using ferromagnetic electrodes in the magnetic tunnel junction-based molecular spintronics devices

    Energy Technology Data Exchange (ETDEWEB)

    Tyagi, Pawan, E-mail: ptyagi@udc.edu; Friebe, Edward; Baker, Collin [University of the District of Columbia, Department of Mechanical Engineering (United States)

    2015-11-15

    Addressing the challenges of using high-Curie temperature ferromagnetic (FM) electrodes is critical for molecular spintronics devices (MSDs) research. Two FM electrodes simultaneously chemically bonded with a thiol-functionalized molecule can produce novel MSDs to exploring new quantum mechanical phenomenon and computer technologies. For developing a commercially viable MSD, it is crucial to developing a device fabrication scheme that carefully considers FM electrodes’ susceptibility to oxidation, chemical etching, and stress-induced deformations during fabrication and usage. This paper studies NiFe, an alloy extensively used in present-day memory devices and high-temperature engineering applications, as a candidate FM electrode for the fabrication of MSDs. Our spectroscopic reflectance studies show that NiFe oxidized aggressively after heating beyond ∼90 °C. The NiFe surfaces, aged for several months or heated for several minutes below ∼90 °C, exhibited remarkable electrochemical activity and were found suitable for chemical bonding with the thiol-functionalized molecular device elements. NiFe also demonstrated excellent etching resistance against commonly used solvents and lithography related chemicals. Additionally, NiFe mitigated the adverse effects of mechanical stress by subsiding the stress-induced deformities. A magnetic tunnel junction-based MSD approach was designed by carefully considering the merits and limitations of NiFe. The device fabrication protocol considers the safe temperature limit to avoiding irreversible surface oxidation, the effect of mechanical stresses, surface roughness, and chemical etching. This paper provides foundational experimental insights in realizing a versatile MSD allowing a wide range of transport and magnetic studies.

  10. A new family of field-stable and highly sensitive SQUID current sensors based on sub-micrometer cross-type Josephson junctions

    Science.gov (United States)

    Schmelz, M.; Zakosarenko, V.; Schönau, T.; Anders, S.; Kunert, J.; Meyer, M.; Meyer, H.-G.; Stolz, R.

    2017-07-01

    We report on the development of a new family of superconducting quantum interference device (SQUID) current sensors based on sub-micron cross-type Josephson tunnel junctions. Their low total junction capacitance permits high usable voltage swings of more than 100 μV and exceptional low noise of the SQUIDs at 4.2 K. Integrated rf-filters as well as high tolerable background fields during cool-down of up to 9.6 mT enable their highly reliable and easy use. With input coil inductances ranging from 10 nH to 2.8 μH and current sensitivities and coupled energy resolution down to 65 fA Hz-1/2 and below 10 h, respectively, they are a versatile tool for numerous applications.

  11. Modelling of Dual-Junction Solar Cells including Tunnel Junction

    Directory of Open Access Journals (Sweden)

    Abdelaziz Amine

    2013-01-01

    Full Text Available Monolithically stacked multijunction solar cells based on III–V semiconductors materials are the state-of-art of approach for high efficiency photovoltaic energy conversion, in particular for space applications. The individual subcells of the multi-junction structure are interconnected via tunnel diodes which must be optically transparent and connect the component cells with a minimum electrical resistance. The quality of these diodes determines the output performance of the solar cell. The purpose of this work is to contribute to the investigation of the tunnel electrical resistance of such a multi-junction cell through the analysis of the current-voltage (J-V characteristics under illumination. Our approach is based on an equivalent circuit model of a diode for each subcell. We examine the effect of tunnel resistance on the performance of a multi-junction cell using minimization of the least squares technique.

  12. UV and visible light synergetic photodegradation using rutile TiO2 nanorod arrays based on a p-n Junction.

    Science.gov (United States)

    Ji, Tao; Cui, Ze; Zhang, Wenlong; Cao, Yunjiu; Zhang, Yongfang; He, Shu-Ang; Xu, Mingdong; Sun, Yangang; Zou, Rujia; Hu, Junqing

    2017-03-27

    Herein, we report a photocatalytic heterojunction device of rutile TiO2 nanorod arrays based on a p-n silicon junction (TiO2@PN) and its full absorption of ultraviolet and visible light for synergistic photodegradation. The fabricated TiO2@PN had excellent photocatalytic degradation of methyl orange (MO) under irradiation of a 300 W Xe lamp, and its pseudo-first-order rate constant k was 0.221 h(-1), which was greatly higher than that for TiO2 nanorod arrays based on an n-p silicon junction (TiO2@NP, 0.078 h(-1)) and glass (TiO2@G, 0.032 h(-1)). The higher photocatalytic performance of TiO2@PN could be attributed to the fact that the photovoltage (PV) of the p-n junction promotes separation of the electron-hole pairs of the TiO2, and the holes are thus left within the TiO2 nanorods to produce a strong oxidant of hydroxyl radicals (˙OH). Moreover, this heterojunction device could be easily fabricated in a large size for easy recovery and recycling, which shows its promise in the solar-driven degradation of environmental pollution.

  13. A new MATLAB/Simulink model of triple-junction solar cell and MPPT based on artificial neural networks for photovoltaic energy systems

    Directory of Open Access Journals (Sweden)

    Hegazy Rezk

    2015-09-01

    Full Text Available This paper presents a new Matlab/Simulink model of a PV module and a maximum power point tracking (MPPT system for high efficiency InGaP/InGaAs/Ge triple-junction solar cell. The proposed technique is based on Artificial Neural Network. The equivalent circuit model of the triple-junction solar cell includes the parameters of each sub-cell. It is also include the effect of the temperature variations on the energy gap of each sub-cell as well as the diode reverse saturation currents. The implementation of a PV model is based on the triple-junction solar cell in the form of masked block in Matlab/Simulink software package that has a user-friendly icon and dialog. It is fast and accurate technique to follow the maximum power point. The simulation results of the proposed MPPT technique are compared with Perturb and Observe MPPT technique. The output power and energy of the proposed technique are higher than that of the Perturb and Observe MPPT technique. The proposed technique increases the output energy per day for a one PV module from 3.37 kW h to 3.75 kW h, i.e. a percentage of 11.28%.

  14. Molecular electronic junction transport

    DEFF Research Database (Denmark)

    Solomon, Gemma C.; Herrmann, Carmen; Ratner, Mark

    2012-01-01

    Whenasinglemolecule,oracollectionofmolecules,isplacedbetween two electrodes and voltage is applied, one has a molecular transport junction. We discuss such junctions, their properties, their description, and some of their applications. The discussion is qualitative rather than quantitative, and f...

  15. Strain mapping near a triple junction in strained Ni-based alloy using EBSD and biaxial nanogauges

    Energy Technology Data Exchange (ETDEWEB)

    Clair, A. [Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 5209 CNRS, Universite de Bourgogne, 9 Avenue Alain Savary, BP 47870, 21078 Dijon Cedex (France); Foucault, M.; Calonne, O. [Areva ANP, Centre Technique Departement Corrosion-Chimie, 30 Bd de l' industrie, BP 181, 71205 Le Creusot (France); Lacroute, Y.; Markey, L.; Salazar, M.; Vignal, V. [Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 5209 CNRS, Universite de Bourgogne, 9 Avenue Alain Savary, BP 47870, 21078 Dijon Cedex (France); Finot, E., E-mail: Eric.Finot@u-bourgogne.fr [Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 5209 CNRS, Universite de Bourgogne, 9 Avenue Alain Savary, BP 47870, 21078 Dijon Cedex (France)

    2011-05-15

    Research highlights: > Surface strains measured using nanogauge were compared to the texture obtained by EBSD. > Statistics of the principal strain discern the grains according to the Schmid factor. > Strain hotspots were localized near a triple junction of alloy 600 under tensile loading. > Asymetrical profile of the GB strains is a criterion for surface cracking initiation. - Abstract: A key element for analyzing the crack initiation in strained polycrystalline alloys is the local quantification of the surface strain distribution according to the grain texture. Using electron backscattered diffraction, the local microstructure was determined to both localize a triple junction and deduce the local Schmid factors. Kernel average misorientation (KAM) was also used to map the areas of defect concentration. The maximum principal strain and the in-plane shear strain were quantified using the biaxial nanogauge. Distortions of the array of nanodots used as spot markers were analyzed near the triple junction. The crystallographic orientation and the surface strain were then investigated both statistically for each grain and locally at the grain boundaries. The superimposition of microstructure and strain maps allows the high strain gradient (reaching 3-fold the applied strain) to be localized at preferential grain boundaries near the triple junction. The Schmid factors and the KAM were compared to the maximum principal strain and the in-plane shear strain respectively. The polycrystalline deformation was attributable first to the rotation of some grains, followed by the elongation of all grains along their preferential activated slip systems.

  16. Niobium nano-SQUIDs based on sub-micron tunnel junction fabricated by three-dimensional Focused Ion Beam sculpting

    Science.gov (United States)

    Fretto, M.; Enrico, E.; De Leo, N.; Boarino, L.; Lacquaniti, V.; Granata, C.; Russo, R.; Vettoliere, A.

    2014-05-01

    A three dimensional nano-SQUID (Superconducting Quantum Interference Device) has been realized in a vertical configuration (with the loop in the same plane of Josephson Tunneling Junctions, JTJs). The loop area is 0.25 μm2 corresponding to a modulation period of about 5 mT, the square JTJs have a side length of 0.3 μm. Josephson junction's fabrication is carried out combining optical lithography to pattern trilayer and three dimensional (3D) Focused Ion Beam (FIB) sculpting technique to define the junctions' and the loop's areas. Two different ion etching processes were performed, perpendicular and parallel to the multilayer, resulting in a precise 3D structure. Finally, a standard anodization was performed to eliminate the unstructured surface material generated by the high energetic ion beam assuring high quality junctions. Electric transport characteristics of the nanodevice measured at T = 4.2 K are reported, in particular the current-voltage characteristics and critical current vs external magnetic field. The high modulation depth of the critical current (up to 70% of the Ic at zero magnetic flux) and the device reliability are very encouraging in view of nanoscience applications.

  17. Automated Guide Vehicles Dynamic Scheduling Based on Annealing Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Zou Gan

    2013-05-01

    Full Text Available Dispatching automated guided vehicles (AGVs is the common approach for AGVs scheduling in practice, the information about load arrivals in advance was not used to optimize the performance of the automated guided vehicles system (AGVsS. According to the characteristics of the AGVsS, the mathematical model of AGVs scheduling was established. A heuristic algorithm called Annealing Genetic Algorithm (AGA was presented to deal with the AGVs scheduling problem,and applied the algorithm dynamically by using it repeatedly under a combined rolling optimization strategy. the performance of the proposed approach for AGVs scheduling was compared with the dispatching rules by simulation. Results showed that the approach performs significantly better than the dispatching rules and proved that it is really effective for AGVsS.

  18. Loosely-guided, self-directed learning versus strictly-guided, station-based learning in gross anatomy laboratory sessions.

    NARCIS (Netherlands)

    Kooloos, J.G.M.; Waal Malefijt, M.C. de; Ruiter, D.J.; Vorstenbosch, M.A.T.M.

    2012-01-01

    Anatomy students studying dissected anatomical specimens were subjected to either a loosely-guided, self-directed learning environment or a strictly-guided, preformatted gross anatomy laboratory session. The current study's guiding questions were: (1) do strictly-guided gross anatomy laboratory sess

  19. Numerical Simulation of Monitoring Corrosion in Reinforced Concrete Based on Ultrasonic Guided Waves

    OpenAIRE

    Zheng, Zhupeng; Lei, Ying; Xue, Xin

    2014-01-01

    Numerical simulation based on finite element method is conducted to predict the location of pitting corrosion in reinforced concrete. Simulation results show that it is feasible to predict corrosion monitoring based on ultrasonic guided wave in reinforced concrete, and wavelet analysis can be used for the extremely weak signal of guided waves due to energy leaking into concrete. The characteristic of time-frequency localization of wavelet transform is adopted in the corrosion monitoring of re...

  20. Effect of junction temperature on the large-signal properties of a 94 GHz silicon based double-drift region impact avalanche transit time device

    Institute of Scientific and Technical Information of China (English)

    Aritra Acharyya; Suranjana Banerjee; J.P.Banerjee

    2013-01-01

    The authors have developed a large-signal simulation technique extending an in-house small-signal simulation code for analyzing a 94 GHz double-drift region impact avalanche transit time device based on silicon with a non-sinusoidal voltage excitation and studied the effect of junction temperature between 300 and 550 K on the large-signal characteristics of the device for both continuous wave (CW) and pulsed modes of operation.Results show that the large-signal RF power output of the device in both CW and pulsed modes increases with the increase of voltage modulation factor up to 60%,but decreases sharply with further increase of voltage modulation factor for a particular junction temperature; while the same parameter increases with the increase of junction temperature for a particular voltage modulation factor.Heat sinks made of copper and type-ⅡA diamond are designed to carry out the steady-state and transient thermal analysis of the device operating in CW and pulsed modes respectively.Authors have adopted Olson's method to carry out the transient analysis of the device,which clearly establishes the superiority of type-ⅡA diamond over copper as the heat sink material of the device from the standpoint of the undesirable effect of frequency chirping due to thermal transients in the pulsed mode.

  1. A method of initial welding position guiding for arc welding robot based on visual servo control

    Institute of Scientific and Technical Information of China (English)

    郭振民; 陈善本; 邱涛; 吴林

    2003-01-01

    In order to solve the visual guiding task of initial welding position for arc welding robot, this paper presents a practice-prone image-based visual servo control strategy without calibration, and we perform validating experiments on a nine-DOF arc welding robot system. Experimental results illustrate presented method has the function to fulfill the task of welding robot initial positioning with certain anti-jamming ability. This method provides a basis for guiding welding gun to initial welding pose with real typical seam's image properties to replace flag block properties, and is a significant exploit to realize visual guiding of initial welding position and seam tracing in robot welding system.

  2. A simple device for dielectric spectroscopy of polymers with temperature regulation close to 300 K based on a Peltier junction

    Science.gov (United States)

    Raihane, A.; Tourbot, R.; Ladieu, F.; L'Hôte, D.

    2012-04-01

    We present a simple thermostat device for performing dielectric spectroscopy measurements on polymers close to their glass transition temperature. By using a vacuum chamber containing a Peltier junction with its regulator, we show that a very simple setup yields a temperature accuracy which is good enough for accurate studies of polymer dielectric properties. This technique is also more cost effective than standard setups using cryogenic fluids.

  3. Investigation of nanostructured Pd-Ag/n-ZnO thin film based Schottky junction for methane sensing

    Science.gov (United States)

    Roy, S.; Das, S.; Sarkar, C. K.

    2016-07-01

    Undoped nanocrystalline n-type ZnO thin film was deposited by chemical deposition technique on a thermally oxidized p-Si (~5 Ω cm resistivity and orientation) substrate. Formation of stable zinc oxide thin film was confirmed by two-dimensional X-Ray Diffraction (XRD) and EDX analysis. The average crystallite size of the ZnO sample was evaluated as ~50 nm. The surface was characterized by Field Emission Scanning Electron Microscopy (FESEM) and Atomic Force Microscopy (AFM) that confirm the formation of nanocrystalline (grain size ~50 nm) ZnO thin film with surface roughness of ~100 nm. Good conversion of precursor into ZnO thin film in the chemical deposition method was evident by Fourier Transform Infrared Spectroscopy (FTIR). A small peak at 479 cm-1was observed in the FTIR spectrum confirming the formation of quartzite structure of the ZnO. The band gap (~3.44 eV) of the material was calculated from the optical absorption spectroscopy. To prepare Pd-Ag/n-ZnO Schottky junction, Pd-Ag contacts were taken by electron beam evaporation method. I-V characteristics of the junction were studied at different temperatures in inert and reducing ambient (N2 and N2 + CH4) with turn on voltage of around 0.2 V. The parameters like ideality factor ( η), saturation current ( I 0), series resistance ( Rs), and barrier height ( Φ BO) of the junction were calculated in the temperature range 50-200 °C in N2 as well as in 1 % CH4 + N2 ambient. It was observed that the ideality factor decreases in the temperature range 50-200 °C ( η = 12.34 at 50 °C and η = 1.52 at 200 °C) in N2 ambient and η = 1.18 in N2 +CH4 ambient at 200 °C. Schottky Barrier Height ( Φ BO) of the Pd-Ag/n-ZnO junction was found to increase with temperature. A close observation of Pd-Ag/n-ZnO junction in the presence of methane was performed to appreciate its application as methane sensor. The sensing mechanism was illustrated by a simplified energy band diagram.

  4. Josephson tunnel junction microwave attenuator

    DEFF Research Database (Denmark)

    Koshelets, V. P.; Shitov, S. V.; Shchukin, A. V.

    1993-01-01

    A new element for superconducting electronic circuitry-a variable attenuator-has been proposed, designed, and successfully tested. The principle of operation is based on the change in the microwave impedance of a superconductor-insulator-superconductor (SIS) Josephson tunnel junction when dc bias...

  5. Optical diode based on the chirality of guided photons

    CERN Document Server

    Sayrin, C; Mitsch, R; Albrecht, B; O'Shea, D; Schneeweiss, P; Volz, J; Rauschenbeutel, A

    2015-01-01

    Photons are nonchiral particles: their handedness can be both left and right. However, when light is transversely confined, it can locally exhibit a transverse spin whose orientation is fixed by the propagation direction of the photons. Confined photons thus have chiral character. Here, we employ this to demonstrate nonreciprocal transmission of light at the single-photon level through a silica nanofibre in two experimental schemes. We either use an ensemble of spin-polarised atoms that is weakly coupled to the nanofibre-guided mode or a single spin-polarised atom strongly coupled to the nanofibre via a whispering-gallery-mode resonator. We simultaneously achieve high optical isolation and high forward transmission. Both are controlled by the internal atomic state. The resulting optical diode is the first example of a new class of nonreciprocal nanophotonic devices which exploit the chirality of confined photons and which are, in principle, suitable for quantum information processing and future quantum optica...

  6. Predictive modelling of ferroelectric tunnel junctions

    Science.gov (United States)

    Velev, Julian P.; Burton, John D.; Zhuravlev, Mikhail Ye; Tsymbal, Evgeny Y.

    2016-05-01

    Ferroelectric tunnel junctions combine the phenomena of quantum-mechanical tunnelling and switchable spontaneous polarisation of a nanometre-thick ferroelectric film into novel device functionality. Switching the ferroelectric barrier polarisation direction produces a sizable change in resistance of the junction—a phenomenon known as the tunnelling electroresistance effect. From a fundamental perspective, ferroelectric tunnel junctions and their version with ferromagnetic electrodes, i.e., multiferroic tunnel junctions, are testbeds for studying the underlying mechanisms of tunnelling electroresistance as well as the interplay between electric and magnetic degrees of freedom and their effect on transport. From a practical perspective, ferroelectric tunnel junctions hold promise for disruptive device applications. In a very short time, they have traversed the path from basic model predictions to prototypes for novel non-volatile ferroelectric random access memories with non-destructive readout. This remarkable progress is to a large extent driven by a productive cycle of predictive modelling and innovative experimental effort. In this review article, we outline the development of the ferroelectric tunnel junction concept and the role of theoretical modelling in guiding experimental work. We discuss a wide range of physical phenomena that control the functional properties of ferroelectric tunnel junctions and summarise the state-of-the-art achievements in the field.

  7. Vertical triple-junction RGB optical sensor with signal processing based on the determination of the space-charge region borders.

    Science.gov (United States)

    Tadić, Nikša; Schidl, Stefan; Zimmermann, Horst

    2014-09-01

    A triple-junction RGB optical sensor with vertically stacked photodiodes and signal processing that provides precise values of the currents generated by blue, green, and red light is presented. The signal processing is based on the determination of the border depths of the space-charge regions of all three photodiodes. A current-mode implementation using current conveyors and variable-gain current amplifiers is introduced. The responsivities of all three photodiodes calculated using the proposed approach are in very good agreement with the measured results.

  8. Predictive DFT-based approaches to charge and spin transport in single-molecule junctions and two-dimensional materials: successes and challenges.

    Science.gov (United States)

    Quek, Su Ying; Khoo, Khoong Hong

    2014-11-18

    CONSPECTUS: The emerging field of flexible electronics based on organics and two-dimensional (2D) materials relies on a fundamental understanding of charge and spin transport at the molecular and nanoscale. It is desirable to make predictions and shine light on unexplained experimental phenomena independently of experimentally derived parameters. Indeed, density functional theory (DFT), the workhorse of first-principles approaches, has been used extensively to model charge/spin transport at the nanoscale. However, DFT is essentially a ground state theory that simply guarantees correct total energies given the correct charge density, while charge/spin transport is a nonequilibrium phenomenon involving the scattering of quasiparticles. In this Account, we critically assess the validity and applicability of DFT to predict charge/spin transport at the nanoscale. We also describe a DFT-based approach, DFT+Σ, which incorporates corrections to Kohn-Sham energy levels based on many-electron calculations. We focus on single-molecule junctions and then discuss how the important considerations for DFT descriptions of transport can differ in 2D materials. We conclude that when used appropriately, DFT and DFT-based approaches can play an important role in making predictions and gaining insight into transport in these materials. Specifically, we shall focus on the low-bias quasi-equilibrium regime, which is also experimentally most relevant for single-molecule junctions. The next question is how well can the scattering of DFT Kohn-Sham particles approximate the scattering of true quasiparticles in the junction? Quasiparticles are electrons (holes) that are surrounded by a constantly changing cloud of holes (electrons), but Kohn-Sham particles have no physical significance. However, Kohn-Sham particles can often be used as a qualitative approximation to quasiparticles. The errors in standard DFT descriptions of transport arise primarily from errors in the Kohn-Sham energy levels

  9. Electrical-field and spin-transfer torque effects in CoFeB/MgO-based perpendicular magnetic tunnel junction

    Directory of Open Access Journals (Sweden)

    Chikako Yoshida

    2016-05-01

    Full Text Available The electric-field (E dependence of the magnetoresistance (RH loops for top-pinned perpendicular CoFeB/MgO-based magnetic tunnel junctions (MTJs in the presence of a spin-transfer torque (STT-current was measured. The E effects were distinguished from the STT-current effects using a micromagnetic simulation. The coercive field (Hc decreased and the RH loop shifted as both the positive and negative bias E increased owing to the STT current. Furthermore, E-assisted switching for an MTJ with a diameter of 20 nm, which exhibited a nearly coherent magnetization reversal, was demonstrated using micromagnetic simulation.

  10. Electrical-field and spin-transfer torque effects in CoFeB/MgO-based perpendicular magnetic tunnel junction

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Chikako, E-mail: cyoshida@jp.fujitsu.com; Noshiro, Hideyuki; Yamazaki, Yuichi; Sugii, Toshihiro [Fujitsu limited, 10-1 Morinosato-Wakamiya, Atsugi, Kanagawa, 243-0197 (Japan); Furuya, Atsushi; Ataka, Tadashi; Tanaka, Tomohiro; Uehara, Yuji [Fujitsu limited, 4-1-1 Kamikodanaka, Nakahara-ku, Kawasaki, Kanagawa, 211-8588 (Japan)

    2016-05-15

    The electric-field (E) dependence of the magnetoresistance (RH) loops for top-pinned perpendicular CoFeB/MgO-based magnetic tunnel junctions (MTJs) in the presence of a spin-transfer torque (STT)-current was measured. The E effects were distinguished from the STT-current effects using a micromagnetic simulation. The coercive field (H{sub c}) decreased and the RH loop shifted as both the positive and negative bias E increased owing to the STT current. Furthermore, E-assisted switching for an MTJ with a diameter of 20 nm, which exhibited a nearly coherent magnetization reversal, was demonstrated using micromagnetic simulation.

  11. Research on gesture recognition of augmented reality maintenance guiding system based on improved SVM

    Science.gov (United States)

    Zhao, Shouwei; Zhang, Yong; Zhou, Bin; Ma, Dongxi

    2014-09-01

    Interaction is one of the key techniques of augmented reality (AR) maintenance guiding system. Because of the complexity of the maintenance guiding system's image background and the high dimensionality of gesture characteristics, the whole process of gesture recognition can be divided into three stages which are gesture segmentation, gesture characteristic feature modeling and trick recognition. In segmentation stage, for solving the misrecognition of skin-like region, a segmentation algorithm combing background mode and skin color to preclude some skin-like regions is adopted. In gesture characteristic feature modeling of image attributes stage, plenty of characteristic features are analyzed and acquired, such as structure characteristics, Hu invariant moments features and Fourier descriptor. In trick recognition stage, a classifier based on Support Vector Machine (SVM) is introduced into the augmented reality maintenance guiding process. SVM is a novel learning method based on statistical learning theory, processing academic foundation and excellent learning ability, having a lot of issues in machine learning area and special advantages in dealing with small samples, non-linear pattern recognition at high dimension. The gesture recognition of augmented reality maintenance guiding system is realized by SVM after the granulation of all the characteristic features. The experimental results of the simulation of number gesture recognition and its application in augmented reality maintenance guiding system show that the real-time performance and robustness of gesture recognition of AR maintenance guiding system can be greatly enhanced by improved SVM.

  12. Effects of base doping and carrier lifetime on differential current gain and temperature coefficient of 4H-SiC power bipolar junction transistors

    Science.gov (United States)

    Niu, X.; Fardi, H.

    2012-04-01

    4H-SiC NPN bipolar junction transistor (BJT) is studied systematically by performing two-dimensional numerical simulations. Several design issues are discussed. Depending on the doping concentration of the base and the carrier lifetimes, both positive and negative temperature coefficients in the common emitter current gain could exist in 4H-SiC NPN BJTs with aluminium-doped base. The temperature coefficients of the current gain at different base doping concentrations and different carrier lifetimes have been determined. A high base doping concentration can reduce the requirement for the carrier lifetime in order to obtain negative temperature coefficient in current gain. Device simulations are performed to evaluate the carrier lifetimes by fitting the measured output IC -VCE curves. An excellent fitting is obtained and the base electron lifetime and the emitter hole lifetime are extracted to be about 22 and 5.7 ns, respectively.

  13. Increasing gap junctional coupling: a tool for dissecting the role of gap junctions.

    Science.gov (United States)

    Axelsen, Lene Nygaard; Haugan, Ketil; Stahlhut, Martin; Kjølbye, Anne-Louise; Hennan, James K; Holstein-Rathlou, Niels-Henrik; Petersen, Jørgen Søberg; Nielsen, Morten Schak

    2007-03-01

    Much of our current knowledge about the physiological and pathophysiological role of gap junctions is based on experiments where coupling has been reduced by either chemical agents or genetic modification. This has brought evidence that gap junctions are important in many physiological processes. In a number of cases, gap junctions have been implicated in the initiation and progress of disease, and experimental uncoupling has been used to investigate the exact role of coupling. The inverse approach, i.e., to increase coupling, has become possible in recent years and represents a new way of testing the role of gap junctions. The aim of this review is to summarize the current knowledge obtained with agents that selectively increase gap junctional intercellular coupling. Two approaches will be reviewed: increasing coupling by the use of antiarrhythmic peptide and its synthetic analogs and by interfering with the gating of gap junctional channels.

  14. Molecular rectification and conductance switching in carbon-based molecular junctions by structural rearrangement accompanying electron injection.

    Science.gov (United States)

    McCreery, Richard; Dieringer, Jon; Solak, Ali Osman; Snyder, Brian; Nowak, Aletha M; McGovern, William R; DuVall, Stacy

    2003-09-01

    Molecular junctions were fabricated consisting of a 3.7 nm thick layer of nitroazobenzene (NAB) molecules between a pyrolyzed photoresist substrate (PPF) and a titanium top contact which was protected from oxidation by a layer of gold. Raman spectroscopy, XPS, and AFM revealed that the NAB layer was 2-3 molecules thick and was bonded to the two conducting contacts by C-C and N-Ti covalent bonds. The current/voltage behavior of the PPF/NAB(3.7)/Ti junctions showed strong and reproducible rectification, with the current at +2 V exceeding that at -2 V by a factor of 600. The observed current density at +3 V was 0.71 A/cm(2), or about 10(5) e(-)/s/molecule. The i/V response was strongly dependent on temperature and scan rate, with the rectification ratio decreasing for lower temperature and faster scans. Junction conductivity increased with time over several seconds at room temperature in response to positive voltage pulses, with the rate of increase larger for more positive potentials. Voltage pulses to positive potentials and back to zero volts revealed that electrons are injected from the Ti to the NAB, to the extent of about 0.1-1 e(-)/molecule for a +3 V pulse. These electrons cause an activated transition of the NAB into a more conductive quinoid state, which in turn causes an increase in conductivity. The transition to the quinoid state involves nuclear rearrangement which occurs on a submillisecond to several second time scale, depending on the voltage applied. The quinoid state is stable as long as the applied electric field is present, but reverts back to NAB within several minutes after the field is relaxed. The results are interpreted in terms of a thermally activated, potential dependent electron transfer into the 3.7 nm NAB layer, which brings about a conductivity increase of several orders of magnitude.

  15. Collagen based barrier membranes for periodontal guided bone regeneration applications.

    Science.gov (United States)

    Sheikh, Zeeshan; Qureshi, Javairia; Alshahrani, Abdullah M; Nassar, Heba; Ikeda, Yuichi; Glogauer, Michael; Ganss, Bernhard

    2017-01-01

    Certain cell populations within periodontal tissues possess the ability to induce regeneration, provided they have the opportunity to populate the wound or defect. Guided regeneration techniques have been investigated for regenerating periodontal tissues and such therapies usually utilize barrier membranes. Various natural and synthetic barrier membranes have been fabricated and tested to prevent epithelial and connective tissue cells from invading while allowing periodontal cells to selectively migrate into the defect. This paper focuses on the literature relevant to the use and potential of resorbable collagen membranes in GBR procedures, sites of periodontal and intrabony defects, in cases of socket and alveolar ridge preservation and at implant sites. The results of their use in GBR procedures has shown them to be effective and comparable with non-resorbable membranes with regards to clinical attachment gain, probing depth reduction and defect bone filling. They have also shown to prevent epithelial ingrowth into the defect space during the initial wound healing phase postsurgically. Collagen membranes have also been used for root coverage and GBR procedures and have shown good success rates comparable to subepithelial connective tissue grafts and expanded-polytetrafluoroethylene (e-PTFE) membranes. The future for periodontal tissue engineering is very exciting with the use of barrier membranes expected to continue playing a critical role. However, long-term clinical trials are required to further evaluate and confirm the efficacy of the available collagen barrier membranes for periodontal and bone regeneration use.

  16. Large scale implementation of guided wave based broken rail monitoring

    Science.gov (United States)

    Burger, Francois A.; Loveday, Philip W.; Long, Craig S.

    2015-03-01

    A guided wave ultrasound system has been developed over the past 17 years to detect breaks in continuously welded rail track. Installation of the version 4 system on an 840 km long heavy duty freight line was conducted between January 2013 and June 2014. The system operates in pitch - catch mode with alternate transmit and receive transducers spaced approximately 1km apart. If the acoustic signal is not received at the receive station an alarm is triggered to indicate a break in the rail between the transmit station and the receive station. The system is permanently installed, powered by solar panels and issues broken rail alarms using the GSM network where available, and digital radio technology in other areas. A total of 931 stations were installed and the entire length of rail is interrogated every fifteen minutes. The system operates reliably although some problems involving unreliable GSM communication and theft of solar panels have been experienced. In the first two months of operation four broken rails were detected and train operation was halted temporarily for repairs.

  17. Nurses' Use of a Web-Based National Guide for Child Health Care.

    Science.gov (United States)

    Tell, Johanna; Olander, Ewy; Anderberg, Peter; Berglund, Johan Sanmartin

    2016-05-01

    Rikshandboken i Barnhälsovård is a Swedish Web-based guide for child healthcare, providing quality-ensured guidelines and support contributing to equality in child healthcare among all children. In 2015, a new child healthcare program was implemented and made available in this Web-based guide. The aim of this study was to investigate how child healthcare nurses use Rikshandboken i Barnhälsovård and factors affecting its use. The study was a comprehensive Web survey of 2376 child healthcare nurses in Sweden answered by 1309. Statistical processing was performed using descriptive and analytical methods. Rikshandboken i Barnhälsovård was widely used by the respondents, but regional differences and number of years in the profession affected the use. Almost all nurses were satisfied with the usability, content, and design and felt that a national guide for child healthcare is important. This indicates that an established Web-based national guide is an appropriate setting when a new national program is implemented. In order to achieve an equal and equitable child healthcare, it is essential that all nurses use the national guide to provide evidence-based practice. The value of main child healthcare units as regional facilitators in the innovation process of Rikshandboken i Barnhälsovård should not be underestimated.

  18. Florida's Work-Based Learning and Child Labor Law. Resource Guide.

    Science.gov (United States)

    Florida State Univ., Tallahassee. School-to-Work Clearinghouse.

    This guide was developed to address issues related to work-based learning experiences at an employer's worksite and to explain when and how federal and state (Florida) labor laws and minimum wage provisions apply. It includes the following documents: "Definitions of Terms--Work Based Learning" (Institute for Workforce Competitiveness);…

  19. NATO Guide for Judgement-Based Operational Analysis in Defence Decision Making : Client-Oriented Volume

    NARCIS (Netherlands)

    Wijnmalen, D.J.D.; et al

    2012-01-01

    Judgment plays an important role in all Operational Analysis (OA). NATO practitioners have determined that approaches in OA that are based on human judgement are increasingly critical to defence decision making. The purpose of the NATO Guide for Judgement-Based OA in Defence Decision Making is to cr

  20. NATO Guide for Judgement-Based Operational Analysis in Defence Decision Making : Executive Leaflet

    NARCIS (Netherlands)

    Wijnmalen, D.J.D.; et al

    2012-01-01

    Judgment plays an important role in all Operational Analysis (OA). NATO practitioners have determined that approaches in OA that are based on human judgement are increasingly critical to defence decision making. The purpose of the NATO Guide for Judgement-Based OA in Defence Decision Making is to cr

  1. Transaction-Based Building Controls Framework, Volume 1: Reference Guide

    Energy Technology Data Exchange (ETDEWEB)

    Somasundaram, Sriram [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Pratt, Robert G. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Akyol, Bora A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Fernandez, Nicholas [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Foster, Nikolas AF [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Katipamula, Srinivas [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Mayhorn, Ebony T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Somani, Abhishek [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Steckley, Andrew C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Taylor, Zachary T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2014-12-01

    This document proposes a framework concept to achieve the objectives of raising buildings’ efficiency and energy savings potential benefitting building owners and operators. We call it a transaction-based framework, wherein mutually-beneficial and cost-effective market-based transactions can be enabled between multiple players across different domains. Transaction-based building controls are one part of the transactional energy framework. While these controls realize benefits by enabling automatic, market-based intra-building efficiency optimizations, the transactional energy framework provides similar benefits using the same market -based structure, yet on a larger scale and beyond just buildings, to the society at large.

  2. Transaction-Based Building Controls Framework, Volume 1: Reference Guide

    Energy Technology Data Exchange (ETDEWEB)

    Somasundaram, Sriram; Pratt, Robert G.; Akyol, Bora A.; Fernandez, Nicholas; Foster, Nikolas AF; Katipamula, Srinivas; Mayhorn, Ebony T.; Somani, Abhishek; Steckley, Andrew C.; Taylor, Zachary T.

    2014-04-28

    This document proposes a framework concept to achieve the objectives of raising buildings’ efficiency and energy savings potential benefitting building owners and operators. We call it a transaction-based framework, wherein mutually-beneficial and cost-effective market-based transactions can be enabled between multiple players across different domains. Transaction-based building controls are one part of the transactional energy framework. While these controls realize benefits by enabling automatic, market-based intra-building efficiency optimizations, the transactional energy framework provides similar benefits using the same market -based structure, yet on a larger scale and beyond just buildings, to the society at large.

  3. Minimum entropy principle-based solar cell operation without a pn-junction and a thin CdS layer to extract the holes from the emitter

    Science.gov (United States)

    Böer, Karl W.

    2016-10-01

    The solar cell does not use a pn-junction to separate electrons from holes, but uses an undoped CdS layer that is p-type inverted when attached to a p-type collector and collects the holes while rejecting the backflow of electrons and thereby prevents junction leakage. The operation of the solar cell is determined by the minimum entropy principle of the cell and its external circuit that determines the electrochemical potential, i.e., the Fermi-level of the base electrode to the operating (maximum power point) voltage. It leaves the Fermi level of the metal electrode of the CdS unchanged, since CdS does not participate in the photo-emf. All photoelectric actions are generated by the holes excited from the light that causes the shift of the quasi-Fermi levels in the generator and supports the diffusion current in operating conditions. It is responsible for the measured solar maximum power current. The open circuit voltage (Voc) can approach its theoretical limit of the band gap of the collector at 0 K and the cell increases the efficiency at AM1 to 21% for a thin-film CdS/CdTe that is given as an example here. However, a series resistance of the CdS forces a limitation of its thickness to preferably below 200 Å to avoid unnecessary reduction in efficiency or Voc. The operation of the CdS solar cell does not involve heated carriers. It is initiated by the field at the CdS/CdTe interface that exceeds 20 kV/cm that is sufficient to cause extraction of holes by the CdS that is inverted to become p-type. Here a strong doubly charged intrinsic donor can cause a negative differential conductivity that switches-on a high-field domain that is stabilized by the minimum entropy principle and permits an efficient transport of the holes from the CdTe to the base electrode. Experimental results of the band model of CdS/CdTe solar cells are given and show that the conduction bands are connected in the dark, where the electron current must be continuous, and the valence bands are

  4. A high-temperature superconducting delta-sigma modulator based on a multilayer technology with bicrystal Josephson junctions

    Energy Technology Data Exchange (ETDEWEB)

    Ruck, B.; Chong, Y.; Dittmann, R.; Engelhardt, A.; Sodtke, E.; Siegel, M. [Institut fur Schicht- und Ionentechnik (ISI), Forschungszentrum Julich GmbH, 52425 Juelich (Germany)

    1999-11-01

    We have designed, fabricated and successfully tested a first-order delta-sigma modulator using a high-temperature superconducting multilayer technology with bicrystal Josephson junctions. The circuit has been fabricated on a SrTiO{sub 3} bicrystal substrate. The YBa{sub 2}Cu{sub 3}O{sub 7}/SrTiO{sub 3}/YBa{sub 2}Cu{sub 3}O{sub 7} trilayer was fabricated by laser deposition. The bottom layer served as a superconducting ground plane. The Josephson junctions were formed at the bicrystal line in the upper layer. The integrator resistance has been made from a Pd/Au thin film. The circuit consists of a dc-SFQ converter, a Josephson transmission line, a comparator, an L/R integrator and an output stage. The correct operation of the modulatorhas been tested using dc measurements. The linearity of the modulator was studied by measuring the harmonic distortions of a 19.5 kHz sine wave input signal. From the recorded spectrum, a minimum resolution of at least 5 bits can be estimated. This accuracy was limited by the noise of the preamplifier. The correct operation of the current feedback loop was demonstrated by cutting the feedback inductance. (author)

  5. A high-temperature superconducting delta-sigma modulator based on a multilayer technology with bicrystal Josephson junctions

    Science.gov (United States)

    Ruck, B.; Chong, Y.; Dittmann, R.; Engelhardt, A.; Sodtke, E.; Siegel, M.

    1999-11-01

    We have designed, fabricated and successfully tested a first-order delta-sigma modulator using a high-temperature superconducting multilayer technology with bicrystal Josephson junctions. The circuit has been fabricated on a SrTiO3 bicrystal substrate. The YBa2Cu3O7/SrTiO3/YBa2Cu3O7 trilayer was fabricated by laser deposition. The bottom layer served as a superconducting groundplane. The Josephson junctions were formed at the bicrystal line in the upper layer. The integrator resistance has been made from a Pd/Au thin film. The circuit consists of a dc-SFQ converter, a Josephson transmission line, a comparator, an L/R integrator and an output stage. The correct operation of the modulator has been tested using dc measurements. The linearity of the modulator was studied by measuring the harmonic distortions of a 19.5 kHz sine wave input signal. From the recorded spectrum, a minimum resolution of at least 5 bits can be estimated. This accuracy was limited by the noise of the preamplifier. The correct operation of the current feedback loop was demonstrated by cutting the feedback inductance.

  6. Competition between invariant habit plane and compatible junction plane in TiNb-based shape memory alloy

    Energy Technology Data Exchange (ETDEWEB)

    Inamura, T., E-mail: inamura.t.aa@m.titech.ac.jp [Precision and Intelligence Laboratory, Tokyo Institute of Technology (Japan); Kim, H.Y. [Institute of Materials Science, University of Tsukuba (Japan); Hosoda, H. [Precision and Intelligence Laboratory, Tokyo Institute of Technology (Japan); Miyazaki, S. [Institute of Materials Science, University of Tsukuba (Japan)

    2013-11-15

    Highlights: ► Kinematic compatibility (KC) among martensite variants in Ti-Nb-Al is evaluated. ► Rotation Q is necessary to keep KC at any junction plane (JP). ► The rotation Q is equivalent to the rotation to form the exact twin-relationship. ► The JP preferentially observed in experiment is the JP with the smaller Q. ► We propose two preferential JPs with {1 1 1} type I and 〈2 1 1〉 type II twin in Ti-Nb-Al. -- Abstract: The invariant plane (IP) condition at a habit plane (HP) and the kinematic compatibility (KC) condition at a junction plane (JP) are quantitatively evaluated by the geometrically nonlinear theory of martensite and the origin of the twin orientation relationship (OR) at a JP is revealed in a β titanium shape memory alloy. Exact twin OR at a JP is impossible among the habit plane variants (HPVs). A nonzero rotation is necessary to maintain the compatibility at a JP between the HPVs. The fully compatible HPV cluster in which IP at a HP and KC at a JP are maintained simultaneously is impossible in this alloy. However, it was found that twin OR and KC can be maintained simultaneously. The preferentially observed HPV clusters in transmission electron microscopy are the clusters with a smaller rotation to maintain KC at a JP.

  7. Nurses’ Use of a Web-Based National Guide for Child Health Care

    OpenAIRE

    Tell, Johanna; Olander, Ewy; Anderberg, Peter; Berglund, Johan Sanmartin

    2016-01-01

    Rikshandboken i Barnhälsovård is a Swedish Web-based guide for child healthcare, providing quality-ensured guidelines and support contributing to equality in child healthcare among all children. In 2015, a new child healthcare program was implemented and made available in this Web-based guide. The aim of this study was to investigate how child healthcare nurses use Rikshandboken i Barnhälsovård and factors affecting its use. The study was a comprehensive Web survey of 2376 child healthcare nu...

  8. Response to simulated typical daily outdoor irradiation conditions of thin-film silicon-based triple-band-gap, triple-junction solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Krishnan, P.; Schuettauf, J.W.A.; van der Werf, C.H.M.; Schropp, R.E.I. [Nanophotonics - Physics of Devices, Department of Physics and Astronomy, Debye Institute for Nanomaterials Science, Faculty of Science, Utrecht University, P.O. Box 80000, 3508 TA Utrecht (Netherlands); Houshyani Hassanzadeh, B.; van Sark, W.G.J.H.M. [Department of Chemistry, Science, Technology and Society, Faculty of Science, Utrecht University, Heidelberglaan 2, 3584 CS Utrecht (Netherlands)

    2009-06-15

    We studied the response to various realistic outdoor conditions of thin-film silicon-based triple-band-gap, triple-junction cells that were made in house. The triple-junction cells consist of a stack of proto-Si:H/proto-SiGe:H/nanocrystalline (nc)-Si:H cells in an n-i-p configuration, fabricated using hot-wire chemical vapour deposition (CVD). Current matching was determined for modeled spectra of four different days of the year that are typical for the northwestern European climate. Spectral modeling was based on measured irradiation data. The results showed that on a clear day in June, when the actual spectrum was closest to the reference AM1.5 spectrum, the matching was ideal. As the spectral shape varied during the course of the day with respect to the AM1.5 reference the matching became progressively worse. We found that the top cell (1.8 eV) and bottom cell (1.1 eV) are most sensitive to spectral changes, whereas the middle cell (1.5 eV) is less sensitive. Overall, it was evident that either cloudiness or seasonal variations led to an increase in current mismatch between the cells. If the sub-cells are closely matched, it may even occur that a cell designed to be current limiting no longer fulfills that role. (author)

  9. Guiding principles for good practices in hospital-based health technology assessment units

    DEFF Research Database (Denmark)

    Sampietro-Colom, Laura; Lach, Krzysztof; Pasternack, Iris

    2015-01-01

    OBJECTIVES: Health technology assessment (HTA) carried out for policy decision making has well-established principles unlike hospital-based HTA (HB-HTA), which differs from the former in the context characteristics and ways of operation. This study proposes principles for good practices in HB....... In total, 385 people from twenty countries have participated in defining the principles for good practices in HB-HTA units. RESULTS: Fifteen guiding principles for good practices in HB-HTA units are grouped in four dimensions. Dimension 1 deals with principles of the assessment process aimed at providing......- and long-term impact of the overall performance of HB-HTA units. Finally, nine core guiding principles were selected as essential requirements for HB-HTA units based on the expertise of the HB-HTA units participating in the project. CONCLUSIONS: Guiding principles for good practices set up a benchmark...

  10. Current noise in tunnel junctions

    Energy Technology Data Exchange (ETDEWEB)

    Frey, Moritz; Grabert, Hermann [Physikalisches Institut, Universitaet Freiburg, Hermann-Herder-Strasse 3, 79104, Freiburg (Germany)

    2017-06-15

    We study current fluctuations in tunnel junctions driven by a voltage source. The voltage is applied to the tunneling element via an impedance providing an electromagnetic environment of the junction. We use circuit theory to relate the fluctuations of the current flowing in the leads of the junction with the voltage fluctuations generated by the environmental impedance and the fluctuations of the tunneling current. The spectrum of current fluctuations is found to consist of three parts: a term arising from the environmental Johnson-Nyquist noise, a term due to the shot noise of the tunneling current and a third term describing the cross-correlation between these two noise sources. Our phenomenological theory reproduces previous results based on the Hamiltonian model for the dynamical Coulomb blockade and provides a simple understanding of the current fluctuation spectrum in terms of circuit theory and properties of the average current. Specific results are given for a tunnel junction driven through a resonator. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  11. Data base management system (ADBMS) users guide, version 2. 5

    Energy Technology Data Exchange (ETDEWEB)

    Birss, E.W.

    1977-02-01

    The data base management system described was designed from the specifications in the CODASYL Data Base Task Group report but with several important modifications. The basic design consideration of ADBMS was to produce a data base management system for a Problem Statement Analyzer developed by the ISDOS project at the University of Michigan. It has since been modified by the Data Translation Project at the University of Michigan for internal DBMS support for their Data Translator. Although developed for internal use, it can be used independently as a data base management system. It is attractive because of its small memory requirements, its ability to use FORTRAN or COBOL as the host language, and its ability to define and use network structures. This manual documents the version of ADBMS which was received from the Defense Communication Agency as part of the Data Translation software which was developed under government contract. (RWR)

  12. Magnetic tunnel junctions (MTJs)

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    We review the giant tunnel magnetoresistance (TMR) in ferromagnetic-insulator-ferromagnetic junctions discovered in recent years, which is the magnetoresistance (MR) associated with the spin-dependent tunneling between two ferromagnetic metal films separated by an insulating thin tunnel barrier. The theoretical and experimental results including junction conductance, magnetoresistance and their temperature and bias dependences are described.

  13. Stacked Josephson Junctions

    DEFF Research Database (Denmark)

    Madsen, Søren Find; Pedersen, Niels Falsig; Christiansen, Peter Leth

    2010-01-01

    Long Josephson junctions have for some time been considered as a source of THz radiation. Solitons moving coherently in the junctions is a possible source for this radiation. Analytical computations of the bunched state and bunching-inducing methods are reviewed. Experiments showing THz radiation...

  14. Unidirectional Spin-Dependent Molecule-Ferromagnet Hybridized States Anisotropy in Cobalt Phthalocyanine Based Magnetic Tunnel Junctions

    Science.gov (United States)

    Barraud, Clément; Bouzehouane, Karim; Deranlot, Cyrile; Fusil, Stéphane; Jabbar, Hashim; Arabski, Jacek; Rakshit, Rajib; Kim, Dong-Jik; Kieber, Christophe; Boukari, Samy; Bowen, Martin; Beaurepaire, Eric; Seneor, Pierre; Mattana, Richard; Petroff, Frédéric

    2015-05-01

    Organic or molecular spintronics is a rising field of research at the frontier between condensed matter physics and chemistry. It aims to mix spin physics and the richness of chemistry towards designing new properties for spin electronics devices through engineering at the molecular scale. Beyond the expectation of a long spin lifetime, molecules can be also used to tailor the spin polarization of the injected current through the spin-dependent hybridization between molecules and ferromagnetic electrodes. In this Letter, we provide direct evidence of a hybrid interface spin polarization reversal due to the differing hybridization between phthalocyanine molecules and each cobalt electrode in Co /CoPc /Co magnetic tunnel junctions. Tunnel magnetoresistance and anisotropic tunnel magnetoresistance experiments show that interfacial hybridized electronic states have a unidirectional anisotropy that can be controlled by an electric field and that spin hybridization at the bottom and top interfaces differ, leading to an inverse tunnel magnetoresistance.

  15. Ratiometric, filter-free optical sensor based on a complementary metal oxide semiconductor buried double junction photodiode.

    Science.gov (United States)

    Yung, Ka Yi; Zhan, Zhiyong; Titus, Albert H; Baker, Gary A; Bright, Frank V

    2015-07-16

    We report a complementary metal oxide semiconductor integrated circuit (CMOS IC) with a buried double junction (BDJ) photodiode that (i) provides a real-time output signal that is related to the intensity ratio at two emission wavelengths and (ii) simultaneously eliminates the need for an optical filter to block Rayleigh scatter. We demonstrate the BDJ platform performance for gaseous NH3 and aqueous pH detection. We also compare the BDJ performance to parallel results obtained by using a slew scanned fluorimeter (SSF). The BDJ results are functionally equivalent to the SSF results without the need for any wavelength filtering or monochromators and the BDJ platform is not prone to errors associated with source intensity fluctuations or sensor signal drift.

  16. Nearly quantum limited nanoSQUIDs based on cross-type Nb/AlO x /Nb junctions

    Science.gov (United States)

    Schmelz, M.; Zakosarenko, V.; Schönau, T.; Anders, S.; Linzen, S.; Stolz, R.; Meyer, H.-G.

    2017-01-01

    We report on the development of nearly quantum limited SQUIDs with miniature pickup loop dimensions. The implemented high quality and low capacitance cross-type Nb/AlO x /Nb Josephson junctions offer large I C R N -products and therefore enable an exceptional low noise level of the SQUIDs. Devices with loop dimensions of 1 μm exhibit white flux noise levels as low as 45 nΦ0 Hz-1/2 corresponding to an energy resolution ɛ of about 1 h at 4.2 K, with h being Planck’s constant. Moreover, the large usable voltage swings of the devices of about 300 μV allow highly sensitive and easy single-stage operation while exploring nearly the intrinsic noise of the SQUIDs, beneficial e.g. for sensor arrays in SQUID microscopy.

  17. Fabrication of a Graphene/ZnO based p-n junction device and its ultraviolet photoresponse properties

    Science.gov (United States)

    Kwon, Young-Tae; Kang, Sung-Oong; Cheon, Ji-Ae; Song, Yoseb; Lee, Jong-Jin; Choa, Yong-Ho

    2017-09-01

    Graphene with a zero-bandgap energy is easily doped using a chemical dopant, and a shift upwards or downwards in the Fermi level is generated. Moreover, the integration of inorganic material into the doped graphene changes the physical and chemical properties of the material. For this purpose, we successfully fabricated a p-n junction device by depositing an n-typed ZnO layer on p-doped graphene and studied the ultraviolet (UV) photoresponse properties under a photocurrent (UV light on) and a dark current (UV light off). Two devices, lateral and vertical, were developed by alternating the thickness of the ZnO layer, and the photoresponse mechanisms were described on the basis of the contact potential difference.

  18. Temperature and bias voltage dependence of Co/Pd multilayer-based magnetic tunnel junctions with perpendicular magnetic anisotropy

    Energy Technology Data Exchange (ETDEWEB)

    Kugler, Zoe, E-mail: zkugler@physik.uni-bielefeld.d [Bielefeld University, Department of Physics, Universitaetsstr. 25, 33615 Bielefeld (Germany); Drewello, Volker; Schaefers, Markus; Schmalhorst, Jan; Reiss, Guenter; Thomas, Andy [Bielefeld University, Department of Physics, Universitaetsstr. 25, 33615 Bielefeld (Germany)

    2011-01-15

    Temperature- and bias voltage-dependent transport measurements of magnetic tunnel junctions (MTJs) with perpendicularly magnetized Co/Pd electrodes are presented. Magnetization measurements of the Co/Pd multilayers are performed to characterize the electrodes. The effects of the Co layer thickness in the Co/Pd bilayers, the annealing temperature, the Co thickness at the MgO barrier interface, and the number of bilayers on the tunneling magneto resistance (TMR) effect are investigated. TMR-ratios of about 11% at room temperature and 18.5% at 13 K are measured and two well-defined switching fields are observed. The results are compared to measurements of MTJs with Co-Fe-B electrodes and in-plane anisotropy.

  19. InP-based long-wavelength vertical-cavity surface-emitting lasers with buried tunnel junction

    Science.gov (United States)

    Lauer, Christian; Ortsiefer, Markus; Shau, Robert; Rosskopf, Jürgen; Böhm, Gerhard; Meyer, Ralf; Amann, Markus-Christian

    2004-07-01

    In this paper we present a device concept for long-wavelength vertical-cavity surface-emitting lasers (VCSELs) in the InGaAlAs/InP material system incorporating a buried tunnel junction (BTJ). A major issue of long-wavelength VCSELs is the dissipation of heat because of the low thermal conductivity of ternary and quaternary alloys. With the BTJ-VCSEL, a significant reduction of the thermal resistance is achieved by the use of a hybrid backside mirror made of a stack of amorphous dielectrics with Au-coating and the monolithic integration of a heat sink. These provide improved heat sinking capability compared to a conventional epitaxial semiconductor DBR. In addition, the tunnel junction facilitates a substitution of most of the p-doped layers by n-doped material, reducing heat generation due to ohmic losses. These features significantly improve the VCSEL characteristics. At 1.55 m wavelength, we demonstrated single-mode cw-output powers of 1.7mW at room temperature [1], multi-mode cw-output powers of 7mW [2], laser operation up to heat sink temperatures of 110 °C [2], and optical data transmission with 10 Gbit/s and low bit error rates [3]. These are record values to the best knowledge of the authors.Using strained quantum wells, the emission wavelength can be tailored to any value in the range between 1.3 m and 2.0 m [4], sample results are presented for the telecommunication wavelengths 1.3 m and 1.55 m, 1.8 m, and the currently upper limit of 2.0 μm. The slight wavelength tuning with driving current is brought about by the tiny volume of the devices and makes VCSELs ideal components for tunable diode laser absorption spectroscopy (TDLAS) [5, 6]. The maximum detuning typically reaches 4 nm (500 GHz).

  20. Curriculum Guide Based on Pedagogy of Place Principles.

    Science.gov (United States)

    Tello, Angelica, Ed.; Guajardo, Juan, Ed.; Guajardo, Francisco, Ed.; Saldivar, Jose, Ed.

    The Llano Grande Research Project in south Texas directs research methods and special projects classes that assist students in developing effective academic, research, and social skills. Students in these classes pursue a curriculum based on pedagogy of place principles and gain an understanding of their community's environment and culture. This…

  1. A Simple, Research-Based Guide to Better Teaching

    Directory of Open Access Journals (Sweden)

    Phil Mixter

    2012-02-01

    Full Text Available Review of: How Learning Works: Seven Research-Based Principles for Smart Teaching ; 1st ed.; Susan Ambrose, Michael Bridges, Michele DiPietro, Marsha Lovett, and Marie Norman. (2010 . Jossey-Bass, John Wiley and Sons, Inc., San Francisco, CA. 301 pages.

  2. Vessel-guided airway segmentation based on voxel classification

    DEFF Research Database (Denmark)

    Lo, Pechin Chien Pau; Sporring, Jon; Ashraf, Haseem;

    2008-01-01

    This paper presents a method for improving airway tree segmentation using vessel orientation information. We use the fact that an airway branch is always accompanied by an artery, with both structures having similar orientations. This work is based on a  voxel classification airway segmentation...

  3. Community-Based Solid Waste Management: A Training Facilitator's Guide.

    Science.gov (United States)

    Peace Corps, Washington, DC. Information Collection and Exchange Div.

    Urban environmental management and environmental health issues are of increasing concern worldwide. The need for urban environmental management work at the local level where the Peace Corps works most effectively is significant, but training materials dedicated specifically to community-based solid waste management work in urban areas are lacking.…

  4. Planar Josephson tunnel junctions in a transverse magnetic field

    DEFF Research Database (Denmark)

    Monacoa, R.; Aarøe, Morten; Mygind, Jesper

    2007-01-01

    Traditionally, since the discovery of the Josephson effect in 1962, the magnetic diffraction pattern of planar Josephson tunnel junctions has been recorded with the field applied in the plane of the junction. Here we discuss the static junction properties in a transverse magnetic field where...... demagnetization effects imposed by the tunnel barrier and electrodes geometry are important. Measurements of the junction critical current versus magnetic field in planar Nb-based high-quality junctions with different geometry, size, and critical current density show that it is advantageous to use a transverse...

  5. How Can Meta-Analyses Guide Practice? A Review of the Learning Disability Research Base

    Science.gov (United States)

    Therrien, William J.; Zaman, Maliha; Banda, Devender R.

    2011-01-01

    Meta-analysis is considered an acceptable method to evaluate research studies for evidence-based practices. The purpose of this review is to examine the applicability of using meta-analyses in the learning disability field to guide classroom practice. The authors evaluated 15 learning disability meta-analyses in three domains: large-scale…

  6. A reference guide to microbial cell surface hydrophobicity based on contact angles

    NARCIS (Netherlands)

    van der Mei, HC; Busscher, HJ; Bos, R.R.M.

    1998-01-01

    Acid-base interactions form the origin of the hydrophobicity of microbial cell-surfaces and can be quantitated from contact angle measurements on microbial lawns with water, formamide, methyleneiodide and/or alpha-bromonaphthalene. This review provides a reference guide to microbial cell surface hyd

  7. A Clinician's Quick Guide of Evidence-Based Approaches Number 2: Depression

    Science.gov (United States)

    Moulds, Michelle L.; Werner-Seidler, Aliza; Dalgleish, Tim

    2013-01-01

    This quick guide presents resources for clinicians on evidence-based approaches for assessing and treating depression. It also briefly describes the mood disorder module of the clinician administered Structured Clinical Interview for DSM-IV Axis I Disorders, treatment approaches, and new and emerging developments demonstrating the effectiveness of…

  8. Effects of Guided Writing Strategies on Students' Writing Attitudes Based on Media Richness Theory

    Science.gov (United States)

    Lan, Yu-Feng; Hung, Chun-Ling; Hsu, Hung-Ju

    2011-01-01

    The purpose of this paper is to develop different guided writing strategies based on media richness theory and further evaluate the effects of these writing strategies on younger students' writing attitudes in terms of motivation, enjoyment and anxiety. A total of 66 sixth-grade elementary students with an average age of twelve were invited to…

  9. A Clinician's Quick Guide of Evidence-Based Approaches Number 2: Depression

    Science.gov (United States)

    Moulds, Michelle L.; Werner-Seidler, Aliza; Dalgleish, Tim

    2013-01-01

    This quick guide presents resources for clinicians on evidence-based approaches for assessing and treating depression. It also briefly describes the mood disorder module of the clinician administered Structured Clinical Interview for DSM-IV Axis I Disorders, treatment approaches, and new and emerging developments demonstrating the effectiveness of…

  10. Introduction to MADE (Careers). Marketing and Distributive Education Competency Based Curriculum Guide.

    Science.gov (United States)

    New Jersey State Dept. of Education, Trenton. Div. of Vocational Education.

    This curriculum guide is one in a series of competency-based instructional materials dealing with marketing and distributive education (MADE). It consists of some introductory remarks concerning the course, a lesson plan, a course outline, and four sections of lessons for use in implementing the course. Covered in the individual sections are the…

  11. The University of Toledo Competency-Based Teacher Education and Individually Guided Education Program.

    Science.gov (United States)

    Dickson, George E.

    The cooperative program for competency-based teacher education (CBTE) and individually guided education (IGE) operating in the Toledo, Ohio, area is described. Planning, development, design, and redesign processes of the program (which involves the University of Toledo, and public and private schools in the district) are surveyed. Nineteen forces…

  12. Phase qubits fabricated with trilayer junctions

    Energy Technology Data Exchange (ETDEWEB)

    Weides, M; Bialczak, R C; Lenander, M; Lucero, E; Mariantoni, Matteo; Neeley, M; O' Connell, A D; Sank, D; Wang, H; Wenner, J; Yamamoto, T; Yin, Y; Cleland, A N; Martinis, J, E-mail: martin.weides@nist.gov, E-mail: martinis@physics.ucsb.edu [Department of Physics, University of California, Santa Barbara, CA 93106 (United States)

    2011-05-15

    We have developed a novel Josephson junction geometry with minimal volume of lossy isolation dielectric, suitable for higher quality trilayer junctions implemented in qubits. The junctions are based on in situ deposited trilayers with thermal tunnel oxide, have micron-sized areas and a low subgap current. In qubit spectroscopy only a few avoided level crossings are observed, and the measured relaxation time of T{sub 1{approx}}400 ns is in good agreement with the usual phase qubit decay time, indicating low loss due to the additional isolation dielectric.

  13. Laser Guide Star Based Astrophysics at Lick Observatory

    Energy Technology Data Exchange (ETDEWEB)

    Max, C; Gavel, D.; Friedman, H.; Olivier, S.; Macintosh, B.; Brase, J.; Avicola, K.; Gibbard, S.; An, J.

    2000-03-10

    The resolution of ground-based telescopes is typically limited to {approx}1 second of arc because of the blurring effects of atmospheric turbulence. Adaptive optics (AO) technology senses and corrects for the optical distortions due to turbulence hundreds of times per second using high-speed sensors, computers, deformable mirror, and laser technology. The goal of this project is to make AO systems widely useful astronomical tools providing resolutions up to an order of magnitude better than current, ground-based telescopes. Astronomers at the University of California Lick Observatory at Mt. Hamilton now routinely use the LLNL developed AO system for high resolution imaging of astrophysical objects. We report here on the instrument development progress and on the science observations made with this system during this 3-year ERI project.

  14. Vessel-guided airway segmentation based on voxel classification

    DEFF Research Database (Denmark)

    2008-01-01

    This paper presents a method for improving airway tree segmentation using vessel orientation information. We use the fact that an airway branch is always accompanied by an artery, with both structures having similar orientations. This work is based on a  voxel classification airway segmentation...... method proposed previously. The probability of a voxel belonging to the airway, from the voxel classification method, is augmented with an orientation similarity measure as a criterion for region growing. The orientation similarity measure of a voxel indicates how similar is the orientation...... of the surroundings of a voxel, estimated based on a tube model, is to that of a neighboring vessel. The proposed method is tested on 20 CT images from different subjects selected randomly from a lung cancer screening study. Length of the airway branches from the results of the proposed method are significantly...

  15. Guiding Principles for Team-Based Pediatric Care.

    Science.gov (United States)

    Katkin, Julie P; Kressly, Susan J; Edwards, Anne R; Perrin, James M; Kraft, Colleen A; Richerson, Julia E; Tieder, Joel S; Wall, Liz

    2017-07-24

    The American Academy of Pediatrics (AAP) recognizes that children's unique and ever-changing needs depend on a variety of support systems. Key components of effective support systems address the needs of the child and family in the context of their home and community and are dynamic so that they reflect, monitor, and respond to changes as the needs of the child and family change. The AAP believes that team-based care involving medical providers and community partners (eg, teachers and state agencies) is a crucial and necessary component of providing high-quality care to children and their families. Team-based care builds on the foundation of the medical home by reaching out to a potentially broad array of participants in the life of a child and incorporating them into the care provided. Importantly, the AAP believes that a high-functioning team includes children and their families as essential partners. The overall goal of team-based care is to enhance communication and cooperation among the varied medical, social, and educational partners in a child's life to better meet the global needs of children and their families, helping them to achieve their best potential. In support of the team-based approach, the AAP urges stakeholders to invest in infrastructure, education, and privacy-secured technology to meet the needs of children. This statement includes limited specific examples of potential team members, including health care providers and community partners, that are meant to be illustrative and in no way represent a complete or comprehensive listing of all team members who may be of importance for a specific child and family. Copyright © 2017 by the American Academy of Pediatrics.

  16. Operational Based Vision Assessment Automated Vision Test Collection User Guide

    Science.gov (United States)

    2017-05-15

    in previous research ( Bach , Schmitt, Kromeier, & Kommerell, 2001). Providing an opportunity to practice is recommended to achieve more stable results...to another computer-based stereo acuity test described in previous research ( Bach , Schmitt, Kromeier, & Kommerell, 2001). Providing an opportunity...Distribution is unlimited. Cleared, 88PA, Case # 2017-2802, 6 Jun 2017. 8.0 REFERENCES Bach M, Schmitt C, Kromeier M, Kommerell G. The

  17. Summary of theoretical and experimental investigation of grating type, silicon photovoltaic cells. [using p-n junctions on light receiving surface of base crystal

    Science.gov (United States)

    Chen, L. Y.; Loferski, J. J.

    1975-01-01

    Theoretical and experimental aspects are summarized for single crystal, silicon photovoltaic devices made by forming a grating pattern of p/n junctions on the light receiving surface of the base crystal. Based on the general semiconductor equations, a mathematical description is presented for the photovoltaic properties of such grating-like structures in a two dimensional form. The resulting second order elliptical equation is solved by computer modeling to give solutions for various, reasonable, initial values of bulk resistivity, excess carrier concentration, and surface recombination velocity. The validity of the computer model is established by comparison with p/n devices produced by alloying an aluminum grating pattern into the surface of n-type silicon wafers. Current voltage characteristics and spectral response curves are presented for cells of this type constructed on wafers of different resistivities and orientations.

  18. Microwave Chip-Based Beam Splitter for Low-Energy Guided Electrons.

    Science.gov (United States)

    Hammer, Jakob; Thomas, Sebastian; Weber, Philipp; Hommelhoff, Peter

    2015-06-26

    We present a novel beam splitter for low-energy electrons using a micro-structured guiding potential created above the surface of a planar microwave chip. Beam splitting arises from smoothly transforming the transverse guiding potential for an electron beam from a single-well harmonic confinement into a double well, thereby generating two separated output beams with 5 mm lateral spacing. Efficient beam splitting is observed for electron kinetic energies up to 3 eV, in excellent agreement with particle tracking simulations. We discuss prospects of this novel beam splitter approach for electron-based quantum matter-wave optics experiments.

  19. NATO Guide for Judgment-Based Operational Analysis in Defence Decision Making (Guide OTAN pour l’analyse operationnelle basee sur le jugement dans la prise de decision de defense). Client-Oriented Volume

    Science.gov (United States)

    2012-06-01

    Jun 2012 Based Operational Analysisin Defence Decision Making (Guide OTAN pour l’analyse opérationnelle basée sur le jugement dans la prise de...Making (Guide OTAN pour l’analyse opérationnelle basée sur le jugement dans la prise de décision de défense) Client-Oriented Volume...NATO Guide for Judgement- Based Operational Analysis in Defence Decision Making (Guide OTAN pour l’analyse opérationnelle basée sur le

  20. HYDRAULIC ACTIVE GUIDE ROLLER SYSTEM FOR HIGH-SPEED ELEVATOR BASED ON FUZZY CONTROLLER

    Institute of Scientific and Technical Information of China (English)

    FENG Yonghui; ZHANG Jianwu

    2007-01-01

    Increase of elevator speed brings about amplified vibrations of high-speed elevator. In order to reduce the horizontal vibrations of high-speed elevator, a new type of hydraulic active guide roller system based on fuzzy logic controller is developed. First the working principle of the hydraulic guide system is introduced, then the dynamic model of the horizontal vibrations for elevator cage with active guide roller system and the mathematical model of the hydraulic system are given. A fuzzy logic controller for the hydraulic system is designed to control the hydraulic actuator. To improve the control performance, preview compensation for the controller is provided. Finally, simulation and experiments are executed to verify the hydraulic active guide roller system and the control strategy. Both the simulation and experimental results indicate that the hydraulic active guide roller system can reduce the horizontal vibrations of the elevator effectively and has better effects than the passive one, and the fuzzy logic controller with preview compensation can give superior control performance.

  1. Space-Based Astronomy: An Educator Guide with Activities for Science, Mathematics, and Technology Education

    Science.gov (United States)

    Vogt, Gregory L.

    2001-01-01

    If you go to the country, far from city lights, you can see about 3,000 stars on a clear night. If your eyes were bigger, you could see many more stars. With a pair of binoculars, an optical device that effectively enlarges the pupil of your eye by about 30 times, the number of stars you can see increases to the tens of thousands. With a medium-sized telescope with a light-collecting mirror 30 centimeters in diameter, you can see hundreds of thousands of stars. With a large observatory telescope, millions of stars become visible. This curriculum guide uses hands-on activities to help students and teachers understand the significance of space-based astronomy--astronomical observations made from outer space. It is not intended to serve as a curriculum. Instead, teachers should select activities from this guide that support and extend existing study. The guide contains few of the traditional activities found in many astronomy guides such as constellation studies, lunar phases, and planetary orbits. It tells, rather, the story of why it is important to observe celestial objects from outer space and how to study the entire electromagnetic spectrum. Teachers are encouraged to adapt these activities for the particular needs of their students. When selected activities from this guide are used in conjunction with traditional astronomy curricula, students benefit from a more complete experience.

  2. Infrared dim target tracking based on guide filter and Bayes classification

    Science.gov (United States)

    Qian, Kun; Zhou, Hui-xin; Qin, Han-lin; Song, Shang-zhen; Zhao, Dong; Wang, Bing-jian

    2016-10-01

    An infrared dim and small tracking is proposed based on an explicit image filter - guided filter. The guided filter utilizes the structure in the guidance image and performs as an edge-preserving smoothing operator. The superior performance depending on the guidance image is critical advantage for target tracking. First, the guided filter can help to preserve the detail of the valuable templates and make the inaccurate ones blurry so that the tracker can distinguish the target from numerous bad templates easily. Besides, the filter can recover the content of the small target being influenced according to the guidance image, helping to alleviate the drifting problem effectively. Finally, the candidate samples are utilized to train an effective Bayes classifier to generate a robust tracker, which is easy to be implemented. Experimental results demonstrate that the presented method can track the target effectively, compared with several classical methods. Experimental results show that the proposed algorithm outperforms relative trackers in the accuracy and the robustness.

  3. Torsional guided wave-based debonding detection in honeycomb sandwich beams

    Science.gov (United States)

    Zhu, Kaige; Qing, Xinlin P.; Liu, Bin

    2016-11-01

    Debonding is one of the most dangerous damages in honeycomb sandwich structures, which causes stiffness reduction and is invisible from the surface. Guided wave-based non-destructive evaluation is a promising approach with high sensitivity and high efficiency for debonding detection. A torsional guided wave method is proposed to inspect debonding damage in honeycomb sandwich beams, which is proved to be better in damage location for the beams in the paper than the flexural wave used before. The honeycomb heterogeneity effect on the interaction between guided waves and debonding are first investigated by finite element methods. Then the ability of torsional waves to determine debonding locations and sizes is discussed in detail. Finally, in order to verify the proposed method, experiments are carried out to inspect debonding damage with two sizes.

  4. A study on laser-based ultrasonic technique by the use of guided wave tomographic imaging

    Energy Technology Data Exchange (ETDEWEB)

    Park, Junpil, E-mail: jpp@pusan.ac.kr; Lim, Juyoung, E-mail: jpp@pusan.ac.kr [Graduate school, School of Mechanical Engineering, Pusan National University (Korea, Republic of); Cho, Younho [School of Mechanical Engineering, Pusan National University (Korea, Republic of); Krishnaswamy, Sridhar [Center for Quality Engineering and Failure Prevention, Northwestern University, Evanston, IL (United States)

    2015-03-31

    Guided wave tests are impractical for investigating specimens with limited accessibility and coarse surfaces or geometrically complicated features. A non-contact setup with a laser ultrasonic transmitter and receiver is the classic attractive for guided wave inspection. The present work was done to develop a non-contact guided-wave tomography technique by laser ultrasonic technique in a plate-like structure. A method for Lam wave generation and detection in an aluminum plate with a pulse laser ultrasonic transmitter and a Michelson interferometer receiver has been developed. In the images obtained by laser scanning, the defect shape and area showed good agreement with the actual defect. The proposed approach can be used as a non-contact-based online inspection and monitoring technique.

  5. Persistence of seed-based activity following segmentation of a microRNA guide strand.

    Science.gov (United States)

    Chorn, Guillaume; Zhao, Lihong; Sachs, Alan B; Flanagan, W Michael; Lim, Lee P

    2010-12-01

    microRNAs are ∼ 22 nucleotide regulatory RNAs that are processed into duplexes from hairpin structures and incorporated into Argonaute proteins. Here, we show that a nick in the middle of the guide strand of an miRNA sequence allows for seed-based targeting characteristic of miRNA activity. Insertion of an inverted abasic, a dye, or a small gap between the two segments still permits target knockdown. While activity from the seed region of the segmented miRNA is apparent, activity from the 3' half of the guide strand is impaired, suggesting that an intact guide backbone is required for contribution from the 3' half. miRNA activity was also observed following nicking of a miRNA precursor. These results illustrate a structural flexibility in miRNA duplexes and may have applications in the design of miRNA mimetics.

  6. EUS-Guided Needle-Based Confocal Laser Endomicroscopy

    DEFF Research Database (Denmark)

    Bhutani, Manoop S; Koduru, Pramoda; Joshi, Virendra;

    2015-01-01

    the gut, providing further diagnostic and staging information. Confocal laser endomicroscopy (CLE) is a novel endoscopic method that enables imaging at a subcellular level of resolution during endoscopy, allowing up to 1000-fold magnification of tissue and providing an optical biopsy. A new procedure...... that has been developed in the past few years is needle-based confocal laser endomicroscopy (nCLE), which involves a mini-CLE probe that can be passed through a 1 9-gauge needle during EUS-FNA. This enables the real-time visualization of tissue at a microscopic level, with the potential to further improve...

  7. Utility-guided Clustering-based Transaction Data Anonymization

    Directory of Open Access Journals (Sweden)

    Aris Gkoulalas-Divanis

    2012-04-01

    Full Text Available Transaction data about individuals are increasingly collected to support a plethora of applications, spanning from marketing to biomedical studies. Publishing these data is required by many organizations, but may result in privacy breaches, if an attacker exploits potentially identifying information to link individuals to their records in the published data. Algorithms that prevent this threat by transforming transaction data prior to their release have been proposed recently, but they may incur significant utility loss due to their inability to: (i accommodate a range of different privacy requirements that data owners often have, and (ii guarantee that the produced data will satisfy data owners’ utility requirements. To address this issue, we propose a novel clustering-based framework to anonymizing transaction data, which provides the basis for designing algorithms that better preserve data utility. Based on this framework, we develop two anonymization algorithms which explore a larger solution space than existing methods and can satisfy a wide range of privacy requirements. Additionally, the second algorithm allows the specification and enforcement of utility requirements, thereby ensuring that the anonymized data remain useful in intended tasks. Experiments with both benchmark and real medical datasets verify that our algorithms significantly outperform the current state-of-the-art algorithms in terms of data utility, while being comparable in terms of efficiency.

  8. Chemical Equilibrium, Unit 4: Equilibria in Acid-Base Systems. A Computer-Enriched Module for Introductory Chemistry. Student's Guide and Teacher's Guide.

    Science.gov (United States)

    Settle, Frank A., Jr.

    Presented are the teacher's guide and student materials for one of a series of self-instructional, computer-based learning modules for an introductory, undergraduate chemistry course. The student manual for this acid-base equilibria unit includes objectives, prerequisites, pretest, a discussion of equilibrium constants, and 20 problem sets.…

  9. Atomically Abrupt Topological p-n Junction.

    Science.gov (United States)

    Kim, Sung Hwan; Jin, Kyung-Hwan; Kho, Byung Woo; Park, Byeong-Gyu; Liu, Feng; Kim, Jun Sung; Yeom, Han Woong

    2017-08-24

    Topological insulators (TI's) are a new class of quantum matter with extraordinary surface electronic states, which bear great potential for spintronics and error-tolerant quantum computing. In order to put a TI into any practical use, these materials need to be fabricated into devices whose basic units are often p-n junctions. Interesting electronic properties of a 'topological' p-n junction were proposed theoretically such as the junction electronic state and the spin rectification. However, the fabrication of a lateral topological p-n junction has been challenging because of materials, process, and fundamental reasons. Here, we demonstrate an innovative approach to realize a p-n junction of topological surface states (TSS's) of a three-dimensional (3D) topological insulator (TI) with an atomically abrupt interface. When a ultrathin Sb film is grown on a 3D TI of Bi2Se3 with a typical n-type TSS, the surface develops a strongly p-type TSS through the substantial hybridization between the 2D Sb film and the Bi2Se3 surface. Thus, the Bi2Se3 surface covered partially with Sb films bifurcates into areas of n- and p-type TSS's as separated by atomic step edges with a lateral electronic junction of as short as 2 nm. This approach opens a different avenue toward various electronic and spintronic devices based on well-defined topological p-n junctions with the scalability down to atomic dimensions.

  10. An evidence-based guide to clinical instruction in audiology.

    Science.gov (United States)

    Mormer, Elaine; Palmer, Catherine; Messick, Cheryl; Jorgensen, Lindsey

    2013-05-01

    A significant portion of the AuD curriculum occurs in clinical settings outside the classroom. Expert clinicians, employed within and outside of the university, are called upon to provide this clinical education. Most have had little or no formal training in clinical teaching yet face pedagogical and logistical challenges when simultaneously providing clinical service and teaching. Training to provide optimal methods and approaches to clinical instruction should be based on research evidence; however, there is a paucity of research in this area within the audiology discipline. This article provides a review of literature supplying evidence for important concepts, elements, and approaches to the clinical instruction process. Additionally, we provide readers with some practical tools with which to facilitate application of optimal clinical teaching principles. We conducted a systematic review of literature on clinical education in audiology and across a wide array of health professions. Through the use of content analysis we identified four elements of the clinical teaching process most critical in examining optimal practices. The elements identified as critical to positive clinical learning outcomes include the establishment of mutual expectations and goals; structured content and delivery of feedback; establishment of a positive instructor/student relationship; and questioning strategies that lead to the development of critical thinking skills. Many disciplines outside of audiology demonstrate robust research activity related to understanding and optimizing the clinical education process. The application of a number of evidence-based clinical teaching principles should allow us to improve student outcomes in audiology. Researchers in our field might consider if and how we should develop our own research literature in clinical education. American Academy of Audiology.

  11. Individualized image guided iso-NTCP based liver cancer SBRT

    Energy Technology Data Exchange (ETDEWEB)

    Dawson, Laura A.; Eccles, Cynthia; Craig, Tim [Princess Margaret Hospital, Toronto (Canada). Radiation Medicine Program

    2006-09-15

    A highly individualized stereotactic body radiotherapy (SBRT) strategy was developed to allow a wide spectrum of patients with liver cancer to be treated. This phase I/II study encompasses individualization of immobilization, radiation planning, PTV margin determination, image guidance strategy and prescription dose. Active breathing control breath hold is used to immobilize the liver when feasible. Image guidance strategies include orthogonal MV images and orthogonal kV fluoroscopy using the diaphragm for a surrogate for the liver, and kV cone beam CT using the liver or tumour for guidance. The prescription dose is individualized to maintain the same estimated risk of radiation-induced liver disease (RILD), based on a normal tissue complication probability (NTCP) model, with a maximum permitted dose of 60 Gy in 6 fractions. Since August 2003, 79 patients with hepatocellular carcinoma (33), intrahepatic cholangiocarcinoma (12) and liver metastases (34) were treated. The median tumour volume was 293 cm{sup 3} (2.9-3088 cm{sup 3}). The median prescribed dose was 36.6 Gy (24.0 Gy-57.0 Gy) in 6 fractions. The median effective liver volume irradiated was 45% (9-80%). Sixty percent of patients were treated with breath hold to immobilize their liver. Intra-fraction reproducibility (s) of the liver with repeat breath holds was excellent (1.5?mm); however inter-fraction reproducibility (s) was worse (3.4 mm). Image guidance reduced the residual systematic and random setup errors significantly.

  12. Avian Field guide and checklist for Kunsan Air Base, Korea.

    Energy Technology Data Exchange (ETDEWEB)

    Levenson, J. B.; Environmental Assessment

    2005-11-15

    This report summarizes the results of the avian surveys conducted at Kunsan Air Base (AB). This on-going survey is conducted to comply with requirements of the Environmental Governing Standards (EGS) for the Republic of Korea, the Integrated Natural Resources Management Plan (INRMP) for Kunsan AB, and the 8th Fighter Wing's Bird Aircraft Strike Hazard (BASH) Plan. One hundred sixteen bird species representing 34 families were identified and recorded. Seven species are designated as Cultural Property Monuments, and their protection is accorded by the Korean Ministry of Culture and Tourism. Six species appear on the Korean Association for Conservation of Nature's(KACN's) list of Reserved Wild Species and are protected by the Korean Ministry of Environment. Combined, only ten different species are Republic of Korea (ROK)-protected because the Eurasian Spoonbill, Peregrine Falcon, and Eurasian Oystercatcher are listed by both agencies. The primary objective of the avian survey at Kunsan AB was to determine what species of birds are present on the airfield and their respective habitat requirements during the critical seasons of the year. This requirement is specified in Annex C.4.a.(1-4) of the 8th Fighter Wing BASH Plan(8FWOPLAN 91-202). The second objective was to initiate surveys to determine what bird species are present on Kunsan AB throughout the year, and from the survey results determine if threatened, endangered, or other Korean-listed bird species are present on Kunsan AB. This overall census satisfies Criterion 13-3.e of the EGS for Korea. The final objective was to formulate management strategies within Kunsan AB's operational requirements to protect and enhance habitats of known threatened, endangered, and ROK-protected species in accordance with EGS Criterion 13-3.a and also that are favorable for the reproduction of indigenous species in accordance with the EGS Criterion 13-3.h.

  13. Avian survey and field guide for Osan Air Base, Korea.

    Energy Technology Data Exchange (ETDEWEB)

    Levenson, J.

    2006-12-05

    This report summarizes the results of the avian surveys conducted at Osan Air Base (AB). This ongoing survey is conducted to comply with requirements of the Environmental Governing Standards (EGS) for the Republic of Korea, the Integrated Natural Resources Management Plan (INRMP) for Osan AB, and the 51st Fighter Wing's Bird Aircraft Strike Hazard (BASH) Plan. One hundred ten bird species representing 35 families were identified and recorded. Seven species are designated as Natural Monuments, and their protection is accorded by the Korean Ministry of Culture and Tourism. Three species appear on the Korean Association for Conservation of Nature's (KACN's) list of Reserved Wild Species and are protected by the Korean Ministry of Environment. Combined, ten different species are Republic of Korea (ROK)-protected. The primary objective of the avian survey at Osan AB was to determine what species of birds are present on the airfield and their respective habitat requirements during the critical seasons of the year. This requirement is specified in Annex J.14.c of the 51st Fighter BASH Plan 91-212 (51 FW OPLAN 91-212). The second objective was to initiate surveys to determine what bird species are present on Osan AB throughout the year and from the survey results, determine if threatened, endangered, or other Korean-listed bird species are present on Osan AB. This overall census satisfies Criterion 13-3.e of the EGS for Korea. The final objective was to formulate management strategies within Osan AB's operational requirements to protect and enhance habitats of known threatened, endangered, and ROK-protected species in accordance with EGS Criterion 13-3.a that are also favorable for the reproduction of indigenous species in accordance with the EGS Criterion 13-3.h.

  14. Dependency of Tunneling-Magnetoresistance Ratio on Nanoscale Spacer Thickness and Material for Double MgO Based Perpendicular-Magnetic-Tunneling-Junction.

    Science.gov (United States)

    Lee, Du-Yeong; Hong, Song-Hwa; Lee, Seung-Eun; Park, Jea-Gun

    2016-12-08

    It was found that in double MgO based perpendicular magnetic tunneling junction spin-valves ex-situ annealed at 400 °C, the tunneling magnetoresistance ratio was extremely sensitive to the material and thickness of the nanoscale spacer: it peaked at a specific thickness (0.40~0.53 nm), and the TMR ratio for W spacers (~134%) was higher than that for Ta spacers (~98%). This dependency on the spacer material and thickness was associated with the (100) body-centered-cubic crystallinity of the MgO layers: the strain enhanced diffusion length in the MgO layers of W atoms (~1.40 nm) was much shorter than that of Ta atoms (~2.85 nm) and the shorter diffusion length led to the MgO layers having better (100) body-centered-cubic crystallinity.

  15. State transition analysis of spontaneous branch migration of the Holliday junction by photon-based single-molecule fluorescence resonance energy transfer.

    Science.gov (United States)

    Okamoto, Kenji; Sako, Yasushi

    2016-02-01

    Branch migration of Holliday junction (HJ) DNA in solution is a spontaneous conformational change between multiple discrete states. We applied single-molecule fluorescence resonance energy transfer (smFRET) measurement to three-state branch migration. The photon-based variational Bayes-hidden Markov model (VB-HMM) method was applied to fluorescence signals to reproduce the state transition trajectories and evaluate the transition parameters, such as transition rate. The upper limit of time resolution suggested in simulation was nearly achieved for the state dynamics with relatively small FRET changes, and the distinctions in the populations of different states were successfully retrieved. We also discuss the suitability of the HJ as a standard sample for smFRET dynamics measurements and data analysis.

  16. Design and fabrication of a perpendicular magnetic tunnel junction based nonvolatile programmable switch achieving 40% less area using shared-control transistor structure.

    Science.gov (United States)

    Suzuki, D; Natsui, M; Mochizuki, A; Miura, S; Honjo, H; Kinoshita, K; Fukami, S; Sato, H; Ikeda, S; Endoh, T; Ohno, H; Hanyu, T

    2014-05-07

    A compact nonvolatile programmable switch (NVPS) using 90 nm CMOS technology together with perpendicular magnetic tunnel junction (p-MTJ) devices is fabricated for zero-standby-power field-programmable gate array. Because routing information does not change once it is programmed into an NVPS, high-speed read and write accesses are not required and a write-control transistor can be shared among all the NVPSs, which greatly simplifies structure of the NVPS. In fact, the effective area of the proposed NVPS is reduced by 40% compared to that of a conventional MTJ-based NVPS. The instant on/off behavior without external nonvolatile memory access is also demonstrated using the fabricated test chip.

  17. MgAl{sub 2}O{sub 4}(001) based magnetic tunnel junctions made by direct sputtering of a sintered spinel target

    Energy Technology Data Exchange (ETDEWEB)

    Belmoubarik, Mohamed; Sukegawa, Hiroaki, E-mail: sukegawa.hiroaki@nims.go.jp; Ohkubo, Tadakatsu; Mitani, Seiji; Hono, Kazuhiro [National Institute for Materials Science, 1-2-1 Sengen, Tsukuba 305-0047 (Japan)

    2016-03-28

    We developed a fabrication process of an epitaxial MgAl{sub 2}O{sub 4} barrier for magnetic tunnel junctions (MTJs) using a direct sputtering method from an MgAl{sub 2}O{sub 4} spinel sintered target. Annealing the sputter-deposited MgAl{sub 2}O{sub 4} layer sandwiched between Fe electrodes led to the formation of a (001)-oriented cation-disorder spinel with atomically sharp interfaces and lattice-matching with the Fe electrodes. A large tunnel magnetoresistance ratio up to 245% at 297 K (436% at 3 K) was achieved in the Fe/MgAl{sub 2}O{sub 4}/Fe(001) MTJ as well as an excellent bias voltage dependence. These results indicate that the direct sputtering is an alternative method for the realization of high performance MTJs with a spinel-based tunnel barrier.

  18. Magnetic stability under magnetic cycling of MgO-based magnetic tunneling junctions with an exchange-biased synthetic antiferromagnetic pinned layer

    Directory of Open Access Journals (Sweden)

    Qiang Hao

    2016-02-01

    Full Text Available We investigate the magnetic stability and endurance of MgO-based magnetic tunnel junctions (MTJs with an exchange-biased synthetic antiferromagnetic (SAF pinned layer. When a uniaxially cycling switching field is applied along the easy axis of the free magnetic layer, the magnetoresistance varies only by 1.7% logarithmically with the number of cycles, while no such change appears in the case of a rotating field. This observation is consistent with the effect of the formation and motion of domain walls in the free layer, which create significant stray fields within the pinned hard layer. Unlike in previous studies, the decay we observed only occurs during the first few starting cycles (<20, at which point there is no further variance in all performance parameters up to 107 cycles. Exchange-biased SAF structure is ideally suited for solid-state magnetic sensors and magnetic memory devices.

  19. Guided Internet-based cognitive behavioral therapy for mild and moderate depression: A benchmarking study

    Directory of Open Access Journals (Sweden)

    Hanne Jakobsen

    2017-03-01

    Full Text Available Major depression is among the most common and debilitating disorders worldwide, associated with large societal and individual costs. Effective treatments exist, but accessibility is scarce. Guided Internet-Based Cognitive Behavioral Therapy (guided iCBT is a promising approach to reach more people in need of help. In the present pilot study, we investigated the outcome of a guided iCBT program for mild and moderate depression when disseminated from Sweden to Norway. The guided iCBT intervention was implemented within a university-based outpatient clinic by six student therapists under supervision. Twenty-two participants with mild and moderate depression were included in the study. Large treatment effects were found for depressive symptoms, whereas small to medium effects were observed for anxiety symptoms. More than half (55% of the participants were classified as recovered at post-treatment and more than a third (41% at follow-up. No participants had a significant deterioration from pre- to post-treatment, but two reported a significant deterioration from post-treatment to 6-month follow-up. Benchmarking the present results against those reported in the four original Swedish studies, we found that the treatment effect in the Norwegian study was slightly higher at post-treatment and slightly lower at 6-month follow-up compared to the outcome in the Swedish studies. The results should be interpreted with caution, as our sample was small and had no control group.

  20. Bias-voltage dependence of perpendicular spin-transfer torque in asymmetric MgO-based magnetic tunnel junctions

    KAUST Repository

    Oh, Se Chung

    2009-10-25

    Spin-transfer torque (STT) allows the electrical control of magnetic states in nanostructures. The STT in magnetic tunnel junctions (MTJs) is of particular importance owing to its potential for device applications. It has been demonstrated that the MTJ has a sizable perpendicular STT (, field-like torque), which substantially affects STT-driven magnetization dynamics. In contrast to symmetric MTJs where the bias dependence of is quadratic, it is theoretically predicted that the symmetry breaking of the system causes an extra linear bias dependence. Here, we report experimental results that are consistent with the predicted linear bias dependence in asymmetric MTJs. The linear contribution is quite significant and its sign changes from positive to negative as the asymmetry is modified. This result opens a way to design the bias dependence of the field-like term, which is useful for device applications by allowing, in particular, the suppression of the abnormal switching-back phenomena. © 2009 Macmillan Publishers Limited. All rights reserved.

  1. The study of laser beam riding guided system based on 980nm diode laser

    Science.gov (United States)

    Qu, Zhou; Xu, Haifeng; Sui, Xin; Yang, Kun

    2015-10-01

    With the development of science and technology, precision-strike weapons has been considered to be important for winning victory in military field. Laser guidance is a major method to execute precision-strike in modern warfare. At present, the problems of primary stage of Laser guidance has been solved with endeavors of countries. Several technical aspects of laser-beam riding guided system have been mature, such as atmosphere penetration of laser beam, clutter inhibition on ground, laser irradiator, encoding and decoding of laser beam. Further, laser beam quality, equal output power and atmospheric transmission properties are qualified for warfare situation. Riding guidance instrument is a crucial element of Laser-beam riding guided system, and is also a vital element of airborne, vehicle-mounted and individual weapon. The optical system mainly consist of sighting module and laser-beam guided module. Photoelectric detector is the most important sensing device of seeker, and also the key to acquire the coordinate information of target space. Currently, in consideration of the 1.06 u m of wavelength applied in all the semi-active laser guided weapons systems, lithium drifting silicon photodiode which is sensitive to 1.06 u m of wavelength is used in photoelectric detector. Compared to Solid and gas laser, diode laser has many merits such as small volume, simple construction, light weight, long life, low lost and easy modulation. This article introduced the composition and operating principle of Laser-beam riding guided system based on 980 nm diode laser, and made a analysis of key technology; for instance, laser irradiator, modulating disk of component, laser zooming system. Through the use of laser diode, Laser-beam riding guided system is likely to have smaller shape and very light.

  2. Increasing gap junctional coupling: a tool for dissecting the role of gap junctions

    DEFF Research Database (Denmark)

    Axelsen, Lene Nygaard; Haugan, Ketil; Stahlhut, Martin;

    2007-01-01

    . In a number of cases, gap junctions have been implicated in the initiation and progress of disease, and experimental uncoupling has been used to investigate the exact role of coupling. The inverse approach, i.e., to increase coupling, has become possible in recent years and represents a new way of testing......Much of our current knowledge about the physiological and pathophysiological role of gap junctions is based on experiments where coupling has been reduced by either chemical agents or genetic modification. This has brought evidence that gap junctions are important in many physiological processes...... the role of gap junctions. The aim of this review is to summarize the current knowledge obtained with agents that selectively increase gap junctional intercellular coupling. Two approaches will be reviewed: increasing coupling by the use of antiarrhythmic peptide and its synthetic analogs...

  3. Topological Insulator Bi2Se3/Si-Nanowire-Based p-n Junction Diode for High-Performance Near-Infrared Photodetector.

    Science.gov (United States)

    Das, Biswajit; Das, Nirmalya S; Sarkar, Samrat; Chatterjee, Biplab K; Chattopadhyay, Kalyan K

    2017-07-12

    Chemically derived topological insulator Bi2Se3 nanoflake/Si nanowire (SiNWs) heterojunctions were fabricated employing all eco-friendly cost-effective chemical route for the first time. X-ray diffraction studies confirmed proper phase formation of Bi2Se3 nanoflakes. The morphological features of the individual components and time-evolved hybrid structures were studied using field emission scanning electron microscope. High resolution transmission electron microscopic studies were performed to investigate the actual nature of junction whereas elemental distributions at junction, along with overall stoichiometry of the samples were analyzed using energy dispersive X-ray studies. Temperature dependent current-voltage characteristics and variation of barrier height and ideality factor was studied between 50 and 300 K. An increase in barrier height and decrease in the ideality factor were observed with increasing temperature for the sample. The rectification ratio (I+/I-) for SiNWs substrate over pristine Si substrate under dark and near-infrared (NIR) irradiation of 890 nm was found to be 3.63 and 10.44, respectively. Furthermore, opto-electrical characterizations were performed for different light power intensities and highest photo responsivity and detectivity were determined to be 934.1 A/W and 2.30 × 10(13) Jones, respectively. Those values are appreciably higher than previous reports for topological insulator based devices. Thus, this work establishes a hybrid system based on topological insulator Bi2Se3 nanoflake and Si nanowire as the newest efficient candidate for advanced optoelectronic materials.

  4. Equivalent Josephson junctions

    Science.gov (United States)

    Boyadjiev, T. L.; Semerdjieva, E. G.; Shukrinov, Yu. M.

    2008-01-01

    The magnetic field dependences of critical current are numerically constructed for a long Josephson junction with a shunt-or resistor-type microscopic inhomogeneities and compared to the critical curve of a junction with exponentially varying width. The numerical results show that it is adequate to replace the distributed inhomogeneity of a long Josephson junction by an inhomogeneity localized at one of its ends, which has certain technological advantages. It is also shown that the critical curves of junctions with exponentially varying width and inhomogeneities localized at the ends are unaffected by the mixed fluxon-antifluxon distributions of the magnetic flow. This fact may explain the improvement of the spectra of microwave radiation noted in the literature.

  5. Hanford ground-water data base management guide and user's manual. [CIRMIS

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, P.J.; Argo, R.S.; Bradymire, S.L.; Newbill, C.A.

    1985-05-01

    This management guide and user's manual is a working document for the computerized Hanford Ground-water Data Base maintained by the Geosciences Research and Engineering Department at Pacific Northwest Laboratory for the Hanford Ground-Water Surveillance Program. The program is managed by the Occupational and Environmental Protection Department for the US Department of Energy. The data base is maintained to provide rapid access to data that are rountinely collected from ground-water monitoring wells at the Hanford site. The data include water levels, sample analyses, geologic descriptions and well construction information of over 3000 existing or destroyed wells. These data are used to monitor water quality and for the evaluation of ground-water flow and pollutant transport problems. The management guide gives instructions for maintenance of the data base on the Digital Equipment Corporation PDP 11/70 Computer using the CIRMIS (Comprehensive Information Retrieval and Model Input Sequence) data base management software developed at Pacific Northwest Laboratory. Maintenance activities include inserting, modifying and deleting data, making back-up copies of the data base, and generating tables for annual monitoring reports. The user's guide includes instructions for running programs to retrieve the data in the form of listings of graphical plots. 3 refs.

  6. Using activity-based costing and theory of constraints to guide continuous improvement in managed care.

    Science.gov (United States)

    Roybal, H; Baxendale, S J; Gupta, M

    1999-01-01

    Activity-based costing and the theory of constraints have been applied successfully in many manufacturing organizations. Recently, those concepts have been applied in service organizations. This article describes the application of activity-based costing and the theory of constraints in a managed care mental health and substance abuse organization. One of the unique aspects of this particular application was the integration of activity-based costing and the theory of constraints to guide process improvement efforts. This article describes the activity-based costing model and the application of the theory of constraint's focusing steps with an emphasis on unused capacities of activities in the organization.

  7. Representing Instructional Material for Scenario-Based Guided-Discovery Courseware

    Energy Technology Data Exchange (ETDEWEB)

    Greitzer, Frank L.; Merrill, M. DAVID.; Rice, Douglas M.; Curtis, Darren S.

    2004-12-06

    The focus of this paper is to discuss paradigms for learning that are based on sound principles of human learning and cognition, and to discuss technical challenges that must be overcome in achieving this research goal through instructional system design (ISD) approaches that are cost-effective as well as conformant with today's interactive multimedia instruction standards. Fundamental concepts are to: engage learners to solve real-world problems (progress from simple to complex); relate material to previous experience; demonstrate what is to be learned using interactive, problem-centered activities rather than passive exposure to material; require learners to use their new knowledge to solve problems that demonstrate their knowledge in a relevant applied setting; and guide the learner with feedback and coaching early, then gradually withdraw this support as learning progresses. Many of these principles have been put into practice by employing interactive learning objects as re-usable components of larger, more integrated exercises. A challenge is to make even more extensive use of interactive, scenario-based activities within a guided-discovery framework. Because the design and construction of interactive, scenario-based learning objects and more complex integrated exercises is labor-intensive, this paper explores the use of interactive learning objects and associated representation schema for instructional content to facilitate development of tools for creating scenario-based, guided-discovery courseware.

  8. Guided wave-based identification of multiple cracks in beams using a Bayesian approach

    Science.gov (United States)

    He, Shuai; Ng, Ching-Tai

    2017-02-01

    A guided wave damage identification method using a model-based approach is proposed to identify multiple cracks in beam-like structures. The guided wave propagation is simulated using spectral finite element method and a crack element is proposed to take into account the mode conversion effect. The Bayesian model class selection algorithm is employed to determine the crack number and then the Bayesian statistical framework is used to identify the crack parameters and the associated uncertainties. In order to improve the efficiency and ensure the reliability of identification, the Transitional Markov Chain Monte Carlo (TMCMC) method is implemented in the Bayesian approach. A series of numerical case studies are carried out to assess the performance of the proposed method, in which the sensitivity of different guided wave modes and effect of different levels of measurement noise in identifying different numbers of cracks is studied in detail. The proposed method is also experimentally verified using guided wave data obtained from laser vibrometer. The results show that the proposed method is able to accurately identify the number, locations and sizes of the cracks, and also quantify the associated uncertainties. In addition the proposed method is robust under measurement noise and different situations of the cracks.

  9. Surface-based registration accuracy of CT-based image-guided spine surgery.

    Science.gov (United States)

    Tamura, Yuichi; Sugano, Nobuhiko; Sasama, Toshihiko; Sato, Yoshinobu; Tamura, Shinichi; Yonenobu, Kazuo; Yoshikawa, Hideki; Ochi, Takahiro

    2005-04-01

    Registration is a critical and important process in maintaining the accuracy of CT-based image-guided surgery. The aim of this study was to evaluate the effects of the area of intraoperative data sampling and number of sampling points on the accuracy of surface-based registration in a CT-based spinal-navigation system, using an optical three-dimensional localizer. A cadaveric dry-bone phantom of the lumbar spine was used. To evaluate registration accuracy, three alumina ceramic balls were attached to the anterior and lateral aspects of the vertebral body. CT images of the phantom were obtained (1-mm slice thickness, at1-mm intervals) using a helical CT scanner. Twenty surface points were digitized from five zones defined on the basis of anatomical classification on the posterior aspects of the target vertebra. A total of 20 sets of sampling data were obtained. Evaluation of registration accuracy accounted for positional and rotational errors. Of the five zones, the area that was the largest and easiest to expose surgically and to digitize surface points was the lamina. The lamina was defined as standard zone. On this zone, the effect of the number of sampling points on the positional and rotational accuracy of registration was evaluated. And the effects of the additional area selected for intraoperative data sampling on the registration accuracy were evaluated. Using 20 surface points on the posterior side of the lamina, positional error was 0.96 mm +/- 0.24 mm root-mean-square (RMS) and rotational error was 0.91 degrees +/- 0.38 degrees RMS. The use of 20 surface points on the lamina usually allows surgeons to carry out sufficiently accurate registration to conduct computer-aided spine surgery. In the case of severe spondylosis, however, it might be difficult to digitize the surface points from the lamina, due to a hypertrophic facet joint or the deformity of the lamina and noisy sampling data. In such cases, registration accuracy can be improved by combining use

  10. The Second Order Guided Modes Based on Photonic Bandgap Effects in Air/Glass Photonic Crystal Fibers

    Institute of Scientific and Technical Information of China (English)

    YAO Lei; LOU Shu-Qin; JIAN Shui-Sheng

    2009-01-01

    We introduce a defect site in the periodic structure of a photonic bandgap fiber,to confine and guide the second order mode by photonic bandgap effects.Based on a high air-filling fraction photonic crystal cladding structure,a simplified model with an equivalent air cladding was proposed to explore and analyze the properties of this second order guided mode.

  11. A comparison of literature-based and content-based guided reading materials on elementary student reading and science achievement

    Science.gov (United States)

    Guns, Christine

    Guided reading, as developed by Fountas and Pinnell (2001), has been a staple of elementary reading programs for the past decade. Teachers in the elementary school setting utilize this small group, tailored instruction in order to differentiate and meet the instructional needs of the students. The literature shows academic benefit for students who have special needs, such as learning disabilities, autism, and hearing impairments but consideration of academic impact has not been investigated for regular education students. The purpose of this quasi-experimental study was to investigate the academic impact of the use of content-related (Group C) and the traditional literature-based (Group L) reading materials. During the Living Systems and Life Processes unit in science, two teachers self-selected to utilized science-related materials for guided reading instruction while the other three teacher participants utilized their normal literature-based guided reading materials. The two groups were compared using an ANCOVA in this pre-test/post-test design. The dependent variables included the Reading for Application and Instruction assessment (RAI) and a Living Systems and Life Processes assessment (LSA). Further analysis compared students of different reading levels and gender. The data analyses revealed a practical but not statistical significance for students in science performance. It was discovered that below level male and female students performed better on the LSA when provided with content-related guided reading materials. As far as reading achievement is concerned, students in both groups had comparable results. The teachers provided guided reading instruction to their students with fidelity and made adjustments to their practices due to the needs of their students. The content-related teachers utilized a larger number of expository texts than the literature-based teachers. These teachers expressed the desire to continue the practice of providing the students with

  12. Printed Identification Key or Web-Based Identification Guide: An Effective Tool for Species Identification?

    Directory of Open Access Journals (Sweden)

    Thomas Edison E. dela Cruz

    2012-09-01

    Full Text Available Species identification is often done with the aid of traditional dichotomous keys. This printed material is based on one’s decision between two alternatives, which is followed by another pair of alternatives until the final species name is reached. With the advent of internet technology, the use of an online database offers an updatable and accumulative approach to species identification. It can also be accessed anytime, and this is very useful for fast-changing groups of organisms. In this paper, we report the preference of sophomore Bachelor of Science (B.Sc. in Microbiology students to two identification guides as a tool in taxonomy. We wish to test our hypothesis that today’s students will prefer to use web-based ID guides over printed dichotomous keys. We also describe how these printed dichotomous key and web-based ID guides were used by the students as one of their laboratory activities in the course Biology of Algae and Fungi.  

  13. Nectin/PRR: an immunoglobulin-like cell adhesion molecule recruited to cadherin-based adherens junctions through interaction with Afadin, a PDZ domain-containing protein.

    Science.gov (United States)

    Takahashi, K; Nakanishi, H; Miyahara, M; Mandai, K; Satoh, K; Satoh, A; Nishioka, H; Aoki, J; Nomoto, A; Mizoguchi, A; Takai, Y

    1999-05-03

    We have isolated a novel actin filament-binding protein, named afadin, localized at cadherin-based cell-cell adherens junctions (AJs) in various tissues and cell lines. Afadin has one PDZ domain, three proline-rich regions, and one actin filament-binding domain. We found here that afadin directly interacted with a family of the immunoglobulin superfamily, which was isolated originally as the poliovirus receptor-related protein (PRR) family consisting of PRR1 and -2, and has been identified recently to be the alphaherpes virus receptor. PRR has a COOH-terminal consensus motif to which the PDZ domain of afadin binds. PRR and afadin were colocalized at cadherin-based cell-cell AJs in various tissues and cell lines. In E-cadherin-expressing EL cells, PRR was recruited to cadherin-based cell-cell AJs through interaction with afadin. PRR showed Ca2+-independent cell-cell adhesion activity. These results indicate that PRR is a cell-cell adhesion molecule of the immunoglobulin superfamily which is recruited to cadherin-based cell-cell AJs through interaction with afadin. We rename PRR as nectin (taken from the Latin word "necto" meaning "to connect").

  14. The effect of guided inquiry-based instruction in secondary science for students with learning disabilities

    Science.gov (United States)

    Eliot, Michael H.

    Students with learning disabilities (SWLDs) need to attain academic rigor to graduate from high school and college, as well as achieve success in life. Constructivist theories suggest that guided inquiry may provide the impetus for their success, yet little research has been done to support this premise. This study was designed to fill that gap. This quasi-experimental study compared didactic and guided inquiry-based teaching of science concepts to secondary SWLDs in SDC science classes. The study examined 38 students in four classes at two diverse, urban high schools. Participants were taught two science concepts using both teaching methods and posttested after each using paper-and-pencil tests and performance tasks. Data were compared to determine increases in conceptual understanding by teaching method, order of teaching method, and exposure one or both teaching methods. A survey examined participants' perceived self-efficacy under each method. Also, qualitative comparison of the two test formats examined appropriate use with SWLDs. Results showed significantly higher scores after the guided inquiry method on concept of volume, suggesting that guided inquiry does improve conceptual understanding over didactic instruction in some cases. Didactic teaching followed by guided inquiry resulted in higher scores than the reverse order, indicating that SWLDs may require direct instruction in basic facts and procedures related to a topic prior to engaging in guided inquiry. Also application of both teaching methods resulted in significantly higher scores than a single method on the concept of density, suggesting that SWLDs may require more in depth instruction found using both methods. No differences in perceived self-efficacy were shown. Qualitative analysis both assessments and participants' behaviors during testing support the use of performance tasks over paper-and-pencil tests with SWLDs. Implications for education include the use of guided inquiry to increase SWLDs

  15. A surface-electrode quadrupole guide for electrons

    Energy Technology Data Exchange (ETDEWEB)

    Hoffrogge, Johannes Philipp

    2012-12-19

    This thesis reports on the design and first experimental realization of a surface-electrode quadrupole guide for free electrons. The guide is based on a miniaturized, planar electrode layout and is driven at microwave frequencies. It confines electrons in the near-field of the microwave excitation, where strong electric field gradients can be generated without resorting to resonating structures or exceptionally high drive powers. The use of chip-based electrode geometries allows the realization of versatile, microstructured potentials with the perspective of novel quantum experiments with guided electrons. I present the design, construction and operation of an experiment that demonstrates electron confinement in a planar quadrupole guide for the first time. To this end, electrons with kinetic energies from one to ten electron-volts are guided along a curved electrode geometry. The stability of electron guiding as a function of drive parameters and electron energy has been studied. A comparison with numerical particle tracking simulations yields good qualitative agreement and provides a deeper understanding of the electron dynamics in the guiding potential. Furthermore, this thesis gives a detailed description of the design of the surface-electrode layout. This includes the development of an optimized coupling structure to inject electrons into the guide with minimum transverse excitation. I also discuss the extension of the current setup to longitudinal guide dimensions that are comparable to or larger than the wavelength of the drive signal. This is possible with a modified electrode layout featuring elevated signal conductors. Electron guiding in the field of a planar, microfabricated electrode layout allows the generation of versatile and finely structured guiding potentials. One example would be the realization of junctions that split and recombine a guided electron beam. Furthermore, it should be possible to prepare electrons in low-lying quantum mechanical

  16. Detecting and estimating rectification of gap junction conductance based on simulations of dual-cell recordings from a pair and a network of coupled cells.

    Science.gov (United States)

    Fortier, Pierre A

    2010-07-21

    Gap junctions can exhibit rectification of conductance. Some reports use inequality of coupling coefficients as the first sign of the possible existence of rectification (Devor and Yarom, 2002; Fan et al., 2005; Levavi-Sivan et al., 2005; Mann-Metzer and Yarom, 1999; Nolan et al., 1999; Szabadics et al., 2001). However, mathematical modeling and simulations of electrotonic coupling between an isolated pair of neurons showed conditions where the coupling coefficients were unreliable indicators of rectification. On the other hand, the transfer resistances were found to be reliable indicators of junctional rectification. The existing mathematical model of cell coupling (Bennett, 1966; Devor and Yarom, 2002; Verselis and Veenstra, 2000) was extended in order to measure rectification of the junctional conductances directly between dual-recorded neurons whether isolated or surrounded by a simulated 3-dimensional network of heterogeneous cells whose gap junctions offered parallel paths for current flow between the recorded neurons. The results showed that the transfer resistances could still detect rectification of the gap junction linking the dual-recorded neurons when embedded in a coupled cell network and that a mathematical model could estimate the conductances in both directions through this gap junction using only data that would be available from real dual-intracellular penetrations which allow electrophysiological recordings and intracellular staining. Rectification of gap junctions in unrecorded cells of a biologically realistic coupled cell network had negligible effects on the voltage responses of the dual-recorded neurons because of minimal current passing through these surrounding cells.

  17. Genetic algorithms-based inversion of multimode guided waves for cortical bone characterization

    Science.gov (United States)

    Bochud, N.; Vallet, Q.; Bala, Y.; Follet, H.; Minonzio, J.-G.; Laugier, P.

    2016-10-01

    Recent progress in quantitative ultrasound has exploited the multimode waveguide response of long bones. Measurements of the guided modes, along with suitable waveguide modeling, have the potential to infer strength-related factors such as stiffness (mainly determined by cortical porosity) and cortical thickness. However, the development of such model-based approaches is challenging, in particular because of the multiparametric nature of the inverse problem. Current estimation methods in the bone field rely on a number of assumptions for pairing the incomplete experimental data with the theoretical guided modes (e.g. semi-automatic selection and classification of the data). The availability of an alternative inversion scheme that is user-independent is highly desirable. Thus, this paper introduces an efficient inversion method based on genetic algorithms using multimode guided waves, in which the mode-order is kept blind. Prior to its evaluation on bone, our proposal is validated using laboratory-controlled measurements on isotropic plates and bone-mimicking phantoms. The results show that the model parameters (i.e. cortical thickness and porosity) estimated from measurements on a few ex vivo human radii are in good agreement with the reference values derived from x-ray micro-computed tomography. Further, the cortical thickness estimated from in vivo measurements at the third from the distal end of the radius is in good agreement with the values delivered by site-matched high-resolution x-ray peripheral computed tomography.

  18. Digital Image Watermarking Based On Gradient Direction Quantization and Denoising Using Guided Image Filtering

    Directory of Open Access Journals (Sweden)

    I.Kullayamma

    2016-05-01

    Full Text Available Digital watermarking is the art of hiding of information or data in documents, where the embedded information or data can be extracted to resist copyright violation or to verify the uniqueness of a document which leads to security. Protecting the digital content has become a major issue for content owners and service providers. Watermarking using gradient direction quantization is based on the uniform quantization of the direction of gradient vectors, which is called gradient direction watermarking (GDWM. In GDWM, the watermark bits are embedded by quantizing the angles of significant gradient vectors at multiple wavelet scales. The proposed scheme has the advantages of increased invisibility and robustness to amplitude scaling effects. The DWT coefficients are modified to quantize the gradient direction based on the on the derived relationship between the changes in the coefficients and the change in the gradient direction. In this paper, we propose a novel explicit image filter called guided filter. It is derived from a local linear model that computes the filtering output using the content of guidance image, which can be the input image itself or any other different image. The guided filter naturally has a fast and non approximate linear time algorithm, regardless of the kernel size and the intensity range. Finally, we show simulation results of denoising method using guided image filtering over bilateral filtering

  19. Defect detection of pipes using Lyapunov dimension of Duffing oscillator based on ultrasonic guided waves

    Science.gov (United States)

    Wu, Jing; Wang, Yu; Zhang, Weiwei; Nie, Zhenhua; Lin, Rong; Ma, Hongwei

    2017-01-01

    This study proposes a novel small defect detection approach for steel pipes using the Lyapunov dimension (D) of the Duffing chaotic system based on ultrasonic guided waves. In this paper, inspection model is constructed by inputting the measured guided wave signal into the Duffing equation as the external turbulent driving force term and then Dis calculated. The properties of the Duffing system's noise immunity are first demonstrated theoretically based on the Lyapunov exponents. By comparing Dof the Duffing inspection system between the conditions of the inputted pure noise and the guided wave signal, the amplitude of the periodic force (F), the important parameter of the Duffing inspection system, could be determined. The values of other parameters of the Duffing inspection system are subsequently determined according to the numerical investigation. Furthermore, a time-moving window function is constructed to scan along the measured signal to locate the defect. And the small defect echo signal polluted by the noise is illustrated to prove the availability of the proposed method. Both numerical and experimental results show that the proposed approach can be used to improve the sensitivity of small defect detection and locate the small defect in pipes.

  20. Damage detection tomography based on guided waves in composite structures using a distributed sensor network

    Science.gov (United States)

    Memmolo, Vittorio; Maio, Leandro; Boffa, Natalino Daniele; Monaco, Ernesto; Ricci, Fabrizio

    2016-01-01

    Structural health monitoring (SHM) based on guided waves allows assessing the health of a structure due to the sensitivity to the occurrence of delamination. However, wave propagation presents several complexities for effective damage identification in composite structures. An efficient implementation of a guided wave-based SHM system requires an accurate analysis of collected data to obtain a useful detection. This paper is concerned with the identification of small emerging delaminations in composite structural components using a sparse array of surface ultrasonic transducers. An ultrasonic-guided wave tomography technique focused on impact damage detection in composite plate-like structures is presented. A statistical damage index approach is adopted to interpret the recorded signals, and a subsequent graphic interpolation is implemented to reconstruct the damage appearance. Experimental tests carried out on a typical composite structure demonstrated the effectiveness of the developed technique with the aim to investigate the presence and location of damage using simple imaging reports and a limited number of measurements. A traditional ultrasonic inspection (C-scan) is used to assess the methodology.

  1. Multi-focus image fusion using a guided-filter-based difference image.

    Science.gov (United States)

    Yan, Xiang; Qin, Hanlin; Li, Jia; Zhou, Huixin; Yang, Tingwu

    2016-03-20

    The aim of multi-focus image fusion technology is to integrate different partially focused images into one all-focused image. To realize this goal, a new multi-focus image fusion method based on a guided filter is proposed and an efficient salient feature extraction method is presented in this paper. Furthermore, feature extraction is primarily the main objective of the present work. Based on salient feature extraction, the guided filter is first used to acquire the smoothing image containing the most sharpness regions. To obtain the initial fusion map, we compose a mixed focus measure by combining the variance of image intensities and the energy of the image gradient together. Then, the initial fusion map is further processed by a morphological filter to obtain a good reprocessed fusion map. Lastly, the final fusion map is determined via the reprocessed fusion map and is optimized by a guided filter. Experimental results demonstrate that the proposed method does markedly improve the fusion performance compared to previous fusion methods and can be competitive with or even outperform state-of-the-art fusion methods in terms of both subjective visual effects and objective quality metrics.

  2. Magnetic interaction between spatially extended superconducting tunnel junctions

    DEFF Research Database (Denmark)

    Grønbech-Jensen, Niels; Samuelsen, Mogens Rugholm

    2002-01-01

    A general description of magnetic interactions between superconducting tunnel junctions is given. The description covers a wide range of possible experimental systems, and we explicitly explore two experimentally relevant limits of coupled junctions. One is the limit of junctions with tunneling...... been considered through arrays of superconducting weak links based on semiconductor quantum wells with superconducting electrodes. We use the model to make direct interpretations of the published experiments and thereby propose that long-range magnetic interactions are responsible for the reported...

  3. A dual working mode mobile robot system based on visual guiding and visual servoing

    Institute of Scientific and Technical Information of China (English)

    Peng Yizhun; Yuan Kui; Zou Wei; Hu Huosheng

    2007-01-01

    A dual operational modes mobile robot system based on visual guiding and visual servo control is presented.This system consists of a mobile robot with a two-axis manipulator and a tele-operation station.In the visual guiding mode,for the robot works in an open loop visual servo control mode,the manipulating burden of the operator is reduced largely.In the visual servo mode the robot can locate the position of the target assigned by the operator and pick it up by its manipulator.With the help of the operator,the difficult problems of finding and handling a target in a complicated environment by the robot Can be solved easily.

  4. Multi-scale retinex with color restoration image enhancement based on Gaussian filtering and guided filtering

    Science.gov (United States)

    Ma, Jinxiang; Fan, Xinnan; Ni, Jianjun; Zhu, Xifang; Xiong, Chao

    2017-07-01

    In order to restore image color and enhance contrast of remote sensing image without suffering from color cast and insufficient detail enhancement, a novel improved multi-scale retinex with color restoration (MSRCR) image enhancement algorithm based on Gaussian filtering and guided filtering was proposed in this paper. Firstly, multi-scale Gaussian filtering functions were used to deal with the original image to obtain the rough illumination components. Secondly, accurate illumination components were acquired by using the guided filtering functions. Then, combining with four-direction Sobel edge detector, a self-adaptive weight selection nonlinear image enhancement was carried out. Finally, a series of evaluate metrics such as mean, MSE, PSNR, contrast and information entropy were used to assess the enhancement algorithm. The results showed that the proposed algorithm can suppress effectively noise interference, enhance the image quality and restore image color effectively.

  5. Guided tissue regeneration-based root coverage utilizing collagen membranes: technique and case reports.

    Science.gov (United States)

    Wang, Hom-Lay; Al-Shammari, Khalaf F

    2002-01-01

    Gingival recession defects have traditionally been treated with various grafting procedures. Recently, guided tissue regeneration with collagen membranes has shown promising results. This article reviews the rationale, indications, contraindications, and clinical methods for the use of bioabsorbable collagen membrane barriers. Several properties make collagen membranes attractive candidates for use as barriers in guided tissue regeneration-based root coverage procedures. These include the inhibition of epithelial migration and promotion of new connective tissue attachment; the ability to aggregate platelets, thereby facilitating wound stabilization and maturation; the promotion of cellular migration and wound closure; the elimination of the need for reentry surgery; and the ability to augment tissue thickness. Cases are presented to illustrate the surgical principles and techniques.

  6. Wavefront shaping for imaging-based flow velocity measurements through distortions using a Fresnel guide star.

    Science.gov (United States)

    Koukourakis, Nektarios; Fregin, Bob; König, Jörg; Büttner, Lars; Czarske, Jürgen W

    2016-09-19

    Imaging-based flow measurement techniques, like particle image velocimetry (PIV), are vulnerable to time-varying distortions like refractive index inhomogeneities or fluctuating phase boundaries. Such distortions strongly increase the velocity error, as the position assignment of the tracer particles and the decrease of image contrast exhibit significant uncertainties. We demonstrate that wavefront shaping based on spatially distributed guide stars has the potential to significantly reduce the measurement uncertainty. Proof of concept experiments show an improvement by more than one order of magnitude. Possible applications for the wavefront shaping PIV range from measurements in jets and film flows to biomedical applications.

  7. PENGEMBANGAN BAHAN AJAR DIGITAL BERLANDASKAN MODEL GUIDED-PROJECT BASED LEARNING

    Directory of Open Access Journals (Sweden)

    Ighfir Rijal Taufiqy

    2016-04-01

    Hasil observasi menunjukkan SMK Negeri 1 Beji Pasuruan sudah menggunakan bahan ajar digital dan project based learning dalam pembelajaran. Tujuan pengembangan menghasilkan bahan ajar digital pada mata pelajaran Teknik Pengambilan Gambar Bergerak berlandaskan model Guided-Project Based Learning di SMK Negeri 1 Beji Pasuruan. Model penelitian dan pengembangan mengadaptasi model Dick & Carey yang dimodifikasi dengan menghilangkan evaluasi formatif. Subjek uji coba ahli materi, ahli media, guru, siswa kelas XII. Rata-rata kelayakan sebesar 89,5% dan pencapaian post-test sebesar 81,77. Saran pengembangan lebih lanjut dengan menambahkan empat proyek sehingga menjadi satu keutuhan bahan ajar dalam periode satu tahun dan perlu uji efektivitas.

  8. Wavefront sensing for deformable space-based optics exploiting natural and synthetic guide stars

    Science.gov (United States)

    McComas, Brian K.; Friedman, Edward J.

    2002-08-01

    Natural and synthetic guide stars can serve as beacons for Shack-Hartmann wavefront sensors in space-based applications. In this paper, the authors determine the key equations that govern the optimization of the wavefront sensor employed on a space- based imaging system. There are two major products of this analysis. First, the number of subapertures can be optimized. Second, the number of modes used in the wavefront recovery can be optimized. Finally, the process for optimizing these values is explained. For the examples shown, the optimal number of retrieved modes and the optimal number of subapertures are determined.

  9. 17β estradiol regulation of connexin 43-based gap junction and mechanosensitivity through classical estrogen receptor pathway in osteocyte-like MLO-Y4 cells.

    KAUST Repository

    Ren, Jian

    2013-04-01

    Connexin 43 (Cx43) plays an essential role in osteocyte mechanotransduction. Although estrogen involves in the adaptive responses of bone cells to mechanical loadings, its effects on osteocytic Cx43-based gap junction intercellular communication (GJIC) remain obscure. We found that 17β estradiol (E2) up-regulated Cx43, and enhanced GJIC in osteocyte-like MLO-Y4 cells in fluorescence recovery after photobleaching (FRAP) assay. Combination of E2 pre-treatment and oscillating fluid flow (OFF) further enhanced Cx43 expression and mitogen-activated protein kinase (MAPK) phosphorylation, comparing to E2 or OFF treatment alone. Both blocking of classical estrogen receptors (ERα/β) by fulvestrant and ERα knockdown by small interfering RNA inhibited E2-mediated Cx43 increase, while a GPR30-specific agonist G-1 failed to promote Cx43 expression. Our results suggest that the presence of E2 enhanced Cx43-based GJIC mainly via ERα/β pathway, and sensitized osteocytes to mechanical loading. © 2012 Elsevier Inc. All rights reserved.

  10. CdTe Nanocrystal Hetero-Junction Solar Cells with High Open Circuit Voltage Based on Sb-doped TiO₂ Electron Acceptor Materials.

    Science.gov (United States)

    Li, Miaozi; Liu, Xinyan; Wen, Shiya; Liu, Songwei; Heng, Jingxuan; Qin, Donghuan; Hou, Lintao; Wu, Hongbin; Xu, Wei; Huang, Wenbo

    2017-05-03

    We propose Sb-doped TiO₂ as electron acceptor material for depleted CdTe nanocrystal (NC) hetero-junction solar cells. Novel devices with the architecture of FTO/ZnO/Sb:TiO₂/CdTe/Au based on CdTe NC and TiO₂ precursor are fabricated by rational ambient solution process. By introducing TiO₂ with dopant concentration, we are able to tailor the optoelectronic properties of NC solar cells. Our novel devices demonstrate a very high open circuit voltage of 0.74 V, which is the highest Voc reported for any CdTe NC based solar cells. The power conversion efficiency (PCE) of solar cells increases with the increase of Sb-doped content from 1% to 3%, then decreases almost linearly with further increase of Sb content due to the recombination effect. The champion device shows Jsc, Voc, FF, and PCE of 14.65 mA/cm², 0.70 V, 34.44, and 3.53% respectively, which is prospective for solution processed NC solar cells with high Voc.

  11. A Cell-Based High-Throughput Assay for Gap Junction Communication Suitable for Assessing Connexin 43-Ezrin Interaction Disruptors Using IncuCyte ZOOM.

    Science.gov (United States)

    Dukic, Aleksandra R; McClymont, David W; Taskén, Kjetil

    2017-01-01

    Connexin 43 (Cx43), the predominant gap junction (GJ) protein, directly interacts with the A-kinase-anchoring protein (AKAP) Ezrin in human cytotrophoblasts and a rat liver epithelial cells (IAR20). The Cx43-Ezrin-protein kinase (PKA) complex facilitates Cx43 phosphorylation by PKA, which triggers GJ opening in cytotrophoblasts and IAR20 cells and may be a general mechanism regulating GJ intercellular communication (GJIC). Considering the importance of Cx43 GJs in health and disease, they are considered potential pharmaceutical targets. The Cx43-Ezrin interaction is a protein-protein interaction that opens possibilities for targeting with peptides and small molecules. For this reason, we developed a high-throughput cell-based assay in which GJIC can be assessed and new compounds characterized. We used two pools of IAR20 cells, calcein loaded and unloaded, that were mixed and allowed to attach. Next, GJIC was monitored over time using automated imaging via the IncuCyte imager. The assay was validated using known GJ inhibitors and anchoring peptide disruptors, and we further tested new peptides that interfered with the Cx43-Ezrin binding region and reduced GJIC. Although an AlphaScreen assay can be used to screen for Cx43-Ezrin interaction inhibitors, the cell-based assay described is an ideal secondary screen for promising small-molecule hits to help identify the most potent compounds.

  12. Compact-sized high-modulation-efficiency silicon Mach-Zehnder modulator based on a vertically dipped depletion junction phase shifter for chip-level integration.

    Science.gov (United States)

    Kim, Gyungock; Park, Jeong Woo; Kim, In Gyoo; Kim, Sanghoon; Jang, Ki-Seok; Kim, Sun Ae; Oh, Jin Hyuk; Joo, Jiho; Kim, Sanggi

    2014-04-15

    We present small-sized depletion-type silicon Mach-Zehnder (MZ) modulator with a vertically dipped PN depletion junction (VDJ) phase shifter based on a CMOS compatible process. The fabricated device with a 100 μm long VDJ phase shifter shows a VπLπ of ∼0.6  V·cm with a 3 dB bandwidth of ∼50  GHz at -2  V bias. The measured extinction ratios are 6 and 5.3 dB for 40 and 50  Gb/s operation under 2.5  Vpp differential drive, respectively. On-chip insertion loss is 3 dB for the maximum optical transmission. This includes the phase-shifter loss of 1.88  dB/100  μm, resulting mostly from the extra optical propagation loss through the polysilicon-plug structure for electrical contact, which can be readily minimized by utilizing finer-scaled lithography nodes. The experimental result indicates that a compact depletion-type MZ modulator based on the VDJ scheme can be a potential candidate for future chip-level integration.

  13. Design of a low-power nonvolatile flip-flop using three-terminal magnetic-tunnel-junction-based self-terminated mechanism

    Science.gov (United States)

    Suzuki, Daisuke; Hanyu, Takahiro

    2017-04-01

    A nonvolatile flip-flop (NV-FF) using a three-terminal magnetic tunnel junction (3T-MTJ)-based self-terminated mechanism is proposed for a low-power logic LSI while maintaining almost the same performance as a conventional CMOS-based logic LSI. The use of a self-terminated mechanism, which continuously monitors the change in MTJ resistance, makes it possible not only to minimize the write energy consumption for the 3T-MTJ device but also to ensure a reliable write. Moreover, since the write current path is separated from the read current path in the 3T-MTJ device, the sensing circuit and the write driver are individually optimized, which makes it possible to minimize the performance overhead due to additional components. As a result, the write energy of the proposed NV-FF is reduced by 69% with a small performance overhead compared with that of a conventional NV-FF using a worst-case-oriented writing scheme.

  14. Electron optics with p-n junctions in ballistic graphene

    Science.gov (United States)

    Chen, Shaowen; Han, Zheng; Elahi, Mirza M.; Habib, K. M. Masum; Wang, Lei; Wen, Bo; Gao, Yuanda; Taniguchi, Takashi; Watanabe, Kenji; Hone, James; Ghosh, Avik W.; Dean, Cory R.

    2016-09-01

    Electrons transmitted across a ballistic semiconductor junction are expected to undergo refraction, analogous to light rays across an optical boundary. In graphene, the linear dispersion and zero-gap band structure admit highly transparent p-n junctions by simple electrostatic gating. Here, we employ transverse magnetic focusing to probe the propagation of carriers across an electrostatically defined graphene junction. We find agreement with the predicted Snell’s law for electrons, including the observation of both positive and negative refraction. Resonant transmission across the p-n junction provides a direct measurement of the angle-dependent transmission coefficient. Comparing experimental data with simulations reveals the crucial role played by the effective junction width, providing guidance for future device design. Our results pave the way for realizing electron optics based on graphene p-n junctions.

  15. A virtue ethics guide to best practices for community-based participatory research.

    Science.gov (United States)

    Schaffer, Marjorie A

    2009-01-01

    Rule ethics, or principled thinking, is important in the analysis of risks and benefits of research and informed consent, but is not completely adequate for guiding ethical responses to communities as research participants and collaborators. Virtue ethics theory can be used to guide actions in relationships, which are foundational to the implementation of community-based participatory research (CBPR). Virtues are strengths of character that contribute to a life of flourishing or well-being for individuals and communities. This article provides an overview of virtue ethics theory, identifies common ethical problems in CBPR, and discusses how professional virtues can be used to guide ethical research practice. The virtues of compassion, courage, honesty, humility, justice, and practical reasoning are defined and applied to ethical practice in the development, implementation, and dissemination of CBPR. Best practices for CBPR that consider the well-being of communities are identified. The virtues of compassion and humility foster inclusiveness and integration of community perspectives in research collaboration. Courage requires researchers to step out of the research safety-net to listen to community member voices and wisdom and share power in research decisions. Honesty requires researchers to communicate realistic expectations for research outcomes, share all findings with the community, and consider community perspectives in research dissemination. Systematic involvement of the community in all steps of the research process represents the virtue of practical reasoning. From a justice perspective, CBPR aims to restore communities rather than take from them.

  16. Nanoscale guiding for cold atoms based on surface plasmons along the tips of metallic wedges

    Institute of Scientific and Technical Information of China (English)

    Wang Zheng-Ling; Tang Wei-Min; Zhou Ming; Gao Chuan-Yu

    2013-01-01

    We propose a novel scheme to guide neutral cold atoms in a nanoscale region based on surface plasmons (SPs) of one pair and two pairs of tips of metallic wedges with locally enhanced light intensity and sub-optical wavelength resolution.We analyze the near-field intensity distribution of the tip of the metallic wedge by the FDTD method,and study the total intensity as well as the total potential of optical potentials and van der Waals potentials for 87Rb atoms in the light field of one pair and two pairs of tips of metallic wedges.It shows that the total potentials of one pair and two pairs of tips of metallic wedges can generate a gravito-optical trap and a dark closed trap for nanoscale guiding of neutral cold atoms.Guided atoms can be cooled with efficient intensity-gradient Sisyphus cooling by blue-detuned light field.This provides an important step towards the generation of hybrid systems consisting of isolated atoms and solid devices.

  17. Mode Conversion Behavior of Guided Wave in a Pipe Inspection System Based on a Long Waveguide.

    Science.gov (United States)

    Sun, Feiran; Sun, Zhenguo; Chen, Qiang; Murayama, Riichi; Nishino, Hideo

    2016-10-19

    To make clear the mode conversion behavior of S0-mode lamb wave and SH0-plate wave converting to the longitudinal mode guided wave and torsional mode guided wave in a pipe, respectively, the experiments were performed based on a previous built pipe inspection system. The pipe was wound with an L-shaped plate or a T-shaped plate as the waveguide, and the S0-wave and SH0-wave were excited separately in the waveguide. To carry out the objective, a meander-line coil electromagnetic acoustic transducer (EMAT) for S0-wave and a periodic permanent magnet (PPM) EMAT for SH0-wave were developed and optimized. Then, several comparison experiments were conducted to compare the efficiency of mode conversion. Experimental results showed that the T(0,1) mode, L(0,1) mode, and L(0,2) mode guided waves can be successfully detected when converted from the S0-wave or SH0-wave with different shaped waveguides. It can also be inferred that the S0-wave has a better ability to convert to the T(0,1) mode, while the SH0-wave is easier to convert to the L(0,1) mode and L(0,2) mode, and the L-shaped waveguide has a better efficiency than T-shaped waveguide.

  18. Mode Conversion Behavior of Guided Wave in a Pipe Inspection System Based on a Long Waveguide

    Directory of Open Access Journals (Sweden)

    Feiran Sun

    2016-10-01

    Full Text Available To make clear the mode conversion behavior of S0-mode lamb wave and SH0-plate wave converting to the longitudinal mode guided wave and torsional mode guided wave in a pipe, respectively, the experiments were performed based on a previous built pipe inspection system. The pipe was wound with an L-shaped plate or a T-shaped plate as the waveguide, and the S0-wave and SH0-wave were excited separately in the waveguide. To carry out the objective, a meander-line coil electromagnetic acoustic transducer (EMAT for S0-wave and a periodic permanent magnet (PPM EMAT for SH0-wave were developed and optimized. Then, several comparison experiments were conducted to compare the efficiency of mode conversion. Experimental results showed that the T(0,1 mode, L(0,1 mode, and L(0,2 mode guided waves can be successfully detected when converted from the S0-wave or SH0-wave with different shaped waveguides. It can also be inferred that the S0-wave has a better ability to convert to the T(0,1 mode, while the SH0-wave is easier to convert to the L(0,1 mode and L(0,2 mode, and the L-shaped waveguide has a better efficiency than T-shaped waveguide.

  19. Improvement of an X-ray imaging detector based on a scintillating guides screen

    CERN Document Server

    Badel, X; Linnros, J; Kleimann, P; Froejdh, C; Petersson, C S

    2002-01-01

    An X-ray imaging detector has been developed for dental applications. The principle of this detector is based on application of a silicon charge coupled device covered by a scintillating wave-guide screen. Previous studies of such a detector showed promising results concerning the spatial resolution but low performance in terms of signal to noise ratio (SNR) and sensitivity. Recent results confirm the wave-guiding properties of the matrix and show improvement of the detector in terms of response uniformity, sensitivity and SNR. The present study is focussed on the fabrication of the scintillating screen where the principal idea is to fill a matrix of Si pores with a CsI scintillator. The photoluminescence technique was used to prove the wave-guiding property of the matrix and to inspect the filling uniformity of the pores. The final detector was characterized by X-ray evaluation in terms of spatial resolution, light output and SNR. A sensor with a spatial resolution of 9 LP/mm and a SNR over 50 has been achie...

  20. Ultrasonic guided wave based damage imaging by time-reversal method in frequency-wavenumber domain

    Science.gov (United States)

    Xu, C. G.; Xu, B. Q.; Luo, Y.; Xu, G. D.; Lu, L. Z.

    2017-05-01

    More attention has been drawn to ultrasonic guided waves (UGW) based damage detection method for its advantages of wide range inspection of large scale structures. However, complex propagation characteristics of guided waves as well as traditional contact ultrasonic transducers limit its application for the practical damage detection. By combining Scanning Laser Doppler vibrometer (SLDV) technology, Time-Reversal method in frequency-wavenumber domain (f-k RTM) can compensate for the dispersive nature of Lamb waves, localize multiple damage sites and identify their sizes without time consuming numerical calculation. In this work, we adopt f-k RTM for damage detection in plate-like structure. Instead of SLDV in experiment, 3D finite element numerical method is adopted to obtain scattered ultrasonic guided wavefield data with high spatial resolution. The direct path waves were extracted to obtain the incident wavefield while the scattered signals were used to calculate the scattering wave field. Damage imaging can also be achieved by introducing crosscorrelation imaging condition. Imaging results show that the method is very effective for crack localization and boundary shape-recognition. Numerical simulation results and imaging algorithm laid the foundation for the method applied in experiment and practice.

  1. Design and Optimization of the Slide Guide System of Hydraulic Press Based on Energy Loss Analysis

    Directory of Open Access Journals (Sweden)

    Mengdi Gao

    2016-06-01

    Full Text Available The clearances in the slide guide system of a hydraulic press are one of the significant factors affecting its accuracy. These clearances also affect the energy consumption of the press. An energy loss model that considers the oil leaks and friction associated with these clearances was proposed, and the size of clearances was optimized based on the model. The maximum allowable eccentric load and the energy loss on the wedge clearance condition were calculated to ensure the slide and guide pillars function properly. The stiffness of pillars and wear of guide rails were checked under an eccentric load condition. A case for rapid sheet metal forming with a 20 MN hydraulic press was examined. For this case, the optimum fit clearances were found to be approximately 0.4 mm. The energy loss under an eccentric load condition was increased by approximately 83% compared to a non-eccentric load condition. The pillars were optimized by reducing excessive stiffness, which served to decrease the pillar weight by nearly 20%.

  2. Image-based control of the magnetic resonance imaging-guided focused ultrasound thermotherapy.

    Science.gov (United States)

    Salomir, Rares; Delemazure, Anne-Sophie; Palussière, Jean; Rouvière, Olivier; Cotton, François; Chapelon, Jean-Yves

    2006-06-01

    Magnetic resonance imaging (MRI)-guided focused ultrasound surgery (FUS) is a full noninvasive approach for localized thermal ablation of deep tissues, coupling the following: (1) a versatile, nonionizing physical agent for therapy and (2) a state-of-the art diagnosis and on-line monitoring tool. A commercially available, Food and Drug Administration-approved device using the MRI-guided FUS exists since 2004 for the ablation of benign tumors (uterine fibroids); however, the ultimate goal of the technological, methodological, and medical research in this field is to provide a clinical-routine tool for fighting localized cancer. When addressing cancer applications, the accurate spatial control of the delivered thermal dose is mandatory. Contiguous destruction of the target volume must be achieved in a minimum time, whereas sparing as much as possible the neighboring healthy tissues and especially when some adjacent regions are critical. This paper reviews some significant developments reported in the literature related to the image-based control of the FUS therapy for kidney, breast, prostate, and brain, including the own experience of the authors on the active feedback control of the temperature during FUS ablation. In addition, preliminary results of an original study of MRI-guided FUS ablation of VX2 carcinoma in kidney, under active temperature control, are described here.

  3. The human myotendinous junction

    DEFF Research Database (Denmark)

    Knudsen, A B; Larsen, M; Mackey, Abigail

    2015-01-01

    The myotendinous junction (MTJ) is a specialized structure in the musculotendinous system, where force is transmitted from muscle to tendon. Animal models have shown that the MTJ takes form of tendon finger-like processes merging with muscle tissue. The human MTJ is largely unknown and has never ...

  4. Doped semiconductor nanocrystal junctions

    Energy Technology Data Exchange (ETDEWEB)

    Borowik, Ł.; Mélin, T., E-mail: thierry.melin@isen.iemn.univ-lille1.fr [Institut d’Electronique, de Microélectronique et de Nanotechnologie, CNRS-UMR8520, Avenue Poincaré, F-59652 Villeneuve d’Ascq (France); Nguyen-Tran, T.; Roca i Cabarrocas, P. [Laboratoire de Physique des Interfaces et des Couches Minces, CNRS-UMR7647, Ecole Polytechnique, F-91128 Palaiseau (France)

    2013-11-28

    Semiconductor junctions are the basis of electronic and photovoltaic devices. Here, we investigate junctions formed from highly doped (N{sub D}≈10{sup 20}−10{sup 21}cm{sup −3}) silicon nanocrystals (NCs) in the 2–50 nm size range, using Kelvin probe force microscopy experiments with single charge sensitivity. We show that the charge transfer from doped NCs towards a two-dimensional layer experimentally follows a simple phenomenological law, corresponding to formation of an interface dipole linearly increasing with the NC diameter. This feature leads to analytically predictable junction properties down to quantum size regimes: NC depletion width independent of the NC size and varying as N{sub D}{sup −1/3}, and depleted charge linearly increasing with the NC diameter and varying as N{sub D}{sup 1/3}. We thus establish a “nanocrystal counterpart” of conventional semiconductor planar junctions, here however valid in regimes of strong electrostatic and quantum confinements.

  5. Junction trees of general graphs

    Institute of Scientific and Technical Information of China (English)

    Xiaofei WANG; Jianhua GUO

    2008-01-01

    In this paper,we study the maximal prime subgraphs and their corresponding structure for any undirected graph.We introduce the notion of junction trees and investigate their structural characteristics,including junction properties,induced-subtree properties,running-intersection properties and maximum-weight spanning tree properties.Furthermore,the characters of leaves and edges on junction trees are discussed.

  6. Testing epitaxial Co{sub 1.5}Fe{sub 1.5}Ge(001) electrodes in MgO-based magnetic tunnel junctions

    Energy Technology Data Exchange (ETDEWEB)

    Neggache, A. [Institut Jean Lamour, UMR CNRS 7198, Université de Lorraine, 54506 Vandoeuvre lès Nancy (France); Synchrotron SOLEIL-CNRS, L' Orme des Merisiers, Saint-Aubin BP48, 91192 Gif-sur-Yvette (France); Hauet, T.; Petit-Watelot, S.; Boulet, P.; Andrieu, S., E-mail: stephane.andrieu@univ-lorraine.fr [Institut Jean Lamour, UMR CNRS 7198, Université de Lorraine, 54506 Vandoeuvre lès Nancy (France); Bertran, F.; Le Fèvre, P.; Ohresser, P. [Synchrotron SOLEIL-CNRS, L' Orme des Merisiers, Saint-Aubin BP48, 91192 Gif-sur-Yvette (France); Devolder, T. [Institut d' Electronique Fondamentale, CNRS, UMR 8622, 91405 Orsay (France); Mewes, C. [Department of Physics and Astronomy/Center for Materials for Information Technology, University of Alabama, Tuscaloosa, Alabama 35487 (United States); Maat, S.; Childress, J. R. [San Jose Research Center, HGST, a Western Digital company, San Jose, California 95135 (United States)

    2014-06-23

    The ability of the full Heusler alloy Co{sub 1.5}Fe{sub 1.5}Ge(001) (CFG) to be a Half-Metallic Magnetic (HMM) material is investigated. Epitaxial CFG(001) layers were grown by molecular beam epitaxy. The results obtained using electron diffraction, X-ray diffraction, and X-ray magnetic circular dichroism are consistent with the full Heusler structure. The pseudo-gap in the minority spin density of state typical in HMM is examined using spin-resolved photoemission. Interestingly, the spin polarization found to be negative at E{sub F} in equimolar CoFe(001) is observed to shift to positive values when inserting Ge in CoFe. However, no pseudo-gap is found at the Fermi level, even if moderate magnetization and low Gilbert damping are observed as expected in HMM materials. Magneto-transport properties in MgO-based magnetic tunnel junctions using CFG electrodes are investigated via spin and symmetry resolved photoemission.

  7. Highly sensitive wide bandwidth photodetector based on internal photoemission in CVD grown p-type MoS2/graphene Schottky junction.

    Science.gov (United States)

    Vabbina, PhaniKiran; Choudhary, Nitin; Chowdhury, Al-Amin; Sinha, Raju; Karabiyik, Mustafa; Das, Santanu; Choi, Wonbong; Pala, Nezih

    2015-07-22

    Two dimensional (2D) Molybdenum disulfide (MoS2) has evolved as a promising material for next generation optoelectronic devices owing to its unique electrical and optical properties, such as band gap modulation, high optical absorption, and increased luminescence quantum yield. The 2D MoS2 photodetectors reported in the literature have presented low responsivity compared to silicon based photodetectors. In this study, we assembled atomically thin p-type MoS2 with graphene to form a MoS2/graphene Schottky photodetector where photo generated holes travel from graphene to MoS2 over the Schottky barrier under illumination. We found that the p-type MoS2 forms a Schottky junction with graphene with a barrier height of 139 meV, which results in high photocurrent and wide spectral range of detection with wavelength selectivity. The fabricated photodetector showed excellent photosensitivity with a maximum photo responsivity of 1.26 AW(-1) and a noise equivalent power of 7.8 × 10(-12) W/√Hz at 1440 nm.

  8. Giant voltage manipulation of MgO-based magnetic tunnel junctions via localized anisotropic strain: A potential pathway to ultra-energy-efficient memory technology

    Science.gov (United States)

    Zhao, Zhengyang; Jamali, Mahdi; D'Souza, Noel; Zhang, Delin; Bandyopadhyay, Supriyo; Atulasimha, Jayasimha; Wang, Jian-Ping

    2016-08-01

    Voltage control of magnetization via strain in piezoelectric/magnetostrictive systems is a promising mechanism to implement energy-efficient straintronic memory devices. Here, we demonstrate giant voltage manipulation of MgO magnetic tunnel junctions (MTJ) on a Pb(Mg1/3Nb2/3)0.7Ti0.3O3 piezoelectric substrate with (001) orientation. It is found that the magnetic easy axis, switching field, and the tunnel magnetoresistance (TMR) of the MTJ can be efficiently controlled by strain from the underlying piezoelectric layer upon the application of a gate voltage. Repeatable voltage controlled MTJ toggling between high/low-resistance states is demonstrated. More importantly, instead of relying on the intrinsic anisotropy of the piezoelectric substrate to generate the required strain, we utilize anisotropic strain produced using a local gating scheme, which is scalable and amenable to practical memory applications. Additionally, the adoption of crystalline MgO-based MTJ on piezoelectric layer lends itself to high TMR in the strain-mediated MRAM devices.

  9. Lymph node ratio-based staging system as an alternative to the current TNM staging system to assess outcome in adenocarcinoma of the esophagogastric junction after surgical resection

    Science.gov (United States)

    Chen, Chuangui; Gao, Yongyin; Xiao, Xiangming; Tang, Peng; Duan, Xiaofeng; Yang, Mingjian; Jiang, Hongjing; Yu, Zhentao

    2016-01-01

    This study aimed to assess the prognostic value of the hypothetical tumor-N-ratio (rN)-metastasis (TrNM) staging system in adenocarcinoma of the esophagogastric junction (AEG). The clinical data of 387 AEG patients who received surgical resection were retrospectively reviewed. The optimal cut-off point of rN was calculated by the best cut-off approach using log-rank test. Kaplan-Meier plots and Cox regressions model were applied for univariate and multivariate survival analyses. A TrNM staging system based on rN was proposed. The discriminating ability of each staging was evaluated by using an adjusted hazard ratio (HR) and a −2log likelihood. The prediction accuracy of the model was assessed by using the area under the curve (AUC) and the Harrell's C-index. The number of examined lymph nodes (LNs) was correlated with metastatic LNs (r = 0.322, P 0.05). The optimal cut-points of rN were calculated as 0, 0~0.3, 0.3~0.6, and 0.6~1.0. Univariate analysis revealed that pN and rN classifications significantly influenced patients’ RFS and OS (P TNM staging system in evaluating prognosis of AEG patients after curative resection. PMID:27517157

  10. Estimation of the average junction temperature of two phosphors-converted white LED array based on (B + Y + R)/B ratio

    Science.gov (United States)

    Ke, Hong-Liang; Jing, Lei; Hao, Jian; Gao, Qun; Wang, Yao; Wang, Xiao-xun; Sun, Qiang; Xu, Zhi-Jun

    2016-07-01

    The method of non-contact measurement of the junction temperature (Tj) for phosphor-converted white LEDs based on W/B ratio, the ratio of the total radiant energy (W) to the radiant energy of blue emission (B), is verified firstly. It is shown that for two phosphors (Y3Al5O12:Ce and CaAlSiN3:Eu)-converted white LEDs, an significant uncertainty is introduced into the linearity between Tj and W/B ratio. Then a new approach is proposed which uses (B + Y + R)/B ratio, the ratio of the sum of radiant energies of blue emission (B), yellow emission (Y) and red emission (R) to the radiant energy of blue emission, to establish the correlation with Tj. Result shows that the proposed approach is of a satisfactory linearity between Tj and (B + Y + R)/B ratio, with R-square equal to 0.9906 and RMSE equal to 2.27 °C. It is also demonstrated that the proposed method is applicable to actual LED lighting system composed of large number of LEDs.

  11. Magnetic Tunnel Junction Based Long-Term Short-Term Stochastic Synapse for a Spiking Neural Network with On-Chip STDP Learning

    Science.gov (United States)

    Srinivasan, Gopalakrishnan; Sengupta, Abhronil; Roy, Kaushik

    2016-01-01

    Spiking Neural Networks (SNNs) have emerged as a powerful neuromorphic computing paradigm to carry out classification and recognition tasks. Nevertheless, the general purpose computing platforms and the custom hardware architectures implemented using standard CMOS technology, have been unable to rival the power efficiency of the human brain. Hence, there is a need for novel nanoelectronic devices that can efficiently model the neurons and synapses constituting an SNN. In this work, we propose a heterostructure composed of a Magnetic Tunnel Junction (MTJ) and a heavy metal as a stochastic binary synapse. Synaptic plasticity is achieved by the stochastic switching of the MTJ conductance states, based on the temporal correlation between the spiking activities of the interconnecting neurons. Additionally, we present a significance driven long-term short-term stochastic synapse comprising two unique binary synaptic elements, in order to improve the synaptic learning efficiency. We demonstrate the efficacy of the proposed synaptic configurations and the stochastic learning algorithm on an SNN trained to classify handwritten digits from the MNIST dataset, using a device to system-level simulation framework. The power efficiency of the proposed neuromorphic system stems from the ultra-low programming energy of the spintronic synapses. PMID:27405788

  12. Magnetic Tunnel Junction Based Long-Term Short-Term Stochastic Synapse for a Spiking Neural Network with On-Chip STDP Learning

    Science.gov (United States)

    Srinivasan, Gopalakrishnan; Sengupta, Abhronil; Roy, Kaushik

    2016-07-01

    Spiking Neural Networks (SNNs) have emerged as a powerful neuromorphic computing paradigm to carry out classification and recognition tasks. Nevertheless, the general purpose computing platforms and the custom hardware architectures implemented using standard CMOS technology, have been unable to rival the power efficiency of the human brain. Hence, there is a need for novel nanoelectronic devices that can efficiently model the neurons and synapses constituting an SNN. In this work, we propose a heterostructure composed of a Magnetic Tunnel Junction (MTJ) and a heavy metal as a stochastic binary synapse. Synaptic plasticity is achieved by the stochastic switching of the MTJ conductance states, based on the temporal correlation between the spiking activities of the interconnecting neurons. Additionally, we present a significance driven long-term short-term stochastic synapse comprising two unique binary synaptic elements, in order to improve the synaptic learning efficiency. We demonstrate the efficacy of the proposed synaptic configurations and the stochastic learning algorithm on an SNN trained to classify handwritten digits from the MNIST dataset, using a device to system-level simulation framework. The power efficiency of the proposed neuromorphic system stems from the ultra-low programming energy of the spintronic synapses.

  13. Josephson tunnel junctions with ferromagnetic interlayer

    Energy Technology Data Exchange (ETDEWEB)

    Weides, M.P.

    2006-07-01

    Superconductivity and ferromagnetism are well-known physical properties of solid states that have been widely studied and long thought about as antagonistic phenomena due to difference in spin ordering. It turns out that the combination of both superconductor and ferromagnet leads to a very rich and interesting physics. One particular example, the phase oscillations of the superconducting order parameter inside the ferromagnet, will play a major role for the devices discussed in this work. In this thesis, I present Josephson junctions with a thin Al{sub 2}O{sub 3} tunnel barrier and a ferromagnetic interlayer, i.e. superconductor-insulator-ferromagnet-superconductor (SIFS) stacks. The fabrication of junctions was optimized regarding the insulation of electrodes and the homogeneity of the current transport. The junctions were either in the 0 or {pi} coupled ground state, depending on the thickness of the ferromagnetic layer and on temperature. The influence of ferromagnetic layer thickness on the transport properties and the coupling (0, {pi}) of SIFS tunnel junctions was studied. Furthermore, using a stepped ferromagnetic layer with well-chosen thicknesses, I obtained the so-called 0-{pi} Josephson junction. At a certain temperature this 0-{pi} junction can be made perfectly symmetric. In this case the ground state corresponds to a vortex of supercurrent creating a magnetic flux which is a fraction of the magnetic flux quantum {phi}{sub 0}. Such structures allow to study the physics of fractional vortices and to build various electronic circuits based on them. The SIFS junctions presented here have an exponentially vanishing damping at T {yields} 0. The SIFS technology developed within the framework of this work may be used to construct classical and quantum devices such as oscillators, memory cells and qubits. (orig.)

  14. [The public health importance of vaccinations in the elderly: an evidence-based guide].

    Science.gov (United States)

    Kuhdari, Parvanè; Zorzoli, Ermanno; D'Alò, Gian Loreto; Brosio, Federica; Bonanni, Paolo; Valente, Stefano; Gabutti, Giovanni; Franco, Elisabetta

    2016-01-01

    Ageing represents an extremely current issue globally, and involves especially European populations. It is estimated that in Europe by the year 2025, about a third of the population will be over 60 years of age, hence the imperative for "healthy ageing". Vaccinations in seniors, in contrast with paediatric vaccinations, are very often neglected even by health care workers. This article aims to provide an evidence-based guide to establish vaccinations in seniors as one of the pillars of Public Health in the future.

  15. Development of a Meso-Scale SMA-Based Torsion Actuator for Image-Guided Procedures.

    Science.gov (United States)

    Sheng, Jun; Gandhi, Dheeraj; Gullapalli, Rao; Simard, J Marc; Desai, Jaydev P

    2017-02-01

    This paper presents the design, modeling, and control of a meso-scale torsion actuator based on shape memory alloy (SMA) for image-guided surgical procedures. Developing a miniature torsion actuator is challenging, but it opens the possibility of significantly enhancing the robot agility and maneuverability. The proposed torsion actuator is bi-directionally actuated by a pair of antagonistic SMA torsion springs through alternate Joule heating and natural cooling. The torsion actuator is integrated into a surgical robot prototype to demonstrate its working performance in the humid environment under C-Arm CT image guidance.

  16. Dental Trauma Guide: a source of evidence-based treatment guidelines for dental trauma.

    Science.gov (United States)

    Andreasen, Jens Ove; Lauridsen, Eva; Gerds, Thomas Alexander; Ahrensburg, Søren Steno

    2012-10-01

    Diagnosis and treatment for traumatic dental injuries are very complex owing to the multiple trauma entities represented by six luxation types and nine fracture types affecting both the primary and the permanent dentition. When it is further considered that fracture and luxation injuries are often combined, the result is that more than 100 trauma scenarios exist, when the two dentitions are combined. Each of these trauma scenarios has a specific treatment demand and prospect for healing. With such a complexity in diagnosis and treatment, it is obvious that even experienced practitioners may have problems in selecting proper treatment for some of these trauma types. To remedy this situation, an Internet-based knowledge base consisting of 4000 dental trauma cases with long-term follow up is now available to the public and the professions on the Internet using the address http://www.DentalTraumaGuide.org. It is the aspiration that the use of this Guide may lead the practitioner to offer an evidence-based diagnosis and treatment.

  17. Core based stress measurements: A guide to their application. Topical report, July 1991--June 1993

    Energy Technology Data Exchange (ETDEWEB)

    Warpinski, N.R.; Teufel, L.W.; Lorenz, J.C.; Holcomb, D.J. [Sandia National Labs., Albuquerque, NM (United States)

    1993-06-01

    This report is a summary and a guide to core-based stress measurements. It covers anelastic strain recovery, circumferential velocity anistropy, differential strain curve analysis, differential wave velocity analysis, petrographic examination of microcracks, overcoring of archieved core, measurements of the Kaiser effect, strength anisotropy tests, and analysis of coring-induced fractures. The report begins with a discussion of the stored energy within rocks, its release during coring, and the subsequent formation of relaxation microcracks. The interogation or monitoring of these microcracks form the basis for most of the core-based techniques (except for the coring induced fractures). Problems that can arise due to coring or fabric are also presented, Coring induced fractures are discussed in some detail, with the emphasis placed on petal (and petal-centerline) fractures and scribe-knife fractures. For each technique, a short description of the physics and the analysis procedures is given. In addition, several example applications have also been selected (where available) to illustrate pertinent effects. This report is intended to be a guide to the proper application and diagnosis of core-based stress measurement procedures.

  18. MgB2 tunnel junctions and SQUIDs

    NARCIS (Netherlands)

    Brinkman, A.; Rowell, J.M.

    2007-01-01

    Recent advances in the realization and understanding of MgB2 tunnel junctions and SQUIDs are surveyed. High quality MgB2 junctions with suitable tunnel barriers have been realized based on both oriented and epitaxial thin MgB2 films. Multiband transport properties, such as the existence of two energ

  19. Relaxation towards phase-locked dynamics in long Josephson junctions

    DEFF Research Database (Denmark)

    Salerno, M.; Grønbech-Jensen, Niels; Samuelsen, Mogens Rugholm

    1995-01-01

    We study the relaxation phenomenon towards phase-locked dynamics in long Josephson junctions. In particular the dependence of the relaxation frequency for the equal time of flight solution on the junction parameters is derived. The analysis is based on a phase-locked map and is compared with dire...

  20. Requirements for a GaAsBi 1 eV sub-cell in a GaAs-based multi-junction solar cell

    Science.gov (United States)

    Thomas, T.; Mellor, A.; Hylton, N. P.; Führer, M.; Alonso-Álvarez, D.; Braun, A.; Ekins-Daukes, N. J.; David, J. P. R.; Sweeney, S. J.

    2015-09-01

    Multi-junction solar cells achieve high efficiency by stacking sub-cells of different bandgaps (typically GaInP/GaAs/Ge) resulting in efficiencies in excess of 40%. The efficiency can be improved by introducing a 1 eV absorber into the stack, either replacing Ge in a triple-junction configuration or on top of Ge in a quad-junction configuration. GaAs0.94Bi0.06 yields a direct-gap at 1 eV with only 0.7% strain on GaAs and the feasibility of the material has been demonstrated from GaAsBi photodetector devices. The relatively high absorption coefficient of GaAsBi suggests sufficient current can be generated to match the sub-cell photocurrent from the other sub-cells of a standard multi-junction solar cell. However, minority carrier transport and background doping levels place constraints on both p/n and p-i-n diode configurations. In the possible case of short minority carrier diffusion lengths we recommend the use of a p-i-n diode, and predict the material parameters that are necessary to achieve high efficiencies in a GaInP/GaAs/GaAsBi/Ge quad-junction cell.

  1. Heterodyne mixing with a sandwich-type Josephson junction using a Bi-based high-T{sub c} oxide superconductor

    Energy Technology Data Exchange (ETDEWEB)

    Mizuno, K.; Higashino, H.; Setsune, K. [Central Research Laboratories, Matsushita Electric Industrial Co. Ltd, Seika, Soraku, Kyoto 619-02 (Japan)

    1996-04-01

    A sandwich-type high-T{sub c} Josephson junction coupled with a coplanar-type transmission line was fabricated and heterodyne mixing characteristics were investigated. The junction was fabricated from a stacked film structure of Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+{delta}}/Bi{sub 2}Sr{sub 2}NdCu{sub 2}O{sub 8+{delta}}/Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+{delta}} (BSCCO/BSNCO/BSCCO) and the transmission line was made of sputter-deposited Pt film. The junction had a rectangular shape of 20{mu}mx7{mu}m. Current-voltage (I-V) curves of the junction showed weak-link-type characteristics. Two microwave sources of a frequency synthesizer and a sweep oscillator were used as a local oscillator (LO: 20 GHz) and a radio frequency signal source (RF: 19 GHz) for heterodyne mixing experiments. Intermediate signal (IF: 1 GHz) was transmitted through the transmission line and detected by a power meter. The conversion efficiency of -44 dB was estimated for an LO oscillator level of -23 dB m at 5.7 K when the junction was biased at the point below the first Shapiro step. (author)

  2. Characteristics of spent fuel, high-level waste, and other radioactive wastes which may require long-term isolation: Appendix 2B, User's guide to the LWR assemblies data base, Appendix 2C, User's guide to the LWR radiological data base, Appendix 2D, User's guide to the LWR quantities data base

    Energy Technology Data Exchange (ETDEWEB)

    None

    1987-12-01

    This User's Guide for the LWR Assemblies data base system is part of the Characteristics Data Base being developed under the Waste Systems Data Development Program. The objective of the LWR Assemblies data base is to provide access at the personal computer level to information about fuel assemblies used in light-water reactors. The information available is physical descriptions of intact fuel assemblies and radiological descriptions of spent fuel disassembly hardware. The LWR Assemblies data base is a user-oriented menu driven system. Each menu is instructive about its use. Section 5 of this guide provides a sample session with the data base to assist the user.

  3. Guiding science expeditions: The design of a learning environment for project-based science

    Science.gov (United States)

    Polman, Joseph Louis

    Project-based pedagogy has been revived recently as a teaching strategy for promoting students' active engagement in learning science by doing science. Numerous reform efforts have encouraged project-based teaching in high schools, along with a range of supports for its implementation, often including computers and the Internet. History has shown, however, that academic research and new technologies are not enough to effect real change in classrooms. Ultimately, teachers accomplish activity with their students daily in classrooms. Putting the idea of project-based teaching into practice depends on many particulars of teachers' situated work with students. To better understand the complexity of project-based science teaching in schools, I conducted an interpretive case study of one exceptional teacher's work. The teacher devotes all class time after the beginning of the year to open-ended, student-designed Earth Science research projects. Over four years of involvement with the Learning through Collaborative Visualization (CoVis) reform effort, this teacher has developed, implemented, and refined strategies for supporting and guiding students in conducting open-ended inquiry. Through a close examination of the teacher's work supporting student projects, I explore the design issues involved in such an endeavor, including affordances, constraints, and tradeoffs. In particular, I show how time constrains both student and teacher action, how the traditional school culture and grading create stumbling blocks for change, and how conflicting beliefs about teaching and learning undermine the accomplishment of guided inquiry. I also show how Internet tools including Usenet news, email, and the World Wide Web afford students an opportunity to gather and make use of distributed expertise and scientific data resources; how an activity structure, combined with a corresponding structure to the artifact of the final written product, supports student accomplishment of unfamiliar

  4. Quality Assurance of Multiport Image-Guided Minimally Invasive Surgery at the Lateral Skull Base

    Directory of Open Access Journals (Sweden)

    Maria Nau-Hermes

    2014-01-01

    Full Text Available For multiport image-guided minimally invasive surgery at the lateral skull base a quality management is necessary to avoid the damage of closely spaced critical neurovascular structures. So far there is no standardized method applicable independently from the surgery. Therefore, we adapt a quality management method, the quality gates (QG, which is well established in, for example, the automotive industry and apply it to multiport image-guided minimally invasive surgery. QG divide a process into different sections. Passing between sections can only be achieved if previously defined requirements are fulfilled which secures the process chain. An interdisciplinary team of otosurgeons, computer scientists, and engineers has worked together to define the quality gates and the corresponding criteria that need to be fulfilled before passing each quality gate. In order to evaluate the defined QG and their criteria, the new surgery method was applied with a first prototype at a human skull cadaver model. We show that the QG method can ensure a safe multiport minimally invasive surgical process at the lateral skull base. Therewith, we present an approach towards the standardization of quality assurance of surgical processes.

  5. Perbandingan antara Keefektifan Model Guided Discovery Learning dan Project-Based Learning pada Matakuliah Geometri

    Directory of Open Access Journals (Sweden)

    Okky Riswandha Imawan

    2015-12-01

    Abstract This research aims to describe the effectiveness and effectiveness differences of the Guided Discovery Learning (GDL Model and the Project Based Learning (PjBL Model in terms of achievement, self-confidence, and critical thinking skills of students on the Solid Geometry subjects. This research was quasi experimental. The research subjects were two undergraduate classes of Mathematics Education Program, Ahmad Dahlan University, in their second semester, established at random. The data analysis to test the effectiveness of the GDL and PjBL Models in terms of each of the dependent variables used the t-test. The data analysis to test differences between effectiveness of the GDL and that of the PjBL Model used the MANOVA test. The results of this research show that viewed from achievement, self confidence, and critical thinking skills of the students are the application of the GDL Model on Solid Geometry subject is effective, the application of the PjBL Model on Solid Geometry subject is effective, and there is no difference in the effectiveness of GDL and PjBL Models on Solid Geometry subject in terms of achievement, self confidence, and critical thinking skills of the students. Keywords: guided discovery learning model, project-based learning model, achievement, self-confidence, critical thinking skills

  6. Hand gesture guided robot-assisted surgery based on a direct augmented reality interface.

    Science.gov (United States)

    Wen, Rong; Tay, Wei-Liang; Nguyen, Binh P; Chng, Chin-Boon; Chui, Chee-Kong

    2014-09-01

    Radiofrequency (RF) ablation is a good alternative to hepatic resection for treatment of liver tumors. However, accurate needle insertion requires precise hand-eye coordination and is also affected by the difficulty of RF needle navigation. This paper proposes a cooperative surgical robot system, guided by hand gestures and supported by an augmented reality (AR)-based surgical field, for robot-assisted percutaneous treatment. It establishes a robot-assisted natural AR guidance mechanism that incorporates the advantages of the following three aspects: AR visual guidance information, surgeon's experiences and accuracy of robotic surgery. A projector-based AR environment is directly overlaid on a patient to display preoperative and intraoperative information, while a mobile surgical robot system implements specified RF needle insertion plans. Natural hand gestures are used as an intuitive and robust method to interact with both the AR system and surgical robot. The proposed system was evaluated on a mannequin model. Experimental results demonstrated that hand gesture guidance was able to effectively guide the surgical robot, and the robot-assisted implementation was found to improve the accuracy of needle insertion. This human-robot cooperative mechanism is a promising approach for precise transcutaneous ablation therapy.

  7. Lymph node ratio-based staging system as an alternative to the current TNM staging system to assess outcome in adenocarcinoma of the esophagogastric junction after surgical resection.

    Science.gov (United States)

    Zhang, Hongdian; Shang, Xiaobin; Chen, Chuangui; Gao, Yongyin; Xiao, Xiangming; Tang, Peng; Duan, Xiaofeng; Yang, Mingjian; Jiang, Hongjing; Yu, Zhentao

    2016-11-08

    This study aimed to assess the prognostic value of the hypothetical tumor-N-ratio (rN)-metastasis (TrNM) staging system in adenocarcinoma of the esophagogastric junction (AEG). The clinical data of 387 AEG patients who received surgical resection were retrospectively reviewed. The optimal cut-off point of rN was calculated by the best cut-off approach using log-rank test. Kaplan-Meier plots and Cox regressions model were applied for univariate and multivariate survival analyses. A TrNM staging system based on rN was proposed. The discriminating ability of each staging was evaluated by using an adjusted hazard ratio (HR) and a -2log likelihood. The prediction accuracy of the model was assessed by using the area under the curve (AUC) and the Harrell's C-index. The number of examined lymph nodes (LNs) was correlated with metastatic LNs (r = 0.322, P 0.05). The optimal cut-points of rN were calculated as 0, 0~0.3, 0.3~0.6, and 0.6~1.0. Univariate analysis revealed that pN and rN classifications significantly influenced patients' RFS and OS (P analysis adjusted for significant factors revealed that rN was recognized as an independent risk factor. A larger HR, a smaller -2log likelihood and a larger prediction accuracy were obtained for rN and the modified TrNM staging system. Taken together, our study demonstrates that the proposed N-ratio-based TrNM staging system is more reliable than the TNM staging system in evaluating prognosis of AEG patients after curative resection.

  8. Development of Thin Film Amorphous Silicon Tandem Junction Based Photocathodes Providing High Open-Circuit Voltages for Hydrogen Production

    Directory of Open Access Journals (Sweden)

    F. Urbain

    2014-01-01

    Full Text Available Hydrogenated amorphous silicon thin film tandem solar cells (a-Si:H/a-Si:H have been developed with focus on high open-circuit voltages for the direct application as photocathodes in photoelectrochemical water splitting devices. By temperature variation during deposition of the intrinsic a-Si:H absorber layers the band gap energy of a-Si:H absorber layers, correlating with the hydrogen content of the material, can be adjusted and combined in a way that a-Si:H/a-Si:H tandem solar cells provide open-circuit voltages up to 1.87 V. The applicability of the tandem solar cells as photocathodes was investigated in a photoelectrochemical cell (PEC measurement set-up. With platinum as a catalyst, the a-Si:H/a-Si:H based photocathodes exhibit a high photocurrent onset potential of 1.76 V versus the reversible hydrogen electrode (RHE and a photocurrent of 5.3 mA/cm2 at 0 V versus RHE (under halogen lamp illumination. Our results provide evidence that a direct application of thin film silicon based photocathodes fulfills the main thermodynamic requirements to generate hydrogen. Furthermore, the presented approach may provide an efficient and low-cost route to solar hydrogen production.

  9. Holliday junction resolvases.

    Science.gov (United States)

    Wyatt, Haley D M; West, Stephen C

    2014-09-02

    Four-way DNA intermediates, called Holliday junctions (HJs), can form during meiotic and mitotic recombination, and their removal is crucial for chromosome segregation. A group of ubiquitous and highly specialized structure-selective endonucleases catalyze the cleavage of HJs into two disconnected DNA duplexes in a reaction called HJ resolution. These enzymes, called HJ resolvases, have been identified in bacteria and their bacteriophages, archaea, and eukaryotes. In this review, we discuss fundamental aspects of the HJ structure and their interaction with junction-resolving enzymes. This is followed by a brief discussion of the eubacterial RuvABC enzymes, which provide the paradigm for HJ resolvases in other organisms. Finally, we review the biochemical and structural properties of some well-characterized resolvases from archaea, bacteriophage, and eukaryotes. Copyright © 2014 Cold Spring Harbor Laboratory Press; all rights reserved.

  10. Wireless Josephson Junction Arrays

    Science.gov (United States)

    Adams, Laura

    2015-03-01

    We report low temperature, microwave transmission measurements on a wireless two- dimensional network of Josephson junction arrays composed of superconductor-insulator -superconductor tunnel junctions. Unlike their biased counterparts, by removing all electrical contacts to the arrays and superfluous microwave components and interconnects in the transmission line, we observe new collective behavior in the transmission spectra. In particular we will show emergent behavior that systematically responds to changes in microwave power at fixed temperature. Likewise we will show the dynamic and collective response of the arrays while tuning the temperature at fixed microwave power. We discuss these spectra in terms of the Berezinskii-Kosterlitz-Thouless phase transition and Shapiro steps. We gratefully acknowledge the support Prof. Steven Anlage at the University of Maryland and Prof. Allen Goldman at the University of Minnesota. Physics and School of Engineering and Applied Sciences.

  11. The electronic structure of metal oxide/organo metal halide perovskite junctions in perovskite based solar cells.

    Science.gov (United States)

    Dymshits, Alex; Henning, Alex; Segev, Gideon; Rosenwaks, Yossi; Etgar, Lioz

    2015-03-03

    Cross-sections of a hole-conductor-free CH3NH3PbI3 perovskite solar cell were characterized with Kelvin probe force microscopy. A depletion region width of about 45 nm was determined from the measured potential profiles at the interface between CH3NH3PbI3 and nanocrystalline TiO2, whereas a negligible depletion was measured at the CH3NH3PbI3/Al2O3 interface. A complete solar cell can be realized with the CH3NH3PbI3 that functions both as light harvester and hole conductor in combination with a metal oxide. The band diagrams were estimated from the measured potential profile at the interfaces, and are critical findings for a better understanding and further improvement of perovskite based solar cells.

  12. Thermally induced perpendicular magnetic anisotropy in CoFeB/MgO/CoFeB based magnetic tunnel junction

    Science.gov (United States)

    Kulkarni, Prabhanjan D.; Khan, Jakeer; Predeep, P.; Chowdhury, P.

    2016-05-01

    Thin films of CoFeB/MgO/CoFeB based MTJ structure were deposited using UHV magnetron sputtering system and post annealing treatment in the temperature range from 100 to 400 °C has been carried out to understand their magnetic anisotropic properties. Though the as-deposited stack possesses in-plane magnetic anisotropy, the changeover to perpendicular magnetic anisotropy happens at temperature above 200 °C. The PMA is maximum (4.5 x 106 erg/cm3) when annealed at 300°C and the stack retains PMA till 350 °C, which is necessary in CMOS technology. The stack regains in-plane magnetic anisotropy at higher annealing temperatures due to intermixing at interfaces.

  13. Salicylic Acid-Based Polymers for Guided Bone Regeneration Using Bone Morphogenetic Protein-2.

    Science.gov (United States)

    Subramanian, Sangeeta; Mitchell, Ashley; Yu, Weiling; Snyder, Sabrina; Uhrich, Kathryn; O'Connor, J Patrick

    2015-07-01

    Bone morphogenetic protein-2 (BMP-2) is used clinically to promote spinal fusion, treat complex tibia fractures, and to promote bone formation in craniomaxillofacial surgery. Excessive bone formation at sites where BMP-2 has been applied is an established complication and one that could be corrected by guided tissue regeneration methods. In this study, anti-inflammatory polymers containing salicylic acid [salicylic acid-based poly(anhydride-ester), SAPAE] were electrospun with polycaprolactone (PCL) to create thin flexible matrices for use as guided bone regeneration membranes. SAPAE polymers hydrolyze to release salicylic acid, which is a nonsteroidal anti-inflammatory drug. PCL was used to enhance the mechanical integrity of the matrices. Two different SAPAE-containing membranes were produced and compared: fast-degrading (FD-SAPAE) and slow-degrading (SD-SAPAE) membranes that release salicylic acid at a faster and slower rate, respectively. Rat femur defects were treated with BMP-2 and wrapped with FD-SAPAE, SD-SAPAE, or PCL membrane or were left unwrapped. The effects of different membranes on bone formation within and outside of the femur defects were measured by histomorphometry and microcomputed tomography. Bone formation within the defect was not affected by membrane wrapping at BMP-2 doses of 12 μg or more. In contrast, the FD-SAPAE membrane significantly reduced bone formation outside the defect compared with all other treatments. The rapid release of salicylic acid from the FD-SAPAE membrane suggests that localized salicylic acid treatment during the first few days of BMP-2 treatment can limit ectopic bone formation. The data support development of SAPAE polymer membranes for guided bone regeneration applications as well as barriers to excessive bone formation.

  14. HDR Pathological Image Enhancement Based on Improved Bias Field Correction and Guided Image Filter

    Directory of Open Access Journals (Sweden)

    Qingjiao Sun

    2016-01-01

    Full Text Available Pathological image enhancement is a significant topic in the field of pathological image processing. This paper proposes a high dynamic range (HDR pathological image enhancement method based on improved bias field correction and guided image filter (GIF. Firstly, a preprocessing including stain normalization and wavelet denoising is performed for Haematoxylin and Eosin (H and E stained pathological image. Then, an improved bias field correction model is developed to enhance the influence of light for high-frequency part in image and correct the intensity inhomogeneity and detail discontinuity of image. Next, HDR pathological image is generated based on least square method using low dynamic range (LDR image, H and E channel images. Finally, the fine enhanced image is acquired after the detail enhancement process. Experiments with 140 pathological images demonstrate the performance advantages of our proposed method as compared with related work.

  15. Teaching entrepreneurship students the practice of innovation: A brain-based guided experience approach

    Directory of Open Access Journals (Sweden)

    Ronald Jean Degen

    2013-12-01

    Full Text Available http://dx.doi.org/10.5007/2175-8077.2013v15n37p92This paper presents a new method for teaching entrepreneurship students to practice innovation and to create high-impact business opportunities.  The teaching method is based on the guided experience learning model that was developed by Caine et al. (2009 to develop the executive functions in the brains of learners, and on the innovation framework that was introduced by Verganti (2009.  The cognitive perspective of creativity, as explained by Weisberg (2006, is used to show how the practice of innovation can be learned.  The model used for the creative process is based on research by Wallas (1926, and on recent neurological findings on the deliberate and spontaneous pathways to creativity (Carson, 2010.  The concept of effectual process (SARASVATHY, 2008 provides an approach to the validation of the students’ radical innovation ideas.

  16. Static characteristics design of hydrostatic guide-ways based on fluid-structure interactions

    Science.gov (United States)

    Lin, Shuo; Yin, YueHong

    2016-10-01

    With the raising requirements in micro optical systems, the available machines become hard to achieve the process dynamic and accuracy in all aspects. This makes compact design based on fluid/structure interactions (FSI) important. However, there is a difficulty in studying FSI with oil film as fluid domain. This paper aims at static characteristic design of a hydrostatic guide-way with capillary restrictors based on FSI. The pressure distribution of the oil film land is calculated by solving the Reynolds-equation with Galerkin technique. The deformation of structure is calculated by commercial FEM software, MSC. Nastran. A matlab program is designed to realize the coupling progress by modifying the load boundary in the submitting file and reading the deformation result. It's obvious that the stiffness of the hydrostatic bearing decreases with the weakening of the bearing structure. This program is proposed to make more precise prediction of bearing stiffness.

  17. Using Built-In Domain-Specific Modeling Support to Guide Model-Based Test Generation

    CERN Document Server

    Kanstrén, Teemu; 10.4204/EPTCS.80.5

    2012-01-01

    We present a model-based testing approach to support automated test generation with domain-specific concepts. This includes a language expert who is an expert at building test models and domain experts who are experts in the domain of the system under test. First, we provide a framework to support the language expert in building test models using a full (Java) programming language with the help of simple but powerful modeling elements of the framework. Second, based on the model built with this framework, the toolset automatically forms a domain-specific modeling language that can be used to further constrain and guide test generation from these models by a domain expert. This makes it possible to generate a large set of test cases covering the full model, chosen (constrained) parts of the model, or manually define specific test cases on top of the model while using concepts familiar to the domain experts.

  18. Using Built-In Domain-Specific Modeling Support to Guide Model-Based Test Generation

    Directory of Open Access Journals (Sweden)

    Teemu Kanstrén

    2012-02-01

    Full Text Available We present a model-based testing approach to support automated test generation with domain-specific concepts. This includes a language expert who is an expert at building test models and domain experts who are experts in the domain of the system under test. First, we provide a framework to support the language expert in building test models using a full (Java programming language with the help of simple but powerful modeling elements of the framework. Second, based on the model built with this framework, the toolset automatically forms a domain-specific modeling language that can be used to further constrain and guide test generation from these models by a domain expert. This makes it possible to generate a large set of test cases covering the full model, chosen (constrained parts of the model, or manually define specific test cases on top of the model while using concepts familiar to the domain experts.

  19. Lateral junction dynamics lead the way out.

    Science.gov (United States)

    Behrndt, Martin; Heisenberg, Carl-Philipp

    2014-02-01

    Epithelial cell layers need to be tightly regulated to maintain their integrity and correct function. Cell integration into epithelial sheets is now shown to depend on the N-WASP-regulated stabilization of cortical F-actin, which generates distinct patterns of apical-lateral contractility at E-cadherin-based cell-cell junctions.

  20. Ariadne: a Java-based guided tour system for the World Wide Web

    DEFF Research Database (Denmark)

    Jühne, Jesper; Jensen, Anders T.; Grønbæk, Kaj

    1998-01-01

    This paper presents a Guided tour system for the WWW, called Ariadne, which implements the ideas of trails and guided tours, originating from the hypertext field. Ariadne appears as a Java applet to the user and it stores guided tours in a database format separated from the WWW documents included...

  1. OPSO - The OpenGL based Field Acquisition and Telescope Guiding System

    Science.gov (United States)

    Škoda, P.; Fuchs, J.; Honsa, J.

    2006-07-01

    We present OPSO, a modular pointing and auto-guiding system for the coudé spectrograph of the Ondřejov observatory 2m telescope. The current field and slit viewing CCD cameras with image intensifiers are giving only standard TV video output. To allow the acquisition and guiding of very faint targets, we have designed an image enhancing system working in real time on TV frames grabbed by BT878-based video capture card. Its basic capabilities include the sliding averaging of hundreds of frames with bad pixel masking and removal of outliers, display of median of set of frames, quick zooming, contrast and brightness adjustment, plotting of horizontal and vertical cross cuts of seeing disk within given intensity range and many more. From the programmer's point of view, the system consists of three tasks running in parallel on a Linux PC. One C task controls the video capturing over Video for Linux (v4l2) interface and feeds the frames into the large block of shared memory, where the core image processing is done by another C program calling the OpenGL library. The GUI is, however, dynamically built in Python from XML description of widgets prepared in Glade. All tasks are exchanging information by IPC calls using the shared memory segments.

  2. Establishing a neurocognition-based taxonomy of graphical variables for attention-guiding geovisualisation

    Science.gov (United States)

    Swienty, O.; Zhang, M.; Reichenbacher, T.; Meng, L.

    2007-06-01

    It is a delicate task to design suitable geovisualisations that allow users an efficient visual processing of geographic information. In digital era, such a design task is confronted with a three-fold challenge: the ever growing amount of geospatial data at various granularity levels, the diversified applications and the continuously expanding range of display sizes. A geovisualisation system that strives for a high usability must satisfy the crucial prerequisite of immediately directing the user's gaze to the location of relevant geographic information and of easy decidability of the underlying semantic meanings. To this end, the cognitive skill of visual attention contributes to mnemonic and executive processes. Attention is indispensable for the visual selection. It facilitates the relevant information retrieval, processing and storage. On the basis of neurocognitive visual information processing, the paper addresses the interdisciplinary approach of attention-guiding design of geovisualisations with the intention to establish a taxonomy of scientifically testable variables. The authors try to relate attention-guiding attributes with graphical variables that cartographers apply to encode geographic information. The work is driven by the motivation to enhance the efficiency of geovisualisations and to enable a more precise neurocognition-based evaluation of geovisualisations.

  3. Portable organic gas detection sensor based on the effect of guided-mode resonance

    Science.gov (United States)

    Guo, Liang; Wang, Qi; Huang, Yuanshen; Zhang, Dawei

    2017-01-01

    A novel organic gas detection sensor based on the effect of guided-mode resonance is proposed in this paper. The sensor is designed to operate in the visible light band. It contains four main sections: a light source, a miniature gas chamber composed of a guided-mode resonant filter, a diffraction grating, and a CCD image sensor. When bunched visible light is irradiated vertically to the gas chamber, it passes through the gas chamber and diffraction grating, and is then received by the CCD sensor. The optical signal received by the CCD sensor is then reduced to the spectrum using a specific algorithm. When organic gases are injected into the gas chamber, there is a shift in the wavelength of resonant reflection, and the magnitude of this shift is proportional to the refractive index of the gas. The large variation in the refractive indexes of industrially important organic gases means that their characteristic peak wavelengths can be easily identified. As a result, this system can quickly detect organic gases. To verify the feasibility of this technique, we use finite difference time domain solutions to simulate the results. The sensitivity of this type of sensor can reach wavelength differences of 0.001 nm, which means that the sensor has high potential for application in portable, high-precision detection systems.

  4. Analysis of micro vibration in gas film of aerostatic guide way based on molecule collision theory

    Directory of Open Access Journals (Sweden)

    Yang Shao Hua

    2016-01-01

    Full Text Available Micro vibration of the aerostatic guide way has a significant impact on its dynamic characteristics and stability, which limits the development of pneumatic component. High pressure gas molecules have been collided with the supporting surface and the internal surface of the throttle during the flow process. Variable impulse of the surfaces aside for the gas film are affected by the changes of impulse which formed irregular impact force in horizontal and vertical direction. Micro-vibration takes place based on the natural frequency of the system and its frequency doubling. In this paper, the vibration model was established to describe the dynamic characteristics of the gas film, and the formation mechanism of micro vibration in the film is defined. Through the simulation analysis and experimental comparison, formation mechanism of the micro vibration in the gas film is confirmed. It was proposed that the micro vibration of gas film can be produced no matter whether there is a gas chamber or not in the throttle. Under the same conditions, the micro vibration of the guide way with air chamber is greater than that without any chamber. The frequency points of the vibration peaks are almost the same, as well as the vibration pattern in the frequency domain.

  5. RNA-guided transcriptional regulation in planta via synthetic dCas9-based transcription factors

    KAUST Repository

    Piatek, Agnieszka Anna

    2014-11-14

    Targeted genomic regulation is a powerful approach to accelerate trait discovery and development in agricultural biotechnology. Bacteria and archaea use clustered regularly interspaced short palindromic repeats (CRISPRs) and CRISPR-associated (Cas) regulatory systems for adaptive molecular immunity against foreign nucleic acids introduced by invading phages and conjugative plasmids. The type II CRISPR/Cas system has been adapted for genome editing in many cell types and organisms. A recent study used the catalytically inactive Cas9 (dCas9) protein combined with guide-RNAs (gRNAs) as a DNA-targeting platform to modulate gene expression in bacterial, yeast, and human cells. Here, we modified this DNA-targeting platform for targeted transcriptional regulation in planta by developing chimeric dCas9-based transcriptional activators and repressors. To generate transcriptional activators, we fused the dCas9 C-terminus with the activation domains of EDLL and TAL effectors. To generate a transcriptional repressor, we fused the dCas9 C-terminus with the SRDX repression domain. Our data demonstrate that dCas9 fusion with the EDLL activation domain (dCas9:EDLL) and the TAL activation domain (dCas9:TAD), guided by gRNAs complementary to selected promoter elements, induce strong transcriptional activation on Bs3

  6. How HIV-1 entry mechanism and broadly neutralizing antibodies guide structure-based vaccine design.

    Science.gov (United States)

    Pancera, Marie; Changela, Anita; Kwong, Peter D

    2017-05-01

    An HIV-1 vaccine that elicits broadly neutralizing antibodies (bNAbs) remains to be developed. Here, we review how knowledge of bNAbs and HIV-1 entry mechanism is guiding the structure-based design of vaccine immunogens and immunization regimens. Isolation of bNAbs from HIV-1-infected donors has led to an unprecedented understanding of the sites of vulnerability that these antibodies target on the HIV-1 envelope (Env) as well as of the immunological pathways that these antibody lineages follow to develop broad and potent neutralization. Sites of vulnerability, however, reside in the context of diverse Env conformations required for HIV-1 entry, including a prefusion-closed state, a single-CD4-bound intermediate, a three-CD4-bound intermediate, a prehairpin intermediate and postfusion states, and it is not always clear which structural state optimally presents a particular site of vulnerability in the vaccine context. Furthermore, detailed knowledge of immunological pathways has led to debate among vaccine developers as to how much of the natural antibody-developmental pathway immunogens should mimic, ranging from only the recognized epitope to multiple antigens from the antibody-virus coevolution process. A plethora of information on bNAbs is guiding HIV-1-vaccine development. We highlight consideration of the appropriate structural context from the HIV-1-entry mechanism and extraordinary progress with replicating template B-cell ontogenies.

  7. The kinematics modeling based on Spinor theory for CT-guided hybrid robot

    Institute of Scientific and Technical Information of China (English)

    Tang Can; Liu Da; Wang Tianmiao; Yun Chao

    2009-01-01

    This paper focused on a simplified method for solving the hybrid robot kinematics in CT-guided (computerized tomography, CT) surgery. By position constraint introduced, the hybrid robot can be transformed as a redundant serial 7-DOF robot. The forward displacement calculation was developed based on the product-of-exponential formula (POE). Because of the kinematics complexity of the hybrid and redundant robot, the combination technique of Ulrich two-step iteration method and paul variables detachment method (UTI-PVD) was introduced to fulfill the inverse kinematics of redundant robot, the novelty of which lay in the flexibility of various robots structures and in high calculation efficiency for real-time control. The process of solving the inverse displacement was analyzed. The UTI-PVD method can be applicable to kinematics of many robots, especially for redundant robots with more than 6DOF. The kinematics simulation was provided, and robot dexterity analysis was presented. The results indicated that the hybrid robot could implement the minimally invasive CT-guided surgery.

  8. A guide to using case-based learning in biochemistry education.

    Science.gov (United States)

    Kulak, Verena; Newton, Genevieve

    2014-01-01

    Studies indicate that the majority of students in undergraduate biochemistry take a surface approach to learning, associated with rote memorization of material, rather than a deep approach, which implies higher cognitive processing. This behavior relates to poorer outcomes, including impaired course performance and reduced knowledge retention. The use of case-based learning (CBL) into biochemistry teaching may facilitate deep learning by increasing student engagement and interest. Abundant literature on CBL exists but clear guidance on how to design and implement case studies is not readily available. This guide provides a representative review of CBL uses in science and describes the process of developing CBL modules to be used in biochemistry. Included is a framework to implement a directed CBL assisted with lectures in a content-driven biochemistry course regardless of class size. Moreover, this guide can facilitate adopting CBL to other courses. Consequently, the information presented herein will be of value to undergraduate science educators with an interest in active learning pedagogies. © 2014 The International Union of Biochemistry and Molecular Biology.

  9. Co2MnSi Heusler alloy as an enhancing layer of perpendicular magnetic anisotropy for MgO-based magnetic tunnel junctions with L10 ordered FePd

    Science.gov (United States)

    Bae, Taejin; Ko, Jungho; Lee, Sangho; Cha, Jongin; Hong, Jongill

    2016-01-01

    Ultra-thin Co2MnSi Heusler alloy improves perpendicular magnetic anisotropy of FePd in an MgO-based magnetic tunnel junction after annealing it just once at a temperature of as low as 400 °C. Co2MnSi as thin as 1.0 nm inserted between MgO and FePd facilitated phase-transformation of 3-nm-thick FePd to ordered L10 and led a change in magnetic anisotropy to perpendicular-to-the-plane. To make it even better, FePd also helped the phase-transformation of Co2MnSi to ordered B2 known to have high spin polarization, which makes the L10 FePd/B2 Co2MnSi bilayer promising for perpendicular-magnetic tunnel junction and improving both thermal stability and tunnel magnetoresistance.

  10. Edge-Geometry NbN/MgO/NbN Tunnel Junctions

    Science.gov (United States)

    Hunt, Brian D.; Leduc, Henry G.

    1991-01-01

    Superconductor/insulator/superconductor (SIS) tunnel junctions fabricated with base and counter electrodes of NbN separated by thin layers of MgO. Useful as submillimeter-wave mixers and fast switches. Use of edge geometry to define small junction makes possible to fabricate junction by process including conventional photolithography.

  11. Ligand placement based on prior structures: the guided ligand-replacement method

    Energy Technology Data Exchange (ETDEWEB)

    Klei, Herbert E. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Bristol-Myers Squibb, Princeton, NJ 08543-4000 (United States); Moriarty, Nigel W., E-mail: nwmoriarty@lbl.gov; Echols, Nathaniel [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Terwilliger, Thomas C. [Los Alamos National Laboratory, Los Alamos, NM 87545-0001 (United States); Baldwin, Eric T. [Bristol-Myers Squibb, Princeton, NJ 08543-4000 (United States); Natural Discovery LLC, Princeton, NJ 08542-0096 (United States); Pokross, Matt; Posy, Shana [Bristol-Myers Squibb, Princeton, NJ 08543-4000 (United States); Adams, Paul D. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); University of California at Berkeley, Berkeley, CA 94720-1762 (United States)

    2014-01-01

    A new module, Guided Ligand Replacement (GLR), has been developed in Phenix to increase the ease and success rate of ligand placement when prior protein-ligand complexes are available. The process of iterative structure-based drug design involves the X-ray crystal structure determination of upwards of 100 ligands with the same general scaffold (i.e. chemotype) complexed with very similar, if not identical, protein targets. In conjunction with insights from computational models and assays, this collection of crystal structures is analyzed to improve potency, to achieve better selectivity and to reduce liabilities such as absorption, distribution, metabolism, excretion and toxicology. Current methods for modeling ligands into electron-density maps typically do not utilize information on how similar ligands bound in related structures. Even if the electron density is of sufficient quality and resolution to allow de novo placement, the process can take considerable time as the size, complexity and torsional degrees of freedom of the ligands increase. A new module, Guided Ligand Replacement (GLR), was developed in Phenix to increase the ease and success rate of ligand placement when prior protein–ligand complexes are available. At the heart of GLR is an algorithm based on graph theory that associates atoms in the target ligand with analogous atoms in the reference ligand. Based on this correspondence, a set of coordinates is generated for the target ligand. GLR is especially useful in two situations: (i) modeling a series of large, flexible, complicated or macrocyclic ligands in successive structures and (ii) modeling ligands as part of a refinement pipeline that can automatically select a reference structure. Even in those cases for which no reference structure is available, if there are multiple copies of the bound ligand per asymmetric unit GLR offers an efficient way to complete the model after the first ligand has been placed. In all of these applications, GLR

  12. Vapor cell based sodium laser guide star mechanism study lab-bench

    Science.gov (United States)

    Wang, Hongyan; Li, Lihang; Luo, Ruiyao; Li, Lei; Ning, Yu; Xi, Fengjie; Xu, Xiaojun

    2016-07-01

    Sodium laser guide star (LGS) is the key for the success of modern adaptive optics (AO) supported large ground based telescopes, however, for many field applications, Sodium LGS's brightness is still a limited factor. Large amounts of theoretical efforts have been paid to optimize Sodium LGS exciting parameters, that is, to fully discover potential of harsh environment surrounding mesospheric extreme thin sodium atoms under resonant excitation, whether quantum or Monte Carlo based. But till to now, only limited proposals are demonstrated with on-sky test due to the high cost and engineering complexities. To bridge the gap between theoretical modeling and on-sky test, we built a magnetic field controllable sodium cell based lab-bench, which includes a small scale sum-frequency single mode 589nm laser, with added amplitude, polarization, and phase modulators. We could perform quantitative resonant fluorescence study under single, multi-frequency, side-band optical re-pumping exciting with different polarization, also we could perform optical field modulation to study Larmor precession which is considered as one of devils of Sodium LGS, and we have the ability to generate beams contain orbital angular moment. Our preliminary sodium cell based optical re-pumping experiments have shown excellent consistence with Bloch equation predicted results, other experimental results will also be presented in the report, and these results will give a direct support that sodium cell based lab-bench study could help a Sodium LGS scientists a lot before their on-sky test.

  13. Design of Steerable Wavelets to Detect Multifold Junctions.

    Science.gov (United States)

    Püspöki, Zsuzsanna; Uhlmann, Virginie; Vonesch, Cédric; Unser, Michael

    2016-02-01

    We propose a framework for the detection of junctions in images. Although the detection of edges and key points is a well examined and described area, the multiscale detection of junction centers, especially for odd orders, poses a challenge in pattern analysis. The goal of this paper is to build optimal junction detectors based on 2D steerable wavelets that are polar-separable in the Fourier domain. The approaches we develop are general and can be used for the detection of arbitrary symmetric and asymmetric junctions. The backbone of our construction is a multiscale pyramid with a radial wavelet function where the directional components are represented by circular harmonics and encoded in a shaping matrix. We are able to detect M -fold junctions in different scales and orientations. We provide experimental results on both simulated and real data to demonstrate the effectiveness of the algorithm.

  14. Generalized poroviscoelastic model based on effective Biot theory and its application to borehole guided wave analysis

    Science.gov (United States)

    Liu, Xu; Greenhalgh, Stewart; Zhou, Bing; Heinson, Graham

    2016-12-01

    A method using modified attenuation factor function is suggested to determine the parameters of the generalized Zener model approximating the attenuation factor function. This method is applied to constitute the poroviscoelastic model based on the effective Biot theory which considers the attenuative solid frame of reservoir. In the poroviscoelastic model, frequency-dependent bulk modulus and shear modulus of solid frame are represented by generalized Zener models. As an application, the borehole logging dispersion equations from Biot theory are extended to include effects from the intrinsic body attenuation in formation media in full-frequency range. The velocity dispersions of borehole guided waves are calculated to investigate the influence from attenuative bore fluid, attenuative solid frame of the formation and impermeable bore wall.

  15. Orbitofrontal cortex encodes memories within value-based schemas and represents contexts that guide memory retrieval.

    Science.gov (United States)

    Farovik, Anja; Place, Ryan J; McKenzie, Sam; Porter, Blake; Munro, Catherine E; Eichenbaum, Howard

    2015-05-27

    There are a substantial number of studies showing that the orbitofrontal cortex links events to reward values, whereas the hippocampus links events to the context in which they occur. Here we asked how the orbitofrontal cortex contributes to memory where context determines the reward values associated with events. After rats learned object-reward associations that differed depending on the spatial context in which the objects were presented, neuronal ensembles in orbitofrontal cortex represented distinct value-based schemas, each composed of a systematic organization of the representations of objects in the contexts and positions where they were associated with reward or nonreward. Orbitofrontal ensembles also represent the different spatial contexts that define the mappings of stimuli to actions that lead to reward or nonreward. These findings, combined with observations on complementary memory representation within the hippocampus, suggest mechanisms through which prefrontal cortex and the hippocampus interact in support of context-guided memory.

  16. Intensity Variation Normalization for Finger Vein Recognition Using Guided Filter Based Singe Scale Retinex.

    Science.gov (United States)

    Xie, Shan Juan; Lu, Yu; Yoon, Sook; Yang, Jucheng; Park, Dong Sun

    2015-07-14

    Finger vein recognition has been considered one of the most promising biometrics for personal authentication. However, the capacities and percentages of finger tissues (e.g., bone, muscle, ligament, water, fat, etc.) vary person by person. This usually causes poor quality of finger vein images, therefore degrading the performance of finger vein recognition systems (FVRSs). In this paper, the intrinsic factors of finger tissue causing poor quality of finger vein images are analyzed, and an intensity variation (IV) normalization method using guided filter based single scale retinex (GFSSR) is proposed for finger vein image enhancement. The experimental results on two public datasets demonstrate the effectiveness of the proposed method in enhancing the image quality and finger vein recognition accuracy.

  17. Intensity Variation Normalization for Finger Vein Recognition Using Guided Filter Based Singe Scale Retinex

    Directory of Open Access Journals (Sweden)

    Shan Juan Xie

    2015-07-01

    Full Text Available Finger vein recognition has been considered one of the most promising biometrics for personal authentication. However, the capacities and percentages of finger tissues (e.g., bone, muscle, ligament, water, fat, etc. vary person by person. This usually causes poor quality of finger vein images, therefore degrading the performance of finger vein recognition systems (FVRSs. In this paper, the intrinsic factors of finger tissue causing poor quality of finger vein images are analyzed, and an intensity variation (IV normalization method using guided filter based single scale retinex (GFSSR is proposed for finger vein image enhancement. The experimental results on two public datasets demonstrate the effectiveness of the proposed method in enhancing the image quality and finger vein recognition accuracy.

  18. 10 Guiding principles of a comprehensive Internet-based public health preparedness training and education program.

    Science.gov (United States)

    Alexander, Lorraine K; Horney, Jennifer A; Markiewicz, Milissa; MacDonald, Pia D M

    2010-01-01

    Distance learning is an effective strategy to address the many barriers to continuing education faced by the public health workforce. With the proliferation of online learning programs focused on public health, there is a need to develop and adopt a common set of principles and practices for distance learning. In this article, we discuss the 10 principles that guide the development, design, and delivery of the various training modules and courses offered by the North Carolina Center for Public Health Preparedness (NCCPHP). These principles are the result of 10 years of experience in Internet-based public health preparedness educational programming. In this article, we focus on three representative components of NCCPHP's overall training and education program to illustrate how the principles are implemented and help others in the field plan and develop similar programs.

  19. Neural Network Control-Based Drive Design of Servomotor and Its Application to Automatic Guided Vehicle

    Directory of Open Access Journals (Sweden)

    Ming-Shyan Wang

    2015-01-01

    Full Text Available An automatic guided vehicle (AGV is extensively used for productions in a flexible manufacture system with high efficiency and high flexibility. A servomotor-based AGV is designed and implemented in this paper. In order to steer the AGV to go along a predefined path with corner or arc, the conventional proportional-integral-derivative (PID control is used in the system. However, it is difficult to tune PID gains at various conditions. As a result, the neural network (NN control is considered to assist the PID control for gain tuning. The experimental results are first provided to verify the correctness of the neural network plus PID control for 400 W-motor control system. Secondly, the AGV includes two sets of the designed motor systems and CAN BUS transmission so that it can move along the straight line and curve paths shown in the taped videos.

  20. Fragment-Based and Structure-Guided Discovery and Optimization of Rho Kinase Inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Li, Rongshi; Martin, Mathew P.; Liu, Yan; Wang, Binglin; Patel, Ronil A.; Zhu, Jin-Yi; Sun, Nan; Pireddu, Roberta; Lawrence, Nicholas J.; Li, Jiannong; Haura, Eric B.; Sung, Shen-Shu; Guida, Wayne C.; Schonbrunn, Ernst; Sebti, Said M. (Moffitt)

    2012-05-14

    Using high concentration biochemical assays and fragment-based screening assisted by structure-guided design, we discovered a novel class of Rho-kinase inhibitors. Compound 18 was equipotent for ROCK1 (IC{sub 50} = 650 nM) and ROCK2 (IC{sub 50} = 670 nM), whereas compound 24 was more selective for ROCK2 (IC{sub 50} = 100 nM) over ROCK1 (IC{sub 50} = 1690 nM). The crystal structure of the compound 18-ROCK1 complex revealed that 18 is a type 1 inhibitor that binds the hinge region in the ATP binding site. Compounds 18 and 24 inhibited potently the phosphorylation of the ROCK substrate MLC2 in intact human breast cancer cells.

  1. Visual Map Shifts based on Whisker-Guided Cues in the Young Mouse Visual Cortex

    Directory of Open Access Journals (Sweden)

    Kohei Yoshitake

    2013-12-01

    Full Text Available Mice navigate nearby space using their vision and whiskers, and young mice learn to integrate these heterogeneous inputs in perceptual space. We found that cortical responses were depressed in the primary visual cortex of young mice after wearing a monocular prism. This depression was uniformly observed in the primary visual cortex and was eliminated by whisker trimming or lesions in the posterior parietal cortex. Compensatory visual map shifts of responses elicited via the eye that had worn the prism were also observed. As a result, cortical responses elicited via each eye were clearly separated when a visual stimulus was placed in front of the mice. A comparison of response areas before and after prism wearing indicated that the map shifts were produced by depression with spatial eccentricity. Visual map shifts based on whisker-guided cues may serve as a model for investigating the cellular and molecular mechanisms underlying higher sensory integration in the mammalian brain.

  2. An induced junction photovoltaic cell

    Science.gov (United States)

    Call, R. L.

    1974-01-01

    Silicon solar cells operating with induced junctions rather than diffused junctions have been fabricated and tested. Induced junctions were created by forming an inversion layer near the surface of the silicon by supplying a sheet of positive charge above the surface. Measurements of the response of the inversion layer cell to light of different wavelengths indicated it to be more sensitive to the shorter wavelengths of the sun's spectrum than conventional cells. The greater sensitivity occurs because of the shallow junction and the strong electric field at the surface.

  3. Combining an Evolution-guided Clustering Algorithm and Haplotype-based LRT in Family Association Studies

    Directory of Open Access Journals (Sweden)

    Huang Su-Yun

    2011-05-01

    Full Text Available Abstract Background With the completion of the international HapMap project, many studies have been conducted to investigate the association between complex diseases and haplotype variants. Such haplotype-based association studies, however, often face two difficulties; one is the large number of haplotype configurations in the chromosome region under study, and the other is the ambiguity in haplotype phase when only genotype data are observed. The latter complexity may be handled based on an EM algorithm with family data incorporated, whereas the former can be more problematic, especially when haplotypes of rare frequencies are involved. Here based on family data we propose to cluster long haplotypes of linked SNPs in a biological sense, so that the number of haplotypes can be reduced and the power of statistical tests of association can be increased. Results In this paper we employ family genotype data and combine a clustering scheme with a likelihood ratio statistic to test the association between quantitative phenotypes and haplotype variants. Haplotypes are first grouped based on their evolutionary closeness to establish a set containing core haplotypes. Then, we construct for each family the transmission and non-transmission phase in terms of these core haplotypes, taking into account simultaneously the phase ambiguity as weights. The likelihood ratio test (LRT is next conducted with these weighted and clustered haplotypes to test for association with disease. This combination of evolution-guided haplotype clustering and weighted assignment in LRT is able, via its core-coding system, to incorporate into analysis both haplotype phase ambiguity and transmission uncertainty. Simulation studies show that this proposed procedure is more informative and powerful than three family-based association tests, FAMHAP, FBAT, and an LRT with a group consisting exclusively of rare haplotypes. Conclusions The proposed procedure takes into account the

  4. Transmembrane potentials of canine AV junctional tissues.

    Science.gov (United States)

    Tse, W W

    1986-06-01

    The atrioventricular (AV) junction comprises the AV node, His bundle (HB), and specialized tissues proximal to the node called paranodal fibers (PNF). In the present study, an in vitro, dissection-exposed canine right atrial (RA), transitional fiber (TF), AV junctional preparation was used. The TF and PNF formed a pathway running along the base of the septal cusp of the tricuspid valve (SCTV). In the first experiment, impulses elicited at the RA were monitored to propagate sequentially through the TF, PNF, AV node, and then the HB. This functional evidence supports the concept that a conduction pathway connecting the RA and the AV node exists along the base of the SCTV. This internodal pathway is referred to as the septal cusp pathway. In another experiment, transmembrane potentials and Vmax were determined on each of the AV junctional tissues. Results showed that PNF had the lowest Vmax (2.5 V/sec), followed by AV node (7.0 V/sec) and HB (33 V/sec). This finding showed that PNF, and not the AV node, has the lowest Vmax, suggesting that the PNF has the lowest conductivity among the AV junctional tissues, and this study advances our understanding on the mechanism of AV conduction delay in dog hearts.

  5. Guiding osteogenesis of mesenchymal stem cells using carbon-based nanomaterials

    Science.gov (United States)

    Kang, Ee-Seul; Kim, Da-Seul; Suhito, Intan Rosalina; Choo, Sung-Sik; Kim, Seung-Jae; Song, Inbeom; Kim, Tae-Hyung

    2017-01-01

    In the field of regenerative medicine, stem cells are highly promising due to their innate ability to generate multiple types of cells that could replace/repair damaged parts of human organs and tissues. It has been reported that both in vitro and in vivo function/survival of stem cells could significantly be improved by utilizing functional materials such as biodegradable polymers, metal composites, nanopatterns and nanohybrid particles. Of various biocompatible materials available for use in stem cell-based therapy and research, carbon-based materials—including fullerenes graphene/graphene oxide and carbon nanotubes—have been found to possess unique physicochemical characteristics that contribute to the effective guidance of stem cell differentiation into specific lineages. In this review, we discuss a number of previous reports that investigated the use of carbon-based materials to control stem cell behavior, with a particular focus on their immense potential to guide the osteogenesis of mesenchymal stem cells (MSCs). We hope that this review will provide information on the full potential of using various carbon-based materials in stem cell-mediated regenerative therapy, particularly for bone regeneration and repair.

  6. Augmented-reality-guided biopsy of a tumor near the skull base: the surgeon's experience

    Science.gov (United States)

    Eggers, Georg; Sudra, Gunther; Ghanai, Sassan; Salb, Tobias; Dillmann, Ruediger; Marmulla, Ruediger; Hassfeld, Stefan

    2005-04-01

    INPRES, a system for Augmented Reality has been developed in the collaborative research center "Information Technology in Medicine - Computer- and Sensor-Aided Surgery". The system is based on see-through glasses. In extensive preclinical testing the system has proven its functionality and tests with volunteers had been performed successfully, based on MRI imaging. We report the surgeons view of the first use of the system for AR guided biopsy of a tumour near the skull base. Preoperative planning was performed based on CT image data. The information to be projected was the tumour volume and was segmented from image data. With the use of infrared cameras, the positions of patient and surgeon were tracked intraoperatively and the information on the glasses displays was updated accordingly. The systems proved its functionality under OR conditions in patient care: Augmented reality information could be visualized with sufficient accuracy for the surgical task. After intraoperative calibration by the surgeon, the biopsy was acquired successfully. The advantage of see through glasses is their flexibility. A virtual stereoscopic image can be set up wherever and whenever desired. A biopsy at a delicate location could be performed without the need for wide exposure. This means additional safety and lower operation related morbidity to the patient. The integration of the calibration-procedure of the glasses into the intraoperative workflow is of importance to the surgeon.

  7. 基于β辐射伏特效应的NPN结型换能结构研究%The NPN Junction Energy Conversion Structure Research Based on Betavoltaic

    Institute of Scientific and Technical Information of China (English)

    刘明忠; 熊平; 邓建伟; 刘谋忠; 徐守龙; 陈铀; 郭萍

    2014-01-01

    Because the nuclear microbattery based on silicon PN junction suffers from small short-circuit current and can not achieve high collection efficiency,this paper raises for the first time that silicon NPN junction as the energy conversion structure for nuclear battery is expec-ted to achieve higher electrical power output. The double-sided of silicon NPN diode were irra-diated by electron beam and the electrical capabilities are measured during the irradiation. The experiment results indicate that NPN junction can increase depletion region width by lightly do-ping of P region,and reducing the thickness of batter to achieve a small body resistance,which result in the short-circuit current and energy conversion performance improving.%针对PN结型换能器件收集效率低,短路电流小等缺点,首次提出NPN结型核电池换能结构。用电子束对设计制作的NPN结型换能器件进行双面辐照实验,实验结果表明NPN结型换能结构能够通过降低P区掺杂浓度提高耗尽区宽度,减小换能器件厚度降低体电阻,增大短路电流,获得较大的能量转换效率。

  8. Strength-based leadership coaching in organizations an evidence-based guide to positive leadership development

    CERN Document Server

    MacKie, Doug

    2016-01-01

    Positive organizational psychology, with its focus on the identification and development of strengths, is a natural ally to executive development and leadership coaching. However, this approach is only just beginning to come to the attention of organizations and consequently, the research base for strength-based coaching is in its early stages of development. Strength-based Leadership Coaching in Organizations reviews strength-based approaches to positive leadership development and evaluates the evidence for their effectiveness, critically assesses their apparent distinctiveness and considers how strengths can be reliably assessed and developed in their organizational context. This book reviews key areas of leader and team development are reviewed and outlines and describes a model of strengths development in organizations. The application of strength-based leadership coaching will be discussed from the managerial and external perspective within the context of career stage, seniority, role challenges and orga...

  9. Amorphous silicon germanium carbide photo sensitive bipolar junction transistor with a base-contact and a continuous tunable high current gain

    Energy Technology Data Exchange (ETDEWEB)

    Bablich, A., E-mail: andreas.bablich@uni-siegen.de [Department of Electrical and Computer Engineering, Institute for Microsystem Technologies, University of Siegen, Hoelderlinstrasse 3, 57076 Siegen (Germany); Merfort, C., E-mail: merfort@imt.e-technik.uni-siegen.de [Department of Electrical and Computer Engineering, Institute for Microsystem Technologies, University of Siegen, Hoelderlinstrasse 3, 57076 Siegen (Germany); Eliasz, J., E-mail: jacek.eliasz@student.uni-siegen.de [Department of Electrical and Computer Engineering, Institute for Microsystem Technologies, University of Siegen, Hoelderlinstrasse 3, 57076 Siegen (Germany); Schäfer-Eberwein, H., E-mail: heiko.schaefer@uni-siegen.de [Department of Electrical and Computer Engineering, Institute of High Frequency and Quantum Electronics, University of Siegen, Hoelderlinstrasse 3, 57076 Siegen (Germany); Haring-Bolivar, P., E-mail: peter.haring@uni-siegen.de [Department of Electrical and Computer Engineering, Institute of High Frequency and Quantum Electronics, University of Siegen, Hoelderlinstrasse 3, 57076 Siegen (Germany); Boehm, M., E-mail: markus.boehm@uni-siegen.de [Department of Electrical and Computer Engineering, Institute for Microsystem Technologies, University of Siegen, Hoelderlinstrasse 3, 57076 Siegen (Germany)

    2014-05-02

    In this paper, the design, fabrication and characterization of an amorphous silicon germanium carbide (a-SiGeC:H) photo sensitive bipolar junction transistor (PS-BJT) with three terminals are presented. Whereas the current gain of similar transistor devices presented in the past (Wu et al., 1984; Hwang et al., 1993; Nascetti and Caputo, 2002; Chang et al., 1985a,b; Wu et al, 1985; Hong et al., 1990) can only be controlled with photo induced charge generation, the n–i–δp–i–n structure developed features a contacted base to provide the opportunity to adjust the current gain optically and electrically, too. Electron microscope-, current-/voltage- and spectral measurements were performed to study the PS-BJT behavior and calculate the electrical and optical current gain. The spectral response maximum of the base–collector diode has a value of 170 mA/W applying a base–collector voltage of − 1 V and is located at 620 nm. The base–emitter diode reaches a sensitivity of 25.7 mA/W at 530 nm with a base-emitter voltage of − 3 V. The good a-Si:H transport properties are validated in a μτ-product of 4.6 × 10{sup −6} cm{sup 2} V s, which is sufficient to reach a continuous base- and photo-tunable current gain of up to − 126 at a base current of I{sub B} = + 10 nA and a collector–emitter voltage of V{sub CE} = − 3 V. The transistor obtains a maximum collector current of − 65.5 μA (V{sub CE} = − 3 V) and + 56.2 μA (V{sub CE} = + 3 V) at 10,000 lx 5300 K white-light illumination. At 3300 lx, the electrical current gain reaches a value of + 100 (V{sub CE} = + 2 V) at I{sub B} = 10 nA. With a negative base current of I{sub B} = − 10 nA the electrical gain can be adjusted between 87 (V{sub CE} = + 2 V) and − 106 (V{sub CE} = -3 V), respectively. When no base charge is applied, the transistor is “off” for V{sub CE} > − 3 V. Reducing the base current increases the electrical current gain. Operating with a voltage V{sub CE} of just ± 2 V

  10. Fabrication of a magnetic-tunnel-junction-based nonvolatile logic-in-memory LSI with content-aware write error masking scheme achieving 92% storage capacity and 79% power reduction

    Science.gov (United States)

    Natsui, Masanori; Tamakoshi, Akira; Endoh, Tetsuo; Ohno, Hideo; Hanyu, Takahiro

    2017-04-01

    A magnetic-tunnel-junction (MTJ)-based video coding hardware with an MTJ-write-error-rate relaxation scheme as well as a nonvolatile storage capacity reduction technique is designed and fabricated in a 90 nm MOS and 75 nm perpendicular MTJ process. The proposed MTJ-oriented dynamic error masking scheme suppresses the effect of write operation errors on the operation result of LSI, which results in the increase in an acceptable MTJ write error rate up to 7.8 times with less than 6% area overhead, while achieving 79% power reduction compared with that of the static-random-access-memory-based one.

  11. Supercurrents in InSb nanowire Josephson junctions

    Science.gov (United States)

    Chen, Jun; Yu, Peng; Plissard, Sébastien; Car, Diana; Mourik, Vincent; Zuo, Kun; van Woerkom, David; Szombati, Daniel; Kouwenhoven, Leo; Bakkers, Erik; Frolov, Sergey

    2014-03-01

    Majorana fermions have been predicted in one-dimensional semiconductor nanowires with strong spin-orbit interactions coupled to superconductors. Effects such as odd number Shapiro steps disappearing and critical currents oscillating in magnetic field have been proposed as signatures of Majorana fermions in Josephson junctions. Here we investigate supercurrents in NbTiN-InSb nanowire-NbTiN Josephson junctions as a function of back gate and magnetic field. When an external magnetic field was applied along the nanowire, we observe gate-tunable oscillations in the critical current. To clarify the origin of this oscillating critical current, we are studying the spectra of Shapiro steps, which may give us a better understanding of such Josephson junctions and guide the search for additional signatures of Majorana fermions.

  12. Light-emitting diode-based multiwavelength diffuse optical tomography system guided by ultrasound

    Science.gov (United States)

    Yuan, Guangqian; Alqasemi, Umar; Chen, Aaron; Yang, Yi; Zhu, Quing

    2014-01-01

    Abstract. Laser diodes are widely used in diffuse optical tomography (DOT) systems but are typically expensive and fragile, while light-emitting diodes (LEDs) are cheaper and are also available in the near-infrared (NIR) range with adequate output power for imaging deeply seated targets. In this study, we introduce a new low-cost DOT system using LEDs of four wavelengths in the NIR spectrum as light sources. The LEDs were modulated at 20 kHz to avoid ambient light. The LEDs were distributed on a hand-held probe and a printed circuit board was mounted at the back of the probe to separately provide switching and driving current to each LED. Ten optical fibers were used to couple the reflected light to 10 parallel photomultiplier tube detectors. A commercial ultrasound system provided simultaneous images of target location and size to guide the image reconstruction. A frequency-domain (FD) laser-diode-based system with ultrasound guidance was also used to compare the results obtained from those of the LED-based system. Results of absorbers embedded in intralipid and inhomogeneous tissue phantoms have demonstrated that the LED-based system provides a comparable quantification accuracy of targets to the FD system and has the potential to image deep targets such as breast lesions. PMID:25473884

  13. Mixing in T-junctions

    NARCIS (Netherlands)

    Kok, Jacobus B.W.; van der Wal, S.

    1996-01-01

    The transport processes that are involved in the mixing of two gases in a T-junction mixer are investigated. The turbulent flow field is calculated for the T-junction with the k- turbulence model by FLOW3D. In the mathematical model the transport of species is described with a mixture fraction

  14. Inelastic electron tunneling spectroscopy of CoFeB/ MgO/ CoFeB based magnetic tunnel junctions in high magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Walter, Marvin; Zbarskyy, Vladyslav; Muenzenberg, Markus [I. Phys. Inst., Georg-August-Universitaet Goettingen, 37077 Goettingen (Germany); Seibt, Michael [IV. Phys. Inst., Georg-August-Universitaet Goettingen, 37077 Goettingen (Germany); Drewello, Volker; Schaefers, Markus; Reiss, Guenter; Thomas, Andy [Bielefeld University, Physics Department, 33501 Bielefeld (Germany)

    2010-07-01

    Magnetic tunnel junctions (MTJs) showing a high tunnel magnetoresistance (TMR) are important for the fabrication of MRAM devices when combined with current induced switching. We discuss inelastic electron tunneling spectroscopy (IETS) measurements on CoFeB/MgO/CoFeB magnetic tunnel junctions. The junctions are prepared by means of magnetron sputtering of CoFeB and e-beam evaporation of stoichiometric MgO. Structuring of the multilayer is done using a photolithography process and Argon ion-milling. The IETS measurements are carried out at low temperatures down to 4.2 K, high magnetic fields up to 9 T and in parallel as well as antiparallel electrode configuration in order to distinguish between different kind of excitations such as e.g. magnons and phonons. Furthermore, oxygen vacancies in the MgO barrier are controlled through variation of the sample temperature during e-beam growth to investigate the influences of these vacancies on the tunneling spectra of MTJs.

  15. Application of a diagnosis-based clinical decision guide in patients with low back pain

    Directory of Open Access Journals (Sweden)

    Murphy Donald R

    2011-10-01

    Full Text Available Abstract Background Low back pain (LBP is common and costly. Development of accurate and efficacious methods of diagnosis and treatment has been identified as a research priority. A diagnosis-based clinical decision guide (DBCDG; previously referred to as a diagnosis-based clinical decision rule has been proposed which attempts to provide the clinician with a systematic, evidence-based means to apply the biopsychosocial model of care. The approach is based on three questions of diagnosis. The purpose of this study is to present the prevalence of findings using the DBCDG in consecutive patients with LBP. Methods Demographic, diagnostic and baseline outcome measure data were gathered on a cohort of LBP patients examined by one of three examiners trained in the application of the DBCDG. Results Data were gathered on 264 patients. Signs of visceral disease or potentially serious illness were found in 2.7%. Centralization signs were found in 41%, lumbar and sacroiliac segmental signs in 23% and 27%, respectively and radicular signs were found in 24%. Clinically relevant myofascial signs were diagnosed in 10%. Dynamic instability was diagnosed in 63%, fear beliefs in 40%, central pain hypersensitivity in 5%, passive coping in 3% and depression in 3%. Conclusion The DBCDG can be applied in a busy private practice environment. Further studies are needed to investigate clinically relevant means to identify central pain hypersensitivity, poor coping and depression, correlations and patterns among the diagnostic components of the DBCDG as well as inter-examiner reliability and efficacy of treatment based on the DBCDG.

  16. The Supervisor Training Curriculum: Evidence-Based Ways to Promote Work Quality and Enjoyment among Support Staff (Trainee Guide)

    Science.gov (United States)

    American Association on Intellectual and Developmental Disabilities, 2011

    2011-01-01

    "The Trainee Guide for the Supervisor Training Curriculum" summarizes key points in the Curriculum and is meant as a note taking and reference tool. The Supervisor Training Curriculum instructs supervisors on ways in which they can direct and motivate staff working with people with intellectual disabilities. Based on three decades of applied…

  17. Fabrication and optical design of pyramid microstructure on the base of light guide used for the backlight module

    Science.gov (United States)

    Chang, Jee-Gong; Liu, Chien-Wei; Fang, Yu-Bin; Lu, Jian-Ming; Li, Wang-Long; Ju, Shin-Pon

    2010-10-01

    This paper proposed the pyramid microstructure (PYM) used on the base of the light guide as the micro-optical components to replace the conventional diffuser dot made by direct etching on the steel stamper. The PYM is made by MEMS technology, which uses silicon wafer as original mold of PYM and to replicate it on Ni micro-mold by using electroforming method. The effective optical design tool is used to find the optimal distribution of the PYM, which integrates the random microstructure generation scheme developed based on the molecular dynamics method and the optical commercial software. The SEM images show the intact PYM can be produced on the Si micro-mold and replicated fully on the Ni micro-mold by the electroforming process. The intact PYM on the base of the light guide can also be produced by the injection molding showing the complete transformation of the Ni micro-mold to the light guide. The luminance measurement of a 2.4 inches backlight module with 4 LEDs shows the average luminance of 4769 nit with 86.3% uniformity for the PYM on the base of light guide, which is 10% higher than that for the diffuser dot microstructure.

  18. The Development of a Self-Guided, Library-Based Materials and Methods Manual for Social Work Research.

    Science.gov (United States)

    Doelker, Richard E., Jr.; Toifel, Peggy

    1984-01-01

    This paper outlines process of developing self-guided, library-based materials and methods manual to complement social work research course taught at graduate and undergraduate levels. Selection of topic for research, identification of library reference resources, and development of reference material bibliography are covered. Formative evaluation…

  19. Development and Evaluation of Nutrition Education Competencies and a Competency-Based Resource Guide for Preschool-Aged Children

    Science.gov (United States)

    Scherr, Rachel E.; Reed, Heather; Briggs, Marilyn; Zidenberg-Cherr, Sheri

    2011-01-01

    Purpose/Objectives: The purpose of this research was to develop and evaluate nutrition education competencies and a competency-based resource guide, Connecting the Dots...Healthy Foods, Healthy Choices, Healthy Kids (CTD), for preschool-aged children in California. Methods: Nutrition education experts and California Department of Education staff…

  20. High electronic couplings of single mesitylene molecular junctions

    Directory of Open Access Journals (Sweden)

    Yuki Komoto

    2015-12-01

    Full Text Available We report on an experimental analysis of the charge transport properties of single mesitylene (1,3,5-trimethylbenzene molecular junctions. The electronic conductance and the current–voltage characteristics of mesitylene molecules wired into Au electrodes were measured by a scanning tunnelling microscopy-based break-junction method at room temperature in a liquid environment. We found the molecular junctions exhibited two distinct conductance states with high conductance values of ca. 10−1G0 and of more than 10−3G0 (G0 = 2e2/h in the electronic conductance measurements. We further performed a statistical analysis of the current–voltage characteristics of the molecular junctions in the two states. Within a single channel resonant tunnelling model, we obtained electronic couplings in the molecular junctions by fitting the current–voltage characteristics to the single channel model. The origin of the high conductance was attributed to experimentally obtained large electronic couplings of the direct π-bonded molecular junctions (ca. 0.15 eV. Based on analysis of the stretch length of the molecular junctions and the large electronic couplings obtained from the I–V analysis, we proposed two structural models, in which (i mesitylene binds to the Au electrode perpendicular to the charge transport direction and (ii mesitylene has tilted from the perpendicular orientation.

  1. High electronic couplings of single mesitylene molecular junctions.

    Science.gov (United States)

    Komoto, Yuki; Fujii, Shintaro; Nishino, Tomoaki; Kiguchi, Manabu

    2015-01-01

    We report on an experimental analysis of the charge transport properties of single mesitylene (1,3,5-trimethylbenzene) molecular junctions. The electronic conductance and the current-voltage characteristics of mesitylene molecules wired into Au electrodes were measured by a scanning tunnelling microscopy-based break-junction method at room temperature in a liquid environment. We found the molecular junctions exhibited two distinct conductance states with high conductance values of ca. 10(-1) G 0 and of more than 10(-3) G 0 (G 0 = 2e (2)/h) in the electronic conductance measurements. We further performed a statistical analysis of the current-voltage characteristics of the molecular junctions in the two states. Within a single channel resonant tunnelling model, we obtained electronic couplings in the molecular junctions by fitting the current-voltage characteristics to the single channel model. The origin of the high conductance was attributed to experimentally obtained large electronic couplings of the direct π-bonded molecular junctions (ca. 0.15 eV). Based on analysis of the stretch length of the molecular junctions and the large electronic couplings obtained from the I-V analysis, we proposed two structural models, in which (i) mesitylene binds to the Au electrode perpendicular to the charge transport direction and (ii) mesitylene has tilted from the perpendicular orientation.

  2. Mechanical deformations of boron nitride nanotubes in crossed junctions

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Yadong; Chen, Xiaoming; Ke, Changhong, E-mail: cke@binghamton.edu [Department of Mechanical Engineering, State University of New York at Binghamton, Binghamton, New York 13902 (United States); Park, Cheol [NASA Langley Research Center, Hampton, Virginia 23681 (United States); Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, Virginia 22904 (United States); Fay, Catharine C. [NASA Langley Research Center, Hampton, Virginia 23681 (United States); Stupkiewicz, Stanislaw [Institute of Fundamental Technological Research, Warsaw (Poland)

    2014-04-28

    We present a study of the mechanical deformations of boron nitride nanotubes (BNNTs) in crossed junctions. The structure and deformation of the crossed tubes in the junction are characterized by using atomic force microscopy. Our results show that the total tube heights are reduced by 20%–33% at the crossed junctions formed by double-walled BNNTs with outer diameters in the range of 2.21–4.67 nm. The measured tube height reduction is found to be in a nearly linear relationship with the summation of the outer diameters of the two tubes forming the junction. The contact force between the two tubes in the junction is estimated based on contact mechanics theories and found to be within the range of 4.2–7.6 nN. The Young's modulus of BNNTs and their binding strengths with the substrate are quantified, based on the deformation profile of the upper tube in the junction, and are found to be 1.07 ± 0.11 TPa and 0.18–0.29 nJ/m, respectively. Finally, we perform finite element simulations on the mechanical deformations of the crossed BNNT junctions. The numerical simulation results are consistent with both the experimental measurements and the analytical analysis. The results reported in this paper contribute to a better understanding of the structural and mechanical properties of BNNTs and to the pursuit of their applications.

  3. ENGAGE: Guided Activity-Based Gaming in Neurorehabilitation after Stroke: A Pilot Study

    Directory of Open Access Journals (Sweden)

    Ann Reinthal

    2012-01-01

    Full Text Available Introduction. Stroke is a leading cause of disability in healthy adults. The purpose of this pilot study was to assess the feasibility and outcomes of a novel video gaming repetitive practice paradigm, (ENGAGE enhanced neurorehabilitation: guided activity-based gaming exercise. Methods. Sixteen individuals at least three months after stroke served as participants. All participants received concurrent outpatient therapy or took part in a stroke exercise class and completed at least 500 minutes of gaming. Primary baseline and posttest outcome measures included the Wolf motor function test (WMFT and the Fugl-Meyer assessment (FMA. ENGAGE uses a game selection algorithm providing focused, graded activity-based repetitive practice that is highly individualized and directed. The Wilcoxon signed ranks test was used to determine statistical significance. Results. There were improvements in the WMFT (=0.003 and the FMA (=0.002 that exceeded established values of minimal clinically important difference. Conclusions. ENGAGE was feasible and an effective adjunct to concurrent therapy after stroke.

  4. Evidence-based laboratory medicine - a guide for critical evaluation of in vitro laboratory testing.

    Science.gov (United States)

    Christenson, Robert H

    2007-03-01

    Evidence-based laboratory medicine (EBLM) is an essential part of modern laboratory medicine practice. This review presents a guide for better understanding and implementing the EBLM process. The process of EBLM begins with development of a clinically relevant question. Tools for assisting in question formulation include the Patient Intervention Comparator and Outcome (PICO) or Case Assay Predicate and Outcome (CAPO) strategies. Locating evidence that addresses the question is performed using resources available on the internet. Systematic reviews that have objectively collated evidence addressing the question can be particularly useful. The evidence collected must be critically appraised using checklists developed for this purpose. Diagnostic performance of tests is frequently stated in terms of sensitivity, specificity, negative and positive predictive values, and the diagnostic odds ratio. Evaluating 95% confidence limits is important for interpretation. Likelihood ratios for tests in disease states are also important for converting pre-test probabilities to post-test probabilities using Bayes Theorem. Tools such as Receiver Operator Characteristic curves and Fagan's diagram are important analytical and visual aids. Laboratorians must give thoughtful consideration into conveying information to clinicians in a useful format. Evidence-based guidelines and collaboration with clinicians are important for development of local care paths. Auditing the effectiveness of implemented care paths is an important part of quality management. In conclusion, effective use of EBLM can benefit patients by helping laboratorians provide the best-available information in the clinically relevant time frame. Presenting the information appropriately maximizes clinical application of the best evidence.

  5. ZBASE User's Guide Version 1.1 an Impedance Data Base Program

    CERN Document Server

    Brüning, Oliver Sim

    1996-01-01

    The development of an impedance data base program was motivated by the changing impedance budgets in the LEP and LHC machines and the resulting need to recalculate the instability thresholds for different parameters. For LEP, the changes are implied by the LEP-II upgrade and for the LHC, the impedance data for most items is still being calculated and continues to change as the geometries of the impedance components converge to a final design. The development of the {\\bf ZBASE} program was guided by four goals. First, the data base program should collect the impedance information in a central place and in a standard format which allows easy access. Second, it should include information required for estimating the impact of the impedance on the beam dynamics. Third, the program should provide a user friendly graphical interface and fourth, it should provide an interface to the programs that are used for calculating the impedance data. Collecting not only the impedance data but also the input files for the progr...

  6. Feasibility of Tomotherapy-based image-guided radiotherapy for small cell lung cancer

    Directory of Open Access Journals (Sweden)

    Nam Phong Nguyen

    2013-11-01

    Full Text Available Background: To assess the tolerance of patients with small cell lung cancer undergoing chemoradiation with tomotherapy-based image-guided radiotherapy (IGRT.Materials and methods: A retrospective review of the toxicity profile for nine patients with small cell lung cancer of the limited stage who underwent chemoradiation delivered with helical tomotherapy (HT has been conducted.Results: Acute grade 3-4 hematologic and esophagitis toxicities developed in two and three patients respectively. One patient developed a pulmonary embolism during radiotherapy. Seven patients had weight loss ranging from 0 to 30 pounds (median: 4 pounds. Three patients had treatment breaks ranging from 2 to 12 days. At a median follow-up of 11 months (range: 2-24 months, no patients developed any radiation related toxicities such as grade 3-4 pneumonitis or other long-term complications. The median survival was estimated to be 15 months. There were 2 local recurrences, 3 mediastinal recurrences, and six distant metastases.Conclusion: Grade 3-4 toxicities remained significant during chemoradiation when radiation was delivered with tomotherapy-based IGRT. However, the absence of grade 3-4 pneumonitis is promising and the use of HT needs to be investigated in future prospective studies.

  7. Expert Guide

    DEFF Research Database (Denmark)

    Heiselberg, Per

    This guide summarizes the work of Subtask B of IEA-ECBCS Annex 44 “Integrating Environmentally Responsive Elements in Buildings” and is based on the contributions from the participating countries. The publication is an official Annex report. With a focus on innovative building concepts...... that dynamically respond to changes in climate and user demands, the report describes building concepts, design methods and tools that have been tested in theory and practice in buildings around the world. This guide is aimed at designers and consultants and describes the principles of responsive building concepts...

  8. The Development of a National Curriculum Guide for Persian: Themes, Genres, Standards-based Goals, and Models

    Directory of Open Access Journals (Sweden)

    Nicole Mills

    2014-08-01

    Full Text Available Wang (2009 has challenged foreign language scholars to “engage in rigorous discussions to develop language-specific examples and performance indicators to guide program development and decision-making for less commonly taught language (LCTL instructors” (p. 284. The 2011-2012 STARTALK programs in Persian aimed to encourage such rigorous discussion through the development of a National Curriculum Guide in Persian. Persian professionals explored current theories in second language acquisition, examined curricular resources and models, and shared successful teaching materials. This article describes the rationale, procedures, and outcomes of a series of faculty development events that aimed to create a model for curriculum development for the LCTLs and, perhaps, also for other language programs in the context of higher education. The final curriculum guide produced by the program participants includes overarching themes and genres, Standards-based goals, strategies for authentic assessment, and model unit plans.

  9. Durability-Based Design Guide for an Automotive Structural Composite: Part 2. Background Data and Models

    Energy Technology Data Exchange (ETDEWEB)

    Corum, J.M. [ORNL; Battiste, R.L. [ORNL; Brinkman, C.R. [ORNL; Ren, W. [ORNL; Ruggles, M.B. [ORNL; Weitsman, Y.J. [ORNL; Yahr, G.T. [ORNL

    1998-02-01

    This background report is a companion to the document entitled ''Durability-Based Design Criteria for an Automotive Structural Composite: Part 1. Design Rules'' (ORNL-6930). The rules and the supporting material characterization and modeling efforts described here are the result of a U.S. Department of Energy Advanced Automotive Materials project entitled ''Durability of Lightweight Composite Structures.'' The overall goal of the project is to develop experimentally based, durability-driven design guidelines for automotive structural composites. The project is closely coordinated with the Automotive Composites Consortium (ACC). The initial reference material addressed by the rules and this background report was chosen and supplied by ACC. The material is a structural reaction injection-molded isocyanurate (urethane), reinforced with continuous-strand, swirl-mat, E-glass fibers. This report consists of 16 position papers, each summarizing the observations and results of a key area of investigation carried out to provide the basis for the durability-based design guide. The durability issues addressed include the effects of cyclic and sustained loadings, temperature, automotive fluids, vibrations, and low-energy impacts (e.g., tool drops and roadway kickups) on deformation, strength, and stiffness. The position papers cover these durability issues. Topics include (1) tensile, compressive, shear, and flexural properties; (2) creep and creep rupture; (3) cyclic fatigue; (4) the effects of temperature, environment, and prior loadings; (5) a multiaxial strength criterion; (6) impact damage and damage tolerance design; (7) stress concentrations; (8) a damage-based predictive model for time-dependent deformations; (9) confirmatory subscale component tests; and (10) damage development and growth observations.

  10. Simple rules can guide whether land- or ocean-based conservation will best benefit marine ecosystems.

    Science.gov (United States)

    Saunders, Megan I; Bode, Michael; Atkinson, Scott; Klein, Carissa J; Metaxas, Anna; Beher, Jutta; Beger, Maria; Mills, Morena; Giakoumi, Sylvaine; Tulloch, Vivitskaia; Possingham, Hugh P

    2017-09-01

    Coastal marine ecosystems can be managed by actions undertaken both on the land and in the ocean. Quantifying and comparing the costs and benefits of actions in both realms is therefore necessary for efficient management. Here, we quantify the link between terrestrial sediment runoff and a downstream coastal marine ecosystem and contrast the cost-effectiveness of marine- and land-based conservation actions. We use a dynamic land- and sea-scape model to determine whether limited funds should be directed to 1 of 4 alternative conservation actions-protection on land, protection in the ocean, restoration on land, or restoration in the ocean-to maximise the extent of light-dependent marine benthic habitats across decadal timescales. We apply the model to a case study for a seagrass meadow in Australia. We find that marine restoration is the most cost-effective action over decadal timescales in this system, based on a conservative estimate of the rate at which seagrass can expand into a new habitat. The optimal decision will vary in different social-ecological contexts, but some basic information can guide optimal investments to counteract land- and ocean-based stressors: (1) marine restoration should be prioritised if the rates of marine ecosystem decline and expansion are similar and low; (2) marine protection should take precedence if the rate of marine ecosystem decline is high or if the adjacent catchment is relatively intact and has a low rate of vegetation decline; (3) land-based actions are optimal when the ratio of marine ecosystem expansion to decline is greater than 1:1.4, with terrestrial restoration typically the most cost-effective action; and (4) land protection should be prioritised if the catchment is relatively intact but the rate of vegetation decline is high. These rules of thumb illustrate how cost-effective conservation outcomes for connected land-ocean systems can proceed without complex modelling.

  11. Protein-based photothermal theranostics for imaging-guided cancer therapy

    Science.gov (United States)

    Rong, Pengfei; Huang, Peng; Liu, Zhiguo; Lin, Jing; Jin, Albert; Ma, Ying; Niu, Gang; Yu, Lun; Zeng, Wenbin; Wang, Wei; Chen, Xiaoyuan

    2015-10-01

    The development of imageable photothermal theranostics has attracted considerable attention for imaging guided photothermal therapy (PTT) with high tumor ablation accuracy. In this study, we strategically constructed a near-infrared (NIR) cyanine dye by introducing a rigid cyclohexenyl ring to the heptamethine chain to obtain a heptamethine dye CySCOOH with high fluorescence intensity and good stability. By covalent conjugation of CySCOOH onto human serum albumin (HSA), the as-prepared HSA@CySCOOH nanoplatform is highly efficient for NIR fluorescence/photoacoustic/thermal multimodality imaging and photothermal tumor ablation. The theranostic capability of HSA@CySCOOH was systematically evaluated both in vitro and in vivo. Most intriguingly, complete tumor elimination was achieved by intravenous injection of HSA@CySCOOH (CySCOOH, 1 mg kg-1 808 nm, 1.0 W cm-2 for 5 min) into 4T1 tumor-bearing mice, with no weight loss, noticeable toxicity, or tumor recurrence being observed. This as-prepared protein-based nanotheranostics exhibits high water dispersibility, no off target cytotoxicity, and good biodegradability and biocompatibility, thus facilitating its clinical translation to cancer photothermal theranostics.The development of imageable photothermal theranostics has attracted considerable attention for imaging guided photothermal therapy (PTT) with high tumor ablation accuracy. In this study, we strategically constructed a near-infrared (NIR) cyanine dye by introducing a rigid cyclohexenyl ring to the heptamethine chain to obtain a heptamethine dye CySCOOH with high fluorescence intensity and good stability. By covalent conjugation of CySCOOH onto human serum albumin (HSA), the as-prepared HSA@CySCOOH nanoplatform is highly efficient for NIR fluorescence/photoacoustic/thermal multimodality imaging and photothermal tumor ablation. The theranostic capability of HSA@CySCOOH was systematically evaluated both in vitro and in vivo. Most intriguingly, complete tumor

  12. Sparse and Dispersion-Based Matching Pursuit for Minimizing the Dispersion Effect Occurring when Using Guided Wave for Pipe Inspection

    Directory of Open Access Journals (Sweden)

    Javad Rostami

    2017-06-01

    Full Text Available Ultrasonic guided wave is an effective tool for structural health monitoring of structures for detecting defects. In practice, guided wave signals are dispersive and contain multiple modes and noise. In the presence of overlapped wave-packets/modes and noise together with dispersion, extracting meaningful information from these signals is a challenging task. Handling such challenge requires an advanced signal processing tool. The aim of this study is to develop an effective and robust signal processing tool to deal with the complexity of guided wave signals for non-destructive testing (NDT purpose. To achieve this goal, Sparse Representation with Dispersion Based Matching Pursuit (SDMP is proposed. Addressing the three abovementioned facts that complicate signal interpretation, SDMP separates overlapped modes and demonstrates good performance against noise with maximum sparsity. With the dispersion taken into account, an overc-omplete and redundant dictionary of basic atoms based on a narrowband excitation signal is designed. As Finite Element Method (FEM was used to predict the form of wave packets propagating along structures, these atoms have the maximum resemblance with real guided wave signals. SDMP operates in two stages. In the first stage, similar to Matching Pursuit (MP, the approximation improves by adding, a single atom to the solution set at each iteration. However, atom selection criterion of SDMP utilizes the time localization of guided wave reflections that makes a portion of overlapped wave-packets to be composed mainly of a single echo. In the second stage of the algorithm, the selected atoms that have frequency inconsistency with the excitation signal are discarded. This increases the sparsity of the final representation. Meanwhile, leading to accurate approximation, as discarded atoms are not representing guided wave reflections, it simplifies extracting physical meanings for defect detection purpose. To verify the

  13. Sparse and Dispersion-Based Matching Pursuit for Minimizing the Dispersion Effect Occurring when Using Guided Wave for Pipe Inspection.

    Science.gov (United States)

    Rostami, Javad; Tse, Peter W T; Fang, Zhou

    2017-06-06

    Ultrasonic guided wave is an effective tool for structural health monitoring of structures for detecting defects. In practice, guided wave signals are dispersive and contain multiple modes and noise. In the presence of overlapped wave-packets/modes and noise together with dispersion, extracting meaningful information from these signals is a challenging task. Handling such challenge requires an advanced signal processing tool. The aim of this study is to develop an effective and robust signal processing tool to deal with the complexity of guided wave signals for non-destructive testing (NDT) purpose. To achieve this goal, Sparse Representation with Dispersion Based Matching Pursuit (SDMP) is proposed. Addressing the three abovementioned facts that complicate signal interpretation, SDMP separates overlapped modes and demonstrates good performance against noise with maximum sparsity. With the dispersion taken into account, an overc-omplete and redundant dictionary of basic atoms based on a narrowband excitation signal is designed. As Finite Element Method (FEM) was used to predict the form of wave packets propagating along structures, these atoms have the maximum resemblance with real guided wave signals. SDMP operates in two stages. In the first stage, similar to Matching Pursuit (MP), the approximation improves by adding, a single atom to the solution set at each iteration. However, atom selection criterion of SDMP utilizes the time localization of guided wave reflections that makes a portion of overlapped wave-packets to be composed mainly of a single echo. In the second stage of the algorithm, the selected atoms that have frequency inconsistency with the excitation signal are discarded. This increases the sparsity of the final representation. Meanwhile, leading to accurate approximation, as discarded atoms are not representing guided wave reflections, it simplifies extracting physical meanings for defect detection purpose. To verify the effectiveness of SDMP for

  14. Efficacy of self-guided internet based cognitive behavioral therapy in the treatment of depressive symptoms : A meta analysis of individual participant data

    NARCIS (Netherlands)

    Karyotaki, E.; Riper, Heleen; Twisk, Jos W. R.; Hoogendoorn, A.W.; Kleiboer, M.A.; Mira, Adriana; Mackinnon, A.; Meyer, B.; Botella, C.; Littlewood, Elizabeth; Andersson, G.; Christensen, H.; Klein, J.; Schröder, Johanna; Breton-Lopez, Juana; Scheider, Justin; Griffiths, J.; Farrer, L.; Huibers, M. J. H.; Phillips, Rachel; Gilbody, S.; Moritz, S.; Berger, T.; Pop, V.J.M.; Spek, V.R.M.; Cuijpers, P.

    2017-01-01

    Importance: Self-guided internet-based cognitive behavioral therapy (iCBT) has the potential to increase access and availability of evidence-based therapy and reduce the cost of depression treatment. Objectives: To estimate the effect of self-guided iCBT in treating adults with depressive symptoms

  15. Shade Guide for the Fabrication of Acrylic Denture Based on Mucosal Colour

    Science.gov (United States)

    Da Costa, Godwin Clovis; Aras, Meena Ajay

    2017-01-01

    This article highlights the use of a simple and convenient shade guide system which not only helps in choosing the shade tab that matches with the colour of the mucosa, but, also helps in the fabrication of the precise shade of acrylic resin for making the denture. The shade guide is fabricated by mixing specified quantities of various colours of acrylic polymer in order to obtain various shade tabs. The method for fabrication of the shade guide and the clinical procedure has been discussed. PMID:28384988

  16. Structure-guided fragment-based in silico drug design of dengue protease inhibitors.

    Science.gov (United States)

    Knehans, Tim; Schüller, Andreas; Doan, Danny N; Nacro, Kassoum; Hill, Jeffrey; Güntert, Peter; Madhusudhan, M S; Weil, Tanja; Vasudevan, Subhash G

    2011-03-01

    An in silico fragment-based drug design approach was devised and applied towards the identification of small molecule inhibitors of the dengue virus (DENV) NS2B-NS3 protease. Currently, no DENV protease co-crystal structure with bound inhibitor and fully formed substrate binding site is available. Therefore a homology model of DENV NS2B-NS3 protease was generated employing a multiple template spatial restraints method and used for structure-based design. A library of molecular fragments was derived from the ZINC screening database with help of the retrosynthetic combinatorial analysis procedure (RECAP). 150,000 molecular fragments were docked to the DENV protease homology model and the docking poses were rescored using a target-specific scoring function. High scoring fragments were assembled to small molecule candidates by an implicit linking cascade. The cascade included substructure searching and structural filters focusing on interactions with the S1 and S2 pockets of the protease. The chemical space adjacent to the promising candidates was further explored by neighborhood searching. A total of 23 compounds were tested experimentally and two compounds were discovered to inhibit dengue protease (IC(50) = 7.7 μM and 37.9 μM, respectively) and the related West Nile virus protease (IC(50) = 6.3 μM and 39.0 μM, respectively). This study demonstrates the successful application of a structure-guided fragment-based in silico drug design approach for dengue protease inhibitors providing straightforward hit generation using a combination of homology modeling, fragment docking, chemical similarity and structural filters.

  17. Image-guided linear accelerator-based spinal radiosurgery for hemangioblastoma.

    Science.gov (United States)

    Selch, Michael T; Tenn, Steve; Agazaryan, Nzhde; Lee, Steve P; Gorgulho, Alessandra; De Salles, Antonio A F

    2012-01-01

    To retrospectively review the efficacy and safety of image-guided linear accelerator-based radiosurgery for spinal hemangioblastomas. Between August 2004 and September 2010, nine patients with 20 hemangioblastomas underwent spinal radiosurgery. Five patients had von Hipple-Lindau disease. Four patients had multiple tumors. Ten tumors were located in the thoracic spine, eight in the cervical spine, and two in the lumbar spine. Tumor volume varied from 0.08 to 14.4 cc (median 0.72 cc). Maximum tumor dimension varied from 2.5 to 24 mm (median 10.5 mm). Radiosurgery was performed with a dedicated 6 MV linear accelerator equipped with a micro-multileaf collimator. Median peripheral tumor dose and prescription isodose were 12 Gy and 90%, respectively. Image guidance was performed by optical tracking of infrared reflectors, fusion of oblique radiographs with dynamically reconstructed digital radiographs, and automatic patient positioning. Follow-up varied from 14 to 86 months (median 51 months). Kaplan-Meier estimated 4-year overall and solid tumor local control rates were 90% and 95%, respectively. One tumor progressed 12 months after treatment and a new cyst developed 10 months after treatment in another tumor. There has been no clinical or imaging evidence for spinal cord injury. Results of this limited experience indicate linear accelerator-based radiosurgery is safe and effective for spinal cord hemangioblastomas. Longer follow-up is necessary to confirm the durability of tumor control, but these initial results imply linear accelerator-based radiosurgery may represent a therapeutic alternative to surgery for selected patients with spinal hemangioblastomas.

  18. Metallic Junction Thermoelectric Device Simulations

    Science.gov (United States)

    Duzik, Adam J.; Choi, Sang H.

    2017-01-01

    Thermoelectric junctions made of semiconductors have existed in radioisotope thermoelectric generators (RTG) for deep space missions, but are currently being adapted for terrestrial energy harvesting. Unfortunately, these devices are inefficient, operating at only 7% efficiency. This low efficiency has driven efforts to make high-figure-of-merit thermoelectric devices, which require a high electrical conductivity but a low thermal conductivity, a combination that is difficult to achieve. Lowered thermal conductivity has increased efficiency, but at the cost of power output. An alternative setup is to use metallic junctions rather than semiconductors as thermoelectric devices. Metals have orders of magnitude more electrons and electronic conductivities higher than semiconductors, but thermal conductivity is higher as well. To evaluate the viability of metallic junction thermoelectrics, a two dimensional heat transfer MATLAB simulation was constructed to calculate efficiency and power output. High Seebeck coefficient alloys, Chromel (90%Ni-10%Cr) and Constantan (55%Cu-45%Ni), produced efficiencies of around 20-30%. Parameters such as the number of layers of junctions, lateral junction density, and junction sizes for both series- and parallel-connected junctions were explored.

  19. Diagnostic yield and morbidity by neuronavigation-guided frameless stereotactic biopsy using magnetic resonance imaging and by frame-based computed tomography-guided stereotactic biopsy

    Directory of Open Access Journals (Sweden)

    Masamitsu Nishihara

    2014-01-01

    Full Text Available Background: We compared the diagnostic yield and morbidity by frame-based computed tomography-guided stereotactic biopsy (CTSTB with Brown-Roberts-Wells (BRW unit and by neuronavigation-guided frameless stereotactic biopsy (NSTB using magnetic resonance imaging (MRI. Methods: The subjects′ age range was 15-83 years. CTSTB with BRW unit was performed for 59 tumors (58 cases, 1988-2007. NSTB was performed for 38 tumors (35 cases, 2007-2013 with the needle sheath attached to the head holder. By NSTB, target locations of sampling points and trajectories were confirmed by using MRI. Diffusion tensor imaging-based fiber tractography was used to achieve safe trajectories. STB by using BRW did not visualize the trajectory virtually; however, the planning images for NSTB were able to show the trajectory virtually before the procedure. Results: Histological diagnoses were established for 93 tumors at the first biopsy. The diagnostic yield was 94.9% by CTSTB and 97.4% by NSTB (P = 0.944. The morbidity rate was 5.1% by CTSTB and 0% by NSTB (P = 0.417. The absolute risk reduction was 23.1% by NSTB when the targets were basal ganglia (putamen, globus pallidus or thalamus. In the cases of glioma for which the targets were basal ganglia (putamen, globus pallidus or thalamus, the absolute risk reduction by NSTB was 30%. Conclusions: There was no significant difference between CTSTB and NSTB concerning the diagnostic yield and morbidity. However, when the target is the basal ganglia (putamen, globus pallidus or thalamus and glioma is suspected, NSTB by using MRI with virtual trajectory is preferable to CTSTB concerning morbidity.

  20. Visual map shifts based on whisker-guided cues in the young mouse visual cortex.

    Science.gov (United States)

    Yoshitake, Kohei; Tsukano, Hiroaki; Tohmi, Manavu; Komagata, Seiji; Hishida, Ryuichi; Yagi, Takeshi; Shibuki, Katsuei

    2013-12-12

    Mice navigate nearby space using their vision and whiskers, and young mice learn to integrate these heterogeneous inputs in perceptual space. We found that cortical responses were depressed in the primary visual cortex of young mice after wearing a monocular prism. This depression was uniformly observed in the primary visual cortex and was eliminated by whisker trimming or lesions in the posterior parietal cortex. Compensatory visual map shifts of responses elicited via the eye that had worn the prism were also observed. As a result, cortical responses elicited via each eye were clearly separated when a visual stimulus was placed in front of the mice. A comparison of response areas before and after prism wearing indicated that the map shifts were produced by depression with spatial eccentricity. Visual map shifts based on whisker-guided cues may serve as a model for investigating the cellular and molecular mechanisms underlying higher sensory integration in the mammalian brain. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  1. Development and application of stent-based image guided navigation system for oral and maxillofacial surgery

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Woo Jin; Kim, Dae Seung [Interdisciplinary Program in Radiation Applied Life Science, Dental Research Institute and BK21, College of Medicine, Seoul National University, Seoul (Korea, Republic of); Yi, Won Jin; Lee, Sam Sun; Choi, Soon Chul; Heo, Min Suk; Huh, Kyung Hoe; Kim, Myung Jin; Lee, Jee Ho [Department of Oral and Maxillofacial Surgery, Dental Research Institute, School of Dentistry, Seoul National University, Seoul (Korea, Republic of)

    2009-09-15

    The purpose of this study was to develop a stent-based image guided surgery system and to apply it to oral and maxillofacial surgeries for anatomically complex sites. We devised a patient-specific stent for patient-to-image registration and navigation. Three dimensional positions of the reference probe and the tool probe were tracked by an optical camera system and the relative position of the handpiece drill tip to the reference probe was monitored continuously on the monitor of a PC. Using 8 landmarks for measuring accuracy, the spatial discrepancy between CT image coordinate and physical coordinate was calculated for testing the normality. The accuracy over 8 anatomical landmarks showed an overall mean of 0.56 {+-} 0.16 mm. The developed system was applied to a surgery for a vertical alveolar bone augmentation in right mandibular posterior area and possible interior alveolar nerve injury case of an impacted third molar. The developed system provided continuous monitoring of invisible anatomical structures during operation and 3D information for operation sites. The clinical challenge showed sufficient accuracy and availability of anatomically complex operation sites. The developed system showed sufficient accuracy and availability in oral and maxillofacial surgeries for anatomically complex sites.

  2. The use of guided tissue regeneration techniques among endodontists: a web-based survey.

    Science.gov (United States)

    Naylor, Justin; Mines, Pete; Anderson, Alfred; Kwon, David

    2011-11-01

    The purpose of this study was to determine factors and clinical situations that influence an endodontist's decision to use guided tissue regeneration (GTR) techniques during endodontic root-end surgery. An invitation to participate in a web-based survey was e-mailed to 3,750 members of the American Association of Endodontists. Data were collected from 1,129 participants, representing a 30.1% completion rate. The number of questions varied from 3 to 11 depending on individual responses. 40.7% of respondents who perform root-end surgeries also use GTR techniques. The clinical situation in which GTR techniques are used most often is for transosseous lesions. Barrier membranes and bone replacement grafts are each used by more than 85% of respondents using GTR techniques. Insufficient training and insufficient evidence in support of its use were selected as the predominant reasons for not using GTR techniques at 42.4% and 32%, respectively. Although over 40% of respondents are currently using GTR techniques in conjunction with their root-end surgeries, a majority of those who do not use GTR indicated they would consider using these techniques with better evidence and available training. Published by Elsevier Inc.

  3. Low-complexity UWB-based collision avoidance system for automated guided vehicles

    Directory of Open Access Journals (Sweden)

    Stefania Monica

    2016-06-01

    Full Text Available This paper describes a low-complexity collision avoidance system for automated guided vehicles (AGVs based on active ultra-wide band (UWB modules. In particular, we consider an industrial warehouse where all the AGVs and target nodes (TNs (e.g., people are equipped with active UWB modules. A communication session between a pair of UWB modules permits the exchange of information and the estimation of the distance between them. The UWB module positioned on an AGV is connected to an on-board computer; whenever the UWB module on an AGV receives a message from a TN, it communicates all the received data to the on-board computer that can decide to stop the AGV if the range estimate is below a given threshold. This prevents undesired collisions between the AGV and the TN. In this paper, we present the experimental results of the proposed collision avoidance system obtained using the UWB modules, PulsON 410 ranging and communication modules (P410 RCMs, produced by Time Domain.

  4. Optical flow based guidance system design for semi-strapdown image homing guided missiles

    Directory of Open Access Journals (Sweden)

    Huang Lan

    2016-10-01

    Full Text Available This paper focuses mainly on semi-strapdown image homing guided (SSIHG system design based on optical flow for a six-degree-of-freedom (6-DOF axial-symmetric skid-to-turn missile. Three optical flow algorithms suitable for large displacements are introduced and compared. The influence of different displacements on computational accuracy of the three algorithms is analyzed statistically. The total optical flow of the SSIHG missile is obtained using the Scale Invariant Feature Transform (SIFT algorithm, which is the best among the three for large displacements. After removing the rotational optical flow caused by rotation of the gimbal and missile body from the total optical flow, the remaining translational optical flow is smoothed via Kalman filtering. The circular navigation guidance (CNG law with impact angle constraint is then obtained utilizing the smoothed translational optical flow and position of the target image. Simulations are carried out under both disturbed and undisturbed conditions, and results indicate the proposed guidance strategy for SSIHG missiles can result in a precise target hit with a desired impact angle without the need for the time-to-go parameter.

  5. Diacyllipid micelle-based nanocarrier for magnetically guided delivery of drugs in photodynamic therapy.

    Science.gov (United States)

    Cinteza, Ludmila O; Ohulchanskyy, Tymish Y; Sahoo, Yudhisthira; Bergey, Earl J; Pandey, Ravindra K; Prasad, Paras N

    2006-01-01

    We report the design, synthesis using nanochemistry, and characterization of a novel multifunctional polymeric micelle-based nanocarrier system, which demonstrates combined function of magnetophoretically guided drug delivery together with light-activated photodynamic therapy. Specifically, the nanocarrier consists of polymeric micelles of diacylphospholipid-poly(ethylene glycol) (PE-PEG) coloaded with the photosensitizer drug 2-[1-hexyloxyethyl]-2-devinyl pyropheophorbide-a (HPPH), and magnetic Fe3O4 nanoparticles. The nanocarrier shows excellent stability and activity over several weeks. The physicochemical characterizations have been carried out by transmission electron micrography and optical spectroscopy. An efficient cellular uptake has been confirmed with confocal laser scanning microscopy. The loading efficiency of HPPH is practically unaffected upon coloading with the magnetic nanoparticles, and its phototoxicity is retained. The magnetic response of the nanocarriers was demonstrated by their magnetically directed delivery to tumor cells in vitro. The magnetophoretic control on the cellular uptake provides enhanced imaging and phototoxicity. These multifunctional nanocarriers demonstrate the exciting prospect offered by nanochemistry for targeting photodynamic therapy.

  6. A biosynthetic nerve guide conduit based on silk/SWNT/fibronectin nanocomposite for peripheral nerve regeneration.

    Science.gov (United States)

    Mottaghitalab, Fatemeh; Farokhi, Mehdi; Zaminy, Arash; Kokabi, Mehrdad; Soleimani, Masoud; Mirahmadi, Fereshteh; Shokrgozar, Mohammad Ali; Sadeghizadeh, Majid

    2013-01-01

    As a contribution to the functionality of nerve guide conduits (NGCs) in nerve tissue engineering, here we report a conduit processing technique through introduction and evaluation of topographical, physical and chemical cues. Porous structure of NGCs based on freeze-dried silk/single walled carbon nanotubes (SF/SWNTs) has shown a uniform chemical and physical structure with suitable electrical conductivity. Moreover, fibronectin (FN) containing nanofibers within the structure of SF/SWNT conduits produced through electrospinning process have shown aligned fashion with appropriate porosity and diameter. Moreover, fibronectin remained its bioactivity and influenced the adhesion and growth of U373 cell lines. The conduits were then implanted to 10 mm left sciatic nerve defects in rats. The histological assessment has shown that nerve regeneration has taken places in proximal region of implanted nerve after 5 weeks following surgery. Furthermore, nerve conduction velocities (NCV) and more myelinated axons were observed in SF/SWNT and SF/SWNT/FN groups after 5 weeks post implantation, indicating a functional recovery for the injured nerves. With immunohistochemistry, the higher S-100 expression of Schwann cells in SF/SWNT/FN conduits in comparison to other groups was confirmed. In conclusion, an oriented conduit of biocompatible SF/SWNT/FN has been fabricated with acceptable structure that is particularly applicable in nerve grafts.

  7. A biosynthetic nerve guide conduit based on silk/SWNT/fibronectin nanocomposite for peripheral nerve regeneration.

    Directory of Open Access Journals (Sweden)

    Fatemeh Mottaghitalab

    Full Text Available As a contribution to the functionality of nerve guide conduits (NGCs in nerve tissue engineering, here we report a conduit processing technique through introduction and evaluation of topographical, physical and chemical cues. Porous structure of NGCs based on freeze-dried silk/single walled carbon nanotubes (SF/SWNTs has shown a uniform chemical and physical structure with suitable electrical conductivity. Moreover, fibronectin (FN containing nanofibers within the structure of SF/SWNT conduits produced through electrospinning process have shown aligned fashion with appropriate porosity and diameter. Moreover, fibronectin remained its bioactivity and influenced the adhesion and growth of U373 cell lines. The conduits were then implanted to 10 mm left sciatic nerve defects in rats. The histological assessment has shown that nerve regeneration has taken places in proximal region of implanted nerve after 5 weeks following surgery. Furthermore, nerve conduction velocities (NCV and more myelinated axons were observed in SF/SWNT and SF/SWNT/FN groups after 5 weeks post implantation, indicating a functional recovery for the injured nerves. With immunohistochemistry, the higher S-100 expression of Schwann cells in SF/SWNT/FN conduits in comparison to other groups was confirmed. In conclusion, an oriented conduit of biocompatible SF/SWNT/FN has been fabricated with acceptable structure that is particularly applicable in nerve grafts.

  8. Optimal structure of particles-based superparamagnetic microrobots: application to MRI guided targeted drug therapy

    Energy Technology Data Exchange (ETDEWEB)

    Mellal, Lyès [INSA Centre Val de Loire, Université d’Orléans, PRISME EA 4229 (France); Belharet, Karim [Hautes Études d’Ingénieur campus Centre, PRISME EA 4229 (France); Folio, David; Ferreira, Antoine, E-mail: antoine.ferreira@insa-cvl.fr, E-mail: antoine.ferreira@ensi-bourges.fr [INSA Centre Val de Loire, Université d’Orléans, PRISME EA 4229 (France)

    2015-02-15

    This paper presents an optimal design strategy for therapeutic magnetic micro carriers (TMMC) guided in real time by a magnetic resonance imaging (MRI) system. As aggregates of TMMCs must be formed to carry the most amount of drug and magnetic actuation capability, different clustering agglomerations could be arranged. Nevertheless, its difficult to predict the hydrodynamic behavior of any arbitrary-shaped object due to the nonlinear hydrodynamic effects. Indeed, the drag effect is related not only to the properties of the bolus but also to its interaction with the fluid viscosity, the free-stream velocity and the container geometry. In this work, we propose a mathematical framework to optimize the TMMC aggregates to improve the steering efficiency in experimental endovascular conditions. The proposed analysis is carried out on various sizes and geometries of microcarrier: spherical, ellipsoid-like, and chain-like of microsphere structures. We analyze the magnetophoretic behavior of such designs to exhibit the optimal configuration. Based on the optimal design of the boluses, experimental investigations were carried out in mm-sized fluidic artery phantoms to demonstrate the steerability of the magnetic bolus using a proof-of-concept setup. The experiments demonstrate the steerability of the magnetic bolus under different velocity, shear-stress, and trajectory constraints with a laminar viscous fluidic environment. Preliminary experiments with a MRI system confirm the feasibility of the steering of these TMMCs in hepatic artery microchannel phantom.

  9. Enhancement of single guide RNA transcription for efficient CRISPR/Cas-based genomic engineering.

    Science.gov (United States)

    Ui-Tei, Kumiko; Maruyama, Shohei; Nakano, Yuko

    2017-06-01

    Genomic engineering using clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated (Cas) protein is a promising approach for targeting the genomic DNA of virtually any organism in a sequence-specific manner. Recent remarkable advances in CRISPR/Cas technology have made it a feasible system for use in therapeutic applications and biotechnology. In the CRISPR/Cas system, a guide RNA (gRNA), interacting with the Cas protein, recognizes a genomic region with sequence complementarity, and the double-stranded DNA at the target site is cleaved by the Cas protein. A widely used gRNA is an RNA polymerase III (pol III)-driven single gRNA (sgRNA), which is produced by artificial fusion of CRISPR RNA (crRNA) and trans-activation crRNA (tracrRNA). However, we identified a TTTT stretch, known as a termination signal of RNA pol III, in the scaffold region of the sgRNA. Here, we revealed that sgRNA carrying a TTTT stretch reduces the efficiency of sgRNA transcription due to premature transcriptional termination, and decreases the efficiency of genome editing. Unexpectedly, it was also shown that the premature terminated sgRNA may have an adverse effect of inducing RNA interference. Such disadvantageous effects were avoided by substituting one base in the TTTT stretch.

  10. Augmented reality with Microsoft HoloLens holograms for near infrared fluorescence based image guided surgery

    Science.gov (United States)

    Cui, Nan; Kharel, Pradosh; Gruev, Viktor

    2017-02-01

    Near infrared fluorescence (NIRF) based image guided surgery aims to provide vital information to the surgeon in the operating room, such as locations of cancerous tissue that should be resected and healthy tissue that should to be preserved. Targeted molecular markers, such as tumor or nerve specific probes, are used in conjunctions with NIRF imaging and display systems to provide key information to the operator in real-time. One of the major hurdles for the wide adaptation of these imaging systems is the high cost to operate the instruments, large footprint and complexity of operating the systems. The emergence of wearable NIRF systems has addressed these shortcomings by minimizing the imaging and display systems' footprint and reducing the operational cost. However, one of the major shortcomings for this technology is the replacement of the surgeon's natural vision with an augmented reality view of the operating room. In this paper, we have addressed this major shortcoming by exploiting hologram technology from Microsoft HoloLens to present NIR information on a color image captured by the surgeon's natural vision. NIR information is captured with a CMOS sensor with high quantum efficiency in the 800 nm wavelength together with a laser light illumination light source. The NIR image is converted to a hologram that is displayed on Microsoft HoloLens and is correctly co-registered with the operator's natural eyesight.

  11. Josephson junction microwave modulators for qubit control

    Science.gov (United States)

    Naaman, O.; Strong, J. A.; Ferguson, D. G.; Egan, J.; Bailey, N.; Hinkey, R. T.

    2017-02-01

    We demonstrate Josephson junction based double-balanced mixer and phase shifter circuits operating at 6-10 GHz and integrate these components to implement both a monolithic amplitude/phase vector modulator and an I/Q quadrature mixer. The devices are actuated by flux signals, dissipate no power on chip, exhibit input saturation powers in excess of 1 nW, and provide cryogenic microwave modulation solutions for integrated control of superconducting qubits.

  12. Double junction photoelectrochemical solar cells based on Cu2ZnSnS4/Cu2ZnSnSe4 thin film as composite photocathode

    Science.gov (United States)

    Zhu, L.; Qiang, Y. H.; Zhao, Y. L.; Gu, X. Q.

    2014-02-01

    A solvothermal method was used to synthesize Cu2ZnSnS4 (CZTS) and Cu2ZnSnSe4 (CZTSe) nanoparticles. CZTS/CZTSe bilayer films have been fabricated via a layer-by-layer blade coating process on the fluorine dope tin oxide (FTO) substrates. We converted conventional dye-sensitized solar cells (DSSCs) into double junction photoelectrochemical solar cells with the replacement of the Pt-coated counter electrode with the as-prepared films as composite photocathodes. Compared with conventional DSSCs, the cells show an increased short circuit current and power conversion efficiency.

  13. Virtual wall-based haptic-guided teleoperated surgical robotic system for single-port brain tumor removal surgery.

    Science.gov (United States)

    Seung, Sungmin; Choi, Hongseok; Jang, Jongseong; Kim, Young Soo; Park, Jong-Oh; Park, Sukho; Ko, Seong Young

    2017-01-01

    This article presents a haptic-guided teleoperation for a tumor removal surgical robotic system, so-called a SIROMAN system. The system was developed in our previous work to make it possible to access tumor tissue, even those that seat deeply inside the brain, and to remove the tissue with full maneuverability. For a safe and accurate operation to remove only tumor tissue completely while minimizing damage to the normal tissue, a virtual wall-based haptic guidance together with a medical image-guided control is proposed and developed. The virtual wall is extracted from preoperative medical images, and the robot is controlled to restrict its motion within the virtual wall using haptic feedback. Coordinate transformation between sub-systems, a collision detection algorithm, and a haptic-guided teleoperation using a virtual wall are described in the context of using SIROMAN. A series of experiments using a simplified virtual wall are performed to evaluate the performance of virtual wall-based haptic-guided teleoperation. With haptic guidance, the accuracy of the robotic manipulator's trajectory is improved by 57% compared to one without. The tissue removal performance is also improved by 21% ( p haptic guidance provides safer and more accurate tissue removal for single-port brain surgery.

  14. Theranostics based on Iron Oxide and Gold Nanoparticles for Imaging-Guided Photothermal and Photodynamic Therapy of Cancer.

    Science.gov (United States)

    Rajkumar, S; Prabaharan, M

    2016-11-22

    With the progress of nanotechnology, the treatment of cancer by photothermal therapy (PTT) and photodynamic therapy (PDT) using theranostic nanomaterials based on iron oxide (Fe3O4) and gold (Au) nanoparticles (NPs) has received much attention in recent years. The Fe3O4 NPs have been used as imaging-guided PTT of cancer due to their high relaxivity, excellent contrast enhancement, and less toxicity. The Au NPs have been widely employed as a contrast agent for CT imaging of different biological systems due to their enhanced X-ray attenuation property. Due to the strong surface plasmon resonance (SPR) absorption intensity in near-infrared (NIR) region, Au NPs have been considered for imaging-guided PTT of cancer. Since the photosensitizer, which plays an important role in PDT of cancer, can be efficiently conjugated with Fe3O4 and Au NPs, these NPs have also been considered for imaging-guided PDT of cancer. It has been found that both Fe3O4 and Au NPs allow passive targeting of tumors through enhanced permeability and retention (EPR) effect to improve the treatment efficacy in PTT and PDT. The present review focuses on the recent developments of Fe3O4 and Au-based NPs as theranostics for imaging-guided PTT and PDT of cancer.

  15. The vulnerability of laser warning systems against guided weapons based on low power lasers

    OpenAIRE

    Al-Jaberi, Mubarak

    2006-01-01

    Laser assisted weapons, such as laser guided bombs, laser guided missiles and laser beam-riding missiles pose a significant threat to military assets in the modern battlefield. Laser beam-riding missiles are particularly hard to detect because they use low power lasers. Most laser warning systems produced so far can not detect laser beam-riding missiles because of their weak emissions which have signals less than 1% of laser range finder power . They are even harder to defeat because current ...

  16. Self-guided clinical cases for medical students based on postmortem CT scans of cadavers.

    Science.gov (United States)

    Bohl, Michael; Francois, Webster; Gest, Thomas

    2011-07-01

    In the summer of 2009, we began full body computed tomography (CT) scanning of the pre-embalmed cadavers in the University of Michigan Medical School (UMMS) dissection lab. We theorized that implementing web-based, self-guided clinical cases based on postmortem CT (PMCT) scans would result in increased student appreciation for the clinical relevance of anatomy, increased knowledge of cross-sectional anatomy, and increased ability to identify common pathologies on CT scans. The PMCT scan of each cadaver was produced as a DICOM dataset, and then converted into a Quicktime movie file using Osirix software. Clinical cases were researched and written by the authors, and consist of at least one Quicktime movie of a PMCT scan surrounded by a novel navigation interface. To assess the value of these clinical cases we surveyed medical students at UMMS who are currently using the clinical cases in their coursework. Students felt the clinical cases increased the clinical relevance of anatomy (mean response 7.77/10), increased their confidence finding anatomical structures on CT (7.00/10), and increased their confidence recognizing common pathologies on CT (6.17/10). Students also felt these clinical cases helped them synthesize material from numerous courses into an overall picture of a given disease process (7.01/10). These results support the conclusion that our clinical cases help to show students why the anatomy they are learning is foundational to their other coursework. We would recommend the use of similar clinical cases to any medical school utilizing cadaver dissection as a primary teaching method in anatomy education.

  17. Image-driven, model-based 3D abdominal motion estimation for MR-guided radiotherapy

    Science.gov (United States)

    Stemkens, Bjorn; Tijssen, Rob H. N.; de Senneville, Baudouin Denis; Lagendijk, Jan J. W.; van den Berg, Cornelis A. T.

    2016-07-01

    Respiratory motion introduces substantial uncertainties in abdominal radiotherapy for which traditionally large margins are used. The MR-Linac will open up the opportunity to acquire high resolution MR images just prior to radiation and during treatment. However, volumetric MRI time series are not able to characterize 3D tumor and organ-at-risk motion with sufficient temporal resolution. In this study we propose a method to estimate 3D deformation vector fields (DVFs) with high spatial and temporal resolution based on fast 2D imaging and a subject-specific motion model based on respiratory correlated MRI. In a pre-beam phase, a retrospectively sorted 4D-MRI is acquired, from which the motion is parameterized using a principal component analysis. This motion model is used in combination with fast 2D cine-MR images, which are acquired during radiation, to generate full field-of-view 3D DVFs with a temporal resolution of 476 ms. The geometrical accuracies of the input data (4D-MRI and 2D multi-slice acquisitions) and the fitting procedure were determined using an MR-compatible motion phantom and found to be 1.0-1.5 mm on average. The framework was tested on seven healthy volunteers for both the pancreas and the kidney. The calculated motion was independently validated using one of the 2D slices, with an average error of 1.45 mm. The calculated 3D DVFs can be used retrospectively for treatment simulations, plan evaluations, or to determine the accumulated dose for both the tumor and organs-at-risk on a subject-specific basis in MR-guided radiotherapy.

  18. Adapting to climate change in forest based land use systems: A guide to strategy

    Energy Technology Data Exchange (ETDEWEB)

    Secrett, C.M.

    1996-12-31

    The prospect of climate change and sea level rise as a result of greenhouse gas emissions presents a serious challenge to decision-makers concerned with ensuring sustainable development. This report provides a guide to means of reducing the potential impact of the global warming problem on the forest sector whilst ensuring that more immediate development priorities are met. The most effective response strategy will be one that simultaneously brings both immediate development and longer-term adaptive benefits. This report outlines ways of constructing an adaptive response strategy that can help achieve these ends. The approach is referred to as sustainable adaptation. A prototype methodological framework of the sustainable adaptation approach has been provided with the summary. The first priority of sustainable adaption is to base climate change responses on actions that meet basic ecological and social needs now and in the future. Solutions should necessarily include relieving current development pressures in the tropical forest sector. The key is to couple adaptive responses to climate change with sustainable development solutions to present-day forest use problems. Implementing adaptive land-use policies and management practices which are likely to minimise the adverse impacts of anticipated climate change should meet current sustainable management goals. Implementing sustainable land-use and forestry management practices should meet adaptation goals. This report presents a discussion of the fundamental issues underlying the development of a sustainable adaptation strategy and a prototype methodological framework. The findings are based on case studies conducted in Central America (Costa Rica and Nicaragua); SADCC countries in Africa (Zimbabwe, Botswana, Tanzania); and Asia (Vietnam). 450 refs

  19. Integration of modeling and simulation into hospital-based decision support systems guiding pediatric pharmacotherapy

    Directory of Open Access Journals (Sweden)

    Vijayakumar Kalpana

    2008-01-01

    Full Text Available Abstract Background Decision analysis in hospital-based settings is becoming more common place. The application of modeling and simulation approaches has likewise become more prevalent in order to support decision analytics. With respect to clinical decision making at the level of the patient, modeling and simulation approaches have been used to study and forecast treatment options, examine and rate caregiver performance and assign resources (staffing, beds, patient throughput. There us a great need to facilitate pharmacotherapeutic decision making in pediatrics given the often limited data available to guide dosing and manage patient response. We have employed nonlinear mixed effect models and Bayesian forecasting algorithms coupled with data summary and visualization tools to create drug-specific decision support systems that utilize individualized patient data from our electronic medical records systems. Methods Pharmacokinetic and pharmacodynamic nonlinear mixed-effect models of specific drugs are generated based on historical data in relevant pediatric populations or from adults when no pediatric data is available. These models are re-executed with individual patient data allowing for patient-specific guidance via a Bayesian forecasting approach. The models are called and executed in an interactive manner through our web-based dashboard environment which interfaces to the hospital's electronic medical records system. Results The methotrexate dashboard utilizes a two-compartment, population-based, PK mixed-effect model to project patient response to specific dosing events. Projected plasma concentrations are viewable against protocol-specific nomograms to provide dosing guidance for potential rescue therapy with leucovorin. These data are also viewable against common biomarkers used to assess patient safety (e.g., vital signs and plasma creatinine levels. As additional data become available via therapeutic drug monitoring, the model is re

  20. Integration of modeling and simulation into hospital-based decision support systems guiding pediatric pharmacotherapy.

    Science.gov (United States)

    Barrett, Jeffrey S; Mondick, John T; Narayan, Mahesh; Vijayakumar, Kalpana; Vijayakumar, Sundararajan

    2008-01-28

    Decision analysis in hospital-based settings is becoming more common place. The application of modeling and simulation approaches has likewise become more prevalent in order to support decision analytics. With respect to clinical decision making at the level of the patient, modeling and simulation approaches have been used to study and forecast treatment options, examine and rate caregiver performance and assign resources (staffing, beds, patient throughput). There us a great need to facilitate pharmacotherapeutic decision making in pediatrics given the often limited data available to guide dosing and manage patient response. We have employed nonlinear mixed effect models and Bayesian forecasting algorithms coupled with data summary and visualization tools to create drug-specific decision support systems that utilize individualized patient data from our electronic medical records systems. Pharmacokinetic and pharmacodynamic nonlinear mixed-effect models of specific drugs are generated based on historical data in relevant pediatric populations or from adults when no pediatric data is available. These models are re-executed with individual patient data allowing for patient-specific guidance via a Bayesian forecasting approach. The models are called and executed in an interactive manner through our web-based dashboard environment which interfaces to the hospital's electronic medical records system. The methotrexate dashboard utilizes a two-compartment, population-based, PK mixed-effect model to project patient response to specific dosing events. Projected plasma concentrations are viewable against protocol-specific nomograms to provide dosing guidance for potential rescue therapy with leucovorin. These data are also viewable against common biomarkers used to assess patient safety (e.g., vital signs and plasma creatinine levels). As additional data become available via therapeutic drug monitoring, the model is re-executed and projections are revised. The management of