Sample records for junction complex ejc

  1. Plant nonsense-mediated mRNA decay is controlled by different autoregulatory circuits and can be induced by an EJC-like complex (United States)

    Nyikó, Tünde; Kerényi, Farkas; Szabadkai, Levente; Benkovics, Anna H.; Major, Péter; Sonkoly, Boglárka; Mérai, Zsuzsanna; Barta, Endre; Niemiec, Emilia; Kufel, Joanna; Silhavy, Dániel


    Nonsense-mediated mRNA decay (NMD) is a eukaryotic quality control system that recognizes and degrades transcripts containing NMD cis elements in their 3′untranslated region (UTR). In yeasts, unusually long 3′UTRs act as NMD cis elements, whereas in vertebrates, NMD is induced by introns located >50 nt downstream from the stop codon. In vertebrates, splicing leads to deposition of exon junction complex (EJC) onto the mRNA, and then 3′UTR-bound EJCs trigger NMD. It is proposed that this intron-based NMD is vertebrate specific, and it evolved to eliminate the misproducts of alternative splicing. Here, we provide evidence that similar EJC-mediated intron-based NMD functions in plants, suggesting that this type of NMD is evolutionary conserved. We demonstrate that in plants, like in vertebrates, introns located >50 nt from the stop induces NMD. We show that orthologs of all core EJC components are essential for intron-based plant NMD and that plant Partner of Y14 and mago (PYM) also acts as EJC disassembly factor. Moreover, we found that complex autoregulatory circuits control the activity of plant NMD. We demonstrate that expression of suppressor with morphogenic effect on genitalia (SMG)7, which is essential for long 3′UTR- and intron-based NMD, is regulated by both types of NMD, whereas expression of Barentsz EJC component is downregulated by intron-based NMD. PMID:23666629

  2. The exon junction complex as a node of post-transcriptional networks. (United States)

    Le Hir, Hervé; Saulière, Jérôme; Wang, Zhen


    The exon junction complex (EJC) is deposited onto mRNAs following splicing and adopts a unique structure, which can both stably bind to mRNAs and function as an anchor for diverse processing factors. Recent findings revealed that in addition to its established roles in nonsense-mediated mRNA decay, the EJC is involved in mRNA splicing, transport and translation. While structural studies have shed light on EJC assembly, transcriptome-wide analyses revealed differential EJC loading at spliced junctions. Thus, the EJC functions as a node of post-transcriptional gene expression networks, the importance of which is being revealed by the discovery of increasing numbers of EJC-related disorders.

  3. Exon Junction Complexes Show a Distributional Bias toward Alternatively Spliced mRNAs and against mRNAs Coding for Ribosomal Proteins

    Directory of Open Access Journals (Sweden)

    Christian Hauer


    Full Text Available The exon junction complex (EJC connects spliced mRNAs to posttranscriptional processes including RNA localization, transport, and regulated degradation. Here, we provide a comprehensive analysis of bona fide EJC binding sites across the transcriptome including all four RNA binding EJC components eIF4A3, BTZ, UPF3B, and RNPS1. Integration of these data sets permits definition of high-confidence EJC deposition sites as well as assessment of whether EJC heterogeneity drives alternative nonsense-mediated mRNA decay pathways. Notably, BTZ (MLN51 or CASC3 emerges as the EJC subunit that is almost exclusively bound to sites 20–24 nucleotides upstream of exon-exon junctions, hence defining EJC positions. By contrast, eIF4A3, UPF3B, and RNPS1 display additional RNA binding sites suggesting accompanying non-EJC functions. Finally, our data show that EJCs are largely distributed across spliced RNAs in an orthodox fashion, with two notable exceptions: an EJC deposition bias in favor of alternatively spliced transcripts and against the mRNAs that encode ribosomal proteins.

  4. Compound inheritance of a low-frequency regulatory SNP and a rare null mutation in exon-junction complex subunit RBM8A causes TAR syndrome

    NARCIS (Netherlands)

    Albers, C.A.; Paul, D.S.; Schulze, H.; Freson, K.; Stephens, J.C.; Smethurst, P.A.; Jolley, J.D.; Cvejic, A.; Kostadima, M.; Bertone, P.; Breuning, M.H.; Debili, N.; Deloukas, P.; Favier, R.; Fiedler, J.; Hobbs, C.M.; Huang, N.; Hurles, M.E.; Kiddle, G.; Krapels, I.; Nurden, P.; Ruivenkamp, C.A.; Sambrook, J.G.; Smith, K.; Stemple, D.L.; Strauss, G.; Thys, C.; Geet, C. van; Newbury-Ecob, R.; Ouwehand, W.H.; Ghevaert, C.


    The exon-junction complex (EJC) performs essential RNA processing tasks. Here, we describe the first human disorder, thrombocytopenia with absent radii (TAR), caused by deficiency in one of the four EJC subunits. Compound inheritance of a rare null allele and one of two low-frequency SNPs in the reg

  5. A short conserved motif in ALYREF directs cap- and EJC-dependent assembly of export complexes on spliced mRNAs. (United States)

    Gromadzka, Agnieszka M; Steckelberg, Anna-Lena; Singh, Kusum K; Hofmann, Kay; Gehring, Niels H


    The export of messenger RNAs (mRNAs) is the final of several nuclear posttranscriptional steps of gene expression. The formation of export-competent mRNPs involves the recruitment of export factors that are assumed to facilitate transport of the mature mRNAs. Using in vitro splicing assays, we show that a core set of export factors, including ALYREF, UAP56 and DDX39, readily associate with the spliced RNAs in an EJC (exon junction complex)- and cap-dependent manner. In order to elucidate how ALYREF and other export adaptors mediate mRNA export, we conducted a computational analysis and discovered four short, conserved, linear motifs present in RNA-binding proteins. We show that mutation in one of the new motifs (WxHD) in an unstructured region of ALYREF reduced RNA binding and abolished the interaction with eIF4A3 and CBP80. Additionally, the mutation impaired proper localization to nuclear speckles and export of a spliced reporter mRNA. Our results reveal important details of the orchestrated recruitment of export factors during the formation of export competent mRNPs.

  6. The Exon Junction Complex Controls the Efficient and Faithful Splicing of a Subset of Transcripts Involved in Mitotic Cell-Cycle Progression

    Directory of Open Access Journals (Sweden)

    Kazuhiro Fukumura


    Full Text Available The exon junction complex (EJC that is deposited onto spliced mRNAs upstream of exon–exon junctions plays important roles in multiple post-splicing gene expression events, such as mRNA export, surveillance, localization, and translation. However, a direct role for the human EJC in pre-mRNA splicing has not been fully understood. Using HeLa cells, we depleted one of the EJC core components, Y14, and the resulting transcriptome was analyzed by deep sequencing (RNA-Seq and confirmed by RT–PCR. We found that Y14 is required for efficient and faithful splicing of a group of transcripts that is enriched in short intron-containing genes involved in mitotic cell-cycle progression. Tethering of EJC core components (Y14, eIF4AIII or MAGOH to a model reporter pre-mRNA harboring a short intron showed that these core components are prerequisites for the splicing activation. Taken together, we conclude that the EJC core assembled on pre-mRNA is critical for efficient and faithful splicing of a specific subset of short introns in mitotic cell cycle-related genes.

  7. An EJC factor RBM8a regulates anxiety behaviors. (United States)

    Alachkar, A; Jiang, D; Harrison, M; Zhou, Y; Chen, G; Mao, Y


    Neuroplasticity depends on the precise timing of gene expression, which requires accurate control of mRNA stability and rapid elimination of abnormal mRNA. Nonsense-mediated mRNA decay (NMD) is an RNA surveillance mechanism that ensures the speedy degradation of mRNAs carrying premature termination codons (PTCs). This mechanism relies on several key Exon Junction Complex (EJC) factors to distinguish PTCs from normal stop codons. NMD degrades not only aberrant transcripts carrying PTCs, but also normal transcripts harboring a normal stop codon [1]. Intriguingly, mutations in an NMD factor, Upf3b, have been found in patients with autism [2, 3]. A binding partner of Upf3b, RBM8a, is located in the 1q21.1 copy-number variation (CNV) associated with mental retardation, autism [4], schizophrenia [5], and microcephaly [6]. However, the functions of EJC factors and their roles in behavioral regulation are still elusive. RBM8a protein is a core component of the EJC that plays an important role in NMD. Recent genetic study indicated that RBM8a gain-of-function significantly associated with intellectual disability [7]. In this study we investigated the effect of RBM8a overexpression on affective behaviors in mice. Lentivirus expressing RBM8a was infused into the hippocampus of adult mice to conduct behavioral studies including social interaction, open field, elevated plus maze, and forced swimming tests. Our results showed that overexpression of RBM8a in the mouse dentate gyrus (DG) leads to increased anxiety-like behavior, abnormal social interaction and decreased immobile time in forced swimming test (FST). To examine the underlying mechanism, we found that overexpressing RBM8a in cultured primary neurons lead to significant higher frequency of miniature excitatory postsynaptic currents (mEPSCs). To explore the underlying mechanism of RBM8a mediated behavioral changes, RNA-immunoprecipitation (RNA-IP) detected that RBM8a binds to CaMK2, GluR1 and Egr1 mRNA, suggesting that

  8. The fission yeast MTREC and EJC orthologs ensure the maturation of meiotic transcripts during meiosis. (United States)

    Marayati, Bahjat Fadi; Hoskins, Victoria; Boger, Robert W; Tucker, James F; Fishman, Emily S; Bray, Andrew S; Zhang, Ke


    Meiosis is a highly regulated process by which genetic information is transmitted through sexual reproduction. It encompasses unique mechanisms that do not occur in vegetative cells, producing a distinct, well-regulated meiotic transcriptome. During vegetative growth, many meiotic genes are constitutively transcribed, but most of the resulting mRNAs are rapidly eliminated by the Mmi1-MTREC (Mtl1-Red1 core) complex. While Mmi1-MTREC targets premature meiotic RNAs for degradation by the nuclear 3'-5' exoribonuclease exosome during mitotic growth, its role in meiotic gene expression during meiosis is not known. Here, we report that Red5, an essential MTREC component, interacts with pFal1, an ortholog of eukaryotic translation initiation factor eIF4aIII in the fission yeast Schizosaccharomyces pombe In mammals, together with MAGO (Mnh1), Rnps1, and Y14, elF4AIII (pFal1) forms the core of the exon junction complex (EJC), which is essential for transcriptional surveillance and localization of mature mRNAs. In fission yeast, two EJC orthologs, pFal1 and Mnh1, are functionally connected with MTREC, specifically in the process of meiotic gene expression during meiosis. Although pFal1 interacts with Mnh1, Y14, and Rnps1, its association with Mnh1 is not disrupted upon loss of Y14 or Rnps1. Mutations of Red1, Red5, pFal1, or Mnh1 produce severe meiotic defects; the abundance of meiotic transcripts during meiosis decreases; and mRNA maturation processes such as splicing are impaired. Since studying meiosis in mammalian germline cells is difficult, our findings in fission yeast may help to define the general mechanisms involved in accurate meiotic gene expression in higher eukaryotes. © 2016 Marayati et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  9. Two highly similar DEAD box proteins, OsRH2 and OsRH34, homologous to eukaryotic initiation factor 4AIII, play roles of the exon junction complex in regulating growth and development in rice. (United States)

    Huang, Chun-Kai; Sie, Yi-Syuan; Chen, Yu-Fu; Huang, Tian-Sheng; Lu, Chung-An


    The exon junction complex (EJC), which contains four core components, eukaryotic initiation factor 4AIII (eIF4AIII), MAGO/NASHI (MAGO), Y14/Tsunagi/RNA-binding protein 8A, and Barentsz/Metastatic lymph node 51, is formed in both nucleus and cytoplasm, and plays important roles in gene expression. Genes encoding core EJC components have been found in plants, including rice. Currently, the functional characterizations of MAGO and Y14 homologs have been demonstrated in rice. However, it is still unknown whether eIF4AIII is essential for the functional EJC in rice. This study investigated two DEAD box RNA helicases, OsRH2 and OsRH34, which are homologous to eIF4AIII, in rice. Amino acid sequence analysis indicated that OsRH2 and OsRH34 had 99 % identity and 100 % similarity, and their gene expression patterns were similar in various rice tissues, but the level of OsRH2 mRNA was about 58-fold higher than that of OsRH34 mRNA in seedlings. From bimolecular fluorescence complementation results, OsRH2 and OsRH34 interacted physically with OsMAGO1 and OsY14b, respectively, which indicated that both of OsRH2 and OsRH34 were core components of the EJC in rice. To study the biological roles of OsRH2 and OsRH34 in rice, transgenic rice plants were generated by RNA interference. The phenotypes of three independent OsRH2 and OsRH34 double-knockdown transgenic lines included dwarfism, a short internode distance, reproductive delay, defective embryonic development, and a low seed setting rate. These phenotypes resembled those of mutants with gibberellin-related developmental defects. In addition, the OsRH2 and OsRH34 double-knockdown transgenic lines exhibited the accumulation of unspliced rice UNDEVELOPED TAPETUM 1 mRNA. Rice contains two eIF4AIII paralogous genes, OsRH2 and OsRH34. The abundance of OsRH2 mRNA was about 58-fold higher than that of OsRH34 mRNA in seedlings, suggesting that the OsRH2 is major eIF4AIII in rice. Both OsRH2 and OsRH34 are core components of the EJC

  10. Export of piRNA precursors by EJC triggers assembly of cytoplasmic Yb-body in Drosophila. (United States)

    Dennis, Cynthia; Brasset, Emilie; Sarkar, Arpita; Vaury, Chantal


    PIWI-interacting RNAs (piRNAs) are effectors of transposable element (TE) silencing in the reproductive apparatus. In Drosophila ovarian somatic cells, piRNAs arise from longer single-stranded RNA precursors that are processed in the cytoplasm presumably within the Yb-bodies. piRNA precursors encoded by the flamenco (flam) piRNA cluster accumulate in a single focus away from their sites of transcription. In this study, we identify the exportin complex containing Nxf1 and Nxt1 as required for flam precursor nuclear export. Together with components of the exon junction complex (EJC), it is necessary for the efficient transfer of flam precursors away from their site of transcription. Indeed, depletion of these components greatly affects flam intra-nuclear transit. Moreover, we show that Yb-body assembly is dependent on the nucleo-cytoplasmic export of flam transcripts. These results suggest that somatic piRNA precursors are thus required for the assembly of the cytoplasmic transposon silencing machinery.

  11. Virus interaction with the apical junctional complex. (United States)

    Gonzalez-Mariscal, Lorenza; Garay, Erika; Lechuga, Susana


    In order to infect pathogens must breach the epithelial barriers that separate the organism from the external environment or that cover the internal cavities and ducts of the body. Epithelia seal the passage through the paracellular pathway with the apical junctional complex integrated by tight and adherens junctions. In this review we describe how viruses like coxsackie, swine vesicular disease virus, adenovirus, reovirus, feline calcivirus, herpes viruses 1 and 2, pseudorabies, bovine herpes virus 1, poliovirus and hepatitis C use as cellular receptors integral proteins present at the AJC of epithelial cells. Interaction with these proteins contributes in a significant manner in defining the particular tropism of each virus. Besides these proteins, viruses exhibit a wide range of cellular co-receptors among which proteins present in the basolateral cell surface like integrins are often found. Therefore targeting proteins of the AJC constitutes a strategy that might allow viruses to bypass the physical barrier that blocks their access to receptors expressed on the basolateral surface of epithelial cells.

  12. Trichomonas vaginalis perturbs the junctional complex in epithelial cells

    Institute of Scientific and Technical Information of China (English)


    Trichomonas vaginalis, a protist parasite of the urogenital tract in humans, is the causative agent of trichomonosis,which in recent years have been associated with the cervical cancer development. In the present study we analyzed the modifications at the junctional complex level of Caco-2 cells after interaction with two isolates of T. vaginalis and the influence of the iron concentration present in the parasite's culture medium on the interaction effects. Our results show that T. vaginalis adheres to the epithelial cell causing alterations in the junctional complex, such as: (a) a decrease in transepithelial electrical resistance; (b) alteration in the pattern of junctional complex proteins distribution as obseryed for E-cadherin, occludin and ZO-1; and (c) enlargement of the spaces between epithelial cells. These effects were dependent on (a) the degree of the parasite virulence isolate, (b) the iron concentration in the culture medium, and (c) the expression of adhesin proteins on the parasite surface.

  13. Unique cell type-specific junctional complexes in vascular endothelium of human and rat liver sinusoids.

    Directory of Open Access Journals (Sweden)

    Cyrill Géraud

    Full Text Available Liver sinusoidal endothelium is strategically positioned to control access of fluids, macromolecules and cells to the liver parenchyma and to serve clearance functions upstream of the hepatocytes. While clearance of macromolecular debris from the peripheral blood is performed by liver sinusoidal endothelial cells (LSECs using a delicate endocytic receptor system featuring stabilin-1 and -2, the mannose receptor and CD32b, vascular permeability and cell trafficking are controlled by transcellular pores, i.e. the fenestrae, and by intercellular junctional complexes. In contrast to blood vascular and lymphatic endothelial cells in other organs, the junctional complexes of LSECs have not yet been consistently characterized in molecular terms. In a comprehensive analysis, we here show that LSECs express the typical proteins found in endothelial adherens junctions (AJ, i.e. VE-cadherin as well as α-, β-, p120-catenin and plakoglobin. Tight junction (TJ transmembrane proteins typical of endothelial cells, i.e. claudin-5 and occludin, were not expressed by rat LSECs while heterogenous immunreactivity for claudin-5 was detected in human LSECs. In contrast, junctional molecules preferentially associating with TJ such as JAM-A, B and C and zonula occludens proteins ZO-1 and ZO-2 were readily detected in LSECs. Remarkably, among the JAMs JAM-C was considerably over-expressed in LSECs as compared to lung microvascular endothelial cells. In conclusion, we show here that LSECs form a special kind of mixed-type intercellular junctions characterized by co-occurrence of endothelial AJ proteins, and of ZO-1 and -2, and JAMs. The distinct molecular architecture of the intercellular junctional complexes of LSECs corroborates previous ultrastructural findings and provides the molecular basis for further analyses of the endothelial barrier function of liver sinusoids under pathologic conditions ranging from hepatic inflammation to formation of liver metastasis.

  14. Photocleavable junctions in complex polymer architectures and photoetchable thermoplastics (United States)

    Sterner, Elizabeth Surles

    Polymer materials have become important tools in nanomanufacturing due to their facile processing and ready attainment of the necessary feature sizes. The development of cleavable junctions has led to advances in the production of polymer nanotemplates. Photocleavage strategies have come to the forefront of the field because photons, as a cleavage stimulus, do not have the mass-transport limitations of chemical methods, and provide for targeted two- and three-dimensional feature control. This dissertation presents a method for producing photocleavable materials by one-pot copper-catalyzed azide-alkyne "click" chemistry (CuAAC), activator regenerated by electron transfer atom transfer radical polymerization (ARGET ATRP) and activated ester substitution methods that have each block labeled with a fluorescent dye, enabling exploration of the polymer physics of these systems by correlation fluorescence spectroscopy. It also introduces a novel photocleavable linker, the o-nitrobenzyl-1,2,3-triazole, its behavior on photocleavage, and a facile method for the production of the o-nitrobenzyl azides necessary for their synthesis. The synthesis and properties of a bulk photodegradable polytriazole are reported, as are proof of concept experiments demonstrating its potential as a directly photoetchable material. Lastly, this dissertation contains a perspective on possible avenues of new research on the topics presented.

  15. Impaired astrocytic gap junction coupling and potassium buffering in a mouse model of tuberous sclerosis complex. (United States)

    Xu, Lin; Zeng, Ling-Hui; Wong, Michael


    Abnormalities in astrocytes occur in the brains of patients with Tuberous Sclerosis Complex (TSC) and may contribute to the pathogenesis of neurological dysfunction in this disease. Here, we report that knock-out mice with Tsc1 gene inactivation in glia (Tsc1(GFAP)CKO mice) exhibit decreased expression of the astrocytic connexin protein, Cx43, and an associated impairment in gap junction coupling between astrocytes. Correspondingly, hippocampal slices from Tsc1(GFAP)CKO mice have increased extracellular potassium concentration in response to stimulation. This impaired potassium buffering can be attributed to abnormal gap junction coupling, as a gap junction inhibitor elicits an additional increase in potassium concentration in control, but not Tsc1(GFAP)CKO slices. Furthermore, treatment with a mammalian target of rapamycin inhibitor reverses the deficient Cx43 expression and impaired potassium buffering. These findings suggest that Tsc1 inactivation in astrocytes causes defects in astrocytic gap junction coupling and potassium clearance, which may contribute to epilepsy in Tsc1(GFAP)CKO mice.

  16. Carcinoembryonic antigen promotes colorectal cancer progression by targeting adherens junction complexes

    Energy Technology Data Exchange (ETDEWEB)

    Bajenova, Olga, E-mail: [Theodosius Dobzhansky Center for Genome Bioinformatics, St. Petersburg State University, St. Petersburg 199034 (Russian Federation); Department of Genetics and Biotechnology, St. Petersburg State University, St. Petersburg 199034 (Russian Federation); Department of Surgery and Biomedical Sciences, Creighton University, Omaha, NE 68178 (United States); Chaika, Nina [Department of Surgery and Biomedical Sciences, Creighton University, Omaha, NE 68178 (United States); Tolkunova, Elena; Davydov-Sinitsyn, Alexander [Institute of Cytology, Russian Academy of Sciences, St. Petersburg 194064 (Russian Federation); Gapon, Svetlana [Boston Children' s Hospital, Boston, MA 02115 (United States); Thomas, Peter [Department of Surgery and Biomedical Sciences, Creighton University, Omaha, NE 68178 (United States); O’Brien, Stephen [Theodosius Dobzhansky Center for Genome Bioinformatics, St. Petersburg State University, St. Petersburg 199034 (Russian Federation)


    Oncomarkers play important roles in the detection and management of human malignancies. Carcinoembryonic antigen (CEA, CEACAM5) and epithelial cadherin (E-cadherin) are considered as independent tumor markers in monitoring metastatic colorectal cancer. They are both expressed by cancer cells and can be detected in the blood serum. We investigated the effect of CEA production by MIP101 colorectal carcinoma cell lines on E-cadherin adherens junction (AJ) protein complexes. No direct interaction between E-cadherin and CEA was detected; however, the functional relationships between E-cadherin and its AJ partners: α-, β- and p120 catenins were impaired. We discovered a novel interaction between CEA and beta-catenin protein in the CEA producing cells. It is shown in the current study that CEA overexpression alters the splicing of p120 catenin and triggers the release of soluble E-cadherin. The influence of CEA production by colorectal cancer cells on the function of E-cadherin junction complexes may explain the link between the elevated levels of CEA and the increase in soluble E-cadherin during the progression of colorectal cancer. - Highlights: • Elevated level of CEA increases the release of soluble E-cadherin during the progression of colorectal cancer. • CEA over-expression alters the binding preferences between E-cadherin and its partners: α-, β- and p120 catenins in adherens junction complexes. • CEA produced by colorectal cancer cells interacts with beta-catenin protein. • CEA over-expression triggers the increase in nuclear beta-catenin. • CEA over-expression alters the splicing of p120 catenin protein.

  17. Crystal structure of RuvC resolvase in complex with Holliday junction substrate. (United States)

    Górecka, Karolina M; Komorowska, Weronika; Nowotny, Marcin


    The key intermediate in genetic recombination is the Holliday junction (HJ), a four-way DNA structure. At the end of recombination, HJs are cleaved by specific nucleases called resolvases. In Gram-negative bacteria, this cleavage is performed by RuvC, a dimeric endonuclease that belongs to the retroviral integrase superfamily. Here, we report the first crystal structure of RuvC in complex with a synthetic HJ solved at 3.75 Å resolution. The junction in the complex is in an unfolded 2-fold symmetrical conformation, in which the four arms point toward the vertices of a tetrahedron. The two scissile phosphates are located one nucleotide from the strand exchange point, and RuvC approaches them from the minor groove side. The key protein-DNA contacts observed in the structure were verified using a thiol-based site-specific cross-linking approach. Compared with known complex structures of the phage resolvases endonuclease I and endonuclease VII, the RuvC structure exhibits striking differences in the mode of substrate binding and location of the cleavage site.

  18. Creating complex molecular topologies by configuring DNA four-way junctions (United States)

    Liu, Di; Chen, Gang; Akhter, Usman; Cronin, Timothy M.; Weizmann, Yossi


    The realization of complex topologies at the molecular level represents a grand challenge in chemistry. This necessitates the manipulation of molecular interactions with high precision. Here we show that single-stranded DNA (ssDNA) knots and links can be created by utilizing the inherent topological properties that pertain to the DNA four-way junction, at which the two helical strands form a node and can be configured conveniently and connected for complex topological construction. Using this strategy, we produced series of ssDNA topoisomers with the same sequences. By finely designing the curvature and torsion, double-stranded DNA knots were accessed by hybridizing and ligating the complementary strands with the knotted ssDNA templates. Furthermore, we demonstrate the use of a constructed ssDNA knot both to probe the topological conversion catalysed by DNA topoisomerase and to study the DNA replication under topological constraint.

  19. Structure of the exon junction core complex with a trapped DEAD-box ATPase bound to RNA

    DEFF Research Database (Denmark)

    Andersen, Christian Brix Folsted; Ballut, Lionel; Johansen, Jesper Sanderhoff;


    In higher eukaryotes, a multiprotein exon junction complex is deposited on spliced messenger RNAs. The complex is organized around a stable core, which serves as a binding platform for numerous factors that influence messenger RNA function. Here, we present the crystal structure of a tetrameric e...

  20. Soft versus hard junction formation for α-terthiophene molecular wires and their charge transfer complexes (United States)

    Vezzoli, Andrea; Grace, Iain M.; Brooke, Carly; Nichols, Richard J.; Lambert, Colin J.; Higgins, Simon J.


    We used a range of scanning tunnelling microscopy (STM)-based methods to conduct a detailed study of single molecule junction conductance enhancement upon charge transfer complex formation, using bis(thiaalkyl)arene molecular wires as electron donors and tetracyanoethylene (TCNE) as an electron acceptor. Using the "hard" STM break junction (STM-BJ) method, in which a Au STM tip is pushed into a Au substrate and then withdrawn in the presence of molecules, we see a single, very broad, peak in the resulting conductance histogram when all data are used; the conductance enhancement is 25-fold for a terthiophene donor and 15-fold for a phenyl group. After rational data selection, in which only current-distance curves that contain a current plateau >0.2 nm long are used in the conductance histogram, three sharper peaks are resolved in the histograms for the charge transfer complexes; two substantially lower-conductance peaks are resolved for the uncomplexed molecules. Using the "soft" STM I(s) technique, in which initial contact between tip and substrate is avoided and the current limit is about an order of magnitude lower, we were able to resolve two peaks for the uncomplexed molecules depending upon the initial set point current (i.e., tip height), one at the same value as the lower of the two data-selected STM-BJ histogram peaks and an additional peak beyond the low-current limit for the STM-BJ experiment. For the terthiophene, the low, medium, and high conductance peaks for the TCNE complex are, respectively, ca. 70, 70, and 46 times higher in conductance than the corresponding peaks for the free molecule.

  1. Two Distinct MUS81-EME1 Complexes from Arabidopsis Process Holliday Junctions1[W (United States)

    Geuting, Verena; Kobbe, Daniela; Hartung, Frank; Dürr, Jasmin; Focke, Manfred; Puchta, Holger


    The MUS81 endonuclease complex has been shown to play an important role in the repair of stalled or blocked replication forks and in the processing of meiotic recombination intermediates from yeast to humans. This endonuclease is composed of two subunits, MUS81 and EME1. Surprisingly, unlike other organisms, Arabidopsis (Arabidopsis thaliana) has two EME1 homologs encoded in its genome. AtEME1A and AtEME1B show 63% identity on the protein level. We were able to demonstrate that, after expression in Escherichia coli, each EME1 protein can assemble with the unique AtMUS81 to form a functional endonuclease. Both complexes, AtMUS81-AtEME1A and AtMUS81-AtEME1B, are not only able to cleave 3′-flap structures and nicked Holliday junctions (HJs) but also, with reduced efficiency, intact HJs. While the complexes have the same cleavage patterns with both nicked DNA substrates, slight differences in the processing of intact HJs can be detected. Our results are in line with an involvement of both MUS81-EME1 endonuclease complexes in DNA recombination and repair processes in Arabidopsis. PMID:19339504

  2. Two distinct MUS81-EME1 complexes from Arabidopsis process Holliday junctions. (United States)

    Geuting, Verena; Kobbe, Daniela; Hartung, Frank; Dürr, Jasmin; Focke, Manfred; Puchta, Holger


    The MUS81 endonuclease complex has been shown to play an important role in the repair of stalled or blocked replication forks and in the processing of meiotic recombination intermediates from yeast to humans. This endonuclease is composed of two subunits, MUS81 and EME1. Surprisingly, unlike other organisms, Arabidopsis (Arabidopsis thaliana) has two EME1 homologs encoded in its genome. AtEME1A and AtEME1B show 63% identity on the protein level. We were able to demonstrate that, after expression in Escherichia coli, each EME1 protein can assemble with the unique AtMUS81 to form a functional endonuclease. Both complexes, AtMUS81-AtEME1A and AtMUS81-AtEME1B, are not only able to cleave 3'-flap structures and nicked Holliday junctions (HJs) but also, with reduced efficiency, intact HJs. While the complexes have the same cleavage patterns with both nicked DNA substrates, slight differences in the processing of intact HJs can be detected. Our results are in line with an involvement of both MUS81-EME1 endonuclease complexes in DNA recombination and repair processes in Arabidopsis.

  3. Protein tyrosine phosphatase σ targets apical junction complex proteins in the intestine and regulates epithelial permeability. (United States)

    Murchie, Ryan; Guo, Cong-Hui; Persaud, Avinash; Muise, Aleixo; Rotin, Daniela


    Protein tyrosine phosphatase (PTP)σ (PTPRS) was shown previously to be associated with susceptibility to inflammatory bowel disease (IBD). PTPσ(-/-) mice exhibit an IBD-like phenotype in the intestine and show increased susceptibility to acute models of murine colitis. However, the function of PTPσ in the intestine is uncharacterized. Here, we show an intestinal epithelial barrier defect in the PTPσ(-/-) mouse, demonstrated by a decrease in transepithelial resistance and a leaky intestinal epithelium that was determined by in vivo tracer analysis. Increased tyrosine phosphorylation was observed at the plasma membrane of epithelial cells lining the crypts of the small bowel and colon of the PTPσ(-/-) mouse, suggesting the presence of PTPσ substrates in these regions. Using mass spectrometry, we identified several putative PTPσ intestinal substrates that were hyper-tyrosine-phosphorylated in the PTPσ(-/-) mice relative to wild type. Among these were proteins that form or regulate the apical junction complex, including ezrin. We show that ezrin binds to and is dephosphorylated by PTPσ in vitro, suggesting it is a direct PTPσ substrate, and identified ezrin-Y353/Y145 as important sites targeted by PTPσ. Moreover, subcellular localization of the ezrin phosphomimetic Y353E or Y145 mutants were disrupted in colonic Caco-2 cells, similar to ezrin mislocalization in the colon of PTPσ(-/-) mice following induction of colitis. Our results suggest that PTPσ is a positive regulator of intestinal epithelial barrier, which mediates its effects by modulating epithelial cell adhesion through targeting of apical junction complex-associated proteins (including ezrin), a process impaired in IBD.

  4. Complex wireframe DNA origami nanostructures with multi-arm junction vertices. (United States)

    Zhang, Fei; Jiang, Shuoxing; Wu, Siyu; Li, Yulin; Mao, Chengde; Liu, Yan; Yan, Hao


    Structural DNA nanotechnology and the DNA origami technique, in particular, have provided a range of spatially addressable two- and three-dimensional nanostructures. These structures are, however, typically formed of tightly packed parallel helices. The development of wireframe structures should allow the creation of novel designs with unique functionalities, but engineering complex wireframe architectures with arbitrarily designed connections between selected vertices in three-dimensional space remains a challenge. Here, we report a design strategy for fabricating finite-size wireframe DNA nanostructures with high complexity and programmability. In our approach, the vertices are represented by n × 4 multi-arm junctions (n = 2-10) with controlled angles, and the lines are represented by antiparallel DNA crossover tiles of variable lengths. Scaffold strands are used to integrate the vertices and lines into fully assembled structures displaying intricate architectures. To demonstrate the versatility of the technique, a series of two-dimensional designs including quasi-crystalline patterns and curvilinear arrays or variable curvatures, and three-dimensional designs including a complex snub cube and a reconfigurable Archimedean solid were constructed.

  5. The endogenous Mus81-Eme1 complex resolves Holliday junctions by a nick and counternick mechanism. (United States)

    Gaillard, Pierre-Henri L; Noguchi, Eishi; Shanahan, Paul; Russell, Paul


    Functional studies strongly suggest that the Mus81-Eme1 complex resolves Holliday junctions (HJs) in fission yeast, but in vitro it preferentially cleaves flexible three-way branched structures that model replication forks or 3' flaps. Here we report that a nicked HJ is the preferred substrate of endogenous and recombinant Mus81-Eme1. Cleavage occurs specifically on the strand that opposes the nick, resulting in resolution of the structure into linear duplex products. Resolving cuts made by the endogenous Mus81-Eme1 complex on an intact HJ are quasi-simultaneous, indicating that Mus81-Eme1 resolves HJs by a nick and counternick mechanism, with a large rate enhancement of the second cut arising from the flexible nature of the nicked HJ intermediate. Recombinant Mus81-Eme1 is ineffective at making the first cut. We also report that HJs accumulate in a DNA polymerase alpha mutant that lacks Mus81, providing further evidence that the Mus81-Eme1 complex targets HJs in vivo.

  6. Structural and functional insights into the malaria parasite moving junction complex.

    Directory of Open Access Journals (Sweden)

    Brigitte Vulliez-Le Normand

    Full Text Available Members of the phylum Apicomplexa, which include the malaria parasite Plasmodium, share many features in their invasion mechanism in spite of their diverse host cell specificities and life cycle characteristics. The formation of a moving junction (MJ between the membranes of the invading apicomplexan parasite and the host cell is common to these intracellular pathogens. The MJ contains two key parasite components: the surface protein Apical Membrane Antigen 1 (AMA1 and its receptor, the Rhoptry Neck Protein (RON complex, which is targeted to the host cell membrane during invasion. In particular, RON2, a transmembrane component of the RON complex, interacts directly with AMA1. Here, we report the crystal structure of AMA1 from Plasmodium falciparum in complex with a peptide derived from the extracellular region of PfRON2, highlighting clear specificities of the P. falciparum RON2-AMA1 interaction. The receptor-binding site of PfAMA1 comprises the hydrophobic groove and a region that becomes exposed by displacement of the flexible Domain II loop. Mutations of key contact residues of PfRON2 and PfAMA1 abrogate binding between the recombinant proteins. Although PfRON2 contacts some polymorphic residues, binding studies with PfAMA1 from different strains show that these have little effect on affinity. Moreover, we demonstrate that the PfRON2 peptide inhibits erythrocyte invasion by P. falciparum merozoites and that this strong inhibitory potency is not affected by AMA1 polymorphisms. In parallel, we have determined the crystal structure of PfAMA1 in complex with the invasion-inhibitory peptide R1 derived by phage display, revealing an unexpected structural mimicry of the PfRON2 peptide. These results identify the key residues governing the interactions between AMA1 and RON2 in P. falciparum and suggest novel approaches to antimalarial therapeutics.

  7. Gap Junctions (United States)

    Nielsen, Morten Schak; Axelsen, Lene Nygaard; Sorgen, Paul L.; Verma, Vandana; Delmar, Mario; Holstein-Rathlou, Niels-Henrik


    Gap junctions are essential to the function of multicellular animals, which require a high degree of coordination between cells. In vertebrates, gap junctions comprise connexins and currently 21 connexins are known in humans. The functions of gap junctions are highly diverse and include exchange of metabolites and electrical signals between cells, as well as functions, which are apparently unrelated to intercellular communication. Given the diversity of gap junction physiology, regulation of gap junction activity is complex. The structure of the various connexins is known to some extent; and structural rearrangements and intramolecular interactions are important for regulation of channel function. Intercellular coupling is further regulated by the number and activity of channels present in gap junctional plaques. The number of connexins in cell-cell channels is regulated by controlling transcription, translation, trafficking, and degradation; and all of these processes are under strict control. Once in the membrane, channel activity is determined by the conductive properties of the connexin involved, which can be regulated by voltage and chemical gating, as well as a large number of posttranslational modifications. The aim of the present article is to review our current knowledge on the structure, regulation, function, and pharmacology of gap junctions. This will be supported by examples of how different connexins and their regulation act in concert to achieve appropriate physiological control, and how disturbances of connexin function can lead to disease. © 2012 American Physiological Society. Compr Physiol 2:1981-2035, 2012. PMID:23723031

  8. Gap junctions. (United States)

    Nielsen, Morten Schak; Axelsen, Lene Nygaard; Sorgen, Paul L; Verma, Vandana; Delmar, Mario; Holstein-Rathlou, Niels-Henrik


    Gap junctions are essential to the function of multicellular animals, which require a high degree of coordination between cells. In vertebrates, gap junctions comprise connexins and currently 21 connexins are known in humans. The functions of gap junctions are highly diverse and include exchange of metabolites and electrical signals between cells, as well as functions, which are apparently unrelated to intercellular communication. Given the diversity of gap junction physiology, regulation of gap junction activity is complex. The structure of the various connexins is known to some extent; and structural rearrangements and intramolecular interactions are important for regulation of channel function. Intercellular coupling is further regulated by the number and activity of channels present in gap junctional plaques. The number of connexins in cell-cell channels is regulated by controlling transcription, translation, trafficking, and degradation; and all of these processes are under strict control. Once in the membrane, channel activity is determined by the conductive properties of the connexin involved, which can be regulated by voltage and chemical gating, as well as a large number of posttranslational modifications. The aim of the present article is to review our current knowledge on the structure, regulation, function, and pharmacology of gap junctions. This will be supported by examples of how different connexins and their regulation act in concert to achieve appropriate physiological control, and how disturbances of connexin function can lead to disease. © 2012 American Physiological Society. Compr Physiol 2:1853-1872, 2012.

  9. Disrupted Junctional Membrane Complexes and Hyperactive Ryanodine Receptors Following Acute Junctophilin Knockdown in Mice (United States)

    van Oort, Ralph J.; Garbino, Alejandro; Wang, Wei; Dixit, Sayali S.; Landstrom, Andrew P.; Gaur, Namit; De Almeida, Angela C.; Skapura, Darlene G.; Rudy, Yoram; Burns, Alan R.; Ackerman, Michael J.; Wehrens, Xander H.T.


    Background Excitation-contraction coupling in striated muscle requires proper communication of plasmalemmal voltage-activated Ca2+ channels and Ca2+ release channels on sarcoplasmic reticulum (SR) within junctional membrane complexes (JMCs). Whereas previous studies revealed a loss of JMCs and embryonic lethality in germ-line junctophilin-2 (JPH2) knockout mice, it has remained unclear whether JPH2 plays an essential role in JMC formation and the Ca2+-induced Ca2+ release process in the heart. Our recent work demonstrated loss-of-function mutations in JPH2 in patients with hypertrophic cardiomyopathy. Methods and Results To elucidate the role of JPH2 in the heart, we developed a novel approach to conditionally reduce JPH2 protein levels using RNA interference. Cardiac-specific JPH2 knockdown resulted in impaired cardiac contractility, which caused heart failure and increased mortality. JPH2 deficiency resulted in loss of excitation-contraction coupling gain, precipitated by a reduction in the number of JMCs and increased variability in the plasmalemma-SR distance. Conclusions Loss of JPH2 had profound effects on Ca2+ release channel inactivation, suggesting a novel functional role for JPH2 in regulating intracellular Ca2+ release channels in cardiac myocytes. Thus, our novel approach of cardiac-specific shRNA-mediated knockdown of junctophilin-2 has uncovered a critical role for junctophilin in intracellular Ca2+ release in the heart. PMID:21339484

  10. A complex craniovertebral junction malformation in a patient with late onset glycogenosis 2

    Directory of Open Access Journals (Sweden)

    Mariasofia Cotelli


    Full Text Available Glycogenosis II (GSDII is an autosomal recessive lysosomal storage disorder resulting from deficiency of acid alpha-glucosidase and subsequent lysosomal accumulation of glycogen in skeletal, cardiac and smooth muscles. The late-onset form is characterized by wide variability of the phenotypical spectrum. Clinical findings may include muscle weakness, respiratory insufficiency, vascular abnormalities, low bone mineral density and higher risk of developing osteoporosis. Craniovertebral junction (CVJ malformations have never been described so far. We here report on a GSDII 43-year-old woman who harbored the mutations IVS1-13T>G and c.2237G>A in the acid alpha-glucosidase gene. She recurrently suffered from headache, neck pain and dizziness. Brain MRI and CT scan showed the presence of a very rare complex CVJ malformation composed of basilar invagination, basiocciput hypoplasia, partial C1 assimilation, C1 posterior arch aplasia and C1 lateral mass hypoplasia and offset. Although we cannot rule out their coincidental occurrence, the rarity of multiple CVJ malformations in the general population as well as the well-known GSDII multisystem involvement should suggest to study the CVJ in the diagnostic process of GSDII patients in order to assess the CVJ malformation frequency in GSDII population and verify a possible relationship between these two conditions.

  11. Complex sarcolemmal invaginations mimicking myotendinous junctions in a case of Laing early-onset distal myopathy. (United States)

    Reis, Gerald F; de la Motte, Grant; Gooding, Rebecca; Laing, Nigel G; Margeta, Marta


    Distal myopathies are a group of clinically and pathologically overlapping muscle diseases that are genetically complex and can represent a diagnostic challenge. Laing early-onset distal myopathy (MPD1) is a form of distal myopathy caused by mutations in the MYH7 gene, which encodes the beta myosin heavy chain protein expressed in type 1 skeletal muscle fibers and cardiac myocytes. Here, we present a case of genetically confirmed MPD1 with a typical clinical presentation but distinctive light microscopic and ultrastructural findings on muscle biopsy. A 39-year-old professional male cellist presented with a bilateral foot drop that developed by age 8; analysis of the family pedigree showed an autosomal dominant pattern of inheritance. The physical exam demonstrated bilateral weakness of ankle dorsiflexors, toe extensors and finger extensors; creatine kinase level was normal. Biopsy of the quadriceps femoris muscle showed predominance and hypotrophy of type 1 fibers, hybrid fibers with co-expression of slow and fast myosin proteins (both in highly atrophic and normal size range), moth-eaten fibers and mini-cores, lack of rimmed vacuoles and rare desmin-positive eosinophilic sarcoplasmic inclusions. In addition to these abnormalities often observed in MPD1, the biopsy demonstrated frequent clefted fibers with complex sarcolemmal invaginations; on ultrastructural examination, these structures closely mimicked myotendinous junctions but were present away from the tendon and were almost exclusively found in type 1 fibers. Sequencing analysis of the MYH7 gene in the index patient and other affected family members demonstrated a previously described heterozygous c.4522_4524delGAG (p.Glu1508del) mutation. This case widens the pathologic spectrum of MPD1 and highlights the pathologic and clinical variability that can accompany the same genetic mutation, suggesting a significant role for modifier genes in MPD1 pathogenesis. © 2015 Japanese Society of Neuropathology.

  12. (4S-4,8-dihydroxy-1-tetralone and other chemical constituents from Pestalotiopsis sp. EJC07, endophytic fromBauhinia guianensis

    Directory of Open Access Journals (Sweden)

    Eleane M.C. de Souza


    Full Text Available The present work reports the isolation of eight compounds fromPestalotiopsis sp. EJC07 isolated as endophytic fromBauhinia guianensis, a tipical plant of the Amazon. The compounds (4S-4,8-dihydroxy-1-tetralone (1, uracil (2, uridin (3, p-hydroxybenzoic acid (4, ergosterol (5, ergosterol peroxide (6, cerevisterol (7 and ducitol (8 were isolated by chromatographic procedures and identified by spectral methods of 1D and 2D NMR and MS. The compound 1 is being reported for the first time in the genusPestalotiopsis.

  13. Evolution and cell physiology. 4. Why invent yet another protein complex to build junctions in epithelial cells? (United States)

    Le Bivic, André


    The formation of the first epithelium was an essential step for animal evolution, since it has allowed coordination of the behavior of a cell layer and creation of a selective barrier between the internal medium and the outside world. The possibility of coupling the cells in a single layer has allowed morphogenetic events, such as tube formation, or gastrulation, to form more complex animal morphologies. The invention of sealed junctions between cells has allowed, on the other hand, creation of an asymmetry of nutrients or salts between the apical and the basal side of the epithelial layer. Creation of an internal medium has led to homeostasis, allowing the evolution of more complex physiological functions and the emergence of sophisticated animal shapes. During evolution, the origins of the first animals coincided with the invention of several protein complexes, including true cadherins and the polarity protein complexes. How these complexes regulate formation of the apicolateral border and the adherens junctions is still not fully understood. This review focuses on the role of these apical polarity complexes and, in particular, the Crumbs complex, which is essential for proper organization of epithelial layers from Drosophila to humans.

  14. Connexin26 regulates assembly and maintenance of cochlear gap junction macromolecular complex for normal hearing (United States)

    Kamiya, Kazusaku; Fukunaga, Ichiro; Hatakeyama, Kaori; Ikeda, Katsuhisa


    Hereditary deafness affects about 1 in 2000 children and GJB2 gene mutation is most frequent cause for this disease in the world. GJB2 encodes connexin26 (Cx26), a component in cochlear gap junction. Recently, we found macromolecular change of gap junction plaques with two different types of Cx26 mutation as major classification of clinical case, one is a model of dominant negative type, Cx26R75W+ and the other is conditional gene deficient mouse, Cx26f/fP0Cre as a model for insufficiency of gap junction protein [6]. Gap junction composed mainly of Cx26 and Cx30 in wild type mice formed large planar gap junction plaques (GJP). In contrast, Cx26R75W+ and Cx26f/fP0Cre showed fragmented small round GJPs around the cell border. In Cx26f/fP0Cre, some of the cells with Cx26 expression due to their cellular mosaicism showed normal large GJP with Cx26 and Cx30 only at the cell junction site between two Cx26 positive cells. These indicate that bilateral Cx26 expressions from both adjacent cells are essential for the formation of the cochlear linear GJP, and it is not compensated by other cochlear Connexins such as Connexin30. In the present study, we demonstrated a new molecular pathology in most common hereditary deafness with different types of Connexin26 mutations, and this machinery can be a new target for drag design of hereditary deafness.

  15. Dual Interaction of JAM-C with JAM-B and αMβ2 Integrin: Function in Junctional Complexes and Leukocyte AdhesionD⃞


    Lamagna, Chrystelle; Meda, Paolo; Mandicourt, Guillaume; Brown, James; Gilbert, Robert J C; Jones, E Yvonne; Kiefer, Friedemann; Ruga, Pilar; Imhof, Beat A.; Aurrand-Lions, Michel


    The junctional adhesion molecules (JAMs) have been recently described as interendothelial junctional molecules and as integrin ligands. Here we show that JAM-B and JAM-C undergo heterophilic interaction in cell-cell contacts and that JAM-C is recruited and stabilized in junctional complexes by JAM-B. In addition, soluble JAM-B dissociates soluble JAM-C homodimers to form JAM-B/JAM-C heterodimers. This suggests that the affinity of JAM-C monomers to form dimers is higher for JAM-B than for JAM...

  16. Deoxynivanelol and Fumonisin, Alone or in Combination, Induce Changes on Intestinal Junction Complexes and in E-Cadherin Expression

    Directory of Open Access Journals (Sweden)

    Karina Basso


    Full Text Available Fusariotoxins such as fumonisin B1 (FB1 and deoxynivalenol (DON cause deleterious effects on the intestine of pigs. The aim of this study was to evaluate the effect of these mycotoxins, alone and in combination, on jejunal explants from piglets, using histological, immunohistochemical and ultrastructural assays. Five 24-day old pigs were used for sampling the explants. Forty-eight explants were sampled from each animal. Explants were incubated for 4 hours in culture medium and medium containing FB1 (100 µM, DON (10 µM and both mycotoxins (100 µM FB1 plus 10 µM DON. Exposure to all treatments induced a significant decrease in the normal intestinal morphology and in the number of goblet cells, which were more severe in explants exposed to DON and both mycotoxins. A significant reduction in villus height occurred in groups treated with DON and with co-contamination. Expression of E-cadherin was significantly reduced in explants exposed to FB1 (40%, DON (93% and FB1 plus DON (100%. The ultrastructural assay showed increased intercellular spaces and no junction complexes on enterocytes exposed to mycotoxins. The present data indicate that FB1 and DON induce changes in cell junction complexes that could contribute to increase paracellular permeability. The ex vivo model was adequate for assessing intestinal toxicity induced by exposure of isolated or associated concentrations of 100 µM of FB1 and 10 µM of DON.

  17. Managing the complexity of communication: regulation of gap junctions by post-translational modification

    DEFF Research Database (Denmark)

    Axelsen, Lene Nygaard; Callø, Kirstine; von Holstein-Rathlou, Niels-Henrik


    expression by transcription and translation is of great importance, the trafficking, channel activity and degradation are also under tight control. The function of connexins can be regulated by several post translational modifications, which affect numerous parameters; including number of channels, open......Gap junctions are comprised of connexins that form cell-to-cell channels which couple neighboring cells to accommodate the exchange of information. The need for communication does, however, change over time and therefore must be tightly controlled. Although the regulation of connexin protein...... probability, single channel conductance or selectivity. The most extensively investigated post translational modifications are phosphorylations, which have been documented in all mammalian connexins. Besides phosphorylations, some connexins are known to be ubiquitinated, SUMOylated, nitrosylated, hydroxylated...

  18. Glutamine supplementation attenuates ethanol-induced disruption of apical junctional complexes in colonic epithelium and ameliorates gut barrier dysfunction and fatty liver in mice. (United States)

    Chaudhry, Kamaljit K; Shukla, Pradeep K; Mir, Hina; Manda, Bhargavi; Gangwar, Ruchika; Yadav, Nikki; McMullen, Megan; Nagy, Laura E; Rao, RadhaKrishna


    Previous in vitro studies showed that glutamine (Gln) prevents acetaldehyde-induced disruption of tight junctions and adherens junctions in Caco-2 cell monolayers and human colonic mucosa. In the present study, we evaluated the effect of Gln supplementation on ethanol-induced gut barrier dysfunction and liver injury in mice in vivo. Ethanol feeding caused a significant increase in inulin permeability in distal colon. Elevated permeability was associated with a redistribution of tight junction and adherens junction proteins and depletion of detergent-insoluble fractions of these proteins, suggesting that ethanol disrupts apical junctional complexes in colonic epithelium and increases paracellular permeability. Ethanol-induced increase in colonic mucosal permeability and disruption of junctional complexes were most severe in mice fed Gln-free diet. Gln supplementation attenuated ethanol-induced mucosal permeability and disruption of tight junctions and adherens junctions in a dose-dependent manner, indicating the potential role of Gln in nutritional intervention to alcoholic tissue injury. Gln supplementation dose-dependently elevated reduced-protein thiols in colon without affecting the level of oxidized-protein thiols. Ethanol feeding depleted reduced protein thiols and elevated oxidized protein thiols. Ethanol-induced protein thiol oxidation was most severe in mice fed with Gln-free diet and absent in mice fed with Gln-supplemented diet, suggesting that antioxidant effect is one of the likely mechanisms involved in Gln-mediated amelioration of ethanol-induced gut barrier dysfunction. Ethanol feeding elevated plasma transaminase and liver triglyceride, which was accompanied by histopathologic lesions in the liver; ethanol-induced liver damage was attenuated by Gln supplementation. These results indicate that Gln supplementation ameliorates alcohol-induced gut and liver injury.

  19. Density functional theory study on Herzberg-Teller contribution in Raman scattering from 4-aminothiophenol-metal complex and metal-4-aminothiophenol-metal junction (United States)

    Liu, Shasha; Zhao, Xiuming; Li, Yuanzuo; Zhao, Xiaohong; Chen, Maodu


    Density functional theory (DFT) and time-dependent DFT calculations have been performed to investigate the Raman scattering spectra of metal-molecule complex and metal-molecule-metal junction architectures interconnected with 4-aminothiophenol (PATP) molecule. The simulated profiles of normal Raman scattering (NRS) spectra for the two complexes (Ag2-PATP and PATP-Au2) and the two junctions (Ag2-PATP-Au2 and Au2-PATP-Ag2) are similar to each other, but exhibit obviously different Raman intensities. Due to the lager static polarizabilities of the two junctions, which directly influence the ground state chemical enhancement in NRS spectra, the calculated normal Raman intensities of them are stronger than those of two complexes by the factor of 102. We calculate preresonance Raman scattering (RRS) spectra with incident light at 1064 nm, which is much lower than the S1 electronic transition energy of complexes and junctions. Ag2-PATP-Au2 and Au2-PATP-Ag2 junctions yield higher Raman intensities than those of Ag2-PATP and PATP-Au2 complexes, especially for b2 modes. This effect is mainly attributed to charge transfer (CT) between the metal gap and the PAPT molecule which results in the occurrence of CT resonance enhancement. The calculated pre-RRS spectra strongly depend on the electronic transition state produced by new structures. With excitation at 514.5 nm, the calculated pre-RRS spectra of two complexes and two junctions are stronger than those of with excitation at 1064 nm. A charge difference densities methodology has been used to visually describe chemical enhancement mechanism of RRS spectrum. This methodology aims at visualizing intermolecular CT which provides direct evidence of the Herzberg-Teller mechanism.

  20. Development of a Symmetric Ring Junction as a Four-Port Reflectometer for Complex Reflection Coefficient Measurements

    Directory of Open Access Journals (Sweden)

    K.Y. Lee


    Full Text Available Six-port reflectometer is well-known for its ability to measure magnitude and phase-shift of microwave signal using four power detectors that perform magnitude-only measurements. This paper presents the development of an innovative symmetric ring junction as four-port reflectometer for complex reflection coefficient measurements. It reduces the number of required detectors to two. Design optimization, new calibration modeling and algorithm are discussed in details for this four-port reflectometer. The developed four-port reflectometer is compared to five-port reflectometer and vector network analyzer. It is found that the measured magnitude and phase-shift shows good performance in comparison with the commercial vector network analyzer and the five-port reflectometer.

  1. Study of guided wave transmission through complex junction in sodium cooled reactor

    Energy Technology Data Exchange (ETDEWEB)

    Elie, Q.; Le Bourdais, F.; Jezzine, K.; Baronian, V. [Non Destructive Testing Department at the French Atomic Energy Commission (CEA), Saclay, 91191 Gif sur Yvette CEDEX, (France)


    Ultrasonic guided wave techniques are seen as suitable candidates for the inspection of welded structures within sodium cooled fast reactors (SFR), as the long range propagation of guided waves without amplitude attenuation can overcome the accessibility problem due to the liquid sodium. In the context of the development of the Advanced Sodium Test Reactor for Industrial Demonstration (ASTRID), the French Atomic Commission (CEA) investigates non-destructive testing techniques based on guided wave propagation. In this work, guided wave NDT methods are applied to control the integrity of welds located in a junction-type structure welded to the main vessel. The method presented in this paper is based on the analysis of scattering matrices peculiar to each expected defect, and takes advantage of the multi-modal and dispersive characteristics of guided wave generation. In a simulation study, an algorithm developed using the CIVA software is presented. It permits selecting appropriate incident modes to optimize detection and identification of expected flawed configurations. In the second part of this paper, experimental results corresponding to a first validation step of the simulation results are presented. The goal of the experiments is to estimate the effectiveness of the incident mode selection in plates. The results show good agreement between experience and simulation. (authors)

  2. Adherent-invasive Escherichia coli, strain LF82 disrupts apical junctional complexes in polarized epithelia

    Directory of Open Access Journals (Sweden)

    Ossa Juan C


    Full Text Available Abstract Background Although bacteria are implicated in the pathogenesis of chronic inflammatory bowel diseases (IBD, mechanisms of intestinal injury and immune activation remain unclear. Identification of adherent-invasive Escherichia coli (AIEC strains in IBD patients offers an opportunity to characterize the pathogenesis of microbial-induced intestinal inflammation in IBD. Previous studies have focused on the invasive phenotype of AIEC and the ability to replicate and survive in phagocytes. However, the precise mechanisms by which these newly identified microbes penetrate the epithelial lining remain to be clarified. Therefore, the aim of this study was to delineate the effects of AIEC, strain LF82 (serotype O83:H1 on model polarized epithelial monolayers as a contributor to intestinal injury in IBD. Results Infection of T84 and Madin-Darby Canine Kidney-I polarized epithelial cell monolayers with AIEC, strain LF82 led to a reduction in transepithelial electrical resistance and increased macromolecular (10 kilodalton dextran flux. Basolateral AIEC infection resulted in more severe disruption of the epithelial barrier. Increased permeability was accompanied by a redistribution of the tight junction adaptor protein, zonula occludens-1, demonstrated by confocal microscopy and formation of gaps between cells, as shown by transmission electron microscopy. After 4 h of infection of intestine 407 cells, bacteria replicated in the cell cytoplasm and were enclosed in membrane-bound vesicles positive for the late endosomal marker, LAMP1. Conclusion These findings indicate that AIEC, strain LF82 disrupts the integrity of the polarized epithelial cell barrier. This disruption enables bacteria to penetrate into the epithelium and replicate in the host cell cytoplasm. These findings provide important links between microbes related to IBD, the intestinal epithelial cell barrier and disease pathogenesis.

  3. The Smc5-Smc6 complex is required to remove chromosome junctions in meiosis.

    Directory of Open Access Journals (Sweden)

    Sarah Farmer

    Full Text Available Meiosis, a specialized cell division with a single cycle of DNA replication round and two consecutive rounds of nuclear segregation, allows for the exchange of genetic material between parental chromosomes and the formation of haploid gametes. The structural maintenance of chromosome (SMC proteins aid manipulation of chromosome structures inside cells. Eukaryotic SMC complexes include cohesin, condensin and the Smc5-Smc6 complex. Meiotic roles have been discovered for cohesin and condensin. However, although Smc5-Smc6 is known to be required for successful meiotic divisions, the meiotic functions of the complex are not well understood. Here we show that the Smc5-Smc6 complex localizes to specific chromosome regions during meiotic prophase I. We report that meiotic cells lacking Smc5-Smc6 undergo catastrophic meiotic divisions as a consequence of unresolved linkages between chromosomes. Surprisingly, meiotic segregation defects are not rescued by abrogation of Spo11-induced meiotic recombination, indicating that at least some chromosome linkages in smc5-smc6 mutants originate from other cellular processes. These results demonstrate that, as in mitosis, Smc5-Smc6 is required to ensure proper chromosome segregation during meiosis by preventing aberrant recombination intermediates between homologous chromosomes.

  4. Experimental and numerical study of a complex cross-junction microchannel (United States)

    Nowak, Emilia; Simmons, Mark; Kahouadji, Lyes; Craster, Richard; Matar, Omar; Juric, Damir; Chergui, Jalel; Shin, Seungwon


    Microfluidic devices occur in various fields such as inkjet printing, DNA chips, lab-on-a-chip technology, micro-propulsion and droplet-based microfluidics. Here, we examine drop and plug formation of immiscible liquids in a cross-shaped microchannel via high-speed imaging, shadowgraphy and PIV that allows interface topology and flow field tracking. We also present comparisons with direct numerical simulations using the new solver, BLUE, for massively parallel simulations of fully three-dimensional multiphase flows in complex solid geometries. EPSRC UK Programme Grant MEMPHIS (EP/K003976/1).

  5. Bacterial interference with host epithelial junctional complexes: Probiotic bacteria vs. A/E lesion-forming Escherichia coli

    Directory of Open Access Journals (Sweden)



    Full Text Available During colonization, enteropathogenic (EPEC and enterohaemorrhagic (EHEC Escherichia coli are capable to manipulate host cytoskeleton and colonize gut epithelia by a specific mode of attachment known as the attaching and effacing lesion (A/E lesion. While actin rearrangements during A/E lesion formation have been extensively investigated, the possible alterations of other cytoskeletal elements like those comprising the intercellular junctional complexes (JC of polarized cells during infection have only lately attracted attention. The present mini-review addresses the opposite effects of two groups of bacteria, A/E lesion-forming pathogenic E. coli and probiotic bacterial strains, on JC. JC are important in maintaining gut barrier functions. EPEC and EHEC can disrupt JC which as a consequence leads to reduction in the transepitelial electrical resistance (TER and an increase of the permeability to macromolecules. Probiotic bacteria on the other hand stabilize JC thus increasing TER and reducing permeability to macromolecular markers. Probiotic strains can protect JC integrity of polarized cells from the damage caused by EPEC or EHEC. Together with the promise of these results, of concern is the fact that the outcome of the studies can differ dependent on experimental protocols. Studies with living bacteria and different strain combinations have also put forward strain specific effects. Therefore, an important practical item for future studies is the identification of the molecules synthesized by probiotic bacteria that may be active on JC stability.

  6. Effects of radiographic contrast media on the micromorphology of the junctional complex of erythrocytes visualized by immunocytology. (United States)

    Franke, Ralf-Peter; Krüger, Anne; Scharnweber, Tim; Wenzel, Folker; Jung, Friedrich


    Effects of radiographic contrast media (RCM) application were demonstrated in vitro and in vivo where the injection of RCM into the A. axillaris of patients with coronary artery disease was followed by a significant and RCM-dependent decrease of erythrocyte velocity in downstream skin capillaries. Another study in pigs revealed that the deceleration of erythrocytes coincided with a significant reduction of the oxygen partial pressure in the myocardium--supplied by the left coronary artery--after the administration of RCM into this artery. Further reports showed RCM dependent alterations of erythrocytes like echinocyte formation and exocytosis, sequestration of actin or band 3 and the buckling of endothelial cells coinciding with a formation of interendothelial fenestrations leading to areas devoid of endothelial cells. Key to morphological alterations of erythrocytes is the membrane cytoskeleton, which is linked to the band 3 in the erythrocyte membrane via the junctional complex. Fundamental observations regarding the cell biological and biochemical aspects of the structure and function of the cell membrane and the membrane cytoskeleton of erythrocytes have been reported. This review focuses on recent results gained, e.g., by advanced confocal laser scanning microscopy of different double-stained structural elements of the erythrocyte membrane cytoskeleton.

  7. Knock and Drill Technique: A Simple Tips for the Instrumentation in Complex Craniovertebral Junction Anomalies without using Fluoroscopy (United States)

    Srivastava, Arun; Sardhara, Jayesh; Behari, Sanjay; Pavaman, Sindgikar; Joseph, Jeena; Das, Kuntal; Mehrotra, Anant; Jaiswal, Awadhesh K.; Bhaishora, Kamlesh


    Context: Existence of complex variable bony and vertebral artery (VA) anomalies at craniovertebral junction (CVJ) in subset of complex CVJ anomalies demands individualized instrumentation policy and placing screws in each bone requires strategic preoperative planning and intraoperative skills. Aim: To evaluate the clinical accuracy of knock and drill (K and D) technique for the screw placement in complex CVJ anomalies. Settings and Design: Prospective study and operative technical note. Materials and Methods: Totally 36 consecutive patients (16 - pediatrics, 20 - adult patients) of complex CVJ: Complete/partial occipitalized C1 vertebra; at least one hypoplastic (C1/C2) articular mass, rotational component, and variations in the third part of VA were included in this study. Preoperative detail computed tomography (CT) CT CVJ with three-dimensional reconstruction was done for the assessment of CVJ anatomy and facet joint orientation. The accuracy of novel technique was assessed with postoperative CT to evaluate cortical breach in between 5th and 7th postoperative day in all the patients. All patients were underwent clinico-radiological evaluation at 6-month follow-up. Results: Totally 144 screws were placed using K and D technique (pediatric group - 64 screws, adult patients - 80 screws). Total of 12 screws were placed in C1 lateral mass in both age group without any bony cortical breach and complication. Sixteen C2 pedicle screws and 12 C2 pars screw in pediatrics and 18 C2 pedicle screws in adult patients were placed without any bony breach or VA injury. Out of thirty subaxial lateral mass screws in pediatric group, the bony breach was encountered with one screw (3.3%). Total of 38 C2 pars screws was placed in adult group in which bony breach along with VA injury was encounter with 1screw (2.6%). Conclusion: A simple technique of K and D for placing a screw increases the accuracy and spectrum of bony purchase and has the potential to reduce the complication in

  8. The Drosophila larval neuromuscular junction as a model for scaffold complexes at glutamatergic synapses: benefits and limitations. (United States)

    Thomas, Ulrich; Kobler, Oliver; Gundelfinger, Eckart D


    Based on unbeatable genetic accessibility and relative simplicity, the Drosophila larval neuromuscular junction has become a widely used model system for studying functional and structural aspects of excitatory glutamatergic synapses. Membrane-associated guanylate kinase-like proteins (MAGUKs) are first-order scaffolding molecules enriched at many cellular junctions, including synapses, where they coordinate multiple binding partners, including cell adhesion molecules and ion channels. The enrichment of the prototypic MAGUK Discs-Large at larval NMJs apparently parallels the high abundance of its homologs at excitatory synapses in the mammalian central nervous system. Here, the authors review selected aspects of the long-standing work on Dlg at fly neuromuscular junctions, thereby scrutinizing its subcellular localization, function, and regulation with regard to corresponding aspects of MAGUKs in vertebrate neurons.

  9. The stardust family protein MPP7 forms a tripartite complex with LIN7 and DLG1 that regulates the stability and localization of DLG1 to cell junctions. (United States)

    Bohl, Joanna; Brimer, Nicole; Lyons, Charles; Vande Pol, Scott B


    MPP7, a previously uncharacterized member of the p55 Stardust family of membrane-associated guanylate kinase (MAGUK) proteins, was found in a tripartite complex with DLG1 and LIN7A or LIN7C. MPP7 dimerizes with all three LIN7 family members (LIN7A, -B, and -C) through interaction of the single L27 domain of LIN7 with the carboxyl-terminal L27 domain of MPP7, thereby stabilizing both proteins. The dimer of MPP7 with LIN7A or LIN7C associates with DLG1 through an interaction requiring the amino-terminal L27 domain of MPP7. The amino-terminal L27 domain of MPP7 is not sufficient for interaction with DLG1 but interacts efficiently only if MPP7 is in a complex with LIN7A or -C. Thus the specificity of interaction of DLG1 with the LIN7-MPP7 complex is determined by L27 interactions with both MPP7 and LIN7. The tripartite complex forms in a ratio of 1:1:1 and localizes to epithelial adherens junctions in a manner dependent upon MPP7. Expression of MPP7 stabilizes DLG1 in an insoluble compartment. Expression of MPP7 deleted of the PDZ or Src homology 3 domain redistributes MPP7, DLG1, and LIN7 out of adherens junctions and into the soluble cytoplasmic fraction without changing the localization of E-cadherin. Thus, the stability and localization of DLG1 to cell-cell junctions are complex functions determined by the expression and association of particular Stardust family members together with particular LIN7 family members.

  10. Porcine lactoferrin-derived peptide LFP-20 protects intestinal barrier by maintaining tight junction complex and modulating inflammatory response. (United States)

    Zong, Xin; Hu, Wangyang; Song, Deguang; Li, Zhi; Du, Huahua; Lu, Zeqing; Wang, Yizhen


    LFP-20, a 20-amino acid antimicrobial peptide in the N terminus of porcine lactoferrin, has antimicrobial and immunomodulatory activities. This study assessed the protective effects of LFP-20 on LPS-induced intestinal damage in a LPS-induced mouse model and in vitro, using intestinal porcine epithelial cell line 1 (IPEC-1) cells. LFP-20 prevented LPS-induced impairment in colon epithelium tissues, infiltration of macrophages or leukocytes, histological evidence of inflammation and increased levels of TNF-a, IL-6 and IFN-γ. LFP-20 increased the expression of zonula occludens-1, occludin and claudin-1 and reduced permeability as well as apoptosis of the colon in LPS-treated mice. In IPEC-1 cells, LFP-20 increased transepithelial electrical resistance and tight junction expression. Moreover, we found LFP-20 decreased the MyD88 and AKT levels to affect the NF-κB signaling pathway, to modulate inflammation response and tight junction networks in the processing of LPS stimulation. In summary, LFP-20 prevents the inflammatory response and disruption of tight junction structure induced by LPS, suggesting the potential use of LFP-20 as a prophylactic agent to protect intestinal barrier function.

  11. GEN1/Yen1 and the SLX4 complex: solutions to the problem of Holliday junction resolution (United States)

    Svendsen, Jennifer M.; Harper, J. Wade


    Chromosomal double-strand breaks (DSBs) are considered to be among the most deleterious DNA lesions found in eukaryotic cells due to their propensity to promote genome instability. DSBs occur as a result of exogenous or endogenous DNA damage, and also occur during meiotic recombination. DSBs are often repaired through a process called homologous recombination (HR), which employs the sister chromatid in mitotic cells or the homologous chromosome in meiotic cells, as a template for repair. HR frequently involves the formation and resolution of four-way DNA structures referred to as the Holliday junction (HJ). Despite extensive study, the machinery and mechanisms used to process these structures in eukaryotes have remained poorly understood. Recent work has identified XPG and UvrC/GIY domain-containing structure-specific endonucleases that can symmetrically cleave HJs in vitro in a manner that allows for religation without additional processing, properties that are reminiscent of the classical RuvC HJ resolvase in bacteria. Genetic studies reveal potential roles for these HJ resolvases in repair after DNA damage and during meiosis. The stage is now set for a more comprehensive understanding of the specific roles these enzymes play in the response of cells to DSBs, collapsed replication forks, telomere dysfunction, and meiotic recombination. PMID:20203129

  12. An asymmetric A-B-A' metallo-supramolecular triblock copolymer linked by Ni(2+)-bis-terpyridine complexes at one junction. (United States)

    Li, Haixia; Wei, Wei; Xiong, Huiming


    A metallo-supramolecular triblock copolymer polystyrene-b-polyisoprene-[Ni(2+)]-polystyrene (SI-[Ni(2+)]-S') has been efficiently prepared using a one-pot, two-step procedure, where the blocks are held by bis-terpyridine complexes at the junction of SI-S'. This specific metallo-supramolecular chemistry is demonstrated to be a robust approach to potentially broaden the diversity of block copolymers. The location of the metal-ligand complexes has a profound influence on the phase separation of the triblock copolymer in the bulk, which results in a distinctive phase segregation between the end blocks and leads to an unexpected asymmetry of the triblock copolymer. The metal-ligand complexes are found to be preferentially located on the adjacent spherical domain and form a core-shell structure. The resulting multiphase material exhibits distinct elastomeric properties with significant toughness and creep recovery behavior. This type of triblock copolymer is anticipated to be a novel class of hybrid thermo-plastic elastomeric material with wide tunability and functionality.

  13. 'Special K' and a Loss of Cell-To-Cell Adhesion in Proximal Tubule-Derived Epithelial Cells: Modulation of the Adherens Junction Complex by Ketamine (United States)

    Hills, Claire E.; Jin, Tianrong; Siamantouras, Eleftherios; Liu, Issac K-K; Jefferson, Kieran P.; Squires, Paul E.


    Ketamine, a mild hallucinogenic class C drug, is the fastest growing ‘party drug’ used by 16–24 year olds in the UK. As the recreational use of Ketamine increases we are beginning to see the signs of major renal and bladder complications. To date however, we know nothing of a role for Ketamine in modulating both structure and function of the human renal proximal tubule. In the current study we have used an established model cell line for human epithelial cells of the proximal tubule (HK2) to demonstrate that Ketamine evokes early changes in expression of proteins central to the adherens junction complex. Furthermore we use AFM single-cell force spectroscopy to assess if these changes functionally uncouple cells of the proximal tubule ahead of any overt loss in epithelial cell function. Our data suggests that Ketamine (24–48 hrs) produces gross changes in cell morphology and cytoskeletal architecture towards a fibrotic phenotype. These physical changes matched the concentration-dependent (0.1–1 mg/mL) cytotoxic effect of Ketamine and reflect a loss in expression of the key adherens junction proteins epithelial (E)- and neural (N)-cadherin and β-catenin. Down-regulation of protein expression does not involve the pro-fibrotic cytokine TGFβ, nor is it regulated by the usual increase in expression of Slug or Snail, the transcriptional regulators for E-cadherin. However, the loss in E-cadherin can be partially rescued pharmacologically by blocking p38 MAPK using SB203580. These data provide compelling evidence that Ketamine alters epithelial cell-to-cell adhesion and cell-coupling in the proximal kidney via a non-classical pro-fibrotic mechanism and the data provides the first indication that this illicit substance can have major implications on renal function. Understanding Ketamine-induced renal pathology may identify targets for future therapeutic intervention. PMID:24009666

  14. Magnesium Lowers the Incidence of Postoperative Junctional Ectopic Tachycardia in Congenital Heart Surgical Patients: Is There a Relationship to Surgical Procedure Complexity? (United States)

    He, Dingchao; Sznycer-Taub, Nathaniel; Cheng, Yao; McCarter, Robert; Jonas, Richard A; Hanumanthaiah, Sridhar; Moak, Jeffrey P


    Magnesium sulfate was given to pediatric cardiac surgical patients during cardiopulmonary bypass period in an attempt to reduce the occurrence of postoperative junctional ectopic tachycardia (PO JET). We reviewed our data to evaluate the effect of magnesium on the occurrence of JET and assess a possible relationship between PO JET and procedure complexity. A total of 1088 congenital heart surgeries (CHS), performed from 2005 to 2010, were reviewed. A total of 750 cases did not receive magnesium, and 338 cases received magnesium (25 mg/kg). All procedures were classified according to Aristotle score from 1 to 4. Overall, there was a statistically significant decrease in PO JET occurrence between the two groups regardless of the Aristotle score, 15.3 % (115/750) in non-magnesium group versus 7.1 % (24/338) in magnesium group, P < 0.001. In the absence of magnesium, the risk of JET increased with increasing Aristotle score, P = 0.01. Following magnesium administration and controlling for body weight, surgical and aortic cross-clamp times in the analyses, reduction in adjusted risk of JET was significantly greater with increasing Aristotle level of complexity (JET in non-magnesium vs. magnesium group, Aristotle level 1: 9.8 vs. 14.3 %, level 4: 11.5 vs. 3.2 %; odds ratio 0.54, 95 % CI 0.31-0.94, P = 0.028). Our data confirmed that intra-operative usage of magnesium reduced the occurrence of PO JET in a larger number and more diverse group of CHS patients than has previously been reported. Further, our data suggest that magnesium's effect on PO JET occurrence seemed more effective in CHS with higher levels of Aristotle complexity.

  15. The EhCPADH112 complex of Entamoeba histolytica interacts with tight junction proteins occludin and claudin-1 to produce epithelial damage.

    Directory of Open Access Journals (Sweden)

    Abigail Betanzos

    Full Text Available Entamoeba histolytica, the protozoan responsible for human amoebiasis, causes between 30,000 and 100,000 deaths per year worldwide. Amoebiasis is characterized by intestinal epithelial damage provoking severe diarrhea. However, the molecular mechanisms by which this protozoan causes epithelial damage are poorly understood. Here, we studied the initial molecular interactions between the E. histolytica EhCPADH112 virulence complex and epithelial MDCK and Caco-2 cells. By confocal microscopy, we discovered that after contact with trophozoites or trophozoite extracts (TE, EhCPADH112 and proteins forming this complex (EhCP112 and EhADH112 co-localize with occludin and claudin-1 at tight junctions (TJ. Immunoprecipitation assays revealed interaction between EhCPADH112 and occludin, claudin-1, ZO-1 and ZO-2. Overlay assays confirmed an interaction of EhCP112 and EhADH112 with occludin and claudin-1, whereas only EhADH112 interacted also with ZO-2. We observed degradation of all mentioned TJ proteins after incubation with TE. Importantly, inhibiting proteolytic activity or blocking the complex with a specific antibody not only prevented TJ protein degradation but also epithelial barrier disruption. Furthermore, we discovered that TE treatment induces autophagy and apoptosis in MDCK cells that could contribute to the observed barrier disruption. Our results suggest a model in which epithelial damage caused by E. histolytica is initiated by the interaction of EhCP112 and EhADH112 with TJ proteins followed by their degradation. Disruption of TJs then induces increased paracellular permeability, thus facilitating the entry of more proteases and other parasite molecules leading eventually to tissue destruction.

  16. Export of a Toxoplasma gondii rhoptry neck protein complex at the host cell membrane to form the moving junction during invasion.

    Directory of Open Access Journals (Sweden)

    Sébastien Besteiro


    Full Text Available One of the most conserved features of the invasion process in Apicomplexa parasites is the formation of a moving junction (MJ between the apex of the parasite and the host cell membrane that moves along the parasite and serves as support to propel it inside the host cell. The MJ was, up to a recent period, completely unknown at the molecular level. Recently, proteins originated from two distinct post-Golgi specialised secretory organelles, the micronemes (for AMA1 and the neck of the rhoptries (for RON2/RON4/RON5 proteins, have been shown to form a complex. AMA1 and RON4 in particular, have been localised to the MJ during invasion. Using biochemical approaches, we have identified RON8 as an additional member of the complex. We also demonstrated that all RON proteins are present at the MJ during invasion. Using metabolic labelling and immunoprecipitation, we showed that RON2 and AMA1 were able to interact in the absence of the other members. We also discovered that all MJ proteins are subjected to proteolytic maturation during trafficking to their respective organelles and that they could associate as non-mature forms in vitro. Finally, whereas AMA1 has previously been shown to be inserted into the parasite membrane upon secretion, we demonstrated, using differential permeabilization and loading of RON-specific antibodies into the host cell, that the RON complex is targeted to the host cell membrane, where RON4/5/8 remain associated with the cytoplasmic face. Globally, these results point toward a model of MJ organization where the parasite would be secreting and inserting interacting components on either side of the MJ, both at the host and at its own plasma membranes.

  17. Selective permeability of gap junction channels. (United States)

    Goldberg, Gary S; Valiunas, Virginijus; Brink, Peter R


    Gap junctions mediate the transfer of small cytoplasmic molecules between adjacent cells. A family of gap junction proteins exist that form channels with unique properties, and differ in their ability to mediate the transfer of specific molecules. Mutations in a number of individual gap junction proteins, called connexins, cause specific human diseases. Therefore, it is important to understand how gap junctions selectively move molecules between cells. Rules that dictate the ability of a molecule to travel through gap junction channels are complex. In addition to molecular weight and size, the ability of a solute to transverse these channels depends on its net charge, shape, and interactions with specific connexins that constitute gap junctions in particular cells. This review presents some data and interpretations pertaining to mechanisms that govern the differential transfer of signals through gap junction channels.

  18. NCBI nr-aa BLAST: CBRC-MMUR-01-1235 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-MMUR-01-1235 pdb|2HYI|C Chain C, Structure Of The Human Exon Junction Complex ...With A Trapped Dead-Box Helicase Bound To Rna pdb|2HYI|I Chain I, Structure Of The Human Exon Junction Compl...ex With A Trapped Dead-Box Helicase Bound To Rna pdb|3EX7|C Chain C, The Crystal Structure Of Ejc In Its Tra...nsition State pdb|3EX7|H Chain H, The Crystal Structure Of Ejc In Its Transition State 2HYI 0.0 94% ...

  19. Phospho-regulated Drosophila adducin is a determinant of synaptic plasticity in a complex with Dlg and PIP2 at the larval neuromuscular junction

    Directory of Open Access Journals (Sweden)

    Simon Ji Hau Wang


    Full Text Available Adducin is a ubiquitously expressed actin- and spectrin-binding protein involved in cytoskeleton organization, and is regulated through phosphorylation of the myristoylated alanine-rich C-terminal kinase (MARCKS-homology domain by protein kinase C (PKC. We have previously shown that the Drosophila adducin, Hu-li tai shao (Hts, plays a role in larval neuromuscular junction (NMJ growth. Here, we find that the predominant isoforms of Hts at the NMJ contain the MARCKS-homology domain, which is important for interactions with Discs large (Dlg and phosphatidylinositol 4,5-bisphosphate (PIP2. Through the use of Proximity Ligation Assay (PLA, we show that the adducin-like Hts isoforms are in complexes with Dlg and PIP2 at the NMJ. We provide evidence that Hts promotes the phosphorylation and delocalization of Dlg at the NMJ through regulation of the transcript distribution of the PAR-1 and CaMKII kinases in the muscle. We also show that Hts interactions with Dlg and PIP2 are impeded through phosphorylation of the MARCKS-homology domain. These results are further evidence that Hts is a signaling-responsive regulator of synaptic plasticity in Drosophila.

  20. A Point Mutation in the Exon Junction Complex Factor Y14 Disrupts Its Function in mRNA Cap Binding and Translation Enhancement. (United States)

    Chuang, Tzu-Wei; Lee, Kuo-Ming; Lou, Yuan-Chao; Lu, Chia-Chen; Tarn, Woan-Yuh


    Eukaryotic mRNA biogenesis involves a series of interconnected steps mediated by RNA-binding proteins. The exon junction complex core protein Y14 is required for nonsense-mediated mRNA decay (NMD) and promotes translation. Moreover, Y14 binds the cap structure of mRNAs and inhibits the activity of the decapping enzyme Dcp2. In this report, we show that an evolutionarily conserved tryptophan residue (Trp-73) of Y14 is critical for its binding to the mRNA cap structure. A Trp-73 mutant (W73V) bound weakly to mRNAs and failed to protect them from degradation. However, this mutant could still interact with the NMD and mRNA degradation factors and retained partial NMD activity. In addition, we found that the W73V mutant could not interact with translation initiation factors. Overexpression of W73V suppressed reporter mRNA translation in vitro and in vivo and reduced the level of a set of nascent proteins. These results reveal a residue of Y14 that confers cap-binding activity and is essential for Y14-mediated enhancement of translation. Finally, we demonstrated that Y14 may selectively and differentially modulate protein biosynthesis.

  1. Transcriptional mechanisms coordinating tight junction assembly during epithelial differentiation. (United States)

    Boivin, Felix J; Schmidt-Ott, Kai M


    Epithelial tissues form a selective barrier via direct cell-cell interactions to separate and establish concentration gradients between the different compartments of the body. Proper function and formation of this barrier rely on the establishment of distinct intercellular junction complexes. These complexes include tight junctions, adherens junctions, desmosomes, and gap junctions. The tight junction is by far the most diverse junctional complex in the epithelial barrier. Its composition varies greatly across different epithelial tissues to confer various barrier properties. Thus, epithelial cells rely on tightly regulated transcriptional mechanisms to ensure proper formation of the epithelial barrier and to achieve tight junction diversity. Here, we review different transcriptional mechanisms utilized during embryogenesis and disease development to promote tight junction assembly and maintenance of intercellular barrier integrity. We focus particularly on the Grainyhead-like transcription factors and ligand-activated nuclear hormone receptors, two central families of proteins in epithelialization. © 2017 New York Academy of Sciences.

  2. Models for the Binary Complex of Bacteriophage T4 Gp59 Helicase Loading Protein. GP32 Single-Stranded DNA-Binding Protein and Ternary Complex with Pseudo-Y Junction DNA

    Energy Technology Data Exchange (ETDEWEB)

    Hinerman, Jennifer M. [Univ. of Toledo, OH (United States); Dignam, J. David [Univ. of Toledo, OH (United States); Mueser, Timothy C. [Univ. of Toledo, OH (United States)


    The bacteriophage T4 gp59 helicase assembly protein (gp59) is required for loading of gp41 replicative helicase onto DNA protected by gp32 single-stranded DNA-binding protein. The gp59 protein recognizes branched DNA structures found at replication and recombination sites. Binding of gp32 protein (full-length and deletion constructs) to gp59 protein measured by isothermal titration calorimetry demonstrates that the gp32 protein C-terminal A-domain is essential for protein-protein interaction in the absence of DNA. Sedimentation velocity experiments with gp59 protein and gp32ΔB protein (an N-terminal B-domain deletion) show that these proteins are monomers but form a 1:1 complex with a dissociation constant comparable with that determined by isothermal titration calorimetry. Small angle x-ray scattering (SAXS) studies indicate that the gp59 protein is a prolate monomer, consistent with the crystal structure and hydrodynamic properties determined from sedimentation velocity experiments. SAXS experiments also demonstrate that gp32ΔB protein is a prolate monomer with an elongated A-domain protruding from the core. Moreover, fitting structures of gp59 protein and the gp32 core into the SAXS-derived molecular envelope supports a model for the gp59 protein-gp32ΔB protein complex. Our earlier work demonstrated that gp59 protein attracts full-length gp32 protein to pseudo-Y junctions. A model of the gp59 protein-DNA complex, modified to accommodate new SAXS data for the binary complex together with mutational analysis of gp59 protein, is presented in the accompanying article (Dolezal, D., Jones, C. E., Lai, X., Brister, J. R., Mueser, T. C., Nossal, N. G., and Hinton, D. M. (2012) J. Biol. Chem. 287, 18596–18607).

  3. The Dissolution of Double Holliday Junctions

    DEFF Research Database (Denmark)

    Bizard, Anna H; Hickson, Ian D


    as "double Holliday junction dissolution." This reaction requires the cooperative action of a so-called "dissolvasome" comprising a Holliday junction branch migration enzyme (Sgs1/BLM RecQ helicase) and a type IA topoisomerase (Top3/TopoIIIα) in complex with its OB (oligonucleotide/oligosaccharide binding......) fold containing accessory factor (Rmi1). This review details our current knowledge of the dissolution process and the players involved in catalyzing this mechanistically complex means of completing homologous recombination reactions....

  4. Molecular electronic junction transport

    DEFF Research Database (Denmark)

    Solomon, Gemma C.; Herrmann, Carmen; Ratner, Mark


    Whenasinglemolecule,oracollectionofmolecules,isplacedbetween two electrodes and voltage is applied, one has a molecular transport junction. We discuss such junctions, their properties, their description, and some of their applications. The discussion is qualitative rather than quantitative, and f...

  5. Shear zone junctions: Of zippers and freeways (United States)

    Passchier, Cees W.; Platt, John P.


    Ductile shear zones are commonly treated as straight high-strain domains with uniform shear sense and characteristic curved foliation trails, bounded by non-deforming wall rock. Many shear zones, however, are branched, and if movement on such branches is contemporaneous, the resulting shape can be complicated and lead to unusual shear sense arrangement and foliation geometries in the wall rock. For Y-shaped shear zone triple junctions with three joining branches and transport direction at a high angle to the branchline, only eight basic types of junction are thought to be stable and to produce significant displacement. The simplest type, called freeway junctions, have similar shear sense in all three branches. The other types show joining or separating behaviour of shear zone branches similar to the action of a zipper. Such junctions may have shear zone branches that join to form a single branch (closing zipper junction), or a single shear zone that splits to form two branches, (opening zipper junction). All categories of shear zone junctions show characteristic foliation patterns and deflection of markers in the wall rock. Closing zipper junctions are unusual, since they form a non-active zone with opposite deflection of foliations in the wall rock known as an extraction fault or wake. Shear zipper junctions can form domains of overprinting shear sense along their flanks. A small and large field example are given from NE Spain and Eastern Anatolia. The geometry of more complex, 3D shear zone junctions with slip parallel and oblique to the branchline is briefly discussed.

  6. Gene knockout using transcription activator-like effector nucleases (TALENs) reveals that human NDUFA9 protein is essential for stabilizing the junction between membrane and matrix arms of complex I. (United States)

    Stroud, David A; Formosa, Luke E; Wijeyeratne, Xiaonan W; Nguyen, Thanh N; Ryan, Michael T


    Transcription activator-like effector nucleases (TALENs) represent a promising approach for targeted knock-out of genes in cultured human cells. We used TALEN-technology to knock out the nuclear gene encoding NDUFA9, a subunit of mitochondrial respiratory chain complex I in HEK293T cells. Screening for the knock-out revealed a mixture of NDUFA9 cell clones that harbored partial deletions of the mitochondrial N-terminal targeting signal but were still capable of import. A cell line lacking functional copies of both NDUFA9 alleles resulted in a loss of NDUFA9 protein expression, impaired assembly of complex I, and cells incapable of growth in galactose medium. Cells lacking NDUFA9 contained a complex I subcomplex consisting of membrane arm subunits but not marker subunits of the matrix arm. Re-expression of NDUFA9 restored the defects in complex I assembly. We conclude that NDUFA9 is involved in stabilizing the junction between membrane and matrix arms of complex I, a late assembly step critical for complex I biogenesis and activity.

  7. Morphogenesis of rat myotendinous junction. (United States)

    Curzi, Davide; Ambrogini, Patrizia; Falcieri, Elisabetta; Burattini, Sabrina


    Myotendinous junction (MTJ) is the highly specialized complex which connects the skeletal muscle to the tendon for transmitting the contractile force between the two tissues. The purpose of this study was to investigate the MTJ development and rat EDL was chosen as a model. 1, 15, 30 day animals were considered and the junctions were analyzed by light and electron microscopy. The MTJ interface architecture increased during the development, extending the interaction between muscle and tendon. 1-day-old rats showed disorganized myofibril bundles, spread cytosol and incomplete rough endoplasmic reticulum, features partially improved in 15-day-old rats, and completely developed in 30-day-old animals. These findings indicate that muscle-tendon interface displays, during rat lifetime, numerically increased and longer tendon interdigitations, correlated with an improved organization of both tissues and with a progressive acquirement of full functionality.

  8. Magnetic tunnel junctions (MTJs)

    Institute of Scientific and Technical Information of China (English)


    We review the giant tunnel magnetoresistance (TMR) in ferromagnetic-insulator-ferromagnetic junctions discovered in recent years, which is the magnetoresistance (MR) associated with the spin-dependent tunneling between two ferromagnetic metal films separated by an insulating thin tunnel barrier. The theoretical and experimental results including junction conductance, magnetoresistance and their temperature and bias dependences are described.

  9. Stacked Josephson Junctions

    DEFF Research Database (Denmark)

    Madsen, Søren Find; Pedersen, Niels Falsig; Christiansen, Peter Leth


    Long Josephson junctions have for some time been considered as a source of THz radiation. Solitons moving coherently in the junctions is a possible source for this radiation. Analytical computations of the bunched state and bunching-inducing methods are reviewed. Experiments showing THz radiation...

  10. Identification of neuronal and angiogenic growth factors in an in vitro blood-brain barrier model system: Relevance in barrier integrity and tight junction formation and complexity. (United States)

    Freese, Christian; Hanada, Sanshiro; Fallier-Becker, Petra; Kirkpatrick, C James; Unger, Ronald E


    We previously demonstrated that the co-cultivation of endothelial cells with neural cells resulted in an improved integrity of the in vitro blood-brain barrier (BBB), and that this model could be useful to evaluate the transport properties of potential central nervous system disease drugs through the microvascular brain endothelial. In this study we have used real-time PCR, fluorescent microscopy, protein arrays and enzyme-linked immunosorbent assays to determine which neural- and endothelial cell-derived factors are produced in the co-culture and improve the integrity of the BBB. In addition, a further improvement of the BBB integrity was achieved by adjusting serum concentrations and growth factors or by the addition of brain pericytes. Under specific conditions expression of angiogenic, angiostatic and neurotrophic factors such as endostatin, pigment epithelium derived factor (PEDF/serpins-F1), tissue inhibitor of metalloproteinases (TIMP-1), and vascular endothelial cell growth factor (VEGF) closely mimicked the in vivo situation. Freeze-fracture analysis of these cultures demonstrated the quality and organization of the endothelial tight junction structures and their association to the two different lipidic leaflets of the membrane. Finally, a multi-cell culture model of the BBB with a transendothelial electrical resistance up to 371 (±15) Ω×cm(2) was developed, which may be useful for preliminary screening of drug transport across the BBB and to evaluate cellular crosstalk of cells involved in the neurovascular unit.

  11. Endoplasmic reticulum-plasma membrane junctions: structure, function and dynamics. (United States)

    Okeke, Emmanuel; Dingsdale, Hayley; Parker, Tony; Voronina, Svetlana; Tepikin, Alexei V


    Endoplasmic reticulum (ER)-plasma membrane (PM) junctions are contact sites between the ER and the PM; the distance between the two organelles in the junctions is below 40 nm and the membranes are connected by protein tethers. A number of molecular tools and technical approaches have been recently developed to visualise, modify and characterise properties of ER-PM junctions. The junctions serve as the platforms for lipid exchange between the organelles and for cell signalling, notably Ca(2+) and cAMP signalling. Vice versa, signalling events regulate the development and properties of the junctions. Two Ca(2+) -dependent mechanisms of de novo formation of ER-PM junctions have been recently described and characterised. The junction-forming proteins and lipids are currently the focus of vigorous investigation. Junctions can be relatively short-lived and simple structures, forming and dissolving on the time scale of a few minutes. However, complex, sophisticated and multifunctional ER-PM junctions, capable of attracting numerous protein residents and other cellular organelles, have been described in some cell types. The road from simplicity to complexity, i.e. the transformation from simple 'nascent' ER-PM junctions to advanced stable multiorganellar complexes, is likely to become an attractive research avenue for current and future junctologists. Another area of considerable research interest is the downstream cellular processes that can be activated by specific local signalling events in the ER-PM junctions. Studies of the cell physiology and indeed pathophysiology of ER-PM junctions have already produced some surprising discoveries, likely to expand with advances in our understanding of these remarkable organellar contact sites. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.

  12. F-Theory Description of 3-String Junction

    Institute of Scientific and Technical Information of China (English)



    The geometrical description of BPS 3-string junction in the F-theory background is given by lifting a string junction in lib into F-theory and constructing a holomorphic curve in K3 with respect to a special complex structure of K3. The holomorphic curve is fibration of 1-cycles of the elliptic fiber over the geodesic string junction. The F-theory picture in this paper provides a unifying description of both string and string junction, and is advantageous over their M-theory picture.

  13. F-Theory Description of 3-String Junction

    Institute of Scientific and Technical Information of China (English)

    YANG Fu-Zhong


    The geometrical description of BPS 3-string junction in the F-theory background is given by lifting a string junction in IIB into F-theory and constructing a holomorphic curve in K3 with respect to a special complex structure of K3. The holomorphic curve is fibration of 1-cycles of the elliptic fiber over the geodesic string junction. The F-theory picture in this paper provides a unifying description of both string and string junction, and is advantageous over their M-theory picture.

  14. Equivalent Josephson junctions (United States)

    Boyadjiev, T. L.; Semerdjieva, E. G.; Shukrinov, Yu. M.


    The magnetic field dependences of critical current are numerically constructed for a long Josephson junction with a shunt-or resistor-type microscopic inhomogeneities and compared to the critical curve of a junction with exponentially varying width. The numerical results show that it is adequate to replace the distributed inhomogeneity of a long Josephson junction by an inhomogeneity localized at one of its ends, which has certain technological advantages. It is also shown that the critical curves of junctions with exponentially varying width and inhomogeneities localized at the ends are unaffected by the mixed fluxon-antifluxon distributions of the magnetic flow. This fact may explain the improvement of the spectra of microwave radiation noted in the literature.

  15. Intercellular junctions of the hen parathyroid gland. A freeze-fracture study. (United States)

    Setoguti, T; Inoue, Y; Suematsu, T


    The fine structure of the intercellular junctions of the hen parathyroid gland was studied using freeze-fracture replicas and thin sections. In the conventional thin sections, desmosomes, intermediate junctions (maculae adherentes) and gap junctions were observed, and in the lanthanum-fixed sections, tight junctions (maculae occludentes) were demonstrated as well. In the freeze-fracture replicas, desmosomes, gap junctions, tight junctions and combination forms of gap and tight junctions occurred, but intermediate junctions were not identified. Junctional complexes (zonulae occludentes) were not encountered in any preparations. The gap junctions varied in size and shape; they ranged from irregularly shaped, minute assemblages of particles to large aggregations of a round or elliptic outline. Both the tight junctions and the combination forms of gap and tight junctions also exhibited a variety of shape and dimension, and, depending on the form of the tight junctional strands, they were classified into three types: type I consisted of a simple line of strands; type II consisted of a closed network of strands; and type III consisted of an open network of strands. The combination forms were more numerous than the typical tight junctions. The possible significance of these junctions is discussed in relation to the function of the parathyroid parenchymal cell. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 Fig. 8 Fig. 9 PMID:7174510

  16. Quantum Junction Solar Cells

    KAUST Repository

    Tang, Jiang


    Colloidal quantum dot solids combine convenient solution-processing with quantum size effect tuning, offering avenues to high-efficiency multijunction cells based on a single materials synthesis and processing platform. The highest-performing colloidal quantum dot rectifying devices reported to date have relied on a junction between a quantum-tuned absorber and a bulk material (e.g., TiO 2); however, quantum tuning of the absorber then requires complete redesign of the bulk acceptor, compromising the benefits of facile quantum tuning. Here we report rectifying junctions constructed entirely using inherently band-aligned quantum-tuned materials. Realizing these quantum junction diodes relied upon the creation of an n-type quantum dot solid having a clean bandgap. We combine stable, chemically compatible, high-performance n-type and p-type materials to create the first quantum junction solar cells. We present a family of photovoltaic devices having widely tuned bandgaps of 0.6-1.6 eV that excel where conventional quantum-to-bulk devices fail to perform. Devices having optimal single-junction bandgaps exhibit certified AM1.5 solar power conversion efficiencies of 5.4%. Control over doping in quantum solids, and the successful integration of these materials to form stable quantum junctions, offers a powerful new degree of freedom to colloidal quantum dot optoelectronics. © 2012 American Chemical Society.

  17. Cell junction proteins within the cochlea:A review of recent research

    Institute of Scientific and Technical Information of China (English)

    Bo Wang; Bohua Hu; Shiming Yang


    Cell—cell junctions in the cochlea are highly complex and well organized. The role of these junctions is to maintain structural and functional integrity of the cochlea. In this review, we describe classification of cell junction-associated proteins identified within the cochlea and provide a brief overview of the function of these proteins in adherent junctions, gap junctions and tight junctions. Copyright © 2016, PLA General Hospital Department of Otolaryngology Head and Neck Surgery. Production and hosting by Elsevier (Singapore) Pte Ltd. This is an open access article under the CC BY-NC-ND license (

  18. The EhCPADH112 Complex of Entamoeba histolytica Interacts with Tight Junction Proteins Occludin and Claudin-1 to Produce Epithelial Damage


    Abigail Betanzos; Rosario Javier-Reyna; Guillermina García-Rivera; Cecilia Bañuelos; Lorenza González-Mariscal; Michael Schnoor; Esther Orozco


    Entamoeba histolytica, the protozoan responsible for human amoebiasis, causes between 30,000 and 100,000 deaths per year worldwide. Amoebiasis is characterized by intestinal epithelial damage provoking severe diarrhea. However, the molecular mechanisms by which this protozoan causes epithelial damage are poorly understood. Here, we studied the initial molecular interactions between the E. histolytica EhCPADH112 virulence complex and epithelial MDCK and Caco-2 cells. By confocal microscopy, we...

  19. The human myotendinous junction

    DEFF Research Database (Denmark)

    Knudsen, A B; Larsen, M; Mackey, Abigail


    The myotendinous junction (MTJ) is a specialized structure in the musculotendinous system, where force is transmitted from muscle to tendon. Animal models have shown that the MTJ takes form of tendon finger-like processes merging with muscle tissue. The human MTJ is largely unknown and has never ...

  20. Doped semiconductor nanocrystal junctions

    Energy Technology Data Exchange (ETDEWEB)

    Borowik, Ł.; Mélin, T., E-mail: [Institut d’Electronique, de Microélectronique et de Nanotechnologie, CNRS-UMR8520, Avenue Poincaré, F-59652 Villeneuve d’Ascq (France); Nguyen-Tran, T.; Roca i Cabarrocas, P. [Laboratoire de Physique des Interfaces et des Couches Minces, CNRS-UMR7647, Ecole Polytechnique, F-91128 Palaiseau (France)


    Semiconductor junctions are the basis of electronic and photovoltaic devices. Here, we investigate junctions formed from highly doped (N{sub D}≈10{sup 20}−10{sup 21}cm{sup −3}) silicon nanocrystals (NCs) in the 2–50 nm size range, using Kelvin probe force microscopy experiments with single charge sensitivity. We show that the charge transfer from doped NCs towards a two-dimensional layer experimentally follows a simple phenomenological law, corresponding to formation of an interface dipole linearly increasing with the NC diameter. This feature leads to analytically predictable junction properties down to quantum size regimes: NC depletion width independent of the NC size and varying as N{sub D}{sup −1/3}, and depleted charge linearly increasing with the NC diameter and varying as N{sub D}{sup 1/3}. We thus establish a “nanocrystal counterpart” of conventional semiconductor planar junctions, here however valid in regimes of strong electrostatic and quantum confinements.

  1. Junction trees of general graphs

    Institute of Scientific and Technical Information of China (English)

    Xiaofei WANG; Jianhua GUO


    In this paper,we study the maximal prime subgraphs and their corresponding structure for any undirected graph.We introduce the notion of junction trees and investigate their structural characteristics,including junction properties,induced-subtree properties,running-intersection properties and maximum-weight spanning tree properties.Furthermore,the characters of leaves and edges on junction trees are discussed.

  2. Overdamped Josephson junctions for digital applications

    Energy Technology Data Exchange (ETDEWEB)

    Febvre, P., E-mail: [University of Savoie, IMEP-LAHC – CNRS UMR5130, 73376 Le Bourget du Lac (France); De Leo, N.; Fretto, M.; Sosso, A. [I.N.Ri.M., Istituto Nazionale di Ricerca Metrologica, Strada delle Cacce 91, 10135 Torino (Italy); Belogolovskii, M. [Donetsk Institute for Physics and Engineering, 72 R. Luxemburg str., 83114 Donetsk (Ukraine); Collot, R. [University of Savoie, IMEP-LAHC – CNRS UMR5130, 73376 Le Bourget du Lac (France); Lacquaniti, V. [I.N.Ri.M., Istituto Nazionale di Ricerca Metrologica, Strada delle Cacce 91, 10135 Torino (Italy)


    Highlights: ► Properties of self-shunted sub-micron Nb/Al–AlO{sub x}/Nb SNIS junctions are studied. ► 1–100 kA/cm{sup 2} current densities and 0.1–0.7 mV critical voltages are obtained. ► The critical voltage-vs-temperature behavior of SNIS junctions is discussed. ► Numerical results showing an effect of the aluminum film thickness are presented. ► A Josephson balanced comparator is studied for different temperatures of operation. -- Abstract: An interesting feature of Superconductor–Normal metal–Superconductor Josephson junctions for digital applications is due to their non-hysteretic current–voltage characteristics in a broad temperature range below T{sub c}. This allows to design Single-Flux-Quantum (SFQ) cells without the need of external shunts. Two advantages can be drawn from this property: first the SFQ cells can be more compact which leads to a more integrated solution towards nano-devices and more complex circuits; second the absence of electrical parasitic elements associated with the wiring of resistors external to the Josephson junctions increases the performance of SFQ circuits, in particular regarding the ultimate speed of operation. For this purpose Superconductor–Normal metal–Insulator–Superconductor Nb/Al–AlO{sub x}/Nb Josephson junctions have been recently developed at INRiM with aluminum layer thicknesses between 30 and 100 nm. They exhibit non-hysteretic current–voltage characteristics with I{sub c}R{sub n} values higher than 0.5 mV in a broad temperature range and optimal Stewart McCumber parameters at 4.2 K for RSFQ applications. The main features of obtained SNIS junctions regarding digital applications are presented.

  3. Holliday junction resolvases. (United States)

    Wyatt, Haley D M; West, Stephen C


    Four-way DNA intermediates, called Holliday junctions (HJs), can form during meiotic and mitotic recombination, and their removal is crucial for chromosome segregation. A group of ubiquitous and highly specialized structure-selective endonucleases catalyze the cleavage of HJs into two disconnected DNA duplexes in a reaction called HJ resolution. These enzymes, called HJ resolvases, have been identified in bacteria and their bacteriophages, archaea, and eukaryotes. In this review, we discuss fundamental aspects of the HJ structure and their interaction with junction-resolving enzymes. This is followed by a brief discussion of the eubacterial RuvABC enzymes, which provide the paradigm for HJ resolvases in other organisms. Finally, we review the biochemical and structural properties of some well-characterized resolvases from archaea, bacteriophage, and eukaryotes. Copyright © 2014 Cold Spring Harbor Laboratory Press; all rights reserved.

  4. Wireless Josephson Junction Arrays (United States)

    Adams, Laura


    We report low temperature, microwave transmission measurements on a wireless two- dimensional network of Josephson junction arrays composed of superconductor-insulator -superconductor tunnel junctions. Unlike their biased counterparts, by removing all electrical contacts to the arrays and superfluous microwave components and interconnects in the transmission line, we observe new collective behavior in the transmission spectra. In particular we will show emergent behavior that systematically responds to changes in microwave power at fixed temperature. Likewise we will show the dynamic and collective response of the arrays while tuning the temperature at fixed microwave power. We discuss these spectra in terms of the Berezinskii-Kosterlitz-Thouless phase transition and Shapiro steps. We gratefully acknowledge the support Prof. Steven Anlage at the University of Maryland and Prof. Allen Goldman at the University of Minnesota. Physics and School of Engineering and Applied Sciences.

  5. The gap junction proteome and its relationship to disease. (United States)

    Laird, Dale W


    In recent years our understanding of connexins has advanced from viewing them simply as proteins with a surprisingly short lifespan that form gap junction channels. Connexins are now known to be multifaceted proteins at the core of many multiprotein complexes that link to structural junctional complexes and cytoskeletal elements, and also to the cellular machinery that facilitates their transport, assembly, function and internalization. Collectively, these connexin-binding proteins can be termed the 'gap junction proteome'. The mechanistic understanding of the gap junction proteome with regards to the dynamic life cycle of connexins has grown further in importance in light of the large number of human diseases attributed to connexin gene mutations and regulatory changes in connexin spatial localization and expression levels.

  6. Scattering form factors for self-assembled network junctions (United States)

    Foster, T.; Safran, S. A.; Sottmann, T.; Strey, R.


    The equilibrium microstructures in microemulsions and other self-assembled systems show complex, connected shapes such as symmetric bicontinuous spongelike structures and asymmetric bicontinuous networks formed by cylinders interconnected at junctions. In microemulsions, these cylinder network microstructures may mediate the structural transition from a spherical or globular phase to the bicontinuous microstructure. To understand the structural and statistical properties of such cylinder network microstructures as measured by scattering experiments, models are needed to extract the real-space structure from the scattering data. In this paper, we calculate the scattering functions appropriate for cylinder network microstructures. We focus on such networks that contain a high density of network junctions that connect the cylindrical elements. In this limit, the network microstructure can be regarded as an assembly of randomly oriented, closed packed network junctions (i.e., the cylinder scattering contributions are neglected). Accordingly, the scattering spectrum of the network microstructure can be calculated as the product of the junction number density, the junction form factor, which describes the scattering from the surface of a single junction, and a structure factor, which describes the local correlations of different junctions due to junction interactions (including their excluded volume). This approach is applied to analyze the scattering data from a bicontinuous microemulsion with equal volumes of water and oil. In a second approach, we included the cylinder scattering contribution in the junction form factor by calculating the scattering intensity of Y junctions to which three rods with spherical cross section are attached. The respective theoretical predictions are compared with results of neutron scattering measurements on a water-in-oil microemulsion with a connected microstructure.

  7. Complexity

    CERN Document Server

    Gershenson, Carlos


    The term complexity derives etymologically from the Latin plexus, which means interwoven. Intuitively, this implies that something complex is composed by elements that are difficult to separate. This difficulty arises from the relevant interactions that take place between components. This lack of separability is at odds with the classical scientific method - which has been used since the times of Galileo, Newton, Descartes, and Laplace - and has also influenced philosophy and engineering. In recent decades, the scientific study of complexity and complex systems has proposed a paradigm shift in science and philosophy, proposing novel methods that take into account relevant interactions.

  8. An induced junction photovoltaic cell (United States)

    Call, R. L.


    Silicon solar cells operating with induced junctions rather than diffused junctions have been fabricated and tested. Induced junctions were created by forming an inversion layer near the surface of the silicon by supplying a sheet of positive charge above the surface. Measurements of the response of the inversion layer cell to light of different wavelengths indicated it to be more sensitive to the shorter wavelengths of the sun's spectrum than conventional cells. The greater sensitivity occurs because of the shallow junction and the strong electric field at the surface.

  9. Gap-junction-mediated cell-to-cell communication. (United States)

    Hervé, Jean-Claude; Derangeon, Mickaël


    Cells of multicellular organisms need to communicate with each other and have evolved various mechanisms for this purpose, the most direct and quickest of which is through channels that directly connect the cytoplasms of adjacent cells. Such intercellular channels span the two plasma membranes and the intercellular space and result from the docking of two hemichannels. These channels are densely packed into plasma-membrane spatial microdomains termed "gap junctions" and allow cells to exchange ions and small molecules directly. A hemichannel is a hexameric torus of junctional proteins around an aqueous pore. Vertebrates express two families of gap-junction proteins: the well-characterized connexins and the more recently discovered pannexins, the latter being related to invertebrate innexins ("invertebrate connexins"). Some gap-junctional hemichannels also appear to mediate cell-extracellular communication. Communicating junctions play crucial roles in the maintenance of homeostasis, morphogenesis, cell differentiation and growth control in metazoans. Gap-junctional channels are not passive conduits, as previously long regarded, but use "gating" mechanisms to open and close the central pore in response to biological stimuli (e.g. a change in the transjunctional voltage). Their permeability is finely tuned by complex mechanisms that have just begun to be identified. Given their ubiquity and diversity, gap junctions play crucial roles in a plethora of functions and their dysfunctions are involved in a wide range of diseases. However, the exact mechanisms involved remain poorly understood.

  10. Variable conformation of GAP junctions linking bone cells: a transmission electron microscopic study of linear, stacked linear, curvilinear, oval, and annular junctions. (United States)

    Shapiro, F


    There is a marked variability in the conformation of bone cell gap junctions in newborn murine cortical bone as defined by transmission electron microscopy (TEM). Studies were done in newborn BALB/c mouse and Sprague-Dawley rat femurs and tibias. Femoral and tibial cortices were dissected into 1 mm3 fragments and prepared in standardized fashion using modified Karnovsky fixation, 7.5% EDTA decalcification, 1% osmium tetroxide-sym collidine buffer with 1% lanthanum nitrate postfixation, Epon resin, 60 nm sections, lead citrate/uranyl acetate staining, and examination at 60 kV. Previous TEM descriptions of bone junctions have, with rare exceptions, noted only isolated linear or mildly curvilinear structures. In this study we noted gap junctional shapes on thin-section TEM preparations of osteoblasts and osteocytes to be extremely variable and complex encompassing linear, curvilinear, stacked linear, oval, and annular conformations. Multiple observations revealed linear gap junctions linking surface osteoblast cell bodies; linear, curvilinear, stacked linear, and oval junctions linking osteoblast processes in osteoid; linear and curvilinear junctions where cell processes joined with osteocyte cell bodies and each of the five conformations linking osteocyte processes within canaliculi. The annular junctions were found within osteoblast and osteocyte cytoplasm and in osteocyte cell processes within canaliculi. The annular junctions are intracellular, degenerating structures which appear as ultrastructural markers of gap junction involution. The more complex shapes reported here must be considered in (1) interpreting quantitative studies using freeze-fracture replicas, thin sections, and confocal microscopy immunolabeled junction connexin-43 components and (2) assessing gap junction biogenesis and turnover. 3-D reconstruction of bone junctions will enhance our understanding of these complex conformations.

  11. Complex

    African Journals Online (AJOL)


    Schiff bases and their complex compounds have been studied for their .... establishing coordination of the N–(2 – hydroxybenzyl) - L - α - valine Schiff base ..... (1967); “Spectrophotometric Identification of Organic Compounds”, Willey, New.

  12. An Important Member of Tight Junctions: Claudins

    Directory of Open Access Journals (Sweden)

    Ozlem Demirpence


    Full Text Available The tight junction (TJs, the most apically located of the intercellular junctional complexes, inhibits solute and water flow through the paracellular space, termed the %u201Cbarrier%u201D function. TJs participate in signal transduction mechanisms that regulate epithelial cell proliferation, gene expression, differentiation and morphogenesis. The claudin family of transmembrane proteins localized to the TJ. Loss of expression of Claudin causes of suppression TJs function. Recent studies have shown that altered levels of the different claudins may be related to invasion and progression of carcinoma cells in several primary neoplasms. A better knowledge of the mechanisms underlying carcinogenesis will likely result in the development of novel approaches for the diagnosis and therapy.

  13. Mixing in T-junctions

    NARCIS (Netherlands)

    Kok, Jacobus B.W.; van der Wal, S.


    The transport processes that are involved in the mixing of two gases in a T-junction mixer are investigated. The turbulent flow field is calculated for the T-junction with the k- turbulence model by FLOW3D. In the mathematical model the transport of species is described with a mixture fraction

  14. Gap junction channels and cardiac impulse propagation. (United States)

    Desplantez, Thomas; Dupont, Emmanuel; Severs, Nicholas J; Weingart, Robert


    The role of gap junction channels on cardiac impulse propagation is complex. This review focuses on the differential expression of connexins in the heart and the biophysical properties of gap junction channels under normal and disease conditions. Structural determinants of impulse propagation have been gained from biochemical and immunocytochemical studies performed on tissue extracts and intact cardiac tissue. These have defined the distinctive connexin coexpression patterns and relative levels in different cardiac tissues. Functional determinants of impulse propagation have emerged from electrophysiological experiments carried out on cell pairs. The static properties (channel number and conductance) limit the current flow between adjacent cardiomyocytes and thus set the basic conduction velocity. The dynamic properties (voltage-sensitive gating and kinetics of channels) are responsible for a modulation of the conduction velocity during propagated action potentials. The effect is moderate and depends on the type of Cx and channel. For homomeric-homotypic channels, the influence is small to medium; for homomeric-heterotypic channels, it is medium to strong. Since no data are currently available on heteromeric channels, their influence on impulse propagation is speculative. The modulation by gap junction channels is most prominent in tissues at the boundaries between cardiac tissues such as sinoatrial node-atrial muscle, atrioventricular node-His bundle, His bundle-bundle branch and Purkinje fibers-ventricular muscle. The data predict facilitation of orthodromic propagation.

  15. Metallic Junction Thermoelectric Device Simulations (United States)

    Duzik, Adam J.; Choi, Sang H.


    Thermoelectric junctions made of semiconductors have existed in radioisotope thermoelectric generators (RTG) for deep space missions, but are currently being adapted for terrestrial energy harvesting. Unfortunately, these devices are inefficient, operating at only 7% efficiency. This low efficiency has driven efforts to make high-figure-of-merit thermoelectric devices, which require a high electrical conductivity but a low thermal conductivity, a combination that is difficult to achieve. Lowered thermal conductivity has increased efficiency, but at the cost of power output. An alternative setup is to use metallic junctions rather than semiconductors as thermoelectric devices. Metals have orders of magnitude more electrons and electronic conductivities higher than semiconductors, but thermal conductivity is higher as well. To evaluate the viability of metallic junction thermoelectrics, a two dimensional heat transfer MATLAB simulation was constructed to calculate efficiency and power output. High Seebeck coefficient alloys, Chromel (90%Ni-10%Cr) and Constantan (55%Cu-45%Ni), produced efficiencies of around 20-30%. Parameters such as the number of layers of junctions, lateral junction density, and junction sizes for both series- and parallel-connected junctions were explored.

  16. Affordance-based individuation of junctions in Open Street Map

    Directory of Open Access Journals (Sweden)

    Simon Scheider


    Full Text Available We propose an algorithm that can be used to identify automatically the subset of street segments of a road network map that corresponds to a junction. The main idea is to use turn-compliant locomotion affordances, i.e., restricted patterns of supported movement, in order to specify junctions independently of their data representation, and in order to motivate tractable individuation and classification strategies. We argue that common approaches based solely on geometry or topology of the street segment graph are useful but insufficient proxies. They miss certain turn restrictions essential to junctions. From a computational viewpoint, the main challenge of affordance-based individuation of junctions lies in its complex recursive definition. In this paper, we show how Open Street Map data can be interpreted into locomotion affordances, and how the recursive junction definition can be translated into a deterministic algorithm. We evaluate this algorithm by applying it to small map excerpts in order to delineate the contained junctions.

  17. Anatomy and biomechanics of the craniovertebral junction. (United States)

    Lopez, Alejandro J; Scheer, Justin K; Leibl, Kayla E; Smith, Zachary A; Dlouhy, Brian J; Dahdaleh, Nader S


    The craniovertebral junction (CVJ) has unique anatomical structures that separate it from the subaxial cervical spine. In addition to housing vital neural and vascular structures, the majority of cranial flexion, extension, and axial rotation is accomplished at the CVJ. A complex combination of osseous and ligamentous supports allow for stability despite a large degree of motion. An understanding of anatomy and biomechanics is essential to effectively evaluate and address the various pathological processes that may affect this region. Therefore, the authors present an up-to-date narrative review of CVJ anatomy, normal and pathological biomechanics, and fixation techniques.

  18. Imaging of cervicothoracic junction trauma

    Directory of Open Access Journals (Sweden)

    Wongwaisayawan S


    Full Text Available Sirote Wongwaisayawan,1 Ruedeekorn Suwannanon,2 Rathachai Kaewlai11Department of Radiology, Ramathibodi Hospital and Mahidol University, Bangkok, Thailand; 2Department of Radiology, Faculty of Medicine, Prince of Songkla University, Hat Yai, ThailandAbstract: Cervicothoracic junction trauma is an important cause of morbidity and mortality in trauma patients. Imaging has played an important role in identifying injuries and guiding appropriate, timely therapy. Computed tomography is currently a method of choice for diagnosing cervicothoracic junction trauma, in which the pattern of injuries often suggests possible mechanisms and potential injuries. In this article, the authors describe and illustrate common and uncommon injuries that can occur in the cervicothoracic junction.Keywords: cervicothoracic junction, cervical spine, trauma, imaging, radiology

  19. Neisseria gonorrhoeae breaches the apical junction of polarized epithelial cells for transmigration by activating EGFR. (United States)

    Edwards, Vonetta L; Wang, Liang-Chun; Dawson, Valerie; Stein, Daniel C; Song, Wenxia


    Neisseria gonorrhoeae initiates infection at the apical surface of columnar endocervical epithelial cells in the female reproductive tract. These cells provide a physical barrier against pathogens by forming continuous apical junctional complexes between neighbouring cells. This study examines the interaction of gonococci (GC) with polarized epithelial cells. We show that viable GC preferentially localize at the apical side of the cell-cell junction in polarized endometrial and colonic epithelial cells, HEC-1-B and T84. In GC-infected cells, continuous apical junctional complexes are disrupted, and the junction-associated protein β-catenin is redistributed from the apical junction to the cytoplasm and to GC adherent sites; however, overall cellular levels remain unchanged. This redistribution of junctional proteins is associated with a decrease in the 'fence' function of the apical junction but not its 'gate' function. Disruption of the apical junction by removing calcium increases GC transmigration across the epithelial monolayer. GC inoculation induces the phosphorylation of both epidermal growth factor receptor (EGFR) and β-catenin, while inhibition of EGFR kinase activity significantly reduces both GC-induced β-catenin redistribution and GC transmigration. Therefore, the gonococcus is capable of weakening the apical junction and polarity of epithelial cells by activating EGFR, which facilitates GC transmigration across the epithelium.

  20. Demonstrated Anomalous Pancreaticobiliary Ductal Junction


    Koçkar, Cem; ?ENOL, Altu?; BA?TÜRK, Abdulkadir; AYDIN, Bünyamin; Cüre, Erkan


    Anomalies of the pancreaticobiliary junction are rare. Clinically anomalies of the pancreaticobiliary junction are uncommonly symptomatic but may present themselves with associated conditions ranging from benign acute abdominal pain to carcinomas. A 52 years old man was admitted to gastroenterology service with complaints of fever, nausea, vomiting and recurrent epigastric pain. He was diagnosed with biliary pancreatitis. Endoscopic retrograde cholangiopancreato-graphy was performed. Papilla ...

  1. Josephson junctions with ferromagnetic interlayer

    Energy Technology Data Exchange (ETDEWEB)

    Wild, Georg Hermann


    We report on the fabrication of superconductor/insulator/ferromagnetic metal/superconductor (Nb/AlO{sub x}/Pd{sub 0.82}Ni{sub 0.18}/Nb) Josephson junctions (SIFS JJs) with high critical current densities, large normal resistance times area products, and high quality factors. For these junctions, a transition from 0- to {pi}-coupling is observed for a thickness d{sub F}=6 nm of the ferromagnetic Pd{sub 0.82}Ni{sub 0.18} interlayer. The magnetic field dependence of the critical current of the junctions demonstrates good spatial homogeneity of the tunneling barrier and ferromagnetic interlayer. Magnetic characterization shows that the Pd{sub 0.82}Ni{sub 0.18} has an out-of-plane anisotropy and large saturation magnetization indicating negligible dead layers at the interfaces. A careful analysis of Fiske modes up to about 400 GHz provides valuable information on the junction quality factor and the relevant damping mechanisms. Whereas losses due to quasiparticle tunneling dominate at low frequencies, at high frequencies the damping is explained by the finite surface resistance of the junction electrodes. High quality factors of up to 30 around 200 GHz have been achieved. They allow to study the junction dynamics, in particular the switching probability from the zero-voltage into the voltage state with and without microwave irradiation. The experiments with microwave irradiation are well explained within semi-classical models and numerical simulations. In contrast, at mK temperature the switching dynamics without applied microwaves clearly shows secondary quantum effects. Here, we could observe for the first time macroscopic quantum tunneling in Josephson junctions with a ferromagnetic interlayer. This observation excludes fluctuations of the critical current as a consequence of an unstable magnetic domain structure of the ferromagnetic interlayer and affirms the suitability of SIFS Josephson junctions for quantum information processing.

  2. Electronic thermometry in tunable tunnel junction

    Energy Technology Data Exchange (ETDEWEB)

    Maksymovych, Petro


    A tunable tunnel junction thermometry circuit includes a variable width tunnel junction between a test object and a probe. The junction width is varied and a change in thermovoltage across the junction with respect to the change in distance across the junction is determined. Also, a change in biased current with respect to a change in distance across the junction is determined. A temperature gradient across the junction is determined based on a mathematical relationship between the temperature gradient, the change in thermovoltage with respect to distance and the change in biased current with respect to distance. Thermovoltage may be measured by nullifying a thermoelectric tunneling current with an applied voltage supply level. A piezoelectric actuator may modulate the probe, and thus the junction width, to vary thermovoltage and biased current across the junction. Lock-in amplifiers measure the derivatives of the thermovoltage and biased current modulated by varying junction width.

  3. Confocal Annular Josephson Tunnel Junctions (United States)

    Monaco, Roberto


    The physics of Josephson tunnel junctions drastically depends on their geometrical configurations and here we show that also tiny geometrical details play a determinant role. More specifically, we develop the theory of short and long annular Josephson tunnel junctions delimited by two confocal ellipses. The behavior of a circular annular Josephson tunnel junction is then seen to be simply a special case of the above result. For junctions having a normalized perimeter less than one, the threshold curves in the presence of an in-plane magnetic field of arbitrary orientations are derived and computed even in the case with trapped Josephson vortices. For longer junctions, a numerical analysis is carried out after the derivation of the appropriate motion equation for the Josephson phase. We found that the system is modeled by a modified and perturbed sine-Gordon equation with a space-dependent effective Josephson penetration length inversely proportional to the local junction width. Both the fluxon statics and dynamics are deeply affected by the non-uniform annulus width. Static zero-field multiple-fluxon solutions exist even in the presence of a large bias current. The tangential velocity of a traveling fluxon is not determined by the balance between the driving and drag forces due to the dissipative losses. Furthermore, the fluxon motion is characterized by a strong radial inward acceleration which causes electromagnetic radiation concentrated at the ellipse equatorial points.

  4. Octagonal Defects at Carbon Nanotube Junctions (United States)

    Jaskólski, W.; Pelc, M.; Chico, Leonor; Ayuela, A.


    We investigate knee-shaped junctions of semiconductor zigzag carbon nanotubes. Two dissimilar octagons appear at such junctions; one of them can reconstruct into a pair of pentagons. The junction with two octagons presents two degenerate localized states at Fermi energy (EF). The reconstructed junction has only one state near EF, indicating that these localized states are related to the octagonal defects. The inclusion of Coulomb interaction splits the localized states in the junction with two octagons, yielding an antiferromagnetic system. PMID:24089604

  5. DNA gridiron nanostructures based on four-arm junctions. (United States)

    Han, Dongran; Pal, Suchetan; Yang, Yang; Jiang, Shuoxing; Nangreave, Jeanette; Liu, Yan; Yan, Hao


    Engineering wireframe architectures and scaffolds of increasing complexity is one of the important challenges in nanotechnology. We present a design strategy to create gridiron-like DNA structures. A series of four-arm junctions are used as vertices within a network of double-helical DNA fragments. Deliberate distortion of the junctions from their most relaxed conformations ensures that a scaffold strand can traverse through individual vertices in multiple directions. DNA gridirons were assembled, ranging from two-dimensional arrays with reconfigurability to multilayer and three-dimensional structures and curved objects.

  6. Modelling of Dual-Junction Solar Cells including Tunnel Junction

    Directory of Open Access Journals (Sweden)

    Abdelaziz Amine


    Full Text Available Monolithically stacked multijunction solar cells based on III–V semiconductors materials are the state-of-art of approach for high efficiency photovoltaic energy conversion, in particular for space applications. The individual subcells of the multi-junction structure are interconnected via tunnel diodes which must be optically transparent and connect the component cells with a minimum electrical resistance. The quality of these diodes determines the output performance of the solar cell. The purpose of this work is to contribute to the investigation of the tunnel electrical resistance of such a multi-junction cell through the analysis of the current-voltage (J-V characteristics under illumination. Our approach is based on an equivalent circuit model of a diode for each subcell. We examine the effect of tunnel resistance on the performance of a multi-junction cell using minimization of the least squares technique.

  7. A modular LHC built on the DNA three-way junction. (United States)

    Probst, Markus; Langenegger, Simon M; Häner, Robert


    A light-harvesting complex composed of a π-stacked multichromophoric array in a DNA three-way junction is described. The modular design allows for a ready exchange of non-covalently attached energy acceptors.

  8. Endocytosis and Recycling of Tight Junction Proteins in Inflammation

    Directory of Open Access Journals (Sweden)

    Markus Utech


    Full Text Available A critical function of the epithelial lining is to form a barrier that separates luminal contents from the underlying interstitium. This barrier function is primarily regulated by the apical junctional complex (AJC consisting of tight junctions (TJs and adherens junctions (AJs and is compromised under inflammatory conditions. In intestinal epithelial cells, proinflammatory cytokines, for example, interferon-gamma (IFN-γ, induce internalization of TJ proteins by endocytosis. Endocytosed TJ proteins are passed into early and recycling endosomes, suggesting the involvement of recycling of internalized TJ proteins. This review summarizes mechanisms by which TJ proteins under inflammatory conditions are internalized in intestinal epithelial cells and point out comparable mechanism in nonintestinal epithelial cells.

  9. Dielectric properties of biological tissues in which cells are connected by communicating junctions (United States)

    Asami, Koji


    The frequency dependence of the complex permittivity of biological tissues has been simulated using a simple model that is a cubic array of spherical cells in a parallel plate capacitor. The cells are connected by two types of communicating junctions: one is a membrane-lined channel for plasmodesmata in plant tissues, and the other is a conducting patch of adjoining plasma membranes for gap junctions in animal tissues. Both junctions provided similar effects on the dielectric properties of the tissue model. The model without junction showed a dielectric relaxation (called β-dispersion) that was expected from an interfacial polarization theory for a concentrated suspension of spherical cells. The dielectric relaxation was the same as that of the model in which neighbouring cells were connected by junctions perpendicular to the applied electric field. When neighbouring cells were connected by junctions parallel to the applied electric field or in all directions, a dielectric relaxation appeared at a lower frequency side in addition to the β-dispersion, corresponding to the so called α-dispersion. When junctions were randomly introduced at varied probabilities Pj, the low-frequency (LF) relaxation curve became broader, especially at Pj of 0.2-0.5, and its intensity was proportional to Pj up to 0.7. The intensity and the characteristic frequency of the LF relaxation both decreased with decreasing junction conductance. The simulations indicate that communicating junctions are important for understanding the LF dielectric relaxation in tissues.

  10. The rules and impact of nonsense-mediated mRNA decay in human cancers. (United States)

    Lindeboom, Rik G H; Supek, Fran; Lehner, Ben


    Premature termination codons (PTCs) cause a large proportion of inherited human genetic diseases. PTC-containing transcripts can be degraded by an mRNA surveillance pathway termed nonsense-mediated mRNA decay (NMD). However, the efficiency of NMD varies; it is inefficient when a PTC is located downstream of the last exon junction complex (EJC). We used matched exome and transcriptome data from 9,769 human tumors to systematically elucidate the rules of NMD targeting in human cells. An integrated model incorporating multiple rules beyond the canonical EJC model explains approximately three-fourths of the non-random variance in NMD efficiency across thousands of PTCs. We also show that dosage compensation may sometimes mask the effects of NMD. Applying the NMD model identifies signatures of both positive and negative selection on NMD-triggering mutations in human tumors and provides a classification for tumor-suppressor genes.

  11. Gap junctions - guards of excitability. (United States)

    Stroemlund, Line Waring; Jensen, Christa Funch; Qvortrup, Klaus; Delmar, Mario; Nielsen, Morten Schak


    Cardiomyocytes are connected by mechanical and electrical junctions located at the intercalated discs (IDs). Although these structures have long been known, it is becoming increasingly clear that their components interact. This review describes the involvement of the ID in electrical disturbances of the heart and focuses on the role of the gap junctional protein connexin 43 (Cx43). Current evidence shows that Cx43 plays a crucial role in organizing microtubules at the intercalated disc and thereby regulating the trafficking of the cardiac sodium channel NaV1.5 to the membrane.

  12. Control over Rectification in Supramolecular Tunneling Junctions

    NARCIS (Netherlands)

    Wimbush, K.S.; Wimbush, Kim S.; Reus, William F.; van der Wiel, Wilfred Gerard; Reinhoudt, David; Whitesides, George M.; Nijhuis, C.A.; Velders, Aldrik


    In complete control: The magnitude of current rectification in well-defined supramolecular tunneling junctions can be controlled by changing the terminal functionality (red spheres) of dendrimers (gray spheres) immobilized on a supramolecular platform (see picture). Junctions containing biferrocene

  13. Nano-Molecular Junctions on STM Tips

    Institute of Scientific and Technical Information of China (English)

    Chun Huang∗; Jianshu Yang


    We present a technique for building metal-organic-metal junctions, which contain ten or fewer conjugated molecules between each of such junction, and the investigations of the I-V response of these junctions. The junctions are made by self assembling thiolated molecules onto gold coated tips for use in scanning tunneling microscopy. We show that this easy technique probes the qualitative properties of the molecules. Current-voltage characteristics of a Tour wire and a new molecular rectifier are presented.

  14. Nano-Molecular Junctions on STM Tips

    Institute of Scientific and Technical Information of China (English)

    Chun Huang; Jianshu Yang


    We present a technique for building metal-organic-metal junctions, which contain ten or fewer conjugated molecules between each of such junction, and the investigations of the I-V response of these junctions.The junctions are made by self assembling thiolated molecules onto gold coated tips for use in scanning tunneling microscopy. We show that this easy technique probes the qualitative properties of the molecules. Currentvoltage characteristics of a Tour wire and a new molecular rectifier are presented.

  15. Current noise in tunnel junctions

    Energy Technology Data Exchange (ETDEWEB)

    Frey, Moritz; Grabert, Hermann [Physikalisches Institut, Universitaet Freiburg, Hermann-Herder-Strasse 3, 79104, Freiburg (Germany)


    We study current fluctuations in tunnel junctions driven by a voltage source. The voltage is applied to the tunneling element via an impedance providing an electromagnetic environment of the junction. We use circuit theory to relate the fluctuations of the current flowing in the leads of the junction with the voltage fluctuations generated by the environmental impedance and the fluctuations of the tunneling current. The spectrum of current fluctuations is found to consist of three parts: a term arising from the environmental Johnson-Nyquist noise, a term due to the shot noise of the tunneling current and a third term describing the cross-correlation between these two noise sources. Our phenomenological theory reproduces previous results based on the Hamiltonian model for the dynamical Coulomb blockade and provides a simple understanding of the current fluctuation spectrum in terms of circuit theory and properties of the average current. Specific results are given for a tunnel junction driven through a resonator. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  16. Josephson tunnel junction microwave attenuator

    DEFF Research Database (Denmark)

    Koshelets, V. P.; Shitov, S. V.; Shchukin, A. V.


    A new element for superconducting electronic circuitry-a variable attenuator-has been proposed, designed, and successfully tested. The principle of operation is based on the change in the microwave impedance of a superconductor-insulator-superconductor (SIS) Josephson tunnel junction when dc bias...

  17. Atomically thin lateral p-n junction photodetector with large effective detection area (United States)

    Xu, Zai-Quan; Zhang, Yupeng; Wang, Ziyu; Shen, Yuting; Huang, Wenchao; Xia, Xue; Yu, Wenzhi; Xue, Yunzhou; Sun, Litao; Zheng, Changxi; Lu, Yuerui; Liao, Lei; Bao, Qiaoliang


    The widely used photodetector design based on atomically thin transition metal dichalcogenides (TMDs) has a lateral metal-TMD-metal junction with a fairly small, line shape photoresponsive active area at the TMD-electrode interface. Here, we report a highly efficient photodetector with extremely large photoresponsive active area based on a lateral junction of monolayer-bilayer WSe2. Impressively, the separation of the electron-hole pairs (excitons) extends onto the whole 1L-2L WSe2 junction surface. The responsivity of the WSe2 junction photodetector is over 3200 times higher than that of a monolayer WSe2 device and leads to a highest external quantum efficiency of 256% due to the efficient carrier extraction. Unlike the TMD p-n junctions modulated by dual gates or localized doping, which require complex fabrication procedures, our study establishes a simple, controllable, and scalable method to improve the photodetection performance by maximizing the active area for current generation.

  18. Stability of large-area molecular junctions

    NARCIS (Netherlands)

    Akkerman, Hylke B.; Kronemeijer, Auke J.; Harkema, Jan; van Hal, Paul A.; Smits, Edsger C. P.; de Leeuw, Dago M.; Blom, Paul W. M.

    The stability of molecular junctions is crucial for any application of molecular electronics. Degradation of molecular junctions when exposed to ambient conditions is regularly observed. In this report the stability of large-area molecular junctions under ambient conditions for more than two years

  19. Soliton bunching in annular Josephson junctions

    DEFF Research Database (Denmark)

    Vernik, I.V; Lazarides, Nickos; Sørensen, Mads Peter


    By studying soliton (fluxon) motion in long annular Josephson junctions it is possible to avoid the influence of the boundaries and soliton-soliton collisions present in linear junctions. A new experimental design consisting of a niobium coil placed on top of an annular junction has been used...

  20. Long Range Magnetic Interaction between Josephson Junctions

    DEFF Research Database (Denmark)

    Grønbech-Jensen, Niels; Samuelsen, Mogens Rugholm


    A new model for magnetic coupling between long Josephson junctions is proposed. The coupling mechanism is a result of the magnetic fields outside the junctions and is consequently effective over long distances between junctions. We give specific expressions for the form and magnitude of the inter...

  1. Dynamics of pi-junction interferometer circuits

    DEFF Research Database (Denmark)

    Kornkev, V.K.; Mozhaev, P.B.; Borisenko, I.V.;


    The pi-junction superconducting circuit dynamics was studied by means of numerical simulation technique. Parallel arrays consisting of Josephson junctions of both 0- and pi-type were studied as a model of high-T-c grain-boundary Josephson junction. The array dynamics and the critical current...

  2. Dynamics of pi-junction interferometer circuits

    DEFF Research Database (Denmark)

    Kornkev, V.K.; Mozhaev, P.B.; Borisenko, I.V.


    The pi-junction superconducting circuit dynamics was studied by means of numerical simulation technique. Parallel arrays consisting of Josephson junctions of both 0- and pi-type were studied as a model of high-T-c grain-boundary Josephson junction. The array dynamics and the critical current...

  3. Evidence for a hopping mechanism in metal|single molecule|metal junctions involving conjugated metal–terpyridyl complexes; potential-dependent conductances of complexes [M(pyterpy)2]2+(M = Co and Fe; pyterpy = 4′-(pyridin-4-yl)-2,2′:6′,2′′-terpyridine) in ionic liquid

    DEFF Research Database (Denmark)

    Chappell, Sarah; Brooke, Carly; Nichols, Richard John;


    Extensive studies of various families of conjugated molecules in metal|molecule|metal junctions suggest that the mechanism of conductance is usually tunnelling for molecular lengths < ca. 4 nm, and that for longer molecules, coherence is lost as a hopping element becomes more significant. In this...

  4. Roles of gap junctions, connexins and pannexins in epilepsy

    Directory of Open Access Journals (Sweden)

    Shanthini eMylvaganam


    Full Text Available Enhanced gap junctional communication (GJC between neurons is considered a major factor underlying the neuronal synchrony driving seizure activity. In addition, the hippocampal sharp wave ripple complexes, associated with learning and seizures, are diminished by GJC blocking agents. Although gap junctional blocking drugs inhibit experimental seizures, they all have other nonspecific actions. Besides interneuronal GJC between dendrites, inter-axonal and inter-glial GJC is also considered important for seizure generation. Interestingly, in most studies of cerebral tissue from animal seizure models and from human patients with epilepsy, there is up-regulation of glial, but not neuronal gap junctional mRNA and protein. Significant changes in the expression and post-translational modification of the astrocytic connexin Cx43, and Panx1 were observed in an in vitro Co++ seizure model, further supporting a role for glia in seizure-genesis, although the reasons for this remain unclear. Further suggesting an involvement of astrocytic GJC in epilepsy, is the fact that the expression of astrocytic Cx mRNAs (Cxs 30 and 43 is several fold higher than that of neuronal Cx mRNAs (Cxs 36 and 45, and the number of glial cells outnumber neuronal cells in mammalian hippocampal and cortical tissue. Pannexin expression is also increased in both animal and human epileptic tissues. Specific Cx43 mimetic peptides, Gap 27 and SLS, inhibit the docking of astrocytic connexin Cx43 proteins from forming intercellular gap junctions, diminishing spontaneous seizures. Besides GJs, Cx membrane hemichannels in glia and Panx membrane channels in neurons and glia are also inhibited by gap junctional pharmacological blockers. Although there is no doubt that connexin-based gap junctions and hemichannels, and pannexin-based membrane channels are related to epilepsy, the specific details of how they are involved and how we can modulate their function for therapeutic purposes remain to

  5. Permanent junctional reciprocating tachycardia in a dog. (United States)

    Santilli, Roberto A; Santos, Luis F N; Perego, Manuela


    A 5-year-old male English Bulldog was presented with a 1-year history of paroxysmal supraventricular tachycardia (SVT) partially responsive to amiodarone. At admission the surface ECG showed sustained runs of a narrow QRS complex tachycardia, with a ventricular cycle length (R-R interval) of 260 ms, alternating with periods of sinus rhythm. Endocardial mapping identified the electrogenic mechanism of the SVT as a circus movement tachycardia with retrograde and decremental conduction along a concealed postero-septal atrioventricular pathway (AP) and anterograde conduction along the atrioventricular node. These characteristics were indicative of a permanent junctional reciprocating tachycardia (PJRT). Radiofrequency catheter ablation of the AP successfully terminated the PJRT, with no recurrence of tachycardia on Holter monitoring at 12 months follow-up.

  6. Development, characterization, and applications of high temperature superconductor nanobridge Josephson junctions

    Energy Technology Data Exchange (ETDEWEB)

    Wendt, J.R.; Tigges, C.P.; Hietala, V.M.; Plut, T.A. [Sandia National Labs., Albuquerque, NM (United States); Martens, J.S.; Char, K.; Johansson, M.E. [Conductus, Inc., Sunnyvale, CA (United States)


    A well-controlled, high-yield Josephson junction process in high temperature superconductors (HTS) is necessary for the demonstration of ultra-high-speed devices and circuits which exceed the capabilities of conventional electronics. The authors developed nanobridge Josephson junctions in high quality thin-film YBaCuO with dimensions below 100 nm fabricated using electron-beam nanolithography. They characterized this Josephson junction technology for process yield, junction parameter uniformity, and overall applicability for use in high-performance circuits. To facilitate the determination of junction parameters, they developed a measurement technique based on spectral analysis in the range of 90--160 GHz of phase-locked, oscillating arrays of up to 2,450 Josephson junctions. Because of the excellent yield and uniformity of the nanobridge junctions, they successfully applied the junction technology to a wide variety of circuits. These circuits included transmission-line pulse formers and 32 and 64-bit shift registers. The 32-bit shift register was shown to operate at clock speeds near 100 GHz and is believed to be one of the faster and more complex digital circuit demonstrated to date using high temperature superconductor technology.

  7. Octagonal Defects at Carbon Nanotube Junctions

    Directory of Open Access Journals (Sweden)

    W. Jaskólski


    Full Text Available We investigate knee-shaped junctions of semiconductor zigzag carbon nanotubes. Two dissimilar octagons appear at such junctions; one of them can reconstruct into a pair of pentagons. The junction with two octagons presents two degenerate localized states at Fermi energy (EF. The reconstructed junction has only one state near EF, indicating that these localized states are related to the octagonal defects. The inclusion of Coulomb interaction splits the localized states in the junction with two octagons, yielding an antiferromagnetic system.

  8. Fabrication of high quality ferromagnetic Josephson junctions

    Energy Technology Data Exchange (ETDEWEB)

    Weides, M. [Institute for Solid State Research, Research Centre Juelich, D-52425 Juelich (Germany) and CNI-Center of Nanoelectronic Systems for Information Technology, Research Centre Juelich, D-52425 Juelich (Germany)]. E-mail:; Tillmann, K. [Institute for Solid State Research, Research Centre Juelich, D-52425 Juelich (Germany); Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons, Research Centre Juelich, D-52425 Juelich (Germany); Kohlstedt, H. [Institute for Solid State Research, Research Centre Juelich, D-52425 Juelich (Germany); CNI-Center of Nanoelectronic Systems for Information Technology, Research Centre Juelich, D-52425 Juelich (Germany); Department of Material Science and Engineering and Department of Physics, University of Berkeley, CA 94720 (United States)


    We present ferromagnetic Nb/Al{sub 2}O{sub 3}/Ni{sub 60}Cu{sub 40}/Nb Josephson junctions (SIFS) with an ultrathin Al{sub 2}O{sub 3} tunnel barrier. The junction fabrication was optimized regarding junction insulation and homogeneity of current transport. Using ion-beam-etching and anodic oxidation we defined and insulated the junction mesas. The additional 2 nm thin Cu-layer below the ferromagnetic NiCu (SINFS) lowered interface roughness and ensured very homogeneous current transport. A high yield of junctional devices with j {sub c} spreads less than 2% was obtained.


    Directory of Open Access Journals (Sweden)

    Urquiza-Bardone, Sergio


    Full Text Available The emergence of multicellularity and epithelia in relation to the appearance of cellular junctions, in order to illustrate the first steps of animal evolution, is discussed. We analyzed the structure and roles of adherens and occludins, considered to be the oldest. Also treated are some aspects of the main proteins that constitute them, the cadherins and claudins, as well as the related structures observed in sponges and choanoflagellates, the most ancient animals and the ancestors of these, respectively. It was concluded that the animal ancestor probably possessed some kind of adherens and possibly occludins, appearing as the first of major importance. These junctions increased in complexity through until the complexity observed in modern times.

  10. Seebeck effect in molecular junctions (United States)

    Zimbovskaya, Natalya A.


    Advances in the fabrication and characterization of nanoscale systems presently allow for a better understanding of their thermoelectric properties. As is known, the building blocks of thermoelectricity are the Peltier and Seebeck effects. In the present work we review results of theoretical studies of the Seebeck effect in single-molecule junctions and similar systems. The behavior of thermovoltage and thermopower in these systems is controlled by several factors including the geometry of molecular bridges, the characteristics of contacts between the bridge and the electrodes, the strength of the Coulomb interactions between electrons on the bridge, and of electron-phonon interactions. We describe the impact of these factors on the thermopower. Also, we discuss a nonlinear Seebeck effect in molecular junctions.

  11. Electron transport in molecular junctions

    DEFF Research Database (Denmark)

    Jin, Chengjun

    This thesis addresses the electron transport in molecular junctions, focusing on the energy level alignment and correlation effects. Various levels of theory have been applied to study the structural and electronic effects in different molecular junctions, starting from the single particle density...... charge position are in quantitative agreement with the experiments, while pure DFT is not. This is the consequence of the accurate energy level alignment, where the DFT+∑ method corrects the self-interaction error in the standard DFT functional and uses a static image charge model to include the image...... charge effect on the energy level renormalization. Additionally, the gating of the 4,4’-bipyridine (44BP) molecule contacted to either Ni or Au electrodes has been investigated. Here it is found that the gating mechanism is conceptually different between two cases. In the case of Ni contacts where...

  12. How coherent are Josephson junctions?

    CERN Document Server

    Paik, Hanhee; Bishop, Lev S; Kirchmair, G; Catelani, G; Sears, A P; Johnson, B R; Reagor, M J; Frunzio, L; Glazman, L; Schoelkopf, R J


    Attaining sufficient coherence is a requirement for realizing a large-scale quantum computer. We present a new implementation of a superconducting transmon qubit that is strongly coupled to a three-dimensional superconducting cavity. We observe a reproducible increase in the coherence times of qubit (both $T_1$ and $T_2$ > 10 microseconds) and cavity ($T_{cav}$ ~ 50 microseconds) by more than an order of magnitude compared to the current state-of-art superconducting qubits. This enables the study of the stability and quality of Josephson junctions at precisions exceeding one part per million. Surprisingly, we see no evidence for $1/f$ critical current noise. At elevated temperatures, we observe the dissipation due to a small density (< 1 - 10 ppm) of thermally-excited quasiparticles. The results suggest that the overall quality of Josephson junctions will allow error rates of a few $10^{-4}$, approaching the error correction threshold.

  13. Domain Wall Junction in N=2 Supersymmetric QED in four dimensions

    CERN Document Server

    Kakimoto, K; Kakimoto, Kazuya; Sakai, Norisuke


    An exact solution of domain wall junction is obtained in N=2 supersymmetric (SUSY) QED with three massive hypermultiplets. The junction preserves two out of eight SUSY. Both a (magnetic) Fayet-Iliopoulos (FI) term and complex masses for hypermultiplets are needed to obtain the junction solution. There are zero modes corresponding to spontaneously broken translation, SUSY, and U(1). All broken and unbroken SUSY charges are explicitly worked out in the Wess-Zumino gauge in N=1 superfields as well as in components. The relation to models in five dimensions is also clarified.

  14. Evaluation of the formation of a junctional DNA nanostructure through annealing curve analysis. (United States)

    Shin, Seung Won; Park, Kyung Soo; Um, Soong Ho


    During the self-assembly of different numbers of oligonucleotides comprising junctional DNA nanostructures, a change in environmental variables (e.g., temperature or salt concentration) has a substantial influence on the final products. Further, distinctive annealing temperatures of oligonucleotides are observed depending on the state of hybridization. Here, we present an evaluation of the annealing characteristics of oligonucleotides for the formation of a simple junctional DNA nanostructure using an annealing curve analysis. This method may be useful for analyzing the formation of complex junctional DNA nanostructures.

  15. Thermoelectric efficiency of molecular junctions (United States)

    Perroni, C. A.; Ninno, D.; Cataudella, V.


    Focus of the review is on experimental set-ups and theoretical proposals aimed to enhance thermoelectric performances of molecular junctions. In addition to charge conductance, the thermoelectric parameter commonly measured in these systems is the thermopower, which is typically rather low. We review recent experimental outcomes relative to several junction configurations used to optimize the thermopower. On the other hand, theoretical calculations provide estimations of all the thermoelectric parameters in the linear and non-linear regime, in particular of the thermoelectric figure of merit and efficiency, completing our knowledge of molecular thermoelectricity. For this reason, the review will mainly focus on theoretical studies analyzing the role of not only electronic, but also of the vibrational degrees of freedom. Theoretical results about thermoelectric phenomena in the coherent regime are reviewed focusing on interference effects which play a significant role in enhancing the figure of merit. Moreover, we review theoretical studies including the effects of molecular many-body interactions, such as electron-vibration couplings, which typically tend to reduce the efficiency. Since a fine tuning of many parameters and coupling strengths is required to optimize the thermoelectric conversion in molecular junctions, new theoretically proposed set-ups are discussed in the conclusions.

  16. Mago Nashi and Tsunagi/Y14, Respectively, Regulate Drosophila Germline Stem Cell Differentiation and Oocyte Specification


    Parma, David H.; Bennett, Paul E.; Boswell, Robert E


    A protein complex consisting of Mago Nashi and Tsunagi/Y14 is required to establish the major body axes and for the localization of primordial germ cell determinants during Drosophila melanogaster oogenesis. The Mago Nashi:Tsunagi/Y14 heterodimer also serves as the core of the exon junction complex (EJC), a multiprotein complex assembled on spliced mRNAs. In previous studies, reduced function alleles of mago nashi and tsunagi/Y14 were used to characterize the roles of the genes in oogenesis. ...

  17. Supersymmetry Enhancement and Junctions in S-folds

    CERN Document Server

    Imamura, Yosuke; Yokoyama, Daisuke


    We study supersymmetry enhancement from ${\\cal N}=3$ to ${\\cal N}=4$ proposed by Aharony and Tachikawa by using string junctions in S-folds. The central charges carried by junctions play a central role in our analysis. We consider planer junctions in a specific plane. Before the S-folding they carry two complex central charges, which we denote by $Z$ and $\\bar Z$. The S-fold projection eliminates $\\bar Z$ as well as one of the four supercharges, and when the supersymmetry is enhanced $\\bar Z$ should be reproduced by some non-perturbative mechanism. For the models of $\\mathbb{Z}_3$ and $\\mathbb{Z}_4$ S-folds which are expected to give $SU(3)$ and $SO(5)$ ${\\cal N}=4$ theories we compare the junction spectra with those in perturbative brane realization of the same theories. We establish one-to-one correspondence so that $Z$ coincides. By using the correspondence we also give an expression for the enhanced central charge $\\bar Z$.

  18. Width of the $0-\\pi$ phase transition in diffusive magnetic Josephson junctions


    Shomali, Zahra; Zareyan, Malek; Belzig, Wolfgang


    We investigate the Josephson current between two superconductors (S) which are connected through a diffusive magnetic junction with a complex structure (F$_{c}$). Using the quantum circuit theory, we obtain the phase diagram of 0 and $\\pi$ Josephson couplings for F$_{c}$ being a IFI (insulator-ferromagnet-insulator) double barrier junction or a IFNFI structure (where N indicates a normal metal layer). Compared to a simple SFS structure, we find that the width of the transition, defined by the...

  19. Chaos induced by coupling between Josephson junctions (United States)

    Shukrinov, Yu. M.; Azemtsa-Donfack, H.; Botha, A. E.


    It is found that, in a stack of intrinsic Josephson junctions in layered high temperature superconductors under external electromagnetic radiation, the chaotic features are triggered by interjunction coupling, i.e., the coupling between different junctions in the stack. While the radiation is well known to produce chaotic effects in the single junction, the effect of interjunction coupling is fundamentally different and it can lead to the onset of chaos via a different route to that of the single junction. A precise numerical study of the phase dynamics of intrinsic Josephson junctions, as described by the CCJJ+DC model, is performed. We demonstrate the charging of superconducting layers, in a bias current interval corresponding to a Shapiro step subharmonic, due to the creation of a longitudinal plasma wave along the stack of junctions. With increase in radiation amplitude chaotic behavior sets in. The chaotic features of the coupled Josephson junctions are analyzed by calculations of the Lyapunov exponents. We compare results for a stack of junctions to the case of a single junction and prove that the observed chaos is induced by the coupling between the junctions. The use of Shapiro step subharmonics may allow longitudinal plasma waves to be excited at low radiation power.

  20. [Remodeling of cardiac gap junctions and arrhythmias]. (United States)

    Yu, Zhi-Bin; Sheng, Juan-Juan


    In the heart, gap junctions mediate electrical and chemical coupling between adjacent cardiomyocytes, forming the cell-to-cell pathways for orderly spread of the wave of electrical excitation responsible for a functional syncytium. Three principal connexins are expressed in cardiomyocytes, connexin 43 (CX43), CX40, and CX45. CX43 predominates in ventricular muscle cells. Most of the gap junctions, assembled from CX43, are located at the intercalated discs, often with larger junctional plaques at the disc periphery. The gap junctions are rarely distributed to the sides of the cardiomyocyte. The ischemia-reperfusion, cardiac hypertrophy, heart failure, hypercholesterolemia, and diabetes mellitus induce gap junction remodeling. The gap junction remodeling induced by above-mentioned diseases shows similar characteristics, including down-regulation of CX43, reduction in gap junction plaque size, increased heterogeneity and lateralization of gap junction distribution, and dephosphorylation of CX43. The elevated angiotensin II concentration in local myocardium may play an important role in the gap junction remodeling. The down-regulation of CX43 and lateralization of gap junction distribution alter anisotropic spread of the impulse of ventricular myocardium. The dephosphorylation of CX43 not only reduces electrical conductance, but also decreases permeability of chemicals between cardiomyocytes. The lateralization of gap junctions may increase the number of hemichannels formed by CX43. The opening of hemichannels induces ATP efflux and Na(+) influx, which forms a delayed after-depolarization. The gap junction remodeling in pathological condition produces arrhythmia substrate in the ventricles. In this review, the current knowledge on the relationship between the remodeling of cardiac gap junctions and arrhythmias were summarized.

  1. Computation of flow through the oesophagogastric junction

    Institute of Scientific and Technical Information of China (English)

    Barry P McMahon; Karl D Odie; Kenneth W Moloney; Hans Gregersen


    Whilst methods exist to indirectly measure the effects of increased flow or gastro-oesophageal refluxing,they cannot quantitatively measure the amount of acid travelling back up into the oesophagus during reflux, nor can they indicate the flow rate through the oesophagogastric junction (OGJ). Since OGJ dysfunction affects flow it seems most appropriate to describe the geometry of the OGJ and its effect on the flow.A device known as the functional lumen imaging probe (FLIP) has been shown to reliably measure the geometry of and pressure changes in the OGJ. FLIP cannot directly measure flow but the data gathered from the probe can be used to model flow through the junction by using computational flow dynamics (CFD).CFD uses a set of equations known as the Navier-Stokes equations to predict flow patterns and is a technique widely used in engineering. These equations are complex and require appropriate assumptions to provide simplifications before useful data can be obtained. With the assumption that the cross-sectional areas obtained via FLIP are circular, the radii of these circles can be obtained. A cubic interpolation scheme can then be applied to give a high-resolution geometry for the OGJ.In the case of modelling a reflux scenario, it can be seen that at the narrowest section a jet of fluid squirts into the oesophagus at a higher velocity than the fluid surrounding it. This jet has a maximum velocity of almost 2 ms-1 that occurs where the OGJ is at its narrowest. This simple prediction of acid 'squirting' into the oesophagus illustrates how the use of numerical methods can be used to develop a better understanding of the OGJ. This initial work using CFD shows some considerable promise for the future.

  2. Physics and Applications of NIS Junctions

    Energy Technology Data Exchange (ETDEWEB)

    Ullom, J N


    This paper reviews the physics and applications of Normal-Insulator-Superconductor (NIS) tunnel junctions. The current-voltage properties of NIS junctions are diode-like with a strong temperature dependence. Hence, these structures can be used as sensitive thermometers at temperatures well below the energy gap, {Delta}, of the superconducting electrode. For junction voltages comparable to {Delta}/q, current flow removes energy from the normal electrode. This property has been exploited to build refrigerators capable of cooling thin-film circuits from 0.3 K to 0.1 K. Calorimeters and bolometers for the detection of X-rays and millimeter-wave radiation, respectively, have successfully been built from NIS junctions. NIS junctions have also been used to probe the superconducting state. Finally, recent ideas for the use of NIS junctions as simple circuit elements are described.

  3. Algorithms for Junctions in Directed Acyclic Graphs

    CERN Document Server

    Ferreira, Carlos Eduardo


    Given a pair of distinct vertices u, v in a graph G, we say that s is a junction of u, v if there are in G internally vertex disjoint directed paths from s to u and from s to v. We show how to characterize junctions in directed acyclic graphs. We also consider the two problems in the following and derive efficient algorithms to solve them. Given a directed acyclic graph G and a vertex s in G, how can we find all pairs of vertices of G such that s is a junction of them? And given a directed acyclic graph G and k pairs of vertices of G, how can we preprocess G such that all junctions of k given pairs of vertices could be listed quickly? All junctions of k pairs problem arises in an application in Anthropology and we apply our algorithm to find such junctions on kinship networks of some brazilian indian ethnic groups.

  4. Molecular junctions: can pulling influence optical controllability? (United States)

    Parker, Shane M; Smeu, Manuel; Franco, Ignacio; Ratner, Mark A; Seideman, Tamar


    We suggest the combination of single molecule pulling and optical control as a way to enhance control over the electron transport characteristics of a molecular junction. We demonstrate using a model junction consisting of biphenyl-dithiol coupled to gold contacts. The junction is pulled while optically manipulating the dihedral angle between the two rings. Quantum dynamics simulations show that molecular pulling enhances the degree of control over the dihedral angle and hence over the transport properties.

  5. Loss models for long Josephson junctions

    DEFF Research Database (Denmark)

    Olsen, O. H.; Samuelsen, Mogens Rugholm


    A general model for loss mechanisms in long Josephson junctions is presented. An expression for the zero-field step is found for a junction of overlap type by means of a perturbation method. Comparison between analytic solution and perturbation result shows good agreement.......A general model for loss mechanisms in long Josephson junctions is presented. An expression for the zero-field step is found for a junction of overlap type by means of a perturbation method. Comparison between analytic solution and perturbation result shows good agreement....

  6. A membrane fusion protein αSNAP is a novel regulator of epithelial apical junctions.

    Directory of Open Access Journals (Sweden)

    Nayden G Naydenov

    Full Text Available Tight junctions (TJs and adherens junctions (AJs are key determinants of the structure and permeability of epithelial barriers. Although exocytic delivery to the cell surface is crucial for junctional assembly, little is known about the mechanisms controlling TJ and AJ exocytosis. This study was aimed at investigating whether a key mediator of exocytosis, soluble N-ethylmaleimide sensitive factor (NSF attachment protein alpha (αSNAP, regulates epithelial junctions. αSNAP was enriched at apical junctions in SK-CO15 and T84 colonic epithelial cells and in normal human intestinal mucosa. siRNA-mediated knockdown of αSNAP inhibited AJ/TJ assembly and establishment of the paracellular barrier in SK-CO15 cells, which was accompanied by a significant down-regulation of p120-catenin and E-cadherin expression. A selective depletion of p120 catenin effectively disrupted AJ and TJ structure and compromised the epithelial barrier. However, overexpression of p120 catenin did not rescue the defects of junctional structure and permeability caused by αSNAP knockdown thereby suggesting the involvement of additional mechanisms. Such mechanisms did not depend on NSF functions or induction of cell death, but were associated with disruption of the Golgi complex and down-regulation of a Golgi-associated guanidine nucleotide exchange factor, GBF1. These findings suggest novel roles for αSNAP in promoting the formation of epithelial AJs and TJs by controlling Golgi-dependent expression and trafficking of junctional proteins.

  7. Incompressible Turbulent Wing-Body Junction Flow (United States)

    Krishnamurthy, R.; Cagle, Corey D.; Chandra, S.


    The overall objective of this study is to contribute to the optimized design of fan bypass systems in advanced turbofan engines. Increasing the engine bypass ratios have provided a major boost in engine performance improvement over the last fifty years. An engine with high bypass ratio (11-16:1) such as the Advanced Ducted Propulsion (ADP) is being developed and is expected to provide an additional 25% improvement in overall efficiency over the early turbofans. Such significant improvements in overall efficiency would reduce the cost per seat mile, which is a major government and Industry challenge for the 21th century. The research is part of the Advanced Subsonic Technology (AST) program that involves a NASA, U.S. Industry and FAA partnership with the goal of a safe and highly productive global air transportation system. The immediate objective of the study is to perform numerical simulation of duct-strut interactions to elucidate the loss mechanisms associated with this configuration that is typical of advanced turbofan engines such as ADP. However, at present experimental data for a duct-strut configuration are not available. Thus, as a first step a wing-body junction flow would be studied and is the specific objective of the present study. At the outset it is to be recognized that while duct-strut interaction flow is similar to that of wing-body junction flows, there are some differences owing to the presence of a wall at both ends of the strut. Likewise, some differences are due to the sheared inflow (as opposed to a uniform inflow) velocity profile. It is however expected that some features of a wing-body junction flow would persist. Next, some of the salient aspects of the complex flow near a wing-body junction, as revealed by various studies reported in the literature will be reviewed. One of the principle characteristics of the juncture flow, is the presence of the mean flow components in a plane perpendicular to the direction of the oncoming free

  8. First-principles methodology for quantum transport in multiterminal junctions. (United States)

    Saha, Kamal K; Lu, Wenchang; Bernholc, J; Meunier, Vincent


    We present a generalized approach for computing electron conductance and I-V characteristics in multiterminal junctions from first-principles. Within the framework of Keldysh theory, electron transmission is evaluated employing an O(N) method for electronic-structure calculations. The nonequilibrium Green function for the nonequilibrium electron density of the multiterminal junction is computed self-consistently by solving Poisson equation after applying a realistic bias. We illustrate the suitability of the method on two examples of four-terminal systems, a radialene molecule connected to carbon chains and two crossed-carbon chains brought together closer and closer. We describe charge density, potential profile, and transmission of electrons between any two terminals. Finally, we discuss the applicability of this technique to study complex electronic devices.

  9. The development of the myotendinous junction. A review. (United States)

    Charvet, Benjamin; Ruggiero, Florence; Le Guellec, Dominique


    The myotendinous junction (MTJ) is a complex specialized region located at the muscle-tendon interface that represents the primary site of force transmission. Despite their different embryologic origins, muscle and tendon morphogenesis occurs in close spatial and temporal association. After muscle attachment, muscle and tendon constitute a dynamic and functional integrated unit that transduces muscle contraction force to the skeletal system. We review here the current understanding of MTJ formation describing changes during morphogenesis and focusing on the crosstalk between muscle and tendon cells that leads to the development of a functional MTJ. Molecules involved in the formation of the linkage, both at the tendon side and at the muscle side of the junction are described. Much of this knowledge comes from studies using different animal models such as mice, zebrafish and Drosophila where powerful methods for in vivo imaging and genetic manipulations can be used to enlighten this developmental process.

  10. Electronic transport through EuO spin filter tunnel junctions

    Energy Technology Data Exchange (ETDEWEB)

    Jutong, Nuttachai; Eckern, Ulrich [Institut fuer Physik, Universitaet Augsburg, 86135 Augsburg (Germany); Rungger, Ivan; Sanvito, Stefano [School of Physics and CRANN, Trinity College Dublin, Dublin (Ireland); Schwingenschloegl, Udo [KAUST, PSE Division, Thuwal 23955-6900, Kingdom of Saudi Arabia (Saudi Arabia)


    Spin filter tunnel junctions based on europium monoxide (EuO), a ferromagnetic semiconductor, are investigated by means of density functional theory. In particular, the spin transport of Cu/EuO/Cu junctions is investigated by using the self-consistent ab-initio electron transport code SMEAGOL. The dependence of the transmission coefficient on the interface spacing and on the EuO thickness is studied, and explained in terms of the density of states and the complex band structure of EuO. Our calculation indicates that EuO epitaxially grown on Cu can act as a perfect spin filter, with polarization close to 100%, which is related mainly to the Eu-4f states. The transmission coefficient is sensitive to the interface spacing, since this spacing determines the charge transfer between EuO and the Cu leads.

  11. Formation and stability of ridge-ridge-ridge triple junctions in rheologically realistic lithosphere model (United States)

    Gerya, Taras; Burov, Evgueni


    Triple junctions are probably the most remarkable features of plate boundaries since their presence constitutes one of the major demonstrations of plate tectonics theory. Divergent (R-R-R) triple junctions (at 120° and T junctions) are particular ones since their stability depends on the exact values of the relative velocities of plate divergence and hence is strongly affected by plate rheology and processes of crustal accretion. The mechanisms of their formation and long-term steadiness are not well understood even though it is commonly accepted, generally based on common sense, that the geometry and stability of triple junctions should be related to the intuitively acceptable geometric considerations that 3-branch configurations should be "stable" over the time on a 3D Earth surface. That said, most plate boundaries are in fact 2D in terms that they involve only two plates, while junctions with 3 and more branches, if even mechanically not excluded, are generally short-lived and hence rarely observed at tectonic scale. Indeed, it has been long-time suggested that triple junctions result from evolution of short-lived quadruple junctions, yet, without providing a consistent mechanical explanation or experimental demonstration of this process, due to the rheological complexity of the lithosphere and that of strain localization and crustal accretion processes. For example, it is supposed that R-R-R junctions form as result of axisymmetric mantle upwellings. However, impingement of buoyant fluid on a non-pre-stressed lithosphere should result in multiple radial cracks, as is well known from previous analog and numerical experiments. In case of uni-directionally pre-stressed lithosphere, it has also shown that linear 2D rift structures should be formed. Therefore, a complete 3D thermos-mechanically consistent approach is needed to understand the processes of formation of multi-branch junctions. With this goal we here reproduce and study the processes of multi

  12. DHT deficiency perturbs the integrity of the rat seminiferous epithelium by disrupting tight and adherens junctions. (United States)

    Kolasa, Agnieszka; Marchlewicz, Mariola; Wenda-Różewicka, Lidia; Wiszniewska, Barbara


    In rats with a DHT deficiency induced by finasteride, morphological changes in the seminiferous epithelium were observed. The structural alterations were manifested by the premature germ cells sloughing into the lumen of seminiferous tubules. The etiology of this disorder could be connected with intercellular junctions disintegration. We showed in the immunohistochemical study the changes in expression of some proteins building tight and adherens junctions. The depression of N-cadherin, β-catenin and occludin immunoexpressions could be the reason for the release of immature germ cells from the seminiferous epithelium. However, the observed increase of the immunohistochemical reaction intensity of vinculin, one of the cadherin/catenin complex regulators, could be insufficient to maintain the proper function of adherens junctions. The hormonal imbalance appears to influence the pattern of expression of junctional proteins in the seminiferous epithelium. It could lead to untimely germ cells sloughing, and ultimately could impair fertility.

  13. Identification of RecQL1 as a Holliday junction processing enzyme in human cell lines (United States)

    LeRoy, Gary; Carroll, Robert; Kyin, Saw; Seki, Masayuki; Cole, Michael D.


    Homologous recombination provides an effective way to repair DNA double-strand breaks (DSBs) and is required for genetic recombination. During the process of homologous recombination, a heteroduplex DNA structure, or a ‘Holliday junction’ (HJ), is formed. The movement, or branch migration, of this junction is necessary for recombination to proceed correctly. In prokaryotes, the RecQ protein or the RuvA/RuvB protein complex can promote ATP-dependent branch migration of Holliday junctions. Much less is known about the processing of Holliday junctions in eukaryotes. Here, we identify RecQL1 as a predominant ATP-dependent, HJ branch migrator present in human nuclear extracts. A reduction in the level of RecQL1 induced by RNA interference in HeLa cells leads to an increase in sister chromatid exchange. We propose that RecQL1 is involved in the processing of Holliday junctions in human cells. PMID:16260474

  14. Gap junctions and connexin-interacting proteins

    NARCIS (Netherlands)

    Giepmans, Ben N G


    Gap junctions form channels between adjacent cells. The core proteins of these channels are the connexins. Regulation of gap junction communication (GJC) can be modulated by connexin-associating proteins, such as regulatory protein phosphatases and protein kinases, of which c-Src is the best-studied

  15. Gap junctions and connexin-interacting proteins

    NARCIS (Netherlands)

    Giepmans, Ben N G


    Gap junctions form channels between adjacent cells. The core proteins of these channels are the connexins. Regulation of gap junction communication (GJC) can be modulated by connexin-associating proteins, such as regulatory protein phosphatases and protein kinases, of which c-Src is the

  16. Gap junctions and connexin-interacting proteins

    NARCIS (Netherlands)

    Giepmans, Ben N G


    Gap junctions form channels between adjacent cells. The core proteins of these channels are the connexins. Regulation of gap junction communication (GJC) can be modulated by connexin-associating proteins, such as regulatory protein phosphatases and protein kinases, of which c-Src is the best-studied

  17. Shot noise in YBCO bicrystal Josephson junctions

    DEFF Research Database (Denmark)

    Constantinian, K.Y.; Ovsyannikov, G.A.; Borisenko, I.V.;


    We measured spectral noise density in YBCO symmetric bicrystal Josephson junctions on sapphire substrates at bias voltages up to 100 mV and T 4.2 K. Normal state resistance of the Josephson junctions, R-N = 20-90 Omega and ICRN up to 2.2 mV have been observed in the experimental samples. Noise...

  18. Junction conditions of cosmological perturbations

    CERN Document Server

    Tomita, K


    The behavior of perturbations is studied in cosmological models which consist of two different homogeneous regions connected in a spherical shell boundary. The junction conditions for the metric perturbations and the displacements of the shell boundary are analyzed and the surface densities of the perturbed energy and momentum in the shell are derived, using Mukohyama's gauge-invariant formalism and the Israel discontinuity condition. In both homogeneous regions the perturbations of scalar, vector and tensor types are expanded using the 3-dimensional harmonic functions, but the model coupling among them is caused in the shell by the inhomogeneity. By treating the perturbations with odd and even parities separately, it is found, however, that we can have consistent displacements and surface densities for given metric parturbations

  19. Proteomic and bioinformatic analysis of epithelial tight junction reveals an unexpected cluster of synaptic molecules

    Directory of Open Access Journals (Sweden)

    Tang Vivian W


    Full Text Available Abstract Background Zonula occludens, also known as the tight junction, is a specialized cell-cell interaction characterized by membrane "kisses" between epithelial cells. A cytoplasmic plaque of ~100 nm corresponding to a meshwork of densely packed proteins underlies the tight junction membrane domain. Due to its enormous size and difficulties in obtaining a biochemically pure fraction, the molecular composition of the tight junction remains largely unknown. Results A novel biochemical purification protocol has been developed to isolate tight junction protein complexes from cultured human epithelial cells. After identification of proteins by mass spectroscopy and fingerprint analysis, candidate proteins are scored and assessed individually. A simple algorithm has been devised to incorporate transmembrane domains and protein modification sites for scoring membrane proteins. Using this new scoring system, a total of 912 proteins have been identified. These 912 hits are analyzed using a bioinformatics approach to bin the hits in 4 categories: configuration, molecular function, cellular function, and specialized process. Prominent clusters of proteins related to the cytoskeleton, cell adhesion, and vesicular traffic have been identified. Weaker clusters of proteins associated with cell growth, cell migration, translation, and transcription are also found. However, the strongest clusters belong to synaptic proteins and signaling molecules. Localization studies of key components of synaptic transmission have confirmed the presence of both presynaptic and postsynaptic proteins at the tight junction domain. To correlate proteomics data with structure, the tight junction has been examined using electron microscopy. This has revealed many novel structures including end-on cytoskeletal attachments, vesicles fusing/budding at the tight junction membrane domain, secreted substances encased between the tight junction kisses, endocytosis of tight junction

  20. Bioengineering a Single-Protein Junction. (United States)

    Ruiz, Marta P; Aragones, Albert C; Camarero, Nuria; Vilhena, J G; Ortega, Maria; Zotti, Linda Angela; Perez, Ruben; Cuevas, Juan Carlos; Gorostiza, Pau; Díez-Pérez, Ismael


    Bioelectronics moves towards designing nanoscale electronic platforms that allow in vivo determinations. Such devices require interfacing complex biomolecular moieties as the sensing units to an electronic platform for signal transduction. Inevitably, a systematic design goes through a bottom-up understanding of the structurally related electrical signatures of the biomolecular circuit, which will ultimately lead us to tailor its electrical properties. Toward this aim, we show here the first example of bioengineered charge transport in a single-protein electrical contact. The results reveal that a single point-site mutation at the docking hydrophobic patch of a Cu-Azurin causes minor structural distortion of the protein blue Cu site and a dramatic change in the charge transport regime of the single-protein contact, which goes from the classical Cu-mediated 2-step transport in this system to a direct coherent tunneling. Our extensive spectroscopic studies and molecular-dynamics simulations show that the proteins' folding structures are preserved in the single-protein junction. The DFT-computed frontier orbital of the relevant protein segments suggests that the Cu center participation in each protein variant accounts for the different observed charge transport behavior. This work is a direct evidence of charge transport control in a protein backbone through external mutagenesis and a unique nanoscale platform to study structurally related biological electron transfer.

  1. Spin-crossover molecule based thermoelectric junction

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Dibyajyoti [Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064 (India); Parida, Prakash [Institute for Theoretical Physics, University of Regensburg, D-93040 Regensburg (Germany); Pati, Swapan K. [Theoretical Sciences Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064 (India)


    Using ab-initio numerical methods, we explore the spin-dependent transport and thermoelectric properties of a spin-crossover molecule (i.e., iron complex of 2-(1H-pyrazol-1-yl)-6-(1H-tetrazole-5-yl)pyridine) based nano-junction. We demonstrate a large magnetoresistance, efficient conductance-switching, and spin-filter activity in this molecule-based two-terminal device. The spin-crossover process also modulates the thermoelectric entities. It can efficiently switch the magnitude as well as spin-polarization of the thermocurrent. We find that thermocurrent is changed by ∼4 orders of magnitude upon spin-crossover. Moreover, it also substantially affects the thermopower and consequently, the device shows extremely efficient spin-crossover magnetothermopower generation. Furthermore, by tuning the chemical potential of electrodes into a certain range, a pure spin-thermopower can be achieved for the high-spin state. Finally, the reasonably large values of figure-of-merit in the presence and absence of phonon demonstrate a large heat-to-voltage conversion efficiency of the device. We believe that our study will pave an alternative way of tuning the transport and thermoelectric properties through the spin-crossover process and can have potential applications in generation of spin-dependent current, information storage, and processing.

  2. Vibrationally coupled electron transport through single-molecule junctions

    Energy Technology Data Exchange (ETDEWEB)

    Haertle, Rainer


    vibrational effects have a profound influence on the transport characteristics of a single-molecule contact and play therefore a fundamental role in this transport problem. Our findings demonstrate that vibrationally coupled electron transport through a molecular junction involves two types of processes: (i) transport processes, where an electron tunnels through the molecular bridge from one lead to the other, and (ii) electron-hole pair creation processes, where an electron tunnels from one of the leads onto the molecular bridge and back to the same lead again. Transport processes directly contribute to the electrical current flowing through a molecular contact and involve both excitation and deexcitation processes of the vibrational modes of the junction. Electron-hole pair creation processes do not directly contribute to the electrical current and typically involve only deexcitation processes. Nevertheless, they constitute a cooling mechanism for the vibrational modes of a single-molecule junction that is as important as cooling by transport processes. As the level of vibrational excitation determines the efficiency of electron transport processes, they have an indirect influence on the electrical current flowing through the junction. As we show, however, this influence can be substantial, in particular, if the molecule is coupled asymmetrically to the leads. Accounting for all these processes and their complex interrelationship, we analyze a number of intriguing transport phenomena, including rectification, negative differential resistance, anomalous peak broadening, mode-selective vibrational excitation and vibrationally induced decoherence. Moreover, we show that higher levels of vibrational excitation are obtained for weaker electronic-vibrational coupling. Thus, based on physical grounds, we establish a relation between the weak electronic-vibrational coupling limit and the limit of large bias voltages, where the level of vibrational excitation in a molecular junction

  3. Top 50 most-cited articles on craniovertebral junction surgery. (United States)

    Alan, Nima; Cohen, Jonathan Andrew; Zhou, James; Pease, Matthew; Kanter, Adam S; Okonkwo, David O; Hamilton, David Kojo


    Craniovertebral junction is a complex anatomical location posing unique challenges to the surgical management of its pathologies. We aimed to identify the fifty most-cited articles that are dedicated to this field. A keyword search using the Thomson Reuters Web of Knowledge was conducted to identify articles relevant to the field of craniovertebral junction surgery. The articles were reviewed based on title, abstract, and methods, if necessary, and then ranked based on the total number of citations to identify the fifty most-cited articles. Characteristics of the articles were determined and analyzed. The earliest top-cited article was published in 1948. When stratified by decade, 1990s was the most productive with 16 articles. The most-cited article was by Anderson and Dalonzo on a classification of odontoid fractures. By citation rate, the most-cited article was by Herms and Melcher who described Goel's technique of atlantoaxial fixation using C1 lateral mass screws and C2 pedicle screws with rod fixation. Atlantoaxial fixation was the most common topic. The United States, Barrow Neurological Institute, and VH Sonntag were the most represented country, institute, and author, respectively. The significant majority of articles were designed as case series providing level IV evidence. Using citation analysis, we have provided a list of the most-cited articles representing important contributions of various authors from many institutions across the world to the field of craniovertebral junction surgery.

  4. Top 50 most-cited articles on craniovertebral junction surgery (United States)

    Alan, Nima; Cohen, Jonathan Andrew; Zhou, James; Pease, Matthew; Kanter, Adam S; Okonkwo, David O; Hamilton, David Kojo


    Background: Craniovertebral junction is a complex anatomical location posing unique challenges to the surgical management of its pathologies. We aimed to identify the fifty most-cited articles that are dedicated to this field. Methods: A keyword search using the Thomson Reuters Web of Knowledge was conducted to identify articles relevant to the field of craniovertebral junction surgery. The articles were reviewed based on title, abstract, and methods, if necessary, and then ranked based on the total number of citations to identify the fifty most-cited articles. Characteristics of the articles were determined and analyzed. Results: The earliest top-cited article was published in 1948. When stratified by decade, 1990s was the most productive with 16 articles. The most-cited article was by Anderson and Dalonzo on a classification of odontoid fractures. By citation rate, the most-cited article was by Herms and Melcher who described Goel's technique of atlantoaxial fixation using C1 lateral mass screws and C2 pedicle screws with rod fixation. Atlantoaxial fixation was the most common topic. The United States, Barrow Neurological Institute, and VH Sonntag were the most represented country, institute, and author, respectively. The significant majority of articles were designed as case series providing level IV evidence. Conclusion: Using citation analysis, we have provided a list of the most-cited articles representing important contributions of various authors from many institutions across the world to the field of craniovertebral junction surgery. PMID:28250633

  5. Symposia for a Meeting on Ion Channels and Gap Junctions

    CERN Document Server

    Sáez, Juan


    Ion channels allow us to see nature in all its magnificence, to hear a Bach suite, to smell the aroma of grandmother's cooking, and, in this regard, they put us in contact with the external world. These ion channels are protein molecules located in the cell membrane. In complex organisms, cells need to communicate in order to know about their metabolic status and to act in a coordinate manner. The latter is also accomplished by a class of ion channels able to pierce the lipid bilayer membranes of two adjacent cells. These intercellular channels are the functional subunits of gap junctions. Accordingly, the book is divided in two parts: the first part is dedicated to ion channels that look to the external world, and the second part is dedicated to gap junctions found at cell interfaces. This book is based on a series of symposia for a meeting on ion channels and gap junctions held in Santiago, Chile, on November 28-30, 1995. The book should be useful to graduate students taking the first steps in this field as...

  6. Identification of MarvelD3 as a tight junction-associated transmembrane protein of the occludin family

    Directory of Open Access Journals (Sweden)

    Balda Maria S


    Full Text Available Abstract Background Tight junctions are an intercellular adhesion complex of epithelial and endothelial cells, and form a paracellular barrier that restricts the diffusion of solutes on the basis of size and charge. Tight junctions are formed by multiprotein complexes containing cytosolic and transmembrane proteins. How these components work together to form functional tight junctions is still not well understood and will require a complete understanding of the molecular composition of the junction. Results Here we identify a new transmembrane component of tight junctions: MarvelD3, a four-span transmembrane protein. Its predicted transmembrane helices form a Marvel (MAL and related proteins for vesicle traffic and membrane link domain, a structural motif originally discovered in proteins involved in membrane apposition and fusion events, such as the tight junction proteins occludin and tricellulin. In mammals, MarvelD3 is expressed as two alternatively spliced isoforms. Both isoforms exhibit a broad tissue distribution and are expressed by different types of epithelial as well as endothelial cells. MarvelD3 co-localises with occludin at tight junctions in intestinal and corneal epithelial cells. RNA interference experiments in Caco-2 cells indicate that normal MarvelD3 expression is not required for the formation of functional tight junctions but depletion results in monolayers with increased transepithelial electrical resistance. Conclusions Our data indicate that MarvelD3 is a third member of the tight junction-associated occludin family of transmembrane proteins. Similar to occludin, normal expression of MarvelD3 is not essential for the formation of functional tight junctions. However, MarvelD3 functions as a determinant of epithelial paracellular permeability properties.

  7. Coordinate transformation in the model of long Josephson junctions: geometrically equivalent Josephson junctions (United States)

    Semerdzhieva, E. G.; Boyadzhiev, T. L.; Shukrinov, Yu. M.


    The transition from the model of a long Josephson junction of variable width to the model of a junction with a coordinate-dependent Josephson current amplitude is effected through a coordinate transformation. This establishes the correspondence between the classes of Josephson junctions of variable width and quasi-one-dimensional junctions with a variable thickness of the barrier layer. It is shown that for a junction of exponentially varying width the barrier layer of the equivalent quasi-one-dimensional junction has a distributed resistive inhomogeneity that acts as an attractor for magnetic flux vortices. The curve of the critical current versus magnetic field for a Josephson junction with a resistive microinhomogeneity is constructed with the aid of a numerical simulation, and a comparison is made with the critical curve of a junction of exponentially varying width. The possibility of replacing a distributed inhomogeneity in a Josephson junction by a local inhomogeneity at the end of the junction is thereby demonstrated; this can have certain advantages from a technological point of view.

  8. Atomically Abrupt Topological p-n Junction. (United States)

    Kim, Sung Hwan; Jin, Kyung-Hwan; Kho, Byung Woo; Park, Byeong-Gyu; Liu, Feng; Kim, Jun Sung; Yeom, Han Woong


    Topological insulators (TI's) are a new class of quantum matter with extraordinary surface electronic states, which bear great potential for spintronics and error-tolerant quantum computing. In order to put a TI into any practical use, these materials need to be fabricated into devices whose basic units are often p-n junctions. Interesting electronic properties of a 'topological' p-n junction were proposed theoretically such as the junction electronic state and the spin rectification. However, the fabrication of a lateral topological p-n junction has been challenging because of materials, process, and fundamental reasons. Here, we demonstrate an innovative approach to realize a p-n junction of topological surface states (TSS's) of a three-dimensional (3D) topological insulator (TI) with an atomically abrupt interface. When a ultrathin Sb film is grown on a 3D TI of Bi2Se3 with a typical n-type TSS, the surface develops a strongly p-type TSS through the substantial hybridization between the 2D Sb film and the Bi2Se3 surface. Thus, the Bi2Se3 surface covered partially with Sb films bifurcates into areas of n- and p-type TSS's as separated by atomic step edges with a lateral electronic junction of as short as 2 nm. This approach opens a different avenue toward various electronic and spintronic devices based on well-defined topological p-n junctions with the scalability down to atomic dimensions.

  9. Gap junction communication in myelinating glia. (United States)

    Nualart-Marti, Anna; Solsona, Carles; Fields, R Douglas


    Gap junction communication is crucial for myelination and axonal survival in both the peripheral nervous system (PNS) and central nervous system (CNS). This review examines the different types of gap junctions in myelinating glia of the PNS and CNS (Schwann cells and oligodendrocytes respectively), including their functions and involvement in neurological disorders. Gap junctions mediate intercellular communication among Schwann cells in the PNS, and among oligodendrocytes and between oligodendrocytes and astrocytes in the CNS. Reflexive gap junctions mediating transfer between different regions of the same cell promote communication between cellular compartments of myelinating glia that are separated by layers of compact myelin. Gap junctions in myelinating glia regulate physiological processes such as cell growth, proliferation, calcium signaling, and participate in extracellular signaling via release of neurotransmitters from hemijunctions. In the CNS, gap junctions form a glial network between oligodendrocytes and astrocytes. This transcellular communication is hypothesized to maintain homeostasis by facilitating restoration of membrane potential after axonal activity via electrical coupling and the re-distribution of potassium ions released from axons. The generation of transgenic mice for different subsets of connexins has revealed the contribution of different connexins in gap junction formation and illuminated new subcellular mechanisms underlying demyelination and cognitive defects. Alterations in metabolic coupling have been reported in animal models of X-linked Charcot-Marie-Tooth disease (CMTX) and Pelizaeus-Merzbarcher-like disease (PMLD), which are caused by mutations in the genes encoding for connexin 32 and connexin 47 respectively. Future research identifying the expression and regulation of gap junctions in myelinating glia is likely to provide a better understanding of myelinating glia in nervous system function, plasticity, and disease. This

  10. The Ly6 protein coiled is required for septate junction and blood brain barrier organisation in Drosophila.

    Directory of Open Access Journals (Sweden)

    Assia Hijazi

    Full Text Available BACKGROUND: Genetic analysis of the Drosophila septate junctions has greatly contributed to our understanding of the mechanisms controlling the assembly of these adhesion structures, which bear strong similarities with the vertebrate tight junctions and the paranodal septate junctions. These adhesion complexes share conserved molecular components and have a common function: the formation of paracellular barriers restraining the diffusion of solutes through epithelial and glial envelopes. METHODOLOGY/PRINCIPAL FINDINGS: In this work we characterise the function of the Drosophila cold gene, that codes for a protein belonging to the Ly6 superfamily of extracellular ligands. Analysis of cold mutants shows that this gene is specifically required for the organisation of the septate junctions in epithelial tissues and in the nervous system, where its contribution is essential for the maintenance of the blood-brain barrier. We show that cold acts in a cell autonomous way, and we present evidence indicating that this protein could act as a septate junction component. CONCLUSION/SIGNIFICANCE: We discuss the specific roles of cold and three other Drosophila members of the Ly6 superfamily that have been shown to participate in a non-redundant way in the process of septate junction assembly. We propose that vertebrate Ly6 proteins could fulfill analogous roles in tight junctions and/or paranodal septate junctions.

  11. Dissection of neuronal gap junction circuits that regulate social behavior in Caenorhabditis elegans (United States)

    Jang, Heeun; Levy, Sagi; Flavell, Steven W.; Mende, Fanny; Latham, Richard; Zimmer, Manuel; Bargmann, Cornelia I.


    A hub-and-spoke circuit of neurons connected by gap junctions controls aggregation behavior and related behavioral responses to oxygen, pheromones, and food in Caenorhabditis elegans. The molecular composition of the gap junctions connecting RMG hub neurons with sensory spoke neurons is unknown. We show here that the innexin gene unc-9 is required in RMG hub neurons to drive aggregation and related behaviors, indicating that UNC-9–containing gap junctions mediate RMG signaling. To dissect the circuit in detail, we developed methods to inhibit unc-9–based gap junctions with dominant-negative unc-1 transgenes. unc-1(dn) alters a stomatin-like protein that regulates unc-9 electrical signaling; its disruptive effects can be rescued by a constitutively active UNC-9::GFP protein, demonstrating specificity. Expression of unc-1(dn) in RMG hub neurons, ADL or ASK pheromone-sensing neurons, or URX oxygen-sensing neurons disrupts specific elements of aggregation-related behaviors. In ADL, unc-1(dn) has effects opposite to those of tetanus toxin light chain, separating the roles of ADL electrical and chemical synapses. These results reveal roles of gap junctions in a complex behavior at cellular resolution and provide a tool for similar exploration of other gap junction circuits. PMID:28143932

  12. Pre-crash scenarios at road junctions: A clustering method for car crash data. (United States)

    Nitsche, Philippe; Thomas, Pete; Stuetz, Rainer; Welsh, Ruth


    Given the recent advancements in autonomous driving functions, one of the main challenges is safe and efficient operation in complex traffic situations such as road junctions. There is a need for comprehensive testing, either in virtual simulation environments or on real-world test tracks. This paper presents a novel data analysis method including the preparation, analysis and visualization of car crash data, to identify the critical pre-crash scenarios at T- and four-legged junctions as a basis for testing the safety of automated driving systems. The presented method employs k-medoids to cluster historical junction crash data into distinct partitions and then applies the association rules algorithm to each cluster to specify the driving scenarios in more detail. The dataset used consists of 1056 junction crashes in the UK, which were exported from the in-depth "On-the-Spot" database. The study resulted in thirteen crash clusters for T-junctions, and six crash clusters for crossroads. Association rules revealed common crash characteristics, which were the basis for the scenario descriptions. The results support existing findings on road junction accidents and provide benchmark situations for safety performance tests in order to reduce the possible number parameter combinations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Fluxon dynamics in three stacked Josephson junctions

    DEFF Research Database (Denmark)

    Gorria, Carlos; Christiansen, Peter Leth; Gaididei, Yuri Borisovich


    /sub -/, the coupling between junctions leads to a repulsion of the fluxons with the same polarity. Above this critical velocity a fluxon will induce radiation in the neighboring junctions, leading to a bunching of the fluxons in the stacked junctions. Using the Sakai-Bodin-Pedersen model, three coupled perturbed sine......-Gordon equations are numerically studied for different values of coupling, damping, and bias parameters. In a narrow range of velocities bunching occurs. Outside this interval the fluxons split and new fluxons may be created. I-V characteristics are presented...

  14. Temperature dependence of thermopower in molecular junctions (United States)

    Kim, Youngsang; Lenert, Andrej; Meyhofer, Edgar; Reddy, Pramod


    The thermoelectric properties of molecular junctions are of considerable interest due to their promise for efficient energy conversion. While the dependence of thermoelectric properties of junctions on molecular structure has been recently studied, their temperature dependence remains unexplored. Using a custom built variable temperature scanning tunneling microscope, we measured the thermopower and electrical conductance of individual benzenedithiol junctions over a range of temperatures (100 K-300 K). We find that while the electrical conductance is independent of temperature, the thermopower increases linearly with temperature, confirming the predictions of the Landauer theory.

  15. Phase qubits fabricated with trilayer junctions

    Energy Technology Data Exchange (ETDEWEB)

    Weides, M; Bialczak, R C; Lenander, M; Lucero, E; Mariantoni, Matteo; Neeley, M; O' Connell, A D; Sank, D; Wang, H; Wenner, J; Yamamoto, T; Yin, Y; Cleland, A N; Martinis, J, E-mail:, E-mail: [Department of Physics, University of California, Santa Barbara, CA 93106 (United States)


    We have developed a novel Josephson junction geometry with minimal volume of lossy isolation dielectric, suitable for higher quality trilayer junctions implemented in qubits. The junctions are based on in situ deposited trilayers with thermal tunnel oxide, have micron-sized areas and a low subgap current. In qubit spectroscopy only a few avoided level crossings are observed, and the measured relaxation time of T{sub 1{approx}}400 ns is in good agreement with the usual phase qubit decay time, indicating low loss due to the additional isolation dielectric.

  16. Connexins: a myriad of functions extending beyond assembly of gap junction channels

    Directory of Open Access Journals (Sweden)

    Mroue Rana M


    Full Text Available Abstract Connexins constitute a large family of trans-membrane proteins that allow intercellular communication and the transfer of ions and small signaling molecules between cells. Recent studies have revealed complex translational and post-translational mechanisms that regulate connexin synthesis, maturation, membrane transport and degradation that in turn modulate gap junction intercellular communication. With the growing myriad of connexin interacting proteins, including cytoskeletal elements, junctional proteins, and enzymes, gap junctions are now perceived, not only as channels between neighboring cells, but as signaling complexes that regulate cell function and transformation. Connexins have also been shown to form functional hemichannels and have roles altogether independent of channel functions, where they exert their effects on proliferation and other aspects of life and death of the cell through mostly-undefined mechanisms. This review provides an updated overview of current knowledge of connexins and their interacting proteins, and it describes connexin modulation in disease and tumorigenesis.

  17. Connexins: a myriad of functions extending beyond assembly of gap junction channels. (United States)

    Dbouk, Hashem A; Mroue, Rana M; El-Sabban, Marwan E; Talhouk, Rabih S


    Connexins constitute a large family of trans-membrane proteins that allow intercellular communication and the transfer of ions and small signaling molecules between cells. Recent studies have revealed complex translational and post-translational mechanisms that regulate connexin synthesis, maturation, membrane transport and degradation that in turn modulate gap junction intercellular communication. With the growing myriad of connexin interacting proteins, including cytoskeletal elements, junctional proteins, and enzymes, gap junctions are now perceived, not only as channels between neighboring cells, but as signaling complexes that regulate cell function and transformation. Connexins have also been shown to form functional hemichannels and have roles altogether independent of channel functions, where they exert their effects on proliferation and other aspects of life and death of the cell through mostly-undefined mechanisms. This review provides an updated overview of current knowledge of connexins and their interacting proteins, and it describes connexin modulation in disease and tumorigenesis.

  18. Increasing gap junctional coupling: a tool for dissecting the role of gap junctions. (United States)

    Axelsen, Lene Nygaard; Haugan, Ketil; Stahlhut, Martin; Kjølbye, Anne-Louise; Hennan, James K; Holstein-Rathlou, Niels-Henrik; Petersen, Jørgen Søberg; Nielsen, Morten Schak


    Much of our current knowledge about the physiological and pathophysiological role of gap junctions is based on experiments where coupling has been reduced by either chemical agents or genetic modification. This has brought evidence that gap junctions are important in many physiological processes. In a number of cases, gap junctions have been implicated in the initiation and progress of disease, and experimental uncoupling has been used to investigate the exact role of coupling. The inverse approach, i.e., to increase coupling, has become possible in recent years and represents a new way of testing the role of gap junctions. The aim of this review is to summarize the current knowledge obtained with agents that selectively increase gap junctional intercellular coupling. Two approaches will be reviewed: increasing coupling by the use of antiarrhythmic peptide and its synthetic analogs and by interfering with the gating of gap junctional channels.

  19. Highlighting Kathleen Green and Mario Delmar, guest editors of special issue (part 2): junctional targets of skin and heart disease. (United States)

    Cowin, Pamela


    Cell Communication and Adhesion has been fortunate to enlist two pioneers of epidermal and cardiac cell junctions, Kathleen Green and Mario Delmar, as Guest Editors of a two part series on junctional targets of skin and heart disease. Part 2 of this series begins with an overview from Dipal Patel and Kathy Green comparing epidermal desmosomes to cardiac area composita junctions, and surveying the pathogenic mechanisms resulting from mutations in their components in heart disease. This is followed by a review from David Kelsell on the role of desmosomal mutation in inherited syndromes involving skin fragility. Agnieszka Kobeliak discusses how structural deficits in the epidermal barrier intersect with the NFkB signaling pathway to induce inflammatory diseases such as psoriasis and atopic dermatitis. Farah Sheikh reviews the specialized junctional components in cardiomyocytes of the cardiac conduction system and Robert Gourdie discusses how molecular complexes between sodium channels and gap junction proteins within the perijunctional microdomains within the intercalated disc facilitate conduction. Glenn Radice evaluates the role of N-cadherin in heart. Andre Kleber and Chris Chen explore new approaches to study junctional mechanotransduction in vitro with a focus on the effects of connexin ablation and the role of cadherins, respectively. To complement this series of reviews, we have interviewed Werner Franke, whose systematic documentation the tissue-specific complexity of desmosome composition and pioneering discovery of the cardiac area composita junction greatly facilitated elucidation of the role of desmosomal components in the pathophysiology of human heart disease.

  20. Presynaptic spike broadening reduces junctional potential amplitude. (United States)

    Spencer, A N; Przysiezniak, J; Acosta-Urquidi, J; Basarsky, T A


    Presynaptic modulation of action potential duration may regulate synaptic transmission in both vertebrates and invertebrates. Such synaptic plasticity is brought about by modifications to membrane currents at presynaptic release sites, which, in turn, lead to changes in the concentration of cytosolic calcium available for mediating transmitter release. The 'primitive' neuromuscular junction of the jellyfish Polyorchis penicillatus is a useful model of presynaptic modulation. In this study, we show that the durations of action potentials in the motor neurons of this jellyfish are negatively correlated with the amplitude of excitatory junctional potentials. We present data from in vitro voltage-clamp experiments showing that short duration voltage spikes, which elicit large excitatory junctional potentials in vivo, produce larger and briefer calcium currents than do long duration action potentials, which elicit small excitatory junctional potentials.

  1. Laparoscopically assisted pyeloplasty for ureteropelvic junction ...

    African Journals Online (AJOL)

    junction obstruction: a transperitoneal versus a retroperitoneal approach ... laparoscopic-assisted dismembered pyeloplasty (TLADP) ... to an open technique for two patients of the TLADP group; ... Annals of Pediatric Surgery 2012, 8:29–31.

  2. A self-aligned nano-fabrication process for vertical NbN-MgO-NbN Josephson junctions (United States)

    Grimm, A.; Jebari, S.; Hazra, D.; Blanchet, F.; Gustavo, F.; Thomassin, J.-L.; Hofheinz, M.


    We present a new process for fabricating vertical NbN-MgO-NbN Josephson junctions using self-aligned silicon nitride spacers. It allows for a wide range of junction areas from 0.02 to several 100 μm2. At the same time, it is suited for the implementation of complex microwave circuits with transmission line impedances ranging from 1 {{k}}{{Ω }}. The constituent thin films and the finished junctions are characterized. The latter are shown to have high gap voltages (> 4 {mV}) and low sub-gap leakage currents.

  3. Tight Junctions in Salivary Epithelium

    Directory of Open Access Journals (Sweden)

    Olga J. Baker


    Full Text Available Epithelial cell tight junctions (TJs consist of a narrow belt-like structure in the apical region of the lateral plasma membrane that circumferentially binds each cell to its neighbor. TJs are found in tissues that are involved in polarized secretions, absorption functions, and maintaining barriers between blood and interstitial fluids. The morphology, permeability, and ion selectivity of TJ vary among different types of tissues and species. TJs are very dynamic structures that assemble, grow, reorganize, and disassemble during physiological or pathological events. Several studies have indicated the active role of TJ in intestinal, renal, and airway epithelial function; however, the functional significance of TJ in salivary gland epithelium is poorly understood. Interactions between different combinations of the TJ family (each with their own unique regulatory proteins define tissue specificity and functions during physiopathological processes; however, these interaction patterns have not been studied in salivary glands. The purpose of this review is to analyze some of the current data regarding the regulatory components of the TJ that could potentially affect cellular functions of the salivary epithelium.

  4. Androgen-Dependent Sertoli Cell Tight Junction Remodeling Is Mediated by Multiple Tight Junction Components

    National Research Council Canada - National Science Library

    Chakraborty, Papia; William Buaas, F; Sharma, Manju; Smith, Benjamin E; Greenlee, Anne R; Eacker, Stephen M; Braun, Robert E


    Sertoli cell tight junctions (SCTJs) of the seminiferous epithelium create a specialized microenvironment in the testis to aid differentiation of spermatocytes and spermatids from spermatogonial stem cells...

  5. Junction Plasmon-Induced Molecular Reorientation

    Energy Technology Data Exchange (ETDEWEB)

    El-Khoury, Patrick Z.; Hu, Dehong; Hess, Wayne P.


    Time and frequency dependent intensity variations in sequences of Raman spectra recorded at plasmonic junctions can be assigned to molecular reorientation. This is revealed through Raman trajectories recorded at a nanojunction formed between a silver AFM tip and a corrugated silver surface coated with biphenyl-4,4’-dithiol. Molecular motion is not observed when the tip is retracted and only surface enhancement is operative. In effect, junction plasmon induced molecular reorientation is tracked.

  6. [Clinical anatomy of the esophagogastric junction]. (United States)

    Tănase, M; Aldea, A S


    The esophagogastric junction is a controversial anatomical area, due to its sphincteric mechanism which does not show an obvious anatomical basis. The aim of this study is to investigate the anatomical components that endoscopically indicate the mucosal esophagogastric junction in hiatal hernia patients. The esophagogastric junction was investigated in 27 hiatal hernia patients undergoing surgery. Hiatal hernia is an extension of the stomach situated between the esophagogastric junction and the diaphragmatic indentation. The following types of hiatal hernia were found: sliding hiatal hernia (type I) in 4 patients (14.81%), rolling hiatal hernia (type II) in 2 (7.4%), mixed hiatal hernia (type III) in 12 (44.44%), type IV hiatal hernia in 4 (14.81%) and recurrent hiatal hernia in 5 (18.51%). Of the 27 hiatal hernia patients, 8 (29.6%) were operated using classical procedures: laparotomy--6 (75%) and laparoscopic surgery--2 (25%). The angle of His cannot be used for marking the mucosal esophagogastric junction due to the severe damage of the lower esophageal sphincter in hiatal hernia patients. The squamocolumnar junction is displaced in hiatal hernia patients and was not an option for the study group. The distal end of the esophageal longitudinal palisading vessels needs medication (proton pump inhibitors that reduce the gastric acid production), in order to enhance the visibility of these vessels. The proximal end of gastric longitudinal mucosal folds proved to be the most reliable site to identify endoscopically the mucosal esophagogastric junction. The anatomical structure of the esophagogastric junction differs in hiatal hernia patients and these peculiarities are very important in surgery.

  7. Fibroblast growth factor signaling potentiates VE-cadherin stability at adherens junctions by regulating SHP2.

    Directory of Open Access Journals (Sweden)

    Kunihiko Hatanaka

    Full Text Available BACKGROUND: The fibroblast growth factor (FGF system plays a critical role in the maintenance of vascular integrity via enhancing the stability of VE-cadherin at adherens junctions. However, the precise molecular mechanism is not well understood. In the present study, we aimed to investigate the detailed mechanism of FGF regulation of VE-cadherin function that leads to endothelial junction stabilization. METHODS AND FINDINGS: In vitro studies demonstrated that the loss of FGF signaling disrupts the VE-cadherin-catenin complex at adherens junctions by increasing tyrosine phosphorylation levels of VE-cadherin. Among protein tyrosine phosphatases (PTPs known to be involved in the maintenance of the VE-cadherin complex, suppression of FGF signaling reduces SHP2 expression levels and SHP2/VE-cadherin interaction due to accelerated SHP2 protein degradation. Increased endothelial permeability caused by FGF signaling inhibition was rescued by SHP2 overexpression, indicating the critical role of SHP2 in the maintenance of endothelial junction integrity. CONCLUSIONS: These results identify FGF-dependent maintenance of SHP2 as an important new mechanism controlling the extent of VE-cadherin tyrosine phosphorylation, thereby regulating its presence in adherens junctions and endothelial permeability.

  8. Gap junction intercellular communication and benzene toxicity. (United States)

    Rivedal, Edgar; Witz, Gisela; Leithe, Edward


    Aberrant regulation of gap junction intercellular communication (GJIC) has been linked to several human diseases, including cancer and abnormal hematopoietic development. Benzene exposure has been shown to cause hematotoxicity and leukemia, but the underlying mechanisms involved remain unclear. We have observed that several metabolites of benzene have the ability to block gap junction intercellular communication. The ring-opened trans,trans-muconaldehyde (MUC) was found to be the most potent inhibitor of gap junction channels. MUC was found to induce cross-linking of the gap junction protein connexin43, which seemed to be responsible for the induced inhibition of GJIC. Glutaraldehyde, which has a similar molecular structure as MUC, was found to possess similar effects on gap junctions as MUC, while the mono-aldehyde formaldehyde shows lower potency, both as a connexin cross-linker, and as an inhibitor of GJIC. Both glutaraldehyde and formaldehyde have previously been associated with induction of leukemia and disturbance of hematopoiesis. Taken together, the data support a possible link between the effect of MUC on gap junctions, and the toxic effects of benzene. Copyright (c) 2009 Elsevier Ireland Ltd. All rights reserved.

  9. Gap junctions: structure and function (Review). (United States)

    Evans, W Howard; Martin, Patricia E M


    Gap junctions are plasma membrane spatial microdomains constructed of assemblies of channel proteins called connexins in vertebrates and innexins in invertebrates. The channels provide direct intercellular communication pathways allowing rapid exchange of ions and metabolites up to approximately 1 kD in size. Approximately 20 connexins are identified in the human or mouse genome, and orthologues are increasingly characterized in other vertebrates. Most cell types express multiple connexin isoforms, making likely the construction of a spectrum of heteromeric hemichannels and heterotypic gap junctions that could provide a structural basis for the charge and size selectivity of these intercellular channels. The precise nature of the potential signalling information traversing junctions in physiologically defined situations remains elusive, but extensive progress has been made in elucidating how connexins are assembled into gap junctions. Also, participation of gap junction hemichannels in the propagation of calcium waves via an extracellular purinergic pathway is emerging. Connexin mutations have been identified in a number of genetically inherited channel communication-opathies. These are detected in connexin 32 in Charcot Marie Tooth-X linked disease, in connexins 26 and 30 in deafness and skin diseases, and in connexins 46 and 50 in hereditary cataracts. Biochemical approaches indicate that many of the mutated connexins are mistargeted to gap junctions and/or fail to oligomerize correctly into hemichannels. Genetic ablation approaches are helping to map out a connexin code and point to specific connexins being required for cell growth and differentiation as well as underwriting basic intercellular communication.

  10. Predictive modelling of ferroelectric tunnel junctions (United States)

    Velev, Julian P.; Burton, John D.; Zhuravlev, Mikhail Ye; Tsymbal, Evgeny Y.


    Ferroelectric tunnel junctions combine the phenomena of quantum-mechanical tunnelling and switchable spontaneous polarisation of a nanometre-thick ferroelectric film into novel device functionality. Switching the ferroelectric barrier polarisation direction produces a sizable change in resistance of the junction—a phenomenon known as the tunnelling electroresistance effect. From a fundamental perspective, ferroelectric tunnel junctions and their version with ferromagnetic electrodes, i.e., multiferroic tunnel junctions, are testbeds for studying the underlying mechanisms of tunnelling electroresistance as well as the interplay between electric and magnetic degrees of freedom and their effect on transport. From a practical perspective, ferroelectric tunnel junctions hold promise for disruptive device applications. In a very short time, they have traversed the path from basic model predictions to prototypes for novel non-volatile ferroelectric random access memories with non-destructive readout. This remarkable progress is to a large extent driven by a productive cycle of predictive modelling and innovative experimental effort. In this review article, we outline the development of the ferroelectric tunnel junction concept and the role of theoretical modelling in guiding experimental work. We discuss a wide range of physical phenomena that control the functional properties of ferroelectric tunnel junctions and summarise the state-of-the-art achievements in the field.

  11. Numerical study of junction-angle effects on flow pattern in a river ...

    African Journals Online (AJOL)


    Jan 1, 2016 ... This complexity is not only because of their turbulence and intense ... The use of numerical models for simulating the flow in river junctions has ..... longitudinal velocity profiles in different sections of the main channel is shown ...

  12. Modeling superconducting networks containing Josephson junctions by means of PC-based circuit simulation software

    Energy Technology Data Exchange (ETDEWEB)

    Blackburn, J.A. (Department of Physics and Computing, Wilfrid Laurier University, Waterloo, ON (Canada)); Smith, H.J.T. (Department of Physics, University of Waterloo, Waterloo, ON (Canada))


    Software packages are now available with which complex analog electronic circuits can be simulated on desktop computers. Using Micro Cap III it is demonstrated that the modeling capabilities of such software can be extended to include {ital superconducting} networks by means of an appropriate equivalent circuit for a Josephson junction.

  13. Regulation of Tight Junction Permeability by Intestinal Bacteria and Dietary Components

    NARCIS (Netherlands)

    Ulluwishewa, D.; Anderson, R.C.; McNabb, W.C.; Moughan, P.J.; Wells, J.; Roy, N.C.


    The human intestinal epithelium is formed by a single layer of epithelial cells that separates the intestinal lumen from the underlying lamina propria. The space between these cells is sealed by tight junctions (TJ), which regulate the permeability of the intestinal barrier. TJ are complex protein s

  14. Regulation of Tight Junction Permeability by Intestinal Bacteria and Dietary Components

    NARCIS (Netherlands)

    Ulluwishewa, D.; Anderson, R.C.; McNabb, W.C.; Moughan, P.J.; Wells, J.; Roy, N.C.


    The human intestinal epithelium is formed by a single layer of epithelial cells that separates the intestinal lumen from the underlying lamina propria. The space between these cells is sealed by tight junctions (TJ), which regulate the permeability of the intestinal barrier. TJ are complex protein

  15. Dissection of the functional domains of an archaeal holliday junction helicase

    DEFF Research Database (Denmark)

    Hong, Ye; Chu, Mingzhu; Li, Yansheng


    Helicases and nucleases form complexes that play very important roles in DNA repair pathways some of which interact with each other at Holliday junctions. In this study, we present in vitro and in vivo analysis of Hjm and its interaction with Hjc in Sulfolobus. In vitro studies employed Hjm from ...

  16. Charge transport in nanoscale junctions. (United States)

    Albrecht, Tim; Kornyshev, Alexei; Bjørnholm, Thomas


    many particle excitations, new surface states in semiconductor electrodes, various mechanisms for single molecule rectification of the current, inelastic electron spectra and SERS spectroscopy. Three terminal architectures allowing (electrochemical) gating and transistor effects. Electrochemical nanojunctions and gating: intermolecular electron transfer in multi-redox metalloproteins, contact force modulation, characteristic current-noise patterns due to conformational fluctuations, resonance effects and electrocatalysis. Novel architectures: linear coupled quantum-dot-bridged junctions, electrochemical redox mediated transfer in two center systems leading to double maxima current-voltage plots and negative differential resistance, molecular-nanoparticle hybrid junctions and unexpected mesoscopic effects in polymeric wires. Device integration: techniques for creating stable metal/molecule/metal junctions using 'nano-alligator clips' and integration with 'traditional' silicon-based technology. The Guest Editors would like to thank all of the authors and referees of this special issue for their meticulous work in making each paper a valuable contribution to this research area, the early-bird authors for their patience, and Journal of Physics: Condensed Matter editorial staff in Bristol for their continuous support.

  17. Craniocervical junction diseases treatment with a minimally invasive approach

    Directory of Open Access Journals (Sweden)

    Roberto Carlos Díaz


    Full Text Available Objective: To introduce a new minimally invasive surgical approach to anterior and lateral craniocervical junction diseases, preserving the midline posterior cervical spine stabilizing elements and reducing the inherent morbidity risk associated with traditional approaches. Methods: We describe a novel surgical technique in four cases of extra-medullary anterolateral compressive lesions located in the occipito-cervical junction, including infections and intra- and/or extradural tumor lesions. We used a paramedian trasmuscular approach through an anatomical muscle corridor using a micro MaXcess(r surgical expandable retractor, with the purpose of reducing morbidity and preserving the posterior muscle and ligamentous tension band. Results: This type of surgical approach provides adequate visualization and microsurgical resection of lesions and reduces muscle manipulation and devascularisation, preserving the tension of the ligament complex. There was minimal blood loss and a decrease in postoperative pain, with rapid start of rehabilitation and shorter hospitalization times. There were no intraoperative complications, and all patients recovered from their pre-operative symptoms. Conclusions: This novel surgical technique is feasible and adequate for the occipito-atlanto-axial complex, with better results than traditional procedures.

  18. Josephson tunnel junctions with ferromagnetic interlayer

    Energy Technology Data Exchange (ETDEWEB)

    Weides, M.P.


    Superconductivity and ferromagnetism are well-known physical properties of solid states that have been widely studied and long thought about as antagonistic phenomena due to difference in spin ordering. It turns out that the combination of both superconductor and ferromagnet leads to a very rich and interesting physics. One particular example, the phase oscillations of the superconducting order parameter inside the ferromagnet, will play a major role for the devices discussed in this work. In this thesis, I present Josephson junctions with a thin Al{sub 2}O{sub 3} tunnel barrier and a ferromagnetic interlayer, i.e. superconductor-insulator-ferromagnet-superconductor (SIFS) stacks. The fabrication of junctions was optimized regarding the insulation of electrodes and the homogeneity of the current transport. The junctions were either in the 0 or {pi} coupled ground state, depending on the thickness of the ferromagnetic layer and on temperature. The influence of ferromagnetic layer thickness on the transport properties and the coupling (0, {pi}) of SIFS tunnel junctions was studied. Furthermore, using a stepped ferromagnetic layer with well-chosen thicknesses, I obtained the so-called 0-{pi} Josephson junction. At a certain temperature this 0-{pi} junction can be made perfectly symmetric. In this case the ground state corresponds to a vortex of supercurrent creating a magnetic flux which is a fraction of the magnetic flux quantum {phi}{sub 0}. Such structures allow to study the physics of fractional vortices and to build various electronic circuits based on them. The SIFS junctions presented here have an exponentially vanishing damping at T {yields} 0. The SIFS technology developed within the framework of this work may be used to construct classical and quantum devices such as oscillators, memory cells and qubits. (orig.)

  19. Model Building to Facilitate Understanding of Holliday Junction and Heteroduplex Formation, and Holliday Junction Resolution (United States)

    Selvarajah, Geeta; Selvarajah, Susila


    Students frequently expressed difficulty in understanding the molecular mechanisms involved in chromosomal recombination. Therefore, we explored alternative methods for presenting the two concepts of the double-strand break model: Holliday junction and heteroduplex formation, and Holliday junction resolution. In addition to a lecture and…

  20. Measurement of Aharonov-Casher effect in a Josephson junction chain (United States)

    Pop, Ioan Mihai; Lecocq, Florent; Pannetier, Bernard; Buisson, Olivier; Guichard, Wiebke


    We have recently measured the effect of superconducting phase-slips on the ground state of a Josephson junction chain and a rhombi chain. Here we report clear evidence of Aharonov-Casher effect in a chain of Josephson junctions. This phenomenon is the dual of the well known Aharonov-Bohm interference. Using a capacitively coupled gate to the islands of the chain, we induce oscillations of the supercurrent by tuning the polarization charges on the islands. We observe complex interference patterns for different quantum phase slip amplitudes, that we understand quantitatively as Aharonov-Casher vortex interferences. European STREP MIDAS.

  1. Increasing gap junctional coupling: a tool for dissecting the role of gap junctions

    DEFF Research Database (Denmark)

    Axelsen, Lene Nygaard; Haugan, Ketil; Stahlhut, Martin;


    . In a number of cases, gap junctions have been implicated in the initiation and progress of disease, and experimental uncoupling has been used to investigate the exact role of coupling. The inverse approach, i.e., to increase coupling, has become possible in recent years and represents a new way of testing......Much of our current knowledge about the physiological and pathophysiological role of gap junctions is based on experiments where coupling has been reduced by either chemical agents or genetic modification. This has brought evidence that gap junctions are important in many physiological processes...... the role of gap junctions. The aim of this review is to summarize the current knowledge obtained with agents that selectively increase gap junctional intercellular coupling. Two approaches will be reviewed: increasing coupling by the use of antiarrhythmic peptide and its synthetic analogs...

  2. Acoustic minor losses in high amplitude resonators with single-sided junctions (United States)

    Doller, Andrew J.

    Steady flow engineering handbooks like Idelchik20 do not exist for investigators interested in acoustic (oscillating) fluid flows in complex resonators. Measurements of acoustic minor loss coefficients are presented in this dissertation for a limited number of resonator configurations having single-sided junctions. While these results may be useful, the greater purpose of this work is to provide a set of controlled measurements that can be used to benchmark computational models of acoustic flows used for more complicated resonator structures. The experiments are designed around a driver operating at 150 Hz enabling acoustic pressures in excess of 10k Pa in liquid cooled, temperature controlled resonators with 90°, 45° and 25° junctions. These junctions join a common 109 cm long 4.7 cm diameter section to a section of 8.4 mm diameter tube making two sets of resonators: one set with a small diameter length approximately a quarter-wavelength (45 cm), the other approximately a half-wavelength (112 cm). The long resonators have a velocity node at the junction; the short resonators have a velocity anti-node generating the greatest minor losses. Input power is measured by an accelerometer and a pressure transducer at the driver. A pressure sensor at the rigid termination measures radiation pressure from the driver and static junction pressure, as well as the acoustic pressure used to calculate linear thermal and viscous resonator wall losses. At the largest amplitudes, the 90° junction was found to dissipate as much as 0.3 Watt, 1/3 the power of linear losses alone. For each junction, the power dissipation depends on acoustic pressure differently: pressure cubed for the 90°, pressure to the 3.76 for the 45° and pressure to the 4.48 for the 25°. Common among all resonators, blowing acoustic half-cycle minor losses (KB) are excited at lower amplitudes than the suction half-cycle (KS) minor losses. Data collected for the 90° junction shows KB reaches an asymptotic

  3. Rectification in tunneling junctions: 2,2'-bipyridyl-terminated n-alkanethiolates. (United States)

    Yoon, Hyo Jae; Liao, Kung-Ching; Lockett, Matthew R; Kwok, Sen Wai; Baghbanzadeh, Mostafa; Whitesides, George M


    Molecular rectification is a particularly attractive phenomenon to examine in studying structure-property relationships in charge transport across molecular junctions, since the tunneling currents across the same molecular junction are measured, with only a change in the sign of the bias, with the same electrodes, molecule(s), and contacts. This type of experiment minimizes the complexities arising from measurements of current densities at one polarity using replicate junctions. This paper describes a new organic molecular rectifier: a junction having the structure Ag(TS)/S(CH2)11-4-methyl-2,2'-bipyridyl//Ga2O3/EGaIn (Ag(TS): template-stripped silver substrate; EGaIn: eutectic gallium-indium alloy) which shows reproducible rectification with a mean r(+) = |J(+1.0 V)|/|J(-1.0 V)| = 85 ± 2. This system is important because rectification occurs at a polarity opposite to that of the analogous but much more extensively studied systems based on ferrocene. It establishes (again) that rectification is due to the SAM, and not to redox reactions involving the Ga2O3 film, and confirms that rectification is not related to the polarity in the junction. Comparisons among SAM-based junctions incorporating the Ga2O3/EGaIn top electrode and a variety of heterocyclic terminal groups indicate that the metal-free bipyridyl group, not other features of the junction, is responsible for the rectification. The paper also describes a structural and mechanistic hypothesis that suggests a partial rationalization of values of rectification available in the literature.

  4. T-junction cross-flow mixing with thermally driven density stratification

    Energy Technology Data Exchange (ETDEWEB)

    Kickhofel, John, E-mail: [Laboratory of Nuclear Energy Systems, ETH Zurich, Sonneggstrasse 3, 8057 Zurich (Switzerland); Prasser, Horst-Michael, E-mail: [Laboratory of Nuclear Energy Systems, ETH Zurich, Sonneggstrasse 3, 8057 Zurich (Switzerland); Selvam, P. Karthick, E-mail: [Institute of Nuclear Technology and Energy Systems (IKE), University of Stuttgart, Pfaffenwaldring 31, 70569 Stuttgart (Germany); Laurien, Eckart, E-mail: [Institute of Nuclear Technology and Energy Systems (IKE), University of Stuttgart, Pfaffenwaldring 31, 70569 Stuttgart (Germany); Kulenovic, Rudi, E-mail: [Institute of Nuclear Technology and Energy Systems (IKE), University of Stuttgart, Pfaffenwaldring 31, 70569 Stuttgart (Germany)


    Highlights: • Mesh sensor for realistic nuclear thermal hydraulic scenarios is demonstrated. • Flow temperature behavior across a wide range of Richardson numbers measured. • Upstream stratified flow in the T-junction results in a thermal shock scenario. • Large, stable near-wall thermal gradients exist in spite of turbulent flows. - Abstract: As a means of further elucidating turbulence- and stratification-driven thermal fatigue in the vicinity of T-junctions in nuclear power plants, a series of experiments have been conducted at the high temperature high pressure fluid–structure interaction T-junction facility of the University of Stuttgart with novel fluid measurement instrumentation. T-junction mixing with large fluid temperature gradients results in complex flow behavior, the result of density driven effects. Deionized water mixing at temperature differences of up to 232 K at 7 MPa pressure have been investigated in a T-junction with main pipe diameter 71.8 mm and branch line diameter 38.9 mm. The experiments have been performed with fixed flow rates of 0.4 kg/s in the main pipe and 0.1 kg/s in the branch line. A novel electrode-mesh sensor compatible with the DN80 PN100 pipeline upstream and downstream of the T-junction has been utilized as a temperature sensor providing a high density information in the pipe cross-section in both space and time. Additionally, in-flow and in-wall thermocouples quantify the damping of thermal fluctuations by the wall material. The results indicate that large inflow temperature differences lead to strong turbulence damping, and ultimately stable stratification extending both downstream and upstream of the T-junction resulting in large local thermal gradients.

  5. A rare nucleotide base tautomer in the structure of an asymmetric DNA junction. (United States)

    Khuu, Patricia; Ho, P Shing


    The single-crystal structure of a DNA Holliday junction assembled from four unique sequences shows a structure that conforms to the general features of models derived from similar constructs in solution. The structure is a compact stacked-X form junction with two sets of stacked B-DNA-type arms that coaxially stack to form semicontinuous duplexes interrupted only by the crossing of the junction. These semicontinuous helices are related by a right-handed rotation angle of 56.5 degrees, which is nearly identical to the 60 degree angle in the solution model but differs from the more shallow value of approximately 40 degrees for previous crystal structures of symmetric junctions that self-assemble from single identical inverted-repeat sequences. This supports the model in which the unique set of intramolecular interactions at the trinucleotide core of the crossing strands, which are not present in the current asymmetric junction, affects both the stability and geometry of the symmetric junctions. An unexpected result, however, is that a highly wobbled A.T base pair, which is ascribed here to a rare enol tautomer form of the thymine, was observed at the end of a CCCC/GGGG sequence within the stacked B-DNA arms of this 1.9 A resolution structure. We suggest that the junction itself is not responsible for this unusual conformation but served as a vehicle for the study of this CG-rich sequence as a B-DNA duplex, mimicking the form that would be present in a replication complex. The existence of this unusual base lends credence to and defines a sequence context for the "rare tautomer hypothesis" as a mechanism for inducing transition mutations during DNA replication.

  6. Dislocation Multi-junctions and Strain Hardening

    Energy Technology Data Exchange (ETDEWEB)

    Bulatov, V; Hsiung, L; Tang, M; Arsenlis, A; Bartelt, M; Cai, W; Florando, J; Hiratani, M; Rhee, M; Hommes, G; Pierce, T; Diaz de la Rubia, T


    At the microscopic scale, the strength of a crystal derives from the motion, multiplication and interaction of distinctive line defects--dislocations. First theorized in 1934 to explain low magnitudes of crystal strength observed experimentally, the existence of dislocations was confirmed only two decades later. Much of the research in dislocation physics has since focused on dislocation interactions and their role in strain hardening: a common phenomenon in which continued deformation increases a crystal's strength. The existing theory relates strain hardening to pair-wise dislocation reactions in which two intersecting dislocations form junctions tying dislocations together. Here we report that interactions among three dislocations result in the formation of unusual elements of dislocation network topology, termed hereafter multi-junctions. The existence of multi-junctions is first predicted by Dislocation Dynamics (DD) and atomistic simulations and then confirmed by the transmission electron microscopy (TEM) experiments in single crystal molybdenum. In large-scale Dislocation Dynamics simulations, multi-junctions present very strong, nearly indestructible, obstacles to dislocation motion and furnish new sources for dislocation multiplication thereby playing an essential role in the evolution of dislocation microstructure and strength of deforming crystals. Simulation analyses conclude that multi-junctions are responsible for the strong orientation dependence of strain hardening in BCC crystals.

  7. Holliday junction processing enzymes as guardians of genome stability. (United States)

    Sarbajna, Shriparna; West, Stephen C


    Holliday junctions (HJs) are four-stranded DNA intermediates that arise during the recombinational repair of DNA double-strand breaks (DSBs). Their timely removal is crucial for faithful chromosome segregation and genome stability. In mammalian cells, HJs are processed by the BTR (BLM-topoisomerase IIIα-RMI1-RMI2) complex, the SLX-MUS (SLX1-SLX4-MUS81-EME1) complex, and the GEN1 resolvase. Recent studies have linked the deficiency of one or more of these enzymes to perturbed DNA replication, impaired crosslink repair, chromosomal instability, and defective mitoses, coupled with the transmission of widespread DNA damage and high levels of mortality. We review these key advances and how they have cemented the status of HJ-processing enzymes as guardians of genome integrity and viability in mammalian cells. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Experimental demonstration of Aharonov-Casher interference in a Josephson junction circuit (United States)

    Pop, I. M.; Douçot, B.; Ioffe, L.; Protopopov, I.; Lecocq, F.; Matei, I.; Buisson, O.; Guichard, W.


    A neutral quantum particle with magnetic moment encircling a static electric charge acquires a quantum-mechanical phase (Aharonov-Casher effect). In superconducting electronics, the neutral particle becomes a fluxon that moves around superconducting islands connected by Josephson junctions. The full understanding of this effect in systems of many junctions is crucial for the design of novel quantum circuits. Here, we present measurements and quantitative analysis of fluxon interference patterns in a six Josephson junction chain. In this multijunction circuit, the fluxon can encircle any combination of charges on five superconducting islands, resulting in a complex pattern. We compare the experimental results with predictions of a simplified model that treats fluxons as independent excitations and with the results of the full diagonalization of the quantum problem. Our results demonstrate the accuracy of the fluxon interference description and the quantum coherence of these arrays.

  9. Created-by-current states in long Josephson junctions (United States)

    Boyadjiev, T. L.; Andreeva, O. Yu.; Semerdjieva, E. G.; Shukrinov, Yu. M.


    Critical curves "critical current-external magnetic field" of long Josephson junctions with inhomogeneity and variable width are studied. We demonstrate the existence of regions of magnetic field where some fluxon states are stable only if the external current through the junction is different from zero. Position and size of such regions depend on the length of the junction, its geometry, parameters of inhomogeneity and form of the junction. The noncentral (left and right) pure fluxon states appear in the inhomogeneous Josephson junction with the increase in the junction length. We demonstrate new bifurcation points with change in width of the inhomogeneity and amplitude of the Josephson current through the inhomogeneity.

  10. Comparative analysis of system identification techniques for nonlinear modeling of the neuron-microelectrode junction. (United States)

    Khan, Saad Ahmad; Thakore, Vaibhav; Behal, Aman; Bölöni, Ladislau; Hickman, James J


    Applications of non-invasive neuroelectronic interfacing in the fields of whole-cell biosensing, biological computation and neural prosthetic devices depend critically on an efficient decoding and processing of information retrieved from a neuron-electrode junction. This necessitates development of mathematical models of the neuron-electrode interface that realistically represent the extracellular signals recorded at the neuroelectronic junction without being computationally expensive. Extracellular signals recorded using planar microelectrode or field effect transistor arrays have, until now, primarily been represented using linear equivalent circuit models that fail to reproduce the correct amplitude and shape of the signals recorded at the neuron-microelectrode interface. In this paper, to explore viable alternatives for a computationally inexpensive and efficient modeling of the neuron-electrode junction, input-output data from the neuron-electrode junction is modeled using a parametric Wiener model and a Nonlinear Auto-Regressive network with eXogenous input trained using a dynamic Neural Network model (NARX-NN model). Results corresponding to a validation dataset from these models are then employed to compare and contrast the computational complexity and efficiency of the aforementioned modeling techniques with the Lee-Schetzen technique of cross-correlation for estimating a nonlinear dynamic model of the neuroelectronic junction.

  11. pn-Junction Delineation in Si Devices Using Scanning Capacitance Spectroscopy (United States)

    Edwards, Hal


    The scanning capacitance microscope (SCM) is a carrier-sensitive imaging tool based upon the well-known scanning-probe microscope (SPM). Scanning capacitance spectroscopy (SCS) is a new way to utilize an SCM to delineate pn junctions in Si devices. SCS produces two-dimensional pn-junction maps that show features as small as 10 nm. SCS also provides an estimate of the pn-junction depletion width and hence the doping level near the pn junction. We report SCS measurements of deep-submicron field-effect transistors, showing the source-drain extender profile. We show SCM and SCS data in a failure-analysis application, in which we determined the cause of a leaky field-effect transistor. SCM and SCS are powerful tools for Si bipolar transistors, in which the doping-related structures are quite complex. We show microscopic evidence of the narrow-emitter effect, and image the width of the pn junction to explain an electric field-induced hot-carrier reliability issue. We show a comparison of top-view and cross-sectional SCS measurements of nwell-nwell shallow-trench isolation structures, to reveal the effects of photoresist scumming in sub-design-rule isolation widths. We show initial results on a method to delineate constant-potential contours within the depletion region. We discuss the limits to our present understanding of SCM and SCS and some potential sources of error.

  12. Thermionic refrigeration at CNT-CNT junctions (United States)

    Li, C.; Pipe, K. P.


    Monte Carlo (MC) simulation is used to study carrier energy relaxation following thermionic emission at the junction of two van der Waals bonded single-walled carbon nanotubes (SWCNTs). An energy-dependent transmission probability gives rise to energy filtering at the junction, which is predicted to increase the average electron transport energy by as much as 0.115 eV, leading to an effective Seebeck coefficient of 386 μV/K. MC results predict a long energy relaxation length (˜8 μm) for hot electrons crossing the junction into the barrier SWCNT. For SWCNTs of optimal length, an analytical transport model is used to show that thermionic cooling can outweigh parasitic heat conduction due to high SWCNT thermal conductivity, leading to a significant cooling capacity (2.4 × 106 W/cm2).

  13. Silicon fiber with p-n junction

    Energy Technology Data Exchange (ETDEWEB)

    Homa, D.; Cito, A.; Pickrell, G.; Hill, C.; Scott, B. [Department of Materials Science and Engineering, Virginia Polytechnic Institute and State University, 312 Holden Hall, Blacksburg, Virginia 24060 (United States)


    In this study, we fabricated a p-n junction in a fiber with a phosphorous doped silicon core and fused silica cladding. The fibers were fabricated via a hybrid process of the core-suction and melt-draw techniques and maintained overall diameters ranging from 200 to 900 μm and core diameters of 20–800 μm. The p-n junction was formed by doping the fiber with boron and confirmed via the current-voltage characteristic. The demonstration of a p-n junction in a melt-drawn silicon core fiber paves the way for the seamless integration of optical and electronic devices in fibers.

  14. Vortex structures in exponentially shaped Josephson junctions (United States)

    Shukrinov, Yu. M.; Semerdjieva, E. G.; Boyadjiev, T. L.


    We report the numerical calculations of the static vortex structure and critical curves in exponentially shaped long Josephson junctions for in-line and overlap geometries. Stability of the static solutions is investigated by checking the sign of the smallest eigenvalue of the associated Sturm-Liouville problem. The change in the junction width leads to the renormalization of the magnetic flux in comparison with the case of a linear one-dimensional model. We study the influence of the model's parameters, and particularly, the shape parameter on the stability of the states of the magnetic flux. We compare the vortex structure and critical curves for the in-line and overlap geometries. Our numerically constructed critical curve of the Josephson junction matches well with the experimental one.

  15. Holographic Josephson Junction from Massive Gravity

    CERN Document Server

    Hu, Ya-Peng; Zeng, Hua-Bi; Zhang, Hai-Qing


    We study the holographic superconductor-normal metal-superconductor (SNS) Josephon junction in the massive gravity. In the homogeneous case of the chemical potential, we find that the graviton mass will make the normal metal-superconductor phase transition harder to take place. In the holographic model of Josephson junction, it is found that the maximal tunneling current will decrease according to the graviton mass. Besides, the coherence length of the junction decreases as well with respect to the graviton mass. If one interprets the graviton mass as the effect of momentum dissipation in the boundary field theory, it indicates that the stronger the momentum dissipation is, the smaller the coherence length is.

  16. Characterization of magnetic tunnel junction test pads

    DEFF Research Database (Denmark)

    Østerberg, Frederik Westergaard; Kjær, Daniel; Nielsen, Peter Folmer


    We show experimentally as well as theoretically that patterned magnetic tunnel junctions can be characterized using the current-in-plane tunneling (CIPT) method, and the key parameters, the resistance-area product (RA) and the tunnel magnetoresistance (TMR), can be determined. The CIPT method...... on square tunnel junction pads with varying sizes and analyze the measured data using both the original and the modified CIPT model. Thus, we determine in which sample size range the modified CIPT model is needed to ensure validity of the extracted sample parameters, RA and TMR. In addition, measurements...... as a function of position on a square tunnel junction pad are used to investigate the sensitivity of the measurement results to probe misalignment....

  17. Gap junction diseases of the skin. (United States)

    van Steensel, M A M


    Gap junctions are intercellular channels that allow the passage of water, ions, and small molecules. They are involved in quick, short-range messaging between cells and are found in skin, nervous tissue, heart, and muscle. An increasing number of hereditary skin disorders appear to be caused by mutations in one of the genes coding for the constituent proteins of gap junctions, known as connexins. In this review, the currently known connexin disorders that feature skin abnormalities are described: keratitis-ichthyosis deafness syndrome, erythrokeratoderma variabilis, Vohwinkel's syndrome, and a novel disorder called hypotrichosis-deafness syndrome. What is known about the pathogenesis of these disorders is discussed and related to gap junction physiology. (c) 2004 Wiley-Liss, Inc.

  18. Targeting Holliday junctions by origin DNA-binding protein of herpes simplex virus type 1. (United States)

    Moiseeva, E D; Bazhulina, N P; Gursky, Y G; Grokhovsky, S L; Surovaya, A N; Gursky, G V


    In the present paper, the interactions of the origin binding protein (OBP) of herpes simplex virus type 1 (HSV1) with synthetic four-way Holliday junctions (HJs) were studied using electrophoresis mobility shift assay and the FRET method and compared with the interactions of the protein with duplex and single-stranded DNAs. It has been found that OBP exhibits a strong preference for binding to four-way and three-way DNA junctions and possesses much lower affinities to duplex and single-stranded DNAs. The protein forms three types of complexes with HJs. It forms complexes I and II which are reminiscent of the tetramer and octamer complexes with four-way junction of HJ-specific protein RuvA of Escherichia coli. The binding approaches saturation level when two OBP dimers are bound per junction. In the presence of Mg(2+) ions (≥2 mM) OBP also interacts with HJ in the stacked arm form (complex III). In the presence of 5 mM ATP and 10 mM Mg(2+) ions OBP catalyzes processing of the HJ in which one of the annealed oligonucleotides has a 3'-terminal tail containing 20 unpaired thymine residues. The observed preference of OBP for binding to the four-way DNA junctions provides a basis for suggestion that OBP induces large DNA structural changes upon binding to Box I and Box II sites in OriS. These changes involve the bending and partial melting of the DNA at A+T-rich spacer and also include the formation of HJ containing Box I and Box II inverted repeats and flanking DNA sequences.

  19. Multiplication in Silicon p-n Junctions

    DEFF Research Database (Denmark)

    Moll, John L.


    Multiplication values were measured in the collector junctions of silicon p-n-p and n-p-n transistors before and after bombardment by 1016 neutrons/cm2. Within experimental error there was no change either in junction fields, as deduced from capacitance measurements, or in multiplication values...... in any of the transistors. The implication is that the electron and hole ionization rates did not change as a result of the addition of extra scattering centers. This result is in direct contradiction to observations of Lee et al. The most likely explanation for the discrepancy is erroneous determination...

  20. Fast transient response of novel Peltier junctions

    Energy Technology Data Exchange (ETDEWEB)

    Hoyos, G.E.; Rao, K.R.; Jerger, D.


    The fast transient response of a thermoelectric (TE) cooler with novel geometry is discussed. This geometry involves conical semiconductor legs whose hot to cold junction cross-sectional area ratios can be varied. The novel TE junctions are fabricated such that the thermal capacitance and electrical conductance are decreased while simultaneously increasing the thermal resistance. The experimental apparatus which includes the vacuum system, power supplies, pulse and control circuitry, sensing and measuring instrumentation etc. is described. With narrow pulse width and large amplitudes, additional cooling of the order of 45/sup 0/C below the steady-state maximum with recovery times in the range of 1 to 3 sec is obtained.

  1. The Geometric Field at a Josephson Junction

    CERN Document Server

    Atanasov, Victor


    A geometric potential from the kinetic term of a constrained to a curved hyper-plane of space-time quantum superconducting condensate is derived. An energy conservation relation involving the geometric field at every material point in the superconductor is demonstrated. At a Josephson junction the energy conservation relation implies the possibility to transform electric energy into geometric field energy, that is curvature of space-time. Experimental procedures to verify that the Josephson junction can act as a voltage-to-curvature converter are discussed.

  2. Microscopic tunneling theory of long Josephson junctions

    DEFF Research Database (Denmark)

    Grønbech-Jensen, N.; Hattel, Søren A.; Samuelsen, Mogens Rugholm


    We present a numerical scheme for solving a nonlinear partial integro-differential equation with nonlocal time dependence. The equation describes the dynamics in a long Josephson junction modeled by use of the microscopic theory for tunneling between superconductors. We demonstrate that the detai......We present a numerical scheme for solving a nonlinear partial integro-differential equation with nonlocal time dependence. The equation describes the dynamics in a long Josephson junction modeled by use of the microscopic theory for tunneling between superconductors. We demonstrate...

  3. Rectangular-to-circular groove waveguide junction

    Institute of Scientific and Technical Information of China (English)

    CUI; Licheng; (崔立成); YANG; Hongsheng; (杨鸿生)


    Mode matching method is used to analyze the scattering characteristics of the rectangular-to-circular groove waveguide junction. Firstly, the scattering matrix equation is obtained by matching the electromagnetic fields at the boundary of the junction. The scattering coefficients can be obtained from the equation. Secondly the scattering characteristics of the iris with rectangular window positioned in circular groove waveguide are briefly analyzed. Thirdly, the convergent problem is discussed and the numerical results are given. At last experiment is made and good agreement is found between the calculated results and the measured results.

  4. Electroplated Ni on the PN Junction Semiconductor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jin Joo; Uhm, Young Rang; Son, Kwang Jae; Kim, Jong Bum; Choi, Sang Moo; Park, Jong Han; Hong, Jintae [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)


    Nickel (Ni) electroplating was implemented by using a metal Ni powder in order to establish a Ni-63 plating condition on the PN junction semiconductor needed for production of betavoltaic battery. PN junction semiconductors with a Ni seed layer of 500 and 1000 A were coated with Ni at current density from 10 to 50 mA cm{sup 2}. The surface roughness and average grain size of Ni deposits were investigated by XRD and SEM techniques. The roughness of Ni deposit was increased as the current density was increased, and decreased as the thickness of Ni seed layer was increased.

  5. Structure-Property Relationships in Atomic-Scale Junctions: Histograms and Beyond. (United States)

    Hybertsen, Mark S; Venkataraman, Latha


    Over the past 10 years, there has been tremendous progress in the measurement, modeling and understanding of structure-function relationships in single molecule junctions. Numerous research groups have addressed significant scientific questions, directed both to conductance phenomena at the single molecule level and to the fundamental chemistry that controls junction functionality. Many different functionalities have been demonstrated, including single-molecule diodes, optically and mechanically activated switches, and, significantly, physical phenomena with no classical analogues, such as those based on quantum interference effects. Experimental techniques for reliable and reproducible single molecule junction formation and characterization have led to this progress. In particular, the scanning tunneling microscope based break-junction (STM-BJ) technique has enabled rapid, sequential measurement of large numbers of nanoscale junctions allowing a statistical analysis to readily distinguish reproducible characteristics. Harnessing fundamental link chemistry has provided the necessary chemical control over junction formation, enabling measurements that revealed clear relationships between molecular structure and conductance characteristics. Such link groups (amines, methylsuflides, pyridines, etc.) maintain a stable lone pair configuration that selectively bonds to specific, undercoordinated transition metal atoms available following rupture of a metal point contact in the STM-BJ experiments. This basic chemical principle rationalizes the observation of highly reproducible conductance signatures. Subsequently, the method has been extended to probe a variety of physical phenomena ranging from basic I-V characteristics to more complex properties such as thermopower and electrochemical response. By adapting the technique to a conducting cantilever atomic force microscope (AFM-BJ), simultaneous measurement of the mechanical characteristics of nanoscale junctions as they

  6. Common features of a vortex structure in long exponentially shaped Josephson junctions and Josephson junctions with inhomogeneities (United States)

    Boyadjiev, T. L.; Semerdjieva, E. G.; Shukrinov, Yu. M.


    We study the vortex structure in three different models of the long Josephson junction: the exponentially shaped Josephson junction and the Josephson junctions with the resistor and the shunt inhomogeneities in the barrier layer. For these three models the critical curves “critical current-magnetic field” are numerically constructed. We develop the idea of the equivalence of the exponentially shaped Josephson junction and the rectangular junction with the distributed inhomogeneity and demonstrate that at some parameters of the shunt and the resistor inhomogeneities in the ends of the junction the corresponding critical curves are very close to the exponentially shaped one.

  7. Common features of a vortex structure in long exponentially shaped Josephson junctions and Josephson junctions with inhomogeneities

    Energy Technology Data Exchange (ETDEWEB)

    Boyadjiev, T.L. [Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Semerdjieva, E.G. [Plovdiv University, 24 Tzar Asen Str., Plovdiv 4000 (Bulgaria); Shukrinov, Yu.M. [Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation)], E-mail:


    We study the vortex structure in three different models of the long Josephson junction: the exponentially shaped Josephson junction and the Josephson junctions with the resistor and the shunt inhomogeneities in the barrier layer. For these three models the critical curves 'critical current-magnetic field' are numerically constructed. We develop the idea of the equivalence of the exponentially shaped Josephson junction and the rectangular junction with the distributed inhomogeneity and demonstrate that at some parameters of the shunt and the resistor inhomogeneities in the ends of the junction the corresponding critical curves are very close to the exponentially shaped one.

  8. Biomechanics of the Spine III. The Cranio-Cervical Junction. (United States)

    Izzo, R; Ambrosanio, G; Cigliano, A; Cascone, D; Gallo, G; Muto, M


    By virtue of its unique anatomy and functions the cranial-cervical junction was excluded in previous reviews on the general biomechanics of the spine, being a world apart. The special design of the cranial-cervical (CCJ) junction responds to seemingly opposed necessities being at same time loose enough to allow a great variety of movements and strong enough to preserve the spinal cord and vertebral arteries and to resist the head weight and muscular action. The primary goal of the CCJ is to ensure the maximal mobility of the head for visual and auditory exploration of space. Like a cardan joint the CCJ allows simultaneous independent movements about three axes in order to repeat and extend eye movements under the control of vestibular receptors. Several muscular groups and a number of ligaments control the movements of the CCJ and ensure its stability. Although composed of two seemingly distinct joints the CCJ forms a unique functional complex whose stability is ensured by ligaments and bony restraints often operating on both joint components: the occipitoatlantal and atlantoaxial joints.

  9. Ballistic transport in InSb Josephson junctions (United States)

    Damasco, John Jeffrey; Gill, Stephen; Car, Diana; Bakkers, Erik; Mason, Nadya

    We present transport measurements on Josephson junctions consisting of InSb nanowires contacted by Al at various junction lengths. Junction behavior as a function of gate voltage, electric field, and magnetic field is discussed. We show that short junctions behave as 1D quantum wires, exhibiting quantized conductance steps. In addition, we show how Josephson behavior changes as transport evolves from ballistic to diffusive as a function of contact spacing.

  10. Dynamics near Resonance Junctions in Hamiltonian Systems

    CERN Document Server

    Goto, S; Goto, Shin-itiro; Nozaki, Kazuhiro


    An approximate Poincare map near equally strong multiple resonances is reduced by means the method of averaging. Near the resonance junction of three degrees of freedom, we find that some homoclinic orbits ``whiskers'' in single resonance lines survive and form nearly periodic orbits, each of which looks like a pair of homoclinic orbits.

  11. Cooling of suspended nanostructures with tunnel junctions


    Koppinen, P. J.; Maasilta, I. J.


    We have investigated electronic cooling of suspended nanowires with SINIS tunnel junction coolers. The suspended samples consist of a free standing nanowire suspended by four narrow ($\\sim$ 200 nm) bridges. We have compared two different cooler designs for cooling the suspended nanowire. We demonstrate that cooling of the nanowire is possible with a proper SINIS cooler design.

  12. Polyphosphonium-based ion bipolar junction transistors. (United States)

    Gabrielsson, Erik O; Tybrandt, Klas; Berggren, Magnus


    Advancements in the field of electronics during the past few decades have inspired the use of transistors in a diversity of research fields, including biology and medicine. However, signals in living organisms are not only carried by electrons but also through fluxes of ions and biomolecules. Thus, in order to implement the transistor functionality to control biological signals, devices that can modulate currents of ions and biomolecules, i.e., ionic transistors and diodes, are needed. One successful approach for modulation of ionic currents is to use oppositely charged ion-selective membranes to form so called ion bipolar junction transistors (IBJTs). Unfortunately, overall IBJT device performance has been hindered due to the typical low mobility of ions, large geometries of the ion bipolar junction materials, and the possibility of electric field enhanced (EFE) water dissociation in the junction. Here, we introduce a novel polyphosphonium-based anion-selective material into npn-type IBJTs. The new material does not show EFE water dissociation and therefore allows for a reduction of junction length down to 2 μm, which significantly improves the switching performance of the ion transistor to 2 s. The presented improvement in speed as well the simplified design will be useful for future development of advanced iontronic circuits employing IBJTs, for example, addressable drug-delivery devices.

  13. Flux interactions on stacked Josephson junctions

    DEFF Research Database (Denmark)

    Scott, Alwyn C.; A., Petraglia


    Perturbation methods are used to study the dynamics of locked fluxon modes on stacked Josephson junctions and single crystals of certain high-T-c, superconductors. Two limiting cases are considered: (i) The nonlinear diffusion regime in which fluxon dynamics are dominated by energy exchange betwe...

  14. Defect formation in long Josephson junctions

    DEFF Research Database (Denmark)

    Gordeeva, Anna; Pankratov, Andrey


    We study numerically a mechanism of vortex formation in a long Josephson junction within the framework of the one-dimensional sine-Gordon model. This mechanism is switched on below the critical temperature. It is shown that the number of fluxons versus velocity of cooling roughly scales according...

  15. Gap junction diseases of the skin.

    NARCIS (Netherlands)

    Steensel, M.A.M. van


    Gap junctions are intercellular channels that allow the passage of water, ions, and small molecules. They are involved in quick, short-range messaging between cells and are found in skin, nervous tissue, heart, and muscle. An increasing number of hereditary skin disorders appear to be caused by muta

  16. Gap junctions-guards of excitability

    DEFF Research Database (Denmark)

    Stroemlund, Line Waring; Jensen, Christa Funch; Qvortrup, Klaus;


    Cardiomyocytes are connected by mechanical and electrical junctions located at the intercalated discs (IDs). Although these structures have long been known, it is becoming increasingly clear that their components interact. This review describes the involvement of the ID in electrical disturbances...

  17. Fluxon density waves in long Josephson junctions

    DEFF Research Database (Denmark)

    Olsen, O. H.; Ustinov, A. V.; Pedersen, Niels Falsig


    Numerical simulations of the multiple fluxon dynamics stimulated by an external oscillating force applied at a boundary of a long Josephson junction are presented. The calculated IV characteristics agree well with a recent experimental observation of rf-induced satellite flux-flow steps. The volt...... density waves....

  18. Transmembrane potentials of canine AV junctional tissues. (United States)

    Tse, W W


    The atrioventricular (AV) junction comprises the AV node, His bundle (HB), and specialized tissues proximal to the node called paranodal fibers (PNF). In the present study, an in vitro, dissection-exposed canine right atrial (RA), transitional fiber (TF), AV junctional preparation was used. The TF and PNF formed a pathway running along the base of the septal cusp of the tricuspid valve (SCTV). In the first experiment, impulses elicited at the RA were monitored to propagate sequentially through the TF, PNF, AV node, and then the HB. This functional evidence supports the concept that a conduction pathway connecting the RA and the AV node exists along the base of the SCTV. This internodal pathway is referred to as the septal cusp pathway. In another experiment, transmembrane potentials and Vmax were determined on each of the AV junctional tissues. Results showed that PNF had the lowest Vmax (2.5 V/sec), followed by AV node (7.0 V/sec) and HB (33 V/sec). This finding showed that PNF, and not the AV node, has the lowest Vmax, suggesting that the PNF has the lowest conductivity among the AV junctional tissues, and this study advances our understanding on the mechanism of AV conduction delay in dog hearts.

  19. Lateral junction dynamics lead the way out. (United States)

    Behrndt, Martin; Heisenberg, Carl-Philipp


    Epithelial cell layers need to be tightly regulated to maintain their integrity and correct function. Cell integration into epithelial sheets is now shown to depend on the N-WASP-regulated stabilization of cortical F-actin, which generates distinct patterns of apical-lateral contractility at E-cadherin-based cell-cell junctions.

  20. Soliton excitations in Josephson tunnel junctions

    DEFF Research Database (Denmark)

    Lomdahl, P. S.; Sørensen, O. H.; Christiansen, Peter Leth


    on the Nth ZFS yields the frequency Nf1 Coexistence of two adjacent frequencies is found on the third ZFS of the longer junction (L / λJ=6) in a narrow range of bias current as also found in the experiments. Small asymmetries in the experimental environment, a weak magnetic field, e.g., is introduced via...

  1. Gap junction diseases of the skin.

    NARCIS (Netherlands)

    Steensel, M.A.M. van


    Gap junctions are intercellular channels that allow the passage of water, ions, and small molecules. They are involved in quick, short-range messaging between cells and are found in skin, nervous tissue, heart, and muscle. An increasing number of hereditary skin disorders appear to be caused by muta

  2. Fluxon Dynamics in Elliptic Annular Josephson Junctions

    DEFF Research Database (Denmark)

    Monaco, Roberto; Mygind, Jesper


    We analyze the dynamics of a magnetic flux quantum (current vortex) trapped in a current-biased long planar elliptic annular Josephson tunnel junction. The system is modeled by a perturbed sine-Gordon equation that determines the spatial and temporal behavior of the phase difference across the tu...

  3. Intercellular junctions in nerve-free hydra

    DEFF Research Database (Denmark)

    McDowall, A W; Grimmelikhuijzen, C J


    with particles in an "enplaque conformation appearing as a raised plateau on the E-face or as a depression on the P-face; (ii) structures morphologically similar to gap junctions in rat liver, containing particles on the P-face and corresponding pits on the E-face, both having hexagonal packing with a lattice...

  4. All-carbon molecular tunnel junctions. (United States)

    Yan, Haijun; Bergren, Adam Johan; McCreery, Richard L


    This Article explores the idea of using nonmetallic contacts for molecular electronics. Metal-free, all-carbon molecular electronic junctions were fabricated by orienting a layer of organic molecules between two carbon conductors with high yield (>90%) and good reproducibility (rsd of current density at 0.5 V carbon devices exhibit current density-voltage (J-V) behavior similar to those with metallic Cu top contacts. However, the all-carbon devices display enhanced stability to bias extremes and greatly improved thermal stability. Completed carbon/nitroazobenzene(NAB)/carbon junctions can sustain temperatures up to 300 °C in vacuum for 30 min and can be scanned at ±1 V for at least 1.2 × 10(9) cycles in air at 100 °C without a significant change in J-V characteristics. Furthermore, these all-carbon devices can withstand much higher voltages and current densities than can Cu-containing junctions, which fail upon oxidation and/or electromigration of the copper. The advantages of carbon contacts stem mainly from the strong covalent bonding in the disordered carbon materials, which resists electromigration or penetration into the molecular layer, and provides enhanced stability. These results highlight the significance of nonmetallic contacts for molecular electronics and the potential for integration of all-carbon molecular junctions with conventional microelectronics.

  5. Mesh Currents and Josephson Junction Arrays



    A simple but accurate mesh current analysis is performed on a XY model and on a SIMF model to derive the equations for a Josephson junction array. The equations obtained here turn out to be different from other equations already existing in the literature. Moreover, it is shown that the two models come from an unique hidden structure

  6. Zero-voltage nondegenerate parametric mode in Josephson tunnel junctions

    DEFF Research Database (Denmark)

    Pedersen, Niels Falsig


    A new parametric mode in a Josephson tunnel junction biased in the zero-voltage mode is suggested. It is a nondegenerate parametric excitation where the junction plasma resonance represents the input circuit, and a junction geometrical resonance represents the idler circuit. This nondegenerate mo...... for such a coupling. Journal of Applied Physics is copyrighted by The American Institute of Physics....

  7. Systematic study of shallow junction formation on germanium substrates

    DEFF Research Database (Denmark)

    Hellings, Geert; Rosseel, Erik; Clarysse, Trudo


    Published results on Ge junctions are benchmarked systematically using RS–XJ plots. The electrical activation level required to meet the ITRS targets is calculated. Additionally, new results are presented on shallow furnace-annealed B junctions and shallow laser-annealed As junctions. Co-implanti...

  8. Long Josephson Junction Stack Coupled to a Cavity

    DEFF Research Database (Denmark)

    Madsen, Søren Peder; Pedersen, Niels Falsig; Groenbech-Jensen, N.


    A stack of inductively coupled long Josephson junctions are modeled as a system of coupled sine-Gordon equations. One boundary of the stack is coupled electrically to a resonant cavity. With one fluxon in each Josephson junction, the inter-junction fluxon forces are repulsive. We look at a possible...

  9. Structure Stability of Ⅰ-Type Carbon Nanotube Junctions

    Institute of Scientific and Technical Information of China (English)

    夏丹; 袁喆; 李家明


    Carbon nanotubes with junctions may play an important role in future ‘nanoelectronics' and future ‘nano devices'.In particular, junctions constructed with metal and semiconducting nanotubes have potential applications. Basedon the orthogonal tight-binding molecular dynamics method, we present our study of the structure stability ofI-type carbon nanotube junctions.

  10. Vacuum Tight Threaded Junctions (VTTJ): A new solution for reliable heterogeneous junctions in ITER

    Energy Technology Data Exchange (ETDEWEB)

    Agostinetti, P., E-mail:; Palma, M. Dalla; Agostini, F. Degli; Marcuzzi, D.; Rizzolo, A.; Rossetto, F.; Sonato, P.; Zaccaria, P.


    Highlights: • Heterogeneous junctions represent a critical issue in Nuclear Fusion experiments. • We have developed a new technique for heterogeneous junctions, called VTTJ, whose main advantages are low cost, high reliability and easiness of construction. • The VTTJ junctions have passed all the tests required by ITER for the heterogeneous junctions of the divertor. • Further tests have demonstrated wide margins for operation (up to 700 °C and 500 bar). - Abstract: A new technique, called Vacuum Tight Threaded Junction (VTTJ), has been developed and patented by Consorzio RFX, permitting to obtain low-cost and reliable non-welded junctions, able to maintain vacuum tightness also in heavy loading conditions (high temperature and high mechanical loads). The technique can be applied also if the materials to be joint are not weldable and for heterogeneous junctions (for example, between steel and copper) and has been tested up to 500 bar internal pressure and up to 700 °C, showing excellent leak tightness in vacuum conditions and high mechanical resistance. The main advantages with respect to existing technologies (for example, friction welding and electron beam welding) are an easy construction, a low cost, a precise positioning of the junction and a high repeatability of the process. Due to these advantages, the new technique has been adopted for several components of the SPIDER experiment and it is proposed for ITER, in particular for the ITER Heat and Current Drive Neutral Beam Injector and for its prototype, the MITICA experiment, to be tested at Consorzio RFX. This paper gives a detailed description of the VTTJ technique, of the samples manufactured and of the qualification tests that have been carried out so far.

  11. Graphene junction field-effect transistor (United States)

    Ou, Tzu-Min; Borsa, Tomoko; van Zeghbroeck, Bart


    We have demonstrated for the first time a novel graphene transistor gated by a graphene/semiconductor junction rather than an insulating gate. The transistor operates much like a semiconductor junction Field Effect Transistor (jFET) where the depletion layer charge in the semiconductor modulates the mobile charge in the channel. The channel in our case is the graphene rather than another semiconductor layer. An increased reverse bias of the graphene/n-silicon junction increases the positive charge in the depletion region and thereby reduces the total charge in the graphene. We fabricated individual graphene/silicon junctions as well as graphene jFETs (GjFETs) on n-type (4.5x1015 cm-3) silicon with Cr/Au electrodes and 3 μm gate length. As a control device, we also fabricated back-gated graphene MOSFETs using a 90nm SiO2 on a p-type silicon substrate (1019 cm-3) . The graphene was grown by APCVD on copper foil and transferred with PMMA onto the silicon substrate. The GjFET exhibited an on-off ratio of 3.75, an intrinsic graphene doping of 1.75x1012 cm-2, compared to 1.17x1013 cm-2 in the MOSFET, and reached the Dirac point at 13.5V. Characteristics of the junctions and transistors were measured as a function of temperature and in response to light. Experimental data and a comparison with simulations will be presented.

  12. Characterization and significance of adhesion and junction-related proteins in mouse ovarian follicles. (United States)

    Mora, Jocelyn M; Fenwick, Mark A; Castle, Laura; Baithun, Marianne; Ryder, Timothy A; Mobberley, Margaret; Carzaniga, Raffaella; Franks, Stephen; Hardy, Kate


    In the ovary, initiation of follicle growth is marked by cuboidalization of flattened granulosa cells (GCs). The regulation and cell biology of this shape change remains poorly understood. We propose that characterization of intercellular junctions and associated proteins is key to identifying as yet unknown regulators of this important transition. As GCs are conventionally described as epithelial cells, this study used mouse ovaries and isolated follicles to investigate epithelial junctional complexes (tight junctions [TJ], adherens junctions [AJ], and desmosomes) and associated molecules, as well as classic epithelial markers, by quantitative PCR and immunofluorescence. These junctions were further characterized using ultrastructural, calcium depletion and biotin tracer studies. Junctions observed by transmission electron microscopy between GCs and between GCs and oocyte were identified as AJs by expression of N-cadherin and nectin 2 and by the lack of TJ and desmosome-associated proteins. Follicles were also permeable to biotin, confirming a lack of functional TJs. Surprisingly, GCs lacked all epithelial markers analyzed, including E-cadherin, cytokeratin 8, and zonula occludens (ZO)-1alpha+. Furthermore, vimentin was expressed by GCs, suggesting a more mesenchymal phenotype. Under calcium-free conditions, small follicles maintained oocyte-GC contact, confirming the importance of calcium-independent nectin at this stage. However, in primary and multilayered follicles, lack of calcium resulted in loss of contact between GCs and oocyte, showing that nectin alone cannot maintain attachment between these two cell types. Lack of classic markers suggests that GCs are not epithelial. Identification of AJs during GC cuboidalization highlights the importance of AJs in regulating initiation of follicle growth.

  13. Thermal analysis of Josephson junctions array in cryocooler

    CERN Document Server

    Durandetto, P; Trinchera, B; Lolli, L; Serazio, D; Fretto, M; Sosso, A


    Complex cryogenics is still a strong limitation to the spread of quantum voltage standards and cryogen-free operation is then particularly interesting for Josephson standards. The main difficulties in He-free refrigeration are related to chip thermalization. We tested different solutions and interface materials between the chip and the cooling surface, to improve thermal conduction. Some junctions were chosen as elements to dissipate electrical power, while some others were operated as on-chip temperature sensors. Indium foil between chip and Cu support was demonstrated to provide a good thermal interface suitable for programmable voltage standard operation. However, thermal conduction can be further increased by thermal contacting the chip at the top. Finally, general physical constraints in vacuum thermal contacts are analyzed in terms of known properties of thermal interfaces at cryogenics temperatures.

  14. Heterospin Junctions in Zigzag-Edged Graphene Nanoribbons

    Directory of Open Access Journals (Sweden)

    Eduardo C. Girão


    Full Text Available We propose a graphene nanoribbon-based heterojunction, where a defect-free interface separates two zigzag graphene nanoribbons prepared in opposite antiferromagnetic spin configurations. This heterospin junction is found to allow the redirecting of low-energy electrons from one edge to the other. The basic scattering mechanisms and their relation to the system’s geometry are investigated through a combination of Landauer–Green’s function and the S-matrix and eigen-channel methods within a tight-binding + Hubbard model validated with density functional theory. The findings demonstrate the possibility of using zigzag-edged graphene nanoribbons (zGNRs in complex networks where current can be transmitted across the entire system, instead of following the shortest paths along connected edges belonging to the same sub-lattice.

  15. Gap junctional communication modulates gene transcription by altering the recruitment of Sp1 and Sp3 to connexin-response elements in osteoblast promoters (United States)

    Stains, Joseph P.; Lecanda, Fernando; Screen, Joanne; Towler, Dwight A.; Civitelli, Roberto


    Loss-of-function mutations of gap junction proteins, connexins, represent a mechanism of disease in a variety of tissues. We have shown that recessive (gene deletion) or dominant (connexin45 overexpression) disruption of connexin43 function results in osteoblast dysfunction and abnormal expression of osteoblast genes, including down-regulation of osteocalcin transcription. To elucidate the molecular mechanisms of gap junction-sensitive transcriptional regulation, we systematically analyzed the rat osteocalcin promoter for sensitivity to gap junctional intercellular communication. We identified an Sp1/Sp3 containing complex that assembles on a minimal element in the -70 to -57 region of the osteocalcin promoter in a gap junction-dependent manner. This CT-rich connexin-response element is necessary and sufficient to confer gap junction sensitivity to the osteocalcin proximal promoter. Repression of osteocalcin transcription occurs as a result of displacement of the stimulatory Sp1 by the inhibitory Sp3 on the promoter when gap junctional communication is perturbed. Modulation of Sp1/Sp3 recruitment also occurs on the collagen Ialpha1 promoter and translates into gap junction-sensitive transcriptional control of collagen Ialpha1 gene expression. Thus, regulation of Sp1/Sp3 recruitment to the promoter may represent a potential general mechanism for transcriptional control of target genes by signals passing through gap junctions.

  16. Planar Josephson tunnel junctions in a transverse magnetic field

    DEFF Research Database (Denmark)

    Monacoa, R.; Aarøe, Morten; Mygind, Jesper


    Traditionally, since the discovery of the Josephson effect in 1962, the magnetic diffraction pattern of planar Josephson tunnel junctions has been recorded with the field applied in the plane of the junction. Here we discuss the static junction properties in a transverse magnetic field where...... demagnetization effects imposed by the tunnel barrier and electrodes geometry are important. Measurements of the junction critical current versus magnetic field in planar Nb-based high-quality junctions with different geometry, size, and critical current density show that it is advantageous to use a transverse...

  17. The computation of first order moments on junction trees

    CERN Document Server

    Djuric, Milos B; Stankovic, Miomir S


    We review some existing methods for the computation of first order moments on junction trees using Shafer-Shenoy algorithm. First, we consider the problem of first order moments computation as vertices problem in junction trees. In this way, the problem is solved using the memory space of an order of the junction tree edge-set cardinality. After that, we consider two algorithms, Lauritzen-Nilsson algorithm, and Mau\\'a et al. algorithm, which computes the first order moments as the normalization problem in junction tree, using the memory space of an order of the junction tree leaf-set cardinality.

  18. Loss of αT-catenin alters the hybrid adhering junctions in the heart and leads to dilated cardiomyopathy and ventricular arrhythmia following acute ischemia. (United States)

    Li, Jifen; Goossens, Steven; van Hengel, Jolanda; Gao, Erhe; Cheng, Lan; Tyberghein, Koen; Shang, Xiying; De Rycke, Riet; van Roy, Frans; Radice, Glenn L


    It is generally accepted that the intercalated disc (ICD) required for mechano-electrical coupling in the heart consists of three distinct junctional complexes: adherens junctions, desmosomes and gap junctions. However, recent morphological and molecular data indicate a mixing of adherens junctional and desmosomal components, resulting in a 'hybrid adhering junction' or 'area composita'. The α-catenin family member αT-catenin, part of the N-cadherin-catenin adhesion complex in the heart, is the only α-catenin that interacts with the desmosomal protein plakophilin-2 (PKP2). Thus, it has been postulated that αT-catenin might serve as a molecular integrator of the two adhesion complexes in the area composita. To investigate the role of αT-catenin in the heart, gene targeting technology was used to delete the Ctnna3 gene, encoding αT-catenin, in the mouse. The αT-catenin-null mice are viable and fertile; however, the animals exhibit progressive cardiomyopathy. Adherens junctional and desmosomal proteins were unaffected by loss of αT-catenin, with the exception of the desmosomal protein PKP2. Immunogold labeling at the ICD demonstrated in the αT-catenin-null heart a preferential reduction of PKP2 at the area composita compared with the desmosome. Furthermore, gap junction protein Cx43 was reduced at the ICD, including its colocalization with N-cadherin. Gap junction remodeling in αT-catenin-knockout hearts was associated with an increased incidence of ventricular arrhythmias after acute ischemia. This novel animal model demonstrates for the first time how perturbation in αT-catenin can affect both PKP2 and Cx43 and thereby highlights the importance of understanding the crosstalk between the junctional proteins of the ICD and its implications for arrhythmogenic cardiomyopathy.

  19. Individualized transoral anterior surgery for complex craniocervical junction disorder with assistance of 3D printing technology%3D打印技术辅助经口前路个性化手术治疗复杂颅颈交界区畸形

    Institute of Scientific and Technical Information of China (English)

    夏虹; 王建华; 吴增晖; 艾福志; 马向阳; 章凯; 王智运; 马立敏; 尹庆水


    的设计、手术过程的辅助,起到提高手术精准度及安全性的作用.%Objective To evaluate the value of 3D printing technology in transoral anterior surgery for complex craniocervical junction disorder.Methods From December 2009 to December 2013,48 cases of atlantoaxial dislocation associated with complex craniocervical malformation were operated with the assistance of 3D printing technology.There were 19 males and 29 females, with mean 35 years of age (range, 6 to 59 years).Preoperative complications included 28 cases of atlas assimilation, 19 cases of os odontoideum, 17 cases of C2,3 fusion, 1 case of C2-5 fusion, 1 case of C1 posterior arch disconnection, and 1 case of C1 posterior arch aplasia.All cases had symptoms of spinal compression such as numbness and weakness of the extremity, standing or walking unsteady, etc.Preopoerative cervical MRI examinations showed the enlargement of anterior atlas-dens interval (ADI) or atlantoaxial dislocation.All cases' CT data in Dicom form were input into the Simpleware software to reconstruct 3D image, and then the image in STL form was imported to the 3D printer to make a fast prototyping model for the operation with same size as the cases' cervical spine.Based on above works, all cases underwent transoral anterior reduction plate (TARP) fixation in the craniocervical junction zone, including combined anterior-posterior surgery in 1 case.ADI was measured to evaluate the reduction of atlantoaxial dislocation, cervical-medullary angle (CMA) was measured to evaluate the improvement of compression on the medulla, and Japanese Orthopedic Association (JOA) scoring system was used to evaluate the improvement of spinal function.Results All cases went through successful surgery.Mean operation time was (145 ± 45) min and mean blood loss was (53 ± 15) ml.A total of 96 atlas lateral mass screws, 62 reverse axis pedicle screws and 36 axis vertebral body screws, 1 posterior axis pedicle screw and 1 axis translaminar

  20. String networks with junctions in competition models (United States)

    Avelino, P. P.; Bazeia, D.; Losano, L.; Menezes, J.; de Oliveira, B. F.


    In this work we give specific examples of competition models, with six and eight species, whose three-dimensional dynamics naturally leads to the formation of string networks with junctions, associated with regions that have a high concentration of enemy species. We study the two- and three-dimensional evolution of such networks, both using stochastic network and mean field theory simulations. If the predation, reproduction and mobility probabilities do not vary in space and time, we find that the networks attain scaling regimes with a characteristic length roughly proportional to t 1 / 2, where t is the physical time, thus showing that the presence of junctions, on its own, does not have a significant impact on their scaling properties.

  1. Vibrational Heat Transport in Molecular Junctions (United States)

    Segal, Dvira; Agarwalla, Bijay Kumar


    We review studies of vibrational energy transfer in a molecular junction geometry, consisting of a molecule bridging two heat reservoirs, solids or large chemical compounds. This setup is of interest for applications in molecular electronics, thermoelectrics, and nanophononics, and for addressing basic questions in the theory of classical and quantum transport. Calculations show that system size, disorder, structure, dimensionality, internal anharmonicities, contact interaction, and quantum coherent effects are factors that combine to determine the predominant mechanism (ballistic/diffusive), effectiveness (poor/good), and functionality (linear/nonlinear) of thermal conduction at the nanoscale. We review recent experiments and relevant calculations of quantum heat transfer in molecular junctions. We recount the Landauer approach, appropriate for the study of elastic (harmonic) phononic transport, and outline techniques that incorporate molecular anharmonicities. Theoretical methods are described along with examples illustrating the challenge of reaching control over vibrational heat conduction in molecules.

  2. String networks with junctions in competition models

    CERN Document Server

    Avelino, P P; Losano, L; Menezes, J; de Oliveira, B F


    In this work we give specific examples of competition models, with six and eight species, whose three-dimensional dynamics naturally leads to the formation of string networks with junctions, associated with regions that have a high concentration of enemy species. We study the two- and three-dimensional evolution of such networks, both using stochastic network and mean field theory simulations. If the predation, reproduction and mobility probabilities do not vary in space and time, we find that the networks attain scaling regimes with a characteristic length roughly proportional to $t^{1/2}$, where $t$ is the physical time, thus showing that the presence of junctions, on its own, does not have a significant impact on their scaling properties.

  3. Junction between surfaces of two topological insulators (United States)

    Sen, Diptiman; Deb, Oindrila


    We study scattering from a line junction which separates the surfaces of two three-dimensional topological insulators; some aspects of this problem were recently studied in Takahashi and Murakami, Phys. Rev. Lett. 107, 166805 (2011). The velocities of the Dirac electrons on the two surfaces may be unequal and may even have opposite signs; in the latter case, we find that the electrons must, in general, go into the two-dimensional interface separating the two topological insulators. We also study what happens if the two surfaces are at an angle φ with respect to each other. We find in this case that there are bound states which propagate along the line junction with a velocity and direction of spin which depend on the bending angle φ.

  4. Current distributions in stripe Majorana junctions (United States)

    Osca, Javier; Llorenç, Serra


    We calculate current and density distributions in stripe (2D planar) junctions between normal and Majorana nanowires having a finite ( y) transverse length. In presence of a magnetic field with vertical and in-plane components, the y-symmetry of the charge current distribution in the normal lead changes strongly across the Majorana phase transition: from center-symmetric if a Majorana mode is present to laterally-shifted (as expected by the Hall effect) if the field is tilted such as to destroy the Majorana mode due to the projection rule. We compare quasi-particle and charge distributions of current and density, as well as spin magnetizations. The Majorana mode causes opposite spin accumulations on the transverse sides of the junction and the emergence of a spin current.

  5. Boson Josephson Junction with Trapped Atoms (United States)

    Raghavan, S.; Smerzi, A.; Fantoni, S.; Shenoy, S. R.

    We consider coherent atomic tunneling between two weakly coupled Bose-Einstein condensates at T=0 in a double-well trap. The condensate dynamics of the macroscopic amplitudes in the two wells is modeled by two Gross-Pitaevskii equations (GPE) coupled by a tunneling matrix element. Analytic elliptic function solutions are obtained for the time evolution of the inter-well fractional population imbalance z(t) (related to the condensate phase difference) of the Boson Josephson junction (BJJ). Surprisingly, the neutral-atom BJJ shows (non-sinusoidal generalizations of) effects seen in charged-electron superconductor Josephson junctions (SJJ). The BJJ elliptic-function behavior has a singular dependence on a GPE parameter ratio Λ at a critical ratio Λ=Λc, beyond which a novel 'macroscopic quantum self-trapping' effect sets in with a non-zero time-averaged imbalance ≠0.

  6. Non-Lagrangian theories from brane junctions

    Energy Technology Data Exchange (ETDEWEB)

    Bao, Ling [Chalmers Univ. of Technology, Goeteborg (Sweden); Mitev, Vladimir [Humboldt Univ., Berlin (Germany). Inst. fuer Mathematik und Inst. fuer Physik; Pomoni, Elli [Deutsches Elektronen-Synchrotron DESY, Hamburg (Germany). Theory Group; Taki, Masato [RIKEN Nishina Center, Saitama (Japan). Mathematical Physics Lab.; Yagi, Futoshi [International School of Advanced Studies (SISSA), Trieste (Italy); INFN, Trieste (Italy); Korea Institute for Advanced Study (KIAS), Seoul (Korea, Republic of)


    In this article we use 5-brane junctions to study the 5D T{sub N} SCFTs corresponding to the 5D N=1 uplift of the 4D N=2 strongly coupled gauge theories, which are obtained by compactifying N M5 branes on a sphere with three full punctures. Even though these theories have no Lagrangian description, by using the 5-brane junctions proposed by Benini, Benvenuti and Tachikawa, we are able to derive their Seiberg-Witten curves and Nekrasov partition functions. We cross-check our results with the 5D superconformal index proposed by Kim, Kim and Lee. Through the AGTW correspondence, we discuss the relations between 5D superconformal indices and n-point functions of the q-deformed W{sub N} Toda theories.

  7. Electron transport in doped fullerene molecular junctions (United States)

    Kaur, Milanpreet; Sawhney, Ravinder Singh; Engles, Derick

    The effect of doping on the electron transport of molecular junctions is analyzed in this paper. The doped fullerene molecules are stringed to two semi-infinite gold electrodes and analyzed at equilibrium and nonequilibrium conditions of these device configurations. The contemplation is done using nonequilibrium Green’s function (NEGF)-density functional theory (DFT) to evaluate its density of states (DOS), transmission coefficient, molecular orbitals, electron density, charge transfer, current, and conductance. We conclude from the elucidated results that Au-C16Li4-Au and Au-C16Ne4-Au devices behave as an ordinary p-n junction diode and a Zener diode, respectively. Moreover, these doped fullerene molecules do not lose their metallic nature when sandwiched between the pair of gold electrodes.

  8. Charge Transport Phenomena in Peptide Molecular Junctions

    Directory of Open Access Journals (Sweden)

    Alessandra Luchini


    Full Text Available Inelastic electron tunneling spectroscopy (IETS is a valuable in situ spectroscopic analysis technique that provides a direct portrait of the electron transport properties of a molecular species. In the past, IETS has been applied to small molecules. Using self-assembled nanoelectronic junctions, IETS was performed for the first time on a large polypeptide protein peptide in the phosphorylated and native form, yielding interpretable spectra. A reproducible 10-fold shift of the I/V characteristics of the peptide was observed upon phosphorylation. Phosphorylation can be utilized as a site-specific modification to alter peptide structure and thereby influence electron transport in peptide molecular junctions. It is envisioned that kinases and phosphatases may be used to create tunable systems for molecular electronics applications, such as biosensors and memory devices.

  9. Peltier Junction heats and cools car seat

    Energy Technology Data Exchange (ETDEWEB)

    Gottschalk, M.A.


    Electrically heated seats may soon become heated and cooled seats. The design called the CCS module exploits the heat-pump capability of a class of semiconductor thermoelectric devices (TEDs) known as Peltier Junction. Every CCS module contain two TEDs. Heating and cooling occurs through convection and conduction. The heart of the system is the thermoelectric heat pump. This is originally conceived as the sole heating/cooling options for a prototype electric vehicle.

  10. Josephson junction microwave modulators for qubit control (United States)

    Naaman, O.; Strong, J. A.; Ferguson, D. G.; Egan, J.; Bailey, N.; Hinkey, R. T.


    We demonstrate Josephson junction based double-balanced mixer and phase shifter circuits operating at 6-10 GHz and integrate these components to implement both a monolithic amplitude/phase vector modulator and an I/Q quadrature mixer. The devices are actuated by flux signals, dissipate no power on chip, exhibit input saturation powers in excess of 1 nW, and provide cryogenic microwave modulation solutions for integrated control of superconducting qubits.

  11. Internal dynamics of long Josephson junction oscillators

    DEFF Research Database (Denmark)

    Christiansen, Peter Leth; Lomdahl, P. S.; Scott, Alwyn C.;


    Numerical computations on a sine-Gordon model of the Josephson junction fluxon oscillator are compared with experimental measurements. Good agreement is found for the voltage current characteristic, oscillator power output, and range of current bias over which oscillation is observed. Our numeric...... results imply a ''bunched-fluxon'' mode of oscillation at larger values of bias current. Applied Physics Letters is copyrighted by The American Institute of Physics....

  12. Decreased Vision and Junctional Scotoma from Pituicytoma

    Directory of Open Access Journals (Sweden)

    Nancy Huynh


    Full Text Available Pituicytomas are rare neoplasms of the sellar region. We report a case of vision loss and a junctional scotoma in a 43-year-old woman caused by compression of the optic chiasm by a pituitary tumor. The morphological and immunohistochemical characteristics of the tumor were consistent with the diagnosis of pituicytoma. The tumor was debulked surgically, and the patient’s vision improved.

  13. Brownian refrigeration by hybrid tunnel junctions


    Peltonen, J. T.; Helle, M.; Timofeev, A. V.; Solinas, P.; Hekking, F. W. J.; Pekola, Jukka P.


    Voltage fluctuations generated in a hot resistor can cause extraction of heat from a colder normal metal electrode of a hybrid tunnel junction between a normal metal and a superconductor. We extend the analysis presented in Phys. Rev. Lett. 98, 210604 (2007) of this heat rectifying system, bearing resemblance to a Maxwell’s demon. Explicit analytic calculations show that the entropy of the total system is always increasing. We then consider a single-electron transistor configuration with two ...


    Directory of Open Access Journals (Sweden)

    Joji Reddy


    Full Text Available INTRODUCTION: Detailed discussions of the CVJ are conspicuously absent in many standard textbooks and chapters addressing the skull or cervical spine, since it lies in between these regions . CVJ anomalies are common in India subcontinent. OBJECTIVES : To outline the normal anatomy and various abnormalities of craniovertebral junction. To evaluate the most common developmental and acquired craniovertebral junction abnormalities . CRANIOMETRY AND DIAGNOSIS: Radiological evaluation of CVJ requir es identification of only a few anatomic structures. Over the years multiple lines , planes and angles have been described for assessment of CVJ relationship , initially with radiography and later with polytomography. Two lines have remained particularly use ful for evaluation of CVJ relationship with virtually any imaging modality: the chamberlain`s line and weckenheim ’ s clivus base line . Two angles also continue to be useful: the welcher basal angle and atlanto occipital joint axis angle. PATIENTS AND METHOD S: The prospective study of craniovertebral junction anomalies was carried out at Kurnool medical college , Governament general hospital Kurnool from NOV 2012 to AUG 2014. The patients are subjected to clinical evaluation and radiological evaluation. OBSERV ATIONS AND RESULTS : In our study there is male predominance with male to female ratio of 2:1 . Majority of patients are in the age group of 11 - 40 (73.26%. The commonest symptom seen is weakness of extremities ( 70% with associated numbness (50%. On clinica l examination pyramidal tract involvement noticed in 70% of cases. Basilar invagination is the most common followed by Atlantoocoipital assimilation (40% and AAD (30% . CONCLUSION : Computed tomography and magnetic resonance imaging are invalvable adjuncts to the plain radiographs in the evaluation of the craniovertebral junction anomalies. Chamberlain’s line and McGregor line are the most commonly applied craniometric measurements

  15. Interfacial capacitance effects in magnetic tunneling junctions

    CERN Document Server

    Landry, G; Du, J; Xiao, J Q


    We have investigated the AC transport properties of magnetic tunnel junctions (MTJ) in order to characterize interfacial properties. One such property is interfacial charge accumulation, which leads to a voltage drop in the electrodes of the MTJ and the measured capacitance differing from the geometrical capacitance. Through measurement of capacitance spectra, we have extracted an interfacial capacitance of 16 mu F/cm sup 2 per interface and a screening length of 0.55 A for FeNi electrodes.

  16. Gap Junctions: The Claymore for Cancerous Cells

    Directory of Open Access Journals (Sweden)

    Ailar Nakhlband


    Full Text Available Introduction: Gap junctions play an important role in the cell proliferation in mammalian cells as well as carcinogenesis. However, there are controversial issues about their role in cancer pathogenesis. This study was designed to evaluate genotoxicity and cytotoxicity of Carbenoxolone (CBX as a prototype of inter-cellular gap junction blocker in MCF7 and BT20 human breast cancer cells. Methods: The MCF7and BT20 human breast cancer cell lines were cultivated, and treated at designated confluency with different doses of CBX. Cellular cytotoxicity was examined using standard colorimetric assay associated with cell viability tests. Gene expression evaluation was carried out using real time polymerase chain reaction (PCR. Results: MCF7 and BT20 cells were significantly affected by CBX in a dose dependent manner in cell viability assays. Despite varying expression of genes, down regulation of pro- and anti-apoptotic genes was observed in these cells. Conclusion: Based upon this investigation, it can be concluded that CBX could affect both low and high proliferative types of breast cancer cell lines and disproportionate down regulation of both pre- and anti-apoptotic genes may be related to interacting biomolecules, perhaps via gap junctions.

  17. Rho/Rho-associated Kinase-II Signaling Mediates Disassembly of Epithelial Apical Junctions



    Apical junctional complex (AJC) plays a vital role in regulation of epithelial barrier function. Disassembly of the AJC is observed in diverse physiological and pathological states; however, mechanisms governing this process are not well understood. We previously reported that the AJC disassembly is driven by the formation of apical contractile acto-myosin rings. In the present study, we analyzed the signaling pathways regulating acto-myosin–dependent disruption of AJC by using a model of ext...

  18. Vertebro-Basilar Junction Aneurysms: A Single Centre Experience and Meta-Analysis of Endovascular Treatments


    Graziano, Francesca; Ganau, Mario; Iacopino, Domenico Gerardo; Boccardi, Edoardo


    Vascular lesions of the vertebrobasilar junction (VBJ) are challenging in neurosurgical practice, and their gold-standard therapy is still under debate. We describe the operative strategies currently in use for the management of these complex vascular lesions and discuss their rationale in a literature meta-analysis and single centre blinded retrospective study. The single centre study included a review of initial presentation, angiographic features and clinical outcome (with modified Rankin ...

  19. Comment on "Thermal propagation in two-dimensional Josephson junction arrays"


    De Leo, Cinzia


    In a recent paper, Filatrella et al. [Phys. Rev. B 75, 54510 (2007)] report results of numerical calculations of energy barriers for flux quanta propagation in two-dimensional arrays of Josephson junctions with finite self and mutual inductances. To avoid complex numerical calculations, they use an approximated inductance model to address the effects of the mutual couplings. Using a full inductance matrix model, we show that this approximated model cannot be used to calculate the energy barri...

  20. Laminins promote postsynaptic maturation by an autocrine mechanism at the neuromuscular junction


    Nishimune, Hiroshi; Jarad, George; Moulson, Casey L.; Müller, Ulrich; Miner, Jeffrey H.; Valdez, Gregorio; Sanes, Joshua R


    A prominent feature of synaptic maturation at the neuromuscular junction (NMJ) is the topological transformation of the acetylcholine receptor (AChR)-rich postsynaptic membrane from an ovoid plaque into a complex array of branches. We show here that laminins play an autocrine role in promoting this transformation. Laminins containing the α4, α5, and β2 subunits are synthesized by muscle fibers and concentrated in the small portion of the basal lamina that passes through the synaptic cleft at ...

  1. Molecular beam epitaxy growth of germanium junctions for multi-junction solar cell applications (United States)

    Masuda, T.; Faucher, J.; Lee, M. L.


    We report on the molecular beam epitaxy (MBE) growth and device characteristics of Ge solar cells. Integrating a Ge bottom cell beneath a lattice-matched triple junction stack grown by MBE could enable ultra-high efficiencies without metamorphic growth or wafer bonding. However, a diffused junction cannot be readily formed in Ge by MBE due to the low sticking coefficient of group-V molecules on Ge surfaces. We therefore realized Ge junctions by growth of homo-epitaxial n-Ge on p-Ge wafers within a standard III-V MBE system. We then fabricated Ge solar cells, finding growth temperature and post-growth annealing to be key factors for achieving high efficiency. Open-circuit voltage and fill factor values of ~0.175 V and ~0.59 without a window layer were obtained, both of which are comparable to diffused Ge junctions formed by metal-organic vapor phase epitaxy. We also demonstrate growth of high-quality, single-domain GaAs on the Ge junction, as needed for subsequent growth of III-V subcells, and that the surface passivation afforded by the GaAs layer slightly improves the Ge cell performance.

  2. HfO2 and SiO2 as barriers in magnetic tunneling junctions (United States)

    Shukla, Gokaran; Archer, Thomas; Sanvito, Stefano


    SiO2 and HfO2 are both high-k, wide-gap semiconductors, currently used in the microelectronic industry as gate barriers. Here we investigate whether the same materials can be employed to make magnetic tunnel junctions, which in principle can be amenable for integration in conventional Si technology. By using a combination of density functional theory and the nonequilibrium Green's functions method for quantum transport we have studied the transport properties of Co [0001 ] /SiO2[001 ] /Co [0001 ] and Fe [001 ] /HfO2[001 ] /Fe [001 ] junctions. In both cases we found a quite large magnetoresistance, which is explained through the analysis of the real band structure of the magnets and the complex one of the insulator. We find that there is no symmetry spin filtering for the Co-based junction since the high transmission Δ2' band crosses the Fermi level, EF, for both spin directions. However, the fact that Co is a strong ferromagnet makes the orbital contribution to the two Δ2' spin subbands different, yielding magnetoresistance. In contrast for the Fe-based junction symmetry filtering is active for an energy window spanning between the Fermi level and 1 eV below EF, with Δ1 symmetry contributing to the transmission.

  3. West Nile virus infection causes endocytosis of a specific subset of tight junction membrane proteins.

    Directory of Open Access Journals (Sweden)

    Zaikun Xu

    Full Text Available West Nile virus (WNV is a blood-borne pathogen that causes systemic infections and serious neurological disease in human and animals. The most common route of infection is mosquito bites and therefore, the virus must cross a number of polarized cell layers to gain access to organ tissue and the central nervous system. Resistance to trans-cellular movement of macromolecules between epithelial and endothelial cells is mediated by tight junction complexes. While a number of recent studies have documented that WNV infection negatively impacts the barrier function of tight junctions, the intracellular mechanism by which this occurs is poorly understood. In the present study, we report that endocytosis of a subset of tight junction membrane proteins including claudin-1 and JAM-1 occurs in WNV infected epithelial and endothelial cells. This process, which ultimately results in lysosomal degradation of the proteins, is dependent on the GTPase dynamin and microtubule-based transport. Finally, infection of polarized cells with the related flavivirus, Dengue virus-2, did not result in significant loss of tight junction membrane proteins. These results suggest that neurotropic flaviviruses such as WNV modulate the host cell environment differently than hemorrhagic flaviviruses and thus may have implications for understanding the molecular basis for neuroinvasion.

  4. Electron Transport through Porphyrin Molecular Junctions (United States)

    Zhou, Qi

    The goal of this work is to study the properties that would affect the electron transport through a porphyrin molecular junction. This work contributes to the field of electron transport in molecular junctions in the following 3 aspects. First of all, by carrying out experiments comparing the conductance of the iron (III) porphyrin (protected) and the free base porphyrin (protected), it is confirmed that the molecular energy level broadening and shifting occurs for porphyrin molecules when coupled with the metal electrodes, and this level broadening and shifting plays an important role in the electron transport through molecular junctions. Secondly, by carrying out an in-situ deprotection of the acetyl-protected free base porphyrin molecules, it is found out that the presence of acetyl groups reduces the conductance. Thirdly, by incorporating the Matrix-assisted laser desorption/ionization (MALDI) spectrum and the in-situ deprotection prior to formation of molecular junctions, it allows a more precise understanding of the molecules involved in the formation of molecular junctions, and therefore allows an accurate analysis of the conductance histogram. The molecules are prepared by self-assembly and the junctions are formed using a Scanning Tunneling Microscopy (STM) molecular break junction technique. The porphyrin molecules are characterized by MALDI in solution before self-assembly to a gold/mica substrate. The self-assembled monolayers (SAMs) of porphyrins on gold are characterized by Ultraviolet-visible (UV-Vis) reflection spectroscopy to confirm that the molecules are attached to the substrate. The SAMs are then characterized by Angle-Resolved X-ray photoelectron spectroscopy (ARXPS) to determine the thickness and the average molecular orientation of the molecular layer. The electron transport is measured by conductance-displacement (G-S) experiments under a given bias (-0.4V). The conductance value of a single molecule is identified by a statistical analysis

  5. Electron optics with p-n junctions in ballistic graphene (United States)

    Chen, Shaowen; Han, Zheng; Elahi, Mirza M.; Habib, K. M. Masum; Wang, Lei; Wen, Bo; Gao, Yuanda; Taniguchi, Takashi; Watanabe, Kenji; Hone, James; Ghosh, Avik W.; Dean, Cory R.


    Electrons transmitted across a ballistic semiconductor junction are expected to undergo refraction, analogous to light rays across an optical boundary. In graphene, the linear dispersion and zero-gap band structure admit highly transparent p-n junctions by simple electrostatic gating. Here, we employ transverse magnetic focusing to probe the propagation of carriers across an electrostatically defined graphene junction. We find agreement with the predicted Snell’s law for electrons, including the observation of both positive and negative refraction. Resonant transmission across the p-n junction provides a direct measurement of the angle-dependent transmission coefficient. Comparing experimental data with simulations reveals the crucial role played by the effective junction width, providing guidance for future device design. Our results pave the way for realizing electron optics based on graphene p-n junctions.

  6. Single P-N junction tandem photovoltaic device (United States)

    Walukiewicz, Wladyslaw; Ager, III, Joel W.; Yu, Kin Man


    A single P-N junction solar cell is provided having two depletion regions for charge separation while allowing the electrons and holes to recombine such that the voltages associated with both depletion regions of the solar cell will add together. The single p-n junction solar cell includes an alloy of either InGaN or InAlN formed on one side of the P-N junction with Si formed on the other side in order to produce characteristics of a two junction (2J) tandem solar cell through only a single P-N junction. A single P-N junction solar cell having tandem solar cell characteristics will achieve power conversion efficiencies exceeding 30%.

  7. The critical power to maintain thermally stable molecular junctions (United States)

    Wang, Yanlei; Xu, Zhiping


    With the rise of atomic-scale devices such as molecular electronics and scanning probe microscopies, energy transport processes through molecular junctions have attracted notable research interest recently. In this work, heat dissipation and transport across diamond/benzene/diamond molecular junctions are explored by performing atomistic simulations. We identify the critical power Pcr to maintain thermal stability of the junction through efficient dissipation of local heat. We also find that the molecule-probe contact features a power-dependent interfacial thermal resistance RK in the order of 109 kW-1. Moreover, both Pcr and RK display explicit dependence on atomic structures of the junction, force and temperature. For instance, Pcr can be elevated in multiple-molecule junctions, and streching the junction enhances RK by a factor of 2. The applications of these findings in molecular electronics and scanning probing measurements are discussed, providing practical guidelines in their rational design.

  8. Single P-N junction tandem photovoltaic device (United States)

    Walukiewicz, Wladyslaw [Kensington, CA; Ager, III, Joel W.; Yu, Kin Man [Lafayette, CA


    A single P-N junction solar cell is provided having two depletion regions for charge separation while allowing the electrons and holes to recombine such that the voltages associated with both depletion regions of the solar cell will add together. The single p-n junction solar cell includes an alloy of either InGaN or InAlN formed on one side of the P-N junction with Si formed on the other side in order to produce characteristics of a two junction (2J) tandem solar cell through only a single P-N junction. A single P-N junction solar cell having tandem solar cell characteristics will achieve power conversion efficiencies exceeding 30%.

  9. Structure, regulation and function of gap junctions in liver (United States)

    Maes, Michaël; Decrock, Elke; Wang, Nan; Leybaert, Luc; da Silva, Tereza Cristina; Veloso Alves Pereira, Isabel; Jaeschke, Hartmut; Cogliati, Bruno; Vinken, Mathieu


    Gap junctions are a specialized group of cell-to-cell junctions that mediate direct intercellular communication between cells. They arise from the interaction of 2 hemichannels of adjacent cells, which in turn are composed of 6 connexin proteins. In liver, gap junctions are predominantly found in hepatocytes and play critical roles in virtually all phases of the hepatic life cycle, including cell growth, differentiation, liver-specific functionality and cell death. Liver gap junctions are directed through a broad variety of mechanisms ranging from epigenetic control of connexin expression to posttranslational regulation of gap junction activity. This paper reviews established and novel aspects regarding the architecture, control and functional relevance of liver gap junctions. PMID:27001459

  10. Geometrical theory of triple junctions of CSL boundaries. (United States)

    Gertsman, V Y


    When three grain boundaries having misorientations generating coincidence site lattices (CSLs) meet at a triple junction, a common (triple-junction) CSL is formed. A theory is developed as a set of theorems establishing the relationships between the geometrical parameters of the grain-boundary and triple-junction CSLs. Application of the theory is demonstrated in detail for the case of the cubic crystal system. It is also shown how the theory can be extended to an arbitrary crystal lattice.

  11. Turbulence-induced magnetic flux asymmetry at nanoscale junctions



    It was recently predicted [J. Phys.: Condens. Matter 18, 11059 (2006)] that turbulence of the electron flow may develop at nonadiabatic nanoscale junctions under appropriate conditions. Here we show that such an effect leads to an asymmetric current-induced magnetic field on the two sides of an otherwise symmetric junction. We propose that by measuring the fluxes ensuing from these fields across two surfaces placed at the two sides of the junction would provide direct and noninvasive evidence...

  12. Magnetic interaction between spatially extended superconducting tunnel junctions

    DEFF Research Database (Denmark)

    Grønbech-Jensen, Niels; Samuelsen, Mogens Rugholm


    A general description of magnetic interactions between superconducting tunnel junctions is given. The description covers a wide range of possible experimental systems, and we explicitly explore two experimentally relevant limits of coupled junctions. One is the limit of junctions with tunneling...... been considered through arrays of superconducting weak links based on semiconductor quantum wells with superconducting electrodes. We use the model to make direct interpretations of the published experiments and thereby propose that long-range magnetic interactions are responsible for the reported...

  13. Engineering of Droplet Manipulation in Tertiary Junction Microfluidic Channels (United States)


    in silico investigation of path selection by a single droplet inside a tertiary junction microchannel using oil-in-water as a model system. The...droplet was generated at a T-junction inside a microfluidic chip and its flow behaviour as a function of droplet size, streamline position, viscosity...investigation of path selection by a single droplet inside a tertiary- junction microchannel using oil-in-water as a model system. The droplet was generated at



    Mohammed SALIFU, MSc., PhD, MIHT, MGhIE


    The main objective of this study was to provide an improved method for safety appraisal in Ghana through the development and application of suitable accident prediction models for unsignalised urban junctions. A case study was designed comprising 91 junctions selected from the two most cosmopolitan cities in Ghana. A wide range of traffic and road data together with the corresponding accident data for each junction for the three-year period 1996-1998 was utilized in the model development p...

  15. Some chaotic features of intrinsically coupled Josephson junctions

    Energy Technology Data Exchange (ETDEWEB)

    Kolahchi, M.R., E-mail: [Institute for Advanced Studies in Basic Sciences, Zanjan 45195-1159 (Iran, Islamic Republic of); Shukrinov, Yu.M. [BLTP, JINR, Dubna, Moscow Region 141980 (Russian Federation); Max-Planck-Institute for the Physics of Complex Systems, 01187 Dresden (Germany); Hamdipour, M. [Institute for Advanced Studies in Basic Sciences, Zanjan 45195-1159 (Iran, Islamic Republic of); BLTP, JINR, Dubna, Moscow Region 141980 (Russian Federation); Botha, A.E. [Department of Physics, University of South Africa, P.O. Box 392, Pretoria 0003 (South Africa); Suzuki, M. [Photonics and Electronics Science and Engineering Center and Department of Electronic Science and Engineering, Kyoto University, Kyoto 615-8510 (Japan)


    Highlights: ► Intrinsically coupled Josephson junctions model a high-T{sub c} superconductor. ► Intrinsically coupled Josephson junctions can act as a chaotic nonlinear system. ► Chaos could be due to resonance overlap. ► Avoiding parameters that lead to chaos is important for the design of resonators. -- Abstract: We look for chaos in an intrinsically coupled system of Josephson junctions. This study has direct applications for the high-T{sub c} resonators which require coherence amongst the junctions.

  16. Imaging snake orbits at graphene n -p junctions (United States)

    Kolasiński, K.; Mreńca-Kolasińska, A.; Szafran, B.


    We consider conductance mapping of the snake orbits confined along the n -p junction defined in graphene by the electrostatic doping in the quantum Hall regime. We explain the periodicity of conductance oscillations at the magnetic field and the Fermi energy scales by the properties of the n -p junction as a conducting channel. We evaluate the conductance maps for a floating gate scanning the surface of the device. In the quantum Hall conditions the currents flow near the edges of the sample and along the n -p junction. The conductance mapping resolves only the n -p junction and not the edges. The conductance oscillations along the junction are found in the maps with periodicity related to the cyclotron orbits of the scattering current. Stronger probe potentials provide support to localized resonances at one of the sides of the junction with current loops that interfere with the n -p junction currents. The interference results in a series of narrow lines parallel to the junction with positions that strongly depend on the magnetic field through the Aharonov-Bohm effect. The consequences of a limited transparency of finite-width n -p junctions are also discussed.

  17. Assemble four-arm DNA junctions into nanoweb

    Institute of Scientific and Technical Information of China (English)


    DNA is of structural polymorphism, which is useful in nanoarchitecture; especially, four-arm DNA junc tions can be used to assemble nanowebs. The static four-arm DNA junctions were designed and synthesized. One-arm DNA and two-arm DNA came out simultaneously with the four-arm DNA junction's formation. A new method, termed the two-step method, was proposed and the productivity of four-arm DNA junctions was increased. A nanoweb was assembled successfully, but it showed irregularity itself. It was not the same as we expected. We consider that it is aresult from the flexibility of four-arm DNA junction.

  18. Terahertz Detection with Twin Superconductor-Insulator-Superconductor Tunnel Junctions

    Institute of Scientific and Technical Information of China (English)

    LI Jing; WANG Ming-Jye; SHI Sheng-Cai; Hiroshi Mat-suo


    Terahertz detection with twin superconductor-insulator-superconductor (SIS) tunnel junctions, which are connected in parallel via an inductive thin-film superconducting microstrip line, is mainly studied. Firstly, we investigate the direct-detection response of a superconducting twin-junction device by means of a Fourier transform spectrometer. Secondly, we construct a direct-detection model of twin SIS tunnel junctions. The superconducting twin-junction device is then simulated in terms of the constructed model. The simulation result is found to be in good agreement with the measured one. In addition, we observe that the direct-detection response of the device is consistent with the noise temperature behaviour.

  19. ‘Gap Junctions and Cancer: Communicating for 50 Years’ (United States)

    Aasen, Trond; Mesnil, Marc; Naus, Christian C.; Lampe, Paul D.; Laird, Dale W.


    Fifty years ago, tumour cells were found to lack electrical coupling, leading to the hypothesis that loss of direct intercellular communication is commonly associated with cancer onset and progression. Subsequent studies linked this phenomenon to gap junctions composed of connexin proteins. While many studies support the notion that connexins are tumour suppressors, recent evidence suggests that, in some tumour types, they may facilitate specific stages of tumour progression through both junctional and non-junctional signalling pathways. This Timeline article highlights the milestones connecting gap junctions to cancer, and underscores important unanswered questions, controversies and therapeutic opportunities in the field. PMID:27782134

  20. Superconducting Tunnel Junction Arrays for UV Photon Detection Project (United States)

    National Aeronautics and Space Administration — An innovative method is described for the fabrication of superconducting tunnel junction (STJ) detector arrays offering true "three dimensional" imaging throughout...

  1. Improving transition voltage spectroscopy of molecular junctions

    DEFF Research Database (Denmark)

    Markussen, Troels; Chen, Jingzhe; Thygesen, Kristian Sommer


    Transition voltage spectroscopy (TVS) is a promising spectroscopic tool for molecular junctions. The principles in TVS is to find the minimum on a Fowler-Nordheim plot where ln(I/V2) is plotted against 1/V and relate the voltage at the minimum Vmin to the closest molecular level. Importantly, Vmin...... is approximately half the voltage required to see a peak in the dI/dV curve. Information about the molecular level position can thus be obtained at relatively low voltages. In this work we show that the molecular level position can be determined at even lower voltages, Vmin(α), by finding the minimum of ln...

  2. Magnetic resonance imaging in craniovertebral junction anomaly

    Energy Technology Data Exchange (ETDEWEB)

    Tada, Shimpei; Hata, Yuichi; Miyamoto, Yukio


    Materials consisted of 6 cases with occipitalization of the atlas, (4 of them complicated by basilar impression), 7 with basilar impression, one with hypoplasia of the atlas and C2-3 fusion, and one with os odontoideum. Basal angles after Welcker were all more than 130 in contrast to 118-138 (127 an average) in control group. Basal angle more than 140 denoted platybasia. Syringomyelia was seen in 7 of all 15 cases and 4 of 5 cases with platybasia. Chiari malformation was seen in 9 of all 15 cases and 4 of 5 with platybasia. Basal angles were closely related to craniovertebral junction bone anomaly, syringomyelia, and Chiari malformation. (author).

  3. Magic-T Junction using Microstrip/Slotline Transitions (United States)

    U-yen, Kongpop; Wollack, Edward J.; Doiron, Terence


    An improved broadband planar magic-T junction that incorporates microstrip/slotline transitions has been developed. In comparison with a prior broadband magic-T junction incorporating microstrip/slotline transitions, this junction offers superior broadband performance. In addition, because this junction is geometrically simpler and its performance is less affected by fabrication tolerances, the benefits of the improved design can be realized at lower fabrication cost. There are potential uses for junctions like this one in commercial microwave communication receivers, radar and polarimeter systems, and industrial microwave instrumentation. A magic-T junction is a four-port waveguide junction consisting of a combination of an H-type and an E-type junction. An E-type junction is so named because it includes a junction arm that extends from a main waveguide in the same direction as that of the electric (E) field in the waveguide. An H-type junction is so named because it includes a junction arm parallel to the magnetic (H) field in a main waveguide. A magic-T junction includes two input ports (here labeled 1 and 2, respectively) and two output ports (here labeled E and H, respectively). In an ideal case, (1) a magic-T junction is lossless, (2) the input signals add (that is, they combine in phase with each other) at port H, and (3) the input signals subtract (that is, they combine in opposite phase) at port E. The prior junction over which the present junction is an improvement affords in-phase-combining characterized by a broadband frequency response, and features a small slotline area to minimize in-band loss. However, with respect to isolation between ports 1 and 2 and return loss at port E, it exhibits narrowband frequency responses. In addition, its performance is sensitive to misalignment of microstrip and slotline components: this sensitivity is attributable to a limited number of quarter-wavelength (lambda/4) transmission-line sections for matching impedances

  4. Analysis of the Intrinsically Disordered N-Terminus of the DNA Junction-Resolving Enzyme T7 Endonuclease I: Identification of Structure Formed upon DNA Binding. (United States)

    Freeman, Alasdair D J; Stevens, Michael; Declais, Anne-Cecile; Leahy, Adam; Mackay, Katherine; El Mkami, Hassane; Lilley, David M J; Norman, David G


    The four-way (Holliday) DNA junction of homologous recombination is processed by the symmetrical cleavage of two strands by a nuclease. These junction-resolving enzymes bind to four-way junctions in dimeric form, distorting the structure of the junction in the process. Crystal structures of T7 endonuclease I have been determined as free protein, and the complex with a DNA junction. In neither crystal structure was the N-terminal 16-amino acid peptide visible, yet deletion of this peptide has a marked effect on the resolution process. Here we have investigated the N-terminal peptide by inclusion of spin-label probes at unique sites within this region, studied by electron paramagnetic resonance. Continuous wave experiments show that these labels are mobile in the free protein but become constrained on binding a DNA junction, with the main interaction occurring for residues 7-10 and 12. Distance measurements between equivalent positions within the two peptides of a dimer using PELDOR showed that the intermonomeric distances for residues 2-12 are long and broadly distributed in the free protein but are significantly shortened and become more defined on binding to DNA. These results suggest that the N-terminal peptides become more organized on binding to the DNA junction and nestle into the minor grooves at the branchpoint, consistent with the biochemical data indicating an important role in the resolution process. This study demonstrates the presence of structure within a protein region that cannot be viewed by crystallography.

  5. Fenestrated vertebrobasilar junction aneurysm: diagnostic and therapeutic considerations. (United States)

    Albanese, Erminia; Russo, Antonino; Ulm, Arthur J


    Vertebrobasilar junction (VBJ) aneurysms are uncommon and are often found in association with basilar artery (BA) fenestration. The complex anatomical environment of the VBJ, and the complicated geometry of the fenestration make clipping of these aneurysms difficult. Therefore, endovascular treatment of these aneurysms is now widely accepted. The authors describe the case of a 43-year-old woman with sickle cell anemia. She presented with subarachnoid hemorrhage. Digital subtraction angiography was performed and depicted multiple intracranial aneurysms. The patient had a left superior hypophysial artery aneurysm, a right superior cerebellar artery-posterior cerebral artery aneurysm, and a VBJ aneurysm associated with a fenestration of the BA. The VBJ aneurysm was not identified on the initial angiogram and was only revealed after 3D rotational angiography was performed. The 3D reconstruction was critical to the understanding of the complex geometry associated with the fenestrated BA. The VBJ was reconstructed using a combination endovascular technique. The dominant limb of the fenestration was stented and balloon-assisted coiling was performed, followed by sacrifice of the nondominant vertebral artery using coils and the embolic agent Onyx. Postoperative angiography demonstrated successful occlusion of the aneurysm with reconstruction of the VBJ. To the authors' knowledge, this is the first report of a fenestrated VBJ aneurysm treated with the combination of stenting, balloon remodeling, coiling, and vessel sacrifice. Three-dimensional angiography was critical in making the correct diagnosis of the source of the subarachnoid hemorrhage and with operative planning.

  6. Grades 1-8, Apache Junction Unified School District 43, Apache Junction, Arizona. PLATO Evaluation Series. (United States)

    Quinn, David W.; Quinn, Nancy W.

    Apache Junction Unified School District, Arizona, has embarked on a 5-year program of instructional improvement using technology. PLATO Elementary reading and mathematics products were installed in the district's elementary and middle schools at the beginning of the 1999-2000 school year. This evaluation studied the use and preliminary student…

  7. Fabrication of magnetic tunnel junctions with epitaxial and textured ferromagnetic layers (United States)

    Chang, Y. Austin; Yang, Jianhua Joshua


    This invention relates to magnetic tunnel junctions and methods for making the magnetic tunnel junctions. The magnetic tunnel junctions include a tunnel barrier oxide layer sandwiched between two ferromagnetic layers both of which are epitaxial or textured with respect to the underlying substrate upon which the magnetic tunnel junctions are grown. The magnetic tunnel junctions provide improved magnetic properties, sharper interfaces and few defects.

  8. Alteration of cadherin isoform expression and inhibition of gap junctions in stomach carcinoma cells

    Institute of Scientific and Technical Information of China (English)


    To explore cell malignant phenotype correlated changes of cell surface adhesion molecules and cell-cell communication in carcinogenesis, human stomach transformed and cancer cell lines were investigated. Expressions of E-cadherin, N-cadherin, ?-catenin, ?-catenin as well as gap junction (GJ) protein Cx32 were studied by utilization of immunoblotting, immunocytochemical and fluorescent dye transfer methods. Mammalian normal stomach mucosal cells expressed E-cadherin but not N-cadherin. E-cadherin immunofluorescence was detected at cell membranous adherens junctions (AJ) where colocalization with immunofluorescent staining of inner surface adhesion plaque proteins ?- and ?-catenins was observed. The existence of E-cadherin/ catenin (?-, ?-) protein complexes as AJ was suggested. In transformed and stomach cancer cells E-cadherin was inhibited, instead, N-cadherin was expressed and localized at membranous AJ where co-staining with ?- and ?-catenin fluorescence was observed. Formation of N-cadherin/catenin (?-, ?-) protein complex at AJs of transformed and cancer cells was suggested. The above observations were further supported by immunoblotting results. Normal stomach muscosal and transformed cells expressed Cx32 at membranous GJ and were competent of gap junction communication (GJIC). In stomach cancer cells, Cx32 was inhibited and GJIC was defective. The results suggested that changes of signal pathways mediated by both cell adhesion and cell communication systems are associated intracellular events of stomach carcinogenesis. The alteration of cadherin isoform from E- to N-cadherin in transformed and stomach cancer cells is the first report.

  9. Slowdown promotes muscle integrity by modulating integrin-mediated adhesion at the myotendinous junction. (United States)

    Gilsohn, Eliezer; Volk, Talila


    The correct assembly of the myotendinous junction (MTJ) is crucial for proper muscle function. In Drosophila, this junction comprises hemi-adherens junctions that are formed upon arrival of muscles at their corresponding tendon cells. The MTJ mainly comprises muscle-specific alphaPS2betaPS integrin receptors and their tendon-derived extracellular matrix ligand Thrombospondin (Tsp). We report the identification and functional analysis of a novel tendon-derived secreted protein named Slowdown (Slow). Homozygous slow mutant larvae exhibit muscle or tendon rupture, sluggish larval movement, partial lethality, and the surviving adult flies are unable to fly. These defects result from improper assembly of the embryonic MTJ. In slow mutants, Tsp prematurely accumulates at muscle ends, the morphology of the muscle leading edge changes and the MTJ architecture is aberrant. Slow was found to form a protein complex with Tsp. This complex is biologically active and capable of altering the morphology and directionality of muscle ends. Our analysis implicates Slow as an essential component of the MTJ, crucial for ensuring muscle and tendon integrity during larval locomotion.

  10. Geophysical investigation of the fault architecture of the San Andreas - Calaveras Fault junction in central California (United States)

    Watt, J. T.; Jachens, R. C.; Graymer, R. W.; Ponce, D. A.; Simpson, R. W.


    We use potential-field modeling, surface geologic mapping, and relocated seismicity (Waldhauser and Schaff, 2008) to investigate the three-dimensional structure of the San Andreas-Calaveras Fault junction to gain insight into regional tectonics, fault kinematics, and seismic hazards. South of the San Francisco Bay area, the San Andreas and Hayward-Calaveras-Paicines fault zones join to become a single San Andreas Fault. The Paicines fault is the southern-most extension of the Calaveras fault zone. At the surface, the San Andreas and Paicines faults are both creeping (Ryder and Burgmann, 2008), and parallel each other for about 65 km, separated by only 2-3 km. Approximately 175 km of slip has been transferred from the San Andreas onto the Calaveras-Hayward fault system in this area. The current geometry of this junction is not kinematically sustainable without deformation and/or slip on additional fault surfaces in the region (Burford and Savage, 1972). Dislocation modeling involving slip on detachment faults rather than on only strike-slip faults better predicts observations of geodetic displacements in the junction area, signifying the possible existence of active horizontal or dipping structures (Burgmann, 1997). Geophysical evidence suggests that the San Andreas and Paicines faults dip away from eachother within the fault junction, reflecting regional compression across the junction, and we identify multiple structures that may transfer slip through this complex structural zone. Geophysical modeling and relocated seismicity show the San Andreas fault dips steeply to the southwest within the join. Interpretation of relocated seismicity indicates multiple dipping and sub-horizontal faults. In particular, along the northern and southern portions of the junction, northeast-dipping alignments of hypocenters, if projected to the surface, correlate with the trace of the Paicines fault. In addition, we identify a laterally extensive magnetic body 1-8 km below the

  11. Gap junctions in the nervous system. (United States)

    Rozental, R; Giaume, C; Spray, D C


    Synapses are classically defined as close connections between two nerve cells or between a neuronal cell and a muscle or gland cell across which a chemical signal (i.e., a neurotransmitter) and/or an electrical signal (i.e., current-carrying ions) can pass. The definition of synapse was developed by Charles Sherrington and by Ramon y Cajal at the beginning of this century and refined by John Eccles and Bernard Katz 50 years later; in this collection of papers, the definition of synapses is discussed further in the chapter by Mike Bennett. who provided the first functional demonstration of electrical transmission via gap junction channels between vertebrate neurons. As is evidenced by the range of topics covered in this issue, research dealing with gap junctions in the nervous system has expanded enormously in the past decade, major findings being that specific cell types in the brain expresses specific types of connexins and that expression patterns coincide with tissue compartmentalization and function and that these compartments change during development.

  12. Electrophysiological study in neuromuscular junction disorders

    Directory of Open Access Journals (Sweden)

    Ajith Cherian


    Full Text Available This review is on ultrastructure and subcellular physiology at normal and abnormal neuromuscular junctions. The clinical and electrophysiological findings in myasthenia gravis, Lambert-Eaton myasthenic syndrome (LEMS, congenital myasthenic syndromes, and botulinum intoxication are discussed. Single fiber electromyography (SFEMG helps to explain the basis of testing neuromuscular junction function by repetitive nerve stimulation (RNS. SFEMG requires skill and patience and its availability is limited to a few centers. For RNS supramaximal stimulation is essential and so is display of the whole waveform of each muscle response at maximum amplitude. The amplitudes of the negative phase of the first and fourth responses are measured from baseline to negative peak, and the percent change of the fourth response compared with the first represents the decrement or increment. A decrement greater than 10% is accepted as abnormal and smooth progression of response amplitude train and reproducibility form the crux. In suspected LEMS the effect of fast rates of stimulation should be determined after RNS response to slow rates of stimulation. Caution is required to avoid misinterpretation of potentiation and pseudofacilitation.

  13. Improving transition voltage spectroscopy of molecular junctions (United States)

    Markussen, Troels; Chen, Jingzhe; Thygesen, Kristian S.


    Transition voltage spectroscopy (TVS) is a promising spectroscopic tool for molecular junctions. The principles in TVS is to find the minimum on a Fowler-Nordheim plot where ln(I/V2) is plotted against 1/V and relate the voltage at the minimum Vmin to the closest molecular level. Importantly, Vmin is approximately half the voltage required to see a peak in the dI/dV curve. Information about the molecular level position can thus be obtained at relatively low voltages. In this work we show that the molecular level position can be determined at even lower voltages, Vmin(α), by finding the minimum of ln(I/Vα) with α<2. On the basis of a simple Lorentzian transmission model we analyze theoretical ab initio as well as experimental I-V curves and show that the voltage required to determine the molecular levels can be reduced by ~30% as compared to conventional TVS. As for conventional TVS, the symmetry/asymmetry of the molecular junction needs to be taken into account in order to gain quantitative information. We show that the degree of asymmetry may be estimated from a plot of Vmin(α) vs α.

  14. Development of superconducting tunnel junction radiation detectors

    Energy Technology Data Exchange (ETDEWEB)

    Katagiri, Masaki; Kishimoto, Maki; Ukibe, Masahiro; Nakamura, Tatsuya; Nakazawa, Masaharu [Japan Atomic Energy Research Inst., Tokyo (Japan); Kurakado, Masahiko; Ishibashi, Kenji; Maehata, Keisuke


    Study on development of high energy resolution X-ray detector using superconducting tunnel junction (STJ) for radiation detection was conducted for 5 years under cooperation of University of Tokyo group and Kyushu University group by Quantum measurement research group of Advanced fundamental research center of JAERI. As the energy resolution of STJ could be obtained better results than that of Si semiconductor detector told to be actually best at present, this study aimed to actualize an X-ray detector usable for the experimental field and to elucidate radiation detection mechanism due to STJ. The STJ element used for this study was the one developed by Kurakado group of Nippon Steel Corp. As a results, some technical problems were almost resolved, which made some trouble when using the STJ element to detection element of X-ray spectrometer. In order to make the X-ray detector better, it is essential to manufacture a STJ element and develop serial junction type STJ element on the base of optimization of the element structure and selection and single crystallization of new superconducting materials such as Ta and others, activating the research results. (G.K.)

  15. Junction like behavior in polycrystalline diamond films

    Energy Technology Data Exchange (ETDEWEB)

    Bhaskaran, Shivakumar, E-mail: [Department of Electrical and Computer Engineering, Cullen College of Engineering, University of Houston, TX 77004 (United States); Charlson, Earl Joe; Litvinov, Dmitri [Department of Electrical and Computer Engineering, Cullen College of Engineering, University of Houston, TX 77004 (United States); Makarenko, Boris [Department of Chemistry, University of Houston, TX 77004 (United States)


    Highlights: Black-Right-Pointing-Pointer The result that we obtained are compared with single crystalline diamond devices. Black-Right-Pointing-Pointer The barrier height of 4.4 eV matches the ideal pn-junction barrier height of diamond thin film. - Abstract: We have successfully fabricated polycrystalline diamond rectifying junction devices on n-type (1 0 0) silicon substrates by Hot Filament Chemical Vapor Deposition (HFCVD) using methane/hydrogen process gas and trimethyl borate and trimethyl phosphite dissolved in acetone as p- and n-type dopants, respectively. Impedance spectroscopy and current-voltage analysis indicates that the conduction is vertical down the grains and facets and not due to surface effects. Electrical characteristics were analyzed with In and Ti/Au top metal contacts with Al as the substrate contact. Current-voltage characteristics as a function of temperature showed barrier potentials of 1.1 eV and 0.77 eV for the In and Ti/Au contacts, respectively. Barrier heights of 4.8 eV (In) and 4.4 eV (Ti/Au) were obtained from capacitance-voltage measurements.

  16. GAP junctional communication in brain secondary organizers. (United States)

    Bosone, Camilla; Andreu, Abraham; Echevarria, Diego


    Gap junctions (GJs) are integral membrane proteins that enable the direct cytoplasmic exchange of ions and low molecular weight metabolites between adjacent cells. They are formed by the apposition of two connexons belonging to adjacent cells. Each connexon is formed by six proteins, named connexins (Cxs). Current evidence suggests that gap junctions play an important part in ensuring normal embryo development. Mutations in connexin genes have been linked to a variety of human diseases, although the precise role and the cell biological mechanisms of their action remain almost unknown. Among the big family of Cxs, several are expressed in nervous tissue but just a few are expressed in the anterior neural tube of vertebrates. Many efforts have been made to elucidate the molecular bases of Cxs cell biology and how they influence the morphogenetic signal activity produced by brain signaling centers. These centers, orchestrated by transcription factors and morphogenes determine the axial patterning of the mammalian brain during its specification and regionalization. The present review revisits the findings of GJ composed by Cx43 and Cx36 in neural tube patterning and discuss Cx43 putative enrollment in the control of Fgf8 signal activity coming from the well known secondary organizer, the isthmic organizer. © 2016 The Authors. Development, Growth & Differentiation published by John Wiley & Sons Australia, Ltd on behalf of Japanese Society of Developmental Biologists.

  17. Annealing free magnetic tunnel junction sensors (United States)

    Knudde, S.; Leitao, D. C.; Cardoso, S.; Freitas, P. P.


    Annealing is a major step in the fabrication of magnetic tunnel junctions (MTJs). It sets the exchange bias between the pinned and antiferromagnetic layers, and helps to increase the tunnel magnetoresistance (TMR) in both amorphous and crystalline junctions. Recent research on MTJs has focused on MgO-based structures due to their high TMR. However, the strict process control and mandatory annealing step can limit the scope of the application of these structures as sensors. In this paper, we present AlOx-based MTJs that are produced by ion beam sputtering and remote plasma oxidation and show optimum transport properties with no annealing. The microfabricated devices show TMR values of up to 35% and using NiFe/CoFeB free layers provides tunable linear ranges, leading to coercivity-free linear responses with sensitivities of up to 5.5%/mT. The top-pinned synthetic antiferromagnetic reference shows a stability of about 30 mT in the microfabricated devices. Sensors with linear ranges of up to 60 mT are demonstrated. This paves the way for the integration of MTJ sensors in heat-sensitive applications such as flexible substrates, or for the design of low-footprint on-chip multiaxial sensing devices.

  18. Interaction of Branch Migration Translocases with the Holliday Junction-resolving Enzyme and Their Implications in Holliday Junction Resolution* (United States)

    Cañas, Cristina; Suzuki, Yuki; Marchisone, Chiara; Carrasco, Begoña; Freire-Benéitez, Verónica; Takeyasu, Kunio; Alonso, Juan C.; Ayora, Silvia


    Double-strand break repair involves the formation of Holliday junction (HJ) structures that need to be resolved to promote correct replication and chromosomal segregation. The molecular mechanisms of HJ branch migration and/or resolution are poorly characterized in Firmicutes. Genetic evidence suggested that the absence of the RuvAB branch migration translocase and the RecU HJ resolvase is synthetically lethal in Bacillus subtilis, whereas a recU recG mutant was viable. In vitro RecU, which is restricted to bacteria of the Firmicutes phylum, binds HJs with high affinity. In this work we found that RecU does not bind simultaneously with RecG to a HJ. RuvB by interacting with RecU bound to the central region of HJ DNA, loses its nonspecific association with DNA, and re-localizes with RecU to form a ternary complex. RecU cannot stimulate the ATPase or branch migration activity of RuvB. The presence of RuvB·ATPγS greatly stimulates RecU-mediated HJ resolution, but the addition of ATP or RuvA abolishes this stimulatory effect. A RecU·HJ·RuvAB complex might be formed. RecU does not increase the RuvAB activities but slightly inhibits them. PMID:24770420

  19. Interaction of branch migration translocases with the Holliday junction-resolving enzyme and their implications in Holliday junction resolution. (United States)

    Cañas, Cristina; Suzuki, Yuki; Marchisone, Chiara; Carrasco, Begoña; Freire-Benéitez, Verónica; Takeyasu, Kunio; Alonso, Juan C; Ayora, Silvia


    Double-strand break repair involves the formation of Holliday junction (HJ) structures that need to be resolved to promote correct replication and chromosomal segregation. The molecular mechanisms of HJ branch migration and/or resolution are poorly characterized in Firmicutes. Genetic evidence suggested that the absence of the RuvAB branch migration translocase and the RecU HJ resolvase is synthetically lethal in Bacillus subtilis, whereas a recU recG mutant was viable. In vitro RecU, which is restricted to bacteria of the Firmicutes phylum, binds HJs with high affinity. In this work we found that RecU does not bind simultaneously with RecG to a HJ. RuvB by interacting with RecU bound to the central region of HJ DNA, loses its nonspecific association with DNA, and re-localizes with RecU to form a ternary complex. RecU cannot stimulate the ATPase or branch migration activity of RuvB. The presence of RuvB·ATPγS greatly stimulates RecU-mediated HJ resolution, but the addition of ATP or RuvA abolishes this stimulatory effect. A RecU·HJ·RuvAB complex might be formed. RecU does not increase the RuvAB activities but slightly inhibits them. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. A Dynamic Traffic Signal Timing Model and its Algorithm for Junction of Urban Road

    DEFF Research Database (Denmark)

    Cai, Yanguang; Cai, Hao


    -time and dynamic signal control of junction. To obtain the optimal solution of the model by hybrid chaotic quantum evolutionary algorithm, the model is converted to an easily solvable form. To simplify calculation, we give the expression of the partial derivative and change rate of the objective function...... such that the implementation of the algorithm only involves function assignments and arithmetic operations and thus avoids complex operations such as integral and differential. Simulation results show that the algorithm has less remain vehicles than Webster method, higher convergence rate and convergence speed than quantum......As an important part of Intelligent Transportation System, the scientific traffic signal timing of junction can improve the efficiency of urban transport. This paper presents a novel dynamic traffic signal timing model. According to the characteristics of the model, hybrid chaotic quantum...

  1. Alternative Strategies for Maximizing the Output of Multi-Junction Photovoltaic Panels

    CERN Document Server

    Abrams, Ze'ev R


    Multi-junction photovoltaics provide a logical method of increasing the utilization of solar power for a given area. However, their current design and fabrication methods invoke numerous material and cost complexities that limit their potential, particularly for flat panel paradigms. In this paper, three general strategies based on the electrical isolation of the internal sub-layers are described. These strategies involve current or voltage matching the sub-layers by varying of fractional absorption and areal coverage of individual cells within each sub-layer, as well as modifying their combined output using power electronics. A simplified theoretical description of these strategies is provided for pairs of junction materials that allows a more streamlined description of the requirements.

  2. Enteropathogenic E. coli: breaking the intestinal tight junction barrier [version 2; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Anand Prakash Singh


    Full Text Available Enteropathogenic E. coli (EPEC causes acute intestinal infections in infants in the developing world. Infection typically spreads through contaminated food and water and leads to severe, watery diarrhea. EPEC attaches to the intestinal epithelial cells and directly injects virulence factors which modulate multiple signaling pathways leading to host cell dysfunction. However, the molecular mechanisms that regulate the onset of diarrhea are poorly defined. A major target of EPEC is the host cell tight junction complex which acts as a barrier and regulates the passage of water and solutes through the paracellular space. In this review, we focus on the EPEC effectors that target the epithelial barrier, alter its functions and contribute to leakage through the tight junctions.

  3. Switching and Rectification in Carbon-Nanotube Junctions (United States)

    Srivastava, Deepak; Andriotis, Antonis N.; Menon, Madhu; Chernozatonskii, Leonid


    Multi-terminal carbon-nanotube junctions are under investigation as candidate components of nanoscale electronic devices and circuits. Three-terminal "Y" junctions of carbon nanotubes (see Figure 1) have proven to be especially interesting because (1) it is now possible to synthesize them in high yield in a controlled manner and (2) results of preliminary experimental and theoretical studies suggest that such junctions could exhibit switching and rectification properties. Following the preliminary studies, current-versus-voltage characteristics of a number of different "Y" junctions of single-wall carbon nanotubes connected to metal wires were computed. Both semiconducting and metallic nanotubes of various chiralities were considered. Most of the junctions considered were symmetric. These computations involved modeling of the quantum electrical conductivity of the carbon nanotubes and junctions, taking account of such complicating factors as the topological defects (pentagons, heptagons, and octagons) present in the hexagonal molecular structures at the junctions, and the effects of the nanotube/wire interfaces. A major component of the computational approach was the use of an efficient Green s function embedding scheme. The results of these computations showed that symmetric junctions could be expected to support both rectification and switching. The results also showed that rectification and switching properties of a junction could be expected to depend strongly on its symmetry and, to a lesser degree, on the chirality of the nanotubes. In particular, it was found that a zigzag nanotube branching at a symmetric "Y" junction could exhibit either perfect rectification or partial rectification (asymmetric current-versus-voltage characteristic, as in the example of Figure 2). It was also found that an asymmetric "Y" junction would not exhibit rectification.

  4. Molecular Models for Conductance in Junctions and Electrochemical Electron Transfer (United States)

    Mazinani, Shobeir Khezr Seddigh

    This thesis develops molecular models for electron transport in molecular junctions and intra-molecular electron transfer. The goal is to identify molecular descriptors that afford a substantial simplification of these electronic processes. First, the connection between static molecular polarizability and the molecular conductance is examined. A correlation emerges whereby the measured conductance of a tunneling junction decreases as a function of the calculated molecular polarizability for several systems, a result consistent with the idea of a molecule as a polarizable dielectric. A model based on a macroscopic extension of the Clausius-Mossotti equation to the molecular domain and Simmon's tunneling model is developed to explain this correlation. Despite the simplicity of the theory, it paves the way for further experimental, conceptual and theoretical developments in the use of molecular descriptors to describe both conductance and electron transfer. Second, the conductance of several biologically relevant, weakly bonded, hydrogen-bonded systems is systematically investigated. While there is no correlation between hydrogen bond strength and conductance, the results indicate a relation between the conductance and atomic polarizability of the hydrogen bond acceptor atom. The relevance of these results to electron transfer in biological systems is discussed. Hydrogen production and oxidation using catalysts inspired by hydrogenases provides a more sustainable alternative to the use of precious metals. To understand electrochemical and spectroscopic properties of a collection of Fe and Ni mimics of hydrogenases, high-level density functional theory calculations are described. The results, based on a detailed analysis of the energies, charges and molecular orbitals of these metal complexes, indicate the importance of geometric constraints imposed by the ligand on molecular properties such as acidity and electrocatalytic activity. Based on model calculations of

  5. MgB2 tunnel junctions and SQUIDs

    NARCIS (Netherlands)

    Brinkman, A.; Rowell, J.M.


    Recent advances in the realization and understanding of MgB2 tunnel junctions and SQUIDs are surveyed. High quality MgB2 junctions with suitable tunnel barriers have been realized based on both oriented and epitaxial thin MgB2 films. Multiband transport properties, such as the existence of two energ

  6. Craniovertebral Junction Instability in the Setting of Chiari I Malformation. (United States)

    Goldstein, Hannah E; Anderson, Richard C E


    This article addresses the key features, clinical presentation, and radiographic findings associated with craniovertebral junction instability in the setting of Chiari I malformation. It further discusses surgical technique for treating patients with Chiari I malformation with concomitant craniovertebral junction instability, focusing on modern posterior rigid instrumentation and fusion techniques.

  7. Parametric excitation of plasma oscillations in a Josephson tunnel junction

    DEFF Research Database (Denmark)

    Bak, Christen Kjeldahl; Kofoed, Bent; Pedersen, Niels Falsig


    Experimental evidence for subharmonic parametric excitation of plasma oscillations in Josephson tunnel junctions is presented. The experiments described are performed by measuring the microwave power necessary to switch a Josephson−tunnel junction biased in the zero−voltage state to a finite−volt......−voltage state. Journal of Applied Physics is copyrighted by The American Institute of Physics....

  8. Shapiro and parametric resonances in coupled Josephson junctions (United States)

    Gaafar, Ma A.; Shukrinov, Yu M.; Foda, A.


    The effect of microwave irradiation on the phase dynamics of intrinsic Josephson junctions in high temperature superconductors is investigated. We compare the current-voltage characteristics for a stack of coupled Josephson junctions under external irradiation calculated in the framework of CCJJ and CCJJ+DC models.

  9. Microwave phase locking of Josephson-junction fluxon oscillators

    DEFF Research Database (Denmark)

    Salerno, M.; Samuelsen, Mogens Rugholm; Filatrella, G.;


    -dimensional functional map. Phase-locked states correspond to fixed points of the map. For junctions of in-line geometry, the existence and stability of such fixed points can be studied analytically. Study of overlap-geometry junctions requires the numerical inversion of a functional equation, but the results...

  10. Josephson junctions in high-T/sub c/ superconductors (United States)

    Falco, C.M.; Lee, T.W.


    The invention includes a high T/sub c/ Josephson sperconducting junction as well as the method and apparatus which provides the junction by application of a closely controlled and monitored electrical discharge to a microbridge region connecting two portions of a superconducting film.

  11. Junction leakage measurements with micro four-point probes

    DEFF Research Database (Denmark)

    Lin, Rong; Petersen, Dirch Hjorth; Wang, Fei


    We present a new, preparation-free method for measuring the leakage current density on ultra-shallow junctions. The junction leakage is found by making a series of four-point sheet resistance measurements on blanket wafers with variable electrode spacings. The leakage current density is calculate...

  12. How good are one-dimensional Josephson junction models?

    DEFF Research Database (Denmark)

    Lomdahl, P. S.; Olsen, O.H.; Eilbeck, J. C.


    A two-dimensional model of Josephson junctions of overlap type is presented and shown to reduce to the usual one-dimensional (1D) model in the limit of a very narrow junction. Comparisons between the stability limits for fluxon reflection obtained from the two models suggest that the many results...

  13. Relaxation towards phase-locked dynamics in long Josephson junctions

    DEFF Research Database (Denmark)

    Salerno, M.; Grønbech-Jensen, Niels; Samuelsen, Mogens Rugholm


    We study the relaxation phenomenon towards phase-locked dynamics in long Josephson junctions. In particular the dependence of the relaxation frequency for the equal time of flight solution on the junction parameters is derived. The analysis is based on a phase-locked map and is compared with dire...

  14. Processing of Superconductor-Normal-Superconductor Josephson Edge Junctions (United States)

    Kleinsasser, A. W.; Barner, J. B.


    The electrical behavior of epitaxial superconductor-normal-superconductor (SNS) Josephson edge junctions is strongly affected by processing conditions. Ex-situ processes, utilizing photoresist and polyimide/photoresist mask layers, are employed for ion milling edges for junctions with Yttrium-Barium-Copper-Oxide (YBCO) electrodes and primarily Co-doped YBCO interlayers.

  15. 75 FR 76294 - Radio Broadcasting Services: Pacific Junction, IA (United States)


    ... From the Federal Register Online via the Government Publishing Office FEDERAL COMMUNICATIONS COMMISSION 47 CFR Part 73 Radio Broadcasting Services: Pacific Junction, IA AGENCY: Federal Communications Commission. ACTION: Final rule. SUMMARY: The staff deletes FM Channel 299C2 at Pacific Junction,...

  16. Shunted-Josephson-junction model. I. The autonomous case

    DEFF Research Database (Denmark)

    Belykh, V. N.; Pedersen, Niels Falsig; Sørensen, O. H.


    of the junction behavior in different regions of the parameter space. Approximate formulas are given for the parameter-space decomposition into regions of qualitatively different junction behavior corroborated by the associated-phase plane portraits and also approximate expressions for the corresponding dc...

  17. Gap junction protein connexin-43 interacts directly with microtubules

    NARCIS (Netherlands)

    Giepmans, B N; Verlaan, I; Hengeveld, T; Janssen, H; Calafat, J; Falk, M M; Moolenaar, W H


    Gap junctions are specialized cell-cell junctions that mediate intercellular communication. They are composed of connexin proteins, which form transmembrane channels for small molecules [1, 2]. The C-terminal tail of connexin-43 (Cx43), the most widely expressed connexin member, has been implicated

  18. Septal Junctions in Filamentous Heterocyst-Forming Cyanobacteria. (United States)

    Flores, Enrique; Herrero, Antonia; Forchhammer, Karl; Maldener, Iris


    In the filaments of heterocyst-forming cyanobacteria, septal junctions that traverse the septal peptidoglycan join adjacent cells, allowing intercellular communication. Perforations in the septal peptidoglycan have been observed, and proteins involved in the formation of such perforations and putative protein components of the septal junctions have been identified, but their relationships are debated.

  19. Vortex dynamics in Josephson ladders with II-junctions

    DEFF Research Database (Denmark)

    Kornev, Victor K.; Klenov, N. V.; Oboznov, V.A.;


    Both experimental and numerical studies of a self-frustrated triangular array of pi-junctions are reported. The array of SFS Josephson junctions shows a transition to the pi-state and self-frustration with a decrease in temperature. This manifests itself in a half-period shift of the bias critica...

  20. Determination of Relaxation Time of a Josephson Tunnel Junction

    Institute of Scientific and Technical Information of China (English)

    WEN Xue-Da; YU Yang


    We propose a non-stationary method to measure the energy relaxation time of Josephson tunnel junctions from microwave enhanced escape phenomena.Compared with the previous methods,our method possesses simple and accurate features.Moreover,having determined the energy relaxation time,we can further obtain the coupling strength between the microwave source and the junction by changing the microwave power.

  1. Shunted-Josephson-junction model. II. The nonautonomous case

    DEFF Research Database (Denmark)

    Belykh, V. N.; Pedersen, Niels Falsig; Sørensen, O. H.


    The shunted-Josephson-junction model with a monochromatic ac current drive is discussed employing the qualitative methods of the theory of nonlinear oscillations. As in the preceding paper dealing with the autonomous junction, the model includes a phase-dependent conductance and a shunt capacitance...

  2. Conditions for synchronization in Josephson-junction arrays

    Energy Technology Data Exchange (ETDEWEB)

    Chernikov, A.A.; Schmidt, G. [Stevens Institute of Technology, Hoboken, NJ (United States)


    An effective perturbation theoretical method has been developed to study the dynamics of Josephson Junction series arrays. It is shown that the inclusion of Junction capacitances, often ignored, has a significant impact on synchronization. Comparison of analytic with computational results over a wide range of parameters shows excellent agreement.

  3. Internal resonances in periodically modulated long Josephson junctions

    DEFF Research Database (Denmark)

    Larsen, Britt Hvolbæk; Mygind, Jesper; Ustinov, Alexey V.


    Current-voltage (I-V) characteristics of long Josephson junctions with a periodic lattice of localized inhomogeneities are studied. The interaction between the moving fluxons and the inhomogeneities causes resonant steps in the IV-curve. Some of these steps are due to a synchronization to resonan...... into account the interaction between the resonance in the sub-junction and the magnetic flux density waves excited in the whole junction is given....... Fiske modes in the sub-junctions formed between the inhomogeneities. The voltage positions of the resonant steps oscillate as function of the applied magnetic field with a period corresponding to the inclusion of one magnetic flux quantum, Φ0=h/2e, per sub-junction. A qualitative explanation that takes...

  4. Parametric resonance in the system of long Josephson junctions (United States)

    Rahmonov, I. R.; Shukrinov, Yu. M.; Irie, A.


    The phase dynamics of the system of long Josephson junctions whose length exceeds the Josephson penetration depth has been studied. The possibility of the appearance of a longitudinal plasma wave and parametric resonance has been demonstrated. Both inductive and capacitive couplings between Josephson junctions have been taken into account in the calculations. The current-voltage characteristics, as well as time evolution of the spatial distribution of the electric charge in superconducting layers and the magnetic field, have been calculated in all Josephson junctions of the system. The coexistence of the longitudinal plasma wave and fluxon states has been observed in the region of parametric resonance beginning with a certain length of the Josephson junction. This indicates the appearance of a new unique collective excitation in the system of coupled Josephson junctions, namely, a composite state of the Josephson current, electric field, and vortex magnetic field.

  5. Design of Steerable Wavelets to Detect Multifold Junctions. (United States)

    Püspöki, Zsuzsanna; Uhlmann, Virginie; Vonesch, Cédric; Unser, Michael


    We propose a framework for the detection of junctions in images. Although the detection of edges and key points is a well examined and described area, the multiscale detection of junction centers, especially for odd orders, poses a challenge in pattern analysis. The goal of this paper is to build optimal junction detectors based on 2D steerable wavelets that are polar-separable in the Fourier domain. The approaches we develop are general and can be used for the detection of arbitrary symmetric and asymmetric junctions. The backbone of our construction is a multiscale pyramid with a radial wavelet function where the directional components are represented by circular harmonics and encoded in a shaping matrix. We are able to detect M -fold junctions in different scales and orientations. We provide experimental results on both simulated and real data to demonstrate the effectiveness of the algorithm.

  6. Observation of supercurrent in graphene-based Josephson junction

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Libin; Li, Sen; Kang, Ning [Key Laboratory for the Physics and Chemistry of Nanodevices and Department of Electronics, Peking University, Beijing 100871 (China); Xu, Chuan; Ren, Wencai [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China)


    Josephson junctions with a normal metal region sandwiched between two superconductors (S) are known as superconductor- normal-superconductor (SNS) structures. It has attracted significant attention especially when changing the normal metal with graphene, which allow for high tunability with the gate voltage and to study the proximity effect of the massless Dirac fermions. Here we report our work on graphene-based Josephson junction with a new two dimensional superconductor crystal, which grown directly on graphene, as superconducting electrodes. At low temperature, we observer proximity effect induced supercurrent flowing through the junction. The temperature and the magnetic field dependences of the critical current characteristics of the junction are also studied. The critical current exhibits a Fraunhofer-type diffraction pattern against magnetic field. Our experiments provided a new route of fabrication of graphene-based Josephson junction.

  7. Low conductance of nickel atomic junctions in hydrogen atmosphere (United States)

    Li, Shuaishuai; Xie, Yi-Qun; Hu, Yibin


    The low conductance of nickel atomic junctions in the hydrogen environment is studied using the nonequilibrium Green's function theory combined with first-principles calculations. The Ni junction bridged by a H2 molecule has a conductance of approximately 0.7 G 0. This conductance is contributed by the anti-bonding state of the H2 molecule, which forms a bonding state with the 3 d orbitals of the nearby Ni atoms. In contrast, the Ni junction bridged by the two single H atoms has a conductance of approximately 1 G 0, which is weakly spin-polarized. The spin-up channels were found to contribute mostly to the conductance at a small junction gap, while the spin-down channels play a dominant role at a larger junction gap.

  8. Visualizing supercurrents in 0-{pi} ferromagnetic Josephson tunnel junctions

    Energy Technology Data Exchange (ETDEWEB)

    Goldobin, Edward; Guerlich, Christian; Gaber, Tobias; Koelle, Dieter; Kleiner, Reinhold [Physikalisches Institut and Center for Collective Quantum Phenomena, Universitaet Tuebingen (Germany); Weides, Martin; Kohlstedt, Hermann [Institute of Solid State Physics, Reserch Center Juelich (Germany)


    So-called 0 and {pi} Josephson junctions can be treated as having positive and negative critical currents. This implies that the same phase shift applied to a Josephson junction causes counterflow of supercurrents in 0 and in {pi} junctions connected in parallel provided they are short in comparison with Josephson penetration depth {lambda}{sub J}. We have fabricated several 0, {pi}, 0-{pi}, 0-{pi}-0 and 20 x (0-{pi}-) planar superconductor-insulator-ferromagnet-superconductor Josephson junctions and studied the spatial supercurrent density distribution j{sub s}(x,y) across the junction area using low temperature scanning electron microscopy. At zero magnetic field we clearly see counterflow of the supercurrents in 0 and {pi} regions. The picture also changes consistently in the applied magnetic field.

  9. The current-phase relation in HTS Josephson junctions (United States)

    Il'ichev, E.; Zakosarenko, V.; Ijsselsteijn, R. P. J.; Schultze, V.; Meyer, H.-G.; Hoenig, H. E.

    The current-phase relation of YBa2Cu3O7-x step-edge as well as 24° and 45° grain boundary Josephson junctions has been investigated experimentally. The junctions were incorporated into a washer-shaped superconducting ring with inductance L≈80-300 pH. The ring was inductively coupled to a tank circuit with a resonance frequency 9…40 MHz. The current-phase relation was obtained from the measurement of the impedance of the phase-biased junction. It is shown, that experimentally observed deviations from harmonic behavior of the apparent current-phase relation for step-edge and 24° grain boundary junctions can be explained by the influence of thermal noise. The current-phase relation of 45° grain boundary junctions was found to be extremely non-harmonic. The reasons of this unusual behavior are discussed.

  10. Glial connexins and gap junctions in CNS inflammation and disease. (United States)

    Kielian, Tammy


    Gap junctions facilitate direct cytoplasmic communication between neighboring cells, facilitating the transfer of small molecular weight molecules involved in cell signaling and metabolism. Gap junction channels are formed by the joining of two hemichannels from adjacent cells, each composed of six oligomeric protein subunits called connexins. Of paramount importance to CNS homeostasis are astrocyte networks formed by gap junctions, which play a critical role in maintaining the homeostatic regulation of extracellular pH, K+, and glutamate levels. Inflammation is a hallmark of several diseases afflicting the CNS. Within the past several years, the number of publications reporting effects of cytokines and pathogenic stimuli on glial gap junction communication has increased dramatically. The purpose of this review is to discuss recent observations characterizing the consequences of inflammatory stimuli on homocellular gap junction coupling in astrocytes and microglia as well as changes in connexin expression during various CNS inflammatory conditions.

  11. Fixed-gap tunnel junction for reading DNA nucleotides. (United States)

    Pang, Pei; Ashcroft, Brian Alan; Song, Weisi; Zhang, Peiming; Biswas, Sovan; Qing, Quan; Yang, Jialing; Nemanich, Robert J; Bai, Jingwei; Smith, Joshua T; Reuter, Kathleen; Balagurusamy, Venkat S K; Astier, Yann; Stolovitzky, Gustavo; Lindsay, Stuart


    Previous measurements of the electronic conductance of DNA nucleotides or amino acids have used tunnel junctions in which the gap is mechanically adjusted, such as scanning tunneling microscopes or mechanically controllable break junctions. Fixed-junction devices have, at best, detected the passage of whole DNA molecules without yielding chemical information. Here, we report on a layered tunnel junction in which the tunnel gap is defined by a dielectric layer, deposited by atomic layer deposition. Reactive ion etching is used to drill a hole through the layers so that the tunnel junction can be exposed to molecules in solution. When the metal electrodes are functionalized with recognition molecules that capture DNA nucleotides via hydrogen bonds, the identities of the individual nucleotides are revealed by characteristic features of the fluctuating tunnel current associated with single-molecule binding events.

  12. Influence of Coupling between Junctions on Breakpoint Current in Intrinsic Josephson Junctions (United States)

    Shukrinov, Yu. M.; Mahfouzi, F.


    We study theoretically the current-voltage characteristics of intrinsic Josephson junctions in high-Tc superconductors. An oscillation of the breakpoint current on the outermost branch as a function of coupling α and dissipation β parameters is found. We explain this oscillation as a result of the creation of longitudinal plasma waves at the breakpoint with different wave numbers. We demonstrate the commensurability effect and predict a group behavior of the current-voltage characteristics for the stacks with a different number of junctions. A method to determine the wave number of longitudinal plasma waves from α and β dependence of the breakpoint current is suggested. We model the α and β dependence of the breakpoint current and obtain good agreement with the results of the simulation.

  13. Ruptured venous aneurysm of cervicomedullary junction

    Directory of Open Access Journals (Sweden)

    Ashish Aggarwal


    Full Text Available Background: Ruptured venous aneurysm is often seen with arterio-venous malformation (AVM or developmental venous anomaly (DVA. However, isolated venous aneurysm is unusual. Case Description: We present a case of ruptured venous aneurysm that presented with subarachnoid hemorrhage (SAH and intraventricular hemorrhage (IVH. Digital substraction angiography (DSA revealed a saccular contrast filling pouch in the left lateral aspect of cervicomedullary junction (CMJ. Endovascular intervention was not a viable option. During surgery, a saccular pliable structure approx. 1.5 Χ 1 cm was found in the subarachnoid space that was clipped and excised. There were no arterial feeders, no evidence of surrounding AVM, and no dilated perimedullary vein. Conclusion: This is perhaps the first reported case of ruptured venous aneurysm (without associated AVM of CMJ, which was successfully managed surgically. The possible etiologies remain an unnoticed head trauma or a congenital vessel wall abnormality. Surgically clipping and excision remains the treatment of choice for such lesion.

  14. Nonlinear nonequilibrium quasiparticle relaxation in Josephson junctions. (United States)

    Krasnov, V M


    I solve numerically a full set of nonlinear kinetic balance equations for stacked Josephson junctions, which allows analysis of strongly nonequilibrium phenomena. It is shown that nonlinearity becomes significant already at very small disequilibrium. The following new, nonlinear effects are obtained: (i) At even-gap voltages V = 2nDelta/e (n = 2, 3, ...) nonequilibrium bosonic bands overlap. This leads to enhanced emission of Omega = 2Delta bosons and to the appearance of dips in tunnel conductance. (ii) A new type of radiative solution is found at strong disequilibrium. It is characterized by the fast stimulated relaxation of quasiparticles. A stack in this state behaves as a light emitting diode and directly converts electric power to boson emission, without utilization of the ac-Josephson effect. The phenomenon can be used for realization of a new type of superconducting cascade laser in the THz frequency range.

  15. Fully magnetic manganite spin filter tunnel junctions (United States)

    Prasad, Bhagwati; Blamire, Mark G.


    In this paper we demonstrate spintronic devices which combine magnetic tunnel junctions with a spin-filtering tunnel barrier. These consist of an ultrathin ferromagnetic insulating barrier, Sm0.75Sr0.25MnO3, sandwiched between two ferromagnetic half-metallic manganite electrodes, La0.7Sr0.3MnO3 and La0.7Ca0.3MnO3, in a nanopillar structure. Depending on the relative magnetic configurations of barrier and electrode layers, three resistance states are well defined, which therefore represent a potential three-state memory concept. These results open the way for the development of spintronic devices by exploiting the many degrees of freedom of perovskite manganite heterostructure systems.

  16. Electron and Phonon Transport in Molecular Junctions

    DEFF Research Database (Denmark)

    Li, Qian

    transmission at the Fermi energy. We propose and analyze a way of using π   stacking to design molecular junctions to control heat transport. We develop a simple model system to identify optimal parameter regimes and then use density functional theory (DFT) to extract model parameters for a number of specific....... The system we are interested in here are π-stacked molecules connected with two semi-infinite leads. π-stacked aromatic rings, connected via π-π electronic coupling, provides a rather soft mechanical bridge while maintaining high electronic conductivity. We investigate electron transport...... and the thermoelectric response of five representative π-stacked systems. We find that the transmission and power factor are both enhanced by increasing the conjugation length or adding substituent groups. The local transmission shows that several extra paths are added by cyano groups, which increases the total...

  17. Electronic transport properties of phenylacetylene molecular junctions

    Institute of Scientific and Technical Information of China (English)

    Liu Wen; Cheng Jie; Yah Cui-Xia; Li Hai-Hong; Wang Yong-Juan; Liu De-Sheng


    Electronic transport properties of a kind of phenylacetylene compound- (4-mercaptophenyl)-phenylacetylene are calculated by the first-principles method in the framework of density functional theory and the nonequilibrium Green's function formalism.The molecular junction shows an obvious rectifying behaviour at a bias voltage larger than 1.0 V.The rectification effect is attributed to the asymmetry of the interface contacts.Moreover,at a bias voltage larger than 2.0 V,which is not referred to in a relevant experiment [Fang L,Park J Y,Ma H,Jan A K Y and Salmeron M 2007 Langmuir 23 11522],we find a negative differential resistance phenomenon.The negative differential resistance effect may originate from the change of the delocalization degree of the molecular orbitais induced by the bias.

  18. Functional oesophago-gastric junction imaging

    Institute of Scientific and Technical Information of China (English)

    Barry P McMahon; Asbj(φ)rn M Drewes; Hans Gregersen


    Despite its role in disease there is still no definitive method to assess oesophago-gastric junction competence (OGJ). Traditionally the OGJ has been assessed using manometry with lower oesophageal sphincter pressure as the indicator. More recently this has been shown not to be a very reliable marker of sphincter function and competence against reflux.Disorders such as gastro-oesophageal reflux disease and to a lesser extend achalasia still effects a significant number of patients. This review looks at using a new technique known as impedance planimetry to profile the geometry and pressure in the OGJ during distension of a bag. The data gathered can be reconstructed into a dynamic representation of OGJ action. This has been shown to provide a useful representation of the OGJ and to show changes to the competence of the OGJ in terms of compliance and distensibility as a result of endoluminal therapy.

  19. Shot Noise in Ferromagnetic Superconductor Tunnel Junctions

    Institute of Scientific and Technical Information of China (English)


    In this paper, the superconducting order parameter and the energy spectrum of the Bogoliubov excitations are obtained from the Bogoliubov-de Gennes (BdG) equation for a ferromagnetic superconductor (FS). Taking into account the rough interface scattering effect, we calculate the shot noise and the differential conductance of the normal- metal insulator ferromagnetic superconductor junction. It is shown that the exchange energy Eh in FS can lead to splitting of the differential shot noise peaks and the conductance peaks. The energy difference between the two splitting peaks is equal to 2Eh. The rough interface scattering strength results in descent of conductance peaks and the shot noise-to-current ratio but increases the shot noise.

  20. Exotic Brane Junctions from F-theory

    CERN Document Server

    Kimura, Tetsuji


    Applying string dualities to F-theory, we obtain various $[p,q]$-branes whose constituents are standard branes of codimension two and exotic branes. We construct junctions of the exotic five-branes and their Hanany-Witten transitions associated with those in F-theory. In this procedure, we understand the monodromy of the single $5^2_2$-brane. We also find the objects which are sensitive to the branch cut of the $5^2_2$-brane. Considering the web of branes in the presence of multiple exotic five-branes analogous to the web of five-branes with multiple seven-branes, we obtain novel brane constructions for $SU(2)$ gauge theories with $n$ flavors and their superconformal limit with enhanced $E_{n+1}$ symmetry in five, four, and three dimensions. Hence, adapting the techniques of the seven-branes to the exotic branes, we will be able to construct F-theories in diverse dimensions.

  1. Operating modes of superconducting tunnel junction device

    Energy Technology Data Exchange (ETDEWEB)

    Maehata, Keisuke [Kyushu Univ., Fukuoka (Japan). Faculty of Engineering


    In the Electrotechnical Laboratory, an Nb type superconducting tunnel junction (STJ) device with 200 x 200 sq. micron in area and super high quality was manufactured. By using 55-fe source, response of this large area STJ to X-ray was measured. In this measurement, two action modes with different output wave height from front amplifier were observed. Then, in this study, current-voltage feature of the element in each action mode was analyzed to elucidate a mechanism to form such two action modes. The feature was analyzed by using first order approximate solution on cavity resonance mode of Sine-Gordon equation. From the analytical results, it could be supposed that direction and magnitude of effective magnetic field penetrating into jointed area changed by an induction current effect owing to impressing speed of the magnetic field, which brings two different current-voltage features to make possible to observe two action modes with different pulse wave height. (G.K.)

  2. Studies of silicon pn junction solar cells (United States)

    Lindholm, F. A.; Neugroschel, A.


    Modifications of the basic Shockley equations that result from the random and nonrandom spatial variations of the chemical composition of a semiconductor were developed. These modifications underlie the existence of the extensive emitter recombination current that limits the voltage over the open circuit of solar cells. The measurement of parameters, series resistance and the base diffusion length is discussed. Two methods are presented for establishing the energy bandgap narrowing in the heavily-doped emitter region. Corrections that can be important in the application of one of these methods to small test cells are examined. Oxide-charge-induced high-low-junction emitter (OCI-HLE) test cells which exhibit considerably higher voltage over the open circuit than was previously seen in n-on-p solar cells are described.

  3. Tantalum oxide barrier in magnetic tunnel junctions

    Institute of Scientific and Technical Information of China (English)

    Guanghua Yu; Tingting Ren; Wei Ji; Jiao Teng; Fengwu Zhu


    Tantalum as an insulating barrier can take the place of Al in magnetic tunnel junctions (MTJs). Ta barriers in MTJs were fabricated by natural oxidation. X-ray photoelectron spectroscopy (XPS) was used to characterize the oxidation states of Ta barrier.The experimental results show that the chemical state of tantalum is pure Ta5+ and the thickness of the oxide is 1.3 nm. The unoxidized Ta in the barrier may chemically reacted with NiFe layer which is usually used in MTJs to form an intermetallic compound,NiTa2. A magnetic "dead layer" could be produced in the NiFe/Ta interface. The "dead layer" is likely to influence the spinning electron transport and the magnetoresistance effect.

  4. Controlling local currents in molecular junctions

    CERN Document Server

    Yadalam, Hari Kumar


    The effect of non-equilibrium constraints and dephasing on the circulating currents in molecular junctions are analyzed. Circulating currents are manifestations of quantum effects and can be induced either by externally applied bias or an external magnetic field through the molecular system. In symmetric Aharonov-Bohm ring, bond currents have two contributions, bias driven and magnetic field driven. We analyze the competition between these two contributions and show that, as a consequence, current through one of the branches can be completely suppressed. We then study the effect of asymmetry (as a result of chemical substitution) on the current pathways inside the molecule and study asymmetry induced circulating currents (without magnetic field) by tuning the coupling strength of the substituent (at finite bias).

  5. Tunable Magnetic Proximity Effects in Graphene Junctions (United States)

    Lazic, Predrag; Belashchenko, Kirill; Zutic, Igor


    The characteristic length of the magnetic proximity effects exceed the thickness of a graphene layer leading to an important, but typically overlooked, modifications of equilibrium and transport properties, as well as the implications for graphene spintronics. Using the first-principles studies that integrate a real space density functional theory (GPAW) with the state-of-the art boundary elements electrostatic code based on the Robin Hood method, we explore tunable electronic structure and magnetic proximity effects in the ferromagnet/insulator/graphene junctions. We show that the inclusion of a finite-size gate electrodes and van der Walls interaction lead to nontrivial effects that could also be important in other two-dimensional materials beyond graphene. Work supported by US ONR, NSF-DMR and Nebraska NSF MRSEC.

  6. Alteration of Tight and Adherens Junctions on 50-Hz Magnetic Field Exposure in Madin Darby Canine Kidney (MDCK Cells

    Directory of Open Access Journals (Sweden)

    Zoltán Somosy


    Full Text Available Adherens (AJ and tight junctions (TJ, as integrated parts of the junctional complex, are multifunctional specialized regions of the cell membrane in epithelial cells. They are responsible for cell-to-cell interactions and also have great importance in cellular signaling processes including Wnt protein-mediated signals. As electromagnetic field (EMF exposure is known to cause alterations in the function as well as supramolecular organization of different cell contacts, our goal was to investigate the effect of 50-Hz magnetic field (MF exposures on the subcellular distribution of some representative structural proteins (occludin, β-catenin, and cadherin found in AJ and TJ. Additionally, cellular β-catenin content was also quantified by Western blot analysis. 50-Hz MF exposures seemed to increase the staining intensity (amount of occludin, cadherins, and β-catenin in the junctional area of MDCK cells, while Western blot data indicated the quantity of b-catenin was found significantly decreased at both time points after EM exposures. Our results demonstrate that MF are able to modify the distribution of TJ and AJ structural proteins, tending to stabilize these cell contacts. The quantitative changes of β-catenin suggest a causative relationship between MF effects on the cell junctional complex and the Wnt signaling pathway.

  7. Comparative analysis of theophylline and cholera toxin in rat colon reveals an induction of sealing tight junction proteins. (United States)

    Markov, Alexander G; Falchuk, Evgeny L; Kruglova, Natalia M; Rybalchenko, Oksana V; Fromm, Michael; Amasheh, Salah


    Claudin tight junction proteins have been identified to primarily determine intestinal epithelial barrier properties. While functional contribution of single claudins has been characterized in detail, information on the interplay with secretory mechanisms in native intestinal epithelium is scarce. Therefore, effects of cholera toxin and theophylline on rat colon were analyzed, including detection of sealing claudins. Tissue specimens were stripped off submucosal tissue layers and mounted in Ussing chambers, and short-circuit current (ISC) and transepithelial resistance (TER) were recorded. In parallel, expression and localization of claudins was analyzed and histological studies were performed employing hematoxylin-eosin staining and light and electron microscopy. Theophylline induced a strong increase of ISC in colon tissue specimens. In parallel, a decrease of TER was observed. In contrast, cholera toxin did not induce a significant increase of ISC, whereas an increase of TER was detected after 120 min. Western blots of membrane fractions revealed an increase of claudin-3 and -4 after incubation with cholera toxin, and theophylline induced an increase of claudin-4. In accordance, confocal laser-scanning microscopy exhibited increased signals of claudin-3 and -4 after incubation with cholera toxin, and increased signals of claudin-4 after incubation with theophylline, within tight junction complexes. Morphological analyses revealed no general changes of tight junction complexes, but intercellular spaces were markedly widened after incubation with cholera toxin and theophylline. We conclude that cholera toxin and theophylline have different effects on sealing tight junction proteins in native colon preparations, which may synergistically contribute to transport functions, in vitro.

  8. Enteric Pathogens and Their Toxin-Induced Disruption of the Intestinal Barrier through Alteration of Tight Junctions in Chickens (United States)

    Awad, Wageha A.; Hess, Claudia; Hess, Michael


    Maintaining a healthy gut environment is a prerequisite for sustainable animal production. The gut plays a key role in the digestion and absorption of nutrients and constitutes an initial organ exposed to external factors influencing bird’s health. The intestinal epithelial barrier serves as the first line of defense between the host and the luminal environment. It consists of a continuous monolayer of intestinal epithelial cells connected by intercellular junctional complexes which shrink the space between adjacent cells. Consequently, free passing of solutes and water via the paracellular pathway is prevented. Tight junctions (TJs) are multi-protein complexes which are crucial for the integrity and function of the epithelial barrier as they not only link cells but also form channels allowing permeation between cells, resulting in epithelial surfaces of different tightness. Tight junction’s molecular composition, ultrastructure, and function are regulated differently with regard to physiological and pathological stimuli. Both in vivo and in vitro studies suggest that reduced tight junction integrity greatly results in a condition commonly known as “leaky gut”. A loss of barrier integrity allows the translocation of luminal antigens (microbes, toxins) via the mucosa to access the whole body which are normally excluded and subsequently destroys the gut mucosal homeostasis, coinciding with an increased susceptibility to systemic infection, chronic inflammation and malabsorption. There is considerable evidence that the intestinal barrier dysfunction is an important factor contributing to the pathogenicity of some enteric bacteria. It has been shown that some enteric pathogens can induce permeability defects in gut epithelia by altering tight junction proteins, mediated by their toxins. Resolving the strategies that microorganisms use to hijack the functions of tight junctions is important for our understanding of microbial pathogenesis, because some pathogens

  9. Enteric Pathogens and Their Toxin-Induced Disruption of the Intestinal Barrier through Alteration of Tight Junctions in Chickens

    Directory of Open Access Journals (Sweden)

    Wageha A. Awad


    Full Text Available Maintaining a healthy gut environment is a prerequisite for sustainable animal production. The gut plays a key role in the digestion and absorption of nutrients and constitutes an initial organ exposed to external factors influencing bird’s health. The intestinal epithelial barrier serves as the first line of defense between the host and the luminal environment. It consists of a continuous monolayer of intestinal epithelial cells connected by intercellular junctional complexes which shrink the space between adjacent cells. Consequently, free passing of solutes and water via the paracellular pathway is prevented. Tight junctions (TJs are multi-protein complexes which are crucial for the integrity and function of the epithelial barrier as they not only link cells but also form channels allowing permeation between cells, resulting in epithelial surfaces of different tightness. Tight junction’s molecular composition, ultrastructure, and function are regulated differently with regard to physiological and pathological stimuli. Both in vivo and in vitro studies suggest that reduced tight junction integrity greatly results in a condition commonly known as “leaky gut”. A loss of barrier integrity allows the translocation of luminal antigens (microbes, toxins via the mucosa to access the whole body which are normally excluded and subsequently destroys the gut mucosal homeostasis, coinciding with an increased susceptibility to systemic infection, chronic inflammation and malabsorption. There is considerable evidence that the intestinal barrier dysfunction is an important factor contributing to the pathogenicity of some enteric bacteria. It has been shown that some enteric pathogens can induce permeability defects in gut epithelia by altering tight junction proteins, mediated by their toxins. Resolving the strategies that microorganisms use to hijack the functions of tight junctions is important for our understanding of microbial pathogenesis

  10. Influence of coupling between junctions on breakpoint current in intrinsic Josephson junctions


    Shukrinov, Yu M.; Mahfouzi, F.


    We study theoretically the current-voltage characteristics of intrinsic Josephson junctions in high-$T_c$ superconductors. An oscillation of the breakpoint current on the outermost branch as a function of coupling $\\alpha$ and dissipation $\\beta$ parameters is found. We explain this oscillation as a result of the creation of longitudinal plasma waves at the breakpoint with different wave numbers. We demonstrate the commensurability effect and predict a group behavior of the current-voltage ch...

  11. Optical trapping of microparticles using silicon nitride waveguide junctions and tapered-waveguide junctions on an optofluidic chip. (United States)

    Cai, Hong; Poon, Andrew W


    We study optical trapping of microparticles on an optofluidic chip using silicon nitride waveguide junctions and tapered-waveguide junctions. We demonstrate the trapping of single 1 μm-sized polystyrene particles using the evanescent field of waveguide junctions connecting a submicrometer-sized input-waveguide and a micrometer-sized output-waveguide. Particle trapping is localized in the vicinity of the junction. We also demonstrate trapping of one and two 1μm-sized polystyrene particles using tapered-waveguide junctions connecting a submicrometer-sized singlemode input-waveguide and a micrometer-sized multimode output-waveguide. Particle trapping occurs near the taper output end, the taper center and the taper input end, depending on the taper aspect ratio.

  12. Molecular signatures in the transport properties of molecular wire junctions: what makes a junction "molecular"? (United States)

    Troisi, Alessandro; Ratner, Mark A


    The simplest component of molecular electronics consists of a single-molecule transport junction: a molecule sandwiched between source and drain electrodes, with or without a third gate electrode. In this Concept article, we focus on how molecules control transport in metal-electrode molecular junctions, and where the molecular signatures are to be found. In the situation where the molecule is relatively short and the gap between injection energy and molecular eigenstates is large, transport occurs largely by elastic tunneling, stochastic switching is common, and the vibronic signature can be found using inelastic electron tunneling spectroscopy (IETS). As the energy gaps for injection become smaller, one begins to see stronger molecular signatures - these include Franck-Condon-like structures in the current/voltage characteristic and strong vibronic interactions, which can lead to hopping behavior at the polaron limit. Conformational changes induced by the strong electric field lead to another strong manifestation of the molecular nature of the junction. We overview some of this mechanistic landscape, focusing on significant effects of switching (both stochastic and controlled by the electric field) and of molecular vibronic coupling.

  13. Development of thin wraparound junction silicon solar cells (United States)

    Ho, F.; Iles, P. A.


    The state of the art technologies was applied to fabricate 50 micro thick 2x4 cm, coplanar back contact (CBC) solar cells with AMO efficiency above 12%. A requirement was that the cells have low solar absorptance. A wraparound junction (WAJ) with wraparound metallization was chosen. This WAJ approach avoided the need for very complex fixturing, especially during rotation of the cells for providing adequate contacts over dielectric edge layers. The contact adhesion to silicon was considered better than to an insulator. It is indicated that shunt resistance caused by poor WAJ diode quality, and series resistance from the WAJ contact, give good cell performance. The cells developed reached 14 percent AMO efficiency (at 25 C), with solar absorptance values of 0.73. Space/cell environmental tests were performed on these cells and the thin CSC cells performed well. The optimized design configuration and process sequence were used to make 50 deliverable CBC cells. These cells were all above 12 percent efficiency and had an average efficiency of -13 percent. Results of environmental tests (humidity-temperature, thermal shock, and contact adherence) are also given.

  14. The mysterious droplet birth in a microfluidic cross junction (United States)

    van Loo, Stephanie; Gilet, Tristan


    In microfluidics flow focusing is widely used to produce water-in-oil droplets in microchannels at high frequency. Nevertheless, the scaling laws associated to droplet length, speed and frequency could not be identified yet, owing to the large number of parameters involved (incl. complex geometry). We here present an experimental study of droplet formation in a microfluidic cross-junction with a minimum number of geometrical parameters. We mostly focus on the dripping regime. The formation sequence is decomposed in two steps, inflation and squeezing, that vary differently according to both water and oil flow rates. These variations reveal several insights about the fluid flows in both phases. From there we infer the scaling law that relates droplet volume and frequency to the Capillary number associated to each inlet flow rate. This law involves a minimum of fitting parameters. We finally discuss the influence of inlet control (flow rate vs. pressure) and surfactants on the formation dynamics. Supported by the FRIA/FNRS and the Interuniversity Attraction Poles Programme (IAP7/38 MicroMAST) initiated by the Belgian Science Policy Office.

  15. JAM-A and aPKC: A close pair during cell-cell contact maturation and tight junction formation in epithelial cells. (United States)

    Ebnet, Klaus


    Cell-cell adhesion plays a critical role in the formation of barrier-forming epithelia. The molecules which mediate cell-cell adhesion frequently act as signaling molecules by recruiting and/or assembling cytoplasmic protein complexes. Junctional Adhesion Molecule (JAM)-A interacts with the cell polarity protein PAR-3, a member of the PAR-3-aPKC-PAR-6 complex, which regulates the formation of cell-cell contacts and the development of tight junctions (TJs). In our recent study we found that JAM-A is localized at primordial, spot-like cell-cell junctions (pAJs) in a non-phosphorylated form. After the recruitment of the PAR-aPKC complex and its activation at pAJs, aPKC phosphorylates JAM-A at Ser285 to promote the maturation of immature junctions. In polarized epithelial cells, aPKC phosphorylates JAM-A selectively at the TJs to maintain the barrier function of TJs. Thus, through mutual regulation, JAM-A and aPKC form a functional unit that regulates the establishment of barrier-forming junctions in vertebrate epithelial cells.

  16. Nucleotide sequence analysis of hypervariable junctions of Haemophilus influenzae pilus gene clusters. (United States)

    Read, T D; Satola, S W; Farley, M M


    Haemophilus influenzae pili are surface structures that promote attachment to human epithelial cells. The five genes that encode pili, hifABCDE, are found inserted in genomes either between pmbA and hpt (hif-1) or between purE and pepN (hif-2). We determined the sequence between the ends of the pilus clusters and bordering genes in a number of H. influenzae strains. The junctions of the hif-1 cluster (limited to biogroup aegyptius isolates) are structurally simple. In contrast, hif-2 junctions are highly diverse, complex assemblies of conserved intergenic sequences (including genes hicA and hicB) with evidence of frequent recombination. Variation at hif-2 junctions seems to be tied to multiple copies of a 23-bp Haemophilus intergenic dyad sequence. The hif-1 cluster appears to have originated in biogroup aegyptius strains from invasion of the hpt-pmbA region by a DNA template containing the hif-2 genes with termini in the hairpin loop of flanking intergenic dyad sequences. The pilus gene clusters are an interesting model of a mobile "pathogenicity island" not associated with a phage, transposon, or insertion element.

  17. Electronic transport through EuO spin-filter tunnel junctions

    KAUST Repository

    Jutong, Nuttachai


    Epitaxial spin-filter tunnel junctions based on the ferromagnetic semiconductor europium monoxide (EuO) are investigated by means of density functional theory. In particular, we focus on the spin transport properties of Cu(100)/EuO(100)/Cu(100) junctions. The dependence of the transmission coefficient and the current-voltage curves on the interface spacing and EuO thickness is explained in terms of the EuO density of states and the complex band structure. Furthermore, we also discuss the relation between the spin transport properties and the Cu-EuO interface geometry. The level alignment of the junction is sensitively affected by the interface spacing, since this determines the charge transfer between EuO and the Cu electrodes. Our calculations indicate that EuO epitaxially grown on Cu can act as a perfect spin filter, with a spin polarization of the current close to 100%, and with both the Eu-5d conduction-band and the Eu-4f valence-band states contributing to the coherent transport. For epitaxial EuO on Cu, a symmetry filtering is observed, with the Δ1 states dominating the transmission. This leads to a transport gap larger than the fundamental EuO band gap. Importantly, the high spin polarization of the current is preserved up to large bias voltages.

  18. ADAMTS-10 and -6 differentially regulate cell-cell junctions and focal adhesions (United States)

    Cain, Stuart A.; Mularczyk, Ewa J.; Singh, Mukti; Massam-Wu, Teresa; Kielty, Cay M.


    ADAMTS10 and ADAMTS6 are homologous metalloproteinases with ill-defined roles. ADAMTS10 mutations cause Weill-Marchesani syndrome (WMS), implicating it in fibrillin microfibril biology since some fibrillin-1 mutations also cause WMS. However little is known about ADAMTS6 function. ADAMTS10 is resistant to furin cleavage, however we show that ADAMTS6 is effectively processed and active. Using siRNA, over-expression and mutagenesis, it was found ADAMTS6 inhibits and ADAMTS10 is required for focal adhesions, epithelial cell-cell junction formation, and microfibril deposition. Either knockdown of ADAMTS6, or disruption of its furin processing or catalytic sites restores focal adhesions, implicating its enzyme activity acts on targets in the focal adhesion complex. In ADAMTS10-depleted cultures, expression of syndecan-4 rescues focal adhesions and cell-cell junctions. Recombinant C-termini of ADAMTS10 and ADAMTS6, both of which induce focal adhesions, bind heparin and syndecan-4. However, cells overexpressing full-length ADAMTS6 lack heparan sulphate and focal adhesions, whilst depletion of ADAMTS6 induces a prominent glycocalyx. Thus ADAMTS10 and ADAMTS6 oppositely affect heparan sulphate-rich interfaces including focal adhesions. We previously showed that microfibril deposition requires fibronectin-induced focal adhesions, and cell-cell junctions in epithelial cultures. Here we reveal that ADAMTS6 causes a reduction in heparan sulphate-rich interfaces, and its expression is regulated by ADAMTS10. PMID:27779234

  19. Resolution of Holliday junction recombination intermediates by wild-type and mutant IntDOT proteins. (United States)

    Kim, Seyeun; Gardner, Jeffrey F


    CTnDOT encodes an integrase that is a member of the tyrosine recombinase family. The recombination reaction proceeds by sequential sets of genetic exchanges between the attDOT site in CTnDOT and an attB site in the chromosome. The exchanges are separated by 7 base pairs in each site. Unlike most tyrosine recombinases, IntDOT exchanges sites that contain different DNA sequences between the exchange sites to generate Holliday junctions (HJs) that contain mismatched bases. We demonstrate that IntDOT resolves synthetic HJs in vitro. Holliday junctions that contain identical sequences between the exchange sites are resolved into both substrates and products, while HJs that contain mismatches are resolved only to substrates. This result implies that resolution of HJs to products requires the formation of a higher-order nucleoprotein complex with natural sites containing IntDOT. We also found that proteins with substitutions of residues (V95, K94, and K96) in a putative alpha helix at the junction of the N and CB domains (coupler region) were defective in resolving HJs. Mutational analysis of charged residues in the coupler and the N terminus of the protein did not provide evidence for a charge interaction between the regions of the protein. V95 may participate in a hydrophobic interaction with another region of IntDOT.

  20. State Representation Approach for Atomistic Time-Dependent Transport Calculations in Molecular Junctions. (United States)

    Zelovich, Tamar; Kronik, Leeor; Hod, Oded


    We propose a new method for simulating electron dynamics in open quantum systems out of equilibrium, using a finite atomistic model. The proposed method is motivated by the intuitive and practical nature of the driven Liouville-von-Neumann equation approach of Sánchez et al. [J. Chem. Phys. 2006, 124, 214708] and Subotnik et al. [J. Chem. Phys. 2009, 130, 144105]. A key ingredient of our approach is a transformation of the Hamiltonian matrix from an atomistic to a state representation of the molecular junction. This allows us to uniquely define the bias voltage across the system while maintaining a proper thermal electronic distribution within the finite lead models. Furthermore, it allows us to investigate complex molecular junctions, including multilead configurations. A heuristic derivation of our working equation leads to explicit expressions for the damping and driving terms, which serve as appropriate electron sources and sinks that effectively "open" the finite model system. Although the method does not forbid it, in practice we find neither violation of Pauli's exclusion principles nor deviation from density matrix positivity throughout our numerical simulations of various tight-binding model systems. We believe that the new approach offers a practical and physically sound route for performing atomistic time-dependent transport calculations in realistic molecular junction models.

  1. A unified framework for spiking and gap-junction interactions in distributed neuronal network simulations

    Directory of Open Access Journals (Sweden)

    Jan eHahne


    Full Text Available Contemporary simulators for networks of point and few-compartment model neurons come with a plethora of ready-to-use neuron and synapse models and support complex network topologies. Recent technological advancements have broadened the spectrum of application further to the efficient simulation of brain-scale networks on supercomputers. In distributed network simulations the amount of spike data that accrues per millisecond and process is typically low, such that a common optimization strategy is to communicate spikes at relatively long intervals, where the upper limit is given by the shortest synaptic transmission delay in the network. This approach is well-suited for simulations that employ only chemical synapses but it has so far impeded the incorporation of gap-junction models, which require instantaneous neuronal interactions. Here, we present a numerical algorithm based on a waveform-relaxation technique which allows for network simulations with gap junctions in a way that is compatible with the delayed communication strategy. Using a reference implementation in the NEST simulator, we demonstrate that the algorithm and the required data structures can be smoothly integrated with existing code such that they complement the infrastructure for spiking connections. To show that the unified framework for gap-junction and spiking interactions achieves high performance and delivers high accuracy...

  2. Phosphorylation on Ser-279 and Ser-282 of connexin43 regulates endocytosis and gap junction assembly in pancreatic cancer cells (United States)

    Johnson, Kristen E.; Mitra, Shalini; Katoch, Parul; Kelsey, Linda S.; Johnson, Keith R.; Mehta, Parmender P.


    The molecular mechanisms regulating the assembly of connexins (Cxs) into gap junctions are poorly understood. Using human pancreatic tumor cell lines BxPC3 and Capan-1, which express Cx26 and Cx43, we show that, upon arrival at the cell surface, the assembly of Cx43 is impaired. Connexin43 fails to assemble, because it is internalized by clathrin-mediated endocytosis. Assembly is restored upon expressing a sorting-motif mutant of Cx43, which does not interact with the AP2 complex, and by expressing mutants that cannot be phosphorylated on Ser-279 and Ser-282. The mutants restore assembly by preventing clathrin-mediated endocytosis of Cx43. Our results also document that the sorting-motif mutant is assembled into gap junctions in cells in which the expression of endogenous Cx43 has been knocked down. Remarkably, Cx43 mutants that cannot be phosphorylated on Ser-279 or Ser-282 are assembled into gap junctions only when connexons are composed of Cx43 forms that can be phosphorylated on these serines and forms in which phosphorylation on these serines is abolished. Based on the subcellular fate of Cx43 in single and contacting cells, our results document that the endocytic itinerary of Cx43 is altered upon cell–cell contact, which causes Cx43 to traffic by EEA1-negative endosomes en route to lysosomes. Our results further show that gap-junctional plaques formed of a sorting motif–deficient mutant of Cx43, which is unable to be internalized by the clathrin-mediated pathway, are predominantly endocytosed in the form of annular junctions. Thus the differential phosphorylation of Cx43 on Ser-279 and Ser-282 is fine-tuned to control Cx43’s endocytosis and assembly into gap junctions. PMID:23363606

  3. Spin transport and dynamics in the F/N junction (United States)

    Li, Hua; Bedell, Kevin


    We study the spin transport in the low temperature regime (often referred to as the precession-dominated regime) between a ferromagnetic Fermi liquid (FFL) and a normal metal metallic Fermi liquid (NFL), the F/N junction, which is considered one of the basic spintronic devices. In particular, we explore the propagation of spin waves and transport of magnetization through the interface of the F/N junction where non-equilibrium spin polarization is created on the normal metal side of the junction by spin injection. We calculate the probable spin wave modes in the precession-dominated regime on both sides of the junction especially on the NFL side where the system is out of equilibrium. Proper boundary conditions at the interface are introduced to establish the transport of the spin properties through the F/N junction. In the end, a possible transmission conduction electron spin resonance experiment is suggested on the F/N junction to see if the predicted spin wave modes could propagate through the junction.

  4. Solar cell junction temperature measurement of PV module

    KAUST Repository

    Huang, B.J.


    The present study develops a simple non-destructive method to measure the solar cell junction temperature of PV module. The PV module was put in the environmental chamber with precise temperature control to keep the solar PV module as well as the cell junction in thermal equilibrium with the chamber. The open-circuit voltage of PV module Voc is then measured using a short pulse of solar irradiation provided by a solar simulator. Repeating the measurements at different environment temperature (40-80°C) and solar irradiation S (200-1000W/m2), the correlation between the open-circuit voltage Voc, the junction temperature Tj, and solar irradiation S is derived.The fundamental correlation of the PV module is utilized for on-site monitoring of solar cell junction temperature using the measured Voc and S at a short time instant with open circuit. The junction temperature Tj is then determined using the measured S and Voc through the fundamental correlation. The outdoor test results show that the junction temperature measured using the present method, Tjo, is more accurate. The maximum error using the average surface temperature Tave as the junction temperature is 4.8 °C underestimation; while the maximum error using the present method is 1.3 °C underestimation. © 2010 Elsevier Ltd.

  5. High electronic couplings of single mesitylene molecular junctions

    Directory of Open Access Journals (Sweden)

    Yuki Komoto


    Full Text Available We report on an experimental analysis of the charge transport properties of single mesitylene (1,3,5-trimethylbenzene molecular junctions. The electronic conductance and the current–voltage characteristics of mesitylene molecules wired into Au electrodes were measured by a scanning tunnelling microscopy-based break-junction method at room temperature in a liquid environment. We found the molecular junctions exhibited two distinct conductance states with high conductance values of ca. 10−1G0 and of more than 10−3G0 (G0 = 2e2/h in the electronic conductance measurements. We further performed a statistical analysis of the current–voltage characteristics of the molecular junctions in the two states. Within a single channel resonant tunnelling model, we obtained electronic couplings in the molecular junctions by fitting the current–voltage characteristics to the single channel model. The origin of the high conductance was attributed to experimentally obtained large electronic couplings of the direct π-bonded molecular junctions (ca. 0.15 eV. Based on analysis of the stretch length of the molecular junctions and the large electronic couplings obtained from the I–V analysis, we proposed two structural models, in which (i mesitylene binds to the Au electrode perpendicular to the charge transport direction and (ii mesitylene has tilted from the perpendicular orientation.

  6. High electronic couplings of single mesitylene molecular junctions. (United States)

    Komoto, Yuki; Fujii, Shintaro; Nishino, Tomoaki; Kiguchi, Manabu


    We report on an experimental analysis of the charge transport properties of single mesitylene (1,3,5-trimethylbenzene) molecular junctions. The electronic conductance and the current-voltage characteristics of mesitylene molecules wired into Au electrodes were measured by a scanning tunnelling microscopy-based break-junction method at room temperature in a liquid environment. We found the molecular junctions exhibited two distinct conductance states with high conductance values of ca. 10(-1) G 0 and of more than 10(-3) G 0 (G 0 = 2e (2)/h) in the electronic conductance measurements. We further performed a statistical analysis of the current-voltage characteristics of the molecular junctions in the two states. Within a single channel resonant tunnelling model, we obtained electronic couplings in the molecular junctions by fitting the current-voltage characteristics to the single channel model. The origin of the high conductance was attributed to experimentally obtained large electronic couplings of the direct π-bonded molecular junctions (ca. 0.15 eV). Based on analysis of the stretch length of the molecular junctions and the large electronic couplings obtained from the I-V analysis, we proposed two structural models, in which (i) mesitylene binds to the Au electrode perpendicular to the charge transport direction and (ii) mesitylene has tilted from the perpendicular orientation.

  7. Flicker (1/f) noise in tunnel junction DC SQUIDS

    Energy Technology Data Exchange (ETDEWEB)

    Koch, R.H.; Clarke, J.; Goubau, W.M.; Martinis, J.M.; Pegrum, C.M.; Van Harlingen, D.J.


    We have measured the spectral density of the 1/f voltage noise in current-biased resistively shunted Josephson tunnel junctions and dc SQUIDs. A theory in which fluctuations in the temperature give rise to fluctuations in the critical current and hence in the voltage predicts the magnitude of the noise quite accurately for junctions with areas of about 2 x 10/sup 4/ 2/, but significantly overestimates the noise for junctions with areas of about 6 2/. DC SQUIDs fabricated from these two types of junctions exhibit substantially more 1/f voltage noise than would be predicted from a model in which the noise arises from critical current fluctuations in the junctions. This result was confirmed by an experiment involving two different bias current and flux modulation schemes, which demonstrated that the predominant 1/f voltage noise arises not from critical current fluctuations, but from some unknown source that can be regarded as an apparent 1/f flux noise. Measurements on five different configurations of dc SQUIDs fabricated with thin-film tunnel junctions and with widely varying areas, inductances, and junction capacitances show that the spectral density of the 1/f equivalent flux noise is roughtly constant, within a factor of three of (10/sup -10//f)phi/sup 2//sub 0/Hz/sup -1/. It is emphasized that 1/f flux noise may not be the predominant source of 1/f noise in SQUIDS fabricated with other technologies.

  8. Mechanical deformations of boron nitride nanotubes in crossed junctions

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Yadong; Chen, Xiaoming; Ke, Changhong, E-mail: [Department of Mechanical Engineering, State University of New York at Binghamton, Binghamton, New York 13902 (United States); Park, Cheol [NASA Langley Research Center, Hampton, Virginia 23681 (United States); Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, Virginia 22904 (United States); Fay, Catharine C. [NASA Langley Research Center, Hampton, Virginia 23681 (United States); Stupkiewicz, Stanislaw [Institute of Fundamental Technological Research, Warsaw (Poland)


    We present a study of the mechanical deformations of boron nitride nanotubes (BNNTs) in crossed junctions. The structure and deformation of the crossed tubes in the junction are characterized by using atomic force microscopy. Our results show that the total tube heights are reduced by 20%–33% at the crossed junctions formed by double-walled BNNTs with outer diameters in the range of 2.21–4.67 nm. The measured tube height reduction is found to be in a nearly linear relationship with the summation of the outer diameters of the two tubes forming the junction. The contact force between the two tubes in the junction is estimated based on contact mechanics theories and found to be within the range of 4.2–7.6 nN. The Young's modulus of BNNTs and their binding strengths with the substrate are quantified, based on the deformation profile of the upper tube in the junction, and are found to be 1.07 ± 0.11 TPa and 0.18–0.29 nJ/m, respectively. Finally, we perform finite element simulations on the mechanical deformations of the crossed BNNT junctions. The numerical simulation results are consistent with both the experimental measurements and the analytical analysis. The results reported in this paper contribute to a better understanding of the structural and mechanical properties of BNNTs and to the pursuit of their applications.

  9. Association of visceral adiposity with oesophageal and junctional adenocarcinomas.

    LENUS (Irish Health Repository)

    Beddy, P


    BACKGROUND: Obesity is associated with an increased incidence of oesophageal and oesophagogastric junction adenocarcinoma, in particular Siewert types I and II. This study compared abdominal fat composition in patients with oesophageal\\/junctional adenocarcinoma with that in patients with oesophageal squamous cell carcinoma and gastric adenocarcinoma, and in controls. METHOD: In total, 194 patients (110 with oesophageal\\/junctional adenocarcinoma, 38 with gastric adenocarcinoma and 46 with oesophageal squamous cell carcinoma) and 90 matched control subjects were recruited. The abdominal fat area was assessed using computed tomography (CT), and the total fat area (TFA), visceral fat area (VFA) and subcutaneous fat area (SFA) were calculated. RESULTS: Patients with oesophageal\\/junctional adenocarcinoma had significantly higher TFA and VFA values compared with controls (both P < 0.001), patients with gastric adenocarcinoma (P = 0.013 and P = 0.006 respectively) and patients with oesophageal squamous cell carcinoma (both P < 0.001). For junctional tumours, the highest TFA and VFA values were seen in patients with Siewert type I tumours (respectively P = 0.041 and P = 0.033 versus type III; P = 0.332 and P = 0.152 versus type II). CONCLUSION: Patients with oesophageal\\/junctional adenocarcinoma, in particular oesophageal and Siewert type I junctional tumours, have greater CT-defined visceral adiposity than patients with gastric adenocarcinoma or oesophageal squamous cell carcinoma, or controls.

  10. Josephson radiation from InSb-nanowire junction (United States)

    van Woerkom, David; Proutski, Alexander; Krivachy, Tamas; Bouman, Daniel; van Gulik, Ruben; Gul, Onder; Cassidy, Maja; Car, Diana; Bakkers, Erik; Kouwenhoven, Leo; Geresdi, Attila

    Semiconducting nanowire Josephson junctions has recently gained interest as building blocks for Majorana circuits and gate-tuneable superconducting qubits . Here we investigate the rich physics of the Andreev bound state spectrum of InSb nanowire junctions utilizing the AC Josephson relation 2eV_bias =hf . We designed and characterized an on-chip microwave circuit coupling the nanowire junction to an Al/AlOx/Al tunnel junction. The DC response of the tunnel junction is affected by photon-assisted quasiparticle current, which gives us the possibility to measure the radiation spectrum of the nanowire junction up to several tens of GHz in frequency. Our circuit design allows for voltage or phase biasing of the Josephson junction enabling direct mapping of Andreev bound states. We discuss our fabrication methods and choice of materials to achieve radiation detection up to a magnetic field of few hundred milliTesla, compatible with Majorana states in spin-orbit coupled nanowires. This work has been supported by the Netherlands Foundations FOM, Abstract NWO and Microsoft Corporation Station Q.


    Institute of Scientific and Technical Information of China (English)



    郑州市嵩山路-黄郭路-南三环路立交桥的主桥、匝道定位放线、标高传递、变形观测等施工测量工作,均采用传统的三角网控制技术,为此要求测量人员有责任心,熟悉测量规范和设计文件,掌握施工计划,结合现场条件精心放样,施工中随时检查校核,确保了工程质量和施工顺利.%Traditional triangular mesh control technique is adopted for construction measurements of clover-leaf junction of Gaoshan Road, Huangguo Road and South Third Ring Road in Zhengzhou, including positioning and setting out of main overpass and ramp, elevation transfer and deformation observation, etc. Measuring workers are required to be responsible, be familiar with measurement specification and design document, master construction plan, and shall examine and verify the construction timely according to field conditions and careful setting out. Engineering quality and smooth construction are successfully ensured.

  12. Complex Nanostructures: Synthesis and Energetic Applications


    Dunwei Wang; Stafford Sheehan; Sa Zhou; Yongjing Lin; Xiaohua Liu


    Connected through single crystalline junctions, low dimensional materials such as nanowires and nanorods form complex nanostructures. These new materials exhibit mechanical strengths and electrical conductivities superior to their constituents while maintaining comparable surface areas, an attribute ideal for energetic applications. More efficient solar cells, higher capacity batteries and better performing photoelectrochemical cells have been built using these materials. This article reviews...

  13. Gap junctions are essential for murine primordial follicle assembly immediately before birth. (United States)

    Teng, Zhen; Wang, Chao; Wang, Yijing; Huang, Kun; Xiang, Xi; Niu, Wanbao; Feng, Lizhao; Zhao, Lihua; Yan, Hao; Zhang, Hua


    The reserve of primordial follicles determines the reproductive ability of the female mammal over its reproductive life. The primordial follicle is composed of two types of cells: oocytes and surrounding pre-granulosa cells. However, the underlying mechanism regulating primordial follicle assembly is largely undefined. In this study, we found that gap junction communication (GJC) established between the ovarian cells in the perinatal mouse ovary may be involved in the process. First, gap junction structures between the oocyte and surrounding pre-granulosa cells appear at about 19.0 dpc (days post coitum). As many as 12 gap junction-related genes are upregulated at birth, implying that a complex communication may exist between ovarian cells, because specifically silencing the genes of individual gap junction proteins, such as Gja1, Gja4 or both, has no influence on primordial follicle assembly. On the other hand, non-specific blockers of GJC, such as carbenoxolone (CBX) and 18α-glycyrrhetinic acid (AGA), significantly inhibit mouse primordial follicle assembly. We proved that the temporal window for establishment of GJC in the fetal ovary is from 19.5 dpc to 1 dpp (days postpartum). In addition, the expression of ovarian somatic cell (OSC)-specific genes, such as Notch2, Foxl2 and Irx3, was negatively affected by GJC blockers, whereas oocyte-related genes, such as Ybx2, Nobox and Sohlh1, were hardly affected, implying that the establishment of GJC during this period may be more important to OSCs than to oocytes. In summary, our results indicated that GJC involves in the mouse primordial follicle assembly process at a specific temporal window that needs Notch signaling cross-talking. © 2016 Society for Reproduction and Fertility.

  14. 3D Architecture of the Trypanosoma brucei Flagella Connector, a Mobile Transmembrane Junction.

    Directory of Open Access Journals (Sweden)

    Johanna L Höög


    Full Text Available Cellular junctions are crucial for the formation of multicellular organisms, where they anchor cells to each other and/or supportive tissue and enable cell-to-cell communication. Some unicellular organisms, such as the parasitic protist Trypanosoma brucei, also have complex cellular junctions. The flagella connector (FC is a three-layered transmembrane junction that moves with the growing tip of a new flagellum and attaches it to the side of the old flagellum. The FC moves via an unknown molecular mechanism, independent of new flagellum growth. Here we describe the detailed 3D architecture of the FC suggesting explanations for how it functions and its mechanism of motility.We have used a combination of electron tomography and cryo-electron tomography to reveal the 3D architecture of the FC. Cryo-electron tomography revealed layers of repetitive filamentous electron densities between the two flagella in the interstitial zone. Though the FC does not change in length and width during the growth of the new flagellum, the interstitial zone thickness decreases as the FC matures. This investigation also shows interactions between the FC layers and the axonemes of the new and old flagellum, sufficiently strong to displace the axoneme in the old flagellum. We describe a novel filament, the flagella connector fibre, found between the FC and the axoneme in the old flagellum.The FC is similar to other cellular junctions in that filamentous proteins bridge the extracellular space and are anchored to underlying cytoskeletal structures; however, it is built between different portions of the same cell and is unique because of its intrinsic motility. The detailed description of its structure will be an important tool to use in attributing structure / function relationships as its molecular components are discovered in the future. The FC is involved in the inheritance of cell shape, which is important for the life cycle of this human parasite.

  15. Negative differential resistance in Josephson junctions coupled to a cavity

    DEFF Research Database (Denmark)

    Pedersen, Niels Falsig; Filatrella, G.; Pierro, V.


    or external – is often used. A cavity may also induce a negative differential resistance region at the lower side of the resonance frequency. We investigate the dynamics of Josephson junctions with a negative differential resistance in the quasi particle tunnel current, i.e. in the McCumber curve. We find......Regions with negative differential resistance can arise in the IV curve of Josephson junctions and this phenomenon plays an essential role for applications, in particular for THz radiation emission. For the measurement of high frequency radiation from Josephson junctions, a cavity – either internal...

  16. Temporal correlations and structural memory effects in break junction measurements

    DEFF Research Database (Denmark)

    Magyarkuti, A.; Lauritzen, Kasper Primdal; Balogh, Zoltan Imre


    that correlations between the opening and subsequent closing traces may indicate structural memory effects in atomic-sized metallic and molecular junctions. Applying these methods on measured and simulated gold metallic contacts as a test system, we show that the surface diffusion induced flattening of the broken......-molecule junctions, we demonstrate pronounced contact memory effects and recovery of the molecule for junctions breaking before atomic chains are formed. However, if chains are pulled the random relaxation of the chain and molecule after rupture prevents opening-closing correlations....

  17. Vortex structure in a long Josephson junction with two inhomogeneities

    Energy Technology Data Exchange (ETDEWEB)

    Andreeva, O.Yu. [Tumen Thermal Networks OAO ' TRGK' , Tobolsk 626150 (Russian Federation); Boyadjiev, T.L. [Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Shukrinov, Yu.M. [Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation)], E-mail:


    We study the vortex structure in the long Josephson junctions with one and two rectangular inhomogeneities in the barrier layer. In case of one inhomogeneity we demonstrate the existence of the asymmetric fluxon states. The disappearance of the mixed fluxon-antifluxon states is shown when the position of the inhomogeneity shifted to the end of the junction. In case of two inhomogeneities the change of the amplitude of Josephson current through the inhomogeneity in the end of the junction makes strong effect on the stability of the fluxon states and smoothes the maximums on the dependence 'critical current-magnetic field'.

  18. Vortex structure in a long Josephson junction with two inhomogeneities (United States)

    Andreeva, O. Yu.; Boyadjiev, T. L.; Shukrinov, Yu. M.


    We study the vortex structure in the long Josephson junctions with one and two rectangular inhomogeneities in the barrier layer. In case of one inhomogeneity we demonstrate the existence of the asymmetric fluxon states. The disappearance of the mixed fluxon-antifluxon states is shown when the position of the inhomogeneity shifted to the end of the junction. In case of two inhomogeneities the change of the amplitude of Josephson current through the inhomogeneity in the end of the junction makes strong effect on the stability of the fluxon states and smoothes the maximums on the dependence “critical current-magnetic field”.

  19. Bloch inductance in small-capacitance Josephson junctions. (United States)

    Zorin, A B


    We show that the electrical impedance of a small-capacitance Josephson junction also includes, in addition to the capacitive term -i/(omega)CB, an inductive term i(omega)LB. Similar to the known Bloch capacitance CB(q), the Bloch inductance LB(q) also depends periodically on the quasicharge, q, and its maximum value achieved at q=e(mod 2e) always exceeds the value of the Josephson inductance of this junction LJ(phi) at fixed phi=0. The effect of the Bloch inductance on the dynamics of a single junction and a one-dimensional array is described.

  20. Two new septate junctions in the phylum Coelenterata. (United States)

    Green, C R; Flower, N E


    Freeze-fracture of fixed and unfixed tissue, lanthanum tracer and conventional thin-section studies have revealed 2 new types of septate junction in the class Anthozoa, phylum Coelenterata. These new junctions have the 15-18-nm intercellular spacing of all other described septate junctions and are found around the apical circumference of cells lining a lumen or outside edge. However, in freeze-fracture replicas and tangential views of lanthanum-impregnated tissue, they are seen to be quite different from other known septate junction types. One of the new junctions is found in endothelial tissue such as that lining the gut or the inside of the tentacles. In tangential view it is seen to consist of relatively short, straight, double septa, again with lateral projections. In feeeze-fracture of unfixed tissue, the junction consists of double rows of particles on the P face, the particles of one row being rounded, those of the other being elongated at right angles to the line of the septum. This dichotomy in particle size is unexpected, as the 2 halves of the septa as seen in tangential view are symmetrical. In freeze-fracture of fixed material the particle arrays remain on the P face and appear similar to those of unfixed material, but never as clear. In fixed tissue, some distortion had occurred and in extreme cases septa appear as a single broad jumbled row of particles. In this double septa junction, the rows of particles seen in freeze-fracture are occasionally seen to anastomose with a septum dividing into 2 and a third row of particles aligning with the 2 new septa to form their double particle rows. In both fixed and unfixed tissues, the E face of the junction consists of wide, shallow grooves. The second of the new junctions occurs in epithelial tissue, such as around the outer edge of sea-anemone tentacles, and consists of long wavy septa with lateral projections. In views where these projections appear longest, they arise predominantly from one side of the

  1. Externally pumped millimeter-wave Josephson-junction parametric amplifier

    DEFF Research Database (Denmark)

    Levinsen, M.T; Pedersen, Niels Falsig; Sørensen, Ole;


    A unified theory of the singly and doubly degenerate Josephson-junction parametric amplifier is presented. Experiments with single junctions on both amplifier modes at frequencies 10, 35, and 70 GHz are discussed. Low-noise temperature (∼100 K, single sideband (SSB)) and reasonable gain (∼8 d......B) were obtained at 35 GHz in the singly degenerate mode. On the basis of the theory and experiments, a general procedure for optimizing junction parameters is discussed and illustrated by the specific design of a 100-GHz amplifier....

  2. Junction temperature estimation for an advanced active power cycling test

    DEFF Research Database (Denmark)

    Choi, Uimin; Blaabjerg, Frede; Jørgensen, S.


    estimation method using on-state VCE for an advanced active power cycling test is proposed. The concept of the advanced power cycling test is explained first. Afterwards the junction temperature estimation method using on-state VCE and current is presented. Further, the method to improve the accuracy......On-state collector-emitter voltage (VCE) is a good indicator to determine the wear-out condition of power device modules. Further, it is a one of the Temperature Sensitive Electrical Parameters (TSEPs) and thus can be used for junction temperature estimation. In this paper, the junction temperature...

  3. Turbulence-induced magnetic flux asymmetry at nanoscale junctions. (United States)

    Bushong, Neil; Pershin, Yuriy; Di Ventra, Massimiliano


    It was recently predicted [J. Phys. Condens. Matter 18, 11059 (2006)] that turbulence of electron flow may develop at nonadiabatic nanoscale junctions under appropriate conditions. Here we show that such an effect leads to an asymmetric current-induced magnetic field on the two sides of an otherwise symmetric junction. We propose that measuring the fluxes ensuing from these fields across two surfaces placed at the two sides of the junction would provide direct and noninvasive evidence of the transition from laminar to turbulent electron flow. The flux asymmetry is predicted to first increase, reach a maximum, and then decrease with increasing current, i.e., with increasing amount of turbulence.

  4. Nonequilibrium and proximity effects in superconductor-normal metal junctions (United States)

    Kauppila, V. J.; Nguyen, H. Q.; Heikkilä, T. T.


    We study the consequences of nonequilibrium heating and inverse proximity effect in normal metal-insulator-superconductor-insulator-normal metal (NISIN) junctions with a simple quasi-one-dimensional model. We especially focus on observables and parameter regions that are of interest in the design of SINIS coolers with quasiparticle traps. We present numerical results calculated by solving the Usadel equation and also present analytical approximations in two limiting cases: a short junction with a non-negligible resistance in both ends and a long junction with a transparent contact at one end.

  5. Gap junction modulation and its implications for heart function. (United States)

    Kurtenbach, Stefan; Kurtenbach, Sarah; Zoidl, Georg


    Gap junction communication (GJC) mediated by connexins is critical for heart function. To gain insight into the causal relationship of molecular mechanisms of disease pathology, it is important to understand which mechanisms contribute to impairment of gap junctional communication. Here, we present an update on the known modulators of connexins, including various interaction partners, kinases, and signaling cascades. This gap junction network (GJN) can serve as a blueprint for data mining approaches exploring the growing number of publicly available data sets from experimental and clinical studies.

  6. Gap junction modulation and its implications for heart function

    Directory of Open Access Journals (Sweden)

    Stefan eKurtenbach


    Full Text Available Gap junction communication mediated by connexins is critical for heart function. To gain insight into the causal relationship of molecular mechanisms of disease pathology, it is important to understand which mechanisms contribute to impairment of gap junctional communication. Here, we present an update on the known modulators of connexins, including various interaction partners, kinases and signaling cascades. This gap junction network can serve as a blueprint for data mining approaches exploring the growing number of publicly available data sets from experimental and clinical studies.

  7. No junctional communication between epithelial cells in hydra

    DEFF Research Database (Denmark)

    de Laat, S W; Tertoolen, L G; Grimmelikhuijzen, C J


    junctions between epithelial cells of hydra. However, until now, there has been no report published on whether these junctions enable the epithelial cells to exchange molecules of small molecular weight, as has been described in other organisms. Therefore we decided to investigate the communicative...... properties of the junctional membranes by electrophysiological methods and by intracellular-dye iontophoresis. We report here that no electrotonic coupling is detectable between epithelial cells of Hydra attenuata in: (1) intact animals, (2) head-regenerating animals, (3) cell re-aggregates, and (4) hydra...

  8. Soft nanostructuring of YBCO Josephson junctions by phase separation. (United States)

    Gustafsson, D; Pettersson, H; Iandolo, B; Olsson, E; Bauch, T; Lombardi, F


    We have developed a new method to fabricate biepitaxial YBa2 Cu3 O7-δ (YBCO) Josephson junctions at the nanoscale, allowing junctions widths down to 100 nm and simultaneously avoiding the typical damage in grain boundary interfaces due to conventional patterning procedures. By using the competition between the superconducting YBCO and the insulating Y2 BaCuO5 phases during film growth, we formed nanometer sized grain boundary junctions in the insulating Y2 BaCuO5 matrix as confirmed by high-resolution transmission electron microscopy. Electrical transport measurements give clear indications that we are close to probing the intrinsic properties of the grain boundaries.

  9. Dependence of transport properties in tunnel junction on boron doping

    Energy Technology Data Exchange (ETDEWEB)

    Shi, M.J.; Zeng, X.B.; Liu, S.Y.; Peng, W.B; Xiao, H.B; Liao, X.B.; Wang, Z.G.; Kong, G.L. [Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083 (China)


    Boron-doped hydrogenated silicon films with different gaseous doping ratio (B{sub 2}H{sub 6}/SiH{sub 4}) were fabricated as recombination p layers in tunnel junctions. The measurements of I-V characteristics of the junctions and transparency spectra of p layer indicated that the best gaseous doping ratio of the recombination layer is 0.04, which is correlated to the degradation of short range order (SRO) in the inserted p thin film. The junction with such recombination layer has small resistance, near ohmic contact. (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  10. Expression of TM4SF10, a Claudin/EMP/PMP22 family cell junction protein, during mouse kidney development and podocyte differentiation. (United States)

    Bruggeman, Leslie A; Martinka, Scott; Simske, Jeffrey S


    Cell junctions in the nephron are highly specialized to perform specific and distinct filtration and reabsorption functions. The mature kidney forms complex cell junctions including slit diaphragms that prevent the passage of serum proteins into the filtrate, and tubule cell junctions that regulate specific paracellular ion reuptake. We have investigated the expression of TM4SF10 (Trans-Membrane tetra(4)-Span Family 10) in mouse kidneys. TM4SF10 is the vertebrate orthologue of Caenorhabditis elegans VAB-9, a tetraspan adherens junction protein in the PMP22/EMP/Claudin family of proteins. We found that TM4SF10 localizes at the basal-most region of podocyte precursors before the capillary loop stage, at some tubule precursors, and at the ureteric bud junction with S-shaped bodies. Overall expression of TM4SF10 peaked at postnatal day 4 and was virtually absent in adult kidneys. The very limited expression of TM4SF10 protein that persisted into adulthood was restricted to a few tubule segments but remained localized to the basal region of lateral membranes. In undifferentiated cultured podocytes, TM4SF10 localized to the perinuclear region and translocated to the cell membrane after Cadherin appearance at cell-cell contacts. TM4SF10 colocalized with ZO1 and p120ctn in undifferentiated confluent podocytes and also colocalized with the tips of actin filaments at cell contacts. Upon differentiation of cultured podocytes, TM4SF10 protein disappeared from cell contacts and expression ceased. These results suggest that TM4SF10 functions during differentiation of podocytes and may participate in the maturation of cell junctions from simple adherens junctions to elaborate slit diaphragms. TM4SF10 may define a new class of Claudin-like proteins that function during junctional development.

  11. A computational approach to detect gap junction plaques and associate them with cells in fluorescent images. (United States)

    Goldberg, Joshua S; Vadakkan, Tegy J; Hirschi, Karen K; Dickinson, Mary E


    Intercellular signaling is a fundamental requirement for complex biological system function and survival. Communication between adjoining cells is largely achieved via gap junction channels made up of multiple subunits of connexin proteins, each with unique selectivity and regulatory properties. Intercellular communication via gap junction channels facilitates transmission of an array of cellular signals, including ions, macromolecules, and metabolites that coordinate physiological processes throughout tissues and entire organisms. Although current methods used to quantify connexin expression rely on number or area density measurements in a field of view, they lack cellular assignment, distance measurement capabilities (both within the cell and to extracellular structures), and complete automation. We devised an automated computational approach built on a contour expansion algorithm platform that allows connexin protein detection and assignment to specific cells within complex tissues. In addition, parallel implementation of the contour expansion algorithm allows for high-throughput analysis as the complexity of the biological sample increases. This method does not depend specifically on connexin identification and can be applied more widely to the analysis of numerous immunocytochemical markers as well as to identify particles within tissues such as nanoparticles, gene delivery vehicles, or even cellular fragments such as exosomes or microparticles.

  12. Three-dimensional Myoarchitecture of Porcine Esophago-Gastric Junction with Diffusion Tensor Imaging. Selected for poster presentation

    DEFF Research Database (Denmark)

    Gregersen, Hans; Liao, Donghua; Zhao, Jingbo

    Introduction: The anatomy and function of the esophago-gastric junction (EGJ) is complex with mucosa-submucosa layers and smooth muscle layers organized into circular and longitudinal muscle layers. These layers continue from the esophagus into the EGJ and the stomach. Furthermore, the crura of t...... an anatomical-functional realistic computer model of the EGJ.......Introduction: The anatomy and function of the esophago-gastric junction (EGJ) is complex with mucosa-submucosa layers and smooth muscle layers organized into circular and longitudinal muscle layers. These layers continue from the esophagus into the EGJ and the stomach. Furthermore, the crura...... of the diaphragm and the lower esophageal sphincter are components of the EGJ. Little is known about the microstructure of the EGJ. Diffusion tensor imaging (DTI) allows mapping of the diffusion process of molecules, mainly water, in biological tissues. Aims: This study aims to reconstruct an anatomically...

  13. Mouse Hepatitis Virus Infection Remodels Connexin43-Mediated Gap Junction Intercellular Communication In Vitro and In Vivo. (United States)

    Basu, Rahul; Banerjee, Kaveri; Bose, Abhishek; Das Sarma, Jayasri


    Gap junctions (GJs) form intercellular channels which directly connect the cytoplasm between neighboring cells to facilitate the transfer of ions and small molecules. GJs play a major role in the pathogenesis of infection-associated inflammation. Mutations of gap junction proteins, connexins (Cxs), cause dysmyelination and leukoencephalopathy. In multiple sclerosis (MS) patients and its animal model experimental autoimmune encephalitis (EAE), Cx43 was shown to be modulated in the central nervous system (CNS). The mechanism behind Cx43 alteration and its role in MS remains unexplored. Mouse hepatitis virus (MHV) infection-induced demyelination is one of the best-studied experimental animal models for MS. Our studies demonstrated that MHV infection downregulated Cx43 expression at protein and mRNA levels in vitro in primary astrocytes obtained from neonatal mouse brains. After infection, a significant amount of Cx43 was retained in endoplasmic reticulum/endoplasmic reticulum Golgi intermediate complex (ER/ERGIC) and GJ plaque formation was impaired at the cell surface, as evidenced by a reduction of the Triton X-100 insoluble fraction of Cx43. Altered trafficking and impairment of GJ plaque formation may cause the loss of functional channel formation in MHV-infected primary astrocytes, as demonstrated by a reduced number of dye-coupled cells after a scrape-loading Lucifer yellow dye transfer assay. Upon MHV infection, a significant downregulation of Cx43 was observed in the virus-infected mouse brain. This study demonstrates that astrocytic Cx43 expression and function can be modulated due to virus stress and can be an appropriate model to understand the basis of cellular mechanisms involved in the alteration of gap junction intercellular communication (GJIC) in CNS neuroinflammation. We found that MHV infection leads to the downregulation of Cx43 in vivo in the CNS. In addition, results show that MHV infection impairs Cx43 expression in addition to gap junction

  14. An introduction to adherens junctions: from molecular mechanisms to tissue development and disease. (United States)

    Harris, Tony J C


    Adherens junctions (AJs) are fundamental for the development of animal tissues and organs. The core complex is formed from transmembrane cell-cell adhesion molecules, cadherins, and adaptor molecules, the catenins, that link to cytoskeletal and regulatory networks within the cell. This complex can be considered over a wide range of biological organization, from atoms to molecules, protein complexes, molecular networks, cells, tissues, and overall animal development. AJs have also been an integral part of animal evolution, and play central roles in cancer development and pathogen infection. This book addresses major questions encompassing these aspects of AJ biology. How did AJs evolve? How do the cadherins and catenins interact to assemble AJs and mediate adhesion? How do AJs interface with other cellular machinery to couple adhesion with the whole cell? How do AJs affect cell behaviour and multicellular development? How can abnormal AJ activity lead to disease?

  15. Magnetic domain wall engineering in a nanoscale permalloy junction (United States)

    Wang, Junlin; Zhang, Xichao; Lu, Xianyang; Zhang, Jason; Yan, Yu; Ling, Hua; Wu, Jing; Zhou, Yan; Xu, Yongbing


    Nanoscale magnetic junctions provide a useful approach to act as building blocks for magnetoresistive random access memories (MRAM), where one of the key issues is to control the magnetic domain configuration. Here, we study the domain structure and the magnetic switching in the Permalloy (Fe20Ni80) nanoscale magnetic junctions with different thicknesses by using micromagnetic simulations. It is found that both the 90-° and 45-° domain walls can be formed between the junctions and the wire arms depending on the thickness of the device. The magnetic switching fields show distinct thickness dependencies with a broad peak varying from 7 nm to 22 nm depending on the junction sizes, and the large magnetic switching fields favor the stability of the MRAM operation.

  16. Manipulating Josephson junctions in thin-films by nearby vortices

    Energy Technology Data Exchange (ETDEWEB)

    Kogan, V G; Mints, R G


    It is shown that a vortex trapped in one of the banks of a planar edge-type Josephson junction in a narrow thin-film superconducting strip can change drastically the dependence of the junction critical current on the applied field, I-c(H). When the vortex is placed at certain discrete positions in the strip middle, the pattern I-c(H) has zero at H = 0 instead of the traditional maximum of '0-type' junctions. The number of these positions is equal to the number of vortices trapped at the same location. When the junction-vortex separation exceeds similar to W, the strip width, I-c(H) is no longer sensitive to the vortex presence. The same is true for any separation if the vortex approaches the strip edges. (C) 2014 Elsevier B.V. All rights reserved.

  17. Low-Cost Multi-Junction Photovoltaic Cells Project (United States)

    National Aeronautics and Space Administration — The proposed SBIR project will provide a pathway to dramatically reduce the cost of multi-junction solar cells. The project leverages a TRL6 micropackaging process...

  18. Static vortices in long Josephson junctions of exponentially varying width (United States)

    Semerdjieva, E. G.; Boyadjiev, T. L.; Shukrinov, Yu. M.


    A numerical simulation is carried out for static vortices in a long Josephson junction with an exponentially varying width. At specified values of the parameters the corresponding boundary-value problem admits more than one solution. Each solution (distribution of the magnetic flux in the junction) is associated to a Sturm-Liouville problem, the smallest eigenvalue of which can be used, in a first approximation, to assess the stability of the vortex against relatively small spatiotemporal perturbations. The change in width of the junction leads to a renormalization of the magnetic flux in comparison with the case of a linear one-dimensional model. The influence of the model parameters on the stability of the states of the magnetic flux is investigated in detail, particularly that of the shape parameter. The critical curve of the junction is constructed from pieces of the critical curves for the different magnetic flux distributions having the highest critical currents for the given magnetic field.

  19. High-temperature superconductor vertically-stacked Josephson junctions

    Energy Technology Data Exchange (ETDEWEB)

    Yoshinaga, Y; Kito, T; Izawa, S; Maruyama, M; Inoue, M; Fujimaki, A; Hayakawa, H [Department of Quantum Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan)


    We study vertically-stacked interface-treated Josephson junctions (ITJs). The barriers of ITJs are formed by Ar ion etching and subsequent annealing, not by depositing an artificial barrier. We have investigated the dependences of the junction properties on the processing parameters. It is found that the control of junction properties can be realized by controlling the incidence angle of Ar, and that the higher accelerating voltage of Ar reduces leakage paths in a barrier. Moreover, we have successfully eliminated the excess current of the junctions using the PrGaO{sub 3} (PGO) doping process. We conclude that the conjunction of the interface treatment and the PGO doping technique leads to highly integrated Josephson circuits.

  20. High-temperature superconductor vertically-stacked Josephson junctions

    CERN Document Server

    Yoshinaga, Y; Izawa, S; Maruyama, M; Inoue, M; Fujimaki, A; Hayakawa, H


    We study vertically-stacked interface-treated Josephson junctions (ITJs). The barriers of ITJs are formed by Ar ion etching and subsequent annealing, not by depositing an artificial barrier. We have investigated the dependences of the junction properties on the processing parameters. It is found that the control of junction properties can be realized by controlling the incidence angle of Ar, and that the higher accelerating voltage of Ar reduces leakage paths in a barrier. Moreover, we have successfully eliminated the excess current of the junctions using the PrGaO sub 3 (PGO) doping process. We conclude that the conjunction of the interface treatment and the PGO doping technique leads to highly integrated Josephson circuits.

  1. Effect of surface losses on soliton propagation in Josephson junctions

    DEFF Research Database (Denmark)

    Davidson, A.; Pedersen, Niels Falsig; Pagano, S.


    We have explored numerically the effects on soliton propagation of a third order damping term in the modified sine-Gordon equation. In Josephson tunnel junctions such a term corresponds physically to quasiparticle losses within the metal electrodes of the junction. We find that this loss term pla...... the dominant role in determining the shape and stability of the soliton at high velocity. Applied Physics Letters is copyrighted by The American Institute of Physics.......We have explored numerically the effects on soliton propagation of a third order damping term in the modified sine-Gordon equation. In Josephson tunnel junctions such a term corresponds physically to quasiparticle losses within the metal electrodes of the junction. We find that this loss term plays...

  2. Radiologic staging of esophageal and gastroesophageal junction carcinoma

    NARCIS (Netherlands)

    H. van Overhagen (Hans)


    textabstractPretreatment radiologic staging can, theoretically, improve the effectiveness and results of surgical treatment in esophageal and gastroesophageal junction carcinoma. Ideally, on these studies it is possible to select only patients with limited local disease for surgery, whereas those

  3. Fluxon bunching in supercurrent-coupled Josephson junctions

    DEFF Research Database (Denmark)

    Grønbech-Jensen, Niels; Lomdahl, Peter S.; Samuelsen, Mogens Rugholm


    We investigate analytically and numerically the interaction between fluxons of different Josephson junctions coupled through Cooper-pair tunneling. We find that the supercurrent interaction gives rise to attraction between fluxons regardless of their polarity, although fluxons of different polari...

  4. Magnetoanisotropic Andreev reflection in ferromagnet-superconductor junctions. (United States)

    Högl, Petra; Matos-Abiague, Alex; Žutić, Igor; Fabian, Jaroslav


    Andreev reflection spectroscopy of ferromagnet-superconductor (FS) junctions [corrected] is an important probe of spin polarization. We theoretically investigate spin-polarized transport in FS junctions in the presence of Rashba and Dresselhaus interfacial spin-orbit fields and show that Andreev reflection can be controlled by changing the magnetization orientation. We predict a giant in- and out-of-plane magnetoanisotropy of the junction conductance. If the ferromagnet is highly spin polarized-in the half-metal limit-the magnetoanisotropic Andreev reflection depends universally on the spin-orbit fields only. Our results show that Andreev reflection spectroscopy can be used for sensitive probing of interfacial spin-orbit fields in a FS junction.

  5. Coherent Magnetic Switching in a Permalloy Submicron Junction

    CERN Document Server

    Wang, Junlin; Lu, Xianyang; Zhang, Jason; Ling, Hua; Wu, Jing; Zhou, Yan; Xu, Yongbing


    This work provides a numerical micromagnetic study of the magnetic switching of a submicron magnetic junction in a Permalloy (Ni80Fe20) cross structure. The simulation results demonstrate that the magnetic domain at the junction can be controlled to switch coherently by the applied magnetic field. This coherent magnetic switching in the cross structure has been found to be reversible and the 2-bit information can be written in the magnetic junction. For information storage, this kind of device can also realize the function of a quaternary arithmetic unit. By varying the direction of the applied magnetic field, we have demonstrated that this magnetic junction could be the building block for a magnetoresistive random access memory (MRAM) or a quaternary magnetic arithmetic unit.

  6. Congenital right sided ureteropelvic junction obstruction in right ...

    African Journals Online (AJOL)

    V. Singh

    Congenital right sided ureteropelvic junction obstruction in right crossed ... Peer review under responsibility of Pan African Urological Surgeons' Asso- ciation. ... There was large gap between the UPJ and the .... relationship to renal disease.

  7. Quantum-confined Stark effect in band-inverted junctions (United States)

    Díaz-Fernández, A.; Domínguez-Adame, F.


    Topological phases of matter are often characterized by interface states, which were already known to occur at the boundary of a band-inverted junction in semiconductor heterostructures. In IV-VI compounds such interface states are properly described by a two-band model, predicting the appearance of a Dirac cone in single junctions. We study the quantum-confined Stark effect of interface states due to an electric field perpendicular to a band-inverted junction. We find a closed expression to obtain the interface dispersion relation at any field strength and show that the Dirac cone widens under an applied bias. Thus, the Fermi velocity can be substantially lowered even at moderate fields, paving the way for tunable band-engineered devices based on band-inverted junctions.

  8. Studies of silicon p-n junction solar cells (United States)

    Neugroschel, A.; Lindholm, F. A.


    To provide theoretical support for investigating different ways to obtain high open-circuit voltages in p-n junction silicon solar cells, an analytical treatment of heavily doped transparent-emitter devices is presented that includes the effects of bandgap narrowing, Fermi-Dirac statistics, a doping concentration gradient, and a finite surface recombination velocity at the emitter surface. Topics covered include: (1) experimental determination of bandgap narrowing in the emitter of silicon p-n junction devices; (2) heavily doped transparent regions in junction solar cells, diodes, and transistors; (3) high-low-emitter solar cell; (4) determination of lifetimes and recombination currents in p-n junction solar cells; (5) MOS and oxide-charged-induced BSF solar cells; and (6) design of high efficiency solar cells for space and terrestrial applications.

  9. Evidence for nonlocal electrodynamics in planar Josephson junctions. (United States)

    Boris, A A; Rydh, A; Golod, T; Motzkau, H; Klushin, A M; Krasnov, V M


    We study the temperature dependence of the critical current modulation I(c)(H) for two types of planar Josephson junctions: a low-Tc Nb/CuNi/Nb and a high-Tc YBa2Cu3O(7-δ) bicrystal grain-boundary junction. At low T both junctions exhibit a conventional behavior, described by the local sine-Gordon equation. However, at elevated T the behavior becomes qualitatively different: the I(c)(H) modulation field ΔH becomes almost T independent and neither ΔH nor the critical field for the penetration of Josephson vortices vanish at Tc. Such an unusual behavior is in good agreement with theoretical predictions for junctions with nonlocal electrodynamics. We extract absolute values of the London penetration depth λ from our data and show that a crossover from local to nonlocal electrodynamics occurs with increasing T when λ(T) becomes larger than the electrode thickness.

  10. Bedrock Geologic Map of the Essex Junction Quadrangle, Vermont (United States)

    Vermont Center for Geographic Information — Digital data from VG12-3, Gale, M., Kim. J., and Ruksznis, A., 2012, Bedrock Geologic Map of the essex Junction Quadrangle: Vermont Geological Survey Open File...

  11. Memory cell operation based on small Josephson junctions arrays (United States)

    Braiman, Y.; Nair, N.; Rezac, J.; Imam, N.


    In this paper we analyze a cryogenic memory cell circuit based on a small coupled array of Josephson junctions. All the basic memory operations (e.g., write, read, and reset) are implemented on the same circuit and different junctions in the array can in principle be utilized for these operations. The presented memory operation paradigm is fundamentally different from conventional single quantum flux operation logics (SFQ). As an example, we demonstrate memory operation driven by a SFQ pulse employing an inductively coupled array of three Josephson junctions. We have chosen realistic Josephson junction parameters based on state-of-the-art fabrication capabilities and have calculated access times and access energies for basic memory cell operations. We also implemented an optimization procedure based on the simulated annealing algorithm to calculate the optimized and typical values of access times and access energies.

  12. Systematic optimization of quantum junction colloidal quantum dot solar cells

    KAUST Repository

    Liu, Huan


    The recently reported quantum junction architecture represents a promising approach to building a rectifying photovoltaic device that employs colloidal quantum dot layers on each side of the p-n junction. Here, we report an optimized quantum junction solar cell that leverages an improved aluminum zinc oxide electrode for a stable contact to the n-side of the quantum junction and silver doping of the p-layer that greatly enhances the photocurrent by expanding the depletion region in the n-side of the device. These improvements result in greater stability and a power conversion efficiency of 6.1 under AM1.5 simulated solar illumination. © 2012 American Institute of Physics.

  13. Formation of bubbles in a multisection flow-focusing junction. (United States)

    Hashimoto, Michinao; Whitesides, George M


    The formation of bubbles in a flow-focusing (FF) junction comprising multiple rectangular sections is described. The simplest junctions comprise two sections (throat and orifice). Systematic investigation of the influence on the formation of bubbles of the flow of liquid and the geometry of the junction identifies regimes that generate monodisperse, bidisperse, and tridisperse trains of bubbles. The mechanisms by which these junctions form monodisperse and bidisperse bubbles are inferred from the shapes of the gas thread during breakup: these mechanisms differ primarily by the process in which the gas thread collapses in the throat and/or orifice. The dynamic self-assembly of bidisperse bubbles leads to unexpected groupings of bubbles during their flow along the outlet channel.

  14. Niobium nitride technology for Josephson junction devices

    Energy Technology Data Exchange (ETDEWEB)

    Meckbach, Johannes Maximilian; Merker, Michael; Il' in, Konstantin; Siegel, Michael [Institut fuer Mikro- und Nanoelektronische Systeme (IMS), Karlsruher Institut fuer Technologie (KIT), Hertzstrasse 16, 76187 Karlsruhe (Germany); Haeffelin, Andreas [Institut fuer Werkstoffe der Elektrotechnik (IWE), Karlsruher Institut fuer Technologie(KIT), Adenauerring 20b, 76131 Karlsruhe (Germany)


    Over the last decades Nb/Al-AlO{sub x}/Nb multi-layers have been the primary choice for Josephson junction (JJ) devices such as SIS mixers, SQUIDs and RSFQ. Various applications require high critical-current densities j{sub c} and low sub-gap leakage. Additionally, a large gap-voltage benefits the performance of most devices. Nb/Al-AlO{sub x}/Nb technology is limited in j{sub c} due to an increasing transparency of the barrier with increasing j{sub c}, and the energy-gap of the Nb electrodes poses an upper frequency limit for SIS mixers. NbN/AlN/NbN multi-layer technology has emerged as an alternative to Nb/Al-AlO{sub x}/Nb. The upper frequency limit of NbN-based SIS mixing element significantly exceeds that of Nb, and AlN-barriers result in higher j{sub c}'s at identical thicknesses as compared to AlO{sub x}. We have developed an in-situ fabrication technology for NbN/AlN/NbN multi-layers. We found a clear influence of the sputter parameters on the surface morphology of the NbN electrodes, which directly impacts on the quality of the JJs. Transport properties of JJs on different substrates are presented.

  15. Seebeck effect in magnetic tunnel junctions. (United States)

    Walter, Marvin; Walowski, Jakob; Zbarsky, Vladyslav; Münzenberg, Markus; Schäfers, Markus; Ebke, Daniel; Reiss, Günter; Thomas, Andy; Peretzki, Patrick; Seibt, Michael; Moodera, Jagadeesh S; Czerner, Michael; Bachmann, Michael; Heiliger, Christian


    Creating temperature gradients in magnetic nanostructures has resulted in a new research direction, that is, the combination of magneto- and thermoelectric effects. Here, we demonstrate the observation of one important effect of this class: the magneto-Seebeck effect. It is observed when a magnetic configuration changes the charge-based Seebeck coefficient. In particular, the Seebeck coefficient changes during the transition from a parallel to an antiparallel magnetic configuration in a tunnel junction. In this respect, it is the analogue to the tunnelling magnetoresistance. The Seebeck coefficients in parallel and antiparallel configurations are of the order of the voltages known from the charge-Seebeck effect. The size and sign of the effect can be controlled by the composition of the electrodes' atomic layers adjacent to the barrier and the temperature. The geometric centre of the electronic density of states relative to the Fermi level determines the size of the Seebeck effect. Experimentally, we realized 8.8% magneto-Seebeck effect, which results from a voltage change of about -8.7 μV K⁻¹ from the antiparallel to the parallel direction close to the predicted value of -12.1 μV K⁻¹. In contrast to the spin-Seebeck effect, it can be measured as a voltage change directly without conversion of a spin current.

  16. Revisiting the Darmois and Lichnerowicz junction conditions (United States)

    Lake, Kayll


    What have become known as the "Darmois" and "Lichnerowicz" junction conditions are often stated to be equivalent, "essentially" equivalent, in a "sense" equivalent, and so on. One even sees not infrequent reference to the "Darmois-Lichnerowicz" conditions. Whereas the equivalence of these conditions is manifest in Gaussian-normal coordinates, a fact that has been known for close to a century, this equivalence does not extend to a loose definition of "admissible" coordinates (coordinates in which the metric and its first order derivatives are continuous). We show this here by way of a simple, but physically relevant, example. In general, a loose definition of the "Lichnerowicz" conditions gives additional restrictions, some of which simply amount to a convenient choice of gauge, and some of which amount to real physical restrictions, away from strict "admissible" coordinates. The situation was totally confused by a very influential, and now frequently misquoted, paper by Bonnor and Vickers, that erroneously claimed a proof of the equivalence of the "Darmois" and "Lichnerowicz" conditions within this loose definition of "admissible" coordinates. A correct proof, based on a strict definition of "admissible" coordinates, was given years previous by Israel. It is that proof, generally unrecognized, that we must refer to. Attention here is given to a clarification of the subject, and to the history of the subject, which, it turns out, is rather fascinating in itself.

  17. Gamma Radiation Tolerance of Magnetic Tunnel Junctions (United States)

    Ren, Fanghui; Jander, Albrecht; Dhagat, Pallavi; Nordman, Cathy


    Determining the radiation tolerance of magnetic tunnel junctions (MTJ), which are the storage elements of non-volatile magnetoresistive random access memories (MRAM), is important for investigating their potential application in space. In this effort, the effect of gamma radiation on MTJs with MgO tunnel barriers was studied. Experimental and control groups of samples were characterized by ex situ measurements of the magnetoresistive hysteresis loops and I-V curves. The experimental group was exposed to gamma rays from a ^60Co source. The samples initially received a dose of 5.9 Mrad (Si) after which they were again characterized electrically and magnetically. Irradiation was then continued for a cumulative dose of 10 Mrad and the devices re-measured. The result shows no change in magnetic properties such as coercivity or exchange coupling due to irradiation. After correcting for differences in temperature at the time of testing, the tunneling magnetoresistance was also found to be unchanged. Thus, it has been determined that MgO-based MTJs are highly tolerant of gamma radiation, particularly in comparison to silicon field-effect transistors which have been shown to degrade with gamma ray exposure even as low as 100 Krad [Zhiyuan Hu. et al., IEEE trans. on Nucl. Sci., vol. 58, 2011].

  18. Photoinduced carrier annihilation in silicon pn junction (United States)

    Sameshima, Toshiyuki; Motoki, Takayuki; Yasuda, Keisuke; Nakamura, Tomohiko; Hasumi, Masahiko; Mizuno, Toshihisa


    We report analysis of the photo-induced minority carrier effective lifetime (τeff) in a p+n junction formed on the top surfaces of a n-type silicon substrate by ion implantation of boron and phosphorus atoms at the top and bottom surfaces followed by activation by microwave heating. Bias voltages were applied to the p+ boron-doped surface with n+ phosphorus-doped surface kept at 0 V. The values of τeff were lower than 1 × 10-5 s under the reverse-bias condition. On the other hand, τeff markedly increased to 1.4 × 10-4 s as the forward-bias voltage increased to 0.7 V and then it leveled off when continuous-wave 635 nm light was illuminated at 0.74 mW/cm2 on the p+ surface. The carrier annihilation velocity S\\text{p + } at the p+ surface region was numerically estimated from the experimental τeff. S\\text{p + } ranged from 4000 to 7200 cm/s under the reverse-bias condition when the carrier annihilation velocity S\\text{n + } at the n+ surface region was assumed to be a constant value of 100 cm/s. S\\text{p + } markedly decreased to 265 cm/s as the forward-bias voltage increased to 0.7 V.

  19. Parallel Quantum Circuit in a Tunnel Junction (United States)

    Faizy Namarvar, Omid; Dridi, Ghassen; Joachim, Christian


    Spectral analysis of 1 and 2-states per line quantum bus are normally sufficient to determine the effective Vab(N) electronic coupling between the emitter and receiver states through the bus as a function of the number N of parallel lines. When Vab(N) is difficult to determine, an Heisenberg-Rabi time dependent quantum exchange process must be triggered through the bus to capture the secular oscillation frequency Ωab(N) between those states. Two different linear and regimes are demonstrated for Ωab(N) as a function of N. When the initial preparation is replaced by coupling of the quantum bus to semi-infinite electrodes, the resulting quantum transduction process is not faithfully following the Ωab(N) variations. Because of the electronic transparency normalisation to unity and of the low pass filter character of this transduction, large Ωab(N) cannot be captured by the tunnel junction. The broadly used concept of electrical contact between a metallic nanopad and a molecular device must be better described as a quantum transduction process. At small coupling and when N is small enough not to compensate for this small coupling, an N2 power law is preserved for Ωab(N) and for Vab(N).

  20. Parallel Quantum Circuit in a Tunnel Junction. (United States)

    Faizy Namarvar, Omid; Dridi, Ghassen; Joachim, Christian


    Spectral analysis of 1 and 2-states per line quantum bus are normally sufficient to determine the effective Vab(N) electronic coupling between the emitter and receiver states through the bus as a function of the number N of parallel lines. When Vab(N) is difficult to determine, an Heisenberg-Rabi time dependent quantum exchange process must be triggered through the bus to capture the secular oscillation frequency Ωab(N) between those states. Two different linear and regimes are demonstrated for Ωab(N) as a function of N. When the initial preparation is replaced by coupling of the quantum bus to semi-infinite electrodes, the resulting quantum transduction process is not faithfully following the Ωab(N) variations. Because of the electronic transparency normalisation to unity and of the low pass filter character of this transduction, large Ωab(N) cannot be captured by the tunnel junction. The broadly used concept of electrical contact between a metallic nanopad and a molecular device must be better described as a quantum transduction process. At small coupling and when N is small enough not to compensate for this small coupling, an N(2) power law is preserved for Ωab(N) and for Vab(N).

  1. Quantum statistical theory of semiconductor junctions in thermal equilibrium (United States)

    Von Roos, O.


    Free carrier and electric field distributions of one-dimensional semiconductor junctions are evaluated using a quantum mechanical phase-space distribution and its corresponding Boltzmann equation. Attention is given to quantum and exchange corrections in cases of high doping concentrations when carrier densities become degenerate. Quantitative differences between degenerate and classical junction characteristics, e.g., maximum electric field and built-in voltage and carrier concentration within the transition region, are evaluated numerically.

  2. Raman Scattering at Plasmonic Junctions Shorted by Conductive Molecular Bridges

    Energy Technology Data Exchange (ETDEWEB)

    El-Khoury, Patrick Z.; Hu, Dehong; Apkarian, V. Ara; Hess, Wayne P.


    Intensity spikes in Raman scattering, accompanied by switching between line spectra and band spectra, can be assigned to shorting the junction plasmon through molecular conductive bridges. This is demonstrated through Raman trajectories recorded at a plasmonic junction formed by a gold AFM tip in contact with a silver surface coated either with biphenyl-4,4’-dithiol or biphenyl-4-thiol. The fluctuations are absent in the monothiol. In effect, the making and breaking of chemical bonds is tracked.

  3. Craniovertebral junction stenosis in Lenz-Majewski syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Mizuguchi, Koichi; Ishigro, Akira [National Center for Child Health and Development, Department of General Pediatrics and Interdisciplinary Medicine, Setagaya-ku, Tokyo (Japan); Miyazaki, Osamu [National Center for Child Health and Development, Department of Radiology, Tokyo (Japan); Nishimura, Gen [Tokyo Metropolitan Children' s Medical Center, Department of Pediatric Imaging, Tokyo (Japan)


    We report a girl with Lenz-Majewski syndrome associated with craniovertebral junction stenosis that led to communicating hydrocephalus and cervical myelopathy. The life-threatening complication was related to progressive craniovertebral hyperostosis that rapidly exacerbated during early childhood. Despite initial success of surgical intervention at 2 years of age, she developed apneic spells and died suddenly at age 5 years. Close monitoring for craniovertebral junction stenosis is essential to reduce morbidity and mortality in children with Lenz-Majewski syndrome. (orig.)

  4. Paracellular drug absorption enhancement through tight junction modulation


    Lemmer, Hendrik Jacobus Righard; Josias H. Hamman


    Introduction: Inclusion of absorption-enhancing agents in dosage forms is one approach to improve the bioavailability of active pharmaceutical ingredients with low membrane permeability. Tight junctions are dynamic protein structures that form a regulated barrier for movement of molecules through the intercellular spaces across the intestinal epithelium. Some drug absorption enhancers are capable of loosening tight junctions and thereby facilitate paracellular absorption of drug molecules. ...

  5. Resonance features of coupled Josephson junctions: radiation and shunting (United States)

    Shukrinov, Yu M.; Seidel, P.; Il'ichev, E.; Nawrocki, W.; Grajcar, M.; Plecenik, P. A.; Rahmonov, I. R.; Kulikov, K.


    We study the phase dynamics and the resonance features of coupled Josephson junctions in layered superconductors and their manifestations in the current- voltage characteristics and temporal dependence of the electric charge in the superconducting layers. Results on the effect of the external radiation and shunting of the stack of Josephson junctions by LC-elements are presented. We discuss the ideas concerning the experimental observation of these resonances.

  6. High Density Planar High Temperature Superconducting Josephson Junctions Arrays (United States)


    TIT,) 3 dependance . At lower temperatures it follows a (1 - T/T,)2 depen- dance ........ ................................... 57 4.7 Shapiro steps in...70 4.23 Dependance of the critical current for a ten junction array on mi- crowave power ..................................... 71 4.24 Resistance vs...GHz microwave radiation. (b) Microwave power dependance of the critical current and 1st-order Shapiro step. 76 5.2 (a) Single junction critical current

  7. Recognition of Nucleic Acid Junctions Using Triptycene-Based Molecules


    Barros, Stephanie A.; Chenoweth, David M.


    Nucleic acid modulation by small molecules is an essential process across the kingdoms of life. Targeting nucleic acids with small molecules represents a significant challenge at the forefront of chemical biology. Nucleic acid junctions are ubiquitous structural motifs in nature and in designed materials. Herein, we describe a new class of structure specific nucleic acid junction stabilizers based on a triptycene scaffold. Triptycenes provide significant stabilization of DNA and RNA three-way...

  8. Craniovertebral junction stenosis in Lenz-Majewski syndrome. (United States)

    Mizuguchi, Koichi; Miyazaki, Osamu; Nishimura, Gen; Ishigro, Akira


    We report a girl with Lenz-Majewski syndrome associated with craniovertebral junction stenosis that led to communicating hydrocephalus and cervical myelopathy. The life-threatening complication was related to progressive craniovertebral hyperostosis that rapidly exacerbated during early childhood. Despite initial success of surgical intervention at 2 years of age, she developed apneic spells and died suddenly at age 5 years. Close monitoring for craniovertebral junction stenosis is essential to reduce morbidity and mortality in children with Lenz-Majewski syndrome.

  9. A rare presentation of lipoma on mandibular mucogingival junction (United States)

    Sharma, Gaurav; Jain, Kanu; Nagpal, Archna; Baiju, Chandrababu Sudha


    Lipoma is the most common tumor of mesenchymal tissues of body, but its occurrence in oral cavity is infrequent. Buccal mucosa is the most common intraoral site of lipoma followed by tongue, floor of the mouth, and buccal vestibule. The involvement of mucogingival junction is rare. We present a unique case report of oral lipoma occurring on mandibular mucogingival junction with review of literature which has emphasis on differential diagnosis. PMID:27143835

  10. Development of Junction Elements from Study of the Bionics

    Institute of Scientific and Technical Information of China (English)

    Wilson Kindlein Junior; Luis Henrique Alves C(a)ndido; André Canal Marques; Sandra Souza dos Santos; Maurício da Silva Viegas


    The applications of bionic methodology developed by the Laboratory of Design and Material Selection as basis in the creation of junction elements were demonstrated.These elements favor the application of Ecodesign in reference to the effectiveness of product dismount aiming the reduction of ambient impact in all its phases of use.The creation,the development and the confection of new junction elements were described,and case studies of new products developed specificallv with this purpose were presented.

  11. Resonator coupled Josephson junctions; parametric excitations and mutual locking

    DEFF Research Database (Denmark)

    Jensen, H. Dalsgaard; Larsen, A.; Mygind, Jesper


    Self-pumped parametric excitations and mutual locking in systems of Josephson tunnel junctions coupled to multimode resonators are reported. For the very large values of the coupling parameter, obtained with small Nb-Al2O3-Nb junctions integrated in superconducting microstrip resonators, the DC I......-V characteristic shows an equidistant series of current steps generated by subharmonic pumping of the fundamental resonator mode. This is confirmed by measurement of frequency and linewidth of the emitted Josephson radiation...

  12. Evidence for a minigap in YBCO grain boundary Josephson junctions. (United States)

    Lucignano, P; Stornaiuolo, D; Tafuri, F; Altshuler, B L; Tagliacozzo, A


    Self-assembled YBaCuO diffusive grain boundary submicron Josephson junctions offer a realization of a special regime of the proximity effect, where normal state coherence prevails on the superconducting coherence in the barrier region. Resistance oscillations from the current-voltage characteristic encode mesoscopic information on the junction and more specifically on the minigap induced in the barrier. Their persistence at large voltages is evidence of the long lifetime of the antinodal (high energy) quasiparticles.

  13. Reinventing the PN Junction: Dimensionality Effects on Tunneling Switches (United States)


    lower paraboloid represents all of the available states in k-space on the left side of the junction and the upper paraboloid represents the available...and so the paraboloids must overlap. However, as seen in the right part of the figure, they can only overlap at a single energy. Furthermore, the... paraboloids on each side of the junction only intersect at a single energy. 62 need to sum Eqn. (6.8.3) over all initial states or final

  14. Supraspinatus rupture at the musculotendinous junction in a young woman


    Benazzo, Francesco; MARULLO, MATTEO; Pietrobono, Luigi


    The vast majority of rotator cuff tears occur within the tendon or as an avulsion from the greater tuberosity. Supraspinatus injury at the musculotendinous junction is a very uncommon event. We describe a case of supraspinatus rupture at the musculotendinous junction, with successful conservative treatment. It occurred in a 23-year-old woman, the youngest patient with this uncommon type of injury. To our knowledge, this is the first case of rupture of the supraspinatus muscle at the musculote...

  15. Subsurface geometry of the San Andreas-Calaveras fault junction: influence of the Coast Range Ophiolite (United States)

    Watt, J. T.; Ponce, D. A.; Graymer, R. W.; Jachens, R. C.; Simpson, R. W.


    indicate that the southwestern edge of this magnetic body is defined by a northeast-dipping structure that we interpret as part of the Calaveras fault. The base of this magnetic slab, which is folded up along the Calaveras fault, may represent a roof thrust formed by an eastward-migrating wedge of Franciscan Complex. Fragments of Coast Range Ophiolite caught up within the San Andreas-Calaveras junction may facilitate creep and slip transfer between structures that have no apparent connection at the surface. Combined geological and geophysical results suggest that during development of the junction, the Calaveras fault preferentially followed a zone of weakness represented by the roof thrust and associated Coast Range Ophiolite. The Hayward fault occupies a similar position with respect to the Coast Range Ophiolite near San Leandro to the north.

  16. Basic properties of an rf SQUID involving two Josephson junctions connected in series

    Institute of Scientific and Technical Information of China (English)

    Mao Bo; Tan Zhong-Kui; Meng Shu-Chao; Dai Yuan-Dong; Wang Fu-Ren


    We have studied the basic characteristics of a radio frequency superconducting quantum interference device (rf SQUID) involving two Josephson junctions connected in series, the case for the widely used grain boundary junction (GBJ) rf SQUID. It is found that the SQUID properties are determined mainly by the weaker junction when the critical current of the weaker junction is much lower than that of the other junction. Otherwise, the effect of the other junction is not negligible. We also find that only when the hysteresis parameter β is less than 1- α, where α is the critical current ratio of the two junctions, will the SQUID operate in the nonhysteretic mode.

  17. aPKC phosphorylates JAM-A at Ser285 to promote cell contact maturation and tight junction formation. (United States)

    Iden, Sandra; Misselwitz, Steve; Peddibhotla, Swetha S D; Tuncay, Hüseyin; Rehder, Daniela; Gerke, Volker; Robenek, Horst; Suzuki, Atsushi; Ebnet, Klaus


    The PAR-3-atypical protein kinase C (aPKC)-PAR-6 complex has been implicated in the development of apicobasal polarity and the formation of tight junctions (TJs) in vertebrate epithelial cells. It is recruited by junctional adhesion molecule A (JAM-A) to primordial junctions where aPKC is activated by Rho family small guanosine triphosphatases. In this paper, we show that aPKC can interact directly with JAM-A in a PAR-3-independent manner. Upon recruitment to primordial junctions, aPKC phosphorylates JAM-A at S285 to promote the maturation of immature cell-cell contacts. In fully polarized cells, S285-phosphorylated JAM-A is localized exclusively at the TJs, and S285 phosphorylation of JAM-A is required for the development of a functional epithelial barrier. Protein phosphatase 2A dephosphorylates JAM-A at S285, suggesting that it antagonizes the activity of aPKC. Expression of nonphosphorylatable JAM-A/S285A interferes with single lumen specification during cyst development in three-dimensional culture. Our data suggest that aPKC phosphorylates JAM-A at S285 to regulate cell-cell contact maturation, TJ formation, and single lumen specification.

  18. SAGE2Splice: unmapped SAGE tags reveal novel splice junctions.

    Directory of Open Access Journals (Sweden)

    Byron Yu-Lin Kuo


    Full Text Available Serial analysis of gene expression (SAGE not only is a method for profiling the global expression of genes, but also offers the opportunity for the discovery of novel transcripts. SAGE tags are mapped to known transcripts to determine the gene of origin. Tags that map neither to a known transcript nor to the genome were hypothesized to span a splice junction, for which the exon combination or exon(s are unknown. To test this hypothesis, we have developed an algorithm, SAGE2Splice, to efficiently map SAGE tags to potential splice junctions in a genome. The algorithm consists of three search levels. A scoring scheme was designed based on position weight matrices to assess the quality of candidates. Using optimized parameters for SAGE2Splice analysis and two sets of SAGE data, candidate junctions were discovered for 5%-6% of unmapped tags. Candidates were classified into three categories, reflecting the previous annotations of the putative splice junctions. Analysis of predicted tags extracted from EST sequences demonstrated that candidate junctions having the splice junction located closer to the center of the tags are more reliable. Nine of these 12 candidates were validated by RT-PCR and sequencing, and among these, four revealed previously uncharacterized exons. Thus, SAGE2Splice provides a new functionality for the identification of novel transcripts and exons. SAGE2Splice is available online at

  19. Engineering design of artificial vascular junctions for 3D printing. (United States)

    Han, Xiaoxiao; Bibb, Richard; Harris, Russell


    Vascular vessels, including arteries, veins and capillaries, are being printed using additive manufacturing technologies, also known as 3D printing. This paper demonstrates that it is important to follow the vascular design by nature as close as possible when 3D printing artificial vascular branches. In previous work, the authors developed an algorithm of computational geometry for constructing smooth junctions for 3D printing. In this work, computational fluid dynamics (CFDs) is used to compare the wall shear stress and blood velocity field for the junctions of different designs. The CFD model can reproduce the expected wall shear stress at locations remote from the junction. For large vessels such as veins, it is shown that ensuring the smoothness of the junction and using smaller joining angles as observed in nature is very important to avoid high wall shear stress and recirculation. The issue is however less significant for capillaries. Large joining angles make no difference to the hemodynamic behavior, which is also consistent with the fact that most capillary junctions have large joining angles. The combination of the CFD analysis and the junction construction method form a complete design method for artificial vascular vessels that can be 3D printed using additive manufacturing technologies.

  20. Defining functional interactions during biogenesis of epithelial junctions (United States)

    Erasmus, J. C.; Bruche, S.; Pizarro, L.; Maimari, N.; Pogglioli, T.; Tomlinson, C.; Lees, J.; Zalivina, I.; Wheeler, A.; Alberts, A.; Russo, A.; Braga, V. M. M.


    In spite of extensive recent progress, a comprehensive understanding of how actin cytoskeleton remodelling supports stable junctions remains to be established. Here we design a platform that integrates actin functions with optimized phenotypic clustering and identify new cytoskeletal proteins, their functional hierarchy and pathways that modulate E-cadherin adhesion. Depletion of EEF1A, an actin bundling protein, increases E-cadherin levels at junctions without a corresponding reinforcement of cell–cell contacts. This unexpected result reflects a more dynamic and mobile junctional actin in EEF1A-depleted cells. A partner for EEF1A in cadherin contact maintenance is the formin DIAPH2, which interacts with EEF1A. In contrast, depletion of either the endocytic regulator TRIP10 or the Rho GTPase activator VAV2 reduces E-cadherin levels at junctions. TRIP10 binds to and requires VAV2 function for its junctional localization. Overall, we present new conceptual insights on junction stabilization, which integrate known and novel pathways with impact for epithelial morphogenesis, homeostasis and diseases. PMID:27922008

  1. Heat Transport in Graphene Ferromagnet-Insulator-Superconductor Junctions

    Institute of Scientific and Technical Information of China (English)

    LI Xiao-Wei


    We study heat transport in a graphene ferromagnet-insulator-superconducting junction. It is found that the thermal conductance of the graphene ferromagnet-insulator-superconductor (FIS) junction is an oscillatory function of the barrier strength x in the thin-barrier limit. The gate potential U0 decreases the amplitude of thermal conductance oscillation. Both the amplitude and phase of the thermal conductance oscillation varies with the exchange energy Eh. The thermal conductance of a graphene FIS junction displays the usual exponential dependence on temperature, reflecting the s-wave symmetry of superconducting graphene.%@@ We study heat transport in a graphene ferromagnet-insulator-superconducting junction.It is found that the thermal conductance of the graphene ferromagnet-insulator-superconductor(FIS)junction is an oscillatory function of the barrier strength X in the thin-barrier limit.The gate potential Uo decreases the amplitude of thermal conductance oscillation.Both the amplitude and phase of the thermal conductance oscillation varies with the exchange energy Eh.The thermal conductance of a graphene FIS junction displays the usual exponential dependence on temperature, reflecting the s-wave symmetry of superconducting graphene.

  2. Regulation of Tight Junctions in Upper Airway Epithelium

    Directory of Open Access Journals (Sweden)

    Takashi Kojima


    Full Text Available The mucosal barrier of the upper respiratory tract including the nasal cavity, which is the first site of exposure to inhaled antigens, plays an important role in host defense in terms of innate immunity and is regulated in large part by tight junctions of epithelial cells. Tight junction molecules are expressed in both M cells and dendritic cells as well as epithelial cells of upper airway. Various antigens are sampled, transported, and released to lymphocytes through the cells in nasal mucosa while they maintain the integrity of the barrier. Expression of tight junction molecules and the barrier function in normal human nasal epithelial cells (HNECs are affected by various stimuli including growth factor, TLR ligand, and cytokine. In addition, epithelial-derived thymic stromal lymphopoietin (TSLP, which is a master switch for allergic inflammatory diseases including allergic rhinitis, enhances the barrier function together with an increase of tight junction molecules in HNECs. Furthermore, respiratory syncytial virus infection in HNECs in vitro induces expression of tight junction molecules and the barrier function together with proinflammatory cytokine release. This paper summarizes the recent progress in our understanding of the regulation of tight junctions in the upper airway epithelium under normal, allergic, and RSV-infected conditions.

  3. Renal trauma in occult ureteropelvic junction obstruction: CT findings

    Energy Technology Data Exchange (ETDEWEB)

    Sebastia, M.C.; Rodriguez-Dobao, M.; Quiroga, S.; Pallisa, E.; Martinez-Rodriguez, M.; Alvarez-Castells, A. [Dept. of Radiology, Hospital General Universitari Vall d`Hebron, Barcelona (Spain)


    The aim of this study was to present CT findings of occult ureteropelvic junction obstruction in patients with renal trauma and to describe the clinical signs and singular CT features that are characteristically observed with trauma and are relevant to management of these patients. We retrospectively reviewed 82 helical CT studies in patients with renal trauma referred to our institution. We found 13 cases of occult preexisting renal pathology, six of which were occult ureteropelvic junction obstructions. The clinical presentation, radiologic findings of trauma according to the Federle classification, and CT findings of obstructed ureteropelvic junction are presented. We found three category-I lesions (one in a horseshoe kidney), two of them treated with nephrostomy because of increased ureteropelvic junction obstruction due to pelvic clots; two category-II lesions (parenchymal and renal pelvis lacerations) that had presented only with microhematuria; and one category-IV lesion (pelvic laceration alone). Pelvic extension was demonstrated in all the cases with perirenal collections. The CT studies in all the cases with suspected ureteropelvic junction obstruction showed decreased parenchymal thickness and enhancement, and dilatation of the renal pelvis and calyx, with a normal ureter. Computed tomography can provide information to confidently diagnose underlying ureteropelvic junction obstruction in renal trauma, categorize the traumatic injury (at times clinically silent) and facilitate proper management according to the singularities observed, such us rupture of the renal pelvis alone (Federle category IV) and increasing ureteropelvic obstruction due to clots which can be decompressed by nephrostomy. (orig.) With 6 figs., 3 tabs., 13 refs.

  4. Characteristics of the Surface-Intrinsic Josephson Junction

    Institute of Scientific and Technical Information of China (English)

    YANG Li; XU Wei-wei; YE Su-li; GUO Da-yuan; YOU Li-xing; WU Pei-heng


    During the fabrication of intrinsic Josephson junctions (IJJs) with Bi2Sr2CaCu2O8+δ(BSCCO) single crystals,the superconductivity of the surface Cu-O layer is degraded because of a deposited metal film on top of the stack.Thus,the characteristics of the surface junction consisting of the surface Cu-O double layers remarkably differ from those of the junctions deep in the stack,which will be referred to as ordinary IJJs.The electrical transport characteristics of the surface junction,such as I-V,I'c-T,and R-T,show that the critical temperature T'c of the surface junction is always lower than that of ordinary IJJs,and that the change of its critical current I'c with temperature is different from that of ordinary IIJs.Furthermore,by shunting! the surface junction resistively,we are able to observe the AC Josephson effect at 3-mm waveband.

  5. The connexin43 carboxyl terminus and cardiac gap junction organization. (United States)

    Palatinus, Joseph A; Rhett, J Matthew; Gourdie, Robert G


    The precise spatial order of gap junctions at intercalated disks in adult ventricular myocardium is thought vital for maintaining cardiac synchrony. Breakdown or remodeling of this order is a hallmark of arrhythmic disease of the heart. The principal component of gap junction channels between ventricular cardiomyocytes is connexin43 (Cx43). Protein-protein interactions and modifications of the carboxyl-terminus of Cx43 are key determinants of gap junction function, size, distribution and organization during normal development and in disease processes. Here, we review data on the role of proteins interacting with the Cx43 carboxyl-terminus in the regulation of cardiac gap junction organization, with particular emphasis on Zonula Occludens-1. The rapid progress in this area suggests that in coming years we are likely to develop a fuller understanding of the molecular mechanisms causing pathologic remodeling of gap junctions. With these advances come the promise of novel approach to the treatment of arrhythmia and the prevention of sudden cardiac death. This article is part of a Special Issue entitled: The Communicating junctions, composition, structure and characteristics. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. The string-junction picture of multiquark states: an update (United States)

    Rossi, G. C.; Veneziano, G.


    We recall and update, both theoretically and phenomenologically, our (nearly) forty-years-old proposal of a string-junction as a necessary complement to the conventional classification of hadrons based just on their quark-antiquark constituents. In that proposal single (though in general metastable) hadronic states are associated with "irreducible" gauge-invariant operators consisting of Wilson lines (visualized as strings of color flux tubes) that may either end on a quark or an antiquark, or annihilate in triplets at a junction J or an anti-junction overline{J} . For the junction-free sector (ordinary qoverline{q} mesons and glueballs) the picture is supported by large- N (number of colors) considerations as well as by a lattice strong-coupling expansion. Both imply the famous OZI rule suppressing quark-antiquark annihilation diagrams. For hadrons with J and/or overline{J} constituents the same expansions support our proposal, including its generalization of the OZI rule to the suppression of J-overline{J} annihilation diagrams. Such a rule implies that hadrons with junctions are "mesophobic" and thus unusually narrow if they are below threshold for decaying into as many baryons as their total number of junctions (two for a tetraquark, three for a pentaquark). Experimental support for our claim, based on the observation that narrow multiquark states typically lie below (well above) the relevant baryonic (mesonic) thresholds, will be presented.

  7. Electronic Transport in Molecular Junction Based on C20 Cages

    Institute of Scientific and Technical Information of China (English)

    OUYANG Fang-Ping; XU Hui


    Choosing closed-ended armchair(5,5)single-wall carbon nanotubes(CCNTs)as electrodes,we investigate the electron transport properties across an all-carbon molecular junction consisting of C20 molecules suspended between two semi-infinite carbon nanotubes.It is shown that the conductances are quite sensitive to the number of C20 molecules between electrodes for both configuration CFl and double-bonded models:the conductances of C20 dimers are markedly smaller than those of monomers.The physics is that incident electrons easily pass the C20 molecules and are predominantly scattered at the C20-C20 junctions.Moreover,we study the doping effect of such molecular junction by doping nitrogen atoms substitutionally.The bonding property of the molecular junction with configuration CFl has been analysed by calculating the Mulliken atomic charges.Our results have revealed that the C atoms in N-doped junctions are more ionic than those in pure-carbon ones,leading to the fact that N-doped junctions have relatively large conductance.

  8. Breakdown of the escape dynamics in Josephson junctions (United States)

    Massarotti, D.; Stornaiuolo, D.; Lucignano, P.; Galletti, L.; Born, D.; Rotoli, G.; Lombardi, F.; Longobardi, L.; Tagliacozzo, A.; Tafuri, F.


    We have identified anomalous behavior of the escape rate out of the zero-voltage state in Josephson junctions with a high critical current density Jc. For this study we have employed YBa2Cu3O7 -x grain boundary junctions, which span a wide range of Jc and have appropriate electrodynamical parameters. Such high Jc junctions, when hysteretic, do not switch from the superconducting to the normal state following the expected stochastic Josephson distribution, despite having standard Josephson properties such as a Fraunhofer magnetic field pattern. The switching current distributions (SCDs) are consistent with nonequilibrium dynamics taking place on a local rather than a global scale. This means that macroscopic quantum phenomena seem to be practically unattainable for high Jc junctions. We argue that SCDs are an accurate means to measure nonequilibrium effects. This transition from global to local dynamics is of relevance for all kinds of weak links, including the emergent family of nanohybrid Josephson junctions. Therefore caution should be applied in the use of such junctions in, for instance, the search for Majorana fermions.

  9. Nonequilibrium and relaxation effects in tunnel superconducting junctions (United States)

    Bezuglyi, E. V.; Vasenko, A. S.; Bratus', E. N.


    The specific property of a planar tunnel junction with thin-film diffusive plates and long enough leads is an essential enhancement of its transmission coefficient compared to the bare transparency of the tunnel barrier [1, 2]. In voltage-biased junctions, this creates favorable conditions for strong nonequilibrium of quasiparticles in the junction plates and leads, produced by multiparticle tunneling. We study theoretically the interplay between the nonequilibrium and relaxation processes in such junctions and found that nonequilibrium in the leads noticeably modifies the current-voltage characteristic at {eV}> 2{{Δ }}, especially the excess current, whereas strong diffusive relaxation restores the result of the classical tunnel model. At {eV}≤slant 2{{Δ }}, the diffusive relaxation decreases the peaks of the multiparticle currents. The inelastic relaxation in the junction plates essentially suppresses the n-particle currents (n> 2) by the factor n for odd and n/2 for even n. The results may be important for the problem of decoherence in Josephson-junction based superconducting qubits.

  10. Biomimetic tendon extracellular matrix composite gradient scaffold enhances ligament-to-bone junction reconstruction. (United States)

    Liu, Huanhuan; Yang, Long; Zhang, Erchen; Zhang, Rui; Cai, Dandan; Zhu, Shouan; Ran, Jisheng; Bunpetch, Varitsara; Cai, Youzhi; Heng, Boon Chin; Hu, Yejun; Dai, Xuesong; Chen, Xiao; Ouyang, Hongwei


    Management of ligament/tendon-to-bone-junction healing remains a formidable challenge in the field of orthopedic medicine to date, due to deficient vascularity and multi-tissue transitional structure of the junction. Numerous strategies have been employed to improve ligament-bone junction healing, including delivery of stem cells, bioactive factors, and synthetic materials, but these methods are often inadequate at recapitulating the complex structure-function relationships at native tissue interfaces. Here, we developed an easily-fabricated and effective biomimetic composite to promote the regeneration of ligament-bone junction by physically modifying the tendon extracellular matrix (ECM) into a Random-Aligned-Random composite using ultrasound treatment. The differentiation potential of rabbit bone marrow stromal cells on the modified ECM were examined in vitro. The results demonstrated that the modified ECM enhanced expression of chondrogenesis and osteogenesis-associated epigenetic genes (Jmjd1c, Kdm6b), transcription factor genes (Sox9, Runx2) and extracellular matrix genes (Col2a1, Ocn), resulting in higher osteoinductivity than the untreated tendon ECM in vitro. In the rabbit anterior cruciate ligament (ACL) reconstruction model in vivo, micro-computed tomography (Micro-CT) and histological analysis showed that the modified Random-Aligned-Random composite scaffold enhanced bone and fibrocartilage formation at the interface, more efficaciously than the unmodified tendon ECM. Therefore, these results demonstrated that the biomimetic Random-Aligned-Random composite could be a promising scaffold for ligament/tendon-bone junction repair. The native transitional region consists of several distinct yet contiguous tissue regions, composed of soft tissue, non-calcified fibrocartilage, calcified fibrocartilage, and bone. A stratified graft whose phases are interconnected with each other is essential for supporting the formation of functionally continuous multi

  11. Regulation of vascular endothelial junction stability and remodeling through Rap1-Rasip1 signaling. (United States)

    Wilson, Christopher W; Ye, Weilan


    The ability of blood vessels to sense and respond to stimuli such as fluid flow, shear stress, and trafficking of immune cells is critical to the proper function of the vascular system. Endothelial cells constantly remodel their cell-cell junctions and the underlying cytoskeletal network in response to these exogenous signals. This remodeling, which depends on regulation of the linkage between actin and integral junction proteins, is controlled by a complex signaling network consisting of small G proteins and their various downstream effectors. In this commentary, we summarize recent developments in understanding the small G protein RAP1 and its effector RASIP1 as critical mediators of endothelial junction stabilization, and the relationship between RAP1 effectors and modulation of different subsets of endothelial junctions.   The vasculature is a dynamic organ that is constantly exposed to a variety of signaling stimuli and mechanical stresses. In embryogenesis, nascent blood vessels form via a process termed vasculogenesis, wherein mesodermally derived endothelial precursor cells aggregate into cords, which subsequently form a lumen that permits trafficking of plasma and erythrocytes. (1)(,) (2) Angiogenesis occurs after establishment of this primitive vascular network, where new vessels sprout from existing vessels, migrate into newly expanded tissues, and anastomose to form a functional and complex circulatory network. (1)(,) (2) In the mouse, this process occurs through the second half of embryogenesis and into postnatal development in some tissues, such as the developing retinal vasculature. (3) Further, angiogenesis occurs in a variety of pathological conditions, such as diabetic retinopathy, age-related macular degeneration, inflammatory diseases such as rheumatoid arthritis, wound healing, and tumor growth. (1)(,) (2)(,) (4) Both vasculogenesis and angiogenesis are driven through signaling by vascular endothelial growth factor (VEGF), and therapeutic

  12. Monitoring the complexity of ventricular response in atrial fibrillation

    Directory of Open Access Journals (Sweden)

    H. Käsmacher


    Full Text Available Atrial fibrillation does not present a uniform extent of variability of the ventricular response exemplifying periodicities and more complex fluctuations, due to varying number and shape of atrial wavelets and aberrant conduction in the AV-junction. It was sought to categorise different degrees of complexity introducing an uncomplicated monitoring method for that objective.

  13. Quaternary Evolution of Karliova Triple Junction (United States)

    Sançar, Taylan; Zabcı, Cengiz; Akyüz, H. Serdar


    The arguments to explain Quaternary evolution of Karlıova Triple Junction (KTJ) depends upon two different analogue models. The compressional type of Prandtl Cell Model (PCM) and 60 km wide shear zone with concomitant counter clockwise block rotation used to modelled for west and east of the KTJ respectively. The data for the model of west of the KTJ acquired by extensive field studies, and quantified geomorphic features. Compressional PCM put forward that behavior of slip lines controlled by boundary faults. But the model is not enough to explain slip distribution, age relation of them. At west of the KTJ boundary faults presented by eastern most segments of the North Anatolian Fault Zone (NAFZ) and the East Anatolian Fault Zone (EAFZ). Slip lines, however, presented by Bahçeli and Toklular faults. Both field studies and morphometric analyses undisputedly set forth that there are two different fault types between the NAFZ and EAFZ. The most strain loaded fault type, which are positioned near the NAFZ, start as a strike-slip fault and when it turn to SE its sense of motion change to oblique normal due to changing orientation of principal stress axes. The new orientation of stress axes exposed in the field as a special kind of caprock -cuesta-. The younger slip lines formed very close to junction point and accommodate less slip. Even though slip trajectories started from the boundary faults in compressional PCM, at the west of KTJ, right lateral trajectories more clearly formed close the NAFZ and left lateral trajectories, relatively less strain loaded fault type, are poorly formed close the EAFZ . We think that, this differences between KTJ and compressional PCM result from the distinction of velocity of boundary faults. East of the KTJ governed by completely different mechanism. The region controlled two main fault systems. The Varto Fault Zone (VFZ), the eastern branch of the KTJ, and Murat Fault (MF) delimited the region from north and south respectively. The

  14. Refinement of the solution structure of a branched DNA three-way junction. (United States)

    Ouporov, I V; Leontis, N B


    We have refined the structure of the DNA Three-Way Junction complex, TWJ-TC, described in the companion paper by quantitative analysis of two 2D NOESY spectra (mixing times 60 and 200 ms) obtained in D2O solution. NOESY crosspeak intensities extracted from these spectra were used in two kinds of refinement procedure: 1) distance-restrained energy minimization (EM) and molecular dynamics (MD) and 2) full relaxation matrix back calculation refinement. The global geometry of the refined model is very similar to that of a published, preliminary model (Leontis, 1993). Two of the helical arms of the junction are stacked. These are Helix 1, defined by basepairs S1-G1/S3-C12 through S1-C5/S3-G8 and Helix 2, which comprises basepairs S1-C6/S2-G5 through S1-G10/S2-G1. The third helical arm (Helix 3), comprised of basepairs S2-C6/S3-G5 through S2-C10/S3-G1 extends almost perpendicularly from the axis defined by Helices 1 and 2. The bases S1-C5 and S1-C6 of Strand 1 are continuously stacked across the junction region. The conformation of this strand is close to that of B-form DNA along its entire length, including the S1-C5 to S1-C6 dinucleotide step at the junction. The two unpaired bases S3-T6 and S3-C7 lie outside of the junction along the minor groove of Helix 1 and largely exposed to solvent. Analysis of the refined structure reveals that the glycosidic bond of S3-T6 exists in the syn conformation, allowing the methyl group of this residue to contact the hydrophobic surface of the minor groove of Helix 1, at S3-G11. The helical parameters of the three helical arms of the structure exhibit only weak deviations from typical values for right-handed B-form DNA. Unusual dihedral angles are only observed for the sugarphosphate backbone joining the "hinge" residues, S2-G5 and S2-C6, and S3-G5 through S3-G8. The glycosidic bond of S3-G8also lies within the syn range, allowing favorable Watson-Crick base-pairing interactions with Si -C5. The stability of this structure was checked

  15. Reversible Opening of Intercellular Junctions of Intestinal Epithelial and Brain Endothelial Cells With Tight Junction Modulator Peptides. (United States)

    Bocsik, Alexandra; Walter, Fruzsina R; Gyebrovszki, Andrea; Fülöp, Lívia; Blasig, Ingolf; Dabrowski, Sebastian; Ötvös, Ferenc; Tóth, András; Rákhely, Gábor; Veszelka, Szilvia; Vastag, Monika; Szabó-Révész, Piroska; Deli, Mária A


    The intercellular junctions restrict the free passage of hydrophilic compounds through the paracellular clefts. Reversible opening of the tight junctions of biological barriers is investigated as one of the ways to increase drug delivery to the systemic circulation or the central nervous system. Six peptides, ADT-6, HAV-6, C-CPE, 7-mer (FDFWITP, PN-78), AT-1002, and PN-159, acting on different integral membrane and linker junctional proteins were tested on Caco-2 intestinal epithelial cell line and a coculture model of the blood-brain barrier. All peptides tested in nontoxic concentrations showed a reversible tight junctions modulating effect and were effective to open the paracellular pathway for the marker molecules fluorescein and albumin. The change in the structure of cell-cell junctions was verified by immunostaining for occludin, claudin-4,-5, ZO-1, β-catenin, and E-cadherin. Expression levels of occludin and claudins were measured in both models. We could demonstrate a selectivity of C-CPE, ADT-6, and HAV-6 peptides for epithelial cells and 7-mer and AT-1002 peptides for brain endothelial cells. PN-159 was the most effective modulator of junctional permeability in both models possibly acting via claudin-1 and -5. Our results indicate that these peptides can be effectively and selectively used as potential pharmaceutical excipients to improve drug delivery across biological barriers.

  16. Reduction of Gap Junctional Conductance by Microinjection of Antibodies against the 27-kDa Liver Gap Junction Polypeptide (United States)

    Hertzberg, E. L.; Spray, D. C.; Bennett, M. V. L.


    Antibody raised against isolated rat liver gap junctions was microinjected into coupled cells in culture to assess its influence on gap junctional conductance. A rapid inhibition of fluorescent dye transfer and electrical coupling was produced in pairs of freshly dissociated adult rat hepatocytes and myocardial cells as well as in pairs of superior cervical ganglion neurons from neonatal rats cultured under conditions in which electrotonic synapses form. The antibodies have been shown by indirect immunofluorescence to bind to punctate regions of the plasma membrane in liver. By immunoreplica analysis of rat liver homogenates, plasma membranes, and isolated gap junctions resolved on NaDodSO4/polyacrylamide gels, binding was shown to be specific for the 27-kDa major polypeptide of gap junctions. This and similar antibodies should provide a tool for further investigation of the role of cell-cell communication mediated by gap junctions and indicate that immunologically similar polypeptides comprise gap junctions in adult mammalian cells derived from all three germ layers.

  17. Gap junction disorders of myelinating cells. (United States)

    Kleopa, Kleopas A; Orthmann-Murphy, Jennifer; Sargiannidou, Irene


    Gap junctions (GJs) are channels that allow the diffusion of ions and small molecules across apposed cell membranes. In peripheral nerves, Schwann cells express the GJ proteins connexin32 (Cx32) and Cx29, which have distinct localizations. Cx32 forms GJs through non-compact myelin areas, whereas Cx29 forms hemichannels in the innermost layers of myelin apposing axonal Shaker-type K+ channels. In the CNS, rodent oligodendrocytes express Cx47, Cx32 and Cx29. Cx47 is expressed by all types of oligodendrocytes both in the white and grey matter and forms GJs on cell bodies and proximal processes, as well as most of the intercellular channels with astrocytes. Cx32 is expressed mostly by white matter oligodendrocytes and is localized in the myelin sheath of large diameter fibers. Cx29, and its human ortholog Cx31.3, appear to be restricted to oligodendrocytes that myelinate small caliber fibers, likely forming hemichannels. The importance of intercellular and intracellular GJs in myelinating cells are demonstrated by human disorders resulting from mutations affecting GJ proteins. The X-linked Charcot Marie Tooth disease (CMT1X) is caused by hundreds of mutations affecting Cx32. Patients with CMT1X present mainly with a progressive peripheral neuropathy, which may be accompanied by CNS myelin dysfunction. Mutations in Cx47 may cause a devastating leukodystrophy called Pelizaeus-Merzbacher-like disease or a milder spastic paraplegia. In addition, CNS demyelination may be caused by defects in genes expressing astrocytic GJ proteins, which are essential for oligodendrocytes. Findings from in vitro and in vivo models of these disorders developed over the last decade indicate that most mutations cause loss of function and an inability of the mutant connexins to form functional GJs. Here we review the clinical, genetic, and neurobiological aspects of GJ disorders affecting the PNS and CNS myelinating cells.

  18. Preface: Charge transport in nanoscale junctions (United States)

    Albrecht, Tim; Kornyshev, Alexei; Bjørnholm, Thomas


    many particle excitations, new surface states in semiconductor electrodes, various mechanisms for single molecule rectification of the current, inelastic electron spectra and SERS spectroscopy. Three terminal architectures allowing (electrochemical) gating and transistor effects. Electrochemical nanojunctions and gating: intermolecular electron transfer in multi-redox metalloproteins, contact force modulation, characteristic current-noise patterns due to conformational fluctuations, resonance effects and electrocatalysis. Novel architectures: linear coupled quantum-dot-bridged junctions, electrochemical redox mediated transfer in two center systems leading to double maxima current-voltage plots and negative differential resistance, molecular-nanoparticle hybrid junctions and unexpected mesoscopic effects in polymeric wires. Device integration: techniques for creating stable metal/molecule/metal junctions using 'nano-alligator clips' and integration with 'traditional' silicon-based technology. The Guest Editors would like to thank all of the authors and referees of this special issue for their meticulous work in making each paper a valuable contribution to this research area, the early-bird authors for their patience, and Journal of Physics: Condensed Matter editorial staff in Bristol for their continuous support.

  19. Effect of Different Exercise Intensities on the Myotendinous Junction Plasticity.

    Directory of Open Access Journals (Sweden)

    Davide Curzi

    Full Text Available Myotendinous junctions (MTJs are anatomical regions specialized in transmission of contractile strength from muscle to tendon and, for this reason, a common site where acute injuries occur during sport activities. In this work we investigated the influence of exercise intensity on MTJ plasticity, as well as on the expression of insulin-like growth factor 1 (IGF-1 and transforming growth factor beta (TGF-β and their receptors in muscle and tendon. Three groups of rats were analyzed: control (CTRL, slow-runner (RUN-S and fast-runner (RUN-F trained using a treadmill. Ultrastructural and morphometric analyses of distal MTJs from extensor digitorum longus muscles have been performed. Contractile strength and hypertrophy were investigated by using in vivo tension recordings and muscle cross-sectional area (CSA analysis, respectively. mRNA levels of PGC-1α, vinculin, IGF-1Ea and TGF-β have been quantified in muscle belly, while IGF-1Ea, TGF-β and their receptors in tendon. Morphometry revealed an increased MTJ complexity and interaction surface between tissues in trained rats according to training intensity. CSA analysis excluded hypertrophy among groups, while muscle strength was found significantly enhanced in exercised rats in comparison to controls. In muscle tissue, we highlighted an increased mRNA expression of PGC-1α and vinculin in both trained conditions and of TGF-β in RUN-F. In tendon, we mainly noted an enhancement of TGF-β mRNA expression only in RUN-F group and a raise of Betaglycan tendon receptor mRNA levels proportional to exercise intensity. In conclusion, MTJ plasticity appears to be related to exercise intensity and molecular analysis suggests a major role played by TGF-β.

  20. The adult abdominal neuromuscular junction of Drosophila: a model for synaptic plasticity. (United States)

    Hebbar, Sarita; Hall, Rachel E; Demski, Sarah A; Subramanian, Aswati; Fernandes, Joyce J


    During its life cycle, Drosophila makes two sets of neuromuscular junctions (NMJs), embryonic/larval and adult, which serve distinct stage-specific functions. During metamorphosis, the larval NMJs are restructured to give rise to their adult counterparts, a process that is integrated into the overall remodeling of the nervous system. The NMJs of the prothoracic muscles and the mesothoracic dorsal longitudinal (flight) muscles have been previously described. Given the diversity and complexity of adult muscle groups, we set out to examine the less complex abdominal muscles. The large bouton sizes of these NMJs are particularly advantageous for easy visualization. Specifically, we have characterized morphological attributes of the ventral abdominal NMJ and show that an embryonic motor neuron identity gene, dHb9, is expressed at these adult junctions. We quantified bouton numbers and size and examined the localization of synaptic markers. We have also examined the formation of boutons during metamorphosis and examined the localization of presynaptic markers at these stages. To test the usefulness of the ventral abdominal NMJs as a model system, we characterized the effects of altering electrical activity and the levels of the cell adhesion molecule, FasciclinII (FasII). We show that both manipulations affect NMJ formation and that the effects are specific as they can be rescued genetically. Our results indicate that both activity and FasII affect development at the adult abdominal NMJ in ways that are distinct from their larval and adult thoracic counterparts

  1. Lessons Learned: The Grand Junction Office Site Transfer to Private Ownership

    Energy Technology Data Exchange (ETDEWEB)



    The U.S. Department of Energy Grand Junction Office (DOE-GJO) in Grand Junction, Colorado, has played an integral role within the DOE complex for many years. GJO has a reputation for outstanding quality in the performance of complex environmental restoration projects, utilizing state-of-the-art technology. Many of the GJO missions have been completed in recent years. In 1998, DOE Headquarters directed GJO to reduce its mortgage costs by transferring ownership of the site and to lease space at a reasonable rate for its ongoing work. A local community group and GJO have entered into a sales contract; signing of the Quitclaim Deed is planned for February 16, 2001. Site transfer tasks were organized as a project with a critical-path schedule to track activities and a Site Transition Decision Plan was prepared that included a decision process flow chart, key tasks, and responsibilities. Specifically, GJO identified the end state with affected parties early on, successfully dealt with site contamination issues, and negotiated a lease-back arrangement, resulting in an estimated savings of more than 60 percent of facility maintenance costs annually. Lessons learned regarding these transition activities could be beneficial to many other sites.

  2. Emerging relationship between CFTR, actin and tight junction organization in cystic fibrosis airway epithelium. (United States)

    Castellani, Stefano; Favia, Maria; Guerra, Lorenzo; Carbone, Annalucia; Abbattiscianni, Anna Claudia; Di Gioia, Sante; Casavola, Valeria; Conese, Massimo


    Cystic fibrosis (CF), one of the most common genetic disorders affecting primarily Caucasians, is due to mutations in the CF Transmembrane Conductance Regulator (CFTR) gene, encoding for a chloride channel also acting as regulator of other transmembrane proteins. In healthy subjects, CFTR is maintained in its correct apical plasma membrane location via the formation of a multiprotein complex in which scaffold proteins (such as NHERF1) and signaling molecules (such as cAMP and protein kinases) guarantee its correct functioning. In CF, a disorganized and dysfunctional airway epithelium brings an altered flux of ions and water into the lumen of bronchioles, consequent bacterial infections and an enormous influx of inflammatory cells (mainly polymorphonuclear neutrophils) into the airway lumen. Recent evidence in healthy airway cells supports the notion that CFTR protein/function is strictly correlated with the actin cytoskeleton and tight junctions status. In CF cells, the most frequent CFTR gene mutation, F508del, has been shown to be associated with a disorganized actin cytoskeleton and altered tight junction permeability. Thus, the correct localization of CFTR on the apical plasma membrane domain through the formation of the scaffolding and signaling complex is likely fundamental to determine a physiological airway epithelium. The correction of CFTR mutations by either gene or drug therapies, as well as by stem cell-based interventions, can determine the resumption of a physiological organization of actin stress fibers and TJ structure and barrier function, further indicating the close interrelationship among these processes.

  3. Pallidal gap junctions-triggers of synchrony in Parkinson's disease? (United States)

    Schwab, Bettina C; Heida, Tjitske; Zhao, Yan; van Gils, Stephan A; van Wezel, Richard J A


    Although increased synchrony of the neural activity in the basal ganglia may underlie the motor deficiencies exhibited in Parkinson's disease (PD), how this synchrony arises, propagates through the basal ganglia, and changes under dopamine replacement remains unknown. Gap junctions could play a major role in modifying this synchrony, because they show functional plasticity under the influence of dopamine and after neural injury. In this study, confocal imaging was used to detect connexin-36, the major neural gap junction protein, in postmortem tissues of PD patients and control subjects in the putamen, subthalamic nucleus (STN), and external and internal globus pallidus (GPe and GPi, respectively). Moreover, we quantified how gap junctions affect synchrony in an existing computational model of the basal ganglia. We detected connexin-36 in the human putamen, GPe, and GPi, but not in the STN. Furthermore, we found that the number of connexin-36 spots in PD tissues increased by 50% in the putamen, 43% in the GPe, and 109% in the GPi compared with controls. In the computational model, gap junctions in the GPe and GPi strongly influenced synchrony. The basal ganglia became especially susceptible to synchronize with input from the cortex when gap junctions were numerous and high in conductance. In conclusion, connexin-36 expression in the human GPe and GPi suggests that gap junctional coupling exists within these nuclei. In PD, neural injury and dopamine depletion could increase this coupling. Therefore, we propose that gap junctions act as a powerful modulator of synchrony in the basal ganglia. © 2014 International Parkinson and Movement Disorder Society.

  4. The tight junction protein ZO-2 and Janus kinase 1 mediate intercellular communications in vascular smooth muscle cells

    Energy Technology Data Exchange (ETDEWEB)

    Tkachuk, Natalia; Tkachuk, Sergey; Patecki, Margret [Department of Nephrology, Hannover Medical School, Hannover D-30625 (Germany); Kusch, Angelika [Department of Nephrology and Intensive Care Medicine, Charite Campus Virchow-Klinikum, Berlin D-13353 (Germany); Korenbaum, Elena; Haller, Hermann [Department of Nephrology, Hannover Medical School, Hannover D-30625 (Germany); Dumler, Inna, E-mail: [Department of Nephrology, Hannover Medical School, Hannover D-30625 (Germany)


    Highlights: {yields} The tight junction protein ZO-2 associates with Jak1 in vascular smooth muscle cells via ZO-2 N-terminal fragment. {yields} Jak1 mediates ZO-2 tyrosine phosphorylation and ZO-2 localization to the sites of homotypic intercellular contacts. {yields} The urokinase receptor uPAR regulates ZO-2/Jak1 functional association. {yields} The ZO-2/Jak1/uPAR signaling complex is required for vascular smooth muscle cells functional network formation. -- Abstract: Recent evidence points to a multifunctional role of ZO-2, the tight junction protein of the MAGUK (membrane-associated guanylate kinase-like) family. Though ZO-2 has been found in cell types lacking tight junction structures, such as vascular smooth muscle cells (VSMC), little is known about ZO-2 function in these cells. We provide evidence that ZO-2 mediates specific homotypic cell-to-cell contacts between VSMC. Using mass spectrometry we found that ZO-2 is associated with the non-receptor tyrosine kinase Jak1. By generating specific ZO-2 constructs we further found that the N-terminal fragment of ZO-2 molecule is responsible for this interaction. Adenovirus-based expression of Jak1 inactive mutant demonstrated that Jak1 mediates ZO-2 tyrosine phosphorylation. By means of RNA silencing, expression of Jak1 mutant form and fluorescently labeled ZO-2 fusion protein we further specified that active Jak1, but not Jak1 inactive mutant, mediates ZO-2 localization to the sites of intercellular contacts. We identified the urokinase receptor uPAR as a pre-requisite for these cellular events. Functional requirement of the revealed signaling complex for VSMC network formation was confirmed in experiments using Matrigel and in contraction assay. Our findings imply involvement of the ZO-2 tight junction independent signaling complex containing Jak1 and uPAR in VSMC intercellular communications. This mechanism may contribute to vascular remodeling in occlusive cardiovascular diseases and in arteriogenesis.

  5. Transition Fault and the Yakutat-Pacific-North American Triple Junction (United States)

    Gulick, S. P.; Christeson, G. L.; Norton, I. O.; Pavlis, T. L.; Reece, R.; van Avendonk, H.; Worthington, L. L.


    In the Gulf of Alaska the Pacific Plate, Yakutat Terrane, and North American Plate interact in a complexly deformed zone on the continental slope near Kayak Island. This zone can be viewed as a fault-trench-trench (FTT) triple junction that can only be stable if the two trench segments are aligned. In this case the trench segments are: the deformation front along which the Pacific Plate subducts beneath North America (the Aleutian Trench) and the deformation front along which the Yakutat Terrane subducts at a more westerly direction (when compared to the Pacific subduction) beneath North America (the Pamplona Zone). These two deformation fronts are, to a first order, locally aligned. The complex member of the system is the Transition Fault which is a long-lived strike-slip fault separating the 15-30 km thick Yakutat oceanic plateau crust from the 5-7 km thick Pacific Plate crust, which is itself deforming along the north-south trending Gulf of Alaska Shear Zone (GASZ). A series of seismic reflection profiles crossing the Transition Fault allow us to examine the evolution of deformation as a function of proximity to the triple junction. East of the triple junction and the GASZ, the Transition Fault is a single near vertical strike-slip zone. Moving west to the area where the GASZ interacts with the Transition Fault, three seismic profiles show that the Fault bifurcates into a southern transpressional strand with a few 100 meters of seafloor relief and a northern strike-slip dominated strand. West of the GASZ and within the region proximal to the triple junction, two seismic lines show that the Transition Fault is expressed as a southern transpressional structure with significant amounts shortening (seafloor expression increased to ~1.8 km) and a northern dominantly strike-slip fault with minor transpression. Mapping the top of basement shows that the southern arm lies within and deforms the Pacific oceanic crust with the top of ocean crust reflection to the north

  6. The role of the mini-open thoracoscopic-assisted approach in the management of metastatic spine disease at the thoracolumbar junction. (United States)

    Ravindra, Vijay M; Brock, Andrea; Awad, Al-Wala; Kalra, Ricky; Schmidt, Meic H


    OBJECTIVE Treatment advances have resulted in improved survival for many cancer types, and this, in turn, has led to an increased incidence of metastatic disease, specifically to the vertebral column. Surgical decompression and stabilization prior to radiation therapy have been shown to improve functional outcomes, but anterior access to the thoracolumbar junction may involve open thoracotomy, which can cause significant morbidity. The authors describe the treatment of 12 patients in whom a mini-open thoracoscopic-assisted approach (mini-open TAA) to the thoracolumbar junction was used to treat metastatic disease, with an analysis of outcomes. METHODS The authors reviewed a retrospective cohort of patients treated for thoracolumbar junction metastatic disease with mini-open TAA between 2004 and 2016. Data collection included operative time, estimated blood loss, length of stay, follow-up duration, and pre- and postoperative visual analog scale scores and Frankel grades. RESULTS Twelve patients underwent a mini-open TAA procedure for metastatic disease at the thoracolumbar junction. The mean age of patients was 59 years (range 53-77 years), mean estimated blood loss was 613 ml, and the mean duration of the mini-open TAA procedure was 234 minutes (3.8 hours). The median length of stay in the hospital was 7.5 days (range 5-21 days). All 12 patients had significant improvement in their postoperative pain scores in comparison with their preoperative pain scores (p open TAA to the thoracolumbar junction for metastatic disease is a durable procedure that has a reduced morbidity rate compared with traditional open thoracotomy for ventral decompression and fusion. It compares well with traditional and novel posterior approaches to the thoracolumbar junction. The authors found a significant improvement in preoperative pain and neurological symptoms that supports greater use of the mini-open TAA for the treatment of complex metastatic disease at the thoracolumbar junction.

  7. Diurnal variation of tight junction integrity associates inversely with matrix metalloproteinase expression in Xenopus laevis corneal epithelium: implications for circadian regulation of homeostatic surface cell desquamation.

    Directory of Open Access Journals (Sweden)

    Allan F Wiechmann

    Full Text Available The corneal epithelium provides a protective barrier against pathogen entrance and abrasive forces, largely due to the intercellular junctional complexes between neighboring cells. After a prescribed duration at the corneal surface, tight junctions between squamous surface cells must be disrupted to enable them to desquamate as a component of the tissue homeostatic renewal. We hypothesize that matrix metalloproteinase (MMPs are secreted by corneal epithelial cells and cleave intercellular junctional proteins extracellularly at the epithelial surface. The purpose of this study was to examine the expression of specific MMPs and tight junction proteins during both the light and dark phases of the circadian cycle, and to assess their temporal and spatial relationships in the Xenopus laevis corneal epithelium.Expression of MMP-2, tissue inhibitor of MMP-2 (TIMP-2, membrane type 1-MMP (MT1-MMP and the tight junction proteins occludin and claudin-4 were examined by confocal double-label immunohistochemistry on corneas obtained from Xenopus frogs at different circadian times. Occludin and claudin-4 expression was generally uniformly intact on the surface corneal epithelial cell lateral membranes during the daytime, but was frequently disrupted in small clusters of cells at night. Concomitantly, MMP-2 expression was often elevated in a mosaic pattern at nighttime and associated with clusters of desquamating surface cells. The MMP-2 binding partners, TIMP-2 and MT1-MMP were also localized to surface corneal epithelial cells during both the light and dark phases, with TIMP-2 tending to be elevated during the daytime.MMP-2 protein expression is elevated in a mosaic pattern in surface corneal epithelial cells during the nighttime in Xenopus laevis, and may play a role in homeostatic surface cell desquamation by disrupting intercellular junctional proteins. The sequence of MMP secretion and activation, tight junction protein cleavage, and subsequent surface

  8. A synthetic holliday junction is sandwiched between two tetrameric Mycobacterium leprae RuvA structures in solution: new insights from neutron scattering contrast variation and modelling. (United States)

    Chamberlain, D; Keeley, A; Aslam, M; Arenas-Licea, J; Brown, T; Tsaneva, I R; Perkins, S J


    The interaction between homologous DNA molecules in recombination and DNA repair leads to the formation of crossover intermediates known as Holliday junctions. Their enzymatic processing by the RuvABC system in bacteria involves the formation of a complex between RuvA and the Holliday junction. To study the solution structure of this complex, contrast variation by neutron scattering was applied to Mycobacterium leprae RuvA (MleRuvA), a synthetic analogue of a Holliday junction with 16 base-pairs in each arm, and their stable complex. Unbound MleRuvA was octameric in solution, and formed an octameric complex with the DNA junction. The radii of gyration at infinite contrast were determined to be 3.65 nm, 2.74 nm and 4.15 nm for MleRuvA, DNA junction and their complex, respectively, showing that the complex was structurally more extended than MleRuvA. No difference was observed in the presence or absence of Mg2+. The large difference in RG values for the free and complexed protein in 65% 2H2O, where the DNA component is "invisible", showed that a substantial structural change had occurred in complexed MleRuvA. The slopes of the Stuhrmann plots for MleRuvA and the complex were 19 and 15 or less (x10(-5)), respectively, indicating that DNA passed through the centre of the complex. Automated constrained molecular modelling based on the Escherichia coli RuvA crystal structure demonstrated that the scattering curve of octameric MleRuvA in 65% and 100% 2H2O is explained by a face-to-face association of two MleRuvA tetramers stabilised by salt-bridges. The corresponding modelling of the complex in 65% 2H2O showed that the two tetramers are separated by a void space of about 1-2 nm, which can accommodate the width of B-form DNA. Minor conformational changes between unbound and complexed MleRuvA may occur. These observations show that RuvA plays a more complex role in homologous recombination than previously thought.

  9. Resolution of Mismatched Overlap Holliday Junction Intermediates by the Tyrosine Recombinase IntDOT. (United States)

    Ringwald, Kenneth; Yoneji, Sumiko; Gardner, Jeffrey


    CTnDOT is an integrated conjugative element found in Bacteroides species. CTnDOT contains and transfers antibiotic resistance genes. The element integrates into and excises from the host chromosome via a Holliday junction (HJ) intermediate as part of a site-specific recombination mechanism. The CTnDOT integrase, IntDOT, is a tyrosine recombinase with core-binding, catalytic, and amino-terminal (N) domains. Unlike well-studied tyrosine recombinases, such as lambda integrase (Int), IntDOT is able to resolve Holliday junctions containing heterology (mismatched bases) between the sites of strand exchange. All known natural isolates of CTnDOT contain mismatches in the overlap region between the sites of strand exchange. Previous work showed that IntDOT was unable to resolve synthetic Holliday junctions containing mismatched bases to products in the absence of the arm-type sites and a DNA-bending protein. We constructed synthetic HJs with the arm-type sites and tested them with the Bacteroides host factor (BHFa). We found that the addition of BHFa stimulated resolution of HJ intermediates with mismatched overlap regions to products. In addition, the L1 site is required for directionality of the reaction, particularly when the HJ contains mismatches. BHFa is required for product formation when the overlap region contains mismatches, and it stimulates resolution to products when the overlap region is identical. Without this DNA bending, the N domain of IntDOT is likely unable to bind the L1 arm-type site. These findings suggest that BHFa bends DNA into the necessary conformation for the higher-order complexes, including the L1 site, that are required for product formation.IMPORTANCE CTnDOT is a mobile element that carries antibiotic resistance genes and moves by site-selective recombination and subsequent conjugation. The recombination reaction is catalyzed by an integrase IntDOT that is a member of the tyrosine recombinase family. The reaction proceeds through ordered

  10. Controllable 0-π Josephson junctions containing a ferromagnetic spin valve (United States)

    Gingrich, E. C.; Niedzielski, Bethany M.; Glick, Joseph A.; Wang, Yixing; Miller, D. L.; Loloee, Reza; Pratt, W. P., Jr.; Birge, Norman O.


    Superconductivity and ferromagnetism are antagonistic forms of order, and rarely coexist. Many interesting new phenomena occur, however, in hybrid superconducting/ferromagnetic systems. For example, a Josephson junction containing a ferromagnetic material can exhibit an intrinsic phase shift of π in its ground state for certain thicknesses of the material. Such `π-junctions' were first realized experimentally in 2001 (refs ,), and have been proposed as circuit elements for both high-speed classical superconducting computing and for quantum computing. Here we demonstrate experimentally that the phase state of a Josephson junction containing two ferromagnetic layers can be toggled between 0 and π by changing the relative orientation of the two magnetizations. These controllable 0-π junctions have immediate applications in cryogenic memory, where they serve as a necessary component to an ultralow power superconducting computer. Such a fully superconducting computer is estimated to be orders of magnitude more energy-efficient than current semiconductor-based supercomputers. Phase-controllable junctions also open up new possibilities for superconducting circuit elements such as superconducting `programmable logic', where they could function in superconducting analogues to field-programmable gate arrays.

  11. Detecting topological superconductivity with φ0 Josephson junctions (United States)

    Schrade, Constantin; Hoffman, Silas; Loss, Daniel


    The recent experimental discovery of φ0 Josephson junctions by Szombati et al. [Nat. Phys. 12, 568 (2016), 10.1038/nphys3742], characterized by a finite phase offset in the supercurrent, requires the same ingredients as topological superconductors, which suggests a profound connection between these two distinct phenomena. Here, we show that a quantum dot φ0 Josephson junction can serve as a qualitative indicator for topological superconductivity: microscopically, we find that the phase shift in a junction of s -wave superconductors is due to the spin-orbit induced mixing of singly occupied states on the quantum dot, while for a topological superconductor junction it is due to singlet-triplet mixing. Because of this important difference, when the spin-orbit vector of the quantum dot and the external Zeeman field are orthogonal, the s -wave superconductors form a π Josephson junction, while the topological superconductors have a finite offset φ0 by which topological superconductivity can be distinguished from conventional superconductivity. Our prediction can be immediately tested in nanowire systems currently used for Majorana fermion experiments and thus offers a realistic approach for detecting topological bound states.

  12. Testicular cell junction: a novel target for male contraception. (United States)

    Lee, Nikki P Y; Wong, Elissa W P; Mruk, Dolores D; Cheng, C Yan


    Even though various contraceptive methods are widely available, the number of unwanted pregnancies is still on the rise in developing countries, pressurizing the already resource limited nations. One of the major underlying reasons is the lack of effective, low cost, and safe contraceptives for couples. During the past decade, some studies were performed using animal models to decipher if the Sertoli-germ cell junction in the testis is a target for male fertility regulation. Some of these study models were based on the use of hormones and/or chemicals to disrupt the hypothalamic-pituitary-testicular axis (e.g., androgen-based implants or pills) and others utilized a panel of chemical entities or synthetic peptides to perturb spermatogenesis either reversibly or non-reversibly. Among them, adjudin, a potential male contraceptive, is one of the compounds exerting its action on the unique adherens junctions, known as ectoplasmic specializations, in the testis. Since the testis is equipped with inter-connected cell junctions, an initial targeting of one junction type may affect the others and these accumulative effects could lead to spermatogenic arrest. This review attempts to cover an innovative theme on how male infertility can be achieved by inducing junction instability and defects in the testis, opening a new window of research for male contraceptive development. While it will still take much time and effort of intensive investigation before a product can reach the consumable market, these findings have provided hope for better family planning involving men.

  13. Generators of the auxiliary signals based on the Josephson junctions

    Directory of Open Access Journals (Sweden)

    V. M. Kychak


    Full Text Available Introduction and problem statement. Generators based on the Josephson junctions are advisable to use to ensure the generation of signals in the wavelength range from infrared to millimeter. It is necessary to build a dependence of the phase difference of the wave functions superconductor Josephson junctions from the parameters of the equivalent circuit of the resistive shunted tunnel junction. Solution of the problem. An analytical expression for calculating the dependence of the instantaneous voltage values from the parameters of the equivalent circuit resistive shunted Josephson junction is obtained. The dependence of the oscillation period from the parameters of the equivalent circuit elements is researched and a comparison of its values with the period of the output voltage of the generator based on three Josephson junctions is carried out. Conclusions. It is shown that the synchronization leads to decrement in the line width generation and increment the output voltage. Comparison of theoretical calculations and computer modeling shows that the differences do not exceed 25% and therefore they can be used for approximate calculations.

  14. Molecular mechanisms of gap junction mutations in myelinating cells. (United States)

    Sargiannidou, Irene; Markoullis, Kyriaki; Kleopa, Kleopas A


    There is an emerging group of neurological disorders that result from genetic mutations affecting gap junction proteins in myelinating cells. The X-linked form of Charcot Marie Tooth disease (CMT1X) is caused by numerous mutations in the GJB1 gene encoding the gap junction protein connexin32 (Cx32), which is expressed in both Schwann cells in the PNS and oligodendrocytes in the CNS. Patients with CMT1X present mainly with a progressive peripheral neuropathy, showing mixed axonal and demyelinating features. In many cases there is also clinical or subclinical involvement of the CNS with acute or chronic phenotypes of encephalopathy. Furthermore, mutations in the GJA12/GJC2 gene encoding the gap junction protein Cx47, which is expressed in oligodendrocytes, have been identified in families with progressive leukodystrophy, known as Pelizaeus-Merzbacher-like disease, as well as in patients with hereditary spastic paraplegia. Recent studies have provided insights into the pattern of gap junction protein expression and function in CNS and PNS myelinating cells. Furthermore, in vitro and in vivo disease models have clarified some of the molecular and cellular mechanisms underlying these disorders. Here we provide an overview of the clinical, genetic, and neurobiological aspects of gap junction disorders affecting the nervous system.

  15. Gap junctions in the control of vascular function. (United States)

    Figueroa, Xavier F; Duling, Brian R


    Direct intercellular communication via gap junctions is critical in the control and coordination of vascular function. In the cardiovascular system, gap junctions are made up of one or more of four connexin proteins: Cx37, Cx40, Cx43, and Cx45. The expression of more than one gap-junction protein in the vasculature is not redundant. Rather, vascular connexins work in concert, first during the development of the cardiovascular system, and then in integrating smooth muscle and endothelial cell function, and in coordinating cell function along the length of the vessel wall. In addition, connexin-based channels have emerged as an important signaling pathway in the astrocyte-mediated neurovascular coupling. Direct electrical communication between endothelial cells and vascular smooth muscle cells via gap junctions is thought to play a relevant role in the control of vasomotor tone, providing the signaling pathway known as endothelium-derived hyperpolarizing factor (EDHF). Consistent with the importance of gap junctions in the regulation of vasomotor tone and arterial blood pressure, the expression of connexins is altered in diseases associated with vascular complications. In this review, we discuss the participation of connexin-based channels in the control of vascular function in physiologic and pathologic conditions, with a special emphasis on hypertension and diabetes.

  16. Oxygen adsorption at noble metal/TiO2 junctions (United States)

    Hossein-Babaei, F.; Alaei-Sheini, Navid; Lajvardi, Mehdi M.


    Electric conduction in titanium dioxide is known to be oxygen sensitive and the conductivity of a TiO2 ceramic body is determined mainly by the concentration of its naturally occurring oxygen vacancy. Recently, fabrications and electronic features of a number of noble metal/TiO2-based electronic devices, such as solar cells, UV detectors, gas sensors and memristive devices have been demonstrated. Here, we investigate the effect of oxygen adsorption at the noble metal/TiO2 junction in such devices, and show the potentials of these junctions in chemical sensor fabrication. The polycrystalline, poly-phase TiO2 layers are grown by the selective and controlled oxidation of titanium thin films vacuum deposited on silica substrates. Noble metal thin films are deposited on the oxide layers by physical vapor deposition. Current-voltage (I-V) diagrams of the fabricated devices are studied for Ag/, Au/, and Pt/TiO2 samples. The raw samples show no junction energy barrier. After a thermal annealing in air at 250° C, I-V diagrams change drastically. The annealed samples demonstrate highly non-linear I-V indicating the formation of high Schottky energy barriers at the noble metal/TiO2 junctions. The phenomenon is described based on the effect of the oxygen atoms adsorbed at the junction.

  17. Measure Guideline: Optimizing the Configuration of Flexible Duct Junction Boxes

    Energy Technology Data Exchange (ETDEWEB)

    Beach, R.; Burdick, A.


    This measure guideline offers additional recommendations to heating, ventilation, and air conditioning (HVAC) system designers for optimizing flexible duct, constant-volume HVAC systems using junction boxes within Air Conditioning Contractors of America (ACCA) Manual D guidance (Rutkowski, H. Manual D -- Residential Duct Systems, 3rd edition, Version 1.00. Arlington, VA: Air Conditioning Contractors of America, 2009.). IBACOS used computational fluid dynamics software to explore and develop guidance to better control the airflow effects of factors that may impact pressure losses within junction boxes among various design configurations (Beach, R., Prahl, D., and Lange, R. CFD Analysis of Flexible Duct Junction Box Design. Golden, CO: National Renewable Energy Laboratory, submitted for publication 2013). These recommendations can help to ensure that a system aligns more closely with the design and the occupants' comfort expectations. Specifically, the recommendations described herein show how to configure a rectangular box with four outlets, a triangular box with three outlets, metal wyes with two outlets, and multiple configurations for more than four outlets. Designers of HVAC systems, contractors who are fabricating junction boxes on site, and anyone using the ACCA Manual D process for sizing duct runs will find this measure guideline invaluable for more accurately minimizing pressure losses when using junction boxes with flexible ducts.

  18. Testosterone regulates tight junction proteins and influences prostatic autoimmune responses. (United States)

    Meng, Jing; Mostaghel, Elahe A; Vakar-Lopez, Funda; Montgomery, Bruce; True, Larry; Nelson, Peter S


    Testosterone and inflammation have been linked to the development of common age-associated diseases affecting the prostate gland including prostate cancer, prostatitis, and benign prostatic hypertrophy. We hypothesized that testosterone regulates components of prostate tight junctions which serve as a barrier to inflammation, thus providing a connection between age- and treatment-associated testosterone declines and prostatic pathology. We examined the expression and distribution of tight junction proteins in prostate biospecimens from mouse models and a clinical study of chemical castration, using transcript profiling, immunohistochemistry, and electron microscopy. We determined that low serum testosterone is associated with reduced transcript and protein levels of Claudin 4 and Claudin 8, resulting in defective tight junction ultrastructure in benign prostate glands. Expression of Claudin 4 and Claudin 8 was negatively correlated with the mononuclear inflammatory infiltrate caused by testosterone deprivation. Testosterone suppression also induced an autoimmune humoral response directed toward prostatic proteins. Testosterone supplementation in castrate mice resulted in re-expression of tight junction components in prostate epithelium and significantly reduced prostate inflammatory cell numbers. These data demonstrate that tight junction architecture in the prostate is related to changes in serum testosterone levels, and identify an androgen-regulated mechanism that potentially contributes to the development of prostate inflammation and consequent pathology.

  19. Gap junctions in developing thalamic and neocortical neuronal networks. (United States)

    Niculescu, Dragos; Lohmann, Christian


    The presence of direct, cytoplasmatic, communication between neurons in the brain of vertebrates has been demonstrated a long time ago. These gap junctions have been characterized in many brain areas in terms of subunit composition, biophysical properties, neuronal connectivity patterns, and developmental regulation. Although interesting findings emerged, showing that different subunits are specifically regulated during development, or that excitatory and inhibitory neuronal networks exhibit various electrical connectivity patterns, gap junctions did not receive much further interest. Originally, it was believed that gap junctions represent simple passageways for electrical and biochemical coordination early in development. Today, we know that gap junction connectivity is tightly regulated, following independent developmental patterns for excitatory and inhibitory networks. Electrical connections are important for many specific functions of neurons, and are, for example, required for the development of neuronal stimulus tuning in the visual system. Here, we integrate the available data on neuronal connectivity and gap junction properties, as well as the most recent findings concerning the functional implications of electrical connections in the developing thalamus and neocortex.

  20. Field theoretical model of multi-layered Josephson junction and dynamics of Josephson vortices

    CERN Document Server

    Fujimori, Toshiaki; Nitta, Muneto


    Multi-layered Josephson junctions are modeled in the context of a field theory, and dynamics of Josephson vortices trapped inside insulators are studied. Starting from a theory consisting of complex and real scalar fields coupled to a U(1) gauge field which admit parallel $N-1$ domain-wall solutions, Josephson couplings are introduced weakly between the complex scalar fields. The $N-1$ domain walls behave as insulators separating $N$ superconductors. We construct the effective Lagrangian on the domain walls, which reduces to a coupled sine-Gordon model for well-separated walls and contains more interactions for walls at short distance. We then construct sine-Gordon solitons emerging in the effective theory that we identify Josephson vortices carrying singly quantized magnetic fluxes. When two neighboring superconductors tend to have the same phase, the ground state does not change with the positions of domain walls. On the other hand, when two neighboring superconductors tend to have the $\\pi$ phase differenc...