WorldWideScience

Sample records for junction cap layer

  1. Lower-temperature crystallization of CoFeB in MgO magnetic tunnel junctions by using Ti capping layer

    International Nuclear Information System (INIS)

    Ibusuki, Takahiro; Miyajima, Toyoo; Umehara, Shinjiro; Eguchi, Shin; Sato, Masashige

    2009-01-01

    Effects of capping materials on magnetoresistance (MR) properties of MgO magnetic tunnel junctions (MTJs) with a CoFeB free layer were investigated. MR ratios of samples with various capping materials showed a difference in annealing temperature dependence. MTJ with a Ti capping layer annealed at 270 deg. C showed a MR ratio 1.4 times greater than that with a conventional Ta or Ru capping layer. Secondary ion mass spectroscopy and high-resolution transmission electron microscopy images revealed that crystallization of CoFeB was remarkably affected by adjacent materials and the Ti capping layer adjoining CoFeB acted as a boron-absorption layer. These results suggest that the crystallization process can be controlled by choosing proper capping materials. Ti is one of the effective materials that accelerate the crystallization of CoFeB layers at lower annealing temperature

  2. The Leakage Current Improvement of a Ni-Silicided SiGe/Si Junction Using a Si Cap Layer and the PAI Technique

    International Nuclear Information System (INIS)

    Chang Jian-Guang; Wu Chun-Bo; Ji Xiao-Li; Ma Hao-Wen; Yan Feng; Shi Yi; Zhang Rong

    2012-01-01

    We investigate the leakage current of ultra-shallow Ni-silicided SiGe/Si junctions for 45 nm CMOS technology using a Si cap layer and the pre-amorphization implantation (PAI) process. It is found that with the conventional Ni silicide method, the leakage current of a p + (SiGe)—n(Si) junction is large and attributed to band-to-band tunneling and the generation-recombination process. The two leakage contributors can be suppressed quite effectively when a Si cap layer is added in the Ni silicide method. The leakage reduction is about one order of magnitude and could be associated with the suppression of the agglomeration of the Ni germano-silicide film. In addition, the PAI process after the application of a Si cap layer has little effect on improving the junction leakage but reduces the sheet resistance of the silicide film. As a result, the novel Ni silicide method using a Si cap combined with PAI is a promising choice for SiGe junctions in advanced technology. (cross-disciplinary physics and related areas of science and technology)

  3. Ferroelectric capped magnetization in multiferroic PZT/LSMO tunnel junctions

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Ashok, E-mail: ashok553@nplindia.org; Shukla, A. K. [National Physical Laboratory (CSIR), Dr. K. S. Krishnan Road, New Delhi-110012 (India); Barrionuevo, D.; Ortega, N.; Katiyar, Ram S. [Department of Physics and Institute of Functional Nanomaterials, University of Puerto Rico, San Juan, Puerto Rico 00931-3343 (United States); Shannigrahi, Santiranjan [Institute of Materials Research and Engineering - IMRE, Agency for Science Technology and Research (A-STAR), 3 Research Link, Singapore 117602 (Singapore); Scott, J. F. [Department of Chemistry and Department of Physics, University of St. Andrews, St. Andrews KY16 ST (United Kingdom)

    2015-03-30

    Self-poled ultra-thin ferroelectric PbZr{sub 0.52}Ti{sub 0.48}O{sub 3} (PZT) (5 and 7 nm) films have been grown by pulsed laser deposition technique on ferromagnetic La{sub 0.67}Sr{sub 0.33}MnO{sub 3} (LSMO) (30 nm) to check the effect of polar capping on magnetization for ferroelectric tunnel junction devices. PZT/LSMO heterostructures with thick polar PZT (7 nm) capping show nearly 100% enhancement in magnetization compared with thin polar PZT (5 nm) films, probably due to excess hole transfer from the ferroelectric to the ferromagnetic layers. Core-level x-ray photoelectron spectroscopy studies revealed the presence of larger Mn 3s exchange splitting and higher Mn{sup 3+}/Mn{sup 4+} ion ratio in the LSMO with 7 nm polar capping.

  4. Rectifying Properties of a Nitrogen/Boron-Doped Capped-Carbon-Nanotube-Based Molecular Junction

    International Nuclear Information System (INIS)

    Zhao Peng; Zhang Ying; Wang Pei-Ji; Zhang Zhong; Liu De-Sheng

    2011-01-01

    Based on the non-equilibrium Green's function method and first-principles density functional theory calculations, we investigate the electronic transport properties of a nitrogen/boron-doped capped-single-walled carbon-nanotube-based molecular junction. Obvious rectifying behavior is observed and it is strongly dependent on the doping site. The best rectifying performance can be carried out when the nitrogen/boron atom dopes at a carbon site in the second layer. Moreover, the rectifying performance can be further improved by adjusting the distance between the C 60 nanotube caps. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  5. Origin of interfacial perpendicular magnetic anisotropy in MgO/CoFe/metallic capping layer structures.

    Science.gov (United States)

    Peng, Shouzhong; Wang, Mengxing; Yang, Hongxin; Zeng, Lang; Nan, Jiang; Zhou, Jiaqi; Zhang, Youguang; Hallal, Ali; Chshiev, Mairbek; Wang, Kang L; Zhang, Qianfan; Zhao, Weisheng

    2015-12-11

    Spin-transfer-torque magnetic random access memory (STT-MRAM) attracts extensive attentions due to its non-volatility, high density and low power consumption. The core device in STT-MRAM is CoFeB/MgO-based magnetic tunnel junction (MTJ), which possesses a high tunnel magnetoresistance ratio as well as a large value of perpendicular magnetic anisotropy (PMA). It has been experimentally proven that a capping layer coating on CoFeB layer is essential to obtain a strong PMA. However, the physical mechanism of such effect remains unclear. In this paper, we investigate the origin of the PMA in MgO/CoFe/metallic capping layer structures by using a first-principles computation scheme. The trend of PMA variation with different capping materials agrees well with experimental results. We find that interfacial PMA in the three-layer structures comes from both the MgO/CoFe and CoFe/capping layer interfaces, which can be analyzed separately. Furthermore, the PMAs in the CoFe/capping layer interfaces are analyzed through resolving the magnetic anisotropy energy by layer and orbital. The variation of PMA with different capping materials is attributed to the different hybridizations of both d and p orbitals via spin-orbit coupling. This work can significantly benefit the research and development of nanoscale STT-MRAM.

  6. Selective layer disordering in III-nitrides with a capping layer

    Science.gov (United States)

    Wierer, Jr., Jonathan J.; Allerman, Andrew A.

    2016-06-14

    Selective layer disordering in a doped III-nitride superlattice can be achieved by depositing a dielectric capping layer on a portion of the surface of the superlattice and annealing the superlattice to induce disorder of the layer interfaces under the uncapped portion and suppress disorder of the interfaces under the capped portion. The method can be used to create devices, such as optical waveguides, light-emitting diodes, photodetectors, solar cells, modulators, laser, and amplifiers.

  7. Flexible 2D layered material junctions

    Science.gov (United States)

    Balabai, R.; Solomenko, A.

    2018-03-01

    Within the framework of the methods of the electron density functional and the ab initio pseudopotential, we have obtained the valence electron density spatial distribution, the densities of electron states, the widths of band gaps, the charges on combined regions, and the Coulomb potentials for graphene-based flexible 2D layered junctions, using author program complex. It is determined that the bending of the 2D layered junctions on the angle α leads to changes in the electronic properties of these junctions. In the graphene/graphane junction, there is clear charge redistribution with different signs in the regions of junctions. The presence in the heterojunctions of charge regions with different signs leads to the formation of potential barriers. The greatest potential jump is in the graphene/fluorographene junction. The greatest value of the band gap width is in the graphene/graphane junction.

  8. P-n junction diodes with polarization induced p-type graded InxGa1-xN layer

    Science.gov (United States)

    Enatsu, Yuuki; Gupta, Chirag; Keller, Stacia; Nakamura, Shuji; Mishra, Umesh K.

    2017-10-01

    In this study, p-n junction diodes with polarization induced p-type layer are demonstrated on Ga polar (0001) bulk GaN substrates. A quasi-p-type region is obtained by linearly grading the indium composition in un-doped InxGa1-xN layers from 0% to 5%, taking advantage of the piezoelectric and spontaneous polarization fields which exist in group III-nitride heterostructures grown in the typical (0001) or c-direction. The un-doped graded InxGa1-xN layers needed to be capped with a thin Mg-doped InxGa1-xN layer to make good ohmic contacts and to reduce the on-resistance of the p-n diodes. The Pol-p-n junction diodes exhibited similar characteristics compared to reference samples with traditional p-GaN:Mg layers. A rise in breakdown voltage from 30 to 110 V was observed when the thickness of the graded InGaN layer was increased from 100 to 600 nm at the same grade composition.

  9. Circumpolar Active-Layer Permafrost System (CAPS)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Circumpolar Active-Layer Permafrost System (CAPS) contains over 100 data sets pertaining to permafrost and frozen ground topics. It also contains detailed...

  10. Fabrication of magnetic tunnel junctions with epitaxial and textured ferromagnetic layers

    Science.gov (United States)

    Chang, Y. Austin; Yang, Jianhua Joshua

    2008-11-11

    This invention relates to magnetic tunnel junctions and methods for making the magnetic tunnel junctions. The magnetic tunnel junctions include a tunnel barrier oxide layer sandwiched between two ferromagnetic layers both of which are epitaxial or textured with respect to the underlying substrate upon which the magnetic tunnel junctions are grown. The magnetic tunnel junctions provide improved magnetic properties, sharper interfaces and few defects.

  11. Highly doped layer for tunnel junctions in solar cells

    Science.gov (United States)

    Fetzer, Christopher M.

    2017-08-01

    A highly doped layer for interconnecting tunnel junctions in multijunction solar cells is presented. The highly doped layer is a delta doped layer in one or both layers of a tunnel diode junction used to connect two or more p-on-n or n-on-p solar cells in a multijunction solar cell. A delta doped layer is made by interrupting the epitaxial growth of one of the layers of the tunnel diode, depositing a delta dopant at a concentration substantially greater than the concentration used in growing the layer of the tunnel diode, and then continuing to epitaxially grow the remaining tunnel diode.

  12. Magnetic tunnel junction device having an intermediate layer

    NARCIS (Netherlands)

    2001-01-01

    A magnetic tunnel junction device has a multi-layer structure including a pair of electrode layers of a ferromagnetic material and a tunnel barrier layer of an insulating material between the electrode layers. In order to realize a low resistance, the multi-layer structure also includes an

  13. Magnetic and transport properties of single and double perpendicular magnetic tunnel junctions

    International Nuclear Information System (INIS)

    Cuchet, Lea

    2015-01-01

    Due to their advantageous properties in terms of data retention, storage density and critical current density for Spin Transfer Torque (STT) switching, the magnetic tunnel junctions with perpendicular anisotropy have become predominant in the developments for MRAM applications. The aim of this thesis is to improve the anisotropy and transport properties of such structures and to realize even more complex stacks such as perpendicular double junctions. Studies on the magnetic properties and Tunnel Magnetoresistance (TMR) measurements showed that to optimize the performances of the junctions, all the thicknesses of the different layers constituting the stack have to be adapted. To guaranty both a large TMR as well a strong perpendicular anisotropy, compromises are most of the time needed. Studies as a function of magnetic thickness enabled to extract the saturation magnetization, the critical thickness and the magnetic dead layer thickness both in the bottom reference and the top storage layer in structures capped with Ta. This type of junction could be tested electrically after patterning the sample into nano-pillars. Knowing that perpendicular anisotropy mostly arises at the metal/oxide interface, the Ta capping layer was replaced by a MgO one, leading to a huge increase in the anisotropy of the free layer. A second top reference was then added on such a stack to create functional perpendicular double junctions. CoFeB/insertion/CoFeB synthetic antiferromagnetic storage layers could be developed and were proved to be stable enough to replace the standard Co/Pt-based reference layers. (author) [fr

  14. Sidewall GaAs tunnel junctions fabricated using molecular layer epitaxy

    Directory of Open Access Journals (Sweden)

    Takeo Ohno and Yutaka Oyama

    2012-01-01

    Full Text Available In this article we review the fundamental properties and applications of sidewall GaAs tunnel junctions. Heavily impurity-doped GaAs epitaxial layers were prepared using molecular layer epitaxy (MLE, in which intermittent injections of precursors in ultrahigh vacuum were applied, and sidewall tunnel junctions were fabricated using a combination of device mesa wet etching of the GaAs MLE layer and low-temperature area-selective regrowth. The fabricated tunnel junctions on the GaAs sidewall with normal mesa orientation showed a record peak current density of 35 000 A cm-2. They can potentially be used as terahertz devices such as a tunnel injection transit time effect diode or an ideal static induction transistor.

  15. Spin-transfer torque in tunnel junctions with ferromagnetic layer of finite thickness

    International Nuclear Information System (INIS)

    Wilczynski, M.

    2011-01-01

    Two components of the spin torque exerted on a free ferromagnetic layer of finite thickness and a half-infinite ferromagnetic electrode in single tunnel junctions have been calculated in the spin-polarized free-electron-like one-band model. It has been found that the torque oscillates with the thickness of ferromagnetic layer and can be enhanced in the junction with the special layer thickness. The bias dependence of torque components also significantly changes with layer thickness. It is non-symmetric for the normal torque, in contrast to the symmetric junctions with two identical half-infinite ferromagnetic electrodes. The asymmetry of the bias dependence of the normal component of the torque can be also observed in the junctions with different spin splitting of the electron bands in the ferromagnetic electrodes. - Research highlights: → The torque oscillates with the thickness of ferromagnetic layer. → Bias dependence of the torque changes with the layer thickness. → Bias dependence of the normal torque can be asymmetric.

  16. Nanoscale gadolinium oxide capping layers on compositionally variant gate dielectrics

    KAUST Repository

    Alshareef, Husam N.

    2010-11-19

    Metal gate work function enhancement using nanoscale (1.0 nm) Gd2O3 interfacial layers has been evaluated as a function of silicon oxide content in the HfxSiyOz gate dielectric and process thermal budget. It is found that the effective work function tuning by the Gd2O3 capping layer varied by nearly 400 mV as the composition of the underlying dielectric changed from 0% to 100% SiO2, and by nearly 300 mV as the maximum process temperature increased from ambient to 1000 °C. A qualitative model is proposed to explain these results, expanding the existing models for the lanthanide capping layer effect.

  17. Nanoscale gadolinium oxide capping layers on compositionally variant gate dielectrics

    KAUST Repository

    Alshareef, Husam N.; Caraveo-Frescas, J. A.; Cha, D. K.

    2010-01-01

    Metal gate work function enhancement using nanoscale (1.0 nm) Gd2O3 interfacial layers has been evaluated as a function of silicon oxide content in the HfxSiyOz gate dielectric and process thermal budget. It is found that the effective work function tuning by the Gd2O3 capping layer varied by nearly 400 mV as the composition of the underlying dielectric changed from 0% to 100% SiO2, and by nearly 300 mV as the maximum process temperature increased from ambient to 1000 °C. A qualitative model is proposed to explain these results, expanding the existing models for the lanthanide capping layer effect.

  18. Evidence for possible quantum dot interdiffusion induced by cap layer growth

    International Nuclear Information System (INIS)

    Jasinski, J.; Czeczott, M.; Gladysz, A.; Babinski, A.; Kozubowski, J.

    1999-01-01

    Self-organised InGaAs quantum dots were grown on (001) GaAs substrates and covered with two different types of cap layers grown at significantly different temperatures. In order to determine quantum dot emission energy and dot size distribution, photoluminescence and transmission electron microscopy studies were carried out on such samples. Simple theoretical model neglecting effect of interdiffusion allowed for correlation between quantum dot size and photoluminescence emission energy only in the case of dots covered by cap layers grown at the lower temperature. For dots covered by layers grown at the higher temperature such correlation was possible only when strong interdiffusion was assumed. (author)

  19. Slow Manifolds and Multiple Equilibria in Stratocumulus-Capped Boundary Layers

    Directory of Open Access Journals (Sweden)

    Junya Uchida

    2010-12-01

    Full Text Available In marine stratocumulus-capped boundary layers under strong inversions, the timescale for thermodynamic adjustment is roughly a day, much shorter than the multiday timescale for inversion height adjustment. Slow-manifold analysis is introduced to exploit this timescale separation when boundary layer air columns experience only slow changes in their boundary conditions. Its essence is that the thermodynamic structure of the boundary layer remains approximately slaved to its inversion height and the instantaneous boundary conditions; this slaved structure determines the entrainment rate and hence the slow evolution of the inversion height. Slow-manifold analysis is shown to apply to mixed-layer model and large-eddy simulations of an idealized nocturnal stratocumulus- capped boundary layer; simulations with different initial inversion heights collapse onto single relationships of cloud properties with inversion height. Depending on the initial inversion height, the simulations evolve toward a shallow thin-cloud boundary layer or a deep, well-mixed thick cloud boundary layer. In the large-eddy simulations, these evolutions occur on two separate slow manifolds (one of which becomes unstable if cloud droplet concentration is reduced. Applications to analysis of stratocumulus observations and to pockets of open cells and ship tracks are proposed.

  20. Insulator layer formation in MgB2 SIS junctions

    International Nuclear Information System (INIS)

    Shimakage, H.; Tsujimoto, K.; Wang, Z.; Tonouchi, M.

    2005-01-01

    The dependence of current-voltage characteristics on thin film deposition conditions was investigated using MgB 2 /AlN/NbN SIS junctions. By increasing the substrate temperature in AlN insulator deposition, the current density decreased and the normal resistance increased. The results indicated that an additional insulator layer between the MgB 2 and AlN formed, either before or during the AlN deposition. The thickness of the additional insulator layer was increased with an increase in the AlN deposition temperature. From the dependence of current density on the thickness of AlN in low temperature depositions, the thickness of the additional insulator layer was estimated to be 1-1.5 nm when the AlN insulator was deposited from 0.14 to 0.7 nm. Moreover, with the current density of MgB 2 /AlN/MgB 2 SIS junctions, further insulator layer formation was confirmed

  1. Construction of van der Waals magnetic tunnel junction using ferromagnetic layered dichalcogenide

    Energy Technology Data Exchange (ETDEWEB)

    Arai, Miho; Moriya, Rai, E-mail: moriyar@iis.u-tokyo.ac.jp; Yabuki, Naoto; Masubuchi, Satoru [Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8505 (Japan); Ueno, Keiji [Department of Chemistry, Graduate School of Science and Engineering, Saitama University, Saitama 338-8570 (Japan); Machida, Tomoki, E-mail: tmachida@iis.u-tokyo.ac.jp [Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8505 (Japan); Institute for Nano Quantum Information Electronics, University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8505 (Japan)

    2015-09-07

    We investigate the micromechanical exfoliation and van der Waals (vdW) assembly of ferromagnetic layered dichalcogenide Fe{sub 0.25}TaS{sub 2}. The vdW interlayer coupling at the Fe-intercalated plane of Fe{sub 0.25}TaS{sub 2} allows exfoliation of flakes. A vdW junction between the cleaved crystal surfaces is constructed by dry transfer method. We observe tunnel magnetoresistance in the resulting junction under an external magnetic field applied perpendicular to the plane, demonstrating spin-polarized tunneling between the ferromagnetic layered material and the vdW junction.

  2. Mo/Si multilayers with enhanced TiO II- and RuO II-capping layers

    Science.gov (United States)

    Yulin, Sergiy; Benoit, Nicolas; Feigl, Torsten; Kaiser, Norbert; Fang, Ming; Chandhok, Manish

    2008-03-01

    The lifetime of Mo/Si multilayer-coated projection optics is one of the outstanding issues on the road of commercialization of extreme-ultraviolet lithography (EUVL). The application of Mo/Si multilayer optics in EUVL requires both sufficient radiation stability and also the highest possible normal-incidence reflectivity. A serious problem of conventional high-reflective Mo/Si multilayers capped by silicon is the considerable degradation of reflective properties due to carbonization and oxidation of the silicon surface layer under exposure by EUV radiation. In this study, we focus on titanium dioxide (TiO II) and ruthenium dioxide (RuO II) as promising capping layer materials for EUVL multilayer coatings. The multilayer designs as well as the deposition parameters of the Mo/Si systems with different capping layers were optimized in terms of maximum peak reflectivity at the wavelength of 13.5 nm and longterm stability under high-intensive irradiation. Optimized TiO II-capped Mo/Si multilayer mirrors with an initial reflectivity of 67.0% presented a reflectivity drop of 0.6% after an irradiation dose of 760 J/mm2. The reflectivity drop was explained by the partial oxidation of the silicon sub-layer. No reflectivity loss after similar irradiation dose was found for RuO II-capped Mo/Si multilayer mirrors having initial peak reflectivity of 66%. In this paper we present data on improved reflectivity of interface-engineered TiO II- and RuO II-capped Mo/Si multilayer mirrors due to the minimization of both interdiffusion processes inside the multilayer stack and absorption loss in the oxide layer. Reflectivities of 68.5% at the wavelength of 13.4 nm were achieved for both TiO II- and RuO II-capped Mo/Si multilayer mirrors.

  3. The Recovery of a Magnetically Dead Layer on the Surface of an Anatase (Ti,CoO2 Thin Film via an Ultrathin TiO2 Capping Layer

    Directory of Open Access Journals (Sweden)

    Thantip S. Krasienapibal

    2017-03-01

    Full Text Available The effect of an ultrathin TiO2 capping layer on an anatase Ti0.95Co0.05O2−δ (001 epitaxial thin film on magnetism at 300 K was investigated. Films with a capping layer showed increased magnetization mainly caused by enhanced out-of-plane magnetization. In addition, the ultrathin capping layer was useful in prolonging the magnetization lifetime by more than two years. The thickness dependence of the magnetic domain structure at room temperature indicated the preservation of magnetic domain structure even for a 13 nm thick film covered with a capping layer. Taking into account nearly unchanged electric conductivity irrespective of the capping layer’s thickness, the main role of the capping layer is to prevent surface oxidation, which reduces electron carriers on the surface.

  4. Protective capping and surface passivation of III-V nanowires by atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Dhaka, Veer, E-mail: veer.dhaka@aalto.fi; Perros, Alexander; Kakko, Joona-Pekko; Haggren, Tuomas; Lipsanen, Harri [Department of Micro- and Nanosciences, Micronova, Aalto University, P.O. Box 13500, FI-00076 (Finland); Naureen, Shagufta; Shahid, Naeem [Research School of Physics & Engineering, Department of Electronic Materials Engineering, Australian National University, Canberra ACT 2601 (Australia); Jiang, Hua; Kauppinen, Esko [Department of Applied Physics and Nanomicroscopy Center, Aalto University, P.O. Box 15100, FI-00076 (Finland); Srinivasan, Anand [School of Information and Communication Technology, KTH Royal Institute of Technology, Electrum 229, S-164 40 Kista (Sweden)

    2016-01-15

    Low temperature (∼200 °C) grown atomic layer deposition (ALD) films of AlN, TiN, Al{sub 2}O{sub 3}, GaN, and TiO{sub 2} were tested for protective capping and surface passivation of bottom-up grown III-V (GaAs and InP) nanowires (NWs), and top-down fabricated InP nanopillars. For as-grown GaAs NWs, only the AlN material passivated the GaAs surface as measured by photoluminescence (PL) at low temperatures (15K), and the best passivation was achieved with a few monolayer thick (2Å) film. For InP NWs, the best passivation (∼2x enhancement in room-temperature PL) was achieved with a capping of 2nm thick Al{sub 2}O{sub 3}. All other ALD capping layers resulted in a de-passivation effect and possible damage to the InP surface. Top-down fabricated InP nanopillars show similar passivation effects as InP NWs. In particular, capping with a 2 nm thick Al{sub 2}O{sub 3} layer increased the carrier decay time from 251 ps (as-etched nanopillars) to about 525 ps. Tests after six months ageing reveal that the capped nanostructures retain their optical properties. Overall, capping of GaAs and InP NWs with high-k dielectrics AlN and Al{sub 2}O{sub 3} provides moderate surface passivation as well as long term protection from oxidation and environmental attack.

  5. Protective capping and surface passivation of III-V nanowires by atomic layer deposition

    Directory of Open Access Journals (Sweden)

    Veer Dhaka

    2016-01-01

    Full Text Available Low temperature (∼200 °C grown atomic layer deposition (ALD films of AlN, TiN, Al2O3, GaN, and TiO2 were tested for protective capping and surface passivation of bottom-up grown III-V (GaAs and InP nanowires (NWs, and top-down fabricated InP nanopillars. For as-grown GaAs NWs, only the AlN material passivated the GaAs surface as measured by photoluminescence (PL at low temperatures (15K, and the best passivation was achieved with a few monolayer thick (2Å film. For InP NWs, the best passivation (∼2x enhancement in room-temperature PL was achieved with a capping of 2nm thick Al2O3. All other ALD capping layers resulted in a de-passivation effect and possible damage to the InP surface. Top-down fabricated InP nanopillars show similar passivation effects as InP NWs. In particular, capping with a 2 nm thick Al2O3 layer increased the carrier decay time from 251 ps (as-etched nanopillars to about 525 ps. Tests after six months ageing reveal that the capped nanostructures retain their optical properties. Overall, capping of GaAs and InP NWs with high-k dielectrics AlN and Al2O3 provides moderate surface passivation as well as long term protection from oxidation and environmental attack.

  6. Electromagnetic Scattering from a PEC Wedge Capped with Cylindrical Layers with Dielectric and Conductive Properties

    Directory of Open Access Journals (Sweden)

    H. Ozturk

    2017-04-01

    Full Text Available Electromagnetic scattering from a layered capped wedge is studied. The wedge is assumed infinite in z-direction (longitudinal and capped with arbitrary layers of dielectric with varying thicknesses and dielectric properties including conductive loss. Scalar Helmholtz equation in two dimensions is formulated for each solution region and a matrix of unknown coefficients are arrived at for electric field representation. Closed form expressions are derived for 2- and 3-layer geometries. Numerical simulations are performed for different wedge shapes and dielectric layer properties and compared to PEC-only case. It has been shown that significant reduction in scattered electric field can be obtained with 2- and 3-layered cap geometries. Total electric field in the far field normalized to incident field is also computed as a precursor to RCS analysis. Analytical results can be useful in radar cross section analysis for aerial vehicles.

  7. High temperature study on the thermal properties of few-layer Mo0.5W0.5S2 and effects of capping layers

    Directory of Open Access Journals (Sweden)

    Hong Gu

    Full Text Available We investigated the thermal properties of few-layer Mo0.5W0.5S2 using a series of samples with different kinds of capping layers. Temperature-dependent Raman measurements were conducted in the range of 300–500 K, with power-dependent measurements also carried out. It indicated, for the few-layer Mo0.5W0.5S2, the temperature coefficients of the WS2-like E12g mode, MoS2-like E12g mode and A1g mode were −0.0155 cm−1/K, −0.0146 cm−1/K, and −0.0130 cm−1/K, respectively. And the thermal conductivity was estimated to be 44.8 W/mK. Moreover, the Mo0.5W0.5S2 samples coated with capping layers (ZrO2, HfO2 both showed a better thermal stability and a larger thermal conductivity than the one without. The results revealed that the capping layer should be an important factor in the thermal property. Keywords: Mo0.5W0.5S2, TMDs, Thermal properties, High temperature, Capping layers, Raman

  8. The effect of capped layer thickness on switching behavior in perpendicular CoCrPt based coupled granular/continuous media

    International Nuclear Information System (INIS)

    Li, W.M.; Lim, W.K.; Shi, J.Z.; Ding, J.

    2013-01-01

    A systematic investigation of magnetic switching behavior of CoCrPt based capped media (perpendicularly coupled granular/continuous (CGC) media consisting of granular CoCrPt:SiO 2 TiO 2 Ta 2 O 5 /capped CoCrPt(B)) is performed by varying the thickness of the capped layer from 0 to 9 nm. The microscopic structures of CGC media with different thickness of capped layer are examined by transmission electron microscope. We find out that CoCrPt magnetic grains are separated by nonmagnetic oxide grain boundaries. Grain size and grain boundary are about 8.9 nm and 2 nm, respectively. The nonmagnetic oxide grain boundaries in the granular layer do not disappear immediately at the interface between the granular and capped layers. The amorphous grain boundary phase in the granular layer propagates to the top surface of the capped layer. After capping with the CoCrPt(B) layer, the grain size at the surface of CGC structure increases and the grain boundary decreases. Both coercivity and intergranular exchange coupling of the CGC media are investigated by Polar magneto-optic Kerr effect magnetometer and alternating gradient force magnetometer. Although H c apparently decreases at thicker capped layer, no obvious variation of macroscopic switching field distribution (SFD/H c ) is observed. We separate intrinsic switching field distribution from intergranular interactions. The investigation of reduced intrinsic SFD/H c and increased hysteresis loop slope at coercivity, suggests that improvement of absolute switching field distribution (SFD) is caused by both strong intergranular exchange coupling and uniform grain size. Micromagnetic simulation results further verify our conclusion that the capped layer in CGC media is not uniformly continuous but has some granular nature. However, grains in the CoCrPt(B) capped layer is not absolutely isolated, strong exchange coupling exists between grains. - Highlights: • In CGC media, CoCrPt magnetic grains are separated by nonmagnetic oxide

  9. A DFT study on NEA GaN photocathode with an ultrathin n-type Si-doped GaN cap layer

    Science.gov (United States)

    Xia, Sihao; Liu, Lei; Kong, Yike; Diao, Yu

    2016-10-01

    Due to the drawbacks of conventional negative electron affinity (NEA) GaN photocathodes activated by Cs or Cs/O, a new-type NEA GaN photocathodes with heterojunction surface dispense with Cs activation are proposed. This structure can be obtained through the coverage of an ultrathin n-type Si-doped GaN cap layer on the p-type Mg-doped GaN emission layer. The influences of the cap layer on the photocathode are calculated using DFT. This study indicates that the n-type cap layer can promote the photoemission characteristics of GaN photocathode and demonstrates the probability of the preparation of a NEA GaN photocathode with an n-type cap layer.

  10. Transparent organic light-emitting diodes with different bi-directional emission colors using color-conversion capping layers

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jonghee, E-mail: jonghee.lee@etri.re.kr [OLED Research Center, Electronics and Telecommunications Research Institute (ETRI), Daejeon 305-700 (Korea, Republic of); Institut für Angewandte Photophysik, Technische Universität Dresden, George-Bähr-Straße 1, 01062 Dresden (Germany); Koh, Tae-Wook [Department of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701 (Korea, Republic of); Cho, Hyunsu [OLED Research Center, Electronics and Telecommunications Research Institute (ETRI), Daejeon 305-700 (Korea, Republic of); Department of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701 (Korea, Republic of); Schwab, Tobias [Institut für Angewandte Photophysik, Technische Universität Dresden, George-Bähr-Straße 1, 01062 Dresden (Germany); Lee, Jae-Hyun [Department School of Global Convergence Studies, Hanbat National University, San 16-1, Duckmyoung-dong, Daejeon 305-719 (Korea, Republic of); Hofmann, Simone [Institut für Angewandte Photophysik, Technische Universität Dresden, George-Bähr-Straße 1, 01062 Dresden (Germany); Lee, Jeong-Ik [OLED Research Center, Electronics and Telecommunications Research Institute (ETRI), Daejeon 305-700 (Korea, Republic of); Yoo, Seunghyup [Department of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701 (Korea, Republic of); and others

    2015-06-15

    We report a study on transparent organic light-emitting diodes (OLEDs) with different bi-directional emission colors, enabled by color-conversion organic capping layers. Starting from a transparent blue OLED with an uncapped Ag top electrode exhibiting an average transmittance of 33.9%, a 4-(dicyanomethylene)-2-methyl-6-(4-dimethylaminostyryl)-4H-pyran (DCM)-doped tris-(8-hydroxy-quinolinato)-aluminum (Alq3) capping layer is applied to achieve color-conversion from blue to orange-red on the top side while maintaining almost unchanged device transmittance. This color-conversion capping layer does not only change the color of the top side emission, but also enhances the overall device efficiency due to the optical interaction of the capping layer with the primary blue transparent OLED. Top white emission from the transparent bi-directional OLED exhibits a correlated color temperature around 6000–7000 K, with excellent color stability as evidenced by an extremely small variation in color coordinate of Δ(x,y)=(0.002, 0.002) in the forward luminance range of 100–1000 cd m{sup −2}. At the same time, the blue emission color of bottom side is not influenced by the color conversion capping layer, which finally results in different emission colors of the two opposite sides of our transparent OLEDs. - Highlights: • We report transparent organic light-emitting diodes (OLEDs) with different bi-directional emission colors. • Transparent blue OLED with color-conversion organic capping layers (CCL) shows orange top side emission. • Top white emission exhibits a CCT around 7000 K, with excellent color stability on a driving voltage.

  11. Transparent organic light-emitting diodes with different bi-directional emission colors using color-conversion capping layers

    International Nuclear Information System (INIS)

    Lee, Jonghee; Koh, Tae-Wook; Cho, Hyunsu; Schwab, Tobias; Lee, Jae-Hyun; Hofmann, Simone; Lee, Jeong-Ik; Yoo, Seunghyup

    2015-01-01

    We report a study on transparent organic light-emitting diodes (OLEDs) with different bi-directional emission colors, enabled by color-conversion organic capping layers. Starting from a transparent blue OLED with an uncapped Ag top electrode exhibiting an average transmittance of 33.9%, a 4-(dicyanomethylene)-2-methyl-6-(4-dimethylaminostyryl)-4H-pyran (DCM)-doped tris-(8-hydroxy-quinolinato)-aluminum (Alq3) capping layer is applied to achieve color-conversion from blue to orange-red on the top side while maintaining almost unchanged device transmittance. This color-conversion capping layer does not only change the color of the top side emission, but also enhances the overall device efficiency due to the optical interaction of the capping layer with the primary blue transparent OLED. Top white emission from the transparent bi-directional OLED exhibits a correlated color temperature around 6000–7000 K, with excellent color stability as evidenced by an extremely small variation in color coordinate of Δ(x,y)=(0.002, 0.002) in the forward luminance range of 100–1000 cd m −2 . At the same time, the blue emission color of bottom side is not influenced by the color conversion capping layer, which finally results in different emission colors of the two opposite sides of our transparent OLEDs. - Highlights: • We report transparent organic light-emitting diodes (OLEDs) with different bi-directional emission colors. • Transparent blue OLED with color-conversion organic capping layers (CCL) shows orange top side emission. • Top white emission exhibits a CCT around 7000 K, with excellent color stability on a driving voltage

  12. Numerical evaluation of monofil and subtle-layered evapotranspiration (ET) landfill caps

    International Nuclear Information System (INIS)

    Wilson, G.V.; Henley, M.; Valceschini, R.

    1998-01-01

    The US Department of Energy/Nevada Operations Office (DOE/NV) has identified the need to design a low-level waste (LLW) closure cap for the arid conditions at the Nevada Test Site (NTS). As a result of concerns for subsidence impacting the cover, DOE/NV redesigned the LLW cover from one containing a 'hard' infiltration barrier that would likely fail, to a 'soft' (ET) cover that is sufficiently deep to accommodate the hydrologic problems of subsidence. An ET cover is one that does not contain hydrologic barrier layers but relies on soil-water retention and sufficient thickness to store water until evapotranspiration (ET) can remove the moisture. Subtle layering within an ET cap using the native soil could be environmentally beneficial and cost effective

  13. High-Efficiency Silicon/Organic Heterojunction Solar Cells with Improved Junction Quality and Interface Passivation.

    Science.gov (United States)

    He, Jian; Gao, Pingqi; Ling, Zhaoheng; Ding, Li; Yang, Zhenhai; Ye, Jichun; Cui, Yi

    2016-12-27

    Silicon/organic heterojunction solar cells (HSCs) based on conjugated polymers, poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS), and n-type silicon (n-Si) have attracted wide attention due to their potential advantages of high efficiency and low cost. However, the state-of-the-art efficiencies are still far from satisfactory due to the inferior junction quality. Here, facile treatments were applied by pretreating the n-Si wafer in tetramethylammonium hydroxide (TMAH) solution and using a capping copper iodide (CuI) layer on the PEDOT:PSS layer to achieve a high-quality Schottky junction. Detailed photoelectric characteristics indicated that the surface recombination was greatly suppressed after TMAH pretreatment, which increased the thickness of the interfacial oxide layer. Furthermore, the CuI capping layer induced a strong inversion layer near the n-Si surface, resulting in an excellent field effect passivation. With the collaborative improvements in the interface chemical and electrical passivation, a competitive open-circuit voltage of 0.656 V and a high fill factor of 78.1% were achieved, leading to a stable efficiency of over 14.3% for the planar n-Si/PEDOT:PSS HSCs. Our findings suggest promising strategies to further exploit the full voltage as well as efficiency potentials for Si/organic solar cells.

  14. Effects of the strain relaxation of an AlGaN barrier layer induced by various cap layers on the transport properties in AlGaN/GaN heterostructures

    International Nuclear Information System (INIS)

    Liu Zi-Yang; Zhang Jin-Cheng; Duan Huan-Tao; Xue Jun-Shuai; Lin Zhi-Yu; Ma Jun-Cai; Xue Xiao-Yong; Hao Yue

    2011-01-01

    The strain relaxation of an AlGaN barrier layer may be influenced by a thin cap layer above, and affects the transport properties of AlGaN/GaN heterostructures. Compared with the slight strain relaxation found in AlGaN barrier layer without cap layer, it is found that a thin cap layer can induce considerable changes of strain state in the AlGaN barrier layer. The degree of relaxation of the AlGaN layer significantly influences the transport properties of the two-dimensional electron gas (2DEG) in AlGaN/GaN heterostructures. It is observed that electron mobility decreases with the increasing degree of relaxation of the AlGaN barrier, which is believed to be the main cause of the deterioration of crystalline quality and morphology on the AlGaN/GaN interface. On the other hand, both GaN and AlN cap layers lead to a decrease in 2DEG density. The reduction of 2DEG caused by the GaN cap layer may be attributed to the additional negative polarization charges formed at the interface between GaN and AlGaN, while the reduction of the piezoelectric effect in the AlGaN layer results in the decrease of 2DEG density in the case of AlN cap layer. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  15. Design and performance of capping layers for extreme-ultraviolet multilayer mirrors

    International Nuclear Information System (INIS)

    Bajt, Sasa; Chapman, Henry N.; Nguyen, Nhan; Alameda, Jennifer; Robinson, Jeffrey C.; Malinowski, Michael; Gullikson, Eric; Aquila, Andrew; Tarrio, Charles; Grantham, Steven

    2003-01-01

    Multilayer lifetime has emerged as one of the major issues for the commercialization of extreme-ultraviolet lithography (EUVL). We describe the performance of an oxidation-resistant capping layer of Ru atop multilayers that results in a reflectivity above 69% at 13.2 nm, which is suitable for EUVL projection optics and has been tested with accelerated electron-beam and extreme-ultraviolet (EUV) light in a water-vapor environment. Based on accelerated exposure results, we calculated multilayer lifetimes for all reflective mirrors in a typical commercial EUVL tool and concluded that Ru-capped multilayers have ∼40x longer lifetimes than Si-capped multilayers, which translates to 3 months to many years, depending on the mirror dose

  16. Performance Analysis of GaN Capping Layer Thickness on GaN/AlGaN/GaN High Electron Mobility Transistors.

    Science.gov (United States)

    Sharma, N; Periasamy, C; Chaturvedi, N

    2018-07-01

    In this paper, we present an investigation of the impact of GaN capping layer and AlGaN layer thickness on the two-dimensional (2D)-electron mobility and the carrier concentration which was formed close to the AlGaN/GaN buffer layer for Al0.25Ga0.75N/GaN and GaN/Al0.25Ga0.75N/GaN heterostructures deposited on sapphire substrates. The results of our analysis clearly indicate that expanding the GaN capping layer thickness from 1 nm to 100 nm prompts an increment in the electron concentration at hetero interface. As consequence of which drain current was additionally increments with GaN cap layer thicknesses, and eventually saturates at approximately 1.85 A/mm for capping layer thickness greater than 40 nm. Interestingly, for the same structure, the 2D-electron mobility, decrease monotonically with GaN capping layer thickness, and saturate at approximately 830 cm2/Vs for capping layer thickness greater than 50 nm. A device with a GaN cap layer didn't exhibit gate leakage current. Furthermore, it was observed that the carrier concentration was first decrease 1.03 × 1019/cm3 to 6.65 × 1018/cm3 with AlGaN Layer thickness from 5 to 10 nm and after that it increases with the AlGaN layer thickness from 10 to 30 nm. The same trend was followed for electric field distributions. Electron mobility decreases monotonically with AlGaN layer thickness. Highest electron mobility 1354 cm2/Vs were recorded for the AlGaN layer thickness of 5 nm. Results obtained are in good agreement with published experimental data.

  17. Surface state of GaN after rapid-thermal-annealing using AlN cap-layer

    Energy Technology Data Exchange (ETDEWEB)

    El-Zammar, G., E-mail: georgio.elzammar@univ-tours.fr [Université François Rabelais, Tours, GREMAN, CNRS UMR 7347, 10 rue Thalès de Milet CS 97155, 37071 Tours Cedex 2 (France); Khalfaoui, W. [Université François Rabelais, Tours, GREMAN, CNRS UMR 7347, 10 rue Thalès de Milet CS 97155, 37071 Tours Cedex 2 (France); Oheix, T. [Université François Rabelais, Tours, GREMAN, CNRS UMR 7347, 10 rue Thalès de Milet CS 97155, 37071 Tours Cedex 2 (France); STMicroelectronics, 10 rue Thalès de Milet CS 97155, 37071 Tours Cedex 2 (France); Yvon, A.; Collard, E. [STMicroelectronics, 10 rue Thalès de Milet CS 97155, 37071 Tours Cedex 2 (France); Cayrel, F.; Alquier, D. [Université François Rabelais, Tours, GREMAN, CNRS UMR 7347, 10 rue Thalès de Milet CS 97155, 37071 Tours Cedex 2 (France)

    2015-11-15

    Graphical abstract: Surface state of a crack-free AlN cap-layer reactive sputtered on GaN and annealed at high temperature showing a smooth, pit-free surface. - Highlights: • We deposit a crystalline AlN layer by reactive magnetron sputtering on GaN. • We show the effect of deposition parameters of AlN by reactive magnetron sputtering on the quality of the grown layer. • We demonstrate the efficiency of double cap-layer for GaN protection during high temperature thermal treatments. • We show an efficient selective etch of AlN without damaging GaN surface. - Abstract: Critical issues need to be overcome to produce high performance Schottky diodes on gallium nitride (GaN). To activate dopant, high temperature thermal treatments are required but damage GaN surface where hexagonal pits appear and prevent any device processing. In this paper, we investigated the efficiency of cap-layers on GaN during thermal treatments to avoid degradation. Aluminum nitride (AlN) and silicon oxide (SiO{sub x}) were grown on GaN by direct current reactive magnetron sputtering and plasma-enhanced chemical vapor deposition, respectively. AlN growth parameters were studied to understand their effect on the grown layers and their protection efficiency. Focused ion beam was used to measure AlN layer thickness. Crystalline quality and exact composition were verified using X-ray diffraction and energy dispersive X-ray spectroscopy. Two types of rapid thermal annealing at high temperatures were investigated. Surface roughness and pits density were evaluated using atomic force microscopy and scanning electron microscopy. Cap-layers wet etching was processed in H{sub 3}PO{sub 4} at 120 °C for AlN and in HF (10%) for SiO{sub x}. This work reveals effective protection of GaN during thermal treatments at temperatures as high as 1150 °C. Low surface roughness was obtained. Furthermore, no hexagonal pit was observed on the surface.

  18. High performance EUV multilayer structures insensitive to capping layer optical parameters.

    Science.gov (United States)

    Pelizzo, Maria Guglielmina; Suman, Michele; Monaco, Gianni; Nicolosi, Piergiorgio; Windt, David L

    2008-09-15

    We have designed and tested a-periodic multilayer structures containing protective capping layers in order to obtain improved stability with respect to any possible changes of the capping layer optical properties (due to oxidation and contamination, for example)-while simultaneously maximizing the EUV reflection efficiency for specific applications, and in particular for EUV lithography. Such coatings may be particularly useful in EUV lithographic apparatus, because they provide both high integrated photon flux and higher stability to the harsh operating environment, which can affect seriously the performance of the multilayer-coated projector system optics. In this work, an evolutive algorithm has been developed in order to design these a-periodic structures, which have been proven to have also the property of stable performance with respect to random layer thickness errors that might occur during coating deposition. Prototypes have been fabricated, and tested with EUV and X-ray reflectometry, and secondary electron spectroscopy. The experimental results clearly show improved performance of our new a-periodic coatings design compared with standard periodic multilayer structures.

  19. Sputter fabricated Nb-oxide-Nb josephson junctions incorporating post-oxidation noble metal layers

    International Nuclear Information System (INIS)

    Bain, R.J.P.; Donaldson, G.B.

    1985-01-01

    We present an extension, involving other metals, of the work of Hawkins and Clarke, who found that a thin layer of copper prevented the formation of the superconductive shorts which are an inevitable consequence of sputtering niobium counter-electrodes directly on top of niobium oxide. We find gold to be the most satisfactory, and that 0.3 nm is sufficient to guarantee short-free junctions of excellent electrical and mechanical stability, though high excess conductance means they are best suited to shunted-junction applications, as in SQUIDs. We present results for critical current dependence on oxide thickness and on gold thickness. Our data shows that thermal oxide growth is described by the Cabrera-Mott mechanism. We show that the protective effect of the gold layer can be understood in terms of the electro-chemistry of the Nb-oxide-Au structure, and that the reduced quasi-particle resistance of the junctions relative to goldfree junctions with evaporated counterelectrodes can be explained in terms of barrier shape modification, and not by proximity effect mechanisms. The performance of a DC SQUID based on these junctions is described

  20. The Mars water cycle at other epochs: Recent history of the polar caps and layered terrain

    Science.gov (United States)

    Jakosky, Bruce M.; Henderson, Bradley G.; Mellon, Michael T.

    1992-01-01

    The Martian polar caps and layered terrain presumably evolves by the deposition and removal of small amounts of water and dust each year, the current cap attributes therefore represent the incremental transport during a single year as integrated over long periods of time. The role was studied of condensation and sublimation of water ice in this process by examining the seasonal water cycle during the last 10(exp 7) yr. In the model, axial obliquity, eccentricity, and L sub s of perihelion vary according to dynamical models. At each epoch, the seasonal variations in temperature are calculated at the two poles, keeping track of the seasonal CO2 cap and the summertime sublimation of water vapor into the atmosphere; net exchange of water between the two caps is calculated based on the difference in the summertime sublimation between the two caps (or on the sublimation from one cap if the other is covered with CO2 frost all year). Results from the model can help to explain (1) the apparent inconsistency between the timescales inferred for layer formation and the much older crater retention age of the cap and (2) the difference in sizes of the two residual caps, with the south being smaller than the north.

  1. Stability of low-carrier-density topological-insulator Bi2Se3 thin films and effect of capping layers

    International Nuclear Information System (INIS)

    Salehi, Maryam; Brahlek, Matthew; Koirala, Nikesh; Moon, Jisoo; Oh, Seongshik; Wu, Liang; Armitage, N. P.

    2015-01-01

    Although over the past number of years there have been many advances in the materials aspects of topological insulators (TIs), one of the ongoing challenges with these materials is the protection of them against aging. In particular, the recent development of low-carrier-density bulk-insulating Bi 2 Se 3 thin films and their sensitivity to air demands reliable capping layers to stabilize their electronic properties. Here, we study the stability of the low-carrier-density Bi 2 Se 3 thin films in air with and without various capping layers using DC and THz probes. Without any capping layers, the carrier density increases by ∼150% over a week and by ∼280% over 9 months. In situ-deposited Se and ex situ-deposited poly(methyl methacrylate) suppress the aging effect to ∼27% and ∼88%, respectively, over 9 months. The combination of effective capping layers and low-carrier-density TI films will open up new opportunities in topological insulators

  2. Pulsed laser deposition of YBCO coated conductor using Y2O3 as the seed and cap layer

    International Nuclear Information System (INIS)

    Barnes, P N; Nekkanti, R M; Haugan, T J; Campbell, T A; Yust, N A; Evans, J M

    2004-01-01

    Although a variety of buffer layers have been routinely reported, a standard architecture commonly used for the Y Ba 2 Cu 3 O 7-x (YBCO) coated conductor is Y BCO/CeO 2 /Y SZ/CeO 2 /substrate or Y BCO/CeO 2 /Y SZ/Y 2 O 3 /substrate where ceria is typically the cap layer. CeO 2 is generally used as only a seed (or cap layer) since cracking within the film occurs in thicker CeO 2 layers due to the stress of lattice mismatching. Y 2 O 3 has been proposed as a seed and as a cap layer but usually not for both in a given architecture, especially with all layers deposited in situ. Yttrium oxide films grown on nickel by electron beam evaporation processes were found to be dense and crack free with good epitaxy. In this report, pulsed laser deposition (PLD) of Y 2 O 3 is given where Y 2 O 3 serves as both the seed and cap layer in the YBCO architecture. A comparison to PLD CeO 2 is provided. Deposited layers of the YBCO coated conductor are also grown by laser ablation. Initial deposition resulted in specimens on textured Ni substrates with current densities of more than 1 MA cm -2 at 77 K, self-field

  3. Influence of an Fe cap layer on the structural and magnetic properties of Fe49Pt51/Fe bi-layers

    International Nuclear Information System (INIS)

    Chao-Yang, Duan; Bin, Ma; Zong-Zhi, Zhang; Qing-Yuan, Jin; Fu-Lin, Wei

    2009-01-01

    The influences of an Fe cap layer on the structural and magnetic properties of FePt/Fe bi-layers are investigated. Compared with single FePt alloy films, a thin Fe layer can affect the crystalline orientation and improve the chemical ordering of L1 0 FePt films. Moreover, the coercivity increases when a thin Fe layer covers the FePt layer. Beyond a critical thickness, however, the Fe cover layer quickens the magnetization reversal of Fe 49 Pt 51 /Fe bi-layers by their exchange coupling

  4. The effect of different thickness alumina capping layers on the final morphology of dewet thin Ni films

    Science.gov (United States)

    White, Benjamin C.; Behbahanian, Amir; Stoker, T. McKay; Fowlkes, Jason D.; Hartnett, Chris; Rack, Phillip D.; Roberts, Nicholas A.

    2018-03-01

    Nanoparticles on a substrate have numerous applications in nanotechnology, from enhancements to solar cell efficiency to improvements in carbon nanotube growth. Producing nanoparticles in a cost effective fashion with control over size and spacing is desired, but difficult to do. This work presents a scalable method for altering the radius and pitch distributions of nickel nanoparticles. The introduction of alumina capping layers to thin nickel films during a pulsed laser-induced dewetting process has yielded reductions in the mean and standard deviation of radii and pitch for dewet nanoparticles with no noticeable difference in final morphology with increased capping layer thickness. The differences in carbon nanotube mats grown, on the uncapped sample and one of the capped samples, is also presented here, with a more dense mat being present for the capped case.

  5. Direct observation of strain in InAs quantum dots and cap layer during molecular beam epitaxial growth using in situ X-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Shimomura, Kenichi; Ohshita, Yoshio; Kamiya, Itaru, E-mail: kamiya@toyota-ti.ac.jp [Toyota Technological Institute, 2-12-1 Hisakata, Tempaku, Nagoya 468-8511 (Japan); Suzuki, Hidetoshi [Faculty of Engineering, University of Miyazaki, 1-1 Gakuen Kibanadai-nishi, Miyazaki 889-2192 (Japan); Sasaki, Takuo; Takahasi, Masamitu [Quantum Beam Science Center, Japan Atomic Energy Agency, Koto 1-1-1, Sayo-cho, Hyogo 679-5148 (Japan)

    2015-11-14

    Direct measurements on the growth of InAs quantum dots (QDs) and various cap layers during molecular beam epitaxy are performed by in situ X-ray diffraction (XRD). The evolution of strain induced both in the QDs and cap layers during capping is discussed based on the XRD intensity transients obtained at various lattice constants. Transients with different features are observed from those obtained during InGaAs and GaAs capping. The difference observed is attributed to In-Ga intermixing between the QDs and the cap layer under limited supply of In. Photoluminescence (PL) wavelength can be tuned by controlling the intermixing, which affects both the strain induced in the QDs and the barrier heights. The PL wavelength also varies with the cap layer thickness. A large redshift occurs by reducing the cap thickness. The in situ XRD observation reveals that this is a result of reduced strain. We demonstrate how such information about strain can be applied for designing and preparing novel device structures.

  6. Direct observation of strain in InAs quantum dots and cap layer during molecular beam epitaxial growth using in situ X-ray diffraction

    International Nuclear Information System (INIS)

    Shimomura, Kenichi; Ohshita, Yoshio; Kamiya, Itaru; Suzuki, Hidetoshi; Sasaki, Takuo; Takahasi, Masamitu

    2015-01-01

    Direct measurements on the growth of InAs quantum dots (QDs) and various cap layers during molecular beam epitaxy are performed by in situ X-ray diffraction (XRD). The evolution of strain induced both in the QDs and cap layers during capping is discussed based on the XRD intensity transients obtained at various lattice constants. Transients with different features are observed from those obtained during InGaAs and GaAs capping. The difference observed is attributed to In-Ga intermixing between the QDs and the cap layer under limited supply of In. Photoluminescence (PL) wavelength can be tuned by controlling the intermixing, which affects both the strain induced in the QDs and the barrier heights. The PL wavelength also varies with the cap layer thickness. A large redshift occurs by reducing the cap thickness. The in situ XRD observation reveals that this is a result of reduced strain. We demonstrate how such information about strain can be applied for designing and preparing novel device structures

  7. Improving the Efficiency Enhancement of Photonic Crystal Based InGaN Solar Cell by Using a GaN Cap Layer

    Directory of Open Access Journals (Sweden)

    T. F. Gundogdu

    2014-01-01

    Full Text Available We studied a high indium content (0.8 InGaN based solar cell design where the active InGaN layer is sandwiched between a GaN cap layer and a GaN spacer layer. The incorporation of the sacrificial cap layer allows for the etching of the front surface without removing the active InGaN resulting in a 50% enhancement of the short-circuit current density for a 15 nm-thick InGaN layer.

  8. Effects of thin heavily Mg-doped GaN capping layer on ohmic contact formation of p-type GaN

    International Nuclear Information System (INIS)

    Wu, L L; Zhao, D G; Jiang, D S; Chen, P; Le, L C; Li, L; Liu, Z S; Zhang, S M; Zhu, J J; Wang, H; Zhang, B S; Yang, H

    2013-01-01

    The growth condition of thin heavily Mg-doped GaN capping layer and its effect on ohmic contact formation of p-type GaN were investigated. It is confirmed that the excessive Mg doping can effectively enhance the Ni/Au contact to p-GaN after annealing at 550 °C. When the flow rate ratio between Mg and Ga gas sources is 6.4% and the layer width is 25 nm, the capping layer grown at 850 °C exhibits the best ohmic contact properties with respect to the specific contact resistivity (ρ c ). This temperature is much lower than the conventional growth temperature of Mg-doped GaN, suggesting that the deep-level-defect induced band may play an important role in the conduction of capping layer. (paper)

  9. Enhancement of L10 ordering with the c-axis perpendicular to the substrate in FePt alloy film by using an epitaxial cap-layer

    Directory of Open Access Journals (Sweden)

    Mitsuru Ohtake

    2017-05-01

    Full Text Available FePt alloy thin films with cap-layers of MgO or C are prepared on MgO(001 single-crystal substrates by using a two-step method consisting of low-temperature deposition at 200 °C followed by high-temperature annealing at 600 °C. The FePt film thickness is fixed at 10 nm, whereas the cap-layer thickness is varied from 1 to 10 nm. The influences of cap-layer material and cap-layer thickness on the variant structure and the L10 ordering are investigated. Single-crystal FePt(001 films with disordered fcc structure (A1 grow epitaxially on the substrates at 200 °C. Single-crystal MgO(001 cap-layers grow epitaxially on the FePt films, whereas the structure of C cap-layers is amorphous. The phase transformation from A1 to L10 occurs when the films are annealed at 600 °C. The FePt films with MgO cap-layers thicker than 2 nm consist of L10(001 variant with the c-axis perpendicular to the substrate surface, whereas those with C cap-layers involve small volumes of L10(100 and (010 variants with the c-axis lying in the film plane. The in-plane and the out-of-plane lattices are respectively more expanded and contracted in the continuous-lattice MgO/FePt/MgO structure due to accommodations of misfits of FePt film with respect to not only the MgO substrate but also the MgO cap-layer. The lattice deformation promotes phase transformation along the perpendicular direction and L10 ordering. The FePt films consisting of only L10(001 variant show strong perpendicular magnetic anisotropies and low in-plane coercivities. The present study shows that an introduction of epitaxial cap-layer is effective in controlling the c-axis perpendicular to the substrate surface.

  10. Capping layer-tailored interface magnetic anisotropy in ultrathin Co2FeAl films

    International Nuclear Information System (INIS)

    Belmeguenai, M.; Zighem, F.; Chérif, S. M.; Gabor, M. S.; Petrisor, T.; Tiusan, C.

    2015-01-01

    Co 2 FeAl (CFA) thin films of various thicknesses (2 nm ≤ d ≤ 50 nm) have been grown on (001) MgO single crystal substrates and then capped with Cr, V, and Ta. Their magnetic and structural properties have been studied by x-ray diffraction (XRD), vibrating sample magnetometry, and broadband microstrip ferromagnetic resonance (MS-FMR). The XRD revealed that the films are epitaxial with the cubic [001] CFA axis normal to the substrate plane and that the chemical order varies from the B2 phase to the A2 phase when decreasing the thickness. The deduced lattice parameters showed that the Cr-capped films exhibit a larger tetragonal distortion, as compared with the films capped with V or Ta. The presence of magnetic dead layers has been observed in CFA samples capped with V and Ta but not in the case of the Cr-capped ones. The effective magnetization, deduced from the fit of MS-FMR measurements, increases (decreases) linearly with the CFA inverse thickness (1/d) for the Cr-capped (Ta-capped) films while it is constant for the V-capped ones. This allows quantifying the perpendicular surface anisotropy coefficients of −0.46 erg/cm 2 and 0.74 erg/cm 2 for Cr and Ta-capped films, respectively. Moreover, the fourfold and the uniaxial anisotropy fields, measured in these films, showed different trends with a respect to the CFA inverse thickness. This allows inferring that a non-negligible part of the fourfold magnetocrystalline term is of interfacial origin

  11. Epitaxial NbN/AlN/NbN tunnel junctions on Si substrates with TiN buffer layers

    Directory of Open Access Journals (Sweden)

    Rui Sun

    2016-06-01

    Full Text Available We have developed epitaxial NbN/AlN/NbN tunnel junctions on Si (100 substrates with a TiN buffer layer. A 50-nm-thick (200-oriented TiN thin film was introduced as the buffer layer for epitaxial growth of NbN/AlN/NbN trilayers on Si substrates. The fabricated NbN/AlN/NbN junctions demonstrated excellent tunneling properties with a high gap voltage of 5.5 mV, a large IcRN product of 3.8 mV, a sharp quasiparticle current rise with a ΔVg of 0.4 mV, and a small subgap leakage current. The junction quality factor Rsg/RN was about 23 for the junction with a Jc of 47 A/cm2 and was about 6 for the junction with a Jc of 3.0 kA/cm2. X-ray diffraction and transmission electron microscopy observations showed that the NbN/AlN/NbN trilayers were grown epitaxially on the (200-orientated TiN buffer layer and had a highly crystalline structure with the (200 orientation.

  12. Epitaxial NbN/AlN/NbN tunnel junctions on Si substrates with TiN buffer layers

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Rui [State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology (SIMIT), Chinese Academy of Sciences (CAS), Shanghai 200050 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Makise, Kazumasa; Terai, Hirotaka [Advanced ICT Research Institute, National Institute of Information and Communications Technology (Japan); Zhang, Lu [State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology (SIMIT), Chinese Academy of Sciences (CAS), Shanghai 200050 (China); Wang, Zhen, E-mail: zwang@mail.sim.ac.cn [State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology (SIMIT), Chinese Academy of Sciences (CAS), Shanghai 200050 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Shanghai Tech University, Shanghai 201210 (China)

    2016-06-15

    We have developed epitaxial NbN/AlN/NbN tunnel junctions on Si (100) substrates with a TiN buffer layer. A 50-nm-thick (200)-oriented TiN thin film was introduced as the buffer layer for epitaxial growth of NbN/AlN/NbN trilayers on Si substrates. The fabricated NbN/AlN/NbN junctions demonstrated excellent tunneling properties with a high gap voltage of 5.5 mV, a large I{sub c}R{sub N} product of 3.8 mV, a sharp quasiparticle current rise with a ΔV{sub g} of 0.4 mV, and a small subgap leakage current. The junction quality factor R{sub sg}/R{sub N} was about 23 for the junction with a J{sub c} of 47 A/cm{sup 2} and was about 6 for the junction with a J{sub c} of 3.0 kA/cm{sup 2}. X-ray diffraction and transmission electron microscopy observations showed that the NbN/AlN/NbN trilayers were grown epitaxially on the (200)-orientated TiN buffer layer and had a highly crystalline structure with the (200) orientation.

  13. Development of N-layer materials for SNS junction and SQUID applications

    International Nuclear Information System (INIS)

    Zhou, J.P.; McDevitt, J.T.; Jia, Q.

    1997-01-01

    Materials characteristics including water reactivity, oxygen loss, electromigration of oxide ions, and interfacial reactivity problems have plagued attempts to produce reliable and reproducible cuprate SNS superconductor junctions. In an effort to solve some of these formidable problems, new N-layer compounds from the family of R 1-x Ca x Ba 2-y La y Cu 3-z M z O 7-δ (R = Y, Gd and Pr; M = Co, Ni and Zn; 0 2 Cu 3 O 7-δ phase and the modified materials exhibit enhanced durability properties. The compounds have been utilized to make both SNS junctions and SQUID devices

  14. Magnetization switching of NiFeSiB free layers for magnetic tunnel junctions

    International Nuclear Information System (INIS)

    Chun, B.S.; Ko, S.P.; Oh, B.S.; Hwang, J.Y.; Rhee, J.R.; Kim, T.W.; Saito, S.; Yoshimura, S.; Tsunoda, M.; Takahashi, M.; Kim, Y.K.

    2006-01-01

    Ferromagnetic amorphous Ni 16 Fe 62 Si 8 B 14 layer have been studied as free layers for magnetic tunnel junctions (MTJs) to enhance cell switching performance. Traditional MTJ free layer materials such as NiFe and CoFe were also prepared for switching comparison purposes. Both NiFeSiB and NiFe resulted in an order of magnitude smaller switching fields compared to the CoFe. The switching field was further reduced for the synthetic antiferromagnetic NiFeSiB free layered structure

  15. Non-destructive determination of ultra-thin GaN cap layer thickness in AlGaN/GaN HEMT structure by angle resolved x-ray photoelectron spectroscopy (ARXPS)

    Science.gov (United States)

    Goyal, Anshu; Yadav, Brajesh S.; Raman, R.; Kapoor, Ashok K.

    2018-02-01

    Angle resolved X-ray photoelectron spectroscopy (ARXPS) and secondary ion mass spectrometry (SIMS) investigations have been carried out to characterize the GaN cap layer in AlGaN/GaN HEMT structure. The paper discusses the qualitative (presence or absence of a cap layer) and quantitative (cap layer thickness) characterization of cap layer in HEMT structure non-destructively using ARXPS measurements in conjunction with the theoretical modeling. Further the relative sensitive factor (RSF=σ/Ga σAl ) for Ga to Al ratio was estimated to be 0.963 and was used in the quantification of GaN cap layer thickness. Our results show that Al/Ga intensity ratio varies with the emission angle in the presence of GaN cap layer and otherwise remains constant. Also, the modeling of this intensity ratio gives its thickness. The finding of ARXPS was also substantiated by SIMS depth profiling studies.

  16. Non-destructive determination of ultra-thin GaN cap layer thickness in AlGaN/GaN HEMT structure by angle resolved x-ray photoelectron spectroscopy (ARXPS

    Directory of Open Access Journals (Sweden)

    Anshu Goyal

    2018-02-01

    Full Text Available Angle resolved X-ray photoelectron spectroscopy (ARXPS and secondary ion mass spectrometry (SIMS investigations have been carried out to characterize the GaN cap layer in AlGaN/GaN HEMT structure. The paper discusses the qualitative (presence or absence of a cap layer and quantitative (cap layer thickness characterization of cap layer in HEMT structure non-destructively using ARXPS measurements in conjunction with the theoretical modeling. Further the relative sensitive factor (RSF=σGaσAl for Ga to Al ratio was estimated to be 0.963 and was used in the quantification of GaN cap layer thickness. Our results show that Al/Ga intensity ratio varies with the emission angle in the presence of GaN cap layer and otherwise remains constant. Also, the modeling of this intensity ratio gives its thickness. The finding of ARXPS was also substantiated by SIMS depth profiling studies.

  17. Capping layer-tailored interface magnetic anisotropy in ultrathin Co{sub 2}FeAl films

    Energy Technology Data Exchange (ETDEWEB)

    Belmeguenai, M., E-mail: belmeguenai.mohamed@univ-paris13.fr; Zighem, F.; Chérif, S. M. [LSPM (CNRS-UPR 3407), Université Paris 13, Sorbonne Paris Cité, 99 Avenue Jean-Baptiste Clément, 93430 Villetaneuse (France); Gabor, M. S., E-mail: mihai.gabor@phys.utcluj.ro; Petrisor, T. [Center for Superconductivity, Spintronics and Surface Science, Department of Physics and Chemistry, Technical University of Cluj-Napoca, Str. Memorandumului No. 28, RO-400114 Cluj-Napoca (Romania); Tiusan, C. [Center for Superconductivity, Spintronics and Surface Science, Department of Physics and Chemistry, Technical University of Cluj-Napoca, Str. Memorandumului No. 28, RO-400114 Cluj-Napoca (Romania); Institut Jean Lamour, CNRS, Lorraine Université, BP 70239, F-54506 Vandoeuvre (France)

    2015-01-14

    Co{sub 2}FeAl (CFA) thin films of various thicknesses (2 nm ≤ d ≤ 50 nm) have been grown on (001) MgO single crystal substrates and then capped with Cr, V, and Ta. Their magnetic and structural properties have been studied by x-ray diffraction (XRD), vibrating sample magnetometry, and broadband microstrip ferromagnetic resonance (MS-FMR). The XRD revealed that the films are epitaxial with the cubic [001] CFA axis normal to the substrate plane and that the chemical order varies from the B2 phase to the A2 phase when decreasing the thickness. The deduced lattice parameters showed that the Cr-capped films exhibit a larger tetragonal distortion, as compared with the films capped with V or Ta. The presence of magnetic dead layers has been observed in CFA samples capped with V and Ta but not in the case of the Cr-capped ones. The effective magnetization, deduced from the fit of MS-FMR measurements, increases (decreases) linearly with the CFA inverse thickness (1/d) for the Cr-capped (Ta-capped) films while it is constant for the V-capped ones. This allows quantifying the perpendicular surface anisotropy coefficients of −0.46 erg/cm{sup 2} and 0.74 erg/cm{sup 2} for Cr and Ta-capped films, respectively. Moreover, the fourfold and the uniaxial anisotropy fields, measured in these films, showed different trends with a respect to the CFA inverse thickness. This allows inferring that a non-negligible part of the fourfold magnetocrystalline term is of interfacial origin.

  18. Heat Transfer Model of a Small-Scale Waste Glass Melter with Cold Cap Layer

    Energy Technology Data Exchange (ETDEWEB)

    Abboud, Alexander; Guillen, Donna Post; Pokorny, Richard

    2016-09-01

    At the Hanford site in the state of Washington, more than 56 million gallons of radioactive waste is stored in underground tanks. The cleanup plan for this waste is vitrification at the Waste Treatment Plant (WTP), currently under construction. At the WTP, the waste will be blended with glass-forming materials and heated to 1423K, then poured into stainless steel canisters to cool and solidify. A fundamental understanding of the glass batch melting process is needed to optimize the process to reduce cost and decrease the life cycle of the cleanup effort. The cold cap layer that floats on the surface of the glass melt is the primary reaction zone for the feed-to-glass conversion. The conversion reactions include water release, melting of salts, evolution of batch gases, dissolution of quartz and the formation of molten glass. Obtaining efficient heat transfer to this region is crucial to achieving high rates of glass conversion. Computational fluid dynamics (CFD) modeling is being used to understand the heat transfer dynamics of the system and provide insight to optimize the process. A CFD model was developed to simulate the DM1200, a pilot-scale melter that has been extensively tested by the Vitreous State Laboratory (VSL). Electrodes are built into the melter to provide Joule heating to the molten glass. To promote heat transfer from the molten glass into the reactive cold cap layer, bubbling of the molten glass is used to stimulate forced convection within the melt pool. A three-phase volume of fluid approach is utilized to model the system, wherein the molten glass and cold cap regions are modeled as separate liquid phases, and the bubbling gas and plenum regions are modeled as one lumped gas phase. The modeling of the entire system with a volume of fluid model allows for the prescription of physical properties on a per-phase basis. The molten glass phase and the gas phase physical properties are obtained from previous experimental work. Finding representative

  19. The influence of a Si cap on self-organized SiGe islands and the underlying wetting layer

    International Nuclear Information System (INIS)

    Brehm, M.; Grydlik, M.; Groiss, H.; Hackl, F.; Schaeffler, F.; Fromherz, T.; Bauer, G.

    2011-01-01

    For the prototypical SiGe/Si(001) Stranski-Krastanow (SK) growth system, the influence of intermixing caused by the deposition of a Si cap layer at temperatures T cap between 300 deg. C and 700 deg. C is studied both for the SiGe wetting layer (WL) and the SiGe islands. Systematic growth experiments were carried out with an ultrahigh resolution of down to 0.005 monolayers (ML) of deposited Ge. The properties of the samples were investigated via photoluminescence (PL) spectroscopy, atomic force microscopy (AFM), and transmission electron microscopy. We studied in detail the influence of T cap in the three main coverage regions of SiGe SK growth, which are (i) the WL build-up regime, (ii) the island nucleation regime, where most of the Ge is supplied via material transfer from the WL, and (iii) the saturation regime, where the WL thickness remains initially stable. At T cap = 300 deg. C, we found that both the WL and the island are essentially preserved in composition and shape, whereas at 500 deg. C the WL becomes heavily alloyed during capping, and at 700 deg. C the islands also become alloyed. At T cap = 500 deg. C we found enhanced WL intermixing in the presence of dome-shaped islands, whereas at T cap 700 deg. C the WL properties become dominated by the dissolution of pyramid-shaped islands upon capping. At Ge coverages above ≅6 ML, we found an unexpected thickening of the WL, almost independently of T cap . This finding suggests that the density and the volume of the dome-shaped islands have an upper limit, beyond which excess Ge from the external source again becomes incorporated into the WL. Finally, we compared PL spectra with AFM-based evaluations of the integral island volumes in order to determine in a straightforward manner the average composition of the SiGe islands.

  20. The Mars water cycle at other epochs: History of the polar caps and layered terrain

    Science.gov (United States)

    Jakosky, Bruce M.; Henderson, Bradley G.; Mellon, Michael T.

    1992-01-01

    The atmospheric water cycle at the present epoch involves summertime sublimation of water from the north polar cap, transport of water through the atmosphere, and condensation on one or both winter CO2 caps. Exchange with the regolith is important seasonally, but the water content of the atmosphere appears to be controlled by the polar caps. The net annual transport through the atmosphere, integrated over long timescales, must be the driving force behind the long-term evolution of the polar caps; clearly, this feeds back into the evolution of the layered terrain. We have investigated the behavior of the seasonal water cycle and the net integrated behavior at the pole for the last 10 exp 7 years. Our model of the water cycle includes the solar input, CO2 condensation and sublimation, and summertime water sublimation through the seasonal cycles, and incorporates the long-term variations in the orbital elements describing the Martian orbit.

  1. Preventing dewetting during rapid-thermal annealing of FePt films with enhanced L10 ordering by introducing Ag cap-layers

    International Nuclear Information System (INIS)

    Hsiao, S.N.; Wu, S.C.; Liu, S.H.; Tsai, J.L.; Chen, S.K.; Chang, Y.C.; Lee, H.Y.

    2015-01-01

    High-order FePt continuous films with a strong (001) texture were fabricated on a glass substrate by introducing Ag layers and rapid thermal annealing (RTA). The dewetting of the (001)-textured FePt was suppressed during RTA with high heating rates (>80 K/s). The Ag cap layers not only increased the in-plane tensile stress, but also improved the (001) anisotropy and L1 0 ordering of the FePt layers. All continuous Ag/FePt bilayer films possessed strong perpendicular anisotropies and high-ordered states irrespective of the Ag layer thickness. - Highlights: • Dewetting of (001) FePt fims were suppressed by introducing Ag cap layers. • Ag layers enhanced in-plane tensile stress, (001) texture and L1 0 ordering. • Irrespective of Ag thickness, the Ag/FePt films exhibited strong (001) texture

  2. Angular dependence of spin transfer torque on magnetic tunnel junctions with synthetic ferrimagnetic free layer

    International Nuclear Information System (INIS)

    Ichimura, M; Hamada, T; Imamura, H; Takahashi, S; Maekawa, S

    2010-01-01

    Based on a spin-polarized free-electron model, spin and charge transports are analyzed in magnetic tunnel junctions with synthetic ferrimagnetic layers in the ballistic regime, and the spin transfer torque is derived. We characterize the synthetic ferrimagnetic free layer by extending an arbitrary direction of magnetizations of the two free layers forming the synthetic ferrimagnetic free layer. The synthetic ferrimagnetic configuration exerts the approximately optimum torque for small magnetization angle of the first layer relative to that of the pinned layer. For approximately anti-parallel magnetization of the first layer to that of the pinned layer, the parallel magnetization of two magnetic layers is favorable for magnetization reversal rather than the synthetic ferrimagnetic configuration.

  3. Experimental and theoretical investigation of the effect of SiO2 content in gate dielectrics on work function shift induced by nanoscale capping layers

    KAUST Repository

    Caraveo-Frescas, J. A.; Wang, H.; Schwingenschlö gl, Udo; Alshareef, Husam N.

    2012-01-01

    The impact of SiO2 content in ultrathin gate dielectrics on the magnitude of the effective work function (EWF) shift induced by nanoscale capping layers has been investigated experimentally and theoretically. The magnitude of the effective work function shift for four different capping layers (AlN, Al2O3, La2O3, and Gd2O3) is measured as a function of SiO2 content in the gate dielectric. A nearly linear increase of this shift with SiO2 content is observed for all capping layers. The origin of this dependence is explained using density functional theory simulations.

  4. Experimental and theoretical investigation of the effect of SiO2 content in gate dielectrics on work function shift induced by nanoscale capping layers

    KAUST Repository

    Caraveo-Frescas, J. A.

    2012-09-10

    The impact of SiO2 content in ultrathin gate dielectrics on the magnitude of the effective work function (EWF) shift induced by nanoscale capping layers has been investigated experimentally and theoretically. The magnitude of the effective work function shift for four different capping layers (AlN, Al2O3, La2O3, and Gd2O3) is measured as a function of SiO2 content in the gate dielectric. A nearly linear increase of this shift with SiO2 content is observed for all capping layers. The origin of this dependence is explained using density functional theory simulations.

  5. Method of manufacturing Josephson junction integrated circuits

    International Nuclear Information System (INIS)

    Jillie, D.W. Jr.; Smith, L.N.

    1985-01-01

    Josephson junction integrated circuits of the current injection type and magnetically controlled type utilize a superconductive layer that forms both Josephson junction electrode for the Josephson junction devices on the integrated circuit as well as a ground plane for the integrated circuit. Large area Josephson junctions are utilized for effecting contact to lower superconductive layers and islands are formed in superconductive layers to provide isolation between the groudplane function and the Josephson junction electrode function as well as to effect crossovers. A superconductor-barrier-superconductor trilayer patterned by local anodization is also utilized with additional layers formed thereover. Methods of manufacturing the embodiments of the invention are disclosed

  6. Ultraviolet weathering of HDPE/wood-flour composites coextruded with a clear HDPE cap layer

    Science.gov (United States)

    Laurent M. Matuana; Shan Jin; Nicole M. Stark

    2011-01-01

    This study examined the effect coextruding a clear HDPE cap layer onto HDPE/wood-flour composites has on the discoloration of coextruded composites exposed to accelerated UV tests. Chroma meter, FTIRATR, XPS, SEM, and UV vis measurements accounted for the analysis of discoloration, functional groups, and degree of oxidation of both uncapped (control) and coextruded...

  7. Characteristics of magnetic tunnel junctions comprising ferromagnetic amorphous NiFeSiB layers

    International Nuclear Information System (INIS)

    Chun, B.S.; Kim, Y.K.; Hwang, J.Y.; Yim, H.I.; Rhee, J.R.; Kim, T.W.

    2007-01-01

    Magnetic tunnel junctions (MTJs), which consisted of amorphous ferromagnetic Ni 16 Fe 62 Si 8 B 14 free layers, were investigated. NiFeSiB has a lower saturation magnetization (M s : 800 emu/cm 3 ) than Co 90 Fe 10 and a higher anisotropy constant (K u : 2700 erg/cm 3 ) than Ni 80 Fe 20 . By increasing the free layer thickness, the tunnel magnetoresistance (TMR) ratio of up to 41% was achieved and it exhibited a much lower switching field (H sw ) than the conventionally used CoFe free layer MTJ. Furthermore, by inserting a thin CoFe layer (1 nm) at the tunnel barrier/NiFeSiB interface, the TMR ratio and switching squareness were enhanced

  8. Microtubule's conformational cap

    DEFF Research Database (Denmark)

    Flyvbjerg, H.

    1999-01-01

    The molecular mechanisms that allow elongation of the unstable microtubule lattice remain unclear. It is usually thought that the GDP-liganded tubulin lattice is capped by a small layer of GTP- or GDP-P(i)-liganded molecules, the so called "GTP-cap". Here, we point-out that the elastic properties...

  9. A Point Mutation in the Exon Junction Complex Factor Y14 Disrupts Its Function in mRNA Cap Binding and Translation Enhancement*

    Science.gov (United States)

    Chuang, Tzu-Wei; Lee, Kuo-Ming; Lou, Yuan-Chao; Lu, Chia-Chen; Tarn, Woan-Yuh

    2016-01-01

    Eukaryotic mRNA biogenesis involves a series of interconnected steps mediated by RNA-binding proteins. The exon junction complex core protein Y14 is required for nonsense-mediated mRNA decay (NMD) and promotes translation. Moreover, Y14 binds the cap structure of mRNAs and inhibits the activity of the decapping enzyme Dcp2. In this report, we show that an evolutionarily conserved tryptophan residue (Trp-73) of Y14 is critical for its binding to the mRNA cap structure. A Trp-73 mutant (W73V) bound weakly to mRNAs and failed to protect them from degradation. However, this mutant could still interact with the NMD and mRNA degradation factors and retained partial NMD activity. In addition, we found that the W73V mutant could not interact with translation initiation factors. Overexpression of W73V suppressed reporter mRNA translation in vitro and in vivo and reduced the level of a set of nascent proteins. These results reveal a residue of Y14 that confers cap-binding activity and is essential for Y14-mediated enhancement of translation. Finally, we demonstrated that Y14 may selectively and differentially modulate protein biosynthesis. PMID:26887951

  10. A Point Mutation in the Exon Junction Complex Factor Y14 Disrupts Its Function in mRNA Cap Binding and Translation Enhancement.

    Science.gov (United States)

    Chuang, Tzu-Wei; Lee, Kuo-Ming; Lou, Yuan-Chao; Lu, Chia-Chen; Tarn, Woan-Yuh

    2016-04-15

    Eukaryotic mRNA biogenesis involves a series of interconnected steps mediated by RNA-binding proteins. The exon junction complex core protein Y14 is required for nonsense-mediated mRNA decay (NMD) and promotes translation. Moreover, Y14 binds the cap structure of mRNAs and inhibits the activity of the decapping enzyme Dcp2. In this report, we show that an evolutionarily conserved tryptophan residue (Trp-73) of Y14 is critical for its binding to the mRNA cap structure. A Trp-73 mutant (W73V) bound weakly to mRNAs and failed to protect them from degradation. However, this mutant could still interact with the NMD and mRNA degradation factors and retained partial NMD activity. In addition, we found that the W73V mutant could not interact with translation initiation factors. Overexpression of W73V suppressed reporter mRNA translation in vitro and in vivo and reduced the level of a set of nascent proteins. These results reveal a residue of Y14 that confers cap-binding activity and is essential for Y14-mediated enhancement of translation. Finally, we demonstrated that Y14 may selectively and differentially modulate protein biosynthesis. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. Thermally oxidized formation of new Ge dots over as-grown Ge dots in the Si capping layer

    International Nuclear Information System (INIS)

    Nie Tianxiao; Lin Jinhui; Shao Yuanmin; Wu Yueqin; Yang Xinju; Fan Yongliang; Jiang Zuimin; Chen Zhigang; Zou Jin

    2011-01-01

    A Si-capped Ge quantum dot sample was self-assembly grown via Stranski-Krastanov mode in a molecular beam epitaxy system with the Si capping layer deposited at 300 deg. C. After annealing the sample in an oxygen atmosphere at 1000 deg. C, a structure, namely two layers of quantum dots, was formed with the newly formed Ge-rich quantum dots embedded in the oxidized matrix with the position accurately located upon the as-grown quantum dots. It has been found that the formation of such nanostructures strongly depends upon the growth temperature and oxygen atmosphere. A growth mechanism was proposed to explain the formation of the nanostructure based on the Ge diffusion from the as-grown quantum dots, Ge segregation from the growing oxide, and subsequent migration/agglomeration.

  12. A novel TFS-IGBT with a super junction floating layer

    International Nuclear Information System (INIS)

    Ye Jun; Fu Daping; Luo Bo; Zhao Yuanyuan; Qiao Ming; Zhang Bo

    2010-01-01

    A novel trench field stop (TFS) IGBT with a super junction (SJ) floating layer (SJ TFS-IGBT) is proposed. This IGBT presents a high blocking voltage (> 1200 V), low on-state voltage drop and fast turn-off capability. A SJ floating layer with a high doping concentration introduces a new electric field peak at the anode side and optimizes carrier distribution, which will improve the breakdown voltage in the off-state and decrease the energy loss in the on-state/switching state for the SJ TFS-IGBT. A low on-state voltage (V F ) and a high breakdown voltage (BV) can be achieved by increasing the thickness of the SJ floating layer under the condition of exact charge balance. A low turn-off loss can be achieved by decreasing the concentration of the P-anode. Simulation results show that the BV is enhanced by 100 V, V F is decreased by 0.33 V(at 100 A/cm 2 ) and the turn-off time is shortened by 60%, compared with conventional TFS-IGBTs.

  13. Enhancement of device performance by using quaternary capping over ternary capping in strain-coupled InAs/GaAs quantum dot infrared photodetectors

    International Nuclear Information System (INIS)

    Tongbram, B.; Shetty, S.; Ghadi, H.; Adhikary, S.; Chakrabarti, S.

    2015-01-01

    We investigate and compare the performance of 30 layers strain-coupled quantum dot (SCQD) infrared photodetectors capped with one of two different layers: a quaternary (In 0.21 Al 0.21 Ga 0.58 As) or ternary (In 0.15 Ga 0.85 As) alloy of 30 Aa and a GaAs layer with a thickness of 120-150 Aa. Measurements of optical properties, spectral responsivity, and cross-sectional transmission electron microscopy were conducted. Results showed that quaternary capping yielded more superior multilayer QD infrared photodetectors than ternary capping. Quaternary capping resulted in enhanced dot size, order, and uniformity of the QD array. The presence of Al in the capped layer helped in the reduction in dark current density and spectral linewidth as well as led to higher electron confinement of the QDs and enhanced device detectivity. The vertically ordered SCQD system with quaternary capping exhibited higher peak detectivity (∝10 10 cm Hz 1/2 /W) than that with ternary capping (∝10 7 cm Hz 1/2 /W). In addition, a very low noise current density of ∝10 -16 A/cm 2 Hz 1/2 at 77 K was achieved with quaternary-capped QDs. (orig.)

  14. Devon island ice cap: core stratigraphy and paleoclimate.

    Science.gov (United States)

    Koerner, R M

    1977-04-01

    Valuable paleoclimatic information can be gained by studying the distribution of melt layers in deep ice cores. A profile representing the percentage of ice in melt layers in a core drilled from the Devon Island ice cap plotted against both time and depth shows that the ice cap has experienced a period of very warm summers since 1925, following a period of colder summers between about 1600 and 1925. The earlier period was coldest between 1680 and 1730. There is a high correlation between the melt-layer ice percentage and the mass balance of the ice cap. The relation between them suggests that the ice cap mass balance was zero (accumulation equaled ablation) during the colder period but is negative in the present warmer one. There is no firm evidence of a present cooling trend in the summer conditions on the ice cap. A comparison with the melt-layer ice percentage in cores from the other major Canadian Arctic ice caps shows that the variation of summer conditions found for the Devon Island ice cap is representative for all the large ice caps for about 90 percent of the time. There is also a good correlation between melt-layer percentage and summer sea-ice conditions in the archipelago. This suggests that the search for the northwest passage was influenced by changing climate, with the 19th-century peak of the often tragic exploration coinciding with a period of very cold summers.

  15. The switching characteristics of free layer of patterned magnetic tunnel junction device

    International Nuclear Information System (INIS)

    Chen, C.C.; Wang, Y.R.; Kuo, C.Y.; Wu, J.C.; Horng, Lance; Wu, Teho; Yoshimura, S.; Tsunoda, M.; Takahashi, M.

    2006-01-01

    The free layer switching properties of microstructured magnetic tunnel junctions have been investigated. The M-H loop of nonpatterned film shows ferromagnetic coupling with 10 Oe shifting associated with the interlayer roughness coupling. The MR curve of the patterned element shows stepped minor loop, less loop shifting, and larger coercive field due to shape anisotropy and stray field effects. MFM images of the element show nonuniform domain structures during reversal process

  16. Preventing dewetting during rapid-thermal annealing of FePt films with enhanced L1{sub 0} ordering by introducing Ag cap-layers

    Energy Technology Data Exchange (ETDEWEB)

    Hsiao, S.N., E-mail: pmami.hsiao@gmail.com [Department of Materials Science and Engineering, Feng Chia University, Taichung 40724, Taiwan (China); Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Wu, S.C. [Department of Materials Science and Engineering, National Chung Hsing University, Taichung 40227, Taiwan (China); Liu, S.H. [Department of Materials Science and Engineering, Feng Chia University, Taichung 40724, Taiwan (China); Tsai, J.L., E-mail: tsaijl@dragon.nchu.edu.tw [Department of Materials Science and Engineering, National Chung Hsing University, Taichung 40227, Taiwan (China); Chen, S.K. [Department of Materials Science and Engineering, Feng Chia University, Taichung 40724, Taiwan (China); Chang, Y.C. [Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Lee, H.Y. [Scientific Research Division, National Synchrotron Radiation Research Center, Hsinchu 30077, Taiwan (China)

    2015-11-15

    High-order FePt continuous films with a strong (001) texture were fabricated on a glass substrate by introducing Ag layers and rapid thermal annealing (RTA). The dewetting of the (001)-textured FePt was suppressed during RTA with high heating rates (>80 K/s). The Ag cap layers not only increased the in-plane tensile stress, but also improved the (001) anisotropy and L1{sub 0} ordering of the FePt layers. All continuous Ag/FePt bilayer films possessed strong perpendicular anisotropies and high-ordered states irrespective of the Ag layer thickness. - Highlights: • Dewetting of (001) FePt fims were suppressed by introducing Ag cap layers. • Ag layers enhanced in-plane tensile stress, (001) texture and L1{sub 0} ordering. • Irrespective of Ag thickness, the Ag/FePt films exhibited strong (001) texture.

  17. Properites of ultrathin films appropriate for optics capping layers in extreme ultraviolet lithography (EUVL)

    Energy Technology Data Exchange (ETDEWEB)

    Bajt, S; Edwards, N V; Madey, T E

    2007-06-25

    The contamination of optical surfaces by irradiation shortens optics lifetime and is one of the main concerns for optics used in conjunction with intense light sources, such as high power lasers, 3rd and 4th generation synchrotron sources or plasma sources used in extreme ultraviolet lithography (EUVL) tools. This paper focuses on properties and surface chemistry of different materials, which as thin layers, could be used as capping layers to protect and extend EUVL optics lifetime. The most promising candidates include single element materials such as ruthenium and rhodium, and oxides such as TiO{sub 2} and ZrO{sub 2}.

  18. Gigantic perpendicular magnetic anisotropy of heavy transition metal cappings on Fe/MgO(0 0 1)

    Science.gov (United States)

    Taivansaikhan, P.; Odkhuu, D.; Rhim, S. H.; Hong, S. C.

    2017-11-01

    Effects of capping layer by 5d transition metals (TM = Hf, Ta, W, Re, Os, Ir, Pt, and Au) on Fe/MgO(0 0 1), a typical magnetic tunneling junction, are systematically investigated using first-principles calculation for magnetism and magnetocrystalline-anisotropy (MCA). The early TMs having less than half-filled d bands favor magnetization antiparallel to Fe, whereas the late TMs having more than half-filled d bands favor parallel, which is explained in the framework of kinetic exchange energy. The Os capping, isovalent to Fe, enhances MCA significantly to gigantic energy of +11.31 meV/cell, where positive contribution is mostly from the partially filled majority d bands of magnetic quantum number of |m| = 1 along with stronger spin-orbit coupling of Os than Fe. Different TM cappings give different MCA energies as the Fermi level shifts according to the valence of TM: Re and Ir, just one valence more or less than Os, have still large PMCA but smaller than the Os. In the W and Pt cappings, valence difference by two, PMCA are further reduced; MCAs are lowered compared to Fe/MgO(0 0 1) by the cappings of the very early TMs (Hf and Ta), while the very late TM (Au) switches sign to in-plane MCA.

  19. Electron transport in a bilayer graphene/layered superconductor NbSe2 junction: effect of work function difference

    Science.gov (United States)

    Yarimizu, Katsuhide; Tomori, Hikari; Watanabe, Kenji; Taniguchi, Takashi; Kanda, Akinobu

    2018-03-01

    We have experimentally studied electron transport in a bilayer graphene (BLG)/layered superconductor NbSe2 junction encapsulated with hexagonal boron nitride. The junction exhibits nonlinear current-voltage characteristics which strongly depend on the gate voltage around the charge neutrality point (CNP) of the BLG. Besides, we observe that the gate voltage dependence of electron transport in the BLG portion close to the junction interface is different from that of the BLG portion apart from the interface, indicating that the spatial variation of the Dirac point in the charge transfer region due to the difference in work function between superconductor and graphene needs to be considered in the analysis of the superconducting proximity effect.

  20. Achieving high field-effect mobility in amorphous indium-gallium-zinc oxide by capping a strong reduction layer.

    Science.gov (United States)

    Zan, Hsiao-Wen; Yeh, Chun-Cheng; Meng, Hsin-Fei; Tsai, Chuang-Chuang; Chen, Liang-Hao

    2012-07-10

    An effective approach to reduce defects and increase electron mobility in a-IGZO thin-film transistors (a-IGZO TFTs) is introduced. A strong reduction layer, calcium, is capped onto the back interface of a-IGZO TFT. After calcium capping, the effective electron mobility of a-IGZO TFT increases from 12 cm(2) V(-1) s(-1) to 160 cm(2) V(-1) s(-1). This high mobility is a new record, which implies that the proposed defect reduction effect is key to improve electron transport in oxide semiconductor materials. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Study of seed layer effect in nuclear battery with P-N diode junction

    Energy Technology Data Exchange (ETDEWEB)

    Uhm, Young Rang; Son, Kwang Jae; Lee, Jun Sig [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Choi, Byoung Gun [Kookmin Univ., Seoul (Korea, Republic of)

    2014-10-15

    A nuclear battery with diode junction is a device that converts nuclear radiation directly to electric power. The mechanism of a nuclear battery is same as the P-N junction diode for solar cell application. The photovoltaic is operated by converted photons to electrical energy in the junction. In betavoltaic battery, beta particles are collected and converted to electrical energy as similar principle as photovoltaic. A very low current, order of nano or micro amps, is generated in devices. If a radioisotope (RI) with a long halflife (over 50 years) is used, a lifetime of a power source is extended as long as halflife time of RI.. Some special applications require long-lived compact power sources. These include space equipment, sensors in remote locations (space, underground, etc.), and implantable medical devices. Conventionally, these sources rely on converting chemical energy to electricity. This means they require a large storage of chemical 'fuel' since the amount of energy released per reaction is small. The nuclear battery is a novel solution to solve the power needs of these applications. For the {sup 63}Ni beta-source we used, the half-life is 100.2 years. Hence, the power sources we describe could extend a system's operating life by several decades or even a century, during which time the system could gain learned behavior without worrying about the power turning off. Radioactive thin-film-based power sources also have energy density orders of magnitude higher than chemical-reaction-based energy sources. In this study, we fabricate nuclear battery using {sup 63}Ni source with diode junction, and studied seed layer effect for optimization of structure of p-n junction.

  2. Preventing Thin Film Dewetting via Graphene Capping.

    Science.gov (United States)

    Cao, Peigen; Bai, Peter; Omrani, Arash A; Xiao, Yihan; Meaker, Kacey L; Tsai, Hsin-Zon; Yan, Aiming; Jung, Han Sae; Khajeh, Ramin; Rodgers, Griffin F; Kim, Youngkyou; Aikawa, Andrew S; Kolaczkowski, Mattew A; Liu, Yi; Zettl, Alex; Xu, Ke; Crommie, Michael F; Xu, Ting

    2017-09-01

    A monolayer 2D capping layer with high Young's modulus is shown to be able to effectively suppress the dewetting of underlying thin films of small organic semiconductor molecule, polymer, and polycrystalline metal, respectively. To verify the universality of this capping layer approach, the dewetting experiments are performed for single-layer graphene transferred onto polystyrene (PS), semiconducting thienoazacoronene (EH-TAC), gold, and also MoS 2 on PS. Thermodynamic modeling indicates that the exceptionally high Young's modulus and surface conformity of 2D capping layers such as graphene and MoS 2 substantially suppress surface fluctuations and thus dewetting. As long as the uncovered area is smaller than the fluctuation wavelength of the thin film in a dewetting process via spinodal decomposition, the dewetting should be suppressed. The 2D monolayer-capping approach opens up exciting new possibilities to enhance the thermal stability and expands the processing parameters for thin film materials without significantly altering their physical properties. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Silicon nitride tri-layer vertical Y-junction and 3D couplers with arbitrary splitting ratio for photonic integrated circuits.

    Science.gov (United States)

    Shang, Kuanping; Pathak, Shibnath; Liu, Guangyao; Feng, Shaoqi; Li, Siwei; Lai, Weicheng; Yoo, S J B

    2017-05-01

    We designed and demonstrated a tri-layer Si3N4/SiO2 photonic integrated circuit capable of vertical interlayer coupling with arbitrary splitting ratios. Based on this multilayer photonic integrated circuit platform with each layer thicknesses of 150 nm, 50 nm, and 150 nm, we designed and simulated the vertical Y-junctions and 3D couplers with arbitrary power splitting ratios between 1:10 and 10:1 and with negligible(< -50 dB) reflection. Based on the design, we fabricated and demonstrated tri-layer vertical Y-junctions with the splitting ratios of 1:1 and 3:2 with excess optical losses of 0.230 dB. Further, we fabricated and demonstrated the 1 × 3 3D couplers with the splitting ratio of 1:1:4 for symmetric structures and variable splitting ratio for asymmetric structures.

  4. Forward-bias diode parameters, electronic noise, and photoresponse of graphene/silicon Schottky junctions with an interfacial native oxide layer

    Science.gov (United States)

    An, Yanbin; Behnam, Ashkan; Pop, Eric; Bosman, Gijs; Ural, Ant

    2015-09-01

    Metal-semiconductor Schottky junction devices composed of chemical vapor deposition grown monolayer graphene on p-type silicon substrates are fabricated and characterized. Important diode parameters, such as the Schottky barrier height, ideality factor, and series resistance, are extracted from forward bias current-voltage characteristics using a previously established method modified to take into account the interfacial native oxide layer present at the graphene/silicon junction. It is found that the ideality factor can be substantially increased by the presence of the interfacial oxide layer. Furthermore, low frequency noise of graphene/silicon Schottky junctions under both forward and reverse bias is characterized. The noise is found to be 1/f dominated and the shot noise contribution is found to be negligible. The dependence of the 1/f noise on the forward and reverse current is also investigated. Finally, the photoresponse of graphene/silicon Schottky junctions is studied. The devices exhibit a peak responsivity of around 0.13 A/W and an external quantum efficiency higher than 25%. From the photoresponse and noise measurements, the bandwidth is extracted to be ˜1 kHz and the normalized detectivity is calculated to be 1.2 ×109 cm Hz1/2 W-1. These results provide important insights for the future integration of graphene with silicon device technology.

  5. Josephson junctions with ferromagnetic alloy interlayer

    Energy Technology Data Exchange (ETDEWEB)

    Himmel, Nico

    2015-07-23

    Josephson junctions are used as active devices in superconducting electronics and quantum information technology. Outstanding properties are their distinct non-linear electrical characteristics and a usually sinusoidal relation between the current and the superconducting phase difference across the junction. In general the insertion of ferromagnetic material in the barrier of a Josephson junction is associated with a suppression of superconducting correlations. But also new phenomena can arise which may allow new circuit layouts and enhance the performance of applications. This thesis presents a systematic investigation for two concepts to fabricate Josephson junctions with a rather uncommon negative critical current. Such devices exhibit an intrinsic phase slip of π between the electrodes, so they are also known as π junctions. Both studies go well beyond existing experiments and in one system a π junction is shown for the first time. All the thin film junctions are based on superconducting Nb electrodes. In a first approach, barriers made from Si and Fe were investigated with respect to the realisation of π junctions by spin-flip processes. The distribution of Fe in the Si matrix was varied from pure layers to disperse compounds. The systematic fabrication of alloy barriers was facilitated by the development of a novel timing-based combinatorial sputtering technique for planetary deposition systems. An orthogonal gradient approach allowed to create binary layer libraries with independent variations of thickness and composition. Second, Nb vertical stroke AlO{sub x} vertical stroke Nb vertical stroke Ni{sub 60}Cu{sub 40} vertical stroke Nb (SIsFS) double barrier junctions were experimentally studied for the occurrence of proximity effect induced order parameter oscillations. Detailed dependencies of the critical current density on the thickness of s-layer and F-layer were acquired and show a remarkable agreement to existing theoretical predictions. Especially

  6. Josephson junctions with ferromagnetic alloy interlayer

    International Nuclear Information System (INIS)

    Himmel, Nico

    2015-01-01

    Josephson junctions are used as active devices in superconducting electronics and quantum information technology. Outstanding properties are their distinct non-linear electrical characteristics and a usually sinusoidal relation between the current and the superconducting phase difference across the junction. In general the insertion of ferromagnetic material in the barrier of a Josephson junction is associated with a suppression of superconducting correlations. But also new phenomena can arise which may allow new circuit layouts and enhance the performance of applications. This thesis presents a systematic investigation for two concepts to fabricate Josephson junctions with a rather uncommon negative critical current. Such devices exhibit an intrinsic phase slip of π between the electrodes, so they are also known as π junctions. Both studies go well beyond existing experiments and in one system a π junction is shown for the first time. All the thin film junctions are based on superconducting Nb electrodes. In a first approach, barriers made from Si and Fe were investigated with respect to the realisation of π junctions by spin-flip processes. The distribution of Fe in the Si matrix was varied from pure layers to disperse compounds. The systematic fabrication of alloy barriers was facilitated by the development of a novel timing-based combinatorial sputtering technique for planetary deposition systems. An orthogonal gradient approach allowed to create binary layer libraries with independent variations of thickness and composition. Second, Nb vertical stroke AlO x vertical stroke Nb vertical stroke Ni 60 Cu 40 vertical stroke Nb (SIsFS) double barrier junctions were experimentally studied for the occurrence of proximity effect induced order parameter oscillations. Detailed dependencies of the critical current density on the thickness of s-layer and F-layer were acquired and show a remarkable agreement to existing theoretical predictions. Especially a variation of

  7. Improving the Microstructure and Electrical Properties of Aluminum Induced Polysilicon Thin Films Using Silicon Nitride Capping Layer

    Directory of Open Access Journals (Sweden)

    Min-Hang Weng

    2014-01-01

    Full Text Available We investigated the capping layer effect of SiNx (silicon nitride on the microstructure, electrical, and optical properties of poly-Si (polycrystalline silicon prepared by aluminum induced crystallization (AIC. The primary multilayer structure comprised Al (30 nm/SiNx (20 nm/a-Si (amorphous silicon layer (100 nm/ITO coated glass and was then annealed in a low annealing temperature of 350°C with different annealing times, 15, 30, 45, and 60 min. The crystallization properties were analyzed and verified by X-ray diffraction (XRD and Raman spectra. The grain growth was analyzed via optical microscope (OM and scanning electron microscopy (SEM. The improved electrical properties such as Hall mobility, resistivity, and dark conductivity were investigated by using Hall and current-voltage (I-V measurements. The results show that the amorphous silicon film has been effectively induced even at a low temperature of 350°C and a short annealing time of 15 min and indicate that the SiNx capping layer can improve the grain growth and reduce the metal content in the induced poly-Si film. It is found that the large grain size is over 20 μm and the carrier mobility values are over 80 cm2/V-s.

  8. [Histomorphological analyse of accelerating the fibrocartilage layer repair of patella-patellar tendon junction in rabbits by low intensity pulsed ultrasound stimulation].

    Science.gov (United States)

    Zhang, Baoliang; Lü, Hongbin; Hu, Jianzhong; Xu, Daqi; Zhou, Jingyong; Wang, Ye

    2013-08-01

    To analyse the effect of low intensity pulsed ultrasound stimulation (LIPUS) on accelerating the fibrocartilage layer repair of patella-patellar tendon junction. A total of 60 mature female New Zealand white rabbits undergoing standard partial patellectomy were divided into 2 groups randomly. The control group was given comfort treatment and the treatment group was given LIPUS treatment starting from day 3 to the end of week 6 postoperatively. The scheduled time points of animal euthanization would be at week 6, week 12 and week 18 postoperatively. The patella-patellar tendon (PPT) complex would be harvested and cut into sections after decalcification for H&E staining, Safranine o/fast green staining. The thickness and gray value of fibrocartilage layer were analyzed by SANO Microscope Partner image analyzer. At week 6, week 12 and week 18 postoperatively, the fibrocartilage layer in the treatment group was significantly thicker than that in the control group (Pfibrocartilage layer was significantly smaller than that in the control group (Pfibrocartilage layer repair of patella-patellar tendon junction in rabbit models.

  9. Controlling contamination in Mo/Si multilayer mirrors by Si surface capping modifications

    Science.gov (United States)

    Malinowski, Michael E.; Steinhaus, Chip; Clift, W. Miles; Klebanoff, Leonard E.; Mrowka, Stanley; Soufli, Regina

    2002-07-01

    The performance of Mo/Si multilayer mirrors (MLMs) used to reflect UV (EUV) radiation in an EUV + hydrocarbon (NC) vapor environment can be improved by optimizing the silicon capping layer thickness on the MLM in order to minimize the initial buildup of carbon on MLMs. Carbon buildup is undesirable since it can absorb EUV radiation and reduce MLM reflectivity. A set of Mo/Si MLMs deposited on Si wafers was fabricated such that each MLM had a different Si capping layer thickness ranging form 2 nm to 7 nm. Samples from each MLM wafer were exposed to a combination of EUV light + (HC) vapors at the Advanced Light Source (ALS) synchrotron in order to determine if the Si capping layer thickness affected the carbon buildup on the MLMs. It was found that the capping layer thickness had a major influence on this 'carbonizing' tendency, with the 3 nm layer thickness providing the best initial resistance to carbonizing and accompanying EUV reflectivity loss in the MLM. The Si capping layer thickness deposited on a typical EUV optic is 4.3 nm. Measurements of the absolute reflectivities performed on the Calibration and Standards beamline at the ALS indicated the EUV reflectivity of the 3 nm-capped MLM was actually slightly higher than that of the normal, 4 nm Si-capped sample. These results show that he use of a 3 nm capping layer represents an improvement over the 4 nm layer since the 3 nm has both a higher absolute reflectivity and better initial resistance to carbon buildup. The results also support the general concept of minimizing the electric field intensity at the MLM surface to minimize photoelectron production and, correspondingly, carbon buildup in a EUV + HC vapor environment.

  10. Capping layer growth rate and the optical and structural properties of GaAsSbN-capped InAs/GaAs quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Ulloa, J. M., E-mail: jmulloa@isom.upm.es; Utrilla, A. D.; Guzman, A.; Hierro, A. [Institute for Systems based on Optoelectronics and Microtechnology (ISOM) and Dpto. Ingeniería Electrónica, Universidad Politecnica de Madrid, Ciudad Universitaria s/n, 28040 Madrid (Spain); Reyes, D. F.; Ben, T.; González, D. [Departamento de Ciencia de los Materiales e IM y QI, Universidad de Cádiz, 11510 Puerto Real (Cádiz) (Spain)

    2014-10-07

    Changing the growth rate during the heteroepitaxial capping of InAs/GaAs quantum dots (QDs) with a 5 nm-thick GaAsSbN capping layer (CL) strongly modifies the QD structural and optical properties. A size and shape transition from taller pyramids to flatter lens-shaped QDs is observed when the CL growth rate is decreased from 1.5 to 0.5 ML/s. This indicates that the QD dissolution processes taking place during capping can be controlled to some extent by the GaAsSbN CL growth rate, with high growth rates allowing a complete preservation of the QDs. However, the dissolution processes are shown to have a leveling effect on the QD height, giving rise to a narrower size distribution for lower growth rates. Contrary to what could be expected, these effects are opposite to the strong blue-shift and improvement of the photoluminescence (PL) observed for higher growth rates. Nevertheless, the PL results can be understood in terms of the strong impact of the growth rate on the Sb and N incorporation into the CL, which results in lower Sb and N contents at higher growth rates. Besides the QD-CL band offsets and QD strain, the different CL composition alters the band alignment of the system, which can be transformed to type-II at low growth rates. These results show the key role of the alloyed CL growth parameters on the resulting QD properties and demonstrate an intricate correlation between the PL spectra and the sample morphology in complex QD-CL structures.

  11. Integrating atomic layer deposition and ultra-high vacuum physical vapor deposition for in situ fabrication of tunnel junctions

    Energy Technology Data Exchange (ETDEWEB)

    Elliot, Alan J., E-mail: alane@ku.edu, E-mail: jwu@ku.edu; Malek, Gary A.; Lu, Rongtao; Han, Siyuan; Wu, Judy Z., E-mail: alane@ku.edu, E-mail: jwu@ku.edu [Department of Physics and Astronomy, The University of Kansas, Lawrence, Kansas 66045 (United States); Yu, Haifeng; Zhao, Shiping [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China)

    2014-07-15

    Atomic Layer Deposition (ALD) is a promising technique for growing ultrathin, pristine dielectrics on metal substrates, which is essential to many electronic devices. Tunnel junctions are an excellent example which require a leak-free, ultrathin dielectric tunnel barrier of typical thickness around 1 nm between two metal electrodes. A challenge in the development of ultrathin dielectric tunnel barriers using ALD is controlling the nucleation of dielectrics on metals with minimal formation of native oxides at the metal surface for high-quality interfaces between the tunnel barrier and metal electrodes. This poses a critical need for integrating ALD with ultra-high vacuum (UHV) physical vapor deposition. In order to address these challenges, a viscous-flow ALD chamber was designed and interfaced to an UHV magnetron sputtering chamber via a load lock. A sample transportation system was implemented for in situ sample transfer between the ALD, load lock, and sputtering chambers. Using this integrated ALD-UHV sputtering system, superconductor-insulator-superconductor (SIS) Nb-Al/Al{sub 2}O{sub 2}/Nb Josephson tunnel junctions were fabricated with tunnel barriers of thickness varied from sub-nm to ∼1 nm. The suitability of using an Al wetting layer for initiation of the ALD Al{sub 2}O{sub 3} tunnel barrier was investigated with ellipsometry, atomic force microscopy, and electrical transport measurements. With optimized processing conditions, leak-free SIS tunnel junctions were obtained, demonstrating the viability of this integrated ALD-UHV sputtering system for the fabrication of tunnel junctions and devices comprised of metal-dielectric-metal multilayers.

  12. Imaging of phase change materials below a capping layer using correlative infrared near-field microscopy and electron microscopy

    Science.gov (United States)

    Lewin, M.; Hauer, B.; Bornhöfft, M.; Jung, L.; Benke, J.; Michel, A.-K. U.; Mayer, J.; Wuttig, M.; Taubner, T.

    2015-10-01

    Phase Change Materials (PCM) show two stable states in the solid phase with significantly different optical and electronic properties. They can be switched reversibly between those two states and are promising candidates for future non-volatile memory applications. The development of phase change devices demands characterization tools, yielding information about the switching process at high spatial resolution. Scattering-type Scanning Near-field Optical Microscopy (s-SNOM) allows for spectroscopic analyses of the different optical properties of the PCMs on the nm-scale. By correlating the optical s-SNOM images with transmission electron microscopy images of the same sample, we unambiguously demonstrate the correlation of the infrared optical contrast with the structural state of the phase change material. The investigated sample consists of sandwiched amorphous and crystalline regions of Ag 4 In 3 Sb 67 Te 26 below a 100 nm thick ( ZnS ) 80 - ( SiO2 ) 20 capping layer. Our results demonstrate the sensitivity of s-SNOM to small dielectric near-field contrasts even below a comparably thick capping layer ( 100 nm ).

  13. Standard and alternative landfill capping design in Germany

    International Nuclear Information System (INIS)

    Simon, Franz-Georg; Mueller, Werner W.

    2004-01-01

    Engineered capping systems are in most cases an indispensable and often the only efficient component required by the long-term safety concept for landfills, mine tailings tips and contaminated land. In Germany the composite liner is the main component of standard landfill cappings for municipal and hazardous waste landfills and the compacted clay liner (CCL) for landfills for inert or low-contamination waste. The composite liner is a technically highly effective but very expensive system. Research and experience has given rise to concern about the proper long-term performance of a conventional single CCL as a landfill capping. Therefore, alternative capping systems are discussed and applied for landfills and for the containment of contaminated sites. This paper gives an overview on various alternative engineered cappings and suitable systems for capping reflecting the state of the art and the expert view in Germany. According to the European Council Directive on the landfill of waste an impermeable mineral layer is recommended for the surface sealing of non-hazardous landfills and a composition of artificial sealing liner and impermeable mineral layer for hazardous landfills. In both cases a drainage layer thickness of at least 0.5 m is suggested. These recommendations should be interpreted flexibly and to some extent modified in the light of the experience and results presented in this paper

  14. Sediment Capping and Natural Recovery, Contaminant Transport Fundamentals With Applications to Sediment Caps

    National Research Council Canada - National Science Library

    Petrovski, David M; Corcoran, Maureen K; May, James H; Patrick, David M

    2005-01-01

    Engineered sediment caps and natural recovery are in situ remedial alternatives for contaminated sediments, which consist of the artificial or natural placement of a layer of material over a sediment...

  15. Common features of a vortex structure in long exponentially shaped Josephson junctions and Josephson junctions with inhomogeneities

    International Nuclear Information System (INIS)

    Boyadjiev, T.L.; Semerdjieva, E.G.; Shukrinov, Yu.M.

    2007-01-01

    We study the vortex structure in three different models of the long Josephson junction: the exponentially shaped Josephson junction and the Josephson junctions with the resistor and the shunt inhomogeneities in the barrier layer. For these three models the critical curves 'critical current-magnetic field' are numerically constructed. We develop the idea of the equivalence of the exponentially shaped Josephson junction and the rectangular junction with the distributed inhomogeneity and demonstrate that at some parameters of the shunt and the resistor inhomogeneities in the ends of the junction the corresponding critical curves are very close to the exponentially shaped one

  16. Comparison of Detector Technologies for CAPS

    Science.gov (United States)

    Stockum, Jana L.

    2005-01-01

    In this paper, several different detectors are examined for use in a Comet/Asteroid Protection System (CAPS), a conceptual study for a possible future space-based system. Each detector will be examined for its future (25 years or more in the future) ability to find and track near-Earth Objects (NEOs) from a space-based detection platform. Within the CAPS study are several teams of people who each focus on different aspects of the system concept. This study s focus is on detection devices. In particular, evaluations on the following devices have been made: charge-coupled devices (CCDs), charge-injected devices (CIDs), superconducting tunneling junctions (STJs), and transition edge sensors (TESs). These devices can be separated into two main categories; the first category includes detectors that are currently being widely utilized, such as CCDs and CIDs. The second category includes experimental detectors, such as STJs and TESs. After the discussion of the detectors themselves, there will be a section devoted to the explicit use of these detectors with CAPS.

  17. Simulation study of 14-nm-gate III-V trigate field effect transistor devices with In1−xGaxAs channel capping layer

    Directory of Open Access Journals (Sweden)

    Cheng-Hao Huang

    2015-06-01

    Full Text Available In this work, we study characteristics of 14-nm-gate InGaAs-based trigate MOSFET (metal-oxide-semiconductor field effect transistor devices with a channel capping layer. The impacts of thickness and gallium (Ga concentration of the channel capping layer on the device characteristic are firstly simulated and optimized by using three-dimensional quantum-mechanically corrected device simulation. Devices with In1−xGaxAs/In0.53Ga0.47As channels have the large driving current owing to small energy band gap and low alloy scattering at the channel surface. By simultaneously considering various physical and switching properties, a 4-nm-thick In0.68Ga0.32As channel capping layer can be adopted for advanced applications. Under the optimized channel parameters, we further examine the effects of channel fin angle and the work-function fluctuation (WKF resulting from nano-sized metal grains of NiSi gate on the characteristic degradation and variability. To maintain the device characteristics and achieve the minimal variation induced by WKF, the physical findings of this study indicate a critical channel fin angle of 85o is needed for the device with an averaged grain size of NiSi below 4x4 nm2.

  18. On the Structure and Adjustment of Inversion-Capped Neutral Atmospheric Boundary-Layer Flows: Large-Eddy Simulation Study

    DEFF Research Database (Denmark)

    Pedersen, Jesper Grønnegaard; Gryning, Sven-Erik; Kelly, Mark C.

    2014-01-01

    A range of large-eddy simulations, with differing free atmosphere stratification and zero or slightly positive surface heat flux, is investigated to improve understanding of the neutral and near-neutral, inversion-capped, horizontally homogeneous, barotropic atmospheric boundary layer with emphasis...... on the upper region. We find that an adjustment time of at least 16 h is needed for the simulated flow to reach a quasi-steady state. The boundary layer continues to grow, but at a slow rate that changes little after 8 h of simulation time. A common feature of the neutral simulations is the development...... of a super-geostrophic jet near the top of the boundary layer. The analytical wind-shear models included do not account for such a jet, and the best agreement with simulated wind shear is seen in cases with weak stratification above the boundary layer. Increasing the surface heat flux decreases the magnitude...

  19. Impact of capping layer type on emission of InAs quantum dots embedded in InGaAs/In{sub x}Al{sub y}Ga{sub z}As/GaAs quantum wells

    Energy Technology Data Exchange (ETDEWEB)

    Torchynska, T. V., E-mail: ttorch@esfm.ipn.mx; Casas Espinola, J. L. [ESFM–Instituto Politécnico Nacional, México D. F. 07738, México (Mexico); Stintz, A. [Center of High Technology Materials, University of New Mexico, Albuquerque, New Mexico 87106 (United States)

    2014-01-07

    The optical and structural properties of In{sub 0.15}Ga{sub 0.85}As/In{sub x}Al{sub y}Ga{sub z}As/GaAs quantum wells with embedded InAs quantum dots (QDs) were investigated by the photoluminescence (PL), its temperature dependence, X-ray diffraction (XRD), and high resolution (HR-XRD) methods in dependence on the composition of capping In{sub x}Al{sub y}Ga{sub z}As layers. Three types of capping layers (Al{sub 0.3}Ga{sub 0.7}As, Al{sub 0.10}Ga{sub 0.75}In{sub 0.15}As, and Al{sub 0.40}Ga{sub 0.45}In{sub 0.15}As) have been used and their impact on PL parameters has been compared. Temperature dependences of PL peak positions in QDs have been analyzed in the range of 10–500 K and to compare with the temperature shrinkage of band gap in the bulk InAs crystal. This permits to investigate the QD material composition and the efficiency of Ga(Al)/In inter diffusion in dependence on the type of In{sub x}Al{sub y}Ga{sub z}As capping layers. XRD and HR-XRD used to control the composition of quantum well layers. It is shown that QD material composition is closer to InAs in the structure with the Al{sub 0.40}Ga{sub 0.45}In{sub 0.15}As capping layer and for this structure the emission 1.3 μm is detected at 300 K. The thermal decay of the integrated PL intensity has been studied as well. It is revealed the fast 10{sup 2}-fold thermal decay of the integrated PL intensity in the structure with the Al{sub 0.10}Ga{sub 0.75}In{sub 0.15}As capping layer in comparison with 10-fold decay in other structures. Finally, the reasons of PL spectrum transformation and the mechanism of PL thermal decay for different capping layers have been analyzed and discussed.

  20. The magnetic characteristics of perpendicular magnetic tunnel junction with MgO and Al-O oxidation layers in various thickness

    International Nuclear Information System (INIS)

    Chen, T.-J.; Canizo-Cabrera, A.; Chang, C.-H.; Liao, K.-A.; Li, Simon C.; Hou, C.-K.; Wu Teho

    2006-01-01

    In this work we show the magnetic characteristics of perpendicular magnetic tunnel junction (pMTJ) with different oxidation layers. The pMTJs structures were made by RF and DC magnetron sputtering. Individual depositions of magnesium oxide layers and of aluminum oxide films were prepared by plasma oxidation. The experimental results showed that the initial switching field was decreased as the magnesium oxide thickness was increased. Further work of the aluminum oxide surface roughness and hysteresis loop influenced by different oxidation layers on pMTJs structures will be discussed as well

  1. Phase Sensitive Measurements of Ferromagnetic Josephson Junctions for Cryogenic Memory Applications

    Science.gov (United States)

    Niedzielski, Bethany Maria

    A Josephson junction is made up of two superconducting layers separated by a barrier. The original Josephson junctions, studied in the early 1960's, contained an insulating barrier. Soon thereafter, junctions with normal-metal barriers were also studied. Ferromagnetic materials were not even theoretically considered as a barrier layer until around 1980, due to the competing order between ferromagnetic and superconducting systems. However, many exciting physical phenomena arise in hybrid superconductor/ferromagnetic devices, including devices where the ground state phase difference between the two superconductors is shifted by pi. Since their experimental debut in 2001, so-called pi junctions have been demonstrated by many groups, including my own, in systems with a single ferromagnetic layer. In this type of system, the phase of the junction can be set to either 0 or pi depending on the thickness of the ferromagnetic layer. Of interest, however, is the ability to control the phase of a single junction between the 0 and pi states. This was theoretically shown to be possible in a system containing two ferromagnetic layers (spin-valve junctions). If the materials and their thicknesses are properly chosen to manipulate the electron pair correlation function, then the phase state of a spin-valve Josephson junction should be capable of switching between the 0 and ? phase states when the magnetization directions of the two ferromagnetic layers are oriented in the antiparallel and parallel configurations, respectively. Such a phase-controllable junction would have immediate applications in cryogenic memory, which is a necessary component to an ultra-low power superconducting computer. A fully superconducting computer is estimated to be orders of magnitude more energy-efficient than current semiconductor-based supercomputers. The goal of this work was to experimentally verify this prediction for a phase-controllable ferromagnetic Josephson junction. To address this

  2. Perpendicular magnetic tunnel junction with thin CoFeB/Ta/Co/Pd/Co reference layer

    Energy Technology Data Exchange (ETDEWEB)

    Gan, Huadong, E-mail: huadong@avalanche-technology.com; Malmhall, Roger; Wang, Zihui; Yen, Bing K; Zhang, Jing; Wang, Xiaobin; Zhou, Yuchen; Hao, Xiaojie; Jung, Dongha; Satoh, Kimihiro; Huai, Yiming [Avalanche Technology, 46600 Landing Parkway, Fremont, California 94538 (United States)

    2014-11-10

    Integration of high density spin transfer torque magnetoresistance random access memory requires a thin stack (less than 15 nm) of perpendicular magnetic tunnel junction (p-MTJ). We propose an innovative approach to solve this challenging problem by reducing the thickness and/or moment of the reference layer. A thin reference layer structure of CoFeB/Ta/Co/Pd/Co has 60% magnetic moment of the conventional thick structure including [Co/Pd] multilayers. We demonstrate that the perpendicular magnetization of the CoFeB/Ta/Co/Pd/Co structure can be realized by anti-ferromagnetically coupling to a pinned layer with strong perpendicular anisotropy via Ruderman-Kittel-Kasuya-Yosida exchange interaction. The pMTJ with thin CoFeB/Ta/Co/Pd/Co reference layer has a comparable TMR ratio (near 80%) as that with thick reference layer after annealing at 280 °C. The pMTJ with thin reference layer has a total thickness less than 15 nm, thereby significantly increasing the etching margin required for integration of high density pMTJ array on wafers with form factor of 300 mm and beyond.

  3. Improving the electrical properties of lanthanum silicate films on ge metal oxide semiconductor capacitors by adopting interfacial barrier and capping layers.

    Science.gov (United States)

    Choi, Yu Jin; Lim, Hajin; Lee, Suhyeong; Suh, Sungin; Kim, Joon Rae; Jung, Hyung-Suk; Park, Sanghyun; Lee, Jong Ho; Kim, Seong Gyeong; Hwang, Cheol Seong; Kim, HyeongJoon

    2014-05-28

    The electrical properties of La-silicate films grown by atomic layer deposition (ALD) on Ge substrates with different film configurations, such as various Si concentrations, Al2O3 interfacial passivation layers, and SiO2 capping layers, were examined. La-silicate thin films were deposited using alternating injections of the La[N{Si(CH3)3}2]3 precursor with O3 as the La and O precursors, respectively, at a substrate temperature of 310 °C. The Si concentration in the La-silicate films was further controlled by adding ALD cycles of SiO2. For comparison, La2O3 films were also grown using [La((i)PrCp)3] and O3 as the La precursor and oxygen source, respectively, at the identical substrate temperature. The capacitance-voltage (C-V) hysteresis decreased with an increasing Si concentration in the La-silicate films, although the films showed a slight increase in the capacitance equivalent oxide thickness. The adoption of Al2O3 at the interface as a passivation layer resulted in lower C-V hysteresis and a low leakage current density. The C-V hysteresis voltages of the La-silicate films with Al2O3 passivation and SiO2 capping layers was significantly decreased to ∼0.1 V, whereas the single layer La-silicate film showed a hysteresis voltage as large as ∼1.0 V.

  4. Piezo-tunnel effect in Al/Al2O3/Al junctions elaborated by atomic layer deposition

    Science.gov (United States)

    Rafael, R.; Puyoo, E.; Malhaire, C.

    2017-11-01

    In this work, the electrical transport in Al/Al2O3/Al junctions under mechanical stress is investigated in the perspective to use them as strain sensors. The metal/insulator/metal junctions are elaborated with a low temperature process (≤200 °C) fully compatible with CMOS back-end-of-line. The conduction mechanism in the structure is found to be Fowler-Nordheim tunneling, and efforts are made to extract the relevant physical parameters. Gauge factors up to -32.5 were found in the fabricated devices under tensile stress. Finally, theoretical mechanical considerations give strong evidence that strain sensitivity in Al/Al2O3/Al structures originates not only from geometrical deformations but also from the variation of interface barrier height and/or effective electronic mass in the tunneling oxide layer.

  5. Contour junctions defined by dynamic image deformations enhance perceptual transparency.

    Science.gov (United States)

    Kawabe, Takahiro; Nishida, Shin'ya

    2017-11-01

    The majority of work on the perception of transparency has focused on static images with luminance-defined contour junctions, but recent work has shown that dynamic image sequences with dynamic image deformations also provide information about transparency. The present study demonstrates that when part of a static image is dynamically deformed, contour junctions at which deforming and nondeforming contours are connected facilitate the deformation-based perception of a transparent layer. We found that the impression of a transparent layer was stronger when a dynamically deforming area was adjacent to static nondeforming areas than when presented alone. When contour junctions were not formed at the dynamic-static boundaries, however, the impression of a transparent layer was not facilitated by the presence of static surrounding areas. The effect of the deformation-defined junctions was attenuated when the spatial pattern of luminance contrast at the junctions was inconsistent with the perceived transparency related to luminance contrast, while the effect did not change when the spatial luminance pattern was consistent with it. In addition, the results showed that contour completions across the junctions were required for the perception of a transparent layer. These results indicate that deformation-defined junctions that involve contour completion between deforming and nondeforming regions enhance the perception of a transparent layer, and that the deformation-based perceptual transparency can be promoted by the simultaneous presence of appropriately configured luminance and contrast-other features that can also by themselves produce the sensation of perceiving transparency.

  6. Ferromagnetic Josephson Junctions for Cryogenic Memory

    Science.gov (United States)

    Niedzielski, Bethany M.; Gingrich, Eric C.; Khasawneh, Mazin A.; Loloee, Reza; Pratt, William P., Jr.; Birge, Norman O.

    2015-03-01

    Josephson junctions containing ferromagnetic materials are of interest for both scientific and technological purposes. In principle, either the amplitude of the critical current or superconducting phase shift across the junction can be controlled by the relative magnetization directions of the ferromagnetic layers in the junction. Our approach concentrates on phase control utilizing two junctions in a SQUID geometry. We will report on efforts to control the phase of junctions carrying either spin-singlet or spin-triplet supercurrent for cryogenic memory applications. Supported by Northorp Grumman Corporation and by IARPA under SPAWAR Contract N66001-12-C-2017.

  7. Impact Response Study on Covering Cap of Aircraft Big-Size Integral Fuel Tank

    Science.gov (United States)

    Wang, Fusheng; Jia, Senqing; Wang, Yi; Yue, Zhufeng

    2016-10-01

    In order to assess various design concepts and choose a kind of covering cap design scheme which can meet the requirements of airworthiness standard and ensure the safety of fuel tank. Using finite element software ANSYS/LS- DYNA, the impact process of covering cap of aircraft fuel tank by projectile were simulated, in which dynamical characteristics of simple single covering cap and gland double-layer covering cap impacted by titanium alloy projectile and rubber projectile were studied, as well as factor effects on simple single covering cap and gland double-layer covering cap under impact region, impact angle and impact energy were also studied. Though the comparison of critical damage velocity and element deleted number of the covering caps, it shows that the external covering cap has a good protection effect on internal covering cap. The regions close to boundary are vulnerable to appear impact damage with titanium alloy projectile while the regions close to center is vulnerable to occur damage with rubber projectile. Equivalent strain in covering cap is very little when impact angle is less than 15°. Element deleted number in covering cap reaches the maximum when impact angle is between 60°and 65°by titanium alloy projectile. While the bigger the impact angle and the more serious damage of the covering cap will be when rubber projectile impact composite covering cap. The energy needed for occurring damage on external covering cap and internal covering cap is less than and higher than that when single covering cap occur damage, respectively. The energy needed for complete breakdown of double-layer covering cap is much higher than that of single covering cap.

  8. Thermopower in double planar tunnel junctions with ferromagnetic barriers and nonmagnetic electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Wilczyński, M., E-mail: wilczyns@if.pw.edu.pl

    2017-01-01

    The Seebeck effect is investigated in double planar tunnel junctions consisting of nonmagnetic electrodes and the central layer separated by ferromagnetic barriers. Calculations are performed in the linear response theory using the free-electron model. The thermopower is analyzed as a function of the thickness of the central layer, temperature of the junctions and the relative orientation of magnetic moments of the barriers. It has been found that the thermopower can be significantly enhanced in the junction with special central layer thickness due to electron tunneling by resonant states. The thickness of the central layer for which the thermopower is enhanced depends not only on the temperature of the junction but also on the orientation of magnetic moments in the barriers. - Highlights: • Thermopower in the double planar junctions with magnetic barriers is analyzed. • Thermopower can be enhanced due to the resonant tunneling. • Thermopower depends on the magnetic configuration of the junction.

  9. Low Temperature Processed Complementary Metal Oxide Semiconductor (CMOS) Device by Oxidation Effect from Capping Layer

    KAUST Repository

    Wang, Zhenwei

    2015-04-20

    In this report, both p- and n-type tin oxide thin-film transistors (TFTs) were simultaneously achieved using single-step deposition of the tin oxide channel layer. The tuning of charge carrier polarity in the tin oxide channel is achieved by selectively depositing a copper oxide capping layer on top of tin oxide, which serves as an oxygen source, providing additional oxygen to form an n-type tin dioxide phase. The oxidation process can be realized by annealing at temperature as low as 190°C in air, which is significantly lower than the temperature generally required to form tin dioxide. Based on this approach, CMOS inverters based entirely on tin oxide TFTs were fabricated. Our method provides a solution to lower the process temperature for tin dioxide phase, which facilitates the application of this transparent oxide semiconductor in emerging electronic devices field.

  10. Versatile multi-layer Josephson junction process for vortex molecules

    Energy Technology Data Exchange (ETDEWEB)

    Meckbach, Johannes Maximilian; Buehler, Simon; Merker, Michael; Il' in, Konstantin; Siegel, Michael [Institut fuer Mikro- und Nanoelektronische Systeme, KIT (Germany); Buckenmaier, Kai; Gaber, Tobias; Kienzle, Uta; Neumaier, Benjamin; Goldobin, Edward; Kleiner, Reinhold; Koelle, Dieter [Physikalisches Institut - Experimentalphysik II, Universitaet Tuebingen (Germany)

    2012-07-01

    In long Josephson junctions magnetic flux may penetrate the barrier resulting in a so-called Josephson-Vortex carrying one flux quantum Φ{sub 0}. In recent years a new type of Josephson-Vortex became available, which carries any arbitrary fraction Φ = -Φ{sub 0}κ/2π of magnetic flux. These fractional vortices (p-vortices) spontaneously appear at discontinuities of the Josephson phase along the junction, which in turn are created using a pair of current injectors. We present a new Nb/Al-AlO{sub x}/Nb process for the fabrication of Josephson junctions of very high quality. Placing two injector pairs along the strongly underdamped long junctions allows the investigation of fractional vortex molecules. The topological charge of each vortex and their interaction can be altered even during experiment by changing the individual injector currents. Vortex molecule states have been measured using asymmetric DC-SQUIDs coupled to the vortices by overlying pick-up loops. To uphold the p-vortices we use persistent currents, which can be altered using heat switches. Fractional vortex molecules are promising candidates for a new type of qubits.

  11. Josephson tunnel junctions with ferromagnetic interlayer

    International Nuclear Information System (INIS)

    Weides, M.P.

    2006-01-01

    Superconductivity and ferromagnetism are well-known physical properties of solid states that have been widely studied and long thought about as antagonistic phenomena due to difference in spin ordering. It turns out that the combination of both superconductor and ferromagnet leads to a very rich and interesting physics. One particular example, the phase oscillations of the superconducting order parameter inside the ferromagnet, will play a major role for the devices discussed in this work. In this thesis, I present Josephson junctions with a thin Al 2 O 3 tunnel barrier and a ferromagnetic interlayer, i.e. superconductor-insulator-ferromagnet-superconductor (SIFS) stacks. The fabrication of junctions was optimized regarding the insulation of electrodes and the homogeneity of the current transport. The junctions were either in the 0 or π coupled ground state, depending on the thickness of the ferromagnetic layer and on temperature. The influence of ferromagnetic layer thickness on the transport properties and the coupling (0, π) of SIFS tunnel junctions was studied. Furthermore, using a stepped ferromagnetic layer with well-chosen thicknesses, I obtained the so-called 0-π Josephson junction. At a certain temperature this 0-π junction can be made perfectly symmetric. In this case the ground state corresponds to a vortex of supercurrent creating a magnetic flux which is a fraction of the magnetic flux quantum Φ 0 . Such structures allow to study the physics of fractional vortices and to build various electronic circuits based on them. The SIFS junctions presented here have an exponentially vanishing damping at T → 0. The SIFS technology developed within the framework of this work may be used to construct classical and quantum devices such as oscillators, memory cells and qubits. (orig.)

  12. Josephson tunnel junctions with ferromagnetic interlayer

    Energy Technology Data Exchange (ETDEWEB)

    Weides, M.P.

    2006-07-01

    Superconductivity and ferromagnetism are well-known physical properties of solid states that have been widely studied and long thought about as antagonistic phenomena due to difference in spin ordering. It turns out that the combination of both superconductor and ferromagnet leads to a very rich and interesting physics. One particular example, the phase oscillations of the superconducting order parameter inside the ferromagnet, will play a major role for the devices discussed in this work. In this thesis, I present Josephson junctions with a thin Al{sub 2}O{sub 3} tunnel barrier and a ferromagnetic interlayer, i.e. superconductor-insulator-ferromagnet-superconductor (SIFS) stacks. The fabrication of junctions was optimized regarding the insulation of electrodes and the homogeneity of the current transport. The junctions were either in the 0 or {pi} coupled ground state, depending on the thickness of the ferromagnetic layer and on temperature. The influence of ferromagnetic layer thickness on the transport properties and the coupling (0, {pi}) of SIFS tunnel junctions was studied. Furthermore, using a stepped ferromagnetic layer with well-chosen thicknesses, I obtained the so-called 0-{pi} Josephson junction. At a certain temperature this 0-{pi} junction can be made perfectly symmetric. In this case the ground state corresponds to a vortex of supercurrent creating a magnetic flux which is a fraction of the magnetic flux quantum {phi}{sub 0}. Such structures allow to study the physics of fractional vortices and to build various electronic circuits based on them. The SIFS junctions presented here have an exponentially vanishing damping at T {yields} 0. The SIFS technology developed within the framework of this work may be used to construct classical and quantum devices such as oscillators, memory cells and qubits. (orig.)

  13. Transport Properties of ZnSe- ITO Hetero Junction

    Science.gov (United States)

    Ichibakase, Tsuyoshi

    In this report, ITO(Indium Tin Oxide) was used on the glass substrates as the transparent electrode, and ZnSe layer was prepared by the vacuum deposition on this ITO. Then, the electrical characteristics of this sample were investigated by mans of the electric current transport analysis. The sample that ZnSe was prepared as 3.4 μm in case of ITO-ZnSe sample, has high density level at the junction surface. The ITO-ZnSe junction has two type of diffusion current. However, the ITO-ZnSe sample that ZnSe layer was prepared as 0.1 μm can be assumed as the ohmic contact, and ITO-ZnSe(0.1μm) -CdTe sample shows the avalanche breakdown, and it is considered that the avalanche breakdown occurs in CdTe layer. It is difficult to occur the avalanche breakdown, if ZnSe-CdTe junction has high-density level and CdTe layer has high-density defect. Hence, the ZnSe-CdTe sample that CdTe layer was prepared on ITO-ZnSe(0.1μm) substrate has not high-density level at the junction surface, and the CdTe layer with little lattice imperfection can be prepared. It found that ITO-ZnSe(0.1μm) substrate is available for the II-VI compounds semiconductor device through above analysis result.

  14. Tunnel magnetoresistance in double spin filter junctions

    International Nuclear Information System (INIS)

    Saffarzadeh, Alireza

    2003-01-01

    We consider a new type of magnetic tunnel junction, which consists of two ferromagnetic tunnel barriers acting as spin filters (SFs), separated by a nonmagnetic metal (NM) layer. Using the transfer matrix method and the free-electron approximation, the dependence of the tunnel magnetoresistance (TMR) on the thickness of the central NM layer, bias voltage and temperature in the double SF junction are studied theoretically. It is shown that the TMR and electron-spin polarization in this structure can reach very large values under suitable conditions. The highest value of the TMR can reach 99%. By an appropriate choice of the thickness of the central NM layer, the degree of spin polarization in this structure will be higher than that of the single SF junctions. These results may be useful in designing future spin-polarized tunnelling devices

  15. GaAs droplet quantum dots with nanometer-thin capping layer for plasmonic applications

    Science.gov (United States)

    In Park, Suk; Trojak, Oliver Joe; Lee, Eunhye; Song, Jin Dong; Kyhm, Jihoon; Han, Ilki; Kim, Jongsu; Yi, Gyu-Chul; Sapienza, Luca

    2018-05-01

    We report on the growth and optical characterization of droplet GaAs quantum dots (QDs) with extremely-thin (11 nm) capping layers. To achieve such result, an internal thermal heating step is introduced during the growth and its role in the morphological properties of the QDs obtained is investigated via scanning electron and atomic force microscopy. Photoluminescence measurements at cryogenic temperatures show optically stable, sharp and bright emission from single QDs, at visible wavelengths. Given the quality of their optical properties and the proximity to the surface, such emitters are good candidates for the investigation of near field effects, like the coupling to plasmonic modes, in order to strongly control the directionality of the emission and/or the spontaneous emission rate, crucial parameters for quantum photonic applications.

  16. Double capping of molecular beam epitaxy grown InAs/InP quantum dots studied by cross-sectional scanning tunneling microscopy

    International Nuclear Information System (INIS)

    Ulloa, J. M.; Koenraad, P. M.; Gapihan, E.; Letoublon, A.; Bertru, N.

    2007-01-01

    Cross-sectional scanning tunneling microscopy was used to study at the atomic scale the double capping process of self-assembled InAs/InP quantum dots (QDs) grown by molecular beam epitaxy on a (311)B substrate. The thickness of the first capping layer is found to play a mayor role in determining the final results of the process. For first capping layers up to 3.5 nm, the height of the QDs correspond to the thickness of the first capping layer. Nevertheless, for thicknesses higher than 3.5 nm, a reduction in the dot height compared to the thickness of the first capping layer is observed. These results are interpreted in terms of a transition from a double capping to a classical capping process when the first capping layer is thick enough to completely cover the dots

  17. Fabrication of a Tantalum-Based Josephson Junction for an X-Ray Detector

    Science.gov (United States)

    Morohashi, Shin'ichi; Gotoh, Kohtaroh; Yokoyama, Naoki

    2000-06-01

    We have fabricated a tantalum-based Josephson junction for an X-ray detector. The tantalum layer was selected for the junction electrode because of its long quasiparticle lifetime, large X-ray absorption efficiency and stability against thermal cycling. We have developed a buffer layer to fabricate the tantalum layer with a body-centered cubic structure. Based on careful consideration of their superconductivity, we have selected a niobium thin layer as the buffer layer for fabricating the tantalum base electrode, and a tungsten thin layer for the tantalum counter electrode. Fabricated Nb/AlOx-Al/Ta/Nb and Nb/Ta/W/AlOx-Al/Ta/Nb Josephson junctions exhibited current-voltage characteristics with a low subgap leakage current.

  18. Field modulation of the critical current in magnetic Josephson junctions

    International Nuclear Information System (INIS)

    Blamire, M G; Smiet, C B; Banerjee, N; Robinson, J W A

    2013-01-01

    The dependence of the critical current of a simple Josephson junction on the applied magnetic field is well known and, for a rectangular junction, gives rise to the classic ‘Fraunhofer’ modulation with periodic zeros at the fields that introduce a flux quantum into the junction region. Much recent work has been performed on Josephson junctions that contain magnetic layers. The magnetization of such layers introduces additional flux into the junction and, for large junction areas or strong magnetic materials, can significantly distort the modulation of the critical current and strongly suppress the maximum critical current. The growing interest in junctions that induce odd-frequency triplet pairing in a ferromagnet, and the need to make quantitative comparisons with theory, mean that a full understanding of the role of magnetic barriers in controlling the critical current is necessary. This paper analyses the effect of magnetism and various magnetic configurations on Josephson critical currents; the overall treatment applies to junctions of general shape, but the specific cases of square and rectangular junctions are considered. (paper)

  19. Bi-epitaxial tilted out-of-plane YBCO junctions on NdGaO{sub 3} substrates with YSZ seeding layer

    Energy Technology Data Exchange (ETDEWEB)

    Mozhaev, P.B. (Institute of Physics and Technology RAS, Moscow (Russian Federation)); Mozhaev, J.E.; Bindslev Hansen, J.; Jacobsen, C.S. (Technical Univ. of Denmark, Dept. of Physics, Kgs. Lyngby (Denmark)); Kotelyanskil, I.M.; Luzanov, V.A. (Institute of Radio Engineering and Electronics RAS, Moscow (Russian Federation)); Benacka, S.; Strbik, V. (Institute of Electrical Engineering SAS, Bratislava (SK))

    2008-10-15

    Bi-epitaxial junctions with out-of plane tilt of the c axis were fabricated of YBCO superconducting thin films on NdGaO{sub 3} substrates with different miscut angles. Bi-epitaxial growth was provided by implementation of an Y:ZrO{sub 2} seeding layer on a certain part of the substrate. Junctions with different orientation of the bi-epitaxial boundaries were fabricated, their DC electrical properties were studied as a function of the boundary orientation angle. The junctions showed extremely high critical current densities for all tested miscut angles and bi-epitaxial boundary orientations (about 105 A/cm2 at 77 K and up to 106 A/cm2 at 4.2 K). The dependence of critical current density on the bi-epitaxial boundary orientation angle may be explained as an effect of a d-wave pairing mechanism in the HTSC with the simple Sigrist-Rice model. The studied boundaries may be considered as model structures for the grain boundaries in the coated conductors. (au)

  20. Enhanced resolution imaging of ultrathin ZnO layers on Ag(111) by multiple hydrogen molecules in a scanning tunneling microscope junction

    Science.gov (United States)

    Liu, Shuyi; Shiotari, Akitoshi; Baugh, Delroy; Wolf, Martin; Kumagai, Takashi

    2018-05-01

    Molecular hydrogen in a scanning tunneling microscope (STM) junction has been found to enhance the lateral spatial resolution of the STM imaging, referred to as scanning tunneling hydrogen microscopy (STHM). Here we report atomic resolution imaging of 2- and 3-monolayer (ML) thick ZnO layers epitaxially grown on Ag(111) using STHM. The enhanced resolution can be obtained at a relatively large tip to surface distance and resolves a more defective structure exhibiting dislocation defects for 3-ML-thick ZnO than for 2 ML. In order to elucidate the enhanced imaging mechanism, the electric and mechanical properties of the hydrogen molecular junction (HMJ) are investigated by a combination of STM and atomic force microscopy. It is found that the HMJ shows multiple kinklike features in the tip to surface distance dependence of the conductance and frequency shift curves, which are absent in a hydrogen-free junction. Based on a simple modeling, we propose that the junction contains several hydrogen molecules and sequential squeezing of the molecules out of the junction results in the kinklike features in the conductance and frequency shift curves. The model also qualitatively reproduces the enhanced resolution image of the ZnO films.

  1. Study on influences of TiN capping layer on time-dependent dielectric breakdown characteristic of ultra-thin EOT high- k metal gate NMOSFET with kMC TDDB simulations

    International Nuclear Information System (INIS)

    Xu Hao; Yang Hong; Luo Wei-Chun; Xu Ye-Feng; Wang Yan-Rong; Tang Bo; Wang Wen-Wu; Qi Lu-Wei; Li Jun-Feng; Yan Jiang; Zhu Hui-Long; Zhao Chao; Chen Da-Peng; Ye Tian-Chun

    2016-01-01

    The thickness effect of the TiN capping layer on the time dependent dielectric breakdown (TDDB) characteristic of ultra-thin EOT high- k metal gate NMOSFET is investigated in this paper. Based on experimental results, it is found that the device with a thicker TiN layer has a more promising reliability characteristic than that with a thinner TiN layer. From the charge pumping measurement and secondary ion mass spectroscopy (SIMS) analysis, it is indicated that the sample with the thicker TiN layer introduces more Cl passivation at the IL/Si interface and exhibits a lower interface trap density. In addition, the influences of interface and bulk trap density ratio N it / N ot are studied by TDDB simulations through combining percolation theory and the kinetic Monte Carlo (kMC) method. The lifetime reduction and Weibull slope lowering are explained by interface trap effects for TiN capping layers with different thicknesses. (paper)

  2. Systematic optimization of quantum junction colloidal quantum dot solar cells

    KAUST Repository

    Liu, Huan

    2012-01-01

    The recently reported quantum junction architecture represents a promising approach to building a rectifying photovoltaic device that employs colloidal quantum dot layers on each side of the p-n junction. Here, we report an optimized quantum junction solar cell that leverages an improved aluminum zinc oxide electrode for a stable contact to the n-side of the quantum junction and silver doping of the p-layer that greatly enhances the photocurrent by expanding the depletion region in the n-side of the device. These improvements result in greater stability and a power conversion efficiency of 6.1 under AM1.5 simulated solar illumination. © 2012 American Institute of Physics.

  3. Fabrication of magnetic tunnel junctions connected through a continuous free layer to enable spin logic devices

    Science.gov (United States)

    Wan, Danny; Manfrini, Mauricio; Vaysset, Adrien; Souriau, Laurent; Wouters, Lennaert; Thiam, Arame; Raymenants, Eline; Sayan, Safak; Jussot, Julien; Swerts, Johan; Couet, Sebastien; Rassoul, Nouredine; Babaei Gavan, Khashayar; Paredis, Kristof; Huyghebaert, Cedric; Ercken, Monique; Wilson, Christopher J.; Mocuta, Dan; Radu, Iuliana P.

    2018-04-01

    Magnetic tunnel junctions (MTJs) interconnected via a continuous ferromagnetic free layer were fabricated for spin torque majority gate (STMG) logic. The MTJs are biased independently and show magnetoelectric response under spin transfer torque. The electrical control of these devices paves the way to future spin logic devices based on domain wall (DW) motion. In particular, it is a significant step towards the realization of a majority gate. To our knowledge, this is the first fabrication of a cross-shaped free layer shared by several perpendicular MTJs. The fabrication process can be generalized to any geometry and any number of MTJs. Thus, this framework can be applied to other spin logic concepts based on magnetic interconnect. Moreover, it allows exploration of spin dynamics for logic applications.

  4. Spectroscopy of bulk and few-layer superconducting NbSe2 with van der Waals tunnel junctions.

    Science.gov (United States)

    Dvir, T; Massee, F; Attias, L; Khodas, M; Aprili, M; Quay, C H L; Steinberg, H

    2018-02-09

    Tunnel junctions, an established platform for high resolution spectroscopy of superconductors, require defect-free insulating barriers; however, oxides, the most common barrier, can only grow on a limited selection of materials. We show that van der Waals tunnel barriers, fabricated by exfoliation and transfer of layered semiconductors, sustain stable currents with strong suppression of sub-gap tunneling. This allows us to measure the spectra of bulk (20 nm) and ultrathin (3- and 4-layer) NbSe 2 devices at 70 mK. These exhibit two distinct superconducting gaps, the larger of which decreases monotonically with thickness and critical temperature. The spectra are analyzed using a two-band model incorporating depairing. In the bulk, the smaller gap exhibits strong depairing in in-plane magnetic fields, consistent with high out-of-plane Fermi velocity. In the few-layer devices, the large gap exhibits negligible depairing, consistent with out-of-plane spin locking due to Ising spin-orbit coupling. In the 3-layer device, the large gap persists beyond the Pauli limit.

  5. Optimization of Recombination Layer in the Tunnel Junction of Amorphous Silicon Thin-Film Tandem Solar Cells

    Directory of Open Access Journals (Sweden)

    Yang-Shin Lin

    2011-01-01

    Full Text Available The amorphous silicon/amorphous silicon (a-Si/a-Si tandem solar cells have attracted much attention in recent years, due to the high efficiency and low manufacturing cost compared to the single-junction a-Si solar cells. In this paper, the tandem cells are fabricated by high-frequency plasma-enhanced chemical vapor deposition (HF-PECVD at 27.1 MHz. The effects of the recombination layer and the i-layer thickness matching on the cell performance have been investigated. The results show that the tandem cell with a p+ recombination layer and i2/i1 thickness ratio of 6 exhibits a maximum efficiency of 9.0% with the open-circuit voltage (Voc of 1.59 V, short-circuit current density (Jsc of 7.96 mA/cm2, and a fill factor (FF of 0.70. After light-soaking test, our a-Si/a-Si tandem cell with p+ recombination layer shows the excellent stability and the stabilized efficiency of 8.7%.

  6. Core-level spectra and binding energies of transition metal nitrides by non-destructive x-ray photoelectron spectroscopy through capping layers

    Energy Technology Data Exchange (ETDEWEB)

    Greczynski, G., E-mail: grzgr@ifm.liu.se [Thin Film Physics Division, Department of Physics (IFM), Linköping University, SE-581 83 Linköping (Sweden); Primetzhofer, D. [Department of Physics and Astronomy, The Ångström Laboratory, Uppsala University, P.O. Box 516, SE-751 20 Uppsala (Sweden); Lu, J.; Hultman, L. [Thin Film Physics Division, Department of Physics (IFM), Linköping University, SE-581 83 Linköping (Sweden)

    2017-02-28

    Highlights: • First non-destructive measurements of XPS core level binding energies for group IVb-VIb transition metal nitrides are presented. • All films are grown under the same conditions and analyzed in the same instrument, providing a useful reference for future XPS studies. • Extracted core level BE values are more reliable than those obtained from sputter-cleaned N-deficient surfaces. • Comparison to Ar+-etched surfaces reveals that even mild etching conditions result in the formation of a nitrogen-deficient surface layer. • The N/metal concentration ratios from capped samples are found to be 25-90% higher than those from the corresponding ion-etched surfaces. - Abstract: We present the first measurements of x-ray photoelectron spectroscopy (XPS) core level binding energies (BE:s) for the widely-applicable group IVb-VIb polycrystalline transition metal nitrides (TMN’s) TiN, VN, CrN, ZrN, NbN, MoN, HfN, TaN, and WN as well as AlN and SiN, which are common components in the TMN-based alloy systems. Nitride thin film samples were grown at 400 °C by reactive dc magnetron sputtering from elemental targets in Ar/N{sub 2} atmosphere. For XPS measurements, layers are either (i) Ar{sup +} ion-etched to remove surface oxides resulting from the air exposure during sample transfer from the growth chamber into the XPS system, or (ii) in situ capped with a few nm thick Cr or W overlayers in the deposition system prior to air-exposure and loading into the XPS instrument. Film elemental composition and phase content is thoroughly characterized with time-of-flight elastic recoil detection analysis (ToF-E ERDA), Rutherford backscattering spectrometry (RBS), and x-ray diffraction. High energy resolution core level XPS spectra acquired with monochromatic Al Kα radiation on the ISO-calibrated instrument reveal that even mild etching conditions result in the formation of a nitrogen-deficient surface layer that substantially affects the extracted binding energy

  7. Core-level spectra and binding energies of transition metal nitrides by non-destructive x-ray photoelectron spectroscopy through capping layers

    International Nuclear Information System (INIS)

    Greczynski, G.; Primetzhofer, D.; Lu, J.; Hultman, L.

    2017-01-01

    Highlights: • First non-destructive measurements of XPS core level binding energies for group IVb-VIb transition metal nitrides are presented. • All films are grown under the same conditions and analyzed in the same instrument, providing a useful reference for future XPS studies. • Extracted core level BE values are more reliable than those obtained from sputter-cleaned N-deficient surfaces. • Comparison to Ar+-etched surfaces reveals that even mild etching conditions result in the formation of a nitrogen-deficient surface layer. • The N/metal concentration ratios from capped samples are found to be 25-90% higher than those from the corresponding ion-etched surfaces. - Abstract: We present the first measurements of x-ray photoelectron spectroscopy (XPS) core level binding energies (BE:s) for the widely-applicable group IVb-VIb polycrystalline transition metal nitrides (TMN’s) TiN, VN, CrN, ZrN, NbN, MoN, HfN, TaN, and WN as well as AlN and SiN, which are common components in the TMN-based alloy systems. Nitride thin film samples were grown at 400 °C by reactive dc magnetron sputtering from elemental targets in Ar/N 2 atmosphere. For XPS measurements, layers are either (i) Ar + ion-etched to remove surface oxides resulting from the air exposure during sample transfer from the growth chamber into the XPS system, or (ii) in situ capped with a few nm thick Cr or W overlayers in the deposition system prior to air-exposure and loading into the XPS instrument. Film elemental composition and phase content is thoroughly characterized with time-of-flight elastic recoil detection analysis (ToF-E ERDA), Rutherford backscattering spectrometry (RBS), and x-ray diffraction. High energy resolution core level XPS spectra acquired with monochromatic Al Kα radiation on the ISO-calibrated instrument reveal that even mild etching conditions result in the formation of a nitrogen-deficient surface layer that substantially affects the extracted binding energy values. These

  8. Junction Propagation in Organometal Halide Perovskite-Polymer Composite Thin Films.

    Science.gov (United States)

    Shan, Xin; Li, Junqiang; Chen, Mingming; Geske, Thomas; Bade, Sri Ganesh R; Yu, Zhibin

    2017-06-01

    With the emergence of organometal halide perovskite semiconductors, it has been discovered that a p-i-n junction can be formed in situ due to the migration of ionic species in the perovskite when a bias is applied. In this work, we investigated the junction formation dynamics in methylammonium lead tribromide (MAPbBr 3 )/polymer composite thin films. It was concluded that the p- and n- doped regions propagated into the intrinsic region with an increasing bias, leading to a reduced intrinsic perovskite layer thickness and the formation of an effective light-emitting junction regardless of perovskite layer thicknesses (300 nm to 30 μm). The junction propagation also played a major role in deteriorating the LED operation lifetime. Stable perovskite LEDs can be achieved by restricting the junction propagation after its formation.

  9. Few-Layer WSe2 Schottky Junction-Based Photovoltaic Devices through Site-Selective Dual Doping.

    Science.gov (United States)

    Ko, Seungpil; Na, Junhong; Moon, Young-Sun; Zschieschang, Ute; Acharya, Rachana; Klauk, Hagen; Kim, Gyu-Tae; Burghard, Marko; Kern, Klaus

    2017-12-13

    Ultrathin sheets of two-dimensional (2D) materials like transition metal dichalcogenides have attracted strong attention as components of high-performance light-harvesting devices. Here, we report the implementation of Schottky junction-based photovoltaic devices through site-selective surface doping of few-layer WSe 2 in lateral contact configuration. Specifically, whereas the drain region is covered by a strong molecular p-type dopant (NDP-9) to achieve an Ohmic contact, the source region is coated with an Al 2 O 3 layer, which causes local n-type doping and correspondingly an increase of the Schottky barrier at the contact. By scanning photocurrent microscopy using green laser light, it could be confirmed that photocurent generation is restricted to the region around the source contact. The local photoinduced charge separation is associated with a photoresponsivity of up to 20 mA W -1 and an external quantum efficiency of up to 1.3%. The demonstrated device concept should be easily transferrable to other van der Waals 2D materials.

  10. Perpendicular magnetic tunnel junction with tunneling magnetoresistance ratio of 64% using MgO (100) barrier layer prepared at room temperature

    International Nuclear Information System (INIS)

    Ohmori, Hideto; Hatori, Tomoya; Nakagawa, Shigeki

    2008-01-01

    MgO (100) textured films can be prepared by reactive facing targets sputtering at room temperature without postdeposition annealing process when they were deposited on (100) oriented Fe buffer layers. This method allows fabrication of perpendicular magnetic tunnel junction (p-MTJ) with MgO (100) tunneling barrier layer and rare-earth transition metal (RE-TM) alloy thin films as perpendicularly magnetized free and pinned layers. The 3-nm-thick MgO tunneling barrier layer in p-MTJ multilayer prepared on glass substrate revealed (100) crystalline orientation. Extraordinary Hall effect measurement clarified that the perpendicular magnetic components of 3-nm-thick Fe buffer layers on the two ends of MgO tunneling barrier layer were increased by exchange coupling with RE-TM alloy layers. The RA of 35 kΩ μm 2 and tunneling magnetoresistance ratio of 64% was observed in the multilayered p-MTJ element by current-in-plane-tunneling

  11. The role of proximity caps during the annealing of UV-ozone oxidized GaAs

    International Nuclear Information System (INIS)

    Ghosh, S. C.; Biesinger, M. C.; LaPierre, R. R.; Kruse, P.

    2007-01-01

    This study provides a deeper insight into the chemistry and physics of the common engineering practice of using a proximity cap, while annealing compound semiconductors such as GaAs. We have studied the cases of a GaAs proximity cap, a Si proximity cap, and no proximity cap. Using x-ray photoelectron spectroscopy, it has been found that annealing increases the gallium to arsenic ratio in the oxide layer in all cases. During the annealing of UV-ozone oxidized GaAs, it has been observed that GaAs proximity caps also serve as a sacrificial layer to accelerate the desorption of oxide species. In all cases surface deterioration due to pit formation has been observed, and the depth of pits is found to depend on the effective role played by the capping material. Energy dispersive x-ray analysis provides additional evidence that pits mainly consist of elemental As and gallium oxide, with most of the elemental As situated at the pit-substrate interface. Deposition of a thin layer of gold and subsequent annealing to 500 deg. C for 300 s under different capping conditions shows the use of a proximate cap to be practically insignificant in annealing Au deposited films

  12. Quantum synchronization effects in intrinsic Josephson junctions

    International Nuclear Information System (INIS)

    Machida, M.; Kano, T.; Yamada, S.; Okumura, M.; Imamura, T.; Koyama, T.

    2008-01-01

    We investigate quantum dynamics of the superconducting phase in intrinsic Josephson junctions of layered high-T c superconductors motivated by a recent experimental observation for the switching rate enhancement in the low temperature quantum regime. We pay attention to only the capacitive coupling between neighboring junctions and perform large-scale simulations for the Schroedinger equation derived from the Hamiltonian considering the capacitive coupling alone. The simulation focuses on an issue whether the switching of a junction induces those of the other junctions or not. The results reveal that the superconducting phase dynamics show synchronous behavior with increasing the quantum character, e.g., decreasing the junction plane area and effectively the temperature. This is qualitatively consistent with the experimental result

  13. Organic tandem and multi-junction solar cells

    NARCIS (Netherlands)

    Hadipour, Afshin; de Boer, Bert; Blom, Paul W. M.

    2008-01-01

    The emerging field of stacked layers (double- and even multi-layers) in organic photovoltaic cells is reviewed. Owing to the limited absorption width of organic molecules and polymers, only a small fraction of the solar flux can be harvested by a single-layer bulk hetero-junction photovoltaic cell.

  14. Tunnel magnetoresistance in alumina, magnesia and composite tunnel barrier magnetic tunnel junctions

    International Nuclear Information System (INIS)

    Schebaum, Oliver; Drewello, Volker; Auge, Alexander; Reiss, Guenter; Muenzenberg, Markus; Schuhmann, Henning; Seibt, Michael; Thomas, Andy

    2011-01-01

    Using magnetron sputtering, we have prepared Co-Fe-B/tunnel barrier/Co-Fe-B magnetic tunnel junctions with tunnel barriers consisting of alumina, magnesia, and magnesia-alumina bilayer systems. The highest tunnel magnetoresistance ratios we found were 73% for alumina and 323% for magnesia-based tunnel junctions. Additionally, tunnel junctions with a unified layer stack were prepared for the three different barriers. In these systems, the tunnel magnetoresistance ratios at optimum annealing temperatures were found to be 65% for alumina, 173% for magnesia, and 78% for the composite tunnel barriers. The similar tunnel magnetoresistance ratios of the tunnel junctions containing alumina provide evidence that coherent tunneling is suppressed by the alumina layer in the composite tunnel barrier. - Research highlights: → Transport properties of Co-Fe-B/tunnel barrier/Co-Fe-B magnetic tunnel junctions. → Tunnel barrier consists of MgO, Al-Ox, or MgO/Al-Ox bilayer systems. → Limitation of TMR-ratio in composite barrier tunnel junctions to Al-Ox values. → Limitation indicates that Al-Ox layer is causing incoherent tunneling.

  15. Expression pattern of adhesion molecules in junctional epithelium differs from that in other gingival epithelia.

    Science.gov (United States)

    Hatakeyama, S; Yaegashi, T; Oikawa, Y; Fujiwara, H; Mikami, T; Takeda, Y; Satoh, M

    2006-08-01

    The gingival epithelium is the physiologically important interface between the bacterially colonized gingival sulcus and periodontal soft and mineralized connective tissues, requiring protection from exposure to bacteria and their products. However, of the three epithelia comprising the gingival epithelium, the junctional epithelium has much wider intercellular spaces than the sulcular epithelium and oral gingival epithelium. Hence, the aim of the present study was to characterize the cell adhesion structure in the junctional epithelium compared with the other two epithelia. Gingival epithelia excised at therapeutic flap surgery from patients with periodontitis were examined for expression of adhesion molecules by immunofluorescence. In the oral gingival epithelium and sulcular epithelium, but not in the junctional epithelium, desmoglein 1 and 2 in cell-cell contact sites were more abundant in the upper than the suprabasal layers. E-cadherin, the main transmembranous molecule of adherens junctions, was present in spinous layers of the oral gingival epithelium and sulcular epithelium, but was scarce in the junctional epithelium. In contrast, desmoglein 3 and P-cadherin were present in all layers of the junctional epithelium as well as the oral gingival epithelium and sulcular epithelium. Connexin 43 was clearly localized to spinous layers of the oral gingival epithelium, sulcular epithelium and parts of the junctional epithelium. Claudin-1 and occludin were expressed in the cell membranes of a few superficial layers of the oral gingival epithelium. These findings indicated that the junctional epithelium contains only a few desmosomes, composed of only desmoglein 3; adherens junctions are probably absent because of defective E-cadherin. Thus, the anchoring junctions connecting junctional epithelium cells are lax, causing widened intercellular spaces. In contrast, the oral gingival epithelium, which has a few tight junctions, functions as a barrier.

  16. Low frequency noise in asymmetric double barrier magnetic tunnel junctions with a top thin MgO layer

    International Nuclear Information System (INIS)

    Guo Hui-Qiang; Tang Wei-Yue; Liu Liang; Wei Jian; Li Da-Lai; Feng Jia-Feng; Han Xiu-Feng

    2015-01-01

    Low frequency noise has been investigated at room temperature for asymmetric double barrier magnetic tunnel junctions (DBMTJs), where the coupling between the top and middle CoFeB layers is antiferromagnetic with a 0.8-nm thin top MgO barrier of the CoFeB/MgO/CoFe/CoFeB/MgO/CoFeB DBMTJ. At enough large bias, 1/f noise dominates the voltage noise power spectra in the low frequency region, and is conventionally characterized by the Hooge parameter α mag . With increasing external field, the top and bottom ferromagnetic layers are aligned by the field, and then the middle free layer rotates from antiparallel state (antiferromagnetic coupling between top and middle ferromagnetic layers) to parallel state. In this rotation process α mag and magnetoresistance-sensitivity-product show a linear dependence, consistent with the fluctuation dissipation relation. With the magnetic field applied at different angles (θ) to the easy axis of the free layer, the linear dependence persists while the intercept of the linear fit satisfies a cos(θ) dependence, similar to that for the magnetoresistance, suggesting intrinsic relation between magnetic losses and magnetoresistance. (rapid communication)

  17. Bias voltage dependence of magnetic tunnel junctions comprising amorphous ferromagnetic CoFeSiB layer with double barriers

    International Nuclear Information System (INIS)

    Yim, H.I.; Lee, S.Y.; Hwang, J.Y.; Rhee, J.R.; Chun, B.S.; Wang, K.L.; Kim, Y.K.; Kim, T.W.; Lee, S.S.; Hwang, D.G.

    2008-01-01

    Double-barrier magnetic tunnel junctions (DMTJs) with and without an amorphous ferromagnetic material such as CoFeSiB 10, CoFe 5/CoFeSiB 5, and CoFe 10 (nm) were prepared and compared to investigate the bias voltage dependence of the tunneling magnetoresistance (TMR) ratio. Typical DMTJ structures were Ta 45/Ru 9.5/IrMn 10/CoFe 7/AlO x /free layer 10/AlO x /CoFe 7/IrMn 10/Ru 60 (in nanometers). The interlayer coupling field and the normalized TMR ratios at the applied voltages of +0.4 and -0.4 V of the amorphous CoFeSiB free-layer DMTJ offer lower and higher values than that of the polycrystalline CoFe free-layer DMTJ, respectively. An amorphous ferromagnetic CoFeSiB layer improves the interface roughness of the free layer/tunnel barrier and, as a result, the interlayer coupling field and bias voltage dependence of the TMR ratio are suppressed at a given voltage. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  18. Laboratory testing of closure cap repair techniques

    International Nuclear Information System (INIS)

    Persoff, P.; Moridis, G.; Tuck, D.M.

    1996-10-01

    Landfill design requires a low permeability closure cap as well as a low permeability liner. The Savannah River Site, in South Carolina, has approximately 85 acres of mixed waste landfills covered with compacted kaolin clay. Maintaining low permeability of the clay cap requires both that the permeability of the compacted clay itself remain low and that the integrity of the barrier be maintained. Barrier breaches typically result from penetration by roots or animals, and especially cracks caused by uneven settling or desiccation. In this study, clay layers, 0.81 m in diameter and 7.6 cm thick, were compacted in 7 lysimeters to simulate closure caps. The hydraulic conductivity of each layer was measured, and the compacted clay layers (CCL's) were cracked by drying. Then various repair techniques were applied and the effectiveness of each repair was assessed by remeasuring the hydraulic conductivity. Finally the repaired CCL was again dried and measured to determine how the repair responded to the conditions that caused the original failure. For a full report of this investigation see Persoff et al. Six repair techniques have been tested, four of which involve the use of injectable barrier liquids colloidal silica (CS) and polysiloxane (PSX) described below: (I) covering the crack with a bentonite geosynthetic clay liner (GCL), (ii) recompaction of new kaolinite at STD+3 moisture content joined to existing kaolinite that had dried and shrunk, (iii) direct injection of colloidal silica to a crack, (iv) injection of colloidal silica (CS) to wells in an overlying sand layer, (v) direct injection of polysiloxane to a crack, and (vi), injection of polysiloxane (PSX) to wells in an overlying soil layer

  19. Electroplated Ni on the PN Junction Semiconductor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jin Joo; Uhm, Young Rang; Son, Kwang Jae; Kim, Jong Bum; Choi, Sang Moo; Park, Jong Han; Hong, Jintae [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    Nickel (Ni) electroplating was implemented by using a metal Ni powder in order to establish a Ni-63 plating condition on the PN junction semiconductor needed for production of betavoltaic battery. PN junction semiconductors with a Ni seed layer of 500 and 1000 A were coated with Ni at current density from 10 to 50 mA cm{sup 2}. The surface roughness and average grain size of Ni deposits were investigated by XRD and SEM techniques. The roughness of Ni deposit was increased as the current density was increased, and decreased as the thickness of Ni seed layer was increased.

  20. Electroplated Ni on the PN Junction Semiconductor

    International Nuclear Information System (INIS)

    Kim, Jin Joo; Uhm, Young Rang; Son, Kwang Jae; Kim, Jong Bum; Choi, Sang Moo; Park, Jong Han; Hong, Jintae

    2015-01-01

    Nickel (Ni) electroplating was implemented by using a metal Ni powder in order to establish a Ni-63 plating condition on the PN junction semiconductor needed for production of betavoltaic battery. PN junction semiconductors with a Ni seed layer of 500 and 1000 A were coated with Ni at current density from 10 to 50 mA cm 2 . The surface roughness and average grain size of Ni deposits were investigated by XRD and SEM techniques. The roughness of Ni deposit was increased as the current density was increased, and decreased as the thickness of Ni seed layer was increased

  1. Capping Layer (CL) Induced Antidamping in CL/Py/β-W System (CL: Al, β-Ta, Cu, β-W).

    Science.gov (United States)

    Behera, Nilamani; Guha, Puspendu; Pandya, Dinesh K; Chaudhary, Sujeet

    2017-09-13

    For achieving ultrafast switching speed and minimizing dissipation losses, the spin-based data storage device requires a control on effective damping (α eff ) of nanomagnetic bits. Incorporation of interfacial antidamping spin orbit torque (SOT) in spintronic devices therefore has high prospects for enhancing their performance efficiency. Clear evidence of such an interfacial antidamping is found in Al capped Py(15 nm)/β-W(t W )/Si (Py = Ni 81 Fe 19 and t W = thickness of β-W), which is in contrast to the increase of α eff (i.e., damping) usually associated with spin pumping as seen in Py(15 nm)/β-W(t W )/Si system. Because of spin pumping, the interfacial spin mixing conductance (g ↑↓ ) at Py/β-W interface and spin diffusion length (λ SD ) of β-W are found to be 1.63(±0.02) × 10 18 m -2 (1.44(±0.02) × 10 18 m -2 ) and 1.42(±0.19) nm (1.00(±0.10) nm) for Py(15 nm)/β-W(t W )/Si (β-W(t W )/Py(15 nm)/Si) bilayer systems. Other different nonmagnetic capping layers (CL), namely, β-W(2 nm), Cu(2 nm), and β-Ta(2,3,4 nm) were also grown over the same Py(15 nm)/β-W(t W ). However, antidamping is seen only in β-Ta(2,3 nm)/Py(15 nm)/β-W(t W )/Si. This decrease in α eff is attributed to the interfacial Rashba like SOT generated by nonequilibrium spin accumulation subsequent to the spin pumping. Contrary to this, when interlayer positions of Py(15 nm) and β-W(t W ) is interchanged irrespective of the fixed top nonmagnetic layer, an increase of α eff is observed, which is ascribed to spin pumping from Py to β-W layer.

  2. Effect of ultrathin GeOx interfacial layer formed by thermal oxidation on Al2O3 capped Ge

    International Nuclear Information System (INIS)

    Han Le; Zhang Xiong; Wang Sheng-Kai; Xue Bai-Qing; Liu Hong-Gang; Wu Wang-Ran; Zhao Yi

    2014-01-01

    We propose a modified thermal oxidation method in which an Al 2 O 3 capping layer is used as an oxygen blocking layer (OBL) to form an ultrathin GeO x interfacial layer, and obtain a superior Al 2 O 3 /GeO x /Ge gate stack. The GeO x interfacial layer is formed in oxidation reaction by oxygen passing through the Al 2 O 3 OBL, in which the Al 2 O 3 layer could restrain the oxygen diffusion and suppress the GeO desorption during thermal treatment. The thickness of the GeO x interfacial layer would dramatically decrease as the thickness of Al 2 O 3 OBL increases, which is beneficial to achieving an ultrathin GeO x interfacial layer to satisfy the demand for small equivalent oxide thickness (EOT). In addition, the thickness of the GeO x interfacial layer has little influence on the passivation effect of the Al 2 O 3 /Ge interface. Ge (100) p-channel metal–oxide–semiconductor field-effect transistors (pMOSFETs) using the Al 2 O 3 /GeO x /Ge gate stacks exhibit excellent electrical characteristics; that is, a drain current on-off (I on /I off ) ratio of above 1×10 4 , a subthreshold slope of ∼ 120 mV/dec, and a peak hole mobility of 265 cm 2 /V·s are achieved. (condensed matter: structural, mechanical, and thermal properties)

  3. Surface flattening processes of metal layer and their effect on transport properties of magnetic tunnel junctions with Al-N barrier

    International Nuclear Information System (INIS)

    Yoshimura, S.; Nozawa, T.; Shoyama, T.; Tsunoda, M.; Takahashi, M.

    2005-01-01

    In order to form ultrathin insulating layer in magnetic tunnel junctions (MTJs), two surface flatting processes of metal films are investigated. Oxygen-additive sputter-deposition process was applied to the bottom Cu electrode and the Al layer to be nitrided. Dry-etching process was applied for the surface treatment of lower Co-Fe layer. As a result, the surface roughness of stacked ultrathin Al layer to be nitrided is reduced from 3.2A to 1.7A, and the tunnel magnetoresistance (TMR) ratio of the MTJs increases from 1% to 26% while maintaining resistance-area product (RxA) less than 5x10 2 Ω μm 2 in the Co-Fe/Al(6A)-N/Co-Fe MTJs. We conclude that the decrease of the surface roughness of Al layer is one of the key factors to realize high performance MTJs with low RxA and high TMR ratio

  4. Spectroscopy of Deep Traps in Cu2S-CdS Junction Structures

    Directory of Open Access Journals (Sweden)

    Eugenijus Gaubas

    2012-12-01

    Full Text Available Cu2S-CdS junctions of the polycrystalline material layers have been examined by combining the capacitance deep level transient spectroscopy technique together with white LED light additional illumination (C-DLTS-WL and the photo-ionization spectroscopy (PIS implemented by the photocurrent probing. Three types of junction structures, separated by using the barrier capacitance characteristics of the junctions and correlated with XRD distinguished precipitates of the polycrystalline layers, exhibit different deep trap spectra within CdS substrates.

  5. Nanofibrous p-n Junction and Its Rectifying Characteristics

    Directory of Open Access Journals (Sweden)

    Jian Fang

    2013-01-01

    Full Text Available Randomly oriented tin oxide (SnO2 nanofibers and poly(3,4-ethylenedioxythiophene-poly(styrenesulfonate/polyvinylpyrrolidone (PEDOT:PSS/PVP nanofibers were prepared by a two-step electrospinning technique to form a layered fibrous mat. The current-voltage measurement revealed that the fibrous mat had an obvious diode-rectifying characteristic. The thickness of the nanofiber layers was found to have a considerable influence on the device resistance and rectifying performance. Such an interesting rectifying property was attributed to the formation of a p-n junction between the fibrous SnO2 and PEDOT:PSS/PVP layers. This is the first report that a rectifying junction can be formed between two layers of electrospun nanofiber mats, and the resulting nanofibrous diode rectifier may find applications in sensors, energy harvest, and electronic textiles.

  6. Temperature dependence of microwave oscillations in magnetic tunnel junctions with a perpendicularly magnetized free layer

    International Nuclear Information System (INIS)

    Guo, Peng; Feng, Jiafeng; Wei, Hongxiang; Han, Xiufeng; Fang, Bin; Zhang, Baoshun; Zeng, Zhongming

    2015-01-01

    We experimentally study the temperature dependence of the spin-transfer-torque-induced microwave oscillations in MgO-based magnetic tunnel junction nanopillars with a perpendicularly magnetized free layer. We demonstrate that the oscillation frequency increases rapidly with decreasing temperature, which is mainly ascribed to the temperature dependence of both the saturation magnetization and the perpendicular magnetic anisotropy. We also find that a strong temperature dependence of the output power while a nonmonotonic temperature dependence of spectral linewidth are maintained for a constant dc bias in measured temperature range. Possible mechanisms leading to the different dependences of oscillation frequency, output power, and linewidth are discussed

  7. Hybrid tunnel junction contacts to III–nitride light-emitting diodes

    KAUST Repository

    Young, Erin C.; Yonkee, Benjamin P.; Wu, Feng; Oh, Sang Ho; DenBaars, Steven P.; Nakamura, Shuji; Speck, James S.

    2016-01-01

    In this work, we demonstrate highly doped GaN p–n tunnel junction (TJ) contacts on III–nitride heterostructures where the active region of the device and the top p-GaN layers were grown by metal organic chemical vapor deposition and highly doped n-GaN was grown by NH3 molecular beam epitaxy to form the TJ. The regrowth interface in these hybrid devices was found to have a high concentration of oxygen, which likely enhanced tunneling through the diode. For optimized regrowth, the best tunnel junction device had a total differential resistivity of 1.5 × 10−4 Ω cm2, including contact resistance. As a demonstration, a blue-light-emitting diode on a ($20\\bar{2}\\bar{1}$) GaN substrate with a hybrid tunnel junction and an n-GaN current spreading layer was fabricated and compared with a reference sample with a transparent conducting oxide (TCO) layer. The tunnel junction LED showed a lower forward operating voltage and a higher efficiency at a low current density than the TCO LED.

  8. Hybrid tunnel junction contacts to III–nitride light-emitting diodes

    KAUST Repository

    Young, Erin C.

    2016-01-26

    In this work, we demonstrate highly doped GaN p–n tunnel junction (TJ) contacts on III–nitride heterostructures where the active region of the device and the top p-GaN layers were grown by metal organic chemical vapor deposition and highly doped n-GaN was grown by NH3 molecular beam epitaxy to form the TJ. The regrowth interface in these hybrid devices was found to have a high concentration of oxygen, which likely enhanced tunneling through the diode. For optimized regrowth, the best tunnel junction device had a total differential resistivity of 1.5 × 10−4 Ω cm2, including contact resistance. As a demonstration, a blue-light-emitting diode on a ($20\\\\bar{2}\\\\bar{1}$) GaN substrate with a hybrid tunnel junction and an n-GaN current spreading layer was fabricated and compared with a reference sample with a transparent conducting oxide (TCO) layer. The tunnel junction LED showed a lower forward operating voltage and a higher efficiency at a low current density than the TCO LED.

  9. Characterization of a High-Level Waste Cold Cap in a Laboratory-Scale Melter

    Energy Technology Data Exchange (ETDEWEB)

    Dixona, Derek R; Schweiger, Michael J; Hrma, Pavel [Pacific Northwest National Laboratory, Richland (United States)

    2013-05-15

    The feed, slurry or calcine, is charged to the melter from above. The conversion of the melter feed to molten glass occurs within the cold cap, a several centimeters thin layer of the reacting material blanketing the surface of the melt. Between the cold-cap top, which is covered by boiling slurry, and its bottom, where bubbles separate it from molten glass, the temperature changes by ∼900 .deg. C. The heat is delivered to the cold cap from the melt that is stirred mainly by bubbling. The feed contains oxides, hydroxides, acids, inorganic salts and organic materials. On heating, these components react, releasing copious amounts of gases, while molten salts decompose, glass-forming melt is generated, and crystalline phases precipitate and dissolve in the melt. Most of these processes have been studied in detail and became sufficiently understood for a mathematical model to represent the heat and mass transfer within the cold cap. This allows US to relate the rate of melting to the feed properties. While the melting reactions can be studied, and feed properties, such as heat conductivity and density, measured in the laboratory, the actual cold-cap dynamics, as it evolves in the waste glass melter, is not accessible to direct investigation. Therefore, to bridge the gap between the laboratory crucible and the waste glass melter, we explored the cold cap formation in a laboratory-scale melter (LSM) and studied the structure of quenched cold caps. The LSM is a suitable tool for investigating the cold cap. The cold cap that formed in the LSM experiments exhibited macroscopic features observed in scaled melters, as well as microscopic features accessible through laboratory studies and mathematical modeling. The cold cap consists of two main layers. The top layer contains solid particles dissolving in the glass-forming melt and open shafts through which gases are escaping. The bottom layer contains bubbly melt or foam where bubbles coalesce into larger cavities that move

  10. Systematic optimization of quantum junction colloidal quantum dot solar cells

    KAUST Repository

    Liu, Huan; Zhitomirsky, David; Hoogland, Sjoerd; Tang, Jiang; Kramer, Illan J.; Ning, Zhijun; Sargent, Edward H.

    2012-01-01

    The recently reported quantum junction architecture represents a promising approach to building a rectifying photovoltaic device that employs colloidal quantum dot layers on each side of the p-n junction. Here, we report an optimized quantum

  11. Technique for electronic measurement of semi-reduction layer using bipolar transistor of junction

    International Nuclear Information System (INIS)

    Santos, Luiz A.P.; Barros, Fabio R.; Santos, Marcus A.P.; Monte, David S.; Santos, Jose A.P.

    2014-01-01

    Recommendations of the International Commission on Radiological Protection (ICRP), the World Health Organization (WHO) and also of the International Atomic Energy Agency (IAEA) suggest equipment for X-rays diagnosis are checked for conformance to their parameters, such as Layer Semi-Reduction (CSR). The importance of verification of diagnostic radiology in parameters is because of have records that forces patients undergoing radiation doses in some clinics, up to 300% the reference values suggested by international agencies which doses are considered unnecessary, and even harmful, either because of physical or variable greatness of being out of control nominal specification, or the fact of having to repeat the radiographs. In this context, the purpose of this study was an innovative methodology that is the use of bipolar transistor junction (TBJ) to measure the aluminum CSR in diagnostic X-ray equipment beams. Although the TBJ be a device invented in the last century, only in recent years have explored their potential as X-ray sensor applied to diagnosis. The study indicates that the tested device can operating the detection of X-rays is properly polarized with electrical signals that can detect interference of the interaction of X-ray photons with the PN junction formed by the base and emitter terminals. The result of the developed technique was compared to CSR measurements obtained with detection systems standards and it was found that the BJT provides values for aluminum CSR relative errors less than 5%

  12. Josephson tunnel junctions in niobium films

    International Nuclear Information System (INIS)

    Wiik, Tapio.

    1976-12-01

    A method of fabricating stable Josephson tunnel junctions with reproducible characteristics is described. The junctions have a sandwich structure consisting of a vacuum evaporated niobium film, a niobium oxide layer produced by the glow discharge method and a lead film deposited by vacuum evaporation. Difficulties in producing thin-film Josephson junctions are discussed. Experimental results suggest that the lower critical field of the niobium film is the most essential parameter when evaluating the quality of these junctions. The dependence of the lower critical field on the film thickness and on the Ginzburg-Landau parameter of the film is studied analytically. Comparison with the properties of the evaporated films and with the previous calculations for bulk specimens shows that the presented model is applicable for most of the prepared samples. (author)

  13. Magnetoresistance of galfenol-based magnetic tunnel junction

    International Nuclear Information System (INIS)

    Gobaut, B.; Vinai, G.; Castán-Guerrero, C.; Krizmancic, D.; Panaccione, G.; Torelli, P.; Rafaqat, H.; Roddaro, S.; Rossi, G.; Eddrief, M.; Marangolo, M.

    2015-01-01

    The manipulation of ferromagnetic layer magnetization via electrical pulse is driving an intense research due to the important applications that this result will have on memory devices and sensors. In this study we realized a magnetotunnel junction in which one layer is made of Galfenol (Fe 1-x Ga x ) which possesses one of the highest magnetostrictive coefficient known. The multilayer stack has been grown by molecular beam epitaxy and e-beam evaporation. Optical lithography and physical etching have been combined to obtain 20x20 micron sized pillars. The obtained structures show tunneling conductivity across the junction and a tunnel magnetoresistance (TMR) effect of up to 11.5% in amplitude

  14. Coincidence of features of emitted THz electromagnetic wave power form a single Josephson junction and different current components

    Science.gov (United States)

    Hamdipour, Mohammad

    2017-12-01

    By applying a voltage to a Josephson junction, the charge in superconducting layers (S-layers) will oscillate. Wavelength of the charge oscillations in S-layers is related to external current in junction, by increasing the external current, the wavelength will decrease which cause in some currents the wavelength be incommensurate with width of junction, so the CVC shows Fiske like steps. External current throwing along junction has some components, resistive, capacitive and superconducting current, beside these currents there is a current in lateral direction of junction, (x direction). On the other hand, the emitted electromagnetic wave power in THz region is related to AC component of electric field in junction, which itself is related to charge density in S-layers, which is related to currents in the system. So we expect that features of variation of current components reflect the features of emitted THz power form junction. Here we study in detail the superconductive current in a long Josephson junction (JJ), the current voltage characteristics (CVC) of junction and emitted THz power from the system. Then we compare the results. Comparing the results we see that there is a good qualitative coincidence in features of emitted THz power and supercurrent in junction.

  15. Zero-field spin transfer oscillators based on magnetic tunnel junction having perpendicular polarizer and planar free layer

    Directory of Open Access Journals (Sweden)

    Bin Fang

    2016-12-01

    Full Text Available We experimentally studied spin-transfer-torque induced magnetization oscillations in an asymmetric MgO-based magnetic tunnel junction device consisting of an in-plane magnetized free layer and an out-of-plane magnetized polarizer. A steady auto-oscillation was achieved at zero magnetic field and room temperature, with an oscillation frequency that was strongly dependent on bias currents, with a large frequency tunability of 1.39 GHz/mA. Our results suggest that this new structure has a high potential for new microwave device designs.

  16. Structural and optical studies of GaN pn-junction with AlN buffer layer grown on Si (111) by RF plasma enhanced MBE

    Energy Technology Data Exchange (ETDEWEB)

    Yusoff, Mohd Zaki Mohd; Hassan, Zainuriah; Woei, Chin Che; Hassan, Haslan Abu; Abdullah, Mat Johar [Nano-Optoelectronics Research and Technology Laboratory School of Physics, Universiti Sains Malaysia, 11800 Penang, Malaysia and Department of Applied Sciences Universiti Teknologi MARA (UiTM) 13500 Permatang Pauh, Penang (Malaysia); Department of Applied Sciences Universiti Teknologi MARA (UiTM) 13500 Permatang Pauh, Penang (Malaysia)

    2012-06-29

    GaN pn-junction grown on silicon substrates have been the focus in a number of recent reports and further effort is still necessary to improve its crystalline quality for practical applications. GaN has the high n-type background carrier concentration resulting from native defects commonly thought to be nitrogen vacancies. In this work, we present the growth of pn-junction of GaN on Si (111) substrate using RF plasma-enhanced molecular beam epitaxy (MBE). Both of the layers show uniformity with an average thickness of 0.709 {mu}m and 0.095 {mu}m for GaN and AlN layers, respectively. The XRD spectra indicate that no sign of cubic phase of GaN are found, so it is confirmed that the sample possessed hexagonal structure. It was found that all the allowed Raman optical phonon modes of GaN, i.e. the E2 (low), E1 (high) and A1 (LO) are clearly visible.

  17. Spin-transfer torque in spin filter tunnel junctions

    KAUST Repository

    Ortiz Pauyac, Christian

    2014-12-08

    Spin-transfer torque in a class of magnetic tunnel junctions with noncollinear magnetizations, referred to as spin filter tunnel junctions, is studied within the tight-binding model using the nonequilibrium Green\\'s function technique within Keldysh formalism. These junctions consist of one ferromagnet (FM) adjacent to a magnetic insulator (MI) or two FM separated by a MI. We find that the presence of the magnetic insulator dramatically enhances the magnitude of the spin-torque components compared to conventional magnetic tunnel junctions. The fieldlike torque is driven by the spin-dependent reflection at the MI/FM interface, which results in a small reduction of its amplitude when an insulating spacer (S) is inserted to decouple MI and FM layers. Meanwhile, the dampinglike torque is dominated by the tunneling electrons that experience the lowest barrier height. We propose a device of the form FM/(S)/MI/(S)/FM that takes advantage of these characteristics and allows for tuning the spin-torque magnitudes over a wide range just by rotation of the magnetization of the insulating layer.

  18. Spin-transfer torque in spin filter tunnel junctions

    KAUST Repository

    Ortiz Pauyac, Christian; Kalitsov, Alan; Manchon, Aurelien; Chshiev, Mairbek

    2014-01-01

    Spin-transfer torque in a class of magnetic tunnel junctions with noncollinear magnetizations, referred to as spin filter tunnel junctions, is studied within the tight-binding model using the nonequilibrium Green's function technique within Keldysh formalism. These junctions consist of one ferromagnet (FM) adjacent to a magnetic insulator (MI) or two FM separated by a MI. We find that the presence of the magnetic insulator dramatically enhances the magnitude of the spin-torque components compared to conventional magnetic tunnel junctions. The fieldlike torque is driven by the spin-dependent reflection at the MI/FM interface, which results in a small reduction of its amplitude when an insulating spacer (S) is inserted to decouple MI and FM layers. Meanwhile, the dampinglike torque is dominated by the tunneling electrons that experience the lowest barrier height. We propose a device of the form FM/(S)/MI/(S)/FM that takes advantage of these characteristics and allows for tuning the spin-torque magnitudes over a wide range just by rotation of the magnetization of the insulating layer.

  19. Molecular beam deposition of Al2O3 on p-Ge(001)/Ge0.95Sn0.05 heterostructure and impact of a Ge-cap interfacial layer

    International Nuclear Information System (INIS)

    Merckling, C.; Franquet, A.; Vincent, B.; Vandervorst, W.; Loo, R.; Caymax, M.; Sun, X.; Shimura, Y.; Takeuchi, S.; Nakatsuka, O.; Zaima, S.

    2011-01-01

    We investigated the molecular beam deposition of Al 2 O 3 on Ge 0.95 Sn 0.05 surface with and without an ultra thin Ge cap layer in between. We first studied the atomic configuration of both Ge 1-x Sn x and Ge/Ge 1-x Sn x surfaces after deoxidation by reflection high-energy electron diffraction and resulted, respectively, in a c(4x2) and (2x1) surface reconstructions. After in situ deposition of an Al 2 O 3 high-κ gate dielectric we evidenced using time-of-flight secondary ion mass spectroscopy analyses that Sn diffusion was at the origin of high leakage current densities in the Ge 1-x Sn x /Al 2 O 3 gate stack. This damage could be avoided by inserting a thin 5-nm-thick Ge cap between the oxide and the Ge 1-x Sn x layer. Finally, metal-oxide-semiconductor capacitors on the Ge capped sample showed well-behaved capacitance-voltage (C-V) characteristics with interface trap density (D it ) in the range of 10 12 eV -1 cm -2 in mid gap and higher close to the valence band edge.

  20. Fast Low-Current Spin-Orbit-Torque Switching of Magnetic Tunnel Junctions through Atomic Modifications of the Free-Layer Interfaces

    Science.gov (United States)

    Shi, Shengjie; Ou, Yongxi; Aradhya, S. V.; Ralph, D. C.; Buhrman, R. A.

    2018-01-01

    Future applications of spin-orbit torque will require new mechanisms to improve the efficiency of switching nanoscale magnetic tunnel junctions (MTJs), while also controlling the magnetic dynamics to achieve fast nanosecond-scale performance with low-write-error rates. Here, we demonstrate a strategy to simultaneously enhance the interfacial magnetic anisotropy energy and suppress interfacial spin-memory loss by introducing subatomic and monatomic layers of Hf at the top and bottom interfaces of the ferromagnetic free layer of an in-plane magnetized three-terminal MTJ device. When combined with a β -W spin Hall channel that generates spin-orbit torque, the cumulative effect is a switching current density of 5.4 ×106 A /cm2 .

  1. Characterizing pathways by which gravitropic effectors could move from the root cap to the root of primary roots of Zea mays

    Science.gov (United States)

    Moore, R.; McClelen, C. E.

    1989-01-01

    Plasmodesmata linking the root cap and root in primary roots Zea mays are restricted to approx. 400 protodermal cells bordering approx. 110000 microns2 of the calyptrogen of the root cap. This area is less than 10% of the cross-sectional area of the root-tip at the cap junction. Therefore, gravitropic effectors moving from the root cap to the root can move symplastically only through a relatively small area in the centre of the root. Decapped roots are non-responsive to gravity. However, decapped roots whose caps are replaced immediately after decapping are strongly graviresponsive. Thus, gravicurvature occurs only when the root cap contacts the root, and symplastic continuity between the cap and root is not required for gravicurvature. Completely removing mucilage from the root tip renders the root non-responsive to gravity. Taken together, these data suggest that gravitropic effectors move apoplastically through mucilage from the cap to the root.

  2. Ginzburg–Landau theory of mesoscopic multi-band Josephson junctions

    Energy Technology Data Exchange (ETDEWEB)

    Romeo, F.; De Luca, R., E-mail: rdeluca@unisa.it

    2017-05-15

    Highlights: • We generalize, in the realm of the Ginzburg–Landau theory, the de Gennes matching-matrix method for the interface order parameters to describe the superconducting properties of multi-band mesoscopic Josephson junctions. • The results are in agreement with a microscopic treatment of nanobridge junctions. • Thermal stability of the nanobridge junction is discussed in connection with recent experiments on iron-based grain-boundary junctions. - Abstract: A Ginzburg–Landau theory for multi-band mesoscopic Josephson junctions has been developed. The theory, obtained by generalizing the de Gennes matching-matrix method for the interface order parameters, allows the study of the phase dynamics of various types of mesoscopic Josephson junctions. As a relevant application, we studied mesoscopic double-band junctions also in the presence of a superconducting nanobridge interstitial layer. The results are in agreement with a microscopic treatment of the same system. Furthermore, thermal stability of the nanobridge junction is discussed in connection with recent experiments on iron-based grain-boundary junctions.

  3. Sensitivity of diamond-capped impedance transducer to Tröger's base derivative.

    Science.gov (United States)

    Stehlik, Stepan; Izak, Tibor; Kromka, Alexander; Dolenský, Bohumil; Havlík, Martin; Rezek, Bohuslav

    2012-08-01

    Sensitivity of an intrinsic nanocrystalline diamond (NCD) layer to naphthalene Tröger's base derivative decorated with pyrrole groups (TBPyr) was characterized by impedance spectroscopy. The transducer was made of Au interdigitated electrodes (IDE) with 50 μm spacing on alumina substrate which were capped with the NCD layer. The NCD-capped transducer with H-termination was able to electrically distinguish TBPyr molecules (the change of surface resistance within 30-60 kΩ) adsorbed from methanol in concentrations of 0.04 mg/mL to 40 mg/mL. An exponential decay of the surface resistance with time was observed and attributed to the readsorption of air moisture after methanol evaporation. After surface oxidation the NCD cap layer did not show any leakage due to NCD grain boundaries. We analyzed electronic transport in the transducer and propose a model for the sensing mechanism based on surface ion replacement.

  4. Field-effect P-N junction

    Science.gov (United States)

    Regan, William; Zettl, Alexander

    2015-05-05

    This disclosure provides systems, methods, and apparatus related to field-effect p-n junctions. In one aspect, a device includes an ohmic contact, a semiconductor layer disposed on the ohmic contact, at least one rectifying contact disposed on the semiconductor layer, a gate including a layer disposed on the at least one rectifying contact and the semiconductor layer and a gate contact disposed on the layer. A lateral width of the rectifying contact is less than a semiconductor depletion width of the semiconductor layer. The gate contact is electrically connected to the ohmic contact to create a self-gating feedback loop that is configured to maintain a gate electric field of the gate.

  5. Magnetic stability under magnetic cycling of MgO-based magnetic tunneling junctions with an exchange-biased synthetic antiferromagnetic pinned layer

    Directory of Open Access Journals (Sweden)

    Qiang Hao

    2016-02-01

    Full Text Available We investigate the magnetic stability and endurance of MgO-based magnetic tunnel junctions (MTJs with an exchange-biased synthetic antiferromagnetic (SAF pinned layer. When a uniaxially cycling switching field is applied along the easy axis of the free magnetic layer, the magnetoresistance varies only by 1.7% logarithmically with the number of cycles, while no such change appears in the case of a rotating field. This observation is consistent with the effect of the formation and motion of domain walls in the free layer, which create significant stray fields within the pinned hard layer. Unlike in previous studies, the decay we observed only occurs during the first few starting cycles (<20, at which point there is no further variance in all performance parameters up to 107 cycles. Exchange-biased SAF structure is ideally suited for solid-state magnetic sensors and magnetic memory devices.

  6. Evaluation of interlayer ferromagnetic coupling for stacked media by adding reference layer

    International Nuclear Information System (INIS)

    Tham, K K; Saito, S; Itagaki, N; Hinata, S; Takahashi, M; Hasegawa, D

    2011-01-01

    The trial for quantitative evaluation of interlayer ferromagnetic coupling between granular and cap layer in stacked media is reported. The evaluation is realized by analyzing M-H loop of stacked media with another reference layer added on the cap layer. The reference layer is antiferromagnetically coupled with the cap layer through non-magnetic spacer layer. In this experiment, Rh which leads to antiferromagnetic coupling constant along film normal direction of around 2 erg/cm 2 was used as non-magnetic spacer layer. According to the evaluation result done by this method, when thickness of the spacer Pd layer between granular layer and cap layer is increased to 1.1 nm, ferromagnetic coupling constant is weakened to 7.2 erg/cm 2 which results in reduction of saturation field.

  7. Charge transfer at junctions of a single layer of graphene and a metallic single walled carbon nanotube.

    Science.gov (United States)

    Paulus, Geraldine L C; Wang, Qing Hua; Ulissi, Zachary W; McNicholas, Thomas P; Vijayaraghavan, Aravind; Shih, Chih-Jen; Jin, Zhong; Strano, Michael S

    2013-06-10

    Junctions between a single walled carbon nanotube (SWNT) and a monolayer of graphene are fabricated and studied for the first time. A single layer graphene (SLG) sheet grown by chemical vapor deposition (CVD) is transferred onto a SiO₂/Si wafer with aligned CVD-grown SWNTs. Raman spectroscopy is used to identify metallic-SWNT/SLG junctions, and a method for spectroscopic deconvolution of the overlapping G peaks of the SWNT and the SLG is reported, making use of the polarization dependence of the SWNT. A comparison of the Raman peak positions and intensities of the individual SWNT and graphene to those of the SWNT-graphene junction indicates an electron transfer of 1.12 × 10¹³ cm⁻² from the SWNT to the graphene. This direction of charge transfer is in agreement with the work functions of the SWNT and graphene. The compression of the SWNT by the graphene increases the broadening of the radial breathing mode (RBM) peak from 3.6 ± 0.3 to 4.6 ± 0.5 cm⁻¹ and of the G peak from 13 ± 1 to 18 ± 1 cm⁻¹, in reasonable agreement with molecular dynamics simulations. However, the RBM and G peak position shifts are primarily due to charge transfer with minimal contributions from strain. With this method, the ability to dope graphene with nanometer resolution is demonstrated. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Investigations on in situ diagnostics by an infrared camera to distinguish between the plasma facing tiles with carbonaceous surface layer and defect in the underneath junction

    International Nuclear Information System (INIS)

    Cai, Laizhong; Gauthier, Eric; Corre, Yann; Liu, Jian

    2013-01-01

    Both a deposition surface layer and a delamination underneath junction existing on plasma facing components (PFCs) can result in abnormal high surface temperature under normal heating conditions. The tile with delamination has to be replaced to prevent from a critical failure (complete delamination) during plasma operation while the carbon deposit can be removed without any repairing. Therefore, distinguishing in situ deposited tiles and junction defect tiles is crucial to avoid the critical failure without unwanted shutdown. In this paper, the thermal behaviors of junction defect tiles and carbon deposit tiles are simulated numerically. A modified time constant method is then introduced to analyze the thermal behaviors of deposited tiles and junction defect tiles. The feasibility of discrimination by analyzing the thermal behaviors of tiles is discussed and the requirements of this method for discrimination are described. Finally, the time resolution requirement of IR cameras to do the discrimination is mentioned

  9. Thermal stability study of the insulator layer in NiFe/CoFe/Al2O3/Co spin-dependent tunnel junction

    International Nuclear Information System (INIS)

    Liao, C.C.; Ho, C.H.; Huang, R.-T.; Chen, F.-R.; Kai, J.J.; Chen, L.-C.; Lin, M.-T.; Yao, Y.D.

    2002-01-01

    Spin-dependent tunnel junction, NiFe/CoFe/Al 2 O 3 /Co//Si, was fabricated to investigate the thermal stability induced diffusion behaviors. The interfacial diffusion causes the degradation of the ratio of the TMR, the enhancement of the switching field of the two magnetic electrodes, the thickness decrease of the insulator layer, and the increase of the interfacial roughness. The outward diffusion of oxygen from the insulator layer is faster than that of aluminum for samples annealed below 400 deg. C. The degradation of the ratio of TMR is attributed to the disturbance of the spin polarization in the magnetic layers, and the increase of the pinholes and spin-flip effect in the insulator layer. The relative roughness between the two interfaces of the insulator induces the surface magnetic dipoles, and hence, increases the switching field of the ferromagnetic electrodes

  10. GaInAs Junction FET with InP buffer layer prepared by selective ion implantation of Be and rapid thermal annealing

    International Nuclear Information System (INIS)

    Selders, J.; Wachs, H.J.; Jurgensen, H.

    1986-01-01

    GaInAs JFETs were fabricated on VPE-grown GaInAs layers. The pn junctions have been realised with Be ion implantation and rapid thermal annealing. The devices show a high transconductance of 130 mS/mm and an electron saturation velocity of 1.8 x 10 7 cm/s. Channel mobilities measured at the complete device are as high as 6800 cm 2 /Vs. These excellent device properties are due to the use of an undoped InP buffer layer which avoids the diffusion of Fe from the substrate into the active layer. The data were supported by S-parameter measurements which gave a frequency limit of 20 GHz for gate dimensions of 1.6 by 200 μm 2 . (author)

  11. Magnetoresistance of galfenol-based magnetic tunnel junction

    Energy Technology Data Exchange (ETDEWEB)

    Gobaut, B., E-mail: benoit.gobaut@elettra.eu [Sincrotrone Trieste S.C.p.A., S.S. 14 Km 163.5, Area Science Park, 34149 Trieste (Italy); Vinai, G.; Castán-Guerrero, C.; Krizmancic, D.; Panaccione, G.; Torelli, P. [Laboratorio TASC, IOM-CNR, S.S. 14km 163.5, Basovizza, 34149 Trieste (Italy); Rafaqat, H. [Laboratorio TASC, IOM-CNR, S.S. 14km 163.5, Basovizza, 34149 Trieste (Italy); ICTP, Trieste (Italy); Roddaro, S. [Laboratorio TASC, IOM-CNR, S.S. 14km 163.5, Basovizza, 34149 Trieste (Italy); NEST, Scuola Normale Superiore and Istituto Nanoscienze-CNR, Piazza S. Silvestro 12, 56127 Pisa (Italy); Rossi, G. [Laboratorio TASC, IOM-CNR, S.S. 14km 163.5, Basovizza, 34149 Trieste (Italy); Dipartimento di Fisica, Università di Milano, via Celoria 16, 20133 Milano (Italy); Eddrief, M.; Marangolo, M. [Sorbonne Universités, UPMC Paris 06, CNRS-UMR 7588, Institut des Nanosciences de Paris, 75005, Paris (France)

    2015-12-15

    The manipulation of ferromagnetic layer magnetization via electrical pulse is driving an intense research due to the important applications that this result will have on memory devices and sensors. In this study we realized a magnetotunnel junction in which one layer is made of Galfenol (Fe{sub 1-x}Ga{sub x}) which possesses one of the highest magnetostrictive coefficient known. The multilayer stack has been grown by molecular beam epitaxy and e-beam evaporation. Optical lithography and physical etching have been combined to obtain 20x20 micron sized pillars. The obtained structures show tunneling conductivity across the junction and a tunnel magnetoresistance (TMR) effect of up to 11.5% in amplitude.

  12. Junction depth measurement using carrier illumination

    International Nuclear Information System (INIS)

    Borden, Peter

    2001-01-01

    Carrier Illumination [trade mark] (CI) is a new method recently developed to meet the need for a non-destructive, high throughput junction depth measurement on patterned wafers. A laser beam creates a quasi-static excess carrier profile in the semiconductor underlying the activated junction. The excess carrier profile is fairly constant below the junction, and drops rapidly in the junction, creating a steep index of refraction gradient at the junction edge. Interference with light reflected from this index gradient provides a signal that is analyzed to determine the junction depth. The paper summarizes evaluation of performance in full NMOS and PMOS process flows, on both bare and patterned wafers. The aims have been to validate (1) performance in the presence of underlying layers typically found at the source/drain (S/D) process steps and (2) measurement on patterned wafers. Correlation of CI measurements to SIMS and transistor drive current are shown. The data were obtained from NMOS structures using As S/D and LDD implants. Correlations to SRP, SIMS and sheet resistance are shown for PMOS structures using B 11 LDD implants. Gage capability measurements are also presented

  13. Robust spin transfer torque in antiferromagnetic tunnel junctions

    KAUST Repository

    Saidaoui, Hamed Ben Mohamed

    2017-04-18

    We theoretically study the current-induced spin torque in antiferromagnetic tunnel junctions, composed of two semi-infinite antiferromagnetic layers separated by a tunnel barrier, in both clean and disordered regimes. We find that the torque enabling electrical manipulation of the Néel antiferromagnetic order parameter is out of plane, ∼n×p, while the torque competing with the antiferromagnetic exchange is in plane, ∼n×(p×n). Here, p and n are the Néel order parameter direction of the reference and free layers, respectively. Their bias dependence shows behavior similar to that in ferromagnetic tunnel junctions, the in-plane torque being mostly linear in bias, while the out-of-plane torque is quadratic. Most importantly, we find that the spin transfer torque in antiferromagnetic tunnel junctions is much more robust against disorder than that in antiferromagnetic metallic spin valves due to the tunneling nature of spin transport.

  14. Solution-deposited F:SnO₂/TiO₂ as a base-stable protective layer and antireflective coating for microtextured buried-junction H₂-evolving Si photocathodes.

    Science.gov (United States)

    Kast, Matthew G; Enman, Lisa J; Gurnon, Nicholas J; Nadarajah, Athavan; Boettcher, Shannon W

    2014-12-24

    Protecting Si photocathodes from corrosion is important for developing tandem water-splitting devices operating in basic media. We show that textured commercial Si-pn(+) photovoltaics protected by solution-processed semiconducting/conducting oxides (plausibly suitable for scalable manufacturing) and coupled to thin layers of Ir yield high-performance H2-evolving photocathodes in base. They also serve as excellent test structures to understand corrosion mechanisms and optimize interfacial electrical contacts between various functional layers. Solution-deposited TiO2 protects Si-pn(+) junctions from corrosion for ∼24 h in base, whereas junctions protected by F:SnO2 fail after only 1 h of electrochemical cycling. Interface layers consisting of Ti metal and/or the highly doped F:SnO2 between the Si and TiO2 reduce Si-emitter/oxide/catalyst contact resistance and thus increase fill factor and efficiency. Controlling the oxide thickness led to record photocurrents near 35 mA cm(-2) at 0 V vs RHE and photocathode efficiencies up to 10.9% in the best cells. Degradation, however, was not completely suppressed. We demonstrate that performance degrades by two mechanisms, (1) deposition of impurities onto the thin catalyst layers, even from high-purity base, and (2) catastrophic failure via pinholes in the oxide layers after several days of operation. These results provide insight into the design of hydrogen-evolving photoelectrodes in basic conditions, and highlight challenges.

  15. Microstructure of edge-type Josephson junctions with PrBa[sub 2]Cu[sub 3]O[sub 7-x] barrier layer

    Energy Technology Data Exchange (ETDEWEB)

    Lebedev, O I; Vasiliev, A L; Kiselev, N A [Inst. of Crystallography, Russian Academy of Sciences, Moscow (Russia); Mazo, L A; Gaponov, S V; Paveliev, D G; Strikovsky, M D [Inst. of Applied Physics, Russian Academy of Sciences, Novgorod (Russia)

    1992-08-01

    HREM investigations of edge Josephson junctions (EJJ) with PrBa[sub 2]Cu[sub 3]O[sub 7-x] barrier layer (PB) were performed. All layers (superconducting YBa[sub 2]Cu[sub 3]O[sub 7-x]) (Y1) and (Y2), insulating PrBa[sub 2]Cu[sub 3]O[sub 7-x] (PI) and barrier (PB) were obtained by laser ablation. The edges were formed by ion sputtering using a fotoresist mask. EJJ shows Josephson conductivity at Tc=77 K, giving j[sub c]=10[sup 4] A/cm[sup 2] at U[sub c]=50 [mu]V. Cross-sectional images show that Y1, PI and PB layers are single crystalline with the c-axis normal to the substrate surface. The Y2 layer in the regions of a multilayered structure is polycrystalline. The PB/Y1 interface is characterised by APB line boundaries; it is inclined to the substrate by 20-35deg. (orig.).

  16. Buffer layer dependence of magnetoresistance effects in Co2Fe0.4Mn0.6Si/MgO/Co50Fe50 tunnel junctions

    Science.gov (United States)

    Sun, Mingling; Kubota, Takahide; Takahashi, Shigeki; Kawato, Yoshiaki; Sonobe, Yoshiaki; Takanashi, Koki

    2018-05-01

    Buffer layer dependence of tunnel magnetoresistance (TMR) effects was investigated in Co2Fe0.4Mn0.6Si (CFMS)/MgO/Co50Fe50 magnetic tunnel junctions (MTJs). Pd, Ru and Cr were selected for the buffer layer materials, and MTJs with three different CFMS thicknesses (30, 5, and 0.8 nm) were fabricated. A maximum TMR ratio of 136% was observed in the Ru buffer layer sample with a 30-nm-thick CFMS layer. TMR ratios drastically degraded for the CFMS thickness of 0.8 nm, and the values were 26% for Cr buffer layer and less than 1% for Pd and Ru buffer layers. From the annealing temperature dependence of the TMR ratios, amounts of interdiffusion and effects from the lattice mismatch were discussed.

  17. Ultrastable BSA-capped gold nanoclusters with a polymer-like shielding layer against reactive oxygen species in living cells

    Science.gov (United States)

    Zhou, Wenjuan; Cao, Yuqing; Sui, Dandan; Guan, Weijiang; Lu, Chao; Xie, Jianping

    2016-05-01

    The prevalence of reactive oxygen species (ROS) production and the enzyme-containing intracellular environment could lead to the fluorescence quenching of bovine serum albumin (BSA)-capped gold nanoclusters (AuNCs). Here we report an efficient strategy to address this issue, where a polymer-like shielding layer is designed to wrap around the Au core to significantly improve the stability of AuNCs against ROS and protease degradation. The key of our design is to covalently incorporate a thiolated AuNC into the BSA-AuNC via carbodiimide-activated coupling, leading to the formation of a AuNC pair inside the cross-linked BSA molecule. The as-designed paired AuNCs in BSA (or BSA-p-AuNCs for short) show improved performances in living cells.The prevalence of reactive oxygen species (ROS) production and the enzyme-containing intracellular environment could lead to the fluorescence quenching of bovine serum albumin (BSA)-capped gold nanoclusters (AuNCs). Here we report an efficient strategy to address this issue, where a polymer-like shielding layer is designed to wrap around the Au core to significantly improve the stability of AuNCs against ROS and protease degradation. The key of our design is to covalently incorporate a thiolated AuNC into the BSA-AuNC via carbodiimide-activated coupling, leading to the formation of a AuNC pair inside the cross-linked BSA molecule. The as-designed paired AuNCs in BSA (or BSA-p-AuNCs for short) show improved performances in living cells. Electronic supplementary information (ESI) available: Detailed experimental materials, apparatus, experimental procedures and characterization data. See DOI: 10.1039/c6nr02178f

  18. Turbulent convection experiment at high Rayleigh number to support CAP1400 IVR strategy

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Li, E-mail: mali@snptrd.com [State Nuclear Hua Qing(Beijing) Nuclear Power Technology R& D Centre Co., Ltd, Building A, State Nuclear Power Research Institute, Future Science & Technology Park, Changping Dist., Beijing 102209 (China); Li, Jing, E-mail: lijing@snptrd.com [State Nuclear Hua Qing(Beijing) Nuclear Power Technology R& D Centre Co., Ltd, Building A, State Nuclear Power Research Institute, Future Science & Technology Park, Changping Dist., Beijing 102209 (China); Ji, Shui, E-mail: jishui@snptrd.com [State Nuclear Hua Qing(Beijing) Nuclear Power Technology R& D Centre Co., Ltd, Building A, State Nuclear Power Research Institute, Future Science & Technology Park, Changping Dist., Beijing 102209 (China); Chang, Huajian, E-mail: changhuajian@snptrd.com [State Nuclear Hua Qing(Beijing) Nuclear Power Technology R& D Centre Co., Ltd, Building A, State Nuclear Power Research Institute, Future Science & Technology Park, Changping Dist., Beijing 102209 (China); Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084 (China)

    2015-10-15

    Highlights: • The facility reached high Ra number at 10{sup 12} of CAP1400 working condition. • The fitting formula Nu = 0.085 × Ra{sup 0.315} was established to calculate the heat flux in the metal layer at high Ra for the CAP1400. • The coupling method can accurately and safely predict the heat flow distribution of metal layer in high Ra number conditions. • The experiment results will predict the relationship between axial and radial heat transfer well. - Abstract: The characteristics of the heat transfer and the calculation of heat flux in metal layer are both the critical problems for in-vessel retention (IVR) strategy. Turbulent convection occurs in the metal layer when the Rayleigh number (Ra) becomes sufficient high. The Globe–Dropkin (G–D) correlation (Globe and Dropkin, 1959) and Chu–Churchill (C–C) correlation (Churchill and Chu, 1975) have been widely used to calculate the heat flux in the metal layer, where the valid range of the Ra is from 1.5 × 10{sup 5} to 6.8 × 10{sup 8} in G–D correlation and less than 10{sup 12} in C–C correlation. However, with the increase of reactor power, both the Rayleigh number and the rate of heat transfer below the bottom of metal layer of the molten pool will increase, and in this case the Rayleigh number even can reach 10{sup 11} for the China Advanced Passive Plant CAP1400. Accordingly, the G–D correlation is not suitable for the CAP1400. Therefore, our experiment purposes are to establish the appropriate correlation at high Ra for the CAP1400 and predict the axial and radial distribution of the heat transfer in the metal layer with the heat transfer behavior of metal layer experiment (HELM) facility. The experiments are divided into two parts. Each part concerns 39 runs and 47 experimental conditions. Its corresponding results are obtained at middle Prandtl number (Pr = 7 for water) and the Nusselt number is found to be proportional to Ra{sup 0.315} in the range 3.93 × 10{sup 8} < Ra < 3.57

  19. Turbulent convection experiment at high Rayleigh number to support CAP1400 IVR strategy

    International Nuclear Information System (INIS)

    Ma, Li; Li, Jing; Ji, Shui; Chang, Huajian

    2015-01-01

    Highlights: • The facility reached high Ra number at 10 12 of CAP1400 working condition. • The fitting formula Nu = 0.085 × Ra 0.315 was established to calculate the heat flux in the metal layer at high Ra for the CAP1400. • The coupling method can accurately and safely predict the heat flow distribution of metal layer in high Ra number conditions. • The experiment results will predict the relationship between axial and radial heat transfer well. - Abstract: The characteristics of the heat transfer and the calculation of heat flux in metal layer are both the critical problems for in-vessel retention (IVR) strategy. Turbulent convection occurs in the metal layer when the Rayleigh number (Ra) becomes sufficient high. The Globe–Dropkin (G–D) correlation (Globe and Dropkin, 1959) and Chu–Churchill (C–C) correlation (Churchill and Chu, 1975) have been widely used to calculate the heat flux in the metal layer, where the valid range of the Ra is from 1.5 × 10 5 to 6.8 × 10 8 in G–D correlation and less than 10 12 in C–C correlation. However, with the increase of reactor power, both the Rayleigh number and the rate of heat transfer below the bottom of metal layer of the molten pool will increase, and in this case the Rayleigh number even can reach 10 11 for the China Advanced Passive Plant CAP1400. Accordingly, the G–D correlation is not suitable for the CAP1400. Therefore, our experiment purposes are to establish the appropriate correlation at high Ra for the CAP1400 and predict the axial and radial distribution of the heat transfer in the metal layer with the heat transfer behavior of metal layer experiment (HELM) facility. The experiments are divided into two parts. Each part concerns 39 runs and 47 experimental conditions. Its corresponding results are obtained at middle Prandtl number (Pr = 7 for water) and the Nusselt number is found to be proportional to Ra 0.315 in the range 3.93 × 10 8 < Ra < 3.57 × 10 12 . Furthermore, the experiment

  20. Hydrogen-induced electrical and optical switching in Pd capped Pr ...

    Indian Academy of Sciences (India)

    Wintec

    Abstract. In this study, modification in the properties of hydrogen-induced switchable mirror based on Pr nanoparticle layers is reported. The reversible changes in hydrogen-induced electrical and optical properties of Pd capped Pr nanoparticle layers have been studied as a function of hydrogenation time and compared.

  1. Microscopic theory of the Coulomb based exchange coupling in magnetic tunnel junctions.

    Science.gov (United States)

    Udalov, O G; Beloborodov, I S

    2017-05-04

    We study interlayer exchange coupling based on the many-body Coulomb interaction between conduction electrons in magnetic tunnel junction. This mechanism complements the known interaction between magnetic layers based on virtual electron hopping (or spin currents). We find that these two mechanisms have different behavior on system parameters. The Coulomb based coupling may exceed the hopping based exchange. We show that the Coulomb based exchange interaction, in contrast to the hopping based coupling, depends strongly on the dielectric constant of the insulating layer. The dependence of the interlayer exchange interaction on the dielectric properties of the insulating layer in magnetic tunnel junction is similar to magneto-electric effect where electric and magnetic degrees of freedom are coupled. We calculate the interlayer coupling as a function of temperature and electric field for magnetic tunnel junction with ferroelectric layer and show that the exchange interaction between magnetic leads has a sharp decrease in the vicinity of the ferroelectric phase transition and varies strongly with external electric field.

  2. Temperature Distribution within a Cold Cap during Nuclear Waste Vitrification.

    Science.gov (United States)

    Dixon, Derek R; Schweiger, Michael J; Riley, Brian J; Pokorny, Richard; Hrma, Pavel

    2015-07-21

    The kinetics of the feed-to-glass conversion affects the waste vitrification rate in an electric glass melter. The primary area of interest in this conversion process is the cold cap, a layer of reacting feed on top of the molten glass. The work presented here provides an experimental determination of the temperature distribution within the cold cap. Because direct measurement of the temperature field within the cold cap is impracticable, an indirect method was developed in which the textural features in a laboratory-made cold cap with a simulated high-level waste feed were mapped as a function of position using optical microscopy, scanning electron microscopy, energy dispersive spectroscopy, and X-ray diffraction. The temperature distribution within the cold cap was established by correlating microstructures of cold-cap regions with heat-treated feed samples of nearly identical structures at known temperatures. This temperature profile was compared with a mathematically simulated profile generated by a cold-cap model that has been developed to assess the rate of glass production in a melter.

  3. Study of the electroplated of Ni for betavoltaic battery using PN junction without seed layer

    Energy Technology Data Exchange (ETDEWEB)

    Uhm, Young Rang; Kim, Jong Bum; Son, Kwang Jae [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Cho, Byoung Gun [Electronics and Telecommunications Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    The mechanism of a nuclear battery is same as the P.N junction diode for solar cell application. The photovoltaic is operated by converting photons into electrical energy in the junction. In a betavoltaic battery, beta particles are collected and converted into electrical energy with a similar principle as a photovoltaic. If a radioisotope (RI) with a long half-life (over 100 years) is used, the lifetime of the power source is extended to as long as the half-life time of the RI. Hence, the power sources we describe could extend a system's operating life by several decades or even a century, during which time the system can gain learned behavior without worrying about the power turning off. The beta spectrum of {sup 63}Ni is below the radiation damage threshold (approximately 200 keV for Si) of semiconductors such as Si and SiC. Beta particles of 63Ni were deposited by electroplating on the Ni-foil substrate and attached on the trench P-N absorber with a spacing of 50 μm. The optimum total thickness of the 63Ni layer was determined to be about 2 μm, when regarding the minimum self-shielding effect of the beta-ray (β-ray). The optimum condition of the electroplating {sup 63}Ni was determined at current density of 20 mA/cm{sup 2}.

  4. Study of the electroplated of Ni for betavoltaic battery using PN junction without seed layer

    International Nuclear Information System (INIS)

    Uhm, Young Rang; Kim, Jong Bum; Son, Kwang Jae; Cho, Byoung Gun

    2015-01-01

    The mechanism of a nuclear battery is same as the P.N junction diode for solar cell application. The photovoltaic is operated by converting photons into electrical energy in the junction. In a betavoltaic battery, beta particles are collected and converted into electrical energy with a similar principle as a photovoltaic. If a radioisotope (RI) with a long half-life (over 100 years) is used, the lifetime of the power source is extended to as long as the half-life time of the RI. Hence, the power sources we describe could extend a system's operating life by several decades or even a century, during which time the system can gain learned behavior without worrying about the power turning off. The beta spectrum of 63 Ni is below the radiation damage threshold (approximately 200 keV for Si) of semiconductors such as Si and SiC. Beta particles of 63Ni were deposited by electroplating on the Ni-foil substrate and attached on the trench P-N absorber with a spacing of 50 μm. The optimum total thickness of the 63Ni layer was determined to be about 2 μm, when regarding the minimum self-shielding effect of the beta-ray (β-ray). The optimum condition of the electroplating 63 Ni was determined at current density of 20 mA/cm 2

  5. T-Cap Pull-Off and Bending Behavior for Stitched Structure

    Science.gov (United States)

    Lovejoy, Andrew E.; Leone, Frank A., Jr.

    2016-01-01

    The Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) is a structural concept that was developed by The Boeing Company to address the complex structural design aspects associated with a pressurized hybrid wing body aircraft configuration. An important design feature required for assembly is the integrally stitched T-cap, which provides connectivity of the corner (orthogonal) joint between adjacent panels. A series of tests were conducted on T-cap test articles, with and without a rod stiffener penetrating the T-cap web, under tension (pull-off) and bending loads. Three designs were tested, including the baseline design used in largescale test articles. The baseline had only the manufacturing stitch row adjacent to the fillet at the base of the T-cap web. Two new designs added stitching rows to the T-cap web at either 0.5- or 1.0-inch spacing along the height of the web. Testing was conducted at NASA Langley Research Center to determine the behavior of the T-cap region resulting from the applied loading. Results show that stitching arrests the initial delamination failures so that the maximum strength capability exceeds the load at which the initial delaminations develop. However, it was seen that the added web stitching had very little effect on the initial delamination failure load, but actually decreased the initial delamination failure load for tension loading of test articles without a stiffener passing through the web. Additionally, the added web stitching only increased the maximum load capability by between 1% and 12.5%. The presence of the stiffener, however, did increase the initial and maximum loads for both tension and bending loading as compared to the stringerless baseline design. Based on the results of the few samples tested, the additional stitching in the T-cap web showed little advantage over the baseline design in terms of structural failure at the T-cap web/skin junction for the current test articles.

  6. Spin-triplet supercurrent in Co-based Josephson junctions

    International Nuclear Information System (INIS)

    Khasawneh, Mazin A; Khaire, Trupti S; Klose, Carolin; Pratt, William P Jr; Birge, Norman O

    2011-01-01

    In the past year several groups have reported experimental evidence for spin-triplet supercurrents in Josephson junctions containing strong ferromagnetic materials. In this paper we present several new experimental results that follow up on our previous work. We study Josephson junctions of the form S/X/N/SAF/N/X/S, where S is a superconductor (Nb), N is a normal metal, SAF is a synthetic antiferromagnet of the form Co/Ru/Co and X is an ferromagnetic layer necessary to induce spin-triplet correlations in the structure. Our work is distinguished by the fact that the generation of spin-triplet correlations is tuned by the type and thickness of the X layers. The most important new result reported here is the discovery that a conventional, strong ferromagnetic material, Ni, performs well as the X layer, if it is sufficiently thin. This discovery rules out our earlier hypothesis that out-of-plane magnetocrystalline anisotropy is an important attribute of the X layers. These results suggest that the spin-triplet correlations are most likely induced by noncollinear magnetization between the X layers and adjacent Co layers.

  7. Intestinal epithelial barrier function and tight junction proteins with heat and exercise

    DEFF Research Database (Denmark)

    Dokladny, Karol; Zuhl, Micah N; Moseley, Pope L

    2016-01-01

    A single layer of enterocytes and tight junctions (intercellular multiprotein complexes) form the intestinal epithelial barrier that controls transport of molecules through transcellular and paracellular pathways. A dysfunctional or "leaky" intestinal tight junction barrier allows augmented perme...

  8. In situ formation of p–n junction: A novel principle for photoelectrochemical sensor and its application for mercury(II) ion detection

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Guang-Li, E-mail: glwang@jiangnan.edu.cn; Liu, Kang-Li; Dong, Yu-Ming; Li, Zai-Jun; Zhang, Chi

    2014-05-01

    Graphical abstract: The first example of photoelectrochemial sensing based on the formation of p–n junction. The in situ formation of HgS on the surface of ZnS triggers an obvious enhancement of anodic photocurrent of Cysteine-capped ZnS quantum dots (QDs), which leads to a highly sensitive and selective photoelectrochemical method for the sensing of trace mercuric(II) ions. Highlights: • The first example of photoelectrochemial sensing based on p–n junction formation. • The in situ formation of HgS on ZnS leading to obviously enhanced photocurrent. • The method was highly sensitive and selective. Abstract: The discovery and development of photoelectrochemical sensors with novel principles are of great significance to realize sensitive and low-cost detection. In this paper, a new photoelectrochemial sensor based on the in situ formation of p–n junction was designed and used for the accurate determination of mercury(II) ions. Cysteine-capped ZnS quantum dots (QDs) was assembled on the surface of indium tin oxide (ITO) electrode based on the electrostatic interaction between Poly(diallyldimethylammonium chloride) (PDDA) and Cys-capped ZnS QDs. The in situ formation of HgS, a p-type semiconductor, on the surface of ZnS facilitated the charge carrier transport and promoted electron-hole separation, triggered an obviously enhanced anodic photocurrent of Cys-capped ZnS QDs. The formation of p–n junction was confirmed by P–N conductive type discriminator measurements and current–voltage (I–V) curves. The photoelectrochemical method was used for the sensing of trace mercuric (II) ions with a linear concentration of 0.01 to 10.0 µM and a detection limit of 4.6 × 10⁻⁹ mol/L. It is expected that the present study can serve as a foundation to the application of p–n heterojunction to photoelectrochemical sensors and it might be easily extended to more exciting sensing systems by photoelectrochemistry.

  9. Self-positioned thin Pb-alloy base electrode Josephson junction

    International Nuclear Information System (INIS)

    Kuroda, K.; Sato, K.

    1986-01-01

    A self-positioned thin (SPOT) Pb-alloy base electrode Josephson junction is developed. In this junction, a 50-nm thick Pb-alloy base electrode is restricted within the junction region on an Nb underlayer using a self-alignment technique. The grain size reduction and the base electrode area restriction greatly improve thermal cycling stability, where the thermal cycling tests of 4000 proposed junctions (5 x 5 μm 2 ) showed no failures after 4000 cycles. In addition, the elimination of insulator layer stress on the Pb-alloy base electrode rectifies the problem of size effect on current density. The Nb underlayers also serve to isolate the Pb-alloy base electrodes from the resistors

  10. The role of Mg interface layer in MgO magnetic tunnel junctions with CoFe and CoFeB electrodes

    Directory of Open Access Journals (Sweden)

    Hyunsoo Yang

    2012-03-01

    Full Text Available The tunneling spin polarization (TSP is directly measured from reactively sputter deposited crystalline MgO tunnel barriers with various CoFe(B compositions using superconducting tunneling spectroscopy. We find that the Mg interface layer thickness dependence of TSP values for CoFeB/Mg/MgO junctions is substantially different from those for CoFe/Mg/MgO especially in the pre-annealed samples due to the formation of boron oxide at the CoFeB/MgO interface. Annealing depletes boron at the interface thus requiring a finite Mg interface layer to prevent CoFeOx formation at the CoFeB/MgO interface so that the TSP values can be optimized by controlling Mg thickness.

  11. Atomically Thin Al2O3 Films for Tunnel Junctions

    Science.gov (United States)

    Wilt, Jamie; Gong, Youpin; Gong, Ming; Su, Feifan; Xu, Huikai; Sakidja, Ridwan; Elliot, Alan; Lu, Rongtao; Zhao, Shiping; Han, Siyuan; Wu, Judy Z.

    2017-06-01

    Metal-insulator-metal tunnel junctions are common throughout the microelectronics industry. The industry standard AlOx tunnel barrier, formed through oxygen diffusion into an Al wetting layer, is plagued by internal defects and pinholes which prevent the realization of atomically thin barriers demanded for enhanced quantum coherence. In this work, we employ in situ scanning tunneling spectroscopy along with molecular-dynamics simulations to understand and control the growth of atomically thin Al2O3 tunnel barriers using atomic-layer deposition. We find that a carefully tuned initial H2O pulse hydroxylated the Al surface and enabled the creation of an atomically thin Al2O3 tunnel barrier with a high-quality M -I interface and a significantly enhanced barrier height compared to thermal AlOx . These properties, corroborated by fabricated Josephson junctions, show that atomic-layer deposition Al2O3 is a dense, leak-free tunnel barrier with a low defect density which can be a key component for the next generation of metal-insulator-metal tunnel junctions.

  12. Josephson junctions with ferromagnetic interlayer

    International Nuclear Information System (INIS)

    Wild, Georg Hermann

    2012-01-01

    We report on the fabrication of superconductor/insulator/ferromagnetic metal/superconductor (Nb/AlO x /Pd 0.82 Ni 0.18 /Nb) Josephson junctions (SIFS JJs) with high critical current densities, large normal resistance times area products, and high quality factors. For these junctions, a transition from 0- to π-coupling is observed for a thickness d F =6 nm of the ferromagnetic Pd 0.82 Ni 0.18 interlayer. The magnetic field dependence of the critical current of the junctions demonstrates good spatial homogeneity of the tunneling barrier and ferromagnetic interlayer. Magnetic characterization shows that the Pd 0.82 Ni 0.18 has an out-of-plane anisotropy and large saturation magnetization indicating negligible dead layers at the interfaces. A careful analysis of Fiske modes up to about 400 GHz provides valuable information on the junction quality factor and the relevant damping mechanisms. Whereas losses due to quasiparticle tunneling dominate at low frequencies, at high frequencies the damping is explained by the finite surface resistance of the junction electrodes. High quality factors of up to 30 around 200 GHz have been achieved. They allow to study the junction dynamics, in particular the switching probability from the zero-voltage into the voltage state with and without microwave irradiation. The experiments with microwave irradiation are well explained within semi-classical models and numerical simulations. In contrast, at mK temperature the switching dynamics without applied microwaves clearly shows secondary quantum effects. Here, we could observe for the first time macroscopic quantum tunneling in Josephson junctions with a ferromagnetic interlayer. This observation excludes fluctuations of the critical current as a consequence of an unstable magnetic domain structure of the ferromagnetic interlayer and affirms the suitability of SIFS Josephson junctions for quantum information processing.

  13. Josephson junctions with ferromagnetic interlayer

    Energy Technology Data Exchange (ETDEWEB)

    Wild, Georg Hermann

    2012-03-04

    We report on the fabrication of superconductor/insulator/ferromagnetic metal/superconductor (Nb/AlO{sub x}/Pd{sub 0.82}Ni{sub 0.18}/Nb) Josephson junctions (SIFS JJs) with high critical current densities, large normal resistance times area products, and high quality factors. For these junctions, a transition from 0- to {pi}-coupling is observed for a thickness d{sub F}=6 nm of the ferromagnetic Pd{sub 0.82}Ni{sub 0.18} interlayer. The magnetic field dependence of the critical current of the junctions demonstrates good spatial homogeneity of the tunneling barrier and ferromagnetic interlayer. Magnetic characterization shows that the Pd{sub 0.82}Ni{sub 0.18} has an out-of-plane anisotropy and large saturation magnetization indicating negligible dead layers at the interfaces. A careful analysis of Fiske modes up to about 400 GHz provides valuable information on the junction quality factor and the relevant damping mechanisms. Whereas losses due to quasiparticle tunneling dominate at low frequencies, at high frequencies the damping is explained by the finite surface resistance of the junction electrodes. High quality factors of up to 30 around 200 GHz have been achieved. They allow to study the junction dynamics, in particular the switching probability from the zero-voltage into the voltage state with and without microwave irradiation. The experiments with microwave irradiation are well explained within semi-classical models and numerical simulations. In contrast, at mK temperature the switching dynamics without applied microwaves clearly shows secondary quantum effects. Here, we could observe for the first time macroscopic quantum tunneling in Josephson junctions with a ferromagnetic interlayer. This observation excludes fluctuations of the critical current as a consequence of an unstable magnetic domain structure of the ferromagnetic interlayer and affirms the suitability of SIFS Josephson junctions for quantum information processing.

  14. Insulator-protected mechanically controlled break junctions for measuring single-molecule conductance in aqueous environments

    OpenAIRE

    Muthusubramanian, N.; Galan, E.; Maity, C.; Eelkema, R.; Grozema, F.C.; van der Zant, H.S.J.

    2016-01-01

    We present a method to fabricate insulated gold mechanically controlled break junctions (MCBJ) by coating the metal with a thin layer of aluminum oxide using plasma enhanced atomic layer deposition. The Al2O3 thickness deposited on the MCBJ devices was varied from 2 to 15 nm to test the suppression of leakage currents in deionized water and phosphate buffered saline. Junctions coated with a 15 nm thick oxide layer yielded atomically sharp electrodes and negligible conductance counts in the ra...

  15. Microstructure of Josephson junctions: Effect on supercurrent transport in YBCO grain boundary and barrier layer junctions

    International Nuclear Information System (INIS)

    Merkle, K.L.; Huang, Y.

    1998-01-01

    The electric transport of high-temperature superconductors, such as YBa 2 Cu 3 O 7-x (YBCO), can be strongly restricted by the presence of high-angle grain boundaries (GB). This weak-link behavior is governed by the macroscopic GB geometry and the microscopic grain boundary structure and composition at the atomic level. Whereas grain boundaries present a considerable impediment to high current applications of high T c materials, there is considerable commercial interest in exploiting the weak-link-nature of grain boundaries for the design of microelectronic devices, such as superconducting quantum interference devices (SQUIDs). The Josephson junctions which form the basis of this technology can also be formed by introducing artificial barriers into the superconductor. The authors have examined both types of Josephson junctions by EM techniques in an effort to understand the connection between microstructure/chemistry and electrical transport properties. This knowledge is a valuable resource for the design and production of improved devices

  16. Comparison of 120- and 140-μm SMILE Cap Thickness Results in Eyes With Thick Corneas.

    Science.gov (United States)

    Liu, Manli; Zhou, Yugui; Wu, Xianghua; Ye, Tiantian; Liu, Quan

    2016-10-01

    To evaluate clinical outcomes after small incision lenticule extraction (SMILE) with different cap thicknesses in thick corneas. Forty patients with central corneal thickness of more than 560 μm were recruited in this prospective, randomized, masked, paired-eye study. Patients were randomized to receive SMILE with a 120-μm cap thickness in 1 eye and 140-μm cap thickness in the other. Uncorrected and corrected distance visual acuity (CDVA), contrast sensitivity (CS), higher-order aberrations (HOAs), and morphologic modifications of corneal architecture were measured during the 3-month follow-up period. Postoperative refractive outcomes, visual outcomes, CS, and the changes in HOAs were similar between both groups. The persistence of brightly reflective particles in the corneal interface layer was 1388.6 ± 219.5/mm in eyes with 120-μm cap thickness and 54.7 ± 8.6/mm in eyes with 140-μm cap thickness (P line at the interface layer almost disappeared in all eyes with 140-μm cap thickness, and it still persisted in 43% of the fellow eyes at 3 months postoperatively. The anterior surfaces of lenticules in the 140-μm cap thickness group exhibited more smoothness than in the 120-μm cap thickness group. There was a lower level corneal wound-healing response after SMILE with a 140-μm cap thickness than with a 120-μm cap thickness, although the thickness of cap creation did not affect visual outcomes by 3 months postoperatively.

  17. Cervical Cap

    Science.gov (United States)

    ... Videos for Educators Search English Español The Cervical Cap KidsHealth / For Teens / The Cervical Cap What's in ... Call the Doctor? Print What Is a Cervical Cap? A cervical cap is a small cup made ...

  18. Design Principles and Concepts for Enhancing Long-Term Cap Performance and Confidence

    International Nuclear Information System (INIS)

    Steven J. Piet; Robert P. Breckenridge; Gregory J. White; Jacob J. Jacobson; Hilary I. Inyang

    2005-01-01

    The siting of new landfills is becoming increasing difficult as the public and stakeholders want more confidence of performance for longer times and landfill owners want to store more waste in the least area while knowing and limiting their long-term liabilities. These changes motivate re-examination of long-term performance mechanisms and their implications for cap and barrier designs. Accordingly, in this paper we first consider design principles from the standpoint of long-term performance and management, including the ability to monitor and repair barriers. We then consider some design concepts that may implement these principles, especially evapo-transpiration (ET) caps. We suggest five design principles based on experience in the cap and barrier field as well as other engineering disciplines. These principles are as follows: (1) Establish a clear and defendable design basis. (2) Design for ease of monitoring and repair. (3) Analyze the barrier as a dynamic system, not static. (4) Work with nature, not against. (5) Recognize that increased complexity can reduce, not enhance, net performance. ET caps are an excellent embodiment of these design principles. We apply the design principles to ET caps, as well as variants such as erosion armor, capillary breaks, bio-intrusion layers, and low permeability material layers

  19. Modeling of 4H—SiC multi-floating-junction Schottky barrier diode

    International Nuclear Information System (INIS)

    Hong-Bin, Pu; Lin, Cao; Zhi-Ming, Chen; Jie, Ren; Ya-Gong, Nan

    2010-01-01

    This paper develops a new and easy to implement analytical model for the specific on-resistance and electric field distribution along the critical path for 4H—SiC multi-floating junction Schottky barrier diode. Considering the charge compensation effects by the multilayer of buried opposite doped regions, it improves the breakdown voltage a lot in comparison with conventional one with the same on-resistance. The forward resistance of the floating junction Schottky barrier diode consists of several components and the electric field can be understood with superposition concept, both are consistent with MEDICI simulation results. Moreover, device parameters are optimized and the analyses show that in comparison with one layer floating junction, multilayer of floating junction layer is an effective way to increase the device performance when specific resistance and the breakdown voltage are traded off. The results show that the specific resistance increases 3.2 mΩ·cm 2 and breakdown voltage increases 422 V with an additional floating junction for the given structure. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  20. An Efficient Solution-Processed Intermediate Layer for Facilitating Fabrication of Organic Multi-Junction Solar Cells

    DEFF Research Database (Denmark)

    Ning Li; Baran, Derya; Forberich, Karen

    2013-01-01

    ):poly(styrenesulfonate) (PEDOT:PSS) is demonstrated for series-connected multi-junction organic solar cells (OSCs). Drying at 80 °C in air is sufficient for this solution-processed IML to obtain excellent functionality and reliability, which allow the use of most of high performance donor materials in the tandem structure....... An open circuit voltage (Voc) of 0.56 V is obtained for single-junction OSCs based on a low band-gap polymer, while multi-junction OSCs based on the same absorber material deliver promising fill factor values along with fully additive Voc as the number of junctions increase. Optical and electrical...... simulations, which are reliable and promising guidelines for the design and investigation of multi-junction OSCs, are discussed. The outcome of optical and electrical simulations is in excellent agreement with the experimental data, indicating the outstanding efficiency and functionality of this solution...

  1. Dissipative current in SIFS Josephson junctions

    NARCIS (Netherlands)

    Vasenko, A.; Kawabata, S.; Golubov, Alexandre Avraamovitch; Kupriyanov, M. Yu; Hekking, F.W.J.

    2010-01-01

    We investigate superconductor/insulator/ferromagnet/superconductor (SIFS) tunnel Josephson junctions in the dirty limit, using the quasiclassical theory. We consider the case of a strong tunnel barrier such that the left S layer and the right FS bilayer are decoupled. We calculate quantitatively the

  2. Preparation and characterization of layer-by-layer self-assembled polyelectrolyte multilayer films doped with surface-capped SiO2 nanoparticles.

    Science.gov (United States)

    Yang, Guangbin; Ma, Hongxia; Yu, Laigui; Zhang, Pingyu

    2009-05-15

    SiO(2) nanoparticles capped with gamma-aminopropyltrimethoxysilane were doped into polyelectrolyte (poly(allylamine hydrochloride), PAH, and poly(acrylic acid), PAA) multilayer films via spin-assisted layer-by-layer self-assembly. The resulting as-prepared multilayer films were heated at a proper temperature to generate cross-linked composite films with increased adhesion to substrates. The tribological behavior of the multilayer films was evaluated on a microtribometer. It was found that SiO(2)-doped composite films had better wear resistance than pure polyelectrolyte multilayers, possibly because doped SiO(2) nanoparticles were capable of enhancing load-carrying capacity and had "miniature ball bearings" effect. Moreover, heat-treatment had significant effect on the morphology of the composite films. Namely, heat-treated (SiO(2)/PAA)(9) film had a larger roughness than the as-prepared one, due to heat-treatment-induced agglomeration of SiO(2) nanoparticles and initiation of defects. However, heat-treated (PAH/PAA)(3)/(SiO(2)/PAA)(3)(PAH/PAA)(3) film had greatly reduced roughness than the as-prepared one, and it showed considerably improved wear resistance as well. This could be closely related to the "sandwich-like" structure of the composite multilayer film. Namely, the outermost strata of composite multilayer film were able to eliminate defects associated with the middle strata, allowing nanoparticles therein to maintain strength and robustness while keeping soft and fluid-like exposed surface. And the inner strata were well anchored to substrate and acted as an initial "bed" for SiO(2) nanoparticles to be inhabited, resulting in good antiwear ability.

  3. Capping hazardous red mud using acidic soil with an embedded layer of zeolite for plant growth.

    Science.gov (United States)

    Ma, Yingqun; Si, Chunhua; Lin, Chuxia

    2014-01-01

    A nearly three-year microcosm experiment was conducted to test the effectiveness of capping red mud using acidic soil with an embedded layer of zeolite in sustaining the growth of a grass species. This 'sandwich-structured' design allowed self-sustaining growth of the plants under rain-fed conditions no matter whether the underlying red mud was neutralized or not. During the initial stage, the plants grew better when the red mud was not neutralized with MgCl2 probably due to pH rise in the root zone. Neutralization of red mud led to salinization and pH decrease in the root zone. However, the difference in plant growth performance between these scenarios became less remarkable over time due to gradual improvement of soil conditions in the neutralized scenarios. Continuous leaching of soluble salts and alkali by rainwater extended the root zone to the red mud layer. As a result of vegetative production, soil organic matter rapidly accumulated. This, combined with increase in pH and decrease in salinity, markedly facilitated microbial activities and consequently improved the supply of nutrients. This study provides abasis for field-scale experimental design that will have implications for effectively establishing vegetative cover in red mud disposal sites to control dust hazards.

  4. Phase-Separated, Epitaxial, Nanostructured LaMnO3+MgO Composite Cap Layer Films for Propagation of Pinning Defects in YBa2Cu3O7-x Coated Conductors

    Energy Technology Data Exchange (ETDEWEB)

    Wee, Sung Hun [ORNL; Shin, Junsoo [ORNL; Cantoni, Claudia [ORNL; Meyer III, Harry M [ORNL; Cook, Sylvester W [ORNL; Zuev, Yuri L [ORNL; Specht, Eliot D [ORNL; Xiong, Xuming [ORNL; Paranthaman, Mariappan Parans [ORNL; Selvamanickam, V. [SuperPower Incorporated, Schenectady, New York; Goyal, Amit [ORNL

    2009-01-01

    Nanostructural modulation in the cap layer used in coated conductors can be a potential source for nucleating microstructural defects into the superconducting layer for improving the flux-pinning. We report on the successful fabrication of phase separated, epitaxial, nanostructured films comprised of LaMnO{sub 3} (LMO) and MgO via pulsed laser deposition (PLD) on biaxially-textured MgO metallic templates with a LMO buffer layer. Scanning Auger compositional mapping and transmission electron microscopy cross sectional images confirm the nanoscale, spatial modulation corresponding to the nanostructured phase separation in the film. YBa{sub 2}Cu{sub 3}O{sub 7-{delta}} films (0.8 {micro}m thick) grown using PLD on such phase separated, nanostructured cap layers show reduced field dependence of the critical current density with an ? value of -0.38 (in J{sub c}-H{sup -{alpha}}).

  5. Thin film hybrid Josephson junctions with Co doped Ba-122

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, Stefan; Doering, Sebastian; Schmidl, Frank; Tympel, Volker; Grosse, Veit; Seidel, Paul [Friedrich-Schiller-Universitaet Jena, Institut fuer Festkoerperphysik, Helmholtzweg 5, 07743 Jena (Germany); Haindl, Silvia; Iida, Kazumasa; Kurth, Fritz; Holzapfel, Bernhard [IFW Dresden, Institut fuer Metallische Werkstoffe, Helmholtzstrasse 20, 01069 Dresden (Germany); Moench, Ingolf [IFW Dresden, Institut fuer Integrative Nanowissenschaften, Helmholtzstrasse 20, 01069 Dresden (Germany)

    2011-07-01

    Josephson junctions are a strong tool to investigate fundamental superconducting properties, such as gap behaviour, dependencies from external fields and the order parameter symmetry. Finding secure values enables the possibility of theoretical descriptions to understand the physical processes within the new iron-based superconductors. Based on Co-doped BaFe{sub 2}As{sub 2} (Ba-122) layers produced via pulsed laser deposition (PLD) on (La,Sr)(Al,Ta)O{sub 3} substrates, we manufactured superconductor-normal conductor-superconductor (S-N-S) junctions structures by using photolithography, ion beam etching as well as insulating SiO{sub 2} layers. We present working Ba-122/Au/PbIn thin film Josephson junctions with different contact areas and barrier thicknesses, their temperature dependence and response to microwave irradiation. The calculated I{sub c}R{sub N} product is in the range of a couple of microvolts.

  6. Junctional epidermolysis bullosa(non-herlitz type)

    International Nuclear Information System (INIS)

    Bhinder, M. A.; Arshad, M. W.; Shabbir, M. I.; Zahoor, M. Y.; Shehzad, W.; Tariq, M.

    2017-01-01

    Junctional epidermolysis bullosa (JEB) is a recessively inherited skin blistering disease and is caused due to abnormalities in proteins that hold layers of the skin. Herlitz JEB is the severe form and non-Herlitz JEB is the milder form. This report describes a case of congenitally affected male child aged 5 years, with skin blistering. He has mitten-like hands and soft skin blistering on hands, legs and knees. Symptoms almost disappeared at the age of 3 years but reappeared with increased severity after 6 months. Histopathological examination showed epidermal detachment with intact basal cell layer and sparse infiltrate of lymphocytes with few eosinophils in the dermis. There was no blistering on the moist lining of the mouth and digestive tract. Localized symptoms with less lethality and histopathological examination indicated the presence of non-Herlitz type of JEB. This is the first report which confirms the presence of non-Herlitz junctional epidermolysis bullosa in Pakistan. (author)

  7. Junctional Epidermolysis Bullosa (Non-Herlitz Type).

    Science.gov (United States)

    Bhinder, Munir Ahmad; Arshad, Muhammad Waqar; Zahoor, Muhammad Yasir; Shehzad, Wasim; Tariq, Muhammad; Shabbir, Muhammad Imran

    2017-05-01

    Junctional epidermolysis bullosa (JEB) is a recessively inherited skin blistering disease and is caused due to abnormalities in proteins that hold layers of the skin. Herlitz JEB is the severe form and non-Herlitz JEB is the milder form. This report describes a case of congenitally affected male child aged 5 years, with skin blistering. He has mitten-like hands and soft skin blistering on hands, legs and knees. Symptoms almost disappeared at the age of 3 years but reappeared with increased severity after 6 months. Histopathological examination showed epidermal detachment with intact basal cell layer and sparse infiltrate of lymphocytes with few eosinophils in the dermis. There was no blistering on the moist lining of the mouth and digestive tract. Localized symptoms with less lethality and histopathological examination indicated the presence of non-Herlitz type of JEB. This is the first report which confirms the presence of non-Herlitz junctional epidermolysis bullosa in Pakistan.

  8. Completion of the first TRT End-cap

    CERN Multimedia

    Catinaccio, A; Rohne, O

    On July 1, the first end-cap of the ATLAS Transition Radiation Tracker (TRT) was successfully completed in terms of the integration of the wheels assembled in Russia with their front-end electronics. The two groups of the detector, fully assembled and equipped with front-end electronics, were rotated from their horizontal position during stacking to their nominal vertical position, in which they will be integrated with the corresponding end-cap silicon-strip (SCT) detector towards the end of 2005, before installation into ATLAS in spring 2006. After starting the assembly in the SR building one year ago, the TRT team reached this important milestone, which marks the final realization and validation of the engineering concept developed by the CERN DT1 (ex-TA1) and ATT teams. A TRT end-cap consists of two sets of identical and independent wheels. The first type of wheels (type A, 12 wheels, positioned closest to the primary interaction point) contains 6144 radial straws positioned in eight successive layers s...

  9. Barrier Parameters and Current Transport Characteristics of Ti/ p-InP Schottky Junction Modified Using Orange G (OG) Organic Interlayer

    Science.gov (United States)

    Sreenu, K.; Venkata Prasad, C.; Rajagopal Reddy, V.

    2017-10-01

    A Ti/Orange G/ p-InP metal/interlayer/semiconductor (MIS) junction has been prepared with Orange G (OG) organic layer by electron beam evaporation and spin coating processes. The electrical properties of Ti/ p-InP metal/semiconductor (MS) and Ti/OG/ p-InP MIS junctions have been analyzed based on current-voltage ( I- V) and capacitance-voltage ( C- V) characteristics. The MIS junction exhibited higher rectifying behavior than the MS junction. The higher barrier height (BH) of the MIS junction compared with the MS junction indicates effective modification by the OG layer. Also, the BH, ideality factor, shunt resistance, and series resistance were extracted based on the I- V characteristic, Cheung's and Norde's methods, and the ΨS- V plot. The BH evaluated by Cheung's and Norde's methods and the ΨS- V plot was shown to be similar, confirming the reliability and validity of the methods applied. The extracted interface state density ( N SS) of the MIS junction was less than for the MS junction, revealing that the OG organic layer reduced the N SS value. Analysis demonstrated that, in the lower bias region, the reverse current conduction mechanism was dominated by Poole-Frenkel emission for both the MS and MIS junction. Meanwhile, in the higher bias region, Schottky emission governed the reverse current conduction mechanism. The results suggest that such OG layers have potential for use in high-quality electronic devices.

  10. Impact of semiconducting electrodes on the electroresistance of ferroelectric tunnel junctions

    Science.gov (United States)

    Asa, M.; Bertacco, R.

    2018-02-01

    Ferroelectric tunnel junctions are promising candidates for the realization of energy-efficient digital memories and analog memcomputing devices. In this work, we investigate the impact of a semiconducting layer in series to the junction on the sign of electroresistance. To this scope, we compare tunnel junctions fabricated out of Pt/BaTiO3/La1/3Sr2/3MnO3 (LSMO) and Pt/BaTiO3/Nb:SrTiO3 (Nb:STO) heterostructures, displaying an opposite sign of the electroresistance. By capacitance-voltage profiling, we observe a behavior typical of Metal-Oxide-Semiconductor tunnel devices in both cases but compatible with the opposite sign of charge carriers in the semiconducting layer. While Nb:STO displays the expected n-type semiconducting character, metallic LSMO develops an interfacial p-type semiconducting layer. The different types of carriers at the semiconducting interfaces and the modulation of the depleted region by the ferroelectric charge have a deep impact on electroresistance, possibly accounting for the different sign observed in the two systems.

  11. Conductance spectra of asymmetric ferromagnet/ferromagnet/ferromagnet junctions

    Energy Technology Data Exchange (ETDEWEB)

    Pasanai, K., E-mail: krisakronmsu@gmail.com

    2017-01-15

    A theory of tunneling spectroscopy of ferromagnet/ferromagnet/ferromagnet junctions was studied. We applied a delta-functional approximation for the interface scattering properties under a one-dimensional system of a free electron approach. The reflection and transmission probabilities were calculated in the ballistic regime, and the conductance spectra were then calculated using the Landauer formulation. The magnetization directions were set to be either parallel (P) or anti-parallel (AP) alignments, for comparison. We found that the conductance spectra was suppressed when increasing the interfacial scattering at the interfaces. Moreover, the electron could exhibit direct transmission when the thickness was rather thin. Thus, there was no oscillation in this case. However, in the case of a thick layer the conductance spectra oscillated, and this oscillation was most prominent when the middle layer thickness increased. In the case of direct transmission, the conductance spectra of P and AP systems were definitely suppressed with increased exchange energy of the middle ferromagnet. This also refers to an increase in the magnetoresistance of the junction. In the case of oscillatory behavior, the positions of the resonance peaks were changed as the exchange energy was changed. - Highlights: • The conductance spectra of a FM/FM/FM junction were calculated. • The conductance spectra were suppressed by the exchange energy. • The exchange energy and the potential strength play similar roles in the junctions.

  12. Conductance spectra of asymmetric ferromagnet/ferromagnet/ferromagnet junctions

    International Nuclear Information System (INIS)

    Pasanai, K.

    2017-01-01

    A theory of tunneling spectroscopy of ferromagnet/ferromagnet/ferromagnet junctions was studied. We applied a delta-functional approximation for the interface scattering properties under a one-dimensional system of a free electron approach. The reflection and transmission probabilities were calculated in the ballistic regime, and the conductance spectra were then calculated using the Landauer formulation. The magnetization directions were set to be either parallel (P) or anti-parallel (AP) alignments, for comparison. We found that the conductance spectra was suppressed when increasing the interfacial scattering at the interfaces. Moreover, the electron could exhibit direct transmission when the thickness was rather thin. Thus, there was no oscillation in this case. However, in the case of a thick layer the conductance spectra oscillated, and this oscillation was most prominent when the middle layer thickness increased. In the case of direct transmission, the conductance spectra of P and AP systems were definitely suppressed with increased exchange energy of the middle ferromagnet. This also refers to an increase in the magnetoresistance of the junction. In the case of oscillatory behavior, the positions of the resonance peaks were changed as the exchange energy was changed. - Highlights: • The conductance spectra of a FM/FM/FM junction were calculated. • The conductance spectra were suppressed by the exchange energy. • The exchange energy and the potential strength play similar roles in the junctions.

  13. Nuclear Waste Vitrification Efficiency: Cold Cap Reactions

    International Nuclear Information System (INIS)

    Kruger, A.A.; Hrma, P.R.; Pokorny, R.

    2011-01-01

    The cost and schedule of nuclear waste treatment and immobilization are greatly affected by the rate of glass production. Various factors influence the performance of a waste-glass melter. One of the most significant, and also one of the least understood, is the process of batch melting. Studies are being conducted to gain fundamental understanding of the batch reactions, particularly those that influence the rate of melting, and models are being developed to link batch makeup and melter operation to the melting rate. Batch melting takes place within the cold cap, i.e., a batch layer floating on the surface of molten glass. The conversion of batch to glass consists of various chemical reactions, phase transitions, and diffusion-controlled processes. These include water evaporation (slurry feed contains as high as 60% water), gas evolution, the melting of salts, the formation of borate melt, reactions of borate melt with molten salts and with amorphous oxides (Fe 2 O 3 and Al 2 O 3 ), the formation of intermediate crystalline phases, the formation of a continuous glass-forming melt, the growth and collapse of primary foam, and the dissolution of residual solids. To this list we also need to add the formation of secondary foam that originates from molten glass but accumulates on the bottom of the cold cap. This study presents relevant data obtained for a high-level-waste melter feed and introduces a one-dimensional (1D) mathematical model of the cold cap as a step toward an advanced three-dimensional (3D) version for a complete model of the waste glass melter. The 1D model describes the batch-to-glass conversion within the cold cap as it progresses in a vertical direction. With constitutive equations and key parameters based on measured data, and simplified boundary conditions on the cold-cap interfaces with the glass melt and the plenum space of the melter, the model provides sensitivity analysis of the response of the cold cap to the batch makeup and melter

  14. Optimization of a tunneling barrier in magnetic tunneling junction by tilted-plasma oxidation

    International Nuclear Information System (INIS)

    Nam, C.H.; Shim, Heejae; Kim, K.S.; Cho, B.K.

    2004-01-01

    Oxidation of an AlO x insulating barrier in a magnetic tunneling junction (MTJ) was carried out by a tilted-plasma oxidation method. It was found that the tilted-plasma oxidation induced a gradual change in the extent of oxidation of an insulating layer, which consequently led to a gradual change in the tunneling magnetoresistance (TMR) and specific junction resistance (RA) of the MTJ. We found a linear relation in the TMR versus RA curve with positive and negative slopes for less- and overoxidized junctions, respectively, and a parabolic relation for optimally oxidized junctions. The crossover in the TMR versus RA curves provides an effective and useful way to optimize (and monitor) the oxidation condition of a tunneling barrier in MTJs especially of a tunneling barrier less than 10 A thick. The tunneling junctions were also investigated after thermal annealing at various temperatures. The observations after thermal annealing were found to be consistent with transmission electrons microscopy images and a scenario of the partial formation of an additional ultrathin tunneling barrier at the top surface of the bottom magnetic layer

  15. Formation of shallow junctions for VLSI by ion implantation and rapid thermal annealing

    International Nuclear Information System (INIS)

    Oeztuerk, M.C.

    1988-01-01

    In this work, several techniques were studied to form shallow junctions in silicon by ion implantation. These include ion implantation through thin layers of silicon dioxide and ion implantation through a thick polycrystalline silicon layer. These techniques can be used to reduce the junction depth. Their main disadvantage is dopant loss in the surface layer. As an alternative, preamorphization of the Si substrate prior to boron implantation to reduce boron channeling was investigated. The disadvantage of preamorphization is the radiation damage introduced into the Si substrate using the implant. Preamorphization by silicon self-implantation has been studied before. The goal of this study was to test Ge as an alternative amorphizing agent. It was found that good-quality p + -n junctions can be formed by both boron and BF 2 ion implantation into Ge-preamorphized Si provided that the preamorphization conditions are optimized. If the amorphous crystalline interface is sufficiently close to the surface, it is possible to completely remove the end-of-range damage. If these defects are not removed and are left in the depletion region, they can result in poor-quality, leaky junctions

  16. Studies of red soils as capping the uranium mill tailing impoundments

    International Nuclear Information System (INIS)

    Wen Zhijian; Chen Zhangru; Liu Zhengyi; Chen Guoliang

    2001-01-01

    Capping is one of the important technical engineering measures to assure the long term stabilization and isolation of uranium mill tailings. This paper reports in situ surveys of radon emanations before and after tailings slurries were capped with local red soils at the uranium mill tailings. The data obtained by soil-gas surveys reveal that radon emanation decreased with an increase in capping thickness. The dry density of the capping materials also plays an important role in preventing radon emanation. The measurement results show that utilizing high densities of red soils as capping materials can significantly decrease the required thickness of the capping. The analytical results from borehole red soil samples show that uranium, thorium, and radium contents are consistent with the regional environmental radioactivity level. The studies of the mineralogical composition indicate that the local red soils are rich in clay minerals, e.g. kaolinite, illite and mica vermiculite mixed-layer minerals, which would play an active role in preventing radionuclide release to the surrounding environment. A conceptual model for remediation of south China's uranium mill tailing has been developed

  17. Robust spin transfer torque in antiferromagnetic tunnel junctions

    KAUST Repository

    Saidaoui, Hamed Ben Mohamed; Waintal, Xavier; Manchon, Aurelien

    2017-01-01

    We theoretically study the current-induced spin torque in antiferromagnetic tunnel junctions, composed of two semi-infinite antiferromagnetic layers separated by a tunnel barrier, in both clean and disordered regimes. We find that the torque

  18. Synthesis and characterization of water-dispersed CdSe/CdS core-shell quantum dots prepared via Layer-by-layer Method capped with carboxylic-functionalized poly(vinyl alcohol)

    Energy Technology Data Exchange (ETDEWEB)

    Ramanery, Fabio Pereira; Mansur, Alexandra Ancelmo Piscitelli; Mansur, Herman Sander, E-mail: hmansur@demet.ufmg.br [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Dept. de Metalurgia e Engenharia dos Materiais. Centro de Nanociencia, Nanotecnologia e Inovacao

    2014-08-15

    The main goal of this work was to synthesize CdSe/CdS (core-shell) nanoparticles stabilized by polymer ligand using entirely aqueous colloidal chemistry at room temperature. First, the CdSe core was prepared using precursors and acid-functionalized poly(vinyl alcohol) as the capping ligand. Next, a CdS shell was grown onto the CdSe core via the layer-by-layer technique. The CdS shell was formed by two consecutive monolayers, as estimated by empirical mathematical functions. The nucleation and growth of CdSe quantum dots followed by CdS shell deposition were characterized by UV-vis spectroscopy, photoluminescence (PL) spectroscopy and transmission electron microscopy (TEM). The results indicated a systematic red-shift of the absorption and emission spectra after the deposition of CdS, indicating the shell growth onto the CdSe core. TEM coupled with electron diffraction analysis revealed the presence of CdSe/CdS with an epitaxial shell growth. Therefore, it may be concluded that CdSe/CdS quantum dots with core-shell nanostructure were effectively synthesized.(author)

  19. Two-dimensional non-volatile programmable p-n junctions

    Science.gov (United States)

    Li, Dong; Chen, Mingyuan; Sun, Zhengzong; Yu, Peng; Liu, Zheng; Ajayan, Pulickel M.; Zhang, Zengxing

    2017-09-01

    Semiconductor p-n junctions are the elementary building blocks of most electronic and optoelectronic devices. The need for their miniaturization has fuelled the rapid growth of interest in two-dimensional (2D) materials. However, the performance of a p-n junction considerably degrades as its thickness approaches a few nanometres and traditional technologies, such as doping and implantation, become invalid at the nanoscale. Here we report stable non-volatile programmable p-n junctions fabricated from the vertically stacked all-2D semiconductor/insulator/metal layers (WSe2/hexagonal boron nitride/graphene) in a semifloating gate field-effect transistor configuration. The junction exhibits a good rectifying behaviour with a rectification ratio of 104 and photovoltaic properties with a power conversion efficiency up to 4.1% under a 6.8 nW light. Based on the non-volatile programmable properties controlled by gate voltages, the 2D p-n junctions have been exploited for various electronic and optoelectronic applications, such as memories, photovoltaics, logic rectifiers and logic optoelectronic circuits.

  20. The Mars water cycle at other epochs - Recent history of the polar caps and layered terrain

    Science.gov (United States)

    Jakosky, Bruce M.; Henderson, Bradley G.; Mellon, Michael T.

    1993-01-01

    A numerical model is presented of the integrated role of seasonal water cycle on the evolution of polar deposits on Mars over the last 10 million years. From the model, it is concluded that the only major difference between the polar caps which affects their long-term behavior is ultimately the difference in their elevations. Because of that difference, there is a preference for CO2 frost to stay longer on the northern polar cap. The average difference in sublimation at the caps results in a net south-to-north transport of water ice over long time scales. Superimposed on any long-term behavior is a transfer of water ice between the caps on the 10 exp 5 - 10 exp 6 yr time scales. The amount of water exchanged is small compared to the total ice content of the polar deposits.

  1. Progress in the development of metamorphic multi-junction III-V space solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Sinharoy, S.; Patton, M.O.; Valko, T.M.; Weizer, V.G. [Essential Research Inc., Cleveland, OH (United States)

    2002-07-01

    Theoretical calculations have shown that highest-efficiency III-V multi-junction solar cells require alloy structures that cannot be grown on a lattice-matched substrate. Ever since the first demonstration of high efficiency metamorphic single-junction 1.1 and 1.2 eV InGaAs solar cells, interest has grown in the development of multi-junction cells of this type, using graded buffer layer technology. Essential Research Incorporated (ERI) is currently developing a dual-junction 1.6 eV InGaP/1.1 eV InGaAs tandem cell (projected practical air-mass zero (AMO), one-sun efficiency of 27%, and 100-sun efficiency of 31.1%) under a Ballistic Missile Defense Command (BMDO) SBIR Phase II program. A second ongoing research effort involves the development of a 2.1 eV A1GaInP/1.6 eV InGaAsP/1.2 eV InGaAs triple-junction concentrator tandem cell (projected practical AMO efficiency 36.5% under 100 suns) under a SBIR Phase II program funded by the Air Force. We are in the process of optimizing the dual-junction cell performance. For the triple-junction cell, we have developed the bottom and the middle cell, and are in the process of developing the layer structures needed for the top cell. A progress report is presented in this paper. (author)

  2. Branching in current-voltage characteristics of intrinsic Josephson junctions

    International Nuclear Information System (INIS)

    Shukrinov, Yu M; Mahfouzi, F

    2007-01-01

    We study branching in the current-voltage characteristics of the intrinsic Josephson junctions of high-temperature superconductors in the framework of the capacitively coupled Josephson junction model with diffusion current. A system of dynamical equations for the gauge-invariant phase differences between superconducting layers for a stack of ten intrinsic junctions has been numerically solved. We have obtained a total branch structure in the current-voltage characteristics. We demonstrate the existence of a 'breakpoint region' on the current-voltage characteristics and explain it as a result of resonance between Josephson and plasma oscillations. The effect of the boundary conditions is investigated. The existence of two outermost branches and correspondingly two breakpoint regions for the periodic boundary conditions is shown. One branch, which is observed only at periodic boundary conditions, corresponds to the propagating of the plasma mode. The second one corresponds to the situation when the charge oscillations on the superconducting layers are absent, excluding the breakpoint. A time dependence of the charge oscillations at breakpoints is presented

  3. Negative tunnel magnetoresistance and spin transport in ferromagnetic graphene junctions

    International Nuclear Information System (INIS)

    Zou Jianfei; Jin Guojun; Ma Yuqiang

    2009-01-01

    We study the tunnel magnetoresistance (TMR) and spin transport in ferromagnetic graphene junctions composed of ferromagnetic graphene (FG) and normal graphene (NG) layers. It is found that the TMR in the FG/NG/FG junction oscillates from positive to negative values with respect to the chemical potential adjusted by the gate voltage in the barrier region when the Fermi level is low enough. Particularly, the conventionally defined TMR in the FG/FG/FG junction oscillates periodically from a positive to negative value with increasing the barrier height at any Fermi level. The spin polarization of the current through the FG/FG/FG junction also has an oscillating behavior with increasing barrier height, whose oscillating amplitude can be modulated by the exchange splitting in the ferromagnetic graphene.

  4. Negative tunnel magnetoresistance and spin transport in ferromagnetic graphene junctions.

    Science.gov (United States)

    Zou, Jianfei; Jin, Guojun; Ma, Yu-Qiang

    2009-03-25

    We study the tunnel magnetoresistance (TMR) and spin transport in ferromagnetic graphene junctions composed of ferromagnetic graphene (FG) and normal graphene (NG) layers. It is found that the TMR in the FG/NG/FG junction oscillates from positive to negative values with respect to the chemical potential adjusted by the gate voltage in the barrier region when the Fermi level is low enough. Particularly, the conventionally defined TMR in the FG/FG/FG junction oscillates periodically from a positive to negative value with increasing the barrier height at any Fermi level. The spin polarization of the current through the FG/FG/FG junction also has an oscillating behavior with increasing barrier height, whose oscillating amplitude can be modulated by the exchange splitting in the ferromagnetic graphene.

  5. A new approach to spherically symmetric junction surfaces and the matching of FLRW regions

    International Nuclear Information System (INIS)

    Kirchner, U

    2004-01-01

    We investigate timelike junctions (with surface layer) between spherically symmetric solutions of the Einstein-field equation. In contrast to previous investigations, this is done in a coordinate system in which the junction surface motion is absorbed in the metric, while all coordinates are continuous at the junction surface. The evolution equations for all relevant quantities are derived. We discuss the no-surface layer case (boundary surface) and study the behaviour for small surface energies. It is shown that one should expect cases in which the speed of light is reached within a finite proper time. We carefully discuss necessary and sufficient conditions for a possible matching of spherically symmetric sections. For timelike junctions between spherically symmetric spacetime sections we show explicitly that the time component of the Lanczos equation always reduces to an identity (independent of the surface equation of state). The results are applied to the matching of Friedmann-LemaItre-Robertson-Walker (FLRW) models. We discuss 'vacuum bubbles' and closed-open junctions in detail. As illustrations several numerical integration results are presented, some of them indicate that (observers comoving with) the junction surface can reach the speed of light within a finite time

  6. Cervical Cap

    Science.gov (United States)

    ... giving birth vaginally, which means the cervical cap may not fit as well. Inconsistent or incorrect use of the cervical cap increases your risk of pregnancy. For example, you may get pregnant when using the cervical cap if: ...

  7. Conductance enhancement due to interface magnons in electron-beam evaporated MgO magnetic tunnel junctions with CoFeB free layer deposited at different pressure

    Energy Technology Data Exchange (ETDEWEB)

    Guo, P.; Yu, G. Q.; Wei, H. X.; Han, X. F., E-mail: jiafengfeng@aphy.iphy.ac.cn, E-mail: xfhan@aphy.iphy.ac.cn [Beijing National Laboratory of Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Li, D. L.; Feng, J. F., E-mail: jiafengfeng@aphy.iphy.ac.cn, E-mail: xfhan@aphy.iphy.ac.cn [Beijing National Laboratory of Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); CRANN and School of Physics, Trinity College, Dublin 2 (Ireland); Kurt, H. [CRANN and School of Physics, Trinity College, Dublin 2 (Ireland); Department of Engineering Physics, Istanbul Medeniyet University, 34720 Istanbul (Turkey); Chen, J. Y.; Coey, J. M. D. [CRANN and School of Physics, Trinity College, Dublin 2 (Ireland)

    2014-10-21

    Electron-beam evaporated MgO-based magnetic tunnel junctions have been fabricated with the CoFeB free layer deposited at Ar pressure from 1 to 4 mTorr, and their tunneling process has been studied as a function of temperature and bias voltage. By changing the growth pressure, the junction dynamic conductance dI/dV, inelastic electron tunneling spectrum d²I/dV², and tunneling magnetoresistance vary with temperature. Moreover, the low-energy magnon cutoff energy E{sub C} derived from the conductance versus temperature curve agrees with interface magnon energy obtained directly from the inelastic electron tunneling spectrum, which demonstrates that interface magnons are involved in the electron tunneling process, opening an additional conductance channel and thus enhancing the total conductance.

  8. Ground penetrating radar and direct current resistivity evaluation of the desiccation test cap, Savannah River Site

    International Nuclear Information System (INIS)

    Wyatt, D.E.; Cumbest, R.J.

    1996-04-01

    The Savannah River Site (SRS) has a variety of waste units that may be temporarily or permanently stabilized by closure using an impermeable cover to prevent groundwater infiltration. The placement of an engineered kaolin clay layer over a waste unit is an accepted and economical technique for providing an impermeable cover but the long term stability and integrity of the clay in non-arid conditions is unknown. A simulated kaolin cap has been constructed at the SRA adjacent to the Burial Ground Complex. The cap is designed to evaluate the effects of desiccation on clay integrity, therefore half of the cap is covered with native soil to prevent drying, while the remainder of the cap is exposed. Measurements of the continuing impermeability of a clay cap are difficult because intrusive techniques may locally compromise the structure. Point measurements made to evaluate clay integrity, such as those from grid sampling or coring and made through a soil cover, may miss cracks, joints or fissures, and may not allow for mapping of the lateral extent of elongate features. Because of these problems, a non-invasive technique is needed to map clay integrity, below a soil or vegetation cover, which is capable of moderate to rapid investigation speeds. Two non-intrusive geophysical techniques, direct current resistivity and ground penetrating radar (GPR), have been successful at the SRS in geologically mapping shallow subsurface clay layers. The applicability of each technique in detecting the clay layer in the desiccation test cap and associated anomalies was investigated

  9. Structural studies of YBCO ramp Josephson junctions for rapid single flux quantum circuits

    Energy Technology Data Exchange (ETDEWEB)

    Gustafsson, M.; Olsson, E.; Huang, M.Q.; Komissinski, P.V.; Mozhaev, P.B.; Ivanov, Z.G.

    1999-11-01

    Ramp-type Josephson junctions with barrier layers of Ga doped PrBa{sub 2}Cu{sub 3}O{sub 7{minus}{delta}} have been investigated using scanning and transmission electron microscopy. The microstructures have been correlated to the ramp geometry. The junctions exhibited low excess current. This is believed to be due to the uniform thickness of barrier layer deposited on the ion-milled edges. The uniformity of the barrier is presumed to be a result of the smooth ramp, which promoted uniform nucleation and epitaxial growth.

  10. Andreev reflexion studies on planar hybrid SNS-junctions based on 122-thin films

    Energy Technology Data Exchange (ETDEWEB)

    Doering, Sebastian; Schmidt, Stefan; Schmidl, Frank; Tympel, Volker; Seidel, Paul [Friedrich-Schiller-Universitaet Jena, Institut fuer Festkoerperphysik, Helmholtzweg 5, Jena (Germany); Haindl, Silvia; Kurth, Fritz; Iida, Kazumasa; Holzapfel, Bernhard [IFW Dresden, Institut fuer Metallische Werkstoffe, 01069 Dresden (Germany)

    2012-07-01

    To investigate the properties of iron-based superconductors, we prepared hybrid junctions in thin film technique. Therefore two geometries were prepared, a planar SNS-junction and an edge junction. The base electrode was made of Ba(Fe{sub 0.9}Co{sub 0.1}){sub 2}As{sub 2} thin films, a sputtered gold layer acts as normal barrier for the planar junction and for the counter electrode we used the conventional superconductor lead. We measured the electrical properties of each electrode, as well as the junctions itself. To obtain information about the order parameter symmetry, we show the differential conductance and compare with different variations of an extended BTK-model. We show differences and commonalities between the results of both junction geometries.

  11. Sum frequency generation and catalytic reaction studies of the removal of the organic capping agents from Pt nanoparticles by UV-ozone treatment

    Energy Technology Data Exchange (ETDEWEB)

    Aliaga, Cesar; Park, Jeong Y.; Yamada, Yusuke; Lee, Hyun Sook; Tsung, Chia-Kuang; Yang, Peidong; Somorjai, Gabor A.

    2009-12-10

    We report the structure of the organic capping layers of platinum colloid nanoparticles and their removal by UV-ozone exposure. Sum frequency generation vibrational spectroscopy (SFGVS) studies identify the carbon-hydrogen stretching modes on poly(vinylpyrrolidone) (PVP) and tetradecyl tributylammonium bromide (TTAB)-capped platinum nanoparticles. We found that the UV-ozone treatment technique effectively removes the capping layer on the basis of several analytical measurements including SFGVS, X-ray photoelectron spectroscopy, and diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). The overall shape of the nanoparticles was preserved after the removal of capping layers, as confirmed by transmission electron microscopy (TEM). SFGVS of ethylene hydrogenation on the clean platinum nanoparticles demonstrates the existence of ethylidyne and di-{sigma}-bonded species, indicating the similarity between single-crystal and nanoparticle systems.

  12. Spin-Polarization in Quasi-Magnetic Tunnel Junctions

    Science.gov (United States)

    Xie, Zheng-Wei; Li, Ling

    2017-05-01

    Spin polarization in ferromagnetic metal/insulator/spin-filter barrier/nonmagnetic metal, referred to as quasi-magnetic tunnel junctions, is studied within the free-electron model. Our results show that large positive or negative spin-polarization can be obtained at high bias in quasi-magnetic tunnel junctions, and within large bias variation regions, the degree of spin-polarization can be linearly tuned by bias. These linear variation regions of spin-polarization with bias are influenced by the barrier thicknesses, barrier heights and molecular fields in the spin-filter (SF) layer. Among them, the variations of thickness and heights of the insulating and SF barrier layers have influence on the value of spin-polarization and the linear variation regions of spin-polarization with bias. However, the variations of molecular field in the SF layer only have influence on the values of the spin-polarization and the influences on the linear variation regions of spin-polarization with bias are slight. Supported by the Key Natural Science Fund of Sichuan Province Education Department under Grant Nos 13ZA0149 and 16ZA0047, and the Construction Plan for Scientific Research Innovation Team of Universities in Sichuan Province under Grant No 12TD008.

  13. Synchronisation of Josephson vortices in multi-junction systems

    DEFF Research Database (Denmark)

    Filatrella, G.; Pedersen, Niels Falsig; Wiesenfeld, K.

    2006-01-01

    , is modified by the coupling among the junctions, so the motion of the flux quanta in the various layers is affected by the flux dynamics in all other layers. Two basic states are possible: a synchronous motion, where all junctions are reflected at the edge at the same instant, and an out-of-phase motion......, that is mainly to retrieve the above described synchronous motion. We discuss the physics behind synchronization of nonlinear elements and we review applications to Josephson arrays. We discuss in the framework of a general model for synchronization, the Kuramoto model, a mechanism that can possibly enhance...... synchronization, such as coupling to a resonant cavity. We present a version of the Kuramoto model that might include the effects of the strong interaction between the oscillators and the cavity. (c) 2005 Elsevier B.V. All rights reserved....

  14. Tunnel magnetoresistance of an as-deposited Co2FeAl0.5Si0.5-based magnetic tunnel junction on a Ta/Ru buffer layer

    International Nuclear Information System (INIS)

    Hwang, Jae Youn; Lee, Gae Hun; Song, Yun Heub; Yim, Hae In

    2010-01-01

    A magnetic tunnel junction (MTJ) with a Co 2 FeAl 0.5 Si 0.5 (CFAS) heusler film on a conductive Ta/Ru buffer layer was fabricated for the first time. In the as-deposited state, a highly B2-ordered CFAS film was obtained by using the Ta/Ru buffer layer. The Ta (110) buffer layer causes a Ru (002) buffer layer, which leads to the growth of CFAS with a B2 structure and a completely flat CFAS film. After 600 .deg. C annealing, strain relaxation occurred in the Ta/Ru interface, and the surface roughness decreased; however, the B2-ordered CFAS film remained. Also, in the as-deposited state, a exchange-biased CFAS/AlO x /CFAS MTJ deposited on a Ta/Ru buffer layer exhibited a relatively high tunnel magnetoresistance (TMR) of 13% at room temperature, which resulted from the highly B2-ordered CFAS layer and the perfectly flat surface roughness resulting from the use of the Ta/Ru buffer layer.

  15. Water balance of two earthen landfill caps in a semi-arid climate

    International Nuclear Information System (INIS)

    Khire, M.V.; Benson, C.H.; Bosscher, P.J.

    1997-01-01

    Water balance data are presented that were obtained from two earthen cap test sections located in a semi-arid region. The test sections were constructed on a municipal solid waste landfill in East Wenatchee, Washington, USA. One test section represents a traditional resistive barrier, and is constructed with a compacted silty clay barrier 60 cm thick and a vegetated silty clay surface layer 15 cm thick. The other test section represents a capillary barrier and has a sand layer 75 cm thick overlain by a 15-cm-thick vegetated surface layer of silt. Extensive hydrological and meteorological data have been collected since November 1992. Unsaturated hydraulic properties of soils, hydrologic parameters, and vegetation have been extensively characterized. Results of the study show that capillary barriers can be effective caps in semi-arid and arid regions. They are also cheaper to construct and can perform better than traditional resistive barriers

  16. Origin of variation of shift field via annealing at 400°C in a perpendicular-anisotropy magnetic tunnel junction with [Co/Pt]-multilayers based synthetic ferrimagnetic reference layer

    Directory of Open Access Journals (Sweden)

    H. Honjo

    2017-05-01

    Full Text Available We investigated properties of perpendicular-anisotropy magnetic tunnel junctions (p-MTJs with [Co/Pt]-multilayer based synthetic ferrimagnetic reference (SyF layer at elevated annealing temperature Ta from 350°C to 400°C. Shift field HS defined as center field of minor resistance versus magnetic field curve of the MTJs increased with increase of Ta from 350°C to 400°C. The variation of HS is attributed to the variation of saturation magnetic moment in the SyF reference layer. Cross sectional energy dispersive X-ray spectroscopy analysis revealed that Fe element of CoFeB in the reference layer diffuses to Co/Pt multilayers in the SyF reference layer.

  17. Interfacial mixing in double-barrier magnetic tunnel junctions with amorphous NiFeSiB layers

    International Nuclear Information System (INIS)

    Chun, B.S.; Ko, S.P.; Hwang, J.Y.; Rhee, J.R.; Kim, T.W.; Kim, Y.K.

    2007-01-01

    Double-barrier magnetic tunnel junctions (DMTJs) comprising Ta 45/Ru 9.5/IrMn 10/CoFe 7/AlO x /free layer (CoFe 4/NiFeSiB 2/CoFe 4, CoFe 10, or NiFeSiB 10)/AlO x /CoFe 7/IrMn 10/Ru 60 (nm) have been examined with an emphasis given on understanding the interfacial mixing effects. The DMTJ, consisted of NiFeSiB, shows low switching field and low bias voltage dependence because the amorphous NiFeSiB has lower M S (=800 emu/cm 3 ) and offers smoother interfaces than polycrystalline CoFe. An interesting feature observed in the CoFe/NiFeSiB/CoFe sandwich free layered DMTJ is the presence of a wavy MR transfer curve at high-resistance region. Because the polycrystalline CoFe usually grows into a columnar structure, diamagnetic CoSi, paramagnetic FeSi, and/or diamagnetic CoB might have been formed during the sputter-deposition process. By employing electron energy loss spectrometry (EELS) and Auger electron spectroscopy (AES), we were able to confirm that Si and B atoms were arranged evenly in the top and bottom portions of AlO x /CoFe interfaces. This means that the interfacial mixing resulted in a distorted magnetization reversal process

  18. Heat Transfer Behavior across the Dentino-Enamel Junction in the Human Tooth.

    Directory of Open Access Journals (Sweden)

    Lin Niu

    Full Text Available During eating, the teeth usually endure the sharply temperature changes because of different foods. It is of importance to investigate the heat transfer and heat dissipation behavior of the dentino-enamel junction (DEJ of human tooth since dentine and enamel have different thermophysical properties. The spatial and temporal temperature distributions on the enamel, dentine, and pulpal chamber of both the human tooth and its discontinuous boundaries, were measured using infrared thermography using a stepped temperature increase on the outer boundary of enamel crowns. The thermal diffusivities for enamel and dentine were deduced from the time dependent temperature change at the enamel and dentine layers. The thermal conductivities for enamel and dentine were calculated to be 0.81 Wm-1K-1 and 0.48 Wm-1K-1 respectively. The observed temperature discontinuities across the interfaces between enamel, dentine and pulp-chamber layers were due to the difference of thermal conductivities at interfaces rather than to the phase transformation. The temperature gradient distributes continuously across the enamel and dentine layers and their junction below a temperature of 42°C, whilst a negative thermal resistance is observed at interfaces above 42°C. These results suggest that the microstructure of the dentin-enamel junction (DEJ junction play an important role in tooth heat transfer and protects the pulp from heat damage.

  19. Visualization of the current density in Josephson junctions with 0- and π-facets

    International Nuclear Information System (INIS)

    Guerlich, Christian

    2010-01-01

    With Low-Temperature-Electron-Microscopy (LTSEM) it is possible to analyse the transport properties of solids at low temperatures. In particular it is possible to image the supercurrent density j s in Josephson junctions. This was demonstrated by comparing TTREM-images with calculated values for j s . In this thesis ramp-type Nd 2-x Ce x CuO 4-y /Nb-Josephson-junctions (NCCO/Nb) and Josephson junctions with a ferromagnetic interlayer Nb/Al-Al 2 O 3 /NiCu/Nb, so-called SIFS (superconductor-insulator-ferromagnet-superconductor) Josephson junctions were studied.It was demonstrated that LTSEM provides direct imaging of the sign change of the order parameter in superconductors with d x 2 -y 2 -symmetry. This was a controversial issue over the last decade. A step like variation in the thickness of the F-layer allows the fabrication of linear and annular Josephson junctions with different numbers of 0 and π facets. With the LTSEM 0-, π-, 0-π-, 0-π-0-, 0/2-π-0/2-, 20 x (0-π)- as well as square-shaped-, circular- and annular-Josephson-junctions were studied. It was demonstrated, that these junctions are of good quality and have critical current densities up to 42 A/cm 2 at T=4.2 K, which is a record value for SIFS junctions with a NiCu F-layer so far. By comparing the measurements with simulations a first indication of a semifluxon at the 0-π-boundary was found. (orig.)

  20. Probing electrical transport in individual carbon nanotubes and junctions

    International Nuclear Information System (INIS)

    Kim, Tae-Hwan; Wendelken, John F; Li Anping; Du Gaohui; Li Wenzhi

    2008-01-01

    The electrical transport properties of individual carbon nanotubes (CNTs) and multi-terminal junctions of CNTs are investigated with a quadraprobe scanning tunneling microscope. The CNTs used in this study are made of stacked herringbone-type conical graphite sheets with a cone angle of ∼20 deg. to the tube axis, and the CNT junctions have no catalytic particles in the junction areas. The CNTs have a significantly higher resistivity than conventional CNTs with concentric walls. The straight CNTs display linear current-voltage (I-V) characteristics, indicating diffusive transport rather than ballistic transport. The structural deformation in CNTs with bends substantially increases the resistivity in comparison with that for the straight segments on the same CNTs, and the I-V curve departs slightly from linearity in curved segments. The junction area of the CNT junctions behaves like an ohmic-type scattering center with linear I-V characteristics. In addition, a gating effect has not been observed, in contrast to the case for conventional multi-walled CNT junctions. These unusual transport properties can be attributed to the enhanced inter-layer interaction in the herringbone-type CNTs.

  1. Fabrication of TiN/AlN/TiN tunnel junctions

    Energy Technology Data Exchange (ETDEWEB)

    Nakayama, Takeru; Naruse, Masato; Myoren, Hiroaki; Taino, Tohru, E-mail: taino@mail.saitama-u.ac.jp

    2016-11-15

    Highlights: • We have fabricated TiN/AlN/TiN tunnel junctions with an epitaxial layer. • TiN and AlN films were deposited by dc and rf magnetron sputtering at ambient substrate temperatures. • The junctions have a V{sub g} = 1.1 mV, J{sub c} = 0.24 A/cm{sup 2}, R{sub sg}/R{sub n} of 7.2, and low subgap leakage current of 180 nA. - Abstract: We have fabricated TiN/AlN/TiN tunnel junctions with an epitaxial layer. The critical temperature of TiN can be changed in the range from 0.5 to 5.0 K. Therefore, it is easy to set 5.0 K as the target critical temperature. When a Superconducting Tunnel Junction (STJ) is operated as a photon detector, it is necessary to cool it to within 0.1 K of the critical temperature in consideration of the noise of the thermally stimulated currents. Because 0.3 K was desirable, as for the manufacture of general purpose photon detectors, the critical temperature 5.0 K. TiN and AlN films were deposited by dc and rf magnetron sputtering in a load-lock sputtering system at ambient substrate temperatures. The junctions have a gap voltage of V{sub g} = 1.1 mV, and critical current density of J{sub c} = 0.24 A/cm{sup 2}, and R{sub sg}/R{sub n} of 7.2, and low subgap leakage current (I{sub sub}@ 500 µV = 180 nA). We report our experiment system, the manufacture method and the junction properties in this paper.

  2. Nb/NiCu bilayers in single and stacked superconductive tunnel junctions: preliminary results

    International Nuclear Information System (INIS)

    Pepe, G.P.; Ruotolo, A.; Parlato, L.; Peluso, G.; Ausanio, G.; Carapella, G.; Latempa, R.

    2004-01-01

    We present preliminary experimental results concerning both single and stacked tunnel junctions in which one of the electrodes was formed by a superconductor/ferromagnet (S/F) bi-layer. In particular, in the stacked configuration a Nb/NiCu bi-layer was used as the intermediate electrode, and it was probed by tunneling on both sides. Tunnel junctions have been characterized in terms of current-voltage characteristics (IVC), and differential conductance. Preliminary steady-state injection-detection measurements performed in the stacked devices at T=4.2 K are also presented and discussed

  3. Josephson effect in SIFS junctions at arbitrary scattering

    International Nuclear Information System (INIS)

    Pugach, N. G.; Kupriyanov, M. Yu.; Goldobin, E.; Koelle, D.; Kleiner, R.

    2011-01-01

    Full text: The interplay between dirty and clean limits in Superconductor-Ferromagnet-Superconductor (SFS) Josephson junctions is a subject of intensive theoretical studies. SIFS junctions, containing an additional insulator (I) barrier are interesting as potential logic elements in superconducting circuits, since their critical current I c can be tuned over a wide range, still keeping a high I c R N product, where R N is the normal resistance of the junction. They are also a convenient model system for a comparative study of the 0-π transitions for arbitrary relations between characteristic lengths of the F-layer: the layer thickness d, the mean free path l, the magnetic length ξ H =v F /2H, and the nonmagnetic coherence length ξ 0 =v F /2πT, where v F is the Fermi velocity, H is the exchange magnetic energy, and T is the temperature. The spatial variations of the order parameter are described by the complex coherent length in the ferromagnet ξ F -1 = ξ 1 -1 + iξ 2 -1 . It is well known, that in the dirty limit (l 1,2 ) described by the Usadel equations both ξ 1 2 = ξ 2 2 = v F l/3H. In this work the spatial distribution of the anomalous Green's functions and the Josephson current in the SIFS junction are calculated. The linearized Eilenberger equations are solved together with the Zaitsev boundary conditions. This allows comparing the dirty and the clean limits, investigating a moderate disorder, and establishing the applicability limits of the Usadel equations for such structures. We demonstrate that for an arbitrary relation between l, ξ H , and d the spatial distribution of the anomalous Green's function can be approximated by a single exponent with reasonable accuracy, and we find its effective decay length and oscillation period for several values of ξ H , l and d. The role of different types of the FS interface is analyzed. The applicability range of the Usadel equation is established. The results of calculations have been applied to the

  4. Anti-pp,. cap alpha cap alpha. and p. cap alpha. elastic scattering at high energies and Chou-Yang conjecture

    Energy Technology Data Exchange (ETDEWEB)

    Saleem, M.; Fazal-e-Aleem; Rifique, M.

    1987-03-01

    The recent experimental measurements for anti-pp and ..cap alpha cap alpha.. elastic scattering at high energies have shown that the Chou-Yang conjecture regarding the relationship between the electromagnetic and the hadronic form factor of a particle is only an approximation. A new ansatz has been proposed to obtain hadronic form factors of proton and the ..cap alpha..-particle. These form factors have been used to explain the various characteristics of anti-pp, ..cap alpha cap alpha.. and p..cap alpha.. elastic scattering at high energies.

  5. Current-driven thermo-magnetic switching in magnetic tunnel junctions

    Science.gov (United States)

    Kravets, A. F.; Polishchuk, D. M.; Pashchenko, V. A.; Tovstolytkin, A. I.; Korenivski, V.

    2017-12-01

    We investigate switching of magnetic tunnel junctions (MTJs) driven by the thermal effect of the transport current through the junctions. The switching occurs in a specially designed composite free layer, which acts as one of the MTJ electrodes, and is due to a current-driven ferro-to-paramagnetic Curie transition with the associated exchange decoupling within the free layer leading to magnetic reversal. We simulate the current and heat propagation through the device and show how heat focusing can be used to improve the power efficiency. The Curie-switch MTJ demonstrated in this work has the advantage of being highly tunable in terms of its operating temperature range, conveniently to or just above room temperature, which can be of technological significance and competitive with the known switching methods using spin-transfer torques.

  6. Charge distribution of metallic single walled carbon nanotube–graphene junctions

    International Nuclear Information System (INIS)

    Robert, P T; Danneau, R

    2014-01-01

    We report numeric and analytic calculations of the electrostatic properties for armchair carbon nanotube–graphene junctions. Using a semi-empirical method we first demonstrate that the equilibrium distance between a carbon nanotube and a graphene sheet varies with respect to the diameter of the carbon nanotube. We find significantly reduced values compared to AB-stacked graphene sheets in graphite, while even smaller value is found for a fullerene C 60 implying a dimensionality dependence of the equilibrium distance between graphene and the other sp 2 carbon allotropes. Then, we use conformal mapping and a charge–dipole model to study the charge distribution of the carbon nanotube–graphene junctions in various configurations. We observe that the charges are accumulated/depleted at and near the vicinity of the junctions and that capped carbon nanotubes induce a significantly smaller charge concentration at their ends than the open-end nanotubes. We demonstrate that the carbon nanotube influence on the graphene sheet is limited to only few atomic rows. Such an influence strongly depends on the distance between carbon nanotube and the graphene sheet and scales with the carbon nanotube radius, while the potential difference does not modify the length over which the charge concentration is disturbed by the presence of the tube. By studying the potential landscape of carbon nanotube–graphene junctions, our work could be used as a starting point to model the charge carrier injection in these unconventional systems. (paper)

  7. A Study on Millimetre-Wave Tunable Bandpass Filter Based on Polymer Cap Deflection

    Directory of Open Access Journals (Sweden)

    Paul-Alain Rolland

    2012-01-01

    Full Text Available This paper presents a new tuning mechanism for millimetre-wave BPF based on deflection of the BCB membrane of BCB packaging cap. A 3-pole parallel-coupled microstrip filter operating at 60 GHz is first implemented on 30 µm-thick BCB polymer substrate and then BCB-capped through our new anti-adhesion layer assisted wafer-level transfer technique. Gold electrodes are fabricated on top of the BCB cap for DC actuation. The implemented BCB capped BPF showed the tuning range of 1.49 GHz from 63.36 GHz to 64.85 GHz with the associated insertion losses of −9.7 dB and −9.4 dB and the return losses better than −11 dB over the tuning range.

  8. Radiation Detection Measurements with a New 'Buried Junction' Silicon Avalanche Photodiode

    CERN Document Server

    Lecomte, R; Rouleau, D; Dautet, H; McIntyre, R J; McSween, D; Webb, P

    1999-01-01

    An improved version of a recently developed 'Buried Junction' avalanche photodiode (APD), designed for use with scintillators, is described and characterized. This device, also called the 'Reverse APD', is designed to have a wide depletion layer and thus low capacitance, but to have high gain only for e-h pairs generated within the first few microns of the depletion layer. Thus it has high gain for light from scintillators emitting in the 400-600 nm range, with relatively low dark current noise and it is relatively insensitive to minimum ionizing particles (MIPs). An additional feature is that the metallurgical junction is at the back of the wafer, leaving the front surface free to be coupled to a scintillator without fear of junction contamination. The modifications made in this device, as compared with the earlier diode, have resulted in a lower excess noise factor, lower dark current, and much-reduced trapping. The electrical and optical characteristics of this device are described and measurements of ener...

  9. Tunneling-Magnetoresistance Ratio Comparison of MgO-Based Perpendicular-Magnetic-Tunneling-Junction Spin Valve Between Top and Bottom Co2Fe6B2 Free Layer Structure.

    Science.gov (United States)

    Lee, Du-Yeong; Lee, Seung-Eun; Shim, Tae-Hun; Park, Jea-Gun

    2016-12-01

    For the perpendicular-magnetic-tunneling-junction (p-MTJ) spin valve with a nanoscale-thick bottom Co2Fe6B2 free layer ex situ annealed at 400 °C, which has been used as a common p-MTJ structure, the Pt atoms of the Pt buffer layer diffused into the MgO tunneling barrier. This transformed the MgO tunneling barrier from a body-centered cubic (b.c.c) crystallized layer into a mixture of b.c.c, face-centered cubic, and amorphous layers and rapidly decreased the tunneling-magnetoresistance (TMR) ratio. The p-MTJ spin valve with a nanoscale-thick top Co2Fe6B2 free layer could prevent the Pt atoms diffusing into the MgO tunneling barrier during ex situ annealing at 400 °C because of non-necessity of a Pt buffer layer, demonstrating the TMR ratio of ~143 %.

  10. Proximity effect and hot-electron diffusion in Ag/Al2O3/Al tunnel junctions

    International Nuclear Information System (INIS)

    Netel, H.; Jochum, J.; Labov, S.E.; Mears, C.A.; Frank, M.; Chow, D.; Lindeman, M.A.; Hiller, L.J.

    1997-01-01

    We have fabricated Ag/Al 2 O 3 /Al tunnel junctions on Si substrates using a new process. This process was developed to fabricate superconducting tunnel junctions (STJs) on the surface of a superconductor. These junctions allow us to study the proximity effect of a superconducting Al film on a normal metal trapping layer. In addition, these devices allow us to measure the hot-electron diffusion constant using a single junction. Lastly these devices will help us optimize the design and fabrication of tunnel junctions on the surface of high-Z, ultra-pure superconducting crystals. 5 refs., 8 figs

  11. Detailed investigation of the bifurcation diagram of capacitively coupled Josephson junctions in high-Tc superconductors and its self similarity

    Science.gov (United States)

    Hamdipour, Mohammad

    2018-04-01

    We study an array of coupled Josephson junction of superconductor/insulator/superconductor type (SIS junction) as a model for high temperature superconductors with layered structure. In the current-voltage characteristics of this system there is a breakpoint region in which a net electric charge appear on superconducting layers, S-layers, of junctions which motivate us to study the charge dynamics in this region. In this paper first of all we show a current voltage characteristics (CVC) of Intrinsic Josephson Junctions (IJJs) with N=3 Junctions, then we show the breakpoint region in that CVC, then we try to investigate the chaos in this region. We will see that at the end of the breakpoint region, behavior of the system is chaotic and Lyapunov exponent become positive. We also study the route by which the system become chaotic and will see this route is bifurcation. Next goal of this paper is to show the self similarity in the bifurcation diagram of the system and detailed analysis of bifurcation diagram.

  12. Resonant tunnel magnetoresistance in a double magnetic tunnel junction

    KAUST Repository

    Useinov, Arthur; Useinov, Niazbeck Kh H; Tagirov, Lenar R.; Kosel, Jü rgen

    2011-01-01

    We present quasi-classical approach to calculate a spin-dependent current and tunnel magnetoresistance (TMR) in double magnetic tunnel junctions (DMTJ) FML/I/FMW/I/FMR, where the magnetization of the middle ferromagnetic metal layer FMW can

  13. Cradle Cap (For Parents)

    Science.gov (United States)

    ... Safe Videos for Educators Search English Español Cradle Cap (Infantile Seborrheic Dermatitis) KidsHealth / For Parents / Cradle Cap ( ... many babies develop called cradle cap. About Cradle Cap Cradle cap is the common term for seborrheic ...

  14. Analysis of the modified optical properties and band structure of GaAs1-xSbx-capped InAs/GaAs quantum dots

    NARCIS (Netherlands)

    Ulloa, J.M.; Llorens, J.M.; Moral, del M.; Bozkurt, M.; Koenraad, P.M.; Hierro, A.

    2012-01-01

    The origin of the modified optical properties of InAs/GaAs quantum dots (QD) capped with a thin GaAs1-xSbx layer is analyzed in terms of the band structure. To do so, the size, shape, and composition of the QDs and capping layer are determined through cross-sectional scanning tunnelling microscopy

  15. P-N junction solar cell grown by molecular beam epitaxy

    International Nuclear Information System (INIS)

    Hazrati Fard, M.

    2001-01-01

    Growth of GaAs epilayers by Molecular Beam Epitaxy was accomplished for the first time in Iran. The layers were grown on GaAs (001) substrates (p+ wafer) with Si impurity for p n junction solar cell fabrication at a rate of nearly one micron per hour and 0.25 micron per quarter. Crystalline quality of grown layers had been monitored during growth by Reflection High Energy Electron Diffraction system. Doping profile and layer thickness was assessed by electrochemical C-V profiling method. Then Hall measurements were conducted on small samples both in room temperature and liquid nitrogen temperature so giving average carrier concentration and compensation ratio. The results as like: V oc , I sc , F F, η were comparable with other laboratory reports. information for obtaining good and repeatable growths was collected. Therefore, the conditions of repeatable quality growth p n junction solar cells onto GaAs (001) substrates were determined

  16. The Wiedemann—Franz law in a normal metal—superconductor junction

    International Nuclear Information System (INIS)

    Ghanbari R; Rashedi G

    2011-01-01

    In this paper the influence of superconducting correlations on the thermal and charge conductances in a normal metal—superconductor (NS) junction in the clean limit is studied theoretically. First we solve the quasiclassical Eilenberger equations, and using the obtained density of states we can acquire the thermal and electrical conductances for the NS junction. Then we compare the conductance in a normal region of an NS junction with that in a single layer of normal metal (N). Moreover, we study the Wiedemann—Franz (WF) law for these two cases (N and NS). From our calculations we conclude that the behaviour of the NS junction does not conform to the WF law for all temperatures. The effect of the thickness of normal metal on the thermal conductivity is also theoretically investigated in the paper. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  17. Synthesis and characterization of aqueous MPA-capped CdS–ZnS ...

    Indian Academy of Sciences (India)

    octylphosphine oxide, long-chain amine, or long-chain carboxylic acid as ... aqueous synthesis, aqueous synthesis is more productive, less costly, more .... It is also shown that the pH value of the solution and capping layers played important.

  18. Synaptic Interactome Mining Reveals p140Cap as a New Hub for PSD Proteins Involved in Psychiatric and Neurological Disorders

    Directory of Open Access Journals (Sweden)

    Annalisa Alfieri

    2017-06-01

    Full Text Available Altered synaptic function has been associated with neurological and psychiatric conditions including intellectual disability, schizophrenia and autism spectrum disorder (ASD. Amongst the recently discovered synaptic proteins is p140Cap, an adaptor that localizes at dendritic spines and regulates their maturation and physiology. We recently showed that p140Cap knockout mice have cognitive deficits, impaired long-term potentiation (LTP and long-term depression (LTD, and immature, filopodia-like dendritic spines. Only a few p140Cap interacting proteins have been identified in the brain and the molecular complexes and pathways underlying p140Cap synaptic function are largely unknown. Here, we isolated and characterized the p140Cap synaptic interactome by co-immunoprecipitation from crude mouse synaptosomes, followed by mass spectrometry-based proteomics. We identified 351 p140Cap interactors and found that they cluster to sub complexes mostly located in the postsynaptic density (PSD. p140Cap interactors converge on key synaptic processes, including transmission across chemical synapses, actin cytoskeleton remodeling and cell-cell junction organization. Gene co-expression data further support convergent functions: the p140Cap interactors are tightly co-expressed with each other and with p140Cap. Importantly, the p140Cap interactome and its co-expression network show strong enrichment in genes associated with schizophrenia, autism, bipolar disorder, intellectual disability and epilepsy, supporting synaptic dysfunction as a shared biological feature in brain diseases. Overall, our data provide novel insights into the molecular organization of the synapse and indicate that p140Cap acts as a hub for postsynaptic complexes relevant to psychiatric and neurological disorders.

  19. Effects of GaN capping on the structural and the optical properties of InN nanostructures grown by using MOCVD

    International Nuclear Information System (INIS)

    Sun, Yuanping; Cho, Yonghoon; Wang, Hui; Wang, Lili; Zhang, Shuming; Yang, Hui

    2010-01-01

    InN nanostructures with and without GaN capping layers were grown by using metal-organic chemical vapor deposition. Morphological, structural, and optical properties were systematically studied by using atomic force microscopy, X-ray diffraction (XRD) and temperature-dependent photoluminescence (PL). XRD results show that an InGaN structure is formed for the sample with a GaN capping layer, which will reduce the quality and the IR PL emission of the InN. The lower emission peak at ∼0.7 eV was theoretically fitted and assigned as the band edge emission of InN. Temperature-dependent PL shows a good quantum efficiency for the sample without a GaN capping layers; this corresponds to a lower density of dislocations and a small activation energy.

  20. Performance analysis of AlGaAs/GaAs tunnel junctions for ultra-high concentration photovoltaics

    International Nuclear Information System (INIS)

    García, I; Rey-Stolle, I; Algora, C

    2012-01-01

    An n ++ -GaAs/p ++ -AlGaAs tunnel junction with a peak current density of 10 100 A cm -2 is developed. This device is a tunnel junction for multijunction solar cells, grown lattice-matched on standard GaAs or Ge substrates, with the highest peak current density ever reported. The voltage drop for a current density equivalent to the operation of the multijunction solar cell up to 10 000 suns is below 5 mV. Trap-assisted tunnelling is proposed to be behind this performance, which cannot be justified by simple band-to-band tunnelling. The metal-organic vapour-phase epitaxy growth conditions, which are in the limits of the transport-limited regime, and the heavy tellurium doping levels are the proposed origins of the defects enabling trap-assisted tunnelling. The hypothesis of trap-assisted tunnelling is supported by the observed annealing behaviour of the tunnel junctions, which cannot be explained in terms of dopant diffusion or passivation. For the integration of these tunnel junctions into a triple-junction solar cell, AlGaAs barrier layers are introduced to suppress the formation of parasitic junctions, but this is found to significantly degrade the performance of the tunnel junctions. However, the annealed tunnel junctions with barrier layers still exhibit a peak current density higher than 2500 A cm -2 and a voltage drop at 10 000 suns of around 20 mV, which are excellent properties for tunnel junctions and mean they can serve as low-loss interconnections in multijunction solar cells working at ultra-high concentrations. (paper)

  1. The role of strain rate during deposition of CAP on Ti6Al4V by superplastic deformation-like method using high-temperature compression test machine

    International Nuclear Information System (INIS)

    Ramdan, R.D.; Jauhari, I.; Hasan, R.; Masdek, N.R. Nik

    2008-01-01

    This paper describes an implementation of superplastic deformation method for the deposition of carbonated-apatite (CAP) on the well-know titanium alloy, Ti6Al4V. This deposition process was carried out using high-temperature compression test machine, at temperature of 775 deg. C, different strain rates, and conducted along the elastic region of the sample. Before the process, titanium substrate was cryogenically treated in order to approach superplastic characteristic during the process. After the process, thin film of CAP was created on the substrate with the thickness from 0.71 μm to 1.42 μm. The resulted film has a high density of CAP that covered completely the surface of the substrate. From the stress-strain relation chart, it can be observed that as the strain rate decreases, the area under stress-strain chart also decreases. This condition influences the density of CAP layer on the substrate that as this area decreases, the density of CAP layer also decreases as also confirmed by X-ray diffraction characterization. In addition, since the resulting layer of CAP is in the form of thin film, this layer did not alter the hardness of the substrate as measured by Vickers hardness test method. On the other hand, the resulting films also show a good bonding strength properties as the layer remain exist after friction test against polishing clothes for 1 h

  2. Towards ferromagnet/superconductor junctions on graphene

    International Nuclear Information System (INIS)

    Pakkayil, Shijin Babu

    2015-01-01

    to contact graphene or any other semiconductor with a ferromagnet has to overcome one important problem known as ''Conductance mismatch''. To solve the conductance mismatch problem, which had stalled the injection of spin polarised electrons to a semiconductor for many years, in our fabrication method, a thin Al 2 O 3 layer is introduced between the ferromagnet and graphene. The insulating layer is grown using Atomic layer deposition (ALD) with the help of a thin Ti seed layer. Unlike the previously reported method, which treats the entire graphene flake with PTCA (3,4,9,10-perylene tetracarboxylic acid) prior to the ALD process, no such chemical treatment occurs in our fabrication process. Also, the yield of successful devices are higher than the highest yield reported so far (∝30%). The later part of the thesis discusses how this fabrication recipe is further developed to contact graphene with superconducting contacts to produce ferromagnet/superconductor junctions on graphene. The successful spin valve devices produced using the new fabrication process are discussed along with a simple theory of spin transport in graphene. Some of the spin valve devices discussed are fabricated with the help of Ti seed layer (for growing Al 2 O 3 ) and some of them are without. Also, measurement results on devices with varying number of ALD cycles are shown and discussed which helps to decide the optimum number of ALD cycles needed for the best yield and performance. The devices made using Ti seed layer shows better consistency in terms of contact resistances and device performance. Also, ferromagnetic contacts from one device showed perfect tunnel barrier behaviour. Chapter 5 mainly discusses the results of the measurements done on a device which has 4 ferromagnetic contacts and 4 superconducting contacts arranged in a fashion that it forms multiple ferromagnet/superconductor junctions on graphene. Lateral spin valves and Josephson junctions are also part of

  3. Towards ferromagnet/superconductor junctions on graphene

    Energy Technology Data Exchange (ETDEWEB)

    Pakkayil, Shijin Babu

    2015-07-01

    to contact graphene or any other semiconductor with a ferromagnet has to overcome one important problem known as ''Conductance mismatch''. To solve the conductance mismatch problem, which had stalled the injection of spin polarised electrons to a semiconductor for many years, in our fabrication method, a thin Al{sub 2}O{sub 3} layer is introduced between the ferromagnet and graphene. The insulating layer is grown using Atomic layer deposition (ALD) with the help of a thin Ti seed layer. Unlike the previously reported method, which treats the entire graphene flake with PTCA (3,4,9,10-perylene tetracarboxylic acid) prior to the ALD process, no such chemical treatment occurs in our fabrication process. Also, the yield of successful devices are higher than the highest yield reported so far (∝30%). The later part of the thesis discusses how this fabrication recipe is further developed to contact graphene with superconducting contacts to produce ferromagnet/superconductor junctions on graphene. The successful spin valve devices produced using the new fabrication process are discussed along with a simple theory of spin transport in graphene. Some of the spin valve devices discussed are fabricated with the help of Ti seed layer (for growing Al{sub 2}O{sub 3}) and some of them are without. Also, measurement results on devices with varying number of ALD cycles are shown and discussed which helps to decide the optimum number of ALD cycles needed for the best yield and performance. The devices made using Ti seed layer shows better consistency in terms of contact resistances and device performance. Also, ferromagnetic contacts from one device showed perfect tunnel barrier behaviour. Chapter 5 mainly discusses the results of the measurements done on a device which has 4 ferromagnetic contacts and 4 superconducting contacts arranged in a fashion that it forms multiple ferromagnet/superconductor junctions on graphene. Lateral spin valves and Josephson junctions

  4. Porous silicon formation by hole injection from a back side p+/n junction for electrical insulation applications

    International Nuclear Information System (INIS)

    Fèvre, A; Menard, S; Defforge, T; Gautier, G

    2016-01-01

    In this paper, we propose to study the formation of porous silicon (PS) in low doped (1 × 10 14 cm −3 ) n-type silicon through hole injection from a back side p + /n junction in the dark. This technique is investigated within the framework of electrical insulation. Three different types of junctions are investigated. The first one is an epitaxial n-type layer grown on p + doped silicon wafer. The two other junctions are carried out by boron diffusion leading to p + regions with junction depths of 20 and 115 μm. The resulting PS morphology is a double layer with a nucleation layer (NL) and macropores fully filled with mesoporous material. This result is unusual for low doped n-type silicon. Morphology variations are described depending on the junction formation process, the electrolyte composition, the anodization current density and duration. In order to validate the more interesting industrial potentialities of the p + /n injection technique, a comparison is achieved with back side illumination in terms of resulting morphology and experiments confirm comparable results. Electrical characterizations of the double layer, including NL and fully filled macropores, are then performed. To our knowledge, this is the first electrical investigation in low doped n type silicon with this morphology. Compared to the bulk silicon, the measured electrical resistivities are 6–7 orders of magnitude higher at 373 K. (paper)

  5. White-light emission from porous-silicon-aluminium Schottky junctions

    International Nuclear Information System (INIS)

    Masini, G.; La Monica, S.; Maiello, G.

    1996-01-01

    Porous-silicon-based white-light-emitting devices are presented. The fabrication process on different substrates is described. The peculiarities of technological steps for device fabrication (porous-silicon formation and aluminium treatment) are underlined. Doping profile of the porous layer, current-voltage characteristics, time response, lifetime tests and electroluminescence emission spectrum of the device are presented. A model for electrical behaviour of Al/porous silicon Schottky junction is presented. Electroluminescence spectrum of the presented devices showed strong similarities with white emission from crystalline silicon junctions in the breakdown region

  6. Three-dimensional Myoarchitecture of Porcine Esophago-Gastric Junction with Diffusion Tensor Imaging. Selected for poster presentation

    DEFF Research Database (Denmark)

    Gregersen, Hans; Liao, Donghua; Zhao, Jingbo

    Introduction: The anatomy and function of the esophago-gastric junction (EGJ) is complex with mucosa-submucosa layers and smooth muscle layers organized into circular and longitudinal muscle layers. These layers continue from the esophagus into the EGJ and the stomach. Furthermore, the crura of t...

  7. cap alpha. -bungarotoxin binding properties of a central nervous system nicotinic acetylcholine receptor

    Energy Technology Data Exchange (ETDEWEB)

    Lukasiewicz, R J; Bennett, E L

    1978-01-01

    High-affinity, specific binding of radiolabeled ..cap alpha..-bungarotoxin to particulate fractions derived from rat brain shows saturability (B/sub max/ approx. = 37fmol/mg, K/sub D//sup app/ = 1.7 nM) and insensitivity to ionic strength, and is essentially irreversible (K/sub on/ = 5 x 10/sup 6/ min/sup -1/ x mol/sup -1/; K(displacement) = 1.9 x 10/sup -4/ min/sup -1/, tau/sub 1/2/ = 62 h). Subcellular distribution of specific sites is consistent with their location on synaptic junctional complex and post-synaptic membranes. These membrane-bound binding sites exhibit unique sensitivity to cholinergic ligands; pretreatment of membranes with cholinergic agonists (but not antagonists) induces transformation of ..cap alpha..-bungarotoxin binding sites to a high affinity form toward agonist. The effect is most marked for the natural agonist, acetylcholine. These results strongly support the notion that the entity under study is an authentic nicotinic acetylcholine receptor.

  8. Rocket measurements within a polar cap arc - Plasma, particle, and electric circuit parameters

    Science.gov (United States)

    Weber, E. J.; Ballenthin, J. O.; Basu, S.; Carlson, H. C.; Hardy, D. A.; Maynard, N. C.; Kelley, M. C.; Fleischman, J. R.; Pfaff, R. F.

    1989-01-01

    Results are presented from the Polar Ionospheric Irregularities Experiment (PIIE), conducted from Sondrestrom, Greenland, on March 15, 1985, designed for an investigation of processes which lead to the generation of small-scale (less than 1 km) ionospheric irregularities within polar-cap F-layer auroras. An instrumented rocket was launched into a polar cap F layer aurora to measure energetic electron flux, plasma, and electric circuit parameters of a sun-aligned arc, coordinated with simultaneous measurements from the Sondrestrom incoherent scatter radar and the AFGL Airborne Ionospheric Observatory. Results indicated the existence of two different generation mechanisms on the dawnside and duskside of the arc. On the duskside, parameters are suggestive of an interchange process, while on the dawnside, fluctuation parameters are consistent with a velocity shear instability.

  9. Preparation of small-area Josephson junction using the scratched edge of a Pb/In layer

    International Nuclear Information System (INIS)

    Okuyama, K.; Gundlach, K.H.; Hartfuss, H.J.

    1980-01-01

    Superconductor-insulator-superconductor (SIS) Josephson junctions with areas less than 1 μm 2 were formed at the scratched edge of the Pb/In electrode. The scratch was made with a razor blade. Notwithstanding the simple technique used for scratching, the yield to get good junction is relatively high. The I-V characteristic with and without 70-GHz radiation is shown

  10. Interfacial density of states in magnetic tunnel junctions

    NARCIS (Netherlands)

    LeClair, P.R.; Kohlhepp, J.T.; Swagten, H.J.M.; Jonge, de W.J.M.

    2001-01-01

    Large zero-bias resistance anomalies as well as a collapse of magnetoresistance were observed in Co/Al2O3/Co magnetic tunnel junctions with thin Cr interfacial layers. The tunnel magnetoresistance decays exponentially with nominal Cr interlayer thickness with a length scale of ~1 Å more than twice

  11. Study of shallow trench isolation technology with a poly-Si sidewall buffer layer

    International Nuclear Information System (INIS)

    Juang, M H; Chen, C L; Jang, S L

    2008-01-01

    Shallow trench isolation (STI) technology with a poly-Si buffer layer at the trench sidewall has been studied. At the densification temperature of 950 °C, for the samples without using a poly-Si buffer layer, the resulting junction shows a leakage of about 700 nA cm −2 for a diode area of 100 × 100 µm 2 , primarily due to large peripheral junction leakage. The large leakage is ascribed to the defect generation caused by a thermally induced stress near the trench sidewall. The usage of a poly-Si buffer layer in the trench sidewall is found to significantly improve the junction characteristics. As a result, when a 40 nm poly-Si buffer layer is sandwiched between the Si substrate and the trench-fill silicon oxide, the resultant junctions show a leakage of only about 8 nA cm −2 . This result may reflect the considerably reduced thermally induced stress near the trench sidewall. Furthermore, at the densification temperature of 1100 °C, the usage of a poly-Si buffer layer can help to achieve excellent junctions with a leakage smaller than 5 nA cm −2 for a diode area of 100 × 100 µm 2

  12. Characteristics of electroplated Ni thick film on the PN junction semiconductor for beta-voltaic battery

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jin Joo; Uhm, Young Rang; Park, Keun Young; Son, Kwang Jae [Radioisotope Research Division, Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-12-15

    Nickel (Ni) electroplating was implemented by using a metal Ni powder in order to establish a {sup 63}Ni plating condition on the PN junction semiconductor needed for production of betavoltaic battery. PN junction semiconductors with a Ni seed layer of 500 and 1000 Å were coated with Ni at current density from 10 to 50 mA cm{sup -2}. The surface roughness and average grain size of Ni deposits were investigated by XRD and SEM techniques. The roughness of Ni deposit was increased as the current density was increased, and decreased as the thickness of Ni seed layer was increased. The results showed that the optimum surface shape was obtained at a current density of 10 mA cm{sup -2} in seed layer with thickness of 500 Å, 20 mA cm{sup -2} of 1000 Å. Also, pure Ni deposit was well coated on a PN junction semiconductor without any oxide forms. Using the line width of (111) in XRD peak, the average grain size of the Ni thick firm was measured. The results showed that the average grain size was increased as the thickness of seed layer was increased.

  13. Characteristics of electroplated Ni thick film on the PN junction semiconductor for beta-voltaic battery

    International Nuclear Information System (INIS)

    Kim, Jin Joo; Uhm, Young Rang; Park, Keun Young; Son, Kwang Jae

    2014-01-01

    Nickel (Ni) electroplating was implemented by using a metal Ni powder in order to establish a 63 Ni plating condition on the PN junction semiconductor needed for production of betavoltaic battery. PN junction semiconductors with a Ni seed layer of 500 and 1000 Å were coated with Ni at current density from 10 to 50 mA cm -2 . The surface roughness and average grain size of Ni deposits were investigated by XRD and SEM techniques. The roughness of Ni deposit was increased as the current density was increased, and decreased as the thickness of Ni seed layer was increased. The results showed that the optimum surface shape was obtained at a current density of 10 mA cm -2 in seed layer with thickness of 500 Å, 20 mA cm -2 of 1000 Å. Also, pure Ni deposit was well coated on a PN junction semiconductor without any oxide forms. Using the line width of (111) in XRD peak, the average grain size of the Ni thick firm was measured. The results showed that the average grain size was increased as the thickness of seed layer was increased

  14. Dependency of tunneling magnetoresistance ratio on Pt seed-layer thickness for double MgO perpendicular magnetic tunneling junction spin-valves with a top Co2Fe6B2 free layer ex-situ annealed at 400 °C.

    Science.gov (United States)

    Takemura, Yasutaka; Lee, Du-Yeong; Lee, Seung-Eun; Park, Jea-Gun

    2016-12-02

    For the double MgO based perpendicular magnetic tunneling junction (p-MTJ) spin-valves with a top Co 2 Fe 6 B 2 free layer ex situ annealed at 400 °C, the tunneling-magnetoresistance ratio (TMR) strongly depended on the platinum (Pt) seed layer thickness (t Pt ): it peaked (∼134%) at a specific t Pt (3.3 nm). The TMR ratio was initially and slightly increased from 113%-134% by the enhancement of the magnetic moment of the Co 2 Fe 6 B 2 pinned layer when t Pt increased from 2.0-3.3 nm, and then rapidly decreased from 134%-38.6% by the degrading face-centered-cubic crystallinity of the MgO tunneling barrier when t Pt increased from 3.3-14.3 nm.

  15. Dependences of the Tunnel Magnetoresistance and Spin Transfer Torque on the Sizes and Concentration of Nanoparticles in Magnetic Tunnel Junctions

    Science.gov (United States)

    Esmaeili, A. M.; Useinov, A. N.; Useinov, N. Kh.

    2018-01-01

    Dependences of the tunnel magnetoresistance and in-plane component of the spin transfer torque on the applied voltage in a magnetic tunnel junction have been calculated in the approximation of ballistic transport of conduction electrons through an insulating layer with embedded magnetic or nonmagnetic nanoparticles. A single-barrier magnetic tunnel junction with a nanoparticle embedded in an insulator forms a double-barrier magnetic tunnel junction. It has been shown that the in-plane component of the spin transfer torque in the double-barrier magnetic tunnel junction can be higher than that in the single-barrier one at the same thickness of the insulating layer. The calculations show that nanoparticles embedded in the tunnel junction increase the probability of tunneling of electrons, create resonance conditions, and ensure the quantization of the conductance in contrast to the tunnel junction without nanoparticles. The calculated dependences of the tunnel magnetoresistance correspond to experimental data demonstrating peak anomalies and suppression of the maximum magnetoresistances at low voltages.

  16. Cradle Cap: Treatment

    Science.gov (United States)

    Cradle cap Treatment Cradle cap usually doesn't require medical treatment. It clears up on its own within a few months. In the meantime, wash ... tips can help you control and manage cradle cap. Gently rub your baby's scalp with your fingers ...

  17. Insulator-protected mechanically controlled break junctions for measuring single-molecule conductance in aqueous environments

    Science.gov (United States)

    Muthusubramanian, N.; Galan, E.; Maity, C.; Eelkema, R.; Grozema, F. C.; van der Zant, H. S. J.

    2016-07-01

    We present a method to fabricate insulated gold mechanically controlled break junctions (MCBJ) by coating the metal with a thin layer of aluminum oxide using plasma enhanced atomic layer deposition. The Al2O3 thickness deposited on the MCBJ devices was varied from 2 to 15 nm to test the suppression of leakage currents in deionized water and phosphate buffered saline. Junctions coated with a 15 nm thick oxide layer yielded atomically sharp electrodes and negligible conductance counts in the range of 1 to 10-4 G0 (1 G0 = 77 μS), where single-molecule conductances are commonly observed. The insulated devices were used to measure the conductance of an amphiphilic oligophenylene ethynylene derivative in deionized water.

  18. Potential profile and photovoltaic effect in nanoscale lateral pn junction observed by Kelvin probe force microscopy

    International Nuclear Information System (INIS)

    Nowak, Roland; Moraru, Daniel; Mizuno, Takeshi; Jablonski, Ryszard; Tabe, Michiharu

    2014-01-01

    Nanoscale pn junctions have been investigated by Kelvin probe force microscopy and several particular features were found. Within the depletion region, a localized noise area is observed, induced by temporal fluctuations of dopant states. Electronic potential landscape is significantly affected by dopants with ground-state energies deeper than in bulk. Finally, the effects of light illumination were studied and it was found that the depletion region shifts its position as a function of light intensity. This is ascribed to charge redistribution within the pn junction as a result of photovoltaic effect and due to the impact of deepened-level dopants. - Highlights: • In pn nano-junctions, temporal potential fluctuations are found in depletion layer. • Fluctuations are due to frequent capture and emission of free carriers by dopants. • Depletion layer position shifts as a function of the intensity of irradiated light. • The depletion layer shifts are due to changes of deep-level dopants' charge states

  19. Fabrication and voltage divider operation of a T flip-flop using high-Tc interface-engineered Josephson junctions

    International Nuclear Information System (INIS)

    Kim, JunHo; Kim, Sang Hyeob; Sung, Gun Yong

    2002-01-01

    We designed and fabricated a rapid-single-flux-quantum T flip-flop (TFF) with high-T c interface-engineered Josephson junctions. Y 1 Ba 2 Cu 3 O 7-d and Sr 2 AlTaO 6 were deposited for the superconducting layer and the insulating layer, respectively. The Josephson junction was formed through an interface treatment process using Ar ion milling and vacuum annealing. We simulated a TFF circuit and designed a physical layout using WRspice and Xic. The fabricated TFF has a minimum junction width of 3 μ m. Through the measurement of the voltage divider operation, the maximum operation frequency was estimated to be 53 GHz at 22 K and 106 GHz at 12 K. (author)

  20. Computer analysis of microcrystalline silicon hetero-junction solar cell with lumerical FDTD/DEVICE

    Science.gov (United States)

    Riaz, Muhammad; Earles, S. K.; Kadhim, Ahmed; Azzahrani, Ahmad

    The computer analysis of tandem solar cell, c-Si/a-Si:H/μc-SiGe, is studied within Lumerical FDTD/Device 4.6. The optical characterization is performed in FDTD and then total generation rate is transported into DEVICE for electrical characterization. The electrical characterization of the solar cell is carried out in DEVICE. The design is implemented by staking three sub cells with band gap of 1.12eV, 1.50eV and 1.70eV, respectively. First, single junction solar cell with both a-Si and μc-SiGe absorbing layers are designed and compared. The thickness for both layers are kept the same. In a single junction, solar cell with a-Si absorbing layer, the fill factor and the efficiency are noticed as FF = 78.98%, and η = 6.03%. For μc-SiGe absorbing layer, the efficiency and fill factor are increased as η = 7.06% and FF = 84.27%, respectively. Second, for tandem thin film solar cell c-Si/a-Si:H/μc-SiGe, the fill factor FF = 81.91% and efficiency η = 9.84% have been noticed. The maximum efficiency for both single junction thin film solar cell c-Si/μc-SiGe and tandem solar cell c-Si/a-Si:H/μc-SiGe are improved with check board surface design for light trapping.

  1. Current-induced magnetization switching in atom-thick tungsten engineered perpendicular magnetic tunnel junctions with large tunnel magnetoresistance.

    Science.gov (United States)

    Wang, Mengxing; Cai, Wenlong; Cao, Kaihua; Zhou, Jiaqi; Wrona, Jerzy; Peng, Shouzhong; Yang, Huaiwen; Wei, Jiaqi; Kang, Wang; Zhang, Youguang; Langer, Jürgen; Ocker, Berthold; Fert, Albert; Zhao, Weisheng

    2018-02-14

    Perpendicular magnetic tunnel junctions based on MgO/CoFeB structures are of particular interest for magnetic random-access memories because of their excellent thermal stability, scaling potential, and power dissipation. However, the major challenge of current-induced switching in the nanopillars with both a large tunnel magnetoresistance ratio and a low junction resistance is still to be met. Here, we report spin transfer torque switching in nano-scale perpendicular magnetic tunnel junctions with a magnetoresistance ratio up to 249% and a resistance area product as low as 7.0 Ω µm 2 , which consists of atom-thick W layers and double MgO/CoFeB interfaces. The efficient resonant tunnelling transmission induced by the atom-thick W layers could contribute to the larger magnetoresistance ratio than conventional structures with Ta layers, in addition to the robustness of W layers against high-temperature diffusion during annealing. The critical switching current density could be lower than 3.0 MA cm -2 for devices with a 45-nm radius.

  2. A graphene/single GaAs nanowire Schottky junction photovoltaic device.

    Science.gov (United States)

    Luo, Yanbin; Yan, Xin; Zhang, Jinnan; Li, Bang; Wu, Yao; Lu, Qichao; Jin, Chenxiaoshuai; Zhang, Xia; Ren, Xiaomin

    2018-05-04

    A graphene/nanowire Schottky junction is a promising structure for low-cost high-performance optoelectronic devices. Here we demonstrate a graphene/single GaAs nanowire Schottky junction photovoltaic device. The Schottky junction is fabricated by covering a single layer graphene onto an n-doped GaAs nanowire. Under 532 nm laser excitation, the device exhibits a high responsivity of 231 mA W-1 and a short response/recover time of 85/118 μs at zero bias. Under AM 1.5 G solar illumination, the device has an open-circuit voltage of 75.0 mV and a short-circuit current density of 425 mA cm-2, yielding a remarkable conversion efficiency of 8.8%. The excellent photovoltaic performance of the device is attributed to the strong built-in electric field in the Schottky junction as well as the transparent property of graphene. The device is promising for self-powered high-speed photodetectors and low-cost high-efficiency solar cells.

  3. Gas selectivity of SILAR grown CdS nano-bulk junction

    Science.gov (United States)

    Jayakrishnan, R.; Nair, Varun G.; Anand, Akhil M.; Venugopal, Meera

    2018-03-01

    Nano-particles of cadmium sulphide were deposited on cleaned copper substrate by an automated sequential ionic layer adsorption reaction (SILAR) system. The grown nano-bulk junction exhibits Schottky diode behavior. The response of the nano-bulk junction was investigated under oxygen and hydrogen atmospheric conditions. The gas response ratio was found to be 198% for Oxygen and 34% for Hydrogen at room temperature. An increase in the operating temperature of the nano-bulk junction resulted in a decrease in their gas response ratio. A logarithmic dependence on the oxygen partial pressure to the junction response was observed, indicating a Temkin isothermal behavior. Work function measurements using a Kelvin probe demonstrate that the exposure to an oxygen atmosphere fails to effectively separate the charges due to the built-in electric field at the interface. Based on the benefits like simple structure, ease of fabrication and response ratio the studied device is a promising candidate for gas detection applications.

  4. Solution-processed PCDTBT capped low-voltage InGaZnO{sub x} thin film phototransistors for visible-light detection

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Han; Xiao, Yubin; Chen, Zefeng; Xu, Wangying; Long, Mingzhu; Xu, Jian-Bin, E-mail: jbxu@ee.cuhk.edu.hk [Department of Electronic Engineering and Materials Science and Technology Research Center, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong (China)

    2015-06-15

    The effects of visible-light detection based on solution processed poly[N-9′′-hepta-decanyl-2,7-carbazole-alt-5,5-(4′,7′-di-2-thienyl-2′,1′, 3′benzothiadiazole) (PCDTBT) capped InGaZnOx (IGZO) phototransistors with Al{sub 2}O{sub x} serving as gate dielectric are investigated in this paper. The high-k dielectric is used to lower the device operating voltage down to 2 V. Photons emitted from laser sources with the wavelengths (λ) of 532 nm and 635 nm are absorbed through the layer of PCDTBT to generate electron-hole-pairs (EHPs). After the separation of EHPs, electrons are injected into IGZO layer through the p-n junction formed between the IGZO (n-type semiconductor) and the PCDTBT (p-type semiconductor). The photo-generated carriers boost the drain current of the transistors as well as bring about the negative threshold voltage shift. Significant enhanced detection performance is achieved under the laser wavelength of 532 nm. The highest photoresponsivity reaches up to 20 A/W, while the photoresponse rise time comes to 10 ms and the fall time comes to approximate 76 ms, which is much faster than trap assisted IGZO visible light detection. The fabricated phototransistors favor the application of visible-light detectors and/or optical switches.

  5. NbN-AlN-NbN Josephson junctions on different substrates

    Energy Technology Data Exchange (ETDEWEB)

    Merker, Michael; Bohn, Christian; Voellinger, Marvin; Ilin, Konstantin; Siegel, Michael [KIT, Karlsruhe (Germany)

    2016-07-01

    Josephson junction technology is important for the realization of high quality cryogenic devices such as SQUIDs, RSFQ or SIS-mixers. The material system based on NbN/AlN/NbN tri-layer has gained a lot of interest, because it offers higher gap voltages and critical current densities compared to the well-established Nb/Al-AlOx/Nb technology. However, the realization of high quality Josephson junctions is more challenging. We developed a technology of Josephson junctions on a variety of substrates such as Silicon, Sapphire and Magnesium oxide and compared the quality parameters of these junctions at 4.2 K. The gap voltages achieved a range from 4 mV (for the junctions on Si) to 5.8 mV (in case of MgO substrates) which is considerably higher than those obtained from Nb based Josephson junctions. Another key parameter is the ratio of the subgap resistance to the normal state resistance. This so-called subgap ratio corresponds to the losses in a Josephson junction which have to be minimized. So far, subgap ratios of 26 have been achieved. Further careful optimization of the deposition conditions is required to maximize this ratio, The details of the optimization of technology and of characterization of NbN/AlN/NbN junctions will be presented and discussed.

  6. Innovative architecture design for high performance organic and hybrid multi-junction solar cells

    Science.gov (United States)

    Li, Ning; Spyropoulos, George D.; Brabec, Christoph J.

    2017-08-01

    The multi-junction concept is especially attractive for the photovoltaic (PV) research community owing to its potential to overcome the Schockley-Queisser limit of single-junction solar cells. Tremendous research interests are now focused on the development of high-performance absorbers and novel device architectures for emerging PV technologies, such as organic and perovskite PVs. It has been predicted that the multi-junction concept is able to boost the organic and perovskite PV technologies approaching the 20% and 30% benchmarks, respectively, showing a bright future of commercialization of the emerging PV technologies. In this contribution, we will demonstrate innovative architecture design for solution-processed, highly functional organic and hybrid multi-junction solar cells. A simple but elegant approach to fabricating organic and hybrid multi-junction solar cells will be introduced. By laminating single organic/hybrid solar cells together through an intermediate layer, the manufacturing cost and complexity of large-scale multi-junction solar cells can be significantly reduced. This smart approach to balancing the photocurrents as well as open circuit voltages in multi-junction solar cells will be demonstrated and discussed in detail.

  7. Wide bandgap, strain-balanced quantum well tunnel junctions on InP substrates

    International Nuclear Information System (INIS)

    Lumb, M. P.; Yakes, M. K.; Schmieder, K. J.; Affouda, C. A.; Walters, R. J.; González, M.; Bennett, M. F.; Herrera, M.; Delgado, F. J.; Molina, S. I.

    2016-01-01

    In this work, the electrical performance of strain-balanced quantum well tunnel junctions with varying designs is presented. Strain-balanced quantum well tunnel junctions comprising compressively strained InAlAs wells and tensile-strained InAlAs barriers were grown on InP substrates using solid-source molecular beam epitaxy. The use of InAlAs enables InP-based tunnel junction devices to be produced using wide bandgap layers, enabling high electrical performance with low absorption. The impact of well and barrier thickness on the electrical performance was investigated, in addition to the impact of Si and Be doping concentration. Finally, the impact of an InGaAs quantum well at the junction interface is presented, enabling a peak tunnel current density of 47.6 A/cm 2 to be realized.

  8. Wide bandgap, strain-balanced quantum well tunnel junctions on InP substrates

    Energy Technology Data Exchange (ETDEWEB)

    Lumb, M. P. [The George Washington University, Washington, DC 20037 (United States); US Naval Research Laboratory, Washington, DC 20375 (United States); Yakes, M. K.; Schmieder, K. J.; Affouda, C. A.; Walters, R. J. [US Naval Research Laboratory, Washington, DC 20375 (United States); González, M.; Bennett, M. F. [Sotera Defense Solutions, Annapolis Junction, Maryland 20701 (United States); US Naval Research Laboratory, Washington, DC 20375 (United States); Herrera, M.; Delgado, F. J.; Molina, S. I. [University of Cádiz, 11510, Puerto Real, Cádiz (Spain)

    2016-05-21

    In this work, the electrical performance of strain-balanced quantum well tunnel junctions with varying designs is presented. Strain-balanced quantum well tunnel junctions comprising compressively strained InAlAs wells and tensile-strained InAlAs barriers were grown on InP substrates using solid-source molecular beam epitaxy. The use of InAlAs enables InP-based tunnel junction devices to be produced using wide bandgap layers, enabling high electrical performance with low absorption. The impact of well and barrier thickness on the electrical performance was investigated, in addition to the impact of Si and Be doping concentration. Finally, the impact of an InGaAs quantum well at the junction interface is presented, enabling a peak tunnel current density of 47.6 A/cm{sup 2} to be realized.

  9. First-principles investigation of quantum transport in GeP3 nanoribbon-based tunneling junctions

    Science.gov (United States)

    Wang, Qiang; Li, Jian-Wei; Wang, Bin; Nie, Yi-Hang

    2018-06-01

    Two-dimensional (2D) GeP3 has recently been theoretically proposed as a new low-dimensional material [ Nano Lett. 17(3), 1833 (2017)]. In this manuscript, we propose a first-principles calculation to investigate the quantum transport properties of several GeP3 nanoribbon-based atomic tunneling junctions. Numerical results indicate that monolayer GeP3 nanoribbons show semiconducting behavior, whereas trilayer GeP3 nanoribbons express metallic behavior owing to the strong interaction between each of the layers. This behavior is in accordance with that proposed in two-dimensional GeP3 layers. The transmission coefficient T( E) of tunneling junctions is sensitive to the connecting formation between the central monolayer GeP3 nanoribbon and the trilayer GeP3 nanoribbon at both ends. The T( E) value of the bottom-connecting tunneling junction is considerably larger than those of the middle-connecting and top-connecting ones. With increases in gate voltage, the conductances increase for the bottom-connecting and middle-connecting tunneling junctions, but decrease for the top-connecting tunneling junctions. In addition, the conductance decreases exponentially with respect to the length of the central monolayer GeP3 nanoribbon for all the tunneling junctions. I-V curves show approximately linear behavior for the bottom-connecting and middle-connecting structures, but exhibit negative differential resistance for the top-connecting structures. The physics of each phenomenon is analyzed in detail.

  10. The interface modification for GNWs/Si Schottky junction with PEI/PEIE interlayers

    Science.gov (United States)

    Zhou, Quan; Liu, Xiangzhi; Luo, Wei; Shen, Jun; Wang, Yuefeng; Wei, Dapeng

    2018-03-01

    Polyethylenimine ethoxylated (PEIE) and polyethyl-enimine (PEI), the two kinds of interface buffer layer, are widely used in the organic light-emitting diodes and solar cells for band alignment adjustment. In this report, we carefully studied the influence of the inserting organic layer on the graphene nanowalls(GNWS)/Si junction quality and the photoresponse of the Schottky devices. We found that thinner layers of PEI could decrease the dark current and improve the photo-to-dark ratio to 105 for n-Si devices. The s-kink effect and degradation of open circuit voltage could be observed for thicker thickness and excessive doping. Relatively, PEIE with stable thin layer not only improve the rectifying characteristics of p-Si devices but also the incident photon conversion efficiency. The maximus IPCE could reach 44% and be adjusted to zero by the reverse bias. The tunneling inhibition for electrons can be alleviated by increasing the barrier height. Our results provide an attractive method to improve the efficiency of pristine GNWs/Si junction with interface doping and passivation.

  11. Prolonged reorganization of thiol-capped Au nanoparticles layered structures

    Directory of Open Access Journals (Sweden)

    Sarathi Kundu

    2013-09-01

    Full Text Available Prolonged reorganization behaviour of mono-, di-, tri- and multi-layer films of Au nanoparticles prepared by Langmuir-Blodgett method on hydrophobic Si(001 substrates have been studied by using X-ray scattering techniques. Out-of-plane study shows that although at the initial stage the reorganization occurs through the compaction of the films keeping the layered structure unchanged but finally all layered structures modify to monolayer structure. Due to this reorganization the Au density increases within the nanometer thick films. In-plane study shows that inside the reorganized films Au nanoparticles are distributed randomly and the particle size modifies as the metallic core of Au nanoparticles coalesces.

  12. Improved Optics in Monolithic Perovskite/Silicon Tandem Solar Cells with a Nanocrystalline Silicon Recombination Junction

    KAUST Repository

    Sahli, Florent

    2017-10-09

    Perovskite/silicon tandem solar cells are increasingly recognized as promi­sing candidates for next-generation photovoltaics with performance beyond the single-junction limit at potentially low production costs. Current designs for monolithic tandems rely on transparent conductive oxides as an intermediate recombination layer, which lead to optical losses and reduced shunt resistance. An improved recombination junction based on nanocrystalline silicon layers to mitigate these losses is demonstrated. When employed in monolithic perovskite/silicon heterojunction tandem cells with a planar front side, this junction is found to increase the bottom cell photocurrent by more than 1 mA cm−2. In combination with a cesium-based perovskite top cell, this leads to tandem cell power-conversion efficiencies of up to 22.7% obtained from J–V measurements and steady-state efficiencies of up to 22.0% during maximum power point tracking. Thanks to its low lateral conductivity, the nanocrystalline silicon recombination junction enables upscaling of monolithic perovskite/silicon heterojunction tandem cells, resulting in a 12.96 cm2 monolithic tandem cell with a steady-state efficiency of 18%.

  13. Improved Optics in Monolithic Perovskite/Silicon Tandem Solar Cells with a Nanocrystalline Silicon Recombination Junction

    KAUST Repository

    Sahli, Florent; Kamino, Brett A.; Werner, Jé ré mie; Brä uninger, Matthias; Paviet-Salomon, Bertrand; Barraud, Loris; Monnard, Raphaë l; Seif, Johannes Peter; Tomasi, Andrea; Jeangros, Quentin; Hessler-Wyser, Aï cha; De Wolf, Stefaan; Despeisse, Matthieu; Nicolay, Sylvain; Niesen, Bjoern; Ballif, Christophe

    2017-01-01

    Perovskite/silicon tandem solar cells are increasingly recognized as promi­sing candidates for next-generation photovoltaics with performance beyond the single-junction limit at potentially low production costs. Current designs for monolithic tandems rely on transparent conductive oxides as an intermediate recombination layer, which lead to optical losses and reduced shunt resistance. An improved recombination junction based on nanocrystalline silicon layers to mitigate these losses is demonstrated. When employed in monolithic perovskite/silicon heterojunction tandem cells with a planar front side, this junction is found to increase the bottom cell photocurrent by more than 1 mA cm−2. In combination with a cesium-based perovskite top cell, this leads to tandem cell power-conversion efficiencies of up to 22.7% obtained from J–V measurements and steady-state efficiencies of up to 22.0% during maximum power point tracking. Thanks to its low lateral conductivity, the nanocrystalline silicon recombination junction enables upscaling of monolithic perovskite/silicon heterojunction tandem cells, resulting in a 12.96 cm2 monolithic tandem cell with a steady-state efficiency of 18%.

  14. Insulator-protected mechanically controlled break junctions for measuring single-molecule conductance in aqueous environments

    Energy Technology Data Exchange (ETDEWEB)

    Muthusubramanian, N.; Zant, H. S. J. van der [Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft (Netherlands); Galan, E.; Maity, C.; Eelkema, R.; Grozema, F. C. [Department of Chemical Engineering, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft (Netherlands)

    2016-07-04

    We present a method to fabricate insulated gold mechanically controlled break junctions (MCBJ) by coating the metal with a thin layer of aluminum oxide using plasma enhanced atomic layer deposition. The Al{sub 2}O{sub 3} thickness deposited on the MCBJ devices was varied from 2 to 15 nm to test the suppression of leakage currents in deionized water and phosphate buffered saline. Junctions coated with a 15 nm thick oxide layer yielded atomically sharp electrodes and negligible conductance counts in the range of 1 to 10{sup −4} G{sub 0} (1 G{sub 0} = 77 μS), where single-molecule conductances are commonly observed. The insulated devices were used to measure the conductance of an amphiphilic oligophenylene ethynylene derivative in deionized water.

  15. Analysis of Strain and Intermixing in a Single Layer Ge/Si dots using polarized Raman Spectroscopy

    OpenAIRE

    PEROVA, TANIA; MOORE, ROBERT

    2006-01-01

    PUBLISHED The built-in strain and composition of as-grown and Si-capped single layers of Ge?Si dots grown at various temperatures (460?800 ?C) are studied by a comparative analysis of the Ge-Ge and Si-Ge modes in the polarized Raman spectra of the dots. A pronounced reduction of the strain and Ge content in the dots after deposition of the cap layer at low temperatures is observed, indicating that strain-induced Si diffusion from the cap layer is occurring. For large dots grown at 700?800...

  16. High-performance DC SQUIDs with submicrometer niobium Josephson junctions

    Energy Technology Data Exchange (ETDEWEB)

    de Waal, V.J.; Klapwijk, T.M.; van den Hamer, P.

    1983-11-01

    We report on the fabrication and performance of low-noise, all-niobium, thin-film planar dc SQUIDs with submicrometer Josephson junctions. The junctions are evaporated obliquely through a metal shadow evaporation mask, which is made using optical lithography with 0.5 ..mu..m tolerance. The Josephson junction barrier is formed by evaporating a thin silicon film and with a subsequent oxidation in a glow discharge. The junction parameters can be reproduced within a factor of two. Typical critical currents of the SQUIDs are about 3 ..mu..A and the resistances are about 100 ..cap omega... With SQUIDs having an inductance of 1 nH the voltage modulation is a least 60 ..mu..V. An intrinsic energy resolution of 4 x 10/sup -32/ J/Hz has been reached. The SQUIDs are coupled to wire-wound input coils or with thin-film input coils. The thin-film input coil consists of a niobium spiral of 20 turns on a separate substrate. In both cases the coil is glued onto a 2-nH SQUID with a coupling efficiency of at least 0.5. Referred to the thin-film input coil, the best coupled energy resolution achieved is 1.2 x 10/sup -30/ J/Hz measured in a flux-locked loop at frequencies above 10 Hz. As far as we know, this is the best figure achieved with an all-refractory-metal thin-film SQUID. The fabrication technique used is suited for making circuits with SQUID and pickup coil on the same substrate. We describe a compact, planar, first-order gradiometer integrated with a SQUID on a single substrate. The gradient noise of this device is 3 x 10/sup -12/ Tm/sup -1/. The gradiometer has a size of 12 mm x 17 mm, is simple to fabricate, an is suitable for biomedical applications.

  17. Linker-dependent Junction Formation Probability in Single-Molecule Junctions

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Pil Sun; Kim, Taekyeong [HankukUniversity of Foreign Studies, Yongin (Korea, Republic of)

    2015-01-15

    We compare the junction formation probabilities of single-molecule junctions with different linker molecules by using a scanning tunneling microscope-based break-junction technique. We found that the junction formation probability varies as SH > SMe > NH2 for the benzene backbone molecule with different types of anchoring groups, through quantitative statistical analysis. These results are attributed to different bonding forces according to the linker groups formed with Au atoms in the electrodes, which is consistent with previous works. Our work allows a better understanding of the contact chemistry in the metal.molecule junction for future molecular electronic devices.

  18. Hydrogen doping of Indium Tin Oxide due to thermal treatment of hetero-junction solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Ritzau, Kurt-Ulrich, E-mail: kurt-ulrich.ritzau@ise.fraunhofer.de [Fraunhofer Institute for Solar Energy Systems (ISE), Heidenhofstrasse 2, 79110 Freiburg (Germany); Behrendt, Torge [Infineon Technologies, Max-Planck-Straße 5, 59581 Warstein (Germany); Palaferri, Daniele [Laboratoire Matériaux et Phénomènes Quantiques, Université Paris Diderot, Sorbonne Paris Cité, CNRS—UMR 7162, 75013 Paris (France); Bivour, Martin; Hermle, Martin [Fraunhofer Institute for Solar Energy Systems (ISE), Heidenhofstrasse 2, 79110 Freiburg (Germany)

    2016-01-29

    Indium Tin Oxide (ITO) layers in silicon hetero junction solar cells change their electrical and optical properties when exposed to temperature treatments. Hydrogen which effuses from underlying amorphous silicon layers is identified to dope the ITO layer. This leads to an additional increase in conductivity. In this way an almost isolating ITO can become degenerately doped through temperature treatments. The resulting carrier density in the range of 10{sup 20} cm{sup −3} leads to a substantial increase in free carrier absorption, which in turn leads to an increased parasitic absorption in the cell device. Thus hydrogen effusion in silicon hetero-junction (SHJ) solar cells does not only affect the degradation of amorphous silicon (a-Si:H) passivation of crystalline silicon (c-Si), but also the electrical and optical properties of both front and back ITO layers. This leads to the further design rule for SHJ solar cells, meaning that ITO properties have to be optimized in the state after modification during temperature treatment. - Highlights: • ITO is additionally doped by heat treatment of silicon hetero-junction solar cells. • The discovered effect turns an almost isolating ITO into a degenerately doped TCO. • TCO properties have to be considered as measured in the final cell.

  19. Tunneling conductance oscillations in spin-orbit coupled metal-insulator-superconductor junctions

    Science.gov (United States)

    Kapri, Priyadarshini; Basu, Saurabh

    2018-01-01

    The tunneling conductance for a device consisting of a metal-insulator-superconductor (MIS) junction is studied in presence of Rashba spin-orbit coupling (RSOC) via an extended Blonder-Tinkham-Klapwijk formalism. We find that the tunneling conductance as a function of an effective barrier potential that defines the insulating layer and lies intermediate to the metallic and superconducting electrodes, displays an oscillatory behavior. The tunneling conductance shows high sensitivity to the RSOC for certain ranges of this potential, while it is insensitive to the RSOC for others. Additionally, when the period of oscillations is an odd multiple of a certain value of the effective potential, the conductance spectrum as a function of the biasing energy demonstrates a contrasting trend with RSOC, compared to when it is not an odd multiple. The explanations for the observation can be found in terms of a competition between the normal and Andreev reflections. Similar oscillatory behavior of the conductance spectrum is also seen for other superconducting pairing symmetries, thereby emphasizing that the insulating layer plays a decisive role in the conductance oscillations of a MIS junction. For a tunable Rashba coupling, the current flowing through the junction can be controlled with precision.

  20. Fractional Solitons in Excitonic Josephson Junctions

    OpenAIRE

    Hsu, Ya-Fen; Su, Jung-Jung

    2015-01-01

    The Josephson effect is especially appealing to physicists because it reveals macroscopically the quantum order and phase. In excitonic bilayers the effect is even subtler due to the counterflow of supercurrent as well as the tunneling between layers (interlayer tunneling). Here we study, in a quantum Hall bilayer, the excitonic Josephson junction: a conjunct of two exciton condensates with a relative phase ? 0 applied. The system is mapped into a pseudospin ferromagnet then described numeric...

  1. Achievement of normally-off AlGaN/GaN high-electron mobility transistor with p-NiO{sub x} capping layer by sputtering and post-annealing

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Shyh-Jer [Department of Electrical Engineering, Institute of Microelectronics and Advanced Optoelectronic Technology Center, National Cheng Kung University, Tainan, Taiwan (China); Chou, Cheng-Wei, E-mail: j2222222229@gmail.com [Department of Electrical Engineering, Institute of Microelectronics and Advanced Optoelectronic Technology Center, National Cheng Kung University, Tainan, Taiwan (China); Su, Yan-Kuin, E-mail: yksu@mail.ncku.edu.tw [Department of Electrical Engineering, Institute of Microelectronics and Advanced Optoelectronic Technology Center, National Cheng Kung University, Tainan, Taiwan (China); Lin, Jyun-Hao; Yu, Hsin-Chieh; Chen, De-Long [Department of Electrical Engineering, Institute of Microelectronics and Advanced Optoelectronic Technology Center, National Cheng Kung University, Tainan, Taiwan (China); Ruan, Jian-Long [National Chung-Shan Institute of Science and Technology, Taoyuan, Taiwan (China)

    2017-04-15

    Highlights: • A technique to fabricate normally off GaN-based high-electron mobility transistor (HEMT) by sputtering and post-annealing p-NiO{sub x} capping layer. • The V{sub th} shifts from −3 V in the conventional transistor to 0.33 V, and on/off current ratio became 10{sup 7}. • The reverse gate leakage current is 10{sup −9} A/mm, and the off-state drain-leakage current is 10{sup −8} A/mm. • The V{sub th} hysteresis is extremely small at about 33 mV. - Abstract: In this paper, we present a technique to fabricate normally off GaN-based high-electron mobility transistor (HEMT) by sputtering and post-annealing p-NiO{sub x} capping layer. The p-NiO{sub x} layer is produced by sputtering at room temperature and post-annealing at 500 °C for 30 min in pure O{sub 2} environment to achieve high hole concentration. The V{sub th} shifts from −3 V in the conventional transistor to 0.33 V, and on/off current ratio became 10{sup 7}. The forward and reverse gate breakdown increase from 3.5 V and −78 V to 10 V and −198 V, respectively. The reverse gate leakage current is 10{sup −9} A/mm, and the off-state drain-leakage current is 10{sup −8} A/mm. The V{sub th} hysteresis is extremely small at about 33 mV. We also investigate the mechanism that increases hole concentration of p-NiO{sub x} after annealing in oxygen environment resulted from the change of Ni{sup 2+} to Ni{sup 3+} and the surge of (111)-orientation.

  2. Is there a relationship between curvature and inductance in the Josephson junction?

    Science.gov (United States)

    Dobrowolski, T.; Jarmoliński, A.

    2018-03-01

    A Josephson junction is a device made of two superconducting electrodes separated by a very thin layer of isolator or normal metal. This relatively simple device has found a variety of technical applications in the form of Superconducting Quantum Interference Devices (SQUIDs) and Single Electron Transistors (SETs). One can expect that in the near future the Josephson junction will find applications in digital electronics technology RSFQ (Rapid Single Flux Quantum) and in the more distant future in construction of quantum computers. Here we concentrate on the relation of the curvature of the Josephson junction with its inductance. We apply a simple Capacitively Shunted Junction (CSJ) model in order to find condition which guarantees consistency of this model with prediction based on the Maxwell and London equations with Landau-Ginzburg current of Cooper pairs. This condition can find direct experimental verification.

  3. Protective capping of topological surface states of intrinsically insulating Bi2Te3

    Directory of Open Access Journals (Sweden)

    Katharina Hoefer

    2015-09-01

    Full Text Available We have identified epitaxially grown elemental Te as a capping material that is suited to protect the topological surface states of intrinsically insulating Bi2Te3. By using angle-resolved photoemission, we were able to show that the Te overlayer leaves the dispersive bands of the surface states intact and that it does not alter the chemical potential of the Bi2Te3 thin film. From in-situ four-point contact measurements, we observed that the conductivity of the capped film is still mainly determined by the metallic surface states and that the contribution of the capping layer is minor. Moreover, the Te overlayer can be annealed away in vacuum to produce a clean Bi2Te3 surface in its pristine state even after the exposure of the capped film to air. Our findings will facilitate well-defined and reliable ex-situ experiments on the properties of Bi2Te3 surface states with nontrivial topology.

  4. Effect of an interface Mg insertion layer on the reliability of a magnetic tunnel junction based on a Co{sub 2}FeAl full-Heusler alloy

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jungmin; Kil, Gyuhyun; Lee, Gaehun; Choi, Chulmin; Song, Yunheub [Hanyang University, Seoul (Korea, Republic of); Sukegawa, Hiroaki; Mitani, Seiji [National Institute for Materials Science, Ibaraki (Japan)

    2014-04-15

    The reliability of a magnetic tunnel junction (MTJ) based on a Co{sub 2}FeAl (CFA) full-Heusler alloy with a MgO tunnel barrier was evaluated. In particular, the effect of a Mg insertion layer under the MgO was investigated in view of resistance drift by using various voltage stress tests. We compared the resistance change during constant voltage stress (CVS) and confirmed a trap/detrap phenomenon during the interval stress test for samples with and without a Mg insertion layer. The MTJ with a Mg insertion layer showed a relatively small resistance change for the CVS test and a reduced trap/detrap phenomenon for the interval stress test compared to the sample without a Mg insertion layer. This is understood to be caused by the improved crystallinity at the bottom of the CFA/MgO interface due to the Mg insertion layer, which provides a smaller number of trap site during the stress test. As a result, the interface condition of the MgO layer is very important for the reliability of a MTJ using a full-Heusler alloy, and the the insert of a Mg layer at the MgO interface is expected to be an effective method for enhancing the reliability of a MTJ.

  5. Alternate cap designs under RCRA regulations

    International Nuclear Information System (INIS)

    Manrod, W.E. III; Yager, R.E.; Craig, P.M.

    1988-01-01

    Low-level radioactive waste and mixed wastes have been disposed of in several sites in the vicinity of the Oak Ridge Y-12 Plant in Tennessee. Most of these materials have been placed in shallow land burial pits (SLB). Closure plans have been developed and approved by appropriate regulatory agencies for several of these sites. A variety of cap (final cover) designs for closure of these sites were investigated to determine their ability to inhibit infiltration of precipitation to the waste. The most effective designs are those that use synthetic materials as drainage layers and/or impermeable liners. The more complex, multi-layer systems perform no better than simpler covers and would complicate construction and increase costs. Despite the successful analytical results described in this paper, additional considerations must be factored into use of geosynthetic as well as natural materials

  6. Effect of melter feed foaming on heat flux to the cold cap

    Czech Academy of Sciences Publication Activity Database

    Lee, S.; Hrma, P.; Pokorný, R.; Kloužek, Jaroslav; VanderVeer, B.J.; Dixon, D.R.; Luksic, S.A.; Rodriguez, C.P.; Chun, J.; Schweiger, M. J.; Kruger, A.A.

    2017-01-01

    Roč. 496, DEC 1 (2017), s. 54-65 ISSN 0022-3115 Institutional support: RVO:67985891 Keywords : cold cap * foam layer * heat flux * heat conductivity * evolved gas Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass OBOR OECD: Ceramics Impact factor: 2.048, year: 2016

  7. Fe3−δO4/MgO/Co magnetic tunnel junctions synthesized by full in situ atomic layer and chemical vapour deposition

    International Nuclear Information System (INIS)

    Mantovan, R; Vangelista, S; Kutrzeba-Kotowska, B; Lamperti, A; Fanciulli, M; Manca, N; Pellegrino, L

    2014-01-01

    Fe 3−δ O 4 /MgO/Co magnetic tunnel junctions (MTJs) are synthesized on top of ∼1 inch Si/SiO 2 substrates by conducting a full in situ chemical vapour and atomic layer deposition process with no vacuum break. Tunnel magnetoresistance up to 6% is measured at room temperature, increasing to 12.5% at 120 K. Our results demonstrate the possibility of using full-chemical processes to synthesize functional MTJs, and this could provide a path towards the use of cost-effective methods to produce magnetic devices on a large scale. (fast track communication)

  8. Thermally activated magnetization reversal in magnetic tunnel junctions

    International Nuclear Information System (INIS)

    Guang-Hong, Zhou; Yin-Gang, Wang; Xian-Jin, Qi; Zi-Quan, Li; Jian-Kang, Chen

    2009-01-01

    In this paper, the magnetization reversal of the ferromagnetic layers in the IrMn/CoFe/AlO x /CoFe magnetic tunnel junction has been investigated using bulk magnetometry. The films exhibit very complex magnetization processes and reversal mechanism. Thermal activation phenomena such as the training effect, the asymmetry of reversal, the loop broadening and the decrease of exchange field while holding the film at negative saturation have been observed on the hysteresis loops of the pinned ferromagnetic layer while not on those of the free ferromagnetic layer. The thermal activation phenomena observed can be explained by the model of two energy barrier distributions with different time constants. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  9. Numerical simulations of flux flow in stacked Josephson junctions

    DEFF Research Database (Denmark)

    Madsen, Søren Peder; Pedersen, Niels Falsig

    2005-01-01

    We numerically investigate Josephson vortex flux flow states in stacked Josephson junctions, motivated by recent experiments trying to observe the vortices in a square vortex lattice when a magnetic field is applied to layered high-Tc superconductors of the Bi2Sr2CaCu2Ox type. By extensive...

  10. Hybrid window layer for photovoltaic cells

    Science.gov (United States)

    Deng, Xunming

    2010-02-23

    A novel photovoltaic solar cell and method of making the same are disclosed. The solar cell includes: at least one absorber layer which could either be a lightly doped layer or an undoped layer, and at least a doped window-layers which comprise at least two sub-window-layers. The first sub-window-layer, which is next to the absorber-layer, is deposited to form desirable junction with the absorber-layer. The second sub-window-layer, which is next to the first sub-window-layer, but not in direct contact with the absorber-layer, is deposited in order to have transmission higher than the first-sub-window-layer.

  11. Magnetism in Mn-nanowires and -clusters as δ-doped layers in group IV semiconductors (Si, Ge)

    Science.gov (United States)

    Simov, K. R.; Glans, P.-A.; Jenkins, C. A.; Liberati, M.; Reinke, P.

    2018-01-01

    Mn doping of group-IV semiconductors (Si/Ge) is achieved by embedding nanostructured Mn-layers in group-IV matrix. The Mn-nanostructures are monoatomic Mn-wires or Mn-clusters and capped with an amorphous Si or Ge layer. The precise fabrication of δ-doped Mn-layers is combined with element-specific detection of the magnetic signature with x-ray magnetic circular dichroism. The largest moment (2.5 μB/Mn) is measured for Mn-wires with ionic bonding character and a-Ge overlayer cap; a-Si capping reduces the moment due to variations of bonding in agreement with theoretical predictions. The moments in δ-doped layers dominated by clusters is quenched with an antiferromagnetic component from Mn-Mn bonding.

  12. III-V group compound semiconductor light-emitting element having a doped tantalum barrier layer

    International Nuclear Information System (INIS)

    Oanna, Y.; Ozawa, N.; Yamashita, M.; Yasuda, N.

    1984-01-01

    Disclosed is a III-V Group compound semiconductor light-emitting element having a III-V Group compound semiconductor body with a p-n junction and including a p-type layer involved in forming the p-n junction; and a multi-layer electrode mounted on the p-type layer of the semiconductor body. The electrode comprises a first layer of gold alloy containing a small amount of beryllium or zinc and formed in direct contact with the p-type layer of the semiconductor body and an uppermost layer formed of gold or aluminum. A tantalum layer doped with carbon, nitrogen and/or oxygen is formed between the first layer and the uppermost layer by means of vacuum vapor deposition

  13. Ultra Shallow Arsenic Junctions in Germanium Formed by Millisecond Laser Annealing

    DEFF Research Database (Denmark)

    Hellings, G.; Rosseel, E.; Simoen, E.

    2011-01-01

    Millisecond laser annealing is used to fabricate ultra shallow arsenic junctions in preamorphized and crystalline germanium, with peak temperatures up to 900 degrees C. At this temperature, As indiffusion is observed while yielding an electrically active concentration up to 5.0 x 10(19) cm(-3......) for a junction depth of 31 nm. Ge preamorphization and the consecutive solid phase epitaxial regrowth are shown to result in less diffusion and increased electrical activation. The recrystallization of the amorphized Ge layer during laser annealing is studied using transmission electron microscopy...

  14. Tight junction between endothelial cells: the interaction between nanoparticles and blood vessels

    Directory of Open Access Journals (Sweden)

    Yue Zhang

    2016-05-01

    Full Text Available Since nanoparticles are now widely applied as food additives, in cosmetics and other industries, especially in medical therapy and diagnosis, we ask here whether nanoparticles can cause several adverse effects to human health. In this review, based on research on nanotoxicity, we mainly discuss the negative influence of nanoparticles on blood vessels in several aspects and the potential mechanism for nanoparticles to penetrate endothelial layers of blood vessels, which are the sites of phosphorylation of tight junction proteins (claudins, occludins, and ZO (Zonula occludens proteins, oxidative stress and shear stress. We propose a connection between the presence of nanoparticles and the regulation of the tight junction, which might be the key approach for nanoparticles to penetrate endothelial layers and then have an impact on other tissues and organs.

  15. Single-Molecule Photocurrent at a Metal-Molecule-Semiconductor Junction.

    Science.gov (United States)

    Vezzoli, Andrea; Brooke, Richard J; Higgins, Simon J; Schwarzacher, Walther; Nichols, Richard J

    2017-11-08

    We demonstrate here a new concept for a metal-molecule-semiconductor nanodevice employing Au and GaAs contacts that acts as a photodiode. Current-voltage traces for such junctions are recorded using a STM, and the "blinking" or "I(t)" method is used to record electrical behavior at the single-molecule level in the dark and under illumination, with both low and highly doped GaAs samples and with two different types of molecular bridge: nonconjugated pentanedithiol and the more conjugated 1,4-phenylene(dimethanethiol). Junctions with highly doped GaAs show poor rectification in the dark and a low photocurrent, while junctions with low doped GaAs show particularly high rectification ratios in the dark (>10 3 for a 1.5 V bias potential) and a high photocurrent in reverse bias. In low doped GaAs, the greater thickness of the depletion layer not only reduces the reverse bias leakage current, but also increases the volume that contributes to the photocurrent, an effect amplified by the point contact geometry of the junction. Furthermore, since photogenerated holes tunnel to the metal electrode assisted by the HOMO of the molecular bridge, the choice of the latter has a strong influence on both the steady state and transient metal-molecule-semiconductor photodiode response. The control of junction current via photogenerated charge carriers adds new functionality to single-molecule nanodevices.

  16. Preventive endodontics by direct pulp capping with restorative dentin substitute-biodentine: A series of fifteen cases

    Directory of Open Access Journals (Sweden)

    Kavita Dube

    2018-01-01

    Full Text Available Introduction: Treatment of mechanical exposure of the pulp during caries excavation presents a clinical challenge. In this case series of 15 patients, with a follow-up period of over a year, the outcome of direct pulp capping with Biodentine (septodont after mechanical pulp exposure was assessed. Aim of Study: The aim of this study is to evaluate the outcome of direct pulp capping with Biodentine in deeply carious teeth when pulp was mechanically exposed during caries excavation and cavity preparation. Vital pulps exposed during caries excavation in molar teeth were treated with 3% sodium hypochlorite for 2 min. If adequate hemostasis was achieved, the pulp tissue was capped with Biodentine, which covered the entire pulpal floor. This was followed by the placement of a layer of resin-modified glass ionomer cement and a final layer of composite resin (Filtek Z350-3M to complete the restoration. The patients were recalled periodically and evaluated for any evidence of pulpal/periapical pathology. Results: In the follow-up period that ranged from 12 to 24 months, all teeth were asymptomatic. Conclusion: Biodentine appears to be a suitable material for direct pulp capping under clinical conditions. However, long-term follow-up studies and controlled trials involving a large sample size are warranted.

  17. A universal route to fabricate n-i-p multi-junction polymer solar cells via solution processing

    NARCIS (Netherlands)

    Rasi, Dario Di Carlo; Hendriks, Koen H.; Heintges, Gael H. L.; Simone, Giulio; Gelinck, Gerwin H.; Gevaerts, Veronique S.; Andriessen, Ronn; Pirotte, Geert; Maes, Wouter; Li, Weiwei; Wienk, Martijn M.; Janssen, Rene A. J.

    The interconnection layer (ICL) that connects adjacent subcells electrically and optically in solution‐processed multi‐junction polymer solar cells must meet functional requirements in terms of work functions, conductivity, and transparency, but also be compatible with the multiple layer stack in

  18. L10-MnGa based magnetic tunnel junction for high magnetic field sensor

    Science.gov (United States)

    Zhao, X. P.; Lu, J.; Mao, S. W.; Yu, Z. F.; Wang, H. L.; Wang, X. L.; Wei, D. H.; Zhao, J. H.

    2017-07-01

    We report on the investigation of the magnetic tunnel junction structure designed for high magnetic field sensors with a perpendicularly magnetized L10-MnGa reference layer and an in-plane magnetized Fe sensing layer. A large linear tunneling magnetoresistance ratio up to 27.4% and huge dynamic range up to 5600 Oe have been observed at 300 K, with a low nonlinearity of 0.23% in the optimized magnetic tunnel junction (MTJ). The field response of tunneling magnetoresistance is discussed to explain the field sensing properties in the dynamic range. These results indicate that L10-MnGa based orthogonal MTJ is a promising candidate for a high performance magnetic field sensor with a large dynamic range, high endurance and low power consumption.

  19. Spin–transfer torque oscillator in magnetic tunneling junction with short–wavelength magnon excitation

    Directory of Open Access Journals (Sweden)

    Shizhu Qiao

    2018-05-01

    Full Text Available Bloch–Bloembergen–Slonczewski (BBS equation is established by extending Bloch–Bloembergen equation, and it is used to study magnetization oscillation in the free magnetic layer of a magnetic tunneling junction. Since both short–wavelength magnon excitation and spin–transfer torque are taken into account in the BBS equation, it is distinguished from Landau–Lifshitz–Gilbert–Slonczewski equation. The macro–spin BBS model predicts that the transverse relaxation time in free magnetic layer should be long enough, as compared with the longitudinal relaxation time, to achieve stable magnetization oscillation for spin–transfer torque oscillator application. Moreover, field–like torque favors the tolerance of fast transverse relaxation, which makes magnetic tunneling junction a better choice than spin valve for the spin–transfer torque oscillator application.

  20. Rapid prototyping of magnetic tunnel junctions with focused ion beam processes

    International Nuclear Information System (INIS)

    Persson, Anders; Thornell, Greger; Nguyen, Hugo

    2010-01-01

    Submicron-sized magnetic tunnel junctions (MTJs) are most often fabricated by time-consuming and expensive e-beam lithography. From a research and development perspective, a short lead time is one of the major concerns. Here, a rapid process scheme for fabrication of micrometre size MTJs with focused ion beam processes is presented. The magnetic properties of the fabricated junctions are investigated in terms of magnetic domain structure, tunnelling magnetoresistance (TMR) and coercivity, with extra attention given to the effect of Ga implantation from the ion beam. In particular, the effect of the implantation on the minimum junction size and the magnetization of the sensing layer are studied. In the latter case, magnetic force microscopy and micromagnetic simulations, with the object-oriented micromagnetic framework (OOMMF), are used to study the magnetization reversal. The fabricated junctions show considerable coercivity both along their hard and easy axes. Interestingly, the sensing layer exhibits two remanent states: one with a single and one with a double domain. The hard axis TMR loop has kinks at about ±20 mT which is attributed to a non-uniform lateral coercivity, where the rim of the junctions, which is subjected to Ga implantation from the flank of the ion beam, is more coercive than the unirradiated centre. The width of the coercive rim is estimated to be 160 nm from the hard axis TMR loop. The easy axis TMR loop shows more coercivity than an unirradiated junction and, this too, is found to stem from the coercive rim, as seen from the simulations. It is concluded that the process scheme has three major advantages. Firstly, it has a high lateral and depth resolution—the depth resolution is enhanced by end point detection—and is capable of making junctions of sizes down towards the limit set by the width of the irradiated rim. Secondly, the most delicate process steps are performed in the unbroken vacuum enabling the use of materials prone to

  1. First results obtained from the Cello liquid argon end cap calorimeters

    International Nuclear Information System (INIS)

    Le Diberder, F.

    1981-05-01

    The Cello liquid argon calorimeter is presented in the first part of this thesis. The cryogenic system has to supply three cryostats filled with liquid argon: one cylindrical cryostat of 25 m 3 volume contains 2x8 separate modules; each of the two symmetric end cap cryostats contains two half cylindrical modules. Each module in the end cap part consists of 42 layers of lead strips interleaved with 43 full plates. The strips are alternatively vertical, horizontal and circular. In front of the lead calorimeter are 4 planes of copper foils glued on epoxy for dE/dx measurement. The electronics, signal processing and data acquisition system are described. In the second part, the performance and analysis of data measured by the end cap calorimeters are reported: study of Bhabha scattering e + e - → e + e - ; preliminary results obtained in two photon physics e + e - → e + e - γγ → e + e - X [fr

  2. A nanobody targeting the F-actin capping protein CapG restrains breast cancer metastasis.

    Science.gov (United States)

    Van Impe, Katrien; Bethuyne, Jonas; Cool, Steven; Impens, Francis; Ruano-Gallego, David; De Wever, Olivier; Vanloo, Berlinda; Van Troys, Marleen; Lambein, Kathleen; Boucherie, Ciska; Martens, Evelien; Zwaenepoel, Olivier; Hassanzadeh-Ghassabeh, Gholamreza; Vandekerckhove, Joël; Gevaert, Kris; Fernández, Luis Ángel; Sanders, Niek N; Gettemans, Jan

    2013-12-13

    Aberrant turnover of the actin cytoskeleton is intimately associated with cancer cell migration and invasion. Frequently however, evidence is circumstantial, and a reliable assessment of the therapeutic significance of a gene product is offset by lack of inhibitors that target biologic properties of a protein, as most conventional drugs do, instead of the corresponding gene. Proteomic studies have demonstrated overexpression of CapG, a constituent of the actin cytoskeleton, in breast cancer. Indirect evidence suggests that CapG is involved in tumor cell dissemination and metastasis. In this study, we used llama-derived CapG single-domain antibodies or nanobodies in a breast cancer metastasis model to address whether inhibition of CapG activity holds therapeutic merit. We raised single-domain antibodies (nanobodies) against human CapG and used these as intrabodies (immunomodulation) after lentiviral transduction of breast cancer cells. Functional characterization of nanobodies was performed to identify which biochemical properties of CapG are perturbed. Orthotopic and tail vein in vivo models of metastasis in nude mice were used to assess cancer cell spreading. With G-actin and F-actin binding assays, we identified a CapG nanobody that binds with nanomolar affinity to the first CapG domain. Consequently, CapG interaction with actin monomers or actin filaments is blocked. Intracellular delocalization experiments demonstrated that the nanobody interacts with CapG in the cytoplasmic environment. Expression of the nanobody in breast cancer cells restrained cell migration and Matrigel invasion. Notably, the nanobody prevented formation of lung metastatic lesions in orthotopic xenograft and tail-vein models of metastasis in immunodeficient mice. We showed that CapG nanobodies can be delivered into cancer cells by using bacteria harboring a type III protein secretion system (T3SS). CapG inhibition strongly reduces breast cancer metastasis. A nanobody-based approach offers

  3. Electrical characterization of commercial NPN bipolar junction transistors under neutron and gamma irradiation

    Directory of Open Access Journals (Sweden)

    OO Myo Min

    2014-01-01

    Full Text Available Electronics components such as bipolar junction transistors, diodes, etc. which are used in deep space mission are required to be tolerant to extensive exposure to energetic neutrons and ionizing radiation. This paper examines neutron radiation with pneumatic transfer system of TRIGA Mark-II reactor at the Malaysian Nuclear Agency. The effects of the gamma radiation from Co-60 on silicon NPN bipolar junction transistors is also be examined. Analyses on irradiated transistors were performed in terms of the electrical characteristics such as current gain, collector current and base current. Experimental results showed that the current gain on the devices degraded significantly after neutron and gamma radiations. Neutron radiation can cause displacement damage in the bulk layer of the transistor structure and gamma radiation can induce ionizing damage in the oxide layer of emitter-base depletion layer. The current gain degradation is believed to be governed by the increasing recombination current in the base-emitter depletion region.

  4. Magnetism in Mn-nanowires and -clusters as δ-doped layers in group IV semiconductors (Si, Ge

    Directory of Open Access Journals (Sweden)

    K. R. Simov

    2018-01-01

    Full Text Available Mn doping of group-IV semiconductors (Si/Ge is achieved by embedding nanostructured Mn-layers in group-IV matrix. The Mn-nanostructures are monoatomic Mn-wires or Mn-clusters and capped with an amorphous Si or Ge layer. The precise fabrication of δ-doped Mn-layers is combined with element-specific detection of the magnetic signature with x-ray magnetic circular dichroism. The largest moment (2.5 μB/Mn is measured for Mn-wires with ionic bonding character and a-Ge overlayer cap; a-Si capping reduces the moment due to variations of bonding in agreement with theoretical predictions. The moments in δ-doped layers dominated by clusters is quenched with an antiferromagnetic component from Mn–Mn bonding.

  5. Search for the in-phase Flux Flow mode in stacked Josephson junctions

    DEFF Research Database (Denmark)

    Pedersen, Niels Falsig; Madsen, Søren Peder

    2006-01-01

    Josephson vortex flux flow states in stacked Josephson junctions are investigated numerically. The aim of the work is to understand the mechanisms behind the formation of triangular (anti-phase) and square (in-phase) vortex lattices, and is motivated by recent experiments on layered BSCCO type high......-T-c superconductors in a magnetic field. In order to keep the problem as simple as possible we consider in detail only the case with two junctions in the stack. (c) 2006 Elsevier B.V. All rights reserved....

  6. Insulator-protected mechanically controlled break junctions for measuring single-molecule conductance in aqueous environments

    NARCIS (Netherlands)

    Muthusubramanian, N.; Galan, E.; Maity, C.; Eelkema, R.; Grozema, F.C.; van der Zant, H.S.J.

    2016-01-01

    We present a method to fabricate insulated gold mechanically controlled break junctions (MCBJ) by coating the metal with a thin layer of aluminum oxide using plasma enhanced atomic layer deposition. The Al2O3 thickness deposited on the MCBJ devices was varied from 2 to 15 nm

  7. FeGa/MgO/Fe/GaAs(001) magnetic tunnel junction: Growth and magnetic properties

    International Nuclear Information System (INIS)

    Gobaut, B.; Ciprian, R.; Salles, B.R.; Krizmancic, D.; Rossi, G.; Panaccione, G.; Eddrief, M.; Marangolo, M.; Torelli, P.

    2015-01-01

    Research on spintronics and on multiferroics leads now to the possibility of combining the properties of these materials in order to develop new functional devices. Here we report the integration of a layer of magnetostrictive material into a magnetic tunnel junction. A FeGa/MgO/Fe heterostructure has been grown on a GaAs(001) substrate by molecular beam epitaxy (MBE) and studied by X-ray magnetic circular dichroism (XMCD). The comparison between magneto optical Kerr effect (MOKE) measurements and hysteresis performed in total electron yield allowed distinguishing the ferromagnetic hysteresis loop of the FeGa top layer from that of the Fe buried layer, evidencing a different switching field of the two layers. This observation indicates an absence of magnetic coupling between the two ferromagnetic layers despite the thickness of the MgO barrier of only 2.5 nm. The in-plane magnetic anisotropy has also been investigated. Overall results show the good quality of the heterostructure and the general feasibility of such a device using magnetostrictive materials in magnetic tunnel junction

  8. Polar Ice Caps: a Canary for the Greenland Ice Sheet

    Science.gov (United States)

    Honsaker, W.; Lowell, T. V.; Sagredo, E.; Kelly, M. A.; Hall, B. L.

    2010-12-01

    Ice caps are glacier masses that are highly sensitive to climate change. Because of their hypsometry they can have a binary state. When relatively slight changes in the equilibrium line altitude (ELA) either intersect or rise above the land the ice can become established or disappear. Thus these upland ice masses have a fast response time. Here we consider a way to extract the ELA signal from independent ice caps adjacent to the Greenland Ice Sheet margin. It may be that these ice caps are sensitive trackers of climate change that also impact the ice sheet margin. One example is the Istorvet Ice Cap located in Liverpool Land, East Greenland (70.881°N, 22.156°W). The ice cap topography and the underlying bedrock surface dips to the north, with peak elevation of the current ice ranging in elevation from 1050 to 745 m.a.s.l. On the eastern side of the ice mass the outlet glaciers extending down to sea level. The western margin has several small lobes in topographic depressions, with the margin reaching down to 300 m.a.s.l. Topographic highs separate the ice cap into at least 5 main catchments, each having a pair of outlet lobes toward either side of the ice cap. Because of the regional bedrock slope each catchment has its own elevation range. Therefore, as the ELA changes it is possible for some catchments of the ice cap to experience positive mass balance while others have a negative balance. Based on weather observations we estimate the present day ELA to be ~1000 m.a.s.l, meaning mass balance is negative for the majority of the ice cap. By tracking glacier presence/absence in these different catchments, we can reconstruct small changes in the ELA. Another example is the High Ice Cap (informal name) in Milne Land (70.903°N, 25.626°W, 1080 m), East Greenland. Here at least 4 unconformities in ice layers found near the southern margin of the ice cap record changing intervals of accumulation and ablation. Therefore, this location may also be sensitive to slight

  9. Lens intracellular hydrostatic pressure is generated by the circulation of sodium and modulated by gap junction coupling

    Science.gov (United States)

    Gao, Junyuan; Sun, Xiurong; Moore, Leon C.; White, Thomas W.; Brink, Peter R.

    2011-01-01

    We recently modeled fluid flow through gap junction channels coupling the pigmented and nonpigmented layers of the ciliary body. The model suggested the channels could transport the secretion of aqueous humor, but flow would be driven by hydrostatic pressure rather than osmosis. The pressure required to drive fluid through a single layer of gap junctions might be just a few mmHg and difficult to measure. In the lens, however, there is a circulation of Na+ that may be coupled to intracellular fluid flow. Based on this hypothesis, the fluid would cross hundreds of layers of gap junctions, and this might require a large hydrostatic gradient. Therefore, we measured hydrostatic pressure as a function of distance from the center of the lens using an intracellular microelectrode-based pressure-sensing system. In wild-type mouse lenses, intracellular pressure varied from ∼330 mmHg at the center to zero at the surface. We have several knockout/knock-in mouse models with differing levels of expression of gap junction channels coupling lens fiber cells. Intracellular hydrostatic pressure in lenses from these mouse models varied inversely with the number of channels. When the lens’ circulation of Na+ was either blocked or reduced, intracellular hydrostatic pressure in central fiber cells was either eliminated or reduced proportionally. These data are consistent with our hypotheses: fluid circulates through the lens; the intracellular leg of fluid circulation is through gap junction channels and is driven by hydrostatic pressure; and the fluid flow is generated by membrane transport of sodium. PMID:21624945

  10. Electrical control of memristance and magnetoresistance in oxide magnetic tunnel junctions

    KAUST Repository

    Zhang, Kun

    2015-01-01

    Electric-field control of magnetic and transport properties of magnetic tunnel junctions has promising applications in spintronics. Here, we experimentally demonstrate a reversible electrical manipulation of memristance, magnetoresistance, and exchange bias in Co/CoO–ZnO/Co magnetic tunnel junctions, which enables the realization of four nonvolatile resistance states. Moreover, greatly enhanced tunneling magnetoresistance of 68% was observed due to the enhanced spin polarization of the bottom Co/CoO interface. The ab initio calculations further indicate that the spin polarization of the Co/CoO interface is as high as 73% near the Fermi level and plenty of oxygen vacancies can induce metal–insulator transition of the CoO1−v layer. Thus, the electrical manipulation mechanism on the memristance, magnetoresistance and exchange bias can be attributed to the electric-field-driven migration of oxygen ions/vacancies between very thin CoO and ZnO layers.

  11. p–n junction improvements of Cu{sub 2}ZnSnS{sub 4}/CdS monograin layer solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Kauk-Kuusik, M., E-mail: marit.kauk-kuusik@ttu.ee [Department of Materials Science, Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn (Estonia); Timmo, K.; Danilson, M.; Altosaar, M.; Grossberg, M. [Department of Materials Science, Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn (Estonia); Ernits, K. [crystalsol OÜ, Akadeemia tee 15a, 12618 Tallinn (Estonia)

    2015-12-01

    Highlights: • S, Sn–O and/or Sn–Br species are formed on the CZTS crystal's after Br-etching. • KCN etching remained oxides and bromides on the surface until CdS deposition. • The Br-etched devices exhibit a “crossover” between the dark and the light I–V curve. - Abstract: In this work we studied the influence of oxidative etching of CZTS monograin surface to the performance of CZTS monograin layer solar cells. The chemistry of CZTS monograin powder surfaces submitted to bromine in methanol and KCN aqueous solutions was investigated by X-ray photoelectron spectroscopy. After bromine etching, elemental sulfur, Sn–O and/or Sn–Br species are formed on the CZTS crystal surface. Sulfur is completely removed by subsequent KCN etching, but oxides and bromides remained on the surface until CdS deposition. These species dissolve in alkaline solution and influence properties of CdS. The conversion efficiency of solar cells improved after the chemical etching prior to CdS deposition and the effect can be attributed to the change of the absorber material crystals surface composition and properties suitable for the effective p–n junction formation. The best CZTS monograin layer solar cell showed conversation efficiency of 7.04% (active area 9.38%).

  12. Conductance spectra of asymmetric ferromagnet/ferromagnet/ferromagnet junctions

    Science.gov (United States)

    Pasanai, K.

    2017-01-01

    A theory of tunneling spectroscopy of ferromagnet/ferromagnet/ferromagnet junctions was studied. We applied a delta-functional approximation for the interface scattering properties under a one-dimensional system of a free electron approach. The reflection and transmission probabilities were calculated in the ballistic regime, and the conductance spectra were then calculated using the Landauer formulation. The magnetization directions were set to be either parallel (P) or anti-parallel (AP) alignments, for comparison. We found that the conductance spectra was suppressed when increasing the interfacial scattering at the interfaces. Moreover, the electron could exhibit direct transmission when the thickness was rather thin. Thus, there was no oscillation in this case. However, in the case of a thick layer the conductance spectra oscillated, and this oscillation was most prominent when the middle layer thickness increased. In the case of direct transmission, the conductance spectra of P and AP systems were definitely suppressed with increased exchange energy of the middle ferromagnet. This also refers to an increase in the magnetoresistance of the junction. In the case of oscillatory behavior, the positions of the resonance peaks were changed as the exchange energy was changed.

  13. Rapid thermal annealing of InAs/GaAs quantum dots under a GaAs proximity cap

    International Nuclear Information System (INIS)

    Babinski, Adam; Jasinski, J.; Bozek, R.; Szepielow, A.; Baranowski, J. M.

    2001-01-01

    The effect of postgrowth rapid thermal annealing (RTA) on GaAs proximity-capped structures with self-assembled InAs/GaAs quantum dots (QDs) is investigated using transmission electron microscopy (TEM) and photoluminescence (PL). As can be seen from the TEM images, QDs increase their lateral sizes with increasing annealing temperature (up to 700 C). QDs cannot be distinguished after RTA at temperature 800 C or higher, and substantial thickening of the wetting layer can be seen instead. The main PL peak blueshifts as a result of RTA. We propose that in the as-grown sample as well, as in samples annealed at temperatures up to 700 C, the peak is due to the QDs. After RTA at 800 C and higher the PL peak is due to a modified wetting layer. Relatively fast dissolution of QDs is explained in terms of strain-induced lateral Ga/In interdiffusion. It is proposed that such a process may be of importance in proximity-capped RTA, when no group-III vacancy formation takes place at the sample/capping interface

  14. The nanostructure of myoendothelial junctions contributes to signal rectification between endothelial and vascular smooth muscle cells

    DEFF Research Database (Denmark)

    Brasen, Jens Christian; Jacobsen, Jens Christian Brings; von Holstein-Rathlou, Niels-Henrik

    2012-01-01

    Micro-anatomical structures in tissues have potential physiological effects. In arteries and arterioles smooth muscle cells and endothelial cells are separated by the internal elastic lamina, but the two cell layers often make contact through micro protrusions called myoendothelial junctions. Cross...... types and the myoendothelial junction. The model is implemented as a 2D axi-symmetrical model and solved using the finite element method. We have simulated diffusion of Ca(2+) and IP(3) between the two cell types and we show that the micro-anatomical structure of the myoendothelial junction in itself...

  15. Interleukin-4 and interleukin-13 compromise the sinonasal epithelial barrier and perturb intercellular junction protein expression.

    Science.gov (United States)

    Wise, Sarah K; Laury, Adrienne M; Katz, Elizabeth H; Den Beste, Kyle A; Parkos, Charles A; Nusrat, Asma

    2014-05-01

    Altered expression of epithelial intercellular junction proteins has been observed in sinonasal biopsies from nasal polyps and epithelial layers cultured from nasal polyp patients. These alterations comprise a "leaky" epithelial barrier phenotype. We hypothesize that T helper 2 (Th2) cytokines interleukin (IL)-4 and IL-13 modulate epithelial junction proteins, thereby contributing to the leaky epithelial barrier. Differentiated primary sinonasal epithelial layers cultured at the air-liquid interface were exposed to IL-4, IL-13, and controls for 24 hours at 37°C. Epithelial resistance measurements were taken every 4 hours during cytokine exposure. Western blot and immunofluorescence staining/confocal microscopy were used to assess changes in a panel of tight and adherens junction proteins. Western blot densitometry was quantified with image analysis. IL-4 and IL-13 exposure resulted in a mean decrease in transepithelial resistance at 24 hours to 51.6% (n = 6) and 68.6% (n = 8) of baseline, respectively. Tight junction protein junctional adhesion molecule-A (JAM-A) expression decreased 42.2% with IL-4 exposure (n = 9) and 37.5% with IL-13 exposure (n = 9). Adherens junction protein E-cadherin expression decreased 35.3% with IL-4 exposure (n = 9) and 32.9% with IL-13 exposure (n = 9). Tight junction protein claudin-2 showed more variability but had a trend toward higher expression with Th2 cytokine exposure. There were no appreciable changes in claudin-1, occludin, or zonula occludens-1 (ZO-1) with IL-4 or IL-13 exposure. Sinonasal epithelial exposure to Th2 cytokines IL-4 and IL-13 results in alterations in intercellular junction proteins, reflecting increased epithelial permeability. Such changes may explain some of the phenotypic manifestations of Th2-mediated sinonasal disease, such as edema, nasal discharge, and environmental reactivity. © 2014 ARS-AAOA, LLC.

  16. Coupled vs. decoupled boundary layers in VOCALS-REx

    Directory of Open Access Journals (Sweden)

    C. R. Jones

    2011-07-01

    Full Text Available We analyze the extent of subtropical stratocumulus-capped boundary layer decoupling and its relation to other boundary-layer characteristics and forcings using aircraft observations from VOCALS-REx along a swath of the subtropical southeast Pacific Ocean running west 1600 km from the coast of Northern Chile. We develop two complementary and consistent measures of decoupling. The first is based on boundary layer moisture and temperature stratification in flight profiles from near the surface to above the capping inversion, and the second is based the difference between the lifted condensation level (LCL and a mean lidar-derived cloud base measured on flight legs at 150 m altitude. Most flights took place during early-mid morning, well before the peak in insolation-induced decoupling.

    We find that the boundary layer is typically shallower, drier, and well mixed near the shore, and tends to deepen, decouple, and produce more drizzle further offshore to the west. Decoupling is strongly correlated to the "mixed layer cloud thickness", defined as the difference between the capping inversion height and the LCL; other factors such as wind speed, cloud droplet concentration, and inversion thermodynamic jumps have little additional explanatory power. The results are broadly consistent with the deepening-warming theory of decoupling.

    In the deeper boundary layers observed well offshore, there was frequently nearly 100 % boundary-layer cloud cover despite pronounced decoupling. The cloud cover was more strongly correlated to a κ parameter related to the inversion jumps of humidity and temperature, though the exact functional relation is slightly different than found in prior large-eddy simulation studies.

  17. Fabrication of a Schottky junction diode with direct growth graphene on silicon by a solid phase reaction

    International Nuclear Information System (INIS)

    Kalita, Golap; Hirano, Ryo; Ayhan, Muhammed E; Tanemura, Masaki

    2013-01-01

    We demonstrate fabrication of a Schottky junction diode with direct growth graphene on n-Si by the solid phase reaction approach. Metal-assisted crystallization of a-C thin film was performed to synthesize transfer-free graphene directly on a SiO 2 patterned n-Si substrate. Graphene formation at the substrate and catalyst layer interface is achieved in presence of a Co catalytic and CoO carbon diffusion barrier layer. The as-synthesized material shows a linear current–voltage characteristic confirming the metallic behaviour of the graphene structure. The direct grown graphene on n-Si substrate creates a Schottky junction with a potential barrier of 0.44 eV and rectification diode characteristic. Our finding shows that the directly synthesized graphene on Si substrate by a solid phase reaction process can be a promising technique to fabricate an efficient Schottky junction device. (paper)

  18. /sup 58,60,62/Ni (. cap alpha. ,p) three--nucleon transfer reactions and. cap alpha. optical potential ambiguities

    Energy Technology Data Exchange (ETDEWEB)

    Yuanda, Wang; Xiuming, Bao; Zhiqiang, Mao; Rongfang, Yuan; Keling, Wen; Binyin, Huang; Zhifu, Wang; Shuming, Li; Jianan, Wang; Zuxun, Sun; others, and

    1985-11-01

    The differential cross sections are measured using 26.0 MeV ..cap alpha.. particle for /sup 58,62/Ni(..cap alpha.., ..cap alpha..) /sup 58,62/Ni and /sup 58,62/Ni(..cap alpha..,p) /sup 61,65/Cu reactions as well as 25.4 MeV ..cap alpha.. particle for /sup 60/Ni(..cap alpha.., ..cap alpha..)/sup 69/Ni and /sup 60/Ni(..cap alpha.., p)/sup 63/Cu reactions. Consistent calculations with optical model and ZR DWBA are made for (..cap alpha.., ..cap alpha..) and (..cap alpha.., p) reactions by using of single, two, three and four nucleon optical potential parameters. For elastic scattering due to the ..cap alpha.. optical potential ambiguities, all the above optical potential can reproduce the experimental angular distributions. However, the single, two and three nucleon potential, including the Baird's mass systematics and the Chang's energy systematics of ..cap alpha.. potentials, obviously can not provide a reasonable fitting with the (..cap alpha..,p) reaction experimental data. Only the results from the four nucleon potential is in good agreement with the (..cap alpha..,p) reaction experimental data. This reveals that in the ..cap alpha..-particle induced transfer reactions, the real depth of the ..cap alpha..-nucleus optical potential should be rather deep.

  19. How does the antagonism between capping and anti-capping proteins affect actin network dynamics?

    International Nuclear Information System (INIS)

    Hu Longhua; Papoian, Garegin A

    2011-01-01

    Actin-based cell motility is essential to many biological processes. We built a simplified, three-dimensional computational model and subsequently performed stochastic simulations to study the growth dynamics of lamellipodia-like branched networks. In this work, we shed light on the antagonism between capping and anti-capping proteins in regulating actin dynamics in the filamentous network. We discuss detailed mechanisms by which capping and anti-capping proteins affect the protrusion speed of the actin network and the rate of nucleation of filaments. We computed a phase diagram showing the regimes of motility enhancement and inhibition by these proteins. Our work shows that the effects of capping and anti-capping proteins are mainly transmitted by modulation of the filamentous network density and local availability of monomeric actin. We discovered that the combination of the capping/anti-capping regulatory network with nucleation-promoting proteins introduces robustness and redundancy in cell motility machinery, allowing the cell to easily achieve maximal protrusion speeds under a broader set of conditions. Finally, we discuss distributions of filament lengths under various conditions and speculate on their potential implication for the emergence of filopodia from the lamellipodial network.

  20. Tunnel magnetoresistance in trilayer junctions from first principles: Cr δ-layer doped GaN/AlN/GaN (0 0 0 1)

    International Nuclear Information System (INIS)

    Cui, X.Y.; Delley, B.; Freeman, A.J.; Stampfl, C.

    2010-01-01

    The microscopic mechanism of the tunneling magnetoresistance (TMR) in Cr-doped GaN/AlN/GaN (0 0 0 1) trilayer junctions is studied based on density functional theory calculations. For enhanced performance, we propose δ-Cr-layer doping in GaN, close to the GaN/AlN interfaces. Depending on the doping concentration, Cr dopants produce local metallic (1 ML) or half-metallic (1/2 and 1/4 ML) states surrounded by the host semiconductor materials. Very thin AlN barriers are predicted to yield a low TMR effect. These results help explain existing experimental results and are expected to be valuable with regard to the practical fabrication of improved pure semiconductor spintronic devices.

  1. Critical temperatures Tc estimated by Josephson-junction array model of layered high Tc superconductors

    International Nuclear Information System (INIS)

    Kawabata, C.; Shenoy, S.R.; Bishop, A.R.

    1994-11-01

    We model high T c superconductors (HTS) by quantum capacitive Josephson junction arrays (JJA), with Angstrom-scale parameters, to obtain an estimate of Tc trends. The basic idea is as follows. Number (or change) and phase are conjugate variables, with the uncertainty products obeying ΔN · Δ Θ > 1. Thus, in HTS, global phase coherence is opposed by charging-energy induced quantum phase fluctuations, especially across Josephson-coupled CuO 2 planes. These have separation d 1 and effective interplanar dielectric constant ε, e.g. from Y atoms in YBaCuO. Decreasing the interplane charging energy E 0 perpendicular to ∼ d 1 /ε, raises Tc. In Section 1, we motivate a modelling of HTS phase excitations by a quantum capacitive 3D JJA model, with XY planar phases. Section 2 gives a physical picture of the HTS transition, relating the complex layered HTS structure to a simpler ''intermediate level'' quantum 3D JJA/XY model. Section 3 sets up a path integral (3+1)D model that reduces to a previously studied anisotropic 3D XY/JJA model, with constants renormalized in some way, by the capacitance. Postponing a detailed analysis to elsewhere, we make a heuristic estimate for the reduction of the previous Tc, by the charging energy. (author). 30 refs, 8 figs

  2. 47 CFR 54.623 - Cap.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 3 2010-10-01 2010-10-01 false Cap. 54.623 Section 54.623 Telecommunication... Universal Service Support for Health Care Providers § 54.623 Cap. (a) Amount of the annual cap. The annual cap on federal universal service support for health care providers shall be $400 million per funding...

  3. 47 CFR 54.507 - Cap.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 3 2010-10-01 2010-10-01 false Cap. 54.507 Section 54.507 Telecommunication... Universal Service Support for Schools and Libraries § 54.507 Cap. (a) Amount of the annual cap. The annual funding cap on federal universal service support for schools and libraries shall be $2.25 billion per...

  4. Gap Junctions

    Science.gov (United States)

    Nielsen, Morten Schak; Axelsen, Lene Nygaard; Sorgen, Paul L.; Verma, Vandana; Delmar, Mario; Holstein-Rathlou, Niels-Henrik

    2013-01-01

    Gap junctions are essential to the function of multicellular animals, which require a high degree of coordination between cells. In vertebrates, gap junctions comprise connexins and currently 21 connexins are known in humans. The functions of gap junctions are highly diverse and include exchange of metabolites and electrical signals between cells, as well as functions, which are apparently unrelated to intercellular communication. Given the diversity of gap junction physiology, regulation of gap junction activity is complex. The structure of the various connexins is known to some extent; and structural rearrangements and intramolecular interactions are important for regulation of channel function. Intercellular coupling is further regulated by the number and activity of channels present in gap junctional plaques. The number of connexins in cell-cell channels is regulated by controlling transcription, translation, trafficking, and degradation; and all of these processes are under strict control. Once in the membrane, channel activity is determined by the conductive properties of the connexin involved, which can be regulated by voltage and chemical gating, as well as a large number of posttranslational modifications. The aim of the present article is to review our current knowledge on the structure, regulation, function, and pharmacology of gap junctions. This will be supported by examples of how different connexins and their regulation act in concert to achieve appropriate physiological control, and how disturbances of connexin function can lead to disease. © 2012 American Physiological Society. Compr Physiol 2:1981-2035, 2012. PMID:23723031

  5. Fabrication of 45 degrees template grain boundary junctions using a CaO lift-off technique

    NARCIS (Netherlands)

    IJsselsteijn, R.P.J.; Terpstra, D.; Flokstra, Jakob; Rogalla, Horst

    1994-01-01

    45 degrees grain boundary junctions have been made using (100) MgO substrates, a CeO2 template layer and an YBa2Cu3O7 top layer. To minimize the damage to the MgO surface, which will occur if the CeO2 is structured using ion milling, the CeO2 layer has been structured using the CaO lift-off

  6. Asymmetric voltage behavior of the tunnel magnetoresistance in double barrier magnetic tunnel junctions

    KAUST Repository

    Useinov, Arthur

    2012-06-01

    In this paper, we study the value of the tunnel magnetoresistance (TMR) as a function of the applied voltage in double barrier magnetic tunnel junctions (DMTJs) with the left and right ferromagnetic (FM) layers being pinned and numerically estimate the possible difference of the TMR curves for negative and positive voltages in the homojunctions (equal barriers and electrodes). DMTJs are modeled as two single barrier junctions connected in series with consecutive tunneling (CST). We investigated the asymmetric voltage behavior of the TMR for the CST in the range of a general theoretical model. Significant asymmetries of the experimental curves, which arise due to different annealing regimes, are mostly explained by different heights of the tunnel barriers and asymmetries of spin polarizations in magnetic layers. © (2012) Trans Tech Publications.

  7. Asymmetric voltage behavior of the tunnel magnetoresistance in double barrier magnetic tunnel junctions

    KAUST Repository

    Useinov, Arthur; Gooneratne, Chinthaka Pasan; Kosel, Jü rgen

    2012-01-01

    In this paper, we study the value of the tunnel magnetoresistance (TMR) as a function of the applied voltage in double barrier magnetic tunnel junctions (DMTJs) with the left and right ferromagnetic (FM) layers being pinned and numerically estimate the possible difference of the TMR curves for negative and positive voltages in the homojunctions (equal barriers and electrodes). DMTJs are modeled as two single barrier junctions connected in series with consecutive tunneling (CST). We investigated the asymmetric voltage behavior of the TMR for the CST in the range of a general theoretical model. Significant asymmetries of the experimental curves, which arise due to different annealing regimes, are mostly explained by different heights of the tunnel barriers and asymmetries of spin polarizations in magnetic layers. © (2012) Trans Tech Publications.

  8. Identifications of the polar cap boundary and the auroral belt in the high-altitude magnetosphere: a model for field-aligned currents

    International Nuclear Information System (INIS)

    Sugiura, M.

    1975-01-01

    By means of the Ogo 5 Goddard Space Flight Center fluxgate magnetometer data the polar cap boundary is identified in the high-altitude magnetosphere by a sudden transition from a dipolar field to a more taillike configuration. It is inferred that there exists a field-aligned-current layer at the polar cap boundary. In the night side magnetosphere the polar cap boundary is identified as the high-latitude boundary of the plasma sheet. The field-aligned current flows downward to the ionosphere on the morning side of the magnetosphere and upward from the ionosphere on the afternoon side. The basic pattern of the magnetic field variations observed during the satellite's traversal of the auroral belt is presented. Currents flow in opposite directions in the two field-aligned-current layers. The current directions in these layers as observed by Ogo 5 in the high-altitude magnetosphere are the same as those observed at low altitudes by the polar-orbiting Triad satellite (Armstrong and Zmuda, 1973). The magnetic field in the region where the lower-latitude field-aligned-current layer is situated is essentially meridional. A model is presented in which two field-aligned-current systems, one at the polar cap boundary and the other on the low-latitude part of the auroral belt, are main []y connected by ionospheric currents flowing across the auroral belt. The existence of field-aligned currents deduced from the Ogo 5 observations is a permanent feature of the magnetosphere. Intensifications of the field-aligned currents and occurrences of multiple pairs of field-aligned-current layers characterize the disturbed conditions of these regions

  9. 488-1D Ash Basin closure cap help modeling- Microdrain® liner option

    Energy Technology Data Exchange (ETDEWEB)

    Dyer, J. A. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-08-03

    At the request of Area Completion Engineering and in support of the 488-1D Ash Basin closure, the Savannah River National Laboratory (SRNL) performed hydrologic simulations of the revised 488-1D Ash Basin closure cap design using the Hydrologic Evaluation of Landfill Performance (HELP) model. The revised design substitutes a MicroDrain Liner®—60-mil low-density polyethylene geomembrane structurally integrated with 130-mil drainage layer—for the previously planned drainage/barrier system—300-mil geosynthetic drainage layer (GDL), 300-mil geosynthetic clay liner (GCL), and 6-inch common fill soil layer. For a 25-year, 24-hour storm event, HELP model v3.07 was employed to (1) predict the peak maximum daily hydraulic head for the geomembrane layer, and (2) ensure that South Carolina Department of Health and Environmental Control (SCDHEC) requirements for the barrier layer (i.e., ≤ 12 inches hydraulic head on top of a barrier having a saturated hydraulic conductivity ≤ 1.0E-05 cm/s) will not be exceeded. A 25-year, 24-hour storm event at the Savannah River Site (SRS) is 6.1 inches rainfall (Weber 1998). HELP model v3.07 results based upon the new planned cap design suggest that the peak maximum daily hydraulic head on the geomembrane barrier layer will be 0.15 inches for a minimum slope equal to 3%, which is two orders of magnitude below the SCDHEC upper limit of 12 inches.

  10. 488-1D Ash basin closure cap help modeling-Microdrain® liner option

    Energy Technology Data Exchange (ETDEWEB)

    Dyer, J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-09-06

    At the request of Area Completion Engineering and in support of the 488-1D Ash Basin closure, the Savannah River National Laboratory (SRNL) performed hydrologic simulations of the revised 488-1D Ash Basin closure cap design using the Hydrologic Evaluation of Landfill Performance (HELP) model. The revised design substitutes a MicroDrain Liner®—50-mil linear low-density polyethylene geomembrane structurally integrated with 130-mil drainage layer—for the previously planned drainage/barrier system—300-mil geosynthetic drainage layer (GDL), 300-mil geosynthetic clay liner (GCL), and 6-inch common fill soil layer. For a 25-year, 24-hour storm event, HELP model v3.07 was employed to (1) predict the peak maximum daily hydraulic head for the geomembrane layer, and (2) ensure that South Carolina Department of Health and Environmental Control (SCDHEC) requirements for the barrier layer (i.e., ≤ 12 inches hydraulic head on top of a barrier having a saturated hydraulic conductivity ≤ 1.0E-05 cm/s) will not be exceeded. A 25-year, 24-hour storm event at the Savannah River Site (SRS) is 6.1 inches rainfall (Weber 1998). HELP model v3.07 results based upon the new planned cap design suggest that the peak maximum daily hydraulic head on the geomembrane barrier layer will be 0.179 inches for a minimum slope equal to 3%, which is approximately two orders of magnitude below the SCDHEC upper limit of 12 inches.

  11. Model for capping of membrane receptors based on boundary surface effects

    Science.gov (United States)

    Gershon, N. D.

    1978-01-01

    Crosslinking of membrane surface receptors may lead to their segregation into patches and then into a single large aggregate at one pole of the cell. This process is called capping. Here, a novel explanation of such a process is presented in which the membrane is viewed as a supersaturated solution of receptors in the lipid bilayer and the adjacent two aqueous layers. Without a crosslinking agent, a patch of receptors that is less than a certain size cannot stay in equilibrium with the solution and thus should dissolve. Patches greater than a certain size are stable and can, in principle, grow by the precipitation of the remaining dissolved receptors from the supersaturated solution. The task of the crosslinking molecules is to form such stable patches. These considerations are based on a qualitative thermodynamic calculation that takes into account the existence of a boundary tension in a patch (in analogy to the surface tension of a droplet). Thermodynamically, these systems should cap spontaneously after the patches have reached a certain size. But, in practice, such a process can be very slow. A suspension of patches may stay practically stable. The ways in which a cell may abolish this metastable equilibrium and thus achieve capping are considered and possible effects of capping inhibitors are discussed. PMID:274724

  12. Interaction between fractional Josephson vortices in multi-gap superconductor tunnel junctions

    Science.gov (United States)

    Kim, Ju H.

    In a long Josephson junction (LJJ) with two-band superconductors, fractionalization of Josephson vortices (fluxons) can occur in the broken time reversal symmetry state when spatial phase textures (i-solitons) are excited. Excitation of i-solitons in each superconductor layer of the junction, arising due to the presence of two condensates and the interband Josephson effect, leads to spatial variation of the critical current density between the superconductor layers. Similar to the situation in a YBa2 Cu3O7 - x superconductor film grain boundary, this spatial dependence of the crtitical current density can self-generate magnetic flux in the insulator layer, resulting in fractional fluxons with large and small fraction of flux quantum. Similar to fluxons in one-band superconductor LJJ, these fractional fluxons are found to interact with each other. The interaction between large and small fractional fluxons determines the size of a fluxon which includes two (one large and one small) fractional fluxons. We discuss the nature of interaction between fractional fluxons and suggest that i-soliton excitations in multi-gap superconductor LJJs may be probed by using magnetic flux measurements.

  13. Tunnel magnetoresistance in thermally robust Mo/CoFeB/MgO tunnel junction with perpendicular magnetic anisotropy

    Directory of Open Access Journals (Sweden)

    B. Fang

    2015-06-01

    Full Text Available We report on tunnel magnetoresistance and electric-field effect in the Mo buffered and capped CoFeB/MgO magnetic tunnel junctions (MTJs with perpendicular magnetic anisotropy. A large tunnel magnetoresistance of 120% is achieved. Furthermore, this structure shows greatly improved thermal stability and stronger electric-field-induced modulation effect in comparison with the Ta/CoFeB/MgO-based MTJs. These results suggest that the Mo-based MTJs are more desirable for next generation spintronic devices.

  14. The pharmaceutical vial capping process: Container closure systems, capping equipment, regulatory framework, and seal quality tests.

    Science.gov (United States)

    Mathaes, Roman; Mahler, Hanns-Christian; Buettiker, Jean-Pierre; Roehl, Holger; Lam, Philippe; Brown, Helen; Luemkemann, Joerg; Adler, Michael; Huwyler, Joerg; Streubel, Alexander; Mohl, Silke

    2016-02-01

    Parenteral drug products are protected by appropriate primary packaging to protect against environmental factors, including potential microbial contamination during shelf life duration. The most commonly used CCS configuration for parenteral drug products is the glass vial, sealed with a rubber stopper and an aluminum crimp cap. In combination with an adequately designed and controlled aseptic fill/finish processes, a well-designed and characterized capping process is indispensable to ensure product quality and integrity and to minimize rejections during the manufacturing process. In this review, the health authority requirements and expectations related to container closure system quality and container closure integrity are summarized. The pharmaceutical vial, the rubber stopper, and the crimp cap are described. Different capping techniques are critically compared: The most common capping equipment with a rotating capping plate produces the lowest amount of particle. The strength and challenges of methods to control the capping process are discussed. The residual seal force method can characterize the capping process independent of the used capping equipment or CCS. We analyze the root causes of several cosmetic defects associated with the vial capping process. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Magnetic tunnel junctions with monolayer hexagonal boron nitride tunnel barriers

    Energy Technology Data Exchange (ETDEWEB)

    Piquemal-Banci, M.; Galceran, R.; Bouzehouane, K.; Anane, A.; Petroff, F.; Fert, A.; Dlubak, B.; Seneor, P. [Unité Mixte de Physique, CNRS, Thales, Univ. Paris-Sud, Université Paris-Saclay, Palaiseau 91767 (France); Caneva, S.; Martin, M.-B.; Weatherup, R. S.; Kidambi, P. R.; Robertson, J.; Hofmann, S. [Department of Engineering, University of Cambridge, Cambridge CB21PZ (United Kingdom); Xavier, S. [Thales Research and Technology, 1 avenue Augustin Fresnel, Palaiseau 91767 (France)

    2016-03-07

    We report on the integration of atomically thin 2D insulating hexagonal boron nitride (h-BN) tunnel barriers into Co/h-BN/Fe magnetic tunnel junctions (MTJs). The h-BN monolayer is directly grown by chemical vapor deposition on Fe. The Conductive Tip Atomic Force Microscopy (CT-AFM) measurements reveal the homogeneity of the tunnel behavior of our h-BN layers. As expected for tunneling, the resistance depends exponentially on the number of h-BN layers. The h-BN monolayer properties are also characterized through integration into complete MTJ devices. A Tunnel Magnetoresistance of up to 6% is observed for a MTJ based on a single atomically thin h-BN layer.

  16. An ARC less InGaP/GaAs DJ solar cell with hetero tunnel junction

    Science.gov (United States)

    Sahoo, G. S.; Nayak, P. P.; Mishra, G. P.

    2016-07-01

    Multi junction solar cell has not achieved an optimum performance yet. To acquire more conversion efficiency research on multi junction solar cell are in progress. In this work we have proposed a dual junction solar cell with conversion efficiency of 43.603%. Mainly the focus is given on the tunnel diode, window layer and back surface field (BSF) layer of the cell, as all of them plays important role on the cell performance. Here we have designed a hetero InGaP/GaAs tunnel diode which makes tunnel diode more transparent to the bottom cell as well as reduces the recombination at the interfaces. The thickness of the window and BSF layer are optimized to achieve higher conversion efficiency. The simulation is carried out using Silvaco ATLAS TCAD under 1000 sun of AM1.5G spectrum. Different performance parameters of the cell like short circuit current density (Jsc), open circuit voltage (Voc), external quantum efficiency (EQE), fill factor (FF), conversion efficiency (η), spectral response and photogeneration rate of the cell are examined and compared with previously reported literatures. For the proposed model a Voc of 2.7043 V, Jsc of 1898.52 mA/cm2, FF of 88.88% and η of 43.6% are obtained.

  17. Optical properties of P3HT:tributylphosphine oxide-capped CdSe nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Benchaabane, A. [Faculte des Sciences d' Amiens, Laboratoire de Physique de la Matiere Condensee, Amiens (France); Universite Tunis El-Manar, Laboratoire de Materiaux avances et phenomenes quantiques, Faculte des Sciences de Tunis El Manar, Tunis (Tunisia); Universite Arabe des Sciences, Ecole Superieure d' Ingenieurs et des Etudes Technologiques, Tunis (Tunisia); Ben Hamed, Z.; Kouki, F.; Bouchriha, H. [Universite Tunis El-Manar, Laboratoire de Materiaux avances et phenomenes quantiques, Faculte des Sciences de Tunis El Manar, Tunis (Tunisia); Lahmar, A.; Zellama, K.; Zeinert, A. [Faculte des Sciences d' Amiens, Laboratoire de Physique de la Matiere Condensee, Amiens (France); Sanhoury, M.A. [Laboratoire de Chimie Organique Structurale, Synthese et Etudes Physicochimiques, Tunis (Tunisia)

    2016-08-15

    The optical properties of nanocomposite layers prepared by incorporation of tributylphosphine oxide (TBPO)-capped CdSe nanocrystals (NCs) in a P3HT polymer matrix are studied using different nanocrystal concentrations. Reflection spectra analyzed through Kim oscillator model lead to the determination of optical constants such as refractive index n, extinction coefficient k, dielectric permittivity ε and absorption coefficient α. Using the common Cauchy, Drude-Lorentz, Tauc and single-effective-oscillator theoretical models, we have determined the values of static refractive index n{sub s} and permittivity ε{sub s}, plasma frequency ω{sub p}, carrier density N, optical band gap E{sub g} and oscillator and dispersion energies E{sub 0} and E{sub d}, respectively. It is found that TBPO-capped CdSe NCs concentration affects the optoelectronic parameters of the nanocomposite thin films. Moreover, the disorder of this hybrid system is also studied by the determination of Urbach energy, which increases with TBPO-capped CdSe concentration. (orig.)

  18. Thermal stability analysis of thin film Ni-NiOx-Cr tunnel junctions

    International Nuclear Information System (INIS)

    Krishnan, S.; Emirov, Y.; Bhansali, S.; Stefanakos, E.; Goswami, Y.

    2010-01-01

    This research reports on the thermal stability of Ni-NiO x -Cr based Metal-Insulator-Metal (MIM) junction. Effect of annealing (250 to 400 o C) on the electrical and physical transport properties of this MIM stack was understood to determine the thermal budget allowable when using these diodes. MIM tunnel junctions were fabricated by sputtering and the NiO x was formed through reactive sputtering. The performance of the tunnel junctions after exposure to elevated temperatures was investigated using current-voltage measurements. This was correlated to the structural properties of the interfaces at different temperatures, characterized by Atomic Force Microscopy, X-ray Diffraction and Transmission Electron Microscopy (TEM). MIM tunnel junctions annealed up to 350 o C demonstrated satisfactory current-voltage characteristics and sensitivity. MIM junctions exhibited improved electrical performance as they were heated to 250 o C (sensitivity of 42 V -1 and a zero-bias resistance of ∼300 Ω) due to improved crystallization of the layers within the stack. At temperatures over 350 o C, TEM and Energy Dispersive Spectra confirmed a breakdown of the MIM structure due to interdiffusion.

  19. Multiscale modeling of current-induced switching in magnetic tunnel junctions using ab initio spin-transfer torques

    Science.gov (United States)

    Ellis, Matthew O. A.; Stamenova, Maria; Sanvito, Stefano

    2017-12-01

    There exists a significant challenge in developing efficient magnetic tunnel junctions with low write currents for nonvolatile memory devices. With the aim of analyzing potential materials for efficient current-operated magnetic junctions, we have developed a multi-scale methodology combining ab initio calculations of spin-transfer torque with large-scale time-dependent simulations using atomistic spin dynamics. In this work we introduce our multiscale approach, including a discussion on a number of possible schemes for mapping the ab initio spin torques into the spin dynamics. We demonstrate this methodology on a prototype Co/MgO/Co/Cu tunnel junction showing that the spin torques are primarily acting at the interface between the Co free layer and MgO. Using spin dynamics we then calculate the reversal switching times for the free layer and the critical voltages and currents required for such switching. Our work provides an efficient, accurate, and versatile framework for designing novel current-operated magnetic devices, where all the materials details are taken into account.

  20. Interconnected magnetic tunnel junctions for spin-logic applications

    Science.gov (United States)

    Manfrini, Mauricio; Vaysset, Adrien; Wan, Danny; Raymenants, Eline; Swerts, Johan; Rao, Siddharth; Zografos, Odysseas; Souriau, Laurent; Gavan, Khashayar Babaei; Rassoul, Nouredine; Radisic, Dunja; Cupak, Miroslav; Dehan, Morin; Sayan, Safak; Nikonov, Dmitri E.; Manipatruni, Sasikanth; Young, Ian A.; Mocuta, Dan; Radu, Iuliana P.

    2018-05-01

    With the rapid progress of spintronic devices, spin-logic concepts hold promises of energy-delay conscious computation for efficient logic gate operations. We report on the electrical characterization of domain walls in interconnected magnetic tunnel junctions. By means of spin-transfer torque effect, domains walls are produced at the common free layer and its propagation towards the output pillar sensed by tunneling magneto-resistance. Domain pinning conditions are studied quasi-statically showing a strong dependence on pillar size, ferromagnetic free layer width and inter-pillar distance. Addressing pinning conditions are detrimental for cascading and fan-out of domain walls across nodes, enabling the realization of domain-wall-based logic technology.

  1. INTERACTION OF A LONG PILE OF FINITE STIFFNESS WITH SURROUNDING SOIL AND FOUNDATION CAP

    Directory of Open Access Journals (Sweden)

    Ter-Martirosyan Zaven Grigor’evich

    2015-09-01

    Full Text Available The article presents the formulation and analytical solution to a quantification of stress strain state of a two-layer soil cylinder enclosing a long pile, interacting with the cap. The solution of the problem is considered for two cases: with and without account for the settlement of the heel and the underlying soil. In the first case, the article is offering equations for determining the stresses of pile’s body and the surrounding soil according to their hardness and the ratio of radiuses of the pile and the surrounding soil cylinder, as well as formulating for determining equivalent deformation modulus of the system “cap-pile-surrounding soil” (the system. Assessing the carrying capacity of the soil under pile’s heel is of great necessity. In the second case, the article is solving a second-order differential equation. We gave the formulas for determining the stresses of the pile at its top and heel, as well as the variation of stresses along the pile’s body. The article is also formulating for determining the settlement of the foundation cap and equivalent deformation modulus of the system. It is shown that, pushing the pile into underlying layer results in the reducing of equivalent modulus of the system.

  2. On the effect of N-GaN/P-GaN/N-GaN/P-GaN/N-GaN built-in junctions in the n-GaN layer for InGaN/GaN light-emitting diodes.

    Science.gov (United States)

    Kyaw, Zabu; Zhang, Zi-Hui; Liu, Wei; Tan, Swee Tiam; Ju, Zhen Gang; Zhang, Xue Liang; Ji, Yun; Hasanov, Namig; Zhu, Binbin; Lu, Shunpeng; Zhang, Yiping; Sun, Xiao Wei; Demir, Hilmi Volkan

    2014-01-13

    N-GaN/P-GaN/N-GaN/P-GaN/N-GaN (NPNPN-GaN) junctions embedded between the n-GaN region and multiple quantum wells (MQWs) are systematically studied both experimentally and theoretically to increase the performance of InGaN/GaN light emitting diodes (LEDs) in this work. In the proposed architecture, each thin P-GaN layer sandwiched in the NPNPN-GaN structure is completely depleted due to the built-in electric field in the NPNPN-GaN junctions, and the ionized acceptors in these P-GaN layers serve as the energy barriers for electrons from the n-GaN region, resulting in a reduced electron over flow and enhanced the current spreading horizontally in the n- GaN region. These lead to increased optical output power and external quantum efficiency (EQE) from the proposed device.

  3. Catastrophic antiphospholipid syndrome (CAPS): Descriptive analysis of 500 patients from the International CAPS Registry.

    Science.gov (United States)

    Rodríguez-Pintó, Ignasi; Moitinho, Marta; Santacreu, Irene; Shoenfeld, Yehuda; Erkan, Doruk; Espinosa, Gerard; Cervera, Ricard

    2016-12-01

    To analyze the clinical and immunologic manifestations of patients with catastrophic antiphospholipid syndrome (CAPS) from the "CAPS Registry". The demographic, clinical and serological features of 500 patients included in the website-based "CAPS Registry" were analyzed. Frequency distribution and measures of central tendency were used to describe the cohort. Comparison between groups regarding qualitative variables was undertaken by chi-square or Fisher exact test while T-test for independent variables was used to compare groups regarding continuous variables. 500 patients (female: 343 [69%]; mean age 38±17) accounting for 522 episodes of CAPS were included in the analysis. Forty percent of patients had an associated autoimmune disease, mainly systemic lupus erythematosus (SLE) (75%). The majority of CAPS episodes were triggered by a precipitating factor (65%), mostly infections (49%). Clinically, CAPS was characterized by several organ involvement affecting kidneys (73%), lungs (60%), brain (56%), heart (50%), and skin (47%). Lupus anticoagulant, IgG anticardiolipin and IgG anti-β2-glycprotein antibodies were the most often implicated antiphospholipid antibodies (83%, 81% and 78% respectively). Mortality accounted for 37% of episodes of CAPS. Several clinical differences could be observed based on the age of presentation and its association to SLE. Those cases triggered by a malignancy tended to occur in older patients, while CAPS episodes in young patients were associated with an infectious trigger and peripheral vessels involvement. Additionally, CAPS associated with SLE were more likely to have severe cardiac and brain involvement leading to a higher mortality (48%). Although the presentation of CAPS is characterized by multiorgan thrombosis and failure, clinical differences among patients exist based on age and underlying chronic diseases, e.g. malignancy and SLE. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Efficient spin injection and giant magnetoresistance in Fe / MoS 2 / Fe junctions

    KAUST Repository

    Dolui, Kapildeb

    2014-07-02

    We demonstrate giant magnetoresistance in Fe/MoS2/Fe junctions by means of ab initio transport calculations. We show that junctions incorporating either a monolayer or a bilayer of MoS2 are metallic and that Fe acts as an efficient spin injector into MoS2 with an efficiency of about 45%. This is the result of the strong coupling between the Fe and S atoms at the interface. For junctions of greater thickness, a maximum magnetoresistance of ∼300% is obtained, which remains robust with the applied bias as long as transport is in the tunneling limit. A general recipe for improving the magnetoresistance in spin valves incorporating layered transition metal dichalcogenides is proposed. © 2014 American Physical Society.

  5. Magnetoresistance in Co/2D MoS2/Co and Ni/2D MoS2/Ni junctions.

    Science.gov (United States)

    Zhang, Han; Ye, Meng; Wang, Yangyang; Quhe, Ruge; Pan, Yuanyuan; Guo, Ying; Song, Zhigang; Yang, Jinbo; Guo, Wanlin; Lu, Jing

    2016-06-28

    Semiconducting single-layer (SL) and few-layer MoS2 have a flat surface, free of dangling bonds. Using density functional theory coupled with non-equilibrium Green's function method, we investigate the spin-polarized transport properties of Co/2D MoS2/Co and Ni/2D MoS2/Ni junctions with MoS2 layer numbers of N = 1, 3, and 5. Well-defined interfaces are formed between MoS2 and metal electrodes. The junctions with a SL MoS2 spacer are almost metallic owing to the strong coupling between MoS2 and the ferromagnets, while those are tunneling with a few layer MoS2 spacer. Both large magnetoresistance and tunneling magnetoresistance are found when fcc or hcp Co is used as an electrode. Therefore, flat single- and few-layer MoS2 can serve as an effective nonmagnetic spacer in a magnetoresistance or tunneling magnetoresistance device with a well-defined interface.

  6. Nanostructured thin films for multibandgap silicon triple junction solar cells

    NARCIS (Netherlands)

    Schropp, R.E.I.; Li, H. B. T.; Franken, R.H.; Rath, J.K.; van der Werf, C.H.M.; Schuttauf, J.A.; Stolk, R.L.

    2009-01-01

    A considerable improvement in performance has been achieved for multibandgap proto-Si/proto-SiGe/nc-Si:H triple junction n–i–p solar cells in which hot-wire chemical vapor deposition (HWCVD) is used to obtain the absorber layers of the bottom and the top cell. To achieve this, optimized Ag/ZnO

  7. Four-junction superconducting circuit

    Science.gov (United States)

    Qiu, Yueyin; Xiong, Wei; He, Xiao-Ling; Li, Tie-Fu; You, J. Q.

    2016-01-01

    We develop a theory for the quantum circuit consisting of a superconducting loop interrupted by four Josephson junctions and pierced by a magnetic flux (either static or time-dependent). In addition to the similarity with the typical three-junction flux qubit in the double-well regime, we demonstrate the difference of the four-junction circuit from its three-junction analogue, including its advantages over the latter. Moreover, the four-junction circuit in the single-well regime is also investigated. Our theory provides a tool to explore the physical properties of this four-junction superconducting circuit. PMID:27356619

  8. Pronounced Photovoltaic Response from Multilayered Transition-Metal Dichalcogenides PN-Junctions.

    Science.gov (United States)

    Memaran, Shahriar; Pradhan, Nihar R; Lu, Zhengguang; Rhodes, Daniel; Ludwig, Jonathan; Zhou, Qiong; Ogunsolu, Omotola; Ajayan, Pulickel M; Smirnov, Dmitry; Fernández-Domínguez, Antonio I; García-Vidal, Francisco J; Balicas, Luis

    2015-11-11

    Transition metal dichalcogenides (TMDs) are layered semiconductors with indirect band gaps comparable to Si. These compounds can be grown in large area, while their gap(s) can be tuned by changing their chemical composition or by applying a gate voltage. The experimental evidence collected so far points toward a strong interaction with light, which contrasts with the small photovoltaic efficiencies η ≤ 1% extracted from bulk crystals or exfoliated monolayers. Here, we evaluate the potential of these compounds by studying the photovoltaic response of electrostatically generated PN-junctions composed of approximately 10 atomic layers of MoSe2 stacked onto the dielectric h-BN. In addition to ideal diode-like response, we find that these junctions can yield, under AM-1.5 illumination, photovoltaic efficiencies η exceeding 14%, with fill factors of ~70%. Given the available strategies for increasing η such as gap tuning, improving the quality of the electrical contacts, or the fabrication of tandem cells, our study suggests a remarkable potential for photovoltaic applications based on TMDs.

  9. Intermixing of InGaAs/GaAs quantum wells and quantum dots using sputter-deposited silicon oxynitride capping layers

    International Nuclear Information System (INIS)

    McKerracher, Ian; Fu Lan; Hoe Tan, Hark; Jagadish, Chennupati

    2012-01-01

    Various approaches can be used to selectively control the amount of intermixing in III-V quantum well and quantum dot structures. Impurity-free vacancy disordering is one technique that is favored for its simplicity, however this mechanism is sensitive to many experimental parameters. In this study, a series of silicon oxynitride capping layers have been used in the intermixing of InGaAs/GaAs quantum well and quantum dot structures. These thin films were deposited by sputter deposition in order to minimize the incorporation of hydrogen, which has been reported to influence impurity-free vacancy disordering. The degree of intermixing was probed by photoluminescence spectroscopy and this is discussed with respect to the properties of the SiO x N y films. This work was also designed to monitor any additional intermixing that might be attributed to the sputtering process. In addition, the high-temperature stress is known to affect the group-III vacancy concentration, which is central to the intermixing process. This stress was directly measured and the experimental values are compared with an elastic-deformation model.

  10. IL-4 and IL-13 Compromise the Sinonasal Epithelial Barrier and Perturb Intercellular Junction Protein Expression

    Science.gov (United States)

    Wise, Sarah K.; Laury, Adrienne M.; Katz, Elizabeth H.; Den Beste, Kyle A.; Parkos, Charles A.; Nusrat, Asma

    2014-01-01

    Introduction Altered expression of epithelial intercellular junction proteins has been observed in sinonasal biopsies from nasal polyps and epithelial layers cultured from nasal polyp patients. These alterations comprise a “leaky” epithelial barrier phenotype. We hypothesize that Th2 cytokines IL-4 and IL-13 modulate epithelial junction proteins thereby contributing to the leaky epithelial barrier. Methods Differentiated primary sinonasal epithelial layers cultured at the air-liquid interface were exposed to IL-4, IL-13, and controls for 24 hours at 37°C. Epithelial resistance measurements were taken every 4 hours during cytokine exposure. Western blot and immunofluorescence staining/confocal microscopy were used to assess changes in a panel of tight and adherens junction proteins. Western blot densitometry was quantified with image analysis. Results IL-4 and IL-13 exposure resulted in a mean decrease in transepithelial resistance at 24 hours to 51.6% (n=6) and 68.6% (n=8) of baseline, respectively. Tight junction protein JAM-A expression decreased 42.2% with IL-4 exposure (n=9) and 37.5% with IL-13 exposure (n=9). Adherens junction protein E-cadherin expression decreased 35.3% with IL-4 exposure (n=9) and 32.9% with IL-13 exposure (n=9). Tight junction protein claudin-2 showed more variability but had a trend toward higher expression with Th2 cytokine exposure. There were no appreciable changes in claudin-1, occludin, or ZO-1 with IL-4 or IL-13 exposure. Conclusion Sinonasal epithelial exposure to Th2 cytokines IL-4 and IL-13 results in alterations in intercellular junction proteins, reflecting increased epithelial permeability. Such changes may explain some of the phenotypic manifestations of Th2-mediated sinonasal disease, such as edema, nasal discharge, and environmental reactivity. PMID:24510479

  11. The rebirth of the cervical cap.

    Science.gov (United States)

    Cappiello, J D; Grainger-Harrison, M

    1981-01-01

    In an effort to dispel myths surrounding the cervical cap, the historical and political factors affecting the cap's use in the U.S. are described. Clinical aspects of cap fitting are also included. The cervical cap has found only limited acceptance in the U.S. Skepticisms on the part of physicians may be the result of 2 factors: confusion of the cervical cap with intracervical devices used for artificial insemination and confusion with stem pessaries; and the lack of clinical research and statistical evaluation of efficacy rates. The latter factor prompted Tietze et al. to conduct the only U.S. statistical study of the cap in 1953. Of the 143 women studied, the pregnancy rate was 7.6/100 years of use. Of the 28 unplanned pregnancies, 6 were related to faulty technique or omission of a spermicide and 10 were instances of admittedly irregular use. When these failures are omitted, the theoretical effectiveness rate is about 98%. Some practitioners are concerned about an increased incidence of cervical erosion with cap use. Possibly currently conducted studies will show that cap and spermicide users have a lower incidence of cervical erosion than women using no contraceptive method. Study findings suggest that the cervical cap may afford protection without any spermicidal supplement, but the use of spermicides continues to be recommended to clients. Advantages of the cervical cap include the following: it can be left in place longer than a diaphragm without additional applications of spermicide in the vagina; and the insertion of the cap is unrelated to the time of intercourse. Despite research on toleration of the cap for 3 weeks at a time, it is recommended that the cap be worn for only a few days at a time. At this time there are no manufacturers of cervical caps for contraceptive use in the U.S. The cap is now being imported from England and it costs $6.00. A factor that has made the cap unpopular with many physicians is the lengthy time required for fitting. An

  12. Spin-wave thermal population as temperature probe in magnetic tunnel junctions

    Energy Technology Data Exchange (ETDEWEB)

    Le Goff, A., E-mail: adrien.le-goff@u-psud.fr; Devolder, T. [Institut d' Electronique Fondamentale, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91405 Orsay (France); Nikitin, V. [SAMSUNG Electronics Corporation, 601 McCarthy Blvd Milpitas, California 95035 (United States)

    2016-07-14

    We study whether a direct measurement of the absolute temperature of a Magnetic Tunnel Junction (MTJ) can be performed using the high frequency electrical noise that it delivers under a finite voltage bias. Our method includes quasi-static hysteresis loop measurements of the MTJ, together with the field-dependence of its spin wave noise spectra. We rely on an analytical modeling of the spectra by assuming independent fluctuations of the different sub-systems of the tunnel junction that are described as macrospin fluctuators. We illustrate our method on perpendicularly magnetized MgO-based MTJs patterned in 50 × 100 nm{sup 2} nanopillars. We apply hard axis (in-plane) fields to let the magnetic thermal fluctuations yield finite conductance fluctuations of the MTJ. Instead of the free layer fluctuations that are observed to be affected by both spin-torque and temperature, we use the magnetization fluctuations of the sole reference layers. Their much stronger anisotropy and their much heavier damping render them essentially immune to spin-torque. We illustrate our method by determining current-induced heating of the perpendicularly magnetized tunnel junction at voltages similar to those used in spin-torque memory applications. The absolute temperature can be deduced with a precision of ±60 K, and we can exclude any substantial heating at the spin-torque switching voltage.

  13. Charge-transport in Josephson-junctions with ferromagnetic Ni3Al-interlayer

    International Nuclear Information System (INIS)

    Born, F.

    2006-01-01

    The present dissertation reports on experimental studies about superconducting coupling through a thin Ni 76 Al 24 film. A new patterning process has been developed, which allows in combination with the wedge shaped deposition technique the in situ deposition of 20 single Nb/Al/Al 2 O 3 /Ni 3 Al/Nb multilayers, each with its own well defined Ni 3 Al thickness. Every single multilayer consists of 10 different sized Josephson junctions, showing a high reproducibility and scaling with its junction area. Up to six damped oscillations of the critical current density against F-layer thickness were observed, revealing three single 0-π-transitions in the ground state of Josephson junctions. Contrary to former experimental studies, the exponential decay length is one magnitude larger than the oscillation period defining decay length. The theoretical predictions based on linearised Eilenberger equations results in excellent agreement of theory and experimental results. (orig.)

  14. Low-leakage superconducting tunnel junctions with a single-crystal Al{sub 2}O{sub 3} barrier

    Energy Technology Data Exchange (ETDEWEB)

    Oh, S [National Institute of Standards and Technology, Boulder, CO 80305 (United States); Department of Physics, University of Illinois, Urbana, IL 61801 (United States); Cicak, K; Osborn, K D; Simmonds, R W; Pappas, D P [National Institute of Standards and Technology, Boulder, CO 80305 (United States); McDermott, R; Cooper, K B; Steffen, M; Martinis, J M [University of California, Santa Barbara, CA 93106 (United States)

    2005-10-01

    We have developed a two-step growth scheme for single-crystal Al{sub 2}O{sub 3} tunnel barriers. The barriers are epitaxially grown on single-crystal rhenium (Re) base electrodes that are grown epitaxially on a sapphire substrate, while polycrystalline Al is used as the top electrode. We show that by first growing an amorphous aluminium (Al) oxide layer at room temperature and crystallizing it at a high temperature in oxygen environment, a morphologically intact single-crystal Al{sub 2}O{sub 3} layer is obtained. Tunnel junctions fabricated from these trilayers show very low subgap leakage current. This single-crystal Al{sub 2}O{sub 3} junction may open a new venue for coherent quantum devices.

  15. Evaluation of Landscape Impacts and Land Use Change: a Tuscan Case Study for CAP Reform Scenarios

    Directory of Open Access Journals (Sweden)

    Iacopo Bernetti

    2010-07-01

    Full Text Available The study uses information from different sources and on different scales in an integrated set of models in order to analyze possible land use change scenarios arising in response to CAP reform. Five main steps were followed: (1 analysis of past land use changes, (2 multivariate analysis of future land use changes using a neural network time series forecast model (Multi-Layer Perceptron Method, (3 modelization of land use change demand (Markovian Chains Method, (4 allocation of the demand to define transition localization, (5 definition of policy scenarios. The final stage is the comparison of CAP scenarios using a multicriteria decision making approach, in order to supply valuable information to policy makers regarding the possible local effects of key direction changes in CAP.

  16. Photodetection in p–n junctions formed by electrolyte-gated transistors of two-dimensional crystals

    KAUST Repository

    Kozawa, Daichi

    2016-11-16

    Transition metal dichalcogenide monolayers have attracted much attention due to their strong light absorption and excellent electronic properties. These advantages make this type of two-dimensional crystal a promising one for optoelectronic device applications. In the case of photoelectric conversion devices such as photodetectors and photovoltaic cells, p–n junctions are one of the most important devices. Here, we demonstrate photodetection with WSe2 monolayer films. We prepare the electrolyte-gated ambipolar transistors and electrostatic p–n junctions are formed by the electrolyte-gating technique at 270 K. These p-n junctions are cooled down to fix the ion motion (and p-n junctions) and we observed the reasonable photocurrent spectra without the external bias, indicating the formation of p-n junctions. Very interestingly, two-terminal devices exhibit higher photoresponsivity than that of three-terminal ones, suggesting the formation of highly balanced anion and cation layers. The maximum photoresponsivity reaches 5 mA/W in resonance with the first excitonic peak. Our technique provides important evidence for optoelectronics in atomically thin crystals.

  17. Photodetection in p–n junctions formed by electrolyte-gated transistors of two-dimensional crystals

    KAUST Repository

    Kozawa, Daichi; Pu, Jiang; Shimizu, Ryo; Kimura, Shota; Chiu, Ming-Hui; Matsuki, Keiichiro; Wada, Yoshifumi; Sakanoue, Tomo; Iwasa, Yoshihiro; Li, Lain-Jong; Takenobu, Taishi

    2016-01-01

    Transition metal dichalcogenide monolayers have attracted much attention due to their strong light absorption and excellent electronic properties. These advantages make this type of two-dimensional crystal a promising one for optoelectronic device applications. In the case of photoelectric conversion devices such as photodetectors and photovoltaic cells, p–n junctions are one of the most important devices. Here, we demonstrate photodetection with WSe2 monolayer films. We prepare the electrolyte-gated ambipolar transistors and electrostatic p–n junctions are formed by the electrolyte-gating technique at 270 K. These p-n junctions are cooled down to fix the ion motion (and p-n junctions) and we observed the reasonable photocurrent spectra without the external bias, indicating the formation of p-n junctions. Very interestingly, two-terminal devices exhibit higher photoresponsivity than that of three-terminal ones, suggesting the formation of highly balanced anion and cation layers. The maximum photoresponsivity reaches 5 mA/W in resonance with the first excitonic peak. Our technique provides important evidence for optoelectronics in atomically thin crystals.

  18. Fabrication-process-induced variations of Nb/Al/AlOx/Nb Josephson junctions in superconductor integrated circuits

    International Nuclear Information System (INIS)

    Tolpygo, Sergey K; Amparo, Denis

    2010-01-01

    Currently, superconductor digital integrated circuits fabricated at HYPRES, Inc. can operate at clock frequencies approaching 40 GHz. The circuits present multilayered structures containing tens of thousands of Nb/Al/AlO x /Nb Josephson junctions (JJs) of various sizes interconnected by four Nb wiring layers, resistors, and other circuit elements. In order to be fully operational, the integrated circuits should be fabricated such that the critical currents of the JJs are within the tight design margins and the proper relationships between the critical currents of JJs of different sizes are preserved. We present experimental data and discuss mechanisms of process-induced variations of the critical current and energy gap of Nb/Al/AlO x /Nb JJs in integrated circuits. We demonstrate that the Josephson critical current may depend on the type and area of circuit elements connected to the junction, on the circuit pattern, and on the step in the fabrication process at which the connection is made. In particular, we discuss the influence of (a) the junction base electrode connection to the ground plane, (b) the junction counter electrode connection to the ground plane, and (c) the counter electrode connection to the Ti/Au or Ti/Pd/Au contact pads by Nb wiring. We show that the process-induced changes of the properties of Nb/Al/AlO x /Nb junctions are caused by migration of impurity atoms (hydrogen) between the different layers comprising the integrated circuits.

  19. Exploring the Tilt-Angle Dependence of electron tunneling across Molecular junction of Self-Assembled Alkanethiols

    DEFF Research Database (Denmark)

    Frederiksen, Thomas; Munuera, C.; Ocal, C.

    2009-01-01

    Electronic transport mechanisms in molecular junctions are investigated by a combination of first-principles calculations and current−voltage measurements of several well-characterized structures. We study self-assembled layers of alkanethiols grown on Au(111) and form tunnel junctions...... for the longer molecular chains. Our calculations confirm the observed trends and explain them as a result of two mechanisms, namely, a previously proposed intermolecular tunneling enhancement as well as a hitherto overlooked tilt-dependent molecular gate effect....

  20. Counterdoped very shallow p+/n junctions obtained by B and Sb implantation and codiffusion in Si

    Science.gov (United States)

    Solmi, Sandro

    1998-02-01

    In this article we investigate the B and Sb codiffusion upon postimplantation annealing in order to fabricate very shallow p+/n junctions (⩽70 nm), suitable for a complementary metal-oxide-semiconductor technology with a channel length of 0.18 μm. The junctions are prepared by implanting Sb and subsequently BF2, at a higher dose, in an n-type Si substrate. The preamorphization with Sb avoids the B channeling and increases the n-type doping in the junction region, thus confining the depth of the p layer. Furthermore, both the transient enhanced diffusion, being the B implanted in a preamorphized layer, and the standard diffusion, due to the pairing between donors and acceptors, are strongly reduced. This procedure allows us to obtain very shallow junctions even after annealings with relatively high thermal budget, like 800 °C/8 h or 900 °C/1 h, or 950 °C/10 min or 1000 °C/60 s. We verified that dopant diffusion is strongly affected by a direct donor-acceptor interaction, and that good prediction of the experimental results can only be obtained using a simulation code which takes into account the formation of neutral, near immobile, Sb-B pairs.

  1. Landscape Evolution and the Reincarnation of the Residual CO2 Ice Cap of Mars

    Science.gov (United States)

    Byrne, S.; Zuber, M.

    2006-12-01

    Observations of the southern residual CO2 cap of Mars reveal a wide range of landforms including flat-floored quasi-circular pits with steep walls (dubbed Swiss-cheese features). Interannual comparisons show that these depressions are expanding laterally at rates of ~2m/yr to ~4m/yr, prompting suggestions of climate change. The residual CO2 ice cap is up to 10m thick and underlain by an involatile basement, it also contains layers roughly 2m thick representing different accumulation episodes in the recent past. Changes in the appearance of the residual ice between the Mariner 9 and Viking missions indicate that the top-most layer was deposited in that time-frame, soon after the global dust storm of 1971. The spatial density of the Swiss-cheese features, and the rate at which they expand, mean that it is unlikely that any part of the residual ice cap is older than a few centuries. Given this, we may ask: how can there be a residual cap present today for us to observe? To answer this and other questions we have developed a model to examine the evolution of a CO2 ice landscape. This model reproduces the morphologies and expansion rates seen in the actual residual CO2 ice cap. Our model results indicate that the fate of CO2 ice surfaces is controlled by their surface roughness. Surface roughness always increases with time, which results in an unstable situation. When the surface roughness exceeds a critical point small pits can begin to develop. The walls of these pits rapidly steepen and begin retreating which enlarges and deepens the pit. This situation always occurs even if the surface of the CO2 slab has a high enough albedo to have a net mass gain each year. Once these pits begin expanding they quickly erode the entire ice slab. When the underlying non-CO2 material is exposed, it will not frost over again if Mars were to repeat like clockwork every year. We conclude that interannual climatic variability is actually a requirement for the continued existence of a

  2. 75 FR 49527 - Caps Visual Communications, LLC; Black Dot Group; Formerly Known as Caps Group Acquisition, LLC...

    Science.gov (United States)

    2010-08-13

    ... DEPARTMENT OF LABOR Employment and Training Administration [TA-W-74,195] Caps Visual Communications, LLC; Black Dot Group; Formerly Known as Caps Group Acquisition, LLC Chicago, IL; Amended... of Caps Visual Communications, LLC, Black Dot Group, formerly known as Caps Group Acquisition, LLC...

  3. Solar energy converters based on multi-junction photoemission solar cells.

    Science.gov (United States)

    Tereshchenko, O E; Golyashov, V A; Rodionov, A A; Chistokhin, I B; Kislykh, N V; Mironov, A V; Aksenov, V V

    2017-11-23

    Multi-junction solar cells with multiple p-n junctions made of different semiconductor materials have multiple bandgaps that allow reducing the relaxation energy loss and substantially increase the power-conversion efficiency. The choice of materials for each sub-cell is very limited due to the difficulties in extracting the current between the layers caused by the requirements for lattice- and current-matching. We propose a new vacuum multi-junction solar cell with multiple p-n junctions separated by vacuum gaps that allow using different semiconductor materials as cathode and anode, both activated to the state of effective negative electron affinity (NEA). In this work, the compact proximity focused vacuum tube with the GaAs(Cs,O) photocathode and AlGaAs/GaAs-(Cs,O) anode with GaAs quantum wells (QWs) is used as a prototype of a vacuum single-junction solar cell. The photodiode with the p-AlGaAs/GaAs anode showed the spectral power-conversion efficiency of about 1% at V bias  = 0 in transmission and reflection modes, while, at V bias  = 0.5 V, the efficiency increased up to 10%. In terms of energy conservation, we found the condition at which the energy cathode-to-anode transition was close to 1. Considering only the energy conservation part, the NEA-cell power-conversion efficiency can rich a quantum yield value which is measured up to more than 50%.

  4. The critical current density of an SNS Josephson-junction in high magnetic fields

    International Nuclear Information System (INIS)

    Carty, George J; Hampshire, Damian P

    2013-01-01

    Although the functional form of the critical current density (J c ) of superconducting–normal–superconducting (SNS) Josephson-junctions (J-Js) has long been known in the very low field limit (e.g. the sinc function), includes the local properties of the junction and has been confirmed experimentally in many systems, there have been no such general solutions available for high fields. Here, we derive general analytic equations for J c in zero field and in high fields across SNS J-Js for arbitrary resistivity of the superconductor and the normal layer which are consistent with the literature results available in limiting cases. We confirm the validity of the approach using both computational solutions to time-dependent Ginzburg–Landau (TDGL) theory applied to SNS junctions and experimental J c data for an SNS PbBi–Cd–PbBi junction. We suggest that since SNS junctions can be considered the basic building blocks for the description of the grain boundaries of polycrystalline materials because they both provide flux-flow channels, this work may provide a mathematical framework for high J c technological polycrystalline superconductors in high magnetic fields. (paper)

  5. Superconductor-semiconductor-superconductor planar junctions of aluminium on DELTA-doped gallium arsenide

    DEFF Research Database (Denmark)

    Taboryski, Rafael Jozef; Clausen, Thomas; Kutchinsky, jonatan

    1997-01-01

    We have fabricated and characterized planar superconductor-semiconductor-superconductor (S-Sm-S) junctions with a high quality (i.e. low barrier) interface between an n++ modulation doped conduction layer in MBE grown GaAs and in situ deposited Al electrodes. The Schottky barrier at the S...

  6. Sound amplification at a rectangular T-junction with merging mean flows

    Science.gov (United States)

    Du, Lin; Holmberg, Andreas; Karlsson, Mikael; Åbom, Mats

    2016-04-01

    This paper reports a numerical study on the aeroacoustic response of a rectangular T-junction with merging mean flows. The primary motivation of the work is to explain the high sound amplification, recently seen experimentally, when introducing a small merging bias flow. The acoustic results are found solving the compressible Linearized Navier-Stokes Equations (LNSEs) in the frequency domain, where the base flow is first obtained using RANS with a k-ε turbulence model. The model predicts the measured scattering data well, including the amplitude and Strouhal number for the peak amplification, if the effect of eddy viscosity damping is included. It is found that the base flow changes significantly with the presence of a small bias flow. Compared to pure grazing flow a strong unstable shear layer is created in the downstream main duct starting from the T-junction trailing edge. This means that the main region of vortex-sound interaction is moved away from the junction to a downstream region much larger than the junction width. To analyze the sound amplification in this region Howe's energy corollary and the growth of acoustic density are used.

  7. Macrophage Capping Protein CapG Is a Putative Oncogene Involved in Migration and Invasiveness in Ovarian Carcinoma

    Directory of Open Access Journals (Sweden)

    J. Glaser

    2014-01-01

    Full Text Available The actin binding protein CapG modulates cell motility by interacting with the cytoskeleton. CapG is associated with tumor progression in different nongynecologic tumor entities and overexpression in breast cancer cell lines correlates with a more invasive phenotype in vitro. Here, we report a significant CapG overexpression in 18/47 (38% of ovarian carcinomas (OC analyzed by qRealTime-PCR analyses. Functional analyses in OC cell lines through siRNA mediated CapG knockdown and CapG overexpression showed CapG-dependent cell migration and invasiveness. A single nucleotide polymorphism rs6886 inside the CapG gene was identified, affecting a CapG phosphorylation site and thus potentially modifying CapG function. The minor allele frequency (MAF of SNP rs6886 (c.1004A/G was higher and the homozygous (A/A, His335 genotype was significantly more prevalent in patients with fallopian tube carcinomas (50% as in controls (10%. With OC being one of the most lethal cancer diseases, the detection of novel biomarkers such as CapG could reveal new diagnostic and therapeutic targets. Moreover, in-depth analyses of SNP rs6886 related to FTC and OC will contribute to a better understanding of carcinogenesis and progression of OC.

  8. Electrical performance of ATLAS-SCT KB end-cap modules

    CERN Document Server

    D'Onofrio, M; Donegà, M; Ferrère, D; Mangin-Brinet, M; Mikulec, B; Weber, M; Ikegami, Y; Kohriki, T; Kondo, T; Terada, S; Unno, Y; Pernegger, H; Roe, S; Wallny, R; Moorhead, G F; Taylor, G; García, J E; Gonzáles, S; Vos, M A; Toczek, B

    2003-01-01

    The Semiconductor Tracker (SCT) is one of the ATLAS Inner Detector elements which aims to track charged particles in the ATLAS experiment. It consists of four cylindrical layers (barrels) of silicon strip detectors, with nine disks in each of the forward and backward directions. Carbon fibre structures will support a total of 4088 modules, which are the basic functional sub-unit of the SCT. Each module consists of single sided silicon micro-strip detectors glued back to back with a 40 mrad stereo-angle, and attached to a hybrid. The scope of this document is to present the electrical performances of prototype end-cap modules proposed for the ATLAS-SCT, as an alternative to the baseline. The layout of these modules is based on the implementation of the barrel module hybrid in the end-cap geometry. A complete set of electrical measurements is summarized in this paper, including irradiated module tests and beam tests.

  9. Ballistic Graphene Josephson Junctions from the Short to the Long Junction Regimes.

    Science.gov (United States)

    Borzenets, I V; Amet, F; Ke, C T; Draelos, A W; Wei, M T; Seredinski, A; Watanabe, K; Taniguchi, T; Bomze, Y; Yamamoto, M; Tarucha, S; Finkelstein, G

    2016-12-02

    We investigate the critical current I_{C} of ballistic Josephson junctions made of encapsulated graphene-boron-nitride heterostructures. We observe a crossover from the short to the long junction regimes as the length of the device increases. In long ballistic junctions, I_{C} is found to scale as ∝exp(-k_{B}T/δE). The extracted energies δE are independent of the carrier density and proportional to the level spacing of the ballistic cavity. As T→0 the critical current of a long (or short) junction saturates at a level determined by the product of δE (or Δ) and the number of the junction's transversal modes.

  10. Equivalent Josephson junctions

    International Nuclear Information System (INIS)

    Boyadzhiev, T.L.; ); Semerdzhieva, E.G.; Shukrinov, Yu.M.; Fiziko-Tekhnicheskij Inst., Dushanbe

    2008-01-01

    The magnetic field dependences of critical current are numerically constructed for a long Josephson junction with a shunt- or resistor-type microscopic inhomogeneities and compared to the critical curve of a junction with exponentially varying width. The numerical results show that it is possible to replace the distributed inhomogeneity of a long Josephson junction by an inhomogeneity localized at one of its ends, which has certain technological advantages. It is also shown that the critical curves of junctions with exponentially varying width and inhomogeneities localized at the ends are unaffected by the mixed fluxon-antifluxon distributions of the magnetic flux [ru

  11. Suppression of interfacial voids formation during silane (SiH4)-based silicon oxide bonding with a thin silicon nitride capping layer

    Science.gov (United States)

    Lee, Kwang Hong; Bao, Shuyu; Wang, Yue; Fitzgerald, Eugene A.; Seng Tan, Chuan

    2018-01-01

    The material properties and bonding behavior of silane-based silicon oxide layers deposited by plasma-enhanced chemical vapor deposition were investigated. Fourier transform infrared spectroscopy was employed to determine the chemical composition of the silicon oxide films. The incorporation of hydroxyl (-OH) groups and moisture absorption demonstrates a strong correlation with the storage duration for both as-deposited and annealed silicon oxide films. It is observed that moisture absorption is prevalent in the silane-based silicon oxide film due to its porous nature. The incorporation of -OH groups and moisture absorption in the silicon oxide films increase with the storage time (even in clean-room environments) for both as-deposited and annealed silicon oxide films. Due to silanol condensation and silicon oxidation reactions that take place at the bonding interface and in the bulk silicon, hydrogen (a byproduct of these reactions) is released and diffused towards the bonding interface. The trapped hydrogen forms voids over time. Additionally, the absorbed moisture could evaporate during the post-bond annealing of the bonded wafer pair. As a consequence, defects, such as voids, form at the bonding interface. To address the problem, a thin silicon nitride capping film was deposited on the silicon oxide layer before bonding to serve as a diffusion barrier to prevent moisture absorption and incorporation of -OH groups from the ambient. This process results in defect-free bonded wafers.

  12. Alternating current loss reduction for rectangular busbars by covering their edges with low permeable magnetic caps

    Energy Technology Data Exchange (ETDEWEB)

    Sasada, Ichiro, E-mail: sasada@ence.kyushu-u.ac.jp [Applied Science for Electronics and Materials, Kyushu University, Kasuga (Japan)

    2014-05-07

    A method to reduce ac conductive losses in a thin rectangular busbar made of copper is presented. The method is based on a technique, which makes the distribution of the ac current in the cross section of a busbar flatter. Edges of a thin busbar are covered with low permeability magnetic thin layers as caps. The magnetic cap makes the impedance experienced by the current flowing near the edge comparatively larger so that currents cannot get crowded near the edges of a busbar. This method is numerically verified.

  13. Resistive switching properties and low resistance state relaxation in Al/Pr0.7Ca0.3MnO3/Pt junctions

    International Nuclear Information System (INIS)

    Li Songlin; Liao, Z L; Li, J; Gang, J L; Zheng, D N

    2009-01-01

    Metal/insulator/metal structures composed of active Al top electrodes (TEs) and oxygen-deficient Pr 0.7 Ca 0.3 MnO 3 (PCMO) insulator layers are prepared on platinized silicon substrates. The junction resistance exhibits an obvious negative differential resistance region in the first bias sweep and an irreversible increase from 2 to 100 MΩ in repeated ±4 V sweeps. The pulse duration needed to fully switch the junctions is found to be on the order of milliseconds. When 100-500 μs negative pulses are used, the junctions show an incomplete switch to the low resistance state (LRS) which exhibits fluctuating resistances. The fluctuation in the LRS is suppressed and the high-to-low resistance ratio increases gradually when the negative pulse duration is increased from 100 to 500 μs. For relaxed junctions, pulse switching experiments reveal that the LRS undergoes a dynamically stable process at the beginning and then reaches a lower and metastable resistance value. Resistance retention tests also indicate that the high resistance state is very stable, while the metastable LRS gradually relaxes to higher resistance values. The experimental results are discussed with the formation and dissociation of an interfacial AlO x layer at the interface between Al TEs and PCMO layers.

  14. Junction and circuit fabrication

    International Nuclear Information System (INIS)

    Jackel, L.D.

    1980-01-01

    Great strides have been made in Josephson junction fabrication in the four years since the first IC SQUID meeting. Advances in lithography have allowed the production of devices with planar dimensions as small as a few hundred angstroms. Improved technology has provided ultra-high sensitivity SQUIDS, high-efficiency low-noise mixers, and complex integrated circuits. This review highlights some of the new fabrication procedures. The review consists of three parts. Part 1 is a short summary of the requirements on junctions for various applications. Part 2 reviews intergrated circuit fabrication, including tunnel junction logic circuits made at IBM and Bell Labs, and microbridge radiation sources made at SUNY at Stony Brook. Part 3 describes new junction fabrication techniques, the major emphasis of this review. This part includes a discussion of small oxide-barrier tunnel junctions, semiconductor barrier junctions, and microbridge junctions. Part 3 concludes by considering very fine lithography and limitations to miniaturization. (orig.)

  15. Eddy intrusion of hot plasma into the polar cap and formation of polar-cap arcs

    International Nuclear Information System (INIS)

    Chiu, Y.T.; Gorney, D.J.

    1983-01-01

    We present plasma and electric field data obtained by the S3-3 satellite over the polar caps. We demonstrate that: (1) plasma signatures in the polar cap arc formation region near 5000 km altitude show clear intrusions of plasma sheet (approx.keV) and magneto sheath (approx.100 eV) plasma into a background of low-energy polar cap plasma; (2) the combined plasma and electric field signatures (electron inverted-V, ion beam and delxE<0) are exactly the same as in the evening discrete arc. We interpret this equivalence of polar cap and evening discrete arc signatures as indication that their formation processes are identical. The spatial structures of polar cap electric fields and the associated plasma signatures are consistent with the hypothesis that plasma intrusion into the polar cap takes the form of multiple cellular eddies. This hypothesis provides a unifying view of arc formation and arc configurations

  16. North Polar Cap

    Science.gov (United States)

    2004-01-01

    [figure removed for brevity, see original site] This week we will be looking at five examples of laminar wind flow on the north polar cap. On Earth, gravity-driven south polar cap winds are termed 'catabatic' winds. Catabatic winds begin over the smooth expanse of the cap interior due to temperature differences between the atmosphere and the surface. Once begun, the winds sweep outward along the surface of the polar cap toward the sea. As the polar surface slopes down toward sealevel, the wind speeds increase. Catabatic wind speeds in the Antartic can reach several hundreds of miles per hour. In the images of the Martian north polar cap we can see these same type of winds. Notice the streamers of dust moving downslope over the darker trough sides, these streamers show the laminar flow regime coming off the cap. Within the trough we see turbulent clouds of dust, kicked up at the trough base as the winds slow down and enter a chaotic flow regime. The horizontal lines in these images are due to framelet overlap and lighting conditions over the bright polar cap. Image information: VIS instrument. Latitude 86.5, Longitude 64.5 East (295.5 West). 40 meter/pixel resolution. Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time. NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen

  17. Comparing XPS on bare and capped ZrN films grown by plasma enhanced ALD: Effect of ambient oxidation

    Science.gov (United States)

    Muneshwar, Triratna; Cadien, Ken

    2018-03-01

    In this article we compare x-ray photoelectron spectroscopy (XPS) measurements on bare- and capped- zirconium nitride (ZrN) films to investigate the effect of ambient sample oxidation on the detected bound O in the form of oxide ZrO2 and/or oxynitride ZrOxNy. ZrN films in both bare- and Al2O3/AlN capped- XPS samples were grown by plasma-enhanced atomic layer deposition (PEALD) technique using tetrakis dimethylamino zirconium (TDMAZr) precursor, forming gas (5% H2, rest N2) inductively coupled plasma (ICP), and as received research grade process gases under identical process conditions. Capped samples were prepared by depositing 1 nm thick PEALD AlN on ZrN, followed by additional deposition of 1 nm thick ALD Al2O3, without venting of ALD reactor. On bare ZrN sample at room temperature, spectroscopic ellipsometry (SE) measurements with increasing ambient exposure times (texp) showed a self-limiting surface oxidation with the oxide thickness (dox) approaching 3.7 ± 0.02 nm for texp > 120 min. In XPS data measured prior to sample sputtering (tsput = 0), ZrO2 and ZrOxNy were detected in bare- samples, whereas only ZrN and Al2O3/AlN from capping layer were detected in capped- samples. For bare-ZrN samples, appearance of ZrO2 and ZrOxNy up to sputter depth (dsput) of 15 nm in depth-profile XPS data is in contradiction with measured dox = 3.7 nm, but explained from sputtering induced atomic inter-diffusion within analyzed sample. Appearance of artifacts in the XPS spectra from moderately sputtered (dsput = 0.2 nm and 0.4 nm) capped-ZrN sample, provides an evidence to ion-bombardment induced modifications within analyzed sample.

  18. Effect of nitrogen plasma treatment at the Al2O3/Fe interface in magnetic tunnel junction

    International Nuclear Information System (INIS)

    Shim, Heejae; Cho, B. K.; Kim, Jin-Tae; Kim, T. W.; Park, W. J.

    2003-01-01

    We investigated the effects of nitrogen plasma treatment on top surface of Fe pinned layer for short times (t ex =0, 10, 30, and 60 s) in magnetic tunnel junctions and annealing of the junctions. The nitrogen-treated junctions show much reduced magnetoresistance (MR) ratio and significantly lower resistance-area (RA) products compared with the untreated junction, i.e., MR≅3%, RA≅30 kΩ μm 2 for t ex =10 s and MR≅10%, RA≅60 kΩ μm 2 for t ex =0 s. The untreated junction showed enhanced MR ratio up to about 17% and higher RA (≅70 kΩ μm2) upon thermal annealing at T a =230 deg. C, as expected. For the nitrogen-treated junctions, while the MR ratio also increases up to about 16% upon annealing at T a =230 deg. C, which is almost the same value as the one of the optimal reference junction, the RA values of the annealed junctions still keep as low as their initial values. We believe that the redistribution of nitrogen during the annealing process is responsible for the change of properties of nitrogen-treated junction. The bias dependence of MR and the estimation of effective barrier height and thickness are studied and found to be consistent with the observed changes in nitrogen-treated junctions

  19. Bi-layer sandwich film for antibacterial catheters.

    Science.gov (United States)

    Franz, Gerhard; Schamberger, Florian; Zare, Hamideh Heidari; Bröskamp, Sara Felicitas; Jocham, Dieter

    2017-01-01

    Background: Approximately one quarter of all nosocomial infections can be attributed to the urinary tract. The infections are supposed to be mainly caused by implantations of urethral catheters and stents. A new catheter design is introduced with the aim to lower the high number of nosocomial urethral infections. In order to avoid limitations to use, the design is first applied to conventional commercially available balloon catheters. Results: The main feature of the design is a sandwich layer on both sides of the catheter wall, which is composed of a fragmented base layer of silver capped by a thin film of poly( p -xylylene). This top layer is mainly designed to release a controlled amount of Ag + ions, which is bactericidal, but not toxic to humans. Simultaneously, the lifetime is prolonged to at least one year. The base layer is electrolessly deposited applying Tollens' reagens, the cap layer is deposited by using chemical vapor deposition. Conclusion: The three main problems of this process, electroless deposition of a fragmented silver film on the surface of an electrically insulating organic polymer, irreproducible evaporation during heating of the precursor, and exponential decrease of the layer thickness along the capillary, have been solved trough the application of a simple electrochemical reaction and two standard principles of physics: Papin's pot and the principle of Le Chatelier.

  20. Bi-layer sandwich film for antibacterial catheters

    Directory of Open Access Journals (Sweden)

    Gerhard Franz

    2017-09-01

    Full Text Available Background: Approximately one quarter of all nosocomial infections can be attributed to the urinary tract. The infections are supposed to be mainly caused by implantations of urethral catheters and stents. A new catheter design is introduced with the aim to lower the high number of nosocomial urethral infections. In order to avoid limitations to use, the design is first applied to conventional commercially available balloon catheters.Results: The main feature of the design is a sandwich layer on both sides of the catheter wall, which is composed of a fragmented base layer of silver capped by a thin film of poly(p-xylylene. This top layer is mainly designed to release a controlled amount of Ag+ ions, which is bactericidal, but not toxic to humans. Simultaneously, the lifetime is prolonged to at least one year. The base layer is electrolessly deposited applying Tollens’ reagens, the cap layer is deposited by using chemical vapor deposition.Conclusion: The three main problems of this process, electroless deposition of a fragmented silver film on the surface of an electrically insulating organic polymer, irreproducible evaporation during heating of the precursor, and exponential decrease of the layer thickness along the capillary, have been solved trough the application of a simple electrochemical reaction and two standard principles of physics: Papin’s pot and the principle of Le Chatelier.

  1. Designing Smart Charter School Caps

    Science.gov (United States)

    Dillon, Erin

    2010-01-01

    In 2007, Andrew J. Rotherham proposed a new approach to the contentious issue of charter school caps, the statutory limits on charter school growth in place in several states. Rotherham's proposal, termed "smart charter school caps," called for quality sensitive caps that allow the expansion of high-performing charter schools while also…

  2. Control of the graphene growth rate on capped SiC surface under strong Si confinement

    International Nuclear Information System (INIS)

    Çelebi, C.; Yanık, C.; Demirkol, A.G.; Kaya, İsmet İ.

    2013-01-01

    Highlights: ► Graphene is grown on capped SiC surface with well defined cavity size. ► Graphene growth rate linearly increases with the cavity height. ► Graphene uniformity is reduced with thickness. - Abstract: The effect of the degree of Si confinement on the thickness and morphology of UHV grown epitaxial graphene on (0 0 0 −1) SiC is investigated by using atomic force microscopy and Raman spectroscopy measurements. Prior to the graphene growth process, the C-face surface of a SiC substrate is capped by another SiC comprising three cavities on its Si-rich surface with depths varying from 0.5 to 2 microns. The Si atoms, thermally decomposed from the sample surface during high temperature annealing of the SiC cap /SiC sample stack, are separately trapped inside these individual cavities at the sample/cap interface. Our analyses show that the growth rate linearly increases with the cavity height. It was also found that stronger Si confinement yields more uniform graphene layers.

  3. Bottom-up, Robust Graphene Ribbon Electronics in All-Carbon Molecular Junctions.

    Science.gov (United States)

    Supur, Mustafa; Van Dyck, Colin; Bergren, Adam J; McCreery, Richard L

    2018-02-21

    Large-area molecular electronic junctions consisting of 5-carbon wide graphene ribbons (GR) with lengths of 2-12 nm between carbon electrodes were fabricated by electrochemical reduction of diazotized 1,8-diaminonaphthalene. Their conductance greatly exceeds that observed for other molecular junctions of similar thicknesses, by a factor of >1 × 10 4 compared to polyphenylenes and >1 × 10 7 compared to alkane chains. The remarkable increase of conductance of the GR nanolayer results from (i) uninterrupted planarity of fused-arene structure affording extensive π-electron delocalization and (ii) enhanced electronic coupling of molecular layer with the carbon bottom contact by two-point covalent bonding, in agreement with DFT-based simulations.

  4. Niobium nitride Josephson Junction studies and devices. Final report, 1 Jul-31 Dec 90

    Energy Technology Data Exchange (ETDEWEB)

    Sinclair, W.R.

    1991-02-26

    We suggest here a novel class of molecules for use in making monolayer thick insulating barriers for Josephson junctions employing all NbN conductors. For the experiments discussed here the smallest member of that class has been chosen. From sessile drop experiments we determine that this compound indeed reacts with NbN as postulated. Measurements of the electrical properties are less definitive. In no couple is shorting noted but the superconductivity of the bottom layer is eliminated near the junction presumably due to diffusion of the reactant molecule into the film.

  5. Linear nanometric tunnel junction sensors with exchange pinned sensing layer

    International Nuclear Information System (INIS)

    Leitao, D. C.; Silva, A. V.; Cardoso, S.; Ferreira, R.; Paz, E.; Deepack, F. L.; Freitas, P. P.

    2014-01-01

    Highly sensitive nanosensors with high spatial resolution provide the necessary features for high accuracy imaging of isolated magnetic nanoparticles. In this work, we report the fabrication and characterization of MgO-barrier magnetic tunnel junction nanosensors, with two exchange-pinned electrodes. The perpendicular magnetization configuration for field sensing is set using a two-step annealing process, where the second annealing temperature was optimized to yield patterned sensors responses with improved linearity. The optimized circular nanosensors show sensitivities up to 0.1%/Oe, larger than previously reported for nanometric sensors and comparable to micrometric spin-valves. Our strategy avoids the use of external permanent biasing or demagnetizing fields (large for smaller structures) to achieve a linear response, enabling the control of the linear operation range using only the stack and thus providing a small footprint device

  6. Linear nanometric tunnel junction sensors with exchange pinned sensing layer

    Energy Technology Data Exchange (ETDEWEB)

    Leitao, D. C., E-mail: dleitao@inesc-mn.pt; Silva, A. V.; Cardoso, S. [INESC-MN and IN, Rua Alves Redol 9, 1000-029 Lisboa (Portugal); Instituto Superior Técnico (IST), Universidade de Lisboa, Av. Rovisco Pais, 1000-029 Lisboa (Portugal); Ferreira, R.; Paz, E.; Deepack, F. L. [INL, Av. Mestre Jose Veiga, 4715-31 Braga (Portugal); Freitas, P. P. [INESC-MN and IN, Rua Alves Redol 9, 1000-029 Lisboa (Portugal); INL, Av. Mestre Jose Veiga, 4715-31 Braga (Portugal)

    2014-05-07

    Highly sensitive nanosensors with high spatial resolution provide the necessary features for high accuracy imaging of isolated magnetic nanoparticles. In this work, we report the fabrication and characterization of MgO-barrier magnetic tunnel junction nanosensors, with two exchange-pinned electrodes. The perpendicular magnetization configuration for field sensing is set using a two-step annealing process, where the second annealing temperature was optimized to yield patterned sensors responses with improved linearity. The optimized circular nanosensors show sensitivities up to 0.1%/Oe, larger than previously reported for nanometric sensors and comparable to micrometric spin-valves. Our strategy avoids the use of external permanent biasing or demagnetizing fields (large for smaller structures) to achieve a linear response, enabling the control of the linear operation range using only the stack and thus providing a small footprint device.

  7. Estimation of the polar cap dimensions from photometric data

    International Nuclear Information System (INIS)

    Besprozvannaya, A.S.; Vorob'ev, V.G.; Ruga, G.N.; Shchuka, T.I.; Yagodkina, O.I.

    1992-01-01

    The moment of crossing near-polar boundary of auroral oval by the is. Heis station (Φ L =74,4 deg) according to simultaneous optical and ionospheric observations during the period, dated 25.12.83-10.01.84, is investigated. It is shown that time of the station appearance in the polar cap area, characterized by decrease in luminescence intensity of the basic auroral emissions by the background one and by appearance in the UT afternoon hours of flat layers, coincide. Correlation coefficient - r=0.95

  8. A tight-binding model of the transmission probability through a molecular junction; a single molecule vs. a molecular layer

    International Nuclear Information System (INIS)

    Landau, A.; Nitzan, A.

    2006-01-01

    Full Text: Molecular electronics, one of the major fields of the current effort in nano-science, may be de ed as the study of electronic behaviors, devices and applications that depend on the properties of matter at the molecular scale. If the miniaturization trend of microelectronic devices is to continue, elements such as transistors and contacts will soon shrink to single molecules. The promise of these new technological breakthroughs has been major driving force in this ld. Moreover, the consideration of molecular systems as electronic devices has raised new fundamental questions. In particular, while traditional quantum chemistry deals with electronically closed systems, we now face problems involving molecular systems that are open to their electronic environment, moreover, function in far from equilibrium situations. A generic molecular junction is made of two electrodes connected by a molecular spacer that takes the form of a molecular chain of varying length or a molecular layer of varying thickness. We use a simple nearest-neighbors tight-biding model with the non-equilibrium Green's function (NEGF) method to investigate and compare between a self-assembled monolayer (SAM), finite molecular layer (FML), and single molecule (SM) chemisorption to a surface of a metal substrate. In addition, we examine the difference in the transmission probability through a SAM, FML and SM sandwiched between two metallic electrodes. Dramatic differences are observed between the SM, FML and SAM density of electronic states and transmission functions. In addition, we analyze the effects of changing different physical parameters such as molecule-substrate interaction, molecule-molecule interactions, etc; interesting effects that pertain to the conduction properties of single molecules and molecular layers are observed. Intriguing results are attained when we investigate the commensurability of the SAM with the metallic surface

  9. Creating and maintaining a gas cap in tar sands formations

    Science.gov (United States)

    Vinegar, Harold J.; Karanikas, John Michael; Dinkoruk, Deniz Sumnu; Wellington, Scott Lee

    2010-03-16

    Methods for treating a tar sands formation are disclosed herein. Methods for treating a tar sands formation may include providing heat to at least part of a hydrocarbon layer in the formation from one or more heaters located in the formation. Pressure may be allowed to increase in an upper portion of the formation to provide a gas cap in the upper portion. At least some hydrocarbons are produced from a lower portion of the formation.

  10. Studies of proximity-effect and tunneling in YBCO/metal layered films

    Energy Technology Data Exchange (ETDEWEB)

    Greene, L.H.; Barner, J.B.; Feldmann, W.L.; Farrow, L.A.; Miceli, P.F.; Ramesh, R.; Wilkens, B.J.; Bagley, B.G.; Tarascon, J.M.; Wernick, J.H. (Bellcore, Red Bank, NJ (USA)); Giroud, M. (CRTBT-CNRS, Grenoble (France)); Rowell, J.M. (Conductus, Sunnyvale, CA (USA))

    1989-12-01

    The short coherence length of the high-Tc superconductors, coupled with their tendency to form non-superconducting surface layers, accounts for the difficulty in achieving good tunnel junctions. A proximity layer of a longer coherence length normal metal (N) is expected to ''draw out'' Cooper pairs. Our goal is to fabricate reproducible, planar tunnel junctions of SNIS layered structures for proximity tunneling spectroscopy. Such structures of YBCO/N/I/Pb and SNS structures of YBCO/N/Pb indicate that the normal metal produces a low resistance contact to the YBCO surface with a supercurrent observed in the SNS. The insulating barrier in the SNIS is reproducible, insulating and continuous: A sharp Pb gap and phonons from the counter-electrode are routinely observed. (orig.).

  11. Studies of proximity-effect and tunneling in YBCO/metal layered films

    International Nuclear Information System (INIS)

    Greene, L.H.; Barner, J.B.; Feldmann, W.L.; Farrow, L.A.; Miceli, P.F.; Ramesh, R.; Wilkens, B.J.; Bagley, B.G.; Tarascon, J.M.; Wernick, J.H.; Giroud, M.; Rowell, J.M.

    1989-01-01

    The short coherence length of the high-T c superconductors, coupled with their tendency to form non-superconducting surface layers, accounts for the difficulty in achieving good tunnel junctions. A proximity layer of a longer coherence length normal metal (N) is expected to draw out Cooper pairs. The authors' goal is to fabricate reproducible, planar tunnel junctions of SNIS layered structures for proximity tunneling spectroscopy. They discuss how such structures of YBCO/N/I/Pb and SNS structures of YBCO/N/Pb indicate that the normal metal produces a low resistance contact to the YBCO surface with a supercurrent observed in the SNS. The insulating barrier in the SNIS is reproducible, insulating and continuous: A sharp Pb gap and phonons from the counter-electrode are routinely observed

  12. NATURE MANAGEMENT, LANDSCAPE AND THE CAP

    OpenAIRE

    Brouwer, Floor M.; Godeschalk, Frans E.

    2004-01-01

    The integration of nature management, landscape and environmental concerns into the Common Agricultural Policy (CAP) has gained momentum with the CAP reforms adopted in June 2003. The report explores instruments and approaches that contribute to the inte-gration of nature conservation and landscape concerns into the CAP. A broader use of the CAP instruments might help to achieve nature types in the Netherlands.

  13. Propagation of acoustoelectric waves in a layered cylinder with conducting layers

    International Nuclear Information System (INIS)

    Shul'ga, N.A.; Medvedev, K.V.

    1995-01-01

    In multilayer acoustoelectric waveguides, the piezoelectric layers may be separated by metallic conducting layers. Propagation of shear waves within such structures of a regular type with planar dividing boundaries for the properties was studied. In this paper, we investigate acoustoelectric waves in multilayer piezoelectric structures containing conducting layers, with cylindrical dividing surfaces for the properties. The method for solving the boundary-value problem is a generalization of the approach outlined. We should turn our attention to the fact that the order of the dispersion determinant in these problems depends on the number of piezoelectric-conductor junctions. When the curvature of the cylindrical surface is equal to zero, the constructed solution goes to the solution of the problem for a planar waveguide

  14. Search for a correlation between Josephson junctions and gravity

    International Nuclear Information System (INIS)

    Robertson, Glen A.

    2000-01-01

    Woodward's transient mass shift (TMS) formula has commonality with Modanese's anomalous coupling theory (ACT) and Woodward's capacitor experiment has commonality with Podkletnov's layered superconductor disk experiment. The TMS formula derives a mass fluctuation from a time-varying energy density. The ACT suggests that the essential ingredient for the gravity phenomenon is the presence of strong variations or fluctuations of the Cooper pair density (a time-varying energy density). Woodward's experiment used a small array of capacitors whose energy density was varied by an applied 11 kHz signal. Podkletnov's superconductor disk contained many Josephson junctions (small capacitive like interfaces), which were radiated with a 3-4 MHz signal. This paper formulates a TMS for superconductor Josephson junctions. The equation was compared to the 2% mass change claimed by Podkletnov in his gravity shielding experiments. The TMS is calculated to be 2% for a 2-kg superconductor with an induced total power to the multiple Josephson junctions of about 3.3-watts. A percent mass change equation is then formulated based on the Cavendish balance equation where the superconductor TMS is used for the delta change in mass. An experiment using a Cavendish balance is then discussed

  15. CAPS Simulation Environment Development

    Science.gov (United States)

    Murphy, Douglas G.; Hoffman, James A.

    2005-01-01

    The final design for an effective Comet/Asteroid Protection System (CAPS) will likely come after a number of competing designs have been simulated and evaluated. Because of the large number of design parameters involved in a system capable of detecting an object, accurately determining its orbit, and diverting the impact threat, a comprehensive simulation environment will be an extremely valuable tool for the CAPS designers. A successful simulation/design tool will aid the user in identifying the critical parameters in the system and eventually allow for automatic optimization of the design once the relationships of the key parameters are understood. A CAPS configuration will consist of space-based detectors whose purpose is to scan the celestial sphere in search of objects likely to make a close approach to Earth and to determine with the greatest possible accuracy the orbits of those objects. Other components of a CAPS configuration may include systems for modifying the orbits of approaching objects, either for the purpose of preventing a collision or for positioning the object into an orbit where it can be studied or used as a mineral resource. The Synergistic Engineering Environment (SEE) is a space-systems design, evaluation, and visualization software tool being leveraged to simulate these aspects of the CAPS study. The long-term goal of the SEE is to provide capabilities to allow the user to build and compare various CAPS designs by running end-to-end simulations that encompass the scanning phase, the orbit determination phase, and the orbit modification phase of a given scenario. Herein, a brief description of the expected simulation phases is provided, the current status and available features of the SEE software system is reported, and examples are shown of how the system is used to build and evaluate a CAPS detection design. Conclusions and the roadmap for future development of the SEE are also presented.

  16. Magnetic Reversal and Thermal Stability of CoFeB Perpendicular Magnetic Tunnel Junction Arrays Patterned by Block Copolymer Lithography

    KAUST Repository

    Tu, Kun-Hua; Fernandez Martin, Eduardo; almasi, hamid; Wang, Weigang; Navas Otero, David; Ntetsikas, Konstantinos; Moschovas, Dimitrios; Avgeropoulos, Apostolos; Ross, Caroline A

    2018-01-01

    Dense arrays of pillars, with diameters of 64 and 25 nm, were made from a perpendicular CoFeB magnetic tunnel junction thin film stack using block copolymer lithography. While the soft layer and hard layer in the 64 nm pillars reverse at different

  17. The cervical cap (image)

    Science.gov (United States)

    The cervical cap is a flexible rubber cup-like device that is filled with spermicide and self-inserted over the cervix ... left in place several hours after intercourse. The cap is a prescribed device fitted by a health ...

  18. Triple-junction thin-film silicon solar cell fabricated on periodically textured substrate with a stabilized efficiency of 13.6%

    Science.gov (United States)

    Sai, Hitoshi; Matsui, Takuya; Koida, Takashi; Matsubara, Koji; Kondo, Michio; Sugiyama, Shuichiro; Katayama, Hirotaka; Takeuchi, Yoshiaki; Yoshida, Isao

    2015-05-01

    We report a high-efficiency triple-junction thin-film silicon solar cell fabricated with the so-called substrate configuration. It was verified whether the design criteria for developing single-junction microcrystalline silicon (μc-Si:H) solar cells are applicable to multijunction solar cells. Furthermore, a notably high short-circuit current density of 32.9 mA/cm2 was achieved in a single-junction μc-Si:H cell fabricated on a periodically textured substrate with a high-mobility front transparent contacting layer. These technologies were also combined into a-Si:H/μc-Si:H/μc-Si:H triple-junction cells, and a world record stabilized efficiency of 13.6% was achieved.

  19. Investigation of short and ballistic coupling in vertical NbSe2 - graphene - NbSe2 Josephson junctions

    Science.gov (United States)

    Kim, Minsoo; Park, Geon-Hyoung; Yi, Jongyoon; Lee, Jae Hyeong; Park, Jinho; Lee, Hu-Jong

    2H-NbSe2 is a layered two-dimensional superconducting material, which can be constructed into a van der Waals heterostructure with versatile functionality. Here we fabricated a vertically stacked NbSe2 - graphene - NbSe2 heterostructure by the dry transfer technique, where defect-free contact via van der Waals force provides the high interfacial transparency. Insertion of an atomically thin graphene layer between two NbSe2 flakes ensures the formation of highly coherent proximity Josephson coupling. Observed temperature dependence of the junction critical current (Ic) and large value of IcRn product (as large as 2.3ΔNbSe 2) reveal the short and ballistic Josephson coupling characteristics. Large junction critical current density of 104 A/cm2, multiple Andreev reflection in the subgap structure of the differential conductance, and magnetic field modulation of Ic also suggest the strong Josephson coupling via the graphene layer.

  20. 3D Architecture of the Trypanosoma brucei Flagella Connector, a Mobile Transmembrane Junction.

    Directory of Open Access Journals (Sweden)

    Johanna L Höög

    2016-01-01

    Full Text Available Cellular junctions are crucial for the formation of multicellular organisms, where they anchor cells to each other and/or supportive tissue and enable cell-to-cell communication. Some unicellular organisms, such as the parasitic protist Trypanosoma brucei, also have complex cellular junctions. The flagella connector (FC is a three-layered transmembrane junction that moves with the growing tip of a new flagellum and attaches it to the side of the old flagellum. The FC moves via an unknown molecular mechanism, independent of new flagellum growth. Here we describe the detailed 3D architecture of the FC suggesting explanations for how it functions and its mechanism of motility.We have used a combination of electron tomography and cryo-electron tomography to reveal the 3D architecture of the FC. Cryo-electron tomography revealed layers of repetitive filamentous electron densities between the two flagella in the interstitial zone. Though the FC does not change in length and width during the growth of the new flagellum, the interstitial zone thickness decreases as the FC matures. This investigation also shows interactions between the FC layers and the axonemes of the new and old flagellum, sufficiently strong to displace the axoneme in the old flagellum. We describe a novel filament, the flagella connector fibre, found between the FC and the axoneme in the old flagellum.The FC is similar to other cellular junctions in that filamentous proteins bridge the extracellular space and are anchored to underlying cytoskeletal structures; however, it is built between different portions of the same cell and is unique because of its intrinsic motility. The detailed description of its structure will be an important tool to use in attributing structure / function relationships as its molecular components are discovered in the future. The FC is involved in the inheritance of cell shape, which is important for the life cycle of this human parasite.

  1. Does uncertainty justify intensity emission caps?

    International Nuclear Information System (INIS)

    Quirion, Philippe

    2005-01-01

    Environmental policies often set 'relative' or 'intensity' emission caps, i.e. emission limits proportional to the polluting firm's output. One of the arguments put forth in favour of relative caps is based on the uncertainty on business-as-usual output: if the firm's production level is higher than expected, so will be business-as-usual emissions, hence reaching a given level of emissions will be more costly than expected. As a consequence, it is argued, a higher emission level should be allowed if the production level is more important than expected. We assess this argument with a stochastic analytical model featuring two random variables: the business-as-usual emission level, proportional to output, and the slope of the marginal abatement cost curve. We compare the relative cap to an absolute cap and to a price instrument, in terms of welfare impact. It turns out that in most plausible cases, either a price instrument or an absolute cap yields a higher expected welfare than a relative cap. Quantitatively, the difference in expected welfare is typically very small between the absolute and the relative cap but may be significant between the relative cap and the price instrument. (author)

  2. Fabrication of full high-T sub c superconducting YBa sub 2 Cu sub 3 O sub 7 sub - sub x trilayer junctions using a polishing technique

    CERN Document Server

    Kuroda, K; Takami, T; Ozeki, T

    2003-01-01

    We have successfully fabricated full high-T sub c superconducting YBa sub 2 Cu sub 3 O sub 7 sub - sub x (YBCO)/PrBa sub 2 Cu sub 3 O sub 7 sub - sub x (PBCO)/YBCO trilayer junctions, which have a simple device structure, such as a Pb-alloy-based Josephson tunneling junction. It has been demonstrated that a polishing technique is extremely useful in the fabrication process: it is effective in smoothing a coarse surface and gentling the slopes of the edges, or decreasing the slope angles. Owing to the polishing technique, the PBCO barrier layer and the upper YBCO layer have been notably thinned: the thicknesses of these layers are 10 nm and 250 nm, respectively. Junctions with the dimensions of 5 mu m x 5 mu m showed resistively shunted junction-like current-voltage curves with a typical critical current density of 110 A/cm sup 2 at 4.2 K. Furthermore, the operation of superconducting quantum interference devices has been demonstrated. (author)

  3. Electrical responses by effects of molecular adsorption on channel and junctions of carbon nanotube field effect transistors

    International Nuclear Information System (INIS)

    Kang, Donghun; Park, Wanjun

    2008-01-01

    We report the adsorption effect on the electrical transport of nanotube field effect transistors. The source-drain current is monitored separately for the nanotube channel and the metal-nanotube junction under different pressures of ambient air with a blocking passivation. The metal-nanotube junction shows a significant change from p-type to ambipolar upon vacuum pumping, while the nanotube channel changes modestly. The metal-nanotube junction is found to be far more sensitive to the environment than the nanotube channel. We suggest that the adsorption states underneath the blocking layer do not desorb, and thus the positive carriers would not be diluted upon the vacuum pumping. This result is interpreted as the formation of an i-p-i and p-i-p junction with charge transfer by oxygen molecules. (fast track communication)

  4. Fabrication of sandwich-type MgB{sub 2}/Boron/MgB{sub 2} Josephson junctions with rapid annealing method

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Song; Wang, Xu; Ma, Junli; Cui, Ruirui; Deng, Chaoyong, E-mail: cydeng@gzu.edu.cn

    2015-11-15

    Sandwich-type MgB{sub 2}/Boron/MgB{sub 2} Josephson junctions were fabricated using magnetron sputtering system. The rapid-anneal process was adopted to replace traditional way of annealing, trying to solve the problem of interdiffusion and oxidation with multilayer films. The boron film was used as barrier layer to avoid the introduction of impurities and improve reproducibility of the junctions. The bottom MgB{sub 2} thin films deposited on c-plane sapphire substrate exhibits a critical temperature T{sub C} of 37.5 K and critical current density J{sub C} at 5 K of 8.7 × 10{sup 6} A cm{sup −2}. From the XRD pattern, the bottom MgB{sub 2} thin film shows c-axis orientation, whereas the top MgB{sub 2} became polycrystalline as Boron barrier layer grown thicker. Therefore, all junction samples show lower T{sub C} than single MgB{sub 2} thin film. The junctions exhibit excellent quasiparticle characteristics with ideal dependence on temperature and Boron barrier thickness. Subharmonic gap structure was appeared in conductance characteristics, which was attributed to the multiple Andreev reflections (MAR). The result demonstrates great promise of this new fabrication technology for MgB{sub 2} Josephson junction fabrication. - Highlights: • Sandwich-type MgB{sub 2}/Boron/MgB{sub 2} Josephson junctions were fabricated. • The junctions were annealed after deposition with the rapid-anneal process. • The highest critical current is 25.3 mA at 5 K and remains non-zero near 25 K. • Subharmonic gap features can be observed in the dI/dV – V curves.

  5. Electron tunneling in tantalum surface layers on niobium

    International Nuclear Information System (INIS)

    Ruggiero, S.T.; Track, E.K.; Prober, D.E.; Arnold, G.B.; DeWeert, M.J.

    1986-01-01

    We have performed electron tunneling measurements on tantalum surface layers on niobium. The tunnel junctions comprise 2000-A-circle Nb base electrodes with 10--100-A-circle in situ--deposited Ta overlayers, an oxide barrier, and Ag, Pb, or Pb-Bi alloy counterelectrodes. The base electrodes were prepared by ion-beam sputter deposition. The characteristics of these junctions have been studied as a function of Ta-layer thickness. These include the critical current, bound-state energy, phonon structure, and oxide barrier shape. We have compared our results for the product I/sub c/R versus tantalum-layer thickness with an extended version of the Gallagher theory which accounts for both the finite mean free path in the Ta overlayers and suppression of the I/sub c/R product due to strong-coupling effects. Excellent fits to the data yield a value of the intrinsic scattering probability for electrons at the Ta/Nb interface of r 2 = 0.01. This is consistent with the value expected from simple scattering off the potential step created by the difference between the Fermi energies of Ta and Nb. We have found a universal empirical correlation in average barrier height phi-bar and width s in the form phi-bar = 6 eV/(s-10 A-circle) for measured junctions which holds both for our data and results for available data in the literature for oxide-barrier junctions. The latter are composed of a wide variety of base and counterelectrode materials. These results are discussed in the general context of oxide growth and compared with results for artificial tunnel barriers

  6. Enhanced direct-gap light emission from Si-capped n+-Ge epitaxial layers on Si after post-growth rapid cyclic annealing: impact of non-radiative interface recombination toward Ge/Si double heterostructure lasers.

    Science.gov (United States)

    Higashitarumizu, Naoki; Ishikawa, Yasuhiko

    2017-09-04

    Enhanced direct-gap light emission is reported for Si-capped n + -Ge layers on Si after post-growth rapid cyclic annealing (RCA), and impact of non-radiative recombination (NRR) at the Ge/Si interface is discussed toward Ge/Si double heterostructure (DH) lasers. P-doped n + -Ge layer (1 × 10 19 cm -3 , 400 nm) is grown on Si by ultra-high vacuum chemical vapor deposition, followed by a growth of Si capping layer (5 nm) to form a Si/Ge/Si DH structure. Post-growth RCA to eliminate defects in Ge is performed in N 2 at temperatures between 900°C and 780°C, where the annealing time is minimized to be 5 s in each RCA cycle to prevent an out-diffusion of P dopants from the Ge surface. Direct-gap photoluminescence (PL) intensity at 1.6 µm increases with the RCA cycles up to 40, although the threading dislocation density in Ge is not reduced after 3 cycles in the present condition. The PL enhancement is ascribed to the suppression of NRR at the Ge/Si interface, where an intermixed SiGe alloy is formed. For Ge/Si DH lasers, NRR at the Ge/Si interface is found to have a significant impact on the threshold current density Jth. In order to achieve Jth on the order of 1 kA/cm 2 , similar to III-V lasers, the interface recombination velocity S is required below 10 3 cm/s in spite of S as large as 10 5 cm/s at the ordinary defect-rich Ge/Si interface.

  7. Cryopyrin-Associated Autoinflammatory Syndromes (CAPS) - Juvenile

    Science.gov (United States)

    ... all ethnic groups can be affected. What are CAPS? Cryopyrin-associated autoinflammatory syndromes (CAPS) consist of three ... ears by magnetic resonance imaging (MRI). How is CAPS treated? Medications that target interleukin-1 are very ...

  8. Macroscopic quantum tunneling in Josephson tunnel junctions and Coulomb blockade in single small tunnel junctions

    International Nuclear Information System (INIS)

    Cleland, A.N.

    1991-04-01

    Experiments investigating the process of macroscopic quantum tunneling in a moderately-damped, resistively shunted, Josephson junction are described, followed by a discussion of experiments performed on very small capacitance normal-metal tunnel junctions. The experiments on the resistively-shunted Josephson junction were designed to investigate a quantum process, that of the tunneling of the Josephson phase variable under a potential barrier, in a system in which dissipation plays a major role in the dynamics of motion. All the parameters of the junction were measured using the classical phenomena of thermal activation and resonant activation. Theoretical predictions are compared with the experimental results, showing good agreement with no adjustable parameters; the tunneling rate in the moderately damped (Q ∼ 1) junction is seen to be reduced by a factor of 300 from that predicted for an undamped junction. The phase is seen to be a good quantum-mechanical variable. The experiments on small capacitance tunnel junctions extend the measurements on the larger-area Josephson junctions from the region in which the phase variable has a fairly well-defined value, i.e. its wavefunction has a narrow width, to the region where its value is almost completely unknown. The charge on the junction becomes well-defined and is predicted to quantize the current through the junction, giving rise to the Coulomb blockade at low bias. I present the first clear observation of the Coulomb blockade in single junctions. The electrical environment of the tunnel junction, however, strongly affects the behavior of the junction: higher resistance leads are observed to greatly sharpen the Coulomb blockade over that seen with lower resistance leads. I present theoretical descriptions of how the environment influences the junctions; comparisons with the experimental results are in reasonable agreement

  9. Dispersion Mechanisms of a Tidal River Junction in the Sacramento–San Joaquin Delta, California

    Directory of Open Access Journals (Sweden)

    Karla T. Gleichauf

    2014-12-01

    Full Text Available doi: http://dx.doi.org/10.15447/sfews.2014v12iss4art1In branching channel networks, such as in the Sacramento–San Joaquin River Delta, junction flow dynamics contribute to dispersion of ecologically important entities such as fish, pollutants, nutrients, salt, sediment, and phytoplankton. Flow transport through a junction largely arises from velocity phasing in the form of divergent flow between junction channels for a portion of the tidal cycle. Field observations in the Georgiana Slough junction, which is composed of the North and South Mokelumne rivers, Georgiana Slough, and the Mokelumne River, show that flow phasing differences between these rivers arise from operational, riverine, and tidal forcing. A combination of Acoustic Doppler Current Profile (ADCP boat transecting and moored ADCPs over a spring–neap tidal cycle (May to  June 2012 monitored the variability of spatial and temporal velocity, respectively. Two complementary drifter studies enabled assessment of local transport through the junction to identify small-scale intrajunction dynamics. We supplemented field results with numerical simulations using the SUNTANS model to demonstrate the importance of phasing offsets for junction transport and dispersion. Different phasing of inflows to the junction resulted in scalar patchiness that is characteristic of MacVean and Stacey’s (2011 advective tidal trapping. Furthermore, we observed small-scale junction flow features including a recirculation zone and shear layer, which play an important role in intra-junction mixing over time scales shorter than the tidal cycle (i.e., super-tidal time scales. The study period spanned open- and closed-gate operations at the Delta Cross Channel. Synthesis of field observations and modeling efforts suggest that management operations related to the Delta Cross Channel can strongly affect transport in the Delta by modifying the relative contributions of tidal and riverine flows, thereby

  10. Metal-silicon reaction rates - The effects of capping

    Science.gov (United States)

    Weizer, Victor G.; Fatemi, Navid S.

    1989-01-01

    Evidence is presented showing that the presence of the commonly used anti-reflection coating material Ta2O5 on the free surface of contact metallization can either suppress or enhance, depending on the system, the interaction that takes place at elevated temperatures between the metallization and the underlying Si. The cap layer is shown to suppress both the generation and annihilation of vacancies at the free surface of the metal which are necessary to support metal-Si interactons. Evidence is also presented indicating that the mechanical condition of the free metal surface has a significant effect on the metal-silicon reaction rate.

  11. Horizontal Assembly of Single Nanowire Diode Fabricated by p-n Junction GaN NW Grown by MOCVD

    Directory of Open Access Journals (Sweden)

    Ji-Hyeon Park

    2014-01-01

    Full Text Available Uniaxially p-n junction gallium nitride nanowires have been synthesized via metal-organic chemical vapor deposition method. Nanowires prepared on Si(111 substrates were found to grow perpendicular to the substrate, and the transmission electron microscopy studies demonstrated that the nanowires had singlecrystalline structures with a growth axis. The parallel assembly of the p-n junction nanowire was prepared on a Si substrate with a thermally grown SiO2 layer. The transport studies of horizontal gallium nitride nanowire structures assembled from p- and n-type materials show that these junctions correspond to well-defined p-n junction diodes. The p-n junction devices based on GaN nanowires suspended over the electrodes were fabricated and their electrical properties were investigated. The horizontally assembled gallium nitride nanowire diodes suspended over the electrodes exhibited a substantial increase in conductance under UV light exposure. Apart from the selectivity to different light wavelengths, high responsivity and extremely short response time have also been obtained.

  12. Large lateral photovoltaic effect with ultrafast relaxation time in SnSe/Si junction

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xianjie; Zhao, Xiaofeng; Hu, Chang; Zhang, Yang; Song, Bingqian; Zhang, Lingli; Liu, Weilong; Lv, Zhe; Zhang, Yu; Sui, Yu, E-mail: suiyu@hit.edu.cn [Department of Physics, Harbin Institute of Technology, Harbin 150001 (China); Tang, Jinke [Department of Physics and Astronomy, University of Wyoming, Laramie, Wyoming 82071 (United States); Song, Bo, E-mail: songbo@hit.edu.cn [Department of Physics, Harbin Institute of Technology, Harbin 150001 (China); Academy of Fundamental and Interdisciplinary Sciences, Harbin Institute of Technology, Harbin 150001 (China)

    2016-07-11

    In this paper, we report a large lateral photovoltaic effect (LPE) with ultrafast relaxation time in SnSe/p-Si junctions. The LPE shows a linear dependence on the position of the laser spot, and the position sensitivity is as high as 250 mV mm{sup −1}. The optical response time and the relaxation time of the LPE are about 100 ns and 2 μs, respectively. The current-voltage curve on the surface of the SnSe film indicates the formation of an inversion layer at the SnSe/p-Si interface. Our results clearly suggest that most of the excited-electrons diffuse laterally in the inversion layer at the SnSe/p-Si interface, which results in a large LPE with ultrafast relaxation time. The high positional sensitivity and ultrafast relaxation time of the LPE make the SnSe/p-Si junction a promising candidate for a wide range of optoelectronic applications.

  13. Development of dental composites with reactive fillers that promote precipitation of antibacterial-hydroxyapatite layers.

    Science.gov (United States)

    Aljabo, Anas; Abou Neel, Ensanya A; Knowles, Jonathan C; Young, Anne M

    2016-03-01

    The study aim was to develop light-curable, high strength dental composites that would release calcium phosphate and chlorhexidine (CHX) but additionally promote surface hydroxyapatite/CHX co-precipitation in simulated body fluid (SBF). 80 wt.% urethane dimethacrylate based liquid was mixed with glass fillers containing 10 wt.% CHX and 0, 10, 20 or 40 wt.% reactive mono- and tricalcium phosphate (CaP). Surface hydroxyapatite layer thickness/coverage from SEM images, Ca/Si ratio from EDX and hydroxyapatite Raman peak intensities were all proportional to both time in SBF and CaP wt.% in the filler. Hydroxyapatite was, however, difficult to detect by XRD until 4 weeks. XRD peak width and SEM images suggested this was due to the very small size (~10 nm) of the hydroxyapatite crystallites. Precipitate mass at 12 weeks was 22 wt.% of the sample CaP total mass irrespective of CaP wt.% and up to 7 wt.% of the specimen. Early diffusion controlled CHX release, assessed by UV spectrometry, was proportional to CaP and twice as fast in water compared with SBF. After 1 week, CHX continued to diffuse into water but in SBF, became entrapped within the precipitating hydroxyapatite layer. At 12 weeks CHX formed 5 to 15% of the HA layer with 10 to 40 wt.% CaP respectively. Despite linear decline of strength and modulus in 4 weeks from 160 to 101 MPa and 4 to 2.4 GPa, respectively, upon raising CaP content, all values were still within the range expected for commercial composites. The high strength, hydroxyapatite precipitation and surface antibacterial accumulation should reduce tooth restoration failure due to fracture, aid demineralised dentine repair and prevent subsurface carious disease respectively. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  14. Using reflectance anisotropy spectroscopy to characterize capped silver nanostructures grown on silicon

    Energy Technology Data Exchange (ETDEWEB)

    Fleischer, K.; Jacob, J.; McGilp, J.F. [School of Physics, Trinity College Dublin, Dublin 2 (Ireland); Chandola, S. [School of Physics, Trinity College Dublin, Dublin 2 (Ireland); ISAS - Institute for Analytical Sciences, Department Berlin, Albert-Einstein-Strasse 9, 12489 Berlin (Germany); Esser, N. [ISAS - Institute for Analytical Sciences, Department Berlin, Albert-Einstein-Strasse 9, 12489 Berlin (Germany)

    2008-07-01

    Using the single domain Si(111)-3 x 1-Ag surface as a template, room temperature deposition of two or more monolayers of Ag leads to the formation of metallic nanostructures. Reflectance anisotropy spectroscopy (RAS) in the infrared (IR) spectral region is used to analyse the anisotropic conductivity of the structures. The anisotropy is found to be influenced by the offcut angle of the substrate, and hence the terrace width. The Ag nanostructures were capped with Si to form a near-IR transparent protecting layer. The samples are stable to exposure to ambient conditions for significant periods. The RAS spectra are compared to model calculations, which support the conclusion that the buried metallic Ag nanostructures survive the capping process. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  15. The North Zealand CAP Monitor

    DEFF Research Database (Denmark)

    Nielsen, Minna; Ravn, Pernille; Notander Clausen, Lise

    with CAP. We started with 34 audit variables. Through repeated cycles of testing, feedback and discussions, we reduced the number of indicators to 22 and time per audit from 20 to 10 minutes. Strategy for change To link the monitoring system with our patient pathway for CAP we established an improvement...... Designing a database Designing and testing a dashboard to present indicators in a balanced way Messages for others Auditing patients with a common disease as CAP is useful to identify areas for improvement for a large group of patients. The baseline audit can serve as a basis for a monitoring system......Contect We describe how we developed a monitoring system for community acquired pneumonia (CAP) at North Zealand Regional hospital. We serve 310.000 inhabitants and annually around 3200 patients with CAP are admitted. As part of a program of clinical pathways for common conditions, a pathway...

  16. Preparation and properties of Ni80Fe20/Al2O3/Co magnetic tunnel junctions

    International Nuclear Information System (INIS)

    Chen Jing; Du Jun; Wu Xiaoshan; Pan Minghu; Long Jianguo; Zhang Wei; Lu Mu; Hu An; Zhai Hongru

    2000-01-01

    With plasma oxidisation to create an insulating layer of Al 2 O 3 , the authors have repeatedly fabricated Ni 80 Fe 20 /Al 2 O 3 /Co magnetic tunnel junctions which show obvious tunneling magnetoresistance (TMR) effect. At room temperature, the maximum TMR ratio reaches 6.0%. The switch field can be less than 800 A/m with a relative step width of about 2400 A/m. The junction resistance changes from hundreds of ohms to hundreds of kilo-ohms

  17. Josephson junction arrays

    International Nuclear Information System (INIS)

    Bindslev Hansen, J.; Lindelof, P.E.

    1985-01-01

    In this review we intend to cover recent work involving arrays of Josephson junctions. The work on such arrays falls naturally into three main areas of interest: 1. Technical applications of Josephson junction arrays for high-frequency devices. 2. Experimental studies of 2-D model systems (Kosterlitz-Thouless phase transition, commensurate-incommensurate transition in frustrated (flux) lattices). 3. Investigations of phenomena associated with non-equilibrium superconductivity in and around Josephson junctions (with high current density). (orig./BUD)

  18. An optimized efficient dual junction InGaN/CIGS solar cell: A numerical simulation

    Science.gov (United States)

    Farhadi, Bita; Naseri, Mosayeb

    2016-08-01

    The photovoltaic performance of an efficient double junction InGaN/CIGS solar cell including a CdS antireflector top cover layer is studied using Silvaco ATLAS software. In this study, to gain a desired structure, the different design parameters, including the CIGS various band gaps, the doping concentration and the thickness of CdS layer are optimized. The simulation indicates that under current matching condition, an optimum efficiency of 40.42% is achieved.

  19. Development of superconducting tunnel junction as photon counting detector in astronomy

    International Nuclear Information System (INIS)

    Jorel, C.

    2004-12-01

    This work describes the development of S/Al-AlOx-Al/S Superconducting Tunnel Junctions (STJ) to count photons for astronomical applications in the near-infrared. The incoming light energy is converted into excited charges in a superconducting layer (S, either Nb or Ta) with a population proportional to the deposited energy. The photon energy can thus be evaluated by integrating the tunnel current induced in a voltage biased junction at a very low temperature (100 mK). The performance of STJ for light detection is discussed in the first chapter and compared with the best performances obtained with other techniques based on either superconductors. At the beginning of the thesis, a previous manufacturing process made it possible to obtain good quality Nb based junctions and preliminary results for photon counting. The objective of the thesis was to replace Nb as absorber with Ta, an intrinsically more sensitive material, and secondly to develop a new and more efficient manufacturing process. We first focused on the optimization of the Tantalum thin film quality. Structural analysis showed that these films can be grown epitaxially by magnetron sputtering onto an R-plane sapphire substrate heated to 600 Celsius degrees and covered by a thin Nb buffer layer. Electrical transport measurement from room to low temperatures gave excellent Relative Resistive Ratios of about 50 corresponding to mean free path of the order of 100 nm. Then, we conceived an original manufacturing process batch on 3 inch diameter sapphire substrate with five mask levels. These masks made it possible to produce single pixel STJ of different sizes (from 25*25 to 50*50 square microns) and shapes. We also produced multiple junctions onto a common absorber as well as 9-pixel arrays. Thanks to the development of this process we obtained a very large percentage of quality junctions (>90%) with excellent measured normal resistances of a few micro-ohm cm 2 and low leakage currents of the order of one n

  20. Development of an industrial tool to make passivation layers for UV sensors improvement

    Energy Technology Data Exchange (ETDEWEB)

    Larmande, Yannick, E-mail: larmande@lp3.univ-mrs.fr [LP3 Laboratory, UMR 6182 CNRS - Mediterranean University, Campus de Luminy, Case 917, 13 288 Marseille Cedex 9 (France); Ion Beam Services, Rue Gaston Imbert Prolongee, 13 790 Peynier (France); Vervisch, Vanessa; Delaporte, Philippe; Sarnet, Thierry; Sentis, Marc [LP3 Laboratory, UMR 6182 CNRS - Mediterranean University, Campus de Luminy, Case 917, 13 288 Marseille Cedex 9 (France); Etienne, Hasnaa; Torregrosa, Frank [Ion Beam Services, Rue Gaston Imbert Prolongee, 13 790 Peynier (France)

    2012-09-15

    Highlights: Black-Right-Pointing-Pointer We have reached a sheet resistance lower than 500 {Omega}/sq for a junction depth of 29 nm and an abruptness of 3 nm/dec. Black-Right-Pointing-Pointer Electrical measurements on diodes have revealed a significant leakage current of around 10{sup -5} A/cm{sup 2}, revealing the presence of defects inside the junction. Black-Right-Pointing-Pointer Light Beam Induced Current (LBIC) characterization has shown that the defects are localized at the edge of the laser beam. - Abstract: Today, the collection of generated charges is a limiting problem for the realization of UV sensors. Indeed, the native silicon oxide of the surface acts as a region of recombination centers . Then, the sensors exhibit a low sensitivity in the UV wavelengths. An approach to overcome this drawback is the realization of a few nanometers thick passivation layer at the surface by creating an ultra-shallow junction (USJ) with a high activation level. The realization of such junctions requires two steps: first, the implantation of dopants which consists in introducing impurities at the surface of the substrate, then the thermal activation of these dopants to obtain the electrical characteristics of the junction. The Plasma Immersion Ion Implantation (PIII) process allows us to implant dopants in a very thin layer (10-20 nm) into the silicon substrate . These impurities are located in interstitial sites in the silicon, and need an activation process to modify the electrical properties of the layer. The step is performed by means of an excimer laser annealing process (ELA) to melt a very thin layer of the silicon substrate and then activate the dopants without diffusion. In the framework of the ALDIP project (Laser Activation of Dopants implanted by Plasma Immersion), IBS Company has developed with its partners a cluster to realize these two steps with industrial production rates and cleanliness. Four-point probe measurements and SIMS analyzes have been used to

  1. Effect of p-Layer and i-Layer Properties on the Electrical Behaviour of Advanced a-Si:H/a-SiGe:H Thin Film Solar Cell from Numerical Modeling Prospect

    Directory of Open Access Journals (Sweden)

    Peyman Jelodarian

    2012-01-01

    Full Text Available The effect of p-layer and i-layer characteristics such as thickness and doping concentration on the electrical behaviors of the a-Si:H/a-SiGe:H thin film heterostructure solar cells such as electric field, photogeneration rate, and recombination rate through the cell is investigated. Introducing Ge atoms to the Si lattice in Si-based solar cells is an effective approach in improving their characteristics. In particular, current density of the cell can be enhanced without deteriorating its open-circuit voltage. Optimization shows that for an appropriate Ge concentration, the efficiency of a-Si:H/a-SiGe solar cell is improved by about 6% compared with the traditional a-Si:H solar cell. This work presents a novel numerical evaluation and optimization of amorphous silicon double-junction (a-Si:H/a-SiGe:H thin film solar cells and focuses on optimization of a-SiGe:H midgap single-junction solar cell based on the optimization of the doping concentration of the p-layer, thicknesses of the p-layer and i-layer, and Ge content in the film. Maximum efficiency of 23.5%, with short-circuit current density of 267 A/m2 and open-circuit voltage of 1.13 V for double-junction solar cell has been achieved.

  2. Concept and design of super junction devices

    Science.gov (United States)

    Zhang, Bo; Zhang, Wentong; Qiao, Ming; Zhan, Zhenya; Li, Zhaoji

    2018-02-01

    The super junction (SJ) has been recognized as the " milestone” of the power MOSFET, which is the most important innovation concept of the voltage-sustaining layer (VSL). The basic structure of the SJ is a typical junction-type VSL (J-VSL) with the periodic N and P regions. However, the conventional VSL is a typical resistance-type VSL (R-VSL) with only an N or P region. It is a qualitative change of the VSL from the R-VSL to the J-VSL, introducing the bulk depletion to increase the doping concentration and optimize the bulk electric field of the SJ. This paper firstly summarizes the development of the SJ, and then the optimization theory of the SJ is discussed for both the vertical and the lateral devices, including the non-full depletion mode, the minimum specific on-resistance optimization method and the equivalent substrate model. The SJ concept breaks the conventional " silicon limit” relationship of R on∝V B 2.5, showing a quasi-linear relationship of R on∝V B 1.03.

  3. Improvement of the quality of graphene-capped InAs/GaAs quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Othmen, Riadh, E-mail: othmenriadh@yahoo.fr; Rezgui, Kamel; Ajlani, Hosni; Oueslati, Meherzi [Faculté des Sciences de Tunis, Université de Tunis El Manar, Campus, 2092 El Manar Tunis (Tunisia); Cavanna, Antonella; Madouri, Ali [CNRS/LPN, Route de Nozay, F-91460 Marcoussis (France); Arezki, Hakim; Gunes, Fethullah [Laboratoire de Génie Electrique de Paris, 11, rue Joliot Curie Plateau de Moulon, 91192 Gif sur Yvette (France)

    2014-06-07

    In this paper, we study the transfer of graphene onto InAs/GaAs quantum dots (QDs). The graphene is first grown on Cu foils by chemical vapor deposition and then polymer Polymethyl Methacrylate (PMMA) is deposited on the top of graphene/Cu. High quality graphene sheet has been obtained by lowering the dissolving rate of PMMA using vapor processing. Uncapped as well as capped graphene InAs/GaAs QDs have been studied using optical microscopy, scanning electron microscopy, and Raman spectroscopy. We gather from this that the average shifts Δω of QDs Raman peaks are reduced compared to those previously observed in graphene and GaAs capped QDs. The encapsulation by graphene makes the indium atomic concentration intact in the QDs by the reduction of the strain effect of graphene on QDs and the migration of In atoms towards the surface. This gives us a new hetero-structure graphene–InAs/GaAs QDs wherein the graphene plays a key role as a cap layer.

  4. Electronic thermometry in tunable tunnel junction

    Science.gov (United States)

    Maksymovych, Petro

    2016-03-15

    A tunable tunnel junction thermometry circuit includes a variable width tunnel junction between a test object and a probe. The junction width is varied and a change in thermovoltage across the junction with respect to the change in distance across the junction is determined. Also, a change in biased current with respect to a change in distance across the junction is determined. A temperature gradient across the junction is determined based on a mathematical relationship between the temperature gradient, the change in thermovoltage with respect to distance and the change in biased current with respect to distance. Thermovoltage may be measured by nullifying a thermoelectric tunneling current with an applied voltage supply level. A piezoelectric actuator may modulate the probe, and thus the junction width, to vary thermovoltage and biased current across the junction. Lock-in amplifiers measure the derivatives of the thermovoltage and biased current modulated by varying junction width.

  5. Little Ice Age Fluctuations of Quelccaya Ice Cap, Peru

    Science.gov (United States)

    Stroup, J. S.; Kelly, M. A.; Lowell, T.

    2009-12-01

    A record of the past extents of Quelccaya Ice Cap (QIC) provides valuable information about tropical climate change from late glacial to recent time. Here, we examine the timing and regional significance of fluctuations of QIC during the Little Ice Age (LIA; ~1300-1850 AD). One prominent set of moraines, known as the Huancane I moraines, is located ~1 km from the present-day western ice cap margin and provides a near-continuous outline of the most recent advance of QIC. This moraine set was radiocarbon dated (~298 ± 134 and 831 ± 87 yr BP) by Mercer and Palacios (1977) and presented as some of the first evidence for cooling in the tropics during the Little Ice Age. Recent field investigations in the QIC region focused on refining the chronology of the Huancane I moraines. In 2008, new stratigraphic sections exposed by local lake-flooding events revealed multiple layers of peat within the Huancane I moraines. In both 2008 and 2009, samples were obtained for 10Be dating of boulders on Huancane I moraines. A combination of radiocarbon and 10Be ages indicate that the Huancane I moraines were deposited by ice cap expansion after ~3800 yr BP and likely by multiple advances at approximately 1000, 600, 400, and 200 yr BP. Radiocarbon and 10Be chronologies of the Huancane I moraines are compared with the Quelccaya ice core records (Thompson et al., 1985; 1986; 2006). Accumulation data from the ice core records are interpreted to indicate a significant wet period at ~1500-1700 AD followed by a significant drought at ~1720-1860 AD. We examine ice marginal fluctuations during these times to determine influence of such events on the ice cap extent.

  6. Pervaporation dehydration of ethanol by hyaluronic acid/sodium alginate two-active-layer composite membranes.

    Science.gov (United States)

    Gao, Chengyun; Zhang, Minhua; Ding, Jianwu; Pan, Fusheng; Jiang, Zhongyi; Li, Yifan; Zhao, Jing

    2014-01-01

    The composite membranes with two-active-layer (a capping layer and an inner layer) were prepared by sequential spin-coatings of hyaluronic acid (HA) and sodium alginate (NaAlg) on the polyacrylonitrile (PAN) support layer. The SEM showed a mutilayer structure and a distinct interface between the HA layer and the NaAlg layer. The coating sequence of two-active-layer had an obvious influence on the pervaporation dehydration performance of membranes. When the operation temperature was 80 °C and water concentration in feed was 10 wt.%, the permeate fluxes of HA/Alg/PAN membrane and Alg/HA/PAN membrane were similar, whereas the separation factor were 1130 and 527, respectively. It was found that the capping layer with higher hydrophilicity and water retention capacity, and the inner layer with higher permselectivity could increase the separation performance of the composite membranes. Meanwhile, effects of operation temperature and water concentration in feed on pervaporation performance as well as membrane properties were studied. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Visualization of the current density in Josephson junctions with 0- and {pi}-facets; Visualisierung der Stromverteilung in Josephsonkontakten mit 0- und {pi}-Facetten

    Energy Technology Data Exchange (ETDEWEB)

    Guerlich, Christian

    2010-05-11

    With Low-Temperature-Electron-Microscopy (LTSEM) it is possible to analyse the transport properties of solids at low temperatures. In particular it is possible to image the supercurrent density j{sub s} in Josephson junctions. This was demonstrated by comparing TTREM-images with calculated values for j{sub s}. In this thesis ramp-type Nd{sub 2-x}Ce{sub x}CuO{sub 4-y}/Nb-Josephson-junctions (NCCO/Nb) and Josephson junctions with a ferromagnetic interlayer Nb/Al-Al{sub 2}O{sub 3}/NiCu/Nb, so-called SIFS (superconductor-insulator-ferromagnet-superconductor) Josephson junctions were studied.It was demonstrated that LTSEM provides direct imaging of the sign change of the order parameter in superconductors with d{sub x{sup 2}-y{sup 2}}-symmetry. This was a controversial issue over the last decade. A step like variation in the thickness of the F-layer allows the fabrication of linear and annular Josephson junctions with different numbers of 0 and {pi} facets. With the LTSEM 0-, {pi}-, 0-{pi}-, 0-{pi}-0-, 0/2-{pi}-0/2-, 20 x (0-{pi})- as well as square-shaped-, circular- and annular-Josephson-junctions were studied. It was demonstrated, that these junctions are of good quality and have critical current densities up to 42 A/cm{sup 2} at T=4.2 K, which is a record value for SIFS junctions with a NiCu F-layer so far. By comparing the measurements with simulations a first indication of a semifluxon at the 0-{pi}-boundary was found. (orig.)

  8. Estimated release from the saltstone landfill effect of landfill caps and landfill-cap/monolith-liner combinations

    International Nuclear Information System (INIS)

    Wilhite, E.L.

    1985-01-01

    The effect of capping the entire saltstone landfill is dependent on the effectiveness of the clay cap in preventing infiltration. A cap that is 99% effective will reduce releases from the saltstone landfill by a factor of 7.7. Several combinations of landfill design alterations will result in meeting ground water standards

  9. A Monolithic Interconnected module with a tunnel Junction for Enhanced Electrical and Optical Performance

    Energy Technology Data Exchange (ETDEWEB)

    Murray, Christopher Sean; Wilt, David Morgan

    1999-06-30

    An improved thermophotovoltaic (TPV) n/p/n device is provided. Monolithic Interconnected Modules (MIMs), semiconductor devices converting infrared radiation to electricity, have been developed with improved electrical and optical performance. The structure is an n-type emitter on a p-type base with an n-type lateral conduction layer. The incorporation of a tunnel junction and the reduction in the amount of p-type material used results in negligible parasitic absorption, decreased series resistance, increased voltage and increased active area. The novel use of a tunnel junction results in the potential for a TPV device with efficiency greater than 24%.

  10. Dynamics of Josephson junction arrays

    International Nuclear Information System (INIS)

    Hadley, P.

    1989-01-01

    The dynamics of Josephson junction arrays is a topic that lies at the intersection of the fields of nonlinear dynamics and Josephson junction technology. The series arrays considered here consist of several rapidly oscillating Josephson junctions where each junction is coupled equally to every other junction. The purpose of this study is to understand phaselocking and other cooperative dynamics of this system. Previously, little was known about high dimensional nonlinear systems of this sort. Numerical simulations are used to study the dynamics of these arrays. Three distinct types of periodic solutions to the array equations were observed as well as period doubled and chaotic solutions. One of the periodic solutions is the symmetric, in-phase solution where all of the junctions oscillate identically. The other two periodic solutions are symmetry-broken solutions where all of the junction do not oscillate identically. The symmetry-broken solutions are highly degenerate. As many as (N - 1) stable solutions can coexist for an array of N junctions. Understanding the stability of these several solutions and the transitions among them is vital to the design of useful devices

  11. Experimental investigation of insolation-driven dust ejection from Mars' CO2 ice caps

    Science.gov (United States)

    Kaufmann, E.; Hagermann, A.

    2017-01-01

    Mars' polar caps are - depending on hemisphere and season - partially or totally covered with CO2 ice. Icy surfaces such as the polar caps of Mars behave differently from surfaces covered with rock and soil when they are irradiated by solar light. The latter absorb and reflect incoming solar radiation within a thin layer beneath the surface. In contrast, ices are partially transparent in the visible spectral range and opaque in the infrared. Due to this fact, the solar radiation can penetrate to a certain depth and raise the temperature of the ice or dust below the surface. This may play an important role in the energy balance of icy surfaces in the solar system, as already noted in previous investigations. We investigated the temperature profiles inside CO2 ice samples including a dust layer under Martian conditions. We have been able to trigger dust eruptions, but also demonstrated that these require a very narrow range of temperature and ambient pressure. We discuss possible implications for the understanding of phenomena such as arachneiform patterns or fan shaped deposits as observed in Mars' southern polar region.

  12. Junction Transport in Epitaxial Film Silicon Heterojunction Solar Cells: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Young, D. L.; Li, J. V.; Teplin, C. W.; Stradins, P.; Branz, H. M.

    2011-07-01

    We report our progress toward low-temperature HWCVD epitaxial film silicon solar cells on inexpensive seed layers, with a focus on the junction transport physics exhibited by our devices. Heterojunctions of i/p hydrogenated amorphous Si (a-Si) on our n-type epitaxial crystal Si on n++ Si wafers show space-charge-region recombination, tunneling or diffusive transport depending on both epitaxial Si quality and the applied forward voltage.

  13. Gating at the mouth of the acetylcholine receptor channel: energetic consequences of mutations in the alphaM2-cap.

    Directory of Open Access Journals (Sweden)

    Pallavi A Bafna

    2008-06-01

    Full Text Available Gating of nicotinic acetylcholine receptors from a C(losed to an O(pen conformation is the initial event in the postsynaptic signaling cascade at the vertebrate nerve-muscle junction. Studies of receptor structure and function show that many residues in this large, five-subunit membrane protein contribute to the energy difference between C and O. Of special interest are amino acids located at the two transmitter binding sites and in the narrow region of the channel, where CO gating motions generate a lowhigh change in the affinity for agonists and in the ionic conductance, respectively. We have measured the energy changes and relative timing of gating movements for residues that lie between these two locations, in the C-terminus of the pore-lining M2 helix of the alpha subunit ('alphaM2-cap'. This region contains a binding site for non-competitive inhibitors and a charged ring that influences the conductance of the open pore. alphaM2-cap mutations have large effects on gating but much smaller effects on agonist binding, channel conductance, channel block and desensitization. Three alphaM2-cap residues (alphaI260, alphaP265 and alphaS268 appear to move at the outset of channel-opening, about at the same time as those at the transmitter binding site. The results suggest that the alphaM2-cap changes its secondary structure to link gating motions in the extracellular domain with those in the channel that regulate ionic conductance.

  14. ATLAS electromagnetic end-cap detector

    CERN Multimedia

    Maximilien Brice

    2003-01-01

    After the insertion of the first end-cap into this cryostat, the team proceed to the wiring operations. Millions of wires are connected to the electromagnetic calorimeter on this end-cap, whch must be carefully fed out from the detector so that data can be read out. The energy of photons, electrons and positrons will be measured as they pass through the end-cap having been created along the line of the beams in the proton-proton collisions.

  15. ATLAS end-cap detector

    CERN Multimedia

    Maximilien Brice

    2003-01-01

    Three scientists from the Institute of Nuclear Phyiscs at Novossibirsk with one of the end-caps of the ATLAS detector. The end-caps will be used to detect particles produced in the proton-proton collisions at the heart of the ATLAS experiment that are travelling close to the axis of the two beams.

  16. Homo-junction ferroelectric field-effect-transistor memory device using solution-processed lithium-doped zinc oxide thin films

    KAUST Repository

    Nayak, Pradipta K.; Caraveo-Frescas, J. A.; Bhansali, Unnat. S.; Alshareef, Husam N.

    2012-01-01

    High performance homo-junction field-effect transistor memory devices were prepared using solution processed transparent lithium-doped zinc oxide thin films for both the ferroelectric and semiconducting active layers. A highest field-effect mobility

  17. Structure and signaling at hydroid polyp-stolon junctions, revisited

    Directory of Open Access Journals (Sweden)

    Katherine L. Harmata

    2015-09-01

    Full Text Available The gastrovascular system of colonial hydroids is central to homeostasis, yet its functional biology remains poorly understood. A probe (2′,7′-dichlorodihydrofluorescein diacetate for reactive oxygen species (ROS identified fluorescent objects at polyp-stolon junctions that emit high levels of ROS. A nuclear probe (Hoechst 33342 does not co-localize with these objects, while a mitochondrial probe (rhodamine 123 does. We interpret these objects as mitochondrion-rich cells. Confocal microscopy showed that this fluorescence is situated in large columnar cells. Treatment with an uncoupler (2,4-dinitrophenol diminished the ROS levels of these cells relative to background fluorescence, as did removing the stolons connecting to a polyp-stolon junction. These observations support the hypothesis that the ROS emanate from mitochondrion-rich cells, which function by pulling open a valve at the base of the polyp. The open valve allows gastrovascular fluid from the polyp to enter the stolons and vice versa. The uncoupler shifts the mitochondrial redox state in the direction of oxidation, lowering ROS levels. By removing the stolons, the valve is not pulled open, metabolic demand is lowered, and the mitochondrion-rich cells slowly regress. Transmission electron microscopy identified mitochondrion-rich cells adjacent to a thick layer of mesoglea at polyp-stolon junctions. The myonemes of these myoepithelial cells extend from the thickened mesoglea to the rigid perisarc on the outside of the colony. The perisarc thus anchors the myoepithelial cells and allows them to pull against the mesoglea and open the lumen of the polyp-stolon junction, while relaxation of these cells closes the lumen.

  18. Tight junctions and human diseases.

    Science.gov (United States)

    Sawada, Norimasa; Murata, Masaki; Kikuchi, Keisuke; Osanai, Makoto; Tobioka, Hirotoshi; Kojima, Takashi; Chiba, Hideki

    2003-09-01

    Tight junctions are intercellular junctions adjacent to the apical end of the lateral membrane surface. They have two functions, the barrier (or gate) function and the fence function. The barrier function of tight junctions regulates the passage of ions, water, and various macromolecules, even of cancer cells, through paracellular spaces. The barrier function is thus relevant to edema, jaundice, diarrhea, and blood-borne metastasis. On the other hand, the fence function maintains cell polarity. In other words, tight junctions work as a fence to prevent intermixing of molecules in the apical membrane with those in the lateral membrane. This function is deeply involved in cancer cell biology, in terms of loss of cell polarity. Of the proteins comprising tight junctions, integral membrane proteins occludin, claudins, and JAMs have been recently discovered. Of these molecules, claudins are exclusively responsible for the formation of tight-junction strands and are connected with the actin cytoskeleton mediated by ZO-1. Thus, both functions of tight junctions are dependent on the integrity of the actin cytoskeleton as well as ATP. Mutations in the claudin14 and the claudin16 genes result in hereditary deafness and hereditary hypomagnesemia, respectively. Some pathogenic bacteria and viruses target and affect the tight-junction function, leading to diseases. In this review, the relationship between tight junctions and human diseases is summarized.

  19. Binary breath figures for straightforward and controllable self-assembly of microspherical caps.

    Science.gov (United States)

    Gong, Jianliang; Xu, Bingang; Tao, Xiaoming; Li, Lei

    2016-05-11

    The intense interest surrounding asymmetrical microparticles originates from their unique anisotropic properties and promising applications. In this work, direct self-assembly of polymeric microspherical caps without the assistance of any additives has been achieved by using low-surface-tension methanol (MeOH) and high-surface-tension water as binary breath figures (BFs). With the evaporation of polystyrene (PS) solution containing low-boiling-point solvent in the binary vapors, the formed MeOH BFs could quickly diffuse into solution, while water BFs tended to remain at the solution surface. This led to the formation of a gradient nonsolvent layer at the vapor/solution interface, which induced the formation of nuclei and guided further asymmetrical growth of polymer particles. After the spontaneous removal of MeOH, water and residual solvent by evaporation, polymeric microspherical caps were left on the substrate. Through controlling the proportion of water introduced by adjusting the ratios of MeOH and water, polymeric microspherical caps with a range of controllable shapes (divided at different positions of a sphere) were successfully obtained. The formation mechanism was explained based on the difference of vapor pressure, surface tension and miscibility between the employed solvents and nonsolvents. A solvent possessing a high vapor pressure, low surface tension and good miscibility with MeOH contributed to the formation of microspherical caps. This flexible, green and straightforward technique is a nondestructive strategy, and avoids complicated work on design, preparation and removal of hard templates and additives.

  20. An ac susceptibility study in capped Ni/Ni(OH)2 core-shell nanoassemblies: dual peak observations

    International Nuclear Information System (INIS)

    Godsell, Jeffrey F; Roy, Saibal; Bala, Tanushree; Ryan, Kevin M.

    2011-01-01

    In this study, the ac susceptibility (χ' and χ'') variation with temperature (10-100 K) for oleic acid (OA) capped Ni/Ni(OH) 2 core-shell nanoparticle assemblies are reported at frequencies varying from 0.1 to 1000 Hz. Nanoparticle assemblies, with two average particle diameters of ∼34 nm and ∼14 nm, were synthesized using a wet chemical synthesis approach. Two peaks in the ac susceptibility versus temperature curves are clearly discernable for each of the samples. The first, occurring at ∼22 K was attributed to the paramagnetic/antiferromagnetic transition of the Ni(OH) 2 present in the shell. The second higher temperature peak was attributed to the superparamagnetic blocking of the pure Ni situated at the core of the nanoparticles. The higher temperature peaks in both the χ' and χ'' curves were observed to increase with increasing frequency. Thus the Neel and the blocking temperatures for such core-shell nanoassemblies were clearly identified from the ac analysis, whereas they were not discernible (superimposed) even from very low dc (FC/ZFC) field measurements. Interparticle interactions within the assemblies were studied through the fitting of phenomenological laws to the experimental datasets. It is observed that even with an OA capping layer, larger Ni/Ni(OH) 2 nanoparticles experience a greater degree of sub-capping layer oxidation thus producing lower magnetic interaction strengths.

  1. A single-gradient junction technique to replace multiple-junction shifts for craniospinal irradiation treatment

    International Nuclear Information System (INIS)

    Hadley, Austin; Ding, George X.

    2014-01-01

    Craniospinal irradiation (CSI) requires abutting fields at the cervical spine. Junction shifts are conventionally used to prevent setup error–induced overdosage/underdosage from occurring at the same location. This study compared the dosimetric differences at the cranial-spinal junction between a single-gradient junction technique and conventional multiple-junction shifts and evaluated the effect of setup errors on the dose distributions between both techniques for a treatment course and single fraction. Conventionally, 2 lateral brain fields and a posterior spine field(s) are used for CSI with weekly 1-cm junction shifts. We retrospectively replanned 4 CSI patients using a single-gradient junction between the lateral brain fields and the posterior spine field. The fields were extended to allow a minimum 3-cm field overlap. The dose gradient at the junction was achieved using dose painting and intensity-modulated radiation therapy planning. The effect of positioning setup errors on the dose distributions for both techniques was simulated by applying shifts of ± 3 and 5 mm. The resulting cervical spine doses across the field junction for both techniques were calculated and compared. Dose profiles were obtained for both a single fraction and entire treatment course to include the effects of the conventional weekly junction shifts. Compared with the conventional technique, the gradient-dose technique resulted in higher dose uniformity and conformity to the target volumes, lower organ at risk (OAR) mean and maximum doses, and diminished hot spots from systematic positioning errors over the course of treatment. Single-fraction hot and cold spots were improved for the gradient-dose technique. The single-gradient junction technique provides improved conformity, dose uniformity, diminished hot spots, lower OAR mean and maximum dose, and one plan for the entire treatment course, which reduces the potential human error associated with conventional 4-shifted plans

  2. 21 CFR 884.5250 - Cervical cap.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Cervical cap. 884.5250 Section 884.5250 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES... cap. (a) Identification. A cervical cap is a flexible cuplike receptacle that fits over the cervix to...

  3. 21 CFR 888.3000 - Bone cap.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Bone cap. 888.3000 Section 888.3000 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ORTHOPEDIC DEVICES Prosthetic Devices § 888.3000 Bone cap. (a) Identification. A bone cap is a mushroom...

  4. Genetic ablation of root cap cells in Arabidopsis

    OpenAIRE

    Tsugeki, Ryuji; Fedoroff, Nina V.

    1999-01-01

    The root cap is increasingly appreciated as a complex and dynamic plant organ. Root caps sense and transmit environmental signals, synthesize and secrete small molecules and macromolecules, and in some species shed metabolically active cells. However, it is not known whether root caps are essential for normal shoot and root development. We report the identification of a root cap-specific promoter and describe its use to genetically ablate root caps by directing root cap-specific expression of...

  5. Assembly of Layered Monetite-Chitosan Nanocomposite and Its Transition to Organized Hydroxyapatite.

    Science.gov (United States)

    Ruan, Qichao; Liberman, David; Zhang, Yuzheng; Ren, Dongni; Zhang, Yunpeng; Nutt, Steven; Moradian-Oldak, Janet

    2016-06-13

    Bioinspired synthesis of hierarchically structured calcium phosphate (CaP) material is a highly promising strategy for developing improved bone substitute materials. However, synthesis of CaP materials with outstanding mechanical properties still remains an ongoing challenge. Inspired by the formation of lamellar structure in nacre, we designed an organic matrix composed of chitosan and cis-butenediolic acid (maleic acid, MAc) that could assemble into a layered complex and further guide the mineralization of monetite crystals, resulting in the formation of organized and parallel arrays of monetite platelets with a brick-and-mortar structure. Using the layered monetite-chitosan composite as a precursor, we were able to synthesize hydroxyapatite (HAp) with multiscale hierarchically ordered structure via a topotactic phase transformation process. On the nanoscale, needlelike HAp crystallites assembled into organized bundles that aligned to form highly oriented plates on the microscale. On the large-scale level, these plates with different crystal orientations were stacked together to form a layered structure. The organized structures and composite feature yielded CaP materials with improved mechanical properties close to those of bone. Our study introduces a biomimetic approach that may be practical for the design of advanced, mechanically robust materials for biomedical applications.

  6. CENTRIFUGE END CAP

    Science.gov (United States)

    Beams, J.W.; Snoddy, L.B.

    1960-08-01

    An end cap for ultra-gas centrifuges is designed to impart or remove angular momentum to or from the gas and to bring the entering gas to the temperature of the gas inside the centrifuge. The end cap is provided with slots or fins for adjusting the temperature and the angular momentum of the entering gas to the temperature and momentum of the gas in the centrifuge and is constructed to introduce both the inner and the peripheral stream into the centrifuge.

  7. Macroscopic quantum tunneling in Josephson tunnel junctions and Coulomb blockade in single small tunnel junctions

    International Nuclear Information System (INIS)

    Cleland, A.N.

    1991-01-01

    Experiments investigated the process of macroscopic quantum tunneling in a moderately-damped, resistively shunted, Josephson junction are described, followed by a discussion of experiments performed on very-small-capacitance normal-metal tunnel junctions. The experiments on the resistively-shunted Josephson junction were designed to investigate a quantum process, that of the tunneling of the Josephson-phase variable under a potential barrier, in a system in which dissipation plays a major role in the dynamics of motion. All the parameters of the junction were measured using the classical phenomena of thermal activation and resonant activation. Theoretical predictions are compared with the experimental results, showing good agreement with no adjustable parameters. The experiments on small-capacitance tunnel junctions extend the measurements on the large-area Josephson junctions from the region in which the phase variable has a fairly well-defined value, i.e. its wave function has a narrow width, to the region where its value is almost completely unknown. The charge on the junction becomes well-defined and is predicted to quantize the current through the junction, giving rise to the Coulomb blockade at low bias

  8. Buffer layers for REBCO films for use in superconducting devices

    Science.gov (United States)

    Goyal, Amit; Wee, Sung-Hun

    2014-06-10

    A superconducting article includes a substrate having a biaxially textured surface. A biaxially textured buffer layer, which can be a cap layer, is supported by the substrate. The buffer layer includes a double perovskite of the formula A.sub.2B'B''O.sub.6, where A is rare earth or alkaline earth metal and B' and B'' are different transition metal cations. A biaxially textured superconductor layer is deposited so as to be supported by the buffer layer. A method of making a superconducting article is also disclosed.

  9. Increasing gap junctional coupling: a tool for dissecting the role of gap junctions

    DEFF Research Database (Denmark)

    Axelsen, Lene Nygaard; Haugan, Ketil; Stahlhut, Martin

    2007-01-01

    Much of our current knowledge about the physiological and pathophysiological role of gap junctions is based on experiments where coupling has been reduced by either chemical agents or genetic modification. This has brought evidence that gap junctions are important in many physiological processes....... In a number of cases, gap junctions have been implicated in the initiation and progress of disease, and experimental uncoupling has been used to investigate the exact role of coupling. The inverse approach, i.e., to increase coupling, has become possible in recent years and represents a new way of testing...... the role of gap junctions. The aim of this review is to summarize the current knowledge obtained with agents that selectively increase gap junctional intercellular coupling. Two approaches will be reviewed: increasing coupling by the use of antiarrhythmic peptide and its synthetic analogs...

  10. Exploiting the Gastric Epithelial Barrier: Helicobacter pylori's Attack on Tight and Adherens Junctions.

    Science.gov (United States)

    Backert, Steffen; Schmidt, Thomas P; Harrer, Aileen; Wessler, Silja

    2017-01-01

    Highly organized intercellular tight and adherens junctions are crucial structural components for establishing and maintenance of epithelial barrier functions, which control the microbiota and protect against intruding pathogens in humans. Alterations in these complexes represent key events in the development and progression of multiple infectious diseases as well as various cancers. The gastric pathogen Helicobacter pylori exerts an amazing set of strategies to manipulate these epithelial cell-to-cell junctions, which are implicated in changing cell polarity, migration and invasive growth as well as pro-inflammatory and proliferative responses. This chapter focuses on the H. pylori pathogenicity factors VacA, CagA, HtrA and urease, and how they can induce host cell signaling involved in altering cell-to-cell permeability. We propose a stepwise model for how H. pylori targets components of tight and adherens junctions in order to disrupt the gastric epithelial cell layer, giving fresh insights into the pathogenesis of this important bacterium.

  11. Wall-resolved Large Eddy Simulations of turbulent heat transfer in a T-junction

    Science.gov (United States)

    Georgiou, Michail; Papalexandris, Miltiadis V.

    2017-11-01

    In this talk we report on wall-resolved Large Eddy Simulations of turbulent heat transfer between a cold crossflow and a hot incoming jet in a T-junction. Due to their high efficiency in mixing and heat transfer, T-junctions are encountered in numerous industrial applications. Our study is motivated by the need to assess phenomena related to thermal fatigue that are often encountered at their walls. We first describe the important features of the flow with emphasis on the shear layers that are formed at the entry of the jet and the recirculation regions. We also show results for first- and second-order statistics of the flow and compare our predictions with previous experimental data. Lastly, we present results from the spectral analysis of the temperature signal that we performed in order to assess the oscillating mechanisms that dominate the flow and the risk of thermal fatigue at the walls of the T-junction.

  12. THE TURN OF THE MONTH EFFECT CONTINUED: A COMPARISON OF SMALL CAP STOCKS AND LARGE CAP STOCKS

    OpenAIRE

    Ramsundhar, Shamman

    2010-01-01

    The purpose of this paper is to investigate whether the turn of the month effect occurs in small cap and large cap stocks and if it occurs in both categories, to determine whether there is a difference in the magnitude. My research, for the period of 1963-2008, based on the CRSP value weighted index, shows that there is a significant turn of the month effect in small and large cap stocks, however the effect is larger in small cap stocks. Furthermore, this effect is not limited to a short time...

  13. Resonant tunnel magnetoresistance in a double magnetic tunnel junction

    KAUST Repository

    Useinov, Arthur

    2011-08-09

    We present quasi-classical approach to calculate a spin-dependent current and tunnel magnetoresistance (TMR) in double magnetic tunnel junctions (DMTJ) FML/I/FMW/I/FMR, where the magnetization of the middle ferromagnetic metal layer FMW can be aligned parallel or antiparallel with respect to the fixed magnetizations of the left FML and right FMR ferromagnetic electrodes. The transmission coefficients for components of the spin-dependent current, and TMR are calculated as a function of the applied voltage. As a result, we found a high resonant TMR. Thus, DMTJ can serve as highly effective magnetic nanosensor for biological applications, or as magnetic memory cells by switching the magnetization of the inner ferromagnetic layer FMW.© Springer Science+Business Media, LLC 2011.

  14. Proximity effect and Andreev reflection in single-C{sub 60} junctions

    Energy Technology Data Exchange (ETDEWEB)

    Brand, Jonathan; Neel, Nicolas; Kroeger, Joerg [Institut fuer Physik, Technische Universitaet Ilmenau, D-98693 Ilmenau (Germany)

    2016-07-01

    Single C{sub 60} molecules deposited on an ultrathin oxide film on Nb(110) were investigated using a low-temperature scanning tunnelling microscope. Spectroscopy of the differential conductance (dI/dV) in the tunnelling range indicates proximity-induced superconductivity in junctions comprising the oxide layer as well as single C{sub 60} molecules. Andreev reflection is enhanced upon controlled fabrication of tip-surface contacts. With decreasing electrode separation the Bardeen-Cooper-Schrieffer energy gap gradually evolves into a zero-bias peak in dI/dV spectra reflecting the spectroscopic signature of Andreev reflection. The current-voltage characteristics of the tunnelling and contact junctions are well described by the Blonder-Tinkham-Klapwijk theory. Our spectroscopic data evidence the influence of the electrodes' atomic-scale structure on electron transport across normal metal-superconductor interfaces.

  15. Minimum entropy principle-based solar cell operation without a pn-junction and a thin CdS layer to extract the holes from the emitter

    Science.gov (United States)

    Böer, Karl W.

    2016-10-01

    The solar cell does not use a pn-junction to separate electrons from holes, but uses an undoped CdS layer that is p-type inverted when attached to a p-type collector and collects the holes while rejecting the backflow of electrons and thereby prevents junction leakage. The operation of the solar cell is determined by the minimum entropy principle of the cell and its external circuit that determines the electrochemical potential, i.e., the Fermi-level of the base electrode to the operating (maximum power point) voltage. It leaves the Fermi level of the metal electrode of the CdS unchanged, since CdS does not participate in the photo-emf. All photoelectric actions are generated by the holes excited from the light that causes the shift of the quasi-Fermi levels in the generator and supports the diffusion current in operating conditions. It is responsible for the measured solar maximum power current. The open circuit voltage (Voc) can approach its theoretical limit of the band gap of the collector at 0 K and the cell increases the efficiency at AM1 to 21% for a thin-film CdS/CdTe that is given as an example here. However, a series resistance of the CdS forces a limitation of its thickness to preferably below 200 Å to avoid unnecessary reduction in efficiency or Voc. The operation of the CdS solar cell does not involve heated carriers. It is initiated by the field at the CdS/CdTe interface that exceeds 20 kV/cm that is sufficient to cause extraction of holes by the CdS that is inverted to become p-type. Here a strong doubly charged intrinsic donor can cause a negative differential conductivity that switches-on a high-field domain that is stabilized by the minimum entropy principle and permits an efficient transport of the holes from the CdTe to the base electrode. Experimental results of the band model of CdS/CdTe solar cells are given and show that the conduction bands are connected in the dark, where the electron current must be continuous, and the valence bands are

  16. Junction detection and pathway selection

    Science.gov (United States)

    Peck, Alex N.; Lim, Willie Y.; Breul, Harry T.

    1992-02-01

    The ability to detect junctions and make choices among the possible pathways is important for autonomous navigation. In our script-based navigation approach where a journey is specified as a script of high-level instructions, actions are frequently referenced to junctions, e.g., `turn left at the intersection.' In order for the robot to carry out these kind of instructions, it must be able (1) to detect an intersection (i.e., an intersection of pathways), (2) know that there are several possible pathways it can take, and (3) pick the pathway consistent with the high level instruction. In this paper we describe our implementation of the ability to detect junctions in an indoor environment, such as corners, T-junctions and intersections, using sonar. Our approach uses a combination of partial scan of the local environment and recognition of sonar signatures of certain features of the junctions. In the case where the environment is known, we use additional sensor information (such as compass bearings) to help recognize the specific junction. In general, once a junction is detected and its type known, the number of possible pathways can be deduced and the correct pathway selected. Then the appropriate behavior for negotiating the junction is activated.

  17. Floating-Gate Manipulated Graphene-Black Phosphorus Heterojunction for Nonvolatile Ambipolar Schottky Junction Memories, Memory Inverter Circuits, and Logic Rectifiers.

    Science.gov (United States)

    Li, Dong; Chen, Mingyuan; Zong, Qijun; Zhang, Zengxing

    2017-10-11

    The Schottky junction is an important unit in electronics and optoelectronics. However, its properties greatly degrade with device miniaturization. The fast development of circuits has fueled a rapid growth in the study of two-dimensional (2D) crystals, which may lead to breakthroughs in the semiconductor industry. Here we report a floating-gate manipulated nonvolatile ambipolar Schottky junction memory from stacked all-2D layers of graphene-BP/h-BN/graphene (BP, black phosphorus; h-BN, hexagonal boron nitride) in a designed floating-gate field-effect Schottky barrier transistor configuration. By manipulating the voltage pulse applied to the control gate, the device exhibits ambipolar characteristics and can be tuned to act as graphene-p-BP or graphene-n-BP junctions with reverse rectification behavior. Moreover, the junction exhibits good storability properties of more than 10 years and is also programmable. On the basis of these characteristics, we further demonstrate the application of the device to dual-mode nonvolatile Schottky junction memories, memory inverter circuits, and logic rectifiers.

  18. Atomic layer deposited TiO2 for implantable brain-chip interfacing devices

    International Nuclear Information System (INIS)

    Cianci, E.; Lattanzio, S.; Seguini, G.; Vassanelli, S.; Fanciulli, M.

    2012-01-01

    In this paper we investigated atomic layer deposition (ALD) TiO 2 thin films deposited on implantable neuro-chips based on electrolyte-oxide-semiconductor (EOS) junctions, implementing both efficient capacitive neuron-silicon coupling and biocompatibility for long-term implantable functionality. The ALD process was performed at 295 °C using titanium tetraisopropoxide and ozone as precursors on needle-shaped silicon substrates. Engineering of the capacitance of the EOS junctions introducing a thin Al 2 O 3 buffer layer between TiO 2 and silicon resulted in a further increase of the specific capacitance. Biocompatibility for long-term implantable neuroprosthetic systems was checked upon in-vitro treatment.

  19. Effect of Particle Size on the Magnetic Properties of Ni Nanoparticles Synthesized with Trioctylphosphine as the Capping Agent

    Directory of Open Access Journals (Sweden)

    Toshitaka Ishizaki

    2016-09-01

    Full Text Available Magnetic cores of passive components are required to have low hysteresis loss, which is dependent on the coercive force. Since it is well known that the coercive force becomes zero at the superparamagnetic regime below a certain critical size, we attempted to synthesize Ni nanoparticles in a size-controlled fashion and investigated the effect of particle size on the magnetic properties. Ni nanoparticles were synthesized by the reduction of Ni acetylacetonate in oleylamine at 220 °C with trioctylphosphine (TOP as the capping agent. An increase in the TOP/Ni ratio resulted in the size decrease. We succeeded in synthesizing superparamagnetic Ni nanoparticles with almost zero coercive force at particle size below 20 nm by the TOP/Ni ratio of 0.8. However, the saturation magnetization values became smaller with decrease in the size. The saturation magnetizations of the Ni nanoparticles without capping layers were calculated based on the assumption that the interior atoms of the nanoparticles were magnetic, whereas the surface-oxidized atoms were non-magnetic. The measured and calculated saturation magnetization values decreased in approximately the same fashion as the TOP/Ni ratio increased, indicating that the decrease could be mainly attributed to increases in the amounts of capping layer and oxidized surface atoms.

  20. Transport properties in monolayer-bilayer-monolayer graphene planar junctions

    Institute of Scientific and Technical Information of China (English)

    Kai-Long Chu; Zi-Bo Wang; Jiao-Jiao Zhou; Hua Jiang

    2017-01-01

    The transport study of graphene based junctions has become one of the focuses in graphene research.There are two stacking configurations for monolayer-bilayer-monolayer graphene planar junctions.One is the two monolayer graphene contacting the same side of the bilayer graphene,and the other is the two-monolayer graphene contacting the different layers of the bilayer graphene.In this paper,according to the Landauer-Büttiker formula,we study the transport properties of these two configurations.The influences of the local gate potential in each part,the bias potential in bilayer graphene,the disorder and external magnetic field on conductance are obtained.We find the conductances of the two configurations can be manipulated by all of these effects.Especially,one can distinguish the two stacking configurations by introducing the bias potential into the bilayer graphene.The strong disorder and the external magnetic field will make the two stacking configurations indistinguishable in the transport experiment.

  1. Tunnel magnetoresistance in asymmetric double-barrier magnetic tunnel junctions

    International Nuclear Information System (INIS)

    Useinov, N.Kh.; Petukhov, D.A.; Tagirov, L.R.

    2015-01-01

    The spin-polarized tunnel conductance and tunnel magnetoresistance (TMR) through a planar asymmetric double-barrier magnetic tunnel junction (DBMTJ) have been calculated using quasi-classical model. In DBMTJ nanostructure the magnetization of middle ferromagnetic metal layer can be aligned parallel or antiparallel with respect to the fixed magnetizations of the top and bottom ferromagnetic electrodes. The transmission coefficients of an electron to pass through the barriers have been calculated in terms of quantum mechanics. The dependencies of tunnel conductance and TMR on the applied voltage have been calculated in case of non-resonant transmission. Estimated in the framework of our model, the difference between the spin-channels conductances at low voltages was found relatively large. This gives rise to very high magnitude of TMR. - Highlights: • The spin-polarized conductance through the junction is calculated. • Dependencies of the tunnel conductance vs applied bias are shown. • Bias voltage dependence of tunnel magnetoresistance for the structure is shown

  2. Supramolecular tunneling junctions

    NARCIS (Netherlands)

    Wimbush, K.S.

    2012-01-01

    In this study a variety of supramolecular tunneling junctions were created. The basis of these junctions was a self-assembled monolayer of heptathioether functionalized ß-cyclodextrin (ßCD) formed on an ultra-flat Au surface, i.e., the bottom electrode. This gave a well-defined hexagonally packed

  3. Phase diagrams of particles with dissimilar patches: X-junctions and Y-junctions

    International Nuclear Information System (INIS)

    Tavares, J M; Teixeira, P I C

    2012-01-01

    We use Wertheim’s first-order perturbation theory to investigate the phase behaviour and the structure of coexisting fluid phases for a model of patchy particles with dissimilar patches (two patches of type A and f B patches of type B). A patch of type α = {A,B} can bond to a patch of type β = {A,B} in a volume v αβ , thereby decreasing the internal energy by ε αβ . We analyse the range of model parameters where AB bonds, or Y-junctions, are energetically disfavoured (ε AB AA /2) but entropically favoured (v AB ≫ v αα ), and BB bonds, or X-junctions, are energetically favoured (ε BB > 0). We show that, for low values of ε BB /ε AA , the phase diagram has three different regions: (i) close to the critical temperature a low-density liquid composed of long chains and rich in Y-junctions coexists with a vapour of chains; (ii) at intermediate temperatures there is coexistence between a vapour of short chains and a liquid of very long chains with X- and Y-junctions; (iii) at low temperatures an ideal gas coexists with a high-density liquid with all possible AA and BB bonds formed. It is also shown that in region (i) the liquid binodal is reentrant (its density decreases with decreasing temperature) for the lower values of ε BB /ε AA . The existence of these three regions is a consequence of the competition between the formation of X- and Y-junctions: X-junctions are energetically favoured and thus dominate at low temperatures, whereas Y-junctions are entropically favoured and dominate at higher temperatures. (paper)

  4. Theoretical consideration of spin-polarized resonant tunneling in magnetic tunnel junctions

    International Nuclear Information System (INIS)

    Mu Haifeng; Zhu Zhengang; Zheng Qingrong; Jin Biao; Wang Zhengchuan; Su Gang

    2004-01-01

    A recent elegant experimental realization [S. Yuasa et al., Science 297 (2002) 234] of the spin-polarized resonant tunneling in magnetic tunnel junctions is interpreted in terms of a two-band model. It is shown that the tunnel magnetoresistance (TMR) decays oscillatorily with the thickness of the normal metal (NM) layer, being fairly in agreement with the experimental observation. The tunnel conductance is found to decay with slight oscillations with the increase of the NM layer thickness, which is also well consistent with the experiment. In addition, when the magnetizations of both ferromagnet electrodes are not collinearly aligned, TMR is found to exhibit sharp resonant peaks at some particular thickness of the NM layer. The peaked TMR obeys nicely a Gaussian distribution against the relative orientation of the magnetizations

  5. Vertical current-flow enhancement via fabrication of GaN nanorod p–n junction diode on graphene

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Sung Ryong [Quantum-functional Semiconductor Research Center, Dongguk University-Seoul, 100-715 (Korea, Republic of); Department of physics, Dongguk University, Seoul, 100-715 (Korea, Republic of); Ram, S.D. Gopal; Lee, Seung Joo; Cho, Hak-dong; Lee, Sejoon [Quantum-functional Semiconductor Research Center, Dongguk University-Seoul, 100-715 (Korea, Republic of); Kang, Tae Won, E-mail: twkang@dongguk.edu [Quantum-functional Semiconductor Research Center, Dongguk University-Seoul, 100-715 (Korea, Republic of); Clean Energy and Nano Convergence Centre, Hindustan University, Chennai 600 016 (India); Kwon, Sangwoo; Yang, Woochul [Department of physics, Dongguk University, Seoul, 100-715 (Korea, Republic of); Shin, Sunhye [Soft-Epi Inc., 240 Opo-ro, Opo-eup, Gwangju-si, Gyeonggi-do (Korea, Republic of); Woo, Yongdeuk [Department of Mechanical and Automotive Engineering, Woosuk University, Chonbuk 565-701 (Korea, Republic of)

    2015-08-30

    Highlights: • Uniaxial p–n junction diode in GaN nanorod is made by Hydride vapor phase epitaxy method. • The p–n junction diode property is clearly observed from the fabricated uniaxial p–n junction nanorod GaN nanorod. • Graphene is used as a current spreading layer to reduce the lateral resistance up to 700 times when compared with the commercial sapphire substrate, which is clearly explained with the aid of an equivalent circuit. • Kelvin Force Probe microscopy method is employed to visualize the p- and n- regions in a single GaN nanorod. - Abstract: Mg doped GaN nanorods were grown on undoped n-type GaN nanorods uniaxial on monolayer graphene by hydride vapor phase epitaxy (HVPE) method. The monolayer graphene used as the bottom electrode and a substrate as well provides good electrical contact, acts as a current spreading layer, well suitable for the growth of hexagonal GaN nanorod. In addition it has a work function suitable to that of n-GaN. The formed p–n nanorods show a Schottky behavior with a turn on voltage of 3 V. Using graphene as the substrate, the resistance of the nanorod is reduced by 700 times when compared with the case without using graphene as the current spreading layer. The low resistance of graphene acts in parallel with the resistance of the GaN buffer layer, and reduces the resistance drastically. The formed p–n junction in a single GaN nanorod is visualized by Kelvin Force Probe Microscopy (KPFM) to have distinctively contrast p and n regions. The measured contact potential difference of p-and n-region has a difference of 103 mV which well confirms the formed regions are electronically different. Low temperature photoluminescence (PL) spectra give evidence of dopant related acceptor bound emission at 3.2 eV different from 3.4 eV of undoped GaN. The crystalline structure, compositional purity is confirmed by X-ray diffraction (XRD), Transmission and Scanning electron microcopies (SEM), (TEM), Energy dispersive analysis

  6. Vertical current-flow enhancement via fabrication of GaN nanorod p–n junction diode on graphene

    International Nuclear Information System (INIS)

    Ryu, Sung Ryong; Ram, S.D. Gopal; Lee, Seung Joo; Cho, Hak-dong; Lee, Sejoon; Kang, Tae Won; Kwon, Sangwoo; Yang, Woochul; Shin, Sunhye; Woo, Yongdeuk

    2015-01-01

    Highlights: • Uniaxial p–n junction diode in GaN nanorod is made by Hydride vapor phase epitaxy method. • The p–n junction diode property is clearly observed from the fabricated uniaxial p–n junction nanorod GaN nanorod. • Graphene is used as a current spreading layer to reduce the lateral resistance up to 700 times when compared with the commercial sapphire substrate, which is clearly explained with the aid of an equivalent circuit. • Kelvin Force Probe microscopy method is employed to visualize the p- and n- regions in a single GaN nanorod. - Abstract: Mg doped GaN nanorods were grown on undoped n-type GaN nanorods uniaxial on monolayer graphene by hydride vapor phase epitaxy (HVPE) method. The monolayer graphene used as the bottom electrode and a substrate as well provides good electrical contact, acts as a current spreading layer, well suitable for the growth of hexagonal GaN nanorod. In addition it has a work function suitable to that of n-GaN. The formed p–n nanorods show a Schottky behavior with a turn on voltage of 3 V. Using graphene as the substrate, the resistance of the nanorod is reduced by 700 times when compared with the case without using graphene as the current spreading layer. The low resistance of graphene acts in parallel with the resistance of the GaN buffer layer, and reduces the resistance drastically. The formed p–n junction in a single GaN nanorod is visualized by Kelvin Force Probe Microscopy (KPFM) to have distinctively contrast p and n regions. The measured contact potential difference of p-and n-region has a difference of 103 mV which well confirms the formed regions are electronically different. Low temperature photoluminescence (PL) spectra give evidence of dopant related acceptor bound emission at 3.2 eV different from 3.4 eV of undoped GaN. The crystalline structure, compositional purity is confirmed by X-ray diffraction (XRD), Transmission and Scanning electron microcopies (SEM), (TEM), Energy dispersive analysis

  7. Layered double hydroxide supported gold nanoclusters by glutathione-capped Au nanoclusters precursor method for highly efficient aerobic oxidation of alcohols

    Science.gov (United States)

    Li, Lun; Dou, Liguang; Zhang, Hui

    2014-03-01

    M3Al-layered double hydroxide (LDH, M = Mg, Ni, Co) supported Au nanoclusters (AuNCs) catalysts have been prepared for the first time by using water-soluble glutathione-capped Au nanoclusters as precursor. Detailed characterizations show that the ultrafine Au nanoclusters (ca. 1.5 +/- 0.6 nm) were well dispersed on the surface of LDH with a loading of Au below ~0.23 wt% upon synergetic interaction between AuNCs and M3Al-LDH. AuNCs/Mg3Al-LDH-0.23 exhibits much higher catalytic performance for the oxidation of 1-phenylethanol in toluene than Au/Mg3Al-LDH(DP) by the conventional deposition precipitation method and can be applied for a wide range of alcohols without basic additives. This catalyst can also be reused without loss of activity or selectivity. The AuNCs/M(= Ni, Co)3Al-LDH catalysts present even higher alcohol oxidation activity than AuNCs/Mg3Al-LDH. Particularly, AuNCs/Ni3Al-LDH-0.22 exhibits the highest activity (46 500 h-1) for the aerobic oxidation of 1-phenylethanol under solvent-free conditions attributed to its strongest Au-support synergy. The excellent activity and stability of AuNCs/M3Al-LDH catalysts render these materials promising candidates for green base-free selective oxidation of alcohols by molecular oxygen.M3Al-layered double hydroxide (LDH, M = Mg, Ni, Co) supported Au nanoclusters (AuNCs) catalysts have been prepared for the first time by using water-soluble glutathione-capped Au nanoclusters as precursor. Detailed characterizations show that the ultrafine Au nanoclusters (ca. 1.5 +/- 0.6 nm) were well dispersed on the surface of LDH with a loading of Au below ~0.23 wt% upon synergetic interaction between AuNCs and M3Al-LDH. AuNCs/Mg3Al-LDH-0.23 exhibits much higher catalytic performance for the oxidation of 1-phenylethanol in toluene than Au/Mg3Al-LDH(DP) by the conventional deposition precipitation method and can be applied for a wide range of alcohols without basic additives. This catalyst can also be reused without loss of activity

  8. Nerve signaling regulates basal keratinocyte proliferation in the blastema apical epithelial cap in the axolotl (Ambystoma mexicanum).

    Science.gov (United States)

    Satoh, Akira; Bryant, Susan V; Gardiner, David M

    2012-06-15

    The ability of adult vertebrates to repair tissue damage is widespread and impressive; however, the ability to regenerate structurally complex organs such as the limb is limited largely to the salamanders. The fact that most of the tissues of the limb can regenerate has led investigators to question and identify the barriers to organ regeneration. From studies in the salamander, it is known that one of the earliest steps required for successful regeneration involves signaling between nerves and the wound epithelium/apical epithelial cap (AEC). In this study we confirm an earlier report that the keratinocytes of the AEC acquire their function coincident with exiting the cell cycle. We have discovered that this unique, coordinated behavior is regulated by nerve signaling and is associated with the presence of gap junctions between the basal keratinocytes of the AEC. Disruption of nerve signaling results in a loss of gap junction protein, the reentry of the cells into the cell cycle, and regenerative failure. Finally, coordinated exit from the cell cycle appears to be a conserved behavior of populations of cells that function as signaling centers during both development and regeneration. Copyright © 2012 Elsevier Inc. All rights reserved.

  9. Effects of rooting and tree growth of selected woodland species on cap integrity in a mineral capped landfill site.

    Science.gov (United States)

    Hutchings, T R; Moffat, A J; Kemp, R A

    2001-06-01

    The above and below ground growth of three tree species (Alnus glutinosa, Pinus nigra var. maritima and Acer pseudoplatanus) was studied on a containment landfill site at Waterford, Hertfordshire, UK. Tree root architecture was studied using soil inspection pits excavated next to 12 trees of each species and mapped in detail. Tree height was related to soil thickness over the compacted mineral cap. No roots entered the cap where soil thickness was 1.3 m, but a few roots, especially of alder, were observed within it when the soil cover was 1.0 m or less. Micromorphological analysis of undisturbed samples of the mineral cap suggested that roots exploited weaknesses in the cap rather than actively causing penetration into it. Alder roots were more tolerant of anaerobic conditions within the cap than the other species examined. The results confirm that mineral caps should be covered by 1.5 m of soil or soil-forming material if tree establishment is intended over a restored landfill site, unless protected by other parts of a composite capping system.

  10. Reduced-droop green III-nitride light-emitting diodes utilizing GaN tunnel junction

    Science.gov (United States)

    Alhassan, Abdullah I.; Young, Erin C.; Alyamani, Ahmed Y.; Albadri, Abdulrahman; Nakamura, Shuji; DenBaars, Steven P.; Speck, James S.

    2018-04-01

    We report the fabrication of low-droop high-efficiency green c-plane light-emitting diodes (LEDs) utilizing GaN tunnel junction (TJ) contacts. The LED epitaxial layers with a top p-GaN layer were grown by metal organic chemical vapor deposition and an n++-GaN layer was deposited by molecular beam epitaxy to form a TJ. The TJ LEDs were then compared with equivalent LEDs having a tin-doped indium oxide (ITO) contact. The TJ LEDs exhibited a higher performance and a lower efficiency droop than did the ITO LEDs. At 35 A/cm2, the external quantum efficiencies for the TJ and ITO LEDs were 31.2 and 27%, respectively.

  11. The role of temperature ramp-up time before barrier layer growth in optical and structural properties of InGaN/GaN multi-quantum wells

    Science.gov (United States)

    Xing, Yao; Zhao, Degang; Jiang, Desheng; Liu, Zongshun; Zhu, Jianjun; Chen, Ping; Yang, Jing; Liu, Wei; Liang, Feng; Liu, Shuangtao; Zhang, Liqun; Wang, Wenjie; Li, Mo; Zhang, Yuantao; Du, Guotong

    2018-05-01

    In InGaN/GaN multi-quantum wells (MQWs), a low temperature cap (LT-cap) layer is grown between the InGaN well layer and low temperature GaN barrier layer. During the growth, a temperature ramp-up and ramp-down process is added between LT-cap and barrier layer growth. The effect of temperature ramp-up time duration on structural and optical properties of quantum wells is studied. It is found that as the ramp-up time increases, the Indium floating layer on the top of the well layer can be diminished effectively, leading to a better interface quality between well and barrier layers, and the carrier localization effect is enhanced, thereby the internal quantum efficiency (IQE) of QWs increases surprisingly. However, if the ramp-up time is too long, the carrier localization effect is weaker, which may increase the probabilities of carriers to meet with nonradiative recombination centers. Meanwhile, more nonradiative recombination centers will be introduced into well layers due to the indium evaporation. Both of them will lead to a reduction of internal quantum efficiency (IQE) of MQWs.

  12. Sputtered indium-tin oxide/cadmium telluride junctions and cadmium telluride surfaces

    International Nuclear Information System (INIS)

    Courreges, F.G.; Fahrenbruch, A.L.; Bube, R.H.

    1980-01-01

    The properties of indium-tin oxide (ITO)/CdTe junction solar cells prepared by rf sputtering of ITO on P-doped CdTe single-crystal substrates have been investigated through measurements of the electrical and photovoltaic properties of ITO/CdTe and In/CdTe junctions, and of electron beam induced currents (EBIC) in ITO/CdTe junctions. In addition, surface properties of CdTe related to the sputtering process were investigated as a function of sputter etching and thermal oxidation using the techniques of surface photovoltage and photoluminescence. ITO/CdTe cells prepared by this sputtering method consist of an n + -ITO/n-CdTe/p-CdTe buried homojunction with about a 1-μm-thick n-type CdTe layer formed by heating of the surface of the CdTe during sputtering. Solar efficiencies up to 8% have been observed with V/sub 0c/=0.82 V and J/sub s/c=14.5 mA/cm 2 . The chief degradation mechanism involves a decrease in V/sub 0c/ with a transformation of the buried homojunction structure to an actual ITO/CdTe heterojunction

  13. The Effects of Light Intensity, Casing Layers, and Layering Styles on Royal Sun Medicinal Mushroom, Agaricus brasiliensis (Higher Basidiomycetes) Cultivation in Turkey.

    Science.gov (United States)

    Adanacioglu, Neşe; Boztok, Kaya; Akdeniz, Ramazan Cengiz

    2015-01-01

    The aim of this research is to evaluate the effects of light intensity, casing layers, and layering styles on the production of the culinary-medicinal mushroom Agaricus brasiliensis in Turkey. The experiments were designed in split-split plots and replicated twice. Three different light intensities-I1, 350 lux; I2, 450 lux; and I3, 750 lux-were used in main plots as environmental factors. A mixture of 4 different casing layers- peat (100%), peat-perlite (75%:25%), peat-clinoptilolite (75%:25%), and peat-perlite-clinoptilolite (60%:20%:20%)-were used at split plots and at split plots. S1, a flat, 3-cm casing layer; S2, a flat, 5-cm casing layer; and S3, casing soil ridges 10 cm wide × 4 cm high, 10 cm apart, were deposited on top of 1-cm overall soil casing layers. At the end of the harvest phase, the total yield was estimated per 100 kg of substrate. Biological efficiency (percentage) was determined from the fresh weight of the mushrooms and the dry weight of the compost at the end of the harvesting period. The highest total yield (7.2 kg/100 kg compost) and biological efficiency (27.63%) were achieved from I2 × peat-perlite-clinoptilolite × S2 treatment. Influence of light intensity, casing layer, layering style, and their interaction in treatments with color values (L*, a*, b*, chroma*, and hue*) also were examined. It has been shown that within color values, chroma* (saturation) values of mushroom caps were affected by light intensity, casing layer, and layering style treatments and light intensity × casing layer treatments and the brightness of mushroom caps tended to increase as light intensity increased.

  14. Cap stabilization for reclaimed uranium sites

    International Nuclear Information System (INIS)

    Abt, S.R.; Nelson, J.D.; Johnson, T.L.; Hawkins, E.F.

    1989-01-01

    The reclamation and stabilization of uranium-mill tailings sites requires engineering designs to protect against the disruption of tailings and the potential release of radioactive materials. The reclamation design is to be effective for 200-1000 years. This paper presents recently developed or refined techniques and methodologies used to evaluate uranium-tailings-reclamation plans designed to provide long-term stability against failure modes. Specific cap-design aspects presented include design flood selection, influence of fluvial geomorphology on site stabilization, stable slope prediction, slope stabilization using riprap, and riprap selection relative to rock quality and durability. Design relationships are presented for estimating flow through riprap, sizing riprap, and estimating riprap flow resistance for overtopping conditions. Guidelines for riprap-layer thickness and gradation are presented. A riprap-rating procedure for estimating rock quality and durability is also presented

  15. Behavior of tight-junction, adherens-junction and cell polarity proteins during HNF-4α-induced epithelial polarization

    International Nuclear Information System (INIS)

    Satohisa, Seiro; Chiba, Hideki; Osanai, Makoto; Ohno, Shigeo; Kojima, Takashi; Saito, Tsuyoshi; Sawada, Norimasa

    2005-01-01

    We previously reported that expression of tight-junction molecules occludin, claudin-6 and claudin-7, as well as establishment of epithelial polarity, was triggered in mouse F9 cells expressing hepatocyte nuclear factor (HNF)-4α [H. Chiba, T. Gotoh, T. Kojima, S. Satohisa, K. Kikuchi, M. Osanai, N. Sawada. Hepatocyte nuclear factor (HNF)-4α triggers formation of functional tight junctions and establishment of polarized epithelial morphology in F9 embryonal carcinoma cells, Exp. Cell Res. 286 (2003) 288-297]. Using these cells, we examined in the present study behavior of tight-junction, adherens-junction and cell polarity proteins and elucidated the molecular mechanism behind HNF-4α-initiated junction formation and epithelial polarization. We herein show that not only ZO-1 and ZO-2, but also ZO-3, junctional adhesion molecule (JAM)-B, JAM-C and cell polarity proteins PAR-3, PAR-6 and atypical protein kinase C (aPKC) accumulate at primordial adherens junctions in undifferentiated F9 cells. In contrast, CRB3, Pals1 and PATJ appeared to exhibit distinct subcellular localization in immature cells. Induced expression of HNF-4α led to translocation of these tight-junction and cell polarity proteins to beltlike tight junctions, where occludin, claudin-6 and claudin-7 were assembled, in differentiated cells. Interestingly, PAR-6, aPKC, CRB3 and Pals1, but not PAR-3 or PATJ, were also concentrated on the apical membranes in differentiated cells. These findings indicate that HNF-4α provokes not only expression of tight-junction adhesion molecules, but also modulation of subcellular distribution of junction and cell polarity proteins, resulting in junction formation and epithelial polarization

  16. Ultimately short ballistic vertical graphene Josephson junctions

    Science.gov (United States)

    Lee, Gil-Ho; Kim, Sol; Jhi, Seung-Hoon; Lee, Hu-Jong

    2015-01-01

    Much efforts have been made for the realization of hybrid Josephson junctions incorporating various materials for the fundamental studies of exotic physical phenomena as well as the applications to superconducting quantum devices. Nonetheless, the efforts have been hindered by the diffusive nature of the conducting channels and interfaces. To overcome the obstacles, we vertically sandwiched a cleaved graphene monoatomic layer as the normal-conducting spacer between superconducting electrodes. The atomically thin single-crystalline graphene layer serves as an ultimately short conducting channel, with highly transparent interfaces with superconductors. In particular, we show the strong Josephson coupling reaching the theoretical limit, the convex-shaped temperature dependence of the Josephson critical current and the exceptionally skewed phase dependence of the Josephson current; all demonstrate the bona fide short and ballistic Josephson nature. This vertical stacking scheme for extremely thin transparent spacers would open a new pathway for exploring the exotic coherence phenomena occurring on an atomic scale. PMID:25635386

  17. Preparation and characterization of highly water-soluble magnetic Fe3O4 nanoparticles via surface double-layered self-assembly method of sodium alpha-olefin sulfonate

    International Nuclear Information System (INIS)

    Li, Honghong; Qin, Li; Feng, Ying; Hu, Lihua; Zhou, Chunhua

    2015-01-01

    A kind of double-layered self-assembly sodium alpha-olefin sulfonate (AOS) capped Fe 3 O 4 magnetic nanoparticles (Fe 3 O 4 -AOS-MN) with highly water-solubility was prepared by a wet co-precipitation method with a pH of 4.8. The resulting Fe 3 O 4 -AOS-MN could be dispersed into water to form stable magnetic fluid without other treatments. The result of X-ray diffraction (XRD) indicated that the Fe 3 O 4 -AOS-MN maintained original crystalline structure and exhibited a diameter of about 7.5 nm. The iron oxide phase of nanoparticles determined by Raman spectroscopy is Fe 3 O 4 . Transmission electron microscopy (TEM) analysis confirmed that the Fe 3 O 4 -AOS-MN with spherical morphology were uniformly dispersed in water. FT-IR spectroscopy (FT-IR) and thermo-gravimetric analysis (TGA) verified the successful preparation of Fe 3 O 4 -AOS-MN capped with double-layered self-assembled AOS. The corresponding capacities of monolayer chemical absorption and the second-layer self-assembly absorption were respectively 4.07 and 14.71 wt% of Fe 3 O 4 -MN, which were much lower than those of other surfactants. Vibrating sample magnetometer (VSM) test result showed Fe 3 O 4 -AOS-MN possessed superparamagnetic behavior with the saturation magnetization value of about 44.45 emu/g. The blocking temperature T B of Fe 3 O 4 -AOS-MN capped with double-layered AOS is 170 K. - Highlights: • Double-layered self-assembly sodium alpha-olefin sulfonate (AOS) capped Fe 3 O 4 magnetic nanoparticles are prepared by a wet co-precipitation method. • Double-layered Fe 3 O 4 -AOS-MN exhibits highly water-solubility. • The iron oxide phase is determined by Raman spectroscopy. • Fe 3 O 4 -AOS-MN capped with double-layered AOS possesses super-paramagnetic behavior. • The blocking temperature T B of Fe 3 O 4 -AOS-MN capped with double-layered AOS is 170 K

  18. Analyses of hydraulic performance of velocity caps

    DEFF Research Database (Denmark)

    Christensen, Erik Damgaard; Degn Eskesen, Mark Chr.; Buhrkall, Jeppe

    2014-01-01

    The hydraulic performance of a velocity cap has been investigated. Velocity caps are often used in connection with offshore intakes. CFD (computational fluid dynamics) examined the flow through the cap openings and further down into the intake pipes. This was combined with dimension analyses...

  19. Transport Properties of an Electron-Hole Bilayer in Contact with a Superconductor Hybrid Junction

    Science.gov (United States)

    Bercioux, D.; Klapwijk, T. M.; Bergeret, F. S.

    2017-08-01

    We investigate the transport properties of a junction consisting of an electron-hole bilayer in contact with normal and superconducting leads. The electron-hole bilayer is considered as a semimetal with two electronic bands. We assume that in the region between the contacts the system hosts an exciton condensate described by a BCS-like model with a gap Γ in the quasiparticle density of states. We first discuss how the subgap electronic transport through the junction is mainly governed by the interplay between two kinds of reflection processes at the interfaces: the standard Andreev reflection at the interface between the superconductor and the exciton condensate, and a coherent crossed reflection at the semimetal-exciton-condensate interface that converts electrons from one layer into the other. We show that the differential conductance of the junction shows a minimum at voltages of the order of Γ /e . Such a minimum can be seen as a direct hallmark of the existence of the gapped excitonic state.

  20. The Dissolution of Double Holliday Junctions

    DEFF Research Database (Denmark)

    Bizard, Anna H; Hickson, Ian D

    2014-01-01

    as "double Holliday junction dissolution." This reaction requires the cooperative action of a so-called "dissolvasome" comprising a Holliday junction branch migration enzyme (Sgs1/BLM RecQ helicase) and a type IA topoisomerase (Top3/TopoIIIα) in complex with its OB (oligonucleotide/oligosaccharide binding......Double Holliday junctions (dHJS) are important intermediates of homologous recombination. The separate junctions can each be cleaved by DNA structure-selective endonucleases known as Holliday junction resolvases. Alternatively, double Holliday junctions can be processed by a reaction known......) fold containing accessory factor (Rmi1). This review details our current knowledge of the dissolution process and the players involved in catalyzing this mechanistically complex means of completing homologous recombination reactions....