WorldWideScience

Sample records for junction barrier function

  1. Intestinal epithelial barrier function and tight junction proteins with heat and exercise

    DEFF Research Database (Denmark)

    Dokladny, Karol; Zuhl, Micah N; Moseley, Pope L

    2016-01-01

    (passive hyperthermia) heat stress on tight junction barrier function in in vitro and in vivo (animals and humans) models. Our secondary focus is to review changes in tight junction proteins in response to exercise or hyperthermic conditions. Finally, we discuss some pharmacological or nutritional...... interventions that may affect the cellular mechanisms involved in maintaining homeostasis of the intestinal epithelial tight junction barrier during heat stress or exercise....

  2. Acidic bile salts modulate the squamous epithelial barrier function by modulating tight junction proteins.

    Science.gov (United States)

    Chen, Xin; Oshima, Tadayuki; Tomita, Toshihiko; Fukui, Hirokazu; Watari, Jiro; Matsumoto, Takayuki; Miwa, Hiroto

    2011-08-01

    Experimental models for esophageal epithelium in vitro either suffer from poor differentiation or complicated culture systems. An air-liquid interface system with normal human bronchial epithelial cells can serve as a model of esophageal-like squamous epithelial cell layers. Here, we explore the influence of bile acids on barrier function and tight junction (TJ) proteins. The cells were treated with taurocholic acid (TCA), glycocholic acid (GCA), or deoxycholic acid (DCA) at different pH values, or with pepsin. Barrier function was measured by transepithelial electrical resistance (TEER) and the diffusion of paracellular tracers (permeability). The expression of TJ proteins, including claudin-1 and claudin-4, was examined by Western blotting of 1% Nonidet P-40-soluble and -insoluble fractions. TCA and GCA dose-dependently decreased TEER and increased paracellular permeability at pH 3 after 1 h. TCA (4 mM) or GCA (4 mM) did not change TEER and permeability at pH 7.4 or pH 4. The combination of TCA and GCA at pH 3 significantly decreased TEER and increased permeability at lower concentrations (2 mM). Pepsin (4 mg/ml, pH 3) did not have any effect on barrier function. DCA significantly decreased the TEER and increased permeability at pH 6, a weakly acidic condition. TCA (4 mM) and GCA (4 mM) significantly decreased the insoluble fractions of claudin-1 and claudin-4 at pH 3. In conclusion, acidic bile salts disrupted the squamous epithelial barrier function partly by modulating the amounts of claudin-1 and claudin-4. These results provide new insights for understanding the role of TJ proteins in esophagitis.

  3. Autophagy enhances intestinal epithelial tight junction barrier function by targeting claudin-2 protein degradation.

    Science.gov (United States)

    Nighot, Prashant K; Hu, Chien-An Andy; Ma, Thomas Y

    2015-03-13

    Autophagy is an intracellular degradation pathway and is considered to be an essential cell survival mechanism. Defects in autophagy are implicated in many pathological processes, including inflammatory bowel disease. Among the innate defense mechanisms of intestinal mucosa, a defective tight junction (TJ) barrier has been postulated as a key pathogenic factor in the causation and progression of inflammatory bowel disease by allowing increased antigenic permeation. The cross-talk between autophagy and the TJ barrier has not yet been described. In this study, we present the novel finding that autophagy enhances TJ barrier function in Caco-2 intestinal epithelial cells. Nutrient starvation-induced autophagy significantly increased transepithelial electrical resistance and reduced the ratio of sodium/chloride paracellular permeability. Nutrient starvation reduced the paracellular permeability of small-sized urea but not larger molecules. The role of autophagy in the modulation of paracellular permeability was confirmed by pharmacological induction as well as pharmacological and genetic inhibition of autophagy. Consistent with the autophagy-induced reduction in paracellular permeability, a marked decrease in the level of the cation-selective, pore-forming TJ protein claudin-2 was observed after cell starvation. Starvation reduced the membrane presence of claudin-2 and increased its cytoplasmic, lysosomal localization. Therefore, our data show that autophagy selectively reduces epithelial TJ permeability of ions and small molecules by lysosomal degradation of the TJ protein claudin-2.

  4. The serine protease-mediated increase in intestinal epithelial barrier function is dependent on occludin and requires an intact tight junction.

    Science.gov (United States)

    Ronaghan, Natalie J; Shang, Judie; Iablokov, Vadim; Zaheer, Raza; Colarusso, Pina; Dion, Sébastien; Désilets, Antoine; Leduc, Richard; Turner, Jerrold R; MacNaughton, Wallace K

    2016-09-01

    Barrier dysfunction is a characteristic of the inflammatory bowel diseases (IBD), Crohn's disease and ulcerative colitis. Understanding how the tight junction is modified to maintain barrier function may provide avenues for treatment of IBD. We have previously shown that the apical addition of serine proteases to intestinal epithelial cell lines causes a rapid and sustained increase in transepithelial electrical resistance (TER), but the mechanisms are unknown. We hypothesized that serine proteases increase barrier function through trafficking and insertion of tight junction proteins into the membrane, and this could enhance recovery of a disrupted monolayer after calcium switch or cytokine treatment. In the canine epithelial cell line, SCBN, we showed that matriptase, an endogenous serine protease, could potently increase TER. Using detergent solubility-based cell fractionation, we found that neither trypsin nor matriptase treatment changed levels of tight junction proteins at the membrane. In a fast calcium switch assay, serine proteases did not enhance the rate of recovery of the junction. In addition, serine proteases could not reverse barrier disruption induced by IFNγ and TNFα. We knocked down occludin in our cells using siRNA and found this prevented the serine protease-induced increase in TER. Using fluorescence recovery after photobleaching (FRAP), we found serine proteases induce a greater mobile fraction of occludin in the membrane. These data suggest that a functional tight junction is needed for serine proteases to have an effect on TER, and that occludin is a crucial tight junction protein in this mechanism.

  5. [Vascular endothelial Barrier Function].

    Science.gov (United States)

    Ivanov, A N; Puchinyan, D M; Norkin, I A

    2015-01-01

    Endothelium is an important regulator of selective permeability of the vascular wall for different molecules and cells. This review summarizes current data on endothelial barrier function. Endothelial glycocalyx structure, its function and role in the molecular transport and leukocytes migration across the endothelial barrier are discussed. The mechanisms of transcellular transport of macromolecules and cell migration through endothelial cells are reviewed. Special section of this article addresses the structure and function of tight and adherens endothelial junction, as well as their importance for the regulation of paracellular transport across the endothelial barrier. Particular attention is paid to the signaling mechanism of endothelial barrier function regulation and the factors that influence on the vascular permeability.

  6. Tantalum oxide barrier in magnetic tunnel junctions

    Institute of Scientific and Technical Information of China (English)

    Guanghua Yu; Tingting Ren; Wei Ji; Jiao Teng; Fengwu Zhu

    2004-01-01

    Tantalum as an insulating barrier can take the place of Al in magnetic tunnel junctions (MTJs). Ta barriers in MTJs were fabricated by natural oxidation. X-ray photoelectron spectroscopy (XPS) was used to characterize the oxidation states of Ta barrier.The experimental results show that the chemical state of tantalum is pure Ta5+ and the thickness of the oxide is 1.3 nm. The unoxidized Ta in the barrier may chemically reacted with NiFe layer which is usually used in MTJs to form an intermetallic compound,NiTa2. A magnetic "dead layer" could be produced in the NiFe/Ta interface. The "dead layer" is likely to influence the spinning electron transport and the magnetoresistance effect.

  7. Magnetic tunneling junctions with permalloy electrodes: a study of barrier, thermal annealing, and interlayer coupling

    Energy Technology Data Exchange (ETDEWEB)

    Liu Xiaoyong E-mail: xiaoyong_liu@brown.edu; Ren Cong; Ritchie, Lance; Schrag, B.D.; Xiao Gang; Li Laifeng

    2003-11-01

    Magnetic properties of Ni{sub 81}Fe{sub 19}/Al{sub 2}O{sub 3}/Ni{sub 81}Fe{sub 19} tunneling junctions are studied for different Al thicknesses and plasma oxidation times. A maximal magnetoresistance of 34% is obtained with Al thickness of 20 A. Magnetometry reveals large exchange bias fields ({approx}400 Oe) over a wide range of barrier thicknesses, indicating junctions of high quality. Transport measurements conducted on junctions before and after thermal annealing show a dramatic improvement in barrier quality after annealing. Interlayer coupling fields have been measured as a function of barrier thickness for different oxidation times.

  8. Influence of puerarin, paeoniflorin, and menthol on structure and barrier function of tight junctions in MDCK and MDCK-MDR1 Cells

    Directory of Open Access Journals (Sweden)

    Lin Zhang

    2015-04-01

    Conclusion: Menthol but not puerarin and paeoniflorin may enhance paracellular transport and improve drug penetration of the BBB by disrupting the structure and, thereby, weakening the barrier function of TJs.

  9. Room Temperature Magnetic Barrier Layers in Magnetic Tunnel Junctions

    Energy Technology Data Exchange (ETDEWEB)

    Nelson-Cheeseman, B. B.; Wong, F. J.; Chopdekar, R. V.; Arenholz, E.; Suzuki, Y.

    2010-03-09

    We investigate the spin transport and interfacial magnetism of magnetic tunnel junctions with highly spin polarized LSMO and Fe3O4 electrodes and a ferrimagnetic NiFe2O4 (NFO) barrier layer. The spin dependent transport can be understood in terms of magnon-assisted spin dependent tunneling where the magnons are excited in the barrier layer itself. The NFO/Fe3O4 interface displays strong magnetic coupling, while the LSMO/NFO interface exhibits clear decoupling as determined by a combination of X-ray absorption spectroscopy and X-ray magnetic circular dichroism. This decoupling allows for distinct parallel and antiparallel electrode states in this all-magnetic trilayer. The spin transport of these devices, dominated by the NFO barrier layer magnetism, leads to a symmetric bias dependence of the junction magnetoresistance at all temperatures.

  10. Skin barrier function

    DEFF Research Database (Denmark)

    2016-01-01

    Renowned experts present the latest knowledge Although a very fragile structure, the skin barrier is probably one of the most important organs of the body. Inward/out it is responsible for body integrity and outward/in for keeping microbes, chemicals, and allergens from penetrating the skin. Since...... the role of barrier integrity in atopic dermatitis and the relationship to filaggrin mutations was discovered a decade ago, research focus has been on the skin barrier, and numerous new publications have become available. This book is an interdisciplinary update offering a wide range of information...... on the subject. It covers new basic research on skin markers, including results on filaggrin and on methods for the assessment of the barrier function. Biological variation and aspects of skin barrier function restoration are discussed as well. Further sections are dedicated to clinical implications of skin...

  11. Irsogladine maleate regulates gap junctional intercellular communication-dependent epithelial barrier in human nasal epithelial cells.

    Science.gov (United States)

    Miyata, Ryo; Nomura, Kazuaki; Kakuki, Takuya; Takano, Ken-Ichi; Kohno, Takayuki; Konno, Takumi; Sawada, Norimasa; Himi, Tetsuo; Kojima, Takashi

    2015-04-01

    The airway epithelium of the human nasal mucosa acts as the first physical barrier that protects against inhaled substances and pathogens. Irsogladine maleate (IM) is an enhancer of gastric mucosal protective factors via upregulation of gap junctional intercellular communication (GJIC). GJIC is thought to participate in the formation of functional tight junctions. However, the effects of IM on GJIC and the epithelial barrier in human nasal epithelial cells (HNECs) remain unknown. To investigate the effects of IM on GJIC and the tight junctional barrier in HNECs, primary cultures of HNECs transfected with human telomerase reverse transcriptase (hTERT-HNECs) were treated with IM and the GJIC inhibitors oleamide and 18β-GA. Some cells were pretreated with IM before treatment with TLR3 ligand poly(I:C) to examine whether IM prevented the changes via TLR3-mediated signal pathways. In hTERT-HNECs, GJIC blockers reduced the expression of tight junction molecules claudin-1, -4, -7, occludin, tricellulin, and JAM-A. IM induced GJIC activity and enhanced the expression of claudin-1, -4, and JAM-A at the protein and mRNA levels with an increase of barrier function. GJIC blockers prevented the increase of the tight junction proteins induced by IM. Furthermore, IM prevented the reduction of JAM-A but not induction of IL-8 and TNF-α induced by poly(I:C). In conclusion, IM can maintain the GJIC-dependent tight junctional barrier via regulation of GJIC in upper airway nasal epithelium. Therefore, it is possible that IM may be useful as a nasal spray to prevent the disruption of the epithelial barrier by viral infections and exposure to allergens in human nasal mucosa.

  12. Spin-filtering junctions with double ferroelectric barriers

    Institute of Scientific and Technical Information of China (English)

    Ju Yan; Xing Ding-Yu

    2009-01-01

    An FS/FE/NS/FE/FS double tunnel junction is suggested to have the ability to inject, modulate and detect the spin-polarized current electrically in a single device, where FS is the ferromagnetic semiconductor electrode, NS is the nonmagnetic semiconductor, and FE the ferroelectric barrier. The spin polarization of the current injected into the NS region can be switched between a highly spin-polarized state and a spin unpolarized state. The high spin polarization may be detected by measuring the tunneling magnetoresistance ratio of the double tunnel junction.

  13. Early Activation of MAPK p44/42 Is Partially Involved in DON-Induced Disruption of the Intestinal Barrier Function and Tight Junction Network

    Science.gov (United States)

    Springler, Alexandra; Hessenberger, Sabine; Schatzmayr, Gerd; Mayer, Elisabeth

    2016-01-01

    Deoxynivalenol (DON), produced by the plant pathogens Fusarium graminearum and Fusarium culmorum, is one of the most common mycotoxins, contaminating cereal and cereal-derived products. Although worldwide contamination of food and feed poses health threats to humans and animals, pigs are particularly susceptible to this mycotoxin. DON derivatives, such as deepoxy-deoxynivalenol (DOM-1), are produced by bacterial transformation of certain intestinal bacteria, which are naturally occurring or applied as feed additives. Intestinal epithelial cells are the initial barrier against these food- and feed-borne toxins. The present study confirms DON-induced activation of MAPK p44/42 and inhibition of p44/42 by MAPK-inhibitor U0126 monoethanolate. Influence of DON and DOM-1 on transepithelial electrical resistance (TEER), viability and expression of seven tight junction proteins (TJ), as well as the potential of U0126 to counteract DON-induced effects, was assessed. While DOM-1 showed no effect, DON significantly reduced TEER of differentiated IPEC-J2 and decreased expression of claudin-1 and -3, while leaving claudin-4; ZO-1, -2, and -3 and occludin unaffected. Inhibition of p44/42 counteracted DON-induced TEER decrease and restored claudin-3, but not claudin-1 expression. Therefore, effects of DON on TEER and claudin-3 are at least partially p44/42 mediated, while effects on viability and claudin-1 are likely mediated via alternative pathways. PMID:27618100

  14. Asymmetric voltage behavior of the tunnel magnetoresistance in double barrier magnetic tunnel junctions

    KAUST Repository

    Useinov, Arthur

    2012-06-01

    In this paper, we study the value of the tunnel magnetoresistance (TMR) as a function of the applied voltage in double barrier magnetic tunnel junctions (DMTJs) with the left and right ferromagnetic (FM) layers being pinned and numerically estimate the possible difference of the TMR curves for negative and positive voltages in the homojunctions (equal barriers and electrodes). DMTJs are modeled as two single barrier junctions connected in series with consecutive tunneling (CST). We investigated the asymmetric voltage behavior of the TMR for the CST in the range of a general theoretical model. Significant asymmetries of the experimental curves, which arise due to different annealing regimes, are mostly explained by different heights of the tunnel barriers and asymmetries of spin polarizations in magnetic layers. © (2012) Trans Tech Publications.

  15. Flexible MgO Barrier Magnetic Tunnel Junctions.

    Science.gov (United States)

    Loong, Li Ming; Lee, Wonho; Qiu, Xuepeng; Yang, Ping; Kawai, Hiroyo; Saeys, Mark; Ahn, Jong-Hyun; Yang, Hyunsoo

    2016-07-01

    Flexible MgO barrier magnetic tunnel junction (MTJ) devices are fabricated using a transfer printing process. The flexible MTJ devices yield significantly enhanced tunneling magnetoresistance of ≈300% and improved abruptness of switching, as residual strain in the MTJ structure is released during the transfer process. This approach could be useful for flexible electronic systems that require high-performance memory components. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Metal-semiconductor Schottky barrier junctions and their applications

    CERN Document Server

    1984-01-01

    The present-day semiconductor technology would be inconceivable without extensive use of Schottky barrier junctions. In spite of an excellent book by Professor E.H. Rhoderick (1978) dealing with the basic principles of metal­ semiconductor contacts and a few recent review articles, the need for a monograph on "Metal-Semiconductor Schottky Barrier Junctions and Their Applications" has long been felt by students, researchers, and technologists. It was in this context that the idea of publishing such a monograph by Mr. Ellis H. Rosenberg, Senior Editor, Plenum Publishing Corporation, was considered very timely. Due to the numerous and varied applications of Schottky barrier junctions, the task of bringing it out, however, looked difficult in the beginning. After discussions at various levels, it was deemed appropriate to include only those typical applications which were extremely rich in R&D and still posed many challenges so that it could be brought out in the stipulated time frame. Keeping in view the la...

  17. Measuring Schottky barrier height at graphene/SiC junction

    Science.gov (United States)

    Tomer, D.; Hudy, L.; Rajput, S.; Li, L.

    2014-03-01

    When graphene is interfaced with a semiconductor, a Schottky junction forms with rectifying properties. In this work, we measured the Schottky barrier heights of graphene/SiC Schottky diodes using current-voltage (I-V) measurement. Chemical vapor deposited graphene was transferred onto semiconductor surfaces of opposite polarization: the hydrogen-terminated Si- and C-faces of α-SiC, which was confirmed by Raman spectroscopy and scanning tunneling microscopy. The Schottky barrier height is found to be sensitive to the polarization of the substrate and surface preparation. On the Si-face, a barrier of 0.47 eV is found. These results will be compared with earlier work as well as our in situ scanning tunneling spectroscopy results. Supported by DOE (DE-FG02-07ER46228).

  18. Diets high in fermentable protein and fibre alter tight junction protein composition with minor effects on barrier function in piglet colon.

    Science.gov (United States)

    Richter, Jan F; Pieper, Robert; Zakrzewski, Silke S; Günzel, Dorothee; Schulzke, Joerg D; Van Kessel, Andrew G

    2014-03-28

    Protein fermentation end products may damage the colonic mucosa, which could be counteracted by dietary inclusion of fermentable carbohydrates (fCHO). Although fermentable crude protein (fCP) and fCHO are known to affect microbial ecology, their interactive effects on epithelial barrier function are unknown. In the present study, in a 2 × 2 factorial experiment, thirty-two weaned piglets were fed low-fCP/low-fCHO (14·5 % crude protein (CP)/14·5 % total dietary fibre (TDF)), low-fCP/high-fCHO (14·8 % CP/16·6 % TDF), high-fCP/low-fCHO (19·8 % CP/14·5 % TDF) and high-fCP/high-fCHO (20·1 % CP/18·0 % TDF) diets. After 21-23 d, samples of proximal and distal colonic mucosae were investigated in Ussing chambers with respect to the paracellular and transcytotic passages of macromolecules and epithelial ion transport. The high-fCHO diets were found to reduce the permeability of the distal colon to the transcytotic marker horseradish peroxidase (HRP, 44 kDa; P ion transport), transepithelial resistance (barrier function) and charge selectivity were largely unaffected in both the segments. However, the high-fCP diets were found to suppress the aldosterone-induced epithelial Na channel activity (P composition in a compensatory way, so that colonic transport and barrier properties were only marginally affected.

  19. Direct optical determination of interfacial transport barriers in molecular tunnel junctions.

    Science.gov (United States)

    Fereiro, Jerry A; McCreery, Richard L; Bergren, Adam Johan

    2013-07-03

    Molecular electronics seeks to build circuitry using organic components with at least one dimension in the nanoscale domain. Progress in the field has been inhibited by the difficulty in determining the energy levels of molecules after being perturbed by interactions with the conducting contacts. We measured the photocurrent spectra for large-area aliphatic and aromatic molecular tunnel junctions with partially transparent copper top contacts. Where no molecular absorption takes place, the photocurrent is dominated by internal photoemission, which exhibits energy thresholds corresponding to interfacial transport barriers, enabling their direct measurement in a functioning junction.

  20. Claudin-4 Overexpression in Epithelial Ovarian Cancer Is Associated with Hypomethylation and Is a Potential Target for Modulation of Tight Junction Barrier Function Using a C-Terminal Fragment of Clostridium perfringens Enterotoxin

    Directory of Open Access Journals (Sweden)

    Babak Litkouhi

    2007-04-01

    Full Text Available BACKGROUND: Claudin-4, a tight junction (TJ protein and receptor for the C-terminal fragment of Clostridium perfringens enterotoxin (C-CPE, is overexpressed in epithelial ovarian cancer (EOC. Previous research suggests DNA methylation is a mechanism for claudin-4 overexpression in cancer and that C-CPE acts as an absorption-enhancing agent in claudin-4expressing cells. We sought to correlate claudin-4 overexpression in EOC with clinical outcomes and TJ barrier function, investigate DNA methylation as a mechanism for overexpression, and evaluate the effect of C-CPE on the TJ. METHODS: Claudin-4 expression in EOC was quantified and correlated with clinical outcomes. Claudin-4 methylation status was determined, and claudin-4-negative cell lines were treated with a demethylating agent. Electric cell-substrate impedance sensing was used to calculate junctional (paracellular resistance (Rb in EOC cells after claudin-4 silencing and after C-CPE treatment. RESULTS: Claudin4 overexpression in EOC does not correlate with survival or other clinical endpoints and is associated with hypomethylation. Claudin-4 overexpression correlates with Rb and C-CPE treatment of EOC cells significantly decreased Rb in a dose- and claudin-4-dependent noncytotoxic manner. CONCLUSIONS: C-CPE treatment of EOC cells leads to altered TJ function. Further research is needed to determine the potential clinical applications of C-CPE in EOC drug delivery strategies.

  1. Internal photoemission in molecular junctions: parameters for interfacial barrier determinations.

    Science.gov (United States)

    Fereiro, Jerry A; Kondratenko, Mykola; Bergren, Adam Johan; McCreery, Richard L

    2015-01-28

    The photocurrent spectra for large-area molecular junctions are reported, where partially transparent copper top contacts permit illumination by UV-vis light. The effect of variation of the molecular structure and thickness are discussed. Internal photoemission (IPE), a process involving optical excitation of hot carriers in the contacts followed by transport across internal system barriers, is dominant when the molecular component does not absorb light. The IPE spectrum contains information regarding energy level alignment within a complete, working molecular junction, with the photocurrent sign indicating transport through either the occupied or unoccupied molecular orbitals. At photon energies where the molecular layer absorbs, a secondary phenomenon is operative in addition to IPE. In order to distinguish IPE from this secondary mechanism, we show the effect of the source intensity as well as the thickness of the molecular layer on the observed photocurrent. Our results clearly show that the IPE mechanism can be differentiated from the secondary mechanism by the effects of variation of experimental parameters. We conclude that IPE can provide valuable information regarding interfacial energetics in intact, working molecular junctions, including clear discrimination of charge transport mediated by electrons through unoccupied system orbitals from that mediated by hole transport through occupied system orbitals.

  2. Enteropathogenic E. coli: breaking the intestinal tight junction barrier [version 2; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Anand Prakash Singh

    2016-05-01

    Full Text Available Enteropathogenic E. coli (EPEC causes acute intestinal infections in infants in the developing world. Infection typically spreads through contaminated food and water and leads to severe, watery diarrhea. EPEC attaches to the intestinal epithelial cells and directly injects virulence factors which modulate multiple signaling pathways leading to host cell dysfunction. However, the molecular mechanisms that regulate the onset of diarrhea are poorly defined. A major target of EPEC is the host cell tight junction complex which acts as a barrier and regulates the passage of water and solutes through the paracellular space. In this review, we focus on the EPEC effectors that target the epithelial barrier, alter its functions and contribute to leakage through the tight junctions.

  3. The Ly6 protein coiled is required for septate junction and blood brain barrier organisation in Drosophila.

    Directory of Open Access Journals (Sweden)

    Assia Hijazi

    Full Text Available BACKGROUND: Genetic analysis of the Drosophila septate junctions has greatly contributed to our understanding of the mechanisms controlling the assembly of these adhesion structures, which bear strong similarities with the vertebrate tight junctions and the paranodal septate junctions. These adhesion complexes share conserved molecular components and have a common function: the formation of paracellular barriers restraining the diffusion of solutes through epithelial and glial envelopes. METHODOLOGY/PRINCIPAL FINDINGS: In this work we characterise the function of the Drosophila cold gene, that codes for a protein belonging to the Ly6 superfamily of extracellular ligands. Analysis of cold mutants shows that this gene is specifically required for the organisation of the septate junctions in epithelial tissues and in the nervous system, where its contribution is essential for the maintenance of the blood-brain barrier. We show that cold acts in a cell autonomous way, and we present evidence indicating that this protein could act as a septate junction component. CONCLUSION/SIGNIFICANCE: We discuss the specific roles of cold and three other Drosophila members of the Ly6 superfamily that have been shown to participate in a non-redundant way in the process of septate junction assembly. We propose that vertebrate Ly6 proteins could fulfill analogous roles in tight junctions and/or paranodal septate junctions.

  4. Magnetic tunnel junctions with monolayer hexagonal boron nitride tunnel barriers

    Energy Technology Data Exchange (ETDEWEB)

    Piquemal-Banci, M.; Galceran, R.; Bouzehouane, K.; Anane, A.; Petroff, F.; Fert, A.; Dlubak, B.; Seneor, P. [Unité Mixte de Physique, CNRS, Thales, Univ. Paris-Sud, Université Paris-Saclay, Palaiseau 91767 (France); Caneva, S.; Martin, M.-B.; Weatherup, R. S.; Kidambi, P. R.; Robertson, J.; Hofmann, S. [Department of Engineering, University of Cambridge, Cambridge CB21PZ (United Kingdom); Xavier, S. [Thales Research and Technology, 1 avenue Augustin Fresnel, Palaiseau 91767 (France)

    2016-03-07

    We report on the integration of atomically thin 2D insulating hexagonal boron nitride (h-BN) tunnel barriers into Co/h-BN/Fe magnetic tunnel junctions (MTJs). The h-BN monolayer is directly grown by chemical vapor deposition on Fe. The Conductive Tip Atomic Force Microscopy (CT-AFM) measurements reveal the homogeneity of the tunnel behavior of our h-BN layers. As expected for tunneling, the resistance depends exponentially on the number of h-BN layers. The h-BN monolayer properties are also characterized through integration into complete MTJ devices. A Tunnel Magnetoresistance of up to 6% is observed for a MTJ based on a single atomically thin h-BN layer.

  5. Experimental realization of single electron tunneling diode based on vertical graphene two-barrier junction

    OpenAIRE

    Xu, Rui; Bai, Ke-Ke; Nie, Jia-Cai; He, Lin

    2012-01-01

    Usually, graphene is used in its horizontal directions to design novel concept devices. Here, we report a single electron tunneling diode based on quantum tunneling through a vertical graphene two-barrier junction. The junction is formed by positioning a scanning tunnelling microscopy (STM) tip above a graphene nanoribbon that was deposited on a graphite surface. Because of the asymmetry of the two-barrier junction, the electrons can unidirectional transfer from the tip to the graphene nanori...

  6. Tight junction disruption: Helicobacter pylori and dysregulation of the gastric mucosal barrier.

    Science.gov (United States)

    Caron, Tyler J; Scott, Kathleen E; Fox, James G; Hagen, Susan J

    2015-10-28

    Long-term chronic infection with Helicobacter pylori (H. pylori) is a risk factor for gastric cancer development. In the multi-step process that leads to gastric cancer, tight junction dysfunction is thought to occur and serve as a risk factor by permitting the permeation of luminal contents across an otherwise tight mucosa. Mechanisms that regulate tight junction function and structure in the normal stomach, or dysfunction in the infected stomach, however, are largely unknown. Although conventional tight junction components are expressed in gastric epithelial cells, claudins regulate paracellular permeability and are likely the target of inflammation or H. pylori itself. There are 27 different claudin molecules, each with unique properties that render the mucosa an intact barrier that is permselective in a way that is consistent with cell physiology. Understanding the architecture of tight junctions in the normal stomach and then changes that occur during infection is important but challenging, because most of the reports that catalog claudin expression in gastric cancer pathogenesis are contradictory. Furthermore, the role of H. pylori virulence factors, such as cytotoxin-associated gene A and vacoulating cytotoxin, in regulating tight junction dysfunction during infection is inconsistent in different gastric cell lines and in vivo, likely because non-gastric epithelial cell cultures were initially used to unravel the details of their effects on the stomach. Hampering further study, as well, is the relative lack of cultured cell models that have tight junction claudins that are consistent with native tissues. This summary will review the current state of knowledge about gastric tight junctions, normally and in H. pylori infection, and make predictions about the consequences of claudin reorganization during H. pylori infection.

  7. HfO2 and SiO2 as barriers in magnetic tunneling junctions

    Science.gov (United States)

    Shukla, Gokaran; Archer, Thomas; Sanvito, Stefano

    2017-05-01

    SiO2 and HfO2 are both high-k, wide-gap semiconductors, currently used in the microelectronic industry as gate barriers. Here we investigate whether the same materials can be employed to make magnetic tunnel junctions, which in principle can be amenable for integration in conventional Si technology. By using a combination of density functional theory and the nonequilibrium Green's functions method for quantum transport we have studied the transport properties of Co [0001 ] /SiO2[001 ] /Co [0001 ] and Fe [001 ] /HfO2[001 ] /Fe [001 ] junctions. In both cases we found a quite large magnetoresistance, which is explained through the analysis of the real band structure of the magnets and the complex one of the insulator. We find that there is no symmetry spin filtering for the Co-based junction since the high transmission Δ2' band crosses the Fermi level, EF, for both spin directions. However, the fact that Co is a strong ferromagnet makes the orbital contribution to the two Δ2' spin subbands different, yielding magnetoresistance. In contrast for the Fe-based junction symmetry filtering is active for an energy window spanning between the Fermi level and 1 eV below EF, with Δ1 symmetry contributing to the transmission.

  8. Inflammation and the Intestinal Barrier: Leukocyte–Epithelial Cell Interactions, Cell Junction Remodeling, and Mucosal Repair

    Science.gov (United States)

    Luissint, Anny-Claude; Parkos, Charles A.; Nusrat, Asma

    2017-01-01

    The intestinal tract is lined by a single layer of columnar epithelial cells that forms a dynamic, permeable barrier allowing for selective absorption of nutrients, while restricting access to pathogens and food-borne antigens. Precise regulation of epithelial barrier function is therefore required for maintaining mucosal homeostasis and depends, in part, on barrier-forming elements within the epithelium and a balance between pro- and anti-inflammatory factors in the mucosa. Pathologic states, such as inflammatory bowel disease, are associated with a leaky epithelial barrier, resulting in excessive exposure to microbial antigens, recruitment of leukocytes, release of soluble mediators, and ultimately mucosal damage. An inflammatory microenvironment affects epithelial barrier properties and mucosal homeostasis by altering the structure and function of epithelial intercellular junctions through direct and indirect mechanisms. We review our current understanding of complex interactions between the intestinal epithelium and immune cells, with a focus on pathologic mucosal inflammation and mechanisms of epithelial repair. We discuss leukocyte–epithelial interactions, as well as inflammatory mediators that affect the epithelial barrier and mucosal repair. Increased knowledge of communication networks between the epithelium and immune system will lead to tissue-specific strategies for treating pathologic intestinal inflammation. PMID:27436072

  9. Effect of Barrier Width on Bias-Dependent Tunnelling in Ferromagnetic Junctions

    Institute of Scientific and Technical Information of China (English)

    LI Fei-Fei; XIAO Ming-Wen; LI Zheng-Zhong; HU An; XU Wang

    2004-01-01

    @@ We present a finite temperature theory for bias-dependent tunnelling in ferromagnetic tunnelling junctions. The effects of the barrier width d on the tunnelling magnetoresistance (TMR) and its sign change behaviour are discussed with this theory. Numerical results show that both the zero-bias TMR and the critical voltage Vc at which the TMR changes its sign decrease with the increasing barrier width for a considerably thick barrier junction. Furthermore, it is found that a minimum exists in the curve of Vc versus d if a composite junction is under oxidized.

  10. Enteric Pathogens and Their Toxin-Induced Disruption of the Intestinal Barrier through Alteration of Tight Junctions in Chickens

    Science.gov (United States)

    Awad, Wageha A.; Hess, Claudia; Hess, Michael

    2017-01-01

    Maintaining a healthy gut environment is a prerequisite for sustainable animal production. The gut plays a key role in the digestion and absorption of nutrients and constitutes an initial organ exposed to external factors influencing bird’s health. The intestinal epithelial barrier serves as the first line of defense between the host and the luminal environment. It consists of a continuous monolayer of intestinal epithelial cells connected by intercellular junctional complexes which shrink the space between adjacent cells. Consequently, free passing of solutes and water via the paracellular pathway is prevented. Tight junctions (TJs) are multi-protein complexes which are crucial for the integrity and function of the epithelial barrier as they not only link cells but also form channels allowing permeation between cells, resulting in epithelial surfaces of different tightness. Tight junction’s molecular composition, ultrastructure, and function are regulated differently with regard to physiological and pathological stimuli. Both in vivo and in vitro studies suggest that reduced tight junction integrity greatly results in a condition commonly known as “leaky gut”. A loss of barrier integrity allows the translocation of luminal antigens (microbes, toxins) via the mucosa to access the whole body which are normally excluded and subsequently destroys the gut mucosal homeostasis, coinciding with an increased susceptibility to systemic infection, chronic inflammation and malabsorption. There is considerable evidence that the intestinal barrier dysfunction is an important factor contributing to the pathogenicity of some enteric bacteria. It has been shown that some enteric pathogens can induce permeability defects in gut epithelia by altering tight junction proteins, mediated by their toxins. Resolving the strategies that microorganisms use to hijack the functions of tight junctions is important for our understanding of microbial pathogenesis, because some pathogens

  11. Enteric Pathogens and Their Toxin-Induced Disruption of the Intestinal Barrier through Alteration of Tight Junctions in Chickens

    Directory of Open Access Journals (Sweden)

    Wageha A. Awad

    2017-02-01

    Full Text Available Maintaining a healthy gut environment is a prerequisite for sustainable animal production. The gut plays a key role in the digestion and absorption of nutrients and constitutes an initial organ exposed to external factors influencing bird’s health. The intestinal epithelial barrier serves as the first line of defense between the host and the luminal environment. It consists of a continuous monolayer of intestinal epithelial cells connected by intercellular junctional complexes which shrink the space between adjacent cells. Consequently, free passing of solutes and water via the paracellular pathway is prevented. Tight junctions (TJs are multi-protein complexes which are crucial for the integrity and function of the epithelial barrier as they not only link cells but also form channels allowing permeation between cells, resulting in epithelial surfaces of different tightness. Tight junction’s molecular composition, ultrastructure, and function are regulated differently with regard to physiological and pathological stimuli. Both in vivo and in vitro studies suggest that reduced tight junction integrity greatly results in a condition commonly known as “leaky gut”. A loss of barrier integrity allows the translocation of luminal antigens (microbes, toxins via the mucosa to access the whole body which are normally excluded and subsequently destroys the gut mucosal homeostasis, coinciding with an increased susceptibility to systemic infection, chronic inflammation and malabsorption. There is considerable evidence that the intestinal barrier dysfunction is an important factor contributing to the pathogenicity of some enteric bacteria. It has been shown that some enteric pathogens can induce permeability defects in gut epithelia by altering tight junction proteins, mediated by their toxins. Resolving the strategies that microorganisms use to hijack the functions of tight junctions is important for our understanding of microbial pathogenesis

  12. Outer Membrane Vesicles and Soluble Factors Released by Probiotic Escherichia coli Nissle 1917 and Commensal ECOR63 Enhance Barrier Function by Regulating Expression of Tight Junction Proteins in Intestinal Epithelial Cells

    Science.gov (United States)

    Alvarez, Carina-Shianya; Badia, Josefa; Bosch, Manel; Giménez, Rosa; Baldomà, Laura

    2016-01-01

    The gastrointestinal epithelial layer forms a physical and biochemical barrier that maintains the segregation between host and intestinal microbiota. The integrity of this barrier is critical in maintaining homeostasis in the body and its dysfunction is linked to a variety of illnesses, especially inflammatory bowel disease. Gut microbes, and particularly probiotic bacteria, modulate the barrier integrity by reducing gut permeability and reinforcing tight junctions. Probiotic Escherichia coli Nissle 1917 (EcN) is a good colonizer of the human gut with proven therapeutic efficacy in the remission of ulcerative colitis in humans. EcN positively modulates the intestinal epithelial barrier through upregulation and redistribution of the tight junction proteins ZO-1, ZO-2 and claudin-14. Upregulation of claudin-14 has been attributed to the secreted protein TcpC. Whether regulation of ZO-1 and ZO-2 is mediated by EcN secreted factors remains unknown. The aim of this study was to explore whether outer membrane vesicles (OMVs) released by EcN strengthen the epithelial barrier. This study includes other E. coli strains of human intestinal origin that contain the tcpC gene, such as ECOR63. Cell-free supernatants collected from the wild-type strains and from the derived tcpC mutants were fractionated into isolated OMVs and soluble secreted factors. The impact of these extracellular fractions on the epithelial barrier was evaluated by measuring transepithelial resistance and expression of several tight junction proteins in T-84 and Caco-2 polarized monolayers. Our results show that the strengthening activity of EcN and ECOR63 does not exclusively depend on TcpC. Both OMVs and soluble factors secreted by these strains promote upregulation of ZO-1 and claudin-14, and down-regulation of claudin-2. The OMVs-mediated effects are TcpC-independent. Soluble secreted TcpC contributes to the upregulation of ZO-1 and claudin-14, but this protein has no effect on the transcriptional

  13. Interfacial electronic transport phenomena in single crystalline Fe-MgO-Fe thin barrier junctions

    Energy Technology Data Exchange (ETDEWEB)

    Gangineni, R. B., E-mail: rameshg.phy@pondiuni.edu.in [Department of Physics, School of Physical, Chemical and Applied Sciences, Pondicherry University, R. V. Nagar, Kalapet, Pondicherry 605 014 (India); SPINTEC, UMR 8191 CEA/CNRS/UJF-Grenoble 1/Grenoble INP, INAC, 17 rue des Martyrs, F-38054 Grenoble Cedex (France); Bellouard, C., E-mail: christine.bellouard@ijl.nancy-universite.fr; Duluard, A. [Institut Jean Lamour, UMR 7198, CNRS-Université de Lorraine, BP 239, 54506 Vandoeuvre (France); Negulescu, B. [Institut Jean Lamour, UMR 7198, CNRS-Université de Lorraine, BP 239, 54506 Vandoeuvre (France); UFR de Sciences et Techniques, Matériaux, microélectronique, acoustique, nanotechnologies (GREMAN), University François Rabelais, Parc de Grandmont, 37200 Tours (France); Baraduc, C.; Gaudin, G. [SPINTEC, UMR 8191 CEA/CNRS/UJF-Grenoble 1/Grenoble INP, INAC, 17 rue des Martyrs, F-38054 Grenoble Cedex (France); Tiusan, C., E-mail: coriolan.tiusan@phys.utcluj.ro [Institut Jean Lamour, UMR 7198, CNRS-Université de Lorraine, BP 239, 54506 Vandoeuvre (France); Department of Physics and Chemistry, Center of Superconductivity, Spintronics and Surface Science, Technical University of Cluj Napoca, Str. Memorandumului No. 28, RO-400114 Cluj-Napoca (Romania)

    2014-05-05

    Spin filtering effects in nano-pillars of Fe-MgO-Fe single crystalline magnetic tunnel junctions are explored with two different sample architectures and thin MgO barriers (thickness: 3–8 monolayers). The two architectures, with different growth and annealing conditions of the bottom electrode, allow tuning the quality of the bottom Fe/MgO interface. As a result, an interfacial resonance states (IRS) is observed or not depending on this interface quality. The IRS contribution, observed by spin polarized tunnel spectroscopy, is analyzed as a function of the MgO barrier thickness. Our experimental findings agree with theoretical predictions concerning the symmetry of the low energy (0.2 eV) interfacial resonance states: a mixture of Δ{sub 1}-like and Δ{sub 5}-like symmetries.

  14. Tight junction modulation of the blood brain barrier: CNS delivery of small molecules.

    Science.gov (United States)

    Greene, Chris; Campbell, Matthew

    2016-01-01

    The blood brain barrier (BBB) represents a major obstacle for targeted drug delivery to the brain for the treatment of central nervous system (CNS) disorders. Significant advances in barrier research over the past decade has led to the discovery of an increasing number of structural and regulatory proteins in tight junctions (TJ) and adherens junctions (AJ). These discoveries are providing the framework for the development of novel TJ modulators which can act specifically and temporarily to alter BBB function and regulate paracellular uptake of molecules. TJ modulators that have shown therapeutic potential in preclinical models include claudin-5 and occludin siRNAs, peptides derived from zonula occludens toxin as well as synthetic peptides targeting the extracellular loops of TJs. Adding to the array of modulating agents are novel mechanisms of BBB regulation such as focused ultrasound (FUS). This review will give a succinct overview of BBB biology and TJ modulation in general. Novel insights into BBB regulation in health and disease will also be summarized.

  15. High Performance MgO-barrier Magnetic Tunnel Junctions for Flexible and Wearable Spintronic Applications.

    Science.gov (United States)

    Chen, Jun-Yang; Lau, Yong-Chang; Coey, J M D; Li, Mo; Wang, Jian-Ping

    2017-02-02

    The magnetic tunnel junction (MTJ) using MgO barrier is one of most important building blocks for spintronic devices and has been widely utilized as miniaturized magentic sensors. It could play an important role in wearable medical devices if they can be fabricated on flexible substrates. The required stringent fabrication processes to obtain high quality MgO-barrier MTJs, however, limit its integration with flexible electronics devices. In this work, we have developed a method to fabricate high-performance MgO-barrier MTJs directly onto ultrathin flexible silicon membrane with a thickness of 14 μm and then transfer-and-bond to plastic substrates. Remarkably, such flexible MTJs are fully functional, exhibiting a TMR ratio as high as 190% under bending radii as small as 5 mm. The devices' robustness is manifested by its retained excellent performance and unaltered TMR ratio after over 1000 bending cycles. The demonstrated flexible MgO-barrier MTJs opens the door to integrating high-performance spintronic devices in flexible and wearable electronics devices for a plethora of biomedical sensing applications.

  16. High Performance MgO-barrier Magnetic Tunnel Junctions for Flexible and Wearable Spintronic Applications

    Science.gov (United States)

    Chen, Jun-Yang; Lau, Yong-Chang; Coey, J. M. D.; Li, Mo; Wang, Jian-Ping

    2017-02-01

    The magnetic tunnel junction (MTJ) using MgO barrier is one of most important building blocks for spintronic devices and has been widely utilized as miniaturized magentic sensors. It could play an important role in wearable medical devices if they can be fabricated on flexible substrates. The required stringent fabrication processes to obtain high quality MgO-barrier MTJs, however, limit its integration with flexible electronics devices. In this work, we have developed a method to fabricate high-performance MgO-barrier MTJs directly onto ultrathin flexible silicon membrane with a thickness of 14 μm and then transfer-and-bond to plastic substrates. Remarkably, such flexible MTJs are fully functional, exhibiting a TMR ratio as high as 190% under bending radii as small as 5 mm. The devices‘ robustness is manifested by its retained excellent performance and unaltered TMR ratio after over 1000 bending cycles. The demonstrated flexible MgO-barrier MTJs opens the door to integrating high-performance spintronic devices in flexible and wearable electronics devices for a plethora of biomedical sensing applications.

  17. High Performance MgO-barrier Magnetic Tunnel Junctions for Flexible and Wearable Spintronic Applications

    Science.gov (United States)

    Chen, Jun-Yang; Lau, Yong-Chang; Coey, J. M. D.; Li, Mo; Wang, Jian-Ping

    2017-01-01

    The magnetic tunnel junction (MTJ) using MgO barrier is one of most important building blocks for spintronic devices and has been widely utilized as miniaturized magentic sensors. It could play an important role in wearable medical devices if they can be fabricated on flexible substrates. The required stringent fabrication processes to obtain high quality MgO-barrier MTJs, however, limit its integration with flexible electronics devices. In this work, we have developed a method to fabricate high-performance MgO-barrier MTJs directly onto ultrathin flexible silicon membrane with a thickness of 14 μm and then transfer-and-bond to plastic substrates. Remarkably, such flexible MTJs are fully functional, exhibiting a TMR ratio as high as 190% under bending radii as small as 5 mm. The devices‘ robustness is manifested by its retained excellent performance and unaltered TMR ratio after over 1000 bending cycles. The demonstrated flexible MgO-barrier MTJs opens the door to integrating high-performance spintronic devices in flexible and wearable electronics devices for a plethora of biomedical sensing applications. PMID:28150807

  18. Elucidation of barrier homogeneity in ZnO/P3HT:PCBM junctions through temperature dependent I-V characteristics

    Science.gov (United States)

    Khare, Neeraj; Zubair Ansari, Mohd; Hoye, Robert L. Z.; Iza, Diana C.; MacManus-Driscoll, Judith L.

    2016-07-01

    The current-voltage (I-V) characteristics of ZnO/P3HT:PCBM junctions using as-deposited ZnO and 300 °C-annealed ZnO (prior to device fabrication) were probed as a function of temperature. The ZnO films were synthesized using two scalable, low temperature methods: Atmospheric pressure spatial atomic layer deposition (AP-SALD) and electrodeposition (ED). In both cases the zero bias Schottky barrier height ({Φ\\text{B}} ) decreases and ideality factor (n) increases with a reduction in the operating temperature of the junctions. This was attributed to the presence of barrier inhomogeneities at the interface from surface states/defects in the ZnO causing a localized variation of work function. For the as-deposited ZnO junctions, two mean barrier heights, arising from a large density of surface states was observed. For the annealed ZnO junction one mean barrier height was observed, indicating reduction in the inhomogeneities of barrier height at the interface for the annealed ZnO. The photoresponce of ZnO/P3HT:PCBM junction was higher for the annealed ZnO which is due to the higher mean barrier height and lower value of ideality factor. This demonstrates that moderate annealing of chemically grown ZnO is crucial for reducing surface defects and barrier inhomogeneities.

  19. Investigation of the tunnel magnetoresistance in junctions with a strontium stannate barrier

    Science.gov (United States)

    Althammer, Matthias; Vikam Singh, Amit; Keshavarz, Sahar; Kenan Yurtisigi, Mehmet; Mishra, Rohan; Borisevich, Albina Y.; LeClair, Patrick; Gupta, Arunava

    2016-12-01

    We experimentally investigate the structural, magnetic, and electrical transport properties of La0.67 Sr0.33 MnO3 based magnetic tunnel junctions with a SrSnO3 barrier. Our results show that despite the high density of defects in the strontium stannate barrier, due to the large lattice mismatch, the observed tunnel magnetoresistance (TMR) is comparable to tunnel junctions with a better lattice matched SrTiO3 barrier, reaching values of up to 350 % at T =5 K . Further analysis of the current-voltage characteristics of the junction and the bias voltage dependence of the observed tunnel magnetoresistance show a decrease of the TMR with increasing bias voltage. In addition, the observed TMR vanishes for T >200 K . Our results suggest that by employing a better lattice matched ferromagnetic electrode, and thus reducing the structural defects in the strontium stannate barrier, even larger TMR ratios might be possible in the future.

  20. Gate-controlled energy barrier at a graphene/molecular semiconductor junction

    Science.gov (United States)

    Parui, S.; Pietrobon, L.; Ciudad, D.; Velez, S.; Sun, X.; Stoliar, P.; Casanova, F.; Hueso, L. E.

    The formation of an energy barrier at a metal/molecular semiconductor junction is both a ubiquitous phenomenon as well as the subject of intense research in order to improve the performance of molecular semiconductor-based electronic and optoelectronic devices. For these devices, a junction with a large energy barrier provides rectification, leading to a diode behavior, whereas a relatively small energy barrier provides nearly-ohmic behavior, resulting in efficient carrier injection (extraction) into the molecular semiconductor. Typically, a specific metal/molecular semiconductor combination leads to a fixed energy barrier; therefore, the possibility of a gate-controlled energy barrier is very appealing for advanced applications. Here, we present a graphene/C60 junction-based vertical field-effect transistor in which we demonstrate control of the interfacial energy-barrier such that the junction switches from a highly rectifying diode at negative gate voltages to a nearly-ohmic behavior at positive gate voltages and at room temperature. We extract an energy-barrier modulation of up to 660 meV, a transconductance of up to five orders of magnitude and a gate-modulated photocurrent.

  1. Filaggrin and Skin Barrier Function.

    Science.gov (United States)

    Kezic, Sanja; Jakasa, Ivone

    2016-01-01

    The skin barrier function is greatly dependent on the structure and composition of the uppermost layer of the epidermis, the stratum corneum (SC), which is made up of flattened anucleated cells surrounded by highly organized and continuous lipid matrix. The interior of the corneocytes consists mainly of keratin filaments aggregated by filaggrin (FLG) protein. Next, together with several other proteins, FLG is cross-linked into a mechanically robust cornified cell envelope providing a scaffold for the extracellular lipid matrix. In addition to its role for the SC structural and mechanical integrity, FLG degradation products account in part for the water-holding capacity and maintenance of acidic pH of the SC, both crucial for the epidermal barrier homoeostasis by regulating activity of multiple enzymes that control desquamation, lipid synthesis and inflammation. The major determinant of FLG expression in the skin are loss-of-function mutations in FLG, the strongest genetic risk factor for atopic dermatitis (AD), an inflammatory skin disease characterized by a reduced skin barrier function. The prevalence of FLG mutations varies greatly among different populations and ranges from about 10% in Northern Europeans to less than 1% in the African populations. An impaired skin barrier facilitates absorption of potentially hazardous chemicals, which might cause adverse effects in the skin, such as contact dermatitis, or systemic toxicity after their passage into blood. In another direction, a leaky epidermal barrier will lead to enhanced loss of water from the skin. A recent study has shown that even subtle increase in epidermal water loss in newborns increases the risk for AD. Although there are multiple modes of action by which FLG might affect skin barrier it is still unclear whether and how FLG deficiency leads to the reduced skin barrier function. This chapter summarizes the current knowledge in this field obtained from clinical studies, and animal and in vitro models

  2. Skin Barrier Function and Allergens

    DEFF Research Database (Denmark)

    Engebretsen, Kristiane Aasen; Thyssen, Jacob Pontoppidan

    2016-01-01

    The skin is an important barrier protecting us from mechanical insults, microorganisms, chemicals and allergens, but, importantly, also reducing water loss. A common hallmark for many dermatoses is a compromised skin barrier function, and one could suspect an elevated risk of contact sensitization...... and skin barrier status. Psoriasis has traditionally been regarded a Th1-dominated disease, but the discovery of Th17 cells and IL-17 provides new and interesting information regarding the pathogenesis of the disease. Research suggests an inverse relationship between psoriasis and CA, possibly due......) and Th2 (AD) have been proposed as an explanation. Finally, there is convincing evidence that exposure to irritants increases the risk of CS, and patients with ICD are, therefore, at great risk of developing CA. Skin irritation leads to the release of IL-1 and TNF-α, which affects the function of antigen...

  3. Tight junctions at the blood brain barrier: physiological architecture and disease-associated dysregulation

    Directory of Open Access Journals (Sweden)

    Luissint Anny-Claude

    2012-11-01

    Full Text Available Abstract The Blood–brain barrier (BBB, present at the level of the endothelium of cerebral blood vessels, selectively restricts the blood-to-brain paracellular diffusion of compounds; it is mandatory for cerebral homeostasis and proper neuronal function. The barrier properties of these specialized endothelial cells notably depend on tight junctions (TJs between adjacent cells: TJs are dynamic structures consisting of a number of transmembrane and membrane-associated cytoplasmic proteins, which are assembled in a multimolecular complex and acting as a platform for intracellular signaling. Although the structural composition of these complexes has been well described in the recent years, our knowledge about their functional regulation still remains fragmentary. Importantly, pericytes, embedded in the vascular basement membrane, and perivascular microglial cells, astrocytes and neurons contribute to the regulation of endothelial TJs and BBB function, altogether constituting the so-called neurovascular unit. The present review summarizes our current understanding of the structure and functional regulation of endothelial TJs at the BBB. Accumulating evidence points to a correlation between BBB dysfunction, alteration of TJ complexes and progression of a variety of CNS diseases, such as stroke, multiple sclerosis and brain tumors, as well as neurodegenerative diseases like Parkinson’s and Alzheimer’s diseases. Understanding how TJ integrity is controlled may thus help improve drug delivery across the BBB and the design of therapeutic strategies for neurological disorders.

  4. Intrinsic inhomogeneity in barrier height at monolayer graphene/SiC Schottky junction

    Science.gov (United States)

    Tomer, D.; Rajput, S.; Hudy, L. J.; Li, C. H.; Li, L.

    2014-07-01

    Graphene interfaced with a semiconductor forms a Schottky junction with rectifying properties. The inherent spatial inhomogeneity due to the formation of ripples and ridges in graphene can lead to fluctuations in the Schottky barrier height (SBH). The non-ideal behavior of the temperature dependent barrier height and ideality factor greater than 4 can be attributed to these spatial inhomogeneities. Assuming a Gaussian distribution of the barrier, mean SBHs of 1.30 ± 0.18 eV and 1.16 ± 0.16 eV are found for graphene/SiC junctions on the C- and Si-face, respectively. These findings reveal intrinsic spatial inhomogeneities in the SBHs in graphene based Schottky junctions.

  5. Barrier function of esophagogastric junction and acid reflux in children with wheezing%喘息儿童胃食管连接部功能和酸反流的关系

    Institute of Scientific and Technical Information of China (English)

    罗燕军; 胡赤军; 鲁明

    2011-01-01

    Objective To investigate the correlation between the barrier function of esophagogastric junction (EGJ) and acid reflux in children with wheezing. Methods A total of 74 children with wheezing were recruited and evaluated by 24-h pH monitoring and esophageal manometry. The children with wheezing were divided into reflux group (pH + group) and non-reflux group(pH- group) in accordance with the criteria of the total percentage time of pH below 4 less than 4% and Boix-Ochoa score < 11.99. Results In the group of wheezing children, there were 49 children with acid reflux (pH+ group) and 25 children without acid reflux (pH- group). Results of parameters of 24-h pH monitoring were significantly higher in pH+ group than those in pH- group ( P < 0.05). The levels of lower esophageal sphincter pressure(LESP)( 12. 1±6.8) mmHg( 1mmHg=0. 133 kPa) ,crura of diaphragm pressure(CDP) ( 14. 6 ± 8.4 ) mmHg and esophagogastric junction pressure (EGJP) ( 28.6 ± 11.1 ) mmHg, post-lower esophageal sphincter relaxation pressure(post-LESRA)(37. 0±18. 9) mmHg of the pH+ group were significantly lower than those of the pH- group (33.5 ± 5.6) mmHg, (21.3± 10.3) mmHg, (38.0± 14. 5) mmHg, (71.8± 17.2) mmHg,respectively( P <0.05). Conclusion Gastroesophageal reflux is popular in children with wheezing. It shows that the barrier function of esophagogastric junction is very important in the pathogenesis of wheezing children with acid reflux.%目的 探讨胃食管连接部(EGJ)屏障功能在喘息儿童酸反流发病机制中的作用.方法 选取有典型喘息症状的儿童74例行24小时食管pH监测和食管测压.根据pH<4总时间百分比<4%且Boix-Ochoa计分<11.99的标准,将受试者分为胃食管反流组(pH+组)和非胃食管反流组(pH-组).结果 喘息儿童胃食管反流发生率为66.2%(49/74),pH+组儿童食管pH监测的各项参数均明显高于pH-组儿童.胃食管连接部(EGJ)功能指标中,pH+组食管下括

  6. Functional barriers: Properties and evaluation

    NARCIS (Netherlands)

    Feigenbaum, A.; Dole, P.; Aucejo, S.; Dainelli, D.; Cruz Garcia, C. de la; Hankemeier, T.; N'Gono, Y.; Papaspyrides, C.D.; Paseiro, P.; Pastorelli, S.; Pavlidou, S.; Pennarun, P.Y.; Saillard, P.; Vidal, L.; Vitrac, O.; Voulzatis, Y.

    2005-01-01

    Functional barriers are multilayer structures deemed to prevent migration of some chemicals released by food-contact materials into food. In the area of plastics packaging, different migration behaviours of mono- and multilayer structures are assessed in terms of lag time and of their influence of t

  7. Degradation of magnetic tunnel junctions with thin AlOx barrier

    Directory of Open Access Journals (Sweden)

    Tadashi Mihara, Yoshinari Kamakura, Masato Morifuji and Kenji Taniguchi

    2007-01-01

    Full Text Available The degradation of magnetic tunnel junctions (MTJs with AlOx barrier was experimentally investigated. Constant voltage stress (CVS measurement was carried out to monitor the time evolution of the conductance and tunneling magnetoresistance (TMR of MTJs. The gradual increase of the stress-induced leakage current (SILC was observed prior to the breakdown, following a power law function of stress time with an exponent of about 0.2–0.4, which is similar to the case of the ultrathin gate oxide films in MOSFETs. The measured TMR for SILC suggests that the spin-dependent current component would be involved in the early stage of degradation, while spin-independent conduction becomes dominant before the breakdown resulting in a decrease of TMR.

  8. Spin asymmetry calculations of the TMR-V curves in single and double-barrier magnetic tunnel junctions

    KAUST Repository

    Useinov, Arthur

    2011-10-01

    Spin-polarization asymmetry is the key parameter in asymmetric voltage behavior (AVB) of the tunnel magnetoresistance (TMR) in magnetic tunnel junctions. In this paper, we study the value of the TMR as a function of the applied voltage Va in the single as well as double barrier magnetic tunnel junctions (SMTJ & DMTJ, which are constructed from CoFeB/MgO interfaces) and numerically estimate the possible difference of the TMR-V a curves for negative and positive voltages in the homojunctions. As a result, we found that AVB may help to determine the exact values of Fermi wave vectors for minority and majority conducting spin sub-bands. Moreover, significant asymmetry of the experimental TMR-Va curves, which arises due to different annealing regimes, is explained by different heights of the tunnel barriers and values of the spin asymmetry. The numerical TMR-V a data are in good agreement with experimental ones. © 2011 IEEE.

  9. Characteristics of Schottky Barrier Junction Based on Hexagonal Microtube ZnO

    Institute of Scientific and Technical Information of China (English)

    GAO Hui; LI Yan; YANG Li-ping; DENG Hong

    2005-01-01

    Hexagonal microtube ZnO was firstly grown on single crystal p-Si (111) substrates by hydrothermal method, and fabricated Ag/n-ZnO and Au/n-ZnO Schottky junction. Schottky effective barrier heights were calculated by I-V measurement. It is confirmed that the presence of a large amount of surface states related possibly to lattice imperfections existed near the surface leads to the pinning of the surface Fermi level at 0.35 eV below the conduction-band edge. Then the fabricated Schottky barrier junctions are evaluated for their use as UV photodetectors.

  10. MgGa2O4 spinel barrier for magnetic tunnel junctions: Coherent tunneling and low barrier height

    Science.gov (United States)

    Sukegawa, Hiroaki; Kato, Yushi; Belmoubarik, Mohamed; Cheng, P.-H.; Daibou, Tadaomi; Shimomura, Naoharu; Kamiguchi, Yuuzo; Ito, Junichi; Yoda, Hiroaki; Ohkubo, Tadakatsu; Mitani, Seiji; Hono, Kazuhiro

    2017-03-01

    Epitaxial Fe/magnesium gallium spinel oxide (MgGa2O4)/Fe(001) magnetic tunnel junctions (MTJs) were fabricated by magnetron sputtering. A tunnel magnetoresistance (TMR) ratio up to 121% at room temperature (196% at 4 K) was observed, suggesting a TMR enhancement by the coherent tunneling effect in the MgGa2O4 barrier. The MgGa2O4 layer had a spinel structure and it showed good lattice matching with the Fe layers owing to slight tetragonal lattice distortion of MgGa2O4. Barrier thickness dependence of the tunneling resistance and current-voltage characteristics revealed that the height of the MgGa2O4 barrier is much lower than that of an MgAl2O4 barrier. This study demonstrates the potential of Ga-based spinel oxides for MTJ barriers having a large TMR ratio at a low resistance area product.

  11. The energy barrier at noble metal/TiO{sub 2} junctions

    Energy Technology Data Exchange (ETDEWEB)

    Hossein-Babaei, F., E-mail: fhbabaei@kntu.ac.ir, E-mail: fhbabaei@yahoo.com; Lajvardi, Mehdi M., E-mail: mm.lajvardi@gmail.com; Alaei-Sheini, Navid, E-mail: navid-alaei@yahoo.com [Electronic Materials Laboratory, Industrial Control Center of Excellence, Electrical Engineering Department, K. N. Toosi University of Technology, Tehran 16317-14191 (Iran, Islamic Republic of)

    2015-02-23

    Nobel metal/TiO{sub 2} structures are used as catalysts in chemical reactors, active components in TiO{sub 2}-based electronic devices, and connections between such devices and the outside circuitry. Here, we investigate the energy barrier at the junctions between vacuum-deposited Ag, Au, and Pt thin films and TiO{sub 2} layers by recording their electrical current vs. voltage diagrams and spectra of optical responses. Deposited Au/, Pt/, and Ag/TiO{sub 2} behave like contacts with zero junction energy barriers, but the thermal annealing of the reverse-biased devices for an hour at 523 K in air converts them to Schottky diodes with high junction energy barriers, decreasing their reverse electric currents up to 10{sup 6} times. Similar thermal processing in vacuum or pure argon proved ineffective. The highest energy barrier and the lowest reverse current among the devices examined belong to the annealed Ag/TiO{sub 2} contacts. The observed electronic features are described based on the physicochemical parameters of the constituting materials. The formation of higher junction barriers with rutile than with anatase is demonstrated.

  12. Electric Field Control of the Resistance of Multiferroic Tunnel Junctions with Magnetoelectric Antiferromagnetic Barriers

    Science.gov (United States)

    Merodio, P.; Kalitsov, A.; Chshiev, M.; Velev, J.

    2016-06-01

    Based on model calculations, we predict a magnetoelectric tunneling electroresistance effect in multiferroic tunnel junctions consisting of ferromagnetic electrodes and magnetoelectric antiferromagnetic barriers. Switching of the antiferromagnetic order parameter in the barrier in applied electric field by means of the magnetoelectric coupling leads to a substantial change of the resistance of the junction. The effect is explained in terms of the switching of the orientations of local magnetizations at the barrier interfaces affecting the spin-dependent interface transmission probabilities. Magnetoelectric multiferroic materials with finite ferroelectric polarization exhibit an enhanced resistive change due to polarization-induced spin-dependent screening. These results suggest that devices with active barriers based on single-phase magnetoelectric antiferromagnets represent an alternative nonvolatile memory concept.

  13. Functional oesophago-gastric junction imaging

    Institute of Scientific and Technical Information of China (English)

    Barry P McMahon; Asbj(φ)rn M Drewes; Hans Gregersen

    2006-01-01

    Despite its role in disease there is still no definitive method to assess oesophago-gastric junction competence (OGJ). Traditionally the OGJ has been assessed using manometry with lower oesophageal sphincter pressure as the indicator. More recently this has been shown not to be a very reliable marker of sphincter function and competence against reflux.Disorders such as gastro-oesophageal reflux disease and to a lesser extend achalasia still effects a significant number of patients. This review looks at using a new technique known as impedance planimetry to profile the geometry and pressure in the OGJ during distension of a bag. The data gathered can be reconstructed into a dynamic representation of OGJ action. This has been shown to provide a useful representation of the OGJ and to show changes to the competence of the OGJ in terms of compliance and distensibility as a result of endoluminal therapy.

  14. Kiwifruit cysteine protease actinidin compromises the intestinal barrier by disrupting tight junctions

    NARCIS (Netherlands)

    Grozdanovic, Milica M; Čavić, Milena; Nešić, Andrijana; Andjelković, Uroš; Akbari, Peyman; Smit, Joost J; Gavrović-Jankulović, Marija

    2016-01-01

    BACKGROUND: The intestinal epithelium forms a barrier that food allergens must cross in order to induce sensitization. The aim of this study was to evaluate the impact of the plant-derived food cysteine protease--actinidin (Act d1) on the integrity of intestinal epithelium tight junctions (TJs). MET

  15. Enhancement of thermal spin transfer torque by double-barrier magnetic tunnel junctions with a nonmagnetic metal spacer

    Science.gov (United States)

    Chen, C. H.; Tseng, P.; Yang, Y. Y.; Hsueh, W. J.

    2017-01-01

    Enhancement of thermal spin transfer torque in a double-barrier magnetic tunnel junction with a nonmagnetic-metal spacer is proposed in this study. The results indicate that, given the same temperature difference, thermal spin transfer torque and charge current density for the proposed double barrier magnetic tunnel junction configuration can be approximately twice as much as that of the traditional single-barrier magnetic tunnel junctions. This enhancement can be attributed to the resonant tunneling mechanism in the double-barrier structure.

  16. Structure, regulation and function of gap junctions in liver

    Science.gov (United States)

    Maes, Michaël; Decrock, Elke; Wang, Nan; Leybaert, Luc; da Silva, Tereza Cristina; Veloso Alves Pereira, Isabel; Jaeschke, Hartmut; Cogliati, Bruno; Vinken, Mathieu

    2016-01-01

    Gap junctions are a specialized group of cell-to-cell junctions that mediate direct intercellular communication between cells. They arise from the interaction of 2 hemichannels of adjacent cells, which in turn are composed of 6 connexin proteins. In liver, gap junctions are predominantly found in hepatocytes and play critical roles in virtually all phases of the hepatic life cycle, including cell growth, differentiation, liver-specific functionality and cell death. Liver gap junctions are directed through a broad variety of mechanisms ranging from epigenetic control of connexin expression to posttranslational regulation of gap junction activity. This paper reviews established and novel aspects regarding the architecture, control and functional relevance of liver gap junctions. PMID:27001459

  17. Alterations of Blood Brain Barrier Function in Hyperammonemia: An Overview

    OpenAIRE

    2011-01-01

    Ammonia is a neurotoxin involved in the pathogenesis of neurological conditions associated with hyperammonemia, including hepatic encephalopathy, a condition associated with acute—(ALF) or chronic liver failure. This article reviews evidence that apart from directly affecting the metabolism and function of the central nervous system cells, ammonia influences the passage of different molecules across the blood brain barrier (BBB). A brief description is provided of the tight junctions, which c...

  18. Wet Work and Barrier Function.

    Science.gov (United States)

    Fartasch, Manigé

    2016-01-01

    Wet work defined as unprotected exposure to humid environments/water; high frequencies of hand washing procedures or prolonged glove occlusion is believed to cause irritant contact dermatitis in a variety of occupations. This review considers the recent studies on wet-work exposure and focuses on its influence on barrier function. There are different methods to study the effect of wet work on barrier function. On the one hand, occupational cohorts at risk can be monitored prospectively by skin bioengineering technology and clinical visual scoring systems; on the other hand, experimental test procedures with defined application of water, occlusion and detergents are performed in healthy volunteers. Both epidemiological studies and the results of experimental procedures are compared and discussed. A variety of epidemiological studies analyze occupational cohorts at risk. The measurement of transepidermal water loss, an indicator of the integrity of the epidermal barrier, and clinical inspection of the skin have shown that especially the frequencies of hand washing and water contact/contact to aqueous mixtures seem to be the main factors for the occurrence of barrier alterations. On the other hand, in a single cross-sectional study, prolonged glove wearing (e.g. occlusion for 6 h per shift in clean-room workers) without exposure to additional hazardous substances seemed not to affect the skin negatively. But regarding the effect of occlusion, there is experimental evidence that previously occluded skin challenged with sodium lauryl sulfate leads to an increased susceptibility to the irritant with an aggravation of the irritant reaction. These findings might have relevance for the real-life situation in so far as after occupational glove wearing, the skin is more susceptible to potential hazards to the skin even during leisure hours.

  19. Output voltage calculations in double barrier magnetic tunnel junctions with asymmetric voltage behavior

    KAUST Repository

    Useinov, Arthur

    2011-10-22

    In this paper we study the asymmetric voltage behavior (AVB) of the tunnel magnetoresistance (TMR) for single and double barrier magnetic tunnel junctions (MTJs) in range of a quasi-classical free electron model. Numerical calculations of the TMR-V curves, output voltages and I-V characteristics for negative and positive values of applied voltages were carried out using MTJs with CoFeB/MgO interfaces as an example. Asymmetry of the experimental TMR-V curves is explained by different values of the minority and majority Fermi wave vectors for the left and right sides of the tunnel barrier, which arises due to different annealing regimes. Electron tunneling in DMTJs was simulated in two ways: (i) Coherent tunneling, where the DMTJ is modeled as one tunnel system and (ii) consecutive tunneling, where the DMTJ is modeled by two single barrier junctions connected in series. © 2012 Elsevier B.V. All rights reserved.

  20. Long-term reliable physically unclonable function based on oxide tunnel barrier breakdown on two-transistors two-magnetic-tunnel-junctions cell-based embedded spin transfer torque magnetoresistive random access memory

    Science.gov (United States)

    Takaya, Satoshi; Tanamoto, Tetsufumi; Noguchi, Hiroki; Ikegami, Kazutaka; Abe, Keiko; Fujita, Shinobu

    2017-04-01

    Among the diverse applications of spintronics, security for internet-of-things (IoT) devices is one of the most important. A physically unclonable function (PUF) with a spin device (spin transfer torque magnetoresistive random access memory, STT-MRAM) is presented. Oxide tunnel barrier breakdown is used to realize long-term stability for PUFs. A secure PUF has been confirmed by evaluating the Hamming distance of a 32-bit STT-MRAM-PUF fabricated using 65 nm CMOS technology.

  1. Study of Au, Ni-(n)ZnSe Thin Film Schottky Barrier Junctions

    Science.gov (United States)

    Chaliha, Sumbit; Borah, Mothura Nath; Sarmah, P. C.; Rahman, A.

    2010-10-01

    Schottky barrier junctions of Al-doped n-type Zinc selenide (ZnSe) thin films of doping concentrations up to 9.7 × 1014 cm -3 have been fabricated with Au and Ni electrodes on glass substrates by sequential thermal evaporation. All of the junctions of different doping concentrations exhibited rectifying current-voltage characteristics with a non-saturating reverse current. From the current-voltage characteristics, the different junction parameters such as ideality factor, saturation current density, series resistance, etc., were measured. Both types of junctions were found to possess a high ideality factor and a high series resistance. The barrier heights of the junctions were measured from Richardson plots and found to be around 0.8 eV. The structures were found to exhibit a poor photovoltaic effect with a fill factor not greater than 0.4. The diode quality as well as the photovoltaic performance of the diodes were improved following a short heat treatment in vacuum.

  2. Electrical properties of graphene tunnel junctions with high-κ metal-oxide barriers

    Science.gov (United States)

    Feng, Ying; Trainer, Daniel J.; Chen, Ke

    2017-04-01

    An insulating barrier is one of the key components in electronic devices that makes use of quantum tunneling principles. Many metal-oxides have been used as a good barrier material in a tunnel junction for their large band gap, stable chemical properties and superb properties for forming a thin and pin-hole-free insulating layer. The reduced dimensions of transistors have led to the need for alternative, high dielectric constant (high-κ) oxides to replace conventional silicon-based dielectrics to reduce the leaking current induced by electron tunneling. On the other hand, a tunnel junction with one or both electrodes made of graphene may lead to novel applications due to the massless Dirac fermions from the graphene. Here we have fabricated sandwich-type graphene tunnel junctions with high-κ metal-oxides as barriers, including Al2O3, HfO2, ZrO2, and TiO2. Tunneling properties are investigated by observing the temperature and time dependences of the tunneling spectra. Our results show the potential for applications of high-κ oxides in graphene tunnel junctions and bringing new opportunities for memory and logic electronic devices.

  3. Huge spin-transfer torque in a magnetic tunnel junction by a superlattice barrier

    Science.gov (United States)

    Chen, C. H.; Tseng, P.; Ko, C. W.; Hsueh, W. J.

    2017-09-01

    Huge spin-transfer torque (STT) in a magnetic tunnel junction (MTJ) achieved by superlattice barrier composed of alternate layers of a nonmagnetic metal and an insulator is proposed. The magnitude of the STT depends on the number of cells in the superlattice barrier and the nonmagnetic metal layer's thickness. The result shows that the STT of the novel superlattice-barrier MTJ can reach values up to four orders of magnitude greater than those of traditional single-barrier stacks based on three cells superlattice by designing the nonmagnetic metal layer's thickness. In addition, the spin-transfer torque of the proposed MTJ can also be thousands of magnitude greater than those of traditional double-barrier MTJs.

  4. Gap junctions: structure and function (Review).

    Science.gov (United States)

    Evans, W Howard; Martin, Patricia E M

    2002-01-01

    Gap junctions are plasma membrane spatial microdomains constructed of assemblies of channel proteins called connexins in vertebrates and innexins in invertebrates. The channels provide direct intercellular communication pathways allowing rapid exchange of ions and metabolites up to approximately 1 kD in size. Approximately 20 connexins are identified in the human or mouse genome, and orthologues are increasingly characterized in other vertebrates. Most cell types express multiple connexin isoforms, making likely the construction of a spectrum of heteromeric hemichannels and heterotypic gap junctions that could provide a structural basis for the charge and size selectivity of these intercellular channels. The precise nature of the potential signalling information traversing junctions in physiologically defined situations remains elusive, but extensive progress has been made in elucidating how connexins are assembled into gap junctions. Also, participation of gap junction hemichannels in the propagation of calcium waves via an extracellular purinergic pathway is emerging. Connexin mutations have been identified in a number of genetically inherited channel communication-opathies. These are detected in connexin 32 in Charcot Marie Tooth-X linked disease, in connexins 26 and 30 in deafness and skin diseases, and in connexins 46 and 50 in hereditary cataracts. Biochemical approaches indicate that many of the mutated connexins are mistargeted to gap junctions and/or fail to oligomerize correctly into hemichannels. Genetic ablation approaches are helping to map out a connexin code and point to specific connexins being required for cell growth and differentiation as well as underwriting basic intercellular communication.

  5. EMP-induced alterations of tight junction protein expression and disruption of the blood-brain barrier.

    Science.gov (United States)

    Ding, Gui-Rong; Qiu, Lian-Bo; Wang, Xiao-Wu; Li, Kang-Chu; Zhou, Yong-Chun; Zhou, Yan; Zhang, Jie; Zhou, Jia-Xing; Li, Yu-Rong; Guo, Guo-Zhen

    2010-07-15

    The blood-brain barrier (BBB) is critical to maintain cerebral homeostasis. In this study, we examined the effects of exposure to electromagnetic pulse (EMP) on the functional integrity of BBB and, on the localization and expression of tight junction (TJ) proteins (occludin and ZO-1) in rats. Animals were sham or whole-body exposed to EMP at 200 kV/m for 400 pulses. The permeability of BBB in rat cerebral cortex was examined by using Evans Blue (EB) and lanthanum nitrate as vascular tracers. The localization and expression of TJ proteins were assessed by western blot and immunofluorescence analysis, respectively. The data indicated that EMP exposure caused: (i) increased permeability of BBB, and (ii) altered localization as well as decreased levels of TJ protein ZO-1. These results suggested that the alteration of ZO-1 may play an important role in the disruption of tight junctions, which may lead to dysfunction of BBB after EMP exposure.

  6. TLR2 mediates gap junctional intercellular communication through connexin-43 in intestinal epithelial barrier injury.

    Science.gov (United States)

    Ey, Birgit; Eyking, Annette; Gerken, Guido; Podolsky, Daniel K; Cario, Elke

    2009-08-14

    Gap junctional intercellular communication (GJIC) coordinates cellular functions essential for sustaining tissue homeostasis; yet its regulation in the intestine is not well understood. Here, we identify a novel physiological link between Toll-like receptor (TLR) 2 and GJIC through modulation of Connexin-43 (Cx43) during acute and chronic inflammatory injury of the intestinal epithelial cell (IEC) barrier. Data from in vitro studies reveal that TLR2 activation modulates Cx43 synthesis and increases GJIC via Cx43 during IEC injury. The ulcerative colitis-associated TLR2-R753Q mutant targets Cx43 for increased proteasomal degradation, impairing TLR2-mediated GJIC during intestinal epithelial wounding. In vivo studies using mucosal RNA interference show that TLR2-mediated mucosal healing depends functionally on intestinal epithelial Cx43 during acute inflammatory stress-induced damage. Mice deficient in TLR2 exhibit IEC-specific alterations in Cx43, whereas administration of a TLR2 agonist protects GJIC by blocking accumulation of Cx43 and its hyperphosphorylation at Ser368 to prevent spontaneous chronic colitis in MDR1alpha-deficient mice. Finally, adding the TLR2 agonist to three-dimensional intestinal mucosa-like cultures of human biopsies preserves intestinal epithelial Cx43 integrity and polarization ex vivo. In conclusion, Cx43 plays an important role in innate immune control of commensal-mediated intestinal epithelial wound repair.

  7. Optimized design of 4H-SiC floating junction power Schottky barrier diodes

    Institute of Scientific and Technical Information of China (English)

    Pu Hongbin; Cao Lin; Chen Zhiming; Ren Jie

    2009-01-01

    SiC floating junction Schottky barrier diodes were simulated with software MEDICI 4.0 and their device structures were optimized based on forward and reverse electrical characteristics.Compared with the conventional power Schottky barrier diode,the device structure is featured by a highly doped drift region and embedded floating junction region,which can ensure high breakdown voltage while keeping lower specific on-state resistance,solved the contradiction between forward voltage drop and breakdown voltage.The simulation results show that with optimized structure parameter,the breakdown voltage Can reach 4 kV and the specific on-resistance is 8.3 mΩ·cm2.

  8. Electron Holography of Barrier Structures in Co/ZrAlOx/Co Magnetic Tunnel Junctions

    Institute of Scientific and Technical Information of China (English)

    ZHANG Zhe; ZHU Tao; SHEN Feng; SHENG Wen-Ting; WANG Wei-Gang; XIAO John Q; ZHANG Ze

    2005-01-01

    @@ We investigate the potential profiles and elemental distribution of barriers in Co/ZrAlOx/Co magnetic tunnel junctions (MTJs) using electron holography (EH) and scanning transmission electron microscopy. The MTJ barriers are introduced by oxidizing a bilayer consisting with a uniform 0.45-nm Al layer and a wedge-shaped Zr layer (0-2 nm). From the scanning transmission electron microscopy, AlOx and ZrOx layers are mixed together,indicating that compact AlOx layer cannot be formed in such a bilayer structure of barriers. The EH results reveal that there are no sharp interfaces between the barrier and magnetic electrodes, which may be responsible for a smaller tunnelling magnetoresistance compared with the MTJs of Co/AlOx/Co.

  9. Resonant spin-transfer torque in asymmetric double barrier magnetic tunnel junctions (MTJs)

    Science.gov (United States)

    Daqiq, Reza; Ghobadi, Nader

    2017-02-01

    The substitution effect of a Ferro-magnet (FM) electrode by a half-metallic FM material La0.7Sr0.3MnO3 (LSMO) on charge current and spin-transfer torque (STT) components is studied in MgO-based double barrier magnetic tunnel junctions (DBMTJs) with a middle non-magnetic metal (NM) layer. Using non-equilibrium Green's function (NEGF) formalism, it is observed that the current and STT components show oscillatory behavior due to quantum well states in the middle NM layer and resonant tunneling effect. We also study effect of difference in the thickness of the MgO insulators. Bias dependence demonstrate the magnitude enhancement of the current and in-plane STT in new asymmetric DBMTJs (A-DBMTJs) compared with symmetric DBMTJs (S-DBMTJs), however, perpendicular STT decreases in the A-DBMTJs. Results also show different behavior compared with conventional asymmetric MTJs and spin valves (SVs). Therefore, one can design new memory devices by means of suitable insulator and FM electrodes with proper thicknesses.

  10. Correlation between amplitude of spin accumulation signals investigated by Hanle effect measurement and effective junction barrier height in CoFe/MgO/n+-Si junctions

    Science.gov (United States)

    Saito, Y.; Ishikawa, M.; Sugiyama, H.; Inokuchi, T.; Hamaya, K.; Tezuka, N.

    2015-05-01

    Correlation between the amplitude of the spin accumulation signals and the effective barrier height estimated from the slope of the log (RA) - tMgO plot (RA: resistance area product, tMgO: thickness of MgO tunnel barrier) in CoFe/MgO/n+-Si junctions was investigated. The amplitude of spin accumulation signals increases with increasing effective barrier heights. This increase of the amplitude of spin accumulation is originated from the increase of the spin polarization ( P S i ) in Si. The estimated absolute values of P S i using three-terminal Hanle signals are consistent with those estimated by four-terminal nonlocal-magnetoresistance (MR) and two-terminal local-MR. To demonstrate large spin accumulation in Si bulk band and enhance the local-MR through Si channel, these results indicate that the increase of the effective barrier height at ferromagnet/(tunnel barrier)/n+-Si junction electrode is important.

  11. The role of tight junctions in mammary gland function.

    Science.gov (United States)

    Stelwagen, Kerst; Singh, Kuljeet

    2014-03-01

    Tight junctions (TJ) are cellular structures that facilitate cell-cell communication and are important in maintaining the three-dimensional structure of epithelia. It is only during the last two decades that the molecular make-up of TJ is becoming unravelled, with two major transmembrane-spanning structural protein families, called occludin and claudins, being the true constituents of the TJ. These TJ proteins are linked via specific scaffolding proteins to the cell's cytoskeleton. In the mammary gland TJ between adjacent secretory epithelial cells are formed during lactogenesis and are instrumental in establishing and maintaining milk synthesis and secretion, whereas TJ integrity is compromised during mammary involution and also as result of mastitis and periods of mammary inflamation (including mastitis). They prevent the paracellular transport of ions and small molecules between the blood and milk compartments. Formation of intact TJ at the start of lactation is important for the establishment of the lactation. Conversely, loss of TJ integrity has been linked to reduced milk secretion and mammary function and increased paracellular transport of blood components into the milk and vice versa. In addition to acting as a paracellular barrier, the TJ is increasingly linked to playing an active role in intracellular signalling. This review focusses on the role of TJ in mammary function of the normal, non-malignant mammary gland, predominantly in ruminants, the major dairy producing species.

  12. Complementary Barrier Infrared Detector (CBIRD) with Double Tunnel Junction Contact and Quantum Dot Barrier Infrared Detector (QD-BIRD)

    Science.gov (United States)

    Ting, David Z.-Y; Soibel, Alexander; Khoshakhlagh, Arezou; Keo, Sam A.; Nguyen, Jean; Hoglund, Linda; Mumolo, Jason M.; Liu, John K.; Rafol, Sir B.; Hill, Cory J.; Gunapala, Sarath D.

    2012-01-01

    The InAs/GaSb type-II superlattice based complementary barrier infrared detector (CBIRD) has already demonstrated very good performance in long-wavelength infrared (LWIR) detection. In this work, we describe results on a modified CBIRD device that incorporates a double tunnel junction contact designed for robust device and focal plane array processing. The new device also exhibited reduced turn-on voltage. We also report results on the quantum dot barrier infrared detector (QD-BIRD). By incorporating self-assembled InSb quantum dots into the InAsSb absorber of the standard nBn detector structure, the QD-BIRD extend the detector cutoff wavelength from approximately 4.2 micrometers to 6 micrometers, allowing the coverage of the mid-wavelength infrared (MWIR) transmission window. The device has been observed to show infrared response at 225 K.

  13. Complementary Barrier Infrared Detector (CBIRD) with Double Tunnel Junction Contact and Quantum Dot Barrier Infrared Detector (QD-BIRD)

    Science.gov (United States)

    Ting, David Z.-Y; Soibel, Alexander; Khoshakhlagh, Arezou; Keo, Sam A.; Nguyen, Jean; Hoglund, Linda; Mumolo, Jason M.; Liu, John K.; Rafol, Sir B.; Hill, Cory J.; hide

    2012-01-01

    The InAs/GaSb type-II superlattice based complementary barrier infrared detector (CBIRD) has already demonstrated very good performance in long-wavelength infrared (LWIR) detection. In this work, we describe results on a modified CBIRD device that incorporates a double tunnel junction contact designed for robust device and focal plane array processing. The new device also exhibited reduced turn-on voltage. We also report results on the quantum dot barrier infrared detector (QD-BIRD). By incorporating self-assembled InSb quantum dots into the InAsSb absorber of the standard nBn detector structure, the QD-BIRD extend the detector cutoff wavelength from approximately 4.2 micrometers to 6 micrometers, allowing the coverage of the mid-wavelength infrared (MWIR) transmission window. The device has been observed to show infrared response at 225 K.

  14. Tight junction-associated MARVEL proteins marveld3, tricellulin, and occludin have distinct but overlapping functions.

    Science.gov (United States)

    Raleigh, David R; Marchiando, Amanda M; Zhang, Yong; Shen, Le; Sasaki, Hiroyuki; Wang, Yingmin; Long, Manyuan; Turner, Jerrold R

    2010-04-01

    In vitro studies have demonstrated that occludin and tricellulin are important for tight junction barrier function, but in vivo data suggest that loss of these proteins can be overcome. The presence of a heretofore unknown, yet related, protein could explain these observations. Here, we report marvelD3, a novel tight junction protein that, like occludin and tricellulin, contains a conserved four-transmembrane MARVEL (MAL and related proteins for vesicle trafficking and membrane link) domain. Phylogenetic tree reconstruction; analysis of RNA and protein tissue distribution; immunofluorescent and electron microscopic examination of subcellular localization; characterization of intracellular trafficking, protein interactions, dynamic behavior, and siRNA knockdown effects; and description of remodeling after in vivo immune activation show that marvelD3, occludin, and tricellulin have distinct but overlapping functions at the tight junction. Although marvelD3 is able to partially compensate for occludin or tricellulin loss, it cannot fully restore function. We conclude that marvelD3, occludin, and tricellulin define the tight junction-associated MARVEL protein family. The data further suggest that these proteins are best considered as a group with both redundant and unique contributions to epithelial function and tight junction regulation.

  15. Gap junction modulation and its implications for heart function.

    Science.gov (United States)

    Kurtenbach, Stefan; Kurtenbach, Sarah; Zoidl, Georg

    2014-01-01

    Gap junction communication (GJC) mediated by connexins is critical for heart function. To gain insight into the causal relationship of molecular mechanisms of disease pathology, it is important to understand which mechanisms contribute to impairment of gap junctional communication. Here, we present an update on the known modulators of connexins, including various interaction partners, kinases, and signaling cascades. This gap junction network (GJN) can serve as a blueprint for data mining approaches exploring the growing number of publicly available data sets from experimental and clinical studies.

  16. Gap junction modulation and its implications for heart function

    Directory of Open Access Journals (Sweden)

    Stefan eKurtenbach

    2014-02-01

    Full Text Available Gap junction communication mediated by connexins is critical for heart function. To gain insight into the causal relationship of molecular mechanisms of disease pathology, it is important to understand which mechanisms contribute to impairment of gap junctional communication. Here, we present an update on the known modulators of connexins, including various interaction partners, kinases and signaling cascades. This gap junction network can serve as a blueprint for data mining approaches exploring the growing number of publicly available data sets from experimental and clinical studies.

  17. Lamellar granule secretion starts before the establishment of tight junction barrier for paracellular tracers in mammalian epidermis.

    Directory of Open Access Journals (Sweden)

    Akemi Ishida-Yamamoto

    Full Text Available Defects in epidermal barrier function and/or vesicular transport underlie severe skin diseases including ichthyosis and atopic dermatitis. Tight junctions (TJs form a single layered network in simple epithelia. TJs are important for both barrier functions and vesicular transport. Epidermis is stratified epithelia and lamellar granules (LGs are secreted from the stratum granulosum (SG in a sequential manner. Previously, continuous TJs and paracellular permeability barriers were found in the second layer (SG2 of SG in mice, but their fate and correlation with LG secretion have been poorly understood. We studied epidermal TJ-related structures in humans and in mice and found occludin/ZO-1 immunoreactive multilayered networks spanning the first layer of SG (SG1 and SG2. Paracellular penetration tracer passed through some TJs in SG2, but not in SG1. LG secretion into the paracellular tracer positive spaces started below the level of TJs of SG1. Our study suggests that LG-secretion starts before the establishment of TJ barrier in the mammalian epidermis.

  18. Defining functional interactions during biogenesis of epithelial junctions

    Science.gov (United States)

    Erasmus, J. C.; Bruche, S.; Pizarro, L.; Maimari, N.; Pogglioli, T.; Tomlinson, C.; Lees, J.; Zalivina, I.; Wheeler, A.; Alberts, A.; Russo, A.; Braga, V. M. M.

    2016-01-01

    In spite of extensive recent progress, a comprehensive understanding of how actin cytoskeleton remodelling supports stable junctions remains to be established. Here we design a platform that integrates actin functions with optimized phenotypic clustering and identify new cytoskeletal proteins, their functional hierarchy and pathways that modulate E-cadherin adhesion. Depletion of EEF1A, an actin bundling protein, increases E-cadherin levels at junctions without a corresponding reinforcement of cell–cell contacts. This unexpected result reflects a more dynamic and mobile junctional actin in EEF1A-depleted cells. A partner for EEF1A in cadherin contact maintenance is the formin DIAPH2, which interacts with EEF1A. In contrast, depletion of either the endocytic regulator TRIP10 or the Rho GTPase activator VAV2 reduces E-cadherin levels at junctions. TRIP10 binds to and requires VAV2 function for its junctional localization. Overall, we present new conceptual insights on junction stabilization, which integrate known and novel pathways with impact for epithelial morphogenesis, homeostasis and diseases. PMID:27922008

  19. Porcine lactoferrin-derived peptide LFP-20 protects intestinal barrier by maintaining tight junction complex and modulating inflammatory response.

    Science.gov (United States)

    Zong, Xin; Hu, Wangyang; Song, Deguang; Li, Zhi; Du, Huahua; Lu, Zeqing; Wang, Yizhen

    2016-03-15

    LFP-20, a 20-amino acid antimicrobial peptide in the N terminus of porcine lactoferrin, has antimicrobial and immunomodulatory activities. This study assessed the protective effects of LFP-20 on LPS-induced intestinal damage in a LPS-induced mouse model and in vitro, using intestinal porcine epithelial cell line 1 (IPEC-1) cells. LFP-20 prevented LPS-induced impairment in colon epithelium tissues, infiltration of macrophages or leukocytes, histological evidence of inflammation and increased levels of TNF-a, IL-6 and IFN-γ. LFP-20 increased the expression of zonula occludens-1, occludin and claudin-1 and reduced permeability as well as apoptosis of the colon in LPS-treated mice. In IPEC-1 cells, LFP-20 increased transepithelial electrical resistance and tight junction expression. Moreover, we found LFP-20 decreased the MyD88 and AKT levels to affect the NF-κB signaling pathway, to modulate inflammation response and tight junction networks in the processing of LPS stimulation. In summary, LFP-20 prevents the inflammatory response and disruption of tight junction structure induced by LPS, suggesting the potential use of LFP-20 as a prophylactic agent to protect intestinal barrier function.

  20. The function of tight junctions in maintaining differences in lipid composition between the apical and the basolateral cell surface domains of MDCK cells

    NARCIS (Netherlands)

    van Meer, G.|info:eu-repo/dai/nl/068570368; Simons, K.

    1986-01-01

    Tight junctions in epithelial cells have been postulated to act as barriers inhibiting lateral diffusion of lipids and proteins between the apical and basolateral plasma membrane domains. To study the fence function of the tight junction in more detail, we have fused liposomes containing the

  1. Intracellular mediators of JAM-A-dependent epithelial barrier function.

    Science.gov (United States)

    Monteiro, Ana C; Parkos, Charles A

    2012-06-01

    Junctional adhesion molecule-A (JAM-A) is a critical signaling component of the apical junctional complex, a structure composed of several transmembrane and scaffold molecules that controls the passage of nutrients and solutes across epithelial surfaces. Observations from JAM-A-deficient epithelial cells and JAM-A knockout animals indicate that JAM-A is an important regulator of epithelial paracellular permeability; however, the mechanism(s) linking JAM-A to barrier function are not understood. This review highlights recent findings relevant to JAM-A-mediated regulation of epithelial permeability, focusing on the role of upstream and downstream signaling candidates. We draw on what is known about proteins reported to associate with JAM-A in other pathways and on known modulators of barrier function to propose candidate effectors that may mediate JAM-A regulation of epithelial paracellular permeability. Further investigation of pathways highlighted in this review may provide ideas for novel therapeutics that target debilitating conditions associated with barrier dysfunction, such as inflammatory bowel disease.

  2. Characterization of deep electron traps in 4H-SiC Junction Barrier Schottky rectifiers

    Science.gov (United States)

    Gelczuk, Ł.; Dąbrowska-Szata, M.; Sochacki, M.; Szmidt, J.

    2014-04-01

    Conventional deep level transient spectroscopy (DLTS) technique was used to study deep electron traps in 4H-SiC Junction Barrier Schottky (JBS) rectifiers. 4H-SiC epitaxial layers, doped with nitrogen and grown on standard n+-4H-SiC substrates were exposed to low-dose aluminum ion implantation process under the Schottky contact in order to form both JBS grid and junction termination extension (JTE), and assure good rectifying properties of the diodes. Several deep electron traps were revealed and attributed to impurities or intrinsic defects in 4H-SiC epitaxial layers, on the basis of comparison of their electrical parameters (i.e. activation energies, apparent capture cross sections and concentrations) with previously published results.

  3. Sodium caprate transiently opens claudin-5-containing barriers at tight junctions of epithelial and endothelial cells

    DEFF Research Database (Denmark)

    Del Vecchio, Giovanna; Tscheik, Christian; Tenz, Kareen

    2012-01-01

    Claudin-5 is a tight junction (TJ) protein which limits the diffusion of small hydrophilic molecules. Thus, it represents a potential pharmacological target to improve drug delivery to the tissues protected by claudin-5-dependent barriers. Sodium caprate is known as an absorption enhancer which...... opens the paracellular space acting on TJ proteins and actin cytoskeleton. Its action on claudin-5 is not understood so far. Epithelial and endothelial systems were used to evaluate the effect of caprate on claudin-5 in TJ-free cells and on claudin-5 fully integrated in TJ. To this aim, confocal...... of endothelial and epithelial cells. In conclusion, the study further elucidates the cellular effects of caprate at the tight junctions....

  4. Tunnel magnetoresistance in magnetic tunnel junctions with ZnS barrier

    Energy Technology Data Exchange (ETDEWEB)

    Guth, M.; Da Costa, V.; Schmerber, G.; Dinia, A.; van den Berg, H. A. M.

    2001-06-01

    A first experimental evidence of a significant tunneling magnetoresistance signal of about 5% at 300 K for a magnetic tunnel junction consisting of hard and soft magnetic layers separated by a 2 nm ZnS semiconducting barrier is reported. The samples have been grown by sputtering on Si(111) substrate at room temperature and have the following structure: Fe{sub 6nm}Cu{sub 30nm}CoFe{sub 1.8nm}Ru{sub 0.8nm}CoFe{sub 3nm}ZnS{sub x}CoFe{sub 1nm}Fe{sub 4nm}Cu{sub 10nm}Ru{sub 3nm}. The hard magnetic bottom electrode consists of the artificial antiferromagnetic structure in which the rigidity is ensured by the antiferromagnetic exchange coupling between two FeCo layers through a Ru spacer layer. Barrier impedance scanning microscope (BISM) measurements reveal a good homogeneity of the barrier thickness. Electric transport measurements over square tunnel elements with lateral sizes between 3 and 100 {mu}m, exhibit a typical tunnel current{endash}voltage variations and tunnel resistance of 2{endash}3 k{Omega}{mu}m2 with small variations which never exceed a factor of 2, which is in good agreement with the BISM results. This good reproducibility of the junctions is very promising for MRAMs and transistors applications. {copyright} 2001 American Institute of Physics.

  5. Gap junctions in the control of vascular function.

    Science.gov (United States)

    Figueroa, Xavier F; Duling, Brian R

    2009-02-01

    Direct intercellular communication via gap junctions is critical in the control and coordination of vascular function. In the cardiovascular system, gap junctions are made up of one or more of four connexin proteins: Cx37, Cx40, Cx43, and Cx45. The expression of more than one gap-junction protein in the vasculature is not redundant. Rather, vascular connexins work in concert, first during the development of the cardiovascular system, and then in integrating smooth muscle and endothelial cell function, and in coordinating cell function along the length of the vessel wall. In addition, connexin-based channels have emerged as an important signaling pathway in the astrocyte-mediated neurovascular coupling. Direct electrical communication between endothelial cells and vascular smooth muscle cells via gap junctions is thought to play a relevant role in the control of vasomotor tone, providing the signaling pathway known as endothelium-derived hyperpolarizing factor (EDHF). Consistent with the importance of gap junctions in the regulation of vasomotor tone and arterial blood pressure, the expression of connexins is altered in diseases associated with vascular complications. In this review, we discuss the participation of connexin-based channels in the control of vascular function in physiologic and pathologic conditions, with a special emphasis on hypertension and diabetes.

  6. AlOx barrier growth in magnetic tunnel junctions for sensor applications

    Science.gov (United States)

    Knudde, S.; Farinha, G.; Leitao, D. C.; Ferreira, R.; Cardoso, S.; Freitas, P. P.

    2016-08-01

    Magnetic tunnel junction (MTJ) research has been focused on MgO-based crystalline structures due to high tunnel magnetoresistance (TMR), despite requiring a more severe process control than previous generations of MTJ stacks based on amorphous barriers (e.g. AlOx). In this work, we study the electrical transport properties in AlOx barriers in MTJ sensors fabricated using Ion beam sputtering and remote plasma oxidation. Amorphous barriers were prepared from oxidation of thin Al films, deposited in single step barrier (SSB-Al 1 nm/oxidation) or double step barrier (DSB-Al 0.5 nm/oxidation/Al 0.5 nm/oxidation) structures. We show tunable resistance-area products (RxA) ranging from ≈ 10 Ω μ m2 (suited for nano devices) up to ≈ 100 k Ω μ m2 (suited for large area sensors) with TMR above 30%. For all geometries studied, the structures have a coercivity free linear response and require none or one annealing step. This makes them very competitive for all industrial applications where the TMR level is not the dominant specification to meet.

  7. Claudin-1 induced sealing of blood–brain barrier tight junctions ameliorates chronic experimental autoimmune encephalomyelitis

    OpenAIRE

    Pfeiffer, Friederike; Schäfer, Julia; Lyck, Ruth; Makrides, Victoria; Brunner, Sarah; Schaeren-Wiemers, Nicole; Deutsch, Urban; ENGELHARDT, Britta

    2011-01-01

    In experimental autoimmune encephalomyelitis (EAE), an animal model for multiple sclerosis (MS), loss of the blood–brain barrier (BBB) tight junction (TJ) protein claudin-3 correlates with immune cell infiltration into the CNS and BBB leakiness. Here we show that sealing BBB TJs by ectopic tetracycline-regulated expression of the TJ protein claudin-1 in Tie-2 tTA//TRE-claudin-1 double transgenic C57BL/6 mice had no influence on immune cell trafficking across the BBB during EAE and furthermore...

  8. Clostridium perfringens enterotoxin fragment removes specific claudins from tight junction strands: Evidence for direct involvement of claudins in tight junction barrier.

    Science.gov (United States)

    Sonoda, N; Furuse, M; Sasaki, H; Yonemura, S; Katahira, J; Horiguchi, Y; Tsukita, S

    1999-10-04

    Claudins, comprising a multigene family, constitute tight junction (TJ) strands. Clostridium perfringens enterotoxin (CPE), a single approximately 35-kD polypeptide, was reported to specifically bind to claudin-3/RVP1 and claudin-4/CPE-R at its COOH-terminal half. We examined the effects of the COOH-terminal half fragment of CPE (C-CPE) on TJs in L transfectants expressing claudin-1 to -4 (C1L to C4L, respectively), and in MDCK I cells expressing claudin-1 and -4. C-CPE bound to claudin-3 and -4 with high affinity, but not to claudin-1 or -2. In the presence of C-CPE, reconstituted TJ strands in C3L cells gradually disintegrated and disappeared from their cell surface. In MDCK I cells incubated with C-CPE, claudin-4 was selectively removed from TJs with its concomitant degradation. At 4 h after incubation with C-CPE, TJ strands were disintegrated, and the number of TJ strands and the complexity of their network were markedly decreased. In good agreement with the time course of these morphological changes, the TJ barrier (TER and paracellular flux) of MDCK I cells was downregulated by C-CPE in a dose-dependent manner. These findings provided evidence for the direct involvement of claudins in the barrier functions of TJs.

  9. Claudin Loss-of-Function Disrupts Tight Junctions and Impairs Amelogenesis

    Directory of Open Access Journals (Sweden)

    Claire Bardet

    2017-05-01

    Full Text Available Claudins are a family of proteins that forms paracellular barriers and pores determining tight junctions (TJ permeability. Claudin-16 and -19 are pore forming TJ proteins allowing calcium and magnesium reabsorption in the thick ascending limb of Henle's loop (TAL. Loss-of-function mutations in the encoding genes, initially identified to cause Familial Hypomagnesemia with Hypercalciuria and Nephrocalcinosis (FHHNC, were recently shown to be also involved in Amelogenesis Imperfecta (AI. In addition, both claudins were expressed in the murine tooth germ and Claudin-16 knockout (KO mice displayed abnormal enamel formation. Claudin-3, an ubiquitous claudin expressed in epithelia including kidney, acts as a barrier-forming tight junction protein. We determined that, similarly to claudin-16 and claudin-19, claudin-3 was expressed in the tooth germ, more precisely in the TJ located at the apical end of secretory ameloblasts. The observation of Claudin-3 KO teeth revealed enamel defects associated to impaired TJ structure at the secretory ends of ameloblasts and accumulation of matrix proteins in the forming enamel. Thus, claudin-3 protein loss-of-function disturbs amelogenesis similarly to claudin-16 loss-of-function, highlighting the importance of claudin proteins for the TJ structure. These findings unravel that loss-of-function of either pore or barrier-forming TJ proteins leads to enamel defects. Hence, the major structural function of claudin proteins appears essential for amelogenesis.

  10. Atomic structure and oxygen deficiency of the ultrathin aluminium oxide barrier in Al/AlOx/Al Josephson junctions

    Science.gov (United States)

    Zeng, Lunjie; Tran, Dung Trung; Tai, Cheuk-Wai; Svensson, Gunnar; Olsson, Eva

    2016-07-01

    Al/AlOx/Al Josephson junctions are the building blocks of a wide range of superconducting quantum devices that are key elements for quantum computers, extremely sensitive magnetometers and radiation detectors. The properties of the junctions and the superconducting quantum devices are determined by the atomic structure of the tunnel barrier. The nanoscale dimension and disordered nature of the barrier oxide have been challenges for the direct experimental investigation of the atomic structure of the tunnel barrier. Here we show that the miniaturized dimension of the barrier and the interfacial interaction between crystalline Al and amorphous AlOx give rise to oxygen deficiency at the metal/oxide interfaces. In the interior of the barrier, the oxide resembles the atomic structure of bulk aluminium oxide. Atomic defects such as oxygen vacancies at the interfaces can be the origin of the two-level systems and contribute to decoherence and noise in superconducting quantum circuits.

  11. Atomic structure and oxygen deficiency of the ultrathin aluminium oxide barrier in Al/AlOx/Al Josephson junctions.

    Science.gov (United States)

    Zeng, Lunjie; Tran, Dung Trung; Tai, Cheuk-Wai; Svensson, Gunnar; Olsson, Eva

    2016-07-12

    Al/AlOx/Al Josephson junctions are the building blocks of a wide range of superconducting quantum devices that are key elements for quantum computers, extremely sensitive magnetometers and radiation detectors. The properties of the junctions and the superconducting quantum devices are determined by the atomic structure of the tunnel barrier. The nanoscale dimension and disordered nature of the barrier oxide have been challenges for the direct experimental investigation of the atomic structure of the tunnel barrier. Here we show that the miniaturized dimension of the barrier and the interfacial interaction between crystalline Al and amorphous AlOx give rise to oxygen deficiency at the metal/oxide interfaces. In the interior of the barrier, the oxide resembles the atomic structure of bulk aluminium oxide. Atomic defects such as oxygen vacancies at the interfaces can be the origin of the two-level systems and contribute to decoherence and noise in superconducting quantum circuits.

  12. Hypoxia/Aglycemia-induced endothelial barrier dysfunction and tight junction protein downregulation can be ameliorated by citicoline.

    Directory of Open Access Journals (Sweden)

    Xiaotang Ma

    Full Text Available This study explores the effect of citicoline on the permeability and expression of tight junction proteins (TJPs in endothelial cells under hypoxia/aglycemia conditions. Hypoxia or oxygen and glucose deprivation (OGD was utilized to induce endothelial barrier breakdown model on human umbilical vein endothelial cells (HUVECs and mouse brain microvascular endothelial cells (bEnd.3s. The effect of citicoline on endothelial barrier breakdown models was determined at either low or high concentrations. FITC-Dextran flux was used to examine the endothelial permeability. The expression of TJPs was measured by immunofluorescence, Real-time PCR and Western Blot methods. Results showed that hypoxia or OGD increased the permeability of HUVECs accompanied with down-regulation of occludens-1 (ZO-1 and occludin at both mRNA and protein levels. Similarly in bEnd.3s, hypoxia increased the permeability and decreased the expression of ZO-1 and claudin-5. Citicoline treatment dose-dependently decreased the permeability in these two models, which paralleled with elevated expression of TJPs. The data demonstrate that citicoline restores the barrier function of endothelial cells compromised by hypoxia/aglycemia probably via up-regulating the expression of TJPs.

  13. Hypoxia/Aglycemia-induced endothelial barrier dysfunction and tight junction protein downregulation can be ameliorated by citicoline.

    Science.gov (United States)

    Ma, Xiaotang; Zhang, Huiting; Pan, Qunwen; Zhao, Yuhui; Chen, Ji; Zhao, Bin; Chen, Yanfang

    2013-01-01

    This study explores the effect of citicoline on the permeability and expression of tight junction proteins (TJPs) in endothelial cells under hypoxia/aglycemia conditions. Hypoxia or oxygen and glucose deprivation (OGD) was utilized to induce endothelial barrier breakdown model on human umbilical vein endothelial cells (HUVECs) and mouse brain microvascular endothelial cells (bEnd.3s). The effect of citicoline on endothelial barrier breakdown models was determined at either low or high concentrations. FITC-Dextran flux was used to examine the endothelial permeability. The expression of TJPs was measured by immunofluorescence, Real-time PCR and Western Blot methods. Results showed that hypoxia or OGD increased the permeability of HUVECs accompanied with down-regulation of occludens-1 (ZO-1) and occludin at both mRNA and protein levels. Similarly in bEnd.3s, hypoxia increased the permeability and decreased the expression of ZO-1 and claudin-5. Citicoline treatment dose-dependently decreased the permeability in these two models, which paralleled with elevated expression of TJPs. The data demonstrate that citicoline restores the barrier function of endothelial cells compromised by hypoxia/aglycemia probably via up-regulating the expression of TJPs.

  14. Modulation of Tight Junction Structure and Function by Kinases and Phosphatases Targeting Occludin

    Directory of Open Access Journals (Sweden)

    Max Johannes Dörfel

    2012-01-01

    Full Text Available Tight junctions (TJs typically represent the most apical contacts in epithelial and endothelial cell layers where they play an essential role in the separation of extracellular or luminal spaces from underlying tissues in the body. Depending on the protein composition, TJs define the barrier characteristics and in addition maintain cell polarity. Two major families of integral membrane proteins form the typical TJ strand network, the tight junction-associated MARVEL protein (TAMP family members occludin, tricellulin, and MarvelD3 as well as a specific set of claudins. Occludin was the first identified member of these tetraspanins and is now widely accepted as a regulator of TJ assembly and function. Therefore, occludin itself has to be tightly regulated. Phosphorylation of occludin appears to be of central importance in this context. Here we want to summarize current knowledge on the kinases and phosphatases directly modifying occludin, and their role in the regulation of TJ structure, function, and dynamics.

  15. Radio-frequency shot-noise measurement in a magnetic tunnel junction with a MgO barrier

    Energy Technology Data Exchange (ETDEWEB)

    Rehman, Mushtaq; Park, Junghwan; Song, Woon; Chong, Yonuk [Korea Research Institute of Standards and Science, Daejeon (Korea, Republic of); Lee, Yeonsub; Min, Byoungchul; Shin, Kyungho [Korea Institute of Science and Technology, Seoul (Korea, Republic of); Ryu, Sangwan [Chonnam National University, Gwangju (Korea, Republic of); Khim, Zheong [Seoul National University, Seoul (Korea, Republic of)

    2010-10-15

    We measured the noise power of a magnetic tunnel junction in the frequency range of 710 {approx} 1200 MHz. A low-noise cryogenic HEMT amplifier was used to measure the small noise signal at a high frequency with wide bandwidth. The MgO-barrier tunnel junction showed large tunnel magnetoresistance ratio of 215% at low temperature, which indicates electronic transport through the tunnel barrier without any significant spin-flip scattering. In the bias-dependent noise measurement, however, the zero-bias shot noise was enhanced compared to the value expected from a perfect tunnel barrier or the value observed from a good Al-AlO{sub x}-Al tunnel junction. We assume that this enhanced noise comes from inelastic tunneling processes through the barrier, which may be related to the observed zero-bias anomaly in the differential resistance of the tunnel junctions. We present a simple phenomenological model for how the inelastic scattering process can enhance the zero-bias noise in a tunnel junction.

  16. Evidence of a Symmetry-Dependent Metallic Barrier in Fully Epitaxial MgO Based Magnetic Tunnel Junctions

    Science.gov (United States)

    Greullet, F.; Tiusan, C.; Montaigne, F.; Hehn, M.; Halley, D.; Bengone, O.; Bowen, M.; Weber, W.

    2007-11-01

    We report on the experimental observation of tunneling across an ultrathin metallic Cr spacer layer that is inserted at the interface of a Fe/MgO/Fe(001) junction. We show how this remarkable behavior in a solid-state device reflects a quenching in the transmission of particular electronic states, as expected from the symmetry-filtering properties of the MgO barrier and the band structure of the bcc Cr(001) spacer in the epitaxial junction stack. This ultrathin Cr metallic barrier can promote quantum well states in an adjacent Fe layer.

  17. Group A Streptococcus exploits human plasminogen for bacterial translocation across epithelial barrier via tricellular tight junctions

    Science.gov (United States)

    Sumitomo, Tomoko; Nakata, Masanobu; Higashino, Miharu; Yamaguchi, Masaya; Kawabata, Shigetada

    2016-01-01

    Group A Streptococcus (GAS) is a human-specific pathogen responsible for local suppurative and life-threatening invasive systemic diseases. Interaction of GAS with human plasminogen (PLG) is a salient characteristic for promoting their systemic dissemination. In the present study, a serotype M28 strain was found predominantly localized in tricellular tight junctions of epithelial cells cultured in the presence of PLG. Several lines of evidence indicated that interaction of PLG with tricellulin, a major component of tricellular tight junctions, is crucial for bacterial localization. A site-directed mutagenesis approach revealed that lysine residues at positions 217 and 252 within the extracellular loop of tricellulin play important roles in PLG-binding activity. Additionally, we demonstrated that PLG functions as a molecular bridge between tricellulin and streptococcal surface enolase (SEN). The wild type strain efficiently translocated across the epithelial monolayer, accompanied by cleavage of transmembrane junctional proteins. In contrast, amino acid substitutions in the PLG-binding motif of SEN markedly compromised those activities. Notably, the interaction of PLG with SEN was dependent on PLG species specificity, which influenced the efficiency of bacterial penetration. Our findings provide insight into the mechanism by which GAS exploits host PLG for acceleration of bacterial invasion into deeper tissues via tricellular tight junctions. PMID:26822058

  18. Observation of quantum oscillation of work function in ultrathin-metal/semiconductor junctions

    Energy Technology Data Exchange (ETDEWEB)

    Takhar, Kuldeep; Meer, Mudassar; Khachariya, Dolar; Ganguly, Swaroop; Saha, Dipankar, E-mail: dipankarsaha@iitb.ac.in [Applied Quantum Mechanics Laboratory, Centre of Excellence in Nanoelectronics, Department of Electrical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076 (India)

    2015-09-15

    Quantization in energy level due to confinement is generally observed for semiconductors. This property is used for various quantum devices, and it helps to improve the characteristics of conventional devices. Here, the authors have demonstrated the quantum size effects in ultrathin metal (Ni) layers sandwiched between two large band-gap materials. The metal work function is found to oscillate as a function of its thickness. The thermionic emission current bears the signature of the oscillating work function, which has a linear relationship with barrier heights. This methodology allows direct observation of quantum oscillations in metals at room temperature using a Schottky diode and electrical measurements using source-measure-units. The observed phenomena can provide additional mechanism to tune the barrier height of metal/semiconductor junctions, which are used for various electronic devices.

  19. Hydrogen sulfide metabolism regulates endothelial solute barrier function

    Directory of Open Access Journals (Sweden)

    Shuai Yuan

    2016-10-01

    Full Text Available Hydrogen sulfide (H2S is an important gaseous signaling molecule in the cardiovascular system. In addition to free H2S, H2S can be oxidized to polysulfide which can be biologically active. Since the impact of H2S on endothelial solute barrier function is not known, we sought to determine whether H2S and its various metabolites affect endothelial permeability. In vitro permeability was evaluated using albumin flux and transendothelial electrical resistance. Different H2S donors were used to examine the effects of exogenous H2S. To evaluate the role of endogenous H2S, mouse aortic endothelial cells (MAECs were isolated from wild type mice and mice lacking cystathionine γ-lyase (CSE, a predominant source of H2S in endothelial cells. In vivo permeability was evaluated using the Miles assay. We observed that polysulfide donors induced rapid albumin flux across endothelium. Comparatively, free sulfide donors increased permeability only with higher concentrations and at later time points. Increased solute permeability was associated with disruption of endothelial junction proteins claudin 5 and VE-cadherin, along with enhanced actin stress fiber formation. Importantly, sulfide donors that increase permeability elicited a preferential increase in polysulfide levels within endothelium. Similarly, CSE deficient MAECs showed enhanced solute barrier function along with reduced endogenous bound sulfane sulfur. CSE siRNA knockdown also enhanced endothelial junction structures with increased claudin 5 protein expression. In vivo, CSE genetic deficiency significantly blunted VEGF induced hyperpermeability revealing an important role of the enzyme for barrier function. In summary, endothelial solute permeability is critically regulated via exogenous and endogenous sulfide bioavailability with a prominent role of polysulfides.

  20. Increased inspiratory esophagogastric junction pressure in systemic sclerosis: An add-on to antireflux barrier

    Science.gov (United States)

    Nobre e Souza, Miguel Ângelo; Bezerra, Patrícia Carvalho; Nobre, Rivianny Arrais; Holanda, Esther Studart da Fonseca; dos Santos, Armênio Aguiar

    2015-01-01

    AIM: To investigate crural diaphragm (CD) function in systemic sclerosis (SSc) using high-resolution manometry and standardized inspiratory maneuvers. METHODS: Eight SSc volunteers (average age, 40.1 years; one male) and 13 controls (average age, 32.2 years; six males) participated in the study. A high-resolution manometry/impedance system measured the esophagus and esophagogastric junction (EGJ) pressure profile during swallows and two respiratory maneuvers: sinus arrhythmia maneuver (SAM; the average of six EGJ peak pressures during 5-s deep inhalations) and threshold maneuver (TM; the EGJ peak pressures during forced inhalation under 12 and 24 cmH2O loads). Inspiratory diaphragm lowering (IDL) was taken as the displacement of the EGJ high-pressure zone during the SAM. RESULTS: SSc patients had lower mean lower esophageal sphincter pressure than controls during normal breathing (19.7 ± 2.8 mmHg vs 32.2 ± 2.7 mmHg, P = 0.007). Sinus arrhythmia maneuver pressure was higher in SSc patients than in controls (142.6 ± 9.4 mmHg vs 104.6 ± 13.8 mmHg, P = 0.019). Sinus arrhythmia maneuver pressure normalized to IDL was also higher in SSc patients than in controls (83.8 ± 13.4 mmHg vs 37.5 ± 6.9 mmHg, P = 0.005). Threshold maneuver pressures normalized to IDL were also greater in SSc patients than in controls (TM 12 cmH2O: 85.1 ± 16.4 mmHg vs 43.9 ± 6.3 mmHg, P = 0.039; TM 24 cmH2O: 85.2 ± 16.4 mmHg vs 46.2 ± 6.6 mmHg, P = 0.065). Inspiratory diaphragm lowering in SSc patients was less than in controls (2.1 ± 0.3 cm vs 3 ± 0.2 cm, P = 0.011). CONCLUSION: SSc patients had increased inspiratory EGJ pressure. This is an add-on to EGJ pressure and indicates that the antireflux barrier can be trained. PMID:25717239

  1. Ureteropelvic junction obstruction: the effect of pyeloplasty on renal function

    Energy Technology Data Exchange (ETDEWEB)

    Dowling, K.J.; Harmon, E.P.; Ortenberg, J.; Polanco, E.; Evans, B.B.

    1988-11-01

    We studied preoperatively and postoperatively 41 children who underwent pyeloplasty for correction of unilateral ureteropelvic junction obstruction. Conventional radiological studies and quantitative radioiodine hippurate renal scans were obtained to assess the effect of pyeloplasty on the appearance of the kidney and its function. Analysis of the data suggests that the degree of improvement in renal function is related primarily to the age at which the surgical correction is accomplished and whether infection has occurred preoperatively.

  2. Correlation between amplitude of spin accumulation signals investigated by Hanle effect measurement and effective junction barrier height in CoFe/MgO/n{sup +}-Si junctions

    Energy Technology Data Exchange (ETDEWEB)

    Saito, Y., E-mail: yoshiaki.saito@toshiba.co.jp; Ishikawa, M.; Sugiyama, H.; Inokuchi, T. [Corporate Research and Development Center, Toshiba Corporation, 1, Komukai-Toshiba-cho, 212-8582 Kawasaki (Japan); Hamaya, K. [Graduate School of Engineering Science, Osaka University, 1-3, Machikaneyama-cho, Toyonaka city, Osaka 560-8531 (Japan); Tezuka, N. [Department of Materials Science, Graduate School of Engineering, Tohoku University, Sendai 980-8579 (Japan)

    2015-05-07

    Correlation between the amplitude of the spin accumulation signals and the effective barrier height estimated from the slope of the log (RA) - t{sub MgO} plot (RA: resistance area product, t{sub MgO}: thickness of MgO tunnel barrier) in CoFe/MgO/n{sup +}-Si junctions was investigated. The amplitude of spin accumulation signals increases with increasing effective barrier heights. This increase of the amplitude of spin accumulation is originated from the increase of the spin polarization (P{sub Si}) in Si. The estimated absolute values of P{sub Si} using three-terminal Hanle signals are consistent with those estimated by four-terminal nonlocal-magnetoresistance (MR) and two-terminal local-MR. To demonstrate large spin accumulation in Si bulk band and enhance the local-MR through Si channel, these results indicate that the increase of the effective barrier height at ferromagnet/(tunnel barrier)/n{sup +}-Si junction electrode is important.

  3. Modulation of spin transfer torque amplitude in double barrier magnetic tunnel junctions

    Energy Technology Data Exchange (ETDEWEB)

    Clément, P.-Y.; Baraduc, C., E-mail: claire.baraduc@cea.fr; Chshiev, M.; Diény, B. [Univ. Grenoble Alpes, INAC-SPINTEC, F-38000 Grenoble (France); CNRS, INAC-SPINTEC, F-38000 Grenoble (France); CEA, INAC-SPINTEC, F-38000 Grenoble (France); Ducruet, C. [Crocus-Technology, 5, Place Robert Schuman, F-38054 Grenoble (France); Vila, L. [Univ. Grenoble Alpes, INAC-SP2M, F-38000 Grenoble, France and CEA, INAC-SP2M, F-38000 Grenoble (France)

    2015-09-07

    Magnetization switching induced by spin transfer torque is used to write magnetic memories (Magnetic Random Access Memory, MRAM) but can be detrimental to the reading process. It would be quite convenient therefore to modulate the efficiency of spin transfer torque. A solution is adding an extra degree of freedom by using double barrier magnetic tunnel junctions with two spin-polarizers, with controllable relative magnetic alignment. We demonstrate, for these structures, that the amplitude of in-plane spin transfer torque on the middle free layer can be efficiently tuned via the magnetic configuration of the electrodes. Using the proposed design could thus pave the way towards more reliable read/write schemes for MRAM. Moreover, our results suggest an intriguing effect associated with the out-of-plane (field-like) spin transfer torque, which has to be further investigated.

  4. Modulation of spin transfer torque amplitude in double barrier magnetic tunnel junctions

    Science.gov (United States)

    Clément, P.-Y.; Baraduc, C.; Ducruet, C.; Vila, L.; Chshiev, M.; Diény, B.

    2015-09-01

    Magnetization switching induced by spin transfer torque is used to write magnetic memories (Magnetic Random Access Memory, MRAM) but can be detrimental to the reading process. It would be quite convenient therefore to modulate the efficiency of spin transfer torque. A solution is adding an extra degree of freedom by using double barrier magnetic tunnel junctions with two spin-polarizers, with controllable relative magnetic alignment. We demonstrate, for these structures, that the amplitude of in-plane spin transfer torque on the middle free layer can be efficiently tuned via the magnetic configuration of the electrodes. Using the proposed design could thus pave the way towards more reliable read/write schemes for MRAM. Moreover, our results suggest an intriguing effect associated with the out-of-plane (field-like) spin transfer torque, which has to be further investigated.

  5. Fabrication and characteristics of a 4H-SiC junction barrier Schottky diode*

    Institute of Scientific and Technical Information of China (English)

    Chen Fengping; Zhang Yuming; Lü Hongliang; Zhang Yimen; Guo Hui; Guo Xin

    2011-01-01

    4H-SiC junction barrier Schottky (JBS) diodes with four kinds of design have been fabricated and characterized using two different processes in which one is fabricated by making the P-type ohmic contact of the anode independently, and the other is processed by depositing a Schottky metal multi-layer on the whole anode. The reverse performances are compared to find the influences of these factors. The results show that JBS diodes with field guard rings have a lower reverse current density and a higher breakdown voltage, and with independent Ptype ohmic contact manufacturing, the reverse performance of 4H-SiC JBS diodes can be improved effectively.Furthermore, the P-type ohmic contact is studied in this work.

  6. Fabrication and characteristics of a 4H-SiC junction barrier Schottky diode

    Energy Technology Data Exchange (ETDEWEB)

    Chen Fengping; Zhang Yuming; Lue Hongliang; Zhang Yimen; Guo Hui; Guo Xin, E-mail: fpchen@yeah.net [School of Microelectronics, Key Laboratory of Wide Band-Gap Semiconductor Materials and Devices, Xidian University, Xi' an 710071 (China)

    2011-06-15

    4H-SiC junction barrier Schottky (JBS) diodes with four kinds of design have been fabricated and characterized using two different processes in which one is fabricated by making the P-type ohmic contact of the anode independently, and the other is processed by depositing a Schottky metal multi-layer on the whole anode. The reverse performances are compared to find the influences of these factors. The results show that JBS diodes with field guard rings have a lower reverse current density and a higher breakdown voltage, and with independent P-type ohmic contact manufacturing, the reverse performance of 4H-SiC JBS diodes can be improved effectively. Furthermore, the P-type ohmic contact is studied in this work. (semiconductor devices)

  7. Resonant tunnel magnetoresistance in double-barrier planar magnetic tunnel junctions

    KAUST Repository

    Useinov, A. N.

    2011-08-24

    We present a theoretical approach to calculate the spin-dependent current and tunnel magnetoresistance (TMR) in a double-barrier magnetic tunnel junction (DMTJ), in which the magnetization of the middle ferromagnetic metal layer can be aligned parallel or antiparallel in relation to the fixed magnetizations of the left and right ferromagnetic electrodes. The electron transport through the DMTJ is considered as a three-dimensional problem, taking into account all transmitting electron trajectories as well as the spin-dependent momentum conservation law. The dependence of the transmission coefficient and spin-polarized currents on the applied voltage is derived as an exact solution to the quantum-mechanical problem for the spin-polarized transport. In the range of the developed physical model, the resonant tunneling, nonresonant tunneling, and enhanced spin filtering can be explained; the simulation results are in good agreement with experimental data.

  8. Peanut Allergens Alter Intestinal Barrier Permeability and Tight Junction Localisation in Caco-2 Cell Cultures1

    Directory of Open Access Journals (Sweden)

    Dwan B. Price

    2014-05-01

    Full Text Available Background/Aims: Allergen absorption by epithelia may play an important role in downstream immune responses. Transport mechanisms that can bypass Peyer's patches include transcellular and paracellular transport. The capacity of an allergen to cross via these means can modulate downstream processing of the allergen by the immune system. The aim of this study was to investigate allergen-epithelial interactions of peanut allergens with the human intestinal epithelium. Methods: We achieved this using the human Caco-2 cell culture model, exposed to crude peanut extract. Western and immunofluorescence analysis were used to identify the cellular and molecular changes of peanut extract on the intestinal epithelium. Results: Following exposure of Caco-2 cells to peanut extract, binding of the peanut allergens Ara h 1 and Ara h 2 to the apical cellular membrane and transcytosis across the monolayers were observed. Additionally, the co-localisation of the transmembrane tight junction proteins occludin, JAM-A and claudin-1, with the intracellular adhesion protein ZO-1 was modified. Conclusion: Disruption of Caco-2 barrier integrity through tight junction disruption may enable movement of peanut proteins across the intestinal epithelium. This accounts for peanut's increased allergenicity, compared to other food allergens, and provides an explanation for the potency of peanut allergens in immune response elicitation.

  9. Lipopolysaccharide disrupts the milk-blood barrier by modulating claudins in mammary alveolar tight junctions.

    Directory of Open Access Journals (Sweden)

    Ken Kobayashi

    Full Text Available Mastitis, inflammation of the mammary gland, is the most costly common disease in the dairy industry, and is caused by mammary pathogenic bacteria, including Escherichia coli. The bacteria invade the mammary alveolar lumen and disrupt the blood-milk barrier. In normal mammary gland, alveolar epithelial tight junctions (TJs contribute the blood-milk barrier of alveolar epithelium by blocking the leakage of milk components from the luminal side into the blood serum. In this study, we focused on claudin subtypes that participate in the alveolar epithelial TJs, because the composition of claudins is an important factor that affects TJ permeability. In normal mouse lactating mammary glands, alveolar TJs consist of claudin-3 without claudin-1, -4, and -7. In lipopolysaccharide (LPS-induced mastitis, alveolar TJs showed 2-staged compositional changes in claudins. First, a qualitative change in claudin-3, presumably caused by phosphorylation and participation of claudin-7 in alveolar TJs, was recognized in parallel with the leakage of fluorescein isothiocyanate-conjugated albumin (FITC-albumin via the alveolar epithelium. Second, claudin-4 participated in alveolar TJs with claudin-3 and claudin-7 12 h after LPS injection. The partial localization of claudin-1 was also observed by immunostaining. Coinciding with the second change of alveolar TJs, the severe disruption of the blood-milk barrier was recognized by ectopic localization of β-casein and much leakage of FITC-albumin. Furthermore, the localization of toll-like receptor 4 (TLR4 on the luminal side and NFκB activation by LPS was observed in the alveolar epithelial cells. We suggest that the weakening and disruption of the blood-milk barrier are caused by compositional changes of claudins in alveolar epithelial TJs through LPS/TLR4 signaling.

  10. Reliability enhancement due to in-situ post-oxidation of sputtered MgO barrier in double MgO barrier magnetic tunnel junction

    Science.gov (United States)

    Yoshida, Chikako; Noshiro, Hideyuki; Yamazaki, Yuichi; Sugii, Toshihiro

    2017-06-01

    We have investigated the effects of in-situ post-oxidation (PO) of a sputtered MgO barrier in a double-MgO-barrier magnetic tunnel junction (MTJ) and found that the short error rate was significantly reduced, the magnetoresistance (MR) ratio was increased approximately 18%, and the endurance lifetime was extend. In addition, we found that the distribution of breakdown number (a measure of endurance) exhibits trimodal characteristics, which indicates competition between extrinsic and intrinsic failures. This improvement in reliability might be related to the suppression of Fe and Co diffusion to the MgO barrier, as revealed by electron energy-loss spectroscopy (EELS) analysis.

  11. Influence of functional groups on charge transport in molecular junctions

    DEFF Research Database (Denmark)

    Mowbray, Duncan; Jones, Glenn; Thygesen, Kristian Sommer

    2008-01-01

    Using density functional theory (DFT), we analyze the influence of five classes of functional groups, as exemplified by NO2, OCH3, CH3, CCl3, and I, on the transport properties of a 1,4-benzenedithiolate (BDT) and 1,4-benzenediamine (BDA) molecular junction with gold electrodes. Our analysis...... demonstrates how ideas from functional group chemistry may be used to engineer a molecule's transport properties, as was shown experimentally and using a semiempirical model for BDA [Nano Lett. 7, 502 (2007)]. In particular, we show that the qualitative change in conductance due to a given functional group can...

  12. Effect of gating and pressure on the electronic transport properties of crossed nanotube junctions: formation of a Schottky barrier

    Energy Technology Data Exchange (ETDEWEB)

    Havu, P; Hashemi, M J; Kaukonen, M; Nieminen, R M [Department of Applied Physics, Aalto University, PO Box 11100, FI-00076 Aalto (Finland); Seppaelae, E T [Nokia Research Center, Itaemerenkatu 11-13, FI-00180 Helsinki (Finland)

    2011-03-23

    The electronic transport properties of crossed carbon nanotube junctions are investigated using ab initio methods. The optimal atomic structures and the intertube distances of the junctions are obtained using van der Waals corrected density functional theory. The effect of gating on the intertube conductance of the junctions is explored, showing the charge accumulation to the nanotube contact and the charge depletion region at the metal-semiconductor Schottky contact. Finally, it is shown how the conductance of the junctions under the gate voltage is affected by pressure applied to the nanotube film. (fast track communication)

  13. Exogenous sphingomyelinase causes impaired intestinal epithelial barrier function

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    AIM: To test the hypothesis that hydrolysis of sphingomyelin to ceramide changes the composition of tight junctions (TJs) with increasing permeability of the intestinal epithelium.METHODS: Monolayers of Caco-2 cells were used as an in vitro model for the intestinal barrier. Permeability was determined by quantification of transepithelial flux and transepithelial resistance. Sphingolipid-rich membrane microdomains were isolated by a discontinuous sucrose gradient and characterized by Western-blot. Lipid content of microdomains was analysed by tandem mass spectrometry. Ceramide was subcellularly localized by immunofluorescent staining.RESULTS: Exogenous sphingomyelinase increased transepithelial permeability and decreased transepithelial resistance at concentrations as low as 0.01 U/mL.Lipid analysis showed rapid accumulation of ceramide in the membrane fractions containing occludin and claudin-4, representing TJs. In these fractions we observed a concomitant decrease of sphingomyelin and cholesterol with increasing concentrations of ceramide.Immunofluorescent staining confirmed clustering of ceramide at the sites of cell-cell contacts. Neutralization of surface ceramide prevented the permeability-increase induced by platelet activating factor.CONCLUSION: Our findings indicate that changes in lipid composition of TJs impair epithelial barrier functions. Generation of ceramide by sphingomyelinases might contribute to disturbed barrier function seen in diseases such as inflammatory, infectious, toxic or radiogenic bowel disease.

  14. Transcriptional mechanisms coordinating tight junction assembly during epithelial differentiation.

    Science.gov (United States)

    Boivin, Felix J; Schmidt-Ott, Kai M

    2017-06-01

    Epithelial tissues form a selective barrier via direct cell-cell interactions to separate and establish concentration gradients between the different compartments of the body. Proper function and formation of this barrier rely on the establishment of distinct intercellular junction complexes. These complexes include tight junctions, adherens junctions, desmosomes, and gap junctions. The tight junction is by far the most diverse junctional complex in the epithelial barrier. Its composition varies greatly across different epithelial tissues to confer various barrier properties. Thus, epithelial cells rely on tightly regulated transcriptional mechanisms to ensure proper formation of the epithelial barrier and to achieve tight junction diversity. Here, we review different transcriptional mechanisms utilized during embryogenesis and disease development to promote tight junction assembly and maintenance of intercellular barrier integrity. We focus particularly on the Grainyhead-like transcription factors and ligand-activated nuclear hormone receptors, two central families of proteins in epithelialization. © 2017 New York Academy of Sciences.

  15. Gap junction proteins in the blood-brain barrier control nutrient-dependent reactivation of Drosophila neural stem cells.

    Science.gov (United States)

    Spéder, Pauline; Brand, Andrea H

    2014-08-11

    Neural stem cells in the adult brain exist primarily in a quiescent state but are reactivated in response to changing physiological conditions. How do stem cells sense and respond to metabolic changes? In the Drosophila CNS, quiescent neural stem cells are reactivated synchronously in response to a nutritional stimulus. Feeding triggers insulin production by blood-brain barrier glial cells, activating the insulin/insulin-like growth factor pathway in underlying neural stem cells and stimulating their growth and proliferation. Here we show that gap junctions in the blood-brain barrier glia mediate the influence of metabolic changes on stem cell behavior, enabling glia to respond to nutritional signals and reactivate quiescent stem cells. We propose that gap junctions in the blood-brain barrier are required to translate metabolic signals into synchronized calcium pulses and insulin secretion.

  16. Esophagogastric Junction Contractility Integral Reflect the Anti-reflux Barrier Dysfunction in Patients with Gastroesophageal Reflux Disease

    Science.gov (United States)

    Xie, Chenxi; Wang, Jinhui; Li, Yuwen; Tan, Niandi; Cui, Yi; Chen, Minhu; Xiao, Yinglian

    2017-01-01

    Background/Aims Anti-reflux barrier dysfunction is one of the primary mechanisms in gastroesophageal reflux disease (GERD) pathogenesis. The esophagogastric junction contractile integral (EGJ-CI) is a new metric adopted to evaluate the EGJ contractility, which implies the anti-reflux barrier function. The aim of the current study was to validate this new metric in patients with GERD and its correlation with the esophageal acid exposure, as well as the efficacy of proton pump inhibitor treatment. Methods Ninety-eight patients with GERD and 21 healthy controls were included in the study. Upper endoscopy, high-resolution manometry (HRM) and 24-hour multichannel intraluminal impedance-pH monitoring were performed in all patients. Three respiration cycles were chosen at the initial HRM resting frame and the value computed with distal contractile integral tool was then divided by the duration of the cycles to yield EGJ-CI. All the patients were treated with esomeprazole 20 mg twice-daily for 8 weeks. Results EGJ-CI was lower in the patients with GERD than that of the controls (P < 0.05). For patients with GERD, EGJ-CI was lower in those with hiatal hernia (P < 0.05). The new metric correlated with esophageal acid exposure in the supine position (P < 0.05), and it also negatively correlated to the total reflux episodes (P < 0.05). There was no significant difference on EGJ-CI between patients with and without response to the esomeprazole treatment (P = 0.627). Conclusions EGJ-CI reflected the dysfunction of the anti-reflux barrier in patients with GERD, but it had little impact on the esomeprazole response. PMID:27426485

  17. Influence of the MgO barrier thickness on the lifetime characteristics of magnetic tunnelling junctions for sensors

    Science.gov (United States)

    Conca, A.; Casper, F.; Paul, J.; Lehndorff, R.; Jakob, G.; Kläui, M.; Hillebrands, B.; Leven, B.

    2016-06-01

    Magnetic tunnelling junctions increasingly enter the market for magnetic sensor applications. Thus, technological parameters such as the lifetime characteristics become more and more important. Here, an analysis of the lifetime characteristics of magnetic tunnelling junctions using the Weibull statistical distribution for CoFeB/MgO/CoFeB junctions is presented. The Weibull distribution is governed by two parameters, the characteristic lifetime η of the population and the shape parameter β, which gives information about the presence of an infant mortality. The suitability of the Weibull distribution is demonstrated for the description of dielectric breakdown processes in MgO-based tunnelling junctions at different voltages. A study of the dependence of the characteristic lifetime extrapolated to the low voltage regime, and the β parameter on the nominal barrier thickness and the resistance  ×  area product of the MgO barrier is shown. The influence of the RF deposition power for the MgO barrier and an annealing step on the Weibull parameters is also discussed.

  18. Barrier characteristics of biopolymer-based organic/inorganic Au/CTS/n-InP hybrid junctions

    Science.gov (United States)

    Abay, Bahattin

    2015-11-01

    Thin film of biopolymeric compound chitosan (CTS) has been surfaced on moderately doped n-InP substrate as an interfacial layer by means of spin coating for the electronic modification of Au/n-InP structure. Electrical characterization of Au/CTS/n-InP hybrid junction has been performed by I-V and C-V measurements at room temperature. An effective barrier height (BH) value of 0.678 eV and an ideality factor of n = 1.665 have been obtained for the hybrid junction. The CTS interfacial layer has been found to reduce the reverse bias leakage current of the junction by about three orders of magnitude and enhance the BH by about 0.213 eV. Furthermore, the BH value of the hybrid junction has been obtained as 0.693 eV by C-V measurement. Good performance of the device could be ascribed to the passivation effect of the CTS interfacial layer between Au and n-InP. The BH values of 0.678 and 0.693 eV for the hybrid junction have been significantly higher than that of the conventional Au/n-InP junction (~0.465 eV). The results indicated that biopolymeric thin interfacial CTS layer might lead to the modification of the potential barrier for metal/n-InP junctions. Moreover, band gap of the CTS layer has been determined as 4.60 eV via UV-vis spectroscopy.

  19. Permanent isolation surface barrier: Functional performance

    Energy Technology Data Exchange (ETDEWEB)

    Wing, N.R.

    1993-10-01

    This document presents the functional performance parameters for permanent isolation surface barriers. Permanent isolation surface barriers have been proposed for use at the Hanford Site (and elsewhere) to isolate and dispose of certain types of waste in place. Much of the waste that would be disposed of using in-place isolation techniques is located in subsurface structures, such as solid waste burial grounds, tanks, vaults, and cribs. Unless protected in some way, the wastes could be transported to the accessible environment via transport pathways, such as water infiltration, biointrusion, wind and water erosion, human interference, and/or gaseous release.

  20. Epidermal Growth Factor and Intestinal Barrier Function

    Directory of Open Access Journals (Sweden)

    Xiaopeng Tang

    2016-01-01

    Full Text Available Epidermal growth factor (EGF is a 53-amino acid peptide that plays an important role in regulating cell growth, survival, migration, apoptosis, proliferation, and differentiation. In addition, EGF has been established to be an effective intestinal regulator helping to protect intestinal barrier integrity, which was essential for the absorption of nutrients and health in humans and animals. Several researches have demonstrated that EGF via binding to the EGF receptor and subsequent activation of Ras/MAPK, PI3K/AKT, PLC-γ/PKC, and STATS signal pathways regulates intestinal barrier function. In this review, the relationship between epidermal growth factor and intestinal development and intestinal barrier is described, to provide a better understanding of the effects of EGF on intestine development and health.

  1. Polyphenol-Rich Propolis Extracts Strengthen Intestinal Barrier Function by Activating AMPK and ERK Signaling

    OpenAIRE

    Kai Wang; Xiaolu Jin; Yifan Chen; Zehe Song; Xiasen Jiang; Fuliang Hu; Conlon, Michael A.; Topping, David L.

    2016-01-01

    Propolis has abundant polyphenolic constituents and is used widely as a health/functional food. Here, we investigated the effects of polyphenol-rich propolis extracts (PPE) on intestinal barrier function in human intestinal epithelial Caco-2 cells, as well as in rats. In Caco-2 cells, PPE increased transepithelial electrical resistance and decreased lucifer yellow flux. PPE-treated cells showed increased expression of the tight junction (TJ) loci occludin and zona occludens (ZO)-1. Confocal m...

  2. Evaluation of soluble junctional adhesion molecule-A as a biomarker of human brain endothelial barrier breakdown.

    Directory of Open Access Journals (Sweden)

    Axel Haarmann

    Full Text Available BACKGROUND: An inducible release of soluble junctional adhesion molecule-A (sJAM-A under pro-inflammatory conditions was described in cultured non-CNS endothelial cells (EC and increased sJAM-A serum levels were found to indicate inflammation in non-CNS vascular beds. Here we studied the regulation of JAM-A expression in cultured brain EC and evaluated sJAM-A as a serum biomarker of blood-brain barrier (BBB function. METHODOLOGY/PRINCIPAL FINDINGS: As previously reported in non-CNS EC types, pro-inflammatory stimulation of primary or immortalized (hCMEC/D3 human brain microvascular EC (HBMEC induced a redistribution of cell-bound JAM-A on the cell surface away from tight junctions, along with a dissociation from the cytoskeleton. This was paralleled by reduced immunocytochemical staining of occludin and zonula occludens-1 as well as by increased paracellular permeability for dextran 3000. Both a self-developed ELISA test and Western blot analysis detected a constitutive sJAM-A release by HBMEC into culture supernatants, which importantly was unaffected by pro-inflammatory or hypoxia/reoxygenation challenge. Accordingly, serum levels of sJAM-A were unaltered in 14 patients with clinically active multiple sclerosis compared to 45 stable patients and remained unchanged in 13 patients with acute ischemic non-small vessel stroke over time. CONCLUSION: Soluble JAM-A was not suited as a biomarker of BBB breakdown in our hands. The unexpected non-inducibility of sJAM-A release at the human BBB might contribute to a particular resistance of brain EC to inflammatory stimuli, protecting the CNS compartment.

  3. A novel porcine in vitro model of the blood-cerebrospinal fluid barrier with strong barrier function.

    Directory of Open Access Journals (Sweden)

    Mira Schroten

    Full Text Available Epithelial cells of the plexus choroideus form the structural basis of the blood-cerebrospinal fluid barrier (BCSFB. In vitro models of the BCSFB presenting characteristics of a functional barrier are of significant scientific interest as tools for examination of BCSFB function. Due to a lack of suitable cell lines as in vitro models, primary porcine plexus epithelial cells were subjected to a series of selective cultivation steps until a stable continuous subcultivatable epithelial cell line (PCP-R was established. PCP-R cells grow in a regular polygonal pattern with a doubling time of 28-36 h. At a cell number of 1.5×10(5 in a 24-well plate confluence is reached in 56-72 h. Cells are cytokeratin positive and chromosomal analysis revealed 56 chromosomes at peak (84th subculture. Employing reverse transcription PCR mRNA expression of several transporters and components of cell junctions could be detected. The latter includes tight junction components like Claudin-1 and -3, ZO-1, and Occludin, and the adherens junction protein E-cadherin. Cellular localization studies of ZO-1, Occludin and Claudin-1 by immunofluorescence and morphological analysis by electron microscopy demonstrated formation of a dense tight junction structure. Importantly, when grown on cell culture inserts PCP-R developed typical characteristics of a functional BCSFB including high transepithelial electrical resistance above 600 Ω×cm(2 as well as low permeability for macromolecules. In summary, our data suggest the PCP-R cell line as a suitable in vitro model of the porcine BCSFB.

  4. Examination of the restoration of epithelial barrier function following superficial keratectomy.

    Science.gov (United States)

    Hutcheon, Audrey E K; Sippel, Kimberly C; Zieske, James D

    2007-01-01

    The goal of the present study was to determine the rate of restoration of the corneal epithelial barrier following a superficial keratectomy using a functional assay of tight junction integrity. Adult Sprague-Dawley rats were anesthetized and a 3-mm superficial keratectomy was performed. The eyes were allowed to heal from 4 h to 8 weeks and the rate of epithelial wound closure was determined. To examine the restoration of the barrier function, EZ-Link Sulfo-NHS-LC-Biotin (LC-Biotin) was applied to all eyes, experimental and control, for 15 min at the time of sacrifice. This compound does not penetrate through intact tight junctions. Indirect immunofluorescence was performed with anti-laminin, a marker of basement membrane; fluorescein-conjugated streptavidin to detect the biotinylated marker; and anti-occludin and anti-ZO-1, markers of tight junctions. Epithelial wound closure was observed at 36-42 h after wounding. LC-Biotin did not penetrate the intact epithelium. Upon wounding, LC-Biotin penetrated into the stroma subjacent and slightly peripheral to the wound area. This pattern was present from 4-48 h post-wounding. The area of LC-Biotin localization decreased with time and the functional barrier was restored by 72 h. Occludin and ZO-1 were present at all time points. The number of cell layers expressing these proteins appeared to increase at 48 and 72 h. Continuous laminin localization was not observed until at least 7 days after wounding. Barrier function is restored within 1-1.5 days after epithelial wound closure. The loss of barrier function does not extend beyond the edge of the original wound. The restoration of barrier function does not appear to correlate with reassembly of the basement membrane in this model.

  5. Butyrate Enhances the Intestinal Barrier by Facilitating Tight Junction Assembly via Activation of AMP-Activated Protein Kinase in Caco-2 Cell Monolayers12

    Science.gov (United States)

    Peng, Luying; Li, Zhong-Rong; Green, Robert S.; Holzman, Ian R.; Lin, Jing

    2009-01-01

    Butyrate, one of the SCFA, promotes the development of the intestinal barrier. However, the molecular mechanisms underlying the butyrate regulation of the intestinal barrier are unknown. To test the hypothesis that the effect of butyrate on the intestinal barrier is mediated by the regulation of the assembly of tight junctions involving the activation of the AMP-activated protein kinase (AMPK), we determined the effect of butyrate on the intestinal barrier by measuring the transepithelial electrical resistance (TER) and inulin permeability in a Caco-2 cell monolayer model. We further used a calcium switch assay to study the assembly of epithelial tight junctions and determined the effect of butyrate on the assembly of epithelial tight junctions and AMPK activity. We demonstrated that the butyrate treatment increased AMPK activity and accelerated the assembly of tight junctions as shown by the reorganization of tight junction proteins, as well as the development of TER. AMPK activity was also upregulated by butyrate during calcium switch-induced tight junction assembly. Compound C, a specific AMPK inhibitor, inhibited the butyrate-induced activation of AMPK. The facilitating effect of butyrate on the increases in TER in standard culture media, as well as after calcium switch, was abolished by compound C. We conclude that butyrate enhances the intestinal barrier by regulating the assembly of tight junctions. This dynamic process is mediated by the activation of AMPK. These results suggest an intriguing link between SCFA and the intracellular energy sensor for the development of the intestinal barrier. PMID:19625695

  6. Butyrate enhances the intestinal barrier by facilitating tight junction assembly via activation of AMP-activated protein kinase in Caco-2 cell monolayers.

    Science.gov (United States)

    Peng, Luying; Li, Zhong-Rong; Green, Robert S; Holzman, Ian R; Lin, Jing

    2009-09-01

    Butyrate, one of the SCFA, promotes the development of the intestinal barrier. However, the molecular mechanisms underlying the butyrate regulation of the intestinal barrier are unknown. To test the hypothesis that the effect of butyrate on the intestinal barrier is mediated by the regulation of the assembly of tight junctions involving the activation of the AMP-activated protein kinase (AMPK), we determined the effect of butyrate on the intestinal barrier by measuring the transepithelial electrical resistance (TER) and inulin permeability in a Caco-2 cell monolayer model. We further used a calcium switch assay to study the assembly of epithelial tight junctions and determined the effect of butyrate on the assembly of epithelial tight junctions and AMPK activity. We demonstrated that the butyrate treatment increased AMPK activity and accelerated the assembly of tight junctions as shown by the reorganization of tight junction proteins, as well as the development of TER. AMPK activity was also upregulated by butyrate during calcium switch-induced tight junction assembly. Compound C, a specific AMPK inhibitor, inhibited the butyrate-induced activation of AMPK. The facilitating effect of butyrate on the increases in TER in standard culture media, as well as after calcium switch, was abolished by compound C. We conclude that butyrate enhances the intestinal barrier by regulating the assembly of tight junctions. This dynamic process is mediated by the activation of AMPK. These results suggest an intriguing link between SCFA and the intracellular energy sensor for the development of the intestinal barrier.

  7. Examination of the Restoration of Epithelial Barrier Function Following Superficial Keratectomy

    OpenAIRE

    Hutcheon, Audrey E. K.; Sippel, Kimberly C.; Zieske, James D.

    2006-01-01

    The goal of the present study was to determine the rate of restoration of the corneal epithelial barrier following a superficial keratectomy using a functional assay of tight junction integrity. Adult Sprague-Dawley rats were anesthetized and a 3-mm superficial keratectomy was performed. The eyes were allowed to heal from 4 hours to 8 weeks and the rate of epithelial wound closure was determined. To examine the restoration of the barrier function, EZ-Link Sulfo-NHS-LC-Biotin (LC-Biotin) was a...

  8. The Small GTPase Rap1 Is a Novel Regulator of RPE Cell Barrier Function

    Science.gov (United States)

    Wittchen, Erika S.

    2011-01-01

    Purpose. To determine whether the small GTPase Rap1 regulates the formation and maintenance of the retinal pigment epithelial (RPE) cell junctional barrier. Methods. An in vitro model was used to study RPE barrier properties. To dissect the role of Rap1, two techniques were used to inhibit Rap1 function: overexpression of RapGAP, which acts as a negative regulator of endogenous Rap1 activity, and treatment with engineered, adenovirally-transduced microRNAs to knockdown Rap1 protein expression. Transepithelial electrical resistance (TER) and real-time cellular analysis (RTCA) of impedance were used as readouts for barrier properties. Immunofluorescence microscopy was used to visualize localization of cadherins under steady state conditions and also during junctional reassembly after calcium switch. Finally, choroidal endothelial cell (CEC) migration across RPE monolayers was quantified under conditions of Rap1 inhibition in RPE. Results. Knockdown of Rap1 or inhibition of its activity in RPE reduces TER and electrical impedance of the RPE monolayers. The loss of barrier function is also reflected by the mislocalization of cadherins and formation of gaps within the monolayer. TER measurement and immunofluorescent staining of cadherins after a calcium switch indicate that junctional reassembly kinetics are also impaired. Furthermore, CEC transmigration is significantly higher in Rap1-knockdown RPE monolayers compared with control. Conclusions. Rap1 GTPase is an important regulator of RPE cell junctions, and is required for maintenance of barrier function. This observation that RPE monolayers lacking Rap1 allow greater transmigration of CECs suggests a possible role for potentiating choroidal neovascularization during the pathology of neovascular age-related macular degeneration. PMID:21873678

  9. Ceramides and barrier function in healthy skin

    OpenAIRE

    Jungerstedt, J; Hellgren, Lars; Drachmann, Tue; Høgh, Julie Kaae; Jemec, GBE; Agner, T

    2010-01-01

    Lipids in the stratum corneum are key components in the barrier function of the skin. Changes in lipid composition related to eczematous diseases are well known, but limited data are available on variations within healthy skin. The objective of the present study was to compare ceramide subgroups and ceramide/cholesterol ratios in young, old, male and female healthy skin. A total of 55 participants with healthy skin was included in the study. Lipid profiles were correlated with transepidermal ...

  10. Ceramides and barrier function in healthy skin

    OpenAIRE

    Jungerstedt, J; Hellgren, Lars; Drachmann, Tue; Høgh, Julie Kaae; Jemec, GBE; Agner, T

    2010-01-01

    Lipids in the stratum corneum are key components in the barrier function of the skin. Changes in lipid composition related to eczematous diseases are well known, but limited data are available on variations within healthy skin. The objective of the present study was to compare ceramide subgroups and ceramide/cholesterol ratios in young, old, male and female healthy skin. A total of 55 participants with healthy skin was included in the study. Lipid profiles were correlated with transepidermal ...

  11. Charge transport in molecular electronic junctions: Compression of the molecular tunnel barrier in the strong coupling regime

    OpenAIRE

    Sayed, Sayed Y.; Fereiro, Jerry A.; Yan, Haijun; Richard L. McCreery; Bergren, Adam Johan

    2012-01-01

    Molecular junctions are essentially modified electrodes familiar to electrochemists where the electrolyte is replaced by a conducting “contact.” It is generally hypothesized that changing molecular structure will alter system energy levels leading to a change in the transport barrier. Here, we show the conductance of seven different aromatic molecules covalently bonded to carbon implies a modest range ( 2 eV range). These results are explained by considering the effect of bonding the molecule...

  12. Volatile Anesthetics Influence Blood-Brain Barrier Integrity by Modulation of Tight Junction Protein Expression in Traumatic Brain Injury

    OpenAIRE

    Thal, Serge C.; Clara Luh; Eva-Verena Schaible; Ralph Timaru-Kast; Jana Hedrich; Luhmann, Heiko J.; Kristin Engelhard; Zehendner, Christoph M.

    2012-01-01

    Disruption of the blood-brain barrier (BBB) results in cerebral edema formation, which is a major cause for high mortalityrnafter traumatic brain injury (TBI). As anesthetic care is mandatory in patients suffering from severe TBI it may be importantrnto elucidate the effect of different anesthetics on cerebral edema formation. Tight junction proteins (TJ) such as zonularnoccludens-1 (ZO-1) and claudin-5 (cl5) play a central role for BBB stability. First, the influence of the volatile anesthet...

  13. Connexins in endothelial barrier function - novel therapeutic targets countering vascular hyperpermeability.

    Science.gov (United States)

    Soon, Allyson Shook Ching; Chua, Jia Wang; Becker, David Laurence

    2016-10-28

    Prolonged vascular hyperpermeability is a common feature of many diseases. Vascular hyperpermeability is typically associated with changes in the expression patterns of adherens and tight junction proteins. Here, we focus on the less-appreciated contribution of gap junction proteins (connexins) to basal vascular permeability and endothelial dysfunction. First, we assess the association of connexins with endothelial barrier integrity by introducing tools used in connexin biology and relating the findings to customary readouts in vascular biology. Second, we explore potential mechanistic ties between connexins and junction regulation. Third, we review the role of connexins in microvascular organisation and development, focusing on interactions of the endothelium with mural cells and tissue-specific perivascular cells. Last, we see how connexins contribute to the interactions between the endothelium and components of the immune system, by using neutrophils as an example. Mounting evidence of crosstalk between connexins and other junction proteins suggests that we rethink the way in which different junction components contribute to endothelial barrier function. Given the multiple points of connexin-mediated communication arising from the endothelium, there is great potential for synergism between connexin-targeted inhibitors and existing immune-targeted therapeutics. As more drugs targeting connexins progress through clinical trials, it is hoped that some might prove effective at countering vascular hyperpermeability.

  14. Correlation between Barrier Width, Barrier Height, and DC Bias Voltage Dependences on the Magnetoresistance Ratio in Ir-Mn Exchange Biased Single and Double Tunnel Junctions

    Science.gov (United States)

    Saito, Yoshiaki; Amano, Minoru; Nakajima, Kentaro; Takahashi, Shigeki; Sagoi, Masayuki; Inomata, Koichiro

    2000-10-01

    Dual spin-valve-type double tunnel junctions (DTJs) of Ir-Mn/CoFe/AlOx/Co90Fe10/AlOx/CoFe/Ir-Mn and spin-valve-type single tunnel junctions (STJs) of Ir-Mn/CoFe/AlOx/CoFe/Ni-Fe were fabricated using an ultrahigh vacuum sputtering system, conventional photolithography and ion-beam milling. The STJs could be fabricated with various barrier heights by changing the oxidization conditions during deposition and changing the annealing temperature after deposition, while the AlOx layer thickness remained unchanged. There was a correlation between barrier width, height estimated using Simmons’ expressions, and dc bias voltage dependence on the MR ratio. The VB dependence on the tunneling magnetoresistance (TMR) ratio was mainly related to the barrier width, and the decrease in the TMR ratio with increasing bias voltage is well explained, taking into account the spin-independent two-step tunneling via defect states in the barrier, as a main mechanism, at room temperature. Under optimized oxidization and annealing conditions, the maximum TMR ratio at a low bias voltage, and the dc bias voltage value at which the TMR ratio decreases in value by half (V1/2) were 42.4% and 952 mV in DTJs, and 49.0% and 425 mV in STJs, respectively.

  15. Volatile anesthetics influence blood-brain barrier integrity by modulation of tight junction protein expression in traumatic brain injury.

    Directory of Open Access Journals (Sweden)

    Serge C Thal

    Full Text Available Disruption of the blood-brain barrier (BBB results in cerebral edema formation, which is a major cause for high mortality after traumatic brain injury (TBI. As anesthetic care is mandatory in patients suffering from severe TBI it may be important to elucidate the effect of different anesthetics on cerebral edema formation. Tight junction proteins (TJ such as zonula occludens-1 (ZO-1 and claudin-5 (cl5 play a central role for BBB stability. First, the influence of the volatile anesthetics sevoflurane and isoflurane on in-vitro BBB integrity was investigated by quantification of the electrical resistance (TEER in murine brain endothelial monolayers and neurovascular co-cultures of the BBB. Secondly brain edema and TJ expression of ZO-1 and cl5 were measured in-vivo after exposure towards volatile anesthetics in native mice and after controlled cortical impact (CCI. In in-vitro endothelial monocultures, both anesthetics significantly reduced TEER within 24 hours after exposure. In BBB co-cultures mimicking the neurovascular unit (NVU volatile anesthetics had no impact on TEER. In healthy mice, anesthesia did not influence brain water content and TJ expression, while 24 hours after CCI brain water content increased significantly stronger with isoflurane compared to sevoflurane. In line with the brain edema data, ZO-1 expression was significantly higher in sevoflurane compared to isoflurane exposed CCI animals. Immunohistochemical analyses revealed disruption of ZO-1 at the cerebrovascular level, while cl5 was less affected in the pericontusional area. The study demonstrates that anesthetics influence brain edema formation after experimental TBI. This effect may be attributed to modulation of BBB permeability by differential TJ protein expression. Therefore, selection of anesthetics may influence the barrier function and introduce a strong bias in experimental research on pathophysiology of BBB dysfunction. Future research is required to investigate

  16. The epithelial membrane protein 1 is a novel tight junction protein of the blood-brain barrier.

    Science.gov (United States)

    Bangsow, Thorsten; Baumann, Ewa; Bangsow, Carmen; Jaeger, Martina H; Pelzer, Bernhard; Gruhn, Petra; Wolf, Sabine; von Melchner, Harald; Stanimirovic, Danica B

    2008-06-01

    In the central nervous system, a constant microenvironment required for neuronal cell activity is maintained by the blood-brain barrier (BBB). The BBB is formed by the brain microvascular endothelial cells (BMEC), which are sealed by tight junctions (TJ). To identify genes that are differentially expressed in BMEC compared with peripheral endothelial cells, we constructed a subtractive cDNA library from porcine BMEC (pBMEC) and aortic endothelial cells (AOEC). Screening the library for differentially expressed genes yielded 26 BMEC-specific transcripts, such as solute carrier family 35 member F2 (SLC35F2), ADP-ribosylation factor-like 5B (ARL5B), TSC22 domain family member 1 (TSC22D1), integral membrane protein 2A (ITM2A), and epithelial membrane protein 1 (EMP1). In this study, we show that EMP1 transcript is enriched in pBMEC compared with brain tissue and that EMP1 protein colocalizes with the TJ protein occludin in mouse BMEC by coimmunoprecipitation and in rat brain vessels by immunohistochemistry. Epithelial membrane protein 1 expression was transiently induced in laser-capture microdissected rat brain vessels after a 20-min global cerebral ischemia, in parallel with the loss of occludin immunoreactivity. The study identifies EMP1 as a novel TJ-associated protein of the BBB and suggests its potential role in the regulation of the BBB function in cerebral ischemia.

  17. Alterations of blood brain barrier function in hyperammonemia: an overview.

    Science.gov (United States)

    Skowrońska, Marta; Albrecht, Jan

    2012-02-01

    Ammonia is a neurotoxin involved in the pathogenesis of neurological conditions associated with hyperammonemia, including hepatic encephalopathy, a condition associated with acute--(ALF) or chronic liver failure. This article reviews evidence that apart from directly affecting the metabolism and function of the central nervous system cells, ammonia influences the passage of different molecules across the blood brain barrier (BBB). A brief description is provided of the tight junctions, which couple adjacent cerebral capillary endothelial cells to each other to form the barrier. Ammonia modulates the transcellular passage of low-to medium-size molecules, by affecting their carriers located at the BBB. Ammonia induces interrelated aberrations of the transport of the large neutral amino acids and aromatic amino acids (AAA), whose influx is augmented by exchange with glutamine produced in the course of ammonia detoxification, and maybe also modulated by the extracellularly acting gamma-glutamyl moiety transferring enzyme, gamma-glutamyl-transpeptidase. Impaired AAA transport affects neurotransmission by altering intracerebral synthesis of catecholamines (serotonin and dopamine), and producing "false neurotransmitters" (octopamine and phenylethylamine). Ammonia also modulates BBB transport of the cationic amino acids: the nitric oxide precursor, arginine, and ornithine, which is an ammonia trap, and affects the transport of energy metabolites glucose and creatine. Moreover, ammonia acting either directly or in synergy with liver injury-derived inflammatory cytokines also evokes subtle increases of the transcellular passage of molecules of different size (BBB "leakage"), which appears to be responsible for the vasogenic component of cerebral edema associated with ALF.

  18. Reliability enhancement due to in-situ post-oxidation of sputtered MgO barrier in double MgO barrier magnetic tunnel junction

    Directory of Open Access Journals (Sweden)

    Chikako Yoshida

    2017-06-01

    Full Text Available We have investigated the effects of in-situ post-oxidation (PO of a sputtered MgO barrier in a double-MgO-barrier magnetic tunnel junction (MTJ and found that the short error rate was significantly reduced, the magnetoresistance (MR ratio was increased approximately 18%, and the endurance lifetime was extend. In addition, we found that the distribution of breakdown number (a measure of endurance exhibits trimodal characteristics, which indicates competition between extrinsic and intrinsic failures. This improvement in reliability might be related to the suppression of Fe and Co diffusion to the MgO barrier, as revealed by electron energy-loss spectroscopy (EELS analysis.

  19. N-glycosylation controls the function of junctional adhesion molecule-A.

    Science.gov (United States)

    Scott, David W; Tolbert, Caitlin E; Graham, David M; Wittchen, Erika; Bear, James E; Burridge, Keith

    2015-09-15

    Junctional adhesion molecule-A (JAM-A) is an adherens and tight junction protein expressed by endothelial and epithelial cells. JAM-A serves many roles and contributes to barrier function and cell migration and motility, and it also acts as a ligand for the leukocyte receptor LFA-1. JAM-A is reported to contain N-glycans, but the extent of this modification and its contribution to the protein's functions are unknown. We show that human JAM-A contains a single N-glycan at N185 and that this residue is conserved across multiple mammalian species. A glycomutant lacking all N-glycans, N185Q, is able to reach the cell surface but exhibits decreased protein half-life compared with the wild- type protein. N-glycosylation of JAM-A is required for the protein's ability to reinforce barrier function and contributes to Rap1 activity. We further show that glycosylation of N185 is required for JAM-A-mediated reduction of cell migration. Finally, we show that N-glycosylation of JAM-A regulates leukocyte adhesion and LFA-1 binding. These findings identify N-glycosylation as critical for JAM-A's many functions. © 2015 Scott et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  20. Gap junction proteins are key drivers of endocrine function.

    Science.gov (United States)

    Meda, Paolo

    2017-03-08

    It has long been known that the main secretory cells of exocrine and endocrine glands are connected by gap junctions, made by a variety of connexin species that ensure their electrical and metabolic coupling. Experiments in culture systems and animal models have since provided increasing evidence that connexin signaling contributes to control the biosynthesis and release of secretory products, as well as to the life and death of secretory cells. More recently, genetic studies have further provided the first lines of evidence that connexins also control the function of human glands, which are central to the pathogenesis of major endocrine diseases. Here, we summarize the recent information gathered on connexin signaling in these systems, since the last reviews on the topic, with particular regard to the pancreatic beta cells which produce insulin, and the renal cells which produce renin. These cells are keys to the development of various forms of diabetes and hypertension, respectively, and combine to account for the exploding, worldwide prevalence of the metabolic syndrome. This article is part of a Special Issue entitled: Gap Junction Proteins edited by Jean Claude Herve. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Rictor/mTORC2 regulates blood-testis barrier dynamics via its effects on gap junction communications and actin filament network.

    Science.gov (United States)

    Mok, Ka-Wai; Mruk, Dolores D; Lee, Will M; Cheng, C Yan

    2013-03-01

    In the mammalian testis, coexisting tight junctions (TJs), basal ectoplasmic specializations, and gap junctions (GJs), together with desmosomes near the basement membrane, constitute the blood-testis barrier (BTB). The most notable feature of the BTB, however, is the extensive network of actin filament bundles, which makes it one of the tightest blood-tissue barriers. The BTB undergoes restructuring to facilitate the transit of preleptotene spermatocytes at stage VIII-IX of the epithelial cycle. Thus, the F-actin network at the BTB undergoes cyclic reorganization via a yet-to-be explored mechanism. Rictor, the key component of mTORC2 that is known to regulate actin cytoskeleton, was shown to express stage-specifically at the BTB in the seminiferous epithelium. Its expression was down-regulated at the BTB in stage VIII-IX tubules, coinciding with BTB restructuring at these stages. Using an in vivo model, a down-regulation of rictor at the BTB was also detected during adjudin-induced BTB disruption, illustrating rictor expression is positively correlated with the status of the BTB integrity. Indeed, the knockdown of rictor by RNAi was found to perturb the Sertoli cell TJ-barrier function in vitro and the BTB integrity in vivo. This loss of barrier function was accompanied by changes in F-actin organization at the Sertoli cell BTB in vitro and in vivo, associated with a loss of interaction between actin and α-catenin or ZO-1. Rictor knockdown by RNAi was also found to impede Sertoli cell-cell GJ communication, disrupting protein distribution (e.g., occludin, ZO-1) at the BTB, illustrating that rictor is a crucial BTB regulator.

  2. Tight junctions: a barrier to the initiation and progression of breast cancer?

    LENUS (Irish Health Repository)

    Brennan, Kieran

    2010-01-01

    Breast cancer is a complex and heterogeneous disease that arises from epithelial cells lining the breast ducts and lobules. Correct adhesion between adjacent epithelial cells is important in determining the normal structure and function of epithelial tissues, and there is accumulating evidence that dysregulated cell-cell adhesion is associated with many cancers. This review will focus on one cell-cell adhesion complex, the tight junction (TJ), and summarize recent evidence that TJs may participate in breast cancer development or progression. We will first outline the protein composition of TJs and discuss the functions of the TJ complex. Secondly we will examine how alterations in these functions might facilitate breast cancer initiation or progression; by focussing on the regulatory influence of TJs on cell polarity, cell fate and cell migration. Finally we will outline how pharmacological targeting of TJ proteins may be useful in limiting breast cancer progression. Overall we hope to illustrate that the relationship between TJ alterations and breast cancer is a complex one; but that this area offers promise in uncovering fundamental mechanisms linked to breast cancer progression.

  3. Ceramides and barrier function in healthy skin

    DEFF Research Database (Denmark)

    Jungerstedt, J; Hellgren, Lars; Drachmann, Tue;

    2010-01-01

    Lipids in the stratum corneum are key components in the barrier function of the skin. Changes in lipid composition related to eczematous diseases are well known, but limited data are available on variations within healthy skin. The objective of the present study was to compare ceramide subgroups...... and ceramide/cholesterol ratios in young, old, male and female healthy skin. A total of 55 participants with healthy skin was included in the study. Lipid profiles were correlated with transepidermal water loss and with information on dry skin from a questionnaire including 16 people. No statistically...

  4. Microinjection Technique for Assessment of Gap Junction Function.

    Science.gov (United States)

    Fridman, Michael D; Liu, Jun; Sun, Yu; Hamilton, Robert M

    2016-01-01

    Gap junctions are essential for the proper function of many native mammalian tissues including neurons, cardiomyocytes, embryonic tissues, and muscle. Assessing these channels is therefore fundamental to understanding disease pathophysiology, developing therapies for a multitude of acquired and genetic conditions, and providing novel approaches to drug delivery and cellular communication. Microinjection is a robust, albeit difficult, technique, which provides considerable information that is superior to many of the simpler techniques due to its ability to isolate cells, quantify kinetics, and allow cross-comparison of multiple cell lines. Despite its user-dependent nature, the strengths of the technique are considerable and with the advent of new, automation technologies may improve further. This text describes the basic technique of microinjection and briefly discusses modern automation advances that can improve the success rates of this technique.

  5. Microbial products induce claudin-2 to compromise gut epithelial barrier function.

    Directory of Open Access Journals (Sweden)

    Xiaoyu Liu

    Full Text Available The epithelial barrier dysfunction is an important pathogenic feature in a number of diseases. The underlying mechanism is to be further investigated. The present study aims to investigate the role of tight junction protein claudin-2 (Cldn2 in the compromising epithelial barrier function. In this study, the expression of Cldn2 in the epithelial layer of mice and patients with food allergy was observed by immunohistochemistry. The induction of Cldn2 was carried out with a cell culture model. The Cldn2-facilitated antigen internalization was observed by confocal microscopy. The epithelial barrier function in the gut epithelial monolayer was assessed by recording the transepithelial resistance and assessing the permeability to a macromolecular tracer. The results showed that the positive immune staining of Cldn2 was observed in the epithelial layer of the small intestine that was weakly stained in naïve control mice, and strongly stained in sensitized mice as well as patients with food allergy. Exposure to cholera toxin or Staphylococcal enterotoxin B induced the expression of Cldn2 in HT-29 or T84 cells. Cldn2 could bind protein antigen to form complexes to facilitate the antigen transport across the epithelial barrier. Blocking Cldn2 prevented the allergen-related hypersensitivity the intestine. We conclude that the tight junction protein Cldn2 is involved in the epithelial barrier dysfunction.

  6. Charge transport in molecular electronic junctions: compression of the molecular tunnel barrier in the strong coupling regime.

    Science.gov (United States)

    Sayed, Sayed Y; Fereiro, Jerry A; Yan, Haijun; McCreery, Richard L; Bergren, Adam Johan

    2012-07-17

    Molecular junctions are essentially modified electrodes familiar to electrochemists where the electrolyte is replaced by a conducting "contact." It is generally hypothesized that changing molecular structure will alter system energy levels leading to a change in the transport barrier. Here, we show the conductance of seven different aromatic molecules covalently bonded to carbon implies a modest range ( 2 eV range). These results are explained by considering the effect of bonding the molecule to the substrate. Upon bonding, electronic inductive effects modulate the energy levels of the system resulting in compression of the tunneling barrier. Modification of the molecule with donating or withdrawing groups modulate the molecular orbital energies and the contact energy level resulting in a leveling effect that compresses the tunneling barrier into a range much smaller than expected. Whereas the value of the tunneling barrier can be varied by using a different class of molecules (alkanes), using only aromatic structures results in a similar equilibrium value for the tunnel barrier for different structures resulting from partial charge transfer between the molecular layer and the substrate. Thus, the system does not obey the Schottky-Mott limit, and the interaction between the molecular layer and the substrate acts to influence the energy level alignment. These results indicate that the entire system must be considered to determine the impact of a variety of electronic factors that act to determine the tunnel barrier.

  7. Enhanced voltage-controlled magnetic anisotropy in magnetic tunnel junctions with an MgO/PZT/MgO tunnel barrier

    Science.gov (United States)

    Chien, Diana; Li, Xiang; Wong, Kin; Zurbuchen, Mark A.; Robbennolt, Shauna; Yu, Guoqiang; Tolbert, Sarah; Kioussis, Nicholas; Khalili Amiri, Pedram; Wang, Kang L.; Chang, Jane P.

    2016-03-01

    Compared with current-controlled magnetization switching in a perpendicular magnetic tunnel junction (MTJ), electric field- or voltage-induced magnetization switching reduces the writing energy of the memory cell, which also results in increased memory density. In this work, an ultra-thin PZT film with high dielectric constant was integrated into the tunneling oxide layer to enhance the voltage-controlled magnetic anisotropy (VCMA) effect. The growth of MTJ stacks with an MgO/PZT/MgO tunnel barrier was performed using a combination of sputtering and atomic layer deposition techniques. The fabricated MTJs with the MgO/PZT/MgO barrier demonstrate a VCMA coefficient, which is ˜40% higher (19.8 ± 1.3 fJ/V m) than the control sample MTJs with an MgO barrier (14.3 ± 2.7 fJ/V m). The MTJs with the MgO/PZT/MgO barrier also possess a sizeable tunneling magnetoresistance (TMR) of more than 50% at room temperature, comparable to the control MTJs with an MgO barrier. The TMR and enhanced VCMA effect demonstrated simultaneously in this work make the MgO/PZT/MgO barrier-based MTJs potential candidates for future voltage-controlled, ultralow-power, and high-density magnetic random access memory devices.

  8. Anisotropic transport of normal metal-barrier-normal metal junctions in monolayer phosphorene

    Science.gov (United States)

    De Sarkar, Sangita; Agarwal, Amit; Sengupta, K.

    2017-07-01

    We study transport properties of a phosphorene monolayer in the presence of single and multiple potential barriers of height U 0 and width d, using both continuum and microscopic lattice models, and show that the nature of electron transport along its armchair edge (x direction) is qualitatively different from its counterpart in both conventional two-dimensional electron gas with Schrödinger-like quasiparticles and graphene or surfaces of topological insulators hosting massless Dirac quasiparticles. We show that the transport, mediated by massive Dirac electrons, allows one to achieve collimated quasiparticle motion along x and thus makes monolayer phosphorene an ideal experimental platform for studying Klein paradox in the context of gapped Dirac materials. We study the dependence of the tunneling conductance G\\equiv {{G}xx} as a function of d and U 0, and demonstrate that for a given applied voltage V its behavior changes from oscillatory to decaying function of d for a range of U 0 with finite non-zero upper and lower bounds, and provide analytical expression for these bounds within which G decays with d. We contrast such behavior of G with that of massless Dirac electrons in graphene and also with that along the zigzag edge (y direction) in phosphorene where the quasiparticles obey an effective Schrödinger equation at low energy. We also study transport through multiple barriers along x and demonstrate that these properties hold for transport through multiple barriers as well. Finally, we suggest concrete experiments which may verify our theoretical predictions.

  9. Endoplasmic reticulum-plasma membrane junctions: structure, function and dynamics.

    Science.gov (United States)

    Okeke, Emmanuel; Dingsdale, Hayley; Parker, Tony; Voronina, Svetlana; Tepikin, Alexei V

    2016-06-01

    Endoplasmic reticulum (ER)-plasma membrane (PM) junctions are contact sites between the ER and the PM; the distance between the two organelles in the junctions is below 40 nm and the membranes are connected by protein tethers. A number of molecular tools and technical approaches have been recently developed to visualise, modify and characterise properties of ER-PM junctions. The junctions serve as the platforms for lipid exchange between the organelles and for cell signalling, notably Ca(2+) and cAMP signalling. Vice versa, signalling events regulate the development and properties of the junctions. Two Ca(2+) -dependent mechanisms of de novo formation of ER-PM junctions have been recently described and characterised. The junction-forming proteins and lipids are currently the focus of vigorous investigation. Junctions can be relatively short-lived and simple structures, forming and dissolving on the time scale of a few minutes. However, complex, sophisticated and multifunctional ER-PM junctions, capable of attracting numerous protein residents and other cellular organelles, have been described in some cell types. The road from simplicity to complexity, i.e. the transformation from simple 'nascent' ER-PM junctions to advanced stable multiorganellar complexes, is likely to become an attractive research avenue for current and future junctologists. Another area of considerable research interest is the downstream cellular processes that can be activated by specific local signalling events in the ER-PM junctions. Studies of the cell physiology and indeed pathophysiology of ER-PM junctions have already produced some surprising discoveries, likely to expand with advances in our understanding of these remarkable organellar contact sites. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.

  10. Differential distribution of tight junction proteins suggests a role for tanycytes in blood-hypothalamus barrier regulation in the adult mouse brain.

    Science.gov (United States)

    Mullier, Amandine; Bouret, Sebastien G; Prevot, Vincent; Dehouck, Bénédicte

    2010-04-01

    The median eminence is one of the seven so-called circumventricular organs. It is located in the basal hypothalamus, ventral to the third ventricle and adjacent to the arcuate nucleus. This structure characteristically contains a rich capillary plexus and features a fenestrated endothelium, making it a direct target of blood-borne molecules. The median eminence also contains highly specialized ependymal cells called tanycytes, which line the floor of the third ventricle. It has been hypothesized that one of the functions of these cells is to create a barrier that prevents substances in the portal capillary spaces from entering the brain. In this paper, we utilize immunohistochemistry to study the expression of tight junction proteins in the cells that compose the median eminence in adult mice. Our results indicate that tanycytes of the median eminence express occludin, ZO-1, and claudin 1 and 5, but not claudin 3. Remarkably, these molecules are organized as a continuous belt around the cell bodies of the tanycytes that line the ventral part of the third ventricle. In contrast, the tanycytes at the periphery of the arcuate nucleus do not express claudin 1 and instead exhibit a disorganized expression pattern of occludin, ZO-1, and claudin 5. Consistent with these observations, permeability studies using peripheral or central injections of Evans blue dye show that only the tanycytes of the median eminence are joined at their apices by functional tight junctions, whereas tanycytes located at the level of the arcuate nucleus form a permeable layer. In conclusion, this study reveals a unique expression pattern of tight junction proteins in hypothalamic tanycytes, which yields new insights into their barrier properties.

  11. On Chip Bioelectric Impedance Spectroscopy Reveals the Effect of P-Glycoprotein Efflux Pumps on the Paracellular Impedance of Tight Junctions at the Blood-Brain Barrier.

    Science.gov (United States)

    Kraya, Ramsey; Komin, Alexander; Searson, Peter

    2016-10-01

    Bioelectric impedance spectroscopy was used to elucidate the influence of P-gp efflux pumps on the kinetics of tight junction down-regulation in confluent monolayers of Madine Darby Canine Kidney Epithelial Cells (MDCK) following administration of phenylarsine oxide (PAO), a molecule that inhibits protein tyrosine phosphatases (PTP) and induces matrix metalloproteinase activity. Matrix metalloproteinases (MMPs) and phosphatase inhibitors induce modification of occludin tight junction proteins critical for the proper function of the blood-brain barrier. The addition of PAO to MDCKII cell lines resulted in a dramatic decrease in monolayer resistance. In contrast, MDCKII-MDR1 cells transfected with the MDR1 gene treated with PAO showed an initial decrease in monolayer resistance followed by a partial recovery and subsequent decrease. This resistance decay reversal was suppressed with the addition of the P-glycoprotein (P-gp) pump inhibitor elacridar, and is attributed to PAO efflux. These results illustrate impedance spectroscopy can be used to characterize the competing kinetics of efflux and down-regulation of tight junctions. In addition, the resistance decay reversal effect can be used to evaluate P-gp pump inhibitor efficacy.

  12. Schottky barrier modulation of metal/4H-SiC junction with thin interface spacer driven by surface polarization charge on 4H-SiC substrate

    Science.gov (United States)

    Choi, Gahyun; Yoon, Hoon Hahn; Jung, Sungchul; Jeon, Youngeun; Lee, Jung Yong; Bahng, Wook; Park, Kibog

    2015-12-01

    The Au/Ni/Al2O3/4H-SiC junction with the Al2O3 film as a thin spacer layer was found to show the electrical characteristics of a typical rectifying Schottky contact, which is considered to be due to the leakiness of the spacer layer. The Schottky barrier of the junction was measured to be higher than an Au/Ni/4H-SiC junction with no spacer layer. It is believed that the negative surface bound charge originating from the spontaneous polarization of 4H-SiC causes the Schottky barrier increase. The use of a thin spacer layer can be an efficient experimental method to modulate Schottky barriers of metal/4H-SiC junctions.

  13. Mild hypothermia alleviates brain oedema and blood-brain barrier disruption by attenuating tight junction and adherens junction breakdown in a swine model of cardiopulmonary resuscitation

    Science.gov (United States)

    Li, Jiebin; Li, Chunsheng; Yuan, Wei; Wu, Junyuan; Li, Jie; Li, Zhenhua; Zhao, Yongzhen

    2017-01-01

    Mild hypothermia improves survival and neurological recovery after cardiac arrest (CA) and cardiopulmonary resuscitation (CPR). However, the mechanism underlying this phenomenon is not fully elucidated. The aim of this study was to determine whether mild hypothermia alleviates early blood–brain barrier (BBB) disruption. We investigated the effects of mild hypothermia on neurologic outcome, survival rate, brain water content, BBB permeability and changes in tight junctions (TJs) and adherens junctions (AJs) after CA and CPR. Pigs were subjected to 8 min of untreated ventricular fibrillation followed by CPR. Mild hypothermia (33°C) was intravascularly induced and maintained at this temperature for 12 h, followed by active rewarming. Mild hypothermia significantly reduced cortical water content, decreased BBB permeability and attenuated TJ ultrastructural and basement membrane breakdown in brain cortical microvessels. Mild hypothermia also attenuated the CPR-induced decreases in TJ (occludin, claudin-5, ZO-1) and AJ (VE-cadherin) protein and mRNA expression. Furthermore, mild hypothermia decreased the CA- and CPR-induced increases in matrix metalloproteinase-9 (MMP-9) and vascular endothelial growth factor (VEGF) expression and increased angiogenin-1 (Ang-1) expression. Our findings suggest that mild hypothermia attenuates the CA- and resuscitation-induced early brain oedema and BBB disruption, and this improvement might be at least partially associated with attenuation of the breakdown of TJ and AJ, suppression of MMP-9 and VEGF expression, and upregulation of Ang-1 expression. PMID:28355299

  14. Quantum size effects on spin-transfer torque in a double barrier magnetic tunnel junction with a nonmagnetic-metal (semiconductor) spacer

    Energy Technology Data Exchange (ETDEWEB)

    Daqiq, Reza; Ghobadi, Nader

    2016-07-15

    We study the quantum size effects of an MgO-based double barrier magnetic tunnel junction with a nonmagnetic-metal (DBMTJ-NM) (semiconductor (DBMTJ-SC)) spacer on the charge current and the spin-transfer torque (STT) components using non-equilibrium Green's function (NEGF) formalism. The results show oscillatory behavior due to the resonant tunneling effect depending on the structure parameters. We find that the charge current and the STT components in the DBMTJ-SC demonstrate the magnitude enhancement in comparison with the DBMTJ-NM. The bias dependence of the STT components in a DBMTJ-NM shows different behavior in comparison with spin valves and conventional MTJs. Therefore, by choosing a specific SC spacer with suitable thickness in a DBMTJ the charge current and the STT components significantly increase so that one can design a device with high STT and faster magnetization switching. - Highlights: • The quantum size effects are studied in double barrier magnetic tunnel junctions. • Spin torque (ST) components oscillate for increasing of middle spacer thicknesses. • Due to the resonant tunneling in the quantum well, oscillations have appeared. • By replacement a metal spacer with a semiconductor (ZnO) ST has increased. • The ST components vs. bias show gradually decreasing unlike spin valves or MTJs.

  15. Sleep Restriction Impairs Blood–Brain Barrier Function

    Science.gov (United States)

    He, Junyun; Hsuchou, Hung; He, Yi; Kastin, Abba J.; Wang, Yuping

    2014-01-01

    The blood–brain barrier (BBB) is a large regulatory and exchange interface between the brain and peripheral circulation. We propose that changes of the BBB contribute to many pathophysiological processes in the brain of subjects with chronic sleep restriction (CSR). To achieve CSR that mimics a common pattern of human sleep loss, we quantified a new procedure of sleep disruption in mice by a week of consecutive sleep recording. We then tested the hypothesis that CSR compromises microvascular function. CSR not only diminished endothelial and inducible nitric oxide synthase, endothelin1, and glucose transporter expression in cerebral microvessels of the BBB, but it also decreased 2-deoxy-glucose uptake by the brain. The expression of several tight junction proteins also was decreased, whereas the level of cyclooxygenase-2 increased. This coincided with an increase of paracellular permeability of the BBB to the small tracers sodium fluorescein and biotin. CSR for 6 d was sufficient to impair BBB structure and function, although the increase of paracellular permeability returned to baseline after 24 h of recovery sleep. This merits attention not only in neuroscience research but also in public health policy and clinical practice. PMID:25355222

  16. Sleep restriction impairs blood-brain barrier function.

    Science.gov (United States)

    He, Junyun; Hsuchou, Hung; He, Yi; Kastin, Abba J; Wang, Yuping; Pan, Weihong

    2014-10-29

    The blood-brain barrier (BBB) is a large regulatory and exchange interface between the brain and peripheral circulation. We propose that changes of the BBB contribute to many pathophysiological processes in the brain of subjects with chronic sleep restriction (CSR). To achieve CSR that mimics a common pattern of human sleep loss, we quantified a new procedure of sleep disruption in mice by a week of consecutive sleep recording. We then tested the hypothesis that CSR compromises microvascular function. CSR not only diminished endothelial and inducible nitric oxide synthase, endothelin1, and glucose transporter expression in cerebral microvessels of the BBB, but it also decreased 2-deoxy-glucose uptake by the brain. The expression of several tight junction proteins also was decreased, whereas the level of cyclooxygenase-2 increased. This coincided with an increase of paracellular permeability of the BBB to the small tracers sodium fluorescein and biotin. CSR for 6 d was sufficient to impair BBB structure and function, although the increase of paracellular permeability returned to baseline after 24 h of recovery sleep. This merits attention not only in neuroscience research but also in public health policy and clinical practice. Copyright © 2014 the authors 0270-6474/14/3414697-10$15.00/0.

  17. Commensal bacteria-dependent indole production enhances epithelial barrier function in the colon.

    Directory of Open Access Journals (Sweden)

    Yosuke Shimada

    Full Text Available Microbiota have been shown to have a great influence on functions of intestinal epithelial cells (ECs. The role of indole as a quorum-sensing (QS molecule mediating intercellular signals in bacteria has been well appreciated. However, it remains unknown whether indole has beneficial effects on maintaining intestinal barriers in vivo. In this study, we analyzed the effect of indole on ECs using a germ free (GF mouse model. GF mice showed decreased expression of junctional complex molecules in colonic ECs. The feces of specific pathogen-free (SPF mice contained a high amount of indole; however the amount was significantly decreased in the feces of GF mice by 27-fold. Oral administration of indole-containing capsules resulted in increased expression of both tight junction (TJ- and adherens junction (AJ-associated molecules in colonic ECs in GF mice. In accordance with the increased expression of these junctional complex molecules, GF mice given indole-containing capsules showed higher resistance to dextran sodium sulfate (DSS-induced colitis. A similar protective effect of indole on DSS-induced epithelial damage was also observed in mice bred in SPF conditions. These findings highlight the beneficial role of indole in establishing an epithelial barrier in vivo.

  18. Can probiotics modulate human disease by impacting intestinal barrier function?

    NARCIS (Netherlands)

    Bron, Peter A.; Kleerebezem, Michiel; Brummer, Robert Jan; Cani, Patrice D.; Mercenier, Annick; MacDonald, Thomas T.; Garcia-Ródenas, Clara L.; Wells, Jerry M.

    2017-01-01

    Intestinal barrier integrity is a prerequisite for homeostasis of mucosal function, which is balanced to maximise absorptive capacity, while maintaining efficient defensive reactions against chemical and microbial challenges. Evidence is mounting that disruption of epithelial barrier integrity is

  19. Gastric barrier function and toxic damage.

    Science.gov (United States)

    Niv, Yaron; Banić, Marko

    2014-01-01

    Gastric epithelium is the first significant barrier between the inner body and the potentially toxic material in the lumen. Nutrients affect gastric barrier continuously--alcohol, coffee, spices, salted food, etc. Also, very potent noxious agents are widely prescribed drugs--nonsteroidal anti-inflammatory drugs (NSAIDs), aspirin and selective serotonin reuptake inhibitors. Helicobacter pylori is a well-known and well-investigated pathogen associated with serious gastric damage and gastric carcinoma. For its defense and maintenance of homeostasis and integrity, except acid secretion and maintenance of low luminal pH, gastric mucosa also has a specific structure, and its function is influenced by different control mechanisms. These include control of mucosal blood flow, control of mucus and bicarbonate secretion, constant cell renewal, and neuronal and hormonal control of defense mechanisms. These mechanisms are mediated by prostaglandins, nitric oxide, growth factors, heat-shock proteins and a neuropeptide called calcitonin gene-related protein. Adrenal glucocorticoids and the central nervous system also play an important role in regulating gastro-protection, especially hypothalamus and the dorsal vagal complex. Gastric mucosa is also an important component of the body's immune system and gut-associated lymphoid tissue which serves as the initiation site for antigen-specific humoral and cell-mediated immune response. Treatment options for gastric barrier dysfunction and damage due to aforementioned noxious agents are guided by the nature of damage and our understanding of the pathophysiological mechanisms involved. Currently, management is guideline driven and depends upon eradication treatment in patients infected with H. pylori and treatment or prevention of aspirin or NSAID ulceration. © 2014 S. Karger AG, Basel.

  20. Plasma Separation Process: Betacell (BCELL) code: User's manual. [Bipolar barrier junction

    Energy Technology Data Exchange (ETDEWEB)

    Taherzadeh, M.

    1987-11-13

    The emergence of clearly defined applications for (small or large) amounts of long-life and reliable power sources has given the design and production of betavoltaic systems a new life. Moreover, because of the availability of the plasma separation program, (PSP) at TRW, it is now possible to separate the most desirable radioisotopes for betacell power generating devices. A computer code, named BCELL, has been developed to model the betavoltaic concept by utilizing the available up-to-date source/cell parameters. In this program, attempts have been made to determine the betacell energy device maximum efficiency, degradation due to the emitting source radiation and source/cell lifetime power reduction processes. Additionally, comparison is made between the Schottky and PN junction devices for betacell battery design purposes. Certain computer code runs have been made to determine the JV distribution function and the upper limit of the betacell generated power for specified energy sources. A Ni beta emitting radioisotope was used for the energy source and certain semiconductors were used for the converter subsystem of the betacell system. Some results for a Promethium source are also given here for comparison. 16 refs.

  1. Impaired water barrier function in acne vulgaris.

    Science.gov (United States)

    Yamamoto, A; Takenouchi, K; Ito, M

    1995-01-01

    In acne vulgaris, abnormal follicular keratinization is important for comedo formation, yet the precise mechanisms of comedogenesis are not known. The present study examined the interrelationship between sebum secretion rate (SSR), lipid content and water barrier function (WBF) of the stratum corneum (SC) in 36 acne patients and 29 control subjects. All major SC lipid classes were separated and quantified by thin-layer chromatography/photodensitometry. WBF was evaluated by measuring transepidermal water loss (TEWL), and the hygroscopic properties and waterholding capacity of the SC. The SSR over a period of 3 h was significantly higher in patients with moderate acne than in control subjects, but no significant difference was noticed between patients with mild acne and control subjects. Significant differences between patients with both moderate and mild acne and control subjects were noted in the amount of sphingolipids (ceramides and free sphingosine), but not for any other lipid classes. Furthermore in acne patients, lower amounts of sphingolipids were observed corresponding with a diminished WBF. These results suggest that an impaired WBF caused by decreased amounts of ceramides may be responsible for comedo formation, since barrier dysfunction is accompanied by hyperkeratosis of the follicular epithelium.

  2. Co2FeAl based magnetic tunnel junctions with BaO and MgO/BaO barriers

    Directory of Open Access Journals (Sweden)

    J. Rogge

    2015-07-01

    Full Text Available We succeed to integrate BaO as a tunneling barrier into Co2FeAl based magnetic tunnel junctions (MTJs. By means of Auger electron spectroscopy it could be proven that the applied annealing temperatures during BaO deposition and afterwards do not cause any diffusion of Ba neither into the lower Heusler compound lead nor into the upper Fe counter electrode. Nevertheless, a negative tunnel magnetoresistance (TMR ratio of -10% is found for Co2FeAl (24 nm / BaO (5 nm / Fe (7 nm MTJs, which can be attributed to the preparation procedure and can be explained by the formation of Co- and Fe-oxides at the interfaces between the Heusler and the crystalline BaO barrier by comparing with theory. Although an amorphous structure of the BaO barrier seems to be confirmed by high-resolution transmission electron microscopy (TEM, it cannot entirely be ruled out that this is an artifact of TEM sample preparation due to the sensitivity of BaO to moisture. By replacing the BaO tunneling barrier with an MgO/BaO double layer barrier, the electric stability could effectively be increased by a factor of five. The resulting TMR effect is found to be about +20% at room temperature, although a fully antiparallel state has not been realized.

  3. Functional and structural alterations of epithelial barrier properties of rat ileum following X-irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Dublineau, I. [Inst. de Radioprotection et de Surete Nucleaire (IRSN), Direction de la RadioProtection de l' Homme, Service de Radiobiologie et d' Epidemiologie, Fontenay-aux-Roses, CEDEX (France)]. E-mail: isabelle.dublineau@irsn.fr; Lebrun, F. [Commissariat a l' Energie Atomique (CEA), Dept. de Radiopathologie et de Radiobiologie, Fontenay-aux-Roses, CEDEX (France); Grison, S.; Griffiths, N.M. [Inst. de Radioprotection et de Surete Nucleaire (IRSN), Direction de la RadioProtection de l' Homme, Service de Radiobiologie et d' Epidemiologie, Fontenay-aux-Roses, CEDEX (France)

    2004-02-01

    Irradiation of the digestive system leads to alterations of the small intestine. We have characterized the disruption of the barrier integrity in rat ileum from 1 to 14 days following irradiation ranging from 6 to 12 Gy. The intestinal permeability to {sup 14}C-mannitol and {sup 3}H-dextran 70,000 was measured in vitro in Ussing chambers. In parallel to these functional studies, immunohistochemical analyses of junctional proteins (ZO-1 and {beta}-catenin) of ileal epithelium were performed by confocal microscopy. Irradiation with 10 Gy induced a marked decrease in epithelial tissue resistance at three days and a fivefold increase in mannitol permeability, without modifications of dextran permeability. A disorganization of the localization for ZO-1 and {beta}-catenin was also observed. At 7 days after irradiation, we observed a recovery of the organization of junctional proteins in parallel to a return of intestinal permeability to control value. In addition to these time-dependent effects, a gradual effect on epithelial integrity of the radiation doses was observed 3 days after irradiation. This study shows a disruption of the integrity of the intestinal barrier in rat ileum following abdominal X-irradiation, depending on the time postirradiation and on the delivered dose. The loss of barrier integrity was characterized by a disorganization of proteins of tight and adherent junctions, leading to increased intestinal permeability to mannitol. (author)

  4. Ceramides and barrier function in healthy skin.

    Science.gov (United States)

    Mutanu Jungersted, Jakob; Hellgren, Lars I; Høgh, Julie K; Drachmann, T; Jemec, Gregor B E; Agner, Tove

    2010-07-01

    Lipids in the stratum corneum are key components in the barrier function of the skin. Changes in lipid composition related to eczematous diseases are well known, but limited data are available on variations within healthy skin. The objective of the present study was to compare ceramide subgroups and ceramide/cholesterol ratios in young, old, male and female healthy skin. A total of 55 participants with healthy skin was included in the study. Lipid profiles were correlated with transepidermal water loss and with information on dry skin from a questionnaire including 16 people. No statistically significant differences were found between young and old skin for ceramide subgroups or ceramide/cholesterol ratios, and there was no statistically significant correlation between answers about dry skin and ceramide levels. Interestingly, a statistically significant higher ceramide/cholesterol ratio was found for men than for women (p = 0.02).

  5. Ceramides and barrier function in healthy skin

    DEFF Research Database (Denmark)

    Mutanu Jungersted, Jakob; Hellgren, Lars; Høgh, Julie Kaae

    2010-01-01

    Lipids in the stratum corneum are key components in the barrier function of the skin. Changes in lipid composition related to eczematous diseases are well known, but limited data are available on variations within healthy skin. The objective of the present study was to compare ceramide subgroups...... and ceramide/cholesterol ratios in young, old, male and female healthy skin. A total of 55 participants with healthy skin was included in the study. Lipid profiles were correlated with transepidermal water loss and with information on dry skin from a questionnaire including 16 people. No statistically...... significant differences were found between young and old skin for ceramide subgroups or ceramide/cholesterol ratios, and there was no statistically significant correlation between answers about dry skin and ceramide levels. Interestingly, a statistically significant higher ceramide/cholesterol ratio was found...

  6. Barrier function in the peripheral and central nervous system-a review.

    Science.gov (United States)

    Reinhold, A K; Rittner, H L

    2017-01-01

    The peripheral (PNS) and central nervous system (CNS) are delicate structures, highly sensitive to homeostatic changes-and crucial for basic vital functions. Thus, a selection of barriers ensures the protection of the nervous system from noxious blood-borne or surrounding stimuli. In this chapter, anatomy and functioning of the blood-nerve (BNB), the blood-brain (BBB), and the blood-spinal cord barriers (BSCB) are presented and the key tight junction (TJ) proteins described: claudin-1, claudin-3, claudin-5, claudin-11, claudin-12, claudin-19, occludin, Zona occludens-1 (ZO-1), and tricellulin are by now identified as relevant for nerval barriers. Different diseases can lead to or be accompanied by neural barrier disruption, and impairment of these barriers worsens pathology. Peripheral nerve injury and inflammatory polyneuropathy cause an increased permeability of BNB as well as BSCB, while, e.g., diseases of the CNS such as amyotrophic lateral sclerosis, multiple sclerosis, spinal cord injury, or Alzheimer's disease can progress and worsen through barrier dysfunction. Moreover, the complex role and regulation of the BBB after ischemic stroke is described. On the other side, PNS and CNS barriers hamper the delivery of drugs in diseases when the barrier is intact, e.g., in certain neurodegenerative diseases or inflammatory pain. Understanding of the barrier - regulating processes has already lead to the discovery of new molecules as drug enhancers. In summary, the knowledge of all of these mechanisms might ultimately lead to the invention of drugs to control barrier function to help ameliorating or curing neurological diseases.

  7. Subacute stress and chronic stress interact to decrease intestinal barrier function in rats.

    Science.gov (United States)

    Lauffer, Adriana; Vanuytsel, Tim; Vanormelingen, Christophe; Vanheel, Hanne; Salim Rasoel, Shadea; Tóth, Joran; Tack, Jan; Fornari, Fernando; Farré, Ricard

    2016-01-01

    Psychological stress increases intestinal permeability, potentially leading to low-grade inflammation and symptoms in functional gastrointestinal disorders. We assessed the effect of subacute, chronic and combined stress on intestinal barrier function and mast cell density. Male Wistar rats were allocated to four experimental groups (n = 8/group): 1/sham; 2/subacute stress (isolation and limited movement for 24 h); 3/chronic crowding stress for 14 days and 4/combined subacute and chronic stress. Jejunum and colon were collected to measure: transepithelial electrical resistance (TEER; a measure of epithelial barrier function); gene expression of tight junction molecules; mast cell density. Plasma corticosterone concentration was increased in all three stress conditions versus sham, with highest concentrations in the combined stress condition. TEER in the jejunum was decreased in all stress conditions, but was significantly lower in the combined stress condition than in the other groups. TEER in the jejunum correlated negatively with corticosterone concentration. Increased expression of claudin 1, 5 and 8, occludin and zonula occludens 1 mRNAs was detected after subacute stress in the jejunum. In contrast, colonic TEER was decreased only after combined stress, and the expression of tight junction molecules was unaltered. Increased mast cell density was observed in the chronic and combined stress condition in the colon only. In conclusion, our data show that chronic stress sensitizes the gastrointestinal tract to the effects of subacute stress on intestinal barrier function; different underlying cellular and molecular alterations are indicated in the small intestine versus the colon.

  8. Epitaxial wurtzite-MgZnO barrier based magnetic tunnel junctions deposited on a metallic ferromagnetic electrode

    Energy Technology Data Exchange (ETDEWEB)

    Belmoubarik, M., E-mail: bmm-dhr@ecei.tohoku.ac.jp; Al-Mahdawi, M.; Sato, H.; Nozaki, T.; Sahashi, M. [Department of Electronic Engineering, Tohoku University, Sendai 890-8579 (Japan)

    2015-06-22

    An epitaxial wurtzite (WZ) Mg{sub 0.23}Zn{sub 0.77}O barrier based magnetic tunnel junction (MTJ), with electrode-barrier structure of Co{sub 0.30}Pt{sub 0.70} (111)/Mg{sub 0.23}Zn{sub 0.77}O (0001)/Co (0001), was fabricated. The good crystallinity and tunneling properties were experimentally confirmed. Electrical and magnetic investigations demonstrated its high resistance-area product of 1.05 MΩ μm{sup 2}, a maximum tunneling magneto-resistance (TMR) of 35.5%, and the existence of localized states within the tunneling barrier producing TMR rapid decrease and oscillation when increasing the applied bias voltage. The TMR value almost vanished at 200 K, which was attributed to the induced moment and strong spin-orbit coupling in Pt atoms at the Co{sub 0.30}Pt{sub 0.70}/Mg{sub 0.23}Zn{sub 0.77}O interface. Owing to the ferroelectric behavior in WZ-MgZnO materials, the fabrication of WZ-MgZnO barrier based MTJs deposited on a metallic ferromagnetic electrode will open routes for electrically controllable non-volatile devices that are compatible with CMOS technology.

  9. How hormones influence composition and physiological function of the brain-blood barrier.

    Science.gov (United States)

    Hampl, R; Bičíková, M; Sosvorová, L

    2015-01-01

    Hormones exert many actions in the brain. Their access and effects in the brain are regulated by the blood-brain barrier (BBB). Hormones as other substances may enter the brain and vice versa either by paracellular way requiring breaching tight junctions stitching the endothelial cells composing the BBB, or by passage through the cells (transcellular way). Hormones influence both ways through their receptors, both membrane and intracellular, present on/in the BBB. In the review the main examples are outlined how hormones influence the expression and function of proteins forming the tight junctions, as well as how they regulate expression and function of major protein transporters mediating transport of various substances including hormone themselves.

  10. Herbal medicines that benefit epidermal permeability barrier function

    Directory of Open Access Journals (Sweden)

    Lizhi Hu

    2015-06-01

    Full Text Available Epidermal permeability barrier function plays a critical role in regulating cutaneous functions. Hence, researchers have been searching for effective and affordable regimens to enhance epidermal permeability barrier function. In addition to topical stratum corneum lipids, peroxisome proliferator-activated receptor, and liver X receptor ligands, herbal medicines have been proven to benefit epidermal permeability barrier function in both normal and diseased skin, including atopic dermatitis, glucocorticoid-induced skin damage, and UVB-damaged skin. The potential mechanisms by which herbal medicines improve the permeability barrier include stimulation of epidermal differentiation, lipid production, antimicrobial peptide expression, and antioxidation. Therefore, utilization of herbal medicines could be a valuable alternative approach to enhance epidermal permeability barrier function in order to prevent and/or treat skin disorders associated with permeability barrier abnormalities.

  11. First-principles study on magnetic tunneling junctions with semiconducting CuInSe2 and CuGaSe2 barriers

    Science.gov (United States)

    Masuda, Keisuke; Miura, Yoshio

    2017-02-01

    We theoretically investigate two magnetic tunneling junctions (MTJs) with different semiconductor barriers, CuInSe2 (CIS) and CuGaSe2 (CGS), sandwiched between Fe electrodes. We find that Δ1 wave functions provide dominant contributions to spin-dependent tunneling transport in both CIS- and CGS-based MTJs. We also find that the CGS-based MTJ has a much higher magnetoresistive (MR) ratio than the CIS-based MTJ, which indicates that a higher MR ratio is expected for a higher Ga concentration x in the recently reported CuIn1- x Ga x Se2-based MTJs. Furthermore, we show that the CIS- and CGS-based MTJs have much smaller resistance-area products (RA) than the conventional MgO-based MTJs.

  12. Quantum size effects on spin-transfer torque in a double barrier magnetic tunnel junction with a nonmagnetic-metal (semiconductor) spacer

    Science.gov (United States)

    Daqiq, Reza; Ghobadi, Nader

    2016-07-01

    We study the quantum size effects of an MgO-based double barrier magnetic tunnel junction with a nonmagnetic-metal (DBMTJ-NM) (semiconductor (DBMTJ-SC)) spacer on the charge current and the spin-transfer torque (STT) components using non-equilibrium Green's function (NEGF) formalism. The results show oscillatory behavior due to the resonant tunneling effect depending on the structure parameters. We find that the charge current and the STT components in the DBMTJ-SC demonstrate the magnitude enhancement in comparison with the DBMTJ-NM. The bias dependence of the STT components in a DBMTJ-NM shows different behavior in comparison with spin valves and conventional MTJs. Therefore, by choosing a specific SC spacer with suitable thickness in a DBMTJ the charge current and the STT components significantly increase so that one can design a device with high STT and faster magnetization switching.

  13. Effects of Fe particle irradiation on human endothelial barrier structure and function

    Science.gov (United States)

    Sharma, Preety; Guida, Peter; Grabham, Peter

    2014-07-01

    Space travel involves exposure to biologically effective heavy ion radiation and there is consequently a concern for possible degenerative disorders in humans. A significant target for radiation effects is the microvascular system, which is crucial to healthy functioning of the tissues. Its pathology is linked to disrupted endothelial barrier function and is not only a primary event in a range of degenerative diseases but also an important influencing factor in many others. Thus, an assessment of the effects of heavy ion radiation on endothelial barrier function would be useful for estimating the risks of space travel. This study was aimed at understanding the effects of high LET Fe particles (1 GeV/n) and is the first investigation of the effects of charged particles on the function of the human endothelial barrier. We used a set of established and novel endpoints to assess barrier function after exposure. These include, trans-endothelial electrical resistance (TEER), morphological effects, localization of adhesion and cell junction proteins (in 2D monolayers and in 3D tissue models), and permeability of molecules through the endothelial barrier. A dose of 0.50 Gy was sufficient to cause a progressive reduction in TEER measurements that were significant 48 hours after exposure. Concurrently, there were morphological changes and a 14% loss of cells from monolayers. Gaps also appeared in the normally continuous cell-border localization of the tight junction protein - ZO-1 but not the Platelet endothelial cell adhesion molecule (PECAM-1) in both monolayers and in 3D vessel models. Disruption of barrier function was confirmed by increased permeability to 3 kDa and 10 kDa dextran molecules. A dose of 0.25 Gy caused no detectible change in cell number, morphology, or TEER, but did cause barrier disruption since there were gaps in the cell border localization of ZO-1 and an increased permeability to 3 kDa dextran. These results indicate that Fe particles potently have

  14. Rab5-mediated VE-cadherin internalization regulates the barrier function of the lung microvascular endothelium.

    Science.gov (United States)

    Yang, Junjun; Yao, Wei; Qian, Guisheng; Wei, Zhenghua; Wu, Guangyu; Wang, Guansong

    2015-12-01

    The small GTPase Rab5 has been well defined to control the vesicle-mediated plasma membrane protein transport to the endosomal compartment. However, its function in the internalization of vascular endothelial (VE)-cadherin, an important component of adherens junctions, and as a result regulating the endothelial cell polarity and barrier function remain unknown. Here, we demonstrated that lipopolysaccharide (LPS) simulation markedly enhanced the activation and expression of Rab5 in human pulmonary microvascular endothelial cells (HPMECs), which is accompanied by VE-cadherin internalization. In parallel, LPS challenge also induced abnormal cell polarity and dysfunction of the endothelial barrier in HPMECs. LPS stimulation promoted the translocation of VE-cadherin from the plasma membrane to intracellular compartments, and intracellularly expressed VE-cadherin was extensively colocalized with Rab5. Small interfering RNA (siRNA)-mediated depletion of Rab5a expression attenuated the disruption of LPS-induced internalization of VE-cadherin and the disorder of cell polarity. Furthermore, knockdown of Rab5 inhibited the vascular endothelial hyperpermeability and protected endothelial barrier function from LPS injury, both in vitro and in vivo. These results suggest that Rab5 is a critical mediator of LPS-induced endothelial barrier dysfunction, which is likely mediated through regulating VE-cadherin internalization. These findings provide evidence, implicating that Rab5a is a potential therapeutic target for preventing endothelial barrier disruption and vascular inflammation.

  15. Functional consequences of heterogeneous gap junction channel formation and its influence in health and disease.

    Science.gov (United States)

    Cottrell, G Trevor; Burt, Janis M

    2005-06-10

    The capacity of multiple connexins to hetero-oligomerize into functional heterogeneous gap junction channels has been demonstrated in vivo, in vitro, and in nonmammalian expression systems. These heterogeneous channels display gating activity, channel conductances, selectivity and regulatory behaviors that are sometimes not predicted by the behaviors of the corresponding homogeneous channels. Such observations suggest that heteromerization of gap junction proteins offers an efficient cellular strategy for finely regulating cell-to-cell communication. The available evidence strongly indicates that heterogeneous gap junction assembly is important to normal growth and differentiation, and may influence the appearance of several disease states. Definitive evidence that heterogeneous gap junction channels differentially regulate electrical conduction in excitable cells is absent. This review examines the prevalence, regulation, and implications of gap junction channel hetero-oligomerization.

  16. Cigarette smoke impairs airway epithelial barrier function and cell-cell contact recovery.

    Science.gov (United States)

    Heijink, I H; Brandenburg, S M; Postma, D S; van Oosterhout, A J M

    2012-02-01

    Cigarette smoking, the major cause of chronic obstructive pulmonary disease (COPD), induces aberrant airway epithelial structure and function. The underlying mechanisms are unresolved so far. We studied effects of cigarette smoke extract (CSE) on epithelial barrier function and wound regeneration in human bronchial epithelial 16HBE cells and primary bronchial epithelial cells (PBECs) from COPD patients, nonsmokers and healthy smokers. We demonstrate that CSE rapidly and transiently impairs 16HBE barrier function, largely due to disruption of cell-cell contacts. CSE induced a similar, but stronger and more sustained, defect in PBECs. Application of the specific epidermal growth factor receptor (EGFR) inhibitor AG1478 showed that EGFR activation contributes to the CSE-induced defects in both 16HBE cells and PBECs. Furthermore, our data indicate that the endogenous protease calpain mediates these defects through tight junction protein degradation. CSE also delayed the reconstitution of 16HBE intercellular contacts during wound healing and attenuated PBEC barrier function upon wound regeneration. These findings were comparable between PBECs from smokers, healthy smokers and COPD patients. In conclusion, we demonstrate for the first time that CSE reduces epithelial integrity, probably by EGFR and calpain-dependent disruption of intercellular contacts. This may increase susceptibility to environmental insults, e.g. inhaled pathogens. Thus, EGFR may be a promising target for therapeutic strategies to improve mucosal barrier function in cigarette smoking-related disease.

  17. Influence of spin-orbit interaction within the insulating barrier on the electron transport in magnetic tunnel junctions

    Science.gov (United States)

    Vedyayev, A.; Ryzhanova, N.; Strelkov, N.; Titova, M.; Chshiev, M.; Rodmacq, B.; Auffret, S.; Cuchet, L.; Nistor, L.; Dieny, B.

    2017-02-01

    We present a theory of the anisotropy of tunneling magnetoresistance (ATMR) phenomenon in magnetic tunnel junctions (MTJs) attributed to Rashba spin-orbit interaction in the insulating barrier. ATMR represents the difference of tunnel magnetoresistance (TMR) amplitude measured with in-plane and out-of-plane magnetic configurations. It is demonstrated that within the spin-polarized free-electron model the change of conductance associated with the ATMR is exactly twice the change of conductance measured at full saturation (i.e., in parallel configuration of magnetizations) between in-plane and out-of-plane configuration, i.e., the tunneling anisotropic magnetoresistance (TAMR). Both ATMR and TAMR are closely related to the TMR amplitude and spin-orbit constant. The predicted ATMR phenomenon is confirmed experimentally, showing a few percent value in the case of the widely studied CoFeB/MgO/CoFeB based MTJ.

  18. Van der Waals metal-semiconductor junction: Weak Fermi level pinning enables effective tuning of Schottky barrier.

    Science.gov (United States)

    Liu, Yuanyue; Stradins, Paul; Wei, Su-Huai

    2016-04-01

    Two-dimensional (2D) semiconductors have shown great potential for electronic and optoelectronic applications. However, their development is limited by a large Schottky barrier (SB) at the metal-semiconductor junction (MSJ), which is difficult to tune by using conventional metals because of the effect of strong Fermi level pinning (FLP). We show that this problem can be overcome by using 2D metals, which are bounded with 2D semiconductors through van der Waals (vdW) interactions. This success relies on a weak FLP at the vdW MSJ, which is attributed to the suppression of metal-induced gap states. Consequently, the SB becomes tunable and can vanish with proper 2D metals (for example, H-NbS2). This work not only offers new insights into the fundamental properties of heterojunctions but also uncovers the great potential of 2D metals for device applications.

  19. Modulation of intercellular junctions by cyclic-ADT peptides as a method to reversibly increase blood-brain barrier permeability.

    Science.gov (United States)

    Laksitorini, Marlyn D; Kiptoo, Paul K; On, Ngoc H; Thliveris, James A; Miller, Donald W; Siahaan, Teruna J

    2015-03-01

    It is challenging to deliver molecules to the brain for diagnosis and treatment of brain diseases. This is primarily because of the presence of the blood-brain barrier (BBB), which restricts the entry of many molecules into the brain. In this study, cyclic-ADT peptides (ADTC1, ADTC5, and ADTC6) have been shown to modify the BBB to enhance the delivery of marker molecules [e.g., (14) C-mannitol, gadolinium-diethylenetriaminepentacetate (Gd-DTPA)] to the brain via the paracellular pathways of the BBB. The hypothesis is that these peptides modulate cadherin interactions in the adherens junctions of the vascular endothelial cells forming the BBB to increase paracellular drug permeation. In vitro studies indicated that ADTC5 had the best profile to inhibit adherens junction resealing in Madin-Darby canine kidney cell monolayers in a concentration-dependent manner (IC50 = 0.3 mM) with a maximal response at 0.4 mM. Under the current experimental conditions, ADTC5 improved the delivery of (14) C-mannitol to the brain about twofold compared with the negative control in the in situ rat brain perfusion model. Furthermore, ADTC5 peptide increased in vivo delivery of Gd-DTPA to the brain of Balb/c mice when administered intravenously. In conclusion, ADTC5 has the potential to improve delivery of diagnostic and therapeutic agents to the brain.

  20. Protection of human corneal epithelial cells from TNF-α-induced disruption of barrier function by rebamipide.

    Science.gov (United States)

    Kimura, Kazuhiro; Morita, Yukiko; Orita, Tomoko; Haruta, Junpei; Takeji, Yasuhiro; Sonoda, Koh-Hei

    2013-04-17

    TNF-α disrupts the barrier function of cultured human corneal epithelial (HCE) cells. We investigated the effects of the cytoprotective drug rebamipide on this barrier disruption by TNF-α as well as on corneal epithelial damage in a rat model of dry eye. The barrier function of HCE cells was evaluated by measurement of transepithelial electrical resistance. The distribution of tight-junction (ZO-1, occludin) and adherens-junction (E-cadherin, β-catenin) proteins, and the p65 subunit of nuclear factor-κB (NF-κB) was determined by immunofluorescence microscopy. Expression of junctional proteins as well as phosphorylation of the NF-κB inhibitor IκB-α and myosin light chain (MLC) were examined by immunoblot analysis. A rat model of dry eye was developed by surgical removal of exorbital lacrimal glands. Rebamipide inhibited the disruption of barrier function as well as the downregulation of ZO-1 expression, and the disappearance of ZO-1 from the interfaces of neighboring HCE cells induced by TNF-α. It also inhibited the phosphorylation and downregulation of IκB-α, the translocation of p65 to the nucleus, the formation of actin stress fibers, and the phosphorylation of MLC induced by TNF-α in HCE cells. Treatment with rebamipide eyedrops promoted the healing of corneal epithelial defects as well as attenuated the loss of ZO-1 from the surface of corneal epithelial cells in rats. Rebamipide protects corneal epithelial cells from the TNF-α-induced disruption of barrier function by maintaining the distribution and expression of ZO-1 as well as the organization of the actin cytoskeleton. Rebamipide is, thus, a potential drug for preventing or ameliorating the loss of corneal epithelial barrier function associated with ocular inflammation.

  1. Development of NbN Josephson junctions with Ta{sub x}N semi-metal barrier; application to RSFQ circuits; Etude et realisation de jonction Josephson en NbN a barriere semi-metallique en Ta{sub x}N; application aux circuits logiques RSFQ

    Energy Technology Data Exchange (ETDEWEB)

    Setzu, R

    2007-11-15

    This thesis research, brought to the development and optimization of SNS (Superconductor / Normal Metal / Superconductor) Josephson junctions with NbN electrodes and a high resistivity Ta{sub x}N barrier. We were able to point out Josephson oscillations for frequencies above 1 THz and operation temperatures up to 10 K, which constituted the original goal of the project. This property makes these junctions unique and well adapted for realizing ultra-fast RSFQ (Rapid Single Flux Quantum) logic circuits suitable for spatial telecommunications. We showed a good reproducibility of Ta{sub x}N film properties as a function of the sputtering parameters. The NbN/Ta{sub x}N/NbN tri-layers exhibit high critical temperature (16 K). The junctions showed a clear dependence of the R{sub n}I{sub c} product as a function of the partial nitrogen pressure inside the reactive plasma; the R{sub n}I{sub c} is the product between the junction critical current and its normal resistance, and indicates the upper limit Josephson frequency. We have also obtained some really high R{sub n}I{sub c} products, up to 3.74 mV at 4.2 K for critical current densities of about 15 kA/cm{sup 2}. Junctions show the expected Josephson behaviors, respectively Fraunhofer diffraction and Shapiro steps. up to 14 K. This allows expecting good circuit operations in a relaxed cryogenics environment (with respect to the niobium circuits limited at 4.2 K). The junctions appear to be self-shunted. The SNOP junctions J{sub c}-temperature dependence has been fitted by using the long SNS junction model in the dirty limit, which gives a normal metal coherence length of about 3.8 nm at 4.2 K. We have finally studied a multilayer fabrication process, including a common ground plane and bias resistors, suitable for RSFQ logic basic circuits. To conclude we have been able to show the performance superiority of NbN/Ta{sub x}N/NbN junctions over the actual niobium junctions, as well as their interest for realizing compact

  2. Glutamine supplementation attenuates ethanol-induced disruption of apical junctional complexes in colonic epithelium and ameliorates gut barrier dysfunction and fatty liver in mice.

    Science.gov (United States)

    Chaudhry, Kamaljit K; Shukla, Pradeep K; Mir, Hina; Manda, Bhargavi; Gangwar, Ruchika; Yadav, Nikki; McMullen, Megan; Nagy, Laura E; Rao, RadhaKrishna

    2016-01-01

    Previous in vitro studies showed that glutamine (Gln) prevents acetaldehyde-induced disruption of tight junctions and adherens junctions in Caco-2 cell monolayers and human colonic mucosa. In the present study, we evaluated the effect of Gln supplementation on ethanol-induced gut barrier dysfunction and liver injury in mice in vivo. Ethanol feeding caused a significant increase in inulin permeability in distal colon. Elevated permeability was associated with a redistribution of tight junction and adherens junction proteins and depletion of detergent-insoluble fractions of these proteins, suggesting that ethanol disrupts apical junctional complexes in colonic epithelium and increases paracellular permeability. Ethanol-induced increase in colonic mucosal permeability and disruption of junctional complexes were most severe in mice fed Gln-free diet. Gln supplementation attenuated ethanol-induced mucosal permeability and disruption of tight junctions and adherens junctions in a dose-dependent manner, indicating the potential role of Gln in nutritional intervention to alcoholic tissue injury. Gln supplementation dose-dependently elevated reduced-protein thiols in colon without affecting the level of oxidized-protein thiols. Ethanol feeding depleted reduced protein thiols and elevated oxidized protein thiols. Ethanol-induced protein thiol oxidation was most severe in mice fed with Gln-free diet and absent in mice fed with Gln-supplemented diet, suggesting that antioxidant effect is one of the likely mechanisms involved in Gln-mediated amelioration of ethanol-induced gut barrier dysfunction. Ethanol feeding elevated plasma transaminase and liver triglyceride, which was accompanied by histopathologic lesions in the liver; ethanol-induced liver damage was attenuated by Gln supplementation. These results indicate that Gln supplementation ameliorates alcohol-induced gut and liver injury.

  3. High-performance 4H-SiC junction barrier Schottky diodes with double resistive termination extensions

    Science.gov (United States)

    Zheng, Liu; Zhang, Feng; Liu, Sheng-Bei; Dong, Lin; Liu, Xing-Fang; Fan, Zhong-Chao; Liu, Bin; Yan, Guo-Guo; Wang, Lei; Zhao, Wan-Shun; Sun, Guo-Sheng; He, Zhi; Yang, Fu-Hua

    2013-09-01

    4H-SiC junction barrier Schottky (JBS) diodes with a high-temperature annealed resistive termination extension (HARTE) are designed, fabricated and characterized in this work. The differential specific on-state resistance of the device is as low as 3.64 mΩ·cm2 with a total active area of 2.46 × 10-3 cm2. Ti is the Schottky contact metal with a Schottky barrier height of 1.08 V and a low onset voltage of 0.7 V. The ideality factor is calculated to be 1.06. Al implantation annealing is performed at 1250°C in Ar, while good reverse characteristics are achieved. The maximum breakdown voltage is 1000 V with a leakage current of 9 × 10-5 A on chip level. These experimental results show good consistence with the simulation results and demonstrate that high-performance 4H-SiC JBS diodes can be obtained based on the double HARTE structure.

  4. Glycogen Synthase Kinase 3 (GSK-3) influences epithelial barrier function by regulating Occludin, Claudin-1 and E-cadherin expression

    Energy Technology Data Exchange (ETDEWEB)

    Severson, Eric A.; Kwon, Mike; Hilgarth, Roland S.; Parkos, Charles A. [Epithelial Pathobiology Research Unit, Dept. of Pathology, Emory University, Atlanta, GA 30322 (United States); Nusrat, Asma, E-mail: anusrat@emory.edu [Epithelial Pathobiology Research Unit, Dept. of Pathology, Emory University, Atlanta, GA 30322 (United States)

    2010-07-02

    The Apical Junctional Complex (AJC) encompassing the tight junction (TJ) and adherens junction (AJ) plays a pivotal role in regulating epithelial barrier function and epithelial cell proliferative processes through signaling events that remain poorly characterized. A potential regulator of AJC protein expression is Glycogen Synthase Kinase-3 (GSK-3). GSK-3 is a constitutively active kinase that is repressed during epithelial-mesenchymal transition (EMT). In the present study, we report that GSK-3 activity regulates the structure and function of the AJC in polarized model intestinal (SK-CO15) and kidney (Madin-Darby Canine Kidney (MDCK)) epithelial cells. Reduction of GSK-3 activity, either by small molecule inhibitors or siRNA targeting GSK-3 alpha and beta mRNA, resulted in increased permeability to both ions and bulk solutes. Immunofluorescence labeling and immunoblot analyses revealed that the barrier defects correlated with decreased protein expression of AJC transmembrane proteins Occludin, Claudin-1 and E-cadherin without influencing other TJ proteins, Zonula Occludens-1 (ZO-1) and Junctional Adhesion Molecule A (JAM-A). The decrease in Occludin and E-cadherin protein expression correlated with downregulation of the corresponding mRNA levels for these respective proteins following GSK-3 inhibition. These observations implicate an important role of GSK-3 in the regulation of the structure and function of the AJC that is mediated by differential modulation of mRNA transcription of key AJC proteins, Occludin, Claudin-1 and E-cadherin.

  5. Wild jujube polysaccharides protect against experimental inflammatory bowel disease by enabling enhanced intestinal barrier function.

    Science.gov (United States)

    Yue, Yuan; Wu, Shuangchan; Li, Zhike; Li, Jian; Li, Xiaofei; Xiang, Jin; Ding, Hong

    2015-08-01

    Dietary polysaccharides provide various beneficial effects for our health. We investigated the protective effects of wild jujube (Ziziphus jujuba Mill. var. spinosa (Bunge) Hu ex H. F. Chou) sarcocarp polysaccharides (WJPs) against experimental inflammatory bowel disease (IBD) by enabling enhanced intestinal barrier function. Colitis was induced in rats by the intrarectal administration of TNBS. We found that WJPs markedly ameliorated the colitis severity, including less weight loss, decreased disease activity index scores, and improved mucosal damage in colitis rats. Moreover, WJPs suppressed the inflammatory response via attenuation of TNF-α, IL-1β, IL-6 and MPO activity in colitis rats. And then, to determine the effect of WJPs on the intestinal barrier, we measured the effect of WJPs on the transepithelial electrical resistance (TER) and FITC-conjugated dextran permeability in Caco-2 cell stimulation with TNF-α. We further demonstrated that the alleviation of WJPs to colon injury was associated with barrier function by assembly of tight junction proteins. Moreover, the effect of WJPs on TER was eliminated by the specific inhibitor of AMPK. AMPK activity was also up-regulated by WJPs in Caco-2 cell stimulation with TNF-α and in colitis rats. This study demonstrates that WJPs protect against IBD by enabling enhanced intestinal barrier function involving the activation of AMPK.

  6. Comparison Study of Super junction and Floating Junction Schottky Barrier Diodes%超结与浮结型肖特基势垒二极管的比较研究

    Institute of Scientific and Technical Information of China (English)

    曹琳; 蒲红斌; 陈治明

    2011-01-01

    对浮结型及超结型肖特基势垒二极管静态及动态特性进行了解析及模拟.静态特性通过解析击穿电压与导通电阻之间的关系得到.反向恢复特性通过二极管电容随反向电压变化关系解释,商用混合模拟器MEDICI模拟结果表明浮结结构具有软恢复特性,软度因子为0.949.超结结构恢复特性较硬,软度因子为0.7807.当考虑这两种耐压结构时,必须权衡静态及动态之间的关系.%In this paper,the static and dynamic characteristics of superjunction and floating junction Schottky barrier diodes were analyzed and simulated.Work principles of the device were reported,tradeoff between breakdown voltage and specific resistance was theoretically calculated and compared.The reverse recovery characteristics were analyzed by diode capacitance as function of diode reverse voltage,the mixed circuit-device simulator MEDICI shown that floating junction had softness factor 0.949,while hard recovery characteristics were obtain for superjunction structure with softness factor 0.780 7.Trade-off must be made when static and dynamic performance is considered.

  7. Avoiding self-repulsion in density functional description of biased molecular junctions

    Energy Technology Data Exchange (ETDEWEB)

    Baer, Roi [Department of Physical Chemistry and Lise Meitner Minerva-Center for Computational Quantum Chemistry, Hebrew University of Jerusalem, Jerusalem 91904 (Israel)], E-mail: roi.baer@huji.ac.il; Livshits, Ester [Department of Physical Chemistry and Lise Meitner Minerva-Center for Computational Quantum Chemistry, Hebrew University of Jerusalem, Jerusalem 91904 (Israel); Neuhauser, Daniel [Department of Physical Chemistry and Lise Meitner Minerva-Center for Computational Quantum Chemistry, Hebrew University of Jerusalem, Jerusalem 91904 (Israel)], E-mail: dxn@chem.ucla.edu

    2006-10-26

    We examine the effects of self-repulsion on the predictions of charge distribution in biased molecular junctions by the local density functional theory methods. This is done using a functional with explicit long-range exchange term effects [R. Baer, D. Neuhauser, Phys. Rev. Lett. 94 (2005) 043002]. We discuss in detail the new density functional, pointing out some of the remaining difficulties in the theory. We find that in weakly coupled junctions (the typical molecular electronics case) local-density functionals fail to describe correctly the charge distribution in the intermediate bias regime.

  8. Structure of the gap junction channel and its implications for its biological functions.

    Science.gov (United States)

    Maeda, Shoji; Tsukihara, Tomitake

    2011-04-01

    Gap junctions consist of arrays of intercellular channels composed of integral membrane proteins called connexin in vertebrates. Gap junction channels regulate the passage of ions and biological molecules between adjacent cells and, therefore, are critically important in many biological activities, including development, differentiation, neural activity, and immune response. Mutations in connexin genes are associated with several human diseases, such as neurodegenerative disease, skin disease, deafness, and developmental abnormalities. The activity of gap junction channels is regulated by the membrane voltage, intracellular microenvironment, interaction with other proteins, and phosphorylation. Each connexin channel has its own property for conductance and molecular permeability. A number of studies have tried to reveal the molecular architecture of the channel pore that should confer the connexin-specific permeability/selectivity properties and molecular basis for the gating and regulation. In this review, we give an overview of structural studies and describe the structural and functional relationship of gap junction channels.

  9. Identification of neuronal and angiogenic growth factors in an in vitro blood-brain barrier model system: Relevance in barrier integrity and tight junction formation and complexity.

    Science.gov (United States)

    Freese, Christian; Hanada, Sanshiro; Fallier-Becker, Petra; Kirkpatrick, C James; Unger, Ronald E

    2017-05-01

    We previously demonstrated that the co-cultivation of endothelial cells with neural cells resulted in an improved integrity of the in vitro blood-brain barrier (BBB), and that this model could be useful to evaluate the transport properties of potential central nervous system disease drugs through the microvascular brain endothelial. In this study we have used real-time PCR, fluorescent microscopy, protein arrays and enzyme-linked immunosorbent assays to determine which neural- and endothelial cell-derived factors are produced in the co-culture and improve the integrity of the BBB. In addition, a further improvement of the BBB integrity was achieved by adjusting serum concentrations and growth factors or by the addition of brain pericytes. Under specific conditions expression of angiogenic, angiostatic and neurotrophic factors such as endostatin, pigment epithelium derived factor (PEDF/serpins-F1), tissue inhibitor of metalloproteinases (TIMP-1), and vascular endothelial cell growth factor (VEGF) closely mimicked the in vivo situation. Freeze-fracture analysis of these cultures demonstrated the quality and organization of the endothelial tight junction structures and their association to the two different lipidic leaflets of the membrane. Finally, a multi-cell culture model of the BBB with a transendothelial electrical resistance up to 371 (±15) Ω×cm(2) was developed, which may be useful for preliminary screening of drug transport across the BBB and to evaluate cellular crosstalk of cells involved in the neurovascular unit.

  10. Structure and function of the epidermis related to barrier properties.

    Science.gov (United States)

    Baroni, Adone; Buommino, Elisabetta; De Gregorio, Vincenza; Ruocco, Eleonora; Ruocco, Vincenzo; Wolf, Ronni

    2012-01-01

    The most important function of the skin is the formation of a barrier between the "inside" and the "outside" of the organism, which prevents invasion of pathogens and fends off chemical assaults as well as the unregulated loss of water and solutes. The physical barrier is mainly localized in the stratum corneum, which consists of protein-enriched cells and lipid-enriched intercellular domains. Any modifications in epidermal differentiation and lipid composition results in altered barrier function, a central event in various skin alterations and diseases. This contribution presents a brief description of the structure of the skin, paying attention to the most important components responsible for skin barrier function. Copyright © 2012. Published by Elsevier Inc.

  11. Polyphenol-Rich Propolis Extracts Strengthen Intestinal Barrier Function by Activating AMPK and ERK Signaling

    Directory of Open Access Journals (Sweden)

    Kai Wang

    2016-05-01

    Full Text Available Propolis has abundant polyphenolic constituents and is used widely as a health/functional food. Here, we investigated the effects of polyphenol-rich propolis extracts (PPE on intestinal barrier function in human intestinal epithelial Caco-2 cells, as well as in rats. In Caco-2 cells, PPE increased transepithelial electrical resistance and decreased lucifer yellow flux. PPE-treated cells showed increased expression of the tight junction (TJ loci occludin and zona occludens (ZO-1. Confocal microscopy showed organized expressions in proteins related to TJ assembly, i.e., occludin and ZO-1, in response to PPE. Furthermore, PPE led to the activation of AMPK, ERK1/2, p38, and Akt. Using selective inhibitors, we found that the positive effects of PPE on barrier function were abolished in cells in which AMPK and ERK1/2 signaling were inhibited. Moreover, rats fed a diet supplemented with PPE (0.3% in the diet exhibited increased colonic epithelium ZO-1 expression. Overall, these data suggest that PPE strengthens intestinal barrier function by activating AMPK and ERK signaling and provide novel insights into the potential application of propolis for human gut health.

  12. Polyphenol-Rich Propolis Extracts Strengthen Intestinal Barrier Function by Activating AMPK and ERK Signaling.

    Science.gov (United States)

    Wang, Kai; Jin, Xiaolu; Chen, Yifan; Song, Zehe; Jiang, Xiasen; Hu, Fuliang; Conlon, Michael A; Topping, David L

    2016-05-07

    Propolis has abundant polyphenolic constituents and is used widely as a health/functional food. Here, we investigated the effects of polyphenol-rich propolis extracts (PPE) on intestinal barrier function in human intestinal epithelial Caco-2 cells, as well as in rats. In Caco-2 cells, PPE increased transepithelial electrical resistance and decreased lucifer yellow flux. PPE-treated cells showed increased expression of the tight junction (TJ) loci occludin and zona occludens (ZO)-1. Confocal microscopy showed organized expressions in proteins related to TJ assembly, i.e., occludin and ZO-1, in response to PPE. Furthermore, PPE led to the activation of AMPK, ERK1/2, p38, and Akt. Using selective inhibitors, we found that the positive effects of PPE on barrier function were abolished in cells in which AMPK and ERK1/2 signaling were inhibited. Moreover, rats fed a diet supplemented with PPE (0.3% in the diet) exhibited increased colonic epithelium ZO-1 expression. Overall, these data suggest that PPE strengthens intestinal barrier function by activating AMPK and ERK signaling and provide novel insights into the potential application of propolis for human gut health.

  13. The effects of Lactobacillus plantarum on small intestinal barrier function and mucosal gene transcription; a randomized double-blind placebo controlled trial

    NARCIS (Netherlands)

    Mujagic, Zlatan; de Vos, Paul; Boekschoten, Mark V.; Govers, Coen; Pieters, Harm-Jan H M; de Wit, Nicole J. W.; Bron, Peter A.; Masclee, Ad A M; Troost, Freddy J

    2017-01-01

    The aim of this study was to investigate the effects of three Lactobacillus plantarum strains on in-vivo small intestinal barrier function and gut mucosal gene transcription in human subjects. The strains were selected for their differential effects on TLR signalling and tight junction protein

  14. Effect of lactobacillus on the gut microfiora and barrier function of the rats with abdominal infection

    Institute of Scientific and Technical Information of China (English)

    Huan-Long Qin; Tong-Yi Shen; Zhi-Guang Gao; Xiao-Bing Fan; Xiao-Min Hang; Yan-Qun Jiang; Hui-Zhen Zhang

    2005-01-01

    AIM: To investigate the effect of probiotics supplemented by gut on the tight junctions of epithelial cells, barrier function and the microflora of rats with abdominal infection. METHODS: After the model of cecal ligation and perforation established, SD rats were divided into two groups: parenteral nutrition (PN) group and PN+probiotics (probiotics) group, PN solution was supplemented by neck vein and probiotics was delivered via the jejunostomy tube for five days. Vena cava blood and the homogenated tissue of liver, lung and mesenteric lymph nodes were cultured to determine the bacterial translocation rate (BTR). The ultrastructure of epithelial tight junctions and microvilli of the gut were observed by electron microscopy; occluding expression was measured by indirect-immune fluorescence method; anaerobic bacterial growth by anaerobic culture and DNA fingerprint of bacterial colonies of the feces by PCR. RESULTS: The quantity of lactobacteria and bifydobacteria in probiotics group was higher than that of PN group. The profiles of DNA fingerprint expression in probiotics group were similar to that in the normal group, a new 16S rDNA sequence appeared in the profile in PN group. The occludin expression, the integrality of the gut epithelial tight junctionand microvilli in probiotics group were improved as compared with PN group. The BTR and endotoxin in blood were reduced more significantly in probiotics group as compared with PN group.CONCLUSION: The probiotics could improve the gut microflora disturbance, increase occludin expression, maintain the gut epithelial tight junction and decrease the bacterial translocations rate.

  15. Connexins: a myriad of functions extending beyond assembly of gap junction channels

    Directory of Open Access Journals (Sweden)

    Mroue Rana M

    2009-03-01

    Full Text Available Abstract Connexins constitute a large family of trans-membrane proteins that allow intercellular communication and the transfer of ions and small signaling molecules between cells. Recent studies have revealed complex translational and post-translational mechanisms that regulate connexin synthesis, maturation, membrane transport and degradation that in turn modulate gap junction intercellular communication. With the growing myriad of connexin interacting proteins, including cytoskeletal elements, junctional proteins, and enzymes, gap junctions are now perceived, not only as channels between neighboring cells, but as signaling complexes that regulate cell function and transformation. Connexins have also been shown to form functional hemichannels and have roles altogether independent of channel functions, where they exert their effects on proliferation and other aspects of life and death of the cell through mostly-undefined mechanisms. This review provides an updated overview of current knowledge of connexins and their interacting proteins, and it describes connexin modulation in disease and tumorigenesis.

  16. Connexins: a myriad of functions extending beyond assembly of gap junction channels.

    Science.gov (United States)

    Dbouk, Hashem A; Mroue, Rana M; El-Sabban, Marwan E; Talhouk, Rabih S

    2009-03-12

    Connexins constitute a large family of trans-membrane proteins that allow intercellular communication and the transfer of ions and small signaling molecules between cells. Recent studies have revealed complex translational and post-translational mechanisms that regulate connexin synthesis, maturation, membrane transport and degradation that in turn modulate gap junction intercellular communication. With the growing myriad of connexin interacting proteins, including cytoskeletal elements, junctional proteins, and enzymes, gap junctions are now perceived, not only as channels between neighboring cells, but as signaling complexes that regulate cell function and transformation. Connexins have also been shown to form functional hemichannels and have roles altogether independent of channel functions, where they exert their effects on proliferation and other aspects of life and death of the cell through mostly-undefined mechanisms. This review provides an updated overview of current knowledge of connexins and their interacting proteins, and it describes connexin modulation in disease and tumorigenesis.

  17. Energy level alignment and quantum conductance of functionalized metal-molecule junctions

    DEFF Research Database (Denmark)

    Jin, Chengjun; Strange, Mikkel; Markussen, Troels;

    2013-01-01

    We study the effect of functional groups (CH3*4, OCH3, CH3, Cl, CN, F*4) on the electronic transport properties of 1,4-benzenediamine molecular junctions using the non-equilibrium Green function method. Exchange and correlation effects are included at various levels of theory, namely density func...

  18. The Flux-Flux Correlation Function for Anharmonic Barriers

    CERN Document Server

    Goussev, Arseni; Waalkens, Holger; Wiggins, Stephen

    2010-01-01

    The flux-flux correlation function formalism is a standard and widely used approach for the computation of reaction rates. In this paper we introduce a method to compute the classical and quantum flux-flux correlation functions for anharmonic barriers essentially analytically through the use of the classical and quantum normal forms. In the quantum case we show that the quantum normal form reduces the computation of the flux-flux correlation function to that of an effective one dimensional anharmonic barrier. The example of the computation of the quantum flux-flux correlation function for a fourth order anharmonic barrier is worked out in detail, and we present an analytical expression for the quantum mechanical microcanonical flux-flux correlation function. We then give a discussion of the short-time and harmonic limits.

  19. N-acetyl glucosamine improves intestinal mucosal barrier function in rat

    Directory of Open Access Journals (Sweden)

    Yanxia Liu

    2012-12-01

    Full Text Available Our study investigated the effect of N-acetylglucosamine (GlcNAc on the intestinal mucosal barrier function in rats. Rats were randomly assigned into normal control group, diarrhea-predominant irritable bowel syndrome (IBS-D group and GlcNAc group. IBS-D was introduced into the IBS-D group without any treatment. The GlcNAc group were treated with GlcNAc. Microvilli and tight junctions of intestinal epithelial cells were detected. The D-lactic acid level and diamine oxidase (DAO activity in the serum were determined. Compared with normal rats, microvilli were sparsely distributed on the intestinal epithelial cells, the tight junction gap also widened, and D-lactic acid level and DAO activity were significantly higher in the IBS-D group. After GlcNAc treatment, the microscopic structure of the intestinal mucosa became largely normal, and the level of D-lactic acid and the DAO activity were lowered. In conclusion, GlcNAc can effectively improve the intestinal mucosal barrier dysfunction, perhaps through enhancing the cellular metabolism.

  20. AKAP9, a Regulator of Microtubule Dynamics, Contributes to Blood-Testis Barrier Function.

    Science.gov (United States)

    Venkatesh, Deepak; Mruk, Dolores; Herter, Jan M; Cullere, Xavier; Chojnacka, Katarzyna; Cheng, C Yan; Mayadas, Tanya N

    2016-02-01

    The blood-testis barrier (BTB), formed between adjacent Sertoli cells, undergoes extensive remodeling to facilitate the transport of preleptotene spermatocytes across the barrier from the basal to apical compartments of the seminiferous tubules for further development and maturation into spermatozoa. The actin cytoskeleton serves unique structural and supporting roles in this process, but little is known about the role of microtubules and their regulators during BTB restructuring. The large isoform of the cAMP-responsive scaffold protein AKAP9 regulates microtubule dynamics and nucleation at the Golgi. We found that conditional deletion of Akap9 in mice after the initial formation of the BTB at puberty leads to infertility. Akap9 deletion results in marked alterations in the organization of microtubules in Sertoli cells and a loss of barrier integrity despite a relatively intact, albeit more apically localized F-actin and BTB tight junctional proteins. These changes are accompanied by a loss of haploid spermatids due to impeded meiosis. The barrier, however, progressively reseals in older Akap9 null mice, which correlates with a reduction in germ cell apoptosis and a greater incidence of meiosis. However, spermiogenesis remains defective, suggesting additional roles for AKAP9 in this process. Together, our data suggest that AKAP9 and, by inference, the regulation of the microtubule network are critical for BTB function and subsequent germ cell development during spermatogenesis.

  1. Esophagogastric junction contractile integral and morphology: Two high-resolution manometry metrics of the anti-reflux barrier.

    Science.gov (United States)

    Ham, Hyoju; Cho, Yu Kyung; Lee, Han Hee; Yoon, Seung Bae; Lim, Chul-Hyun; Kim, Jin Su; Park, Jae Myung; Choi, Myung-Gyu

    2017-08-01

    We evaluated associations of esophagogastric junction (EGJ) metrics as an anti-reflux barrier with impedance-pH, endoscopic esophagitis, and lower esophageal sphincter (LES) metrics. We reviewed high-resolution manometry data from consecutive patients with gastroesophageal reflux disease (GERD) symptoms who underwent impedance-pH and endoscopy, and asymptomatic volunteers. The EGJ contractile integral (CI) was calculated as the mean contractile integral/second during three respiratory cycles. EGJ morphology was classified according to LES-crural diaphragm (CD) separation. In total, 137 patients (65 male, age 55 years) and 23 (9 male, age 33 years) controls were enrolled. Twenty-five patients had erosive reflux disease (ERD), 16 had non-erosive reflux disease (NERD), 5 had reflux hypersensitivity, and 91 were not GERD. EGJ-CI were lower in patients with GERD (22.6 [13.8-29.2] mmHg cm) than non-GERD (50.3 [31-69.9] mmHg cm, P integral showed good diagnostic accuracy with high specificity in predicting GERD. LES-CD separation is associated with an increase in acid reflux, but EGJ-CI was associated more strongly with GERD than was EGJ morphology. © 2017 Journal of Gastroenterology and Hepatology Foundation and John Wiley & Sons Australia, Ltd.

  2. Checkpoint Kinase 1 Activation Enhances Intestinal Epithelial Barrier Function via Regulation of Claudin-5 Expression.

    Directory of Open Access Journals (Sweden)

    Akihiro Watari

    Full Text Available Several stressors are known to influence epithelial tight junction (TJ integrity, but the association between DNA damage and TJ integrity remains unclear. Here we examined the effects of daunorubicin and rebeccamycin, two anti-tumor chemicals that induce DNA damage, on TJ integrity in human intestinal epithelial cells. Daunorubicin and rebeccamycin dose-dependently enhanced transepithelial electrical resistance (TER and decreased flux of the 4 kDa FITC-dextran in Caco-2 cell monolayer. Daunorubicin- or rebeccamycin-induced enhancement of the TJ barrier function partly rescued attenuation of the barrier function by the inflammatory cytokines TNF-α and IFN-γ. Daunorubicin and rebeccamycin increased claudin-5 expression and the product was distributed in the actin cytoskeleton fraction, which was enriched with TJ proteins. Caffeine, which is an inhibitor of ataxia telangiectasia mutated protein (ATM and ataxia telangiectasia mutated and Rad3-related protein (ATR, and the Chk1 inhibitor inhibited the TER increases induced by daunorubicin and rebeccamycin, whereas a Chk2 inhibitor did not. Treatment with Chk1 siRNA also significantly inhibited the TER increases. Induction of claudin-5 expression was inhibited by Chk1 inhibitor and by siRNA treatment. Our results suggest that Chk1 activation by daunorubicin and rebeccamycin induced claudin-5 expression and enhanced TJ barrier function in Caco-2 cell monolayer, which suggests a link between DNA damage and TJ integrity in the human intestine.

  3. Checkpoint Kinase 1 Activation Enhances Intestinal Epithelial Barrier Function via Regulation of Claudin-5 Expression.

    Science.gov (United States)

    Watari, Akihiro; Hasegawa, Maki; Yagi, Kiyohito; Kondoh, Masuo

    2016-01-01

    Several stressors are known to influence epithelial tight junction (TJ) integrity, but the association between DNA damage and TJ integrity remains unclear. Here we examined the effects of daunorubicin and rebeccamycin, two anti-tumor chemicals that induce DNA damage, on TJ integrity in human intestinal epithelial cells. Daunorubicin and rebeccamycin dose-dependently enhanced transepithelial electrical resistance (TER) and decreased flux of the 4 kDa FITC-dextran in Caco-2 cell monolayer. Daunorubicin- or rebeccamycin-induced enhancement of the TJ barrier function partly rescued attenuation of the barrier function by the inflammatory cytokines TNF-α and IFN-γ. Daunorubicin and rebeccamycin increased claudin-5 expression and the product was distributed in the actin cytoskeleton fraction, which was enriched with TJ proteins. Caffeine, which is an inhibitor of ataxia telangiectasia mutated protein (ATM) and ataxia telangiectasia mutated and Rad3-related protein (ATR), and the Chk1 inhibitor inhibited the TER increases induced by daunorubicin and rebeccamycin, whereas a Chk2 inhibitor did not. Treatment with Chk1 siRNA also significantly inhibited the TER increases. Induction of claudin-5 expression was inhibited by Chk1 inhibitor and by siRNA treatment. Our results suggest that Chk1 activation by daunorubicin and rebeccamycin induced claudin-5 expression and enhanced TJ barrier function in Caco-2 cell monolayer, which suggests a link between DNA damage and TJ integrity in the human intestine.

  4. Increased intestinal barrier function in the small intestine of formula-fed neonatal piglets.

    Science.gov (United States)

    Huygelen, V; De Vos, M; Willemen, S; Tambuyzer, B; Casteleyn, C; Knapen, D; Van Cruchten, S; Van Ginneken, C

    2012-12-01

    Within-litter birth weight variation is adversely correlated to piglet survival and postnatal growth. A less efficient epithelial barrier function in light piglets may partly explain this inverse relationship between birth weight and zootechnical performance. A compromised epithelial barrier increases paracellular permeability; consequently, toxins, allergenic compounds, or bacteria may enter systemic circulation and induce inflammatory responses. Dietary effects on function of gut epithelium of piglet are largely unknown. This study investigated epithelial barrier function of the small intestine of normal birth weight (NBW) piglets (1.46 ± 0.10 kg) and low birth weight (LBW) piglets (excretion was measured using enzymatic spectrophotometry. Irrespective of birth weight, lactulose levels of FOR10 (4.4 ± 2.3 mmol/L) tended to be lower (P = 0.07) than SOW10 (26.4 ± 10.2 mmol/L) indicating a reduced paracellular intestinal permeability in FOR10. This reduction was associated with a 6-fold elevated (P < 0.01) protein expression of occludin, an important tight junction protein, in FOR10 compared to SOW10. Mannitol levels in FOR10 (31.0 ± 18.2 mmol/L) did not differ (P = 0.28) from SOW10 (61.1 ± 10.2 mmol/L). However, shorter villi (P < 0.01) in FOR10 indicated a reduced absorptive capacity. In conclusion, formula feeding caused minor symptoms of gastrointestinal dysfunction compared to sow-fed piglets irrespective of their birth weight.

  5. Interleukin-34 Restores Blood–Brain Barrier Integrity by Upregulating Tight Junction Proteins in Endothelial Cells

    OpenAIRE

    Shijie Jin; Yoshifumi Sonobe; Jun Kawanokuchi; Hiroshi Horiuchi; Yi Cheng; Yue Wang; Tetsuya Mizuno; Hideyuki Takeuchi; Akio Suzumura

    2014-01-01

    Interleukin-34 (IL-34) is a newly discovered cytokine as an additional ligand for colony stimulating factor-1 receptor (CSF1R), and its functions are expected to overlap with colony stimulating factor-1/macrophage-colony stimulating factor. We have previously shown that the IL-34 is primarily produced by neurons in the central nervous system (CNS) and induces proliferation and neuroprotective properties of microglia which express CSF1R. However, the functions of IL-34 in the CNS are still elu...

  6. Gap junctions in cells of the immune system: structure, regulation and possible functional roles

    Directory of Open Access Journals (Sweden)

    J.C. Sáez

    2000-04-01

    Full Text Available Gap junction channels are sites of cytoplasmic communication between contacting cells. In vertebrates, they consist of protein subunits denoted connexins (Cxs which are encoded by a gene family. According to their Cx composition, gap junction channels show different gating and permeability properties that define which ions and small molecules permeate them. Differences in Cx primary sequences suggest that channels composed of different Cxs are regulated differentially by intracellular pathways under specific physiological conditions. Functional roles of gap junction channels could be defined by the relative importance of permeant substances, resulting in coordination of electrical and/or metabolic cellular responses. Cells of the native and specific immune systems establish transient homo- and heterocellular contacts at various steps of the immune response. Morphological and functional studies reported during the last three decades have revealed that many intercellular contacts between cells in the immune response present gap junctions or "gap junction-like" structures. Partial characterization of the molecular composition of some of these plasma membrane structures and regulatory mechanisms that control them have been published recently. Studies designed to elucidate their physiological roles suggest that they might permit coordination of cellular events which favor the effective and timely response of the immune system.

  7. E. coli O124 K72 alters the intestinal barrier and the tight junctions proteins of guinea pig intestine.

    Science.gov (United States)

    Ren, Xiaomeng; Zhu, Yanyan; Gamallat, Yaser; Ma, Shenhao; Chiwala, Gift; Meyiah, Abdo; Xin, Yi

    2017-10-01

    Our research group previously isolated and identified a strain of pathogenic Escherichia coli from clinical samples called E. coli O124 K72. The present study was aimed at determining the potential effects of E. coli O124 K72 on intestinal barrier functions and structural proteins integrity in guinea pig. Guinea pigs were grouped into three groups; control (CG); E. coli O124 K72 (E. coli); and probiotics Lactobacillus rhamnosus (LGG). Initially, we create intestinal dysbiosis by giving all animals Levofloxacin for 10days, but the control group (CG) received the same volume of saline. Then, the animals received either E. coli O124 K72 (E. coli) or Lactobacillus rhamnosus (LGG) according to their assigned group. E. coli O124 K72 treatment significantly affected colon morphology and distorted intestinal barrier function by up-regulating Claudin2 and down-regulating Occludin. In addition, E. coli upregulated the mRNA expression of MUC1, MUC2, MUC13 and MUC15. Furthermore, suspected tumor was found in the E. coli treated animals. Our results suggested that E. coli O124 K72 strain has adverse effects on intestinal barrier functions and is capable of altering integrity of structural proteins in guinea pig model while at same time it may have a role in colon carcinogenesis. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  8. Anesthesia and Surgery Impair Blood–Brain Barrier and Cognitive Function in Mice

    Directory of Open Access Journals (Sweden)

    Siming Yang

    2017-08-01

    Full Text Available Blood–brain barrier (BBB dysfunction, e.g., increase in BBB permeability, has been reported to contribute to cognitive impairment. However, the effects of anesthesia and surgery on BBB permeability, the underlying mechanisms, and associated cognitive function remain largely to be determined. Here, we assessed the effects of surgery (laparotomy under 1.4% isoflurane anesthesia (anesthesia/surgery for 2 h on BBB permeability, levels of junction proteins and cognitive function in both 9- and 18-month-old wild-type mice and 9-month-old interleukin (IL-6 knockout mice. BBB permeability was determined by dextran tracer (immunohistochemistry imaging and spectrophotometric quantification, and protein levels were measured by Western blot and cognitive function was assessed by using both Morris water maze and Barnes maze. We found that the anesthesia/surgery increased mouse BBB permeability to 10-kDa dextran, but not to 70-kDa dextran, in an IL-6-dependent and age-associated manner. In addition, the anesthesia/surgery induced an age-associated increase in blood IL-6 level. Cognitive impairment was detected in 18-month-old, but not 9-month-old, mice after the anesthesia/surgery. Finally, the anesthesia/surgery decreased the levels of β-catenin and tight junction protein claudin, occludin and ZO-1, but not adherent junction protein VE-cadherin, E-cadherin, and p120-catenin. These data demonstrate that we have established a system to study the effects of perioperative factors, including anesthesia and surgery, on BBB and cognitive function. The results suggest that the anesthesia/surgery might induce an age-associated BBB dysfunction and cognitive impairment in mice. These findings would promote mechanistic studies of postoperative cognitive impairment, including postoperative delirium.

  9. Karyopherins regulate nuclear pore complex barrier and transport function.

    Science.gov (United States)

    Kapinos, Larisa E; Huang, Binlu; Rencurel, Chantal; Lim, Roderick Y H

    2017-09-01

    Nucleocytoplasmic transport is sustained by karyopherins (Kaps) and a Ran guanosine triphosphate (RanGTP) gradient that imports nuclear localization signal (NLS)-specific cargoes (NLS-cargoes) into the nucleus. However, how nuclear pore complex (NPC) barrier selectivity, Kap traffic, and NLS-cargo release are systematically linked and simultaneously regulated remains incoherent. In this study, we show that Kapα facilitates Kapβ1 turnover and occupancy at the NPC in a RanGTP-dependent manner that is directly coupled to NLS-cargo release and NPC barrier function. This is underpinned by the binding affinity of Kapβ1 to phenylalanine-glycine nucleoporins (FG Nups), which is comparable with RanGTP·Kapβ1, but stronger for Kapα·Kapβ1. On this basis, RanGTP is ineffective at releasing standalone Kapβ1 from NPCs. Depleting Kapα·Kapβ1 by RanGTP further abrogates NPC barrier function, whereas adding back Kapβ1 rescues it while Kapβ1 turnover softens it. Therefore, the FG Nups are necessary but insufficient for NPC barrier function. We conclude that Kaps constitute integral constituents of the NPC whose barrier, transport, and cargo release functionalities establish a continuum under a mechanism of Kap-centric control. © 2017 Kapinos et al.

  10. Establishment of a novel in vitro model of stratified epithelial wound healing with barrier function.

    Science.gov (United States)

    Gonzalez-Andrades, Miguel; Alonso-Pastor, Luis; Mauris, Jérôme; Cruzat, Andrea; Dohlman, Claes H; Argüeso, Pablo

    2016-01-13

    The repair of wounds through collective movement of epithelial cells is a fundamental process in multicellular organisms. In stratified epithelia such as the cornea and skin, healing occurs in three steps that include a latent, migratory, and reconstruction phases. Several simple and inexpensive assays have been developed to study the biology of cell migration in vitro. However, these assays are mostly based on monolayer systems that fail to reproduce the differentiation processes associated to multilayered systems. Here, we describe a straightforward in vitro wound assay to evaluate the healing and restoration of barrier function in stratified human corneal epithelial cells. In this assay, circular punch injuries lead to the collective migration of the epithelium as coherent sheets. The closure of the wound was associated with the restoration of the transcellular barrier and the re-establishment of apical intercellular junctions. Altogether, this new model of wound healing provides an important research tool to study the mechanisms leading to barrier function in stratified epithelia and may facilitate the development of future therapeutic applications.

  11. Interfering amino terminal peptides and functional implications for heteromeric gap junction formation

    Directory of Open Access Journals (Sweden)

    Richard David Veenstra

    2013-05-01

    Full Text Available Connexin43 (Cx43 is widely expressed in many different tissues of the human body. In cells of some organs, Cx43 is co-expressed with other connexins (Cx, including Cx46 and Cx50 in lens, Cx40 in atrium, Purkinje fibers, and the blood vessel wall, Cx45 in heart, and Cx37 in the ovary. Interactions with the co-expressed connexins may have profound functional implications. The abilities of Cx37, Cx45, Cx46, and Cx50 to function in heteromeric gap junction combinations with Cx43 are well documented. Different studies disagree regarding the ability of Cx43 and Cx40 to produce functional heteromeric gap junctions with each other. We review previous studies regarding the heteromeric interactions of Cx43. The possibility of negative functional interactions between the cytoplasmic pore-forming amino terminal (NT domains of these connexins was assessed using pentameric connexin sequence-specific NT domain (iNT peptides applied to cells expressing homomeric Cx40, Cx37, Cx45, Cx46, and Cx50 gap junctions. A Cx43 iNT peptide corresponding to amino acids 9 to 13 (Ac-KLLDK-NH2 specifically inhibited the electrical coupling of Cx40 gap junctions in a transjunctional (Vj voltage-dependent manner without affecting the function of homologous Cx37, Cx46, Cx50, and Cx45 gap junctions. A Cx40 iNT (Ac-EFLEE-OH peptide counteracted the Vj-dependent block of Cx40 gap junctions, whereas a similarly charged Cx50 iNT (Ac-EEVNE-OH peptide did not, suggesting that these NT domain interactions are not solely based on electrostatics. These data are consistent with functional Cx43 heteromeric gap junction formation with Cx37, Cx45, Cx46, and Cx50 and suggest that Cx40 uniquely experiences functional suppressive interactions with a Cx43 NT domain sequence. These findings present unique functional implications about the heteromeric interactions between Cx43 and Cx40 that may influence cardiac conduction in atrial myocardium and the specialized conduction system.

  12. A study on the quantitative evaluation of skin barrier function

    Science.gov (United States)

    Maruyama, Tomomi; Kabetani, Yasuhiro; Kido, Michiko; Yamada, Kenji; Oikaze, Hirotoshi; Takechi, Yohei; Furuta, Tomotaka; Ishii, Shoichi; Katayama, Haruna; Jeong, Hieyong; Ohno, Yuko

    2015-03-01

    We propose a quantitative evaluation method of skin barrier function using Optical Coherence Microscopy system (OCM system) with coherency of near-infrared light. There are a lot of skin problems such as itching, irritation and so on. It has been recognized skin problems are caused by impairment of skin barrier function, which prevents damage from various external stimuli and loss of water. To evaluate skin barrier function, it is a common strategy that they observe skin surface and ask patients about their skin condition. The methods are subjective judgements and they are influenced by difference of experience of persons. Furthermore, microscopy has been used to observe inner structure of the skin in detail, and in vitro measurements like microscopy requires tissue sampling. On the other hand, it is necessary to assess objectively skin barrier function by quantitative evaluation method. In addition, non-invasive and nondestructive measuring method and examination changes over time are needed. Therefore, in vivo measurements are crucial for evaluating skin barrier function. In this study, we evaluate changes of stratum corneum structure which is important for evaluating skin barrier function by comparing water-penetrated skin with normal skin using a system with coherency of near-infrared light. Proposed method can obtain in vivo 3D images of inner structure of body tissue, which is non-invasive and non-destructive measuring method. We formulate changes of skin ultrastructure after water penetration. Finally, we evaluate the limit of performance of the OCM system in this work in order to discuss how to improve the OCM system.

  13. Prediction of chaos in a Josephson junction by the Melnikov-function technique

    DEFF Research Database (Denmark)

    Bartuccelli, M.; Christiansen, Peter Leth; Pedersen, Niels Falsig

    1986-01-01

    The Melnikov function for prediction of Smale horseshoe chaos is applied to the rf-driven Josephson junction. Linear and quadratic damping resistors are considered. In the latter case the analytic solution including damping and dc bias is used to obtain an improved threshold curve for the onset...

  14. Metformin Improves Ileal Epithelial Barrier Function in Interleukin-10 Deficient Mice.

    Science.gov (United States)

    Xue, Yansong; Zhang, Hanying; Sun, Xiaofei; Zhu, Mei-Jun

    2016-01-01

    The impairment of intestinal epithelial barrier is the main etiologic factor of inflammatory bowel disease. The proper intestinal epithelial proliferation and differentiation is crucial for maintaining intestinal integrity. Metformin is a common anti-diabetic drug. The objective is to evaluate the protective effects of metformin on ileal epithelial barrier integrity using interleukin-10 deficient (IL10KO) mice. Wild-type and IL10KO mice were fed with/without metformin for 6 weeks and then ileum was collected for analyses. The mediatory role of AMP-activated protein kinase (AMPK) was further examined by gain and loss of function study in vitro. Compared to wild-type mice, IL10KO mice had increased proliferation, reduced goblet cell and Paneth cell lineage differentiation in the ileum tissue, which was accompanied with increased crypt expansion. Metformin supplementation mitigated intestinal cell proliferation, restored villus/crypt ratio, increased goblet cell and Paneth cell differentiation and improved barrier function. In addition, metformin supplementation in IL10KO mice suppressed macrophage pro-inflammatory activity as indicated by reduced M1 macrophage abundance and decreased pro-inflammatory cytokine IL-1β, TNF-α and IFN-γ expressions. As a target of metformin, AMPK phosphorylation was enhanced in mice treated with metformin, regardless of mouse genotypes. In correlation, the mRNA level of differentiation regulator including bmp4, bmpr2 and math1 were also increased in IL10KO mice supplemented with metformin, which likely explains the enhanced epithelial differentiation in IL10KO mice with metformin. Consistently, in Caco-2 cells, metformin promoted claudin-3 and E-cadherin assembly and mitigated TNF-α-induced fragmentation of tight junction proteins. Gain and loss of function assay also demonstrated AMPK was correlated with epithelial differentiation and proliferation. Metformin supplementation promotes secretory cell lineage differentiation, suppresses

  15. An Update of the Defensive Barrier Function of Skin

    OpenAIRE

    Lee, Seung Hun; Jeong, Se Kyoo; Ahn, Sung Ku

    2006-01-01

    Skin, as the outermost organ in the human body, continuously confronts the external environment and serves as a primary defense system. The protective functions of skin include UV-protection, anti-oxidant and antimicrobial functions. In addition to these protections, skin also acts as a sensory organ and the primary regulator of body temperature. Within these important functions, the epidermal permeability barrier, which controls the transcutaneous movement of water and other electrolytes, is...

  16. The mass and temperature functions in a moving barrier model

    CERN Document Server

    Popolo, A D

    2002-01-01

    In this paper, I use the extension of the excursion set model of Sheth & Tormen (2002) and the barrier shape obtained in Del Popolo & Gambera (1998) to calculate the unconditional halo mass function, and the conditional mass function in several cosmological models. I show that the barrier obtained in Del Popolo & Gambera (1998), which takes account of tidal interaction between proto-haloes, is a better description of the mass functions than the spherical collapse and is in good agreement with numerical simulations (Tozzi & Governato 1998, and Governato et al. 1999). The results are also in good agreement with those obtained by Sheth & Tormen (2002), only slight differences are observed expecially at the low mass end. I moreover calculate, and compare with simulations, the temperature function obtained by means of the mass functions previously calculated and also using an improved version of the M-T relation, which accounts for the fact that massive clusters accrete matter quasi-continuousl...

  17. All-Manganite Tunnel Junctions with Interface-Induced Barrier Magnetism

    Science.gov (United States)

    Sefrioui, Zouhair

    2011-03-01

    The recent discovery of several unexpected phases at complex oxide interfaces is providing new insights into the physics of strongly correlated electron systems. The possibility of tailoring the electronic structure of such interfaces has triggered a great technological drive to functionalize them into devices. In this communication, we describe an alternative strategy to produce spin filtering by inducing a ferromagnetic insulating state in an ultrathin antiferromagnetic layer in contact with a ferromagnetic layer. This artificially induced spin filtering persists up to relatively high temperatures and operates at high applied bias voltages. The results suggest that after playing a key role in exchange-bias for spin-valves, uncompensated moments at engineered antiferromagnetic interfaces represent a novel route for generating highly spin-polarized currents with antiferromagnets. Work done in collaboration with M. Bibes, C. Carrétéro, A. Barthélémy (Unité Mixte de Physique CNRS/Thales, Campus de Polytechnique, 1, Avenue A. Fresnel, 91767 Palaiseau (France) and Université Paris-Sud, 91045 Orsay (France)), F.A. Cuellar, C. Visani, A. Rivera-Calzada, , C. León, J. Santamaria (Grupo de Física de Materiales Complejos, Universidad Complutense de Madrid, 28040 Madrid (Spain)), M.J. Calderón, L. Brey (Instituto de Ciencia de Materiales de Madrid, CSIC, Cantoblanco, 28049 Madrid (Spain)), K. March, M. Walls, D. Imhoff (Laboratoire de Physique des Solides, CNRS, Université Paris-Sud, 91405 Orsay (France)), R. Lopez Anton, T.R. Charlton (ISIS, Rutherford Appleton Laboratory, Chilton, Oxon OX11 0QX (United Kingdom)), E. Iborra (Universidad Politécnica de Madrid, Escuela Técnica Superior de Ingenieros de Telecomunicaciones, 28040 Madrid (Spain)), F. Ott (Léon Brillouin, CEA/CNRS, UMR 12, 91191 Gif-sur-Yvette (France)). This work was supported by the Spanish Ministry for Science and Education programs MAT2008 06517, and the Réseau Thématique de Recherche Avanc

  18. Typical diffusion behaviour in packaging polymers - Application to functional barriers

    NARCIS (Netherlands)

    Dole, P.; Feigenbaum, A.E.; Cruz, C. de la; Pastorelli, S.; Paseiro, P.; Hankemeier, T.; Voulzatis, Y.; Aucejo, S.; Saillard, P.; Papaspyrides, C.

    2006-01-01

    When plastics are collected for recycling, possibly contaminated articles might be recycled into food packaging, and thus the contaminants might subsequently migrate into the food. Multilayer functional barriers may be used to delay and to reduce such migration. The contribution of the work reported

  19. Disruption of barrier function in dermatophytosis and pityriasis versicolor.

    Science.gov (United States)

    Lee, Weon Ju; Kim, Jun Young; Song, Chang Hyun; Jung, Hong Dae; Lee, Su Hyun; Lee, Seok-Jong; Kim, Do Won

    2011-11-01

    Dermatophytes have the ability to form molecular attachments to keratin and use it as a source of nutrients, colonizing keratinized tissues, including the stratum corneum of the skin. Malassezia species also affect the stratum corneum of the skin. Therefore, dermatophytosis and pityriasis versicolor of the skin are thought to be important factors of profound changes in skin barrier structure and function. We aimed to describe the changes in transepidermal water loss (TEWL), stratum corneum hydration, and skin pH in the lesions of the dermatophytosis and pityriasis versicolor. Thirty-six patients with dermatophytosis (14 with tinea cruris, 13 with tinea corporis and nine with tinea pedis or tinea manus) and 11 patients with pityriasis versicolor were included in this study. TEWL, stratum corneum conductance and skin pH were determined by biophysical methods to examine whether our patients exhibited changes in barrier function. Dermatophytosis and pityriasis versicolor except tinea pedis and tinea manus showed highly significant increase in TEWL compared with adjacent infection-free skin. Hydration was significantly reduced in lesional skin compared with adjacent infection-free skin. From this study, infections with dermatophytes and Malassezia species on the body can alter biophysical properties of the skin, especially the function of stratum corneum as a barrier to water loss. On the contrary, infections with dermatophytes on the palms and soles little affect the barrier function of the skin. © 2011 Japanese Dermatological Association.

  20. The Functional Requirements and Design Basis for Information Barriers

    Energy Technology Data Exchange (ETDEWEB)

    Fuller, James L.

    2012-05-01

    This report summarizes the results of the Information Barrier Working Group workshop held at Sandia National Laboratory in Albuquerque, NM, February 2-4, 1999. This workshop was convened to establish the functional requirements associated with warhead radiation signature information barriers, to identify the major design elements of any such system or approach, and to identify a design basis for each of these major elements. Such information forms the general design basis to be used in designing, fabricating, and evaluating the complete integrated systems developed for specific purposes.

  1. Gap Junctions

    Science.gov (United States)

    Nielsen, Morten Schak; Axelsen, Lene Nygaard; Sorgen, Paul L.; Verma, Vandana; Delmar, Mario; Holstein-Rathlou, Niels-Henrik

    2013-01-01

    Gap junctions are essential to the function of multicellular animals, which require a high degree of coordination between cells. In vertebrates, gap junctions comprise connexins and currently 21 connexins are known in humans. The functions of gap junctions are highly diverse and include exchange of metabolites and electrical signals between cells, as well as functions, which are apparently unrelated to intercellular communication. Given the diversity of gap junction physiology, regulation of gap junction activity is complex. The structure of the various connexins is known to some extent; and structural rearrangements and intramolecular interactions are important for regulation of channel function. Intercellular coupling is further regulated by the number and activity of channels present in gap junctional plaques. The number of connexins in cell-cell channels is regulated by controlling transcription, translation, trafficking, and degradation; and all of these processes are under strict control. Once in the membrane, channel activity is determined by the conductive properties of the connexin involved, which can be regulated by voltage and chemical gating, as well as a large number of posttranslational modifications. The aim of the present article is to review our current knowledge on the structure, regulation, function, and pharmacology of gap junctions. This will be supported by examples of how different connexins and their regulation act in concert to achieve appropriate physiological control, and how disturbances of connexin function can lead to disease. © 2012 American Physiological Society. Compr Physiol 2:1981-2035, 2012. PMID:23723031

  2. Gap junctions.

    Science.gov (United States)

    Nielsen, Morten Schak; Axelsen, Lene Nygaard; Sorgen, Paul L; Verma, Vandana; Delmar, Mario; Holstein-Rathlou, Niels-Henrik

    2012-07-01

    Gap junctions are essential to the function of multicellular animals, which require a high degree of coordination between cells. In vertebrates, gap junctions comprise connexins and currently 21 connexins are known in humans. The functions of gap junctions are highly diverse and include exchange of metabolites and electrical signals between cells, as well as functions, which are apparently unrelated to intercellular communication. Given the diversity of gap junction physiology, regulation of gap junction activity is complex. The structure of the various connexins is known to some extent; and structural rearrangements and intramolecular interactions are important for regulation of channel function. Intercellular coupling is further regulated by the number and activity of channels present in gap junctional plaques. The number of connexins in cell-cell channels is regulated by controlling transcription, translation, trafficking, and degradation; and all of these processes are under strict control. Once in the membrane, channel activity is determined by the conductive properties of the connexin involved, which can be regulated by voltage and chemical gating, as well as a large number of posttranslational modifications. The aim of the present article is to review our current knowledge on the structure, regulation, function, and pharmacology of gap junctions. This will be supported by examples of how different connexins and their regulation act in concert to achieve appropriate physiological control, and how disturbances of connexin function can lead to disease. © 2012 American Physiological Society. Compr Physiol 2:1853-1872, 2012.

  3. Salvianolic Acid B Restored Impaired Barrier Function via Downregulation of MLCK by microRNA-1 in Rat Colitis Model.

    Science.gov (United States)

    Xiong, Yongjian; Wang, Jingyu; Chu, Hongwei; Chen, Dapeng; Guo, Huishu

    2016-01-01

    Salvianolic acid B (Sal B) is isolated from the traditional Chinese medical herb Salvia miltiorrhiza and is reported to have a wide range of therapeutic benefits. The aim of this study was to investigate the effects of Sal B on epithelial barrier dysfunction in rat colitis and to uncover related mechanisms. Rat colitis model was established by intracolonic administration of 2, 4, 6-trinitrobenzene sulfonic acid (TNBS). The intestinal barrier function was evaluated by measuring the serum recovery of fluorescein isothiocyanate-4 kD dextran in vivo and transepithelial electrical resistance in vitro respectively. The protein expression related to intestinal barrier function was studied using western blotting. The effects of Sal B on inflammatory responses, oxidative damage and colitis recurrence were also studied in this study. The intestinal barrier dysfunction in colitis was reversed by Sal B, accompanied with the decrease of tight junction proteins, and the effect could be blocked by microRNA-1(miR-1) inhibition. The inflammatory responses, oxidative damage and colitis recurrence were also decreased by Sal B. The colitis symptoms and recurrences were ameliorated by Sal B, and restoration of impaired barrier function via downregulation of MLCK by miR-1 maybe involved in this effect. This study provides some novel insights into both of the pathological mechanisms and treatment alternatives of inflammatory bowel disease.

  4. Silver nanoparticles induce tight junction disruption and astrocyte neurotoxicity in a rat blood–brain barrier primary triple coculture model

    Directory of Open Access Journals (Sweden)

    Xu L

    2015-09-01

    Full Text Available Liming Xu,1,2,* Mo Dan,1,* Anliang Shao,1 Xiang Cheng,1,3 Cuiping Zhang,4 Robert A Yokel,5 Taro Takemura,6 Nobutaka Hanagata,6 Masami Niwa,7,8 Daisuke Watanabe7,81National Institutes for Food and Drug Control, No 2, Temple of Heaven, Beijing, 2School of Information and Engineering, Wenzhou Medical University, Wenzhou, 3School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 4Beijing Neurosurgical Institute, Capital Medical University, Beijing, People’s Republic of China; 5College of Pharmacy, University of Kentucky, Lexington, KY, USA; 6Nanotechnology Innovation Station for Nanoscale Science and Technology, National Institute for Materials Science, Tsukuba, Ibaraki, 7Department of Pharmacology, Nagasaki University, 8BBB Laboratory, PharmaCo-Cell Company, Ltd., Nagasaki, Japan*These authors contributed equally to this workBackground: Silver nanoparticles (Ag-NPs can enter the brain and induce neurotoxicity. However, the toxicity of Ag-NPs on the blood–brain barrier (BBB and the underlying mechanism(s of action on the BBB and the brain are not well understood.Method: To investigate Ag-NP suspension (Ag-NPS-induced toxicity, a triple coculture BBB model of rat brain microvascular endothelial cells, pericytes, and astrocytes was established. The BBB permeability and tight junction protein expression in response to Ag-NPS, NP-released Ag ions, and polystyrene-NP exposure were investigated. Ultrastructural changes of the microvascular endothelial cells, pericytes, and astrocytes were observed using transmission electron microscopy (TEM. Global gene expression of astrocytes was measured using a DNA microarray.Results: A triple coculture BBB model of primary rat brain microvascular endothelial cells, pericytes, and astrocytes was established, with the transendothelial electrical resistance values >200 Ω·cm2. After Ag-NPS exposure for 24 hours, the BBB permeability was significantly increased and expression of the

  5. Analytical models of on-resistance and breakdown voltage for 4H-SiC floating junction Schottky barrier diodes

    Science.gov (United States)

    Yuan, Hao; Tang, Xiaoyan; Song, Qingwen; Zhang, Yimen; Zhang, Yuming; Yang, Fei; Niu, Yingxi

    2015-01-01

    The analytical models of on-resistance and reverse breakdown voltage for 4H-SiC floating junction SBD are presented with the analysis of the transport path of the carriers and electric field distribution in the drift region. The calculation results from the analytical models well agree with the simulation results. The effects of the key structure parameters on specific on-resistance and breakdown voltage are described respectively by analytical models. Moreover, the relationship between BFOM and parameters of floating junction are investigated. It is proved that the analytical models are more convenient for the design of the floating junction SBDs.

  6. Entamoeba histolytica contains an occludin-like protein that can alter colonic epithelial barrier function.

    Science.gov (United States)

    Goplen, Michael; Lejeune, Manigandan; Cornick, Steve; Moreau, France; Chadee, Kris

    2013-01-01

    The exact mechanism by which Entamoeba histolytica disrupts the human colonic epithelium and invades the mucosa has yet to be clearly elucidated. E. histolytica produces a diverse array of putative virulent factors such as glycosidase, cysteine proteinases and amebapore that can modulate and/or disrupt epithelial barrier functions. However, it is currently thought that E. histolytica produces numerous other molecules and strategies to disrupt colonic mucosal defenses. In this study, we document a putative mechanism whereby the parasite alters the integrity of human epithelium by expressing a cognate tight junction protein of the host. We detected this protein as "occludin-like" as revealed by immunoblotting and immunoprecipitation studies and visualization by confocal microscopy using antibodies highly specific for human occludin. We propose that E. histolytica occludin-like protein might displace mucosal epithelial occludin-occludin tight junction interactions resulting in epithelial disruption analogous to sub mucosal human dendritic cells sampling luminal contents. These results indicate that E. histolytica occludin is a putative virulent component that can play a role in the pathogenesis of intestinal amebiasis.

  7. Entamoeba histolytica contains an occludin-like protein that can alter colonic epithelial barrier function.

    Directory of Open Access Journals (Sweden)

    Michael Goplen

    Full Text Available The exact mechanism by which Entamoeba histolytica disrupts the human colonic epithelium and invades the mucosa has yet to be clearly elucidated. E. histolytica produces a diverse array of putative virulent factors such as glycosidase, cysteine proteinases and amebapore that can modulate and/or disrupt epithelial barrier functions. However, it is currently thought that E. histolytica produces numerous other molecules and strategies to disrupt colonic mucosal defenses. In this study, we document a putative mechanism whereby the parasite alters the integrity of human epithelium by expressing a cognate tight junction protein of the host. We detected this protein as "occludin-like" as revealed by immunoblotting and immunoprecipitation studies and visualization by confocal microscopy using antibodies highly specific for human occludin. We propose that E. histolytica occludin-like protein might displace mucosal epithelial occludin-occludin tight junction interactions resulting in epithelial disruption analogous to sub mucosal human dendritic cells sampling luminal contents. These results indicate that E. histolytica occludin is a putative virulent component that can play a role in the pathogenesis of intestinal amebiasis.

  8. Administration of sesamol improved blood-brain barrier function in streptozotocin-induced diabetic rats.

    Science.gov (United States)

    VanGilder, R L; Kelly, K A; Chua, M D; Ptachcinski, R L; Huber, Jason D

    2009-07-01

    Uncontrolled or poorly controlled blood glucose during diabetes is an important factor in worsened vascular function. While evidence suggests that hyperglycemia-induced oxidative stress plays a prominent role in development of microangiopathy of the retina, kidney, and nerves, the role oxidative stress plays on blood-brain barrier (BBB) function and structure has lagged behind. In this study, a natural antioxidant, sesamol, was administered to streptozotocin (STZ)-induced diabetic rats to examine the role that oxidative stress plays on BBB structure and function. Experiments were conducted at 56 days after STZ injection. Male Sprague-Dawley rats randomly were divided into four treatment groups CON--control; STZ--STZ-induced diabetes; CON + S--control + sesamol; STZ + S--STZ-induced diabetes + sesamol. Functional and structural changes to the BBB were measured by in situ brain perfusion and western blot analysis of changes in tight junction protein expression. Oxidative stress markers were visualized by fluorescent confocal microscopy and assayed by spectrophotometric analysis. Results demonstrated that the increased BBB permeability observed in STZ-induced diabetic rats was attenuated in STZ + S rats to levels observed in CON. Sesamol treatment reduced the negative impact of STZ-induced diabetes on tight junction protein expression in isolated cerebral microvessels. Oxidative stress markers were elevated in STZ as compared to CON. STZ + S displayed an improved antioxidant capacity which led to a reduced expression of superoxide and peroxynitrite and reduced lipid peroxidation. In conclusion, this study showed that sesamol treatment enhanced antioxidant capacity of the diabetic brain and led to decreased perturbation of hyperglycemia-induced changes in BBB structure and function.

  9. Moderate hypoxia followed by reoxygenation results in blood-brain barrier breakdown via oxidative stress-dependent tight-junction protein disruption.

    Directory of Open Access Journals (Sweden)

    Christoph M Zehendner

    Full Text Available Re-canalization of cerebral vessels in ischemic stroke is pivotal to rescue dysfunctional brain areas that are exposed to moderate hypoxia within the penumbra from irreversible cell death. Goal of the present study was to evaluate the effect of moderate hypoxia followed by reoxygenation (MHR on the evolution of reactive oxygen species (ROS and blood-brain barrier (BBB integrity in brain endothelial cells (BEC. BBB integrity was assessed in BEC in vitro and in microvessels of the guinea pig whole brain in situ preparation. Probes were exposed to MHR (2 hours 67-70 mmHg O2, 3 hours reoxygenation, BEC or towards occlusion of the arteria cerebri media (MCAO with or without subsequent reperfusion in the whole brain preparation. In vitro BBB integrity was evaluated using trans-endothelial electrical resistance (TEER and transwell permeability assays. ROS in BEC were evaluated using 2',7'-dichlorodihydrofluorescein diacetate (DCF, MitoSox and immunostaining for nitrotyrosine. Tight-junction protein (TJ integrity in BEC, stainings for nitrotyrosine and FITC-albumin extravasation in the guinea pig brain preparation were assessed by confocal microscopy. Diphenyleneiodonium (DPI was used to investigate NADPH oxidase dependent ROS evolution and its effect on BBB parameters in BEC. MHR impaired TJ proteins zonula occludens 1 (ZO-1 and claudin 5 (Cl5, decreased TEER, and significantly increased cytosolic ROS in BEC. These events were blocked by the NADPH oxidase inhibitor DPI. MCAO with or without subsequent reoxygenation resulted in extravasation of FITC-albumin and ROS generation in the penumbra region of the guinea pig brain preparation and confirmed BBB damage. BEC integrity may be impaired through ROS in MHR on the level of TJ and the BBB is also functionally impaired in moderate hypoxic conditions followed by reperfusion in a complex guinea pig brain preparation. These findings suggest that the BBB is susceptible towards MHR and that ROS play a key role

  10. Moderate hypoxia followed by reoxygenation results in blood-brain barrier breakdown via oxidative stress-dependent tight-junction protein disruption.

    Science.gov (United States)

    Zehendner, Christoph M; Librizzi, Laura; Hedrich, Jana; Bauer, Nina M; Angamo, Eskedar A; de Curtis, Marco; Luhmann, Heiko J

    2013-01-01

    Re-canalization of cerebral vessels in ischemic stroke is pivotal to rescue dysfunctional brain areas that are exposed to moderate hypoxia within the penumbra from irreversible cell death. Goal of the present study was to evaluate the effect of moderate hypoxia followed by reoxygenation (MHR) on the evolution of reactive oxygen species (ROS) and blood-brain barrier (BBB) integrity in brain endothelial cells (BEC). BBB integrity was assessed in BEC in vitro and in microvessels of the guinea pig whole brain in situ preparation. Probes were exposed to MHR (2 hours 67-70 mmHg O2, 3 hours reoxygenation, BEC) or towards occlusion of the arteria cerebri media (MCAO) with or without subsequent reperfusion in the whole brain preparation. In vitro BBB integrity was evaluated using trans-endothelial electrical resistance (TEER) and transwell permeability assays. ROS in BEC were evaluated using 2',7'-dichlorodihydrofluorescein diacetate (DCF), MitoSox and immunostaining for nitrotyrosine. Tight-junction protein (TJ) integrity in BEC, stainings for nitrotyrosine and FITC-albumin extravasation in the guinea pig brain preparation were assessed by confocal microscopy. Diphenyleneiodonium (DPI) was used to investigate NADPH oxidase dependent ROS evolution and its effect on BBB parameters in BEC. MHR impaired TJ proteins zonula occludens 1 (ZO-1) and claudin 5 (Cl5), decreased TEER, and significantly increased cytosolic ROS in BEC. These events were blocked by the NADPH oxidase inhibitor DPI. MCAO with or without subsequent reoxygenation resulted in extravasation of FITC-albumin and ROS generation in the penumbra region of the guinea pig brain preparation and confirmed BBB damage. BEC integrity may be impaired through ROS in MHR on the level of TJ and the BBB is also functionally impaired in moderate hypoxic conditions followed by reperfusion in a complex guinea pig brain preparation. These findings suggest that the BBB is susceptible towards MHR and that ROS play a key role in this

  11. Faecalibacterium prausnitzii supernatant improves intestinal barrier function in mice DSS colitis.

    Science.gov (United States)

    Carlsson, Anders H; Yakymenko, Olena; Olivier, Isabelle; Håkansson, Fathima; Postma, Emily; Keita, Asa V; Söderholm, Johan D

    2013-10-01

    OBJECTIVE. The intestinal microbiota plays a substantial role in the pathogenesis of inflammatory bowel disease (IBD). Faecalibacterium prausnitzii (FP) is underrepresented in IBD patients and have been suggested to have anti-inflammatory effects in mice. Increased intestinal permeability is common in IBD but the relationship between FP and intestinal barrier function has not been investigated. Our aim was to study treatment with FP supernatant on intestinal barrier function in a dextran sodium sulfate (DSS) colitis mice model. MATERIAL AND METHODS. C57BL/6 mice received 3% DSS in tap water ad libitum during five days to induce colitis. From day 3 the mice received a daily gavage with FP supernatant or broth during seven days. Ileum and colon were mounted in Ussing chambers for permeability studies with (51)Cr-EDTA and Escherichia coli K-12. Colon was saved for Western blot analyses of tight junction proteins. RESULTS. DSS-treated mice showed significant weight loss and colon shortening. Gavage with FP supernatant resulted in a quicker recovery after DSS treatment and less extensive colonic shortening. Ileal mucosa of DSS mice showed a significant increase in (51)Cr-EDTA-passage compared to controls. (51)Cr-EDTA passage was significantly decreased in mice receiving FP supernatant. No significant differences were observed in passage of E. coli K12. Western blots showed a trend to increased claudin-1 and claudin-2 expressions in DSS mice. CONCLUSIONS. Supernatant of FP enhances the intestinal barrier function by affecting paracellular permeability, and may thereby attenuate the severity of DSS-induced colitis in mice. These findings suggest a potential role of FP in the treatment of IBD.

  12. The blood-nerve barrier: structure and functional significance.

    Science.gov (United States)

    Weerasuriya, Ananda; Mizisin, Andrew P

    2011-01-01

    The blood-nerve barrier (BNB) defines the physiological space within which the axons, Schwann cells, and other associated cells of a peripheral nerve function. The BNB consists of the endoneurial microvessels within the nerve fascicle and the investing perineurium. The restricted permeability of these two barriers protects the endoneurial microenvironment from drastic concentration changes in the vascular and other extracellular spaces. It is postulated that endoneurial homeostatic mechanisms regulate the milieu intérieur of peripheral axons and associated Schwann cells. These mechanisms are discussed in relation to nerve development, Wallerian degeneration and nerve regeneration, and lead neuropathy. Finally, the putative factors responsible for the cellular and molecular control of BNB permeability are discussed. Given the dynamic nature of the regulation of the permeability of the perineurium and endoneurial capillaries, it is suggested that the term blood-nerve interface (BNI) better reflects the functional significance of these structures in the maintenance of homeostasis within the endoneurial microenvironment.

  13. The caecocolonic junction in humans has a sphincteric anatomy and function.

    Science.gov (United States)

    Faussone Pellegrini, M S; Manneschi, L I; Manneschi, L

    1995-01-01

    Sphincteric anatomy and function are present at the caecocolonic junction in several mammals. In humans, radiologists and endoscopists have respectively reported a circumferential contraction and a prominent ileocaecal fold at the border area between the caecum and the ascending colon. Anatomical findings on necropsy material failed to confirm its presence. Microscopic studies on surgical specimens showed the existence of muscular and innervational patterns different from those of adjacent areas. The aim of this work was to confirm the existence of a specialised fold at the caecocolonic junction in humans and to ascertain its role by carrying out a study of functional anatomy. Pancolonoscopies were performed on 100 patients and ileocaecal fold behaviour was observed before and after mechanical stimulation. Isolated ileocaecocolonic regions, surgically obtained, were filled with a fixative solution to study their macro and microscopic morphology after stimulation. Endoscopically, the ileocaecal fold was semilunar or circular in shape and spontaneous or evoked spasms occurred in 52 patients. A prominent circular fold could be seen in surgical specimens after stimulation. The entire muscle coat deeply penetrated this fold, showing the features characteristic of the ileocaecal junction. In particular, the inner portion of the circular muscle showed a peculiar arrangement and was thicker than elsewhere. These results show that in humans the caecocolonic junction is provided with a sphincter morphology and function. Little is known about its physiological relevance in ileal flow accommodation and caecal filling and emptying but it should not be underestimated with regard to some colonic motility disorders. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 PMID:7489934

  14. Functional morphology and biomechanics of branch-stem junctions in columnar cacti.

    Science.gov (United States)

    Schwager, Hannes; Masselter, Tom; Speck, Thomas; Neinhuis, Christoph

    2013-12-07

    Branching in columnar cacti features morphological and anatomical characteristics specific to the subfamily Cactoideae. The most conspicuous features are the pronounced constrictions at the branch-stem junctions, which are also present in the lignified vascular structures within the succulent cortex. Based on finite-element analyses of ramification models, we demonstrate that these indentations in the region of high flexural and torsional stresses are not regions of structural weakness (e.g. allowing vegetative propagation). On the contrary, they can be regarded as anatomical adaptations to increase the stability by fine-tuning the stress state and stress directions in the junction along prevalent fibre directions. Biomimetic adaptations improving the functionality of ramifications in technical components, inspired, in particular, by the fine-tuned geometrical shape and arrangement of lignified strengthening tissues of biological role models, might contribute to the development of alternative concepts for branched fibre-reinforced composite structures within a limited design space.

  15. Functional morphology and biomechanics of branch–stem junctions in columnar cacti

    Science.gov (United States)

    Schwager, Hannes; Masselter, Tom; Speck, Thomas; Neinhuis, Christoph

    2013-01-01

    Branching in columnar cacti features morphological and anatomical characteristics specific to the subfamily Cactoideae. The most conspicuous features are the pronounced constrictions at the branch–stem junctions, which are also present in the lignified vascular structures within the succulent cortex. Based on finite-element analyses of ramification models, we demonstrate that these indentations in the region of high flexural and torsional stresses are not regions of structural weakness (e.g. allowing vegetative propagation). On the contrary, they can be regarded as anatomical adaptations to increase the stability by fine-tuning the stress state and stress directions in the junction along prevalent fibre directions. Biomimetic adaptations improving the functionality of ramifications in technical components, inspired, in particular, by the fine-tuned geometrical shape and arrangement of lignified strengthening tissues of biological role models, might contribute to the development of alternative concepts for branched fibre-reinforced composite structures within a limited design space. PMID:24132310

  16. Intestinal barrier function and the brain-gut axis.

    Science.gov (United States)

    Alonso, Carmen; Vicario, María; Pigrau, Marc; Lobo, Beatriz; Santos, Javier

    2014-01-01

    The luminal-mucosal interface of the intestinal tract is the first relevant location where microorganism-derived antigens and all other potentially immunogenic particles face the scrutiny of the powerful mammalian immune system. Upon regular functioning conditions, the intestinal barrier is able to effectively prevent most environmental and external antigens to interact openly with the numerous and versatile elements that compose the mucosal-associated immune system. This evolutionary super system is capable of processing an astonishing amount of antigens and non-immunogenic particles, approximately 100 tons in one individual lifetime, only considering food-derived components. Most important, to develop oral tolerance and proper active immune responses needed to prevent disease and inflammation, this giant immunogenic load has to be managed in a way that physiological inflammatory balance is constantly preserved. Adequate functioning of the intestinal barrier involves local and distant regulatory networks integrating the so-called brain-gut axis. Along this complex axis both brain and gut structures participate in the processing and execution of response signals to external and internal changes coming from the digestive tract, using multidirectional pathways to communicate. Dysfunction of brain-gut axis facilitates malfunctioning of the intestinal barrier, and vice versa, increasing the risk of uncontrolled immunological reactions that may trigger mucosal and brain low-grade inflammation, a putative first step to the initiation of more permanent gut disorders. In this chapter, we describe the structure, function and interactions of intestinal barrier, microbiota and brain-gut axis in both healthy and pathological conditions.

  17. Glycoprotein A33 deficiency: a new mouse model of impaired intestinal epithelial barrier function and inflammatory disease.

    Science.gov (United States)

    Williams, Benjamin B; Tebbutt, Niall C; Buchert, Michael; Putoczki, Tracy L; Doggett, Karen; Bao, Shisan; Johnstone, Cameron N; Masson, Frederick; Hollande, Frederic; Burgess, Antony W; Scott, Andrew M; Ernst, Matthias; Heath, Joan K

    2015-08-01

    The cells of the intestinal epithelium provide a selectively permeable barrier between the external environment and internal tissues. The integrity of this barrier is maintained by tight junctions, specialised cell-cell contacts that permit the absorption of water and nutrients while excluding microbes, toxins and dietary antigens. Impairment of intestinal barrier function contributes to multiple gastrointestinal disorders, including food hypersensitivity, inflammatory bowel disease (IBD) and colitis-associated cancer (CAC). Glycoprotein A33 (GPA33) is an intestinal epithelium-specific cell surface marker and member of the CTX group of transmembrane proteins. Roles in cell-cell adhesion have been demonstrated for multiple CTX family members, suggesting a similar function for GPA33 within the gastrointestinal tract. To test a potential requirement for GPA33 in intestinal barrier function, we generated Gpa33(-/-) mice and subjected them to experimental regimens designed to produce food hypersensitivity, colitis and CAC. Gpa33(-/-) mice exhibited impaired intestinal barrier function. This was shown by elevated steady-state immunosurveillance in the colonic mucosa and leakiness to oral TRITC-labelled dextran after short-term exposure to dextran sodium sulphate (DSS) to injure the intestinal epithelium. Gpa33(-/-) mice also exhibited rapid onset and reduced resolution of DSS-induced colitis, and a striking increase in the number of colitis-associated tumours produced by treatment with the colon-specific mutagen azoxymethane (AOM) followed by two cycles of DSS. In contrast, Gpa33(-/-) mice treated with AOM alone showed no increase in sporadic tumour formation, indicating that their increased tumour susceptibility is dependent on inflammatory stimuli. Finally, Gpa33(-/-) mice displayed hypersensitivity to food allergens, a common co-morbidity in humans with IBD. We propose that Gpa33(-/-) mice provide a valuable model to study the mechanisms linking intestinal

  18. Acyl-CoA binding protein and epidermal barrier function

    DEFF Research Database (Denmark)

    Bloksgaard, Maria; Neess, Ditte; Færgeman, Nils J

    2014-01-01

    enzymatic systems; however, the precise function remains unknown. ACBP is expressed at relatively high levels in the epidermis, particularly in the suprabasal layers, which are highly active in lipid synthesis. Targeted disruption of the ACBP gene in mice leads to a pronounced skin and fur phenotype, which...... levels of non-esterified very long chain fatty acids in the stratum corneum of ACBP(-/-) mice. Here we review the current knowledge of ACBP with special focus on the function of ACBP in the epidermal barrier. This article is part of a Special Issue entitled The Important Role of Lipids in the Epidermis...

  19. Functional characterisation of the maturation of the blood-brain barrier in larval zebrafish.

    Directory of Open Access Journals (Sweden)

    Angeleen Fleming

    Full Text Available Zebrafish are becoming increasingly popular as an organism in which to model human disease and to study the effects of small molecules on complex physiological and pathological processes. Since larvae are no more than a few millimetres in length, and can live in volumes as small as 100 microliters, they are particularly amenable to high-throughput and high content compound screening in 96 well plate format. There is a growing literature providing evidence that many compounds show similar pharmacological effects in zebrafish as they do in mammals, and in particular humans. However, a major question regarding their utility for small molecule screening for neurological conditions is whether a molecule will reach its target site within the central nervous system. Studies have shown that Claudin-5 and ZO-1, tight-junction proteins which are essential for blood-brain barrier (BBB integrity in mammals, can be detected in some cerebral vessels in zebrafish from 3 days post-fertilisation (d.p.f. onwards and this timing coincides with the retention of dyes, immunoreactive tracers and fluorescent markers within some but not all cerebral vessels. Whilst these findings demonstrate that features of a BBB are first present at 3 d.p.f., it is not clear how quickly the zebrafish BBB matures or how closely the barrier resembles that of mammals. Here, we have combined anatomical analysis by transmission electron microscopy, functional investigation using fluorescent markers and compound uptake using liquid chromatography/tandem mass spectrometry to demonstrate that maturation of the zebrafish BBB occurs between 3 d.p.f. and 10 d.p.f. and that this barrier shares both structural and functional similarities with that of mammals.

  20. Effects of Lactobacillus plantarum on gut barrier function in experimental obstructive jaundice

    Institute of Scientific and Technical Information of China (English)

    Yu-Kun Zhou; Huan-Long Qin; Ming Zhang; Tong-Yi Shen; Hong-Qi Chen; Yan-Lei Ma; Zhao-Xin Chu

    2012-01-01

    AIM:To investigate the mechanisms of Lactobacillus plantarum (L.plantarum) action on gut barrier in preoperative and postoperative experimental obstructive jaundice in rats.METHODS:Forty rats were randomly divided into groups of sham-operation,bile duct ligation (BDL),BDL + L.plantarum,BDL + internal biliary drainage (IBD),and BDL + IBD + L.plantarum.Ten days after L,plantarum administration,blood and ileal samples were collected from the rats for morphological examination,and intestinal barrier function,liver function,intestinal oxidative stress and protein kinase C (PKC) activity measurement.The distribution and expression of the PKC and tight junction (TJ) proteins,such as occludin,zonula occludens-1,claudin-1,claudin-4,junction adhesion molecule-A and F-actin,were examined by confocal laser scanning microscopy,immunohistochemistry,Western blotting,real-time fluorescent quantitative polymerase chain reaction assay.RESULTS:L.plantarum administration substantially restored gut barrier,decreased enterocyte apoptosis,improved intestinal oxidative stress,promoted the activity and expression of protein kinase (BDL vs BDL + L.plantarum,0.295 ± 0.007 vs 0.349 ± 0.003,P < 0.05;BDL + IBD vs BDL + IBD + L.plantarum,0.407 ± 0.046 vs 0.465 ± 0.135,P < 0.05),and particularly enhanced the expression and phosphorylation of TJ proteins in the experimental obstructive jaundice (BDL vs BDL + L.plantarum,0.266 ± 0.118 vs 0.326 ± 0.009,P < 0.05).The protective effect of L.plantarum was more prominent after internal biliary drainage (BDL + IBD vs BDL + IBD + L.plantarum,0.415 ± 0.105 vS 0.494 ± 0.145,P < 0.05).CONCLUSION:L.plantarum can decrease intestinal epithelial cell apoptosis,reduce oxidative stress,and prevent TJ disruption in biliary obstruction by activating the PKC pathway.

  1. Experimental and Theoretical Analysis of Nanotransport in Oligophenylene Dithiol Junctions as a Function of Molecular Length and Contact Work Function.

    Science.gov (United States)

    Xie, Zuoti; Bâldea, Ioan; Smith, Christopher E; Wu, Yanfei; Frisbie, C Daniel

    2015-08-25

    We report the results of an extensive investigation of metal-molecule-metal tunnel junctions based on oligophenylene dithiols (OPDs) bound to several types of electrodes (M1-S-(C6H4)n-S-M2, with 1 ≤ n ≤ 4 and M1,2 = Ag, Au, Pt) to examine the impact of molecular length (n) and metal work function (Φ) on junction properties. Our investigation includes (1) measurements by scanning Kelvin probe microscopy of electrode work function changes (ΔΦ = ΦSAM - Φ) caused by chemisorption of OPD self-assembled monolayers (SAMs), (2) measurements of junction current-voltage (I-V) characteristics by conducting probe atomic force microscopy in the linear and nonlinear bias ranges, and (3) direct quantitative analysis of the full I-V curves. Further, we employ transition voltage spectroscopy (TVS) to estimate the energetic alignment εh = EF - EHOMO of the dominant molecular orbital (HOMO) relative to the Fermi energy EF of the junction. Where photoelectron spectroscopy data are available, the εh values agree very well with those determined by TVS. Using a single-level model, which we justify via ab initio quantum chemical calculations at post-density functional theory level and additional UV-visible absorption measurements, we are able to quantitatively reproduce the I-V measurements in the whole bias range investigated (∼1.0-1.5 V) and to understand the behavior of εh and Γ (contact coupling strength) extracted from experiment. We find that Fermi level pinning induced by the strong dipole of the metal-S bond causes a significant shift of the HOMO energy of an adsorbed molecule, resulting in εh exhibiting a weak dependence with the work function Φ. Both of these parameters play a key role in determining the tunneling attenuation factor (β) and junction resistance (R). Correlation among Φ, ΔΦ, R, transition voltage (Vt), and εh and accurate simulation provide a remarkably complete picture of tunneling transport in these prototypical molecular junctions.

  2. DHA protects against experimental colitis in IL-10-deficient mice associated with the modulation of intestinal epithelial barrier function.

    Science.gov (United States)

    Zhao, Jie; Shi, Peiliang; Sun, Ye; Sun, Jing; Dong, Jian-Ning; Wang, Hong-Gang; Zuo, Lu-Gen; Gong, Jian-Feng; Li, Yi; Gu, Li-Li; Li, Ning; Li, Jie-Shou; Zhu, Wei-Ming

    2015-07-01

    A defect in the intestinal barrier is one of the characteristics of Crohn's disease (CD). The tight junction (TJ) changes and death of epithelial cells caused by intestinal inflammation play an important role in the development of CD. DHA, a long-chain PUFA, has been shown to be helpful in treating inflammatory bowel disease in experimental models by inhibiting the NF-κB pathway. The present study aimed at investigating the specific effect of DHA on the intestinal barrier function in IL-10-deficient mice. IL-10-deficient mice (IL-10(-/-)) at 16 weeks of age with established colitis were treated with DHA (i.g. 35.5 mg/kg per d) for 2 weeks. The severity of their colitis, levels of pro-inflammatory cytokines, epithelial gene expression, the distributions of TJ proteins (occludin and zona occludens (ZO)-1), and epithelial apoptosis in the proximal colon were measured at the end of the experiment. DHA treatment attenuated the established colitis and was associated with reduced infiltration of inflammatory cells in the colonic mucosa, lower mean histological scores and decreased levels of pro-inflammatory cytokines (IL-17, TNF-α and interferon-γ). Moreover, enhanced barrier function was observed in the DHA-treated mice that resulted from attenuated colonic permeability, rescued expression and corrected distributions of occludin and ZO-1. The results of the present study indicate that DHA therapy may ameliorate experimental colitis in IL-10(-/-) mice by improving the intestinal epithelial barrier function.

  3. Downregulation of blood-brain barrier phenotype by proinflammatory cytokines involves NADPH oxidase-dependent ROS generation: consequences for interendothelial adherens and tight junctions.

    Directory of Open Access Journals (Sweden)

    Keith D Rochfort

    Full Text Available Blood-brain barrier (BBB dysfunction is an integral feature of neurological disorders and involves the action of multiple proinflammatory cytokines on the microvascular endothelial cells lining cerebral capillaries. There is still however, considerable ambiguity throughout the scientific literature regarding the mechanistic role(s of cytokines in this context, thereby warranting a comprehensive in vitro investigation into how different cytokines may cause dysregulation of adherens and tight junctions leading to BBB permeabilization.The present study employs human brain microvascular endothelial cells (HBMvECs to compare/contrast the effects of TNF-α and IL-6 on BBB characteristics ranging from the expression of interendothelial junction proteins (VE-cadherin, occludin and claudin-5 to endothelial monolayer permeability. The contribution of cytokine-induced NADPH oxidase activation to altered barrier phenotype was also investigated.In response to treatment with either TNF-α or IL-6 (0-100 ng/ml, 0-24 hrs, our studies consistently demonstrated significant dose- and time-dependent decreases in the expression of all interendothelial junction proteins examined, in parallel with dose- and time-dependent increases in ROS generation and HBMvEC permeability. Increased expression and co-association of gp91 and p47, pivotal NADPH oxidase subunits, was also observed in response to either cytokine. Finally, cytokine-dependent effects on junctional protein expression, ROS generation and endothelial permeability could all be attenuated to a comparable extent using a range of antioxidant strategies, which included ROS depleting agents (superoxide dismutase, catalase, N-acetylcysteine, apocynin and targeted NADPH oxidase blockade (gp91 and p47 siRNA, NSC23766.A timely and wide-ranging investigation comparing the permeabilizing actions of TNF-α and IL-6 in HBMvECs is presented, in which we demonstrate how either cytokine can similarly downregulate the

  4. Lipids and skin barrier function - a clinical perspective

    DEFF Research Database (Denmark)

    Jungersted, J.M.; Hellgren, Lars; Jemec, G.B.E.

    2008-01-01

    and in particular, the role of barrier function in the pathogenesis of skin disease and its subsequent treatment protocols. The 3 major lipids in the SC of importance are ceramides, free fatty acids, and cholesterol. Human studies comparing levels of the major SC lipids in patients with atopic dermatitis...... and healthy controls have suggested a possible role for ceramide 1 and to some extent ceramide 3 in the pathogenesis of the disease. Therapies used in diseases involving barrier disruption have been sparely investigated from a lipid perspective. It has been suggested that ultraviolet light as a treatment......The stratum corneum (SC) protects us from dehydration and external dangers. Much is known about the morphology of the SC and penetration of drugs through it, but the data are mainly derived from in vitro and animal experiments. In contrast, only a few studies have the human SC lipids as their focus...

  5. Embryonic Blood-Cerebrospinal Fluid Barrier Formation and Function

    Directory of Open Access Journals (Sweden)

    David eBueno

    2014-10-01

    Full Text Available During embryonic development and adult life, brain cavities and ventricles are filled with cerebrospinal fluid (CSF. CSF has attracted interest as an active signaling medium that regulates brain development, homeostasis and disease. CSF is a complex protein-rich fluid containing growth factors and signaling molecules that regulate multiple cell functions in the central nervous system (CNS. The composition and substance concentrations of CSF are tightly controlled. In recent years, it has been demonstrated that embryonic CSF (eCSF has a key function as a fluid pathway for delivering diffusible signals to the developing brain, thus contributing to the proliferation, differentiation and survival of neural progenitor cells, and to the expansion and patterning of the brain. From fetal stages through to adult life, CSF is primarily produced by the choroid plexus. The development and functional activities of the choroid plexus and other blood–brain barrier (BBB systems in adults and fetuses have been extensively analyzed. However, eCSF production and control of its homeostasis in embryos, from the closure of the anterior neuropore when the brain cavities become physiologically sealed, to the formation of the functional fetal choroid plexus, has not been studied in as much depth and remains open to debate. This review brings together the existing literature, some of which is based on experiments conducted by our research group, concerning the formation and function of a temporary embryonic blood–CSF barrier in the context of the crucial roles played by the molecules in eCSF.

  6. Neural progenitor cells isolated from the subventricular zone present hemichannel activity and form functional gap junctions with glial cells

    Directory of Open Access Journals (Sweden)

    Rocío eTalaverón

    2015-10-01

    Full Text Available The postnatal subventricular zone lining the walls of the lateral ventricles contains neural progenitor cells (NPCs that generate new olfactory bulb interneurons. Communication via gap junctions between cells in the subventricular zone is involved in NPC proliferation and in neuroblast migration towards the olfactory bulb. Subventricular zone NPCs can be expanded in vitro in the form of neurospheres that can be used for transplantation purposes after brain injury. We have previously reported that neurosphere-derived NPCs form heterocellular gap junctions with host glial cells when they are implanted after mechanical injury. To analyze functionality of NPC-glial cell gap junctions we performed dye coupling experiments in co-cultures of subventricular zone NPCs with astrocytes or microglia. Neurosphere-derived cells expressed mRNA for at least the hemichannel/gap junction channel proteins connexin 26 (Cx26, Cx43, Cx45 and pannexin 1. Dye coupling experiments revealed that gap junctional communication occurred among neurosphere cells (incidence of coupling: 100%. Moreover, hemichannel activity was also detected in neurosphere cells as evaluated in time-lapse measurements of ethidium bromide uptake. Heterocellular coupling between NPCs and glial cells was evidenced in co-cultures of neurospheres with astrocytes (incidence of coupling: 91.0 ± 4.7% or with microglia (incidence of coupling: 71.9 ± 6.7%. Dye coupling in neurospheres and in co-cultures was inhibited by octanol, a gap junction blocker. Altogether, these results suggest the existence of functional hemichannels and gap junction channels in postnatal subventricular zone neurospheres. In addition, they demonstrate that subventricular zone-derived NPCs can establish functional gap junctions with astrocytes or microglia. Therefore, cell-cell communication via gap junctions and hemichannels with host glial cells might subserve a role in the functional integration of NPCs after implantation in

  7. Neural progenitor cells isolated from the subventricular zone present hemichannel activity and form functional gap junctions with glial cells.

    Science.gov (United States)

    Talaverón, Rocío; Fernández, Paola; Escamilla, Rosalba; Pastor, Angel M; Matarredona, Esperanza R; Sáez, Juan C

    2015-01-01

    The postnatal subventricular zone (SVZ) lining the walls of the lateral ventricles contains neural progenitor cells (NPCs) that generate new olfactory bulb interneurons. Communication via gap junctions between cells in the SVZ is involved in NPC proliferation and in neuroblast migration towards the olfactory bulb. SVZ NPCs can be expanded in vitro in the form of neurospheres that can be used for transplantation purposes after brain injury. We have previously reported that neurosphere-derived NPCs form heterocellular gap junctions with host glial cells when they are implanted after mechanical injury. To analyze functionality of NPC-glial cell gap junctions we performed dye coupling experiments in co-cultures of SVZ NPCs with astrocytes or microglia. Neurosphere-derived cells expressed mRNA for at least the hemichannel/gap junction channel proteins connexin 26 (Cx26), Cx43, Cx45 and pannexin 1 (Panx1). Dye coupling experiments revealed that gap junctional communication occurred among neurosphere cells (incidence of coupling: 100%). Moreover, hemichannel activity was also detected in neurosphere cells as evaluated in time-lapse measurements of ethidium bromide uptake. Heterocellular coupling between NPCs and glial cells was evidenced in co-cultures of neurospheres with astrocytes (incidence of coupling: 91.0 ± 4.7%) or with microglia (incidence of coupling: 71.9 ± 6.7%). Dye coupling in neurospheres and in co-cultures was inhibited by octanol, a gap junction blocker. Altogether, these results suggest the existence of functional hemichannels and gap junction channels in postnatal SVZ neurospheres. In addition, they demonstrate that SVZ-derived NPCs can establish functional gap junctions with astrocytes or microglia. Therefore, cell-cell communication via gap junctions and hemichannels with host glial cells might subserve a role in the functional integration of NPCs after implantation in the damaged brain.

  8. Neural progenitor cells isolated from the subventricular zone present hemichannel activity and form functional gap junctions with glial cells

    Science.gov (United States)

    Talaverón, Rocío; Fernández, Paola; Escamilla, Rosalba; Pastor, Angel M.; Matarredona, Esperanza R.; Sáez, Juan C.

    2015-01-01

    The postnatal subventricular zone (SVZ) lining the walls of the lateral ventricles contains neural progenitor cells (NPCs) that generate new olfactory bulb interneurons. Communication via gap junctions between cells in the SVZ is involved in NPC proliferation and in neuroblast migration towards the olfactory bulb. SVZ NPCs can be expanded in vitro in the form of neurospheres that can be used for transplantation purposes after brain injury. We have previously reported that neurosphere-derived NPCs form heterocellular gap junctions with host glial cells when they are implanted after mechanical injury. To analyze functionality of NPC-glial cell gap junctions we performed dye coupling experiments in co-cultures of SVZ NPCs with astrocytes or microglia. Neurosphere-derived cells expressed mRNA for at least the hemichannel/gap junction channel proteins connexin 26 (Cx26), Cx43, Cx45 and pannexin 1 (Panx1). Dye coupling experiments revealed that gap junctional communication occurred among neurosphere cells (incidence of coupling: 100%). Moreover, hemichannel activity was also detected in neurosphere cells as evaluated in time-lapse measurements of ethidium bromide uptake. Heterocellular coupling between NPCs and glial cells was evidenced in co-cultures of neurospheres with astrocytes (incidence of coupling: 91.0 ± 4.7%) or with microglia (incidence of coupling: 71.9 ± 6.7%). Dye coupling in neurospheres and in co-cultures was inhibited by octanol, a gap junction blocker. Altogether, these results suggest the existence of functional hemichannels and gap junction channels in postnatal SVZ neurospheres. In addition, they demonstrate that SVZ-derived NPCs can establish functional gap junctions with astrocytes or microglia. Therefore, cell-cell communication via gap junctions and hemichannels with host glial cells might subserve a role in the functional integration of NPCs after implantation in the damaged brain. PMID:26528139

  9. Interferon-gamma increased epithelial barrier function via upregulating claudin-7 expression in human submandibular gland duct epithelium.

    Science.gov (United States)

    Abe, Ayumi; Takano, Kenichi; Kojima, Takashi; Nomura, Kazuaki; Kakuki, Takuya; Kaneko, Yakuto; Yamamoto, Motohisa; Takahashi, Hiroki; Himi, Tetsuo

    2016-06-01

    Tight junctions (TJs) are necessary for salivary gland function and may serve as indicators of salivary gland epithelial dysfunction. IgG4-related disease (IgG4-RD) is a newly recognized fibro-inflammatory condition which disrupts the TJ associated epithelial barrier. The salivary glands are one of the most frequently involved organs in IgG4-RD, however, changes of the TJ associated epithelial barrier in salivary gland duct epithelium is poorly understood. Here, we investigated the regulation and function of TJs in human submandibular gland ductal epithelial cells (HSDECs) in normal and IgG4-RD. We examined submandibular gland (SMG) tissue from eight control individuals and 22 patients with IgG4-RD and established an HSDEC culture system. Immunohistochemistry, immunocytochemistry, western blotting, and measurement of transepithelial electrical resistance (TER) were performed. Claudin-4, claudin-7, occludin, and JAM-A were expressed at the apical side of the duct epithelium in submandibular gland (SMG) tissue and at the cell borders in HSDECs of normal and IgG4-RD. The expression and distribution of TJs in SMG tissue were not different in control individuals and patients with IgG4-RD in vivo and in vitro. Although interferon-gamma (IFNγ) generally disrupts the integrity and function of TJs, as manifested by decreased epithelial barrier function, IFNγ markedly increased the epithelial barrier function of HSDECs via upregulation of claudin-7 expression in HSDECs from patients with IgG4-RD. This is the first report showing an IFNγ-dependent increase in epithelial barrier function in the salivary gland duct epithelium. Our results provide insights into the functional significance of TJs in salivary gland duct epithelium in physiological and pathological conditions, including IgG4-RD.

  10. Relationship of gelatinases-tight junction proteins and blood-brain barrier permeability in the early stage of cerebral ischemia and reperfusion

    Institute of Scientific and Technical Information of China (English)

    Haolin Xin; Wenzhao Liang; Jing Mang; Lina Lin; Na Guo; Feng Zhang; Zhongxin Xu

    2012-01-01

    Gelatinases matrix metalloproteinase-2 and matrix metalloproteinase-9 have been shown to mediate claudin-5 and occludin degradation, and play an important regulatory role in blood-brain barrier permeability. This study established a rat model of 1.5-hour middle cerebral artery occlusion with reperfusion. Protein expression levels of claudin-5 and occludin gradually decreased in the early stage of reperfusion, which corresponded to the increase of the gelatinolytic activity of matrix metalloproteinase-2 and matrix metalloproteinase-9. In addition, rats that received treatment with matrix metalloproteinase inhibitor N-[(2R)-2-(hydroxamidocarbonylmethyl)-4-methylpenthanoyl]-L- tryptophan methylamide (GM6001) showed a significant reduction in Evans blue leakage and an inhibition of claudin-5 and occludin protein degradation in striatal tissue. These data indicate that matrix metalloproteinase-2 and matrix metalloproteinase-9-mediated claudin-5 and occludin degradation is an important reason for blood-brain barrier leakage in the early stage of reperfusion. The leakage of the blood-brain barrier was present due to gelatinases-mediated degradation of claudin-5 and occludin proteins. We hypothesized that the timely closure of the structural component of the blood-brain barrier (tight junction proteins) is of importance.

  11. Loss of occludin expression and impairment of blood-testis barrier permeability in rats with autoimmune orchitis: effect of interleukin 6 on Sertoli cell tight junctions.

    Science.gov (United States)

    Pérez, Cecilia Valeria; Sobarzo, Cristian Marcelo; Jacobo, Patricia Verónica; Pellizzari, Eliana Herminia; Cigorraga, Selva Beatriz; Denduchis, Berta; Lustig, Livia

    2012-11-01

    Inflammation of the male reproductive tract is accepted as being an important etiological factor of infertility. Experimental autoimmune orchitis (EAO) is characterized by interstitial lymphomononuclear cell infiltration and severe damage of seminiferous tubules with germ cells that undergo apoptosis and sloughing. Because the blood-testis barrier (BTB) is relevant for the protection of haploid germ cells against immune attack, the aim of this study was to analyze BTB permeability and the expression of tight junction proteins (occludin, claudin 11, and tight junction protein 1 [TJP1]) in rats during development of autoimmune orchitis. The role of IL6 as modulator of tight junction dynamics was also evaluated because intratesticular content of this cytokine is increased in EAO rats. Orchitis was induced in Sprague-Dawley adult rats by active immunization with testicular homogenate and adjuvants. Control rats (C) were injected with saline solution and adjuvants. Untreated (N) rats were also studied. Concomitant with early signs of germ cell sloughing, a reduced expression of occludin and delocalization of claudin 11 and TJP1 were detected in the testes of rats with EAO compared to C and N groups. The use of tracers showed increased BTB permeability in EAO rats. Intratesticular injection of IL6 induced focal testicular inflammation, which is associated with damaged seminiferous tubules. Rat Sertoli cells cultured in the presence of IL6 exhibited a redistribution of tight junction proteins and reduced transepithelial electrical resistance. These data indicate the possibility that IL6 might be involved in the downregulation of occludin expression and in the modulation of BTB permeability that occur in rats undergoing autoimmune orchitis.

  12. Crossing the entropy barrier of dynamical zeta functions

    Energy Technology Data Exchange (ETDEWEB)

    Aurich, R.; Bolte, J.; Matthies, C.; Sieber, M.; Steiner, F. (Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik)

    1992-01-01

    Dynamical zeta functions are an important tool to quantize chaotic dynamical systems. The basic quantization rules require the computation of the zeta functions on the real energy axis, where the Euler product representations running over the classical periodic orbits usually do not converge due to the existence of the so-called entropy barrier determined by the topological entropy of the classical system. We shown that the convergence properties of the dynamical zeta functions rewritten as Dirichlet series are governed not only by the well-known topological and metric entropy, but depend crucially on subtle statistical properties of the Maslow indices and of the multiplicities of the periodic orbits that are measured by a new parameter for which we introduce the notion of a third entropy. If and only if the third entropy is nonvanishing, one can cross the entropy barrier; if it exceeds a certain value, one can even compute the zeta function in the physical region by means of a convergent Dirichlet series. A simple statistical model is presented which allows to compute the third entropy. Four examples of chaotic systems are studied in detail to test the model numerically. (orig.).

  13. Regulation of Tight Junctions in Upper Airway Epithelium

    Directory of Open Access Journals (Sweden)

    Takashi Kojima

    2013-01-01

    Full Text Available The mucosal barrier of the upper respiratory tract including the nasal cavity, which is the first site of exposure to inhaled antigens, plays an important role in host defense in terms of innate immunity and is regulated in large part by tight junctions of epithelial cells. Tight junction molecules are expressed in both M cells and dendritic cells as well as epithelial cells of upper airway. Various antigens are sampled, transported, and released to lymphocytes through the cells in nasal mucosa while they maintain the integrity of the barrier. Expression of tight junction molecules and the barrier function in normal human nasal epithelial cells (HNECs are affected by various stimuli including growth factor, TLR ligand, and cytokine. In addition, epithelial-derived thymic stromal lymphopoietin (TSLP, which is a master switch for allergic inflammatory diseases including allergic rhinitis, enhances the barrier function together with an increase of tight junction molecules in HNECs. Furthermore, respiratory syncytial virus infection in HNECs in vitro induces expression of tight junction molecules and the barrier function together with proinflammatory cytokine release. This paper summarizes the recent progress in our understanding of the regulation of tight junctions in the upper airway epithelium under normal, allergic, and RSV-infected conditions.

  14. Retinoic acid and hydrocortisone strengthen the barrier function of human RPMI 2650 cells, a model for nasal epithelial permeability.

    Science.gov (United States)

    Kürti, Levente; Veszelka, Szilvia; Bocsik, Alexandra; Ozsvári, Béla; Puskás, László G; Kittel, Agnes; Szabó-Révész, Piroska; Deli, Mária A

    2013-05-01

    The nasal pathway represents an alternative route for non-invasive systemic administration of drugs. The main advantages of nasal drug delivery are the rapid onset of action, the avoidance of the first-pass metabolism in the liver and the easy applicability. In vitro cell culture systems offer an opportunity to model biological barriers. Our aim was to develop and characterize an in vitro model based on confluent layers of the human RPMI 2650 cell line. Retinoic acid, hydrocortisone and cyclic adenosine monophosphate, which influence cell attachment, growth and differentiation have been investigated on the barrier formation and function of the nasal epithelial cell layers. Real-time cell microelectronic sensing, a novel label-free technique was used for dynamic monitoring of cell growth and barrier properties of RPMI 2650 cells. Treatments enhanced the formation of adherens and tight intercellular junctions visualized by electron microscopy, the presence and localization of junctional proteins ZO-1 and β-catenin demonstrated by fluorescent immunohistochemistry, and the barrier function of nasal epithelial cell layers. The transepithelial resistance of the RPMI 2650 cell model reached 50 to 200 Ω × cm(2), the permeability coefficient for 4.4 kDa FITC-dextran was 9.3 to 17 × 10(-6) cm/s, in agreement with values measured on nasal mucosa from in vivo and ex vivo experiments. Based on these results human RPMI 2650 cells seem to be a suitable nasal epithelial model to test different pharmaceutical excipients and various novel formulations, such as nanoparticles for toxicity and permeability.

  15. Barrier function test: Laboratory evaluation of the protective function of some barrier creams against cashewnut shell oil

    Directory of Open Access Journals (Sweden)

    Pasricha J

    1991-01-01

    Full Text Available A barrier function test has been designed to screen the protective capacity of a cream against the cauterizing effect of cashew nut shell oil (CNSO on the skin. The test consists of applying the barrier cream on a 5 cm circular area of skin on the back of a human volunteer and then at its centre applying a 1 cm sq Whatman no. 3 paper disc soaked in the CNSO for 15 minutes and looking for the evidence of cauterization reaction after 48 hours. Of the various creams containing a variety of paraffins, bees wax, polyethylene glycols, methyl cellulose gel, and petrolatum, only polyethylene glycol (PEG cream was found to afford adequate protection against cashew nut shell oil. Addition of 10% zinc oxide or 10% kaolin to the PEG cream did not seem to afford any additional protection. Castor oil already being used by the workers was found to be inferior to the PEG cream.

  16. Arhgap17, a RhoGTPase activating protein, regulates mucosal and epithelial barrier function in the mouse colon

    Science.gov (United States)

    Lee, So-young; Kim, Hwain; Kim, Kyoungmi; Lee, Hyunji; Lee, Seungbok; Lee, Daekee

    2016-01-01

    Coordinated regulation of the actin cytoskeleton by the Rho GTPase family is required for the maintenance of polarity in epithelial cells as well as for their proliferation and migration. A RhoGTPase-activating protein 17 (Arhgap17) is known to be involved in multiple cellular processes in vitro, including the maintenance of tight junctions and vesicle trafficking. However, the function of Arhgap17 has not been studied in the physiological context. Here, we generated Arhgap17-deficient mice and examined the effect in the epithelial and mucosal barriers of the intestine. Reporter staining revealed that Arhgap17 expression is limited to the luminal epithelium of intestine. Arhgap17-deficient mice show an increased paracellular permeability and aberrant localization of the apical junction complex in the luminal epithelium, but do not develop spontaneous colitis. The inner mucus layer is impervious to the enteric bacteria irrespective of Tff3 downregulation in the Arhgap17-deficient mice. Interestingly however, treatment with dextran sulfate sodium (DSS) causes an increased accumulation of DSS and TNF production in intraluminal cells and rapid destruction of the inner mucus layer, resulting in increased severity of colitis in mutant mice. Overall, these data reveal that Arhgap17 has a novel function in regulating transcellular transport and maintaining integrity of intestinal barriers. PMID:27229483

  17. Arhgap17, a RhoGTPase activating protein, regulates mucosal and epithelial barrier function in the mouse colon.

    Science.gov (United States)

    Lee, So-Young; Kim, Hwain; Kim, Kyoungmi; Lee, Hyunji; Lee, Seungbok; Lee, Daekee

    2016-01-01

    Coordinated regulation of the actin cytoskeleton by the Rho GTPase family is required for the maintenance of polarity in epithelial cells as well as for their proliferation and migration. A RhoGTPase-activating protein 17 (Arhgap17) is known to be involved in multiple cellular processes in vitro, including the maintenance of tight junctions and vesicle trafficking. However, the function of Arhgap17 has not been studied in the physiological context. Here, we generated Arhgap17-deficient mice and examined the effect in the epithelial and mucosal barriers of the intestine. Reporter staining revealed that Arhgap17 expression is limited to the luminal epithelium of intestine. Arhgap17-deficient mice show an increased paracellular permeability and aberrant localization of the apical junction complex in the luminal epithelium, but do not develop spontaneous colitis. The inner mucus layer is impervious to the enteric bacteria irrespective of Tff3 downregulation in the Arhgap17-deficient mice. Interestingly however, treatment with dextran sulfate sodium (DSS) causes an increased accumulation of DSS and TNF production in intraluminal cells and rapid destruction of the inner mucus layer, resulting in increased severity of colitis in mutant mice. Overall, these data reveal that Arhgap17 has a novel function in regulating transcellular transport and maintaining integrity of intestinal barriers.

  18. Development of an Innovative Intradermal siRNA Delivery System Using a Combination of a Functional Stearylated Cytoplasm-Responsive Peptide and a Tight Junction-Opening Peptide

    Directory of Open Access Journals (Sweden)

    Hisako Ibaraki

    2016-09-01

    Full Text Available As a new category of therapeutics for skin diseases including atopic dermatitis (AD, nucleic acids are gaining importance in the clinical setting. Intradermal administration is noninvasive and improves patients′ quality of life. However, intradermal small interfering RNA (siRNA delivery is difficult because of two barriers encountered in the skin: intercellular lipids in the stratum corneum and tight junctions in the stratum granulosum. Tight junctions are the major barrier in AD; therefore, we focused on functional peptides to devise an intradermal siRNA delivery system for topical skin application. In this study, we examined intradermal siRNA permeability in the tape-stripped (20 times back skin of mice or AD-like skin of auricles treated with 6-carboxyfluorescein-aminohexyl phosphoramidite (FAM-labeled siRNA, the tight junction modulator AT1002, and the functional cytoplasm-responsive stearylated peptide STR-CH2R4H2C by using confocal laser microscopy. We found that strong fluorescence was observed deep and wide in the epidermis and dermis of back skin and AD-like ears after siRNA with STR-CH2R4H2C and AT1002 treatment. After 10 h from administration, brightness of FAM-siRNA was significantly higher for STR-CH2R4H2C + AT1002, compared to other groups. In addition, we confirmed the nontoxicity of STR-CH2R4H2C as a siRNA carrier using PAM212 cells. Thus, our results demonstrate the applicability of the combination of STR-CH2R4H2C and AT1002 for effective intradermal siRNA delivery.

  19. Constipation-Predominant Irritable Bowel Syndrome Females Have Normal Colonic Barrier and Secretory Function.

    Science.gov (United States)

    Peters, Stephanie A; Edogawa, Shoko; Sundt, Wendy J; Dyer, Roy B; Dalenberg, Daniel A; Mazzone, Amelia; Singh, Ravinder J; Moses, Natalie; Smyrk, Thomas C; Weber, Christopher; Linden, David R; MacNaughton, Wallace K; Turner, Jerrold R; Camilleri, Michael; Katzka, David A; Farrugia, Gianrico; Grover, Madhusudan

    2017-06-01

    The objective of this study was to determine whether constipation-predominant irritable bowel syndrome (IBS-C) is associated with changes in intestinal barrier and secretory function. A total of 19 IBS-C patients and 18 healthy volunteers (all females) underwent saccharide excretion assay (0.1 g (13)C mannitol and 1 g lactulose), measurements of duodenal and colonic mucosal barrier (transmucosal resistance (TMR), macromolecular and Escherichia coli Bio-Particle translocation), mucosal secretion (basal and acetylcholine (Ach)-evoked short-circuit current (Isc)), in vivo duodenal mucosal impedance, circulating endotoxins, and colonic tight junction gene expression. There were no differences in the in vivo measurements of barrier function between IBS-C patients and healthy controls: cumulative excretion of (13)C mannitol (0-2 h mean (s.e.m.); IBS-C: 12.1 (0.9) mg vs. healthy: 13.2 (0.8) mg) and lactulose (8-24 h; IBS-C: 0.9 (0.5) mg vs. healthy: 0.5 (0.2) mg); duodenal impedance IBS-C: 729 (65) Ω vs. healthy: 706 (43) Ω; plasma mean endotoxin activity level IBS-C: 0.36 (0.03) vs. healthy: 0.35 (0.02); and in colonic mRNA expression of occludin, zonula occludens (ZO) 1-3, and claudins 1-12 and 14-19. The ex vivo findings were consistent, with no group differences: duodenal TMR (IBS-C: 28.2 (1.9) Ω cm(2) vs. healthy: 29.8 (1.9) Ω cm(2)) and colonic TMR (IBS-C: 19.1 (1.1) Ω cm(2) vs. healthy: 17.6 (1.7) Ω cm(2)); fluorescein isothiocyanate (FITC)-dextran (4 kDa) and E. coli Bio-Particle flux. Colonic basal Isc was similar, but duodenal basal Isc was lower in IBS-C (43.5 (4.5) μA cm(-2)) vs. healthy (56.9 (4.9) μA cm(-2)), P=0.05. Ach-evoked ΔIsc was similar. Females with IBS-C have normal colonic barrier and secretory function. Basal duodenal secretion is decreased in IBS-C.

  20. A mechanism of gap junction docking revealed by functional rescue of a human-disease-linked connexin mutant.

    Science.gov (United States)

    Gong, Xiang-Qun; Nakagawa, So; Tsukihara, Tomitake; Bai, Donglin

    2013-07-15

    Gap junctions are unique intercellular channels formed by the proper docking of two hemichannels from adjacent cells. Each hemichannel is a hexamer of connexins (Cxs) - the gap junction subunits, which are encoded by 21 homologous genes in the human genome. The docking of two hemichannels to form a functional gap junction channel is only possible between compatible Cxs, but the underlying molecular mechanism is unclear. On the basis of the crystal structure of the Cx26 gap junction, we developed homology models for homotypic and heterotypic channels from Cx32 and/or Cx26; these models predict six hydrogen bonds at the docking interface of each pair of the second extracellular domain (E2). A Cx32 mutation N175H and a human-disease-linked mutant N175D were predicted to lose the majority of the hydrogen bonds at the E2 docking-interface; experimentally both mutations failed to form morphological and functional gap junctions. To restore the lost hydrogen bonds, two complementary Cx26 mutants - K168V and K168A were designed to pair with the Cx32 mutants. When docked with Cx26K168V or K168A, the Cx32N175H mutant was successfully rescued morphologically and functionally in forming gap junction channels, but not Cx32 mutant N175Y. By testing more homotypic and heterotypic Cx32 and/or Cx26 mutant combinations, it is revealed that a minimum of four hydrogen bonds at each E2-docking interface are required for proper docking and functional channel formation between Cx26 and Cx32 hemichannels. Interestingly, the disease-linked Cx32N175D could be rescued by Cx26D179N, which restored five hydrogen bonds at the E2-docking interface. Our findings not only provide a mechanism for gap junction docking for Cx26 and Cx32 hemichannels, but also a potential therapeutic strategy for gap junction channelopathies.

  1. Effect of heat stress on intestinal barrier function of human intestinal epithelial Caco-2 cells

    Directory of Open Access Journals (Sweden)

    Gui-zhen XIAO

    2013-07-01

    Full Text Available Objective To investigate the heat stress-induced dysfunction of intestinal barrier including intestinal tight junction and apoptosis of epithelial cells. Methods Human intestinal epithelial Caco-2 cell monolayers, serving as the intestinal barrier model, were exposed to different temperature (37-43℃ for designated time. Transepithelial electrical resistance (TEER and horseradish peroxidase (HRP flux permeability were measured to evaluate barrier integrity. Level of tight junction (TJ protein occludin was analyzed by Western blotting. Cell apoptosis rate was determined using Annexin V-FITC/PI kit by flow cytometry. Results Compared with the 37℃ group, TEER lowered and the permeability for HRP increased significantly after heat exposure (P<0.01 in 39℃, 41℃ and 43℃ groups. The expression of occludin increased when the temperature was elevated from 37℃ to 41℃, and it reached the maximal level at 41℃. However, its expression gradually decreased with passage of time at 43℃. Cell apoptosis was enhanced with elevation of the temperature (P<0.05 or P<0.01. Conclusion Heat stress can induce damage to tight junction and enhance apoptosis of epithelial cells, thus causing dysfunction of intestinal epithelial barrier.

  2. Effect of graphene tunnel barrier on Schottky barrier height of Heusler alloy Co2MnSi/graphene/n-Ge junction

    Science.gov (United States)

    Gui-fang, Li; Jing, Hu; Hui, Lv; Zhijun, Cui; Xiaowei, Hou; Shibin, Liu; Yongqian, Du

    2016-02-01

    We demonstrate that the insertion of a graphene tunnel barrier between Heusler alloy Co2MnSi and the germanium (Ge) channel modulates the Schottky barrier height and the resistance-area product of the spin diode. We confirm that the Fermi level is depinned and a reduction in the electron Schottky barrier height (SBH) occurs following the insertion of the graphene layer between Co2MnSi and Ge. The electron SBH is modulated in the 0.34 eV-0.61 eV range. Furthermore, the transport mechanism changes from rectifying to symmetric tunneling following the insertion. This behavior provides a pathway for highly efficient spin injection from a Heusler alloy into a Ge channel with high electron and hole mobility. Project supported by the National Natural Science Foundation of China (Grant No. 61504107) and the Fundamental Research Funds for the Central Universities, China (Grant Nos. 3102014JCQ01059 and 3102015ZY043).

  3. New Trends in Quantitative Assessment of the Corneal Barrier Function

    Directory of Open Access Journals (Sweden)

    Anton Guimerà

    2014-05-01

    Full Text Available The cornea is a very particular tissue due to its transparency and its barrier function as it has to resist against the daily insults of the external environment. In addition, maintenance of this barrier function is of crucial importance to ensure a correct corneal homeostasis. Here, the corneal epithelial permeability has been assessed in vivo by means of non-invasive tetrapolar impedance measurements, taking advantage of the huge impact of the ion fluxes in the passive electrical properties of living tissues. This has been possible by using a flexible sensor based in SU-8 photoresist. In this work, a further analysis focused on the validation of the presented sensor is performed by monitoring the healing process of corneas that were previously wounded. The obtained impedance measurements have been compared with the damaged area observed in corneal fluorescein staining images. The successful results confirm the feasibility of this novel method, as it represents a more sensitive in vivo and non-invasive test to assess low alterations of the epithelial permeability. Then, it could be used as an excellent complement to the fluorescein staining image evaluation.

  4. Bacillus anthracis lethal toxin reduces human alveolar epithelial barrier function.

    Science.gov (United States)

    Langer, Marybeth; Duggan, Elizabeth Stewart; Booth, John Leland; Patel, Vineet Indrajit; Zander, Ryan A; Silasi-Mansat, Robert; Ramani, Vijay; Veres, Tibor Zoltan; Prenzler, Frauke; Sewald, Katherina; Williams, Daniel M; Coggeshall, Kenneth Mark; Awasthi, Shanjana; Lupu, Florea; Burian, Dennis; Ballard, Jimmy Dale; Braun, Armin; Metcalf, Jordan Patrick

    2012-12-01

    The lung is the site of entry for Bacillus anthracis in inhalation anthrax, the deadliest form of the disease. Bacillus anthracis produces virulence toxins required for disease. Alveolar macrophages were considered the primary target of the Bacillus anthracis virulence factor lethal toxin because lethal toxin inhibits mouse macrophages through cleavage of MEK signaling pathway components, but we have reported that human alveolar macrophages are not a target of lethal toxin. Our current results suggest that, unlike human alveolar macrophages, the cells lining the respiratory units of the lung, alveolar epithelial cells, are a target of lethal toxin in humans. Alveolar epithelial cells expressed lethal toxin receptor protein, bound the protective antigen component of lethal toxin, and were subject to lethal-toxin-induced cleavage of multiple MEKs. These findings suggest that human alveolar epithelial cells are a target of Bacillus anthracis lethal toxin. Further, no reduction in alveolar epithelial cell viability was observed, but lethal toxin caused actin rearrangement and impaired desmosome formation, consistent with impaired barrier function as well as reduced surfactant production. Therefore, by compromising epithelial barrier function, lethal toxin may play a role in the pathogenesis of inhalation anthrax by facilitating the dissemination of Bacillus anthracis from the lung in early disease and promoting edema in late stages of the illness.

  5. Air pollution and children: neural and tight junction antibodies and combustion metals, the role of barrier breakdown and brain immunity in neurodegeneration.

    Science.gov (United States)

    Calderón-Garcidueñas, Lilian; Vojdani, Aristo; Blaurock-Busch, Eleonore; Busch, Yvette; Friedle, Albrecht; Franco-Lira, Maricela; Sarathi-Mukherjee, Partha; Martínez-Aguirre, Xavier; Park, Su-Bin; Torres-Jardón, Ricardo; D'Angiulli, Amedeo

    2015-01-01

    Millions of children are exposed to concentrations of air pollutants, including fine particulate matter (PM2.5), above safety standards. In the Mexico City Metropolitan Area (MCMA) megacity, children show an early brain imbalance in oxidative stress, inflammation, innate and adaptive immune response-associated genes, and blood-brain barrier breakdown. We investigated serum and cerebrospinal fluid (CSF) antibodies to neural and tight junction proteins and environmental pollutants in 139 children ages 11.91 ± 4.2 y with high versus low air pollution exposures. We also measured metals in serum and CSF. MCMA children showed significantly higher serum actin IgG, occludin/zonulin 1 IgA, IgG, myelin oligodendrocyte glycoprotein IgG and IgM (p brain barrier. Defining the air pollution linkage of the brain/immune system interactions and damage to physical and immunological barriers with short and long term neural detrimental effects to children's brains ought to be of pressing importance for public health.

  6. Molecular interactions of plant oil components with stratum corneum lipids correlate with clinical measures of skin barrier function.

    Science.gov (United States)

    Mack Correa, Mary Catherine; Mao, Guangru; Saad, Peter; Flach, Carol R; Mendelsohn, Richard; Walters, Russel M

    2014-01-01

    Plant-derived oils consisting of triglycerides and small amounts of free fatty acids (FFAs) are commonly used in skincare regimens. FFAs are known to disrupt skin barrier function. The objective of this study was to mechanistically study the effects of FFAs, triglycerides and their mixtures on skin barrier function. The effects of oleic acid (OA), glyceryl trioleate (GT) and OA/GT mixtures on skin barrier were assessed in vivo through measurement of transepidermal water loss (TEWL) and fluorescein dye penetration before and after a single application. OA's effects on stratum corneum (SC) lipid order in vivo were measured with infrared spectroscopy through application of perdeuterated OA (OA-d34 ). Studies of the interaction of OA and GT with skin lipids included imaging the distribution of OA-d34 and GT ex vivo with IR microspectroscopy and thermodynamic analysis of mixtures in aqueous monolayers. The oil mixtures increased both TEWL and fluorescein penetration 24 h after a single application in an OA dose-dependent manner, with the highest increase from treatment with pure OA. OA-d34 penetrated into skin and disordered SC lipids. Furthermore, the ex vivo IR imaging studies showed that OA-d34 permeated to the dermal/epidermal junction while GT remained in the SC. The monolayer experiments showed preferential interspecies interactions between OA and SC lipids, while the mixing between GT and SC lipids was not thermodynamically preferred. The FFA component of plant oils may disrupt skin barrier function. The affinity between plant oil components and SC lipids likely determines the extent of their penetration and clinically measurable effects on skin barrier functions. © 2013. Johnson & Johnson Consumer Companies Inc.. Experimental Dermatology published by John Wiley & Sons Ltd.

  7. Magnetic tunnel junctions (MTJs)

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    We review the giant tunnel magnetoresistance (TMR) in ferromagnetic-insulator-ferromagnetic junctions discovered in recent years, which is the magnetoresistance (MR) associated with the spin-dependent tunneling between two ferromagnetic metal films separated by an insulating thin tunnel barrier. The theoretical and experimental results including junction conductance, magnetoresistance and their temperature and bias dependences are described.

  8. Human Amniotic Fluid Cells Form Functional Gap Junctions with Cortical Cells

    Directory of Open Access Journals (Sweden)

    Anna Jezierski

    2012-01-01

    Full Text Available The usage of stem cells is a promising strategy for the repair of damaged tissue in the injured brain. Recently, amniotic fluid (AF cells have received a lot of attention as an alternative source of stem cells for cell-based therapies. However, the success of this approach relies significantly on proper interactions between graft and host tissue. In particular, the reestablishment of functional brain networks requires formation of gap junctions, as a key step to provide sufficient intercellular communication. In this study, we show that AF cells express high levels of CX43 (GJA1 and are able to establish functional gap junctions with cortical cultures. Furthermore, we report an induction of Cx43 expression in astrocytes following injury to the mouse motor cortex and demonstrate for the first time CX43 expression at the interface between implanted AF cells and host brain cells. These findings suggest that CX43-mediated intercellular communication between AF cells and cortical astrocytes may contribute to the reconstruction of damaged tissue by mediating modulatory, homeostatic, and protective factors in the injured brain and hence warrants further investigation.

  9. Ablation of CD11c(hi) dendritic cells exacerbates Japanese encephalitis by regulating blood-brain barrier permeability and altering tight junction/adhesion molecules.

    Science.gov (United States)

    Kim, Jin Hyoung; Hossain, Ferdaus Mohd Altaf; Patil, Ajit Mahadev; Choi, Jin Young; Kim, Seong Bum; Uyangaa, Erdenebelig; Park, Sang-Youel; Lee, John-Hwa; Kim, Bumseok; Kim, Koanhoi; Eo, Seong Kug

    2016-10-01

    Japanese encephalitis (JE), characterized by extensive neuroinflammation following infection with neurotropic JE virus (JEV), is becoming a leading cause of viral encephalitis due to rapid changes in climate and demography. The blood-brain barrier (BBB) plays an important role in restricting neuroinvasion of peripheral leukocytes and virus, thereby regulating the progression of viral encephalitis. In this study, we explored the role of CD11c(hi) dendritic cells (DCs) in regulating BBB integrity and JE progression using a conditional depletion model of CD11c(hi) DCs. Transient ablation of CD11c(hi) DCs resulted in markedly increased susceptibility to JE progression along with highly increased neuro-invasion of JEV. In addition, exacerbated JE progression in CD11c(hi) DC-ablated hosts was closely associated with increased expression of proinflammatory cytokines (IFN-β, IL-6, and TNF-α) and CC chemokines (CCL2, CCL3, CXCL2) in the brain. Moreover, our results revealed that the exacerbation of JE progression in CD11c(hi) DC-ablated hosts was correlated with enhanced BBB permeability and reduced expression of tight junction and adhesion molecules (claudin-5, ZO-1, occluding, JAMs). Ultimately, our data conclude that the ablation of CD11c(hi) DCs provided a subsidiary impact on BBB integrity and the expression of tight junction/adhesion molecules, thereby leading to exacerbated JE progression. These findings provide insight into the secondary role of CD11c(hi) DCs in JE progression through regulation of BBB integrity and the expression of tight junction/adhesion molecules.

  10. Experimental and numerical analyses of high voltage 4H-SiC junction barrier Schottky rectifiers with linearly graded field limiting ring

    Science.gov (United States)

    Wang, Xiang-Dong; Deng, Xiao-Chuan; Wang, Yong-Wei; Wang, Yong; Wen, Yi; Zhang, Bo

    2014-05-01

    This paper describes the successful fabrication of 4H-SiC junction barrier Schottky (JBS) rectifiers with a linearly graded field limiting ring (LG-FLR). Linearly variable ring spacings for the FLR termination are applied to improve the blocking voltage by reducing the peak surface electric field at the edge termination region, which acts like a variable lateral doping profile resulting in a gradual field distribution. The experimental results demonstrate a breakdown voltage of 5 kV at the reverse leakage current density of 2 mA/cm2 (about 80% of the theoretical value). Detailed numerical simulations show that the proposed termination structure provides a uniform electric field profile compared to the conventional FLR termination, which is responsible for 45% improvement in the reverse blocking voltage despite a 3.7% longer total termination length.

  11. Surge current capabilities and isothermal current-voltage characteristics of high-voltage 4H-SiC junction barrier Schottky rectifiers

    Science.gov (United States)

    Palmour, J. W.; Levinshtein, M. E.; Ivanov, P. A.; Zhang, Q. J.

    2015-06-01

    Isothermal forward current-voltage characteristics of high-voltage 4H-SiC junction barrier Schottky rectifiers (JBS) have been studied for the first time. Isothermal characteristics were measured with JBS having a blocking voltage of 1700 V up to a current density j  ≈  4200 A cm-2 in the temperature range 297-460 K. Quasi-isothermal current-voltage characteristics of these devices were studied with injection of minority carriers (holes) up to j  ≈  7200 A cm-2 and ambient temperatures of 297 and 460 K. The isothermal forward current-voltage characteristics make it possible to numerically calculate (for example, by an iteration procedure) the overheating in an arbitrary operation mode.

  12. Influence of three-dimensional p-buried layer pattern on the performance of 4H-SiC floating junction Schottky barrier diode

    Science.gov (United States)

    Yang, Shuai; Zhang, Yuming; Song, Qingwen; Tang, Xiaoyan; Zhang, Yimen; Huo, Tianjia; Liu, Sicheng; Yuan, Hao

    2015-10-01

    4H-SiC floating junction Schottky barrier diodes (FJ-SBDs) are excellent SiC devices with high Baliga’s figure of merit (BFOM). However, the p-type buried layers in epilayers partially obstruct the current paths, and increase the on-resistance, while the buried layers of dot patterns can reduce the obstruction. In this paper, a three-dimensional (3D) simulation of 4H-SiC FJ-SBDs with dot patterns is reported for the first time. By comparing the results obtained from stripe, square, octagon, and circle patterns, dot patterns are proved to be good choices for buried layers in 4H-SiC FJ-SBDs, and the FJ-SBD with the circle pattern has the highest BFOM of 12.09 GW/cm2, which is 22.62% greater than that of the FJ-SBD with the stripe pattern.

  13. Barrier Functionality of Porcine and Bovine Brain Capillary Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Ailar Nakhlband

    2011-09-01

    Full Text Available Introduction: To date, isolated cell based blood-brain barrier (BBB models have been widely used for brain drug delivery and targeting, due to their relatively proper bioelectrical and permeability properties. However, primary cultures of brain capillary endothelial cells (BCECs isolated from different species vary in terms of bioelectrical and permeability properties. Methods: To pursue this, in the current investigation, primary porcine and bovine BCECs (PBCECs and BBCECs, respectively were isolated and used as an in vitro BBB model. The bioelectrical and permeability properties were assessed in BCECs co-cultured with C6 cells with/without hydrocortisone (550 nM. The bioelectrical properties were further validated by means of the permeability coefficients of transcellular and paracellular markers. Results: The primary PBCECs displayed significantly higher trans-endothelial electrical resistance (~900 W.cm2 than BBCECs (~700 W.cm2 - both co-cultured with C6 cells in presence of hydrocortisone. Permeability coefficients of propranolol/diazepam and mannitol/sucrose in PBCECs were ~21 and ~2 (×10-6 cm.sec-1, where these values for BBCECs were ~25 and ~5 (×10-6 cm.sec-1. Conclusion: Upon our bioelectrical and permeability findings, both models display discriminative barrier functionality but porcine BCECs seem to provide a better platform than bovine BCECs for drug screening and brain targeting.

  14. Real-time acquisition of transendothelial electrical resistance in an all-human, in vitro, 3-dimensional, blood-brain barrier model exemplifies tight-junction integrity.

    Science.gov (United States)

    Maherally, Zaynah; Fillmore, Helen L; Tan, Sim Ling; Tan, Suk Fei; Jassam, Samah A; Quack, Friederike I; Hatherell, Kathryn E; Pilkington, Geoffrey J

    2017-09-07

    The blood-brain barrier (BBB) consists of endothelial cells, astrocytes, and pericytes embedded in basal lamina (BL). Most in vitro models use nonhuman, monolayer cultures for therapeutic-delivery studies, relying on transendothelial electrical resistance (TEER) measurements without other tight-junction (TJ) formation parameters. We aimed to develop reliable, reproducible, in vitro 3-dimensional (3D) models incorporating relevant human, in vivo cell types and BL proteins. The 3D BBB models were constructed with human brain endothelial cells, human astrocytes, and human brain pericytes in mono-, co-, and tricultures. TEER was measured in 3D models using a volt/ohmmeter and cellZscope. Influence of BL proteins-laminin, fibronectin, collagen type IV, agrin, and perlecan-on adhesion and TEER was assessed using an electric cell-substrate impedance-sensing system. TJ protein expression was assessed by Western blotting (WB) and immunocytochemistry (ICC). Perlecan (10 µg/ml) evoked unreportedly high, in vitro TEER values (1200 Ω) and the strongest adhesion. Coculturing endothelial cells with astrocytes yielded the greatest resistance over time. ICC and WB results correlated with resistance levels, with evidence of prominent occludin expression in cocultures. BL proteins exerted differential effects on TEER, whereas astrocytes in contact yielded higher TEER values and TJ expression.-Maherally, Z., Fillmore, H. L., Tan, S. L., Tan, S. F., Jassam, S. A., Quack, F. I., Hatherell, K. E., Pilkington, G. J. Real-time acquisition of transendothelial electrical resistance in an all-human, in vitro, 3-dimensional, blood-brain barrier model exemplifies tight-junction integrity. © FASEB.

  15. Functional Food Market Development in Serbia: Motivations and Barriers

    Directory of Open Access Journals (Sweden)

    Žaklina Stojanović

    2013-11-01

    Full Text Available The aim of this paper is to present main findings obtained from the empirical analysis of the functional food market in Serbia. The analysis is based on the in-depth interviews with relevant processors and retailers present on the market. The following set of topics are considered: (1 motivations (driving forces and barriers to offer products with nutrition and health (N&H claim and (2 perception of consumer demand toward N&H claimed products. Differences between Serbia and other Western Balkan Countries (WBC are explored by using nonparametric techniques based on the independent samples. Results support overall conclusion that this market segment in Serbia is underdeveloped and rather producer than consumer driven compared to more developed WBC markets.

  16. Improvement of barrier function and stimulation of colonic epithelial anion secretion by Menoease Pills

    Institute of Scientific and Technical Information of China (English)

    Jin-Xia Zhu; Ning Yang; Gui-Hong Zhang; Lai-Ling Tsang; Yu-Lin Gou; Hau-Yan Connie Wong; Yiu-Wa Chung; Hsiao-Chang Chan

    2004-01-01

    AIM: Menoease Pills (MP), a Chinese medicine-based new formula for postmenopausal women, has been shown to modulate the endocrine and immune systems[1]. The present study investigated the effects of MP and one of its active ingredients, ligustrazine, on epithelial barrier and ion transport function in a human colonic cell line, T84.METHODS: Colonic transepithelial electrophysiological characteristics and colonic anion secretion were studied using the short circuit current (ISC) technique. RT-PCR was used to examine the expression of cytoplasmic proteins associated with the tight junctions, ZO-1(zonula occludens-1) and ZO-2 (zonula occludens-2).RESULTS: Pretreatment of T84 cells with MP (15 μg/mL) for 72 h significantly increased basal potential difference,transepithelial resistance and basal ISC. RT-PCR results showed that the expressions of ZO-1 and ZO-2 were significantly increased after MP treatment, consistent with improved epithelial barrier function. Results of acute stimulation showed that apical addition of MP produced a concentrationdependent (10-5 000 μg/mL, EC50 = 293.9 μg/mL) increase in ISC. MP-induced ISC was inhibited by basolateral treatment with bumetanide (100 μmol/L), an inhibitor of the Na+-K+-2Cl- cotransporter, apical addition of Cl-channel blockers, diphenylamine-2, 2'-dicarboxylic acid (1 mmol/L) or glibenclamide (1 mmol/L), but not 4, 4'-diisothiocyanostilbene2, 2'-disulfonic acid or epithelial Na+ channel blocker,amiloride. The effect of MP on ZO-1 and ZO-2 was mimicked by Ligustrazine and the ligustrazine-induced ISC was also blocked by basolateral application of bumetanide and apical addition of diphenylamine-2, 2'-dicarboxylic acid or glibenclamide, and reduced by a removal of extracellular Cl-.CONCLUSION: The results of the present study suggest that MP and lligustrazine may improve epithelial barrier function and exert a stimulatory effect on colonic anion secretion, indicating the potential use of MP and its active ingredients

  17. The Werner and Bloom syndrome proteins help resolve replication blockage by converting (regressed) holliday junctions to functional replication forks.

    Science.gov (United States)

    Machwe, Amrita; Karale, Rajashree; Xu, Xioahua; Liu, Yilun; Orren, David K

    2011-08-16

    Cells cope with blockage of replication fork progression in a manner that allows DNA synthesis to be completed and genomic instability minimized. Models for resolution of blocked replication involve fork regression to form Holliday junction structures. The human RecQ helicases WRN and BLM (deficient in Werner and Bloom syndromes, respectively) are critical for maintaining genomic stability and thought to function in accurate resolution of replication blockage. Consistent with this notion, WRN and BLM localize to sites of blocked replication after certain DNA-damaging treatments and exhibit enhanced activity on replication and recombination intermediates. Here we examine the actions of WRN and BLM on a special Holliday junction substrate reflective of a regressed replication fork. Our results demonstrate that, in reactions requiring ATP hydrolysis, both WRN and BLM convert this Holliday junction substrate primarily to a four-stranded replication fork structure, suggesting they target the Holliday junction to initiate branch migration. In agreement, the Holliday junction binding protein RuvA inhibits the WRN- and BLM-mediated conversion reactions. Importantly, this conversion product is suitable for replication with its leading daughter strand readily extended by DNA polymerases. Furthermore, binding to and conversion of this Holliday junction are optimal at low MgCl(2) concentrations, suggesting that WRN and BLM preferentially act on the square planar (open) conformation of Holliday junctions. Our findings suggest that, subsequent to fork regression events, WRN and/or BLM could re-establish functional replication forks to help overcome fork blockage. Such a function is highly consistent with phenotypes associated with WRN- and BLM-deficient cells.

  18. Serotonergic reinforcement of intestinal barrier function is impaired in irritable bowel syndrome.

    Science.gov (United States)

    Keszthelyi, D; Troost, F J; Jonkers, D M; van Eijk, H M; Lindsey, P J; Dekker, J; Buurman, W A; Masclee, A A M

    2014-08-01

    Alterations in serotonergic (5-HT) metabolism and/or intestinal integrity have been associated with irritable bowel syndrome (IBS). To assess the effects of the precursor of 5-HT, 5-hydroxytryptophan (5-HTP), on mucosal 5-HT availability and intestinal integrity, and to assess potential differences between healthy controls and IBS patients. Fifteen IBS patients and 15 healthy volunteers participated in this randomised double-blind placebo-controlled study. Intestinal integrity was assessed by dual-sugar test and by determining the mucosal expression of tight junction proteins after ingestion of an oral bolus of 100 mg 5-HTP or placebo. Mucosal serotonergic metabolism was assessed in duodenal biopsy samples. 5-HTP administration significantly increased mucosal levels of 5-HIAA, the main metabolite of 5-HT, in both healthy controls (7.1 ± 1.7 vs. 2.5 ± 0.7 pmol/mg, 5-HTP vs. placebo, P = 0.02) and IBS patients (20.0 ± 4.8 vs. 8.1 ± 1.3 pmol/mg, 5-HTP vs. placebo, P = 0.02), with the latter group showing a significantly larger increase. Lactulose/L-rhamnose ratios were significantly lower after administration of 5-HTP (P HTP resulted in a further decrease in occludin expression. Oral 5-HTP induced alterations in mucosal 5-HT metabolism. In healthy controls, a reinforcement of the intestinal barrier was seen whereas such reaction was absent in IBS patients. This could indicate the presence of a serotonin-mediated mechanism aimed to reinforce intestinal barrier function, which seems to dysfunction in IBS patients. © 2014 John Wiley & Sons Ltd.

  19. Geniposide ameliorates TNBS-induced experimental colitis in rats via reducing inflammatory cytokine release and restoring impaired intestinal barrier function.

    Science.gov (United States)

    Xu, Bin; Li, Yan-Li; Xu, Ming; Yu, Chang-Chun; Lian, Meng-Qiao; Tang, Ze-Yao; Li, Chuan-Xun; Lin, Yuan

    2017-03-06

    Geniposide is an iridoid glycosides purified from the fruit of Gardenia jasminoides Ellis, which is known to have antiinflammatory, anti-oxidative and anti-tumor activities. The present study aimed to investigate the effects of geniposide on experimental rat colitis and to reveal the related mechanisms. Experimental rat colitis was induced by rectal administration of a TNBS solution. The rats were treated with geniposide (25, 50 mg·kg(-1)·d(-1), ig) or with sulfasalazine (SASP, 100 mg·kg(-1)·d(-1), ig) as positive control for 14 consecutive days. A Caco-2 cell monolayer exposed to lipopolysaccharides (LPS) was used as an epithelial barrier dysfunction model. Transepithelial electrical resistance (TER) was measured to evaluate intestinal barrier function. In rats with TNBS-induced colitis, administration of geniposide or SASP significantly increased the TNBS-decreased body weight and ameliorated TNBS-induced experimental colitis and related symptoms. Geniposide or SASP suppressed inflammatory cytokine (TNF-α, IL-1β, and IL-6) release and neutrophil infiltration (myeloperoxidase activity) in the colon. In Caco-2 cells, geniposide (25-100 μmol/L) ameliorated LPS-induced endothelial barrier dysfunction via dose-dependently increasing transepithelial electrical resistance (TER). The results from both in vivo and in vitro studies revealed that geniposide down-regulated NF-κB, COX-2, iNOS and MLCK protein expression, up-regulated the expression of tight junction proteins (occludin and ZO-1), and facilitated AMPK phosphorylation. Both AMPK siRNA transfection and AMPK overexpression abrogated the geniposide-reduced MLCK protein expression, suggesting that geniposide ameliorated barrier dysfunction via AMPK-mediated inhibition of the MLCK pathway. In conclusion, geniposide ameliorated TNBS-induced experimental rat colitis by both reducing inflammation and modulating the disrupted epithelial barrier function via activating the AMPK signaling pathway..

  20. Heat Transport in Graphene Ferromagnet-Insulator-Superconductor Junctions

    Institute of Scientific and Technical Information of China (English)

    LI Xiao-Wei

    2011-01-01

    We study heat transport in a graphene ferromagnet-insulator-superconducting junction. It is found that the thermal conductance of the graphene ferromagnet-insulator-superconductor (FIS) junction is an oscillatory function of the barrier strength x in the thin-barrier limit. The gate potential U0 decreases the amplitude of thermal conductance oscillation. Both the amplitude and phase of the thermal conductance oscillation varies with the exchange energy Eh. The thermal conductance of a graphene FIS junction displays the usual exponential dependence on temperature, reflecting the s-wave symmetry of superconducting graphene.%@@ We study heat transport in a graphene ferromagnet-insulator-superconducting junction.It is found that the thermal conductance of the graphene ferromagnet-insulator-superconductor(FIS)junction is an oscillatory function of the barrier strength X in the thin-barrier limit.The gate potential Uo decreases the amplitude of thermal conductance oscillation.Both the amplitude and phase of the thermal conductance oscillation varies with the exchange energy Eh.The thermal conductance of a graphene FIS junction displays the usual exponential dependence on temperature, reflecting the s-wave symmetry of superconducting graphene.

  1. Food Derived Bioactive Peptides and Intestinal Barrier Function

    Directory of Open Access Journals (Sweden)

    Olga Martínez-Augustin

    2014-12-01

    Full Text Available A wide range of food-derived bioactive peptides have been shown to exert health-promoting actions and are therefore considered functional foods or nutraceuticals. Some of these actions are related to the maintenance, reinforcement or repairment of the intestinal barrier function (IBF whose role is to selectively allow the absorption of water, nutrients and ions while preventing the influx of microorganisms from the intestinal lumen. Alterations in the IBF have been related to many disorders, such as inflammatory bowel disease or metabolic syndrome. Components of IBF are the intestinal epithelium, the mucus layer, secretory immunoglobulin A and cells of the innate and adaptive immune systems. Here we review the effects of food derived bioactive peptides on these IBF components. In vitro and in vivo effects, both in healthy and disease states, have been reviewed. Although limited, the available information indicates a potential for food-derived peptides to modify IBF and to contribute to disease treatment, but further research is needed to better isolate responsible peptides, and to help define their mode of action.

  2. Calcium Channels and Oxidative Stress Mediate a Synergistic Disruption of Tight Junctions by Ethanol and Acetaldehyde in Caco-2 Cell Monolayers.

    Science.gov (United States)

    Samak, Geetha; Gangwar, Ruchika; Meena, Avtar S; Rao, Roshan G; Shukla, Pradeep K; Manda, Bhargavi; Narayanan, Damodaran; Jaggar, Jonathan H; Rao, RadhaKrishna

    2016-12-13

    Ethanol is metabolized into acetaldehyde in most tissues. In this study, we investigated the synergistic effect of ethanol and acetaldehyde on the tight junction integrity in Caco-2 cell monolayers. Expression of alcohol dehydrogenase sensitized Caco-2 cells to ethanol-induced tight junction disruption and barrier dysfunction, whereas aldehyde dehydrogenase attenuated acetaldehyde-induced tight junction disruption. Ethanol up to 150 mM did not affect tight junction integrity or barrier function, but it dose-dependently increased acetaldehyde-mediated tight junction disruption and barrier dysfunction. Src kinase and MLCK inhibitors blocked this synergistic effect of ethanol and acetaldehyde on tight junction. Ethanol and acetaldehyde caused a rapid and synergistic elevation of intracellular calcium. Calcium depletion by BAPTA or Ca(2+)-free medium blocked ethanol and acetaldehyde-induced barrier dysfunction and tight junction disruption. Diltiazem and selective knockdown of TRPV6 or CaV1.3 channels, by shRNA blocked ethanol and acetaldehyde-induced tight junction disruption and barrier dysfunction. Ethanol and acetaldehyde induced a rapid and synergistic increase in reactive oxygen species by a calcium-dependent mechanism. N-acetyl-L-cysteine and cyclosporine A, blocked ethanol and acetaldehyde-induced barrier dysfunction and tight junction disruption. These results demonstrate that ethanol and acetaldehyde synergistically disrupt tight junctions by a mechanism involving calcium, oxidative stress, Src kinase and MLCK.

  3. Glycoprotein A33 deficiency: a new mouse model of impaired intestinal epithelial barrier function and inflammatory disease

    Directory of Open Access Journals (Sweden)

    Benjamin B. Williams

    2015-08-01

    Full Text Available The cells of the intestinal epithelium provide a selectively permeable barrier between the external environment and internal tissues. The integrity of this barrier is maintained by tight junctions, specialised cell-cell contacts that permit the absorption of water and nutrients while excluding microbes, toxins and dietary antigens. Impairment of intestinal barrier function contributes to multiple gastrointestinal disorders, including food hypersensitivity, inflammatory bowel disease (IBD and colitis-associated cancer (CAC. Glycoprotein A33 (GPA33 is an intestinal epithelium-specific cell surface marker and member of the CTX group of transmembrane proteins. Roles in cell-cell adhesion have been demonstrated for multiple CTX family members, suggesting a similar function for GPA33 within the gastrointestinal tract. To test a potential requirement for GPA33 in intestinal barrier function, we generated Gpa33−/− mice and subjected them to experimental regimens designed to produce food hypersensitivity, colitis and CAC. Gpa33−/− mice exhibited impaired intestinal barrier function. This was shown by elevated steady-state immunosurveillance in the colonic mucosa and leakiness to oral TRITC-labelled dextran after short-term exposure to dextran sodium sulphate (DSS to injure the intestinal epithelium. Gpa33−/− mice also exhibited rapid onset and reduced resolution of DSS-induced colitis, and a striking increase in the number of colitis-associated tumours produced by treatment with the colon-specific mutagen azoxymethane (AOM followed by two cycles of DSS. In contrast, Gpa33−/− mice treated with AOM alone showed no increase in sporadic tumour formation, indicating that their increased tumour susceptibility is dependent on inflammatory stimuli. Finally, Gpa33−/− mice displayed hypersensitivity to food allergens, a common co-morbidity in humans with IBD. We propose that Gpa33−/− mice provide a valuable model to study the mechanisms

  4. Effects of mechanical strain on the function of Gap junctions in osteocytes are mediated through the prostaglandin EP2 receptor.

    Science.gov (United States)

    Cherian, Priscilla P; Cheng, Benxu; Gu, Sumin; Sprague, Eugene; Bonewald, Lynda F; Jiang, Jean X

    2003-10-31

    Osteocytes embedded in the matrix of bone are thought to be mechanosensory cells that translate mechanical strain into biochemical signals that regulate bone modeling and remodeling. We have shown previously that fluid flow shear stress dramatically induces prostaglandin release and COX-2 mRNA expression in osteocyte-like MLO-Y4 cells, and that prostaglandin E2 (PGE2) released by these cells functions in an autocrine manner to regulate gap junction function and connexin 43 (Cx43) expression. Here we show that fluid flow regulates gap junctions through the PGE2 receptor EP2 activation of cAMP-dependent protein kinase A (PKA) signaling. The expression of the EP2 receptor, but not the subtypes EP1,EP3, and EP4, increased in response to fluid flow. Application of PGE2 or conditioned medium from fluid flow-treated cells to non-stressed MLO-Y4 cells increased expression of the EP2 receptor. The EP2 receptor antagonist, AH6809, suppressed the stimulatory effects of PGE2 and fluid flow-conditioned medium on the expression of the EP2 receptor, on Cx43 protein expression, and on gap junction-mediated intercellular coupling. In contrast, the EP2 receptor agonist butaprost, not the E1/E3 receptor agonist sulprostone, stimulated the expression of Cx43 and gap junction function. Fluid flow conditioned medium and PGE2 stimulated cAMP production and PKA activity suggesting that PGE2 released by mechanically stimulated cells is responsible for the activation of cAMP and PKA. The adenylate cyclase activators, forskolin and 8-bromo-cAMP, enhanced intercellular connectivity, the number of functional gap junctions, and Cx43 protein expression, whereas the PKA inhibitor, H89, inhibited the stimulatory effect of PGE2 on gap junctions. These studies suggest that the EP2 receptor mediates the effects of autocrine PGE2 on the osteocyte gap junction in response to fluid flow-induced shear stress. These data support the hypothesis that the EP2 receptor, cAMP, and PKA are critical components

  5. Gap junction and hemichannel-independent actions of connexins on cell and tissue functions--an update.

    Science.gov (United States)

    Zhou, Jade Z; Jiang, Jean X

    2014-04-17

    Connexins, a family of transmembrane proteins, are components of both gap junction channels and hemichannels, which mediate the exchange of ions and small molecules between adjacent cells, and between the inside and outside of the cell, respectively. Substantial advancements have been made in the comprehension of the role of gap junctions and hemichannels in coordinating cellular events. In recent years, a plethora of studies demonstrate a role of connexin proteins in the regulation of tissue homeostasis that occurs independently of their channel activities. This is shown in the context of cell growth, adhesion, migration, apoptosis, and signaling. The major mechanisms of these channel-independent activities still remain to be discovered. In this review, we provide an updated overview on the current knowledge of gap junction- and hemichannel-independent functions of connexins, in particular, their effects on tumorigenesis, neurogenesis and disease development. Copyright © 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  6. Skin Barrier Function and Its Importance at the Start of the Atopic March

    Science.gov (United States)

    Hogan, Mary Beth; Peele, Kathy; Wilson, Nevin W.

    2012-01-01

    Atopic dermatitis can be due to a variety of causes from nonatopic triggers to food allergy. Control of egress of water and protection from ingress of irritants and allergens are key components of cutaneous barrier function. Current research suggests that a degraded barrier function of the skin allows the immune system inappropriate access to environmental allergens. Epidermal aeroallergen exposure may allow sensitization to allergen possibly initiating the atopic march. Further research into connections between epidermal barrier function and possible allergen sensitization will be important to undertake. Future clinical trials focused on skin barrier protection may be of value as a possible intervention in prevention of the initiation of the atopic march. PMID:22619686

  7. Endothelial Cell Junctional Adhesion Molecules: Role and Regulation of Expression in Inflammation.

    Science.gov (United States)

    Reglero-Real, Natalia; Colom, Bartomeu; Bodkin, Jennifer Victoria; Nourshargh, Sussan

    2016-10-01

    Endothelial cells line the lumen of all blood vessels and play a critical role in maintaining the barrier function of the vasculature. Sealing of the vessel wall between adjacent endothelial cells is facilitated by interactions involving junctionally expressed transmembrane proteins, including tight junctional molecules, such as members of the junctional adhesion molecule family, components of adherence junctions, such as VE-Cadherin, and other molecules, such as platelet endothelial cell adhesion molecule. Of importance, a growing body of evidence indicates that the expression of these molecules is regulated in a spatiotemporal manner during inflammation: responses that have significant implications for the barrier function of blood vessels against blood-borne macromolecules and transmigrating leukocytes. This review summarizes key aspects of our current understanding of the dynamics and mechanisms that regulate the expression of endothelial cells junctional molecules during inflammation and discusses the associated functional implications of such events in acute and chronic scenarios. © 2016 American Heart Association, Inc.

  8. ALD grown bilayer junction of ZnO:Al and tunnel oxide barrier for SIS solar cell☆

    Science.gov (United States)

    Bethge, O.; Nobile, M.; Abermann, S.; Glaser, M.; Bertagnolli, E.

    2013-01-01

    Various metal oxides are probed as extrinsic thin tunnel barriers in Semiconductor Insulator Semiconductor solar cells. Namely Al2O3, ZrO2, Y2O3, and La2O3 thin films are in between n-type ZnO:Al (AZO) and p-type Si substrates by means of Atomic Layer Deposition. Low reverse dark current–density as low as 3×10−7 A/cm2, a fill factor up to 71.3%, and open-circuit voltage as high as 527 mV are obtained, achieving conversion efficiency of 8% for the rare earth oxide La2O3. ZrO2 and notably Al2O3 show drawbacks in performance suggesting an adverse reactivity with AZO as also indicated by X-ray Photoelectron Spectroscopy. PMID:26877596

  9. Salvianolic acid B restored impaired barrier function via downregulation of MLCK by microRNA-1 in rat inflammatory bowel disease

    Directory of Open Access Journals (Sweden)

    Yongjian eXiong

    2016-05-01

    Full Text Available Salvianolic acid B (Sal B is isolated from the traditional Chinese medical herb Salvia miltiorrhiza and is reported to have a wide range of therapeutic benefits. The aim of this study was to investigate the effects of Sal B on epithelial barrier dysfunction in rat inflammatory bowel disease (IBD and to uncover related mechanisms. Rat IBD model was established by intracolonic administration of 2, 4, 6-trinitrobenzene sulfonic acid (TNBS. The intestinal barrier function was evaluated by measuring the serum recovery of fluorescein isothiocyanate-4 kD dextran in vivo and transepithelial electrical resistance in vitro respectively. The protein expression related to intestinal barrier function was studied using western blotting. Besides, the effects of Sal B on inflammatory responses, oxidative damage and IBD recurrence were also studied in this study. The intestinal barrier dysfunction in IBD was reversed by Sal B, accompanied with the decrease of tight junction proteins, and the effect could be blocked by microRNA-1(miR-1 inhibition. The inflammatory responses, oxidative damage and IBD recurrence were also decreased by Sal B. The IBD symptoms and recurrences were ameliorated by Sal B, and restoration of impaired barrier function via dowunregulation of MLCK by miR-1 maybe involved in this effect. This study provides some novel insights into the both of the pathological mechanisms and treatment alternatives of IBD.

  10. Functional lateralization of temporoparietal junction - imitation inhibition, visual perspective-taking and theory of mind.

    Science.gov (United States)

    Santiesteban, Idalmis; Banissy, Michael J; Catmur, Caroline; Bird, Geoffrey

    2015-10-01

    Although neuroimaging studies have consistently identified the temporoparietal junction (TPJ) as a key brain region involved in social cognition, the literature is far from consistent with respect to lateralization of function. For example, during theory-of-mind tasks bilateral TPJ activation is found in some studies but only right hemisphere activation in others. Visual perspective-taking and imitation inhibition, which have been argued to recruit the same socio-cognitive processes as theory of mind, are associated with unilateral activation of either left TPJ (perspective taking) or right TPJ (imitation inhibition). The present study investigated the functional lateralization of TPJ involvement in the above three socio-cognitive abilities using transcranial direct current stimulation. Three groups of healthy adults received anodal stimulation over right TPJ, left TPJ or the occipital cortex prior to performing three tasks (imitation inhibition, visual perspective-taking and theory of mind). In contrast to the extant neuroimaging literature, our results suggest bilateral TPJ involvement in imitation inhibition and visual perspective-taking, while no effect of anodal stimulation was observed on theory of mind. The discrepancy between these findings and those obtained using neuroimaging highlight the efficacy of neurostimulation as a complementary methodological tool in cognitive neuroscience. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  11. Morphine induces bacterial translocation in mice by compromising intestinal barrier function in a TLR-dependent manner.

    Directory of Open Access Journals (Sweden)

    Jingjing Meng

    Full Text Available Opiates are among the most prescribed drugs for pain management. However, morphine use or abuse results in significant gut bacterial translocation and predisposes patients to serious infections with gut origin. The mechanism underlying this defect is still unknown. In this report, we investigated the mechanisms underlying compromised gut immune function and bacterial translocation following morphine treatment. We demonstrate significant bacterial translocation to mesenteric lymph node (MLN and liver following morphine treatment in wild-type (WT animals that was dramatically and significantly attenuated in Toll-like receptor (TLR2 and 4 knockout mice. We further observed significant disruption of tight junction protein organization only in the ileum but not in the colon of morphine treated WT animals. Inhibition of myosin light chain kinase (MLCK blocked the effects of both morphine and TLR ligands, suggesting the role of MLCK in tight junction modulation by TLR. This study conclusively demonstrates that morphine induced gut epithelial barrier dysfunction and subsequent bacteria translocation are mediated by TLR signaling and thus TLRs can be exploited as potential therapeutic targets for alleviating infections and even sepsis in morphine-using or abusing populations.

  12. Alterations of intestinal mucosa structure and barrier function following traumatic brain injury in rats

    Institute of Scientific and Technical Information of China (English)

    Chun-Hua Hang; Ji-Xin Shi; Jie-Shou Li; Wei Wu; Hong-Xia Yin

    2003-01-01

    AIM: Gastrointestinal dysfunction is a common complication in patients with traumatic brain injury (TBI). However, the effect of traumatic brain injury on intestinal mucosa has not been studied previously. The aim of the current study was to explore the alterations of intestinal mucosa morphology and barrier function, and to determine how rapidly the impairment of gut barrier function occurs and how long it persists following traumatic brain injury.METHODS: Male Wistar rats were randomly divided into six groups (6 rats each group) including controls without brain injury and traumatic brain injury groups at hours 3,12, 24, and 72, and on day 7. The intestinal mucosa structure was detected by histopathological examination and electron microscopy. Gut barrier dysfunction was evaluated by detecting serum endotoxin and intestinal permeability. The level of serum endotoxin and intestinal permeability was measured by using chromogenic limulus amebocyte lysate and lactulose/mannitol (L/M) ratio, respectively.RESULTS: After traumatic brain injury, the histopathological alterations of gut mucosa occurred rapidly as early as 3 hours and progressed to a serious state, including shedding of epithelial cells, fracture of villi, focal ulcer, fusion of adjacent villi, dilation of central chyle duct, mucosal atrophy,and vascular dilation, congestion and edema in the villous interstitium and lamina propria. Apoptosis of epithelial cells,fracture and sparseness of microvilli, loss of tight junction between enterocytes, damage of mitochondria and endoplasm, were found by electron microscopy. The villous height, crypt depth and surface area in jejunum decreased progressively with the time of brain injury. As compared with that of control group (183.7±41.8 EU/L), serum endotoxin level was signnificantly increased at 3, 12, and 24 hours following TBI (434.8±54.9 EU/L, 324.2±61.7 EU/L and 303.3±60.2 EU/L, respectively), and peaked at 72 hours (560.5±76.2 EU/L), then declined on day 7

  13. Functional assessment of gap junctions in monolayer and three-dimensional cultures of human tendon cells using fluorescence recovery after photobleaching

    Science.gov (United States)

    Kuzma-Kuzniarska, Maria; Yapp, Clarence; Pearson-Jones, Thomas W.; Jones, Andrew K.; Hulley, Philippa A.

    2014-01-01

    Abstract. Gap junction-mediated intercellular communication influences a variety of cellular activities. In tendons, gap junctions modulate collagen production, are involved in strain-induced cell death, and are involved in the response to mechanical stimulation. The aim of the present study was to investigate gap junction-mediated intercellular communication in healthy human tendon-derived cells using fluorescence recovery after photobleaching (FRAP). The FRAP is a noninvasive technique that allows quantitative measurement of gap junction function in living cells. It is based on diffusion-dependent redistribution of a gap junction-permeable fluorescent dye. Using FRAP, we showed that human tenocytes form functional gap junctions in monolayer and three-dimensional (3-D) collagen I culture. Fluorescently labeled tenocytes following photobleaching rapidly reacquired the fluorescent dye from neighboring cells, while HeLa cells, which do not communicate by gap junctions, remained bleached. Furthermore, both 18 β-glycyrrhetinic acid and carbenoxolone, standard inhibitors of gap junction activity, impaired fluorescence recovery in tendon cells. In both monolayer and 3-D cultures, intercellular communication in isolated cells was significantly decreased when compared with cells forming many cell-to-cell contacts. In this study, we used FRAP as a tool to quantify and experimentally manipulate the function of gap junctions in human tenocytes in both two-dimensional (2-D) and 3-D cultures. PMID:24390370

  14. The impact of ultraviolet therapy on stratum corneum ceramides and barrier function

    DEFF Research Database (Denmark)

    Jungersted, Jakob Mutanu; Høgh, Julie Kaae; Hellgren, Lars

    2011-01-01

    The ceramide profile as well as the barrier function is known to be deteriorated in atopic eczema and psoriasis, and ultraviolet (UV) light is known to improve the barrier function. The impact of UV light on ceramides, however, is not clarified.The aim of this study was to examine the effect of U...... therapy in dermatological patients on ceramides and skin barrier function.We found that UV light treatment does not change the ratio of important stratum corneum lipids, but we confirm earlier findings of decreased susceptibility to irritants after UV- therapy.......The ceramide profile as well as the barrier function is known to be deteriorated in atopic eczema and psoriasis, and ultraviolet (UV) light is known to improve the barrier function. The impact of UV light on ceramides, however, is not clarified.The aim of this study was to examine the effect of UV...

  15. The impact of ultraviolet therapy on stratum corneum ceramides and barrier function

    DEFF Research Database (Denmark)

    Jungersted, Jakob Mutanu; Høgh, Julie Kaae; Hellgren, Lars

    2011-01-01

    The ceramide profile as well as the barrier function is known to be deteriorated in atopic eczema and psoriasis, and ultraviolet (UV) light is known to improve the barrier function. The impact of UV light on ceramides, however, is not clarified. The aim of this study was to examine the effect of ...... therapy in dermatological patients on ceramides and skin barrier function. We found that UV light treatment does not change the ratio of important stratum corneum lipids, but we confirm earlier findings of decreased susceptibility to irritants after UV- therapy.......The ceramide profile as well as the barrier function is known to be deteriorated in atopic eczema and psoriasis, and ultraviolet (UV) light is known to improve the barrier function. The impact of UV light on ceramides, however, is not clarified. The aim of this study was to examine the effect of UV...

  16. Energy level alignment and quantum conductance of functionalized metal-molecule junctions: density functional theory versus GW calculations.

    Science.gov (United States)

    Jin, Chengjun; Strange, Mikkel; Markussen, Troels; Solomon, Gemma C; Thygesen, Kristian S

    2013-11-14

    We study the effect of functional groups (CH3*4, OCH3, CH3, Cl, CN, F*4) on the electronic transport properties of 1,4-benzenediamine molecular junctions using the non-equilibrium Green function method. Exchange and correlation effects are included at various levels of theory, namely density functional theory (DFT), energy level-corrected DFT (DFT+Σ), Hartree-Fock and the many-body GW approximation. All methods reproduce the expected trends for the energy of the frontier orbitals according to the electron donating or withdrawing character of the substituent group. However, only the GW method predicts the correct ordering of the conductance amongst the molecules. The absolute GW (DFT) conductance is within a factor of two (three) of the experimental values. Correcting the DFT orbital energies by a simple physically motivated scissors operator, Σ, can bring the DFT conductances close to experiments, but does not improve on the relative ordering. We ascribe this to a too strong pinning of the molecular energy levels to the metal Fermi level by DFT which suppresses the variation in orbital energy with functional group.

  17. Predictive modelling of ferroelectric tunnel junctions

    Science.gov (United States)

    Velev, Julian P.; Burton, John D.; Zhuravlev, Mikhail Ye; Tsymbal, Evgeny Y.

    2016-05-01

    Ferroelectric tunnel junctions combine the phenomena of quantum-mechanical tunnelling and switchable spontaneous polarisation of a nanometre-thick ferroelectric film into novel device functionality. Switching the ferroelectric barrier polarisation direction produces a sizable change in resistance of the junction—a phenomenon known as the tunnelling electroresistance effect. From a fundamental perspective, ferroelectric tunnel junctions and their version with ferromagnetic electrodes, i.e., multiferroic tunnel junctions, are testbeds for studying the underlying mechanisms of tunnelling electroresistance as well as the interplay between electric and magnetic degrees of freedom and their effect on transport. From a practical perspective, ferroelectric tunnel junctions hold promise for disruptive device applications. In a very short time, they have traversed the path from basic model predictions to prototypes for novel non-volatile ferroelectric random access memories with non-destructive readout. This remarkable progress is to a large extent driven by a productive cycle of predictive modelling and innovative experimental effort. In this review article, we outline the development of the ferroelectric tunnel junction concept and the role of theoretical modelling in guiding experimental work. We discuss a wide range of physical phenomena that control the functional properties of ferroelectric tunnel junctions and summarise the state-of-the-art achievements in the field.

  18. Treatment with AICAR inhibits blastocyst development, trophectoderm differentiation and tight junction formation and function in mice.

    Science.gov (United States)

    Calder, Michele D; Edwards, Nicole A; Betts, Dean H; Watson, Andrew J

    2017-09-13

    What is the impact of adenosine monophosphate-activated protein kinase (AMPK) activation on blastocyst formation, gene expression, and tight junction formation and function? AMPK activity must be tightly controlled for normal preimplantation development and blastocyst formation to occur. AMPK isoforms are detectable in oocytes, cumulus cells and preimplantation embryos. Cultured embryos are subject to many stresses that can activate AMPK. Two primary experiments were carried out to determine the effect of AICAR treatment on embryo development and maintenance of the blastocoel cavity. Embryos were recovered from superovulated mice. First, 2-cell embryos were treated with a concentration series (0-2000 μM) of AICAR for 48 h until blastocyst formation would normally occur. In the second experiment, expanded mouse blastocysts were treated for 9 h with 1000 μM AICAR. Outcomes measured included development to the blastocyst stage, cell number, blastocyst volume, AMPK phosphorylation, Cdx2 and blastocyst formation gene family expression (mRNAs and protein measured using quantitative RT-PCR, immunoblotting, immunofluorescence), tight junction function (FITC dextran dye uptake assay), and blastocyst ATP levels. The reversibility of AICAR treatment was assessed using Compound C (CC), a well-known inhibitor of AMPK, alone or in combination with AICAR. Prolonged treatment with AICAR from the 2-cell stage onward decreases blastocyst formation, reduces total cell number, embryo diameter, leads to loss of trophectoderm cell contacts and membrane zona occludens-1 staining, and increased nuclear condensation. Treatment with CC alone inhibited blastocyst development only at concentrations that are higher than normally used. AICAR treated embryos displayed altered mRNA and protein levels of blastocyst formation genes. Treatment of blastocysts with AICAR for 9 h induced blastocyst collapse, altered blastocyst formation gene expression, increased tight junction permeability and

  19. Are there any different effects of Bifidobacterium, Lactobacillus and Streptococcus on intestinal sensation, barrier function and intestinal immunity in PI-IBS mouse model?

    Directory of Open Access Journals (Sweden)

    Huan Wang

    Full Text Available BACKGROUND AND AIMS: Research has increasingly suggested that gut flora plays an important role in the development of post-infectious irritable bowel syndrome (PI-IBS. Studies of the curative effect of probiotics for IBS have usually been positive but not always. However, the differences of treatment effects and mechanisms among probiotic stains, or mixture of them, are not clear. In this study, we compared the effects of different probiotics (Befidobacterium, Lactobacillus, Streptococcus or mixture of the three on intestinal sensation, barrier function and intestinal immunity in PI-IBS mouse model. METHODS: PI-IBS model was induced by Trichinella spiralis infection in mice. Different probiotics were administered to mice after 8 weeks infection. Visceral sensitivity was measured by scores of abdominal withdrawal reflex (AWR and the threshold intensity of colorectal distention. Colonic smooth muscle contractile response was assessed by contraction of the longitudinal muscle strips. Plasma diamine oxidase (DAO and d-lactate were determined by an enzymatic spectrophotometry. Expression of tight junction proteins and cytokines in ileum were measured by Western blotting. RESULTS: Compared to control mice, PI-IBS mice treated either alone with Befidobacterium or Lactobacillus (but not Streptococcus, or the mixture of the three exhibited not only decreased AWR score and contractile response, but also reduced plasma DAO and D-lactate. These probiotic treatments also suppressed the expression of proinflammatory cytokine IL-6 and IL-17 and promoted the expression of major tight junction proteins claudin-1 and occludin. The mixture of the three probiotic strains performed better than the individual in up-regulating these tight junction proteins and suppressing IL-17 expression. CONCLUSIONS: Bifidobacterium and Lactobacillus, but not Streptococcus, alleviated visceral hypersensitivity and recovered intestinal barrier function as well as inflammation in PI

  20. Impaired barrier function by dietary fructo-oligosaccharides (FOS in rats is accompanied by increased colonic mitochondrial gene expression

    Directory of Open Access Journals (Sweden)

    Kramer Evelien

    2008-03-01

    Full Text Available Abstract Background Dietary non-digestible carbohydrates stimulate the gut microflora and are therefore presumed to improve host resistance to intestinal infections. However, several strictly controlled rat infection studies showed that non-digestible fructo-oligosaccharides (FOS increase, rather than decrease, translocation of Salmonella towards extra-intestinal sites. In addition, it was shown that FOS increases intestinal permeability already before infection. The mechanism responsible for this adverse effect of FOS is unclear. Possible explanations are altered mucosal integrity due to changes in tight junctions or changes in expression of defense molecules such as antimicrobials and mucins. To examine the mechanisms underlying weakening of the intestinal barrier by FOS, a controlled dietary intervention study was performed. Two groups of 12 rats were adapted to a diet with or without FOS. mRNA was collected from colonic mucosa and changes in gene expression were assessed for each individual rat using Agilent rat whole genome microarrays. Results Among the 997 FOS induced genes we observed less mucosal integrity related genes than expected with the clear permeability changes. FOS did not induce changes in tight junction genes and only 8 genes related to mucosal defense were induced by FOS. These small effects are unlikely the cause for the clear increase in intestinal permeability that is observed. FOS significantly increased expression of 177 mitochondria-related genes. More specifically, induced expression of genes involved in all five OXPHOS complexes and the TCA cycle was observed. These results indicate that dietary FOS influences intestinal mucosal energy metabolism. Furthermore, increased expression of 113 genes related to protein turnover, including proteasome genes, ribosomal genes and protein maturation related genes, was seen. FOS upregulated expression of the peptide hormone proglucagon gene, in agreement with previous studies, as

  1. Hexavalent chromium at low concentration alters Sertoli cell barrier and connexin 43 gap junction but not claudin-11 and N-cadherin in the rat seminiferous tubule culture model

    Energy Technology Data Exchange (ETDEWEB)

    Carette, Diane [INSERM U 1065, Team 5 “Physiopathology of Germ Cell Control: Genomic and Non Genomic Mechanisms” C3M, University of Nice Sophia Antipolis, Nice (France); UMR S775, University Paris Descartes, 45 rue des Saints Pères, 75006, Paris (France); Perrard, Marie-Hélène, E-mail: marie-helene.durand@ens-lyon.fr [Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Lyon I, CNRS, INRA, Ecole Normale Supérieure de Lyon, Lyon (France); Prisant, Nadia [University of Versailles/St Quentin-en-Yvelines (France); UMR S775, University Paris Descartes, 45 rue des Saints Pères, 75006, Paris (France); Gilleron, Jérome; Pointis, Georges [INSERM U 1065, Team 5 “Physiopathology of Germ Cell Control: Genomic and Non Genomic Mechanisms” C3M, University of Nice Sophia Antipolis, Nice (France); Segretain, Dominique [University of Versailles/St Quentin-en-Yvelines (France); UMR S775, University Paris Descartes, 45 rue des Saints Pères, 75006, Paris (France); Durand, Philippe [Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Lyon I, CNRS, INRA, Ecole Normale Supérieure de Lyon, Lyon (France); Kallistem SAS Ecole Normale Supérieure de Lyon, Lyon (France)

    2013-04-01

    Exposure to toxic metals, specifically those belonging to the nonessential group leads to human health defects and among them reprotoxic effects. The mechanisms by which these metals produce their negative effects on spermatogenesis have not been fully elucidated. By using the Durand's validated seminiferous tubule culture model, which mimics the in vivo situation, we recently reported that concentrations of hexavalent chromium, reported in the literature to be closed to that found in the blood circulation of men, increase the number of germ cell cytogenetic abnormalities. Since this metal is also known to affect cellular junctions, we investigated, in the present study, its potential influence on the Sertoli cell barrier and on junctional proteins present at this level such as connexin 43, claudin-11 and N-cadherin. Cultured seminiferous tubules in bicameral chambers expressed the three junctional proteins and ZO-1 for at least 12 days. Exposure to low concentrations of chromium (10 μg/l) increased the trans-epithelial resistance without major changes of claudin-11 and N-cadherin expressions but strongly delocalized the gap junction protein connexin 43 from the membrane to the cytoplasm of Sertoli cells. The possibility that the hexavalent chromium-induced alteration of connexin 43 indirectly mediates the effect of the toxic metal on the blood–testis barrier dynamic is postulated. - Highlights: ► Influence of Cr(VI) on the Sertoli cell barrier and on junctional proteins ► Use of cultured seminiferous tubules in bicameral chambers ► Low concentrations of Cr(VI) (10 μg/l) altered the trans-epithelial resistance. ► Cr(VI) did not alter claudin-11 and N-cadherin. ► Cr(VI) delocalized connexin 43 from the membrane to the cytoplasm of Sertoli cells.

  2. the evaluation of unstable lumbar-sacral junction with function x-rays ...

    African Journals Online (AJOL)

    ... subjected to dynamic lumbar- sacral plain films as part of clinical evaluation. ... Key words: Lumbosacral spine, Dynamic radiography, Instability, Range of motion ... chronic low back pain studied were investigated for lumbosacral junction.

  3. Altered intestinal microbial flora and impaired epithelial barrier structure and function in CKD: the nature, mechanisms, consequences and potential treatment.

    Science.gov (United States)

    Vaziri, Nosratola D; Zhao, Ying-Yong; Pahl, Madeleine V

    2016-05-01

    Chronic kidney disease (CKD) results in systemic inflammation and oxidative stress which play a central role in CKD progression and its adverse consequences. Although many of the causes and consequences of oxidative stress and inflammation in CKD have been extensively explored, little attention had been paid to the intestine and its microbial flora as a potential source of these problems. Our recent studies have revealed significant disruption of the colonic, ileal, jejunal and gastric epithelial tight junction in different models of CKD in rats. Moreover, the disruption of the epithelial barrier structure and function found in uremic animals was replicated in cultured human colonocytes exposed to uremic human plasma in vitro We have further found significant changes in the composition and function of colonic bacterial flora in humans and animals with advanced CKD. Together, uremia-induced impairment of the intestinal epithelial barrier structure and function and changes in composition of the gut microbiome contribute to the systemic inflammation and uremic toxicity by accommodating the translocation of endotoxin, microbial fragments and other noxious luminal products in the circulation. In addition, colonic bacteria are the main source of several well-known pro-inflammatory uremic toxins such as indoxyl sulfate, p-cresol sulfate, trimethylamine-N-oxide and many as-yet unidentified retained compounds in end-stage renal disease patients. This review is intended to provide an overview of the effects of CKD on the gut microbiome and intestinal epithelial barrier structure and their role in the pathogenesis of systemic inflammation and uremic toxicity. In addition, potential interventions aimed at mitigating these abnormalities are briefly discussed.

  4. Claudin-16 Deficiency Impairs Tight Junction Function in Ameloblasts, Leading to Abnormal Enamel Formation.

    Science.gov (United States)

    Bardet, Claire; Courson, Frédéric; Wu, Yong; Khaddam, Mayssam; Salmon, Benjamin; Ribes, Sandy; Thumfart, Julia; Yamaguti, Paulo M; Rochefort, Gael Y; Figueres, Marie-Lucile; Breiderhoff, Tilman; Garcia-Castaño, Alejandro; Vallée, Benoit; Le Denmat, Dominique; Baroukh, Brigitte; Guilbert, Thomas; Schmitt, Alain; Massé, Jean-Marc; Bazin, Dominique; Lorenz, Georg; Morawietz, Maria; Hou, Jianghui; Carvalho-Lobato, Patricia; Manzanares, Maria Cristina; Fricain, Jean-Christophe; Talmud, Deborah; Demontis, Renato; Neves, Francisco; Zenaty, Delphine; Berdal, Ariane; Kiesow, Andreas; Petzold, Matthias; Menashi, Suzanne; Linglart, Agnes; Acevedo, Ana Carolina; Vargas-Poussou, Rosa; Müller, Dominik; Houillier, Pascal; Chaussain, Catherine

    2016-03-01

    Claudin-16 protein (CLDN16) is a component of tight junctions (TJ) with a restrictive distribution so far demonstrated mainly in the kidney. Here, we demonstrate the expression of CLDN16 also in the tooth germ and show that claudin-16 gene (CLDN16) mutations result in amelogenesis imperfecta (AI) in the 5 studied patients with familial hypomagnesemia with hypercalciuria and nephrocalcinosis (FHHNC). To investigate the role of CLDN16 in tooth formation, we studied a murine model of FHHNC and showed that CLDN16 deficiency led to altered secretory ameloblast TJ structure, lowering of extracellular pH in the forming enamel matrix, and abnormal enamel matrix protein processing, resulting in an enamel phenotype closely resembling human AI. This study unravels an association of FHHNC owing to CLDN16 mutations with AI, which is directly related to the loss of function of CLDN16 during amelogenesis. Overall, this study indicates for the first time the importance of a TJ protein in tooth formation and underlines the need to establish a specific dental follow-up for these patients. © 2015 American Society for Bone and Mineral Research.

  5. Structural and electrical characterization of ultra-thin SrTiO3 tunnel barriers grown over YBa2Cu3O7 electrodes for the development of high Tc Josephson junctions.

    Science.gov (United States)

    Félix, L Avilés; Sirena, M; Guzmán, L A Agüero; Sutter, J González; Vargas, S Pons; Steren, L B; Bernard, R; Trastoy, J; Villegas, J E; Briático, J; Bergeal, N; Lesueur, J; Faini, G

    2012-12-14

    The transport properties of ultra-thin SrTiO(3) (STO) layers grown over YBa(2)Cu(3)O(7) electrodes were studied by conductive atomic force microscopy at the nano-scale. A very good control of the barrier thickness was achieved during the deposition process. A phenomenological approach was used to obtain critical parameters regarding the structural and electrical properties of the system. The STO layers present an energy barrier of 0.9 eV and an attenuation length of 0.23 nm, indicating very good insulating properties for the development of high-quality Josephson junctions.

  6. Inhibiting endoplasmic reticulum stress by lithium chloride contributes to the integrity of blood-spinal cord barrier and functional recovery after spinal cord injury

    Science.gov (United States)

    He, Zili; Zhou, Yulong; Wang, Qingqing; Li, Jiawei; Zheng, Zengming; Chen, Jian; Zhang, Hongyu; Wang, Zhouguang; Xu, Huazi; Xiao, Jian

    2017-01-01

    Endoplasmic reticulum (ER) stress play important roles in the spinal cord injury (SCI), which including blood-spinal cord barrier (BSCB) disruption. Lithium chloride (LiCl) is a clinical drug for bipolar mood disorders and contributes to neuroprotection. This study aims to investigate the effects of LiCl on BSCB disruption and the ER stress pathway induced by spinal cord injury. We examined the integrity of the BSCB with Evans Blue dye and macrophages extravasation, measured the microvessels loss, the junction proteins degeneration, the activation ER stress, and the locomotor function recovery. Our data indicated that LiCl treatment could attenuates BSCB disruption and improved the recovery of functional locomotion in rats SCI model, reduced the structure damage and number loss of microvessels, increased the expressions of junction proteins, including p120, β-catenin, occludin, and claudin-5, via reversed the upregulated ER stress associated proteins. In addition, LiCl significantly inhibited the increase of ER stress markers and prevents loss of junction proteins in thapsigargin (TG)-treated human brain microvascular endothelial cells (HBMEC). These findings suggest that LiCl treatment alleviates BSCB disruption and promote the neurological function recovery after SCI, partly through inhibiting the activation of ER stress.

  7. Human intestinal barrier function in health and disease

    NARCIS (Netherlands)

    König, Julia; Wells, Jerry; Cani, Patrice D.; García-Ródenas, Clara L.; MacDonald, Tom; Mercenier, Annick; Whyte, Jacqueline; Troost, Freddy J.; Brummer, Robert-Jan

    2016-01-01

    The gastrointestinal tract consists of an enormous surface area that is optimized to efficiently absorb nutrients, water, and electrolytes from food. At the same time, it needs to provide a tight barrier against the ingress of harmful substances, and protect against a reaction to omnipresent

  8. Epithelial IL-18 Equilibrium Controls Barrier Function in Colitis

    NARCIS (Netherlands)

    Nowarski, Roni; Jackson, Ruaidhrí; Gagliani, Nicola; de Zoete, Marcel R; Palm, Noah W; Bailis, Will; Low, Jun Siong; Harman, Christian C D; Graham, Morven; Elinav, Eran; Flavell, Richard A

    2015-01-01

    The intestinal mucosal barrier controlling the resident microbiome is dependent on a protective mucus layer generated by goblet cells, impairment of which is a hallmark of the inflammatory bowel disease, ulcerative colitis. Here, we show that IL-18 is critical in driving the pathologic breakdown of

  9. Epithelial IL-18 Equilibrium Controls Barrier Function in Colitis

    NARCIS (Netherlands)

    Nowarski, Roni; Jackson, Ruaidhrí; Gagliani, Nicola; de Zoete, Marcel R|info:eu-repo/dai/nl/30483419X; Palm, Noah W; Bailis, Will; Low, Jun Siong; Harman, Christian C D; Graham, Morven; Elinav, Eran; Flavell, Richard A

    2015-01-01

    The intestinal mucosal barrier controlling the resident microbiome is dependent on a protective mucus layer generated by goblet cells, impairment of which is a hallmark of the inflammatory bowel disease, ulcerative colitis. Here, we show that IL-18 is critical in driving the pathologic breakdown of

  10. Suppression of Andreev conductance in a topological insulator-superconductor nanostep junction

    Science.gov (United States)

    Yi-Jie, Zheng; Jun-Tao, Song; Yu-Xian, Li

    2016-03-01

    When two three-dimensional topological insulators (TIs) are brought close to each other with their surfaces aligned, the surfaces form a line junction. Similarly, three TI surfaces, not lying in a single plane, can form an atomic-scale nanostep junction. In this paper, Andreev reflection in a TI-TI-superconductor nanostep junction is investigated theoretically. Because of the existence of edge states along each line junction, the conductance for a nanostep junction is suppressed. When the incident energy (ɛ) of an electron is larger than the superconductor gap (Δ), the Andreev conductance in a step junction is less than unity while for a plane junction it is unity. The Andreev conductance is found to depend on the height of the step junction. The Andreev conductance exhibits oscillatory behavior as a function of the junction height with the amplitude of the oscillations remaining unchanged when ɛ = 0, but decreasing for ɛ = Δ, which is different from the case of the plane junction. The height of the step is therefore an important parameter for Andreev reflection in nanostep junctions, and plays a role similar to that of the delta potential barrier in normal metal-superconductor plane junctions. Project supported by the National Natural Science Foundation of China (Grant Nos. 11204065 and 11474085) and the Natural Science Foundation of Hebei Province, China (Grant Nos. A2013205168 and A2014205005).

  11. Accident Analysis and Barrier Function (AEB) Method. Manual for Incident Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Svenson, Ola [Stockholm Univ. (Sweden). Dept. of Psychology

    2000-02-01

    The Accident Analysis and Barrier Function (AEB) Method models an accident or incident as a series of interactions between human and technical systems. In the sequence of human and technical errors leading to an accident there is, in principle, a possibility to arrest the development between each two successive errors. This can be done by a barrier function which, for example, can stop an operator from making an error. A barrier function can be performed by one or several barrier function systems. To illustrate, a mechanical system, a computer system or another operator can all perform a given barrier function to stop an operator from making an error. The barrier function analysis consists of analysis of suggested improvements, the effectiveness of the improvements, the costs of implementation, probability of implementation, the cost of maintaining the barrier function, the probability that maintenance will be kept up to standards and the generalizability of the suggested improvement. The AEB method is similar to the US method called HPES, but differs from that method in different ways. To exemplify, the AEB method has more emphasis on technical errors than HPES. In contrast to HPES that describes a series of events, the AEB method models only errors. This gives a more focused analysis making it well suited for checking other HPES-type accident analyses. However, the AEB method is a generic and stand-alone method that has been applied in other fields than nuclear power, such as, in traffic accident analyses.

  12. Potential of Lactobacillus plantarum CCFM639 in Protecting against Aluminum Toxicity Mediated by Intestinal Barrier Function and Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Leilei Yu

    2016-12-01

    Full Text Available Aluminum (Al is a ubiquitous metal that can seriously harm the health of animals and humans. In our previous study, we demonstrated that Lactobacillus plantarum CCFM639 can decrease Al burden in the tissues of mice by inhibiting intestinal Al absorption. The main aim of the present research was to investigate whether the protection by the strain is also associated with enhancement of the intestinal barrier, alleviation of oxidative stress and modulation of the inflammatory response. In an in vitro cell model, two protection modes (intervention and therapy were examined and the results indicated that L. plantarum CCFM639 alleviated Al-induced cytotoxicity. In a mouse model, L. plantarum CCFM639 treatment was found to significantly alleviate oxidative stress in the intestinal tract, regulate the function of the intestinal mucosal immune system, restore the integrity of tight junction proteins and maintain intestinal permeability. These results suggest that in addition to Al sequestration, L. plantarum CCFM639 can also inhibit Al absorption by protecting the intestinal barrier, alleviating Al-induced oxidative stress and inflammatory response. Therefore, L. plantarum CCFM639 has the potential to be a dietary supplement ingredient that provides protection against Al-induced gut injury.

  13. Moderate dietary protein restriction alters the composition of gut microbiota and improves ileal barrier function in adult pig model

    Science.gov (United States)

    Fan, Peixin; Liu, Ping; Song, Peixia; Chen, Xiyue; Ma, Xi

    2017-01-01

    This study was conducted to investigate impacts of dietary protein levels on gut bacterial community and gut barrier. The intestinal microbiota of finishing pigs, fed with 16%, 13% and 10% crude protein (CP) in diets, respectively, were investigated using Illumina MiSeq sequencing. The ileal bacterial richness tended to decrease when the dietary protein concentration reduced from 16% to 10%. The proportion of Clostridium_sensu_stricto_1 in ileum significantly decreased, whereas Escherichia-Shigella increased with reduction of protein concentration. In colon, the proportion of Clostridium_sensu_stricto_1 and Turicibacter increased, while the proportion of RC9_gut_group significantly decreased with the dietary protein reduction. Notably, the proportion of Peptostreptococcaceae was higher in both ileum and colon of 13% CP group. As for metabolites, the intestinal concentrations of SCFAs and biogenic amines decreased with the dietary protein reduction. The 10% CP dietary treatment damaged ileal mucosal morphology, and decreased the expression of biomarks of intestinal cells (Lgr5 and Bmi1), whereas the expression of tight junction proteins (occludin and claudin) in 13% CP group were higher than the other two groups. In conclusion, moderate dietary protein restriction (13% CP) could alter the bacterial community and metabolites, promote colonization of beneficial bacteria in both ileum and colon, and improve gut barrier function. PMID:28252026

  14. Barrier function in reconstructed epidermis and its resemblance to native human skin

    NARCIS (Netherlands)

    Ponec, M.; Gibbs, S.; Pilgram, G.; Boelsma, E.; Koerten, H.; Bouwstra, J.; Mommaas, M.

    2001-01-01

    One of the prerequisites for the use of human skin equivalents for scientific and screening purposes is that their barrier function is similar to that of native skin. Using human epidermis reconstructed on de-epidermized dermis we demonstrated that the formation of the stratum corneum (SC) barrier i

  15. Barrier function in reconstructed epidermis and its resemblance to native human skin

    NARCIS (Netherlands)

    Ponec, M.; Gibbs, S.; Pilgram, G.; Boelsma, E.; Koerten, H.; Bouwstra, J.; Mommaas, M.

    2001-01-01

    One of the prerequisites for the use of human skin equivalents for scientific and screening purposes is that their barrier function is similar to that of native skin. Using human epidermis reconstructed on de-epidermized dermis we demonstrated that the formation of the stratum corneum (SC) barrier

  16. Structural and biophysical characteristics of human skin in maintaining proper epidermal barrier function.

    Science.gov (United States)

    Boer, Magdalena; Duchnik, Ewa; Maleszka, Romuald; Marchlewicz, Mariola

    2016-02-01

    The complex structure of human skin and its physicochemical properties turn it into an efficient outermost defence line against exogenous factors, and help maintain homeostasis of the human body. This role is played by the epidermal barrier with its major part - stratum corneum. The condition of the epidermal barrier depends on individual and environmental factors. The most important biophysical parameters characterizing the status of this barrier are the skin pH, epidermal hydration, transepidermal water loss and sebum excretion. The knowledge of biophysical skin processes may be useful for the implementation of prophylactic actions whose aim is to restore the barrier function.

  17. Structural and biophysical characteristics of human skin in maintaining proper epidermal barrier function

    Directory of Open Access Journals (Sweden)

    Magdalena Boer

    2016-02-01

    Full Text Available The complex structure of human skin and its physicochemical properties turn it into an efficient outermost defence line against exogenous factors, and help maintain homeostasis of the human body. This role is played by the epidermal barrier with its major part – stratum corneum. The condition of the epidermal barrier depends on individual and environmental factors. The most important biophysical parameters characterizing the status of this barrier are the skin pH, epidermal hydration, transepidermal water loss and sebum excretion. The knowledge of biophysical skin processes may be useful for the implementation of prophylactic actions whose aim is to restore the barrier function.

  18. Barrier mechanisms in the Drosophila blood-brain barrier

    Directory of Open Access Journals (Sweden)

    Samantha Jane Hindle

    2014-12-01

    Full Text Available The invertebrate blood-brain barrier field is growing at a rapid pace and, in recent years, studies have shown a physiologic and molecular complexity that has begun to rival its vertebrate counterpart. Novel mechanisms of paracellular barrier maintenance through GPCR signaling were the first demonstrations of the complex adaptive mechanisms of barrier physiology. Building upon this work, the integrity of the invertebrate blood-brain barrier has recently been shown to require coordinated function of all layers of the compound barrier structure, analogous to signaling between the layers of the vertebrate neurovascular unit. These findings strengthen the notion that many blood-brain barrier mechanisms are conserved between vertebrates and invertebrates, and suggest that novel findings in invertebrate model organisms will have a significant impact on the understanding of vertebrate BBB functions. In this vein, important roles in coordinating localized and systemic signaling to dictate organism development and growth are beginning to show how the blood-brain barrier can govern whole animal physiologies. This includes novel functions of blood-brain barrier gap junctions in orchestrating synchronized neuroblast proliferation, and of blood-brain barrier secreted antagonists of insulin receptor signaling. These advancements and others are pushing the field forward in exciting new directions. In this review, we provide a synopsis of invertebrate blood-brain barrier anatomy and physiology, with a focus on insights from the past 5 years, and highlight important areas for future study.

  19. Optimization Design Model of Functional Gradient Thermal Barrier Coating Material by Using Parallel Computation

    Directory of Open Access Journals (Sweden)

    Chen Zhao

    2016-01-01

    Full Text Available It is important for huge ship to find the ceramic/metal functional gradient thermal barrier coating materials. A parallel computation model is built for optimization design of three-dimensional ceramic/metal functionally gradient thermal barrier coating material. According to the control equation and initial-boundary conditions, the heat transfer problem is considered, and numerical algorithms of optimization design is constructed by adapting difference method. The numerical results shows that gradient thermal barrier coating material can improve the function of material.

  20. The impact of ultraviolet therapy on stratum corneum ceramides and barrier function

    DEFF Research Database (Denmark)

    Jungersted, Jakob Mutanu; Høgh, Julie Kaae; Hellgren, Lars

    2011-01-01

    The ceramide profile as well as the barrier function is known to be deteriorated in atopic eczema and psoriasis, and ultraviolet (UV) light is known to improve the barrier function. The impact of UV light on ceramides, however, is not clarified.The aim of this study was to examine the effect of U...... therapy in dermatological patients on ceramides and skin barrier function.We found that UV light treatment does not change the ratio of important stratum corneum lipids, but we confirm earlier findings of decreased susceptibility to irritants after UV- therapy....

  1. Cataract-causing mutation of human connexin 46 impairs gap junction, but increases hemichannel function and cell death.

    Directory of Open Access Journals (Sweden)

    Qian Ren

    Full Text Available Connexin channels play a critical role in maintaining metabolic homeostasis and transparency of the lens. Mutations in connexin genes are linked to congenital cataracts in humans. The G143R missense mutation on connexin (Cx 46 was recently reported to be associated with congenital Coppock cataracts. Here, we showed that the G143R mutation decreased Cx46 gap junctional coupling in a dominant negative manner; however, it significantly increased gap junctional plaques. The G143R mutant also increased hemichannel activity, inversely correlated with the level of Cx46 protein on the cell surface. The interaction between cytoplasmic loop domain and C-terminus has been shown to be involved in gating of connexin channels. Interestingly, the G143R mutation enhanced the interaction between intracellular loop and Cx46. Furthermore, this mutation decreased cell viability and the resistance of the cells to oxidative stress, primarily due to the increased hemichannel function. Together, these results suggest that mutation of this highly conserved residue on the cytoplasmic loop domain of Cx46 enhances its interaction with the C-terminus, resulting in a reduction of gap junction channel function, but increased hemichannel function. This combination leads to the development of human congenital cataracts.

  2. Genomic and Proteomic Profiling Reveals Reduced Mitochondrial Function and Disruption of the Neuromuscular Junction Driving Rat Sarcopenia

    Science.gov (United States)

    Ibebunjo, Chikwendu; Chick, Joel M.; Kendall, Tracee; Eash, John K.; Li, Christine; Zhang, Yunyu; Vickers, Chad; Wu, Zhidan; Clarke, Brian A.; Shi, Jun; Cruz, Joseph; Fournier, Brigitte; Brachat, Sophie; Gutzwiller, Sabine; Ma, QiCheng; Markovits, Judit; Broome, Michelle; Steinkrauss, Michelle; Skuba, Elizabeth; Galarneau, Jean-Rene; Gygi, Steven P.

    2013-01-01

    Molecular mechanisms underlying sarcopenia, the age-related loss of skeletal muscle mass and function, remain unclear. To identify molecular changes that correlated best with sarcopenia and might contribute to its pathogenesis, we determined global gene expression profiles in muscles of rats aged 6, 12, 18, 21, 24, and 27 months. These rats exhibit sarcopenia beginning at 21 months. Correlation of the gene expression versus muscle mass or age changes, and functional annotation analysis identified gene signatures of sarcopenia distinct from gene signatures of aging. Specifically, mitochondrial energy metabolism (e.g., tricarboxylic acid cycle and oxidative phosphorylation) pathway genes were the most downregulated and most significantly correlated with sarcopenia. Also, perturbed were genes/pathways associated with neuromuscular junction patency (providing molecular evidence of sarcopenia-related functional denervation and neuromuscular junction remodeling), protein degradation, and inflammation. Proteomic analysis of samples at 6, 18, and 27 months confirmed the depletion of mitochondrial energy metabolism proteins and neuromuscular junction proteins. Together, these findings suggest that therapeutic approaches that simultaneously stimulate mitochondrogenesis and reduce muscle proteolysis and inflammation have potential for treating sarcopenia. PMID:23109432

  3. Genomic and proteomic profiling reveals reduced mitochondrial function and disruption of the neuromuscular junction driving rat sarcopenia.

    Science.gov (United States)

    Ibebunjo, Chikwendu; Chick, Joel M; Kendall, Tracee; Eash, John K; Li, Christine; Zhang, Yunyu; Vickers, Chad; Wu, Zhidan; Clarke, Brian A; Shi, Jun; Cruz, Joseph; Fournier, Brigitte; Brachat, Sophie; Gutzwiller, Sabine; Ma, QiCheng; Markovits, Judit; Broome, Michelle; Steinkrauss, Michelle; Skuba, Elizabeth; Galarneau, Jean-Rene; Gygi, Steven P; Glass, David J

    2013-01-01

    Molecular mechanisms underlying sarcopenia, the age-related loss of skeletal muscle mass and function, remain unclear. To identify molecular changes that correlated best with sarcopenia and might contribute to its pathogenesis, we determined global gene expression profiles in muscles of rats aged 6, 12, 18, 21, 24, and 27 months. These rats exhibit sarcopenia beginning at 21 months. Correlation of the gene expression versus muscle mass or age changes, and functional annotation analysis identified gene signatures of sarcopenia distinct from gene signatures of aging. Specifically, mitochondrial energy metabolism (e.g., tricarboxylic acid cycle and oxidative phosphorylation) pathway genes were the most downregulated and most significantly correlated with sarcopenia. Also, perturbed were genes/pathways associated with neuromuscular junction patency (providing molecular evidence of sarcopenia-related functional denervation and neuromuscular junction remodeling), protein degradation, and inflammation. Proteomic analysis of samples at 6, 18, and 27 months confirmed the depletion of mitochondrial energy metabolism proteins and neuromuscular junction proteins. Together, these findings suggest that therapeutic approaches that simultaneously stimulate mitochondrogenesis and reduce muscle proteolysis and inflammation have potential for treating sarcopenia.

  4. Human temporal-parietal junction spontaneously tracks others' beliefs: A functional near-infrared spectroscopy study.

    Science.gov (United States)

    Hyde, Daniel C; Aparicio Betancourt, Mariana; Simon, Charline E

    2015-12-01

    Humans have the unique capacity to actively reflect on the thoughts, beliefs, and knowledge of others, but do we also track mental states spontaneously when observing other people? We asked this question by monitoring brain activity in belief-sensitive cortex using functional near-infrared spectroscopy (fNIRS) during free-viewing of social videos. More specifically, we identified a portion of the right temporal-parietal junction (rTPJ) selective for mental state processing using an established, explicit theory of mind task, and then analyzed the brain response in that region of interest (ROI) during free-viewing of video clips involving people producing goal-directed actions. We found a significant increase in oxygenated hemoglobin concentration in our rTPJ ROI during free-viewing for all of our test videos. Activity in this region was further modulated by the extent to which the knowledge state, or beliefs, of the protagonist regarding the location of an object contrasted with the reality of where the object was hidden. Open-ended questioning suggested our participants were not explicitly focusing on belief states of the characters during free-viewing. Further analyses ruled out lower-level details of the video clips or general attentional differences between conditions as likely explanations for the results. As such, these results call into question the traditional characterization of theory of mind as a resource intensive, deliberate process, and, instead, support an emerging view of theory of mind as a foundation for, rather than the pinnacle of, human social cognition.

  5. ATP Induces Disruption of Tight Junction Proteins via IL-1 Beta-Dependent MMP-9 Activation of Human Blood-Brain Barrier In Vitro

    Directory of Open Access Journals (Sweden)

    Fuxing Yang

    2016-01-01

    Full Text Available Disruption of blood-brain barrier (BBB follows brain trauma or central nervous system (CNS stress. However, the mechanisms leading to this process or the underlying neural plasticity are not clearly known. We hypothesized that ATP/P2X7R signaling regulates the integrity of BBB. Activation of P2X7 receptor (P2X7R by ATP induces the release of interleukin-1β (IL-1β, which in turn enhances the activity of matrix metalloproteinase-9 (MMP-9. Degradation of tight junction proteins (TJPs such as ZO-1 and occludin occurs, which finally contributes to disruption of BBB. A contact coculture system using human astrocytes and hCMEC/D3, an immortalized human brain endothelial cell line, was used to mimic BBB in vitro. Permeability was used to evaluate changes in the integrity of TJPs. ELISA, Western blot, and immunofluorescent staining procedures were used. Our data demonstrated that exposure to the photoreactive ATP analog, 3′-O-(4-benzoylbenzoyl adenosine 5′-triphosphate (BzATP, induced a significant decrease in ZO-1 and occludin expression. Meanwhile, the decrease of ZO-1 and occludin was significantly attenuated by P2X7R inhibitors, as well as IL-1R and MMP antagonists. Further, the induction of IL-1β and MMP-9 was closely linked to ATP/P2X7R-associated BBB leakage. In conclusion, our study explored the mechanism of ATP/P2X7R signaling in the disruption of BBB following brain trauma/stress injury, especially focusing on the relationship with IL-1β and MMP-9.

  6. Renal pyramid echogenicity in ureteropelvic junction obstruction: correlation between altered echogenicity and differential renal function

    Energy Technology Data Exchange (ETDEWEB)

    Chavhan, Govind; Daneman, Alan; Lim, Ruth; Traubici, Jeffrey [University of Toronto, Department of Diagnostic Imaging, The Hospital for Sick Children, Toronto (Canada); Moineddin, Rahim [University of Toronto, Department of Family and Community Medicine, Toronto (Canada); Langlois, Valerie [University of Toronto, Division of Nephrology, Department of Pediatrics, Hospital for Sick Children, Toronto (Canada)

    2008-10-15

    Improvement in resolution and use of high-frequency transducers in US has enabled visualization of previously unreported changes in medullary pyramid echogenicity in children with obstructive hydronephrosis. To determine whether these unreported changes in echogenicity and morphology of the renal pyramids in ureteropelvic junction (UPJ) obstruction correlate with differential renal function (DRF) of the kidney as determined by technetium-99m mercaptoacetyltriglycine ({sup 99m}Tc-MAG3) scan. Renal sonograms in 60 children with UPJ obstruction were retrospectively reviewed. Children were divided into three groups based on the echogenicity of the pyramids: (1) normal echogenicity of the pyramids, (2) increased echogenicity of the pyramids with maintained corticomedullary differentiation (CMD), and (3) loss of CMD. DRF, as determined by {sup 99m}Tc-MAG3 scan, of the obstructed kidney of {>=}45% was considered normal and of {<=}44% was considered abnormal based on a published study correlating histological changes with DRF. Fisher's exact test was performed for assessing the association between DRF and altered echogenicity of the pyramids. In group 1, which consisted of 13 patients with normal pyramids on US, DRF was normal in 11 and abnormal in two. In group 2, which consisted of 33 patients with echogenic pyramids and preserved CMD, DRF was normal in 15 and abnormal in 18. In group 3, which consisted of 14 patients with complete loss of CMD, DRF was normal in 2 and abnormal in 12. There was a strong correlation between abnormal pyramids and DRF (P=0.0009). The risk ratio (RR) of DRF becoming abnormal for those kidneys with abnormal echogenicity of the pyramids with preserved CMD (group 2) compared to normal pyramid echogenicity (group 1) was 1.56 (95% CI 1.088-2.236). The RR of DRF becoming abnormal for those kidneys with loss of CMD (group 3) compared to normal pyramid echogenicity (group 1) was 5.571 (95% CI 1.530-20.294). We observed that in obstructed kidneys

  7. TGF-beta is required for vascular barrier function, endothelial survival and homeostasis of the adult microvasculature.

    Directory of Open Access Journals (Sweden)

    Tony E Walshe

    Full Text Available Pericyte-endothelial cell (EC interactions are critical to both vascular development and vessel stability. We have previously shown that TGF-beta signaling between EC and mural cells participates in vessel stabilization in vitro. We therefore investigated the role of TGF-beta signaling in maintaining microvessel structure and function in the adult mouse retinal microvasculature. TGF-beta signaling was inhibited by systemic expression of soluble endoglin (sEng and inhibition was demonstrated by reduced phospho-smad2 in the adult retina. Blockade of TGF-beta signaling led to increased vascular and neural cell apoptosis in the retina, which was associated with decreased retinal function, as measured by electroretinogram (ERG. Perfusion of the inner retinal vasculature was impaired and was accompanied by defective autoregulation and loss of capillary integrity. Fundus angiography and Evans blue permeability assay revealed a breakdown of the blood-retinal-barrier that was characterized by decreased association between the tight junction proteins zo-1 and occludin. Inhibition of TGF-beta signaling in cocultures of EC and 10T1/2 cells corroborated the in vivo findings, with impaired EC barrier function, dissociation of EC from 10T1/2 cells, and endothelial cell death, supporting the role of EC-mesenchymal interactions in TGF-beta signaling. These results implicate constitutive TGF-beta signaling in maintaining the integrity and function of the adult microvasculature and shed light on the potential role of TGF-beta signaling in vasoproliferative and vascular degenerative retinal diseases.

  8. Endocytosis and Recycling of Tight Junction Proteins in Inflammation

    Directory of Open Access Journals (Sweden)

    Markus Utech

    2010-01-01

    Full Text Available A critical function of the epithelial lining is to form a barrier that separates luminal contents from the underlying interstitium. This barrier function is primarily regulated by the apical junctional complex (AJC consisting of tight junctions (TJs and adherens junctions (AJs and is compromised under inflammatory conditions. In intestinal epithelial cells, proinflammatory cytokines, for example, interferon-gamma (IFN-γ, induce internalization of TJ proteins by endocytosis. Endocytosed TJ proteins are passed into early and recycling endosomes, suggesting the involvement of recycling of internalized TJ proteins. This review summarizes mechanisms by which TJ proteins under inflammatory conditions are internalized in intestinal epithelial cells and point out comparable mechanism in nonintestinal epithelial cells.

  9. FUNCTIONAL PERFORMANCE, PARTICIPATION AND AUTONOMY AFTER DISCHARGE FROM PROSTHETIC REHABILITATION : BARRIERS, FACILITATORS AND OUTCOMES

    NARCIS (Netherlands)

    van Twillert, Sacha; Stuive, Ilse; Geertzen, Jan H. B.; Postema, Klaas; Lettinga, Ant T.

    2014-01-01

    Objective: To examine functional performance, participation and autonomy after discharge from prosthetic rehabilitation and to identify the barriers and facilitators affecting these outcomes. Design: Concurrent mixed-methods design. Quantitative and qualitative data were collected at discharge from

  10. Impaired skin barrier function in mice with colon carcinoma induced by azoxymethane and dextran sodium sulfate.

    Science.gov (United States)

    Yokoyama, Satoshi; Hiramoto, Keiichi; Koyama, Mayu; Ooi, Kazuya

    2015-01-01

    We have previously reported that impaired skin barrier function was induced by small intestinal injury in mice. Therefore, we postulated that other intestinal diseases might also influence skin barrier function. In this study, we evaluated the skin barrier function of hairless mice with colon carcinoma that was induced by azoxymethane (AOM) and dextran sodium sulfate (DSS). In mice treated with these drugs, we observed elevated transepidermal water loss and reduced skin hydration levels, compared to those in the control mice. In addition, plasma nitrogen di/trioxide (NO2(-)/NO3(-)) levels were significantly elevated, and expression of type I collagen was significantly reduced in the treated mice, compared to those in control. These results suggest that impaired skin barrier function occurs in mice when colon carcinoma is present.

  11. Stratum corneum lipids, skin barrier function and filaggrin mutations in patients with atopic eczema

    National Research Council Canada - National Science Library

    Jungersted, J. M; Scheer, H; Mempel, M; Baurecht, H; Cifuentes, L; Hogh, J. K; Hellgren, L. I; Jemec, G. B. E; Agner, T; Weidinger, S

    2010-01-01

    ..., Høgh JK, Hellgren LI, Jemec GBE, Agner T, Weidinger S. Stratum corneum lipids, skin barrier function and filaggrin mutations in patients with atopic eczema. Allergy 2010; 65: 911-918. Background...

  12. The repair of impaired epidermal barrier function in rats by the cutaneous application of linoleic acid.

    Science.gov (United States)

    Prottey, C; Hartop, P J; Black, J G; McCormack, J I

    1976-01-01

    Epidermal barrier function in rats was experimentally impaired by two separate means, namely, by rendering the animals deficient in essential fatty acids and by evoking a primary cutaneous irritant response by treating with a solution of sodium laurate. Impaired barrier function was manifested by a greatly increased rate of transepidermal water loss. Application to the skin of sunflower seed oil, which is rich in linoleic acid, rapidly restored to normal the abnormally high rates of transepidermal water loss in both experimental cases, and it was shown with the essential fatty acid-deficient rats that there was a concomitant incorporation of linoleic acid of the sunflower seed oil into epidermal lipids. Cutaneous application of olive oil, which is low in linoleic acid but rich in the non-essential oleic acid, did not influence epidermal barrier function. A close relationship of barrier function and essential fatty acids is indicated.

  13. JAM-A associates with ZO-2, afadin, and PDZ-GEF1 to activate Rap2c and regulate epithelial barrier function.

    Science.gov (United States)

    Monteiro, Ana C; Sumagin, Ronen; Rankin, Carl R; Leoni, Giovanna; Mina, Michael J; Reiter, Dirk M; Stehle, Thilo; Dermody, Terence S; Schaefer, Stacy A; Hall, Randy A; Nusrat, Asma; Parkos, Charles A

    2013-09-01

    Intestinal barrier function is regulated by epithelial tight junctions (TJs), structures that control paracellular permeability. Junctional adhesion molecule-A (JAM-A) is a TJ-associated protein that regulates barrier; however, mechanisms linking JAM-A to epithelial permeability are poorly understood. Here we report that JAM-A associates directly with ZO-2 and indirectly with afadin, and this complex, along with PDZ-GEF1, activates the small GTPase Rap2c. Supporting a functional link, small interfering RNA-mediated down-regulation of the foregoing regulatory proteins results in enhanced permeability similar to that observed after JAM-A loss. JAM-A-deficient mice and cultured epithelial cells demonstrate enhanced paracellular permeability to large molecules, revealing a potential role of JAM-A in controlling perijunctional actin cytoskeleton in addition to its previously reported role in regulating claudin proteins and small-molecule permeability. Further experiments suggest that JAM-A does not regulate actin turnover but modulates activity of RhoA and phosphorylation of nonmuscle myosin, both implicated in actomyosin contraction. These results suggest that JAM-A regulates epithelial permeability via association with ZO-2, afadin, and PDZ-GEF1 to activate Rap2c and control contraction of the apical cytoskeleton.

  14. Interleukin-13 promotes expression of Alix to compromise renal tubular epithelial barrier function.

    Science.gov (United States)

    Xu, Chen; Sun, Guangdong; Yang, Jie; Sun, Qianmei; Tong, Zhaohui

    2015-05-01

    The epithelial barrier dysfunction plays a critical role in a number of kidney diseases. The mechanism is unclear. Alix is a protein involving in protein degradation in epithelial cells. This study aims to investigate that interleukin (IL)-13 inhibits Alix to compromise the kidney epithelial barrier function. In this study, the murine collecting duct cell line (M-1) was cultured in Transwell inserts to investigate the significance of Alix in compromising the epithelial barrier functions. T cell (Teff cells) proliferation assay was employed to assess the antigenicity of ovalbumin (OVA) that was transported across the M-1 monolayer barrier. The results showed that M-1 cells express Alix. Exposure to interleukin (IL)-13 markedly decreased the expression of Alix in M-1 cells, which compromised the M-1 monolayer barrier functions by showing the increases in the permeability to OVA. Over-expression of Alix abolished the IL-13-induced M-1 monolayer barrier dysfunction. Knockdown of Alix significantly increased M-1 monolayer permeability. The OVA collected from the Transwell basal chambers induced the OVA-specific T cell proliferation. We conclude that IL-13 compromises M-1 epithelial barrier functions via inhibiting Alix expression.

  15. Clinical characteristics and epidermal barrier function of papulopustular rosacea: A comparison study with acne vulgaris

    OpenAIRE

    Zhou, Maosong; Xie, Hongfu; Cheng, Lin; Li, Ji

    2016-01-01

    Objective: To evaluate the clinical characteristics and epidermal barrier function of papulopustular rosacea by comparing with acne vulgaris. Methods: Four hundred and sixty-three papulopustular rosacea patients and four hundred and twelve acne vulgaris patients were selected for the study in Xiangya Hospital of Central South University from March 2015 to May 2016. They were analyzed for major facial lesions, self-conscious symptoms and epidermal barrier function. Results: Erythema, burning, ...

  16. Inhibition of Murine Pulmonary Microvascular Endothelial Cell Apoptosis Promotes Recovery of Barrier Function under Septic Conditions

    Directory of Open Access Journals (Sweden)

    Lefeng Wang

    2017-01-01

    Full Text Available Sepsis is characterized by injury of the pulmonary microvasculature and the pulmonary microvascular endothelial cells (PMVEC, leading to barrier dysfunction and acute respiratory distress syndrome (ARDS. Our recent work identified a strong correlation between PMVEC apoptosis and microvascular leak in septic mice in vivo, but the specific role of apoptosis in septic PMVEC barrier dysfunction remains unclear. Thus, we hypothesize that PMVEC apoptosis is likely required for PMVEC barrier dysfunction under septic conditions in vitro. Septic stimulation (mixture of tumour necrosis factor α, interleukin 1β, and interferon γ [cytomix] of isolated murine PMVEC resulted in a significant loss of barrier function as early as 4 h after stimulation, which persisted until 24 h. PMVEC apoptosis, as reflected by caspase activation, DNA fragmentation, and loss of membrane polarity, was first apparent at 8 h after cytomix. Pretreatment of PMVEC with the pan-caspase inhibitor Q-VD significantly decreased septic PMVEC apoptosis and was associated with reestablishment of PMVEC barrier function at 16 and 24 h after stimulation but had no effect on septic PMVEC barrier dysfunction over the first 8 h. Collectively, our data suggest that early septic murine PMVEC barrier dysfunction driven by proinflammatory cytokines is not mediated through apoptosis, but PMVEC apoptosis contributes to late septic PMVEC barrier dysfunction.

  17. Dissection of the functional domains of an archaeal holliday junction helicase

    DEFF Research Database (Denmark)

    Hong, Ye; Chu, Mingzhu; Li, Yansheng

    2012-01-01

    Helicases and nucleases form complexes that play very important roles in DNA repair pathways some of which interact with each other at Holliday junctions. In this study, we present in vitro and in vivo analysis of Hjm and its interaction with Hjc in Sulfolobus. In vitro studies employed Hjm from ...

  18. Prolonged measurement of lower oesophageal sphincter function in patients with intestinal metaplasia at the oesophagogastric junction

    NARCIS (Netherlands)

    Wolf, C; Timmer, R; Breumelhof, R; Seldenrijk, CA; Smout, AJPM

    2001-01-01

    Background and aims-It has been shown that gastro-oesophageal reflux plays a role in the pathogenesis of intestinal metaplasia (IM) limited to the oesophagogastric junction (OGJ), similar to the pathogenesis of IM in long segments of columnar lined oesophagus. The aim of this study was to examine lo

  19. Etk/Bmx activation modulates barrier function in epithelial cells.

    Science.gov (United States)

    Hamm-Alvarez, S F; Chang, A; Wang, Y; Jerdeva, G; Lin, H H; Kim, K J; Ann, D K

    2001-06-01

    Etk/Bmx is a member of the Tec family of cytoplasmic non-receptor tyrosine kinases known to express in epithelial cells. We demonstrate herein that Etk activation in stably Etk-transfected epithelial Pa-4 cells resulted in a consistently increased transepithelial resistance (TER). After 24 h of hypoxic (1% O(2)) exposure, the TER and equivalent active ion transport rate (I(eq)) were reduced to <5% of the normoxia control in Pa-4 cells, whereas both TER and I(eq) were maintained at comparable and 60% levels, respectively, relative to their normoxic controls in cells with Etk activation. Moreover, Pa-4 cells exhibited an abundant actin stress fiber network with a diffuse distribution of beta-catenin at the cell periphery. By contrast, Etk-activated cells displayed a redistribution of actin to an exclusively peripheral network, with a discrete band of beta-catenin also concentrated at the cell periphery, and an altered occludin distribution profile. On the basis of these findings, we propose that Etk may be a novel regulator of epithelial junctions during physiological and pathophysiological conditions.

  20. Skin Barrier Function and Its Importance at the Start of the Atopic March

    Directory of Open Access Journals (Sweden)

    Mary Beth Hogan

    2012-01-01

    Full Text Available Atopic dermatitis can be due to a variety of causes from nonatopic triggers to food allergy. Control of egress of water and protection from ingress of irritants and allergens are key components of cutaneous barrier function. Current research suggests that a degraded barrier function of the skin allows the immune system inappropriate access to environmental allergens. Epidermal aeroallergen exposure may allow sensitization to allergen possibly initiating the atopic march. Further research into connections between epidermal barrier function and possible allergen sensitization will be important to undertake. Future clinical trials focused on skin barrier protection may be of value as a possible intervention in prevention of the initiation of the atopic march.

  1. Xenobiotic Receptor-Mediated Regulation of Intestinal Barrier Function and Innate Immunity

    Directory of Open Access Journals (Sweden)

    Harmit S. Ranhotra

    2016-07-01

    Full Text Available The molecular basis for the regulation of the intestinal barrier is a very fertile research area. A growing body of knowledge supports the targeting of various components of intestinal barrier function as means to treat a variety of diseases, including the inflammatory bowel diseases. Herein, we will summarize the current state of knowledge of key xenobiotic receptor regulators of barrier function, highlighting recent advances, such that the field and its future are succinctly reviewed. We posit that these receptors confer an additional dimension of host-microbe interaction in the gut, by sensing and responding to metabolites released from the symbiotic microbiota, in innate immunity and also in host drug metabolism. The scientific evidence for involvement of the receptors and its molecular basis for the control of barrier function and innate immunity regulation would serve as a rationale towards development of non-toxic probes and ligands as drugs.

  2. A new all-round density functional based on spin states and SN2 barriers

    Science.gov (United States)

    Swart, Marcel; Solà, Miquel; Bickelhaupt, F. Matthias

    2009-09-01

    We report here a new empirical density functional that is constructed based on the performance of OPBE and PBE for spin states and SN2 reaction barriers and how these are affected by different regions of the reduced gradient expansion. In a previous study [Swart, Solà, and Bickelhaupt, J. Comput. Methods Sci. Eng. 9, 69 (2009)] we already reported how, by switching between OPBE and PBE, one could obtain both the good performance of OPBE for spin states and reaction barriers and that of PBE for weak interactions within one and the same (SSB-sw) functional. Here we fine tuned this functional and include a portion of the KT functional and Grimme's dispersion correction to account for π-π stacking. Our new SSB-D functional is found to be a clear improvement and functions very well for biological applications (hydrogen bonding, π-π stacking, spin-state splittings, accuracy of geometries, reaction barriers).

  3. Gap junction blockers attenuate beta oscillations and improve forelimb function in hemiparkinsonian rats.

    Science.gov (United States)

    Phookan, Sujoy; Sutton, Alexander C; Walling, Ian; Smith, Autumn; O'Connor, Katherine A; Campbell, Joannalee C; Calos, Megan; Yu, Wilson; Pilitsis, Julie G; Brotchie, Jonathan M; Shin, Damian S

    2015-03-01

    Parkinson's disease (PD) is a neurodegenerative disease characterized by akinesia, bradykinesia, resting tremors and postural instability. Although various models have been developed to explain basal ganglia (BG) pathophysiology in PD, the recent reports that dominant beta (β) oscillations (12-30Hz) in BG nuclei of PD patients and parkinsonian animals coincide with motor dysfunction has led to an emerging idea that these oscillations may be a characteristic of PD. Due to the recent realization of these oscillations, the cellular and network mechanism(s) that underlie this process remain ill-defined. Here, we postulate that gap junctions (GJs) can contribute to β oscillations in the BG of hemiparkinsonian rats and inhibiting their activity will disrupt neuronal synchrony, diminish these oscillations and improve motor function. To test this, we injected the GJ blockers carbenoxolone (CBX) or octanol in the right globus pallidus externa (GPe) of anesthetized hemiparkinsonian rats and noted whether subsequent changes in β oscillatory activity occurred using in vivo electrophysiology. We found that systemic treatment of 200mg/kg CBX attenuated normalized GPe β oscillatory activity from 6.10±1.29 arbitrary units (A.U.) (pre-CBX) to 2.48±0.87 A.U. (post-CBX) with maximal attenuation occurring 90.0±20.5min after injection. The systemic treatment of octanol (350mg/kg) also decreased β oscillatory activity in a similar manner to CBX treatment with β oscillatory activity decreasing from 3.58±0.89 (pre-octanol) to 2.57±1.08 after octanol injection. Next, 1μl CBX (200mg/kg) was directly injected into the GPe of anesthetized hemiparkinsonian rats; 59.2±19.0min after injection, β oscillations in this BG nucleus decreased from 3.62±1.17 A.U. to 1.67±0.62 A.U. Interestingly, we were able to elicit β oscillations in the GPe of naive non-parkinsonian rats by increasing GJ activity with 1μl trimethylamine (TMA, 500nM). Finally, we systemically injected CBX (200mg

  4. Influences of enteral nutrition combined with probiotics on gut microflora and barrier function of rats with abdominal infection

    Institute of Scientific and Technical Information of China (English)

    Tong-Yi Shen; Huan-Long Qin; Zhi-Guang Gao; Xiao-Bing Fan; Xiao-Ming Hang; Yan-Qun Jiang

    2006-01-01

    AIM: To investigate the influences of enteral, parenteral nutrition and probiotics delivered by gut on intestinal microecology, epithelial tight junctions, immune and barrier function of rats with abdominal infection.METHODS: Rat abdominal infection models established with cecal ligation and perforation method, were divided into three groups: parenteral nutrition (PN group, n = 7), PN+enteral nutrition (EN group, n = 7) and PN EN + probiotics (probiotics group, n = 7) via the needle jejunostomy and neck vein for five days. The total nutritional supplement of the three groups was isonitrogenic and isocaloric. Probiotics was delivered by jejunostomy 10 mL/d (1 × 108 cfu/mL). The rats were killed on the sixth day. The feces in the cecum were cultured for anaerobic bacterial growth and analyzed with bacterial group DNA fingerprint profile with random amplified polymorphic DNA. The transmembrane binding proteins (occludin) and IgA level in plasma cells of intestine epithelium in colon and terminal ileum were measured by an immunohistochemistry method. The ultrastructure of intestinal epithelial tight junctions in colon and small intestine was observed by electronmicroscopy. Vena cava blood and the homogenated tissue of liver, lung and mesenteric lymph nodes were cultured to determine the bacterial translocations, and endotoxin in the blood from portal vein was detected.RESULTS: (1) The amount of bacteria of gut species in EN group and probiotic group was higher than that in PN group. The DNA-profiles in EN group and probiotic group were similar to that of normal rats. The number of DNAprofiles in probiotics group was much more than that in PN group and EN group. Moreover, there were strange stripes in PN group. (2) The expression of occludin and IgA in the small and large intestine in EN group (2.309± 0.336, 15.440 ± 2.383) and probiotic group (2.938 ±0.515, 16.230 ± 3.183) was improved as compared with PN group (1.207 ± 0.587, P < 0.05, 11.189 ± 2.108, P < 0

  5. Barrier Mechanisms in the Developing Brain

    OpenAIRE

    Saunders, Norman R.; Liddelow, Shane A.; Dziegielewska, Katarzyna M.

    2012-01-01

    The adult brain functions within a well-controlled stable environment, the properties of which are determined by cellular exchange mechanisms superimposed on the diffusion restraint provided by tight junctions at interfaces between blood, brain and cerebrospinal fluid (CSF). These interfaces are referred to as “the” blood–brain barrier. It is widely believed that in embryos and newborns, this barrier is immature or “leaky,” rendering the developing brain more vulnerable to drugs or toxins ent...

  6. A cross-functional nanostructured platform based on carbon nanotube-Si hybrid junctions: where photon harvesting meets gas sensing

    Science.gov (United States)

    Rigoni, F.; Pintossi, C.; Drera, G.; Pagliara, S.; Lanti, G.; Castrucci, P.; de Crescenzi, M.; Sangaletti, L.

    2017-03-01

    A combination of the functionalities of carbon nanotube (CNT)-Si hybrid heterojunctions is presented as a novel method to steer the efficiency of the photovoltaic (PV) cell based on these junctions, and to increase the selectivity and sensitivity of the chemiresistor gas sensor operated with the p-doped CNT layer. The electrical characteristics of the junctions have been tracked by exposing the devices to oxidizing (NO2) and reducing (NH3) molecules. It is shown that when used as PV cells, the cell efficiency can be reversibly steered by gas adsorption, providing a tool to selectively dope the p-type layer through molecular adsorption. Tracking of the current-voltage curve upon gas exposure also allowed to use these cells as gas sensors with an enhanced sensitivity as compared to that provided by a readout of the electrical signal from the CNT layer alone. In turn, the chemiresistive response was improved, both in terms of selectivity and sensitivity, by operating the system under illumination, as the photo-induced charges at the junction increase the p-doping of CNTs making them more sensitive to NH3 and less to NO2.

  7. Measuring Neuromuscular Junction Functionality in the SOD1(G93A) Animal Model of Amyotrophic Lateral Sclerosis.

    Science.gov (United States)

    Rizzuto, Emanuele; Pisu, Simona; Musarò, Antonio; Del Prete, Zaccaria

    2015-09-01

    Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease that leads to motor neuron degeneration, alteration in neuromuscular junctions (NMJs), muscle atrophy, and paralysis. To investigate the NMJ functionality in ALS we tested, in vitro, two innervated muscle types excised from SOD1(G93A) transgenic mice at the end-stage of the disease: the Soleus, a postural muscle almost completely paralyzed at that stage, and the diaphragm, which, on the contrary, is functional until death. To this aim we employed an experimental protocol that combined two types of electrical stimulation: the direct stimulation and the stimulation through the nerve. The technique we applied allowed us to determine the relevance of NMJ functionality separately from muscle contractile properties in SOD1(G93A) animal model. Functional measurements revealed that the muscle contractility of transgenic diaphragms is almost unaltered in comparison to control muscles, while transgenic Soleus muscles were severely compromised. In contrast, when stimulated via the nerve, both transgenic muscle types showed a strong decrease of the contraction force, a slowing down of the kinetic parameters, as well as alterations in the neurotransmission failure parameter. All together, these results confirm a severely impaired functionality in the SOD1(G93A) neuromuscular junctions.

  8. Executive Functioning, Barriers to Adherence, and Nonadherence in Adolescent and Young Adult Transplant Recipients.

    Science.gov (United States)

    Gutiérrez-Colina, Ana M; Eaton, Cyd K; Lee, Jennifer L; Reed-Knight, Bonney; Loiselle, Kristin; Mee, Laura L; LaMotte, Julia; Liverman, Rochelle; Blount, Ronald L

    2016-08-01

    OBJECTIVE : To evaluate levels of executive functioning in a sample of adolescent and young adult (AYA) transplant recipients, and to examine executive functioning in association with barriers to adherence and medication nonadherence.  METHOD : In all, 41 caregivers and 39 AYAs were administered self- and proxy-report measures.  RESULTS : AYA transplant recipients have significant impairments in executive functioning abilities. Greater dysfunction in specific domains of executive functioning was significantly associated with more barriers to adherence and greater medication nonadherence.  CONCLUSION : AYA transplant recipients are at increased risk for executive dysfunction. The assessment of executive functioning abilities may guide intervention efforts designed to decrease barriers to adherence and promote developmentally appropriate levels of treatment responsibility.

  9. Fermented Pueraria Lobata extract ameliorates dextran sulfate sodium-induced colitis by reducing pro-inflammatory cytokines and recovering intestinal barrier function

    Science.gov (United States)

    Choi, Seungho; Woo, Jong-Kyu; Jang, Yeong-Su; Kang, Ju-Hee; Jang, Jung-Eun; Yi, Tae-Hoo; Park, Sang-Yong; Kim, Sun-Yeou; Yoon, Yeo-Sung

    2016-01-01

    Inflammatory bowel disease is a chronic inflammatory disorder occurring in the gastrointestinal track. However, the efficacy of current therapeutic strategies has been limited and accompanied by side effects. In order to eliminate the limitations, herbal medicines have recently been developed for treatment of IBD. Peuraria Lobata (Peuraria L.) is one of the traditional herbal medicines that have anti-inflammatory effects. Bioavailability of Peuraria L., which is rich in isoflavones, is lower than that of their fermented forms. In this study, we generated fermented Peuraria L. extracts (fPue) and investigated the role of fPue in inflammation and intestinal barrier function in vitro and in vivo. As the mice or intestinal epithelial cells were treated with DSS/fPue, mRNA expression of pro-inflammatory cytokines was reduced and the architecture and expression of tight junction proteins were recovered, compared to the DSS-treated group. In summary, fPue treatment resulted in amelioration of DSS-induced inflammation in the colon, and the disrupted intestinal barrier was recovered as the expression and architecture of tight junction proteins were retrieved. These results suggest that use of fPue could be a new therapeutic strategy for treatment of IBD. PMID:27729931

  10. Functional expression of gap junction gene Cx43 and the myogenic differentiation of rhabdomyosarcoma cells

    Institute of Scientific and Technical Information of China (English)

    林仲翔; 张志谦; 韩亚玲; C.C.G.Naus; K.R.Yu; H.Holtzer

    1995-01-01

    Rhabdomyosarcoma (RD) cells express low levels of the gap junction protein connexin 43 (Cx43), and its mRNA, and display very weak gap junctional intercellular communication (GJIC) as detected by Cx43 immunofluorescence, slot-blot and dye-transfer methods. These cells grow rapidly and show aberrant and incomplete myogenic differentiation. To investigate the role of gap junctions in these cells, the expression of Cx43 with relation to cell growth and myogenic differentiation in RD single-cell subclones-RDL3 and RDL6 is studied. The subclone RDL3 grows slowly and displays better myogenic differentiation. The expression of Cx43, its mRNA and the GJIC in RDL3 is comparable to that in normal myoblasts. Another subclone RDL6 which grows rapidly, but is poorly differentiated, expresses very low levels of Cx43 and its mRNA, and very weak GJIC. By using the calcium phosphate precipitate transfection technique, a full-length cDNA-encoding Cx43 and a pSV2neo have been introduced into the RDL6 cells. Several stably

  11. Mast Cell Tryptase Reduces Junctional Adhesion Molecule-A (JAM-A) Expression in Intestinal Epithelial Cells: Implications for the Mechanisms of Barrier Dysfunction in Irritable Bowel Syndrome.

    LENUS (Irish Health Repository)

    Wilcz-Villega, Ewa M

    2013-07-01

    The objective of this study was to investigate how mast cell tryptase may influence intestinal permeability and tight junction (TJ) proteins in vitro and explore translation to irritable bowel syndrome (IBS).

  12. P38 MAPK Pharmacological Inhibitor SB203580 Alleviates Total Parenteral Nutrition-Induced Loss of Intestinal Barrier Function but Promotes Hepatocyte Lipoapoptosis

    Directory of Open Access Journals (Sweden)

    Yong-Tao Xiao

    2017-02-01

    Full Text Available Background & Aims: Our previous studies have provided evidence that p38 mitogen-activated protein kinase (MAPK is involved in total parenteral nutrition (TPN-associated complications, but its exact effects and mechanisms have not been fully understood. This study aimed to evaluate the roles of p38 MAPK inhibitor SB203580 in the TPN-induced loss of intestinal barrier function and liver disease. Methods: A rodent model of TPN was used to analyze the roles of SB203580 in TPN-associated complications.Intestinal barrier function was evaluated by transepithelial electrical resistance (TER and paracellular permeability in Caco-2 cells. The palmitic acid (PA was used to induce hepatic lipoapoptosis in vitro. The lipoapoptosis was detected using Caspase-3/7 and lipid staining. Results: In the present study, we showed that SB203580 treatment significantly suppressed TPN-mediated intestinal permeability in rats. SB203580 treatment significantly inhibited IL-1β-induced an increase in tight junction permeability of Caco-2 cells via repressing the p38/ATF-2 signaling. Unexpectedly, SB203580 treatment enhanced hepatic lipoapoptosis in the model of TPN. Palmitic acid (PA-induced hepatic lipoapoptosis in human liver cells was significantly augmented by the SB203580 treatment. Conclusions: We demonstrate that the p38 MAPK inhibitor SB203508 ameliorates intestinal barrier function but promotes hepatic lipoapoptosis in model of TPN.

  13. Arctigenin from Fructus Arctii (Seed of Burdock Reinforces Intestinal Barrier Function in Caco-2 Cell Monolayers

    Directory of Open Access Journals (Sweden)

    Hee Soon Shin

    2015-01-01

    Full Text Available Fructus Arctii is used as a traditional herbal medicine to treat inflammatory diseases in oriental countries. This study aimed to investigate effect of F. Arctii extract on intestinal barrier function in human intestinal epithelial Caco-2 cells and to reveal the active component of F. Arctii. We measured transepithelial electrical resistance (TEER value (as an index of barrier function and ovalbumin (OVA permeation (as an index of permeability to observe the changes of intestinal barrier function. The treatment of F. Arctii increased TEER value and decreased OVA influx on Caco-2 cell monolayers. Furthermore, we found that arctigenin as an active component of F. Arctii increased TEER value and reduced permeability of OVA from apical to the basolateral side but not arctiin. In the present study, we revealed that F. Arctii could enhance intestinal barrier function, and its active component was an arctigenin on the functionality. We expect that the arctigenin from F. Arctii could contribute to prevention of inflammatory, allergic, and infectious diseases by reinforcing intestinal barrier function.

  14. Arctigenin from Fructus Arctii (Seed of Burdock) Reinforces Intestinal Barrier Function in Caco-2 Cell Monolayers.

    Science.gov (United States)

    Shin, Hee Soon; Jung, Sun Young; Back, Su Yeon; Do, Jeong-Ryong; Shon, Dong-Hwa

    2015-01-01

    Fructus Arctii is used as a traditional herbal medicine to treat inflammatory diseases in oriental countries. This study aimed to investigate effect of F. Arctii extract on intestinal barrier function in human intestinal epithelial Caco-2 cells and to reveal the active component of F. Arctii. We measured transepithelial electrical resistance (TEER) value (as an index of barrier function) and ovalbumin (OVA) permeation (as an index of permeability) to observe the changes of intestinal barrier function. The treatment of F. Arctii increased TEER value and decreased OVA influx on Caco-2 cell monolayers. Furthermore, we found that arctigenin as an active component of F. Arctii increased TEER value and reduced permeability of OVA from apical to the basolateral side but not arctiin. In the present study, we revealed that F. Arctii could enhance intestinal barrier function, and its active component was an arctigenin on the functionality. We expect that the arctigenin from F. Arctii could contribute to prevention of inflammatory, allergic, and infectious diseases by reinforcing intestinal barrier function.

  15. Arctigenin from Fructus Arctii (Seed of Burdock) Reinforces Intestinal Barrier Function in Caco-2 Cell Monolayers

    Science.gov (United States)

    Shin, Hee Soon; Jung, Sun Young; Back, Su Yeon; Do, Jeong-Ryong; Shon, Dong-Hwa

    2015-01-01

    Fructus Arctii is used as a traditional herbal medicine to treat inflammatory diseases in oriental countries. This study aimed to investigate effect of F. Arctii extract on intestinal barrier function in human intestinal epithelial Caco-2 cells and to reveal the active component of F. Arctii. We measured transepithelial electrical resistance (TEER) value (as an index of barrier function) and ovalbumin (OVA) permeation (as an index of permeability) to observe the changes of intestinal barrier function. The treatment of F. Arctii increased TEER value and decreased OVA influx on Caco-2 cell monolayers. Furthermore, we found that arctigenin as an active component of F. Arctii increased TEER value and reduced permeability of OVA from apical to the basolateral side but not arctiin. In the present study, we revealed that F. Arctii could enhance intestinal barrier function, and its active component was an arctigenin on the functionality. We expect that the arctigenin from F. Arctii could contribute to prevention of inflammatory, allergic, and infectious diseases by reinforcing intestinal barrier function. PMID:26550018

  16. Adrenomedullin and endothelial barrier function%肾上腺髓质素和内皮屏障功能

    Institute of Scientific and Technical Information of China (English)

    张玮珏; 王新华; 周荣斌

    2011-01-01

    研究表明,内皮屏障功能丧失是急性炎症的标志,并且在严重感染中促成器官功能衰竭,但是目前还没有关于内皮屏障功能稳定性治疗方面的研究.内源性肽肾上腺髓质素(Adrenomedullin,AM)血清水平显示其在严重感染包括脓毒症和脓毒性休克时升高,在体内和体外脓毒症模型中用作有效的内皮屏障功能的稳定剂.AM还具有心血管保护作用,包括在炎症状态保护微循环.总之,AM可能作为一个有效的保护因素,通过保护内皮屏障功能防治严重感染中的心血管功能障碍.%Although loss of endothelial barrier function is a hall mark of every acute inflammation and contributes to fatal loss of organ function during severe infections,there is no sufficient therapy for stabilization of endothelial barrier function. Endogenous peptide adrenomedullin (AM) serum levels were shown to be increased during severe infection including sepsis and septic shock. In different in vitro and in vivo models AM acted as a potent therapeutic endothelial barrier function-stabilizing agent. Activation of specific receptors by AM results in elevation of second messenger cAMP. AM inhibits actin-myosin based endothelial cell contraction and junctional disassembly,thereby preventing paracellular permeability and oedema formation. The peptide furthermore possesses several protective cardiovascular qualities,including protection of the microcirculation during inflammation,and proven to be as an efficient counter-regulatory molecule in various models of sepsis and scptic shock. Overall, AM may be an attractive molecule to combat against cardiovascular malfunction during severe infection.

  17. Adipocytes in both brown and white adipose tissue of adult mice are functionally connected via gap junctions: implications for Chagas disease.

    Science.gov (United States)

    Burke, Shoshana; Nagajyothi, Fnu; Thi, Mia M; Hanani, Menachem; Scherer, Philipp E; Tanowitz, Herbert B; Spray, David C

    2014-11-01

    Adipose tissue serves as a host reservoir for the protozoan Trypanosoma cruzi, the causative organism in Chagas disease. Gap junctions interconnect cells of most tissues, serving to synchronize cell activities including secretion in glandular tissue, and we have previously demonstrated that gap junctions are altered in various tissues and cells infected with T. cruzi. Herein, we examined the gap junction protein connexin 43 (Cx43) expression in infected adipose tissues. Adipose tissue is the largest endocrine organ of the body and is also involved in other physiological functions. In mammals, it is primarily composed of white adipocytes. Although gap junctions are a prominent feature of brown adipocytes, they have not been explored extensively in white adipocytes, especially in the setting of infection. Thus, we examined functional coupling in both white and brown adipocytes in mice. Injection of electrical current or the dye Lucifer Yellow into adipocytes within fat tissue spread to adjacent cells, which was reduced by treatment with agents known to block gap junctions. Moreover, Cx43 was detected in both brown and white fat tissue. At thirty and ninety days post-infection, Cx43 was downregulated in brown adipocytes and upregulated in white adipocytes. Gap junction-mediated intercellular communication likely contributes to hormone secretion and other functions in white adipose tissue and to nonshivering thermogenesis in brown fat, and modulation of the coupling by T. cruzi infection is expected to impact these functions. Copyright © 2014. Published by Elsevier Masson SAS.

  18. The important role of stratum corneum lipids for the cutaneous barrier function.

    Science.gov (United States)

    van Smeden, J; Janssens, M; Gooris, G S; Bouwstra, J A

    2014-03-01

    The skin protects the body from unwanted influences from the environment as well as excessive water loss. The barrier function of the skin is located in the stratum corneum (SC). The SC consists of corneocytes embedded in a lipid matrix. This lipid matrix is crucial for the lipid skin barrier function. This paper provides an overview of the reported SC lipid composition and organization mainly focusing on healthy and diseased human skin. In addition, an overview is provided on the data describing the relation between lipid modulations and the impaired skin barrier function. Finally, the use of in vitro lipid models for a better understanding of the relation between the lipid composition, lipid organization and skin lipid barrier is discussed. This article is part of a Special Issue entitled The Important Role of Lipids in the Epidermis and their Role in the Formation and Maintenance of the Cutaneous Barrier. This article is part of a Special Issue entitled The Important Role of Lipids in the Epidermis and their Role in the Formation and Maintenance of the Cutaneous Barrier. Guest Editors: Kenneth R. Feingold and Peter Elias.

  19. The tight junction protein JAM-A functions as coreceptor for rotavirus entry into MA104 cells.

    Science.gov (United States)

    Torres-Flores, Jesús M; Silva-Ayala, Daniela; Espinoza, Marco A; López, Susana; Arias, Carlos F

    2015-01-15

    Several molecules have been identified as receptors or coreceptors for rotavirus infection, including glycans, integrins, and hsc70. In this work we report that the tight junction proteins JAM-A, occludin, and ZO-1 play an important role during rotavirus entry into MA104 cells. JAM-A was found to function as coreceptor for rotavirus strains RRV, Wa, and UK, but not for rotavirus YM. Reassortant viruses derived from rotaviruses RRV and YM showed that the virus spike protein VP4 determines the use of JAM-A as coreceptor.

  20. Characterization of the temporo-parietal junction by combining data-driven parcellation, complementary connectivity analyses, and functional decoding

    Science.gov (United States)

    Bzdok, Danilo; Langner, Robert; Schilbach, Leonhard; Jakobs, Oliver; Roski, Christian; Caspers, Svenja; Laird, Angela R.; Fox, Peter T.; Zilles, Karl; Eickhoff, Simon B.

    2016-01-01

    The right temporo-parietal junction (RTPJ) is consistently implicated in two cognitive domains, attention and social cognitions. We conducted multi-modal connectivity-based parcellation to investigate potentially separate functional modules within RTPJ implementing this cognitive dualism. Both task-constrained meta-analytic coactivation mapping and task-free resting-state connectivity analysis independently identified two distinct clusters within RTPJ, subsequently characterized by network mapping and functional forward/reverse inference. Coactivation mapping and resting-state correlations revealed that the anterior cluster increased neural activity concomitantly with a midcingulate–motor–insular network, functionally associated with attention, and decreased neural activity concomitantly with a parietal network, functionally associated with social cognition and memory retrieval. The posterior cluster showed the exact opposite association pattern. Our data thus suggest that RTPJ links two antagonistic brain networks processing external versus internal information. PMID:23689016

  1. Update on pulmonary edema: the role and regulation of endothelial barrier function.

    Science.gov (United States)

    Patterson, C E; Lum, H

    2001-01-01

    Discovery of the pathophysiologic mechanisms leading to pulmonary edema and identification of effective strategies for prevention remain significant clinical concerns. Endothelial barrier function is a key component for maintenance of the integrity of the vascular boundary in the lung, particularly since the gas exchange surface area of the alveolar-capillary membrane is large. This review is focused on new insights in the pulmonary endothelial response to injury and recovery, reversible activation by edemagenic agents, and the biochemical/structural basis for regulation of endothelial barrier function. This information is discussed in the context of fundamental concepts of lung fluid balance and pulmonary function.

  2. Effect of wild-type Shigella species and attenuated Shigella vaccine candidates on small intestinal barrier function, antigen trafficking, and cytokine release.

    Directory of Open Access Journals (Sweden)

    Maria Fiorentino

    Full Text Available Bacterial dysentery due to Shigella species is a major cause of morbidity and mortality worldwide. The pathogenesis of Shigella is based on the bacteria's ability to invade and replicate within the colonic epithelium, resulting in severe intestinal inflammatory response and epithelial destruction. Although the mechanisms of pathogenesis of Shigella in the colon have been extensively studied, little is known on the effect of wild-type Shigella on the small intestine and the role of the host response in the development of the disease. Moreover, to the best of our knowledge no studies have described the effects of apically administered Shigella flexneri 2a and S. dysenteriae 1 vaccine strains on human small intestinal enterocytes. The aim of this study was to assess the coordinated functional and immunological human epithelial responses evoked by strains of Shigella and candidate vaccines on small intestinal enterocytes. To model the interactions of Shigella with the intestinal mucosa, we apically exposed monolayers of human intestinal Caco2 cells to increasing bacterial inocula. We monitored changes in paracellular permeability, examined the organization of tight-junctions and the pro-inflammatory response of epithelial cells. Shigella infection of Caco2 monolayers caused severe mucosal damage, apparent as a drastic increase in paracellular permeability and disruption of tight junctions at the cell-cell boundary. Secretion of pro-inflammatory IL-8 was independent of epithelial barrier dysfunction. Shigella vaccine strains elicited a pro-inflammatory response without affecting the intestinal barrier integrity. Our data show that wild-type Shigella infection causes a severe alteration of the barrier function of a small intestinal cell monolayer (a proxy for mucosa and might contribute (along with enterotoxins to the induction of watery diarrhea. Diarrhea may be a mechanism by which the host attempts to eliminate harmful bacteria and transport them

  3. Effect of wild-type Shigella species and attenuated Shigella vaccine candidates on small intestinal barrier function, antigen trafficking, and cytokine release.

    Science.gov (United States)

    Fiorentino, Maria; Levine, Myron M; Sztein, Marcelo B; Fasano, Alessio

    2014-01-01

    Bacterial dysentery due to Shigella species is a major cause of morbidity and mortality worldwide. The pathogenesis of Shigella is based on the bacteria's ability to invade and replicate within the colonic epithelium, resulting in severe intestinal inflammatory response and epithelial destruction. Although the mechanisms of pathogenesis of Shigella in the colon have been extensively studied, little is known on the effect of wild-type Shigella on the small intestine and the role of the host response in the development of the disease. Moreover, to the best of our knowledge no studies have described the effects of apically administered Shigella flexneri 2a and S. dysenteriae 1 vaccine strains on human small intestinal enterocytes. The aim of this study was to assess the coordinated functional and immunological human epithelial responses evoked by strains of Shigella and candidate vaccines on small intestinal enterocytes. To model the interactions of Shigella with the intestinal mucosa, we apically exposed monolayers of human intestinal Caco2 cells to increasing bacterial inocula. We monitored changes in paracellular permeability, examined the organization of tight-junctions and the pro-inflammatory response of epithelial cells. Shigella infection of Caco2 monolayers caused severe mucosal damage, apparent as a drastic increase in paracellular permeability and disruption of tight junctions at the cell-cell boundary. Secretion of pro-inflammatory IL-8 was independent of epithelial barrier dysfunction. Shigella vaccine strains elicited a pro-inflammatory response without affecting the intestinal barrier integrity. Our data show that wild-type Shigella infection causes a severe alteration of the barrier function of a small intestinal cell monolayer (a proxy for mucosa) and might contribute (along with enterotoxins) to the induction of watery diarrhea. Diarrhea may be a mechanism by which the host attempts to eliminate harmful bacteria and transport them from the small to

  4. Effect of Wild-Type Shigella Species and Attenuated Shigella Vaccine Candidates on Small Intestinal Barrier Function, Antigen Trafficking, and Cytokine Release

    Science.gov (United States)

    Fiorentino, Maria; Levine, Myron M.

    2014-01-01

    Bacterial dysentery due to Shigella species is a major cause of morbidity and mortality worldwide. The pathogenesis of Shigella is based on the bacteria's ability to invade and replicate within the colonic epithelium, resulting in severe intestinal inflammatory response and epithelial destruction. Although the mechanisms of pathogenesis of Shigella in the colon have been extensively studied, little is known on the effect of wild-type Shigella on the small intestine and the role of the host response in the development of the disease. Moreover, to the best of our knowledge no studies have described the effects of apically administered Shigella flexneri 2a and S. dysenteriae 1 vaccine strains on human small intestinal enterocytes. The aim of this study was to assess the coordinated functional and immunological human epithelial responses evoked by strains of Shigella and candidate vaccines on small intestinal enterocytes. To model the interactions of Shigella with the intestinal mucosa, we apically exposed monolayers of human intestinal Caco2 cells to increasing bacterial inocula. We monitored changes in paracellular permeability, examined the organization of tight-junctions and the pro-inflammatory response of epithelial cells. Shigella infection of Caco2 monolayers caused severe mucosal damage, apparent as a drastic increase in paracellular permeability and disruption of tight junctions at the cell-cell boundary. Secretion of pro-inflammatory IL-8 was independent of epithelial barrier dysfunction. Shigella vaccine strains elicited a pro-inflammatory response without affecting the intestinal barrier integrity. Our data show that wild-type Shigella infection causes a severe alteration of the barrier function of a small intestinal cell monolayer (a proxy for mucosa) and might contribute (along with enterotoxins) to the induction of watery diarrhea. Diarrhea may be a mechanism by which the host attempts to eliminate harmful bacteria and transport them from the small to

  5. Protein kinase C δ signaling is required for dietary prebiotic-induced strengthening of intestinal epithelial barrier function

    Science.gov (United States)

    Wu, Richard Y.; Abdullah, Majd; Määttänen, Pekka; Pilar, Ana Victoria C.; Scruten, Erin; Johnson-Henry, Kathene C.; Napper, Scott; O’Brien, Catherine; Jones, Nicola L.; Sherman, Philip M.

    2017-01-01

    Prebiotics are non-digestible oligosaccharides that promote the growth of beneficial gut microbes, but it is unclear whether they also have direct effects on the intestinal mucosal barrier. Here we demonstrate two commercial prebiotics, inulin and short-chain fructo-oligosaccharide (scFOS), when applied onto intestinal epithelia in the absence of microbes, directly promote barrier integrity to prevent pathogen-induced barrier disruptions. We further show that these effects involve the induction of select tight junction (TJ) proteins through a protein kinase C (PKC) δ-dependent mechanism. These results suggest that in the absence of microbiota, prebiotics can directly exert barrier protective effects by activating host cell signaling in the intestinal epithelium, which represents a novel alternative mechanism of action of prebiotics. PMID:28098206

  6. [Editorial introduction: from the structure and functions of the neuromuscular junction to the diseases].

    Science.gov (United States)

    Takamori, Masaharu

    2011-07-01

    The neuromuscular junction has been recognized as a site for autoimmune and genetic disorders. Myasthenia gravis (MG) is mainly caused by postsynaptic nicotinic acetylcholine receptor (AChR) IgG1 antibodies that are directed against α-subunit 67-76 and 125-147 and activate complement. Thymic abnormalities are present in the autoimmune background. A proportion of MG patients without conformation-dependent AChR antibodies assayed by the cell-based method have muscle-specific tyrosine kinase (MuSK) antibodies which are largely IgG4 and partially IgG1. MuSK is activated by Dok-7 and Lrp4 (agrin receptor) and contributes to AChR clustering at the postsynaptic membrane via various kinase cascades in collaboration with Wnt-MuSK/Frizzled-Dishevelled signaling. Rapsyn interacts with MuSK-linked chaperones to stabilize postsynaptic architecture and also contributes to AChR phosphorylation. MG-associated thymomas express antigens that trigger antibody responses which play a part in disease generation and modification. Among these, ryanodine receptor-1 (RyR1; acts on sarcoplasmic Ca2+ release) antibodies cause muscle contractile weakness. Transient receptor potential canonical-3 (TRPC3) antibodies are also detected in thymoma-associated MG patients; they may participate in muscle contractile weakness because TRPC3 acts on RyR1, and may also impair the refill of sarcoplasmic Ca2+ stores since TRPCs contribute to the receptor-operated Ca2+ influx via the phospholipase C (PLC)-diacylglycerol (DAG) pathway in cooperation with the store-operated, STIM1/Orai1-mediated Ca2+ influx and TRPCs-Homerl-IP3R interaction. Lambert-Eaton myasthenic syndrome (LEMS) is caused by reduced ACh quantal release that occurs mainly because of presynaptic P/Q-type voltage-gated Ca2+ channel (VGCC) antibodies. Physicians should be vigilant for LEMS because it may predict an underlying malignancy, particularly small-cell lung carcinoma; SOX-1 antibodies are usually present in these patients and are

  7. Cigarette smoke impairs airway epithelial barrier function and cell-cell contact recovery

    NARCIS (Netherlands)

    Heijink, I H; Brandenburg, S M; Postma, D S; van Oosterhout, A J M

    2012-01-01

    Cigarette smoking, the major cause of chronic obstructive pulmonary disease (COPD), induces aberrant airway epithelial structure and function. The underlying mechanisms are unresolved so far. We studied effects of cigarette smoke extract (CSE) on epithelial barrier function and wound regeneration in

  8. Clinical implications of the sugar absorption test : Intestinal permeability test to assess mucosal barrier function

    NARCIS (Netherlands)

    Uil, JJ; VanElburg, RM; VanOverbeek, FM; Mulder, CJJ; VanbergeHenegouwen, GP; Heymans, HSA

    1997-01-01

    Background: Functional integrity as an aspect of the mucosal barrier function of the small bowel can be estimated by the intestinal permeability for macromolecules. In the first part of this paper, an overview of intestinal permeability and its measurement is given. Methods: In the second part of th

  9. Fusion excitation function measurement for 6Li+64Ni at near-barrier energies

    Directory of Open Access Journals (Sweden)

    Shaikh Md. Moin

    2015-01-01

    Full Text Available Total fusion excitation function has been measured for the reaction of weakly bound 6Li projectile on medium mass 64Ni target at energies near the Coulomb barrier of the system. Online characteristic γ-ray detection method has been used to identify and determine the cross sections of the residues. No suppression of total fusion cross section (σTF is observed at above barrier energies. But enhancement of measured cross section with respect to the one-dimensional barrier penetration model (1-DBPM calculation is observed at below barrier energies. The enhancement can not be explained by coupled channels calculation with dominant projectile and target excitations as well as one-neutron stripping reaction.

  10. A search for parameters of universal sub-barrier fusion excitation function

    Science.gov (United States)

    Qu, W. W.; Zhang, G. L.; Wolski, R.

    2016-11-01

    Many fusion experimental data have been analyzed in terms of a simple universal function which could be used for predictions of fusion cross section below the barrier for arbitrary systems. Sub-barrier fusions based on the concept of Q -fusion value dependence were studied. It is attempted to parameterize the energy-reduced fusion excitation functions around the Coulomb barriers by an analytical phenomenological function. It was found that the speed of driving nuclei towards fusion is faster with the increase of mass asymmetry of colliding systems and those systems with a large difference of the ratio of neutrons to protons. However, a general trend with respect to total mass has not been observed. An exposition of more qualitative conclusions is hindered by apparent inconsistencies of measured fusion cross sections.

  11. Deconstructing the brain’s moral network: dissociable functionality between the temporoparietal junction and ventro-medial prefrontal cortex

    Science.gov (United States)

    Mobbs, Dean; Dalgleish, Tim

    2014-01-01

    Research has illustrated that the brain regions implicated in moral cognition comprise a robust and broadly distributed network. However, understanding how these brain regions interact and give rise to the complex interplay of cognitive processes underpinning human moral cognition is still in its infancy. We used functional magnetic resonance imaging to examine patterns of activation for ‘difficult’ and ‘easy’ moral decisions relative to matched non-moral comparators. This revealed an activation pattern consistent with a relative functional double dissociation between the temporoparietal junction (TPJ) and ventro-medial prefrontal cortex (vmPFC). Difficult moral decisions activated bilateral TPJ and deactivated the vmPFC and OFC. In contrast, easy moral decisions revealed patterns of activation in the vmPFC and deactivation in bilateral TPJ and dorsolateral PFC. Together these results suggest that moral cognition is a dynamic process implemented by a distributed network that involves interacting, yet functionally dissociable networks. PMID:23322890

  12. Deconstructing the brain's moral network: dissociable functionality between the temporoparietal junction and ventro-medial prefrontal cortex.

    Science.gov (United States)

    Feldmanhall, Oriel; Mobbs, Dean; Dalgleish, Tim

    2014-03-01

    Research has illustrated that the brain regions implicated in moral cognition comprise a robust and broadly distributed network. However, understanding how these brain regions interact and give rise to the complex interplay of cognitive processes underpinning human moral cognition is still in its infancy. We used functional magnetic resonance imaging to examine patterns of activation for 'difficult' and 'easy' moral decisions relative to matched non-moral comparators. This revealed an activation pattern consistent with a relative functional double dissociation between the temporoparietal junction (TPJ) and ventro-medial prefrontal cortex (vmPFC). Difficult moral decisions activated bilateral TPJ and deactivated the vmPFC and OFC. In contrast, easy moral decisions revealed patterns of activation in the vmPFC and deactivation in bilateral TPJ and dorsolateral PFC. Together these results suggest that moral cognition is a dynamic process implemented by a distributed network that involves interacting, yet functionally dissociable networks.

  13. Partial hepatectomy aggravates cyclosporin A-induced neurotoxicity by lowering the function of the blood-brain barrier in mice.

    Science.gov (United States)

    Yamauchi, Atsushi; Dohgu, Shinya; Takata, Fuyuko; Watanabe, Takuya; Nishioku, Tsuyoshi; Matsumoto, Junich; Ohkubo, Yuka; Shuto, Hideki; Kataoka, Yasufumi

    2011-03-14

    Cyclosporin A, a calcineurin inhibitor, produces neurotoxicity with relatively high frequency in organ-transplanted patients. The aim of the present study was to clarify whether acute liver failure (ALF) simulated to the transient liver dysfunction at an early phase after liver transplantation increases the susceptibility to cyclosporin A-induced neurotoxicity through the blood-brain barrier (BBB) dysfunction. The right internal, left lateral and left internal lobes in male ddy mice were surgically excised under sodium pentobarbital anesthesia. Effect of cyclosporin A on harmine-induced tremors was examined and BBB permeability to (3)[H]cyclosporin A was assessed in partially (70%) hepatectomized mice at postoperative days 1, 3 and 7. Patrial hepatectomy aggravated harmine-induced tremors. Cyclosporin A (50mg/kg, i.p.) markedly augmented harmine-induced tremors in partially hepatectomized mice at postoperative day 1. Consistent with these behavioral findings, the brain uptake of (3)[H]cyclosporin A in mice injected with (3)[H]cyclosporin A into the jugular vein at postoperative day 1 was significantly increased by partial hepatectomy compared with sham operation. Our results indicate that ALF increases BBB permeability to cyclosporin A by lowering the function of P-glycoprotein and tight junctions, consequently leading to augmentation of cyclosporin A-induced neurotoxicity. The possibility that cyclosporin A increases the risk of neurotoxicity including tremors at an early phase of liver transplantation must be considered. Copyright © 2011 Elsevier Inc. All rights reserved.

  14. Prostaglandins I2 and E2 have a synergistic role in rescuing epithelial barrier function in porcine ileum.

    Science.gov (United States)

    Blikslager, A T; Roberts, M C; Rhoads, J M; Argenzio, R A

    1997-10-15

    Prostaglandins (PG) are cytoprotective for gastrointestinal epithelium, possibly because they enhance mucosal repair. The objective of the present studies was to assess the role of prostaglandins in intestinal repair. Intestinal mucosa from porcine ileum subjected to 1 h of ischemia was mounted in Ussing chambers. Recovery of normal transepithelial electrical resistance occurred within 2 h, and continued to increase for a further 2 h to a value twice that of control. The latter response was blocked by inhibition of prostaglandin synthesis, and restored by addition of both carbacyclin (an analog of PGI2) and PGE2, whereas the addition of each alone had little effect. Histologically, prostaglandins had no effect on epithelial restitution or villous contraction, indicating that elevations in transepithelial resistance were associated with increases in paracellular resistance. Furthermore, prostaglandin-stimulated elevations in resistance were inhibited with cytochalasin D, an agent known to stimulate cytoskeletal contraction. Synergistic elevations in transepithelial resistance, similar to those of carbacyclin and PGE2, were also noted after treatment with cAMP and A23187 (a calcium ionophore). We conclude that PGE2 and PGI2 have a synergistic role in restoration of intestinal barrier function by increasing intracellular cAMP and Ca2+, respectively, which in turn signal cytoskeletal-mediated tight junction closure.

  15. Quantum conductance of 4,4-bipyridine molecular junctions: Role of electrode work function and local d band

    DEFF Research Database (Denmark)

    Rauba, J.M.C.; Strange, Mikkel; Thygesen, Kristian Sommer

    2008-01-01

    We present density-functional theory calculations for the geometry and conductance of 4,4-bipyridine (BPD) nanojunctions with Au and Pt electrodes. The fact that transport takes place via bipyridine's lowest unoccupied molecular orbital (LUMO) suggests that the Au-BPD junction should have larger...... conductance than the Pt-BPD junction due to the smaller work function of Au as compared to Pt. On the other hand, coupling to the local d band is stronger in the case of Pt and this broadens the LUMO resonance. We find that these effects largely outbalance each other leading to conductances of 0.01G(0) and 0.......02G(0) for the Au and Pt contacts, respectively (G(0)=2e(2)/h is the conductance quantum). The effect of coupling to the electrodes is investigated by means of the group orbital which makes precise the concept of the local band. The construction allows us to explain and rationalize the first...

  16. A membrane fusion protein αSNAP is a novel regulator of epithelial apical junctions.

    Directory of Open Access Journals (Sweden)

    Nayden G Naydenov

    Full Text Available Tight junctions (TJs and adherens junctions (AJs are key determinants of the structure and permeability of epithelial barriers. Although exocytic delivery to the cell surface is crucial for junctional assembly, little is known about the mechanisms controlling TJ and AJ exocytosis. This study was aimed at investigating whether a key mediator of exocytosis, soluble N-ethylmaleimide sensitive factor (NSF attachment protein alpha (αSNAP, regulates epithelial junctions. αSNAP was enriched at apical junctions in SK-CO15 and T84 colonic epithelial cells and in normal human intestinal mucosa. siRNA-mediated knockdown of αSNAP inhibited AJ/TJ assembly and establishment of the paracellular barrier in SK-CO15 cells, which was accompanied by a significant down-regulation of p120-catenin and E-cadherin expression. A selective depletion of p120 catenin effectively disrupted AJ and TJ structure and compromised the epithelial barrier. However, overexpression of p120 catenin did not rescue the defects of junctional structure and permeability caused by αSNAP knockdown thereby suggesting the involvement of additional mechanisms. Such mechanisms did not depend on NSF functions or induction of cell death, but were associated with disruption of the Golgi complex and down-regulation of a Golgi-associated guanidine nucleotide exchange factor, GBF1. These findings suggest novel roles for αSNAP in promoting the formation of epithelial AJs and TJs by controlling Golgi-dependent expression and trafficking of junctional proteins.

  17. Increase in short-chain ceramides correlates with an altered lipid organization and decreased barrier function in atopic eczema patients

    NARCIS (Netherlands)

    M. Janssens (Michelle); J. van Smeden (Jeroen); G.S. Gooris (Gert); W. Bras (Wim); G. Portale (Guiseppe); P.J. Caspers (Peter); R. Vreeken (Rob); T. Hankemeier (Thomas); S. Kezic (Sanja); R. Wolterbeek (Ron); A.P.M. Lavrijsen (Adriana); J.A. Bouwstra (Joke)

    2012-01-01

    textabstractA hallmark of atopic eczema (AE) is skin barrier dysfunction. Lipids in the stratum corneum (SC), primarily ceramides, fatty acids, and cholesterol, are crucial for the barrier function, but their role in relation to AE is indistinct. Filaggrin is an epithelial barrier protein with a

  18. Relative importance of energy dependent diffuseness parameter and barrier position in the analysis of fusion excitation function data

    Directory of Open Access Journals (Sweden)

    Kharab Rajesh

    2014-03-01

    Full Text Available We have investigated the relative importance of the energy dependence of diffuseness parameter and barrier position in the description of the fusion excitation function data of some heavy ion systems in near barrier energy region. The effects of the energy dependent diffuseness parameter are found to be much more prominent in comparison to those of barrier position.

  19. Functional barrier in two-layer recycled PP films for food packaging applications

    Science.gov (United States)

    Scarfato, P.; Di Maio, L.; Milana, M. R.; Feliciani, R.; Denaro, M.; Incarnato, L.

    2014-05-01

    A preliminary study on bi-layer virgin/contaminated polypropylene co-extruded films was performed in order to evaluate the possibility to realize an effective functional barrier in PP-based multi-layer systems. In particular, the specific migration in 10% v/v aqueous ethanol of two surrogate contaminants (phenyl-cyclohexane and benzophenone) contained in the contaminated layer across the PP functional barrier was measured at different times and the results were compared with those obtained from a contaminated mono-layer polypropylene film. Moreover, the thermal and mechanical performances of the produced films were investigated.

  20. The dividend function in the jump-diffusion dual model with barrier dividend strategy

    Institute of Scientific and Technical Information of China (English)

    LI Bo; WU Rong

    2008-01-01

    A dual model of the perturbed classical compound Poisson risk model is considered under a constant dividend barrier.A new method is used in deriving the boundary condition of the equation for the expectation function by studying the local time of a related process.We obtain the expression for the expected discount dividend function in terms of those in the corresponding perturbed compound Poisson risk model without barriers.A special case in which the gain size is phase-type distributed is illustrated.We also consider the existence of the optimal dividend level.

  1. Prophylactic treatment with growth hormone improves intestinal barrier function and alleviates bacterial translocation in stressed rats

    Institute of Scientific and Technical Information of China (English)

    丁连安; 黎介寿; 李幼生; 刘放南; 谭力

    2004-01-01

    Background Damage to the gut barrier often occurs during critical illnesses. In such cases, it is very important to alleviate impairment of the intestinal barrier and protect intestinal barrier function. This study investigated the protective effect of growth hormone on intestinal barrier function in rats under stress.Methods This study consisted of prospective, randomized, and controlled animal experiments. Twenty-five Sprague-Dawley rats served as total parenteral nutrition (TPN) models and were divided into three groups: TPN group, sepsis (Sep) group, and growth hormone (GH) group. Another 8 rats served as normal controls. Each group received different stress stimuli. Rats were fed for 7 days, and samples were taken for examination 24 hours after garaging with dual saccharides. Results The architecture of the small intestinal mucosa in the Sep group showed the most severe damage among all groups. Nitric oxide levels in blood plasma and immunoglobulin A levels in the intestinal mucosa of the GH group were significantly lower than in the Sep group (P<0.02). There were no significant changes in CD3 counts and in the CD4/CD8 ratio between the four groups. Dual sugar tests and bacteriological examinations revealed that intestinal permeability and rate of bacterial translocation in the GH group were lower than in the Sep group (P<0.01, respectively).Conclusion Prophylactic treatment with growth hormone can alleviate damage to intestinal barrier function caused by trauma and endotoxemia in rats under stress.

  2. A functional mechanistic study of the effect of emollients on the structure and function of the skin barrier.

    Science.gov (United States)

    Danby, S G; Chalmers, J; Brown, K; Williams, H C; Cork, M J

    2016-11-01

    Preventing relapses of atopic dermatitis (AD) through the regular use of topical products to repair the skin barrier defect is an emerging concept. It is still unclear if some commonly used emollients exert a positive effect on the skin barrier. To determine the skin barrier effects of emollients commonly prescribed in the U.K. Two cohorts of volunteers with quiescent AD undertook observer-blind forearm-controlled studies. The first cohort (18 volunteers) treated the volar side of one forearm with two fingertip units of Doublebase(™) gel twice daily for 4 weeks. The second cohort (19 volunteers) undertook the same regimen using Diprobase(®) cream. Transepidermal water loss (TEWL), stratum corneum integrity and hydration, skin surface pH and redness were determined at the test sites before and after treatment. Neither Diprobase(®) cream nor Doublebase(™) gel significantly affected the underlying skin barrier function. Both emollients were associated with significantly increased skin surface pH immediately after application (by 0·8 ± 0·19 and 1·0 ± 0·18 units, respectively), and no erythema. Diprobase(®) cream artificially and transiently (6 h) improved permeability barrier function by 2·9-3·1 g m(-2)  h(-1) TEWL and increased skin hydration by 6·0-6·2 units. Doublebase(™) gel, containing humectants, was associated with a greater (between 10·1 and 13·0 units during the first 6 h) and more sustained increase in hydration, lasting more than 12 h following repeated use. Diprobase(®) cream and Doublebase(™) gel are not associated with skin barrier harm and appear to be appropriate for AD treatment. While displaying emollient properties, neither formulation displayed an ability to actively improve sustained skin barrier function. © 2016 British Association of Dermatologists.

  3. The parametrization of Coulomb barrier heights and positions using a new universal function in the proximity potential

    Science.gov (United States)

    Zhang, G. L.; Pan, M.

    2016-10-01

    The Coulomb barrier heights are calculated by using the proximity potential with a new universal function in comparison with the results of proximity potentials Prox77, AW95, Bass73, BW91, CW76, DP and Ng80. It is found that the new results of Coulomb barrier heights are better than those of most proximity potentials. Then this proximity potential with the new universal function was used to calculate the Coulomb barrier positions and heights from light fusion systems to heavy fusion systems. The parametrized formulas are obtained for Coulomb barrier height and position, and can reproduce most of calculated barrier heights and positions within the accuracy of ± 1%.

  4. Functions of an engineered barrier system for a nuclear waste repository in basalt

    Energy Technology Data Exchange (ETDEWEB)

    Coons, W.E.; Moore, E.L.; Smith, M.J.; Kaser, J.D.

    1980-01-01

    Defined in this document are the functions of components selected for an engineered barrier system for a nuclear waste repository in basalt. The definitions provide a focal point for barrier material research and development by delineating the purpose and operative lifetime of each component of the engineered system. A five-component system (comprised of waste form, canister, buffer, overpack, and tailored backfill) is discussed in terms of effective operation throughout the course of repository history, recognizing that the emplacement environment changes with time. While components of the system are mutually supporting, redundancy is provided by subsystems of physical and chemical barriers which act in concert with the geology to provide a formidable barrier to transport of hazardous materials to the biosphere. The operating philosophy of the conceptual engineered barrier system is clarified by examples pertinent to storage in basalt, and a technical approach to barrier design and material selection is proposed. A method for system validation and qualification is also included which considers performance criteria proposed by external agencies in conjunction with site-specific models and risk assessment to define acceptable levels of system performance.

  5. Adiponectin in Fresh Frozen Plasma Contributes to Restoration of Vascular Barrier Function After Hemorrhagic Shock.

    Science.gov (United States)

    Deng, Xiyun; Cao, Yanna; Huby, Maria P; Duan, Chaojun; Baer, Lisa; Peng, Zhanglong; Kozar, Rosemary A; Doursout, Marie-Francoise; Holcomb, John B; Wade, Charles E; Ko, Tien C

    2016-01-01

    Hemorrhagic shock is the leading cause of preventable deaths in civilian and military trauma. Use of fresh frozen plasma (FFP) in patients requiring massive transfusion is associated with improved outcomes. FFP contains significant amounts of adiponectin, which is known to have vascular protective function. We hypothesize that FFP improves vascular barrier function largely via adiponectin. Plasma adiponectin levels were measured in 19 severely injured patients in hemorrhagic shock (HS). Compared with normal individuals, plasma adiponectin levels decreased to 49% in HS patients before resuscitation (P < 0.05) and increased to 64% post-resuscitation (but not significant). In a HS mouse model, we demonstrated a similar decrease in plasma adiponectin to 54% but a significant increase to 79% by FFP resuscitation compared with baseline (P < 0.05). HS disrupted lung vascular barrier function, leading to an increase in permeability. FFP resuscitation reversed these HS-induced effects. Immunodepletion of adiponectin from FFP abolished FFP's effects on blocking endothelial hyperpermeability in vitro, and on improving lung vascular barrier function in HS mice. Replenishment with adiponectin rescued FFP's effects. These findings suggest that adiponectin is an important component in FFP resuscitation contributing to the beneficial effects on vascular barrier function after HS.

  6. Junction like behavior in polycrystalline diamond films

    Energy Technology Data Exchange (ETDEWEB)

    Bhaskaran, Shivakumar, E-mail: sbhaskar@mail.uh.edu [Department of Electrical and Computer Engineering, Cullen College of Engineering, University of Houston, TX 77004 (United States); Charlson, Earl Joe; Litvinov, Dmitri [Department of Electrical and Computer Engineering, Cullen College of Engineering, University of Houston, TX 77004 (United States); Makarenko, Boris [Department of Chemistry, University of Houston, TX 77004 (United States)

    2012-01-25

    Highlights: Black-Right-Pointing-Pointer The result that we obtained are compared with single crystalline diamond devices. Black-Right-Pointing-Pointer The barrier height of 4.4 eV matches the ideal pn-junction barrier height of diamond thin film. - Abstract: We have successfully fabricated polycrystalline diamond rectifying junction devices on n-type (1 0 0) silicon substrates by Hot Filament Chemical Vapor Deposition (HFCVD) using methane/hydrogen process gas and trimethyl borate and trimethyl phosphite dissolved in acetone as p- and n-type dopants, respectively. Impedance spectroscopy and current-voltage analysis indicates that the conduction is vertical down the grains and facets and not due to surface effects. Electrical characteristics were analyzed with In and Ti/Au top metal contacts with Al as the substrate contact. Current-voltage characteristics as a function of temperature showed barrier potentials of 1.1 eV and 0.77 eV for the In and Ti/Au contacts, respectively. Barrier heights of 4.8 eV (In) and 4.4 eV (Ti/Au) were obtained from capacitance-voltage measurements.

  7. Neisseria gonorrhoeae breaches the apical junction of polarized epithelial cells for transmigration by activating EGFR.

    Science.gov (United States)

    Edwards, Vonetta L; Wang, Liang-Chun; Dawson, Valerie; Stein, Daniel C; Song, Wenxia

    2013-06-01

    Neisseria gonorrhoeae initiates infection at the apical surface of columnar endocervical epithelial cells in the female reproductive tract. These cells provide a physical barrier against pathogens by forming continuous apical junctional complexes between neighbouring cells. This study examines the interaction of gonococci (GC) with polarized epithelial cells. We show that viable GC preferentially localize at the apical side of the cell-cell junction in polarized endometrial and colonic epithelial cells, HEC-1-B and T84. In GC-infected cells, continuous apical junctional complexes are disrupted, and the junction-associated protein β-catenin is redistributed from the apical junction to the cytoplasm and to GC adherent sites; however, overall cellular levels remain unchanged. This redistribution of junctional proteins is associated with a decrease in the 'fence' function of the apical junction but not its 'gate' function. Disruption of the apical junction by removing calcium increases GC transmigration across the epithelial monolayer. GC inoculation induces the phosphorylation of both epidermal growth factor receptor (EGFR) and β-catenin, while inhibition of EGFR kinase activity significantly reduces both GC-induced β-catenin redistribution and GC transmigration. Therefore, the gonococcus is capable of weakening the apical junction and polarity of epithelial cells by activating EGFR, which facilitates GC transmigration across the epithelium.

  8. ROCK activity regulates functional tight junction assembly during blastocyst formation in porcine parthenogenetic embryos

    Directory of Open Access Journals (Sweden)

    Jeongwoo Kwon

    2016-04-01

    Full Text Available The Rho-associated coiled-coil-containing protein serine/threonine kinases 1 and 2 (ROCK1 and ROCK2 are Rho subfamily GTPase downstream effectors that regulate cell migration, intercellular adhesion, cell polarity, and cell proliferation by stimulating actin cytoskeleton reorganization. Inhibition of ROCK proteins affects specification of the trophectoderm (TE and inner cell mass (ICM lineages, compaction, and blastocyst cavitation. However, the molecules involved in blastocyst formation are not known. Here, we examined developmental competence and levels of adherens/tight junction (AJ/TJ constituent proteins, such as CXADR, OCLN, TJP1, and CDH1, as well as expression of their respective mRNAs, after treating porcine parthenogenetic four-cell embryos with Y-27632, a specific inhibitor of ROCK, at concentrations of 0, 10, 20, 100 µM for 24 h. Following this treatment, the blastocyst development rates were 39.1, 20.7, 10.0, and 0% respectively. In embryos treated with 20 µM treatment, expression levels of CXADR, OCLN, TJP1, and CDH1 mRNA and protein molecules were significantly reduced (P < 0.05. FITC-dextran uptake assay revealed that the treatment caused an increase in TE TJ permeability. Interestingly, the majority of the four-cell and morula embryos treated with 20 µM Y-27643 for 24 h showed defective compaction and cavitation. Taken together, our results indicate that ROCK activity may differentially affect assembly of AJ/TJs as well as regulate expression of genes encoding junctional proteins.

  9. Spin transfer torque in non-collinear magnetic tunnel junctions exhibiting quasiparticle bands: a non-equilibrium Green's function study

    Science.gov (United States)

    Jaya, Selvaraj Mathi

    2017-06-01

    A non-equilibrium Green's function formulation to study the spin transfer torque (STT) in non-collinear magnetic tunnel junctions (MTJs) exhibiting quasiparticle bands is developed. The formulation can be used to study the magnetoresistance and spin current too. The formulation is used to study the STT in model tunnel junctions exhibiting multiple layers and quasiparticle bands. The many body interaction that gives rise to quasiparticle bands is assumed to be a s - f exchange interaction at the electrode regions of the MTJ. The quasiparticle bands are obtained using a many body procedure and the single particle band structure is obtained using the tight binding model. The bias dependence of the STT as well as the influence of band occupancy and s - f exchange coupling strength on the STT are studied. We find from our studies that the band occupancy plays a significant role in deciding the STT and the s - f interaction strength too influences the STT significantly. Anomalous behavior in both the parallel and perpendicular components of the STT is obtained from our studies. Our results obtained for certain values of the band occupation are found to show the trend observed from the experimental measurements of STT.

  10. Mycotoxins modify the barrier function of Caco-2 cells through differential gene expression of specific claudin isoforms: Protective effect of illite mineral clay.

    Science.gov (United States)

    Romero, Alejandro; Ares, Irma; Ramos, Eva; Castellano, Víctor; Martínez, Marta; Martínez-Larrañaga, María-Rosa; Anadón, Arturo; Martínez, María-Aránzazu

    2016-04-15

    Aflatoxin B1 (AFB1), fumonisin B1 (FB1), ochratoxin A (OTA) and T-2 toxin (T2) are mycotoxins that commonly contaminate the food chain and cause various toxicological effects. Their global occurrence is regarded as an important risk factor for human and animal health. In this study, the results demonstrate that, in human Caco-2 cells, AFB1, FB1, OTA and T2 origin cytotoxic effects, determining cell viability through MTT assay and LDH leakage, and decrease trans-epithelial electrical resistance (TEER). The decrease in barrier properties is concomitant with a reduction in the expression levels of the tight junction constituents claudin-3, claudin-4 and occludin. The protective effect of mineral clays (diosmectite, montmorillonite and illite) on alterations in cell viability and epithelial barrier function induced by the mycotoxins was also evaluated. Illite was the best clay to prevent the mycotoxin effects. Illite plus mycotoxin co-treatment completely abolished AFB1 and FB1-induced cytotoxicity. Also, the decreases in the gene expression of claudins and the reduction of TEER induced by mycotoxins were reversed by the illite plus mycotoxin co-treatment. In conclusion, these results demonstrated that mycotoxins AFB1, FB1, T2 and OTA disrupt the intestinal barrier permeability by a mechanism involving reduction of claudin isoform expressions, and illite counteracts this disruption.

  11. Blood-brain barrier P-glycoprotein function is not impaired in early Parkinson's disease

    NARCIS (Netherlands)

    Bartels, A. L.; van Berckel, B. N. M.; Lubberink, M.; Luurtsema, G.; Lammertsma, A. A.; Leenders, K. L.

    2008-01-01

    The cause of Parkinson's disease (PD) is unknown. Genetic susceptibility and exposure to environmental toxins contribute to specific neuronal loss in PD. Decreased blood-brain barrier (BBB) P-glycoprotein (P-gp) efflux function has been proposed as a possible causative link between toxin exposure an

  12. Blood-Brain Barrier P-Glycoprotein Function in Neurodegenerative Disease

    NARCIS (Netherlands)

    Bartels, A. L.

    2011-01-01

    Protection of the brain is strengthened by active transport and ABC transporters. P-glycoprotein (P-gp) at the blood-brain barrier (BBB) functions as an active efflux pump by extruding a substrate from the brain, which is important for maintaining loco-regional homeostasis in the brain and protectio

  13. Lactulose as a marker of intestinal barrier function in pigs after weaning

    NARCIS (Netherlands)

    Wijtten, P.J.A.; Verstijnen, J.J.; Kempen, van T.A.T.G.; Perdok, H.B.; Gort, G.; Verstegen, M.W.A.

    2011-01-01

    Intestinal barrier function in pigs after weaning is almost exclusively determined in terminal experiments with Ussing chambers. Alternatively, the recovery in urine of orally administered lactulose can be used to assess intestinal permeability in living animals. This experiment was designed to

  14. Knockdown of Filaggrin Impairs Diffusion Barrier Function and Increases UV Sensitivity in a Human Skin Model

    NARCIS (Netherlands)

    M. Mildner; J. Jin; L. Eckhart; S. Kezic; F. Gruber; C. Barresi; C. Stremnitzer; M. Buchberger; V. Mlitz; C. Ballaun; B. Sterniczky; D. Födinger; E. Tschachler

    2010-01-01

    Loss-of-function mutations in the filaggrin gene are associated with ichthyosis vulgaris and atopic dermatitis. To investigate the impact of filaggrin deficiency on the skin barrier, filaggrin expression was knocked down by small interfering RNA (siRNA) technology in an organotypic skin model in vit

  15. BBB on chip: microfluidic platform to mechanically and biochemically modulate blood-brain barrier function

    NARCIS (Netherlands)

    Griep, L.M.; Wolbers, F.; de Wagenaar, B.; ter Braak, Paulus Martinus; Weksler, B.B.; Romero, A.; Couraud, P.O.; Vermes, I.; van der Meer, Andries Dirk; van den Berg, Albert

    The blood-brain barrier (BBB) is a unique feature of the human body, preserving brain homeostasis and preventing toxic substances to enter the brain. However, in various neurodegenerative diseases, the function of the BBB is disturbed. Mechanisms of the breakdown of the BBB are incompletely

  16. Guidance document on fat reduction factor, functional barrier concept, phthalates and primary aromatic amines

    DEFF Research Database (Denmark)

    Hoekstra, Eddo J.; Petersen, Jens Højslev; Bustos, Juana

    and the functional barrier, and the restrictions for certain phthalates and primary aromatic amines. The Regulation applies from 1 May 2011. The network of the European Union Reference Laboratory and the National Reference Laboratories for food contact materials created a Task Force in order to give guidance...

  17. Lactulose as a marker of intestinal barrier function in pigs after weaning

    NARCIS (Netherlands)

    Wijtten, P.J.A.; Verstijnen, J.J.; Kempen, van T.A.T.G.; Perdok, H.B.; Gort, G.; Verstegen, M.W.A.

    2011-01-01

    Intestinal barrier function in pigs after weaning is almost exclusively determined in terminal experiments with Ussing chambers. Alternatively, the recovery in urine of orally administered lactulose can be used to assess intestinal permeability in living animals. This experiment was designed to stud

  18. Guidance document on fat reduction factor, functional barrier concept, phthalates and primary aromatic amines

    DEFF Research Database (Denmark)

    Hoekstra, Eddo J.; Petersen, Jens Højslev; Bustos, Juana

    and the functional barrier, and the restrictions for certain phthalates and primary aromatic amines. The Regulation applies from 1 May 2011. The network of the European Union Reference Laboratory and the National Reference Laboratories for food contact materials created a Task Force in order to give guidance...

  19. Cichorium intybus root extract: A "vitamin D-like" active ingredient to improve skin barrier function.

    Science.gov (United States)

    Maia Campos, P M B G; G Mercurio, D; O Melo, M; Closs-Gonthier, B

    2017-02-01

    During the aging process, the human skin suffers many alterations including dryness, skin barrier function damage. The skin barrier function is important to the prevention of skin alterations and maintenance of homeostasis. So, the objective of this study was to assess the clinical efficacy on skin barrier function of Cichorium intybus root extract in cosmetic formulations with or without UV filters. Fifty women, aged between 45 and 60 years, were divided into two groups. One group received vehicle formulations containing UV filters, and the other group received formulations without UV filters. Both groups received a formulation containing the extract and the vehicle. The formulations were applied twice daily to the upper arms after washing with sodium lauryl sulphate. Transepidermal water loss (TEWL) and skin microrelief were evaluated before and after a 14- and 28-day period of treatment. The control regions and regions where the vehicles were applied showed an increase in the TEWL. For the formulations containing the extract, decreased TEWL and improved microrelief were observed when compared to the vehicle and control areas after a 28-day period. In conclusion, Cichorium intybus root extract showed protective and restructuring effects on the skin and stands out as an innovative ingredient to improve skin barrier function.

  20. Stratum corneum model membranes : molecular organization in relation to skin barrier function

    NARCIS (Netherlands)

    Groen, Daniël

    2011-01-01

    The stratum corneum (SC), the thin uppermost layer of the skin, consists of dead flattened skin cells (corneocytes) embedded in a lipid matrix. The lipid matrix is considered to play a crucial role in the skin barrier function. It consists of ceramides (CER), cholesterol (CHOL) and free fatty acids

  1. BBB on chip: microfluidic platform to mechanically and biochemically modulate blood-brain barrier function

    NARCIS (Netherlands)

    Griep, L.M.; Wolbers, F.; Wagenaar, de B.; Braak, ter P.M.; Weksler, B.B.; Romero, A.; Couraud, P.O.; Vermes, I.; Meer, van der A.D.; Berg, van den A.

    2013-01-01

    The blood-brain barrier (BBB) is a unique feature of the human body, preserving brain homeostasis and preventing toxic substances to enter the brain. However, in various neurodegenerative diseases, the function of the BBB is disturbed. Mechanisms of the breakdown of the BBB are incompletely understo

  2. Topical antihistamines display potent anti-inflammatory activity linked in part to enhanced permeability barrier function.

    Science.gov (United States)

    Lin, Tzu-Kai; Man, Mao-Qiang; Santiago, Juan-Luis; Park, Kyungho; Roelandt, Truus; Oda, Yuko; Hupe, Melanie; Crumrine, Debra; Lee, Hae-Jin; Gschwandtner, Maria; Thyssen, Jacob P; Trullas, Carles; Tschachler, Erwin; Feingold, Kenneth R; Elias, Peter M

    2013-02-01

    Systemic antagonists of the histamine type 1 and 2 receptors (H1/2r) are widely used as anti-pruritics and central sedatives, but demonstrate only modest anti-inflammatory activity. Because many inflammatory dermatoses result from defects in cutaneous barrier function, and because keratinocytes express both Hr1 and Hr2, we hypothesized that H1/2r antagonists might be more effective if they were used topically to treat inflammatory dermatoses. Topical H1/2r antagonists additively enhanced permeability barrier homeostasis in normal mouse skin by the following mechanisms: (i) stimulation of epidermal differentiation, leading to thickened cornified envelopes; and (ii) enhanced epidermal lipid synthesis and secretion. As barrier homeostasis was enhanced to a comparable extent in mast cell-deficient mice, with no further improvement following application of topical H1/2r antagonists, H1/2r antagonists likely oppose mast cell-derived histamines. In four immunologically diverse, murine disease models, characterized by either inflammation alone (acute irritant contact dermatitis, acute allergic contact dermatitis) or by prominent barrier abnormalities (subacute allergic contact dermatitis, atopic dermatitis), topical H1/2r agonists aggravated, whereas H1/2r antagonists improved, inflammation and/or barrier function. The apparent ability of topical H1r/2r antagonists to target epidermal H1/2r could translate into increased efficacy in the treatment of inflammatory dermatoses, likely due to decreased inflammation and enhanced barrier function. These results could shift current paradigms of antihistamine utilization from a predominantly systemic to a topical approach.

  3. Functional organization of the left inferior precentral sulcus: dissociating the inferior frontal eye field and the inferior frontal junction.

    Science.gov (United States)

    Derrfuss, J; Vogt, V L; Fiebach, C J; von Cramon, D Y; Tittgemeyer, M

    2012-02-15

    Two eye fields have been described in the human lateral frontal cortex: the frontal eye field (FEF) and the inferior frontal eye field (iFEF). The FEF has been extensively studied and has been found to lie at the ventral part of the superior precentral sulcus. Much less research, however, has focused on the iFEF. Recently, it was suggested that the iFEF is located at the dorsal part of the inferior precentral sulcus. A similar location was proposed for the inferior frontal junction area (IFJ), an area thought to be involved in cognitive control processes. The present study used fMRI to clarify the topographical and functional relationship of the iFEF and the IFJ in the left hemispheres of individual participants. The results show that both the iFEF and the IFJ are indeed located at the dorsal part of the inferior precentral sulcus. Nevertheless, the activations were spatially dissociable in every individual examined. The IFJ was located more towards the depth of the inferior precentral sulcus, close to the junction with the inferior frontal sulcus, whereas the iFEF assumed a more lateral, posterior and superior position. Furthermore, the results provided evidence for a functional double dissociation: the iFEF was activated only in a comparison of saccades vs. button presses, but not in a comparison of incongruent vs. congruent Stroop conditions, while the opposite pattern was found at the IFJ. These results provide evidence for a spatial and functional dissociation of two directly adjacent areas in the left posterior frontal lobe.

  4. In silico simulations of tunneling barrier measurements for molecular orbital-mediated junctions: A molecular orbital theory approach to scanning tunneling microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Terryn, Raymond J.; Sriraman, Krishnan; Olson, Joel A., E-mail: jolson@fit.edu; Baum, J. Clayton, E-mail: cbaum@fit.edu [Department of Chemistry, Florida Institute of Technology, 150 West University Boulevard, Melbourne, Florida 32901 (United States); Novak, Mark J. [Department of Chemistry and Applied Biological Sciences, South Dakota School of Mines and Technology, 501 E. Saint Joseph Street, Rapid City, South Dakota 57701 (United States)

    2016-09-15

    A new simulator for scanning tunneling microscopy (STM) is presented based on the linear combination of atomic orbitals molecular orbital (LCAO-MO) approximation for the effective tunneling Hamiltonian, which leads to the convolution integral when applied to the tip interaction with the sample. This approach intrinsically includes the structure of the STM tip. Through this mechanical emulation and the tip-inclusive convolution model, dI/dz images for molecular orbitals (which are closely associated with apparent barrier height, ϕ{sub ap}) are reported for the first time. For molecular adsorbates whose experimental topographic images correspond well to isolated-molecule quantum chemistry calculations, the simulator makes accurate predictions, as illustrated by various cases. Distortions in these images due to the tip are shown to be in accord with those observed experimentally and predicted by other ab initio considerations of tip structure. Simulations of the tunneling current dI/dz images are in strong agreement with experiment. The theoretical framework provides a solid foundation which may be applied to LCAO cluster models of adsorbate–substrate systems, and is extendable to emulate several aspects of functional STM operation.

  5. The RNA-binding protein quaking maintains endothelial barrier function and affects VE-cadherin and β-catenin protein expression.

    Science.gov (United States)

    de Bruin, Ruben G; van der Veer, Eric P; Prins, Jurriën; Lee, Dae Hyun; Dane, Martijn J C; Zhang, Huayu; Roeten, Marko K; Bijkerk, Roel; de Boer, Hetty C; Rabelink, Ton J; van Zonneveld, Anton Jan; van Gils, Janine M

    2016-02-24

    Proper regulation of endothelial cell-cell contacts is essential for physiological functioning of the endothelium. Interendothelial junctions are actively involved in the control of vascular leakage, leukocyte diapedesis, and the initiation and progression of angiogenesis. We found that the RNA-binding protein quaking is highly expressed by endothelial cells, and that its expression was augmented by prolonged culture under laminar flow and the transcription factor KLF2 binding to the promoter. Moreover, we demonstrated that quaking directly binds to the mRNA of VE-cadherin and β-catenin and can induce mRNA translation mediated by the 3'UTR of these genes. Reduced quaking levels attenuated VE-cadherin and β-catenin expression and endothelial barrier function in vitro and resulted in increased bradykinin-induced vascular leakage in vivo. Taken together, we report that quaking is essential in maintaining endothelial barrier function. Our results provide novel insight into the importance of post-transcriptional regulation in controlling vascular integrity.

  6. Translational Medicine Study on Cardiac Microvascular Endothelial Barrier Function and Myocardial Ischemia/Re-perfusion Injury

    Institute of Scientific and Technical Information of China (English)

    Yeong Yeh Lee

    2015-01-01

    Vascular endothelial barrier is defined as the ability of endothelial cells and their components that make up the microvascular wall structure in controlling the cellular components and marco-molecular substances in blood from penetrating vascular walls. It is the place for the selective exchange of oxygen, nutrients and metabolites, and has kernel effect in maintaining myocardial micro-environmental homeostasis. In clinic, microvascular permeability is commonly used as the index for evaluating endothelial barrier function. Myocardial microvascular endothelial cells, inter-endothelial connexin and basilar membrane (BM) interact synergically to constitute the basis for barrier function, which has a selective permeability effect on interaction between nutrient substances and other myocardial cell molecules. Increase of microvascular permeability is closely associated with cardiovascular events like coronary heart disease (CHD) and myocardial ischemia, and is the risk factor for CHD attack. And deep exploration of the mechanism of endothelial permeability and positive selection of new-type re-perfusion complementary drugs for alleviating endothelial permeability can be beneifcial in improving the prognosis of patients with acute myocardial infarction (AMI). Therefore, from the view of translational medicine, this study mainly summarized the increase of microvascular permeability and its pathological signiifcance after AMI, physiological and pathological mechanisms of regulating microvascular permeability and complementary therapies for AMI re-perfusion as well as microvascular endothelial barrier function, hoping to provide a basis for improving the prognosis of patients with AMI.

  7. Translational Medicine Study on Cardiac Microvascular Endothelial Barrier Function and Myocardial Ischemia/Re-perfusion Injury

    Directory of Open Access Journals (Sweden)

    Yeong Yeh Lee

    2015-09-01

    Full Text Available Vascular endothelial barrier is defined as the ability of endothelial cells and their components that make up the microvascular wall structure in controlling the cellular components and marco-molecular substances in blood from penetrating vascular walls. It is the place for the selective exchange of oxygen, nutrients and metabolites, and has kernel effect in maintaining myocardial micro-environmental homeostasis. In clinic, microvascular permeability is commonly used as the index for evaluating endothelial barrier function. Myocardial microvascular endothelial cells, inter-endothelial connexin and basilar membrane (BM interact synergically to constitute the basis for barrier function, which has a selective permeability effect on interaction between nutrient substances and other myocardial cell molecules. Increase of microvascular permeability is closely associated with cardiovascular events like coronary heart disease (CHD and myocardial ischemia, and is the risk factor for CHD attack. And deep exploration of the mechanism of endothelial permeability and positive selection of new-type re-perfusion complementary drugs for alleviating endothelial permeability can be beneficial in improving the prognosis of patients with acute myocardial infarction (AMI. Therefore, from the view of translational medicine, this study mainly summarized the increase of microvascular permeability and its pathological significance after AMI, physiological and pathological mechanisms of regulating microvascular permeability and complementary therapies for AMI re-perfusion as well as microvascular endothelial barrier function, hoping to provide a basis for improving the prognosis of patients with AMI.

  8. Pili-like proteins of Akkermansia muciniphila modulate host immune responses and gut barrier function

    Science.gov (United States)

    Reunanen, Justus; Meijerink, Marjolein; Pietilä, Taija E.; Kainulainen, Veera; Klievink, Judith; Huuskonen, Laura; Aalvink, Steven; Skurnik, Mikael; Boeren, Sjef; Satokari, Reetta; Mercenier, Annick; Palva, Airi; Smidt, Hauke; de Vos, Willem M.; Belzer, Clara

    2017-01-01

    Gut barrier function is key in maintaining a balanced response between the host and its microbiome. The microbiota can modulate changes in gut barrier as well as metabolic and inflammatory responses. This highly complex system involves numerous microbiota-derived factors. The gut symbiont Akkermansia muciniphila is positively correlated with a lean phenotype, reduced body weight gain, amelioration of metabolic responses and restoration of gut barrier function by modulation of mucus layer thickness. However, the molecular mechanisms behind its metabolic and immunological regulatory properties are unexplored. Herein, we identify a highly abundant outer membrane pili-like protein of A. muciniphila MucT that is directly involved in immune regulation and enhancement of trans-epithelial resistance. The purified Amuc_1100 protein and enrichments containing all its associated proteins induced production of specific cytokines through activation of Toll-like receptor (TLR) 2 and TLR4. This mainly leads to high levels of IL-10 similar to those induced by the other beneficial immune suppressive microorganisms such as Faecalibacterium prausnitzii A2-165 and Lactobacillus plantarum WCFS1. Together these results indicate that outer membrane protein composition and particularly the newly identified highly abundant pili-like protein Amuc_1100 of A. muciniphila are involved in host immunological homeostasis at the gut mucosa, and improvement of gut barrier function. PMID:28249045

  9. Small molecule functional analogs of peptides that inhibit lambda site-specific recombination and bind Holliday junctions.

    Science.gov (United States)

    Ranjit, Dev K; Rideout, Marc C; Nefzi, Adel; Ostresh, John M; Pinilla, Clemencia; Segall, Anca M

    2010-08-01

    Our lab has isolated hexameric peptides that are structure-selective ligands of Holliday junctions (HJ), central intermediates of several DNA recombination reactions. One of the most potent of these inhibitors, WRWYCR, has shown antibacterial activity in part due to its inhibition of DNA repair proteins. To increase the therapeutic potential of these inhibitors, we searched for small molecule inhibitors with similar activities. We screened 11 small molecule libraries comprising over nine million individual compounds and identified a potent N-methyl aminocyclic thiourea inhibitor that also traps HJs formed during site-specific recombination reactions in vitro. This inhibitor binds specifically to protein-free HJs and can inhibit HJ resolution by RecG helicase, but only showed modest growth inhibition of bacterial with a hyperpermeable outer membrane; nonetheless, this is an important step in developing a functional analog of the peptide inhibitors. Copyright 2010 Elsevier Ltd. All rights reserved.

  10. The role of laminins in the organization and function of neuromuscular junctions.

    Science.gov (United States)

    Rogers, Robert S; Nishimune, Hiroshi

    2017-01-01

    The synapse between motor neurons and skeletal muscle is known as the neuromuscular junction (NMJ). Proper alignment of presynaptic and post-synaptic structures of motor neurons and muscle fibers, respectively, is essential for efficient motor control of skeletal muscles. The synaptic cleft between these two cells is filled with basal lamina. Laminins are heterotrimer extracellular matrix molecules that are key members of the basal lamina. Laminin α4, α5, and β2 chains specifically localize to NMJs, and these laminin isoforms play a critical role in maintenance of NMJs and organization of synaptic vesicle release sites known as active zones. These individual laminin chains exert their role in organizing NMJs by binding to their receptors including integrins, dystroglycan, and voltage-gated calcium channels (VGCCs). Disruption of these laminins or the laminin-receptor interaction occurs in neuromuscular diseases including Pierson syndrome and Lambert-Eaton myasthenic syndrome (LEMS). Interventions to maintain proper level of laminins and their receptor interactions may be insightful in treating neuromuscular diseases and aging related degeneration of NMJs.

  11. Characterization of the insulator barrier and the superconducting transition temperature in GdBa{sub 2}Cu{sub 3}O{sub 7−δ}/BaTiO{sub 3} bilayers for application in tunnel junctions

    Energy Technology Data Exchange (ETDEWEB)

    Navarro, H., E-mail: henrynavarro@cab.cnea.gov.ar; Sirena, M.; Haberkorn, N. [Instituto Balseiro, Universidad Nacional de Cuyo and CNEA, 8400 Bariloche (Argentina); Centro Atómico Bariloche, Comisión Nacional de Energía Atómica. Av. Bustillo 9500, 8400 San Carlos de Bariloche (Argentina); Yang, Ilkyu [Department of Physics, Pohang University of Science and Technology, Pohang (Korea, Republic of); Kim, Jeehoon [Department of Physics, Pohang University of Science and Technology, Pohang (Korea, Republic of); CALDES, Institute for Basic Science, Pohang (Korea, Republic of)

    2015-07-28

    The optimization of the superconducting properties in a bottom electrode and the quality of an insulator barrier are the first steps in the development of superconductor/insulator/superconductor tunnel junctions. Here, we study the quality of a BaTiO{sub 3} tunnel barrier deposited on a 16 nm thick GdBa{sub 2}Cu{sub 3}O{sub 7−δ} thin film by using conductive atomic force microscopy. We find that the tunnel current is systematically reduced (for equal applied voltage) by increasing the BaTiO{sub 3} barrier thickness between 1.6 and 4 nm. The BaTiO{sub 3} layers present an energy barrier of ≈1.2 eV and an attenuation length of 0.35–0.5 nm (depending on the applied voltage). The GdBa{sub 2}Cu{sub 3}O{sub 7−δ} electrode is totally covered by a BaTiO{sub 3} thickness above 3 nm. The presence of ferroelectricity was verified by piezoresponse force microscopy for a 4 nm thick BaTiO{sub 3} top layer. The superconducting transition temperature of the bilayers is systematically suppressed by increasing the BaTiO{sub 3} thickness. This fact can be associated with stress at the interface and a reduction of the orthorhombicity of the GdBa{sub 2}Cu{sub 3}O{sub 7−δ}. The reduction in the orthorhombicity is expected by considering the interface mismatch and it can also be affected by reduced oxygen stoichiometry (poor oxygen diffusion across the BaTiO{sub 3} barrier)

  12. The role of antiferromagnetic La{sub 1/3}Ca{sub 2/3}MnO{sub 3} barriers in superconductor/insulator/ferromagnet tunnel junctions

    Energy Technology Data Exchange (ETDEWEB)

    Moran, O., E-mail: omoranc@unalmed.edu.c [Laboratorio de Materiales Ceramicos y Vitreos, Departamento de Fisica, Universidad Nacional de Colombia, Sede Medellin, A.A. 568 Medellin (Colombia); Saldarriaga, W. [Laboratorio de Materiales Ceramicos y Vitreos, Departamento de Fisica, Universidad Nacional de Colombia, Sede Medellin, A.A. 568 Medellin (Colombia); Baca, E. [Grupo de Ingenieria de Nuevos Materiales, Departamento de Fisica, Universidad del Valle, A.A. 25360 Cali (Colombia)

    2010-01-15

    Current transport through thin antiferromagnetic (AF) barriers of the perovskite manganite La{sub 1/3}Ca{sub 2/3}MnO{sub 3} (LCMO) was studied with respect to its dependence on temperature and voltage. Planar-type La{sub 2/3}Ca{sub 1/3}MnO{sub 3}(approx80 nm)/La{sub 1/3}Ca{sub 2/3}MnO{sub 3}(approx7 nm)/YBa{sub 2}Cu{sub 3}O{sub 7-d}elta(approx100 nm) heterojunctions were used as basic structures. The current-voltage (I-V) measurements were carried out on test junctions with a standard area of 20 x 40 mum{sup 2} in a four-terminal configuration. In spite of the carefully controlled growth conditions, barriers with the same nominal thickness showed different electrical behavior varying from elastic tunneling to Mott variable range hopping (VRH) via localized states. Fitting the VRH model to the experimental data, allowed for estimating important physical parameters of the barrier as the density of states at the Fermi level N(E{sub F}) and with this the average distance between two localized states l{sub 0}. The different transport characteristics seem to be related to intrinsic difference in microstructure as the average surface roughness of the constituent layers may already be larger than the thickness of the barrier itself. Independent of the barrier quality, the active presence of the diamagnetic and ferromagnetic phases in the heterostructure was corroborated by transport measurements in magnetic fields and in-plane/out-of-plane magnetization hysteresis loops below the superconducting critical temperature, T{sub c} (approx80 K). The values of the critical magnetic field H{sub c1} estimated from these experiments were in good accordance with those reported in the literature.

  13. Impaired endothelial barrier function in apolipoprotein M-deficient mice is dependent on sphingosine-1-phosphate receptor 1.

    Science.gov (United States)

    Christensen, Pernille M; Liu, Catherine H; Swendeman, Steven L; Obinata, Hideru; Qvortrup, Klaus; Nielsen, Lars B; Hla, Timothy; Di Lorenzo, Annarita; Christoffersen, Christina

    2016-06-01

    Apolipoprotein M (ApoM) transports sphingosine-1-phosphate (S1P) in plasma, and ApoM-deficient mice (Apom(-/-)) have ∼50% reduced plasma S1P levels. There are 5 known S1P receptors, and S1P induces adherens junction formation between endothelial cells through the S1P1 receptor, which in turn suppresses vascular leak. Increased vascular permeability is a hallmark of inflammation. The purpose of this study was to explore the relationships between vascular leakage in ApoM deficiency and S1P1 function in normal physiology and in inflammation. Vascular permeability in the lungs was assessed by accumulation of dextran molecules (70 kDa) and was increased ∼40% in Apom(-/-) mice compared to WT (C57Bl6/j) mice. Reconstitution of plasma ApoM/S1P or treatment with an S1P1 receptor agonist (SEW2871) rapidly reversed the vascular leakage to a level similar to that in WT mice, suggesting that it is caused by decreased plasma levels of S1P and reduced S1P1 stimulation. In a carrageenan-induced model of inflammation, Apom(-/-) mice had increased vascular leakage compared with that in WT mice. Adenoviral overexpression of ApoM in Apom(-/-) mice decreased the vascular leakage compared to adenoviral overexpression of green fluorescent protein. The study suggests that vascular leakage of albumin-sized particles in ApoM deficiency is S1P- and S1P1-dependent and this dependency exacerbates the response to inflammatory stimuli.-Christensen, P. M., Liu, C. H., Swendeman, S. L., Obinata, H., Qvortrup, K., Nielsen, L B., Hla, T., Di Lorenzo, A., Christoffersen, C. Impaired endothelial barrier function in apolipoprotein M-deficient mice is dependent on sphingosine-1-phosphate receptor 1. © FASEB.

  14. Impaired endothelial barrier function in apolipoprotein M–deficient mice is dependent on sphingosine-1-phosphate receptor 1

    Science.gov (United States)

    Christensen, Pernille M.; Liu, Catherine H.; Swendeman, Steven L.; Obinata, Hideru; Qvortrup, Klaus; Nielsen, Lars B.; Hla, Timothy; Christoffersen, Christina

    2016-01-01

    Apolipoprotein M (ApoM) transports sphingosine-1-phosphate (S1P) in plasma, and ApoM-deficient mice (Apom−/−) have ∼50% reduced plasma S1P levels. There are 5 known S1P receptors, and S1P induces adherens junction formation between endothelial cells through the S1P1 receptor, which in turn suppresses vascular leak. Increased vascular permeability is a hallmark of inflammation. The purpose of this study was to explore the relationships between vascular leakage in ApoM deficiency and S1P1 function in normal physiology and in inflammation. Vascular permeability in the lungs was assessed by accumulation of dextran molecules (70 kDa) and was increased ∼40% in Apom−/− mice compared to WT (C57Bl6/j) mice. Reconstitution of plasma ApoM/S1P or treatment with an S1P1 receptor agonist (SEW2871) rapidly reversed the vascular leakage to a level similar to that in WT mice, suggesting that it is caused by decreased plasma levels of S1P and reduced S1P1 stimulation. In a carrageenan-induced model of inflammation, Apom−/− mice had increased vascular leakage compared with that in WT mice. Adenoviral overexpression of ApoM in Apom−/− mice decreased the vascular leakage compared to adenoviral overexpression of green fluorescent protein. The study suggests that vascular leakage of albumin-sized particles in ApoM deficiency is S1P- and S1P1-dependent and this dependency exacerbates the response to inflammatory stimuli.—Christensen, P. M., Liu, C. H., Swendeman, S. L., Obinata, H., Qvortrup, K., Nielsen, L B., Hla, T., Di Lorenzo, A., Christoffersen, C. Impaired endothelial barrier function in apolipoprotein M-deficient mice is dependent on sphingosine-1-phosphate receptor 1. PMID:26956418

  15. A synthetic C16 omega-hydroxyphytoceramide improves skin barrier functions from diversely perturbed epidermal conditions.

    Science.gov (United States)

    Oh, Myoung Jin; Nam, Jin Ju; Lee, Eun Ok; Kim, Jin Wook; Park, Chang Seo

    2016-10-01

    Omega-hydroxyceramides (ω-OH-Cer) play a crucial role in maintaining the integrity of skin barrier. ω-OH-Cer are the primary lipid constituents of the corneocyte lipid envelope (CLE) covalently attached to the outer surface of the cornified envelope linked to involucrin to become bound form lipids in stratum corneum (SC). CLE becomes a hydrophobic impermeable layer of matured corneocyte preventing loss of natural moisturizing factor inside the corneocytes. More importantly, CLE may also play an important role in the formation of proper orientation of intercellular lipid lamellar structure by interdigitating with the intercellular lipids in a comb-like fashion. Abnormal barrier conditions associated with atopic dermatitis but also UVB-irradiated skins are known to have lowered level of bound lipids, especially ω-OH-Cer, which indicate that ω-OH-Cer play an important role in maintaining the integrity of skin barrier. In this study, protective effects of a novel synthetic C16 omega-hydroxyphytoceramides (ω-OH-phytoceramide) on skin barrier function were investigated. Epidermal barrier disruption was induced by UVB irradiation, tape-stripping in hairless mouse and human skin. Protective effect of damaged epidermis was evaluated using the measurement of transepidermal water loss and cohesion of SC. Increased keratinocyte differentiation was verified using cultured keratinocyte through western blot. Results clearly demonstrated that a synthetic C16 ω-OH-phytoceramide enhanced the integrity of SC and accelerated the recovery of damaged skin barrier function by stimulating differentiation process. In a conclusion, a synthetic C16 ω-OH-phytoceramide treatment improved epidermal homeostasis in several disrupted conditions.

  16. Signaling pathways induced by serine proteases to increase intestinal epithelial barrier function.

    Science.gov (United States)

    Lahey, Kelcie A; Ronaghan, Natalie J; Shang, Judie; Dion, Sébastien P; Désilets, Antoine; Leduc, Richard; MacNaughton, Wallace K

    2017-01-01

    Changes in barrier function of the gastrointestinal tract are thought to contribute to the inflammatory bowel diseases Crohn's disease and ulcerative colitis. Previous work in our lab demonstrated that apical exposure of intestinal epithelial cell lines to serine proteases results in an increase in transepithelial electrical resistance (TER). However, the underlying mechanisms governing this response are unclear. We aimed to determine the requirement for proteolytic activity, epidermal growth factor receptor (EGFR) activation, and downstream intracellular signaling in initiating and maintaining enhanced barrier function following protease treatment using a canine intestinal epithelial cell line (SCBN). We also examined the role of phosphorylation of myosin regulatory light chain on the serine protease-induced increase in TER through. It was found that proteolytic activity of the serine proteases trypsin and matriptase is required to initiate and maintain the protease-mediated increase in TER. We also show that MMP-independent EGFR activation is essential to the sustained phase of the protease response, and that Src kinases may mediate EGFR transactivation. PI3-K and ERK1/2 signaling were important in reaching a maximal increase in TER following protease stimulation; however, their upstream activators are yet to be determined. CK2 inhibition prevented the increase in TER induced by serine proteases. The bradykinin B(2) receptor was not involved in the change in TER in response to serine proteases, and no change in phosphorylation of MLC was observed after trypsin or matriptase treatment. Taken together, our data show a requirement for ongoing proteolytic activity, EGFR transactivation, as well as downstream PI3-K, ERK1/2, and CK2 signaling in protease-mediated barrier enhancement of intestinal epithelial cells. The pathways mediating enhanced barrier function by proteases may be novel therapeutic targets for intestinal disorders characterized by disrupted epithelial

  17. Fabrication of high quality ferromagnetic Josephson junctions

    Energy Technology Data Exchange (ETDEWEB)

    Weides, M. [Institute for Solid State Research, Research Centre Juelich, D-52425 Juelich (Germany) and CNI-Center of Nanoelectronic Systems for Information Technology, Research Centre Juelich, D-52425 Juelich (Germany)]. E-mail: m.weides@fz-juelich.de; Tillmann, K. [Institute for Solid State Research, Research Centre Juelich, D-52425 Juelich (Germany); Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons, Research Centre Juelich, D-52425 Juelich (Germany); Kohlstedt, H. [Institute for Solid State Research, Research Centre Juelich, D-52425 Juelich (Germany); CNI-Center of Nanoelectronic Systems for Information Technology, Research Centre Juelich, D-52425 Juelich (Germany); Department of Material Science and Engineering and Department of Physics, University of Berkeley, CA 94720 (United States)

    2006-05-15

    We present ferromagnetic Nb/Al{sub 2}O{sub 3}/Ni{sub 60}Cu{sub 40}/Nb Josephson junctions (SIFS) with an ultrathin Al{sub 2}O{sub 3} tunnel barrier. The junction fabrication was optimized regarding junction insulation and homogeneity of current transport. Using ion-beam-etching and anodic oxidation we defined and insulated the junction mesas. The additional 2 nm thin Cu-layer below the ferromagnetic NiCu (SINFS) lowered interface roughness and ensured very homogeneous current transport. A high yield of junctional devices with j {sub c} spreads less than 2% was obtained.

  18. Resonant behavior of the barrier of YBa{sub 2}Cu{sub 3}O{sub 7} grain boundary Josephson junctions fabricated on bicrystalline substrates with different geometries

    Energy Technology Data Exchange (ETDEWEB)

    Navacerrada, M.A., E-mail: mdelosangeles.navacerrada@upm.es [Grupo de Acustica Arquitectonica, Escuela Tecnica Superior de Arquitectura, Universidad Politecnica de Madrid, Avenida Juan de Herrera 4, 28040 Madrid (Spain); Lucia, M.L.; Sanchez-Quesada, F. [Departamento Fisica Aplicada III (Electricidad y Electronica), Facultad de Cc. Fisicas, Universidad Complutense, Avenida Complutense s/n, 28040 Madrid (Spain)

    2012-12-14

    We have analyzed a resonant behavior in the dielectric constant associated to the barrier of YBa{sub 2}Cu{sub 3}O{sub 7} (YBCO) grain boundary Josephson junctions (GBJJs) fabricated on a wide variety of bicrystalline substrates: 12 Degree-Sign [0 0 1] tilt asymmetric, 24 Degree-Sign [0 0 1] tilt asymmetric, 24 Degree-Sign [0 0 1] tilt symmetric, 24 Degree-Sign [1 0 0] tilt asymmetric, 45 Degree-Sign [1 0 0] tilt asymmetric and 24 Degree-Sign [0 0 1] tilt symmetric +45 Degree-Sign [1 0 0] tilt asymmetric bicrystals. The resonance analysis allows us to estimate a more appropriate value of the relative dielectric constant, and so a more adequate value for the length L of the normal N region assuming a SNINS model for the barrier. In this work, the L dependence on the critical current density Jc has been investigated. This analysis makes possible a single representation for all the substrate geometries independently on around which axes the rotation is produced to generate the grain boundary. On the other hand, no clear evidences exist on the origin of the resonance. The resonance frequency is in the order of 10{sup 11} Hz, pointing to a phonon dynamic influence on the resonance mechanism. Besides, its position is affected by the oxygen content of the barrier: a shift at low frequencies is observed when the misorientation angle increases.

  19. Evaluation of Renal Histopathological Changes, as a Predictor of Recoverability of Renal Function Following Pyeloplasty for Ureteropelvic Junction Obstruction

    Directory of Open Access Journals (Sweden)

    Kumar

    2015-07-01

    Full Text Available Background Pyeloplasty is a widely accepted treatment for ureteropelvic junction obstruction (UPJO. However, the renal function recoverability after pyeloplasty is still a matter of debate. Different parameters have been used to predict renal functional recoverability after corrective surgery, with conflicting results. Objectives In this study, renal biopsy was carried on a series of cases of UPJO, during pyeloplasty, to study the extent of histological alterations in renal parenchyma, as a result of obstruction, and its predictive value in renal function recoverability after pyeloplasty. Patients and Methods We retrospectively analyzed the renal biopsy obtained during pyeloplasty in 53 adult patients. Histopathological changes were graded on a scale of 1 to 3, according to their severity, and compared with the differential renal function (DRF revealed on the preoperative and postoperative follow up diethylene triamine pentaacetic acid (DTPA renal scan. A Fischer’s t test was used to evaluate statistical differences between values. Results This study showed a linear relationship between the severity of histological changes and renal function recovery, after pyeloplasty. Out of 24 obstructed renal units (ORU, with minimal histopathological changes (grade I, 21 ORU (87.5%, with > 35% DRF preoperatively, showed significant improvement in renal function after 12 months of pyeloplasty (P 0.05. Renal function deterioration after pyeloplasty was not observed in any of the cases. Conclusions The severity of pathological changes in renal parenchyma, due to UPJO, is a good predictor of renal function recoverability, after pyeloplasty. The ORUs, with DRF > 35%, usually have normal (grade I renal biopsy and might be expected to present better functional recoverability after pyeloplasty.

  20. Barrier Lyapunov function-based model-free constraint position control for mechanical systems

    Energy Technology Data Exchange (ETDEWEB)

    Han, Seong Ik; Ha, Hyun Uk; Lee, Jang Myung [Pusan National University, Busan (Korea, Republic of)

    2016-07-15

    In this article, a motion constraint control scheme is presented for mechanical systems without a modeling process by introducing a barrier Lyapunov function technique and adaptive estimation laws. The transformed error and filtered error surfaces are defined to constrain the motion tracking error in the prescribed boundary layers. Unknown parameters of mechanical systems are estimated using adaptive laws derived from the Lyapunov function. Then, robust control used the conventional sliding mode control, which give rise to excessive chattering, is changed to finite time-based control to alleviate undesirable chattering in the control action and to ensure finite-time error convergence. Finally, the constraint controller from the barrier Lyapunov function is designed and applied to the constraint of the position tracking error of the mechanical system. Two experimental examples for the XY table and articulated manipulator are shown to evaluate the proposed control scheme.

  1. The pH-sensing receptor OGR1 improves barrier function of epithelial cells and inhibits migration in an acidic environment.

    Science.gov (United States)

    de Vallière, Cheryl; Vidal, Solange; Clay, Ieuan; Jurisic, Giorgia; Tcymbarevich, Irina; Lang, Silvia; Ludwig, Marie-Gabrielle; Okoniewski, Michal; Eloranta, Jyrki J; Kullak-Ublick, Gerd A; Wagner, Carsten A; Rogler, Gerhard; Seuwen, Klaus

    2015-09-15

    The pH-sensing receptor ovarian cancer G protein-coupled receptor 1 (OGR1; GPR68) is expressed in the gut. Inflammatory bowel disease is typically associated with a decrease in local pH, which may lead to altered epithelial barrier function and subsequent gastrointestinal repair involving epithelial cell adhesion and migration. As the mechanisms underlying the response to pH changes are not well understood, we have investigated OGR1-mediated, pH-dependent signaling pathways in intestinal epithelial cells. Caco-2 cells stably overexpressing OGR1 were created and validated as tools to study OGR1 signaling. Barrier function, migration, and proliferation were measured using electric cell-substrate impedance-sensing technology. Localization of the tight junction proteins zonula occludens protein 1 and occludin and the rearrangement of cytoskeletal actin were examined by confocal microscopy. Paracellular permeability and protein and gene expression analysis using DNA microarrays were performed on filter-grown Caco-2 monolayers. We report that an acidic pH shift from pH 7.8 to 6.6 improved barrier function and stimulated reorganization of filamentous actin with prominent basal stress fiber formation. Cell migration and proliferation during in vitro wound healing were inhibited. Gene expression analysis revealed significant upregulation of genes related to cytoskeleton remodeling, cell adhesion, and growth factor signaling. We conclude that acidic extracellular pH can have a signaling function and impact the physiology of intestinal epithelial cells. The deconstruction of OGR1-dependent signaling may aid our understanding of mucosal inflammation mechanisms.

  2. Functional role of gap junctions in cytokine-induced leukocyte adhesion to endothelium in vivo

    Science.gov (United States)

    Véliz, Loreto P.; González, Francisco G.; Duling, Brian R.; Sáez, Juan C.; Boric, Mauricio P.

    2008-01-01

    To assess the hypothesis that gap junctions (GJs) participate on leukocyte-endothelium interactions in the inflammatory response, we compared leukocyte adhesion and transmigration elicited by cytokine stimulation in the presence or absence of GJ blockers in the hamster cheek pouch and also in the cremaster muscle of wild-type (WT) and endothelium-specific connexin 43 (Cx43) null mice (Cx43e−/−). In the cheek pouch, topical tumor necrosis factor-α (TNF-α; 150 ng/ml, 15 min) caused a sustained increment in the number of leukocytes adhered to venular endothelium (LAV) and located at perivenular regions (LPV). Superfusion with the GJ blockers 18-α-glycyrrhetinic acid (AGA; 75 μM) or 18-β-glycyrrhetinic acid (50 μM) abolished the TNF-α-induced increase in LAV and LPV; carbenoxolone (75 μM) or oleamide (100 μM) reduced LAV by 50 and 75%, respectively, and LPV to a lesser extent. None of these GJ blockers modified venular diameter, blood flow, or leukocyte rolling. In contrast, glycyrrhizin (75 μM), a non-GJ blocker analog of AGA, was devoid of effect. Interestingly, when AGA was removed 90 min after TNF-α stimulation, LAV started to rise at a similar rate as in control. Conversely, application of AGA 90 min after TNF-α reduced the number of previously adhered cells. In WT mice, intrascrotal injection of TNF-α (0.5 μg/0.3 ml) increased LAV (fourfold) and LPV (threefold) compared with saline-injected controls. In contrast to the observations in WT animals, TNF-α stimulation did not increase LAV or LPV in Cx43e−/− mice. These results demonstrate an important role for GJ communication in leukocyte adhesion and transmigration during acute inflammation in vivo and further suggest that endothelial Cx43 is key in these processes. PMID:18599597

  3. Structural and functional insights into the malaria parasite moving junction complex.

    Directory of Open Access Journals (Sweden)

    Brigitte Vulliez-Le Normand

    Full Text Available Members of the phylum Apicomplexa, which include the malaria parasite Plasmodium, share many features in their invasion mechanism in spite of their diverse host cell specificities and life cycle characteristics. The formation of a moving junction (MJ between the membranes of the invading apicomplexan parasite and the host cell is common to these intracellular pathogens. The MJ contains two key parasite components: the surface protein Apical Membrane Antigen 1 (AMA1 and its receptor, the Rhoptry Neck Protein (RON complex, which is targeted to the host cell membrane during invasion. In particular, RON2, a transmembrane component of the RON complex, interacts directly with AMA1. Here, we report the crystal structure of AMA1 from Plasmodium falciparum in complex with a peptide derived from the extracellular region of PfRON2, highlighting clear specificities of the P. falciparum RON2-AMA1 interaction. The receptor-binding site of PfAMA1 comprises the hydrophobic groove and a region that becomes exposed by displacement of the flexible Domain II loop. Mutations of key contact residues of PfRON2 and PfAMA1 abrogate binding between the recombinant proteins. Although PfRON2 contacts some polymorphic residues, binding studies with PfAMA1 from different strains show that these have little effect on affinity. Moreover, we demonstrate that the PfRON2 peptide inhibits erythrocyte invasion by P. falciparum merozoites and that this strong inhibitory potency is not affected by AMA1 polymorphisms. In parallel, we have determined the crystal structure of PfAMA1 in complex with the invasion-inhibitory peptide R1 derived by phage display, revealing an unexpected structural mimicry of the PfRON2 peptide. These results identify the key residues governing the interactions between AMA1 and RON2 in P. falciparum and suggest novel approaches to antimalarial therapeutics.

  4. Fabrication of magnetic tunnel junctions with epitaxial and textured ferromagnetic layers

    Science.gov (United States)

    Chang, Y. Austin; Yang, Jianhua Joshua

    2008-11-11

    This invention relates to magnetic tunnel junctions and methods for making the magnetic tunnel junctions. The magnetic tunnel junctions include a tunnel barrier oxide layer sandwiched between two ferromagnetic layers both of which are epitaxial or textured with respect to the underlying substrate upon which the magnetic tunnel junctions are grown. The magnetic tunnel junctions provide improved magnetic properties, sharper interfaces and few defects.

  5. Association of HLA-DQ gene with bowel transit, barrier function, and inflammation in irritable bowel syndrome with diarrhea.

    Science.gov (United States)

    Vazquez-Roque, Maria I; Camilleri, Michael; Smyrk, Thomas; Murray, Joseph A; O'Neill, Jessica; Carlson, Paula; Lamsam, Jesse; Eckert, Deborah; Janzow, Denise; Burton, Duane; Ryks, Michael; Rhoten, Deborah; Zinsmeister, Alan R

    2012-12-01

    Patients with irritable bowel syndrome (IBS) with diarrhea (IBS-D) carrying human leukocyte antigen (HLA)-DQ2/8 genotypes benefit from gluten withdrawal. Our objective was to compare gastrointestinal barrier function, mucosal inflammation, and transit in nonceliac IBS-D patients and assess association with HLA-DQ2/8 status. In 45 IBS-D patients who were naive to prior exclusion of dietary gluten, we measured small bowel (SB) and colonic mucosal permeability by cumulative urinary lactulose and mannitol excretion (0-2 h for SB and 8-24 h for colon), inflammation on duodenal and rectosigmoid mucosal biopsies (obtained in 28 of 45 patients), tight junction (TJ) protein mRNA and protein expression in SB and rectosigmoid mucosa, and gastrointestinal and colonic transit by validated scintigraphy. SB mucosal biopsies were stained with hematoxylin-eosin to assess villi and intraepithelial lymphocytes, and immunohistochemistry was used to assess CD3, CD8, tryptase, and zonula occludens 1 (ZO-1); colonic biopsy intraepithelial lymphocytes were quantitated. Associations of HLA-DQ were assessed using Wilcoxon's rank-sum test. Relative to healthy control data, we observed a significant increase in SB permeability (P colonic permeability (P = 0.10), and a decrease in TJ mRNA expression in rectosigmoid mucosa in IBS-D. In HLA-DQ2/8-positive patients, ZO-1 protein expression in the rectosigmoid mucosa was reduced compared with that in HLA-DQ2/8-negative patients and colonic transit was slower than in HLA-DQ2/8-negative patients. No other associations with HLA genotype were identified. There is abnormal barrier function (increased SB permeability and reduced mRNA expression of TJ proteins) in IBS-D relative to health that may be, in part, related to immunogenotype, given reduced ZO-1 protein expression in rectosigmoid mucosa in HLA-DQ2/8-positive relative to HLA-DQ2/8-negative patients.

  6. Internal resistor of multi-functional tunnel barrier for selectivity and switching uniformity in resistive random access memory.

    Science.gov (United States)

    Lee, Sangheon; Woo, Jiyong; Lee, Daeseok; Cha, Euijun; Hwang, Hyunsang

    2014-01-01

    In this research, we analyzed the multi-functional role of a tunnel barrier that can be integrated in devices. This tunnel barrier, acting as an internal resistor, changes its resistance with applied bias. Therefore, the current flow in the devices can be controlled by a tunneling mechanism that modifies the tunnel barrier thickness for non-linearity and switching uniformity of devices. When a device is in a low-resistance state, the tunnel barrier controls the current behavior of the device because most of the bias is applied to the tunnel barrier owing to its higher resistance. Furthermore, the tunnel barrier induces uniform filament formation during set operation with the tunnel barrier controlling the current flow.

  7. Hydrophobicity of mucosal surface and its relationship to gut barrier function.

    Science.gov (United States)

    Qin, Xiaofa; Caputo, Francis J; Xu, Da-Zhong; Deitch, Edwin A

    2008-03-01

    Loss of the gut barrier has been implicated in the pathogenesis of the multiple organ dysfunction syndrome, and, thus, understanding the intestinal barrier is of potential clinical importance. An important, but relatively neglected, component of the gut barrier is the unstirred mucus layer, which through its hydrophobic and other properties serves as an important barrier to bacterial and other factors within the gut lumen. Thus, the goal of this study was to establish a reproducible method of measuring mucosal hydrophobicity and test the hypothesis that conditions that decrease mucosal hydrophobicity are associated with increased gut permeability. Hydrophobicity was measured in various segments of normal gut by measuring the contact angle of an aqueous droplet placed on the mucosal surface using a commercial goniometer. Second, the effect of the mucolytic agent N-acetyl cysteine on mucosal hydrophobicity and gut permeability was measured, as was the effects of increasing periods of in vivo gut ischemia on these parameters. Gut ischemia was induced by superior mesenteric artery occlusion, and gut permeability was measured by the mucosal-to-serosal passage of fluoresceine isothiocyanate-dextran (4.3 kDa) (FD4) across the everted sacs of ileum. Intestinal mucosal hydrophobicity showed a gradual increase from the duodenum to the end of the ileum and remained at high level in the cecum, colon, and rectum. Both N-acetyl cysteine treatment and ischemia caused a dose-dependent decrease in mucosal hydrophobicity, which significantly correlated increased gut permeability. Mucosal hydrophobicity of the intestine can be reproducibly measured, and decreases in mucosal hydrophobicity closely correlate with increased gut permeability. These results suggest that mucosal hydrophobicity can be a reliable method of measuring the barrier function of the unstirred mucus layer and a useful parameter in evaluating the pathogenesis of gut barrier dysfunction.

  8. 神经酰胺与皮肤屏障%Ceramide and Skin Barrier Function

    Institute of Scientific and Technical Information of China (English)

    吴金燕; 蒋献

    2011-01-01

    Ceramide is one of the lipids in human stratum corneum. The alteration of the ceramide will lead to the change of the lipids, and then the destruction of skin barrier function happens. It plays an important role in the proliferation, differentiation and apoptosis of keratinocytes. Many dermatogic diseases can destroy skin barrier function, and the destruction of barrier function will also result in skin diseases or aggravate the diseases. In a word, increasing attentions are paid to the ceramide's function in the skin.%神经酰胺是人体角质层脂质的主要成分,在皮肤的合成和分布有一定的规律.其质和量的变化可以导致脂质结构的改变,从而影响皮肤屏障功能.不同亚型神经酰胺作用不同,在角质形成细胞增殖、分化及凋亡中起重要作用,是皮肤屏障损伤修复后期重要的效应物质.许多皮肤病可导致角质层屏障功能的破坏,而屏障功能的破坏又是一些皮肤病的病因或加重因素.故神经酰胺在皮肤中的作用越来越受重视.

  9. Lithosphere/Asthenosphere Structure beneath the Mendocino Triple Junction from the Analysis of Surface Wave, Ambient Noise, and Receiver Functions

    Science.gov (United States)

    Liu, K.; Zhai, Y.; Levander, A.; Porritt, R. W.; Allen, R. M.; Schmandt, B.; Humphreys, E.; O'Driscoll, L.

    2010-12-01

    We have developed a 3-D shear velocity model using finite-frequency Rayleigh wave phase velocity dispersion, PdS receiver functions, and ambient noise tomography to better understand the complex lithosphere/asthenosphere structures in the Mendocino Triple Junction (MTJ) region. Using approximately 100 events (July 2007-December 2008) recorded by the stations of the Flexible Array Mendocino Experiment (FAME), the USArray Transportable Array (TA) network, and the Berkeley Digital Seismograph network, we have obtained the phase velocities (20-100s) from the finite-frequency Rayleigh wave tomography, which agrees well with the ambient noise tomography results (7-40 s, Porritt & Allen, 2010) in the overlapping period range. We subsequently inverted for a 3-D Vs model on a 0.25°x0.25° grid from the combined dispersion datasets, constrained by interface depths from the PdS receiver functions (Zhai & Levander, 2010). The resulting crustal and upper mantle Vs model (~150 km) reveals strong lateral heterogeneity in the subduction and transform regimes of the Mendocino Triple Junction region where the Gorda, Pacific, and North American plates intersect. The subducting Gorda slab is well-imaged as an eastward-dipping high-velocity anomaly to ~100 km depth. At the same depth to the east we observe a large-scale low velocity zone, which is the mantle wedge beneath the North American Plate. The southern edge of the Gorda plate (SEDGE) is imaged at 80-100 km depth and is in excellent agreement with measurements made from PdS receiver functions, body-wave tomography (Schmandt & Humphreys, 2010; Obrebski et al., 2010), and active source studies. At depths greater than 80 km, we interpret low velocities under the Cascadia subduction zone as the asthenosphere below the Gorda plate, in agreement with measured LAB depths from RFs. South of the SEDGE shallow strong low-velocities appear beneath the transform region, which we interpret as the asthenosphere in the slab-gap region left by

  10. Mice lacking myosin IXb, an inflammatory bowel disease susceptibility gene, have impaired intestinal barrier function and superficial ulceration in the ileum.

    Science.gov (United States)

    Hegan, Peter S; Chandhoke, Surjit K; Barone, Christina; Egan, Marie; Bähler, Martin; Mooseker, Mark S

    2016-04-01

    Genetic studies have implicated MYO9B, which encodes myosin IXb (Myo9b), a motor protein with a Rho GTPase activating domain (RhoGAP), as a susceptibility gene for inflammatory bowel disease (IBD). Moreover, we have recently shown that knockdown of Myo9b in an intestinal epithelial cell line impairs wound healing and barrier function. Here, we investigated whether mice lacking Myo9b have impaired intestinal barrier function and features of IBD. Myo9b knock out (KO) mice exhibit impaired weight gain and fecal occult blood (indicator of gastrointestinal bleeding), and increased intestinal epithelial cell apoptosis could be detected along the entire intestinal axis. Histologic analysis revealed intestinal mucosal damage, most consistently observed in the ileum, which included superficial ulceration and neutrophil infiltration. Focal lesions contained neutrophils and ultrastructural examination confirmed epithelial discontinuity and the deposition of extracellular matrix. We also observed impaired mucosal barrier function in KO mice. Transepithelial electrical resistance of KO ileum is >3 fold less than WT ileum. The intestinal mucosa is also permeable to high molecular weight dextran, presumably due to the presence of mucosal surface ulcerations. There is loss of tight junction-associated ZO-1, decreased lateral membrane associated E-cadherin, and loss of terminal web associated cytokeratin filaments. Consistent with increased Rho activity in the KO, there is increased subapical expression of activated myosin II (Myo2) based on localization of phosphorylated Myo2 regulatory light chain. Except for a delay in disease onset in the KO, no difference in dextran sulfate sodium-induced colitis and lethality was observed between wild-type and Myo9b KO mice.

  11. Lactobacillus rhamnosus GG supernatant promotes intestinal barrier function, balances Treg and TH17 cells and ameliorates hepatic injury in a mouse model of chronic-binge alcohol feeding.

    Science.gov (United States)

    Chen, Rui-Cong; Xu, Lan-Man; Du, Shan-Jie; Huang, Si-Si; Wu, He; Dong, Jia-Jia; Huang, Jian-Rong; Wang, Xiao-Dong; Feng, Wen-Ke; Chen, Yong-Ping

    2016-01-22

    Impaired intestinal barrier function plays a critical role in alcohol-induced hepatic injury, and the subsequent excessive absorbed endotoxin and bacterial translocation activate the immune response that aggravates the liver injury. Lactobacillus rhamnosus GG supernatant (LGG-s) has been suggested to improve intestinal barrier function and alleviate the liver injury induced by chronic and binge alcohol consumption, but the underlying mechanisms are still not clear. In this study, chronic-binge alcohol fed model was used to determine the effects of LGG-s on the prevention of alcoholic liver disease in C57BL/6 mice and investigate underlying mechanisms. Mice were fed Lieber-DeCarli diet containing 5% alcohol for 10 days, and one dose of alcohol was gavaged on Day 11. In one group, LGG-s was supplemented along with alcohol. Control mice were fed isocaloric diet. Nine hours later the mice were sacrificed for analysis. Chronic-binge alcohol exposure induced an elevation in liver enzymes, steatosis and morphology changes, while LGG-s supplementation attenuated these changes. Treatment with LGG-s significantly improved intestinal barrier function reflected by increased mRNA expression of tight junction (TJ) proteins and villus-crypt histology in ileum, and decreased Escherichia coli (E. coli) protein level in liver. Importantly, flow cytometry analysis showed that alcohol reduced Treg cell population while increased TH17 cell population as well as IL-17 secretion, which was reversed by LGG-s administration. In conclusion, our findings indicate that LGG-s is effective in preventing chronic-binge alcohol exposure-induced liver injury and shed a light on the importance of the balance of Treg and TH17 cells in the role of LGG-s application.

  12. Vibration control for a rigid-flexible manipulator with full state constraints via Barrier Lyapunov Function

    Science.gov (United States)

    Cao, Fangfei; Liu, Jinkun

    2017-10-01

    Considering full state constraints, this paper designs a boundary controller for a two-link rigid-flexible manipulator via Barrier Lyapunov Function. The dynamic model of the two-link rigid-flexible manipulator is described by coupled ordinary differential equations- partial differential equations (ODEs-PDEs). Based on the original model without neglecting the high-frequency modes, boundary controller is proposed to regulate the joint positions and eliminate the elastic vibration simultaneously. To ensure that the full state constraints which include position, speed and vibration constraints are not transgressed, a Barrier Lyapunov Function is employed in the proposed controller. The asymptotic stability of the closed-loop system is rigorously proved by the LaSalle's Invariance Principle. Simulations are given to verify the effectiveness of the proposed controller with state constraints.

  13. Promoting effect of lactoferrin on barrier function and epithelial differentiation of human keratinocytes.

    Science.gov (United States)

    Uchida, Ryo; Aoki, Reiji; Aoki-Yoshida, Ayako; Tajima, Atsushi; Takayama, Yoshiharu

    2017-02-01

    The purpose of this study was to elucidate the effects of bovine lactoferrin on keratinocyte differentiation and barrier function. Addition of bovine lactoferrin to differentiating HaCaT human keratinocytes led to increased transepithelial electrical resistance (TER), a marker of epithelial barrier function. This elevation was followed by upregulation of two differentiation markers, involucrin and filaggrin. The expression level of sterol regulatory element-binding protein-1 was also enhanced by bovine lactoferrin. The lactoferrin-induced upregulation of involucrin and filaggrin expression were confirmed in normal human epidermal keratinocytes (NHEK). Treatment with SB203580, a p38 mitogen-activated protein kinase (MAPK) α inhibitor, impaired the upregulation of involucrin and filaggrin expression in response to lactoferrin. The elevation of p38 MAPK phosphorylation was further enhanced by lactoferrin in the initial stage of differentiation of HaCaT keratinocytes. The findings suggest that bovine lactoferrin promotes epithelial differentiation by a p38-MAPK-dependent mechanism.

  14. Disruption of colonic barrier function and induction of mediator release by strains of Campylobacter jejuni that invade epithelial cells

    Institute of Scientific and Technical Information of China (English)

    Johannes Beltinger; Jo del Buono; Maeve M Skelly; John Thornley; Robin C Spiller; William A Stack; Christopher J Hawkey

    2008-01-01

    AIM:To study the mechanisms by which Campylobacter jejuni (C.jejuni) causes inflammation and diarrhea.In particular,direct interactions with intestinal epithelial cells and effects on barrier function are poorly understood.METHODS:To model the initial pathogenic effects of C.jejuni on intestinal epithelium,polarized human colonic HCA-7 monolayerswere grown on permeabilized filters and infected apically with clinical isolates of C.jejuni.Integrity of the monolayer was monitored by changes in monolayer resistance,release of lactate dehydrogenase,mannitol fluxes and electron microscopy.Invasion of HCA-7 cells was assessed by a modified gentamicin protection assay,translocation by counting colony forming units in the basal chamber,stimulation of mediator release by immunoassays and secretory responses in monolayers stimulated by bradykinin in an Ussing chamber.RESULTS:All strains translocated across monolayers but only a minority invaded HCA-7 cells.Strains that invaded HCA-7 cells destroyed rnonolayer resistance over 6 h,accompanied by increased release of lactate dehydrogenase,a four-fold increase in permeability to [3H] mannitol,and ultrastructural disruption of tight junctions,with rounding and lifting of cells off the filter membrane.Synthesis of interleukin (IL)-8 and prostaglandin E2 was increased with strains that invaded the rnonolayer but not with those that did not.CONCLUSION:These data demonstrate two distinct effects of C.jejuni on colonic epithelial cells and provide an informative model for further investigation of initial host cell responses to C.jejuni.

  15. Optimization of the tunnel magnetoresistance of CoFeB/ MgO/ CoFeB - based magnetic tunnel junctions (MTJs) with e-beam evaporation barriers

    Energy Technology Data Exchange (ETDEWEB)

    Zbarskyy, Vladyslav; Walter, Marvin; Eilers, Gerrit; Muenzenberg, Markus [I. Physikalisches Institut, Georg-August-Universitaet Goettingen, 37077 Goettingen (Germany); Peretzki, Patrick; Seibt, Michael [IV. Physikalisches Institut, Georg-August-Universitaet Goettingen, 37077 Goettingen (Germany)

    2010-07-01

    The investigation of MTJs with a high tunnel magnetoresistance (TMR) is very important for the production of MRAM devices. All our CoFeB layers are prepared via magnetron sputtering and MgO barriers via e-beam evaporation. We investigate the magnetic switching properties of CoFeB/MgO/CoFeB MTJs with measurements of hysteresis curves - using the magneto-optical Kerr effect - and TMR curves, optimizing the thickness of the CoFeB layers. Another parameter we change to optimize the ferromagnetic CoFeB electrodes is the annealing temperature. Both influence the solid state epitaxy leading to crystallization directly at the MgO/CoFeB interface. The optimization of MgO barrier properties is also necessary for the quality of our devices. In this context we study the TMR behaviour with the variation of the sample temperature during the e-beam evaporation of MgO barrier.

  16. Schottky barriers at metal-finite semiconducting carbon nanotube interfaces

    OpenAIRE

    Xue, Yongqiang; Ratner, Mark A.

    2003-01-01

    Electronic properties of metal-finite semiconducting carbon nanotube interfaces are studied as a function of the nanotube length using a self-consistent tight-binding theory. We find that the shape of the potential barrier depends on the long-range tail of the charge transfer, leading to an injection barrier thickness comparable to half of the nanotube length until the nanotube reaches the bulk limit. The conductance of the nanotube junction shows a transition from tunneling to thermally-acti...

  17. Wigner function studies of spin transport in dilute magnetic semiconductor barrier structures

    Science.gov (United States)

    Grubin, Harold L.

    2004-12-01

    The spin dependent Wigner function is implemented to obtain the IV characteristics of a double barrier resonant tunneling diode with DMS layers. The structure distinguishes between spin-up and spin-down carriers, each of which experiences resonance at different magnetic field dependent bias levels. The results demonstrate the magnetic field dependence of the IV characteristics and illustrate the magnetic field dependence of relative spin-up and spin-down carriers.

  18. An atrial-fibrillation-linked connexin40 mutant is retained in the endoplasmic reticulum and impairs the function of atrial gap-junction channels

    Directory of Open Access Journals (Sweden)

    Yiguo Sun

    2014-05-01

    Full Text Available Connexin40 (Cx40-containing gap-junction channels are expressed in the atrial myocardium and provide a low-resistance passage for rapid impulse propagation. A germline mutation in the GJA5 gene, which encodes Cx40, resulting in a truncated Cx40 (Q49X was identified in a large Chinese family with lone (idiopathic atrial fibrillation (AF. This mutation co-segregated with seven AF probands in an autosomal-dominant way over generations. To test the hypothesis that this Cx40 mutant affects the distribution and function of atrial gap junctions, we studied the Q49X mutant in gap-junction-deficient HeLa and N2A cells. The Q49X mutant, unlike wild-type Cx40, was typically localized in the cytoplasm and failed to form gap-junction plaques at cell-cell interfaces. When the Q49X mutant was co-expressed with Cx40 or Cx43, the mutant substantially reduced the gap-junction plaque formation of Cx40 and Cx43. Electrophysiological studies revealed no electrical coupling of cell pairs expressing the mutant alone and a significant decrease in the coupling conductance when the mutant was co-expressed with Cx40 or Cx43. Further colocalization experiments with the organelle residential proteins indicate that Q49X was retained in the endoplasmic reticulum. These findings provide evidence that the Q49X mutant is capable of impairing gap-junction distribution and function of key atrial connexins, which might play a role in the predisposition to and onset of AF.

  19. Disruption of the epithelial barrier during intestinal inflammation: Quest for new molecules and mechanisms.

    Science.gov (United States)

    Lechuga, Susana; Ivanov, Andrei I

    2017-03-16

    The intestinal epithelium forms a key protective barrier that separates internal organs from the harmful environment of the gut lumen. Increased permeability of the gut barrier is a common manifestation of different inflammatory disorders contributing to the severity of disease. Barrier permeability is controlled by epithelial adherens junctions and tight junctions. Junctional assembly and integrity depend on fundamental homeostatic processes such as cell differentiation, rearrangements of the cytoskeleton, and vesicle trafficking. Alterations of intestinal epithelial homeostasis during mucosal inflammation may impair structure and remodeling of apical junctions, resulting in increased permeability of the gut barrier. In this review, we summarize recent advances in our understanding of how altered epithelial homeostasis affects the structure and function of adherens junctions and tight junctions in the inflamed gut. Specifically, we focus on the transcription reprogramming of the cell, alterations in the actin cytoskeleton, and junctional endocytosis and exocytosis. We pay special attention to knockout mouse model studies and discuss the relevance of these mechanisms to human gastrointestinal disorders.

  20. [Barriers and challenges of the functional healthcare risk management units in hospitals of Madrid health service].

    Science.gov (United States)

    Pardo-Hernández, A; Navarro-Royo, C; Arguedas-Sanz, R; Albeniz-Lizarraga, C; Morón-Merchante, J

    2014-01-01

    To identify the barriers and challenges for the effective development of risk management units in hospitals of the Madrid Health Service. Descriptive cross-sectional study aimed at the management teams and members of the functional units of 31 hospitals in the Madrid Health Service. A self-administered questionnaire requesting answers in free text was used, identifying up to five barriers and challenges, and their prioritization by awarding from 1-5 points according to their importance. A discourse analysis was then conducted, grouping common themes and sorting them according to their score. The overall response rate was 94%. The most frequently identified barriers were lack of time (21%), inadequate safety culture (13%), lack of publication of their activities (10%), and lack of training (10%). The most important challenge was developing the training (18%), followed by improving the culture (17%), communication of safety activities (11%), and achieve leadership from the managers of the services (11%). According to the study conditions, the main identified barrier identified was the lack of available time, and the principal challenge found was promoting a proactive learning culture. Copyright © 2013 SECA. Published by Elsevier Espana. All rights reserved.

  1. Psychological Stress-Derived Prolactin Modulates Occludin Expression in Vaginal Epithelial Cells to Compromise Barrier Function

    Directory of Open Access Journals (Sweden)

    Xueyan Li

    2015-08-01

    Full Text Available Background/Aims: The causative factors of the vaginitis are not fully understood yet. Epithelial barrier dysfunction plays a critical role in the pathogenesis of vaginitis. This study aims to investigate the role of prolactin (PRL in the causing the vaginal epithelial barrier dysfunction. Methods: Adult rats were treated with water-avoid-stress. The serum levels of PRL were determined by ELISA. T84 cell (T84 cells; a vaginal epithelial cell line monolayers were prepared to be used assessing the epithelial barrier functions. The expression of occludin in T84 cells was assessed by Chromatin immunoprecipitation assay, methylation specifIc PCR, real time quantitative RT-PCR and Western blotting. Results: The results showed that psychological stress markedly increased the serum levels of PRL in the rat vaginal epithelia. Exposure of T84 cells to PRL in the culture markedly increased the phosphorylation of STAT3 and suppressed the expression of occludin in the cells; the transepithelial electric resistance was decreased and the permeability to a macromolecular tracer was increased in the T84 monolayers, which was mimicked by blocking STAT3, or abolished by over expression of occludin in the epithelial cells. Conclusions: Psychological stress-derived PRL induces vaginal epithelial barrier dysfunction by inhibiting the expression of occludin.

  2. Investigating the barrier function of skin lipid models with varying compositions.

    Science.gov (United States)

    Groen, Daniël; Poole, Dana S; Gooris, Gert S; Bouwstra, Joke A

    2011-10-01

    The lipids in the uppermost layer of the skin, the stratum corneum (SC), play an important role in the barrier function. The main lipid classes in stratum corneum are ceramides, cholesterol, and free fatty acids. In previous publications, a lipid model was presented, referred to as the stratum corneum substitute (SCS), that closely mimics the SC lipid organization and SC barrier function. In the present study, we use the SCS to study the effect of changes in lipid organization on the lipid barrier function using benzoic acid as permeation compound. First, in the SCS, we increased the level of one of the three major lipid classes keeping the ratio between the other lipid classes constant. An increased cholesterol level resulted in an increase in phase-separated cholesterol and a reduction in the permeability. An increase in ceramide or free fatty acid level resulted in the formation of additional phases, but had no significant influence on the permeability. We also examined models that mimic selected changes in lipid composition reported for dry or diseased skin. The SCS that mimics the composition in recessive X-linked ichthyosis skin displayed a twofold increase in permeability. This increase is possibly related to the formation of an additional, less ordered phase in this model. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. Kinetin Improves Barrier Function of the Skin by Modulating Keratinocyte Differentiation Markers

    Science.gov (United States)

    An, Sungkwan; Cha, Hwa Jun; Ko, Jung-Min; Han, Hyunjoo; Kim, Su Young; Kim, Kyung-Suk; Lee, Song Jeong; An, In-Sook; Kim, Sangwon; Youn, Hae Jeong

    2017-01-01

    Background Kinetin is a plant hormone that regulates growth and differentiation. Keratinocytes, the basic building blocks of the epidermis, function in maintaining the skin barrier. Objective We examined whether kinetin induces skin barrier functions in vitro and in vivo. Methods To evaluate the efficacy of kinetin at the cellular level, expression of keratinocyte differentiation markers was assessed. Moreover, we examined the clinical efficacy of kinetin by evaluating skin moisture, transepidermal water loss (TEWL), and skin surface roughness in patients who used kinetin-containing cream. We performed quantitative real-time polymerase chain reaction to measure the expression of keratinocyte differentiation markers in HaCaT cells following treatment. A clinical trial was performed to assess skin moisture, TEWL, and evenness of skin texture in subjects who used kinetin-containing cream for 4 weeks. Results Kinetin increased involucrin, and keratin 1 mRNA in HaCaT cells. Moreover, use of a kinetin-containing cream improved skin moisture and TEWL while decreasing roughness of skin texture. Conclusion Kinetin induced the expression of keratinocyte differentiation markers, suggesting that it may affect differentiation to improve skin moisture content, TEWL, and other signs of skin aging. Therefore, kinetin is a potential new component for use in cosmetics as an anti-aging agent that improves the barrier function of skin. PMID:28223740

  4. Spatial dependence of plasma oscillations in Josephson tunnel junctions

    DEFF Research Database (Denmark)

    Holst, Thorsten; Hansen, Jørn Bindslev

    1991-01-01

    We report on direct measurements of the plasma oscillations in Josephson tunnel junctions of various spatial dimensions. The effect of the spatial variation of the Cooper-pair phase difference (the Josephson phase) on the dynamics of the junction was investigated by application of a static magnetic...... field threading the tunneling barrier. We compare measurements where the plasma frequency was tuned either by applying a magnetic field or by raising the temperature. A crossover from short- to long-junction behavior of the functional dependence of the plasma oscillations was observed in the case...... of an applied magnetic field. Numerical simulations of the governing partial-differential sine-Gordon equation were performed and compared to the experimental results and a perturbation analysis. The theoretical results support the experiments and allow us to interpret the observed crossover as due...

  5. Assessment of skin barrier function and biochemical changes of ex vivo human skin in response to physical and chemical barrier disruption.

    Science.gov (United States)

    Döge, Nadine; Avetisyan, Araks; Hadam, Sabrina; Pfannes, Eva Katharina Barbosa; Rancan, Fiorenza; Blume-Peytavi, Ulrike; Vogt, Annika

    2016-12-21

    Topical dermatotherapy is intended to be used on diseased skin. Novel drug delivery systems even address differences between intact and diseased skin underlining the need for pre-clinical assessment of different states of barrier disruption. Herein, we studied how short-term incubation in culture media compared to incubation in humidified chambers affects human skin barrier function and viability. On both models we assessed different types and intensities of physical and chemical barrier disruption methods with regard to structural integrity, biophysical parameters and cytokine levels. Tissue degeneration and proliferative activity limited the use of tissue cultures to 48h. Viability is better preserved in cultured tissue. Tape-stripping (50×TS) and 4h sodium lauryl sulfate (SLS) pre-treatment were identified as highly reproducible and effective procedures for barrier disruption. Transepidermal water loss (TEWL) values reproducibly increased with the intensity of disruption while sebum content and skin surface pH were of limited value. Interleukin (IL)-6/8 and various chemokines and proteases were increased in tape-stripped skin which was more pronounced in SLS-treated skin tissue extracts. Thus, albeit limited to 48h, cultured full-thickness skin maintained several barrier characteristics and responded to different intensities of barrier disruption. Potentially, these models can be used to assess pre-clinically the efficacy and penetration of anti-inflammatory compounds.

  6. 病原微生物对紧密连接蛋白的调控%Regulation of pathogens on tight junction protein

    Institute of Scientific and Technical Information of China (English)

    张瑞丽; 王千秋

    2014-01-01

    Tight junctions are the structural and functional base of blood brain barrier and enteric epithelial barrier.Alterations of tight junctions play an important role in pathogens invading the body through paracellular penetration.The article reviews the progress on the effect of pathogens on the structure and function of tight junctions of blood brain barrier and enteric epithelial barrier.%紧密连接是血脑屏障及肠上皮屏障的结构和分子基础,其结构和功能改变是多种病原微生物从细胞旁路侵入机体的先决条件.此文分别就病原微生物如何调节血脑屏障及肠上皮屏障紧密连接结构,进而调节其功能方面的研究进展作一综述.

  7. Virally expressed connexin26 restores gap junction function in the cochlea of conditional Gjb2 knockout mice.

    Science.gov (United States)

    Yu, Q; Wang, Y; Chang, Q; Wang, J; Gong, S; Li, H; Lin, X

    2014-01-01

    Mutations in GJB2, which codes for the gap junction (GJ) protein connexin26 (Cx26), are the most common causes of human nonsyndromic hereditary deafness. We inoculated modified adeno-associated viral (AAV) vectors into the scala media of early postnatal conditional Gjb2 knockout mice to drive exogenous Cx26 expression. We found extensive virally expressed Cx26 in cells lining the scala media, and intercellular GJ network was re-established in the organ of Corti of mutant mouse cochlea. Widespread ectopic Cx26 expression neither formed ectopic GJs nor affected normal hearing thresholds in wild-type (WT) mice, suggesting that autonomous cellular mechanisms regulate proper membrane trafficking of exogenously expressed Cx26 and govern the functional manifestation of them. Functional recovery of GJ-mediated coupling among the supporting cells was observed. We found that both cell death in the organ of Corti and degeneration of spiral ganglion neurons in the cochlea of mutant mice were substantially reduced, although auditory brainstem responses did not show significant hearing improvement. This is the first report demonstrating that virally mediated gene therapy restored extensive GJ intercellular network among cochlear non-sensory cells in vivo. Such a treatment performed at early postnatal stages resulted in a partial rescue of disease phenotypes in the cochlea of the mutant mice.

  8. Suitability of polystyrene as a functional barrier layer in coloured food contact materials.

    Science.gov (United States)

    Genualdi, Susan; Addo Ntim, Susana; Begley, Timothy

    2015-01-01

    Functional barriers in food contact materials (FCMs) are used to prevent or reduce migration from inner layers in multilayer structures to food. The effectiveness of functional barrier layers was investigated in coloured polystyrene (PS) bowls due to their intended condition of use with hot liquids such as soups or stew. Migration experiments were performed over a 10-day period using USFDA-recommended food simulants (10% ethanol, 50% ethanol, corn oil and Miglyol) along with several other food oils. At the end of the 10 days, solvent dyes had migrated from the PS bowls at 12, 1 and 31,000 ng cm(-)(2) into coconut oil, palm kernel oil and Miglyol respectively, and in coconut oil and Miglyol the colour change was visible to the human eye. Scanning electron microscope (SEM) images revealed that the functional barrier was no longer intact for the bowls exposed to coconut oil, palm kernel oil, Miglyol, 10% ethanol, 50% ethanol and goat's milk. Additional tests showed that 1-dodecanol, a lauryl alcohol derived from palm kernel oil and coconut oil, was present in the PS bowls at an average concentration of 11 mg kg(-1). This compound is likely to have been used as a dispersing agent for the solvent dye and aided the migration of the solvent dye from the PS bowl into the food simulant. The solvent dye was not found in the 10% ethanol, 50% ethanol and goat's milk food simulants above their respective limits of detection, which is likely to be due to its insolubility in aqueous solutions. A disrupted barrier layer is of concern because if there are unregulated materials in the inner layers of the laminate, they may migrate to food, and therefore be considered unapproved food additives resulting in the food being deemed adulterated under the Federal Food Drug and Cosmetic Act.

  9. Polynomial-time interior-point algorithm based on a local self-concordant finite barrier function

    Institute of Scientific and Technical Information of China (English)

    JIN Zheng-jing; BAI Yan-qin

    2009-01-01

    The choice of self-concordant functions is the key to efficient algorithms for linear and quadratic convex optimizations,which provide a method with polynomial-time iterations to solve linear and quadratic convex optimization problems.The parameters of a self-concordant barrier function can be used to compute the complexity bound of the proposed algorithm.In this paper,it is proved that the finite barrier function is a local self-concordant barrier function.By deriving the local values of parameters of this barrier function,the desired complexity bound of an interior-point algorithm based on this local serf-concordant function for linear optimization problem is obtained.The bound matches the best known bound for smallupdate methods.

  10. Density-Functional-Based Determination of the CH3-CH4 Hydrogen Exchange Reaction Barrier

    CERN Document Server

    Pederson, M R

    1994-01-01

    Due to the overbinding that is inherent in existing {\\em local} approximations to the density-functional formalism, certain reaction energies have not been accessible. Since the generalized gradient approximation significantly decreases the overbinding, prospects for density-functional-based reaction dynamics are promising. Results on the generalized-gradient based determination of the CH3-CH4 hydrogen exchange reaction are presented. Including all Born-Oppenheimer effects an energy barrier of 9.5 kcal/Mole is found which is a very significant improvement over the local-density approximation.

  11. Lipid rafts regulate PCB153-induced disruption of occludin and brain endothelial barrier function through protein phosphatase 2A and matrix metalloproteinase-2.

    Science.gov (United States)

    Eum, Sung Yong; Jaraki, Dima; András, Ibolya E; Toborek, Michal

    2015-09-15

    Occludin is an essential integral transmembrane protein regulating tight junction (TJ) integrity in brain endothelial cells. Phosphorylation of occludin is associated with its localization to TJ sites and incorporation into intact TJ assembly. The present study is focused on the role of lipid rafts in polychlorinated biphenyl (PCB)-induced disruption of occludin and endothelial barrier function. Exposure of human brain endothelial cells to 2,2',4,4',5,5'-hexachlorobiphenyl (PCB153) induced dephosphorylation of threonine residues of occludin and displacement of occludin from detergent-resistant membrane (DRM)/lipid raft fractions within 1h. Moreover, lipid rafts modulated the reduction of occludin level through activation of matrix metalloproteinase 2 (MMP-2) after 24h PCB153 treatment. Inhibition of protein phosphatase 2A (PP2A) activity by okadaic acid or fostriecin markedly protected against PCB153-induced displacement of occludin and increased permeability of endothelial cells. The implication of lipid rafts and PP2A signaling in these processes was further defined by co-immunoprecipitation of occludin with PP2A and caveolin-1, a marker protein of lipid rafts. Indeed, a significant MMP-2 activity was observed in lipid rafts and was increased by exposure to PCB153. The pretreatment of MMP-2 inhibitors protected against PCB153-induced loss of occludin and disruption of lipid raft structure prevented the increase of endothelial permeability. Overall, these results indicate that lipid raft-associated processes, such as PP2A and MMP-2 activation, participate in PCB153-induced disruption of occludin function in brain endothelial barrier. This study contributes to a better understanding of the mechanisms leading to brain endothelial barrier dysfunction in response to exposure to environmental pollutants, such as ortho-substituted PCBs.

  12. Lipid rafts regulate PCB153-induced disruption of occludin and brain endothelial barrier function through protein phosphatase 2A and matrix metalloproteinase-2

    Science.gov (United States)

    Eum, Sung Yong; Jaraki, Dima; András, Ibolya E.; Toborek, Michal

    2015-01-01

    Occludin is an essential integral transmembrane protein regulating tight junction (TJ) integrity in brain endothelial cells. Phosphorylation of occludin is associated with its localization to TJ sites and incorporation into intact TJ assembly. The present study is focused on the role of lipid rafts in polychlorinated biphenyl (PCB)-induced disruption of occludin and endothelial barrier function. Exposure of human brain endothelial cells to 2,2′,4,4′,5,5′-hexachlorobiphenyl (PCB153) induced dephosphorylation of threonine residues of occludin and displacement of occludin from detergent-resistant membrane (DRM)/lipid raft fractions within 1 h. Moreover, lipid rafts modulated the reduction of occludin level through activation of matrix metalloproteinase 2 (MMP-2) after 24 h h PCB153 treatment. Inhibition of protein phosphatase 2A (PP2A) activity by okadaic acid or fostriecin markedly protected against PCB153-induced displacement of occludin and increased permeability of endothelial cells. The implication of lipid rafts and PP2A signaling in these processes was further defined by co-immunoprecipitation of occludin with PP2A and caveolin-1, a marker protein of lipid rafts. Indeed, a significant MMP-2 activity was observed in lipid rafts and was increased by exposure to PCB153. The pretreatment of MMP-2 inhibitors protected against PCB153-induced loss of occludin and disruption of lipid raft structure prevented the increase of endothelial permeability. Overall, these results indicate that lipid raft-associated processes, such as PP2A and MMP-2 activation, participate in PCB153-induced disruption of occludin function in brain endothelial barrier. This study contributes to a better understanding of the mechanisms leading to brain endothelial barrier dysfunction in response to exposure to environmental pollutants, such as ortho-substituted PCBs. PMID:26080028

  13. Density functional theory study on Herzberg-Teller contribution in Raman scattering from 4-aminothiophenol-metal complex and metal-4-aminothiophenol-metal junction

    Science.gov (United States)

    Liu, Shasha; Zhao, Xiuming; Li, Yuanzuo; Zhao, Xiaohong; Chen, Maodu

    2009-06-01

    Density functional theory (DFT) and time-dependent DFT calculations have been performed to investigate the Raman scattering spectra of metal-molecule complex and metal-molecule-metal junction architectures interconnected with 4-aminothiophenol (PATP) molecule. The simulated profiles of normal Raman scattering (NRS) spectra for the two complexes (Ag2-PATP and PATP-Au2) and the two junctions (Ag2-PATP-Au2 and Au2-PATP-Ag2) are similar to each other, but exhibit obviously different Raman intensities. Due to the lager static polarizabilities of the two junctions, which directly influence the ground state chemical enhancement in NRS spectra, the calculated normal Raman intensities of them are stronger than those of two complexes by the factor of 102. We calculate preresonance Raman scattering (RRS) spectra with incident light at 1064 nm, which is much lower than the S1 electronic transition energy of complexes and junctions. Ag2-PATP-Au2 and Au2-PATP-Ag2 junctions yield higher Raman intensities than those of Ag2-PATP and PATP-Au2 complexes, especially for b2 modes. This effect is mainly attributed to charge transfer (CT) between the metal gap and the PAPT molecule which results in the occurrence of CT resonance enhancement. The calculated pre-RRS spectra strongly depend on the electronic transition state produced by new structures. With excitation at 514.5 nm, the calculated pre-RRS spectra of two complexes and two junctions are stronger than those of with excitation at 1064 nm. A charge difference densities methodology has been used to visually describe chemical enhancement mechanism of RRS spectrum. This methodology aims at visualizing intermolecular CT which provides direct evidence of the Herzberg-Teller mechanism.

  14. Fabrication of pseudo-ceramide-based lipid microparticles for recovery of skin barrier function.

    Science.gov (United States)

    Kim, Do-Hoon; Park, Woo Ram; Kim, Jeong Hwan; Cho, Eun Chul; An, Eun Jung; Kim, Jin-Woong; Oh, Seong-Geun

    2012-06-01

    The recovery of skin barrier functions was investigated with pseudo-ceramide-based lipid microparticles. The microparticles were prepared by using a fluid bed technique where lipid components (a pseudo-ceramide, cholesterol and a fatty acid) were coated on a sugar seed, and a polymer was subsequently coated on the lipid microparticles. The microparticles contained large amount of pseudo-ceramide, and the pseudo-ceramide was in the form of lamellar structures mixed with other lipid components. In addition, the microparticles were stably dispersed in aqueous media or emulsion systems without any disruption of the microparticles' structures, thereby supplying sufficient amount of the pseudo-ceramide to skins for improving skin barrier functions such as preventing water loss. Such a role of the microparticles was proven by evaluating in vivo the efficacy of the lipid microparticles in reducing a trans-epidermal water loss (TEWL) of impaired murine skins. As a result, the novel pseudo-ceramide-based lipid microparticles for barrier recovery may potentially be applied in the field of dermatology, cosmetics and pharmaceuticals. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Topical Formulation Containing Beeswax-Based Nanoparticles Improved In Vivo Skin Barrier Function.

    Science.gov (United States)

    Souza, Carla; de Freitas, Luis Alexandre Pedro; Maia Campos, Patrícia Maria Berardo Gonçalves

    2017-02-17

    Lipid nanoparticles have shown many advantages for treatment/prevention of skin disorders with damaged skin barrier function. Beeswax is a favorable candidate for the development of nanosystems in the cosmetic and dermatological fields because of its advantages for the development of products for topical application. In the present study, beeswax-based nanoparticles (BNs) were prepared using the hot melt microemulsion technique and incorporated to a gel-cream formulation. The formulation was subsequently evaluated for its rheological stability and effect on stratum corneum water content (SCWC) and transepidermal water loss (TEWL) using in vivo biophysical techniques. BNs resulted in mean particle size of 95.72 ± 9.63 nm and zeta potential of -9.85 ± 0.57 mV. BN-loaded formulation showed shear thinning behavior, well adjusted by the Herschel-Bulkley model, and a small thixotropy index that were stable for 28 days at different temperatures. BN-loaded formulation was also able to simultaneously decrease the TEWL and increase the SCWC values 28 days after treatment. In conclusion, the novel beeswax-based nanoparticles showed potential for barrier recovery and open the perspective for its commercial use as a novel natural active as yet unexplored in the field of dermatology and cosmetics for treatment of skin diseases with damaged skin barrier function.

  16. Caspase-14 Expression Impairs Retinal Pigment Epithelium Barrier Function: Potential Role in Diabetic Macular Edema

    Directory of Open Access Journals (Sweden)

    Selina Beasley

    2014-01-01

    Full Text Available We recently showed that caspase-14 is a novel molecule in retina with potential role in accelerated vascular cell death during diabetic retinopathy (DR. Here, we evaluated whether caspase-14 is implicated in retinal pigment epithelial cells (RPE dysfunction under hyperglycemia. The impact of high glucose (HG, 30 mM D-glucose on caspase-14 expression in human RPE (ARPE-19 cells was tested, which showed significant increase in caspase-14 expression compared with normal glucose (5 mM D-glucose + 25 mM L-glucose. We also evaluated the impact of modulating caspase-14 expression on RPE cells barrier function, phagocytosis, and activation of other caspases using ARPE-19 cells transfected with caspase-14 plasmid or caspase-14 siRNA. We used FITC-dextran flux assay and electric cell substrate impedance sensing (ECIS to test the changes in RPE cell barrier function. Similar to HG, caspase-14 expression in ARPE-19 cells increased FITC-dextran leakage through the confluent monolayer and decreased the transcellular electrical resistance (TER. These effects of HG were prevented by caspase-14 knockdown. Furthermore, caspase-14 knockdown prevented the HG-induced activation of caspase-1 and caspase-9, the only activated caspases by HG. Phagocytic activity was unaffected by caspase-14 expression. Our results suggest that caspase-14 contributes to RPE cell barrier disruption under hyperglycemic conditions and thus plays a role in the development of diabetic macular edema.

  17. Role of the intestinal barrier in inflammatory bowel disease

    Institute of Scientific and Technical Information of China (English)

    Mike G Laukoetter; Porfirio Nava; Asma Nusrat

    2008-01-01

    A critical function of the intestinal mucosa is to form a barrier that separates luminal contents from the interstitium. The single layer of intestinal epithelial cells (IECs) serves as a dynamic interface between the host and its environment. Cell polarity and structural properties of the epithelium is complex and is important in the development of epithelial barrier function. Epithelial cells associate with each other via a series of intercellular junctions. The apical most intercellular junctional complex referred to as the Apical Junction Complex (AJC) is important in not only cell-cell recognition, but also in the regulation of paracellular movement of fluid and solutes. Defects in the intestinal epithelial barrier function have been observed in a number of intestinal disorders such as inflammatory bowel disease (IBD). It is now becoming evident that an aberrant epithelial barrier function plays a central role in the pathophysiology of IBD. Thus, a better understanding of the intestinal epithelial barrier structure and function in healthy and disease states such as IBD will foster new ideas for the development of therapies for such chronic disorders.

  18. Analysis of trafficking, stability and function of human connexin 26 gap junction channels with deafness-causing mutations in the fourth transmembrane helix.

    Directory of Open Access Journals (Sweden)

    Cinzia Ambrosi

    Full Text Available Human Connexin26 gene mutations cause hearing loss. These hereditary mutations are the leading cause of childhood deafness worldwide. Mutations in gap junction proteins (connexins can impair intercellular communication by eliminating protein synthesis, mis-trafficking, or inducing channels that fail to dock or have aberrant function. We previously identified a new class of mutants that form non-functional gap junction channels and hemichannels (connexons by disrupting packing and inter-helix interactions. Here we analyzed fourteen point mutations in the fourth transmembrane helix of connexin26 (Cx26 that cause non-syndromic hearing loss. Eight mutations caused mis-trafficking (K188R, F191L, V198M, S199F, G200R, I203K, L205P, T208P. Of the remaining six that formed gap junctions in mammalian cells, M195T and A197S formed stable hemichannels after isolation with a baculovirus/Sf9 protein purification system, while C202F, I203T, L205V and N206S formed hemichannels with varying degrees of instability. The function of all six gap junction-forming mutants was further assessed through measurement of dye coupling in mammalian cells and junctional conductance in paired Xenopus oocytes. Dye coupling between cell pairs was reduced by varying degrees for all six mutants. In homotypic oocyte pairings, only A197S induced measurable conductance. In heterotypic pairings with wild-type Cx26, five of the six mutants formed functional gap junction channels, albeit with reduced efficiency. None of the mutants displayed significant alterations in sensitivity to transjunctional voltage or induced conductive hemichannels in single oocytes. Intra-hemichannel interactions between mutant and wild-type proteins were assessed in rescue experiments using baculovirus expression in Sf9 insect cells. Of the four unstable mutations (C202F, I203T, L205V, N206S only C202F and N206S formed stable hemichannels when co-expressed with wild-type Cx26. Stable M195T hemichannels

  19. Intestinal cell barrier function in vitro is severely compromised by keratin 8 and 18 mutations identified in patients with inflammatory bowel disease.

    Directory of Open Access Journals (Sweden)

    Tina Zupancic

    Full Text Available Keratin 8 and 18 (K8/K18 mutations have been implicated in the aetiology of certain pathogenic processes of the liver and pancreas. While some K8 mutations (K8 G62C, K8 K464N are also presumed susceptibility factors for inflammatory bowel disease (IBD, the only K18 mutation (K18 S230T discovered so far in an IBD patient is thought to be a polymorphism. The aim of our study was to demonstrate that these mutations might also directly affect intestinal cell barrier function. Cell monolayers of genetically engineered human colonocytes expressing these mutations were tested for permeability, growth rate and resistance to heat-stress. We also calculated the change in dissociation constant (Kd, measure of affinity each of these mutations introduces into the keratin protein, and present the first model of a keratin dimer L12 region with in silico clues to how the K18 S230T mutation may affect keratin function. Physiologically, these mutations cause up to 30% increase in paracellular permeability in vitro. Heat-stress induces little keratin clumping but instead cell monolayers peel off the surface suggesting a problem with cell junctions. K18 S230T has pronounced pathological effects in vitro marked by high Kd, low growth rate and increased permeability. The latter may be due to the altered distribution of tight junction components claudin-4 and ZO-1. This is the first time intestinal cells have been suggested also functionally impaired by K8/K18 mutations. Although an in vitro colonocyte model system does not completely mimic the epithelial lining of the intestine, nevertheless the data suggest that K8/K18 mutations may be also able to produce a phenotype in vivo.

  20. Intestinal cell barrier function in vitro is severely compromised by keratin 8 and 18 mutations identified in patients with inflammatory bowel disease.

    Science.gov (United States)

    Zupancic, Tina; Stojan, Jure; Lane, Ellen Birgitte; Komel, Radovan; Bedina-Zavec, Apolonija; Liovic, Mirjana

    2014-01-01

    Keratin 8 and 18 (K8/K18) mutations have been implicated in the aetiology of certain pathogenic processes of the liver and pancreas. While some K8 mutations (K8 G62C, K8 K464N) are also presumed susceptibility factors for inflammatory bowel disease (IBD), the only K18 mutation (K18 S230T) discovered so far in an IBD patient is thought to be a polymorphism. The aim of our study was to demonstrate that these mutations might also directly affect intestinal cell barrier function. Cell monolayers of genetically engineered human colonocytes expressing these mutations were tested for permeability, growth rate and resistance to heat-stress. We also calculated the change in dissociation constant (Kd, measure of affinity) each of these mutations introduces into the keratin protein, and present the first model of a keratin dimer L12 region with in silico clues to how the K18 S230T mutation may affect keratin function. Physiologically, these mutations cause up to 30% increase in paracellular permeability in vitro. Heat-stress induces little keratin clumping but instead cell monolayers peel off the surface suggesting a problem with cell junctions. K18 S230T has pronounced pathological effects in vitro marked by high Kd, low growth rate and increased permeability. The latter may be due to the altered distribution of tight junction components claudin-4 and ZO-1. This is the first time intestinal cells have been suggested also functionally impaired by K8/K18 mutations. Although an in vitro colonocyte model system does not completely mimic the epithelial lining of the intestine, nevertheless the data suggest that K8/K18 mutations may be also able to produce a phenotype in vivo.

  1. Effect of diffusely adherent Escherichia coli strains isolated from diarrhoeal patients and healthy carriers on IL-8 secretion and tight junction barrier integrity of Caco-2 cells.

    Science.gov (United States)

    Tanimoto, Yoshihiko; Arikawa, Kentaro; Nishikawa, Yoshikazu

    2013-03-15

    The pathogenesis of diffusely adherent Escherichia coli (DAEC) remains to be elucidated. Previously, we found that afimbrial adhesin gene (afa)-positive motile DAEC strains isolated from patients with diarrhoea induce high levels of IL-8 secretion in Caco-2 cells via toll-like receptor 5 (TLR-5), while non-motile strains did not. The aim of this study was to compare virulence properties, including the phylogenetic groups, afa subtypes, IL-8 secretion levels, and the effects on tight junctions, of DAEC strains isolated from healthy persons with those isolated from patients with diarrhoea. Induction of IL-8 secretion in Caco-2 cells was examined for a total of 36 afa-positive strains: 19 from diarrhoeal patients and 17 from healthy carriers. Irrespective of the source, all strains were classified into the phylogenetic group B2 or D, with the exception of two strains. All 7 motile strains isolated from diarrhoeal patients induced high levels of IL-8 secretion, while only 6 of 15 motile strains from healthy carriers induced IL-8 secretion to the same levels as the diarrhoeal strains. We speculated that additional virulence factors other than afa and motility cause the loosening of tight junctions that allows flagellin to reach TLR-5 located on the basolateral side of the epithelium. However, no differences in the TER and dextran permeability were observed between cells infected with diarrhoeal strains and those from healthy persons. Thus, diarrhoeagenic DAEC seems to possess additional factors, in addition to adhesin and flagellin, which can induce high IL-8 secretion.

  2. Control over Rectification in Supramolecular Tunneling Junctions

    NARCIS (Netherlands)

    Wimbush, K.S.; Wimbush, Kim S.; Reus, William F.; van der Wiel, Wilfred Gerard; Reinhoudt, David; Whitesides, George M.; Nijhuis, C.A.; Velders, Aldrik

    2010-01-01

    In complete control: The magnitude of current rectification in well-defined supramolecular tunneling junctions can be controlled by changing the terminal functionality (red spheres) of dendrimers (gray spheres) immobilized on a supramolecular platform (see picture). Junctions containing biferrocene

  3. Possible relationship between intestinal barrier function and formation of pigment gallstones in hamsters

    Institute of Scientific and Technical Information of China (English)

    Ying Fan; Shuo-Dong Wu; Lei Sun; Bei-Bei Fu; Yang Su

    2008-01-01

    BACKGROUND: The presence of bacteria in bile is an important factor in the formation of pigment gallstones. The bile of healthy people is sterile and bacteria in the biliary system come from endogenous infection from the gut. Yet, the route of bacterial translocation into the bile duct is still unclear. Theoretically, two routes exist:one is through the intestinal barrier and the other is by direct relfux from the sphincter of Oddi. This study was undertaken to explore the relationship between the effectiveness of intestinal barrier and the formation of pigment gallstones in hamsters. METHODS: Thirty-two hamsters were divided into an experimental and a control group, with 16 hamsters in each group. A low protein and high cellulose diet was given for 6 weeks to induce the formation of pigment gallstones in the experimental group (PS) and a normal diet was given to the control group (CON). Morphological changes, changes in the levels of serum endotoxin and diamine oxidase, and changes in the numbers of B lymphocytes, plasma cells and secretory immunoglobin A (sIgA) in the intestinal mucosa were assessed after 6 weeks. RESULTS:Four hamsters died during lithogenesis and body weight decreased in the PS group. Pigment gallstones were found in 11 hamsters at the end of the experiment, giving a lithogenesis rate of 91.67%. The serum endotoxin level before and after gallstone formation in the PS group was 0.2960±0.1734 U/ml and 8.2964±4.6268 U/ml, respectively (P CONCLUSIONS:A low protein and high cellulose diet can markedly reduce intestinal barrier function and facilitate the formation of pigment gallstones. The decrease of intestinal barrier function may take part in the formation of pigment gallstones.

  4. Identification of Human Junctional Adhesion Molecule 1 as a Functional Receptor for the Hom-1 Calicivirus on Human Cells.

    Science.gov (United States)

    Sosnovtsev, Stanislav V; Sandoval-Jaime, Carlos; Parra, Gabriel I; Tin, Christine M; Jones, Ronald W; Soden, Jo; Barnes, Donna; Freeth, Jim; Smith, Alvin W; Green, Kim Y

    2017-02-14

    The Hom-1 vesivirus was reported in 1998 following the inadvertent transmission of the animal calicivirus San Miguel sea lion virus to a human host in a laboratory. We characterized the Hom-1 strain and investigated the mechanism by which human cells could be infected. An expression library of 3,559 human plasma membrane proteins was screened for reactivity with Hom-1 virus-like particles, and a single interacting protein, human junctional adhesion molecule 1 (hJAM1), was identified. Transient expression of hJAM1 conferred susceptibility to Hom-1 infection on nonpermissive Chinese hamster ovary (CHO) cells. Virus infection was markedly inhibited when CHO cells stably expressing hJAM were pretreated with anti-hJAM1 monoclonal antibodies. Cell lines of human origin were tested for growth of Hom-1, and efficient replication was observed in HepG2, HuH7, and SK-CO15 cells. The three cell lines (of hepatic or intestinal origin) were confirmed to express hJAM1 on their surface, and clustered regularly interspaced short palindromic repeats/Cas9-mediated knockout of the hJAM1 gene in each line abolished Hom-1 propagation. Taken together, our data indicate that entry of the Hom-1 vesivirus into these permissive human cell lines is mediated by the plasma membrane protein hJAM1 as a functional receptor.IMPORTANCE Vesiviruses, such as San Miguel sea lion virus and feline calicivirus, are typically associated with infection in animal hosts. Following the accidental infection of a laboratory worker with San Miguel sea lion virus, a related virus was isolated in cell culture and named Hom-1. In this study, we found that Hom-1 could be propagated in a number of human cell lines, making it the first calicivirus to replicate efficiently in cultured human cells. Screening of a library of human cell surface membrane proteins showed that the virus could utilize human junctional adhesion molecule 1 as a receptor to enter cells and initiate replication. The Hom-1 virus presents a new

  5. Children's belief- and desire-reasoning in the temporoparietal junction: evidence for specialization from functional near-infrared spectroscopy.

    Science.gov (United States)

    Bowman, Lindsay C; Kovelman, Ioulia; Hu, Xiaosu; Wellman, Henry M

    2015-01-01

    Behaviorally, children's explicit theory of mind (ToM) proceeds in a progression of mental-state understandings: developmentally, children demonstrate accurate explicit desire-reasoning before accurate explicit belief-reasoning. Given its robust and cross-cultural nature, we hypothesize this progression may be paced in part by maturation/specialization of the brain. Neuroimaging research demonstrates that the right temporoparietal junction (TPJ) becomes increasingly selective for ToM reasoning as children age, and as their ToM improves. But this research has narrowly focused on beliefs or on undifferentiated mental-states. A recent ERP study in children included a critical contrast to desire-reasoning, and demonstrated that right posterior potentials differentiated belief-reasoning from desire-reasoning. Taken together, the literature suggests that children's desire-belief progression may be paced by specialization of the right TPJ for belief-reasoning specifically, beyond desire-reasoning. In the present study, we tested this hypothesis directly by examining children's belief- and desire-reasoning using functional near-infrared spectroscopy in conjunction with structural magnetic resonance imaging to pinpoint brain activation in the right TPJ. Results showed greatest activation in the right TPJ for belief-reasoning, beyond desire-reasoning, and beyond non-mental reasoning (control). Findings replicate and critically extend prior ERP results, and provide clear evidence for a specific neural mechanism underlying children's progression from understanding desires to understanding beliefs.

  6. Identification of Human Junctional Adhesion Molecule 1 as a Functional Receptor for the Hom-1 Calicivirus on Human Cells

    Directory of Open Access Journals (Sweden)

    Stanislav V. Sosnovtsev

    2017-02-01

    Full Text Available The Hom-1 vesivirus was reported in 1998 following the inadvertent transmission of the animal calicivirus San Miguel sea lion virus to a human host in a laboratory. We characterized the Hom-1 strain and investigated the mechanism by which human cells could be infected. An expression library of 3,559 human plasma membrane proteins was screened for reactivity with Hom-1 virus-like particles, and a single interacting protein, human junctional adhesion molecule 1 (hJAM1, was identified. Transient expression of hJAM1 conferred susceptibility to Hom-1 infection on nonpermissive Chinese hamster ovary (CHO cells. Virus infection was markedly inhibited when CHO cells stably expressing hJAM were pretreated with anti-hJAM1 monoclonal antibodies. Cell lines of human origin were tested for growth of Hom-1, and efficient replication was observed in HepG2, HuH7, and SK-CO15 cells. The three cell lines (of hepatic or intestinal origin were confirmed to express hJAM1 on their surface, and clustered regularly interspaced short palindromic repeats/Cas9-mediated knockout of the hJAM1 gene in each line abolished Hom-1 propagation. Taken together, our data indicate that entry of the Hom-1 vesivirus into these permissive human cell lines is mediated by the plasma membrane protein hJAM1 as a functional receptor.

  7. Non-Equilibrium Green's Function Calculation for Electron Transport through Magnetic Tunnel Junction

    Directory of Open Access Journals (Sweden)

    Sara Nobakht

    2014-06-01

    Full Text Available In this paper non-equilibrium Green's function method –dependent electron transport through non magnetic layer (insulator has been studied in one dimension .electron transport in multi-layer (magnetic/non magnetic/ magneticlayers is studied as quantum .the result show increasing the binding strength of the electrical insulator transition probability density case , the electron density , broad levels of disruption increases. Broad band connection increases the levels of disruption to electrical insulation and show non- conductive insulating state to semiconductor stat and even conductor

  8. Radioisotope battery using Schottky barrier devices

    Energy Technology Data Exchange (ETDEWEB)

    Manasse, F.K. (Drexel Univ., Philadelphia); Tse, A.N.

    1976-05-01

    Based on the well-known betavoltaic effect, a new nuclear battery, which uses a Schottky barrier, has been used in place of the more standard p-n junction diode, along with /sup 147/Pm metal film rather than Pm/sub 2/O/sub 3/ oxide, as in the commercially available Betacel. Measurement of absorption, conversion efficiency, thickness, etc., as functions of resistivity and other cell parameters, and assessment of performance are being researched to design a prototype battery.

  9. Tight Junctions in Salivary Epithelium

    Directory of Open Access Journals (Sweden)

    Olga J. Baker

    2010-01-01

    Full Text Available Epithelial cell tight junctions (TJs consist of a narrow belt-like structure in the apical region of the lateral plasma membrane that circumferentially binds each cell to its neighbor. TJs are found in tissues that are involved in polarized secretions, absorption functions, and maintaining barriers between blood and interstitial fluids. The morphology, permeability, and ion selectivity of TJ vary among different types of tissues and species. TJs are very dynamic structures that assemble, grow, reorganize, and disassemble during physiological or pathological events. Several studies have indicated the active role of TJ in intestinal, renal, and airway epithelial function; however, the functional significance of TJ in salivary gland epithelium is poorly understood. Interactions between different combinations of the TJ family (each with their own unique regulatory proteins define tissue specificity and functions during physiopathological processes; however, these interaction patterns have not been studied in salivary glands. The purpose of this review is to analyze some of the current data regarding the regulatory components of the TJ that could potentially affect cellular functions of the salivary epithelium.

  10. Fast endocytic recycling determines TRPC1-STIM1 clustering in ER-PM junctions and plasma membrane function of the channel.

    Science.gov (United States)

    de Souza, Lorena Brito; Ong, Hwei Ling; Liu, Xibao; Ambudkar, Indu S

    2015-10-01

    Stromal interaction molecule 1 (STIM1) senses depletion of ER-Ca2+ store and clusters in ER-PM junctions where it associates with and gates Ca2+ influx channels, Orai1 and TRPC1. Clustering of TRPC1 with STIM1 and Orai1 in these junctions is critical since Orai1-mediated Ca2+ entry triggers surface expression of TRPC1 while STIM1 gates the channel. Thus, plasma membrane function of TRPC1 depends on the delivery of the channel to the sites where STIM1 puncta are formed. This study examines intracellular trafficking mechanism(s) that determine plasma membrane expression and function of TRPC1 in cells where Orai1 and TRPC1 are endogenously expressed and contribute to Ca2+ entry. We report that TRPC1 is internalized by Arf6-dependent pathway, sorted to Rab5-containing early endosomes, and trafficked to ER-PM junctions by Rab4-dependent fast recycling. Overexpression of Arf6, or Rab5, but not the respective dominant negative mutants, induced retention of TRPC1 in early endosomes and suppressed TRPC1 function. Notably, cells expressing Arf6 or Rab5 displayed an inwardly rectifying ICRAC current that is mediated by Orai1 instead of TRPC1-associated ISOC, demonstrating that Orai1 function was not altered. Importantly, expression of Rab4, but not STIM1, with Rab5 rescued surface expression and function of TRPC1, restoring generation of ISOC. Together, these data demonstrate that trafficking via fast recycling endosomes determines TRPC1-STIM1 clustering within ER-PM junctions following ER-Ca2+ store depletion which is critical for the surface expression and function of the channel. Ca2+ influx mediated by TRPC1 modifies Ca2+-dependent physiological response of cells. Published by Elsevier B.V.

  11. Flow directionality, mountain barriers and functional traits determine diatom metacommunity structuring of high mountain streams.

    Science.gov (United States)

    Dong, Xiaoyu; Li, Bin; He, Fengzhi; Gu, Yuan; Sun, Meiqin; Zhang, Haomiao; Tan, Lu; Xiao, Wen; Liu, Shuoran; Cai, Qinghua

    2016-04-19

    Stream metacommunities are structured by a combination of local (environmental filtering) and regional (dispersal) processes. The unique characters of high mountain streams could potentially determine metacommunity structuring, which is currently poorly understood. Aiming at understanding how these characters influenced metacommunity structuring, we explored the relative importance of local environmental conditions and various dispersal processes, including through geographical (overland), topographical (across mountain barriers) and network (along flow direction) pathways in shaping benthic diatom communities. From a trait perspective, diatoms were categorized into high-profile, low-profile and motile guild to examine the roles of functional traits. Our results indicated that both environmental filtering and dispersal processes influenced metacommunity structuring, with dispersal contributing more than environmental processes. Among the three pathways, stream corridors were primary pathway. Deconstructive analysis suggested different responses to environmental and spatial factors for each of three ecological guilds. However, regardless of traits, dispersal among streams was limited by mountain barriers, while dispersal along stream was promoted by rushing flow in high mountain stream. Our results highlighted that directional processes had prevailing effects on metacommunity structuring in high mountain streams. Flow directionality, mountain barriers and ecological guilds contributed to a better understanding of the roles that mountains played in structuring metacommunity.

  12. Enhanced barrier functions and anti-inflammatory effect of cultured coconut extract on human skin.

    Science.gov (United States)

    Kim, Soomin; Jang, Ji Eun; Kim, Jihee; Lee, Young In; Lee, Dong Won; Song, Seung Yong; Lee, Ju Hee

    2017-08-01

    Natural plant oils have been used as a translational alternative to modern medicine. Particularly, virgin coconut oil (VCO) has gained popularity because of its potential benefits in pharmaceutical, nutritional, and cosmetic applications. Cultured coconut extract (CCE) is an alternative end product of VCO, which undergoes a further bacterial fermentation process. This study aimed to investigate the effects of CCE on human skin. We analyzed the expression of skin barrier molecules and collagens after applying CCE on human explanted skin. To evaluate the anti-inflammatory properties of CCE, the expression of inflammatory markers was analyzed after ultraviolet B (UVB) irradiation. The CCE-treated group showed increased expression of cornified cell envelope components, which contribute to protective barrier functions of the stratum corneum. Further, the expression of inflammatory markers was lower in the CCE-treated group after exposure to UVB radiation. These results suggest an anti-inflammatory effect of CCE against UVB irradiation-induced inflammation. Additionally, the CCE-treated group showed increased collagen and hyaluronan synthase-3 expression. In our study, CCE showed a barrier-enhancing effect and anti-inflammatory properties against ex vivo UVB irradiation-induced inflammation. The promising effect of CCE may be attributed to its high levels of polyphenols and fatty acid components. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Gap Junctional Intercellular Communication: A Functional Biomarker to Assess Adverse Effects of Toxicants and Toxins, and Health Benefits of Natural Products.

    Science.gov (United States)

    Upham, Brad L; Sovadinová, Iva; Babica, Pavel

    2016-12-25

    This protocol describes a scalpel loading-fluorescent dye transfer (SL-DT) technique that measures intercellular communication through gap junction channels, which is a major intercellular process by which tissue homeostasis is maintained. Interruption of gap junctional intercellular communication (GJIC) by toxicants, toxins, drugs, etc. has been linked to numerous adverse health effects. Many genetic-based human diseases have been linked to mutations in gap junction genes. The SL-DT technique is a simple functional assay for the simultaneous assessment of GJIC in a large population of cells. The assay involves pre-loading cells with a fluorescent dye by briefly perturbing the cell membrane with a scalpel blade through a population of cells. The fluorescent dye is then allowed to traverse through gap junction channels to neighboring cells for a designated time. The assay is then terminated by the addition of formalin to the cells. The spread of the fluorescent dye through a population of cells is assessed with an epifluorescence microscope and the images are analyzed with any number of morphometric software packages that are available, including free software packages found on the public domain. This assay has also been adapted for in vivo studies using tissue slices from various organs from treated animals. Overall, the SL-DT assay can serve a broad range of in vitro pharmacological and toxicological needs, and can be potentially adapted for high throughput set-up systems with automated fluorescence microscopy imaging and analysis to elucidate more samples in a shorter time.

  14. Probiotics the Good Neighbor: Guarding the Gut Mucosal Barrier

    Directory of Open Access Journals (Sweden)

    R. K. Rao

    2009-01-01

    Full Text Available Problem statement: The disruption of gut barrier function plays a crucial role in the pathogenesis of not only gastrointestinal diseases, but also the diseases of liver and other organs. Mucosal protective factors that preserve the gut barrier integrity are beneficial in the prevention and treatment of such diseases. Probiotics is a group of helpful bacteria that protect the gastrointestinal mucosa from a variety of insults. Therefore, understanding the mechanism of probiotic-mediated protection of gut barrier function is an important area of investigation. Approach: Several studies had addressed the role of probiotics in the protection of gut barrier integrity. In a recent study, we investigated the role of Lactobacillus rhamnosus GG and two soluble proteins, p40 and p75, in the protection of gut barrier function in Caco-2 cell monolayer, a model of the intestinal epithelium. Results: Studies demonstrated that live or dead Lactobacillus rhamnosus GG prevents oxidative stress-induced disruption of tight junctions and barrier function in Caco-2 cell monolayers. The isolated soluble proteins of this probiotic, p40 and p75, also prevent hydrogen peroxide-induced tight junction disruption. This protective effect of probiotic proteins was mediated by the activation of ERK1/2 and protein kinase C isoforms, PKCβI and PKCε. Conclusion: Lactobacillus rhamnosus GG prevent oxidative stress-induced disruption of intestinal epithelial tight junctions and barrier function, suggesting that preservation of epithelial barrier function is one of the mechanisms involved in the mucosal protective role of probiotics in the gut.

  15. Role of Melatonin, Neuropeptide S and Short Chain Fatty Acids i