WorldWideScience

Sample records for jump time distribution

  1. Robust H∞ Finite-Time Control for Discrete Markovian Jump Systems with Disturbances of Probabilistic Distributions

    Directory of Open Access Journals (Sweden)

    Haiyang Chen

    2015-01-01

    Full Text Available This paper is concerned with the robust H∞ finite-time control for discrete delayed nonlinear systems with Markovian jumps and external disturbances. It is usually assumed that the disturbance affects the system states and outputs with the same influence degree of 100%, which is not evident enough to reflect the situation where the disturbance affects these two parts by different influence degrees. To tackle this problem, a probabilistic distribution denoted by binomial sequences is introduced to describe the external disturbance. Throughout the paper, the definitions of the finite-time boundedness (FTB and the H∞ FTB are firstly given respectively. To extend the results further, a model which combines a linear dynamic system and a static nonlinear operator is referred to describe the system under discussion. Then by virtue of state feedback control method, some new sufficient criteria are derived which guarantee the FTB and H∞ FTB performances for the considered system. Finally, an example is provided to demonstrate the effectiveness of the developed control laws.

  2. Stability analysis of Markovian jumping stochastic Cohen—Grossberg neural networks with discrete and distributed time varying delays

    Science.gov (United States)

    M. Syed, Ali

    2014-06-01

    In this paper, the global asymptotic stability problem of Markovian jumping stochastic Cohen—Grossberg neural networks with discrete and distributed time-varying delays (MJSCGNNs) is considered. A novel LMI-based stability criterion is obtained by constructing a new Lyapunov functional to guarantee the asymptotic stability of MJSCGNNs. Our results can be easily verified and they are also less restrictive than previously known criteria and can be applied to Cohen—Grossberg neural networks, recurrent neural networks, and cellular neural networks. Finally, the proposed stability conditions are demonstrated with numerical examples.

  3. Time change, jumping measure and Feller measure

    OpenAIRE

    He, Ping

    2007-01-01

    In this paper, we shall investigate some potential theory for time change of Markov processes. Under weak duality, it is proved that the jumping measure and Feller measure are actually independent of time change, and the jumping measure of a time changed process induced by a PCAF supported on $V$ coincides with the sum of the Feller measure on $V$ and the trace of the original jumping measure on $V$.

  4. A Directed Continuous Time Random Walk Model with Jump Length Depending on Waiting Time

    Directory of Open Access Journals (Sweden)

    Long Shi

    2014-01-01

    Full Text Available In continuum one-dimensional space, a coupled directed continuous time random walk model is proposed, where the random walker jumps toward one direction and the waiting time between jumps affects the subsequent jump. In the proposed model, the Laplace-Laplace transform of the probability density function P(x,t of finding the walker at position x at time t is completely determined by the Laplace transform of the probability density function φ(t of the waiting time. In terms of the probability density function of the waiting time in the Laplace domain, the limit distribution of the random process and the corresponding evolving equations are derived.

  5. Asymptotic Distribution of the Jump Change-Point Estimator

    Institute of Scientific and Technical Information of China (English)

    Changchun TAN; Huifang NIU; Baiqi MIAO

    2012-01-01

    The asymptotic distribution of the change-point estimator in a jump changepoint model is considered.For the jump change-point model Xi =a + θI{[nTo] < i ≤n} + εi,where εi (i =1,…,n) are independent identically distributed random variables with Eεi=0 and Var(εi) < oo,with the help of the slip window method,the asymptotic distribution of the jump change-point estimator (T) is studied under the condition of the local alternative hypothesis.

  6. Adaptive Continuous time Markov Chain Approximation Model to\\ud General Jump-Diffusions

    OpenAIRE

    Cerrato, Mario; Lo, Chia Chun; Skindilias, Konstantinos

    2011-01-01

    We propose a non-equidistant Q rate matrix formula and an adaptive numerical algorithm for a continuous time Markov chain to approximate jump-diffusions with affine or non-affine functional specifications. Our approach also accommodates state-dependent jump intensity and jump distribution, a flexibility that is very hard to achieve with other numerical methods. The Kologorov-Smirnov test shows that the proposed Markov chain transition density converges to the one given by the likelihood expan...

  7. Times and Sizes of Jumps in the Mexican Interest Rate

    OpenAIRE

    José Antonio Núñez Mora; Arturo Lorenzo Valdés

    2008-01-01

    This paper examines the role of jumps in a continuous-time short-term interest rate model for Mexico. A filtering algorithm provides estimates of jumps times and sizes in the time series of Mexican cetes for the 1998-2006 period. The empirical results indicate that the inclusion of jumps in the diffusion model represents a better alternative than not to include them.

  8. Optimizing the Distribution of Leg Muscles for Vertical Jumping.

    Science.gov (United States)

    Wong, Jeremy D; Bobbert, Maarten F; van Soest, Arthur J; Gribble, Paul L; Kistemaker, Dinant A

    2016-01-01

    A goal of biomechanics and motor control is to understand the design of the human musculoskeletal system. Here we investigated human functional morphology by making predictions about the muscle volume distribution that is optimal for a specific motor task. We examined a well-studied and relatively simple human movement, vertical jumping. We investigated how high a human could jump if muscle volume were optimized for jumping, and determined how the optimal parameters improve performance. We used a four-link inverted pendulum model of human vertical jumping actuated by Hill-type muscles, that well-approximates skilled human performance. We optimized muscle volume by allowing the cross-sectional area and muscle fiber optimum length to be changed for each muscle, while maintaining constant total muscle volume. We observed, perhaps surprisingly, that the reference model, based on human anthropometric data, is relatively good for vertical jumping; it achieves 90% of the jump height predicted by a model with muscles designed specifically for jumping. Alteration of cross-sectional areas-which determine the maximum force deliverable by the muscles-constitutes the majority of improvement to jump height. The optimal distribution results in large vastus, gastrocnemius and hamstrings muscles that deliver more work, while producing a kinematic pattern essentially identical to the reference model. Work output is increased by removing muscle from rectus femoris, which cannot do work on the skeleton given its moment arm at the hip and the joint excursions during push-off. The gluteus composes a disproportionate amount of muscle volume and jump height is improved by moving it to other muscles. This approach represents a way to test hypotheses about optimal human functional morphology. Future studies may extend this approach to address other morphological questions in ethological tasks such as locomotion, and feature other sets of parameters such as properties of the skeletal

  9. Optimizing the Distribution of Leg Muscles for Vertical Jumping.

    Directory of Open Access Journals (Sweden)

    Jeremy D Wong

    Full Text Available A goal of biomechanics and motor control is to understand the design of the human musculoskeletal system. Here we investigated human functional morphology by making predictions about the muscle volume distribution that is optimal for a specific motor task. We examined a well-studied and relatively simple human movement, vertical jumping. We investigated how high a human could jump if muscle volume were optimized for jumping, and determined how the optimal parameters improve performance. We used a four-link inverted pendulum model of human vertical jumping actuated by Hill-type muscles, that well-approximates skilled human performance. We optimized muscle volume by allowing the cross-sectional area and muscle fiber optimum length to be changed for each muscle, while maintaining constant total muscle volume. We observed, perhaps surprisingly, that the reference model, based on human anthropometric data, is relatively good for vertical jumping; it achieves 90% of the jump height predicted by a model with muscles designed specifically for jumping. Alteration of cross-sectional areas-which determine the maximum force deliverable by the muscles-constitutes the majority of improvement to jump height. The optimal distribution results in large vastus, gastrocnemius and hamstrings muscles that deliver more work, while producing a kinematic pattern essentially identical to the reference model. Work output is increased by removing muscle from rectus femoris, which cannot do work on the skeleton given its moment arm at the hip and the joint excursions during push-off. The gluteus composes a disproportionate amount of muscle volume and jump height is improved by moving it to other muscles. This approach represents a way to test hypotheses about optimal human functional morphology. Future studies may extend this approach to address other morphological questions in ethological tasks such as locomotion, and feature other sets of parameters such as properties of

  10. Prescription-induced jump distributions in multiplicative Poisson processes

    Science.gov (United States)

    Suweis, Samir; Porporato, Amilcare; Rinaldo, Andrea; Maritan, Amos

    2011-06-01

    Generalized Langevin equations (GLE) with multiplicative white Poisson noise pose the usual prescription dilemma leading to different evolution equations (master equations) for the probability distribution. Contrary to the case of multiplicative Gaussian white noise, the Stratonovich prescription does not correspond to the well-known midpoint (or any other intermediate) prescription. By introducing an inertial term in the GLE, we show that the Itô and Stratonovich prescriptions naturally arise depending on two time scales, one induced by the inertial term and the other determined by the jump event. We also show that, when the multiplicative noise is linear in the random variable, one prescription can be made equivalent to the other by a suitable transformation in the jump probability distribution. We apply these results to a recently proposed stochastic model describing the dynamics of primary soil salinization, in which the salt mass balance within the soil root zone requires the analysis of different prescriptions arising from the resulting stochastic differential equation forced by multiplicative white Poisson noise, the features of which are tailored to the characters of the daily precipitation. A method is finally suggested to infer the most appropriate prescription from the data.

  11. A time inhomogeneous Cox-Ingersoll-Ross diffusion with jumps

    CERN Document Server

    Hoepfner, Reinhard

    2009-01-01

    We consider a time inhomogeneous Cox-Ingersoll-Ross diffusion with positive jumps. We exploit a branching property to prove existence of a unique strong solution under a restrictive condition on the jump measure. We give Laplace transforms for the transition probabilities, with an interpretation in terms of limits of mixtures over Gamma laws.

  12. The Finite-time Ruin Probability for the Jump-Diffusion Model with Constant Interest Force

    Institute of Scientific and Technical Information of China (English)

    Tao Jiang; Hai-feng Yan

    2006-01-01

    In this paper, we consider the finite-time ruin probability for the jump-diffusion Poisson process.Under the assumptions that the claimsizes are subexponentially distributed and that the interest force is constant, we obtain an asymptotic formula for the finite-time ruin probability. The results we obtain extends the

  13. The beginning of time observed in quantum jumps

    Energy Technology Data Exchange (ETDEWEB)

    Bohm, Arno [CCQS, Physics Department, University of Texas, Austin, TX (United States); Bryant, Peter W. [IBM Research, Rio de Janeiro (Brazil); Uncu, Haydar [Department of Physics, Adnan Menderes University, Aydin (Turkey); Wickramasekara, Sujeev [Department of Physics, Grinnell College, Grinnell, IA (United States); Schleich, Wolfgang P. [Institut fuer Quantenphysik and Center for Integrated Quantum Science and Technology, Universitaet Ulm (Germany); Hagler Institute for Advanced Study, Texas A and M University, College Station, TX (United States); Texas A and M AgriLife, Institute for Quantum Science and Engineering (IQSE) and Department of Physics and Astronomy, Texas A and M University, College Station, TX (United States)

    2017-06-15

    The phenomenon of quantum jumps observed in a single ion stored in a trap brings to light intimate connections between three different concepts of quantum physics: (i) quantum state trajectories, (ii) Gamow states, and (iii) the arrow of time. In particular, it allows us to identify the starting time of the semigroup time evolution. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. Stationary distribution and ergodicity of a stochastic food-chain model with Lévy jumps

    Science.gov (United States)

    Yu, Jingyi; Liu, Meng

    2017-09-01

    In this paper, a three-species stochastic food-chain model with Lévy jumps is proposed and analyzed. Sharp sufficient criteria for the existence and uniqueness of an ergodic stationary distribution are established. The effects of Lévy jumps on the existence of the stationary distribution are revealed: in some cases, the Lévy jumps could make the stationary distribution appear, while in some cases, the Lévy jumps could make the stationary distribution disappear. Some numerical simulations are introduced to illustrate the theoretical results.

  15. Anomalous transport in fluid field with random waiting time depending on the preceding jump length

    Science.gov (United States)

    Zhang, Hong; Li, Guo-Hua

    2016-11-01

    Anomalous (or non-Fickian) transport behaviors of particles have been widely observed in complex porous media. To capture the energy-dependent characteristics of non-Fickian transport of a particle in flow fields, in the present paper a generalized continuous time random walk model whose waiting time probability distribution depends on the preceding jump length is introduced, and the corresponding master equation in Fourier-Laplace space for the distribution of particles is derived. As examples, two generalized advection-dispersion equations for Gaussian distribution and lévy flight with the probability density function of waiting time being quadratic dependent on the preceding jump length are obtained by applying the derived master equation. Project supported by the Foundation for Young Key Teachers of Chengdu University of Technology, China (Grant No. KYGG201414) and the Opening Foundation of Geomathematics Key Laboratory of Sichuan Province, China (Grant No. scsxdz2013009).

  16. Motoneuron membrane potentials follow a time inhomogeneous jump diffusion process

    DEFF Research Database (Denmark)

    Jahn, Patrick; Berg, Rune W; Hounsgaard, Jørn

    2011-01-01

    Stochastic leaky integrate-and-fire models are popular due to their simplicity and statistical tractability. They have been widely applied to gain understanding of the underlying mechanisms for spike timing in neurons, and have served as building blocks for more elaborate models. Especially...... models can only be applied over short time windows. However, experimental data show varying time constants, state dependent noise, a graded firing threshold and time-inhomogeneous input. In the present study we build a jump diffusion model that incorporates these features, and introduce a firing...

  17. Aeromechanics of the Spider Cricket Jump: How to Jump 60+ Times Your Body Length and Still Land on Your Feet

    Science.gov (United States)

    Palmer, Emily; Deshler, Nicolas; Gorman, David; Neves, Catarina; Mittal, Rajat

    2015-11-01

    Flapping, gliding, running, crawling and swimming have all been studied extensively in the past and have served as a source of inspiration for engineering designs. In the current project, we explore a mode of locomotion that straddles ground and air: jumping. The subject of our study is among the most proficient of long-jumpers in Nature: the spider cricket of the family Rhaphidophoridae, which can jump more than 60 times its body length. Despite jumping this immense distance, these crickets usually land on their feet, indicating an ability to control their posture during ``flight.'' We employ high-speed videogrammetry, to examine the jumps and to track the crickets' posture and appendage orientation throughout their jumps. Simple aerodynamic models are developed to predict the aerodynamic forces and moment on the crickets during `flight`. The analysis shows that these wingless insects employ carefully controlled and coordinated positioning of the limbs during flight so as to increase jump distance and to stabilize body posture during flight. The principles distilled from this study could serve as an inspiration for small jumping robots that can traverse complex terrains.

  18. Jump Tails, Extreme Dependencies, and the Distribution of Stock Returns

    DEFF Research Database (Denmark)

    Bollerslev, Tim; Todorov, Viktor

    We provide a new framework for estimating the systematic and idiosyncratic jump tail risks in financial asset prices. The theory underlying our estimates are based on in-fill asymptotic arguments for directly identifying the systematic and idiosyncratic jumps, together with conventional long...

  19. Time-resolved methods in biophysics. 9. Laser temperature-jump methods for investigating biomolecular dynamics.

    Science.gov (United States)

    Kubelka, Jan

    2009-04-01

    Many important biochemical processes occur on the time-scales of nanoseconds and microseconds. The introduction of the laser temperature-jump (T-jump) to biophysics more than a decade ago opened these previously inaccessible time regimes up to direct experimental observation. Since then, laser T-jump methodology has evolved into one of the most versatile and generally applicable methods for studying fast biomolecular kinetics. This perspective is a review of the principles and applications of the laser T-jump technique in biophysics. A brief overview of the T-jump relaxation kinetics and the historical development of laser T-jump methodology is presented. The physical principles and practical experimental considerations that are important for the design of the laser T-jump experiments are summarized. These include the Raman conversion for generating heating pulses, considerations of size, duration and uniformity of the temperature jump, as well as potential adverse effects due to photo-acoustic waves, cavitation and thermal lensing, and their elimination. The laser T-jump apparatus developed at the NIH Laboratory of Chemical Physics is described in detail along with a brief survey of other laser T-jump designs in use today. Finally, applications of the laser T-jump in biophysics are reviewed, with an emphasis on the broad range of problems where the laser T-jump methodology has provided important new results and insights into the dynamics of the biomolecular processes.

  20. Body acceleration distribution and O2 uptake in humans during running and jumping

    Science.gov (United States)

    Bhattacharya, A.; Mccutcheon, E. P.; Shvartz, E.; Greenleaf, J. E.

    1980-01-01

    The distribution of body acceleration and associated oxygen uptake and heart rate responses are investigated in treadmill running and trampoline jumping. Accelerations in the +Gz direction were measured at the lateral ankle, lumbosacral region and forehead of eight young men during level treadmill walking and running at four speeds and trampoline jumping at four heights, together with corresponding oxygen uptake and heart rate. With increasing treadmill speed, peak acceleration at the ankle is found always to exceed that at the back and forehead, and acceleration profiles with higher frequency components than those observed during jumping are observed. Acceleration levels are found to be more uniformly distributed with increasing height in jumping, although comparable oxygen uptake and heat rates are obtained. Results indicate that the magnitude of the biomechanical stimuli is greater in trampoline jumping than in running, which finding could be of use in the design of procedures to avert deconditioning in persons exposed to weightlessness.

  1. State Estimation for Time-Delay Systems with Markov Jump Parameters and Missing Measurements

    Directory of Open Access Journals (Sweden)

    Yushun Tan

    2014-01-01

    Full Text Available This paper is concerned with the state estimation problem for a class of time-delay systems with Markovian jump parameters and missing measurements, considering the fact that data missing may occur in the process of transmission and its failure rates are governed by random variables satisfying certain probabilistic distribution. By employing a new Lyapunov function and using the convexity property of the matrix inequality, a sufficient condition for the existence of the desired state estimator for Markovian jump systems with missing measurements can be achieved by solving some linear matrix inequalities, which can be easily facilitated by using the standard numerical software. Furthermore, the gain of state estimator can also be derived based on the known conditions. Finally, a numerical example is exploited to demonstrate the effectiveness of the proposed method.

  2. The Impact of Jump Distributions on the Implied Volatility of Variance

    DEFF Research Database (Denmark)

    Nicolato, Elisa; Pedersen, David Sloth; Pisani, Camilla

    2016-01-01

    of jumps on the associated implied volatility smile. We provide sufficient conditions for the asymptotic behavior of the implied volatility of variance for small and large strikes. In particular, by selecting alternative jump distributions, we show that one can obtain fundamentally different shapes...... of the implied volatility of variance smile -- some clearly at odds with the upward-sloping volatility skew observed in variance markets....

  3. The Impact of Jump Distributions on the Implied Volatility of Variance

    DEFF Research Database (Denmark)

    Nicolato, Elisa; Pisani, Camilla; Pedersen, David Sloth

    2017-01-01

    of jumps on the associated implied volatility smile. We provide sufficient conditions for the asymptotic behavior of the implied volatility of variance for small and large strikes. In particular, by selecting alternative jump distributions, we show that one can obtain fundamentally different shapes...... of the implied volatility of variance smile -- some clearly at odds with the upward-sloping volatility skew observed in variance markets....

  4. The limit distribution of the maximum increment of a random walk with dependent regularly varying jump sizes

    DEFF Research Database (Denmark)

    Mikosch, Thomas Valentin; Moser, Martin

    2013-01-01

    We investigate the maximum increment of a random walk with heavy-tailed jump size distribution. Here heavy-tailedness is understood as regular variation of the finite-dimensional distributions. The jump sizes constitute a strictly stationary sequence. Using a continuous mapping argument acting on...... on the point processes of the normalized jump sizes, we prove that the maximum increment of the random walk converges in distribution to a Fréchet distributed random variable....

  5. Timing perception and motor coordination on rope jumping in children with attention deficit hyperactivity disorder.

    Science.gov (United States)

    Chen, Ying-Yi; Liaw, Lih-Jiun; Liang, Jing-Min; Hung, Wei-Tso; Guo, Lan-Yuen; Wu, Wen-Lan

    2013-05-01

    To evaluate timing perception ability and motor coordination in children with ADHD (Attention Deficit Hyperactivity Disorder) while rope jumping at different rates. Rope jumping at (1) a constant tempo of 100 for 15 s (RJ-C) and (2) two randomly permutated tempos (80, 100, or 120) for 15 s (RJ-V). The "timing variation while jumping", "timing variation while whirling", and "hand-foot deviation time" in each rope jumping cycle were recorded, to assess the time estimation ability. 10 children with ADHD (9.65 ± 1.27 years) and 10 children without ADHD (9.93 ± 1.54 years) were recruited. The ADHD group showed greater variation in time between the foot jumping and the rope whirling tasks. Also, the median value of hand-foot deviation time was greater in the ADHD group (3.34 ms) than in the control group (1.75 ms). In RJ-V, the control group was able to modify their pace and respond to the target speed in the post-phase, while the ADHD group could not. Impaired timing perception leads to less accurate performance during rope jumping for ADHD children. The findings also reveal that poor hand-foot coordination results in poor control of simultaneous movements of the upper and lower limbs during rope jumping. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Jump time and passage time the duration of a quantum transition

    CERN Document Server

    Schulman, L S

    2001-01-01

    Under unitary evolution, systems move gradually from state to state. An unstable atom has amplitude in its original state after many lifetimes ($\\tau_L$). But in the laboratory, transitions seem to go instantaneously, as suggested by the term "quantum jump." The problem studied here is whether the "jump" can be assigned a duration, in theory and in experiment. Two characteristic times are defined, jump time ($\\tau_J$) and passage time ($\\tau_P$). Both use Zeno time, $\\tau_Z$, defined in terms of $H$ and its initial state as $\\tau_Z \\equiv \\hbar/\\sqrt{}$, with $E_\\psi \\equiv $. $\\tau_J$ is defined in terms of the time needed to slow (\\`a la the quantum Zeno effect) the decay: $\\tau_J \\equiv \\tau_Z^2/\\tau_L$. It appears in several contexts. It is related to tunneling time in barrier penetration. Its inverse is the bandwidth of the Hamiltonian, in a time-energy uncertainty principle. $\\tau_J$ is also an indicator of the duration of the quadratic decay regime in both experiment and in numerical calculations (cf. ...

  7. Neural Network Based Finite-Time Stabilization for Discrete-Time Markov Jump Nonlinear Systems with Time Delays

    Directory of Open Access Journals (Sweden)

    Fei Chen

    2013-01-01

    Full Text Available This paper deals with the finite-time stabilization problem for discrete-time Markov jump nonlinear systems with time delays and norm-bounded exogenous disturbance. The nonlinearities in different jump modes are parameterized by neural networks. Subsequently, a linear difference inclusion state space representation for a class of neural networks is established. Based on this, sufficient conditions are derived in terms of linear matrix inequalities to guarantee stochastic finite-time boundedness and stochastic finite-time stabilization of the closed-loop system. A numerical example is illustrated to verify the efficiency of the proposed technique.

  8. Appraisal of jump distributions in ensemble-based sampling algorithms

    Science.gov (United States)

    Dejanic, Sanda; Scheidegger, Andreas; Rieckermann, Jörg; Albert, Carlo

    2017-04-01

    Sampling Bayesian posteriors of model parameters is often required for making model-based probabilistic predictions. For complex environmental models, standard Monte Carlo Markov Chain (MCMC) methods are often infeasible because they require too many sequential model runs. Therefore, we focused on ensemble methods that use many Markov chains in parallel, since they can be run on modern cluster architectures. Little is known about how to choose the best performing sampler, for a given application. A poor choice can lead to an inappropriate representation of posterior knowledge. We assessed two different jump moves, the stretch and the differential evolution move, underlying, respectively, the software packages EMCEE and DREAM, which are popular in different scientific communities. For the assessment, we used analytical posteriors with features as they often occur in real posteriors, namely high dimensionality, strong non-linear correlations or multimodality. For posteriors with non-linear features, standard convergence diagnostics based on sample means can be insufficient. Therefore, we resorted to an entropy-based convergence measure. We assessed the samplers by means of their convergence speed, robustness and effective sample sizes. For posteriors with strongly non-linear features, we found that the stretch move outperforms the differential evolution move, w.r.t. all three aspects.

  9. REPRESENTATION OF ADDITIVE FUNCTIONALS AND LOCAL TIMES FOR JUMP MARKOV PROCESSES AND THEIR FUNCTIONAL LIMIT THEOREM

    Institute of Scientific and Technical Information of China (English)

    蒋义文; 刘禄勤

    2003-01-01

    The representation of additive functionals and local times for jump Markovprocesses are obtained. The results of uniformly functional moderate deviation and theirapplications to birth-death processes are also presented.

  10. Bilateral contact ground reaction forces and contact times during plyometric drop jumping.

    Science.gov (United States)

    Ball, Nick B; Stock, Christopher G; Scurr, Joanna C

    2010-10-01

    Drop jumping (DJ) is used in training programs aimed to improve lower extremity explosive power. When performing double-leg drop jumps, it is important to provide an equal stimulus to both legs to ensure balanced development of the lower legs. The aim of this study was to bilaterally analyze the ground reactions forces and temporal components of drop jumping from 3 heights. Ten recreationally active male subjects completed 3 bounce-drop jumps from 3 starting heights (0.2, 0.4, and 0.6 m). Two linked force platforms were used to record left- and right-leg peak vertical force, time to peak force, average force, ground contact time, impulse and time differential. Between-height and between-leg comparisons for each variable were made using a multivariate analysis of variance with post hoc Wilcoxon tests (p vertical forces and temporal components occur; however, shorter contact times were found at the lower heights.

  11. Relative advantage, queue jumping, and welfare maximizing wealth distribution

    OpenAIRE

    2006-01-01

    Suppose individuals get utilities from the total amount of wealth they hold and from their wealth relative to those immediately below them. This paper studies the distribution of wealth that maximizes an additive welfare function made up of these utilities. It interprets wealth distribution in a control theory framework to show that the welfare maximizing distribution may have unexpected properties. In some circumstances it requires that inequality be maximized at the poorest and richest ends...

  12. Jump Markov models and transition state theory: the quasi-stationary distribution approach.

    Science.gov (United States)

    Di Gesù, Giacomo; Lelièvre, Tony; Le Peutrec, Dorian; Nectoux, Boris

    2016-12-22

    We are interested in the connection between a metastable continuous state space Markov process (satisfying e.g. the Langevin or overdamped Langevin equation) and a jump Markov process in a discrete state space. More precisely, we use the notion of quasi-stationary distribution within a metastable state for the continuous state space Markov process to parametrize the exit event from the state. This approach is useful to analyze and justify methods which use the jump Markov process underlying a metastable dynamics as a support to efficiently sample the state-to-state dynamics (accelerated dynamics techniques). Moreover, it is possible by this approach to quantify the error on the exit event when the parametrization of the jump Markov model is based on the Eyring-Kramers formula. This therefore provides a mathematical framework to justify the use of transition state theory and the Eyring-Kramers formula to build kinetic Monte Carlo or Markov state models.

  13. Jump Markov models and transition state theory: the Quasi-Stationary Distribution approach

    CERN Document Server

    Di Gesù, Giacomo; Peutrec, Dorian Le; Nectoux, Boris

    2016-01-01

    We are interested in the connection between a metastable continuous state space Markov process (satisfying e.g. the Langevin or overdamped Langevin equation) and a jump Markov process in a discrete state space. More precisely, we use the notion of quasi-stationary distribution within a metastable state for the continuous state space Markov process to parametrize the exit event from the state. This approach is useful to analyze and justify methods which use the jump Markov process underlying a metastable dynamics as a support to efficiently sample the state-to-state dynamics (accelerated dynamics techniques). Moreover, it is possible by this approach to quantify the error on the exit event when the parametrization of the jump Markov model is based on the Eyring-Kramers formula. This therefore provides a mathematical framework to justify the use of transition state theory and the Eyring-Kramers formula to build kinetic Monte Carlo or Markov state models.

  14. Quantum Walk with Jumps

    CERN Document Server

    Lavička, H; Kiss, T; Lutz, E; Jex, I

    2011-01-01

    We analyze a special class of 1-D quantum walks (QWs) realized using optical multi-ports. We assume non-perfect multi-ports showing errors in the connectivity, i.e. with a small probability the multi- ports can connect not to their nearest neighbor but to another multi-port at a fixed distance - we call this a jump. We study two cases of QW with jumps where multiple displacements can emerge at one timestep. The first case assumes time-correlated jumps (static disorder). In the second case, we choose the positions of jumps randomly in time (dynamic disorder). The probability distributions of position of the QW walker in both instances differ significantly: dynamic disorder leads to a Gaussian-like distribution, while for static disorder we find two distinct behaviors depending on the parity of jump size. In the case of even-sized jumps, the distribution exhibits a three-peak profile around the position of the initial excitation, whereas the probability distribution in the odd case follows a Laplace-like discre...

  15. Mechanical efficiency and force–time curve variation during repetitive jumping in trained and untrained jumpers.

    Science.gov (United States)

    McBride, Jeffrey M; Snyder, James G

    2012-10-01

    Mechanical efficiency (ME), the ratio between work performed and energy expenditure, is a useful criterion in determining the roles of stored elastic energy and chemically deduced energy contributing to concentric performance in stretch-shortening cycle movements. Increased force production during the eccentric phase has been shown to relate to optimal muscle-tendon unit (MTU) length change and thus optimization of usage of stored elastic energy. This phenomenon, as previously reported, is reflected by higher jump heights and ME. The purpose of this investigation was to determine if ME may be different between trained and untrained jumpers and thus be accounted for by variation in force production in the eccentric phase as a reflection of usage of stored elastic energy during various jump types. This investigation involved 9 trained (age 20.7 ± 3.2 years, height 178.6 ± 5.3 cm, body mass 79.0 ± 5.5 kg) and 7 untrained (age 21.43 ± 2.37 years, height 176.17 ± 10.89 cm, body mass 78.8 ± 12.5 kg) male jumpers. Trained subjects were Division I track and field athletes who compete in the horizontal or vertical jumping or running events. Force-time and displacement-time curves were obtained during jumping to determine jump height and to calculate work performed and to observe possible differences in force production in the eccentric phase. Respiratory gases with a metabolic cart were obtained during jumping to calculate energy expenditure. ME was calculated as the ratio between work performed and energy expenditure. The subjects completed four sessions involving 20 repetitions of countermovement jumps (CMJ) and drop jumps from 40 cm (DJ40), 60 cm (DJ60) and 80 cm (DJ80). The trained jumpers jumped significantly higher in the CMJ, DJ40, DJ60 and DJ80 conditions than their untrained counterparts (p ≤ 0.05). ME was significantly higher in the trained in comparison to the untrained jumpers during DJ40. The amount of negative work during all jump types was

  16. Finite-Time Stability and Stabilization of Nonlinear Quadratic Systems with Jumps

    Directory of Open Access Journals (Sweden)

    Minsong Zhang

    2014-01-01

    Full Text Available This paper investigates the problems of finite-time stability and finite-time stabilization for nonlinear quadratic systems with jumps. The jump time sequences here are assumed to satisfy some given constraints. Based on Lyapunov function and a particular presentation of the quadratic terms, sufficient conditions for finite-time stability and finite-time stabilization are developed to a set containing bilinear matrix inequalities (BLIMs and linear matrix inequalities (LMIs. Numerical examples are given to illustrate the effectiveness of the proposed methodology.

  17. The Stationary Distribution of Competitive Lotka-Volterra Population Systems with Jumps

    Directory of Open Access Journals (Sweden)

    Zhenzhong Zhang

    2014-01-01

    Full Text Available Dynamics of Lotka-Volterra population with jumps (LVWJ have recently been established (see Bao et al., 2011, and Bao and Yuan, 2012. They provided some useful criteria on the existence of stationary distribution and some asymptotic properties for LVWJ. However, the uniqueness of stationary distribution for n≥2 and asymptotic pathwise estimation limt→+∞⁡(1/t∫0t‍|X(s|pds (p>0 are still unknown for LVWJ. One of our aims in this paper is to show the uniqueness of stationary distribution and asymptotic pathwise estimation for LVWJ. Moreover, some characterizations for stationary distribution are provided.

  18. Parameters estimation using the first passage times method in a jump-diffusion model

    Science.gov (United States)

    Khaldi, K.; Meddahi, S.

    2016-06-01

    The main purposes of this paper are two contributions: (1) it presents a new method, which is the first passage time (FPT method) generalized for all passage times (GPT method), in order to estimate the parameters of stochastic Jump-Diffusion process. (2) it compares in a time series model, share price of gold, the empirical results of the estimation and forecasts obtained with the GPT method and those obtained by the moments method and the FPT method applied to the Merton Jump-Diffusion (MJD) model.

  19. Real-time 3D imaging of Haines jumps in porous media flow

    Science.gov (United States)

    Berg, Steffen; Ott, Holger; Klapp, Stephan A.; Schwing, Alex; Neiteler, Rob; Brussee, Niels; Makurat, Axel; Leu, Leon; Enzmann, Frieder; Schwarz, Jens-Oliver; Kersten, Michael; Irvine, Sarah; Stampanoni, Marco

    2013-01-01

    Newly developed high-speed, synchrotron-based X-ray computed microtomography enabled us to directly image pore-scale displacement events in porous rock in real time. Common approaches to modeling macroscopic fluid behavior are phenomenological, have many shortcomings, and lack consistent links to elementary pore-scale displacement processes, such as Haines jumps and snap-off. Unlike the common singular pore jump paradigm based on observations of restricted artificial capillaries, we found that Haines jumps typically cascade through 10–20 geometrically defined pores per event, accounting for 64% of the energy dissipation. Real-time imaging provided a more detailed fundamental understanding of the elementary processes in porous media, such as hysteresis, snap-off, and nonwetting phase entrapment, and it opens the way for a rigorous process for upscaling based on thermodynamic models. PMID:23431151

  20. Boundary conditions, semigroups, quantum jumps, and the quantum arrow of time

    Science.gov (United States)

    Bohm, Arno

    2015-04-01

    Experiments on quantum systems are usually divided into preparation of states and the registration of observables. Using the traditional mathematical methods (the Hilbert space and Schwartz space of distribution theory), it is not possible to distinguish mathematically between observables and states. The Hilbert space as well as Schwartz space boundary conditions for the dynamical equations lead by mathematic theorems (Stone-von Neumann) to unitary group with —∞ < t < ∞. But in the experimental set-up, one clearly distinguishes between the preparation of a state and the registration of an observable in that state. Furthermore, a state must be prepared first before an observable can be measured in this state (causality). This suggests time asymmetric boundary conditions for the dynamical equations of quantum theory. Such boundary conditions have been provided by Hardy space in the Lax-Phillips theory for electromagnetic and acoustic scattering phenomena. The Paley-Wiener theorem for Hardy space then leads to semi-group and time asymmetry in quantum physics. It introduces a finite “beginning of time” t0 for a time asymmetric quantum theory, which have been observed as an ensemble of finite times t(i)0, the onset times of dark periods in the quantum jump experiments on a single ion.

  1. Evaluating Distributed Timing Constraints

    DEFF Research Database (Denmark)

    Kristensen, C.H.; Drejer, N.

    1994-01-01

    In this paper we describe a solution to the problem of implementing time-optimal evaluation of timing constraints in distributed real-time systems.......In this paper we describe a solution to the problem of implementing time-optimal evaluation of timing constraints in distributed real-time systems....

  2. Impact of time-inhomogeneous jumps and leverage type effects on returns and realised variances

    DEFF Research Database (Denmark)

    Veraart, Almut

    This paper studies the effect of time-inhomogeneous jumps and leverage type effects on realised variance calculations when the logarithmic asset price is given by a Lévy-driven stochastic volatility model. In such a model, the realised variance is an inconsistent estimator of the integrated...

  3. Turn and jump: how time & place fell apart

    CERN Document Server

    Mansfield, Howard

    2013-01-01

    Before Thomas Edison, light and fire were thought to be one and the same. Turns out, they were separate things altogether. This book takes a similar relationship, that of time and place, and shows how they, too, were once inseparable. Time keeping was once a local affair, when small towns set their own pace according to the rising and setting of the sun. Then, in 1883, the expanding railroads necessitated the creation of Standard Time zones, and communities became linked by a universal time. Here Howard Mansfield explores how our sudden interconnectedness, both physically, as through the railroad, and through inventions like the telegraph, changed our concept of time and place forever.

  4. Stochastic stability of linear time-delay system with Markovian jumping parameters

    Directory of Open Access Journals (Sweden)

    K. Benjelloun

    1997-01-01

    Full Text Available This paper deals with the class of linear time-delay systems with Markovian jumping parameters (LTDSMJP. We mainly extend the stability results of the deterministic class of linear systems with time-delay to this class of systems. A delay-independent necessary condition and sufficient conditions for checking the stochastic stability are established. A sufficient condition is also given. Some numerical examples are provided to show the usefulness of the proposed theoretical results.

  5. Robust H∞ Filtering for a Class of Uncertain Markovian Jump Systems with Time Delays

    Directory of Open Access Journals (Sweden)

    Yi Yang

    2013-01-01

    Full Text Available This paper studies the problem of robust H∞ filtering for a class of uncertain time-delay systems with Markovian jumping parameters. The system under consideration is subject to norm-bounded time-varying parameter uncertainties. The problem to be addressed is the design of a Markovian jump filter such that the filter error dynamics are stochastically stable and a prescribed bound on the ℒ2-induced gain from the noise signals to the filter error is guaranteed for all admissible uncertainties. A sufficient condition for the existence of the desired robust H∞ filter is given in terms of two sets of coupled algebraic Riccati inequalities. When these algebraic Riccati inequalities are feasible, the expression of a desired H∞ filter is also presented. Finally, an illustrative numerical example is provided.

  6. Robust guaranteed cost filtering for uncertain time-delay systems with Markovian jumping parameters

    Institute of Scientific and Technical Information of China (English)

    Fu Yanming; Zhang Ying; Duan Guangren; Chai Qingxuan

    2005-01-01

    The robust guaranteed cost filtering problem for a class of linear uncertain stochastic systems with time delays is investigated. The system under study involves time delays, jumping parameters and Brownian motions. The transition of the jumping parameters in systems is governed by a finite-state Markov process. The objective is to design linear memoryless filters such that for all uncertainties, the resulting augmented system is robust stochastically stable independent of delays and satisfies the proposed guaranteed cost performance. Based on stability theory in stochastic differential equations, a sufficient condition on the existence of robust guaranteed cost filters is derived. Robust guaranteed cost filters are designed in terms of linear matrix inequalities. A convex optimization problem with LMI constraints is formulated to design the suboptimal guaranteed cost filters.

  7. Guaranteed control performance robust LQG regulator for discrete-time Markovian jump systems with uncertain noise

    Institute of Scientific and Technical Information of China (English)

    Zhu Jin; Xi Hongsheng; Xiao Xiaobo; Ji Haibo

    2007-01-01

    Robust LQG problems of discrete-time Markovian jump systems with uncertain noises are investigated.The problem addressed is the construction of perturbation upper bounds on the uncertain noise covariances so as to guarantee that the deviation of the control performance remains within the precision prescribed in actual problems.Furthermore, this regulator is capable of minimizing the worst performance in an uncertain case. A numerical example is exploited to show the validity of the method.

  8. Interdecadal Change of the Northward Jump Time of the Western Pacific Subtropical High in Association with the Pacific Decadal Oscillation

    Institute of Scientific and Technical Information of China (English)

    叶天舒; 申茜; 王阔; 张志森; 赵俊虎

    2015-01-01

    In this paper, the northward jump time of the western Pacifi c subtropical high (WPSH) is defi ned and analyzed on the interdecadal timescale. The results show that under global warming, signifi cant interdecadal changes have occurred in the time of the WPSH northward jumps. From 1951 to 2012, the time of the fi rst northward jump of WPSH has changed from“continuously early”to“continuously late”, with the transition occurring in 1980. The time of the second northward jump of WPSH shows a similar change, with the transition occurring in 1978. In this study, we off er a new perspective by using the time of the northward jump of WPSH to explain the eastern China summer rainfall pattern change from “north-abundant-south-below-average”to“south-abundant-north-below-average”at the end of the 1970s. The interdecadal change in the time of the northward jump of WPSH corresponds not only with the summer rainfall pattern, but also with the Pacifi c decadal oscillation (PDO). The WPSH northward jump time corresponding to the cold (warm) phase of the PDO is early (late). Although the PDO and the El Ni˜no–Southern Oscillation (ENSO) both greatly infl uence the time of the two northward jumps of WPSH, the PDO’s eff ect is noticed before the ENSO’s by approximately 1–2 months. After excluding the ENSO infl uence, we derive composite vertical atmospheric circulation for diff erent phases of the PDO. The results show that during the cold (warm) phase of the PDO, the atmospheric circulations at 200, 500, and 850 hPa all contribute to an earlier (later) northward jump of the WPSH.

  9. Dynamic jump intensities and risk premiums

    DEFF Research Database (Denmark)

    Christoffersen, Peter; Ornthanalai, Chayawat; Jacobs, Kris

    2012-01-01

    We build a new class of discrete-time models that are relatively easy to estimate using returns and/or options. The distribution of returns is driven by two factors: dynamic volatility and dynamic jump intensity. Each factor has its own risk premium. The models significantly outperform standard...... models without jumps when estimated on S&P500 returns. We find very strong support for time-varying jump intensities. Compared to the risk premium on dynamic volatility, the risk premium on the dynamic jump intensity has a much larger impact on option prices. We confirm these findings using joint...... estimation on returns and large option samples....

  10. Robust L2-L∞ Filtering of Time-Delay Jump Systems with Respect to the Finite-Time Interval

    Directory of Open Access Journals (Sweden)

    Shuping He

    2011-01-01

    Full Text Available This paper studied the problem of stochastic finite-time boundedness and disturbance attenuation for a class of linear time-delayed systems with Markov jumping parameters. Sufficient conditions are provided to solve this problem. The L2-L∞ filters are, respectively, designed for time-delayed Markov jump linear systems with/without uncertain parameters such that the resulting filtering error dynamic system is stochastically finite-time bounded and has the finite-time interval disturbance attenuation γ for all admissible uncertainties, time delays, and unknown disturbances. By using stochastic Lyapunov-Krasovskii functional approach, it is shown that the filter designing problem is in terms of the solutions of a set of coupled linear matrix inequalities. Simulation examples are included to demonstrate the potential of the proposed results.

  11. H2 control of discrete-time periodic systems with Markovian jumps and multiplicative noise

    Science.gov (United States)

    Ma, Hongji; Jia, Yingmin

    2013-10-01

    This paper addresses the problem of optimal and robust H2 control for discrete-time periodic systems with Markov jump parameters and multiplicative noise. To analyse the system performance in the presence of exogenous random disturbance, an H2 norm is firstly established on the basis of Gramian matrices. Further, under the condition of exact observability, a necessary and sufficient condition is presented for the solvability of H2 optimal control problem by means of a generalised Riccati equation. When the transition probabilities of jump parameter are incompletely measurable, an H2-guaranteed cost norm is exploited and the robust H2 controller is designed through a linear matrix inequality (LMI) optimisation approach. An example of a networked control system is supplied to illustrate the proposed results.

  12. The Effect of an Altitude Training Camp on Swimming Start Time and Loaded Squat Jump Performance.

    Science.gov (United States)

    García-Ramos, Amador; Štirn, Igor; Padial, Paulino; Argüelles-Cienfuegos, Javier; De la Fuente, Blanca; Calderón, Carmen; Bonitch-Góngora, Juan; Tomazin, Katja; Strumbelj, Boro; Strojnik, Vojko; Feriche, Belén

    2016-01-01

    This study evaluated the influence of an altitude training (AT) camp on swimming start time and loaded squat jump performance. To accomplish this goal, 13 international swimmers (8 women, 5 men) were allocated to both the control (Sea Level Training, SLT) and experimental conditions (AT, 2320 m above sea level) that were separated by a one year period. All tests (15 m freestyle swimming start and loaded squat jumps with additional loads of 25%, 50%, 75%, and 100% of swimmers' body weight) were performed before and after a concurrent 3-week strength and endurance training program prescribed by the national coach. Following the SLT camp, significant impairments in swimming start times to 10 (+3.1%) and 15 m (+4.0%) were observed (P camp (-0.89%; P > 0.05). Trivial changes in peak velocity were obtained during the loaded squat jump after both training periods (effect sizes: effectiveness of power-oriented resistance training in the development of explosive actions.

  13. Backward jump continuous-time random walk: An application to market trading

    Science.gov (United States)

    Gubiec, Tomasz; Kutner, Ryszard

    2010-10-01

    The backward jump modification of the continuous-time random walk model or the version of the model driven by the negative feedback was herein derived for spatiotemporal continuum in the context of a share price evolution on a stock exchange. In the frame of the model, we described stochastic evolution of a typical share price on a stock exchange with a moderate liquidity within a high-frequency time scale. The model was validated by satisfactory agreement of the theoretical velocity autocorrelation function with its empirical counterpart obtained for the continuous quotation. This agreement is mainly a result of a sharp backward correlation found and considered in this article. This correlation is a reminiscence of such a bid-ask bounce phenomenon where backward price jump has the same or almost the same length as preceding jump. We suggested that this correlation dominated the dynamics of the stock market with moderate liquidity. Although assumptions of the model were inspired by the market high-frequency empirical data, its potential applications extend beyond the financial market, for instance, to the field covered by the Le Chatelier-Braun principle of contrariness.

  14. Backward jump continuous-time random walk: an application to market trading.

    Science.gov (United States)

    Gubiec, Tomasz; Kutner, Ryszard

    2010-10-01

    The backward jump modification of the continuous-time random walk model or the version of the model driven by the negative feedback was herein derived for spatiotemporal continuum in the context of a share price evolution on a stock exchange. In the frame of the model, we described stochastic evolution of a typical share price on a stock exchange with a moderate liquidity within a high-frequency time scale. The model was validated by satisfactory agreement of the theoretical velocity autocorrelation function with its empirical counterpart obtained for the continuous quotation. This agreement is mainly a result of a sharp backward correlation found and considered in this article. This correlation is a reminiscence of such a bid-ask bounce phenomenon where backward price jump has the same or almost the same length as preceding jump. We suggested that this correlation dominated the dynamics of the stock market with moderate liquidity. Although assumptions of the model were inspired by the market high-frequency empirical data, its potential applications extend beyond the financial market, for instance, to the field covered by the Le Chatelier-Braun principle of contrariness.

  15. Optimal control strategy for an impulsive stochastic competition system with time delays and jumps

    Science.gov (United States)

    Liu, Lidan; Meng, Xinzhu; Zhang, Tonghua

    2017-07-01

    Driven by both white and jump noises, a stochastic delayed model with two competitive species in a polluted environment is proposed and investigated. By using the comparison theorem of stochastic differential equations and limit superior theory, sufficient conditions for persistence in mean and extinction of two species are established. In addition, we obtain that the system is asymptotically stable in distribution by using ergodic method. Furthermore, the optimal harvesting effort and the maximum of expectation of sustainable yield (ESY) are derived from Hessian matrix method and optimal harvesting theory of differential equations. Finally, some numerical simulations are provided to illustrate the theoretical results.

  16. Robust finite-time event-triggered H∞ boundedness for network-based Markovian jump nonlinear systems.

    Science.gov (United States)

    Zhang, Honglu; Cheng, Jun; Wang, Hailing; Chen, Yiping; Xiang, Huili

    2016-07-01

    This paper investigates the problem of finite-time event-triggered H∞ boundedness for network-based Markovian jump nonlinear system. An improved model is introduced in terms of network-induced delay. By synthesizing the newly event-triggering conditions, the finite-time H∞ boundedness for networked Markovian jump nonlinear systems are guaranteed. At last, a numerical example is given to illustrate the effectiveness of proposed theoretical results.

  17. L1/ℓ1-Gain analysis and synthesis of Markovian jump positive systems with time delay.

    Science.gov (United States)

    Zhang, Junfeng; Zhao, Xudong; Zhu, Fubo; Han, Zhengzhi

    2016-07-01

    This paper is concerned with stability analysis and control synthesis of Markovian jump positive systems with time delay. The notions of stochastic stability with L1- and ℓ1-gain performances are introduced for continuous- and discrete-time contexts, respectively. Using a stochastic copositive Lyapunov function, sufficient conditions for the stability with L1/ℓ1-gain performance of the systems are established. Furthermore, mode-dependent controllers are designed to achieve the stabilization with L1/ℓ1-gain of the resulting closed-loop systems. All proposed conditions are formulated in terms of linear programming. Numerical examples are provided to verify the effectiveness of the findings of theory.

  18. Measurement errors when estimating the vertical jump height with flight time using photocell devices: the example of Optojump

    Directory of Open Access Journals (Sweden)

    A Attia

    2016-12-01

    Full Text Available Common methods to estimate vertical jump height (VJH are based on the measurements of flight time (FT or vertical reaction force. This study aimed to assess the measurement errors when estimating the VJH with flight time using photocell devices in comparison with the gold standard jump height measured by a force plate (FP. The second purpose was to determine the intrinsic reliability of the Optojump photoelectric cells in estimating VJH. For this aim, 20 subjects (age: 22.50±1.24 years performed maximal vertical jumps in three modalities in randomized order: the squat jump (SJ, counter-movement jump (CMJ, and CMJ with arm swing (CMJarm. Each trial was simultaneously recorded by the FP and Optojump devices. High intra-class correlation coefficients (ICCs for validity (0.98-0.99 and low limits of agreement (less than 1.4 cm were found; even a systematic difference in jump height was consistently observed between FT and double integration of force methods (-31% to -27%; p 1.2. Intra-session reliability of Optojump was excellent, with ICCs ranging from 0.98 to 0.99, low coefficients of variation (3.98%, and low standard errors of measurement (0.8 cm. It was concluded that there was a high correlation between the two methods to estimate the vertical jump height, but the FT method cannot replace the gold standard, due to the large systematic bias. According to our results, the equations of each of the three jump modalities were presented in order to obtain a better estimation of the jump height.

  19. Robust fault detection for discrete-time Markovian jump systems with mode-dependent time-delays

    Institute of Scientific and Technical Information of China (English)

    Hongru WANG; Changhong WANG; Shaoshuai MOU; Huijun GAO

    2007-01-01

    This paper investigates a fault detection problem for a class of discrete-time Markovian jump systems with norm-bounded uncertainties and mode-dependent time-delays. Attention is focused on constructing the residual generator based on the filter of which its parameters matrices are dependent on the system mode, that is, the fault detection filter is a Markovian jump system as well. The design of fault detection filter is reduced to H-infinity filtering problem by using H-infinity control theory, which can guarantee the difference between the residual and the fault (or, more generally weighted fault) as small as possible in the context of enhancing the robustness of residual to modeling errors, control inputs and unknown inputs. Sufficient condition for the existence of the above filters is established by means of linear matrix inequalities, which can be readily solved by using standard numerical software. A numerical example is given to illustrate the feasibility of the proposed method.

  20. Robust H∞ Filtering for Uncertain Neutral Stochastic Systems with Markovian Jumping Parameters and Time Delay

    Directory of Open Access Journals (Sweden)

    Yajun Li

    2015-01-01

    Full Text Available This paper deals with the robust H∞ filter design problem for a class of uncertain neutral stochastic systems with Markovian jumping parameters and time delay. Based on the Lyapunov-Krasovskii theory and generalized Finsler Lemma, a delay-dependent stability condition is proposed to ensure not only that the filter error system is robustly stochastically stable but also that a prescribed H∞ performance level is satisfied for all admissible uncertainties. All obtained results are expressed in terms of linear matrix inequalities which can be easily solved by MATLAB LMI toolbox. Numerical examples are given to show that the results obtained are both less conservative and less complicated in computation.

  1. Robust H∞ Control for Uncertain Markovian Jump Linear Time-Delay Systems

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    This paper studies the robust stochastic stabilization and robust H∞ control for linear time-delay systems with both Markovian jump parameters and unknown norm-bounded parameter uncertainties. This problem can be solved on the basis of stochastic Lyapunov approach and linear matrix inequality (LMI) technique. Sufficient conditions for the existence of stochastic stabilization and robust H∞ state feedback controller are presented in terms of a set of solutions of coupled LMIs. Finally, a numerical example is included to demonstrate the practicability of the proposed methods.

  2. Robust reliable H∞ control for discrete-time Markov jump linear systems with actuator failures

    Institute of Scientific and Technical Information of China (English)

    Chen Jiaorong; Liu Fei

    2008-01-01

    The robust reliable H∞ control problem for discrete-time Markovian jump systems with actuator failures is studied.A more practical model of actuator failures than outage is considered.Based on the state feedback method,the resulting closed-loop systems are reliable in that they remain robust stochastically stable and satisfy a certain level of Hex disturbance attenuation not only when all actuators are operational,but also in case of some actuator failures.The solvability condition of controllers can be equivalent to a feasibility problem of coupled linear matrix inequalities (LMIs).A numerical example is also given to illustrate the design procedures and their effectiveness.

  3. New Results on Stability and Stabilization of Markovian Jump Systems with Time Delay

    Directory of Open Access Journals (Sweden)

    Hongwei Xia

    2014-01-01

    Full Text Available This technical paper deals with the problem of stochastic stability and stabilization for a class of linear Markovian jumping systems with discrete time-varying delay. A novel delay-dependent stochastic stability criterion for Markovian delay systems is established based on new augmented Lyapunov-Krasovskii functional and delay fractioning techniques. Then a state feedback controller is designed to guarantee the stochastic stability of the resulting closed-loop system. Numerical examples are provided to illustrate the effectiveness of the proposed design approach in this paper.

  4. Optimal State Estimation for Discrete-Time Markov Jump Systems with Missing Observations

    Directory of Open Access Journals (Sweden)

    Qing Sun

    2014-01-01

    Full Text Available This paper is concerned with the optimal linear estimation for a class of direct-time Markov jump systems with missing observations. An observer-based approach of fault detection and isolation (FDI is investigated as a detection mechanic of fault case. For systems with known information, a conditional prediction of observations is applied and fault observations are replaced and isolated; then, an FDI linear minimum mean square error estimation (LMMSE can be developed by comprehensive utilizing of the correct information offered by systems. A recursive equation of filtering based on the geometric arguments can be obtained. Meanwhile, a stability of the state estimator will be guaranteed under appropriate assumption.

  5. On Optimal Fault Detection for Discrete-time Markovian Jump Linear Systems

    Institute of Scientific and Technical Information of China (English)

    LI Yue-Yang; ZHONG Mai-Ying

    2013-01-01

    This paper deals with the problem of fault detection for discrete-time Markovian jump linear systems (MJLS).Using an observer-based fault detection filter (FDF) as a residual generator,the design of the FDF is formulated as an optimization problem for maximizing stochastic H_/H∞ or H∞/H∞ performance index.With the aid of an operator optimization method,it is shown that a unified optimal solution can be derived by solving a coupled Riccati equation.Numerical examples are given to show the effectiveness of the proposed method.

  6. Theoretical Delay Time Distributions

    CERN Document Server

    Nelemans, Gijs; Bours, Madelon

    2012-01-01

    We briefly discuss the method of population synthesis to calculate theoretical delay time distributions of type Ia supernova progenitors. We also compare the results of the different research groups and conclude that although one of the main differences in the results for single degenerate progenitors is the retention efficiency with which accreted hydrogen is added to the white dwarf core, this cannot explain all the differences.

  7. Theoretical Delay Time Distributions

    Science.gov (United States)

    Nelemans, Gijs; Toonen, Silvia; Bours, Madelon

    2013-01-01

    We briefly discuss the method of population synthesis to calculate theoretical delay time distributions of Type Ia supernova progenitors. We also compare the results of different research groups and conclude that, although one of the main differences in the results for single degenerate progenitors is the retention efficiency with which accreted hydrogen is added to the white dwarf core, this alone cannot explain all the differences.

  8. Transfer entropy in continuous time, with applications to jump and neural spiking processes

    CERN Document Server

    Spinney, Richard E; Lizier, Joseph T

    2016-01-01

    Transfer entropy has been used to quantify the directed flow of information between source and target variables in many complex systems. Originally formulated in discrete time, we provide a framework for considering transfer entropy in continuous time systems. By appealing to a measure theoretic formulation we generalise transfer entropy, describing it in terms of Radon-Nikodym derivatives between measures of complete path realisations. The resulting formalism introduces and emphasises the idea that transfer entropy is an expectation of an individually fluctuating quantity along a path, in the same way we consider the expectation of physical quantities such as work and heat. We recognise that transfer entropy is a quantity accumulated over a finite time interval, whilst permitting an associated instantaneous transfer entropy rate. We use this approach to produce an explicit form for the transfer entropy for pure jump processes, and highlight the simplified form in the specific case of point processes (frequen...

  9. Passivity analysis of uncertain stochastic neural networks with time-varying delays and Markovian jumping parameters.

    Science.gov (United States)

    Ali, M Syed; Rani, M Esther

    2015-01-01

    This paper investigates the problem of robust passivity of uncertain stochastic neural networks with time-varying delays and Markovian jumping parameters. To reflect most of the dynamical behaviors of the system, both parameter uncertainties and stochastic disturbances are considered; stochastic disturbances are given in the form of a Brownian motion. By utilizing the Lyapunov functional method, the Itô differential rule, and matrix analysis techniques, we establish a sufficient criterion such that, for all admissible parameter uncertainties and stochastic disturbances, the stochastic neural network is robustly passive in the sense of expectation. A delay-dependent stability condition is formulated, in which the restriction of the derivative of the time-varying delay should be less than 1 is removed. The derived criteria are expressed in terms of linear matrix inequalities that can be easily checked by using the standard numerical software. Illustrative examples are presented to demonstrate the effectiveness and usefulness of the proposed results.

  10. Long memory behavior of returns after intraday financial jumps

    Science.gov (United States)

    Behfar, Stefan Kambiz

    2016-11-01

    In this paper, characterization of intraday financial jumps and time dynamics of returns after jumps is investigated, and will be analytically and empirically shown that intraday jumps are power-law distributed with the exponent 1 finance, it is important to be able to distinguish between jumps and continuous sample path price movements, and this can be achieved by introducing a statistical test via calculating sums of products of returns over small period of time. In the case of having jump, the null hypothesis for normality test is rejected; this is based on the idea that returns are composed of mixture of normally-distributed and power-law distributed data (∼ 1 /r 1 + μ). Probability of rejection of null hypothesis is a function of μ, which is equal to one for 1 high returns after jumps are the effect; we show that returns caused by jump decay as power-law distribution. To test this idea empirically, we average over the time dynamics of all days; therefore the superposed time dynamics after jump represent a power-law, which indicates that there is a long memory with a power-law distribution of return after jump.

  11. Optimal control for unknown discrete-time nonlinear Markov jump systems using adaptive dynamic programming.

    Science.gov (United States)

    Zhong, Xiangnan; He, Haibo; Zhang, Huaguang; Wang, Zhanshan

    2014-12-01

    In this paper, we develop and analyze an optimal control method for a class of discrete-time nonlinear Markov jump systems (MJSs) with unknown system dynamics. Specifically, an identifier is established for the unknown systems to approximate system states, and an optimal control approach for nonlinear MJSs is developed to solve the Hamilton-Jacobi-Bellman equation based on the adaptive dynamic programming technique. We also develop detailed stability analysis of the control approach, including the convergence of the performance index function for nonlinear MJSs and the existence of the corresponding admissible control. Neural network techniques are used to approximate the proposed performance index function and the control law. To demonstrate the effectiveness of our approach, three simulation studies, one linear case, one nonlinear case, and one single link robot arm case, are used to validate the performance of the proposed optimal control method.

  12. Stochastic Games for Continuous-Time Jump Processes Under Finite-Horizon Payoff Criterion

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Qingda, E-mail: weiqd@hqu.edu.cn [Huaqiao University, School of Economics and Finance (China); Chen, Xian, E-mail: chenxian@amss.ac.cn [Peking University, School of Mathematical Sciences (China)

    2016-10-15

    In this paper we study two-person nonzero-sum games for continuous-time jump processes with the randomized history-dependent strategies under the finite-horizon payoff criterion. The state space is countable, and the transition rates and payoff functions are allowed to be unbounded from above and from below. Under the suitable conditions, we introduce a new topology for the set of all randomized Markov multi-strategies and establish its compactness and metrizability. Then by constructing the approximating sequences of the transition rates and payoff functions, we show that the optimal value function for each player is a unique solution to the corresponding optimality equation and obtain the existence of a randomized Markov Nash equilibrium. Furthermore, we illustrate the applications of our main results with a controlled birth and death system.

  13. Jump neural network for real-time prediction of glucose concentration.

    Science.gov (United States)

    Zecchin, Chiara; Facchinetti, Andrea; Sparacino, Giovanni; Cobelli, Claudio

    2015-01-01

    Prediction of the future value of a variable is of central importance in a wide variety of fields, including economy and finance, meteorology, informatics, and, last but not least important, medicine. For example, in the therapy of Type 1 Diabetes (T1D), in which, for patient safety, glucose concentration in the blood should be maintained in a defined normoglycemic range, the ability to forecast glucose concentration in the short-term (with a prediction horizon of around 30 min) might be sufficient to reduce the incidence of hypoglycemic and hyperglycemic events. Neural Network (NN) approaches are suitable for prediction purposes because of their ability to model nonlinear dynamics and handle in their inputs signals coming from different domains. In this chapter we illustrate the design of a jump NN glucose prediction algorithm that exploits past glucose concentration data, measured in real-time by a minimally invasive continuous glucose monitoring (CGM) sensor, and information on ingested carbohydrates, supplied by the patient himself or herself. The methodology is assessed by tuning the NN on data of ten T1D individuals and then testing it on a dataset of ten different subjects. Results with a prediction horizon of 30 min show that prediction of glucose concentration in T1D via NN is feasible and sufficiently accurate. The average time anticipation obtained is compatible with the generation of preventive hypoglycemic and hyperglycemic alerts and the improvement of artificial pancreas performance.

  14. A Multivariate Stochastic Hybrid Model with Switching Coefficients and Jumps: Solution and Distribution

    Directory of Open Access Journals (Sweden)

    D. P. Siu

    2011-01-01

    Full Text Available In this work, a class of multidimensional stochastic hybrid dynamic models is studied. The system under investigation is a first-order linear nonhomogeneous system of Itô-Doob type stochastic differential equations with switching coefficients. The switching of the system is governed by a discrete dynamic which is monitored by a non-homogeneous Poisson process. Closed-form solutions of the systems are obtained. Furthermore, the major part of the work is devoted to finding closed-form probability density functions of the solution processes of linear homogeneous and Ornstein-Uhlenbeck type systems with jumps.

  15. Robust Guaranteed Cost Observer Design for Singular Markovian Jump Time-Delay Systems with Generally Incomplete Transition Probability

    Directory of Open Access Journals (Sweden)

    Yanbo Li

    2014-01-01

    Full Text Available This paper is devoted to the investigation of the design of robust guaranteed cost observer for a class of linear singular Markovian jump time-delay systems with generally incomplete transition probability. In this singular model, each transition rate can be completely unknown or only its estimate value is known. Based on stability theory of stochastic differential equations and linear matrix inequality (LMI technique, we design an observer to ensure that, for all uncertainties, the resulting augmented system is regular, impulse free, and robust stochastically stable with the proposed guaranteed cost performance. Finally, a convex optimization problem with LMI constraints is formulated to design the suboptimal guaranteed cost filters for linear singular Markovian jump time-delay systems with generally incomplete transition probability.

  16. Distribution of tsunami interevent times

    Science.gov (United States)

    Geist, E.L.; Parsons, T.

    2008-01-01

    The distribution of tsunami interevent times is analyzed using global and site-specific (Hilo, Hawaii) tsunami catalogs. An empirical probability density distribution is determined by binning the observed interevent times during a period in which the observation rate is approximately constant. The empirical distributions for both catalogs exhibit non-Poissonian behavior in which there is an abundance of short interevent times compared to an exponential distribution. Two types of statistical distributions are used to model this clustering behavior: (1) long-term clustering described by a universal scaling law, and (2) Omori law decay of aftershocks and triggered sources. The empirical and theoretical distributions all imply an increased hazard rate after a tsunami, followed by a gradual decrease with time approaching a constant hazard rate. Examination of tsunami sources suggests that many of the short interevent times are caused by triggered earthquakes, though the triggered events are not necessarily on the same fault.

  17. Robust H-infinity filter design for uncertain time-delay singular stochastic systems with Markovian jump

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    This paper deals with the problem of H-infinity filter design for uncertain time-delay singular stochastic systems with Markovian jump.Based on the extended It(o) stochastic differential formula,sufficient conditions for the solvability of these problems are obtained.Furthermore,It is shown that a desired filter can be constructed by solving a set of linear matrix inequalities.Finally,a simulation example is given to demonstrate the effectiveness of the proposed method.

  18. Stability and Linear Quadratic Differential Games of Discrete-Time Markovian Jump Linear Systems with State-Dependent Noise

    Directory of Open Access Journals (Sweden)

    Huiying Sun

    2014-01-01

    Full Text Available We mainly consider the stability of discrete-time Markovian jump linear systems with state-dependent noise as well as its linear quadratic (LQ differential games. A necessary and sufficient condition involved with the connection between stochastic Tn-stability of Markovian jump linear systems with state-dependent noise and Lyapunov equation is proposed. And using the theory of stochastic Tn-stability, we give the optimal strategies and the optimal cost values for infinite horizon LQ stochastic differential games. It is demonstrated that the solutions of infinite horizon LQ stochastic differential games are concerned with four coupled generalized algebraic Riccati equations (GAREs. Finally, an iterative algorithm is presented to solve the four coupled GAREs and a simulation example is given to illustrate the effectiveness of it.

  19. Residual mean first-passage time for jump processes: theory and applications to Levy flights and fractional Brownian motion

    Energy Technology Data Exchange (ETDEWEB)

    Tejedor, V; Benichou, O; Voituriez, R [Laboratoire de Physique Theorique de la Matiere Condensee (UMR 7600), Universite Pierre et Marie Curie, 4 Place Jussieu, 75255 Paris Cedex (France); Metzler, Ralf, E-mail: voiturie@lptmc.jussieu.fr [Physics Department, Technical University of Munich, James Franck Strasse, 85747 Garching (Germany)

    2011-06-24

    We derive a functional equation for the mean first-passage time (MFPT) of a generic self-similar Markovian continuous process to a target in a one-dimensional domain and obtain its exact solution. We show that the obtained expression of the MFPT for continuous processes is actually different from the large system size limit of the MFPT for discrete jump processes allowing leapovers. In the case considered here, the asymptotic MFPT admits non-vanishing corrections, which we call residual MFPT. The case of Levy flights with diverging variance of jump lengths is investigated in detail, in particular, with respect to the associated leapover behavior. We also show numerically that our results apply with good accuracy to fractional Brownian motion, despite its non-Markovian nature.

  20. How precise is the finite sample approximation of the asymptotic distribution of realised variation measures in the presence of jumps?

    DEFF Research Database (Denmark)

    Veraart, Almut

    and present a new estimator for the asymptotic ‘variance’ of the centered realised variance in the presence of jumps. Next, we compare the finite sample performance of the various estimators by means of detailed Monte Carlo studies where we study the impact of the jump activity, the jump size of the jumps...... in the price and the presence of additional independent or dependent jumps in the volatility on the finite sample performance of the various estimators. We find that the finite sample performance of realised variance, and in particular of the log–transformed realised variance, is generally good, whereas...

  1. Delay-dependent stability analysis for continuous-time BAM neural networks with Markovian jumping parameters.

    Science.gov (United States)

    Liu, Hongyang; Ou, Yan; Hu, Jun; Liu, Tingting

    2010-04-01

    This paper investigates the problem of stability analysis for bidirectional associative memory (BAM) neural networks with Markovian jumping parameters. Some new delay-dependent stochastic stability criteria are derived based on a novel Lyapunov-Krasovskii functional (LKF) approach. These new criteria based on the delay partitioning idea prove to be less conservative, since the conservatism could be notably reduced by thinning the delay partitioning. It is shown that the addressed stochastic BAM neural networks with Markovian jumping parameters are stochastically stable if three linear matrix inequalities (LMIs) are feasible. The feasibility of the LMIs can be readily checked by the Matlab LMI toolbox. A numerical example is provided to show the effectiveness and advantage of the proposed technique.

  2. Test-retest reliability of jump execution variables using mechanography: A comparison of jump protocols

    Science.gov (United States)

    Mechanography during the vertical jump test allows for evaluation of force-time variables reflecting jump execution, which may enhance screening for functional deficits that reduce physical performance and determining mechanistic causes underlying performance changes. However, utility of jump mechan...

  3. Waiting time distribution for continuous stochastic systems.

    Science.gov (United States)

    Gernert, Robert; Emary, Clive; Klapp, Sabine H L

    2014-12-01

    The waiting time distribution (WTD) is a common tool for analyzing discrete stochastic processes in classical and quantum systems. However, there are many physical examples where the dynamics is continuous and only approximately discrete, or where it is favourable to discuss the dynamics on a discretized and a continuous level in parallel. An example is the hindered motion of particles through potential landscapes with barriers. In the present paper we propose a consistent generalization of the WTD from the discrete case to situations where the particles perform continuous barrier crossing characterized by a finite duration. To this end, we introduce a recipe to calculate the WTD from the Fokker-Planck (Smoluchowski) equation. In contrast to the closely related first passage time distribution (FPTD), which is frequently used to describe continuous processes, the WTD contains information about the direction of motion. As an application, we consider the paradigmatic example of an overdamped particle diffusing through a washboard potential. To verify the approach and to elucidate its numerical implications, we compare the WTD defined via the Smoluchowski equation with data from direct simulation of the underlying Langevin equation and find full consistency provided that the jumps in the Langevin approach are defined properly. Moreover, for sufficiently large energy barriers, the WTD defined via the Smoluchowski equation becomes consistent with that resulting from the analytical solution of a (two-state) master equation model for the short-time dynamics developed previously by us [Phys. Rev. E 86, 061135 (2012)]. Thus, our approach "interpolates" between these two types of stochastic motion. We illustrate our approach for both symmetric systems and systems under constant force.

  4. Input-Output Approach to Control for Fuzzy Markov Jump Systems With Time-Varying Delays and Uncertain Packet Dropout Rate.

    Science.gov (United States)

    Zhang, Lixian; Ning, Zepeng; Shi, Peng

    2015-11-01

    This paper is concerned with H∞ control problem for a class of discrete-time Takagi-Sugeno fuzzy Markov jump systems with time-varying delays under unreliable communication links. It is assumed that the data transmission between the plant and the controller are subject to randomly occurred packet dropouts satisfying Bernoulli distribution and the dropout rate is uncertain. Based on a fuzzy-basis-dependent and mode-dependent Lyapunov function, the existence conditions of the desired H∞ state-feedback controllers are derived by employing the scaled small gain theorem such that the closed-loop system is stochastically stable and achieves a guaranteed H∞ performance. The gains of the controllers are constructed by solving a set of linear matrix inequalities. Finally, a practical example of robot arm is provided to illustrate the performance of the proposed approach.

  5. Force- and power-time curve comparison during jumping between strength-matched male and female basketball players.

    Science.gov (United States)

    Rice, Paige E; Goodman, Courtney L; Capps, Christopher R; Triplett, N Travis; Erickson, Travis M; McBride, Jeffrey M

    2017-04-01

    The purpose of this study was to compare force- and power-time curve variables during jumping between Division I strength-matched male and female basketball athletes. Males (n = 8) and females (n = 8) were strength matched by testing a one-repetition maximum (1RM) back squat. 1RM back squat values were normalised to body mass in order to demonstrate that strength differences were a function of body mass alone. Subjects performed three countermovement jumps (CMJ) at maximal effort. Absolute and relative force- and power-time curve variables from the CMJs were analysed between males and females. Average force- and power-time curves were generated for all subjects. Jump height was significantly greater (p ≤ .05) in males than females. Absolute force was higher in males during the concentric phase, but not significantly different (p ≥ .05) when normalised to body mass. Significance was found in absolute concentric impulse between sexes, but not when analysed relative to body mass. Rate of force development, rate of power development, relative peak force, and work were not significantly different between sexes. Males had significantly greater impulse during the eccentric phase as well as peak power (PP) during the concentric phase of the CMJ than did females in both absolute and relative terms. It is concluded that sex differences are not a determining factor in measured force during a CMJ when normalised to body mass between strength-matched subjects. However, eccentric phase impulse and concentric phase PP appear to be influenced by sex differences independent of matching strength levels.

  6. Jumping Dynamics

    DEFF Research Database (Denmark)

    Sannino, Francesco

    2013-01-01

    We propose an alternative paradigm to the conjectured Miransky scaling potentially underlying the physics describing the transition from the conformally broken to the conformally restored phase when tuning certain parameters such as the number of flavors in gauge theories. According to the new...... paradigm the physical scale and henceforth also the massive spectrum of the theory jump at the lower boundary of the conformal window. In particular we propose that a theory can suddenly jump from a Quantum Chromodynamics type spectrum, at the lower boundary of the conformal window, to a conformal one...... without particle interpretation. The jumping scenario, therefore, does not support a near-conformal dynamics of walking type. We will also discuss the impact of jumping dynamics on the construction of models of dynamical electroweak symmetry breaking....

  7. A smart hydrogel-based time bomb triggers drug release mediated by pH-jump reaction

    Directory of Open Access Journals (Sweden)

    Prapatsorn Techawanitchai, Naokazu Idota, Koichiro Uto, Mitsuhiro Ebara and Takao Aoyagi

    2012-01-01

    Full Text Available We demonstrate a timed explosive drug release from smart pH-responsive hydrogels by utilizing a phototriggered spatial pH-jump reaction. A photoinitiated proton-releasing reaction of o-nitrobenzaldehyde (o-NBA was integrated into poly(N-isopropylacrylamide-co-2-carboxyisopropylacrylamide (P(NIPAAm-co-CIPAAm hydrogels. o-NBA-hydrogels demonstrated the rapid release of protons upon UV irradiation, allowing the pH inside the gel to decrease to below the pKa value of P(NIPAAm-co-CIPAAm. The generated protons diffused gradually toward the non-illuminated area, and the diffusion kinetics could be controlled by adjusting the UV irradiation time and intensity. After irradiation, we observed the enhanced release of entrapped L-3,4-dihydroxyphenylalanine (DOPA from the gels, which was driven by the dissociation of DOPA from CIPAAm. Local UV irradiation also triggered the release of DOPA from the non-illuminated area in the gel via the diffusion of protons. Conventional systems can activate only the illuminated region, and their response is discontinuous when the light is turned off. The ability of the proposed pH-jump system to permit gradual activation via proton diffusion may be beneficial for the design of predictive and programmable devices for drug delivery.

  8. Distributed space-time coding

    CERN Document Server

    Jing, Yindi

    2014-01-01

    Distributed Space-Time Coding (DSTC) is a cooperative relaying scheme that enables high reliability in wireless networks. This brief presents the basic concept of DSTC, its achievable performance, generalizations, code design, and differential use. Recent results on training design and channel estimation for DSTC and the performance of training-based DSTC are also discussed.

  9. Robust Estimation for Neural Networks With Randomly Occurring Distributed Delays and Markovian Jump Coupling.

    Science.gov (United States)

    Xu, Yong; Lu, Renquan; Shi, Peng; Tao, Jie; Xie, Shengli

    2017-01-24

    This paper studies the issue of robust state estimation for coupled neural networks with parameter uncertainty and randomly occurring distributed delays, where the polytopic model is employed to describe the parameter uncertainty. A set of Bernoulli processes with different stochastic properties are introduced to model the randomly occurrences of the distributed delays. Novel state estimators based on the local coupling structure are proposed to make full use of the coupling information. The augmented estimation error system is obtained based on the Kronecker product. A new Lyapunov function, which depends both on the polytopic uncertainty and the coupling information, is introduced to reduce the conservatism. Sufficient conditions, which guarantee the stochastic stability and the l₂-l∞ performance of the augmented estimation error system, are established. Then, the estimator gains are further obtained on the basis of these conditions. Finally, a numerical example is used to prove the effectiveness of the results.

  10. Finite-time H∞ control for a class of Markovian jump systems with mode-dependent time-varying delays via new Lyapunov functionals.

    Science.gov (United States)

    Cheng, Jun; Zhu, Hong; Zhong, Shouming; Zeng, Yong; Dong, Xiucheng

    2013-11-01

    This paper is concerned with the problem of finite-time H∞ control for a class of Markovian jump systems with mode-dependent time-varying delays via new Lyapunov functionals. In order to reduce conservatism, a new Lyapunov-Krasovskii functional is constructed. Based on the derived condition, the reliable H∞ control problem is solved, and the system trajectory stays within a prescribed bound during a specified time interval. Finally, numerical examples are given to demonstrate the proposed approach is more effective than some existing ones.

  11. Resilient model approximation for Markov jump time-delay systems via reduced model with hierarchical Markov chains

    Science.gov (United States)

    Zhu, Yanzheng; Zhang, Lixian; Sreeram, Victor; Shammakh, Wafa; Ahmad, Bashir

    2016-10-01

    In this paper, the resilient model approximation problem for a class of discrete-time Markov jump time-delay systems with input sector-bounded nonlinearities is investigated. A linearised reduced-order model is determined with mode changes subject to domination by a hierarchical Markov chain containing two different nonhomogeneous Markov chains. Hence, the reduced-order model obtained not only reflects the dependence of the original systems but also model external influence that is related to the mode changes of the original system. Sufficient conditions formulated in terms of bilinear matrix inequalities for the existence of such models are established, such that the resulting error system is stochastically stable and has a guaranteed l2-l∞ error performance. A linear matrix inequalities optimisation coupled with line search is exploited to solve for the corresponding reduced-order systems. The potential and effectiveness of the developed theoretical results are demonstrated via a numerical example.

  12. Distributed synthesis in continuous time

    DEFF Research Database (Denmark)

    Hermanns, Holger; Krčál, Jan; Vester, Steen

    2016-01-01

    . Indeed, the explicit continuous time enables players to communicate their states by delaying synchronisation (which is unrestricted for non-urgent models). In general, the problems are undecidable already for two players in the quantitative case and three players in the qualitative case. The qualitative......We introduce a formalism modelling communication of distributed agents strictly in continuous-time. Within this framework, we study the problem of synthesising local strategies for individual agents such that a specified set of goal states is reached, or reached with at least a given probability....... The flow of time is modelled explicitly based on continuous-time randomness, with two natural implications: First, the non-determinism stemming from interleaving disappears. Second, when we restrict to a subclass of non-urgent models, the quantitative value problem for two players can be solved in EXPTIME...

  13. Timing issues in distributed testing

    Institute of Scientific and Technical Information of China (English)

    HUANG Chuan-dong; JIANG Fan

    2007-01-01

    The objective of conformance testing is to determine whether an implementation under test (IUT) conforms to its specification. In distributed test architecture where there are multiple remote testers, the objective can be complicated by the fact that testers may encounter controllability and observability problems during the application of a test sequence. A certain amount of work has been done in the area of generating test sequence that is free from these problems. However, few researchers investigate them from the aspect of test execution. This work studies the test execution phase when test sequences are applied to the implementation and it is pointed out that controllability and observability problems can be resolved if and only if the test system implements some timing constraints. When determining these constraints, the dynamic time information during test is taken into account, which reduces the test execution time and improves test efficiency further.

  14. Stochastic Stability for Time-Delay Markovian Jump Systems with Sector-Bounded Nonlinearities and More General Transition Probabilities

    Directory of Open Access Journals (Sweden)

    Dan Ye

    2013-01-01

    Full Text Available This paper is concerned with delay-dependent stochastic stability for time-delay Markovian jump systems (MJSs with sector-bounded nonlinearities and more general transition probabilities. Different from the previous results where the transition probability matrix is completely known, a more general transition probability matrix is considered which includes completely known elements, boundary known elements, and completely unknown ones. In order to get less conservative criterion, the state and transition probability information is used as much as possible to construct the Lyapunov-Krasovskii functional and deal with stability analysis. The delay-dependent sufficient conditions are derived in terms of linear matrix inequalities to guarantee the stability of systems. Finally, numerical examples are exploited to demonstrate the effectiveness of the proposed method.

  15. Long Jump

    CERN Document Server

    Dorobantu, V

    2012-01-01

    When the laws of Physics are taken seriously, the sports can benefit in getting better results, as was the case of the high jump in Flop style, so that the athlete sprints diagonally towards the bar,then curve and leap backwards over it. The jumper, in this case, has the center of mass under the bar, fact which allows improvement of the performance.

  16. The acute effects of a warm-up including static or dynamic stretching on countermovement jump height, reaction time, and flexibility.

    Science.gov (United States)

    Perrier, Erica T; Pavol, Michael J; Hoffman, Mark A

    2011-07-01

    The purpose of this research was to compare the effects of a warm-up with static vs. dynamic stretching on countermovement jump (CMJ) height, reaction time, and low-back and hamstring flexibility and to determine whether any observed performance deficits would persist throughout a series of CMJs. Twenty-one recreationally active men (24.4 ± 4.5 years) completed 3 data collection sessions. Each session included a 5-minute treadmill jog followed by 1 of the stretch treatments: no stretching (NS), static stretching (SS), or dynamic stretching (DS). After the jog and stretch treatment, the participant performed a sit-and-reach test. Next, the participant completed a series of 10 maximal-effort CMJs, during which he was asked to jump as quickly as possible after seeing a visual stimulus (light). The CMJ height and reaction time were determined from measured ground reaction forces. A treatment × jump repeated-measures analysis of variance for CMJ height revealed a significant main effect of treatment (p = 0.004). The CMJ height was greater for DS (43.0 cm) than for NS (41.4 cm) and SS (41.9 cm) and was not less for SS than for NS. Analysis also revealed a significant main effect of jump (p = 0.005) on CMJ height: Jump height decreased from the early to the late jumps. The analysis of reaction time showed no significant effect of treatment. Treatment had a main effect (p < 0.001) on flexibility, however. Flexibility was greater after both SS and DS compared to after NS, with no difference in flexibility between SS and DS. Athletes in sports requiring lower-extremity power should use DS techniques in warm-up to enhance flexibility while improving performance.

  17. H2 Control for the Continuous-Time Markovian Jump Linear Uncertain Systems with Partly Known Transition Rates and Input Quantization

    Directory of Open Access Journals (Sweden)

    Xin-Gang Zhao

    2013-01-01

    Full Text Available For a class of continuous-time Markovian jump linear uncertain systems with partly known transition rates and input quantization, the H2 state-feedback control design is considered. The elements in the transition rates matrix include completely known, boundary known, and completely unknown ones. First, an H2 cost index for Markovian jump linear uncertain systems is introduced; then by introducing a new matrix inequality condition, sufficient conditions are formulated in terms of linear matrix inequalities (LMIs for the H2 control of the Markovian jump linear uncertain systems. Less conservativeness is achieved than the result obtained with the existing technique. Finally, a numerical example is given to verify the validity of the theoretical results.

  18. Emotional stress induced by parachute jumping enhances blood nerve growth factor levels and the distribution of nerve growth factor receptors in lymphocytes.

    Science.gov (United States)

    Aloe, L; Bracci-Laudiero, L; Alleva, E; Lambiase, A; Micera, A; Tirassa, P

    1994-10-25

    We examined the plasma nerve growth factor (NGF) level and the distribution of NGF receptors in peripheral lymphocytes of young soldiers (mean age, 20-24 yr) experiencing the thrill of a novice about to make their first parachute jumps. Blood was collected from soldiers who knew they were selected to jump (n = 26), as well as from soldiers who knew they were not selected (n = 17, controls). The former group was sampled the evening before the jump and 20 min after landing. Compared with controls, NGF levels increased 84% in prejump and 107% in postjump sampling. Our studies also showed that the increase of NGF levels preceded the increase of plasma cortisol and adrenocorticotropic hormone. No changes in the baseline levels of circulating interleukin 1 beta or tumor necrosis factor were found, suggesting that the increased levels of NGF were not correlated with change in these cytokines. Moreover, immunofluorescence analysis demonstrated that parachuting stress enhances the distribution of low-affinity p75LNGFR and high-affinity p140trkA NGF receptors in circulating peripheral blood mononuclear cells. These observations suggest that the release of NGF might be involved in the activation of cells of the immune system and is most probably associated with homeostatic adaptive mechanisms, as previously shown for stressed rodents.

  19. Jump transition observed in translocation time for ideal poly-X proteinogenic chains as a result of competing folding and anchoraging contributions

    Science.gov (United States)

    Vélez-Pérez, José Antonio; Olivares-Quiroz, Luis

    2017-01-01

    In this work we analyze the translocation of homopolymer chains poly-X , where X represents any of the 20 naturally occurring amino acid residues, in terms of size N and single-helical propensity ω . We provide an analytical framework to calculate both the free energy F of translocation and the translocation time τ as a function of chain size N , energies U and ɛ of the unfolded and folded states, respectively. Our results show that free energy F has a characteristic bell-shaped barrier as function of the percentage of monomers translocated. Inclusion of single-helical propensity ω associated to monomer X and chain's native energy ɛ in the translocation model increases the energy barrier Δ F up to one order of magnitude as compared with the well-known Gaussian chain model. Computation of the mean first-passage time as function of chain size N shows that the translocation time τ exhibits a significant jump of several orders of magnitude at a critical chain size N . This jump markedly slows down translocation of chains larger than N . Existence of the transition jump of τ has been observed experimentally at least in poly(ethylene oxide) chains [R. P. Choudhury, P. Galvosas, and M. Schönhoff, J. Phys. Chem. B 112, 13245 (2008)], 10.1021/jp804680q. Our results suggest the transition jump of τ as a function of N may be a very well spread feature throughout translocation of poly-X chains.

  20. A Q-switched Ho:YAG laser assisted nanosecond time-resolved T-jump transient mid-IR absorbance spectroscopy with high sensitivity

    Energy Technology Data Exchange (ETDEWEB)

    Li, Deyong; Li, Yunliang; Li, Hao; Weng, Yuxiang, E-mail: yxweng@iphy.ac.cn [Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Wu, Xianyou [Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei 230031 (China); Yu, Qingxu [School of Physics and Optoelectronic Technology, Dalian University of Technology, No. 2, Linggong Road, Dalian 116023 (China)

    2015-05-15

    Knowledge of dynamical structure of protein is an important clue to understand its biological function in vivo. Temperature-jump (T-jump) time-resolved transient mid-IR absorbance spectroscopy is a powerful tool in elucidating the protein dynamical structures and the folding/unfolding kinetics of proteins in solution. A home-built setup of T-jump time-resolved transient mid-IR absorbance spectroscopy with high sensitivity is developed, which is composed of a Q-switched Cr, Tm, Ho:YAG laser with an output wavelength at 2.09 μm as the T-jump heating source, and a continuous working CO laser tunable from 1580 to 1980 cm{sup −1} as the IR probe. The results demonstrate that this system has a sensitivity of 1 × 10{sup −4} ΔOD for a single wavelength detection, and 2 × 10{sup −4} ΔOD for spectral detection in amide I′ region, as well as a temporal resolution of 20 ns. Moreover, the data quality coming from the CO laser is comparable to the one using the commercial quantum cascade laser.

  1. A Q-switched Ho:YAG laser assisted nanosecond time-resolved T-jump transient mid-IR absorbance spectroscopy with high sensitivity.

    Science.gov (United States)

    Li, Deyong; Li, Yunliang; Li, Hao; Wu, Xianyou; Yu, Qingxu; Weng, Yuxiang

    2015-05-01

    Knowledge of dynamical structure of protein is an important clue to understand its biological function in vivo. Temperature-jump (T-jump) time-resolved transient mid-IR absorbance spectroscopy is a powerful tool in elucidating the protein dynamical structures and the folding/unfolding kinetics of proteins in solution. A home-built setup of T-jump time-resolved transient mid-IR absorbance spectroscopy with high sensitivity is developed, which is composed of a Q-switched Cr, Tm, Ho:YAG laser with an output wavelength at 2.09 μm as the T-jump heating source, and a continuous working CO laser tunable from 1580 to 1980 cm(-1) as the IR probe. The results demonstrate that this system has a sensitivity of 1 × 10(-4) ΔOD for a single wavelength detection, and 2 × 10(-4) ΔOD for spectral detection in amide I' region, as well as a temporal resolution of 20 ns. Moreover, the data quality coming from the CO laser is comparable to the one using the commercial quantum cascade laser.

  2. Stochastic modeling of Lake Van water level time series with jumps and multiple trends

    Directory of Open Access Journals (Sweden)

    H. Aksoy

    2013-06-01

    Full Text Available In the 1990s, water level in the closed-basin Lake Van located in the Eastern Anatolia, Turkey, has risen up about 2 m. Analysis of the hydrometeorological data shows that change in the water level is related to the water budget of the lake. In this study, stochastic models are proposed for simulating monthly water level data. Two models considering mono- and multiple-trend time series are developed. The models are derived after removal of trend and periodicity in the dataset. Trend observed in the lake water level time series is fitted by mono- and multiple-trend lines. In the so-called mono-trend model, the time series is treated as a whole under the hypothesis that the lake water level has an increasing trend. In the second model (so-called multiple-trend, the time series is divided into a number of segments to each a linear trend can be fitted separately. Application on the lake water level data shows that four segments, each fitted with a trend line, are meaningful. Both the mono- and multiple-trend models are used for simulation of synthetic lake water level time series under the hypothesis that the observed mono- and multiple-trend structure of the lake water level persist during the simulation period. The multiple-trend model is found better for planning the future infrastructural projects in surrounding areas of the lake as it generates higher maxima for the simulated lake water level.

  3. Stochastic modeling of Lake Van water level time series with jumps and multiple trends

    Directory of Open Access Journals (Sweden)

    H. Aksoy

    2013-02-01

    Full Text Available In 1990s, water level in the closed-basin Lake Van located in the Eastern Anatolia, Turkey has risen up about 2 m. Analysis of the hydrometeorological shows that change in the water level is related to the water budget of the lake. In this study, a stochastic model is generated using the measured monthly water level data of the lake. The model is derived after removal of trend and periodicity in the data set. Trend observed in the lake water level time series is fitted by mono- and multiple-trend lines. For the multiple-trend, the time series is first divided into homogeneous segments by means of SEGMENTER, segmentation software. Four segments are found meaningful practically each fitted with a trend line. Two models considering mono- and multiple-trend time series are developed. The multiple-trend model is found better for planning future development in surrounding areas of the lake.

  4. Systematic Jumping Risk and Time-varying Features of Beta%系统性跳跃风险与贝塔系数时变特征

    Institute of Scientific and Technical Information of China (English)

    简志宏; 李彩云

    2013-01-01

    为了从系统性跳跃风险这一微观层面探讨贝塔系数的时变特征,本文采用mcp统计量检验A股市场的系统性跳跃风险,并利用理论上更加稳健的TBVEW统计量估计系统性跳跃的贡献;运用“已实现”方法分解连续性贝塔和跳跃性贝塔,并分别检验连续性贝塔和跳跃性贝塔的稳定性.研究结果表明,A股市场的系统性跳跃风险是显著存在的,阈值修正的TBVEW统计量有更好的小样本性质;短期连续性贝塔稳定性较差,中期和长期连续性贝塔比较稳定,而短期、中期和长期跳跃性贝塔的稳定性都很差.因此,短期贝塔系数的不稳定主要来自于连续性贝塔,而中期和长期贝塔系数的不稳定则来自于跳跃性贝塔.%In order to investigate the features of time-varying betas in terms of systematic jumping risk,mcp(mean-cross products) is adopted to test stock markets' systematic jumps,more robust TBV estimator is used to estimate the contribution of systematic jumps,realized method is applied to decompose daily betas into continuous betas and jumping betas,and then,specifically their stability is tested.The results indicate that significant systematic jumps exist in the stock market in China.The threshold revised TBV estimator has better small-sample properties.The continuous betas are generally stable in medium and long term,but unstable in short term.Jumping betas are relatively poor in short,medium and long term.These results reflect that the main reason of time-varying betas in short term is continuous betas' instability.But the instability of betas in medium and long term is caused by systematic jumping risk.

  5. Finite-time stability and stabilization for stochastic markov jump systems with mode-dependent time delays.

    Science.gov (United States)

    Yan, Zhiguo; Song, Yunxia; Park, Ju H

    2017-05-01

    This paper is concerned with the problems of finite-time stability and stabilization for stochastic Markov systems with mode-dependent time-delays. In order to reduce conservatism, a mode-dependent approach is utilized. Based on the derived stability conditions, state-feedback controller and observer-based controller are designed, respectively. A new N-mode algorithm is given to obtain the maximum value of time-delay. Finally, an example is used to show the merit of the proposed results. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  6. Undular Hydraulic Jump

    Directory of Open Access Journals (Sweden)

    Oscar Castro-Orgaz

    2015-04-01

    Full Text Available The transition from subcritical to supercritical flow when the inflow Froude number Fo is close to unity appears in the form of steady state waves called undular hydraulic jump. The characterization of the undular hydraulic jump is complex due to the existence of a non-hydrostatic pressure distribution that invalidates the gradually-varied flow theory, and supercritical shock waves. The objective of this work is to present a mathematical model for the undular hydraulic jump obtained from an approximate integration of the Reynolds equations for turbulent flow assuming that the Reynolds number R is high. Simple analytical solutions are presented to reveal the physics of the theory, and a numerical model is used to integrate the complete equations. The limit of application of the theory is discussed using a wave breaking condition for the inception of a surface roller. The validity of the mathematical predictions is critically assessed using physical data, thereby revealing aspects on which more research is needed

  7. Research in Distributed Real-Time Systems

    Science.gov (United States)

    Mukkamala, R.

    1997-01-01

    This document summarizes the progress we have made on our study of issues concerning the schedulability of real-time systems. Our study has produced several results in the scalability issues of distributed real-time systems. In particular, we have used our techniques to resolve schedulability issues in distributed systems with end-to-end requirements. During the next year (1997-98), we propose to extend the current work to address the modeling and workload characterization issues in distributed real-time systems. In particular, we propose to investigate the effect of different workload models and component models on the design and the subsequent performance of distributed real-time systems.

  8. Space--times with distribution valued curvature tensors

    Energy Technology Data Exchange (ETDEWEB)

    Taub, A.H.

    1980-06-01

    A space--time in which in an admissible coordinate system the metric tensor is continuous but has a finite jump in its first and second derivatives across a submanifold will have a curvature tensor containing a Dirac delta function. The support of this distribution may be of three, two, or one dimension or may even consist of a single event. Lichnerowicz's formalism for dealing with such tensors is modified so as to obtain a formalism in which the Bianchi identities are satisfied in the sense of distributions. The resulting formalism is then applied to the discussion of the Einstein field equations for problems in which the source of the gravitational field is given by a distribution valued stress-energy tensor. Gravitational shocks are also discussed and their theory is compared with that of high-frequency gravitational waves given by Y. Choquet-Bruhat. By considering a class of line sources as obtainable from cylindrical shells by a limiting process, as was proposed by Israel, one may use the distribution formalism developed for hypersurfaces to treat line sources. The line source model proposed by Israel to represent the Kerr metric in the neighborhood of its singular disk is shown to lead to a gravitational mass and angular momentum inconsistent with those of the latter metric. It is proposed to remove this difficulty by changing the assumptions made by Israel concerning the nature of the space--time inside the cylindrical shell which is the support of the distribution in the curvature tensor. The details of the effect of this change are not given in this paper.

  9. Fringe-jump corrected far infrared tangential interferometer/polarimeter for a real-time density feedback control system of NSTX plasmas.

    Science.gov (United States)

    Juhn, J-W; Lee, K C; Hwang, Y S; Domier, C W; Luhmann, N C; Leblanc, B P; Mueller, D; Gates, D A; Kaita, R

    2010-10-01

    The far infrared tangential interferometer/polarimeter (FIReTIP) of the National Spherical Torus Experiment (NSTX) has been set up to provide reliable electron density signals for a real-time density feedback control system. This work consists of two main parts: suppression of the fringe jumps that have been prohibiting the plasma density from use in the direct feedback to actuators and the conceptual design of a density feedback control system including the FIReTIP, control hardware, and software that takes advantage of the NSTX plasma control system (PCS). By investigating numerous shot data after July 2009 when the new electronics were installed, fringe jumps in the FIReTIP are well characterized, and consequently the suppressing algorithms are working properly as shown in comparisons with the Thomson scattering diagnostic. This approach is also applicable to signals taken at a 5 kHz sampling rate, which is a fundamental constraint imposed by the digitizers providing inputs to the PCS. The fringe jump correction algorithm, as well as safety and feedback modules, will be included as submodules either in the gas injection system category or a new category of density in the PCS.

  10. Timing and time signal distribution in digital communications networks

    Science.gov (United States)

    Kihara, Masami; Imaoka, Atushi

    1992-06-01

    The timing signal distribution characteristics of a digital communications network are evaluated to determine the Maximum Time Interval Error (MTIE) of the network; reference is made to the performance of network components such as transmission systems, slave clocks and timing distribution systems in intraoffices. The MTIE of each component is measured and used to determine the allowable MTIE of that component. The maximum number of slave node chains is shown to be 20. Time signal distribution performance is detailed. It is shown that time synchronization accuracy is of the order of submicroseconds between nodes separated by 2400 km over a two year period. For intra-office time signal distribution, the relative time accuracy is less than 3 nanoseconds using an 8 Mb/s round trip digital interface to connect a time signal supply in an office to dispersed equipment.

  11. A Hull and White Formula for a General Stochastic Volatility Jump-Diffusion Model with Applications to the Study of the Short-Time Behavior of the Implied Volatility

    Directory of Open Access Journals (Sweden)

    Elisa Alòs

    2008-01-01

    Full Text Available We obtain a Hull and White type formula for a general jump-diffusion stochastic volatility model, where the involved stochastic volatility process is correlated not only with the Brownian motion driving the asset price but also with the asset price jumps. Towards this end, we establish an anticipative Itô's formula, using Malliavin calculus techniques for Lévy processes on the canonical space. As an application, we show that the dependence of the volatility process on the asset price jumps has no effect on the short-time behavior of the at-the-money implied volatility skew.

  12. How precise is the finite sample approximation of the asymptotic distribution of realised variation measures in the presence of jumps?

    DEFF Research Database (Denmark)

    Veraart, Almut

    2011-01-01

    This paper studies the impact of jumps on volatility estimation and inference based on various realised variation measures such as realised variance, realised multipower variation and truncated realised multipower variation. We review the asymptotic theory of those realised variation measures and...... of a highly active jump process. Finally, we investigate the impact of jumps on inference on volatility empirically, where we study high frequency data from the Standard & Poor’s Depository Receipt (SPY)....

  13. Energy Distribution in LTB Space-time

    CERN Document Server

    Salti, M; Salti, Mustafa; Havare, Ali

    2005-01-01

    Using general relativity analogs of Bergmann-Thomson, Papapetrou, Landau-Lifshitz and Einstein energy and momentum definitions, we find the energy distribution (due to matter plus fields) in the LTB Space-time. The energy distribution is found well defined and the same in all of these energy-momentum complexes.

  14. Distributed Algorithms for Time Optimal Reachability Analysis

    DEFF Research Database (Denmark)

    Zhang, Zhengkui; Nielsen, Brian; Larsen, Kim Guldstrand

    2016-01-01

    Time optimal reachability analysis is a novel model based technique for solving scheduling and planning problems. After modeling them as reachability problems using timed automata, a real-time model checker can compute the fastest trace to the goal states which constitutes a time optimal schedule....... We propose distributed computing to accelerate time optimal reachability analysis. We develop five distributed state exploration algorithms, implement them in \\uppaal enabling it to exploit the compute resources of a dedicated model-checking cluster. We experimentally evaluate the implemented...... algorithms with four models in terms of their ability to compute near- or proven-optimal solutions, their scalability, time and memory consumption and communication overhead. Our results show that distributed algorithms work much faster than sequential algorithms and have good speedup in general....

  15. Distributed Algorithms for Time Optimal Reachability Analysis

    DEFF Research Database (Denmark)

    Zhang, Zhengkui; Nielsen, Brian; Larsen, Kim Guldstrand

    2016-01-01

    . We propose distributed computing to accelerate time optimal reachability analysis. We develop five distributed state exploration algorithms, implement them in \\uppaal enabling it to exploit the compute resources of a dedicated model-checking cluster. We experimentally evaluate the implemented...... algorithms with four models in terms of their ability to compute near- or proven-optimal solutions, their scalability, time and memory consumption and communication overhead. Our results show that distributed algorithms work much faster than sequential algorithms and have good speedup in general....

  16. Risk, Jumps, and Diversification

    DEFF Research Database (Denmark)

    Bollerslev, Tim; Law, Tzuo Hann; Tauchen, George

    We test for price discontinuities, or jumps, in a panel of high-frequency intraday returns for forty large-cap stocks and an equiweighted index from these same stocks. Jumps are naturally classified into two types: common and idiosyncratic. Common jumps affect all stocks, albeit to varying degree...

  17. Jumping in Arithmetic

    NARCIS (Netherlands)

    Visser, Albert

    2014-01-01

    In this paper we study a new relation between sentences: the jump relation. The idea of the jump relation is based on an analysis of Feferman's Theorem that the inconsistency of a theory U is interpretable over U. The jump relation is based on a converse of Feferman's Theorem: if a sentence is inter

  18. Usefulness of the jump-and-reach test in assessment of vertical jump performance.

    Science.gov (United States)

    Menzel, Hans-Joachim; Chagas, Mauro H; Szmuchrowski, Leszek A; Araujo, Silvia R; Campos, Carlos E; Giannetti, Marcus R

    2010-02-01

    The objective was to estimate the reliability and criterion-related validity of the Jump-and-Reach Test for the assessment of squat, countermovement, and drop jump performance of 32 male Brazilian professional volleyball players. Performance of squat, countermovement, and drop jumps with different dropping heights was assessed on the Jump-and-Reach Test and the measurement of flight time, then compared across different jump trials. The very high reliability coefficients of both assessment methods and the lower correlation coefficients between scores on the assessments indicate a very high consistency of each method but only moderate covariation, which means that they measure partly different items. As a consequence, the Jump-and-Reach Test has good ecological validity in situations when reaching height during the flight phase is critical for performance (e.g., basketball and volleyball) but only limited accuracy for the assessment of vertical impulse production with different jump techniques and conditions.

  19. Chasing maximal performance: a cautionary tale from the celebrated jumping frogs of Calaveras County.

    Science.gov (United States)

    Astley, H C; Abbott, E M; Azizi, E; Marsh, R L; Roberts, T J

    2013-11-01

    Maximal performance is an essential metric for understanding many aspects of an organism's biology, but it can be difficult to determine because a measured maximum may reflect only a peak level of effort, not a physiological limit. We used a unique opportunity provided by a frog jumping contest to evaluate the validity of existing laboratory estimates of maximum jumping performance in bullfrogs (Rana catesbeiana). We recorded video of 3124 bullfrog jumps over the course of the 4-day contest at the Calaveras County Jumping Frog Jubilee, and determined jump distance from these images and a calibration of the jump arena. Frogs were divided into two groups: 'rental' frogs collected by fair organizers and jumped by the general public, and frogs collected and jumped by experienced, 'professional' teams. A total of 58% of recorded jumps surpassed the maximum jump distance in the literature (1.295 m), and the longest jump was 2.2 m. Compared with rental frogs, professionally jumped frogs jumped farther, and the distribution of jump distances for this group was skewed towards long jumps. Calculated muscular work, historical records and the skewed distribution of jump distances all suggest that the longest jumps represent the true performance limit for this species. Using resampling, we estimated the probability of observing a given jump distance for various sample sizes, showing that large sample sizes are required to detect rare maximal jumps. These results show the importance of sample size, animal motivation and physiological conditions for accurate maximal performance estimates.

  20. Time distributions in satellite constellation design

    Science.gov (United States)

    Arnas, David; Casanova, Daniel; Tresaco, Eva

    2017-01-01

    The aim of the time distribution methodology presented in this paper is to generate constellations whose satellites share a set of relative trajectories in a given time, and maintain that property over time without orbit corrections. The model takes into account a series of orbital perturbations such as the gravitational potential of the Earth, the atmospheric drag, the Sun and the Moon as disturbing third bodies and the solar radiation pressure. These perturbations are included in the design process of the constellation. Moreover, the whole methodology allows to design constellations with multiple relative trajectories that can be distributed in a minimum number of inertial orbits.

  1. Gender differences in triple jump phase ratios and arm swing motion of international level athletes

    Directory of Open Access Journals (Sweden)

    Vassilios Panoutsakopoulos

    2016-12-01

    Full Text Available Background: Female triple jumping is a relatively new athletics event. A limited number of researchers have focused on comparing male and female jumpers competing in international events, resulting in scarce findings in the literature regarding gender differences of the determinants of triple jump performance. Objective: The aim of the study was to examine the possible gender differences in the approach step characteristics, the spatiotemporal parameters of the separate phases of the triple jump as performed by athletes participating in sub-elite international events. Methods: The male and female participants of the 2015 European Team Championships triple jump event were recorded with a panning video camera. Approach speed was measured using photocells. Kinematical parameters were extracted using the APAS WIZARD 13.3.0.3 software. The relationships between the examined parameters and the actual triple jump performance were examined with Pearson's correlation analysis. Repeated measures ANOVA and chi-square statistical tests were run to examine the significance of the differences between genders. Results: Approach speed significantly correlated with the actual jumping distance in both males and females (p < .05. Significant gender differences (p < .05 existed concerning basic kinematical parameters. Men were found to have larger average horizontal speed of the 11 m to 1 m segment of the final approach, step length of the final six steps of the approach, step frequency of the final two steps, actual phase distances and percentage distribution of the step. Women, unlike men, used solely single arm swing techniques. No athlete executed the jump using a jump dominated technique. Conclusions: Gender differences in triple jump performance lies upon the kinematical parameters of the final two steps of the approach, the length of the step phase and the support time for the jump. The technique elements of the penultimate step are suggested to

  2. Femtosecond Timing Distribution Using Optical Pulses

    CERN Document Server

    Winter, A; Winter, A

    2005-01-01

    Fourth-generation light sources, such as the European X-ray Free Electron Laser (XFEL) require timing signals distributed over distances of several kilometers with a stability in the order of femtoseconds. A promising approach is the use of a mode-locked laser that generates sub-picosecond pulses which are distributed in timing stabilized optical fiber links. A good candidate for a laser master oscillator (LMO) is a mode-locked Erbium-doped fiber laser, featuring extremely low phase noise far from the carrier. Results on the development of the LMO locked to an external reference microwave oscillator to suppress low frequency jitter, the distribution via timing stabilized optical fiber links and the reconversion of the optical pulses to a low phase noise microwave RF signals with overall femtosecond stability are presented.

  3. Jumping Nanodroplets

    OpenAIRE

    Habenicht, Anja; Olapinski, Michael; Burmeister, Frank; Leiderer, Paul; Boneberg, Johannes

    2005-01-01

    Flat gold nanostructures on inert substrates like glass or graphite were illuminated by single intensive laser pulses with fluences above the gold melting threshold. The liquid structures produced in this way are far from their equilibrium shape, and a dewetting process sets in. On a time scale of a few nanoseconds, the liquid contracted toward a sphere. During this contraction, the center of mass moved upward, which could lead to detachment of droplets from the surface due to inertia. The re...

  4. Coalescence-induced nanodroplet jumping

    Science.gov (United States)

    Cha, Hyeongyun; Xu, Chenyu; Sotelo, Jesus; Chun, Jae Min; Yokoyama, Yukihiro; Enright, Ryan; Miljkovic, Nenad

    2016-10-01

    Water vapor condensation on superhydrophobic surfaces has received much attention in recent years due to the ability of such surfaces to shed microscale water droplets via coalescence-induced droplet jumping, resulting in heat transfer, anti-icing, and self-cleaning performance enhancement. Here we report the coalescence-induced removal of water nanodroplets (R ≈500 nm ) from superhydrophobic carbon nanotube (CNT) surfaces. The two-droplet coalescence time is measured for varying droplet Ohnesorge numbers, confirming that coalescence prior to jumping is governed by capillary-inertial dynamics. By varying the conformal hydrophobic coating thickness on the CNT surface, the minimum jumping droplet radius is shown to increase with increasing solid fraction and decreasing apparent advancing contact angle, allowing us to explore both hydrodynamic limitations stemming from viscous dissipation and surface adhesion limitations. We find that, even for the smallest nanostructure length scale (≤100 nm) and lowest surface adhesions, nonideal surface interactions and the evolved droplet morphology play defining roles in limiting the minimum size for jumping on real surfaces. The outcomes of this work demonstrate the ability to passively shed nanometric water droplets, which has the potential to further increase the efficiency of systems that can harness jumping droplets for a wide range of energy and water applications.

  5. Exploring Lightning Jump Characteristics

    Science.gov (United States)

    Chronis, Themis; Carey, Larry D.; Schultz, Christopher J.; Schultz, Elise; Calhoun, Kristin; Goodman, Steven J.

    2014-01-01

    This study is concerned with the characteristics of storms exhibiting an abrupt temporal increase in the total lightning flash rate (i.e., lightning jump, LJ). An automated storm tracking method is used to identify storm "clusters" and total lightning activity from three different lightning detection systems over Oklahoma, northern Alabama and Washington, D.C. On average and for different employed thresholds, the clusters that encompass at least one LJ (LJ1) last longer, relate to higher Maximum Expected Size of Hail, Vertical Integrated Liquid and lightning flash rates (area-normalized) than the clusters that did not exhibit any LJ (LJ0). The respective mean values for LJ1 (LJ0) clusters are 80 min (35 min), 14 mm (8 mm), 25 kg per square meter (18 kg per square meter) and 0.05 flash per min per square kilometer (0.01 flash per min per square kilometer). Furthermore, the LJ1 clusters are also characterized by slower decaying autocorrelation functions, a result that implies a less "random" behavior in the temporal flash rate evolution. In addition, the temporal occurrence of the last LJ provides an estimate of the time remaining to the storm's dissipation. Depending of the LJ strength (i.e., varying thresholds), these values typically range between 20-60 min, with stronger jumps indicating more time until storm decay. This study's results support the hypothesis that the LJ is a proxy for the storm's kinematic and microphysical state rather than a coincidental value.

  6. Jumping nanodroplets.

    Science.gov (United States)

    Habenicht, A; Olapinski, M; Burmeister, F; Leiderer, P; Boneberg, J

    2005-09-23

    Flat gold nanostructures on inert substrates like glass or graphite were illuminated by single intensive laser pulses with fluences above the gold melting threshold. The liquid structures produced in this way are far from their equilibrium shape, and a dewetting process sets in. On a time scale of a few nanoseconds, the liquid contracted toward a sphere. During this contraction, the center of mass moved upward, which could lead to detachment of droplets from the surface due to inertia. The resulting velocities were on the order of 10 meters per second for droplets with radii in the range of 100 nanometers.

  7. Linking age, survival, and transit time distributions

    Science.gov (United States)

    Calabrese, Salvatore; Porporato, Amilcare

    2015-10-01

    Although the concepts of age, survival, and transit time have been widely used in many fields, including population dynamics, chemical engineering, and hydrology, a comprehensive mathematical framework is still missing. Here we discuss several relationships among these quantities by starting from the evolution equation for the joint distribution of age and survival, from which the equations for age and survival time readily follow. It also becomes apparent how the statistical dependence between age and survival is directly related to either the age dependence of the loss function or the survival-time dependence of the input function. The solution of the joint distribution equation also allows us to obtain the relationships between the age at exit (or death) and the survival time at input (or birth), as well as to stress the symmetries of the various distributions under time reversal. The transit time is then obtained as a sum of the age and survival time, and its properties are discussed along with the general relationships between their mean values. The special case of steady state case is analyzed in detail. Some examples, inspired by hydrologic applications, are presented to illustrate the theory with the specific results. This article was corrected on 11 Nov 2015. See the end of the full text for details.

  8. Portfolio rebalancing error with jumps and mean reversion in asset prices

    Directory of Open Access Journals (Sweden)

    Xingbo Xu

    2011-01-01

    Full Text Available We analyze the error between a discretely rebalanced portfolio and its continuously rebalanced counterpart in the presence of jumps or mean-reversion in the underlying asset dynamics. With discrete rebalancing, the portfolio’s composition is restored to a set of fixed target weights at discrete intervals; with continuous rebalancing, the target weights are maintained at all times. We examine the difference between the two portfolios as the number of discrete rebalancing dates increases. With either mean reversion or jumps, we derive the limiting variance of the relative error between the two portfolios. With mean reversion and no jumps, we show that the scaled limiting error is asymptotically normal and independent of the level of the continuously rebalanced portfolio. With jumps, we show that the scaled relative error cannot converge to a normal distribution, though asymptotic normality can be recovered if jumps are smaller at higher rebalancing frequencies. For both the mean-reverting and jump-diffusion cases, we derive “volatility adjustments” to improve the approximation of the discretely rebalanced portfolio by the continuously rebalanced portfolio, based on on the limiting covariance between the relative rebalancing error and the level of the continuously rebalanced portfolio. These results are based on strong approximation results for jump-diffusion processes.

  9. H∞ Filtering for Discrete Markov Jump Singular Systems with Mode-Dependent Time Delay Based on T-S Fuzzy Model

    Directory of Open Access Journals (Sweden)

    Cheng Gong

    2014-01-01

    Full Text Available This paper investigates the H∞ filtering problem of discrete singular Markov jump systems (SMJSs with mode-dependent time delay based on T-S fuzzy model. First, by Lyapunov-Krasovskii functional approach, a delay-dependent sufficient condition on H∞-disturbance attenuation is presented, in which both stability and prescribed H∞ performance are required to be achieved for the filtering-error systems. Then, based on the condition, the delay-dependent H∞ filter design scheme for SMJSs with mode-dependent time delay based on T-S fuzzy model is developed in term of linear matrix inequality (LMI. Finally, an example is given to illustrate the effectiveness of the result.

  10. More Puddle Jumping

    Science.gov (United States)

    Attari, Babak; Weislogel, Mark; Wollman, Andrew; Chen, Yongkang; Snyder, Trevor

    2016-11-01

    Large droplets and puddles jump spontaneously from sufficiently hydrophobic surfaces during routine drop tower tests. The simple low-cost passive mechanism can in turn be used as an experimental device to investigate dynamic droplet phenomena for drops up to 10,000 times larger than their normal terrestrial counterparts. We provide or confirm quick and qualitative design guides for such 'drop shooters' as employed in drop tower tests including relationships to predict droplet ejection durations and velocities as functions of drop volume, surface texture, surface contour, wettability pattern, drop volume, and fluid properties including contact angle. The latter are determined via profile image comparisons with numerical equilibrium interface computations. Water drop volumes of 0.04 to 400 mL at ejection speeds of -0.007 to 0.12 m/s are demonstrated. An example application of the puddle jump method is made to the classic problem of regime mapping for low-gravity phase change heat transfer for large impinging drops. Many other candidate problems might be identified.

  11. Time-dependent species sensitivity distributions.

    Science.gov (United States)

    Fox, David R; Billoir, Elise

    2013-02-01

    Time is a central component of toxicity assessments. However, current ecotoxicological practice marginalizes time in concentration-response (C-R) modeling and species sensitivity distribution (SSD) analyses. For C-R models, time is invariably fixed, and toxicity measures are estimated from a function fitted to the data at that time. The estimated toxicity measures are used as inputs to the SSD modeling phase, which similarly avoids explicit recognition of the temporal component. The present study extends some commonly employed probability models for SSDs to derive theoretical results that characterize the time-dependent nature of hazardous concentration (HCx) values. The authors' results show that even from very simple assumptions, more complex patterns in the SSD time dependency can be revealed.

  12. Delayed Frost Growth on Jumping-Drop Superhydrophobic Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Boreyko, Jonathan B [ORNL; Collier, Pat [ORNL

    2013-01-01

    Self-propelled jumping drops are continuously removed from a condensing superhydrophobic surface to enable a micrometric steady-state drop size. Here, we report that subcooled condensate on a chilled superhydrophobic surface are able to repeatedly jump off the surface before heterogeneous ice nucleation occurs. Frost still forms on the superhydrophobic surface due to ice nucleation at neighboring edge defects, which eventually spreads over the entire surface via an inter-drop frost wave. The growth of this inter-drop frost front is shown to be up to three times slower on the superhydrophobic surface compared to a control hydrophobic surface, due to the jumping-drop effect dynamically minimizing the average drop size and surface coverage of the condensate. A simple scaling model is developed to relate the success and speed of inter-drop ice bridging to the drop size distribution. While other reports of condensation frosting on superhydrophobic surfaces have focused exclusively on liquid-solid ice nucleation for isolated drops, these findings reveal that the growth of frost is an inter-drop phenomenon that is strongly coupled to the wettability and drop size distribution of the surface. A jumping-drop superhydrophobic condenser was found to be superior to a conventional dropwise condenser in two respects: preventing heterogeneous ice nucleation by continuously removing subcooled condensate, and delaying frost growth by minimizing the success of interdrop ice bridge formation.

  13. Delayed frost growth on jumping-drop superhydrophobic surfaces.

    Science.gov (United States)

    Boreyko, Jonathan B; Collier, C Patrick

    2013-02-26

    Self-propelled jumping drops are continuously removed from a condensing superhydrophobic surface to enable a micrometric steady-state drop size. Here, we report that subcooled condensate on a chilled superhydrophobic surface are able to repeatedly jump off the surface before heterogeneous ice nucleation occurs. Frost still forms on the superhydrophobic surface due to ice nucleation at neighboring edge defects, which eventually spreads over the entire surface via an interdrop frost wave. The growth of this interdrop frost front is shown to be up to 3 times slower on the superhydrophobic surface compared to a control hydrophobic surface, due to the jumping-drop effect dynamically minimizing the average drop size and surface coverage of the condensate. A simple scaling model is developed to relate the success and speed of interdrop ice bridging to the drop size distribution. While other reports of condensation frosting on superhydrophobic surfaces have focused exclusively on liquid-solid ice nucleation for isolated drops, these findings reveal that the growth of frost is an interdrop phenomenon that is strongly coupled to the wettability and drop size distribution of the surface. A jumping-drop superhydrophobic condenser minimized frost formation relative to a conventional dropwise condenser in two respects: preventing heterogeneous ice nucleation by continuously removing subcooled condensate, and delaying frost growth by limiting the success of interdrop ice bridge formation.

  14. PERBANDINGAN JUMP SHOOT DENGAN AWALAN DAN TANPA AWALAN TERHADAP PENINGKATAN KETEPATAN SHOOTING DALAM PERMAINAN BOLABASKET

    Directory of Open Access Journals (Sweden)

    I Gusti Ngurah Agung Cahya Prananta

    2015-01-01

    Full Text Available The effectiveness of  jump-shoot technique step jump shoot and still jump shoot in a game is still questionable,  because many different assumptions arise. One opinion stated that step jump shoot was more effective and the other stated that and still jump shoot was more efective. Therefore it is necessary to do research on the analysis of the results of step jump shoot and and still jump shoot to improve the accuracy of shooting in a basketball. The experimental research had been conducted on 20samples of people whowere selected randomly from the men's basketball club of the Faculty of Physical Educationand Health of Teacher Training Institute PGRI Bali. Samples were divided into two groups each  consisting of 10 people. Group I was given training step  jump shoot four sets of 10 reps  and Group II training still jump shoot four sets of 10 reps. The data before and after treatment were tested by SPSS computer program. The data were normally distributed and homogeneous so further tested using pairedt-test to compare the average values?? before and after training between each group, while the independent t-test was used to determine differences in mean values?? between the two groups. Paired t-test resulted the obtained data were significantly increased in both treatment groups p=0,001 in Group I and p=0,000 in Group II (p <0.05. Results of independent t-test found that both groups before training did not differ significantly p=0,926 (p>0.05 and after training both groups equally improve the accuracy of shooting because p=0,133 (p>0.05. It was concluded that botht raining improved the shooting accuracy and there was no difference between the effect of step jumps hoot and still jump shoot toward the shooting accuracy. It was suggested to improve the shooting accuracy in basketball used step jump shoot training and still jump shoot training four sets of 10 reps with a training frequency of 4 times a week for 6 weeks

  15. Robust stability analysis for Markovian jumping stochastic neural networks with mode-dependent time-varying interval delay and multiplicative noise

    Institute of Scientific and Technical Information of China (English)

    Zhang Hua-Guang; Fu Jie; Ma Tie-Dong; Tong Shao-Cheng

    2009-01-01

    This paper is concerned with the problem of robust stability for a class of Markovian jumping stochastic neural networks (MJSNNs) subject to mode-dependent time-varying interval delay and state-multiplicative noise.Based on the Lyapunov-Krasovskii functional and a stochastic analysis approach,some new delay-dependent sufficient conditions are obtained in the linear matrix inequality (LMI) format such that delayed MJSNNs are globally asymptotically stable in the mean-square sense for all admissible uncertainties.An important feature of the results is that the stability criteria are dependent on not only the lower bound and upper bound of delay for all modes but also the covariance matrix consisting of the correlation coefficient.Numerical examples are given to illustrate the effectiveness.

  16. Steerable Miniature Jumping Robot

    OpenAIRE

    Kovac, Mirko; Schlegel, Manuel; Zufferey, Jean-Christophe; Floreano, Dario

    2010-01-01

    Jumping is used in nature by many small animals to locomote in cluttered environments or in rough terrain. It offers small systems the benefit of overcoming relatively large obstacles at a low energetic cost. In order to be able to perform repetitive jumps in a given direction, it is important to be able to upright after landing, steer and jump again. In this article, we review and evaluate the uprighting and steering principles of existing jumping robots and present a novel spherical robot w...

  17. Modeling utilization distributions in space and time.

    Science.gov (United States)

    Keating, Kim A; Cherry, Steve

    2009-07-01

    W. Van Winkle defined the utilization distribution (UD) as a probability density that gives an animal's relative frequency of occurrence in a two-dimensional (x, y) plane. We extend Van Winkle's work by redefining the UD as the relative frequency distribution of an animal's occurrence in all four dimensions of space and time. We then describe a product kernel model estimation method, devising a novel kernel from the wrapped Cauchy distribution to handle circularly distributed temporal covariates, such as day of year. Using Monte Carlo simulations of animal movements in space and time, we assess estimator performance. Although not unbiased, the product kernel method yields models highly correlated (Pearson's r = 0.975) with true probabilities of occurrence and successfully captures temporal variations in density of occurrence. In an empirical example, we estimate the expected UD in three dimensions (x, y, and t) for animals belonging to each of two distinct bighorn sheep (Ovis canadensis) social groups in Glacier National Park, Montana, USA. Results show the method can yield ecologically informative models that successfully depict temporal variations in density of occurrence for a seasonally migratory species. Some implications of this new approach to UD modeling are discussed.

  18. Waiting time distributions in financial markets

    Science.gov (United States)

    Sabatelli, L.; Keating, S.; Dudley, J.; Richmond, P.

    2002-05-01

    We study waiting time distributions for data representing two completely different financial markets that have dramatically different characteristics. The first are data for the Irish market during the 19th century over the period 1850 to 1854. A total of 10 stocks out of a database of 60 are examined. The second database is for Japanese yen currency fluctuations during the latter part of the 20th century (1989-1992). The Irish stock activity was recorded on a daily basis and activity was characterised by waiting times that varied from one day to a few months. The Japanese yen data was recorded every minute over 24 hour periods and the waiting times varied from a minute to a an hour or so. For both data sets, the waiting time distributions exhibit power law tails. The results for Irish daily data can be easily interpreted using the model of a continuous time random walk first proposed by Montroll and applied recently to some financial data by Mainardi, Scalas and colleagues. Yen data show a quite different behaviour. For large waiting times, the Irish data exhibit a cut off; the Yen data exhibit two humps that could arise as result of major trading centres in the World.

  19. Asymptotic Time Averages and Frequency Distributions

    Directory of Open Access Journals (Sweden)

    Muhammad El-Taha

    2016-01-01

    Full Text Available Consider an arbitrary nonnegative deterministic process (in a stochastic setting {X(t,  t≥0} is a fixed realization, i.e., sample-path of the underlying stochastic process with state space S=(-∞,∞. Using a sample-path approach, we give necessary and sufficient conditions for the long-run time average of a measurable function of process to be equal to the expectation taken with respect to the same measurable function of its long-run frequency distribution. The results are further extended to allow unrestricted parameter (time space. Examples are provided to show that our condition is not superfluous and that it is weaker than uniform integrability. The case of discrete-time processes is also considered. The relationship to previously known sufficient conditions, usually given in stochastic settings, will also be discussed. Our approach is applied to regenerative processes and an extension of a well-known result is given. For researchers interested in sample-path analysis, our results will give them the choice to work with the time average of a process or its frequency distribution function and go back and forth between the two under a mild condition.

  20. Optimal Ski Jump

    Science.gov (United States)

    Rebilas, Krzysztof

    2013-01-01

    Consider a skier who goes down a takeoff ramp, attains a speed "V", and jumps, attempting to land as far as possible down the hill below (Fig. 1). At the moment of takeoff the angle between the skier's velocity and the horizontal is [alpha]. What is the optimal angle [alpha] that makes the jump the longest possible for the fixed magnitude of the…

  1. Jumping Good Fun

    Science.gov (United States)

    Nye, Susan B.

    2010-01-01

    Jumping rope is an activity that can be fun and enjoyable for all students. It requires minimal activity space, can be performed individually or in small groups, and is an inexpensive way to engage students in a lifelong physical activity. Jumping rope is commonly used by coaches and athletes for training purposes to improve aerobic endurance,…

  2. Jumping Good Fun

    Science.gov (United States)

    Nye, Susan B.

    2010-01-01

    Jumping rope is an activity that can be fun and enjoyable for all students. It requires minimal activity space, can be performed individually or in small groups, and is an inexpensive way to engage students in a lifelong physical activity. Jumping rope is commonly used by coaches and athletes for training purposes to improve aerobic endurance,…

  3. Estimation of Jump Tails

    DEFF Research Database (Denmark)

    Bollerslev, Tim; Todorov, Victor

    We propose a new and flexible non-parametric framework for estimating the jump tails of Itô semimartingale processes. The approach is based on a relatively simple-to-implement set of estimating equations associated with the compensator for the jump measure, or its "intensity", that only utilizes ...

  4. Measurement of dead time by time interval distribution method

    Science.gov (United States)

    Arkani, Mohammad; Raisali, Gholamreza

    2015-02-01

    Non-random event losses due to dead time effect in nuclear radiation detection systems distort the original Poisson process into a new type of distribution. As the characteristics of the distribution depend on physical properties of the detection system, it is possible to estimate the dead time parameters based on time interval analysis, this is the problem investigated in this work. A BF3 ionization chamber is taken as a case study to check the validity of the method in experiment. The results are compared with the data estimated by power rising experiment performed in Esfahan Heavy Water Zero Power Reactor (EHWZPR). Using Monte Carlo simulation, the problem is elaborately studied and useful range for counting rates of the detector is determined. The proposed method is accurate and applicable for all kinds of radiation detectors with no potential difficulty and no need for any especial nuclear facility. This is not a time consuming method and advanced capability of online examination during normal operation of the detection system is possible.

  5. Transition Path Time Distribution, Tunneling Times, Friction, and Uncertainty

    Science.gov (United States)

    Pollak, Eli

    2017-02-01

    A quantum mechanical transition path time probability distribution is formulated and its properties are studied using a parabolic barrier potential model. The average transit time is well defined and readily calculated. It is smaller than the analogous classical mechanical average transit time, vanishing at the crossover temperature. It provides a direct route for determining tunneling times. The average time may be also used to define a coarse grained momentum of the system for the passage from one side of the barrier to the other. The product of the uncertainty in this coarse grained momentum with the uncertainty in the location of the particle is shown under certain conditions to be smaller than the ℏ/2 formal uncertainty limit. The model is generalized to include friction in the form of a bilinear interaction with a harmonic bath. Using an Ohmic friction model one finds that increasing the friction, increases the transition time. Only moderate values of the reduced friction coefficient are needed for the quantum transition time and coarse grained uncertainty to approach the classical limit which is smaller than ℏ/2 when the friction is not too small. These results show how one obtains classical dynamics from a pure quantum system without invoking any further assumptions, approximations, or postulates.

  6. Do force-time and power-time measures in a loaded jump squat differentiate between speed performance and playing level in elite and elite junior rugby union players?

    Science.gov (United States)

    Hansen, Keir T; Cronin, John B; Pickering, Stuart L; Douglas, Lee

    2011-09-01

    The purpose of this study was to investigate the discriminative ability of rebound jump squat force-time and power-time measures in differentiating speed performance and competition level in elite and elite junior rugby union players. Forty professional rugby union players performed 3 rebound jump squats with an external load of 40 kg from which a number of force-time and power-time variables were acquired and analyzed. Additionally, players performed 3 sprints over 30 m with timing gates at 5, 10, and 30 m. Significant differences (p rugby union players; however, a number of force and power variables including peak force, PP, force at 100 milliseconds from minimum force, and force and impulse 200 milliseconds from minimum force were significantly (p rugby union players. For speed development in rugby union players, training strategies should aim to optimize the athlete's power to weight ratio, and lower body resistance training should focus on movement velocity. For player development to transition elite junior players to elite status, adding lean mass is likely to be most beneficial.

  7. The CMS Timing Control and Distribution System

    CERN Document Server

    AUTHOR|(CDS)2075794; Andre, Jean-marc Olivier; Behrens, Ulf; Branson, James; Chaze, Olivier; Cittolin, Sergio; Darlea, Georgiana Lavinia; Deldicque, Christian; Demiragli, Zeynep; Dobson, Marc; Erhan, Samim; Fulcher, Jonathan Richard; Gigi, Dominique; Glege, Frank; Gomez Ceballos, Guillelmo; Hansen, Magnus; Holzner, Andre Georg; Jimenez Estupinan, Raul; Masetti, Lorenzo; Meijers, Franciscus; Meschi, Emilio; Mommsen, Remigius; Morovic, Srecko; O'Dell, Vivian; Orsini, Luciano; Paus, Christoph Maria Ernst; Pieri, Marco; Racz, Attila; Sakulin, Hannes; Schwick, Christoph; Simelevicius, Dainius; Troska, Jan; Vichoudis, Paschalis; Zejdl, Petr

    2016-01-01

    The Compact Muon Solenoid (CMS) experiment operating at the CERN (European Laboratory for Nuclear Physics) Large Hadron Collider (LHC) is in the process of upgrading several of its detector systems. Adding more individual detector components brings the need to test and commission those components separately from existing ones so as not to compromise physics data-taking. The CMS Trigger, Timing and Control (TTC) system had reached its limits in terms of the number of separate elements (partitions) that could be supported. A new Timing and Control Distribution System (TCDS) has been designed, built and commissioned in order to overcome this limit. It also brings additional functionality to facilitate parallel commissioning of new detector elements. We describe the new TCDS system and its components and show results from the first operational experience with the TCDS system in CMS.

  8. Intertime jump statistics of state-dependent Poisson processes.

    Science.gov (United States)

    Daly, Edoardo; Porporato, Amilcare

    2007-01-01

    A method to obtain the probability distribution of the interarrival times of jump occurrences in systems driven by state-dependent Poisson noise is proposed. Such a method uses the survivor function obtained by a modified version of the master equation associated to the stochastic process under analysis. A model for the timing of human activities shows the capability of state-dependent Poisson noise to generate power-law distributions. The application of the method to a model for neuron dynamics and to a hydrological model accounting for land-atmosphere interaction elucidates the origin of characteristic recurrence intervals and possible persistence in state-dependent Poisson models.

  9. Intertime jump statistics of state-dependent Poisson processes

    Science.gov (United States)

    Daly, Edoardo; Porporato, Amilcare

    2007-01-01

    A method to obtain the probability distribution of the interarrival times of jump occurrences in systems driven by state-dependent Poisson noise is proposed. Such a method uses the survivor function obtained by a modified version of the master equation associated to the stochastic process under analysis. A model for the timing of human activities shows the capability of state-dependent Poisson noise to generate power-law distributions. The application of the method to a model for neuron dynamics and to a hydrological model accounting for land-atmosphere interaction elucidates the origin of characteristic recurrence intervals and possible persistence in state-dependent Poisson models.

  10. Dynamic Jump Intensities and Risk Premiums in Crude Oil Futures and Options Markets

    DEFF Research Database (Denmark)

    Christoffersen, Peter; Jacobs, Kris; Li, Bingxin

    2016-01-01

    and dynamic jump intensities in these markets. Allowing for jumps is crucial for modeling crude oil futures and futures options, and we find evidence in favor of time-varying jump intensities. During crisis periods, jumps occur more frequently. The properties of the jump processes implied by the option data......Options on crude oil futures are the most actively traded commodity options. We develop a class of computationally efficient discrete-time jump models that allow for closed-form option valuation, and we use crude oil futures and options data to investigate the economic importance of jumps...

  11. A double-ended queue with catastrophes and repairs, and a jump-diffusion approximation

    CERN Document Server

    Di Crescenzo, Antonio; Kumar, Balasubramanian Krishna; Nobile, Amelia G; 10.1007/s11009-011-9214-2

    2011-01-01

    Consider a system performing a continuous-time random walk on the integers, subject to catastrophes occurring at constant rate, and followed by exponentially-distributed repair times. After any repair the system starts anew from state zero. We study both the transient and steady-state probability laws of the stochastic process that describes the state of the system. We then derive a heavy-traffic approximation to the model that yields a jump-diffusion process. The latter is equivalent to a Wiener process subject to randomly occurring jumps, whose probability law is obtained. The goodness of the approximation is finally discussed.

  12. Portfolio Selection with Jumps under Regime Switching

    Directory of Open Access Journals (Sweden)

    Lin Zhao

    2010-01-01

    Full Text Available We investigate a continuous-time version of the mean-variance portfolio selection model with jumps under regime switching. The portfolio selection is proposed and analyzed for a market consisting of one bank account and multiple stocks. The random regime switching is assumed to be independent of the underlying Brownian motion and jump processes. A Markov chain modulated diffusion formulation is employed to model the problem.

  13. Jumping on water

    Science.gov (United States)

    Kim, Ho-Young

    2016-11-01

    Water striders can jump on water as high as they can jump on land. Quick jumps allow them to avoid sudden dangers such as predators' attacks, and therefore understanding how they make such a dramatic motion for survival can shed light on the ultimate level of semi-aquatic motility achievable through evolution. However, the mechanism of their vertical jumping from a water surface has eluded hydrodynamic explanations so far. By observing movements of water strider legs and theoretically analyzing their dynamic interactions with deforming liquid-air interface, we have recently found that different species of jumping striders always tune their leg rotation speed with a force just below that required to break the water surface to reach the maximum take-off velocity. Here, we start with discussing the fundamental theories of dynamics of floating and sinking of small objects. The theories then enable us to analyze forces acting on a water strider while it presses down the water surface to fully exploit the capillary force. We further introduce a 68-milligram at-scale robotic insect capable of jumping on water without splash, strikingly similar to the real strider, by utilizing the water surface just as a trampoline.

  14. A biomechanical comparison of the vertical jump, power clean, and jump squat.

    Science.gov (United States)

    MacKenzie, Sasho James; Lavers, Robert J; Wallace, Brendan B

    2014-01-01

    The purpose of this study was to compare the kinetics, kinematics, and muscle activation patterns of the countermovement jump, the power clean, and the jump squat with the expectation of gaining a better understanding of the mechanism of transfer from the power clean to the vertical jump. Ground reaction forces, electromyography, and joint angle data were collected from 20 trained participants while they performed the three movements. Relative to the power clean, the kinematics of the jump squat were more similar to those of the countermovement jump. The order in which the ankle, knee, and hip began extending, as well as the subsequent pattern of extension, was different between the power clean and countermovement jump. The electromyography data demonstrated significant differences in the relative timing of peak activations in all muscles, the maximum activation of the rectus femoris and biceps femoris, and in the activation/deactivation patterns of the vastus medialis and rectus femoris. The greatest rate of force development during the upward phase of these exercises was generated during the power clean (17,254 [Formula: see text]), which was significantly greater than both the countermovement jump (3836 [Formula: see text]) and jump squat (3517 [Formula: see text]) conditions (P < .001, [Formula: see text]).

  15. Biomechanical Analysis of the Jump Shot in Basketball

    Directory of Open Access Journals (Sweden)

    Struzik Artur

    2014-10-01

    Full Text Available Basketball players usually score points during the game using the jump shot. For this reason, the jump shot is considered to be the most important element of technique in basketball and requires a high level of performance. The aim of this study was to compare the biomechanical characteristics of the lower limbs during a jump shot without the ball and a countermovement jump without an arm swing. The differences between variables provide information about the potential that an athlete can utilise during a game when performing a jump shot. The study was conducted among 20 second-league basketball players by means of a Kistler force plate and the BTS SMART system for motion analysis. The variables measured included the take-off time, mean power, peak power, relative mean power, jump height, maximum landing force and calculated impact ratio. Surprisingly, more advantageous variables were found for the jump shot. This finding suggests a very high performance level in the jump shot in the studied group and a maximum utilisation of their motor abilities. Both types of jumps were characterised by high mean and peak power values and average heights. The high forces at landing, which result in considerable impact ratios, may have prompted the studied group to land softly. Use of the countermovement jump without an arm swing is recommended to assess and predict the progression of player’s jumping ability

  16. Preschool-aged children's jumps: imitation performances.

    Science.gov (United States)

    Labiadh, Lazhar; Ramanantsoa, Marie-Martine; Golomer, Eveline

    2010-04-01

    Imitative behavior underlaid by perception and action links during children's development in complex locomotor skills has been the object of relatively few studies. In order to explore children's motor coordination modes, 130 children divided into five age groups from 3.5 to 7.5 years were instructed to imitate jumping tasks in spontaneous motor situation and in various imitative contexts by an adult providing verbal orders and gestural demonstrations. Their conformity to the model, stability and variability scores were coded from a video analysis when they performed jumps with obstacles. To evaluate their postural-motor control level, the durations of the preparatory phase and jumping flights were also timed. Results showed that all age groups generated the demonstrator's goal but not necessarily the same coordination modes of jumping. In imitation with temporal proximity, the model helped the youngest age groups to adopt his coordination modes and stabilized only the oldest age groups' performances starting from 5.5 years old, without effect on learning imitation. Differences between the youngest and oldest children in the jump duration suggested that the reproduction of a complex motor activity such as jumping with a one foot take-off would require resolution and adjustment of main postural stability.

  17. Spinning hydraulic jump

    Science.gov (United States)

    Abderrahmane, Hamid; Kasimov, Aslan

    2013-11-01

    We report an experimental observation of a new symmetry breaking of circular hydraulic jump into a self-organized structure that consists of a spinning polygonal jump and logarithmic-spiral waves of fluid elevation downstream. The waves are strikingly similar to spiral density waves in galaxies. The fluid flow exhibits counterparts of salient morphological features of galactic flows, in particular the outflow from the center, jets, circum-nuclear rings, gas inflows toward the galactic center, and vortices. The hydrodynamic instability revealed here may have a counterpart that plays a role in the formation and sustainability of spiral arms in galaxies.

  18. Development of a Minimally Actuated Jumping-Rolling Robot

    Directory of Open Access Journals (Sweden)

    Thanhtam Ho

    2015-04-01

    Full Text Available This paper presents development of a hybrid mobile robot in order to take advantage of both rolling and jumping locomotion on the ground. According to the unique design of the mechanism, the robot is able to execute both jumping and rolling skilfully by using only one DC motor. Changing the centre of gravity enables rolling of the robot and storage of energy is utilized for jumping. Mechanism design and control logic are validated by computer simulation. Simulation results show that the robot can jump nearly 1.3 times its diameter and roll at the speed of 3.3 times its diameter per second.

  19. Kinetics and mechanism of the barotropic lamellar gel/lamellar liquid crystal phase transition in fully hydrated dihexadecylphosphatidylethanolamine: a time-resolved x-ray diffraction study using pressure jump.

    Science.gov (United States)

    Cheng, A; Hummel, B; Mencke, A; Caffrey, M

    1994-07-01

    The kinetics and mechanism of the barotropic lamellar gel (L beta')/lamellar liquid crystal (L alpha) phase transition in fully hydrated 1,2-dihexadecyl-sn-glycero-3-phosphoethanolamine (DHPE) has been studied using time-resolved x-ray diffraction (TRXRD). The phase transition was induced by pressure jumps of varying amplitudes in both the pressurization and depressurization directions at controlled temperature (78 degrees C). Both low- and wide-angle diffracted x rays were recorded simultaneously in live time using an x-ray-sensitive image intensifier coupled to a CCD camera and Super-VHS videotape recorder. Such an arrangement allowed for the direct and quantitative characterization of the long- (lamellar repeat spacing) and short-range order (chain packing) during a kinetic experiment. The image-processed live-time x-ray diffraction data were fitted using a nonlinear least-squares model, and the parameters of the fits were monitored continuously throughout the transition. The pressure-induced transitions from the L alpha to the L beta' phase and from the L beta' to the L alpha phase was two-state (no formation of intermediates apparent during the transition) to within the sensitivity limits of the method. The corresponding transit time (the time during which both phases coexist) associated with the long- and short-range order of the pressurization-induced L alpha-to-L beta' phase transition decreased to a limiting value of approximately 50 ms with increasing pressure jump amplitude. This limiting value was close to the response time of the detector/recording system. Thus, the intrinsic transit time of this transition in fully hydrated DHPE at 78 degrees C was less than or equal to 50 ms. In contrast, the depressurization-induced L beta'-to-L alpha phase transition was slower, taking approximately 1 s to complete, and occurred with no obvious dependence of the transit time on pressure jump amplitude. In the depressurization jump experiment, the lipid responded

  20. Approximation of Jump Diffusions in Finance and Economics

    OpenAIRE

    Nicola Bruti-Liberati; Eckhard Platen

    2006-01-01

    In finance and economics the key dynamics are often specified via stochastic differential equations (SDEs) of jump-diffusion type. The class of jump-diffusion SDEs that admits explicit solutions is rather limited. Consequently, discrete time approximations are required. In this paper we give a survey of strong and weak numerical schemes for SDEs with jumps. Strong schemes provide pathwise approximations and therefore can be employed in scenario analysis, filtering or hedge simulation. Weak sc...

  1. Spectral Analysis of Diffusions with Jump Boundary

    CERN Document Server

    Kolb, Martin

    2011-01-01

    In this paper we consider one-dimensional diffusions with constant coefficients in a finite interval with jump boundary and a certain deterministic jump distribution. We use coupling methods in order to identify the spectral gap in the case of a large drift and prove that that there is a threshold drift above which the bottom of the spectrum no longer depends on the drift. As a Corollary to our result we are able to answer two questions concerning elliptic eigenvalue problems with non-local boundary conditions formulated previously by Iddo Ben-Ari and Ross Pinsky.

  2. The validity and reliability of an iPhone app for measuring vertical jump performance.

    Science.gov (United States)

    Balsalobre-Fernández, Carlos; Glaister, Mark; Lockey, Richard Anthony

    2015-01-01

    The purpose of this investigation was to analyse the concurrent validity and reliability of an iPhone app (called: My Jump) for measuring vertical jump performance. Twenty recreationally active healthy men (age: 22.1 ± 3.6 years) completed five maximal countermovement jumps, which were evaluated using a force platform (time in the air method) and a specially designed iPhone app. My jump was developed to calculate the jump height from flight time using the high-speed video recording facility on the iPhone 5 s. Jump heights of the 100 jumps measured, for both devices, were compared using the intraclass correlation coefficient, Pearson product moment correlation coefficient (r), Cronbach's alpha (α), coefficient of variation and Bland-Altman plots. There was almost perfect agreement between the force platform and My Jump for the countermovement jump height (intraclass correlation coefficient = 0.997, P iPhone 5 s app.

  3. A Jump-Diffusion Model with Stochastic Volatility and Durations

    DEFF Research Database (Denmark)

    Wei, Wei; Pelletier, Denis

    Market microstructure theories suggest that the durations between transactions carry information about volatility. This paper puts forward a model featuring stochastic volatility, stochastic conditional duration, and jumps to analyze high frequency returns and durations. Durations affect price...... jumps in two ways: as exogenous sampling intervals, and through the interaction with volatility. We adopt a bivariate Ornstein-Ulenbeck process to model intraday volatility and conditional duration. We develop a MCMC algorithm for the inference on irregularly spaced multivariate processes with jumps....... The algorithm provides smoothed estimates of the latent variables such as spot volatility, conditional duration, jump times, and jump sizes. We apply this model to IBM data and find that volatility and conditional duration are interdependent. We also find that jumps play an important role in return variation...

  4. Catchment mixing processes and travel time distributions

    National Research Council Canada - National Science Library

    Botter, Gianluca

    2012-01-01

    ...) of travel, residence and evapotranspiration times, which are comprehensive descriptors of the fate of rainfall water particles traveling through catchments, and provide key information on hydrologic...

  5. pH jump induced α-helix folding.

    Directory of Open Access Journals (Sweden)

    Donten M. L.

    2013-03-01

    Full Text Available pH can be used to impact the folding equilibrium of peptides and proteins. This fact is utilized, similarly to temperature jumps, in pH jump experiments employing laser time-resolved spectroscopy to study the function and structural dynamics of these molecules. Here the application of pH jumps in folding experiments was investigated. Experiments with poly-L-glutamic acid alpha-helix formation shown the critical aspects of pH jump experiments and yielded direct information about the folding kinetics monitored with the amide I IR band.

  6. Optimal distribution of measurement time in single channel measurements

    CERN Document Server

    Kaspar, J

    2008-01-01

    Single channel measurements play a minor role in today physics, but they are sometimes unavoidable. Comparing to multichannel measurements, there is distribution of measurement time to be chosen in an experiment design. A method to optimize distribution of measurement time is given, where optimal distribution minimizes standard deviation of a selected fit parameter. As an example, the method is applied to electron spectroscopy experiments.

  7. Effect of drop jump technique on the reactive strength index

    Directory of Open Access Journals (Sweden)

    Struzik Artur

    2016-09-01

    Full Text Available The basic drill of plyometric training aimed at improving lower limb power and jump height is a drop jump. This exercise can be performed using different techniques, which substantially affects jump variables. Therefore, the aim of this study was to compare the values of the reactive strength index (RSI for countermovement drop jumps (CDJs and bounce drop jumps (BDJs. The study was carried out in a group of 8 male youth basketball players. The tests were conducted using the AMTI BP600900 force plate to measure ground reaction forces and the Noraxon MyoMotion system to record kinematic data. Each player performed two CDJs and two BDJs from the height of 15, 30, 45 and 60 cm. The RSI was calculated as a ratio of jump height and contact time. Moreover, the RSI was determined for the amortization and take-off phases separately. Significant differences (p < 0.05 between RSI values for CDJs and BDJs were recorded for jumps from 30, 45 and 60 cm. Differences in RSI values for jumps from 15 cm were not significant. Furthermore, CDJ height values were significantly higher (p < 0.05 than the values recorded for BDJs. Times of contact, amortization and take-off during BDJs were significantly shorter (p < 0.05 than the respective values obtained for CDJs. Therefore, the use of the RSI to monitor plyometric training should be based on the drop jump technique that is commonly performed by basketball players.

  8. Nanosecond-time-resolved infrared spectroscopic study of fast relaxation kinetics of protein folding by means of laser-induced temperature-jump

    Institute of Scientific and Technical Information of China (English)

    Zhang Qing-Li; Wang Li; Weng Yu-Xiang; Qiu Xiang-Gang; Wang Wei-Chi; Yan Ji-Xiang

    2005-01-01

    Elucidating the initial kinetics of folding pathways is critical to the understanding of the protein folding mechanism. Transient infrared spectroscopy has proved a powerful tool to probe the folding kinetics. Herein we report the construction of a nanosecond laser-induced temperature-jump (T-jump) technique coupled to a nanosecond timeresolved transient mid-infrared (mid-IR) spectrometer system capable of investigating the protein folding kinetics with a temporal resolution of 50 ns after deconvolution of the instrumental response function. The mid-IR source is a liquid N2 cooled CO laser covering a spectral range of 5.0μm (2000 cm-1) ~ 6.5μm (1540 cm-1). The heating pulse was generated by a high pressure H2 Raman shifter at wavelength of 1.9μm. The maximum temperature-jump could reach as high as 26±1℃. The fast folding/unfolding dynamics of cytochrome C was investigated by the constructed system,providing an example.

  9. Multifractal Analysis of Infinite Products of Stationary Jump Processes

    Directory of Open Access Journals (Sweden)

    Petteri Mannersalo

    2010-01-01

    Full Text Available There has been a growing interest in constructing stationary measures with known multifractal properties. In an earlier paper, the authors introduced the multifractal products of stochastic processes (MPSP and provided basic properties concerning convergence, nondegeneracy, and scaling of moments. This paper considers a subclass of MPSP which is determined by jump processes with i.i.d. exponentially distributed interjump times. Particularly, the information dimension and a multifractal spectrum of the MPSP are computed. As a side result it is shown that the random partitions imprinted naturally by a family of Poisson point processes are sufficient to determine the spectrum in this case.

  10. Design a Fault Tolerance for Real Time Distributed System

    OpenAIRE

    Ban M. Khammas

    2012-01-01

    This paper designed a fault tolerance for soft real time distributed system (FTRTDS). This system is designed to be independently on specific mechanisms and facilities of the underlying real time distributed system. It is designed to be distributed on all the computers in the distributed system and controlled by a central unit.Besides gathering information about a target program spontaneously, it provides information about the target operating system and the target hardware in order to diagno...

  11. Mechanical jumping power in young athletes.

    Science.gov (United States)

    Viitasalo, J T; Osterback, L; Alen, M; Rahkila, P; Havas, E

    1987-09-01

    Mechanical jumping power was determined for 286 young male athletes representing six sports events and ranging in calendar and skeletal ages from 8.8 to 17.1 and from 7.8 to 18.1 years, respectively. The subjects performed successive maximal vertical jumps on a contact mat for 30 s. The number of jumps and their cumulative flight time after 15 and 30 s were used for calculations of mechanical power. The jumping performances of the young athletes were found to be reproducible from the age of 10-12 years in respect to the angular displacement of the knee and duration of contact. Absolute mechanical power, as well as power related to body weight, increased with calendar and skeletal ages. Of the anthropometric characteristics, the circumference of the thigh and body weight showed the highest correlation with mechanical power; subjects with the greatest thigh circumference and body weight having the lowest mechanical power. The subjects were divided into 'power' (track and field, gymnastics) and 'endurance' (skiing, orienteering) groups. The former reached higher mechanical power values than the latter. Mechanical power for the second 15-s jumping period was on average 4.7% lower than for the first. The events did not differ from each other in respect of the decrease in power.

  12. Temperature Jump Pyrolysis Studies of RP 2 Fuel

    Science.gov (United States)

    2017-01-09

    Briefing Charts 3. DATES COVERED (From - To) 15 December 2016 – 11 January 2017 4. TITLE AND SUBTITLE Temperature Jump Pyrolysis Studies of RP-2 Fuel...Rev. 8- 98) Prescribed by ANSI Std. 239.18 1 TEMPERATURE JUMP PYROLYSIS STUDIES OF RP-2 FUEL Owen Pryor1, Steven D. Chambreau2, Ghanshyam L...Mixture Distribution A: Approved for public release; distribution unlimited. PA Clearance 17026 4 RP-2 Pyrolysis /Combustion Chemistries? • Recent

  13. Origin and Nonuniversality of the Earthquake Interevent Time Distribution

    Science.gov (United States)

    Touati, Sarah; Naylor, Mark; Main, Ian G.

    2009-04-01

    Many authors have modeled regional earthquake interevent times using a gamma distribution, whereby data collapse occurs under a simple rescaling of the data from different regions or time periods. We show, using earthquake data and simulations, that the distribution is fundamentally a bimodal mixture distribution dominated by correlated aftershocks at short waiting times and independent events at longer times. The much-discussed power-law segment often arises as a crossover between these two. We explain the variation of the distribution with region size and show that it is not universal.

  14. The Origin of the Solar Flare Waiting-Time Distribution

    CERN Document Server

    Wheatland, M S

    2000-01-01

    It was recently pointed out that the distribution of times between solar flares (the flare waiting-time distribution) follows a power law, for long waiting times. Based on 25 years of soft X-ray flares observed by Geostationary Operational Environmental Satellite (GOES) instruments it is shown that 1. the waiting-time distribution of flares is consistent with a time-dependent Poisson process, and 2. the fraction of time the Sun spends with different flaring rates approximately follows an exponential distribution. The second result is a new phenomenological law for flares. It is shown analytically how the observed power-law behavior of the waiting times originates in the exponential distribution of flaring rates. These results are argued to be consistent with a non-stationary avalanche model for flares.

  15. Relationships among jumping performances and sprint parameters during maximum speed phase in sprinters.

    Science.gov (United States)

    Kale, Mehmet; Aşçi, Alper; Bayrak, Coşkun; Açikada, Caner

    2009-11-01

    The purpose of this study was to investigate the relationships among jumping performances and speed parameters during maximum speed phase in sprinters. Twenty-one men sprinters volunteered to participate at the beginning of the preparation training phase. All tests-including 100-m sprint running, squat jump (SJ), countermovement jump (CMJ), drop jump (DJ), 60-second repetitive jump (RJ), standing long jump (SLJ), standing triple jump (STJ), standing quintuple jump (SQJ), and standing 10-stride jump (STENJ)-were done on switching mats. Flight (FT) and contact times (CT) during the vertical jump tests and 10-m split times during 100-m sprint running were measured by a 2-channel precision timing system (PTS) connected to the mats. The trace marking method was used for measuring the stride length (SL) through 60 m in 100-m sprint running. Stride frequency (SF), maximum velocity (Vmax), jump height for all vertical jumps, and lower-body power in DJ and RJ were calculated. Statistical analysis showed that the highest significant correlation was found between Vmax and DJ height (r = 0.69; p sprint running and SJ (r = 0.39; p sprint running than the other vertical and horizontal jump tests at the beginning of the preparation training phase.

  16. An efficient interpolation technique for jump proposals in reversible-jump Markov chain Monte Carlo calculations.

    Science.gov (United States)

    Farr, W M; Mandel, I; Stevens, D

    2015-06-01

    Selection among alternative theoretical models given an observed dataset is an important challenge in many areas of physics and astronomy. Reversible-jump Markov chain Monte Carlo (RJMCMC) is an extremely powerful technique for performing Bayesian model selection, but it suffers from a fundamental difficulty and it requires jumps between model parameter spaces, but cannot efficiently explore both parameter spaces at once. Thus, a naive jump between parameter spaces is unlikely to be accepted in the Markov chain Monte Carlo (MCMC) algorithm and convergence is correspondingly slow. Here, we demonstrate an interpolation technique that uses samples from single-model MCMCs to propose intermodel jumps from an approximation to the single-model posterior of the target parameter space. The interpolation technique, based on a kD-tree data structure, is adaptive and efficient in modest dimensionality. We show that our technique leads to improved convergence over naive jumps in an RJMCMC, and compare it to other proposals in the literature to improve the convergence of RJMCMCs. We also demonstrate the use of the same interpolation technique as a way to construct efficient 'global' proposal distributions for single-model MCMCs without prior knowledge of the structure of the posterior distribution, and discuss improvements that permit the method to be used in higher dimensional spaces efficiently.

  17. Distribution of time between unscheduled outages

    Energy Technology Data Exchange (ETDEWEB)

    Jaech, J.L.; Burke, R.C.

    1963-01-02

    A study is in progress in which reactor operations will be simulated on the computer, the primary purpose being to evaluate the costs associated with various administrative alternatives which may be followed in conducting the overall operation, in addition to defining how operational costs are affected by such things as changes in fuel quality. The problem is complicated by the fact that the operation of the reactors is largely affected by random occurrences; no one can predict exactly when a tube will leak, or when a rupture will occur. Therefore, basic to the study is a probabilistic function, or set of functions, which govern the random aspects of reactor outages, and which can be used in the simulation study to generate reactor outages. This report is concerned with the derivation of such probabilistic functions. Although derived specifically for the simulation study, they are deemed of sufficient interest to warrant a separate report. Similar documents will be issued from time to time as the study progresses, and as results are found which are considered worthy of reporting prior to completion of the study.

  18. Neuromuscular function during drop jumps in young and elderly males.

    Science.gov (United States)

    Piirainen, Jarmo M; Linnamo, Vesa; Sippola, Niina; Avela, Janne

    2012-12-01

    The Hoffman reflex (H-reflex), indicating alpha-motoneuron pool activity, has been shown to be task - and in resting conditions - age dependent. How aging affects H-reflex activity during explosive movements is not clear at present. The purpose of this study was to examine the effects of aging on H-reflexes during drop jumps, and its possible role in drop jump performance. Ten young (26.8 ± 2.7 years) and twenty elderly (64.2 ± 2.7 years) subjects participated in the study. Maximal drop jump performance and soleus H-reflex response (H/M jump) 20 ms after ground contact were measured in a sledge ergometer. Maximal H-reflex, maximal M-wave, Hmax/Mmax-ratio and H-reflex excitability curves were measured during standing rest. Although in young the H-reflex response (Hmax/Mmax) was 6.5% higher during relaxed standing and 19.7% higher during drop jumps (H jump/M jump) than in the elderly group, these differences were not statistically significant. In drop jumps, the elderly subjects had lower jumping height (30.4%, p push-off force (18.0%, p push-off time (31.0% p push-off force (r = 0.833, p push-off time (r = -0.857, p strategies in drop jumps. However, it does not fully explain age related differences in jumping performance, since age related differences in H-reflex activity were non-significant. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Charged fluid distribution in higher dimensional spheroidal space-time

    Indian Academy of Sciences (India)

    G P Singh; S Kotambkar

    2005-07-01

    A general solution of Einstein field equations corresponding to a charged fluid distribution on the background of higher dimensional spheroidal space-time is obtained. The solution generates several known solutions for superdense star having spheroidal space-time geometry.

  20. Reduction of the temperature jump in the immersed boundary-thermal lattice Boltzmann method

    Science.gov (United States)

    Seta, Takeshi; Hayashi, Kosuke; Tomiyama, Akio

    2015-11-01

    We analytically and numerically investigate the boundary errors computed by the immersed boundary-thermal lattice Boltzmann method (IB-TLBM) with the two-relaxation-time (TRT) collision operator. In the linear collision operator of the TRT, we decompose the distribution function into symmetric and antisymmetric components and define the relaxation parameters for each part. We derive the theoretical relation between the relaxation parameters for the symmetric and antisymmetric parts of the distribution function so as to eliminate the temperature jump. The simple TRT collision operator succeeds in reducing the temperature jump occurring at the high relaxation time in the IB-TLBM calculation. The porous plate problem numerically and analytically demonstrate that the velocity squared terms should be neglected in the equilibrium distribution function in order to eliminate the effect of the advection velocity on the temperature jump in the IB-TLBMs. The passive scalar model without the velocity squared terms more accurately calculates the incompressible temperature equation in the IB-TLBMs, compared to the double distribution model, which is based on the relation of the distribution function gk = (ek - u)2fk / 2 . We apply the passive scalar model without the velocity squared terms to the simulation of the natural convection between a hot circular cylinder and a cold square enclosure. The proposed method adequately sets the boundary values and provides reasonable average Nusselt numbers and maximum absolute values of the stream function.

  1. Distributed Time Delay Goodwin's Models of the Business Cycle

    Science.gov (United States)

    Antonova, A. O.; Reznik, S. N.; Todorov, M. D.

    2011-11-01

    We consider continuously distributed time delay Goodwin's model of the business cycle. We show that the delay induced sawtooth oscillations, similar to those detected by R. H. Strotz, J. C. McAnulty, J. B. Naines, Econometrica, 21, 390-411 (1953) for Goodwin's model with fixed investment time lag, exist only for very narrow delay distribution when the variance of the delay distribution much less than the average delay.

  2. Jumping on the Social Media Bandwagon

    Science.gov (United States)

    Blakeslee, Lori

    2012-01-01

    Should a school district jump on the social media bandwagon? Yes! Social media provide a low-cost way to communicate school district priorities, influence decision makers, and tell its story without filters. Equally important, social media are where constituents are spending a lot of their time. With more than 800 million members, Facebook is an…

  3. Jumping on the Social Media Bandwagon

    Science.gov (United States)

    Blakeslee, Lori

    2012-01-01

    Should a school district jump on the social media bandwagon? Yes! Social media provide a low-cost way to communicate school district priorities, influence decision makers, and tell its story without filters. Equally important, social media are where constituents are spending a lot of their time. With more than 800 million members, Facebook is an…

  4. Ridge jump process in Iceland

    OpenAIRE

    Garcia, Sebastian

    2010-01-01

    Eastward ridge jumps bring the volcanic zones of Iceland back to the centre of the hotspot in response to the absolute westward drift of the Mid-Atlantic Ridge. Mantellic pulses triggers these ridge jumps. One of them is occurring in Southern Iceland, whereas the exact conditions of the last ridge jump in Northern Iceland remain controversial. The diachronous evolution of these two parts of Iceland may be related to the asymmetric plume-ridge interaction when comparing Northern and Southern I...

  5. and the CMJ jump height

    Directory of Open Access Journals (Sweden)

    Struzik Artur

    2016-04-01

    Full Text Available Study aim: The elastic potential energy accumulated in the musculotendinous units during the countermovement phase of a jump adds up to the energy supplied by the contracting muscles used in the take-off phase. Consequently, the total mechanical energy used during the jump may reach higher values. Stiffness represents a quantitative measure of a body’s elastic properties. Therefore, the aim of this study was to establish the relationship between leg stiffness and the countermovement jump height.

  6. Provably secure time distribution for the electric grid

    Energy Technology Data Exchange (ETDEWEB)

    Smith IV, Amos M [ORNL; Evans, Philip G [ORNL; Williams, Brian P [ORNL; Grice, Warren P [ORNL

    2015-01-01

    We demonstrate a quantum time distribution (QTD) method that combines the precision of optical timing techniques with the integrity of quantum key distribution (QKD). Critical infrastructure is dependent on microprocessor- and programmable logic-based monitoring and control systems. The distribution of timing information across the electric grid is accomplished by GPS signals which are known to be vulnerable to spoofing. We demonstrate a method for synchronizing remote clocks based on the arrival time of photons in a modifed QKD system. This has the advantage that the signal can be veried by examining the quantum states of the photons similar to QKD.

  7. Muscle activation history at different vertical jumps and its influence on vertical velocity

    NARCIS (Netherlands)

    Kopper, Bence; Csende, Zsolt; Safar, Sandor; Hortobagyi, Tibor; Tihanyi, Jozsef

    In the present study we investigated displacement, time, velocity and acceleration history of center of mass (COM) and electrical activity of knee extensors to estimate the dominance of the factors influencing the vertical velocity in squat jumps (SJs), countermovement jumps (CMJs) and drop jumps

  8. Muscle activation history at different vertical jumps and its influence on vertical velocity

    NARCIS (Netherlands)

    Kopper, Bence; Csende, Zsolt; Safar, Sandor; Hortobagyi, Tibor; Tihanyi, Jozsef

    2013-01-01

    In the present study we investigated displacement, time, velocity and acceleration history of center of mass (COM) and electrical activity of knee extensors to estimate the dominance of the factors influencing the vertical velocity in squat jumps (SJs), countermovement jumps (CMJs) and drop jumps (D

  9. Stochastic mutualism model with Lévy jumps

    Science.gov (United States)

    Liu, Qun; Jiang, Daqing; Shi, Ningzhong; Hayat, Tasawar; Alsaedi, Ahmed

    2017-02-01

    In this paper, we consider a stochastic mutualism model with Lévy jumps. First of all, we show that the positive solution of the system is stochastically ultimate bounded. Then under a simple assumption, we establish sufficient and necessary conditions for the stochastic permanence and extinction of the system. The results show an important property of the Lévy jumps: they are unfavorable for the permanence of the species. Moreover, when there are no Lévy jumps, we show that there is a unique ergodic stationary distribution of the corresponding system under certain conditions. Some numerical simulations are introduced to validate the theoretical results.

  10. Sensor Distribution Design of Travel Time Tomography in Explosion

    Directory of Open Access Journals (Sweden)

    Yali Guo

    2014-07-01

    Full Text Available Optimal sensor distribution in explosion testing is important in saving test costs and improving experiment efficiency. Aiming at travel time tomography in an explosion, an optimizing method in sensor distribution is proposed to improve the inversion stability. The influence factors of inversion stability are analyzed and the evaluating function on optimizing sensor distribution is proposed. This paper presents a sub-region and multi-scale cell partition method, according to the characteristics of a shock wave in an explosion. An adaptive escaping particle swarm optimization algorithm is employed to achieve the optimal sensor distribution. The experimental results demonstrate that optimal sensor distribution has improved both indexes and inversion stability.

  11. Sensor distribution design of travel time tomography in explosion.

    Science.gov (United States)

    Guo, Yali; Han, Yan; Wang, Liming; Liu, Linmao

    2014-07-15

    Optimal sensor distribution in explosion testing is important in saving test costs and improving experiment efficiency. Aiming at travel time tomography in an explosion, an optimizing method in sensor distribution is proposed to improve the inversion stability. The influence factors of inversion stability are analyzed and the evaluating function on optimizing sensor distribution is proposed. This paper presents a sub-region and multi-scale cell partition method, according to the characteristics of a shock wave in an explosion. An adaptive escaping particle swarm optimization algorithm is employed to achieve the optimal sensor distribution. The experimental results demonstrate that optimal sensor distribution has improved both indexes and inversion stability.

  12. Model for the distribution of aftershock interoccurrence times.

    Science.gov (United States)

    Shcherbakov, Robert; Yakovlev, Gleb; Turcotte, Donald L; Rundle, John B

    2005-11-18

    In this work the distribution of interoccurrence times between earthquakes in aftershock sequences is analyzed and a model based on a nonhomogeneous Poisson (NHP) process is proposed to quantify the observed scaling. In this model the generalized Omori's law for the decay of aftershocks is used as a time-dependent rate in the NHP process. The analytically derived distribution of interoccurrence times is applied to several major aftershock sequences in California to confirm the validity of the proposed hypothesis.

  13. Investigating the distribution of the value of travel time savings

    DEFF Research Database (Denmark)

    Fosgerau, Mogens

    2006-01-01

    The distribution of the value of travel time savings (VTTS) is investigated employing various nonparametric techniques to a large dataset originating from a stated choice experiment. The data contain choices between a fast and more expensive alternative and a slow and less expensive alternative....... Increasing the implicit price of time leads to an increased share of respondents who decline to pay to save time. But a significant proportion of respondents, 13%, remain willing to pay to save time at the highest price of time in the design. This means that the right tail of the VTTS distribution...... is not observed and hence the mean VTTS cannot be evaluated without additional assumptions. When socio-economic and situational variables are introduced into a semiparametric model it becomes possible to accept that the whole VTTS distribution is observed. Sixteen candidates for parametric VTTS distributions...

  14. Effects of isometric scaling on vertical jumping performance.

    Directory of Open Access Journals (Sweden)

    Maarten F Bobbert

    Full Text Available Jump height, defined as vertical displacement in the airborne phase, depends on vertical takeoff velocity. For centuries, researchers have speculated on how jump height is affected by body size and many have adhered to what has come to be known as Borelli's law, which states that jump height does not depend on body size per se. The underlying assumption is that the amount of work produced per kg body mass during the push-off is independent of size. However, if a big body is isometrically downscaled to a small body, the latter requires higher joint angular velocities to achieve a given takeoff velocity and work production will be more impaired by the force-velocity relationship of muscle. In the present study, the effects of pure isometric scaling on vertical jumping performance were investigated using a biologically realistic model of the human musculoskeletal system. The input of the model, muscle stimulation over time, was optimized using jump height as criterion. It was found that when the human model was miniaturized to the size of a mouse lemur, with a mass of about one-thousandth that of a human, jump height dropped from 40 cm to only 6 cm, mainly because of the force-velocity relationship. In reality, mouse lemurs achieve jump heights of about 33 cm. By implication, the unfavourable effects of the small body size of mouse lemurs on jumping performance must be counteracted by favourable effects of morphological and physiological adaptations. The same holds true for other small jumping animals. The simulations for the first time expose and explain the sheer magnitude of the isolated effects of isometric downscaling on jumping performance, to be counteracted by morphological and physiological adaptations.

  15. Effects of isometric scaling on vertical jumping performance.

    Science.gov (United States)

    Bobbert, Maarten F

    2013-01-01

    Jump height, defined as vertical displacement in the airborne phase, depends on vertical takeoff velocity. For centuries, researchers have speculated on how jump height is affected by body size and many have adhered to what has come to be known as Borelli's law, which states that jump height does not depend on body size per se. The underlying assumption is that the amount of work produced per kg body mass during the push-off is independent of size. However, if a big body is isometrically downscaled to a small body, the latter requires higher joint angular velocities to achieve a given takeoff velocity and work production will be more impaired by the force-velocity relationship of muscle. In the present study, the effects of pure isometric scaling on vertical jumping performance were investigated using a biologically realistic model of the human musculoskeletal system. The input of the model, muscle stimulation over time, was optimized using jump height as criterion. It was found that when the human model was miniaturized to the size of a mouse lemur, with a mass of about one-thousandth that of a human, jump height dropped from 40 cm to only 6 cm, mainly because of the force-velocity relationship. In reality, mouse lemurs achieve jump heights of about 33 cm. By implication, the unfavourable effects of the small body size of mouse lemurs on jumping performance must be counteracted by favourable effects of morphological and physiological adaptations. The same holds true for other small jumping animals. The simulations for the first time expose and explain the sheer magnitude of the isolated effects of isometric downscaling on jumping performance, to be counteracted by morphological and physiological adaptations.

  16. Dynamics and stability of directional jumps in the desert locust

    Science.gov (United States)

    Gvirsman, Omer

    2016-01-01

    Locusts are known for their ability to jump large distances to avoid predation. The jump also serves to launch the adult locust into the air in order to initiate flight. Various aspects of this important behavior have been studied extensively, from muscle physiology and biomechanics, to the energy storage systems involved in powering the jump, and more. Less well understood are the mechanisms participating in control of the jump trajectory. Here we utilise video monitoring and careful analysis of experimental directional jumps by adult desert locusts, together with dynamic computer simulation, in order to understand how the locusts control the direction and elevation of the jump, the residual angular velocities resulting from the jump and the timing of flapping-flight initiation. Our study confirms and expands early findings regarding the instrumental role of the initial body position and orientation. Both real-jump video analysis and simulations based on our expanded dynamical model demonstrate that the initial body coordinates of position (relative to the hind-legs ground-contact points) are dominant in predicting the jumps’ azimuth and elevation angles. We also report a strong linear correlation between the jumps’ pitch-angular-velocity and flight initiation timing, such that head downwards rotations lead to earlier wing opening. In addition to offering important insights into the bio-mechanical principles of locust jumping and flight initiation, the findings from this study will be used in designing future prototypes of a bio-inspired miniature jumping robot that will be employed in animal behaviour studies and environmental monitoring applications. PMID:27703846

  17. Dynamics and stability of directional jumps in the desert locust

    Directory of Open Access Journals (Sweden)

    Omer Gvirsman

    2016-09-01

    Full Text Available Locusts are known for their ability to jump large distances to avoid predation. The jump also serves to launch the adult locust into the air in order to initiate flight. Various aspects of this important behavior have been studied extensively, from muscle physiology and biomechanics, to the energy storage systems involved in powering the jump, and more. Less well understood are the mechanisms participating in control of the jump trajectory. Here we utilise video monitoring and careful analysis of experimental directional jumps by adult desert locusts, together with dynamic computer simulation, in order to understand how the locusts control the direction and elevation of the jump, the residual angular velocities resulting from the jump and the timing of flapping-flight initiation. Our study confirms and expands early findings regarding the instrumental role of the initial body position and orientation. Both real-jump video analysis and simulations based on our expanded dynamical model demonstrate that the initial body coordinates of position (relative to the hind-legs ground-contact points are dominant in predicting the jumps’ azimuth and elevation angles. We also report a strong linear correlation between the jumps’ pitch-angular-velocity and flight initiation timing, such that head downwards rotations lead to earlier wing opening. In addition to offering important insights into the bio-mechanical principles of locust jumping and flight initiation, the findings from this study will be used in designing future prototypes of a bio-inspired miniature jumping robot that will be employed in animal behaviour studies and environmental monitoring applications.

  18. Response Time Analysis of Distributed Web Systems Using QPNs

    Directory of Open Access Journals (Sweden)

    Tomasz Rak

    2015-01-01

    Full Text Available A performance model is used for studying distributed Web systems. Performance evaluation is done by obtaining load test measurements. Queueing Petri Nets formalism supports modeling and performance analysis of distributed World Wide Web environments. The proposed distributed Web systems modeling and design methodology have been applied in the evaluation of several system architectures under different external loads. Furthermore, performance analysis is done to determine the system response time.

  19. On the Spectral Gap of Brownian Motion with Jump Boundary

    CERN Document Server

    Kolb, Martin

    2011-01-01

    In this paper we consider the Brownian motion with jump boundary and present a new proof of a recent result of Li, Leung and Rakesh concerning the exact convergence rate in the one-dimensional case. Our methods are different and mainly probabilistic relying on coupling methods adapted to the special situation under investigation. Moreover, we answer a question raised by Ben-Ari and Pinsky concerning the dependence of the spectral gap on the jump distribution in a multi-dimensional setting.

  20. Forecasting Exchange Rate Volatility in the Presence of Jumps

    DEFF Research Database (Denmark)

    Busch, Thomas; Christensen, Bent Jesper; Nielsen, Morten Ørregaard

    of exchange rate futures options, allowingcalculation of option implied volatility. We find that implied volatility is an informationallyefficient but biased forecast of future realized exchange rate volatility. Furthermore,we show that log-normality is an even better distributional approximation...... for impliedvolatility than for realized volatility in this market. Finally, we show that the jump componentof future realized exchange rate volatility is to some extent predictable, and thatoption implied volatility is the dominant forecast of the future jump component....

  1. Distributed energy storage: Time-dependent tree flow design

    Science.gov (United States)

    Bejan, A.; Ziaei, S.; Lorente, S.

    2016-05-01

    This article proposes "distributed energy storage" as a basic design problem of distributing energy storage material on an area. The energy flows by fluid flow from a concentrated source to points (users) distributed equidistantly on the area. The flow is time-dependent. Several scenarios are analyzed: sensible-heat storage, latent-heat storage, exergy storage vs energy storage, and the distribution of a finite supply of heat transfer surface between the source fluid and the distributed storage material. The chief conclusion is that the finite amount of storage material should be distributed proportionally with the distribution of the flow rate of heating agent arriving on the area. The total time needed by the source stream to "invade" the area is cumulative (the sum of the storage times required at each storage site) and depends on the energy distribution paths and the sequence in which the users are served by the source stream. Directions for future designs of distributed storage and retrieval are outlined in the concluding section.

  2. Quantum arrival-time distributions from intensity functions

    DEFF Research Database (Denmark)

    Wlodarz, Joachim

    2002-01-01

    The quantum time-of-arrival problem is discussed within the standard formulation of nonrelativistic quantum mechanics with parametric time. It is shown that a general class of arrival-time probability distributions results from the assumption that the arrival process of a quantum particle...

  3. Waiting time distribution in M/D/1 queueing systems

    DEFF Research Database (Denmark)

    Iversen, Villy Bæk; Staalhagen, Lars

    1999-01-01

    The well-known formula for the waiting time distribution of M/D/1 queueing systems is numerically unsuitable when the load is close to 1.0 and/or the results for a large waiting time are required. An algorithm for any load and waiting time is presented, based on the state probabilities of M/D/1...

  4. Valuing travel time variability: Characteristics of the travel time distribution on an urban road

    DEFF Research Database (Denmark)

    Fosgerau, Mogens; Fukuda, Daisuke

    2012-01-01

    This paper provides a detailed empirical investigation of the distribution of travel times on an urban road for valuation of travel time variability. Our investigation is premised on the use of a theoretical model with a number of desirable properties. The definition of the value of travel time...... variability depends on certain properties of the distribution of random travel times that require empirical verification. Applying a range of nonparametric statistical techniques to data giving minute-by-minute travel times for a congested urban road over a period of five months, we show that the standardized...... travel time is roughly independent of the time of day as required by the theory. Except for the extreme right tail, a stable distribution seems to fit the data well. The travel time distributions on consecutive links seem to share a common stability parameter such that the travel time distribution...

  5. Hydraulic jumps in a channel

    DEFF Research Database (Denmark)

    Bonn, D.; Andersen, Anders Peter; Bohr, Tomas

    2009-01-01

    We present a study of hydraulic jumps with flow predominantly in one direction, created either by confining the flow to a narrow channel with parallel walls or by providing an inflow in the form of a narrow sheet. In the channel flow, we find a linear height profile upstream of the jump as expected...

  6. A Flexible Logistics Distribution Hub Model considering Cost Weighted Time

    Directory of Open Access Journals (Sweden)

    Wenxue Ran

    2017-01-01

    Full Text Available The delivery time of order has become an important fact for customers to evaluate logistics services. Due to the diverse and large quantities of orders in the background of electronic commerce, how to improve the flexibility of distribution hub and reduce the waiting time of customers becomes one of the most challenging questions for logistics companies. With this in mind, this paper proposes a new method of flexibility assessment in distribution hub by introducing cost weighted time (CWT. The advantages of supply hub operation mode in delivery flexibility are verified by the approach: the mode has pooling effects and uniform distribution characteristics; these traits can reduce overlapping delivery time to improve the flexibility in the case of two suppliers. Numerical examples show that the supply hub operation mode is more flexible than decentralized distribution operation mode in multidelivery cycles.

  7. Classification of EEG Signals Using Adaptive Time-Frequency Distributions

    Directory of Open Access Journals (Sweden)

    Khan Nabeel A.

    2016-06-01

    Full Text Available Time-Frequency (t-f distributions are frequently employed for analysis of new-born EEG signals because of their non-stationary characteristics. Most of the existing time-frequency distributions fail to concentrate energy for a multicomponent signal having multiple directions of energy distribution in the t-f domain. In order to analyse such signals, we propose an Adaptive Directional Time-Frequency Distribution (ADTFD. The ADTFD outperforms other adaptive kernel and fixed kernel TFDs in terms of its ability to achieve high resolution for EEG seizure signals. It is also shown that the ADTFD can be used to define new time-frequency features that can lead to better classification of EEG signals, e.g. the use of the ADTFD leads to 97.5% total accuracy, which is by 2% more than the results achieved by the other methods.

  8. Quantum jumps of a fluxonium qubit

    Science.gov (United States)

    Vool, U.; Pop, I. M.; Sliwa, K.; Abdo, B.; Brecht, T.; Shankar, S.; Hatridge, M.; Schoelkopf, R. J.; Mirrahimi, M.; Glazman, L.; Devoret, M. H.

    2014-03-01

    The fluxonium qubit has recently been shown to have energy relaxation time (T1) of the order of 1 ms, limited by quasiparticle dissipation. With the addition of a Josephson Parametric Converter (JPC) to the experiment, trajectories corresponding to quantum jumps between the ground and 1st excited state can be measured, thus allowing the observation of the qubit decay in real time instead of that of an ensemble average. Our measurement fidelity with the JPC is in excess of 98% for an acquisition time of 5 us and we can thus continuously monitor the quantum jumps of the qubit in equilibrium with its environment in a time much shorter than its average relaxation time. We observe in our sample a jump statistics that varies from being completely Poissonian with a long (500 us) mean time in the ground state to being highly non-Poissonian with short (100 us) mean time in the ground state. The changes between these regimes occur on time scales of seconds, minutes and even hours. We have studied this effect and its relation to quasiparticle dynamics by injecting quasiparticles with a short intense microwave pulse and by seeding quasiparticle-trapping vortices with magnetic field. Work supported by: IARPA, ARO, and NSF.

  9. Prediction of residence time distributions in food processing machinery

    DEFF Research Database (Denmark)

    Karlson, Torben; Friis, Alan; Szabo, Peter

    1996-01-01

    The velocity field in a co-rotating disc scraped surface heat exchanger (CDHE) is calculated using a finite element method. The residence time distribution for the CDHE is then obtained by tracing particles introduced in the inlet.......The velocity field in a co-rotating disc scraped surface heat exchanger (CDHE) is calculated using a finite element method. The residence time distribution for the CDHE is then obtained by tracing particles introduced in the inlet....

  10. Prediction of residence time distributions in food processing machinery

    DEFF Research Database (Denmark)

    Karlson, Torben; Friis, Alan; Szabo, Peter

    1996-01-01

    The velocity field in a co-rotating disc scraped surface heat exchanger (CDHE) is calculated using a finite element method. The residence time distribution for the CDHE is then obtained by tracing particles introduced in the inlet.......The velocity field in a co-rotating disc scraped surface heat exchanger (CDHE) is calculated using a finite element method. The residence time distribution for the CDHE is then obtained by tracing particles introduced in the inlet....

  11. Electrostatic charging of jumping droplets

    Science.gov (United States)

    Miljkovic, Nenad; Preston, Daniel J.; Enright, Ryan; Wang, Evelyn N.

    2013-09-01

    With the broad interest in and development of superhydrophobic surfaces for self-cleaning, condensation heat transfer enhancement and anti-icing applications, more detailed insights on droplet interactions on these surfaces have emerged. Specifically, when two droplets coalesce, they can spontaneously jump away from a superhydrophobic surface due to the release of excess surface energy. Here we show that jumping droplets gain a net positive charge that causes them to repel each other mid-flight. We used electric fields to quantify the charge on the droplets and identified the mechanism for the charge accumulation, which is associated with the formation of the electric double layer at the droplet-surface interface. The observation of droplet charge accumulation provides insight into jumping droplet physics as well as processes involving charged liquid droplets. Furthermore, this work is a starting point for more advanced approaches for enhancing jumping droplet surface performance by using external electric fields to control droplet jumping.

  12. Jump conditions in transonic equilibria

    Energy Technology Data Exchange (ETDEWEB)

    Guazzotto, L.; Betti, R. [Department of Mechanical Engineering, University of Rochester, Rochester, New York 14627 (United States); Jardin, S. C. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08540 (United States)

    2013-04-15

    In the present paper, the numerical calculation of transonic equilibria, first introduced with the FLOW code in Guazzotto et al.[Phys. Plasmas 11, 604 (2004)], is critically reviewed. In particular, the necessity and effect of imposing explicit jump conditions at the transonic discontinuity are investigated. It is found that 'standard' (low-{beta}, large aspect ratio) transonic equilibria satisfy the correct jump condition with very good approximation even if the jump condition is not explicitly imposed. On the other hand, it is also found that high-{beta}, low aspect ratio equilibria require the correct jump condition to be explicitly imposed. Various numerical approaches are described to modify FLOW to include the jump condition. It is proved that the new methods converge to the correct solution even in extreme cases of very large {beta}, while they agree with the results obtained with the old implementation of FLOW in lower-{beta} equilibria.

  13. Keeping your eye on the rail: gaze behaviour of horse riders approaching a jump.

    Directory of Open Access Journals (Sweden)

    Carol Hall

    Full Text Available The gaze behaviour of riders during their approach to a jump was investigated using a mobile eye tracking device (ASL Mobile Eye. The timing, frequency and duration of fixations on the jump and the percentage of time when their point of gaze (POG was located elsewhere were assessed. Fixations were identified when the POG remained on the jump for 100 ms or longer. The jumping skill of experienced but non-elite riders (n = 10 was assessed by means of a questionnaire. Their gaze behaviour was recorded as they completed a course of three identical jumps five times. The speed and timing of the approach was calculated. Gaze behaviour throughout the overall approach and during the last five strides before take-off was assessed following frame-by-frame analyses. Differences in relation to both round and jump number were found. Significantly longer was spent fixated on the jump during round 2, both during the overall approach and during the last five strides (p<0.05. Jump 1 was fixated on significantly earlier and more frequently than jump 2 or 3 (p<0.05. Significantly more errors were made with jump 3 than with jump 1 (p = 0.01 but there was no difference in errors made between rounds. Although no significant correlations between gaze behaviour and skill scores were found, the riders who scored higher for jumping skill tended to fixate on the jump earlier (p = 0.07, when the horse was further from the jump (p = 0.09 and their first fixation on the jump was of a longer duration (p = 0.06. Trials with elite riders are now needed to further identify sport-specific visual skills and their relationship with performance. Visual training should be included in preparation for equestrian sports participation, the positive impact of which has been clearly demonstrated in other sports.

  14. Real Time Synchronization for Creativity in Distributed Innovation Teams

    DEFF Research Database (Denmark)

    Peitersen, Dennis Kjaersgaard; Dolog, Peter; Pedersen, Esben Staunsbjerg

    2009-01-01

    In this paper we introduce a synchronization approach for real time collaborative sketching for creativity in distributed innovation teams. We base our approach on reverse AJAX. This way we ensure scalable solution for real time drawing and sketching important in creativity settings.......In this paper we introduce a synchronization approach for real time collaborative sketching for creativity in distributed innovation teams. We base our approach on reverse AJAX. This way we ensure scalable solution for real time drawing and sketching important in creativity settings....

  15. Real Time Synchronization for Creativity in Distributed Innovation Teams

    DEFF Research Database (Denmark)

    Peitersen, Dennis Kjaersgaard; Dolog, Peter; Pedersen, Esben Staunsbjerg

    2009-01-01

    In this paper we introduce a synchronization approach for real time collaborative sketching for creativity in distributed innovation teams. We base our approach on reverse AJAX. This way we ensure scalable solution for real time drawing and sketching important in creativity settings.......In this paper we introduce a synchronization approach for real time collaborative sketching for creativity in distributed innovation teams. We base our approach on reverse AJAX. This way we ensure scalable solution for real time drawing and sketching important in creativity settings....

  16. Non-Poissonian quantum jumps of a fluxonium qubit due to quasiparticle excitations.

    Science.gov (United States)

    Vool, U; Pop, I M; Sliwa, K; Abdo, B; Wang, C; Brecht, T; Gao, Y Y; Shankar, S; Hatridge, M; Catelani, G; Mirrahimi, M; Frunzio, L; Schoelkopf, R J; Glazman, L I; Devoret, M H

    2014-12-12

    As the energy relaxation time of superconducting qubits steadily improves, nonequilibrium quasiparticle excitations above the superconducting gap emerge as an increasingly relevant limit for qubit coherence. We measure fluctuations in the number of quasiparticle excitations by continuously monitoring the spontaneous quantum jumps between the states of a fluxonium qubit, in conditions where relaxation is dominated by quasiparticle loss. Resolution on the scale of a single quasiparticle is obtained by performing quantum nondemolition projective measurements within a time interval much shorter than T₁, using a quantum-limited amplifier (Josephson parametric converter). The quantum jump statistics switches between the expected Poisson distribution and a non-Poissonian one, indicating large relative fluctuations in the quasiparticle population, on time scales varying from seconds to hours. This dynamics can be modified controllably by injecting quasiparticles or by seeding quasiparticle-trapping vortices by cooling down in a magnetic field.

  17. Determining prescription durations based on the parametric waiting time distribution

    DEFF Research Database (Denmark)

    Støvring, Henrik; Pottegård, Anton; Hallas, Jesper

    2016-01-01

    ). When the IAD consisted of a mixture of two Log-Normal distributions, but was analyzed with a single Log-Normal distribution, relative bias did not exceed 9%. Using a Log-Normal FRD, we estimated prescription durations of 117, 91, 137, and 118 days for NSAIDs, warfarin, bendroflumethiazide...... two-component mixture model for the waiting time distribution (WTD). The distribution component for prevalent users estimates the forward recurrence density (FRD), which is related to the distribution of time between subsequent prescription redemptions, the inter-arrival density (IAD), for users......, and the method was applied to empirical data for four model drugs: non-steroidal anti-inflammatory drugs (NSAIDs), warfarin, bendroflumethiazide, and levothyroxine. RESULTS: Simulation studies found negligible bias when the data-generating model for the IAD coincided with the FRD used in the WTD estimation (Log-Normal...

  18. Time-of-arrival distributions from position-momentum and energy-time joint measurements

    CERN Document Server

    Baute, A D; Muga, J G; Sala-Mayato, R

    2000-01-01

    The position-momentum quasi-distribution obtained from an Arthurs and Kelly joint measurement model is used to obtain indirectly an ``operational'' time-of-arrival (TOA) distribution following a quantization procedure proposed by Kocha\\'nski and Wódkiewicz [Phys. Rev. A 60, 2689 (1999)]. This TOA distribution is not time covariant. The procedure is generalized by using other phase-space quasi-distributions, and sufficient conditions are provided for time covariance that limit the possible phase-space quasi-distributions essentially to the Wigner function, which, however, provides a non-positive TOA quasi-distribution. These problems are remedied with a different quantization procedure which, on the other hand, does not guarantee normalization. Finally an Arthurs and Kelly measurement model for TOA and energy (valid also for arbitrary conjugate variables when one of the variables is bounded from below) is worked out. The marginal TOA distribution so obtained, a distorted version of Kijowski's distribution, is...

  19. An Efficient Interpolation Technique for Jump Proposals in Reversible-Jump Markov Chain Monte Carlo Calculations

    CERN Document Server

    Farr, Will M

    2011-01-01

    Selection among alternative theoretical models given an observed data set is an important challenge in many areas of physics and astronomy. Reversible-jump Markov chain Monte Carlo (RJMCMC) is an extremely powerful technique for performing Bayesian model selection, but it suffers from a fundamental difficulty: it requires jumps between model parameter spaces, but cannot retain a memory of the favored locations in more than one parameter space at a time. Thus, a naive jump between parameter spaces is unlikely to be accepted in the MCMC algorithm and convergence is correspondingly slow. Here we demonstrate an interpolation technique that uses samples from single-model MCMCs to propose inter-model jumps from an approximation to the single-model posterior of the target parameter space. The interpolation technique, based on a kD-tree data structure, is adaptive and efficient in arbitrary dimensions. We show that our technique leads to dramatically improved convergence over naive jumps in an RJMCMC, and compare it ...

  20. A bivariate limiting distribution of tumor latency time.

    Science.gov (United States)

    Rachev, S T; Wu, C; Yakovlev AYu

    1995-06-01

    The model of radiation carcinogenesis, proposed earlier by Klebanov, Rachev, and Yakovlev [8] substantiates the employment of limiting forms of the latent time distribution at high dose values. Such distributions arise within the random minima framework, the two-parameter Weibull distribution being a special case. This model, in its present form, does not allow for carcinogenesis at multiple sites. As shown in the present paper, a natural two-dimensional generalization of the model appears in the form of a Weibull-Marshall-Olkin distribution. Similarly, the study of a randomized version of the model based on the negative binomial minima scheme results in a bivariate Pareto-Marshall-Olkin distribution. In the latter case, an estimate for the rate of convergence to the limiting distribution is given.

  1. Non-Poissonian Distribution of Tsunami Waiting Times

    Science.gov (United States)

    Geist, E. L.; Parsons, T.

    2007-12-01

    Analysis of the global tsunami catalog indicates that tsunami waiting times deviate from an exponential distribution one would expect from a Poisson process. Empirical density distributions of tsunami waiting times were determined using both global tsunami origin times and tsunami arrival times at a particular site with a sufficient catalog: Hilo, Hawai'i. Most sources for the tsunamis in the catalog are earthquakes; other sources include landslides and volcanogenic processes. Both datasets indicate an over-abundance of short waiting times in comparison to an exponential distribution. Two types of probability models are investigated to explain this observation. Model (1) is a universal scaling law that describes long-term clustering of sources with a gamma distribution. The shape parameter (γ) for the global tsunami distribution is similar to that of the global earthquake catalog γ=0.63-0.67 [Corral, 2004]. For the Hilo catalog, γ is slightly greater (0.75-0.82) and closer to an exponential distribution. This is explained by the fact that tsunamis from smaller triggered earthquakes or landslides are less likely to be recorded at a far-field station such as Hilo in comparison to the global catalog, which includes a greater proportion of local tsunamis. Model (2) is based on two distributions derived from Omori's law for the temporal decay of triggered sources (aftershocks). The first is the ETAS distribution derived by Saichev and Sornette [2007], which is shown to fit the distribution of observed tsunami waiting times. The second is a simpler two-parameter distribution that is the exponential distribution augmented by a linear decay in aftershocks multiplied by a time constant Ta. Examination of the sources associated with short tsunami waiting times indicate that triggered events include both earthquake and landslide tsunamis that begin in the vicinity of the primary source. Triggered seismogenic tsunamis do not necessarily originate from the same fault zone

  2. Choice of jumping strategy in two standard jumps, squat and countermovement jump--effect of training background or inherited preference?

    DEFF Research Database (Denmark)

    Ravn, Susanne; Voigt, M; Simonsen, Erik Bruun

    1999-01-01

    Six male subjects, three professional ballet dancers and three elite volleyball players, performed maximal vertical jumps from 1) a static preparatory position (squat jump), 2) starting with a countermovement (countermovement jump) and 3) a specific jump for ballet and for volleyball, respectively....... The jumps were recorded on highspeed film (500 Hz) combined with registration of ground reaction forces, and net joint moments were calculated by inverse dynamics. The purpose was to investigate the choice of strategy in two standard jumps, squat jump and countermovement jump. The volleyball jump...... was performed with a sequential strategy and the ballet jump was performed with a simultaneous strategy. In the two standard jumps, the choice of strategy was individual and not related to training background. This was additionally confirmed in a test of seven ballet dancers and seven volleyball players....

  3. The coronal mass ejection waiting-time distribution

    CERN Document Server

    Wheatland, M S

    2003-01-01

    The distribution of times $\\Delta t$ between coronal mass ejections (CMEs) in the Large Angle and Spectrometric Coronagraph (LASCO) CME catalog for the years 1996-2001 is examined. The distribution exhibits a power-law tail $\\propto (\\Delta t)^{\\gamma}$ with an index $\\gamma\\approx -2.36\\pm 0.11$ for large waiting times ($\\Delta t>10 {\\rm hours}$). The power-law index of the waiting-time distribution varies with the solar cycle: for the years 1996-1998 (a period of low activity), the power-law index is $\\gamma\\approx-1.86\\pm 0.14$, and for the years 1999-2001 (a period of higher activity), the index is $\\gamma\\approx-2.98\\pm 0.20$. The observed CME waiting-time distribution, and its variation with the cycle, may be understood in terms of CMEs occurring as a time-dependent Poisson process. The CME waiting-time distribution is compared with that for greater than C1 class solar flares in the Geostationary Operational Environmental Satellite (GOES) catalog for the same years. The flare and CME waiting-time distri...

  4. Possibility of stretch-shortening cycle movement training using a jump rope.

    Science.gov (United States)

    Miyaguchi, Kazuyoshi; Sugiura, Hiroki; Demura, Shinichi

    2014-03-01

    Although jumping rope has been said to be a typical stretch-shortening cycle movement (SSC) from the dynamic analysis of muscle contraction, there are few research reports that focus on this point. Recently, the function of SSC of the legs with respect to the jumping movement has been evaluated using the rebound jump index (RJ-index). This study aimed to examine the possibility of using rope jumping in SSC training by comparing the RJ-index of the rebound jump (standard value) and the 2 different methods of rope jumping. The subjects included 76 healthy young men. Most subjects were involved in routine sports training 2-3 times per week. They performed the rebound jump (5 consecutive vertical jumps) and both a basic and a double-under jump with the jump rope, according to each participant's individual style (rhythm or timing). The RJ-index was calculated using the ground contact time and the jump height. The reliabilities of the RJ-index in the basic (intraclass correlation coefficient: 0.85) and double-under jump (0.92) were high, and the RJ-index of the latter (1.34 ± 0.24) was significantly higher than that of the former (0.60 ± 0.21). In the case of a group with inferior SSC ability, the RJ-index of the rebound jump only showed a significant correlation with the double-under but not with the basic jump. When using the RJ-index (1.97 ± 0.38) of the rebound jump as a criterion, the double-under-using about 70% of the SSC ability-may be effective for reinforcement of SSC ability.

  5. A COMPARISON OF PAIRS FIGURE SKATERS IN REPEATED JUMPS

    Directory of Open Access Journals (Sweden)

    William A. Sands

    2012-03-01

    Full Text Available Trends in pairs figure skating have shown that increasingly difficult jumps have become an essential aspect of high-level performance, especially in the latter part of a competitive program. We compared a repeated jump power index in a 60 s repeated jump test to determine the relationship of repeated jump test to competitive rank and to measure 2D hip, knee, and ankle angles and angular velocities at 0, 20, 40, and 60 s. Eighteen National Team Pairs Figure Skaters performed a 60 s repeated jump test on a large switch-mat with timing of flight and ground durations and digital video recording. Each 60-s period was divided into 6, 10-s intervals, with power indexes (W/kg calculated for each 10-s interval. Power index by 10-s interval repeated measures ANOVAs (RMANOVA showed that males exceeded females at all intervals, and the highest power index interval was during 10 to 20 s for both sexes. RMANOVAs of angles and angular velocities showed main effects for time only. Power index and jumping techniques among figure skaters showed rapid and steady declines over the test duration. Power index can predict approximately 50% of competitive rank variance, and sex differences in jumping technique were rare

  6. Capture of Trojans by Jumping Jupiter

    CERN Document Server

    Nesvorny, David; Morbidelli, Alessandro

    2013-01-01

    Jupiter Trojans are thought to be survivors of a much larger population of planetesimals that existed in the planetary region when planets formed. They can provide important constraints on the mass and properties of the planetesimal disk, and its dispersal during planet migration. Here we tested a possibility that the Trojans were captured during the early dynamical instability among the outer planets (aka the Nice model), when the semimajor axis of Jupiter was changing as a result of scattering encounters with an ice giant. The capture occurs in this model when Jupiter's orbit and its Lagrange points become radially displaced in a scattering event and fall into a region populated by planetesimals (that previously evolved from their natal transplanetary disk to ~5 AU during the instability). Our numerical simulations of the new capture model, hereafter jump capture, satisfactorily reproduce the orbital distribution of the Trojans and their total mass. The jump capture is potentially capable of explaining the ...

  7. X-ray kinematography of phase transformations of three-component lipid mixtures: a time-resolved synchrotron X-ray scattering study using the pressure-jump relaxation technique.

    Science.gov (United States)

    Jeworrek, Christoph; Pühse, Matthias; Winter, Roland

    2008-10-21

    By using the pressure-jump relaxation technique in combination with time-resolved synchrotron small-angle X-ray diffraction (TRSAXS), the kinetics of lipid phase transformations of ternary lipid mixtures serving as model systems of heterogeneous raftlike membranes were investigated. To this end, we first established the temperature-pressure phase diagram of a model lipid raft mixture, 1,2-dioleoyl- sn-glycero-3-phosphatidylcholine (DOPC)/1,2-dipalmitoyl- sn-glycero-3-phosphatidylcholine (DPPC)/cholesterol (1:2:1), using Fourier transform infrared spectroscopy and SAXS, covering the pressure range from 1 bar to 10 kbar at temperatures in the range from 7 to 80 degrees C. We then studied the kinetics of interlamellar phase transitions of the ternary lipid system involving transitions from the fluidlike (liquid-disordered, l d) phase to the liquid-ordered (l o)/liquid-disordered (l d) two-phase coexistence region as well as between the two- and three-phase coexistence regions of the system, where also solid-ordered phases (s o) are involved. The phase transition from the all-fluid l d phase to the l o+l d two-phase coexistence region turns out to be rather rapid. Phases appear or disappear within the 25 ms time resolution of the technique, followed by a slow lattice relaxation process, which, depending on the pressure-jump amplitude, takes several seconds. Contrary to many one-component phospholipid phase transitions, the kinetics of the l d l o+l d transition follows a similar time scale and mechanism for the pressurization and depressurization direction. A similar behavior is observed for the phase transition kinetics of the s o+l o+l d l o+l d transformation and even for the s o+l o+l d l d transformation, jumping across the l o+l d two-phase region. All transitions are fully reversible, and no intermediate states are populated. As indicated by the complex relaxation profiles observed, the overall rates observed seem to reflect the effect of coupling of various

  8. A model for the distribution of aftershock waiting times

    CERN Document Server

    Shcherbakov, R; Turcotte, D L; Yakovlev, G

    2005-01-01

    In this work the distribution of inter-occurrence times between earthquakes in aftershock sequences is analyzed and a model based on a non-homogeneous Poisson (NHP) process is proposed to quantify the observed scaling. In this model the generalized Omori's law for the decay of aftershocks is used as a time-dependent rate in the NHP process. The analytically derived distribution of inter-occurrence times is applied to several major aftershock sequences in California to confirm the validity of the proposed hypothesis.

  9. Detection of weak frequency jumps for GNSS onboard clocks.

    Science.gov (United States)

    Huang, Xinming; Gong, Hang; Ou, Gang

    2014-05-01

    In this paper, a weak frequency jump detection method is developed for onboard clocks in global navigation satellite systems (GNSS). A Kalman filter is employed to facilitate the onboard real-time processing of atomic clock measurements, whose N-step prediction residuals are used to construct the weak frequency jump detector. Numerical simulations show that the method can successfully detect weak frequency jumps. The detection method proposed in this paper is helpful for autonomous integrity monitoring of GNSS satellite clocks, and can also be applied to other frequency anomalies with an appropriately modified detector.

  10. Jump diffusion models and the evolution of financial prices

    Science.gov (United States)

    Figueiredo, Annibal; de Castro, Marcio T.; da Silva, Sergio; Gleria, Iram

    2011-08-01

    We analyze a stochastic model to describe the evolution of financial prices. We consider the stochastic term as a sum of the Wiener noise and a jump process. We point to the effects of the jumps on the return time evolution, a central concern of the econophysics literature. The presence of jumps suggests that the process can be described by an infinitely divisible characteristic function belonging to the De Finetti class. We then extend the De Finetti functions to a generalized nonlinear model and show the model to be capable of explaining return behavior.

  11. Frequency Jump Detection and Analysis

    Science.gov (United States)

    2008-12-01

    CUMULATIVE SUM JUMP DETECTION The Cumulative Sum ( CUSUM ) is a classic change-point analysis technique that uses the cumulative sum of the...sum and y is the average of the data. The CUSUM slope indicates the value of the data with respect to the overall average. A flat cumulative sum...sudden change in the CUSUM slope indicates a jump in the data. The CUSUM plot for a data set having a single jump will have a V or inverted V shape

  12. Robust H ∞ control for uncertain Markovian jump systems with mixed delays

    Science.gov (United States)

    R, Saravanakumar; M Syed, Ali

    2016-07-01

    We scrutinize the problem of robust H ∞ control for a class of Markovian jump uncertain systems with interval time-varying and distributed delays. The Markovian jumping parameters are modeled as a continuous-time finite-state Markov chain. The main aim is to design a delay-dependent robust H ∞ control synthesis which ensures the mean-square asymptotic stability of the equilibrium point. By constructing a suitable Lyapunov-Krasovskii functional (LKF), sufficient conditions for delay-dependent robust H ∞ control criteria are obtained in terms of linear matrix inequalities (LMIs). The advantage of the proposed method is illustrated by numerical examples. The results are also compared with the existing results to show the less conservativeness. Project supported by Department of Science and Technology (DST) under research project No. SR/FTP/MS-039/2011.

  13. Robust H∞control for uncertain Markovian jump systems with mixed delays

    Institute of Scientific and Technical Information of China (English)

    R Saravanakumar; M Syed Ali‡

    2016-01-01

    We scrutinize the problem of robust H∞control for a class of Markovian jump uncertain systems with interval time-varying and distributed delays. The Markovian jumping parameters are modeled as a continuous-time finite-state Markov chain. The main aim is to design a delay-dependent robust H∞control synthesis which ensures the mean-square asymptotic stability of the equilibrium point. By constructing a suitable Lyapunov–Krasovskii functional (LKF), sufficient conditions for delay-dependent robust H∞control criteria are obtained in terms of linear matrix inequalities (LMIs). The advantage of the proposed method is illustrated by numerical examples. The results are also compared with the existing results to show the less conservativeness.

  14. Analysis and Synthesis of Distributed Real-Time Embedded Systems

    DEFF Research Database (Denmark)

    Pop, Paul; Eles, Petru; Peng, Zebo

    Embedded computer systems are now everywhere: from alarm clocks to PDAs, from mobile phones to cars, almost all the devices we use are controlled by embedded computers. An important class of embedded computer systems is that of hard real-time systems, which have to fulfill strict timing...... in important reductions of design costs. Analysis and Synthesis of Distributed Real-Time Embedded Systems will be of interest to advanced undergraduates, graduate students, researchers and designers involved in the field of embedded systems....

  15. BaF2 TIME DIFFERENTIAL PERTURBED ANGULAR DISTRIBUTION SPECTROMETER

    Institute of Scientific and Technical Information of China (English)

    朱升云; 勾振辉; 等

    1994-01-01

    A BaF2 time differential perturbed angular distribution spectrometer has been established at the HI-13 tandem accelerator in CIAE.The time resolution of the spectrometer is 195ps and the nonlinearity is less than 2%.The spectrometer works very stably and no time drift is found over a period of experimental runs.This spectrometer has been successfully used in the g-factor measurement of 43Sc(19/2-,3.1232MeV).

  16. Properties of Distributed Timed-Arc Petri Nets

    DEFF Research Database (Denmark)

    Nielsen, M.; Sassone, V.; Srba, J.

    2001-01-01

    In [12] we started a research on a distributed-timed extension of Petri nets where time parameters are associated with tokens and arcs carry constraints that qualify the age of tokens required for enabling. This formalism enables to model e.g. hardware architectures like GALS. We give a formal de...... definition of process semantics for our model and investigate several properties of local versus global timing: expressiveness, reachability and coverability....

  17. Distributed consensus on minimum time rendezvous via cyclic alternating projection

    OpenAIRE

    Hu, Chunhe; Chen, Zongji

    2014-01-01

    In this paper, we propose a distributed algorithm to solve planar minimum time multi-vehicle rendezvous problem with non-identical velocity constraints on cyclic digraph (topology). Motivated by the cyclic alternating projection method that can compute a point's projection on the intersection of some convex sets, we transform the minimum time rendezvous problem into finding the distance between the position plane and the intersection of several second-order cones in position-time space. The d...

  18. Jump-Down Performance Alterations after Space Flight

    Science.gov (United States)

    Reschke, M. F.; Kofman, I. S.; Cerisano, J. M.; Fisher, E. A.; Peters, B. T.; Miller, C. A.; Harm, D. L.; Bloomberg, J. J.

    2011-01-01

    INTRODUCTION: Successful jump performance requires functional coordination of visual, vestibular, and somatosensory systems, which are affected by prolonged exposure to microgravity. Astronauts returning from space flight exhibit impaired ability to coordinate effective landing strategies when jumping from a platform to the ground. This study compares jump strategies used by astronauts before and after flight, changes to those strategies within a test session, and recoveries in jump-down performance parameters across several postflight test sessions. These data were obtained as part of an ongoing interdisciplinary study (Functional Task Test, FTT) designed to evaluate both astronaut postflight functional performance and related physiological changes. METHODS: Seven astronauts from short-duration (Shuttle) and three from long-duration (International Space Station) flights performed 3 two-footed jumps from a platform 30 cm high onto a force plate that measured the ground reaction forces and center-of-pressure displacement from the landings. Neuromuscular activation data were collected from the medial gastrocnemius and anterior tibialis of both legs using surface electromyography electrodes. Two load cells in the platform measured the load exerted by each foot during the takeoff phase of the jump. Data were collected in 2 preflight sessions, on landing day (Shuttle only), and 1, 6, and 30 days after flight. RESULTS: Postural settling time was significantly increased on the first postflight test session and many of the astronauts tested were unable to maintain balance on their first jump landing but recovered by the third jump, showing a learning progression in which performance improvements could be attributed to adjustments in takeoff or landing strategy. Jump strategy changes were evident in reduced air time (time between takeoff and landing) and also in increased asymmetry in foot latencies on takeoff. CONCLUSIONS: The test results revealed significant decrements

  19. Consequences of mixing assumptions for time-variable travel time distributions

    NARCIS (Netherlands)

    Velde, van der Y.; Heidbüchel, I.; Lyon, S.W.; Nyberg, L.; Rodhe, A.; Bishop, K.; Troch, P.A.

    2015-01-01

    The current generation of catchment travel time distribution (TTD) research, integrating nearly three decades of work since publication of Water's Journey from Rain to Stream, seeks to represent the full distribution in catchment travel times and its temporal variability. Here, we compare conceptual

  20. Consequences of mixing assumptions for time-variable travel time distributions

    NARCIS (Netherlands)

    Velde, van der Y.; Heidbüchel, I.; Lyon, S.W.; Nyberg, L.; Rodhe, A.; Bishop, K.; Troch, P.A.

    2015-01-01

    The current generation of catchment travel time distribution (TTD) research, integrating nearly three decades of work since publication of Water's Journey from Rain to Stream, seeks to represent the full distribution in catchment travel times and its temporal variability. Here, we compare

  1. Execution time support for scientific programs on distributed memory machines

    Science.gov (United States)

    Berryman, Harry; Saltz, Joel; Scroggs, Jeffrey

    1990-01-01

    Optimizations are considered that are required for efficient execution of code segments that consists of loops over distributed data structures. The PARTI (Parallel Automated Runtime Toolkit at ICASE) execution time primitives are designed to carry out these optimizations and can be used to implement a wide range of scientific algorithms on distributed memory machines. These primitives allow the user to control array mappings in a way that gives an appearance of shared memory. Computations can be based on a global index set. Primitives are used to carry out gather and scatter operations on distributed arrays. Communications patterns are derived at runtime, and the appropriate send and receive messages are automatically generated.

  2. Turkey: distribution of cities and change over time.

    Science.gov (United States)

    Dokmeci, V F

    1986-01-01

    Patterns of urbanization in Turkey from 1945 to 1975 are examined, with emphasis on the analysis of rank-size patterns. Attention is given to changes over time in the national rank-size distribution of cities, the growth rates of new cities, and the rank-size distribution of cities in various regions. "In general, the patterns of distribution of cities in Turkey are quite regular when compared with other developing countries. Since 1945 the city system has moved to a state more adjusted to the rank-size rule, paralleling the economic development of the country." excerpt

  3. Sex Differences in Countermovement Jump Phase Characteristics

    Directory of Open Access Journals (Sweden)

    John J. McMahon

    2017-01-01

    Full Text Available The countermovement jump (CMJ is commonly used to explore sex differences in neuromuscular function, but previous studies have only reported gross CMJ measures or have partly examined CMJ phase characteristics. The purpose of this study was to explore differences in CMJ phase characteristics between male and female athletes by comparing the force-, power-, velocity-, and displacement-time curves throughout the entire CMJ, in addition to gross measures. Fourteen men and fourteen women performed three CMJs on a force platform from which a range of kinetic and kinematic variables were calculated via forward dynamics. Jump height (JH, reactive strength index modified, relative peak concentric power, and eccentric and concentric displacement, velocity, and relative impulse were all greater for men (g = 0.58–1.79. Relative force-time curves were similar between sexes, but relative power-, velocity-, and displacement-time curves were greater for men at 90%–95% (immediately before and after peak power, 47%–54% (start of eccentric phase and 85%–100% (latter half of concentric phase, and 65%–87% (bottom of countermovement and initial concentric phase of normalized jump time, respectively. The CMJ distinguished between sexes, with men demonstrating greater JH through applying a larger concentric impulse and, thus, achieving greater velocity throughout most of the concentric phase, including take-off.

  4. Towards a Notion of Distributed Time for Petri Nets

    DEFF Research Database (Denmark)

    Nielsen, Mogens; Sassone, Vladimiro; Srba, Jiří

    2001-01-01

    We set the ground for research on a timed extension of Petri nets where time parameters are associated with tokens and arcs carry constraints that qualify the age of tokens required for enabling. The novelty is that, rather than a single global clock, we use a set of unrelated clocks — possibly o...... per place — allowing a local timing as well as distributed time synchronisation. We give a formal definition of the model and investigate properties of local versus global timing, including decidability issues and notions of processes of the respective models....

  5. Realized Jump Risk and Equity Return in China

    OpenAIRE

    Guojin Chen; Xiaoqun Liu; Peilin Hsieh; Xiangqin Zhao

    2014-01-01

    We utilize the realized jump components to explore a new jump (including nonsystematic jump and systematic jump) risk factor model. After estimating daily realized jumps from high-frequency transaction data of the Chinese A-share stocks, we calculate monthly jump size, monthly jump standard deviation, and monthly jump arrival rate and then use those monthly jump factors to explain the return of the following month. Our empirical results show that the jump tail risk can explain the equity retu...

  6. Verifying Automata Specification of Distributed Probabilistic Real—Time Systems

    Institute of Scientific and Technical Information of China (English)

    罗铁庚; 陈火旺; 等

    1998-01-01

    In this paper,a qualitative model checking algorithm for verification of distributed probabilistic real-time systems(DPRS)is presented.The model of DPRS,called real-time proba bilistic process model(RPPM),is over continuous time domain.The properties of DPRS are described by using deterministic timed automata(DTA).The key part in the algorithm is to map continuous time to finite time intervals with flag variables.Compared with the existing algorithms,this algorithm uses more general delay time equivalence classes instead of the unit delay time equivalence classes restricted by event sequence,and avoids generating the equivalence classes of states only due to the passage of time.The result shows that this algorithm is cheaper.

  7. Spontaneous azimuthal breakout and instability at the circular hydraulic jump

    CERN Document Server

    Ray, Arnab K; Basu, Abhik; Bhattacharjee, Jayanta K

    2015-01-01

    We consider a shallow, two-dimensional flow of a liquid in which the radial and the azimuthal dynamics are coupled to each other. The steady and radial background flow of this system creates an axially symmetric circular hydraulic jump. On this background we apply time-dependent perturbations of the matter flow rate and the azimuthal flow velocity, with the latter strongly localized at the hydraulic jump. The perturbed variables depend spatially on both the radial and azimuthal coordinates. Linearization of the perturbations gives a coupled system of wave equations. The characteristic equations extracted from these wave equations show that under a marginally stable condition a spontaneous breaking of axial symmetry occurs at the position of the hydraulic jump. Departure from the marginal stability shows further that a linear instability develops in the azimuthal direction, resulting in an azimuthal transport of liquid at the hydraulic jump. The time for the growth of azimuthal instability is scaled by viscosi...

  8. Poverty Index With Time Varying Consumption and Income Distributions

    CERN Document Server

    Chattopadhyay, Amit K; Mallick, Sushanta K

    2016-01-01

    In a recent work (Chattopadhyay, A. K. et al, Europhys. Lett. {\\bf 91}, 58003, 2010) based on food consumption statistics, we showed how a stochastic agent based model could represent the time variation of the income distribution statistics in a developing economy, thereby defining an alternative \\enquote{poverty index} (PI) that largely agreed with poverty gap index data. This PI used two variables, the probability density function of the income statistics and a consumption deprivation (CD) function, representing the shortfall in the minimum consumption needed for survival. Since the time dependence of the CD function was introduced there through data extrapolation only and not through an endogenous time dependent series, this model left unexplained how the minimum consumption needed for survival varies with time. The present article overcomes these limitations and arrives at a new unified theoretical structure through time varying consumption and income distributions where trade is only allowed when the inc...

  9. Poisson distributions for sharp-time fields antidote for triviality

    CERN Document Server

    Klauder, J R

    1995-01-01

    Standard lattice-space formulations of quartic self-coupled Euclidean scalar quantum fields become trivial in the continuum limit for sufficiently high space-time dimensions, and in particular the moment generating functional for space-time smeared fields becomes a Gaussian appropriate to that of a (possibly generalized) free field. For sharp-time fields this fact implies that the ground-state expectation functional also becomes Gaussian in the continuum limit. To overcome these consequences of the central limit theorem, an auxiliary, nonclassical potential is appended to the original lattice form of the model and parameters are tuned so that a generalized Poisson field distribution emerges in the continuum limit for the ground-state probability distribution. As a consequence, the sharp-time expectation functional is infinitely divisible, but the Hamiltonian operator is such, in the general case, that the generating functional for the space-time smeared field is not infinitely divisible in Minkowski space. Th...

  10. Visualization of EEG using time-frequency distributions.

    Science.gov (United States)

    Stiber, B Z; Sato, S

    1997-12-01

    The EEG is a time-varying or nonstationary signal. Frequency and amplitude are two of its significant characteristics, and are valuable clues to different states of brain activity. Detection of these temporal features is important in understanding EEGs. Commonly, spectrograms and AR models are used for EEG analysis. However, their accuracy is limited by their inherent assumption of stationarity and their trade-off between time and frequency resolution. We investigate EEG signal processing using existing compound kernel time-frequency distributions (TFDs). By providing a joint distribution of signal intensity at any frequency along time, TFDs preserve details of the temporal structure of the EEG waveform, and can extract its time-varying frequency and amplitude features. We expect that this will have significant implications for EEG analysis and medical diagnosis.

  11. "Universal" Distribution of Inter-Earthquake Times Explained

    CERN Document Server

    Saichev, A

    2006-01-01

    We propose a simple theory for the ``universal'' scaling law previously reported for the distributions of waiting times between earthquakes. It is based on a largely used benchmark model of seismicity, which just assumes no difference in the physics of foreshocks, mainshocks and aftershocks. Our theoretical calculations provide good fits to the data and show that universality is only approximate. We conclude that the distributions of inter-event times do not reveal more information than what is already known from the Gutenberg-Richter and the Omori power laws. Our results reinforces the view that triggering of earthquakes by other earthquakes is a key physical mechanism to understand seismicity.

  12. Time Synchronization and Distribution Mechanisms for Space Networks

    Science.gov (United States)

    Woo, Simon S.; Gao, Jay L.; Clare, Loren P.; Mills, David L.

    2011-01-01

    This work discusses research on the problems of synchronizing and distributing time information between spacecraft based on the Network Time Protocol (NTP), where NTP is a standard time synchronization protocol widely used in the terrestrial network. The Proximity-1 Space Link Interleaved Time Synchronization (PITS) Protocol was designed and developed for synchronizing spacecraft that are in proximity where proximity is less than 100,000 km distant. A particular application is synchronization between a Mars orbiter and rover. Lunar scenarios as well as outer-planet deep space mother-ship-probe missions may also apply. Spacecraft with more accurate time information functions as a time-server, and the other spacecraft functions as a time-client. PITS can be easily integrated and adaptable to the CCSDS Proximity-1 Space Link Protocol with minor modifications. In particular, PITS can take advantage of the timestamping strategy that underlying link layer functionality provides for accurate time offset calculation. The PITS algorithm achieves time synchronization with eight consecutive space network time packet exchanges between two spacecraft. PITS can detect and avoid possible errors from receiving duplicate and out-of-order packets by comparing with the current state variables and timestamps. Further, PITS is able to detect error events and autonomously recover from unexpected events that can possibly occur during the time synchronization and distribution process. This capability achieves an additional level of protocol protection on top of CRC or Error Correction Codes. PITS is a lightweight and efficient protocol, eliminating the needs for explicit frame sequence number and long buffer storage. The PITS protocol is capable of providing time synchronization and distribution services for a more general domain where multiple entities need to achieve time synchronization using a single point-to-point link.

  13. Rook Jumping Maze Design Considerations

    Science.gov (United States)

    Neller, Todd W.; Fisher, Adrian; Choga, Munyaradzi T.; Lalvani, Samir M.; McCarty, Kyle D.

    We define the Rook Jumping Maze, provide historical perspective, and describe a generation method for such mazes. When applying stochastic local search algorithms to maze design, most creative effort concerns the definition of an objective function that rates maze quality. We define and discuss several maze features to consider in such a function definition. Finally, we share our preferred design choices, make design process observations, and note the applicability of these techniques to variations of the Rook Jumping Maze.

  14. First-Passage-Time Distribution for Variable-Diffusion Processes

    Science.gov (United States)

    Barney, Liberty; Gunaratne, Gemunu H.

    2017-05-01

    First-passage-time distribution, which presents the likelihood of a stock reaching a pre-specified price at a given time, is useful in establishing the value of financial instruments and in designing trading strategies. First-passage-time distribution for Wiener processes has a single peak, while that for stocks exhibits a notable second peak within a trading day. This feature has only been discussed sporadically—often dismissed as due to insufficient/incorrect data or circumvented by conversion to tick time—and to the best of our knowledge has not been explained in terms of the underlying stochastic process. It was shown previously that intra-day variations in the market can be modeled by a stochastic process containing two variable-diffusion processes (Hua et al. in, Physica A 419:221-233, 2015). We show here that the first-passage-time distribution of this two-stage variable-diffusion model does exhibit a behavior similar to the empirical observation. In addition, we find that an extended model incorporating overnight price fluctuations exhibits intra- and inter-day behavior similar to those of empirical first-passage-time distributions.

  15. Psycho-physiological response in an automatic parachute jump

    OpenAIRE

    Clemente Suárez, Vicente Javier; Robles Pérez, José Juan; Fernández Lucas, Jesús

    2016-01-01

    Parachute jump is an extreme activity that elicits an intense stress response that affects jumpers' body systems being able to put them at risk. The present research analysed modifications in blood oxygen saturation (BOS), heart rate (HR), cortisol, glucose, lactate, creatine kinase (CK), muscles strength, cortical arousal, autonomic modulation, pistol magazine reload time (PMRT) and state anxiety before and after an automatic open parachute jump in 38 male Spanish soldiers (25.6 ± 5.9 years)...

  16. Non-fragile H∞ Control for a Class of Discrete-time Singular Markovian Jump System%一类离散奇异Markovian跳变系统的非脆弱H∞控制

    Institute of Scientific and Technical Information of China (English)

    冉华军; 张涛

    2011-01-01

    The problem of non-fragile H∞ control for a class of discrete-time singular Markovian jump system is studied. Considering nominal system with controller in the presence of parameter variation, a sufficient condition is first established in terms of some coupled matrix inequalities on robust stochastical admissibility and H∞ disturbance attenuation property for resulting closed-loop uncertain system. Then the sufficient condition on non-fragile state feedback H∞ controller is presented. It is shown that non-fragile state feedback H∞ controller can be constructed through numerical solusion of a set of coupled linear matrix inequalities. Finally,the result with repect to nominal system is extended to robust non-fragile H∞ controller design for uncertain discrete-time singular Markovian jump system.%本文研究了一类离散奇异Markovian跳变系统的非脆弱H∞问题.首先针对标称离散奇异Markovian跳变系统,得到考虑控制器参数摄动后不确定闭环系统的关于鲁棒随机可容许性及H∞扰动衰减性能分析的结论;然后推导出标称离散奇异Markovian跳变系统非脆弱H∞控制器的设计方法,该方法表明可通过求解一组耦合线性矩阵不等式来构建非脆弱H∞控制器;最后将标称系统的结果进一步推广到考虑系统不确定性的鲁棒非脆弱H∞控制器设计.

  17. MicROS-drt: supporting real-time and scalable data distribution in distributed robotic systems.

    Science.gov (United States)

    Ding, Bo; Wang, Huaimin; Fan, Zedong; Zhang, Pengfei; Liu, Hui

    A primary requirement in distributed robotic software systems is the dissemination of data to all interested collaborative entities in a timely and scalable manner. However, providing such a service in a highly dynamic and resource-limited robotic environment is a challenging task, and existing robot software infrastructure has limitations in this aspect. This paper presents a novel robot software infrastructure, micROS-drt, which supports real-time and scalable data distribution. The solution is based on a loosely coupled data publish-subscribe model with the ability to support various time-related constraints. And to realize this model, a mature data distribution standard, the data distribution service for real-time systems (DDS), is adopted as the foundation of the transport layer of this software infrastructure. By elaborately adapting and encapsulating the capability of the underlying DDS middleware, micROS-drt can meet the requirement of real-time and scalable data distribution in distributed robotic systems. Evaluation results in terms of scalability, latency jitter and transport priority as well as the experiment on real robots validate the effectiveness of this work.

  18. The Effect of Depth Jumps and Weight Training on Leg Strength and Vertical Jump.

    Science.gov (United States)

    Clutch, David; And Others

    1983-01-01

    Two experiments examined the results of depth jumping programs to determine: (1) whether certain depth jumping routines, when combined with weight training, are better than others; and (2) the effect of depth jumping on athletes already in training. Results indicated that depth jumping is effective, but no more so than regular jumping routines.…

  19. Power Quality Analysis Using Bilinear Time-Frequency Distributions

    Directory of Open Access Journals (Sweden)

    Sha'ameri AhmadZuri

    2010-01-01

    Full Text Available Abstract Bilinear time-frequency distributions (TFDs are powerful techniques that offer good time and frequency resolution of time-frequency representation (TFR. It is very appropriate to analyze power quality signals which consist of nonstationary and multi-frequency components. However, the TFDs suffer from interference because of cross-terms. Many TFDs have been implemented, and there is no fixed window or kernel that can remove the cross-terms for all types of signals. In this paper, the bilinear TFDs are implemented to analyze power quality signals such as smooth-windowed Wigner-Ville distribution (SWWVD, Choi-Williams distribution (CWD, B-distribution (BD, and modified B-distribution (MBD. The power quality signals focused are swell, sag, interruption, harmonic, interharmonic, and transient based on IEEE Std, 1159-1995. A set of performance measures is defined and used to compare the TFRs. It shows that SWWVD presents the best performance and is selected for power quality signal analysis. Thus, an adaptive optimal kernel SWWVD is designed to determine the separable kernel automatically from the input signal.

  20. Distributed LQR control for discrete-time homogeneous systems

    Science.gov (United States)

    Wang, Wei; Zhang, Fangfang; Han, Chunyan

    2016-11-01

    This paper investigates the distributed linear quadratic regulation (LQR) controller design method for discrete-time homogeneous scalar systems. Based on the optimal centralised control theory, the existence condition for distributed optimal controller is firstly proposed. It shows that the globally optimal distributed controller is dependent on the structure of the penalty matrix. Such results can be used in consensus problems and used to find under which communication topology (may not be an all-to-all form) the optimal distributed controller exists. When the proposed condition cannot hold, a suboptimal design method with the aid of the decomposition of discrete algebraic Riccati equations and robustness of local controllers is proposed. The computation complexity and communication load for each subsystem are only dependent on the number of its neighbours.

  1. Robust Guaranteed Cost Observer for Uncertain Descriptor Time-delay Systems with Markovian Jumping Parameters%含有跳跃参数的广义时滞不确定系统的鲁棒保性能观测器设计

    Institute of Scientific and Technical Information of China (English)

    付艳明; 段广仁

    2005-01-01

    This paper investigates the design of robust guaranteed cost observer for a class of lineardescriptor time-delay systems with jumping parameters. The system under study involves time de-lays, jumping parameters and uncertainties. The transition of the jumping parameters in systems isgoverned by a finite-state Markov process. The objective is to design linear memoryless observers suchthat for all uncertainties, the resulting augmented system is regular, impulse free, robust stochasti-cally stable independent of delays and satisfies the proposed guaranteed cost performance. Based onstability theory in stochastic differential equations, a sufficient condition on the existence of robustguaranteed cost observers is derived. Robust guaranteed cost observers are designed in terms of linearmatrix inequalities. A convex optimization problem with LMI constraints is formulated to design thesuboptimal guaranteed cost filters.

  2. Real Time Scheduling Services for Distributed RT-CORBA Applications

    Directory of Open Access Journals (Sweden)

    Bineta Tresa Mathew

    2012-12-01

    Full Text Available Distributed computing environment is flexible to control in complex embedded systems and their software components gain complexity when these systems are equipped with many microcontrollers and software object which covers diverse platforms, this system is called as DRE system. These DRE systems need new inter-object communication solution thus QoS-enabled middleware services and mechanisms have begun to emerge. Real-time application domain benefit from flexible and open distributed architectures, such as those defined by the CORBA specification. CORBA is well-suited to conventional request/response applications, but not suited to real-time applications due to the lack of QoS features and performance optimizations. The paper shows the design and implementation of the high performance scheduling technique for the real time applications domain with CORBA systems. Four different algorithms are compared by using attributes of real time tasks constraints based on CORBA specification such as RMS, MLF, MUF and EDF.

  3. Spatially distributed characterization of soil-moisture dynamics using travel-time distributions

    Science.gov (United States)

    Heße, Falk; Zink, Matthias; Kumar, Rohini; Samaniego, Luis; Attinger, Sabine

    2017-01-01

    Travel-time distributions are a comprehensive tool for the characterization of hydrological system dynamics. Unlike the streamflow hydrograph, they describe the movement and storage of water within and throughout the hydrological system. Until recently, studies using such travel-time distributions have generally either been applied to lumped models or to real-world catchments using available time series, e.g., stable isotopes. Whereas the former are limited in their realism and lack information on the spatial arrangements of the relevant quantities, the latter are limited in their use of available data sets. In our study, we employ the spatially distributed mesoscale Hydrological Model (mHM) and apply it to a catchment in central Germany. Being able to draw on multiple large data sets for calibration and verification, we generate a large array of spatially distributed states and fluxes. These hydrological outputs are then used to compute the travel-time distributions for every grid cell in the modeling domain. A statistical analysis indicates the general soundness of the upscaling scheme employed in mHM and reveals precipitation, saturated soil moisture and potential evapotranspiration as important predictors for explaining the spatial heterogeneity of mean travel times. In addition, we demonstrate and discuss the high information content of mean travel times for characterization of internal hydrological processes.

  4. Analysis and Optimization of Distributed Real-Time Embedded Systems

    DEFF Research Database (Denmark)

    Pop, Paul; Eles, Petru; Peng, Zebo

    2006-01-01

    An increasing number of real-time applications are today implemented using distributed heterogeneous architectures composed of interconnected networks of processors. The systems are heterogeneous not only in terms of hardware and software components, but also in terms of communication protocols...

  5. GLOBAL STABILITY IN HOPFIELD NEURAL NETWORKS WITH DISTRIBUTED TIME DELAYS

    Institute of Scientific and Technical Information of China (English)

    Zhang Jiye; Wu Pingbo; Dai Huanyun

    2001-01-01

    In this paper, without assuming the boundedness, monotonicity and differentiability of the activation functions, the conditions ensuring existence, uniqueness, and global asymptotical stability of the equilibrium point of Hopfield neural network models with distributed time delays are studied. Using M-matrix theory and constructing proper Liapunov functionals, the sufficient conditions for global asymptotic stability are obtained.

  6. A distributed Real-Time Java system based on CSP

    NARCIS (Netherlands)

    Hilderink, G.H.; Bakkers, André; Broenink, Johannes F.

    2000-01-01

    CSP is a fundamental concept for developing software for distributed real time systems. The CSP paradigm constitutes a natural addition to object orientation and offers higher order multithreading constructs. The CSP channel concept that has been implemented in Java deals with single- and

  7. Residence Time Distributions in a Cold, Confined Swirl Flow

    DEFF Research Database (Denmark)

    Lans, Robert Pieter Van Der; Glarborg, Peter; Dam-Johansen, Kim;

    1997-01-01

    Residence time distributions (RTD) in a confined, cold swirling flow have been measured with a fast-response probe and helium as a tracer. The test-rig represented a scaled down version of a burner. The effect of variation of flow velocities and swirl angle on the flow pattern in the near-burner ...

  8. Jump Testing and the Speed of Market Adjustment

    DEFF Research Database (Denmark)

    Rasmussen, Torben B.

    Asymptotic properties of jump tests rely on the property that any jump occurs within a single time interval no matter what the observation frequency is. Market microstructure effects in relation to news-induced revaluation of the underlying variable is likely to make this an unrealistic assumption...... for high-frequency transaction data. To capture these microstructure effects, this paper suggests a model in which market prices adjust gradually to jumps in the underlying effcient price. A case study illustrates the empirical relevance of the model, and the performance of different jump tests...... is investigated here and in a simulation study. Evidence indicates that tests based on the largest of scaled price increments perform better than tests comparing measures of variability. Resolving the matter by testing at lower frequencies turns out to be less straightforward....

  9. Stick-jump mode in surface droplet dissolution

    CERN Document Server

    Dietrich, Erik; Zhang, Xuehua; Zandvliet, Harold J W; Lohse, Detlef

    2016-01-01

    The analogy between evaporating surface droplets in air to dissolving long-chain alcohol droplets in water is worked out. We show that next to the three known modi for surface droplet evaporation or dissolution (constant contact angle mode, constant contact radius mode, and stick-slide mode), a fourth mode exists for small droplets on supposedly smooth substrates, namely the stick-jump mode: intermittent contact line pinning causes the droplet to switch between sticking and jumping during the dissolution. We present experimental data and compare them to theory to predict the dissolution time in this stick-jump mode. We also explain why these jumps were easily observed for microscale droplets but not for larger droplets.

  10. METRIC TESTS CHARACTERISTIC FOR ESTIMATING JUMPING FOR VOLLEYBALL PLAYERS

    Directory of Open Access Journals (Sweden)

    Toplica Stojanović

    2008-08-01

    Full Text Available With goal to establish metric tests characteristics for estimating jumping for volleyball players, it was organized a pilot research on pattern of 23 volleyball players from cadet team and 23 students from high-school. For needs of this research four tests are valid for estimation, jump in block with left and right leg and jump in spike with left and right leg. Each test has been taken three times, so that we could with test-re test method determine their reliability, and with factor analysis their validity. Data were processed by multivariate analysis (item analysis, factor analysis from statistical package „Statistica 6.0 for windows“. On the results of research and discussion we can say that the tests had high coefficient of reliability, as well as factor validity, and these tests can be used to estimate jumping for volleyball players.

  11. Jump diffusion models and the evolution of financial prices

    Energy Technology Data Exchange (ETDEWEB)

    Figueiredo, Annibal; Castro, Marcio T. de [Institute of Physics, University of Brasilia (Brazil); Silva, Sergio da [Department of Economics, Federal University of Santa Catarina (Brazil); Gleria, Iram, E-mail: iram@pq.cnpq.br [Institute of Physics, Federal University of Alagoas (Brazil)

    2011-08-08

    We analyze a stochastic model to describe the evolution of financial prices. We consider the stochastic term as a sum of the Wiener noise and a jump process. We point to the effects of the jumps on the return time evolution, a central concern of the econophysics literature. The presence of jumps suggests that the process can be described by an infinitely divisible characteristic function belonging to the De Finetti class. We then extend the De Finetti functions to a generalized nonlinear model and show the model to be capable of explaining return behavior. -- Highlights: → We analyze a stochastic model to describe the evolution of financial prices. → The stochastic term is considered as a sum of the Wiener noise and a jump process. → The process can be described by an infinitely divisible characteristic function belonging to the De Finetti class. → We extend the De Finetti functions to a generalized nonlinear model.

  12. Near-Optimal Sublinear Time Bounds for Distributed Random Walks

    CERN Document Server

    Sarma, Atish Das; Pandurangan, Gopal; Tetali, Prasad

    2009-01-01

    We focus on the problem of performing random walks efficiently in a distributed network. Given bandwidth constraints, the goal is to minimize the number of rounds required to obtain a random walk sample on an undirected network. Despite the widespread use of random walks in distributed computing, most algorithms that compute a random walk sample of length $\\ell$ naively, i.e., in $O(\\ell)$ rounds. Recently, the first sublinear time distributed algorithm was presented that ran in $\\tilde{O}(\\ell^{2/3}D^{1/3})$ rounds {$\\tilde{O}$ hides polylog factors in the number of nodes in the network} where $D$ is the diameter of the network [Das Sarma et al. PODC 2009]. This work further conjectured that a running time of $\\tilde{O}(\\sqrt{\\ell D})$ is possible and that this is essentially optimal. In this paper, we resolve these conjectures by showing almost tight bounds on distributed random walks. We present a distributed algorithm that performs a random walk of length $\\ell$ in $\\tilde{O}(\\sqrt{\\ell D})$ rounds, where...

  13. Jumps and Betas: A New Framework for Disentangling and Estimating Systematic Risks

    DEFF Research Database (Denmark)

    Todorov, Viktor; Bollerslev, Tim

    market portfolio, we find the estimated diffusive and jump betas with respect to the market to be quite dif- ferent for many of the stocks. Our findings have direct and important implications for empirical asset pricing finance and practical portfolio and risk management decisions.......We provide a new theoretical framework for disentangling and estimating sensitivity towards systematic diffusive and jump risks in the context of factor pricing models. Our estimates of the sensitivities towards systematic risks, or betas, are based on the notion of increasingly finer sampled...... returns over fixed time intervals. In addition to establish- ing consistency of our estimators, we also derive Central Limit Theorems characterizing their asymptotic distributions. In an empirical application of the new procedures using high-frequency data for forty individual stocks and an aggregate...

  14. Modeling, analysis, and design of Networked Control Systems using jump linear systems

    Energy Technology Data Exchange (ETDEWEB)

    Blind, R.; Muenz, U.; Allgoewer, F. [Stuttgart Univ. (Germany). Inst. fuer Systemtheorie und Regelungstechnik

    2008-07-01

    Based on recent results from the literature, we give an introduction on modeling, analysis, and design of networked control systems (NCS) using a jump linear system (JLS) formulation. In particular, we consider linear, discrete-time models with a packet-switched communication channel between the sensors and the controller. We assume that the packet-delay and drop-out in the channel can be modeled with independent, identically distributed random processes or Markov chains. With this assumption, we reformulate the problem as a jump system and present both stability conditions and three different controller design algorithms. These results are taken from the literature except for one controller design procedure which is new and has the advantage of giving a fast solution at the expense of higher conservatism. Finally, all design algorithms are illustrated and compared, based on a common simulation example. (orig.)

  15. 基于ℋ表示的时变随机Markov跳跃系统的能观性%Observability of time-varying stochastic Markov jump systems based onℋ-representation

    Institute of Scientific and Technical Information of China (English)

    盛立; 高明; 张维海

    2015-01-01

    研究时变连续和离散随机Markov跳跃系统(SMJSs)的能观性问题。基于ℋ表示方法将时变SMJSs转化为等价的时变线性系统,根据线性系统理论得到时变连续和离散SMJSs的能观性Gramian矩阵判据。数值仿真表明了所得结论的正确性。%The observability of time-varying continuous and discrete-time stochastic Markov jump systems(SMJSs) is investigated. Time-varying SMJSs are transformed into the equivalent time-varying linear systems based on the ℋ-representation method. Gramian matrix criteria for the observability of time-varying continuous and discrete-time SMJSs are derived based on the linear system theory. A numerical example is given to demonstrate the correctness of the obtained results.

  16. Real-time modeling and simulation of distribution feeder and distributed resources

    Science.gov (United States)

    Singh, Pawan

    The analysis of the electrical system dates back to the days when analog network analyzers were used. With the advent of digital computers, many programs were written for power-flow and short circuit analysis for the improvement of the electrical system. Real-time computer simulations can answer many what-if scenarios in the existing or the proposed power system. In this thesis, the standard IEEE 13-Node distribution feeder is developed and validated on a real-time platform OPAL-RT. The concept and the challenges of the real-time simulation are studied and addressed. Distributed energy resources include some of the commonly used distributed generation and storage devices like diesel engine, solar photovoltaic array, and battery storage system are modeled and simulated on a real-time platform. A microgrid encompasses a portion of an electric power distribution which is located downstream of the distribution substation. Normally, the microgrid operates in paralleled mode with the grid; however, scheduled or forced isolation can take place. In such conditions, the microgrid must have the ability to operate stably and autonomously. The microgrid can operate in grid connected and islanded mode, both the operating modes are studied in the last chapter. Towards the end, a simple microgrid controller modeled and simulated on the real-time platform is developed for energy management and protection for the microgrid.

  17. Distributed, Embedded and Real-time Java Systems

    CERN Document Server

    Wellings, Andy

    2012-01-01

    Research on real-time Java technology has been prolific over the past decade, leading to a large number of corresponding hardware and software solutions, and frameworks for distributed and embedded real-time Java systems.  This book is aimed primarily at researchers in real-time embedded systems, particularly those who wish to understand the current state of the art in using Java in this domain.  Much of the work in real-time distributed, embedded and real-time Java has focused on the Real-time Specification for Java (RTSJ) as the underlying base technology, and consequently many of the Chapters in this book address issues with, or solve problems using, this framework. Describes innovative techniques in: scheduling, memory management, quality of service and communication systems supporting real-time Java applications; Includes coverage of multiprocessor embedded systems and parallel programming; Discusses state-of-the-art resource management for embedded systems, including Java’s real-time garbage collect...

  18. Dose-time-response modeling using negative binomial distribution.

    Science.gov (United States)

    Roy, Munmun; Choudhury, Kanak; Islam, M M; Matin, M A

    2013-01-01

    People exposed to certain diseases are required to be treated with a safe and effective dose level of a drug. In epidemiological studies to find out an effective dose level, different dose levels are applied to the exposed and a certain number of cures is observed. Negative binomial distribution is considered to fit overdispersed Poisson count data. This study investigates the time effect on the response at different time points as well as at different dose levels. The point estimation and confidence bands for ED(100p)(t) and LT(100p)(d) are formulated in closed form for the proposed dose-time-response model with the negative binomial distribution. Numerical illustrations are carried out in order to check the performance level of the proposed model.

  19. Distributed Load Shedding over Directed Communication Networks with Time Delays

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Tao; Wu, Di

    2016-07-25

    When generation is insufficient to support all loads under emergencies, effective and efficient load shedding needs to be deployed in order to maintain the supply-demand balance. This paper presents a distributed load shedding algorithm, which makes efficient decision based on the discovered global information. In the global information discovery process, each load only communicates with its neighboring load via directed communication links possibly with arbitrarily large but bounded time varying communication delays. We propose a novel distributed information discovery algorithm based on ratio consensus. Simulation results are used to validate the proposed method.

  20. Probability distribution of arrival times in quantum mechanics

    CERN Document Server

    Delgado, V

    1998-01-01

    In a previous paper [Phys. Rev. A, in press] we introduced a self-adjoint operator $\\hat {{\\cal T}}(X)$ whose eigenstates can be used to define consistently a probability distribution of the time of arrival at a given spatial point. In the present work we show that the probability distribution previously proposed can be well understood on classical grounds in the sense that it is given by the expectation value of a certain positive definite operator $\\hat J^{(+)}(X)$ which is nothing but a straightforward quantum version of the modulus of the classical current. For quantum states highly localized in momentum space about a certain momentum $p_0 \

  1. A distributed scheduling algorithm for heterogeneous real-time systems

    Science.gov (United States)

    Zeineldine, Osman; El-Toweissy, Mohamed; Mukkamala, Ravi

    1991-01-01

    Much of the previous work on load balancing and scheduling in distributed environments was concerned with homogeneous systems and homogeneous loads. Several of the results indicated that random policies are as effective as other more complex load allocation policies. The effects of heterogeneity on scheduling algorithms for hard real time systems is examined. A distributed scheduler specifically to handle heterogeneities in both nodes and node traffic is proposed. The performance of the algorithm is measured in terms of the percentage of jobs discarded. While a random task allocation is very sensitive to heterogeneities, the algorithm is shown to be robust to such non-uniformities in system components and load.

  2. Temperature Distribution and Heat Saturating Time of Regenerative Heat Transfer

    Institute of Scientific and Technical Information of China (English)

    Li JIA; Ying MAO; Lixin YANG

    2006-01-01

    In this paper, heat transfer of the ceramic honeycomb regenerator was numerically simulated based on the computational fluid dynamics numerical analysis software CFX5. The longitudinal temperature distribution of regenerator and gas were obtained. The variation of temperature with time was discussed. In addition, the effects of some parameters such as switching time, gas temperature at the inlet of regenerator, height of regenerator and specific heat of the regenerative materials on heat saturating time were discussed. It provided primarily theoretic basis for further study of regenerative heat transfer mechanism.

  3. Time series power flow analysis for distribution connected PV generation.

    Energy Technology Data Exchange (ETDEWEB)

    Broderick, Robert Joseph; Quiroz, Jimmy Edward; Ellis, Abraham; Reno, Matthew J.; Smith, Jeff; Dugan, Roger

    2013-01-01

    Distributed photovoltaic (PV) projects must go through an interconnection study process before connecting to the distribution grid. These studies are intended to identify the likely impacts and mitigation alternatives. In the majority of the cases, system impacts can be ruled out or mitigation can be identified without an involved study, through a screening process or a simple supplemental review study. For some proposed projects, expensive and time-consuming interconnection studies are required. The challenges to performing the studies are twofold. First, every study scenario is potentially unique, as the studies are often highly specific to the amount of PV generation capacity that varies greatly from feeder to feeder and is often unevenly distributed along the same feeder. This can cause location-specific impacts and mitigations. The second challenge is the inherent variability in PV power output which can interact with feeder operation in complex ways, by affecting the operation of voltage regulation and protection devices. The typical simulation tools and methods in use today for distribution system planning are often not adequate to accurately assess these potential impacts. This report demonstrates how quasi-static time series (QSTS) simulation and high time-resolution data can be used to assess the potential impacts in a more comprehensive manner. The QSTS simulations are applied to a set of sample feeders with high PV deployment to illustrate the usefulness of the approach. The report describes methods that can help determine how PV affects distribution system operations. The simulation results are focused on enhancing the understanding of the underlying technical issues. The examples also highlight the steps needed to perform QSTS simulation and describe the data needed to drive the simulations. The goal of this report is to make the methodology of time series power flow analysis readily accessible to utilities and others responsible for evaluating

  4. Optimization of Time-Partitions for Mixed-Criticality Real-Time Distributed Embedded Systems

    DEFF Research Database (Denmark)

    Tamas-Selicean, Domitian; Pop, Paul

    2011-01-01

    In this paper we are interested in mixed-criticality embedded real-time applications mapped on distributed heterogeneous architectures. The architecture provides both spatial and temporal partitioning, thus enforcing enough separation for the critical applications. With temporal partitioning, each...

  5. Reversible jump Markov chain Monte Carlo for deconvolution.

    Science.gov (United States)

    Kang, Dongwoo; Verotta, Davide

    2007-06-01

    To solve the problem of estimating an unknown input function to a linear time invariant system we propose an adaptive non-parametric method based on reversible jump Markov chain Monte Carlo (RJMCMC). We use piecewise polynomial functions (splines) to represent the input function. The RJMCMC algorithm allows the exploration of a large space of competing models, in our case the collection of splines corresponding to alternative positions of breakpoints, and it is based on the specification of transition probabilities between the models. RJMCMC determines: the number and the position of the breakpoints, and the coefficients determining the shape of the spline, as well as the corresponding posterior distribution of breakpoints, number of breakpoints, coefficients and arbitrary statistics of interest associated with the estimation problem. Simulation studies show that the RJMCMC method can obtain accurate reconstructions of complex input functions, and obtains better results compared with standard non-parametric deconvolution methods. Applications to real data are also reported.

  6. The Crown Bite Jumping Herbst.

    Science.gov (United States)

    Owen, Reuel

    2003-01-01

    The Crown Bite Jumping Herbst Appliance is evaluated and combined with Straight Wire Arch Fixed Orthodontics in treatment of Class II, Division I malocclusions. This article will evaluate a combined orthodontic approach of "straightening teeth" and an orthognathic approach of "moving jaws or making skeletal changes." Orthodontic treatment cannot be accomplished well without establishing a healthy temporomandibular joint. This is defined by Keller as a joint that is "noiseless, painless and has a normal range of motion without deviation and deflection." It is not prudent to separate orthodontic treatment as its own entity without being aware of the changes in the temporomandibular joint before, during and after treatment. In other words, "If you're doing orthodontics you're doing TMJ treatment." One should treat toward a healthy, beautiful face asking, "Will proposed treatment achieve this goal?" Treatment should be able to be carried out in an efficient manner, minimizing treatment time, be comfortable and affordable for the patient, and profitable for the dentist. The finished treatment should meet Andrews' Six Keys of Occlusion, or Loudon's Twelve Commandments. Above all, do no harm to the patient. We think that a specific treatment plan can embrace these tenets. The focus will be to show Class II treatment using a modified Herbst Appliance and fixed straight wire orthodontics.

  7. Time-evolving distribution of time lags between commercial airline disasters

    CERN Document Server

    Ausloos, M

    2005-01-01

    We have studied the time lags between commercial line airplane disasters and their occurrence frequency till 2002, as obtained from a freely available website. We show that the time lags seem to be well described by Poisson random events, where the average events rate is itself a function of time, i.e. time-dependent Poisson events. This is likely due to the unsteady growth of the industry. The time lag distribution is compared with a truncated Tsallis distribution, thereby showing that the ''phenomenon'' has similarities with a Brownian particle with time dependent mass. We distinguish between ''other causes'' (or natural causes) and ''terrorism acts", the latter amounts to about 5 percents, but we find no drastic difference nor impact due to the latter on the overall distribution.

  8. Real-time dynamic imaging of virus distribution in vivo.

    Directory of Open Access Journals (Sweden)

    Sean E Hofherr

    Full Text Available The distribution of viruses and gene therapy vectors is difficult to assess in a living organism. For instance, trafficking in murine models can usually only be assessed after sacrificing the animal for tissue sectioning or extraction. These assays are laborious requiring whole animal sectioning to ascertain tissue localization. They also obviate the ability to perform longitudinal or kinetic studies in one animal. To track viruses after systemic infection, we have labeled adenoviruses with a near-infrared (NIR fluorophore and imaged these after intravenous injection in mice. Imaging was able to track and quantitate virus particles entering the jugular vein simultaneous with injection, appearing in the heart within 500 milliseconds, distributing in the bloodstream and throughout the animal within 7 seconds, and that the bulk of virus distribution was essentially complete within 3 minutes. These data provide the first in vivo real-time tracking of the rapid initial events of systemic virus infection.

  9. Implementation of a Wireless Time Distribution Testbed Protected with Quantum Key Distribution

    Energy Technology Data Exchange (ETDEWEB)

    Bonior, Jason D [ORNL; Evans, Philip G [ORNL; Sheets, Gregory S [ORNL; Jones, John P [ORNL; Flynn, Toby H [ORNL; O' Neil, Lori Ross [Pacific Northwest National Laboratory (PNNL); Hutton, William [Pacific Northwest National Laboratory (PNNL); Pratt, Richard [Pacific Northwest National Laboratory (PNNL); Carroll, Thomas E. [Pacific Northwest National Laboratory (PNNL)

    2017-01-01

    Secure time transfer is critical for many timesensitive applications. the Global Positioning System (GPS) which is often used for this purpose has been shown to be susceptible to spoofing attacks. Quantum Key Distribution offers a way to securely generate encryption keys at two locations. Through careful use of this information it is possible to create a system that is more resistant to spoofing attacks. In this paper we describe our work to create a testbed which utilizes QKD and traditional RF links. This testbed will be used for the development of more secure and spoofing resistant time distribution protocols.

  10. Gravity current jump conditions, revisited

    Science.gov (United States)

    Ungarish, Marius; Hogg, Andrew J.

    2016-11-01

    Consider the flow of a high-Reynolds-number gravity current of density ρc in an ambient fluid of density ρa in a horizontal channel z ∈ [ 0 , H ] , with gravity in - z direction. The motion is often modeled by a two-layer formulation which displays jumps (shocks) in the height of the interface, in particular at the leading front of the dense layer. Various theoretical models have been advanced to predict the dimensionless speed of the jump, Fr = U /√{g' h } ; g' , h are reduced gravity and jump height. We revisit this problem and using the Navier-Stokes equations, integrated over a control volume embedding the jump, derive balances of mass and momentum fluxes. We focus on understanding the closures needed to complete this model and we show the vital need to understand the pressure head losses over the jump, which we show can be related to the vorticity fluxes at the boundaries of the control volume. Our formulation leads to two governing equations for three dimensionless quantities. Closure requires one further assumption, depending on which we demonstrate that previous models for gravity current fronts and internal bores can be recovered. This analysis yield new insights into existing results, and also provides constraints for potential new formulae.

  11. Lightweight distributed computing for intraoperative real-time image guidance

    Science.gov (United States)

    Suwelack, Stefan; Katic, Darko; Wagner, Simon; Spengler, Patrick; Bodenstedt, Sebastian; Röhl, Sebastian; Dillmann, Rüdiger; Speidel, Stefanie

    2012-02-01

    In order to provide real-time intraoperative guidance, computer assisted surgery (CAS) systems often rely on computationally expensive algorithms. The real-time constraint is especially challenging if several components such as intraoperative image processing, soft tissue registration or context aware visualization are combined in a single system. In this paper, we present a lightweight approach to distribute the workload over several workstations based on the OpenIGTLink protocol. We use XML-based message passing for remote procedure calls and native types for transferring data such as images, meshes or point coordinates. Two different, but typical scenarios are considered in order to evaluate the performance of the new system. First, we analyze a real-time soft tissue registration algorithm based on a finite element (FE) model. Here, we use the proposed approach to distribute the computational workload between a primary workstation that handles sensor data processing and visualization and a dedicated workstation that runs the real-time FE algorithm. We show that the additional overhead that is introduced by the technique is small compared to the total execution time. Furthermore, the approach is used to speed up a context aware augmented reality based navigation system for dental implant surgery. In this scenario, the additional delay for running the computationally expensive reasoning server on a separate workstation is less than a millisecond. The results show that the presented approach is a promising strategy to speed up real-time CAS systems.

  12. A time reference distribution concept for a time division communication network

    Science.gov (United States)

    Stover, H. A.

    1973-01-01

    Starting with an assumed ideal network having perfect clocks at every node and known fixed transmission delays between nodes, the effects of adding tolerances to both transmission delays and nodal clocks is described. The advantages of controlling tolerances on time rather than frequency are discussed. Then a concept is presented for maintaining these tolerances on time throughout the network. This concept, called time reference distribution, is a systematic technique for distributing time reference to all nodes of the network. It is reliable, survivable and possesses many other desirable characteristics. Some of its features such as an excellent self monitoring capability will be pointed out. Some preliminary estimates of the accuracy that might be expected are developed and there is a brief discussion of the impact upon communication system costs. Time reference distribution is a concept that appears very attractive. It has not had experimental evaluation and has not yet been endorsed for use in any communication network.

  13. Cooperative jump motions of jammed particles in a one-dimensional periodic potential.

    Science.gov (United States)

    Sakaguchi, Hidetsugu

    2009-12-01

    Cooperative jump motions are studied for mutually interacting particles in a one-dimensional periodic potential. The diffusion constant for the cooperative motion in systems including a small number of particles is numerically calculated and it is compared with theoretical estimates. We find that the size distribution of the cooperative jump motions obeys an exponential law in a large system.

  14. Cooperative jump motions of jammed particles in a one-dimensional periodic potential

    OpenAIRE

    Sakaguchi, Hidetsugu

    2009-01-01

    Cooperative jump motions are studied for mutually interacting particles in a one-dimensional periodic potential. The diffusion constant for the cooperative motion in systems including a small number of particles is numerically calculated and it is compared with theoretical estimates. We find that the size distribution of the cooperative jump motions obeys an exponential law in a large system.

  15. Poverty Index With Time Varying Consumption and Income Distributions

    OpenAIRE

    2016-01-01

    In a recent work (Chattopadhyay, A. K. et al, Europhys. Lett. {\\bf 91}, 58003, 2010) based on food consumption statistics, we showed how a stochastic agent based model could represent the time variation of the income distribution statistics in a developing economy, thereby defining an alternative \\enquote{poverty index} (PI) that largely agreed with poverty gap index data. This PI used two variables, the probability density function of the income statistics and a consumption deprivation (CD) ...

  16. Kinetic asymmetries between forward and drop jump landing tasks

    Directory of Open Access Journals (Sweden)

    Morgana Alves de Britto

    2015-11-01

    Full Text Available Landing asymmetry is a risk factor for knee anterior cruciate ligament injury. The aim of this study was to identify kinetic asymmetries in healthy recreational athletes performing different jump-landing techniques. Twelve recreational athletes engaged in regular training underwent kinetic evaluation using two 3D force plates and were analyzed for: (a three-dimensional peak forces, (b time to peak vertical force, and (c initial phase asymmetries. All data were collected during performance of unilateral and bilateral trials of forward and drop jump tasks. Forward jump-landing tasks elicited greater kinetic asymmetry than drop-landing tasks. Regardless of jump-landing technique, the preferred leg experienced higher forces than the non-preferred leg. The initial landing phase showed more kinetic asymmetries than the later phase when peak vertical forces occur. It was concluded that when screening athletes for kinetic asymmetries that may predispose them to injury, forward jump-landing tasks and the early landing phase might show more kinetic asymmetries than drop jump-landing tasks and the late landing phase, respectively.

  17. Real-time Trading Strategies for Proactive Distribution Company with Distributed Generation and Demand Response

    DEFF Research Database (Denmark)

    Wang, Qi

    and DR resources, and upwardly trading in the TL real-time market, resulting in a proactive manner. The DL aggregator (DA) is dened to manage these small-scale and dispersed DGs and DRs. A methodology is proposed in this thesis for a proactive DISCO (PDISCO) to strategically trade with DAs......-level model is proposed to elaborate the interactions between the PDISCO's bids/offers and the TL market's outcomes. The PDISCO's trading performance features in a bidirectional transaction. In this thesis, replacing the lower-level problems with the primal-dual approach, each proposed bi-level model......Distributed energy resources (DERs), such as distributed generation (DG) and demand response (DR), have been recognized worldwide as valuable resources. High integration of DG and DR in the distribution network inspires a potential deregulated environment for the distribution company (DISCO...

  18. On enhanced time-varying distributed H systems

    Directory of Open Access Journals (Sweden)

    Sergey Verlan

    2002-11-01

    Full Text Available An enhanced time-varying distributed H system (ETVDH system is a slightly different definition of the time-varying distributed H system (TVDH system [9] and it was proposed by M. Margenstern and Yu. Rogozhin in [4] under the name of "extended time-varying distributed H system''. The main difference is that the components of the ETVDH system are H systems and therefore splicing rules may be applied more than once as it is done in TVDH systems. This leads to difficulties in investigating the behavior of such systems because they have a higher level of parallelism. It is proved that ETVDH systems of degree 2 (i.e. with 2 components generate all recursively enumerable languages in a sequential way [7] and that ETVDH systems of degree 4 generate all recursively enumerable languages in a "parallel'' way, modelling a formal type-0 grammar [11]. In this paper we improve the last result and we present an ETVDH system of degree 3 which generates all recursively enumerable languages modelling type-0 formal grammars. The problem of the existence of ETVDH systems of degree 2 which generate all recursively enumerable languages in a "parallel'' way is left open.

  19. High-resolution time-frequency distributions for fall detection

    Science.gov (United States)

    Amin, Moeness G.; Zhang, Yimin D.; Boashash, Boualem

    2015-05-01

    In this paper, we examine the role of high-resolution time-frequency distributions (TFDs) of radar micro-Doppler signatures for fall detection. The work supports the recent and rising interest in using emerging radar technology for elderly care and assisted living. Spectrograms have been the de facto joint-variable signal representation, depicting the signal power in both time and frequency. Although there have been major advances in designing quadratic TFDs which are superior to spectrograms in terms of detailing the local signal behavior, the contributions of these distributions in the area of human motion classifications and their offerings in enhanced feature extractions have not yet been properly evaluated. The main purpose of this paper is to show the effect of using high-resolution TFD kernels, in lieu of spectrogram, on fall detection. We focus on the extended modified B-distribution (EMBD) and exploit the level of details it provides as compared with the coarse and smoothed time-frequency signatures offered by spectrograms.

  20. Time and temporality: linguistic distribution in human life-games

    DEFF Research Database (Denmark)

    Cowley, Stephen

    2014-01-01

    While clock-time can be used to clarify facts, all living systems construct their own temporalities. Having illustrated the claim for foxtail grasses, it is argued that, with motility and brains, organisms came to use temporalities that build flexibility into behavior. With the rise of human...... culture, individuals developed a knack of using linguistic distribution to link metabolism with collective ways of assessing and managing experience. Of human temporal management, the best known case is the mental time travel enabled by, among other functions, autobiographical memory. One contribution...

  1. Time-Mean Helicity Distribution in Turbulent Swirling Jets

    Directory of Open Access Journals (Sweden)

    V. Tesař

    2005-01-01

    Full Text Available Helicity offers an alternative approach to investigations of the structure of turbulent flows. Knowledge of the spatial distribution of the time-mean component of helicity is the starting point. Yet very little is known even about basic cases in which Helicity plays important role, such as the case of a swirling jet. This is the subject of the present investigations, based mainly on numerical flowfield computations. The region of significantly large time-mean helicity density is found only in a rather small region reaching to several nozzle diameters downstream from the exit. The most important result is the similarity of the helicity density profiles. 

  2. How far can Tarzan jump?

    Science.gov (United States)

    Shima, Hiroyuki

    2012-11-01

    The tree-based rope swing is a popular recreational facility, often installed in outdoor areas. Hanging from a rope, users drop from a high platform and then swing at great speed like ‘Tarzan’, finally jumping ahead to land on the ground. The question naturally arises, how far can Tarzan jump using the swing? In this paper, I present an introductory analysis of the mechanics of the Tarzan swing, a large pendulum-like swing with Tarzan himself attached as weight. This enables determination of how much further forward Tarzan can jump using a given swing apparatus. The discussion is based on elementary mechanics and is, therefore, expected to provide rich opportunities for investigations using analytic and numerical methods.

  3. How far can Tarzan jump?

    CERN Document Server

    Shima, Hiroyuki

    2012-01-01

    The tree-based rope swing is a popular recreation facility, often installed in outdoor areas, giving pleasure to thrill-seekers. In the setting, one drops down from a high platform, hanging from a rope, then swings at a great speed like "Tarzan", and finally jumps ahead to land on the ground. The question now arises: How far can Tarzan jump by the swing? In this article, I present an introductory analysis of the Tarzan swing mechanics, a big pendulum-like swing with Tarzan himself attached as weight. The analysis enables determination of how farther forward Tarzan can jump using a given swing apparatus. The discussion is based on elementary mechanics and, therefore, expected to provide rich opportunities for investigations using analytic and numerical methods.

  4. Real Time Scheduling Services for Distributed RT-CORBA Applications

    Directory of Open Access Journals (Sweden)

    Bineta Tresa Mathew

    2012-12-01

    Full Text Available Distributed computing environment is flexible to control in complex embedded systems and their software components gain complexity when these systems are equipped with many microcontrollers and software object which covers diverse platforms, this system is called as DRE system. These DRE systems need new inter-object communication solution thus QoS-enabled middleware services and mechanisms have begun to emerge. Real-time application domain benefit from flexible and open distributed architectures, such as those defined by the CORBA specification. CORBA is well-suited to conventional request/response applications, but not suited to real-time applications due to the lack of QoS features and performance optimizations. The paper shows the design and implementation of the high performance scheduling technique for the real time applications domain with CORBA systems. Four different algorithms are compared by using attributes of real time tasks constraints based on CORBA specification such as RMS, MLF, MUF and EDF. The experimental outcome demonstrates the better performance of MLF by analyzing the time taken for the execution of several numbers of tasks and further it can be compared with the combination of RMS and MLF to reach the best performance strategy.

  5. A probability distribution approach to synthetic turbulence time series

    Science.gov (United States)

    Sinhuber, Michael; Bodenschatz, Eberhard; Wilczek, Michael

    2016-11-01

    The statistical features of turbulence can be described in terms of multi-point probability density functions (PDFs). The complexity of these statistical objects increases rapidly with the number of points. This raises the question of how much information has to be incorporated into statistical models of turbulence to capture essential features such as inertial-range scaling and intermittency. Using high Reynolds number hot-wire data obtained at the Variable Density Turbulence Tunnel at the Max Planck Institute for Dynamics and Self-Organization, we establish a PDF-based approach on generating synthetic time series that reproduce those features. To do this, we measure three-point conditional PDFs from the experimental data and use an adaption-rejection method to draw random velocities from this distribution to produce synthetic time series. Analyzing these synthetic time series, we find that time series based on even low-dimensional conditional PDFs already capture some essential features of real turbulent flows.

  6. Effect of Instructions on Selected Jump Squat Variables.

    Science.gov (United States)

    Talpey, Scott W; Young, Warren B; Beseler, Bradley

    2016-09-01

    Talpey, SW, Young, WB, and Beseler, B. Effect of instructions on selected jump squat variables. J Strength Cond Res 30(9): 2508-2513, 2016-The purpose of this study was to compare 2 instructions on the performance of selected variables in a jump squat (JS) exercise. The second purpose was to determine the relationships between JS variables and sprint performance. Eighteen male subjects with resistance training experience performed 2 sets of 4 JS with no extra load with the instructions to concentrate on (a) jumping for maximum height and (b) extending the legs as fast as possible to maximize explosive force. Sprint performance was assessed at 0- to 10-m and 10- to 20-m distances. From the JS jump height, peak power, relative peak power, peak force, peak velocity, and countermovement distance were measured from a force platform and position transducer system. The JS variables under the 2 instructions were compared with paired t-tests, and the relationships between these variables and sprint performance were determined with Pearson's correlations. The jump height instruction produced greater mean jump height and peak velocity (p 0.05). Jump height was the variable that correlated most strongly with 10-m time and 10- to 20-m time under both instructions. The height instruction produced a stronger correlation with 10-m time (r = -0.455), but the fast leg extension JS produced a greater correlation with 10-20 time (r = -0.545). The results indicate that instructions have a meaningful influence on JS variables and therefore need to be taken into consideration when assessing or training athletes.

  7. Time-optimal control of infinite order distributed parabolic systems involving time lags

    Directory of Open Access Journals (Sweden)

    G.M. Bahaa

    2014-06-01

    Full Text Available A time-optimal control problem for linear infinite order distributed parabolic systems involving constant time lags appear both in the state equation and in the boundary condition is presented. Some particular properties of the optimal control are discussed.

  8. Embedding and Distributing Constant Time Delay in Circle Time and Transitions.

    Science.gov (United States)

    Wolery, Mark; Anthony, Leslie; Caldwell, Nicola K.; Snyder, Erin D.; Morgante, James D.

    2002-01-01

    This study evaluated embedding and distributing constant time delay instructional trials into circle time and transitions between activities in a summer camp program. Three boys (ages 5-8) with disabilities or behavior problems participated. Results indicated the children acquired the behaviors they were taught and generalized the learned…

  9. Distribution of relaxation times of relaxors: comparison with dipolar glasses

    Energy Technology Data Exchange (ETDEWEB)

    Banys, Juras; Grigalaitis, Robertas; Mikonis, Andrejus; Keburis, Povilas [Faculty of Physics, Vilnius University, Sauletekio 9, 10222 Vilnius (Lithuania); Macutkevic, Jan [Semiconductor Physics Institute, A. Gostauto 11, 01108 Vilnius (Lithuania)

    2009-12-15

    In the present publication we report the results of dielectric spectroscopy investigations of two classes of materials - relaxor and dipolar glasses. As model relaxor was chosen (Pb{sub 1-x}La{sub x})(Zr{sub y}Ti{sub 1-y})O{sub 3} (PLZT 100(x/y/1-y)). The real distribution function of the relaxation times f ({tau}) of the relaxor ferroelectric ceramics PLZT 8/65/35 and 9.5/65/35 was calculated from the dielectric measurements results in the wide frequency range (10{sup 1}-10{sup 12} Hz). Below the Burns temperature T{sub B} {approx_equal} 620 K, when the clusters begin to appear on cooling, the distribution function of the relaxation times is symmetrically shaped. On cooling the dispersion and loss spectra strongly broaden and slow down, the f ({tau}) function becomes asymmetrically shaped and the second maximum appears. The width of the f ({tau}) function was calculated at different temperatures. The longest relaxation times diverge according to the Vogel-Fulcher law with the freezing temperature 299 K and 252 K for the 8/65/35 and 9.5/65/35 samples, respectively. The shortest relaxation time is about 10{sup -12} s and it remains almost temperature independent. Similar behaviour was observed in dipolar glasses betaine phosphate betaine phosphite (BP/BPI). Much more information was obtained from two dimensional distribution of the relaxation times. This confirmed Meyer-Neldel law in relaxors and dipolar glasses. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  10. Time-of-arrival distribution for arbitrary potentials and Wigner's time-energy uncertainty relation

    CERN Document Server

    Baute, A D; Palao, J P; Muga, J G; Egusquiza, I L

    2000-01-01

    A realization of the concept of "crossing state" invoked, but not implemented, by Wigner, allows to advance in two important aspects of the time of arrival in quantum mechanics: (i) For free motion, we find that the limitations described by Aharonov et al. in Phys. Rev. A 57, 4130 (1998) for the time-of-arrival uncertainty at low energies for certain mesurement models are in fact already present in the intrinsic time-of-arrival distribution of Kijowski; (ii) We have also found a covariant generalization of this distribution for arbitrary potentials and positions.

  11. Scheduling transactions in mobile distributed real-time database systems

    Institute of Scientific and Technical Information of China (English)

    LEI Xiang-dong; ZHAO Yue-long; CHEN Song-qiao; YUAN Xiao-li

    2008-01-01

    A DMVOCC-MVDA (distributed multiversion optimistic concurrency control with multiversion dynamic adjustment) protocol was presented to process mobile distributed real-time transaction in mobile broadcast environments. At the mobile hosts, all transactions perform local pre-validation. The local pre-validation process is carried out against the committed transactions at the server in the last broadcast cycle. Transactions that survive in local pre-validation must be submitted to the server for local final validation. The new protocol eliminates conflicts between mobile read-only and mobile update transactions, and resolves data conflicts flexibly by using multiversion dynamic adjustment of serialization order to avoid unnecessary restarts of transactions.Mobile read-only transactions can be committed with no-blocking, and respond time of mobile read-only transactions is greatly shortened. The tolerance of mobile transactions of disconnections from the broadcast channel is increased. In global validation mobile distributed transactions have to do check to ensure distributed serializability in all participants. The simulation results show that the new concurrency control protocol proposed offers better performance than other protocols in terms of miss rate, restart rate,commit rate. Under high work load (think time is 1s) the miss rate of DMVOCC-MVDA is only 14.6%, is significantly lower than that of other protocols. The restart rate of DMVOCC-MVDA is only 32.3%, showing that DMVOCC-MVDA can effectively reduce the restart rate of mobile transactions. And the commit rate of DMVOCC-MVDA is up to 61.2%, which is obviously higher than that of other protocols.

  12. A comparison of pairs figure skaters in repeated jumps.

    Science.gov (United States)

    Sands, William A; Kimmel, Wendy L; McNeal, Jeni R; Murray, Steven Ross; Stone, Michael H

    2012-01-01

    Trends in pairs figure skating have shown that increasingly difficult jumps have become an essential aspect of high-level performance, especially in the latter part of a competitive program. We compared a repeated jump power index in a 60 s repeated jump test to determine the relationship of repeated jump test to competitive rank and to measure 2D hip, knee, and ankle angles and angular velocities at 0, 20, 40, and 60 s. Eighteen National Team Pairs Figure Skaters performed a 60 s repeated jump test on a large switch-mat with timing of flight and ground durations and digital video recording. Each 60-s period was divided into 6, 10-s intervals, with power indexes (W/kg) calculated for each 10-s interval. Power index by 10-s interval repeated measures ANOVAs (RMANOVA) showed that males exceeded females at all intervals, and the highest power index interval was during 10 to 20 s for both sexes. RMANOVAs of angles and angular velocities showed main effects for time only. Power index and jumping techniques among figure skaters showed rapid and steady declines over the test duration. Power index can predict approximately 50% of competitive rank variance, and sex differences in jumping technique were rare. Key pointsThe repeated jumps test can account for about 50% of the variance in pairs ranks.Changes in technique are largely due to fatigue, but the athletes were able to maintain a maximum flexion knee angle very close to the desired 90 degrees. Changes in angular velocity and jump heights occurred as expected, again probably due to fatigue.As expected from metabolic information, the athletes' power indexes peak around 20s and decline thereafter. Coaches should be aware of this time as a boundary beyond which fatigue becomes more manifest, and use careful choreographic choices to provide rest periods that are disguised as less demanding skating elements to afford recovery.The repeated jumps test may be a helpful off-ice test of power-endurance for figure skaters.

  13. Towards Stability Analysis of Jump Linear Systems with State-Dependent and Stochastic Switching

    Science.gov (United States)

    Tejada, Arturo; Gonzalez, Oscar R.; Gray, W. Steven

    2004-01-01

    This paper analyzes the stability of hierarchical jump linear systems where the supervisor is driven by a Markovian stochastic process and by the values of the supervised jump linear system s states. The stability framework for this class of systems is developed over infinite and finite time horizons. The framework is then used to derive sufficient stability conditions for a specific class of hybrid jump linear systems with performance supervision. New sufficient stochastic stability conditions for discrete-time jump linear systems are also presented.

  14. Inversion of generalized relaxation time distributions with optimized damping parameter

    Science.gov (United States)

    Florsch, Nicolas; Revil, André; Camerlynck, Christian

    2014-10-01

    Retrieving the Relaxation Time Distribution (RDT), the Grains Size Distribution (GSD) or the Pore Size Distribution (PSD) from low-frequency impedance spectra is a major goal in geophysics. The “Generalized RTD” generalizes parametric models like Cole-Cole and many others, but remains tricky to invert since this inverse problem is ill-posed. We propose to use generalized relaxation basis function (for instance by decomposing the spectra on basis of generalized Cole-Cole relaxation elements instead of the classical Debye basis) and to use the L-curve approach to optimize the damping parameter required to get smooth and realistic inverse solutions. We apply our algorithm to three examples, one synthetic and two real data sets, and the program includes the possibility of converting the RTD into GSD or PSD by choosing the value of the constant connecting the relaxation time to the characteristic polarization size of interest. A high frequencies (typically above 1 kHz), a dielectric term in taken into account in the model. The code is provided as an open Matlab source as a supplementary file associated with this paper.

  15. Generalized Poisson-Lindely Distribution in Promotion Time Cure Model

    Directory of Open Access Journals (Sweden)

    Ahmad Reza Baghestani

    2014-12-01

    Full Text Available 1024x768 Long-term survival analysis has been improved in the last decade and most of the models concentrate on the promotion time cure model that proposed by Chen (1999. These models are based on the distribution of latent variable N, number of initiated node cells. In this paper we proposed a Generalized Poisson-Lindely distribution that is another option instead of Negative Binomial distribution when there is overdispersion. The results indicated a better fitness compared to others, because of its more flexibility. Parameter estimation has been done by Bayesian approach, in a real data set and a simulation study has shown the advantages of proposed model. Normal 0 false false false /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:10.0pt; font-family:"Times New Roman"; mso-ansi-language:#0400; mso-fareast-language:#0400; mso-bidi-language:#0400;}

  16. Validation of the iPhone app using the force platform to estimate vertical jump height.

    Science.gov (United States)

    Carlos-Vivas, Jorge; Martin-Martinez, Juan P; Hernandez-Mocholi, Miguel A; Perez-Gomez, Jorge

    2016-09-22

    Vertical jump performance has been evaluated with several devices: force platforms, contact mats, Vertec, accelerometers, infrared cameras and high-velocity cameras; however, the force platform is considered the gold standard for measuring vertical jump height. The purpose of this study was to validate the iPhone app, My Jump, that measures vertical jump height by comparing it with other methods that use the force platform to estimate vertical jump height, namely, vertical velocity at take-off and time in the air. A total of 40 sport sciences students (age 21.4 ± 1.9 years) completed five countermovement jumps (CMJs) over a force platform. Thus, 200 CMJ heights were evaluated from the vertical velocity at take-off and the time in the air using the force platform, and from the time in the air with the mobile application My Jump. The height obtained was compared using the intraclass correlation coefficient (ICC). Correlation between APP and force platform using the time in the air was perfect (ICC = 1.000, P vertical velocity at take-off was also very high (ICC = 0.996, P vertical jump performance; however, vertical jump height is slightly overestimated compared with that of the force platform.

  17. The Missing Luminous Blue Variables and the Bistability Jump

    NARCIS (Netherlands)

    N. Smith; J.S. Vink; A. de Koter

    2004-01-01

    We discuss an interesting feature of the distribution of luminous blue variables (LBVs) on the H-R diagram, and we propose a connection with the bistability jump seen in the winds of early-type supergiants. There appears to be a deficiency of quiescent LBVs on the S Doradus instability strip at lumi

  18. Right Skewed Distribution of Activity Times in PERT

    Directory of Open Access Journals (Sweden)

    N.Ravi Shankar,

    2011-04-01

    Full Text Available A usual supposition in project management is that the distribution for most activities in a project network is right skewed. The prime objective of this paper is to find new path float in Program Evaluation and Review Technique (PERT for right skewed distribution of activity times in a project network. The new path float concept will bring useful planning information to the decision managers and the planners in the project construction. Our new path float in PERT are compared with normal, lognormal approximations with two parameters and also with beta approximations with three parameters. The comparison reveals that beta approximations with three parameters performs better than normal and lognormal approximations suggested.

  19. Distributed Detection over Time Varying Networks: Large Deviations Analysis

    CERN Document Server

    Bajovic, Dragana; Xavier, Joao; Sinopoli, Bruno; Moura, Jose M F

    2010-01-01

    We apply large deviations theory to study asymptotic performance of running consensus distributed detection in sensor networks. Running consensus is a stochastic approximation type algorithm, recently proposed. At each time step k, the state at each sensor is updated by a local averaging of the sensor's own state and the states of its neighbors (consensus) and by accounting for the new observations (innovation). We assume Gaussian, spatially correlated observations. We allow the underlying network be time varying, provided that the graph that collects the union of links that are online at least once over a finite time window is connected. This paper shows through large deviations that, under stated assumptions on the network connectivity and sensors' observations, the running consensus detection asymptotically approaches in performance the optimal centralized detection. That is, the Bayes probability of detection error (with the running consensus detector) decays exponentially to zero as k goes to infinity at...

  20. Alzheimer's Deaths Jump 55 Percent: CDC

    Science.gov (United States)

    ... page: https://medlineplus.gov/news/fullstory_165941.html Alzheimer's Deaths Jump 55 Percent: CDC More patients also ... News) -- As more baby boomers age, deaths from Alzheimer's disease have jumped 55 percent, and in a ...

  1. Inherent enumerability of strong jump-traceability

    CERN Document Server

    Diamondstone, David; Turetsky, Daniel

    2011-01-01

    We show that every strongly jump-traceable set obeys every benign cost function. Moreover, we show that every strongly jump-traceable set is computable from a computably enumerable strongly jump-traceable set. This allows us to generalise properties of c.e.\\ strongly jump-traceable sets to all such sets. For example, the strongly jump-traceable sets induce an ideal in the Turing degrees; the strongly jump-traceable sets are precisely those that are computable from all superlow Martin-L\\"{o}f random sets; the strongly jump-traceable sets are precisely those that are a base for $\\text{Demuth}_{\\text{BLR}}$-randomness; and strong jump-traceability is equivalent to strong superlowness.

  2. Structural estimation of jump-diffusion processes in macroeconomics

    DEFF Research Database (Denmark)

    Posch, Olaf

    2009-01-01

    This paper shows how to solve and estimate a continuous-time dynamic stochastic general equilibrium (DSGE) model with jumps. It also shows that a continuous-time formulation can make it simpler (relative to its discrete-time version) to compute and estimate the deep parameters using the likelihoo...

  3. Jump Variation Estimation with Noisy High Frequency Financial Data via Wavelets

    Directory of Open Access Journals (Sweden)

    Xin Zhang

    2016-08-01

    Full Text Available This paper develops a method to improve the estimation of jump variation using high frequency data with the existence of market microstructure noises. Accurate estimation of jump variation is in high demand, as it is an important component of volatility in finance for portfolio allocation, derivative pricing and risk management. The method has a two-step procedure with detection and estimation. In Step 1, we detect the jump locations by performing wavelet transformation on the observed noisy price processes. Since wavelet coefficients are significantly larger at the jump locations than the others, we calibrate the wavelet coefficients through a threshold and declare jump points if the absolute wavelet coefficients exceed the threshold. In Step 2 we estimate the jump variation by averaging noisy price processes at each side of a declared jump point and then taking the difference between the two averages of the jump point. Specifically, for each jump location detected in Step 1, we get two averages from the observed noisy price processes, one before the detected jump location and one after it, and then take their difference to estimate the jump variation. Theoretically, we show that the two-step procedure based on average realized volatility processes can achieve a convergence rate close to O P ( n − 4 / 9 , which is better than the convergence rate O P ( n − 1 / 4 for the procedure based on the original noisy process, where n is the sample size. Numerically, the method based on average realized volatility processes indeed performs better than that based on the price processes. Empirically, we study the distribution of jump variation using Dow Jones Industrial Average stocks and compare the results using the original price process and the average realized volatility processes.

  4. Model for polygonal hydraulic jumps

    DEFF Research Database (Denmark)

    Martens, Erik Andreas; Watanabe, Shinya; Bohr, Tomas

    2012-01-01

    ) near the free surface in the jump region. The model consists of mass conservation and radial force balance between hydrostatic pressure and viscous stresses on the roller surface. In addition, we consider the azimuthal force balance, primarily between pressure and viscosity, but also including...

  5. Jumping property of Lyapunov values

    Institute of Scientific and Technical Information of China (English)

    毛锐; 王铎

    1996-01-01

    A sufficient condition for fcth Lyapunov value to be zero for planar polynomial vector fields is given, which extends the result of "jumping property’ of Lyapunov values obtained by Wang Duo to more general cases. A concrete example that the origin cannot be weak focus of order 1, 2, 4, 5, 8 is presented.

  6. Directional short-time Fourier transform of distributions

    Directory of Open Access Journals (Sweden)

    Katerina Hadzi-Velkova Saneva

    2016-04-01

    Full Text Available Abstract In this paper we consider the directional short-time Fourier transform (DSTFT that was introduced and investigated in (Giv in J. Math. Anal. Appl. 399:100-107, 2013. We analyze the DSTFT and its transpose on test function spaces S ( R n $\\mathcal {S}(\\mathbb {R}^{n}$ and S ( Y 2 n $\\mathcal {S}(\\mathbb {Y}^{2n}$ , respectively, and prove the continuity theorems on these spaces. Then the obtained results are used to extend the DSTFT to spaces of distributions.

  7. Theory and practice of runoff space-time distribution

    Institute of Scientific and Technical Information of China (English)

    WANG; Hao; WANG; Chengming; WANG; Jianhua; QIN; Dayong; ZH

    2004-01-01

    Based on the domestic and foreign concerning researches, this paper submits the runoff space-time distribution theory which shows evident scientific significances and powerful practical functions. On the basis of digital basin unit cell deriving from the digital elevation model (DEM) and assumption of linear confluence, this theory has been applied successfully to the runoff correlation researches in humid regions. In order to prove the adaptability of the theory in arid and semi-drought regions,this paper is used to the runoff correlation analysis in Wuding River basin--a tributary of Yellow River Basin, and has gained preliminary effective verification.

  8. Arrival time distribution of muons in extensive air showers

    Energy Technology Data Exchange (ETDEWEB)

    Villiers, E.J. de; Walt, D.J. van der; Urk, G. van; Grieder, P.K.F.

    1986-06-01

    The longitudinal structure of the muon disc has been studied up to distances of 60 m from the shower axis by measuring the relative arrival times between single muons in extensive air showers with particle numbers of 1 x 10/sup 5/ to 2 x 10/sup 7/. A rather constant thickness of the shower disc was found up to 60 m from the shower axis. The longitudinal distribution up to 30 m from the shower axis is not in agreement with the results from a shower model with a fairly high multiplicity rule for secondary particle formation in hadron interactions.

  9. Topology Identification of General Dynamical Network with Distributed Time Delays

    Institute of Scientific and Technical Information of China (English)

    WU Zhao-Yan; FU Xin-Chu

    2009-01-01

    General dynamical networks with distributed time delays are studied. The topology of the networks are viewed as unknown parameters, which need to be identified. Some auxiliary systems (also called the network estimators)are designed to achieve this goal. Both linear feedback control and adaptive strategy are applied in designing these network estimators. Based on linear matrix inequalities and the Lyapunov function method, the sufficient condition for the achievement of topology identification is obtained. This method can also better monitor the switching topology of dynamical networks. Illustrative examples are provided to show the effectiveness of this method.

  10. Asymptotic Behaviour and Extinction of Delay Lotka-Volterra Model with Jump-Diffusion

    Directory of Open Access Journals (Sweden)

    Dan Li

    2014-01-01

    Full Text Available This paper studies the effect of jump-diffusion random environmental perturbations on the asymptotic behaviour and extinction of Lotka-Volterra population dynamics with delays. The contributions of this paper lie in the following: (a to consider delay stochastic differential equation with jumps, we introduce a proper initial data space, in which the initial data may be discontinuous function with downward jumps; (b we show that the delay stochastic differential equation with jumps associated with our model has a unique global positive solution and give sufficient conditions that ensure stochastically ultimate boundedness, moment average boundedness in time, and asymptotic polynomial growth of our model; (c the sufficient conditions for the extinction of the system are obtained, which generalized the former results and showed that the sufficiently large random jump magnitudes and intensity (average rate of jump events arrival may lead to extinction of the population.

  11. A jump forwards with mathematics and physics

    NARCIS (Netherlands)

    A. Heck; P. Uylings

    2011-01-01

    We jump on human body motions such as bouncing on a jumping stick, hopping, and making kangaroo jumps. Students can record the movements with a digital camera and use their video clips to investigate the motions with suitable video analysis and modelling software. We discuss some mathematical models

  12. Strawberry Shortcake and Other Jumping Rope Ideas.

    Science.gov (United States)

    Adams, Polly K.; Taylor, Michaell K.

    Information, guidelines, and activities for jumping rope are given. A short history of jumping rope explains how it evolved from a spring ritual for men to a play activity involving mostly young girls. Physical and cultural reasons are given as to why jumping rope has been more a sport for girls than for boys. Research studies are noted which show…

  13. Strawberry Shortcake and Other Jumping Rope Ideas.

    Science.gov (United States)

    Adams, Polly K.; Taylor, Michaell K.

    Information, guidelines, and activities for jumping rope are given. A short history of jumping rope explains how it evolved from a spring ritual for men to a play activity involving mostly young girls. Physical and cultural reasons are given as to why jumping rope has been more a sport for girls than for boys. Research studies are noted which show…

  14. Mesopause jumps at Antarctic latitudes

    Science.gov (United States)

    Lübken, Franz-Josef; Höffner, Josef; Becker, Erich; Latteck, Ralph; Murphy, Damian

    2016-04-01

    Recent high resolution temperature measurements by resonance lidar at Davis (69°S) occasionally showed a sudden mesopause altitude increase by ˜5 km and an associated mesopause temperature decrease by ˜10 K. We present further observations which are closely related to this 'mesopause jump', namely the increase of mean height of polar mesospheric summer echoes (PMSE) observed by a VHF radar, very strong westward winds in the upper mesosphere measured by an MF radar, and relatively large eastward winds in the stratosphere taken from reanalysis. We compare to similar observations in the Northern Hemisphere, namely at ALOMAR (69°N) where such mesopause jumps have never been observed. We present a detailed explanation of mesopause jumps. They occur only when stratospheric winds are moderately eastward and mesospheric winds are very large (westward). Under these conditions, gravity waves with comparatively large eastward phase Speeds can pass the stratosphere and propagate to the lower thermosphere because their vertical wavelengths in the mesosphere are rather large which implies reduced dynamical stability. When finally breaking in the lower thermosphere, these waves drive an enhanced residual circulation that causes a cold and high-altitude mesopause. The conditions for a mesopause jump occur only in the Southern Hemisphere (SH) and are associated with the late breakdown of the polar vortex. Mesopause jumps are primarily, but not only, observed prior and close to solstice. We also show that during the onset of PMSE in the SH, stratospheric zonal winds are still eastward (up to 30 m/s), and that the onset is not closely related to the Transition of the stratospheric circulation.

  15. Modeling hyporheic exchange and in-stream transport with time-varying transit time distributions

    Science.gov (United States)

    Ball, A.; Harman, C. J.; Ward, A. S.

    2014-12-01

    Transit time distributions (TTD) are used to understand in-stream transport and exchange with the hyporheic zone by quantifying the probability of water (and of dissolved material) taking time T to traverse the stream reach control volume. However, many studies using this method assume a TTD that is time-invariant, despite the time-variability of the streamflow. Others assume that storage is 'randomly sampled' or 'well-mixed' with a fixed volume or fixed exchange rate. Here we present a formulation for a time-variable TTD that relaxes both the time-invariant and 'randomly sampled' assumptions and only requires a few parameters. The framework is applied to transient storage, representing some combination of in-stream and hyporheic storage, along a stream reach. This approach does not assume that hyporheic and dead-zone storage is fixed or temporally-invariant, and allows for these stores to be sampled in more physically representative ways determined by the system itself. Instead of using probability distributions of age, probability distributions of storage (ranked by age) called Ω functions are used to describe how the off-stream storage is sampled in the outflow. Here the Ω function approach is used to describe hyporheic exchange during diurnal fluctuations in streamflow in a gaining reach of the H.J. Andrews Experimental Forest. The breakthrough curves of salt slugs injected four hours apart over a 28-hour period show a systematic variation in transit time distribution. This new approach allows us to relate these salt slug TTDs to a corresponding time-variation in the Ω function, which can then be related to changes in in-stream storage and hyporheic zone mobilization under varying flow conditions. Thus, we can gain insights into how channel storage and hyporheic exchange are changing through time without having to specify difficult to measure or unmeasurable quantities of our system, such as total storage.

  16. Prolactin, thyrotropin, and growth hormone release during stress associated with parachute jumping.

    Science.gov (United States)

    Noel, G L; Dimond, R C; Earll, J M; Frantz, A G

    1976-05-01

    Prolactin, growth hormone, and thyrotropin (TSH) release during the stress of parachute jumping has been evaluated in 14 male subjects. Subjects were studied at several times before and immediately after their first military parachute jump. All three hormones had risen significantly 1 to 14 min after the jump, compared to mean levels measured immediately beforehand. Earlier studies of physical exercise by ourselves and others would suggest that emotional stress played a role in producing changes of this magnitude. We conclude that prolactin, TSH, and growth hormone are released in physiologically significant amounts in association with the stress of parachute jumping.

  17. Time and temporality: linguistic distribution in human life-games

    DEFF Research Database (Denmark)

    Cowley, Stephen

    2014-01-01

    , we find that, in each case, parties shift between close attention to the lived situation and using resources--especially wordings--to manage temporality. It is concluded that the multi-scalar nature of language enables individuals to orchestrate their lives in ways that are, at once, social......While clock-time can be used to clarify facts, all living systems construct their own temporalities. Having illustrated the claim for foxtail grasses, it is argued that, with motility and brains, organisms came to use temporalities that build flexibility into behavior. With the rise of human...... culture, individuals developed a knack of using linguistic distribution to link metabolism with collective ways of assessing and managing experience. Of human temporal management, the best known case is the mental time travel enabled by, among other functions, autobiographical memory. One contribution...

  18. Optimal Time-Reversed Wideband Signals for Distributed Sensing

    CERN Document Server

    Kim, Jerry; Mokole, Eric

    2015-01-01

    This paper considers a distributed wave-based sensing system that probes a scene consisting of multiple interacting idealized targets. Each sensor is a collocated transmit-receive pair that is capable of transmitting arbitrary wideband waveforms. We address the problem of finding the space-time transmit waveform that provides the best target detection performance in the sense of maximizing the energy scattered back into the receivers. Our approach is based on earlier work that constructed the solution by an iterative time-reversal (TR) process. In particular, for the case of idealized point-like scatterers in free space, we examine the frequency dependence of the eigenvalues of the TR operator, and we show that their behavior depends on constructive and destructive interference of the waves traveling along different paths. In addition, we show how these eigenvalues are connected to the poles of the Singularity Expansion Method. Our study of the frequency behavior distinguishes this work from most previous TR ...

  19. Continuous time modelling of dynamical spatial lattice data observed at sparsely distributed times

    DEFF Research Database (Denmark)

    Rasmussen, Jakob Gulddahl; Møller, Jesper

    2007-01-01

    Summary. We consider statistical and computational aspects of simulation-based Bayesian inference for a spatial-temporal model based on a multivariate point process which is only observed at sparsely distributed times. The point processes are indexed by the sites of a spatial lattice, and they ex......Summary. We consider statistical and computational aspects of simulation-based Bayesian inference for a spatial-temporal model based on a multivariate point process which is only observed at sparsely distributed times. The point processes are indexed by the sites of a spatial lattice......, and they exhibit spatial interaction. For specificity we consider a particular dynamical spatial lattice data set which has previously been analysed by a discrete time model involving unknown normalizing constants. We discuss the advantages and disadvantages of using continuous time processes compared...

  20. Has the Diagnostic and statistical manual of mental illnesses (fifth edition) jumped the shark and is it now time for Australia to reconsider reliance on it?

    Science.gov (United States)

    Gaughwin, Peter

    2014-10-01

    The purpose of this article is to consider whether, in light of the significant controversy surrounding the Diagnostic and statistical manual of mental illnesses (fifth edition) (DSM-5), it may be time for Australia to reconsider the influence of, and its past reliance on, the DSM. Also considered is whether it is now time, with the imminent publication of the The international statistical classification of diseases and related health problems (eleventh edition) (ICD-11), to move to the ICD-11 as the primary instrument for diagnosis and research in Australia. That DSM-5 begins its life in an unprecedented plethora of criticism, not only from lay people but also from mental health professionals, which should sound a note of caution for continued reliance on it in Australia. © The Royal Australian and New Zealand College of Psychiatrists 2014.

  1. Timing Analysis of Mixed-Criticality Hard Real-Time Applications Implemented on Distributed Partitioned Architectures

    DEFF Research Database (Denmark)

    Marinescu, Sorin Ovidiu; Tamas-Selicean, Domitian; Acretoaie, Vlad;

    In this paper we are interested in the timing analysis of mixed-criticality embedded real-time applications mapped on distributed heterogeneous architectures. Mixedcriticality tasks can be integrated onto the same architecture only if there is enough spatial and temporal separation among them. We...... in partitions using fixedpriority preemptive scheduling. We have extended the stateof- the-art algorithms for schedulability analysis to take into account the partitions. The proposed algorithm has been evaluated using several synthetic and real-life benchmarks....

  2. Mechanical parameters and flight phase characteristics in aquatic plyometric jumping.

    Science.gov (United States)

    Louder, Talin J; Searle, Cade J; Bressel, Eadric

    2016-09-01

    Plyometric jumping is a commonly prescribed method of training focused on the development of reactive strength and high-velocity concentric power. Literature suggests that aquatic plyometric training may be a low-impact, effective supplement to land-based training. The purpose of the present study was to quantify acute, biomechanical characteristics of the take-off and flight phase for plyometric movements performed in the water. Kinetic force platform data from 12 young, male adults were collected for counter-movement jumps performed on land and in water at two different immersion depths. The specificity of jumps between environmental conditions was assessed using kinetic measures, temporal characteristics, and an assessment of the statistical relationship between take-off velocity and time in the air. Greater peak mechanical power was observed for jumps performed in the water, and was influenced by immersion depth. Additionally, the data suggest that, in the water, the statistical relationship between take-off velocity and time in air is quadratic. Results highlight the potential application of aquatic plyometric training as a cross-training tool for improving mechanical power and suggest that water immersion depth and fluid drag play key roles in the specificity of the take-off phase for jumping movements performed in the water.

  3. Sponsored parachute jumps--can they cause prolonged pain?

    OpenAIRE

    Straiton, N; Sterland, J

    1986-01-01

    A survey of parachute injuries sustained in 1984 at a local parachute club was made using hospital notes and a questionnaire. The overall injury rate was 0.2%. The injury rate in first time jumpers was 1.1%. The injuries often resulted in a prolonged hospital stay, time off work and residual pain and disability. Injury rates may be reduced by more prolonged and intensive training preceding the first jumps. Those people not interested in parachuting as a regular sport and who jump once only in...

  4. Sponsored parachute jumps--can they cause prolonged pain?

    Science.gov (United States)

    Straiton, N; Sterland, J

    1986-06-01

    A survey of parachute injuries sustained in 1984 at a local parachute club was made using hospital notes and a questionnaire. The overall injury rate was 0.2%. The injury rate in first time jumpers was 1.1%. The injuries often resulted in a prolonged hospital stay, time off work and residual pain and disability. Injury rates may be reduced by more prolonged and intensive training preceding the first jumps. Those people not interested in parachuting as a regular sport and who jump once only in order to raise money for charity are at risk of serious injury and perhaps should consider less dangerous alternatives.

  5. Optimal harvesting of a stochastic delay logistic model with Lévy jumps

    Science.gov (United States)

    Qiu, Hong; Deng, Wenmin

    2016-10-01

    The optimal harvesting problem of a stochastic time delay logistic model with Lévy jumps is considered in this article. We first show that the model has a unique global positive solution and discuss the uniform boundedness of its pth moment with harvesting. Then we prove that the system is globally attractive and asymptotically stable in distribution under our assumptions. Furthermore, we obtain the existence of the optimal harvesting effort by the ergodic method, and then we give the explicit expression of the optimal harvesting policy and maximum yield.

  6. Multiple Tune Jumps to Overcome Horizontal Depolarizing Resonances

    Science.gov (United States)

    Huang, H.; Ahrens, L. A.; Bai, M.; Brown, K. A.; Dutheil, Y.; Gardner, C.; Glenn, J. W.; Lin, F.; Mackay, W. W.; Meot, F.; Poblaguev, A.; Ranjbar, V.; Roser, T.; Schoefer, V.; Tepikian, S.; Tsoupas, N.; Yip, K.; Zelenski, A.; Zeno, K.

    2016-02-01

    Imperfection and vertical intrinsic depolarizing resonances have been overcome by the two partial Siberian snakes in the Alternative Gradient Synchrotron(AGS). The relatively weak but numerous horizontal resonances are the main source of polarization loss in the AGS. A pair of horizontal tune jump quads have been used to overcome these weak resonances. The locations of the two quads have to be chosen such that the disturbance to the beam optics is minimum. The emittance growth has to be mitigated for this method to work. In addition, this technique needs very accurate jump timing. Using two partial Siberian snakes, with vertical tune inside the spin tune gap and 80% polarization at AGS injection, polarized proton beam had reached 1.5 × 1011 proton per bunch with 65% polarization. With the tune jump timing optimized and emittance preserved, more than 70% polarization with 2 × 1011 protons per bunch has been achieved.

  7. JUMPING THE CURVE

    Directory of Open Access Journals (Sweden)

    René Pellissier

    2012-01-01

    Full Text Available This paper explores the notion ofjump ing the curve,following from Handy 's S-curve onto a new curve with new rules policies and procedures. . It claims that the curve does not generally lie in wait but has to be invented by leadership. The focus of this paper is the identification (mathematically and inferentially ofthat point in time, known as the cusp in catastrophe theory, when it is time to change - pro-actively, pre-actively or reactively. These three scenarios are addressed separately and discussed in terms ofthe relevance ofeach.

  8. Keeping your eye on the rail: gaze behaviour of horse riders approaching a jump.

    Science.gov (United States)

    Hall, Carol; Varley, Ian; Kay, Rachel; Crundall, David

    2014-01-01

    The gaze behaviour of riders during their approach to a jump was investigated using a mobile eye tracking device (ASL Mobile Eye). The timing, frequency and duration of fixations on the jump and the percentage of time when their point of gaze (POG) was located elsewhere were assessed. Fixations were identified when the POG remained on the jump for 100 ms or longer. The jumping skill of experienced but non-elite riders (n = 10) was assessed by means of a questionnaire. Their gaze behaviour was recorded as they completed a course of three identical jumps five times. The speed and timing of the approach was calculated. Gaze behaviour throughout the overall approach and during the last five strides before take-off was assessed following frame-by-frame analyses. Differences in relation to both round and jump number were found. Significantly longer was spent fixated on the jump during round 2, both during the overall approach and during the last five strides (priders who scored higher for jumping skill tended to fixate on the jump earlier (p = 0.07), when the horse was further from the jump (p = 0.09) and their first fixation on the jump was of a longer duration (p = 0.06). Trials with elite riders are now needed to further identify sport-specific visual skills and their relationship with performance. Visual training should be included in preparation for equestrian sports participation, the positive impact of which has been clearly demonstrated in other sports.

  9. SHORT-TERM JUMP ACTIVITY ON BONE METABOLISM IN FEMALE COLLEGE-AGED NON-ATHLETES

    Directory of Open Access Journals (Sweden)

    Kohei Kishimoto

    2012-03-01

    Full Text Available There have been few studies examining the short-term effect of high-impact activities on bone metabolism measured by bone serum marker concentrations. The purpose of this study was to examine the effect of short-term high-impact jump activity on bone turnover in female college-aged non-athletes. Twenty six healthy females were randomly assigned to a control or jump group. The subjects jumped 5 days per week for 2 weeks. The participants completed 10 jumps per session. A general health questionnaire and a bone-specific physical activity assessment instrument (BPAQ were completed. BPAQ scores were calculated based on the past history of exercise. Blood draws were taken in both groups before and after the two-week experimental period. The vertical ground reaction force (VGRF of all jumps and jump height were measured for each subject daily and the osteogenic index (OI was measured. Concentrations of serum osteocalcin (OC, Bone Specific Alkaline Phosphatase (BAP, C-Terminal Telopeptides of Type I Collagen (CTX and plasma Tartrate-Resistant Acid Phosphatase (TRAP5b were assessed pre and post jump protocol to measure bone formation and resoprtion respectively. A significant interaction (time x group was found in TRAP5b, and BAP values (p < 0.05. There was a significant decrease in CTX and BAP values in the jump group (p < 0.05 after the two week jump protocol. No significant interactions or changes were observed in OC values for either the jump or the control group. Two weeks of jump activity consisting of 10 jumps/day for 5 days/week with a weekly osteogenic index of 52.6 significantly decreased markers of bone resorption (TRAP5b and CTX and bone formation (BAP in young female non- athletes.

  10. Real-Time Verification of Integrity Policies for Distributed Systems

    Directory of Open Access Journals (Sweden)

    Ernesto Buelna

    2013-12-01

    Full Text Available We introduce a mechanism for the verification of real-time integrity policies about the operation of a distributed system. Our mechanism is based on Microsoft .NET technologies. Unlike rival competitors, it is not intrusive, as it hardly modifies the source code of any component of the system to be monitored. Our mechanism consists of four modules: the specification module, which comes with a security policy specification language, geared towards the capture of integrity policies; the monitoring module, which includes a code injector, whereby the mechanism observes how specific methods of the system, referred to by some policy, are invoked; the verifier module, which examines the operation of the distributed system in order to determine whether is policy compliant or not; and, the reporter module, which notifies the system is policy compliant, or sends an alert upon the occurrence of a contingency, indicating policy violation. We argue that our mechanism can be framed within the Clark and Wilson security model, and, thus, used to realise information integrity. We illustrate the workings and the power of our mechanism on a simple, but industrial-strength, case study.

  11. Specificity and completion time distributions of biochemical processes

    Energy Technology Data Exchange (ETDEWEB)

    Munsky, Brian [Los Alamos National Laboratory; Nemenman, Ilya [Los Alamos National Laboratory; Bel, Golan [Los Alamos National Laboratory

    2009-01-01

    In order to produce specific complex structures from a large set of similar biochemical building blocks, many biochemical systems require high sensitivity to small molecular differences. The first and most common mqdel used to explain this high specificity is kinetic proofreading, which has been extended to a variety of systems from detection of DNA mismatch to cell signaling processes. While the specification properties of the kinetic proofreading model are well known and were studied in various contexts, very little is known about its temporal behavior. In this work, we study the dynamical properties of discrete stochastic two-branch kinetic proofreading schemes. Using the Laplace transform of the corresponding chemical master equation, we obtain an analytical solution for the completion time distribution. In particular we provide expressions for the specificity and the mean and the variance of the process completion times. We also show that, for a wide range of parameters a process distinguishing between two different products can be reduced to a much simpler three point process. Our results allow for the systematic study of the interplay between specificity and completion times as well as testing the validity of the kinetic proofreading model in biological systems.

  12. Adrenocortical responses to repeated parachute jumping and subsequent h-CRH challenge in inexperienced healthy subjects.

    Science.gov (United States)

    Deinzer, R; Kirschbaum, C; Gresele, C; Hellhammer, D H

    1997-04-01

    The present study examined the adrenocortical response to 3 consecutive parachute jumps and a poststress h-CRH challenge. Fifteen participants in a parachute-jumping course took saliva samples for later cortisol analysis every 20 min throughout the day, when they accomplished their very first 3 parachute jumps and throughout a control day. The effects of an h-CRH challenge on salivary cortisol were assessed in the evening of the jumping day and on a control day. Parachute jumping induced 3 distinct highly significant adrenocortical responses. The respective cortisol increases for the first, second, and third jump were 39.4 +/- 26.5 nmol/1, 31.4 +/- 21.4 nmol/l, and 16.5 +/- 11.9 nmol/l. Cortisol responses to the first and second jump did not differ but the response to the third jump was significantly reduced [t(13) = 3.11; p = 0.008]. Two groups of subjects were identified, "decreasers," whose response decreased from one to the other jump, and "increasers," whose response remained unchanged or increased. The magnitude of the preceding cortisol response of decreasers exceeded that of increasers significantly by about 30 nmol. The mean adrenocortical effects of the poststress h-CRH challenge and the time-matched challenge on a control day did not differ although, in 4 subjects, the poststress adrenocortical response to h-CRH was completely suppressed.

  13. Application of a tri-axial accelerometer to estimate jump frequency in volleyball.

    Science.gov (United States)

    Jarning, Jon M; Mok, Kam-Ming; Hansen, Bjørge H; Bahr, Roald

    2015-03-01

    Patellar tendinopathy is prevalent among athletes, and most likely associated with a high jumping load. If methods for estimating jump frequency were available, this could potentially assist in understanding and preventing this condition. The objective of this study was to explore the possibility of using peak vertical acceleration (PVA) or peak resultant acceleration (PRA) measured by an accelerometer to estimate jump frequency. Twelve male elite volleyball players (22.5 ± 1.6 yrs) performed a training protocol consisting of seven typical motion patterns, including jumping and non-jumping movements. Accelerometer data from the trial were obtained using a tri-axial accelerometer. In addition, we collected video data from the trial. Jump-float serving and spike jumping could not be distinguished from non-jumping movements using differences in PVA or PRA. Furthermore, there were substantial inter-participant differences in both the PVA and the PRA within and across movement types (p volleyball. A method for acquiring real-time estimates of jump frequency remains to be verified. However, there are several alternative approaches, and further investigations are needed.

  14. The delayed time distribution of massive double compact star mergers

    CERN Document Server

    Mennekens, N

    2016-01-01

    In order to investigate the temporal evolution of binary populations in general, double compact star binaries and mergers in particular within a galactic evolution context, a most straightforward method is obviously the implementation of a detailed binary evolutionary model in a galactic chemical evolution code. To our knowledge, only the Brussels galactic code explicitly accounts for binaries. With a galactic code that does not explicitly include binaries, the temporal evolution of the population of double compact star binaries and mergers can be estimated with reasonable accuracy if the delayed time distribution (DTD) for these mergers is available. The DTD for supernovae type Ia has been studied extensively the last decade. In the present paper we present the DTD for merging double neutron star binaries and mixed systems consisting of a neutron star and a black hole. The latter mergers are very promising sites for the production of r-process elements and the DTDs can be used to study the galactic evolution...

  15. A novel time stamping technique for distributed data acquisition systems.

    Science.gov (United States)

    Subramaniam, E T

    2012-12-01

    In this paper, we discuss the design and implementation of a synchronizing technique for data acquisition systems, which can effectively use the normal, standard local area network cables to provide a time stamp, with a range up to 32 days, resolution of 10 ns, and synchronization within ± 5 ns. This system may be used to synchronize data being collected by independent heterogeneous data acquisition modules, that acquire events independently. Such distributed systems are generally designed with a tree-like structure or independent self-triggered acquisition boxes. These leaf edges are connected through branches to the root node, via non-bus based inter-connecting links. The present system has been tested with a set of self-triggered digital signal processing based data acquisition engines, having a 100 MHz analog to digital converter front end.

  16. Jump point detection for real estate investment success

    Science.gov (United States)

    Hui, Eddie C. M.; Yu, Carisa K. W.; Ip, Wai-Cheung

    2010-03-01

    In the literature, studies on real estate market were mainly concentrating on the relation between property price and some key factors. The trend of the real estate market is a major concern. It is believed that changes in trend are signified by some jump points in the property price series. Identifying such jump points reveals important findings that enable policy-makers to look forward. However, not all jump points are observable from the plot of the series. This paper looks into the trend and introduces a new approach to the framework for real estate investment success. The main purpose of this paper is to detect jump points in the time series of some housing price indices and stock price index in Hong Kong by applying the wavelet analysis. The detected jump points reflect to some significant political issues and economic collapse. Moreover, the relations among properties of different classes and between stocks and properties are examined. It can be shown from the empirical result that a lead-lag effect happened between the prices of large-size property and those of small/medium-size property. However, there is no apparent relation or consistent lead in terms of change point measure between property price and stock price. This may be due to the fact that globalization effect has more impact on the stock price than the property price.

  17. CONNECTION OF FUNCTIONAL ABILITIES WITH JUMPING AND THROWING ATHLETIC DISCIPLINES

    Directory of Open Access Journals (Sweden)

    Igor Stanojević

    2014-06-01

    Full Text Available The aim of this study was to determine the connection between functional abilities with results of jumping and throwing athletic disciplines with athletes. The sample was taken from a population of elementary school students from Prokuplje region, 13 and 14 old, included in regular physical education classes. The sample consisted of 200 male athletes involved in the training process in sports clubs at least three times a week in addition to physical education classes. For assessment of functional abilities six functional tests were used: resting heart rate, Cooper test, heart rate in the first minute after Cooper test, heart rate in the second minute after Cooper test, systolic arterial blood pressure, diastolic arterial blood pressure. For assessment of jumping and throwing athletic disciplines four tests were used: long jump, high jump, shot put and javelin. Data analysis was performed with canonical correlation and regression analysis. The results showed a statistically significant correlation between functional abilities with all of tests in jumping and throwing athletic disciplines.

  18. The Impact of Jumps and Leverage in Forecasting Co-Volatility

    NARCIS (Netherlands)

    M. Asai (Manabu); M.J. McAleer (Michael)

    2015-01-01

    markdownabstract__Abstract__ The paper investigates the impact of jumps in forecasting co-volatility, accommodating leverage effects. We modify the jump-robust two time scale covariance estimator of Boudt and Zhang (2013) such that the estimated matrix is positive definite. Using this approach we

  19. The Impact of Jumps and Leverage in Forecasting Co-Volatility

    NARCIS (Netherlands)

    M. Asai (Manabu); M.J. McAleer (Michael)

    2015-01-01

    markdownabstract__Abstract__ The paper investigates the impact of jumps in forecasting co-volatility, accommodating leverage effects. We modify the jump-robust two time scale covariance estimator of Boudt and Zhang (2013)such that the estimated matrix is positive definite. Using this approach we ca

  20. Jump Rope Skills for Fun and Fitness in Grades K-12

    Science.gov (United States)

    Michiels Hernandez, Barbara L.; Gober, Donna; Boatwright, Douglas; Strickland, George

    2009-01-01

    A jump rope is a remarkable piece of exercise equipment. It is inexpensive and easy to store, and it can be used by a wide variety of age groups to improve cardiovascular fitness, increase agility, and tone the body's muscles all at the same time. Consequently, the teaching of jump rope skills is highly suitable for physical education classes in…

  1. Segmental and Kinetic Contributions in Vertical Jumps Performed with and without an Arm Swing

    Science.gov (United States)

    Feltner, Michael E.; Bishop, Elijah J.; Perez, Cassandra M.

    2004-01-01

    To determine the contributions of the motions of the body segments to the vertical ground reaction force ([F.sub.z]), the joint torques produced by the leg muscles, and the time course of vertical velocity generation during a vertical jump, 15 men were videotaped performing countermovement vertical jumps from a force plate with and without an arm…

  2. Exertion of forces by children performing a free-style jump

    NARCIS (Netherlands)

    Moes, C.C.M.; Visser, R.J.

    1998-01-01

    This research project focuses on the force characteristics and force/time relationships of loads exerted by jumping children. The current study is an experimental research into children jumping on both hard and soft substrates. The hard substrate is obtained by using a force plate. For the soft subs

  3. Jumps of the eta invariant

    CERN Document Server

    Farber, M S; Farber, Michael S.; Levine, Jerome P.

    1994-01-01

    We study the eta-invariant, defined by Atiyah-Patodi-Singer a real valued invariant of an oriented odd-dimensional Riemannian manifold equipped with a unitary representation of its fundamental group. When the representation varies analytically, the corresponding eta-invariant may have an integral jump, known also as the spectral flow. The main result of the paper establishes a formula for this spectral jump in terms of the signatures of some homological forms, defined naturally by the path of representations. These signatures may also be computed by means of a spectral sequence of Hermitian forms,defined by the deformation data. Our theorem on the spectral jump has a generalization to arbitrary analytic families of self-adjoint elliptic operators. As an application we consider the problem of homotopy invariance of the rho-invariant. We give an intrinsic homotopy theoretic definition of the rho-invariant, up to indeterminacy in the form of a locally constant function on the space of unitary representations. In...

  4. Distributed digital real-time control system for TCV tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Le, H.B. [École Polytechnique Fédérale de Lausanne (EPFL), Centre de Recherches en Physique des Plasmas (CRPP), Association EURATOM-Confédération Suisse, CH-1015 Lausanne (Switzerland); Felici, F. [Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (Netherlands); Paley, J.I.; Duval, B.P.; Moret, J.-M.; Coda, S.; Sauter, O.; Fasel, D.; Marmillod, P. [École Polytechnique Fédérale de Lausanne (EPFL), Centre de Recherches en Physique des Plasmas (CRPP), Association EURATOM-Confédération Suisse, CH-1015 Lausanne (Switzerland)

    2014-03-15

    Highlights: • A new distributed digital control system for the TCV tokamak has been commissioned. • Data is shared in real-time between all nodes using the reflective memory. • The customised Linux OS allows achieving deterministic and low latency behaviour. • The control algorithm design in Simulink together with the automatic code generation using Embedded Coder allow rapid algorithm development. • Controllers designed outside the TCV environment can be ported easily. • The previous control system functions have been emulated and improved. • New capabilities include MHD control, profile control, equilibrium reconstruction. - Abstract: A new digital feedback control system (named the SCD “Système de Contrôle Distribué”) has been developed, integrated and used successfully to control TCV (Tokamak à Configuration Variable) plasmas. The system is designed to be modular, distributed, and scalable, accommodating hundreds of diagnostic inputs and actuator outputs. With many more inputs and outputs available than previously possible, it offers the possibility to design advanced control algorithms with better knowledge of the plasma state and to coherently control all TCV actuators, including poloidal field (PF) coils, gas valves, the gyrotron powers and launcher angles of the electron cyclotron heating and current drive system (ECRH/ECCD) together with diagnostic triggering signals. The system consists of multiple nodes; each is a customised Linux desktop or embedded PC which may have local ADC and DAC cards. Each node is also connected to a memory network (reflective memory) providing a reliable, deterministic method of sharing memory between all nodes. Control algorithms are programmed as block diagrams in Matlab-Simulink providing a powerful environment for modelling and control design. The C code is generated automatically from the Simulink block diagram and compiled, with the Simulink Embedded Coder (SEC, formerly Real-Time Workshop Embedded

  5. AirJump: Using Interfaces to Instantly Perform Simultaneous Extractions.

    Science.gov (United States)

    Berry, Scott M; Pezzi, Hannah M; LaVanway, Alex J; Guckenberger, David J; Anderson, Meghan A; Beebe, David J

    2016-06-22

    Analyte isolation is an important process that spans a range of biomedical disciplines, including diagnostics, research, and forensics. While downstream analytical techniques have advanced in terms of both capability and throughput, analyte isolation technology has lagged behind, increasingly becoming the bottleneck in these processes. Thus, there exists a need for simple, fast, and easy to integrate analyte separation protocols to alleviate this bottleneck. Recently, a new class of technologies has emerged that leverages the movement of paramagnetic particle (PMP)-bound analytes through phase barriers to achieve a high efficiency separation in a single or a few steps. Specifically, the passage of a PMP/analyte aggregate through a phase interface (aqueous/air in this case) acts to efficiently "exclude" unbound (contaminant) material from PMP-bound analytes with higher efficiency than traditional washing-based solid-phase extraction (SPE) protocols (i.e., bind, wash several times, elute). Here, we describe for the first time a new type of "exclusion-based" sample preparation, which we term "AirJump". Upon realizing that much of the contaminant carryover stems from interactions with the sample vessel surface (e.g., pipetting residue, wetting), we aim to eliminate the influence of that factor. Thus, AirJump isolates PMP-bound analyte by "jumping" analyte directly out of a free liquid/air interface. Through careful characterization, we have demonstrated the validity of AirJump isolation through comparison to traditional washing-based isolations. Additionally, we have confirmed the suitability of AirJump in three important independent biological isolations, including protein immunoprecipitation, viral RNA isolation, and cell culture gene expression analysis. Taken together, these data sets demonstrate that AirJump performs efficiently, with high analyte yield, high purity, no cross contamination, rapid time-to-isolation, and excellent reproducibility.

  6. Water rotational jump driven large amplitude molecular motions of nitrate ions in aqueous potassium nitrate solution

    CERN Document Server

    Banerjee, Puja; Bagchi, Biman

    2016-01-01

    Molecular dynamics simulations of aqueous potassium nitrate solution reveal a highly complex rotational dynamics of nitrate ions where, superimposed on the expected continuous Brownian motion, are large amplitude angular jumps that are coupled to and at least partly driven by similar large amplitude jump motions in water molecules which are associated with change in the hydrogen bonded water molecule. These jumps contribute significantly to rotational and translational motions of these ions. We explore the detailed mechanism of these correlated (or, coupled) jumps and introduce a new time correlation function to decompose the coupled orientational- jump dynamics of solvent and solute in the aqueous electrolytic solution. Time correlation function provides for the unequivocal determination of the time constant involved in orientational dynamics originating from making and breaking of hydrogen bonds. We discover two distinct mechanisms-both are coupled to density fluctuation but are of different types.

  7. Effects of kettlebell training on postural coordination and jump performance

    DEFF Research Database (Denmark)

    Jay, Kenneth; Jakobsen, Markus Due; Sundstrup, Emil

    2013-01-01

    ABSTRACT: The aim of this study was to investigate the effectiveness of a worksite intervention using kettlebell training to improve postural reactions to perturbation and jump performance.This single-blind randomized controlled trial involved 40 adults (n=40) from occupations with a high....... The outcome measures were postural reactions to sudden perturbation and maximal countermovement jump height.Compared to the control group, the training group significant decreased stopping time following perturbation (-109ms, 95% CI [-196:-21]). Jump height increased significantly in the training group (1.5cm......, 95% CI [0.5:2.5]), but this was non-significantly different from control.Kettlebell training improves postural reactions to sudden perturbation. Future studies should investigate whether kettlebell training can reduce the risk of low-back injury in occupations with manual material handling or patient...

  8. Physiological arousal and perception of bodily state during parachute jumping.

    Science.gov (United States)

    Schedlowski, M; Tewes, U

    1992-01-01

    Heart rate and respiration rate were recorded with a portable data recording system before and during a parachute jump in 36 male sport parachutists with differing degrees of experience. The recordings were analyzed at 12 psychologically relevant points in time along with the subjective ratings of physical arousal. Novice parachutists showed a higher degree of self-rated arousal during jumps. However, the two groups displayed nearly parallel curves for heart and respiration rates, differing significantly from each other only in the level of their respective heart rates. Furthermore, experienced jumpers seem to be better informed about their state of physiological arousal during the jump than are novice jumpers. These results do not confirm the proposed anxiety inhibition process, postulated by Epstein (1967).

  9. Vertical Jump Biomechanics Altered With Virtual Overhead Goal.

    Science.gov (United States)

    Ford, Kevin R; Nguyen, Anh-Dung; Hegedus, Eric J; Taylor, Jeffrey B

    2017-04-01

    Virtual environments with real-time feedback can simulate extrinsic goals that mimic real life conditions. The purpose was to compare jump performance and biomechanics with a physical overhead goal (POG) and with a virtual overhead goal (VOG). Fourteen female subjects participated (age: 18.8 ± 1.1 years, height: 163.2 ± 8.1 cm, weight 63.0 ± 7.9 kg). Sagittal plane trunk, hip, and knee biomechanics were calculated during the landing and take-off phases of drop vertical jump with different goal conditions. Repeated-measures ANOVAs determined differences between goal conditions. Vertical jump height displacement was not different during VOG compared with POG. Greater hip extensor moment (P biomechanical testing, screening, and training conditions.

  10. Characterizing groundwater contribution to lowland streams using Travel Time Distribution

    Science.gov (United States)

    Petrus Kaandorp, Vincentius; Gerardus Bernardus de Louw, Petrus; Kuijper, Martina Johanna Maria; Broers, Hans Peter

    2015-04-01

    approach in which the groundwater contribution is specified based on travel times. The travel time distribution of groundwater input was calculated for several bigger and smaller streams in the Regge and Dinkel lowland catchment in The Netherlands using a coupled groundwater-surface water model and linked to physical catchment characteristics. More knowledge about the groundwater contribution provides water managers with insights which would help improve the ecological status of streams.

  11. Real-time Control Mediation in Agile Distributed Software Development

    DEFF Research Database (Denmark)

    Persson, John Stouby; Aaen, Ivan; Mathiassen, Lars

    2008-01-01

    Agile distributed environments pose particular challenges related to control of quality and collaboration in software development. Moreover, while face-to-face interaction is fundamental in agile development, distributed environments must rely extensively on mediated interactions. On this backdro...

  12. Inertia Matching Manipulability and Load Matching Optimization for Humanoid Jumping Robot

    Directory of Open Access Journals (Sweden)

    Zhaohong Xu

    2008-11-01

    Full Text Available Human jumping motion includes stance phase, flight phase and landing impact phase. Jumping robot belongs to a variable constraints system because every phase has different constraint conditions. An unified dynamics equation during stance phase and flight phase is established based on floated-basis space. Inertia matching is used to analyze actuator/gear systems and select the optimum gear ratio based on the transmission performance between the torque produced at the actuator and the torque applied to the load. Load matching is an important index which affects jumping performance and reflects the capability of supporting a weight or mass. It also affects the distributing of the center of gravity (COG. Regarding jumping robot as a redundant manipulator with a load at end-effector, inertia matching can be applied to optimize load matching for jumping robot. Inertia matching manipulability and directional manipulability are easy to analyze and optimize the load matching parameters. A 5th order polynomial function is defined to plan COG trajectory of jumping motion, taking into account the constraint conditions of both velocity and acceleration. Finally, the numerical simulation of vertical jumping and experimental results show inertia matching is in direct proportion to jumping height, and inertia matching manipulability is a valid method to load matching optimization and conceptual design of robot.

  13. Spatially Distributed Characterization of Soil Dynamics Using Travel-Time Distributions

    Science.gov (United States)

    Hesse, Falk; Zink, Matthias; Attinger, Sabine

    2016-04-01

    The description of storage and transport of both water and solved contaminants in catchments is very difficult due to the high heterogeneity of the subsurface properties that govern their fate. This heterogeneity, combined with a generally limited knowledge about the subsurface, results in high degrees of uncertainty. As a result, stochastic methods are increasingly applied, where the relevant processes are modeled as being random. Within these methods, quantities like the catchment travel or residence time of a water parcel are described using probability density functions (PDF). The derivation of these PDF's is typically done by using the water fluxes and states of the catchment. A successful application of such frameworks is therefore contingent on a good quantification of these fluxes and states across the different spatial scales. The objective of this study is to use travel times for the characterization of an ca. 1000 square kilometer, humid catchment in Central Germany. To determine the states and fluxes, we apply the mesoscale Hydrological Model mHM, a spatially distributed hydrological model to the catchment. Using detailed data of precipitation, land cover, morphology and soil type as inputs, mHM is able to determine fluxes like recharge and evapotranspiration and states like soil moisture as outputs. Using these data, we apply the above theoretical framework to our catchment. By virtue of the aforementioned properties of mHM, we are able to describe the storage and release of water with a high spatial resolution. This allows for a comprehensive description of the flow and transport dynamics taking place in the catchment. The spatial distribution of such dynamics is then compared with land cover and soil moisture maps as well as driving forces like precipitation and potential evapotranspiration to determine the most predictive factors. In addition, we investigate how non-local data like the age distribution of discharge flows are impacted by, and

  14. Spatially Distributed Characterization of Catchment Dynamics Using Travel-Time Distributions

    Science.gov (United States)

    Heße, F.; Zink, M.; Attinger, S.

    2015-12-01

    The description of storage and transport of both water and solved contaminants in catchments is very difficult due to the high heterogeneity of the subsurface properties that govern their fate. This heterogeneity, combined with a generally limited knowledge about the subsurface, results in high degrees of uncertainty. As a result, stochastic methods are increasingly applied, where the relevant processes are modeled as being random. Within these methods, quantities like the catchment travel or residence time of a water parcel are described using probability density functions (PDF). The derivation of these PDF's is typically done by using the water fluxes and states of the catchment. A successful application of such frameworks is therefore contingent on a good quantification of these fluxes and states across the different spatial scales. The objective of this study is to use travel times for the characterization of an ca. 1000 square kilometer, humid catchment in Central Germany. To determine the states and fluxes, we apply the mesoscale Hydrological Model mHM, a spatially distributed hydrological model to the catchment. Using detailed data of precipitation, land cover, morphology and soil type as inputs, mHM is able to determine fluxes like recharge and evapotranspiration and states like soil moisture as outputs. Using these data, we apply the above theoretical framework to our catchment. By virtue of the aforementioned properties of mHM, we are able to describe the storage and release of water with a high spatial resolution. This allows for a comprehensive description of the flow and transport dynamics taking place in the catchment. The spatial distribution of such dynamics is then compared with land cover and soil moisture maps as well as driving forces like precipitation and temperature to determine the most predictive factors. In addition, we investigate how non-local data like the age distribution of discharge flows are impacted by, and therefore allow to infer

  15. Effects of a Low-Load Gluteal Warm-Up on Explosive Jump Performance

    Directory of Open Access Journals (Sweden)

    Comyns Thomas

    2015-06-01

    Full Text Available The purpose of this study was to investigate the effects of a low-load gluteal warm-up protocol on countermovement and squat jump performance. Research by Crow et al. (2012 found that a low-load gluteal warm-up could be effective in enhancing peak power output during a countermovement jump. Eleven subjects performed countermovement and squat jumps before and after the gluteal warm-up protocol. Both jumps were examined in separate testing sessions and performed 30 seconds, and 2, 4, 6 & 8 minutes post warm-up. Height jumped and peak ground reaction force were the dependent variables examined in both jumps, with 6 additional variables related to fast force production being examined in the squat jump only. All jumps were performed on a force platform (AMTI OR6-5. Repeated measures analysis of variance found a number of significant differences (p ≤ 0.05 between baseline and post warm-up scores. Height jumped decreased significantly in both jumps at all rest intervals excluding 8 minutes. Improvement was seen in 7 of the 8 recorded SJ variables at the 8 minute interval. Five of these improvements were deemed statistically significant, namely time to peak GRF (43.0%, and time to the maximum rate of force development (65.7% significantly decreased, while starting strength (63.4%, change of force in first 100 ms of contraction (49.1% and speed strength (43.6% significantly increased. The results indicate that a gluteal warm-up can enhance force production in squat jumps performed after 8 minutes recovery. Future research in this area should include additional warm-up intervention groups for comparative reasons.

  16. Price jumps on European stock markets

    Directory of Open Access Journals (Sweden)

    Jan Hanousek

    2014-03-01

    Full Text Available We analyze the dynamics of price jumps and the impact of the European debt crisis using the high-frequency data reported by selected stock exchanges on the European continent during the period January 2008 to June 2012. We employ two methods to identify price jumps: Method 1 minimizes the probability of false jump detection (the Type-II Error-Optimal price jump indicator and Method 2 maximizes the probability of successful jump detection (the Type-I Error-Optimal price jump indicator. We show that individual stock markets exhibited differences in price jump intensity before and during the crisis. We also show that in general the variance of price jump intensity could not be distinguished as different in the pre-crisis period from that during the crisis. Our results indicate that, contrary to common belief, the intensity of price jumps does not uniformly increase during a period of financial distress. However, there do exist differences in price jump dynamics across stock markets and investors have to model emerging and mature markets differently to properly reflect their individual dynamics.

  17. Environmentally transmitted parasites: Host-jumping in a heterogeneous environment.

    Science.gov (United States)

    Caraco, Thomas; Cizauskas, Carrie A; Wang, Ing-Nang

    2016-05-21

    Groups of chronically infected reservoir-hosts contaminate resource patches by shedding a parasite׳s free-living stage. Novel-host groups visit the same patches, where they are exposed to infection. We treat arrival at patches, levels of parasite deposition, and infection of the novel host as stochastic processes, and derive the expected time elapsing until a host-jump (initial infection of a novel host) occurs. At stationarity, mean parasite densities are independent of reservoir-host group size. But within-patch parasite-density variances increase with reservoir group size. The probability of infecting a novel host declines with parasite-density variance; consequently larger reservoir groups extend the mean waiting time for host-jumping. Larger novel-host groups increase the probability of a host-jump during any single patch visit, but also reduce the total number of visits per unit time. Interaction of these effects implies that the waiting time for the first infection increases with the novel-host group size. If the reservoir-host uses resource patches in any non-uniform manner, reduced spatial overlap between host species increases the waiting time for host-jumping.

  18. A Shape Memory Alloy-Actuated Bio-inspired Mesoscale Jumping Robot

    Directory of Open Access Journals (Sweden)

    Thanhtam Ho

    2012-09-01

    Full Text Available Jumping may be considered to be quite a useful means of mobile robot locomotion, but acquiring a stable landing has been a difficult problem. This paper reports on the design, analysis, simulation and experiments of a mesoscale jumping robot that is capable of stable landing. A jumping mechanism inspired by jumping insects is introduced and an actuation scheme using only one shape memory alloy (SMA spring is described. Experimental results show that a robot with a 17 gram weight and 13 cm diameter can jump forward as far as 1.2 times its body diameter and vertically as high as 1.5 times its body diameter. In addition, the robot is able to land in a stable manner and recover its initial posture after landing.

  19. Estimation Accuracy on Execution Time of Run-Time Tasks in a Heterogeneous Distributed Environment

    Directory of Open Access Journals (Sweden)

    Qi Liu

    2016-08-01

    Full Text Available Distributed Computing has achieved tremendous development since cloud computing was proposed in 2006, and played a vital role promoting rapid growth of data collecting and analysis models, e.g., Internet of things, Cyber-Physical Systems, Big Data Analytics, etc. Hadoop has become a data convergence platform for sensor networks. As one of the core components, MapReduce facilitates allocating, processing and mining of collected large-scale data, where speculative execution strategies help solve straggler problems. However, there is still no efficient solution for accurate estimation on execution time of run-time tasks, which can affect task allocation and distribution in MapReduce. In this paper, task execution data have been collected and employed for the estimation. A two-phase regression (TPR method is proposed to predict the finishing time of each task accurately. Detailed data of each task have drawn interests with detailed analysis report being made. According to the results, the prediction accuracy of concurrent tasks’ execution time can be improved, in particular for some regular jobs.

  20. Estimation Accuracy on Execution Time of Run-Time Tasks in a Heterogeneous Distributed Environment

    Science.gov (United States)

    Liu, Qi; Cai, Weidong; Jin, Dandan; Shen, Jian; Fu, Zhangjie; Liu, Xiaodong; Linge, Nigel

    2016-01-01

    Distributed Computing has achieved tremendous development since cloud computing was proposed in 2006, and played a vital role promoting rapid growth of data collecting and analysis models, e.g., Internet of things, Cyber-Physical Systems, Big Data Analytics, etc. Hadoop has become a data convergence platform for sensor networks. As one of the core components, MapReduce facilitates allocating, processing and mining of collected large-scale data, where speculative execution strategies help solve straggler problems. However, there is still no efficient solution for accurate estimation on execution time of run-time tasks, which can affect task allocation and distribution in MapReduce. In this paper, task execution data have been collected and employed for the estimation. A two-phase regression (TPR) method is proposed to predict the finishing time of each task accurately. Detailed data of each task have drawn interests with detailed analysis report being made. According to the results, the prediction accuracy of concurrent tasks’ execution time can be improved, in particular for some regular jobs. PMID:27589753

  1. Estimation Accuracy on Execution Time of Run-Time Tasks in a Heterogeneous Distributed Environment.

    Science.gov (United States)

    Liu, Qi; Cai, Weidong; Jin, Dandan; Shen, Jian; Fu, Zhangjie; Liu, Xiaodong; Linge, Nigel

    2016-08-30

    Distributed Computing has achieved tremendous development since cloud computing was proposed in 2006, and played a vital role promoting rapid growth of data collecting and analysis models, e.g., Internet of things, Cyber-Physical Systems, Big Data Analytics, etc. Hadoop has become a data convergence platform for sensor networks. As one of the core components, MapReduce facilitates allocating, processing and mining of collected large-scale data, where speculative execution strategies help solve straggler problems. However, there is still no efficient solution for accurate estimation on execution time of run-time tasks, which can affect task allocation and distribution in MapReduce. In this paper, task execution data have been collected and employed for the estimation. A two-phase regression (TPR) method is proposed to predict the finishing time of each task accurately. Detailed data of each task have drawn interests with detailed analysis report being made. According to the results, the prediction accuracy of concurrent tasks' execution time can be improved, in particular for some regular jobs.

  2. Wave characterization for mammalian cell culture: residence time distribution.

    Science.gov (United States)

    Rodrigues, Maria Elisa; Costa, Ana Rita; Henriques, Mariana; Azeredo, Joana; Oliveira, Rosário

    2012-02-15

    The high dose requirements of biopharmaceutical products led to the development of mammalian cell culture technologies that increase biomanufacturing capacity. The disposable Wave bioreactor is one of the most promising technologies, providing ease of operation and no cross-contamination, and using an innovative undulation movement that ensures good mixing and oxygen transfer without cell damage. However, its recentness demands further characterization. This study evaluated the residence time distribution (RTD) in Wave, allowing the characterization of mixing and flow and the comparison with ideal models and a Stirred tank reactor (STR) used for mammalian cell culture. RTD was determined using methylene blue with pulse input methodology, at three flow rates common in mammalian cell culture (3.3×10(-5)m(3)/h, 7.9×10(-5)m(3)/h, and 1.25×10(-4)m(3)/h) and one typical of microbial culture (5×10(-3)m(3)/h). Samples were taken periodically and the absorbance read at 660nm. It was observed that Wave behavior diverted from ideal models, but was similar to STR. Therefore, the deviations are not related to the particular Wave rocking mechanism, but could be associated with the inadequacy of these reactors to operate in continuous mode or to a possible inability of the theoretical models to properly describe the behavior of reactors designed for mammalian cell culture. Thus, the development of new theoretical models could better characterize the performance of these reactors.

  3. Cybersecurity through Real-Time Distributed Control Systems

    Energy Technology Data Exchange (ETDEWEB)

    Kisner, Roger A [ORNL; Manges, Wayne W [ORNL; MacIntyre, Lawrence Paul [ORNL; Nutaro, James J [ORNL; Munro Jr, John K [ORNL; Ewing, Paul D [ORNL; Howlader, Mostofa [ORNL; Kuruganti, Phani Teja [ORNL; Wallace, Richard M [ORNL; Olama, Mohammed M [ORNL

    2010-04-01

    Critical infrastructure sites and facilities are becoming increasingly dependent on interconnected physical and cyber-based real-time distributed control systems (RTDCSs). A mounting cybersecurity threat results from the nature of these ubiquitous and sometimes unrestrained communications interconnections. Much work is under way in numerous organizations to characterize the cyber threat, determine means to minimize risk, and develop mitigation strategies to address potential consequences. While it seems natural that a simple application of cyber-protection methods derived from corporate business information technology (IT) domain would lead to an acceptable solution, the reality is that the characteristics of RTDCSs make many of those methods inadequate and unsatisfactory or even harmful. A solution lies in developing a defense-in-depth approach that ranges from protection at communications interconnect levels ultimately to the control system s functional characteristics that are designed to maintain control in the face of malicious intrusion. This paper summarizes the nature of RTDCSs from a cybersecurity perspec tive and discusses issues, vulnerabilities, candidate mitigation approaches, and metrics.

  4. LPI Radar Waveform Recognition Based on Time-Frequency Distribution.

    Science.gov (United States)

    Zhang, Ming; Liu, Lutao; Diao, Ming

    2016-10-12

    In this paper, an automatic radar waveform recognition system in a high noise environment is proposed. Signal waveform recognition techniques are widely applied in the field of cognitive radio, spectrum management and radar applications, etc. We devise a system to classify the modulating signals widely used in low probability of intercept (LPI) radar detection systems. The radar signals are divided into eight types of classifications, including linear frequency modulation (LFM), BPSK (Barker code modulation), Costas codes and polyphase codes (comprising Frank, P1, P2, P3 and P4). The classifier is Elman neural network (ENN), and it is a supervised classification based on features extracted from the system. Through the techniques of image filtering, image opening operation, skeleton extraction, principal component analysis (PCA), image binarization algorithm and Pseudo-Zernike moments, etc., the features are extracted from the Choi-Williams time-frequency distribution (CWD) image of the received data. In order to reduce the redundant features and simplify calculation, the features selection algorithm based on mutual information between classes and features vectors are applied. The superiority of the proposed classification system is demonstrated by the simulations and analysis. Simulation results show that the overall ratio of successful recognition (RSR) is 94.7% at signal-to-noise ratio (SNR) of -2 dB.

  5. LPI Radar Waveform Recognition Based on Time-Frequency Distribution

    Directory of Open Access Journals (Sweden)

    Ming Zhang

    2016-10-01

    Full Text Available In this paper, an automatic radar waveform recognition system in a high noise environment is proposed. Signal waveform recognition techniques are widely applied in the field of cognitive radio, spectrum management and radar applications, etc. We devise a system to classify the modulating signals widely used in low probability of intercept (LPI radar detection systems. The radar signals are divided into eight types of classifications, including linear frequency modulation (LFM, BPSK (Barker code modulation, Costas codes and polyphase codes (comprising Frank, P1, P2, P3 and P4. The classifier is Elman neural network (ENN, and it is a supervised classification based on features extracted from the system. Through the techniques of image filtering, image opening operation, skeleton extraction, principal component analysis (PCA, image binarization algorithm and Pseudo–Zernike moments, etc., the features are extracted from the Choi–Williams time-frequency distribution (CWD image of the received data. In order to reduce the redundant features and simplify calculation, the features selection algorithm based on mutual information between classes and features vectors are applied. The superiority of the proposed classification system is demonstrated by the simulations and analysis. Simulation results show that the overall ratio of successful recognition (RSR is 94.7% at signal-to-noise ratio (SNR of −2 dB.

  6. Distributed Space Time Coding for Wireless Two-way Relaying

    CERN Document Server

    Muralidharan, Vijayvaradharaj T

    2012-01-01

    We consider the wireless two-way relay channel, in which two-way data transfer takes place between the end nodes with the help of a relay. For the Denoise-And-Forward (DNF) protocol, it was shown by Koike-Akino et. al. that adaptively changing the network coding map used at the relay greatly reduces the impact of Multiple Access interference at the relay. The harmful effect of the deep channel fade conditions can be effectively mitigated by proper choice of these network coding maps at the relay. Alternatively, in this paper we propose a Distributed Space Time Coding (DSTC) scheme, which effectively removes most of the deep fade channel conditions at the transmitting nodes itself without any CSIT and without any need to adaptively change the network coding map used at the relay. It is shown that the deep fades occur when the channel fade coefficient vector falls in a finite number of vector subspaces of $\\mathbb{C}^2$, which are referred to as the singular fade subspaces. DSTC design criterion referred to as ...

  7. Reconstruction of relaxation time distribution from linear electrochemical impedance spectroscopy

    Science.gov (United States)

    Zhang, Yanxiang; Chen, Yu; Yan, Mufu; Chen, Fanglin

    2015-06-01

    Linear electrochemical impedance spectroscopy (EIS), and in particular its representation of distribution of relaxation time (DRT), enables the identification of the number of processes and their nature involved in electrochemical cells. With the advantage of high frequency resolution, DRT has recently drawn increasing attention for applications in solid oxide fuel cells (SOFCs). However, the method of DRT reconstruction is not yet presented clearly in terms of what mathematical treatments and theoretical assumptions have been made. Here we present unambiguously a method to reconstruct DRT function of impedance based on Tikhonov regularization. By using the synthetic impedances and analytic DRT functions of RQ element, generalized finite length Warburg element, and Gerischer element with physical quantities representative to those of SOFC processes, we show that the quality of DRT reconstruction is sensitive to the sampling points per decade (ppd) of frequency from the impedance measurement. The robustness of the DRT reconstruction to resist noise imbedded in impedance data and numerical calculations can be accomplished by optimizing the weighting factor λ according to well defined criterion.

  8. Immediate effects of different types of stretching exercises on badminton jump smash.

    Science.gov (United States)

    Jang, Hwi S; Kim, Daeho; Park, Jihong

    2017-04-13

    Since different types of stretching exercises may alter athletic performance, we compared the effects of three types of stretching exercises on badminton jump smash. Sixteen male collegiate badminton players performed one of three different stretching exercises in a counterbalanced order on different days. Static stretching had seven typical stretches, while dynamic stretching involved nine dynamic movements, and resistance dynamic stretching was performed with weighted vests and dumbbells. Before and after each stretching exercise, subjects performed 20 trials of jump smashes. Dependent measurements were the jump heights during jump smashes, velocities of jump-smashed shuttlecocks, and drop points of jump-smashed shuttlecocks. To test the effects of each stretching exercise, we performed mixed model ANOVAs and calculated between-time effect sizes (ES). Each stretching exercise improved the jump heights during jump smashes (type main effect: F2,75= 1.19, p=0.31; static stretching: 22.1%, pstretching: 30.1%, pstretching: 17.7%, p=0.03, ES: 0.98) and velocities of jump-smashed shuttlecocks (type main effect: F2,75= 2.18, p=0.12; static stretching: 5.7%, p=0.61, ES: 0.39; dynamic stretching: 3.4%, p=0.94, ES: 0.28; resistance dynamic stretching: 6%, p=0.50, ES: 0.66). However, there were no differences among the stretching exercises for any measurement. The drop point of jump-smashed shuttlecocks did not change (interaction: F2,75= 0.88, p=0.42). All stretching exercises improved badminton jump smash performance, but we could not determine the best protocol. Since badminton requires high-speed movement and explosive force, we suggest performing dynamic stretching or resistance dynamic stretching.

  9. The Marginal Distributions of a Crossing Time and Renewal Numbers Related with Two Poisson Processes are as Ph-Distributions

    Directory of Open Access Journals (Sweden)

    Mir G. H. Talpur

    2006-01-01

    Full Text Available In this paper we consider, how to find the marginal distributions of crossing time and renewal numbers related with two poisson processes by using probability arguments. The obtained results show that the one-dimension marginal distributions are N+1 order PH-distributions.

  10. Δ-matroid and jump system

    Directory of Open Access Journals (Sweden)

    Santosh N. Kabadi

    2005-01-01

    Full Text Available The concept of Δ-matroid is a nontrivial, proper generalization of the concept of matroid and has been further generalized to the concept of jump system. In this paper, we show that jump systems are, in some sense, equivalent to Δ-matroids. Using this equivalence and the Δ-matroid theory, we give simple proofs and extensions of many of the results on jump systems.

  11. The aerodynamics of jumping rope

    Science.gov (United States)

    Aristoff, Jeffrey; Stone, Howard

    2011-03-01

    We present the results of a combined theoretical and experimental investigation of the motion of a rotating string that is held at both ends (i.e. a jump rope). In particular, we determine how the surrounding fluid affects the shape of the string at high Reynolds numbers: the string bends toward the axis of rotation, thereby reducing its total drag. We derive a pair of coupled non-linear differential equations that describe the shape, the numerical solution of which compares well with asymptotic approximations and experiments. Implications for successful skipping will be discussed.

  12. Laminar circular hydraulic jumps without separation

    Science.gov (United States)

    Dasgupta, Ratul; Tomar, Gaurav; Govindarajan, Rama

    2009-11-01

    The traditional inviscid criterion for the occurrence of a planar, standing hydraulic jump is to have the Froude number decrease downstream and go through a value of 1 at some location. Here, upstream propagating, small-amplitude, long, non-dispersive gravity waves are trapped, and non-linear steepening is said to result in a near-discontinuous height profile, but it is not clear how. Such a condition on the Froude number is shown in the present axisymmetric Navier-Stokes computations to hold for a circular jump as well. The relevance of non-linear steepening to a circular jump is therefore a question we wish to answer. In circular jumps, moreover, a region of recirculation is usually observed underneath the jump, underlining the importance of viscosity in this process. This led Tani (J. Phys. Soc. Japan, 1949) to hypothesise that boundary-layer separation was the cause of the circular jump. This hypothesis has been debated extensively and the possibility of circular jumps without separation hinted at. In our simulations, we are able to obtain circular hydraulic jumps without any flow separation. This, and the necessity or otherwise of viscosity in jump formation will be discussed.

  13. A Molecular Jump Mechanism of Water Reorientation

    National Research Council Canada - National Science Library

    Damien Laage; James T. Hynes

    2006-01-01

    .... This water reorientation mechanism involves large-amplitude angular jumps, rather than the commonly accepted sequence of small diffusive steps, and therefore calls for reinterpretation of many...

  14. Kinematics and Kinetics of Squats, Drop Jumps and Imitation Jumps of Ski Jumpers.

    Science.gov (United States)

    Pauli, Carole A; Keller, Melanie; Ammann, Fabian; Hübner, Klaus; Lindorfer, Julia; Taylor, William R; Lorenzetti, Silvio

    2016-03-01

    Squats, drop jumps, and imitation jumps are commonly used training exercises in ski jumping to enhance maximum force, explosive force, and sport-specific skills. The purpose of this study was to evaluate the kinetics and kinematics of training exercises in ski jumping and to find objective parameters in training exercises that most correlate with the competition performance of ski jumpers. To this end, barbell squats, drop jumps, and imitation jumps were measured in a laboratory environment for 10 elite ski jumpers. Force and motion data were captured, and the influence of maximum vertical force, force difference, vertical take-off velocity, knee moments, knee joint power, and a knee valgus/varus index was evaluated and correlated with their season jump performance. The results indicate that, especially for the imitation jumps, a good correlation exists between the vertical take-off velocity and the personal jump performance on the hill (R = 0.718). Importantly, however, the more the athletes tended toward a valgus knee alignment during the measured movements, the worse their performance (R = 0.729 imitation jumps; R = 0.685 squats). Although an evaluation of the athletes' lower limb alignment during competitive jumping on the hill is still required, these preliminary data suggest that performance training should additionally concentrate on improving knee alignment to increase ski jumping performance.

  15. EFFECTS OF ELECTROSTIMULATION AND PLYOMETRIC TRAINING PROGRAM COMBINATION ON JUMP HEIGHT IN TEENAGE ATHLETES

    Directory of Open Access Journals (Sweden)

    Emilio J. Martínez-López

    2012-12-01

    Full Text Available The purpose of this study was to examine the effects of eight- week (2 days/week training periods of plyometric exercises (PT and neuromuscular electrostimulation (EMS on jump height in young athletes. Squat jump (SJ, counter movement jump (CMJ and drop jump (DJ were performed to assess the effects of the training protocols 98 athletes (100 & 200m and 100m & 110m hurdles voluntarily took part in this study, 51 males (52% and 47 females (48%, 17.91 ± 1.42 years old, and 5.16 ± 2.56 years of training experience. The participants were randomly assigned to four different groups according to the frequency and the timing of the stimulation. Analysis of covariance was used to analyze the effects of every training program on jump height. Our findings suggest that compared to control (Plyometrics (PT only, the combination of 150Hz EMS + PT simultaneously combined in an 8 week (2days/week training program, we could observe significant jump height improvements in the different types of strength: explosive, explosive-elastic, and explosive-elastic-reactive. The combination of PT after < 85 Hz EMS did not show any jump height significant increase in sprinters. In conclusion, an eight week training program (with just two days per week of EMS combined with plyometric exercises has proven useful for the improvement of every kind of vertical jump ability required for sprint and hurdles disciplines in teenage athletes

  16. Effects of six warm-up protocols on sprint and jump performance.

    Science.gov (United States)

    Vetter, Rheba E

    2007-08-01

    The purpose of this study was to compare the effects of 6 warm-up protocols, with and without stretches, on 2 different power maneuvers: a 30-m sprint run and a vertical countermovement jump (CJ). The 6 protocols were: (a) walk plus run (WR); (b) WR plus exercises including small jumps (EJ); (c) WR plus dynamic active stretch plus exercises with small jumps (DAEJ); (d) WR plus dynamic active stretch (DA); (e) WR plus static stretch plus exercises with small jumps (SSEJ); and (f) WR plus static stretch (SS). Twenty-six college-age men (n = 14) and women (n = 12) performed each of 6 randomly ordered exercise routines prior to randomly ordered sprint and vertical jump field tests; each routine and subsequent tests were performed on separate days. A 2 x 6 repeated measures analysis of variance revealed a significant overall linear trend (p hoc analysis pairwise comparisons showed the WR protocol produced higher jumps than did SS (p = 0.003 protocols on sprint run performance (p > or = 0.05). No significant interaction occurred between gender and protocol. There were significant differences between men and women on CJ and sprint trials; as expected, in general men ran faster and jumped higher than the women did. The data indicate that a warm-up including static stretching may negatively impact jump performance, but not sprint time.

  17. CAPTURE OF TROJANS BY JUMPING JUPITER

    Energy Technology Data Exchange (ETDEWEB)

    Nesvorny, David [Department of Space Studies, Southwest Research Institute, 1050 Walnut St., Suite 300, Boulder, CO 80302 (United States); Vokrouhlicky, David [Institute of Astronomy, Charles University, V Holesovickach 2, 180 00 Prague 8 (Czech Republic); Morbidelli, Alessandro [Departement Cassiopee, University of Nice, CNRS, Observatoire de la Cote d' Azur, Nice, F-06304 (France)

    2013-05-01

    Jupiter Trojans are thought to be survivors of a much larger population of planetesimals that existed in the planetary region when planets formed. They can provide important constraints on the mass and properties of the planetesimal disk, and its dispersal during planet migration. Here, we tested a possibility that the Trojans were captured during the early dynamical instability among the outer planets (aka the Nice model), when the semimajor axis of Jupiter was changing as a result of scattering encounters with an ice giant. The capture occurs in this model when Jupiter's orbit and its Lagrange points become radially displaced in a scattering event and fall into a region populated by planetesimals (that previously evolved from their natal transplanetary disk to {approx}5 AU during the instability). Our numerical simulations of the new capture model, hereafter jump capture, satisfactorily reproduce the orbital distribution of the Trojans and their total mass. The jump capture is potentially capable of explaining the observed asymmetry in the number of leading and trailing Trojans. We find that the capture probability is (6-8) Multiplication-Sign 10{sup -7} for each particle in the original transplanetary disk, implying that the disk contained (3-4) Multiplication-Sign 10{sup 7} planetesimals with absolute magnitude H < 9 (corresponding to diameter D = 80 km for a 7% albedo). The disk mass inferred from this work, M{sub disk} {approx} 14-28 M{sub Earth}, is consistent with the mass deduced from recent dynamical simulations of the planetary instability.

  18. Migrating to a real-time distributed parallel simulator architecture- An update

    CSIR Research Space (South Africa)

    Duvenhage, B

    2007-09-01

    Full Text Available A legacy non-distributed logical time simulator was previously migrated to a distributed architecture to parallelise execution. The existing Discrete Time System Specification (DTSS) modelling formalism was retained to simplify the reuse of existing...

  19. Real-time Distributed Economic Dispatch forDistributed Generation Based on Multi-Agent System

    DEFF Research Database (Denmark)

    Luo, Kui; Wu, Qiuwei; Nielsen, Arne Hejde

    2015-01-01

    The distributed economic dispatch for distributed generation is formulated as a optimization problem with equality and inequality constraints. An effective distributed approach based on multi-agent system is proposed for solving the economic dispatch problem in this paper. The proposed approach...... distributed manner with local computation and communication among neighboring agent. The feasibility and effectiveness of this approach is demonstrated by a numerical test system....

  20. Effects of different types of jump impact on trabecular bone mass and microarchitecture in growing rats.

    Directory of Open Access Journals (Sweden)

    Yong-In Ju

    Full Text Available Substantial evidence from animal studies indicates that jumping increases bone mass and strength. However, most studies have focused on the take-off, rather than the landing phase of jumps. Thus, we compared the effects of landing and upward jump impact on trabecular bone mass and microarchitecture. Male Wistar rats aged 10 weeks were randomly assigned to the following groups: sedentary control (CON, 40-cm upward jumps (40UJ; 40-cm drop jumps (40DJ; and 60-cm drop jumps (60DJ (n = 10 each. The upward jump protocol comprised 10 upward jumps/day, 5 days/week for 8 weeks to a height of 40 cm. The drop jump protocol comprised dropping rats from a height of 40 or 60 cm at the same frequency and time period as the 40UJ group. Trabecular bone mass, architecture, and mineralization at the distal femoral metaphysis were evaluated using microcomputed tomography. Ground reaction force (GRF was measured using a force platform. Bone mass was significantly higher in the 40UJ group compared with the DJ groups (+49.1% and +28.3%, respectively, although peak GRF (-57.8% and -122.7%, respectively and unit time force (-21.6% and -36.2%, respectively were significantly lower in the 40UJ group. These results showed that trabecular bone mass in growing rats is increased more effectively by the take-off than by the landing phases of jumps and suggest that mechanical stress accompanied by muscle contraction would be more important than GRF as an osteogenic stimulus. However, the relevance of these findings to human bone physiology is unclear and requires further study.

  1. The Voter Model and Jump Diffusion

    CERN Document Server

    Majmudar, Jimit; Baumgaertner, Bert O; Tyson, Rebecca C

    2015-01-01

    Opinions, and subsequently opinion dynamics, depend not just on interactions among individuals, but also on external influences such as the mass media. The dependence on local interactions, however, has received considerably more attention. In this paper, we use the classical voter model as a basis, and extend it to include external influences. We show that this new model can be understood using the theory of jump diffusion processes. We derive results pertaining to fixation probability and expected consensus time of the process, and find that the contribution of an external influence significantly dwarfs the contribution of the node-to-node interactions in terms of driving the social network to eventual consensus. This result suggests the potential importance of ``macro-level'' phenomena such as the media influence as compared to the ``micro-level'' local interactions, in modelling opinion dynamics.

  2. Jumping performance in the highly aquatic frog, Xenopus tropicalis: sex-specific relationships between morphology and performance

    Directory of Open Access Journals (Sweden)

    Anthony Herrel

    2014-11-01

    Full Text Available Frogs are characterized by a morphology that has been suggested to be related to their unique jumping specialization. Yet, the functional demands associated with jumping and swimming may not be that different as suggested by studies with semi-aquatic frogs. Here, we explore whether features previously identified as indicative of good burst swimming performance also predict jumping performance in a highly aquatic frog, Xenopus tropicalis. Moreover, we test whether the morphological determinants of jumping performance are similar in the two sexes and whether jumping performance differs in the two sexes. Finally we test whether jumping capacity is positively associated with burst swimming and terrestrial endurance capacity in both sexes. Our results show sex-specific differences in jumping performance when correcting for differences in body size. Moreover, the features determining jumping performance are different in the two sexes. Finally, the relationships between different performance traits are sex-dependent as well with females, but not males, showing a trade-off between peak jumping force and the time jumped to exhaustion. This suggests that different selective pressures operate on the two sexes, with females being subjected to constraints on locomotion due to their greater body mass and investment in reproductive capacity. In contrast, males appear to invest more in locomotor capacity giving them higher performance for a given body size compared to females.

  3. Electroencephalographic recordings during parachute jump sessions.

    Science.gov (United States)

    Gauthier, P; Jouffray, L; Rodi, M; Gottesmann, C

    1980-04-01

    Electroencephalographic (EEG) recordings of experienced parachutists were done by means of telemetry before, during, and after jumps of up to 3500m. During free-fall and after stabilization, alpha rhythm was recorded from several alpha reactive subjects when they closed their eyes. No pathological EEG recordings were obtained during the different phases of the jump.

  4. Jump Detection in the Danish Stock Market

    DEFF Research Database (Denmark)

    Høg, Esben

    2002-01-01

    It is well known in financial economics that stock market return data are often modelled by a diffusion process with some regular drift function. Occasionally, however, sudden changes or jumps occur in the return data. Wavelet scaling methods are used to detect jumps and cusps in stock market...

  5. Rope Jumping: A Preliminary Developmental Study.

    Science.gov (United States)

    Wickstrom, Ralph L.

    The basic movement pattern used in skilled individual rope jumping performance was determined and used as a model against which to evaluate the rope jumping form used by children at various levels of skills development. The techniques of adults and nursery school children were filmed and analyzed. The specific causes of unsuccessful attempts were…

  6. Separation and pattern formation in hydraulic jumps

    DEFF Research Database (Denmark)

    Bohr, Tomas; Ellegaard, C.; Hansen, A. Espe;

    1998-01-01

    We present theory and experiments on the circular hydraulic jump in the stationary regime. The theory can handle the situation in which the fluid flows over an edge far away from the jump. In the experiments the external height is controlled, and a series of transitions in the flow structure appe...

  7. Internal hydraulic jumps with large upstream shear

    Science.gov (United States)

    Ogden, Kelly; Helfrich, Karl

    2015-11-01

    Internal hydraulic jumps in approximately two-layered flows with large upstream shear are investigated using numerical simulations. The simulations allow continuous density and velocity profiles, and a jump is forced to develop by downstream topography, similar to the experiments conducted by Wilkinson and Wood (1971). High shear jumps are found to exhibit significantly more entrainment than low shear jumps. Furthermore, the downstream structure of the flow has an important effect on the jump properties. Jumps with a slow upper (inactive) layer exhibit a velocity minimum downstream of the jump, resulting in a sub-critical downstream state, while flows with the same upstream vertical shear and a larger barotropic velocity remain super-critical downstream of the jump. A two-layer theory is modified to account for the vertical structure of the downstream density and velocity profiles and entrainment is allowed through a modification of the approach of Holland et al. (2002). The resulting theory can be matched reasonably well with the numerical simulations. However, the results are very sensitive to how the downstream vertical profiles of velocity and density are incorporated into the layered model, highlighting the difficulty of the two layer approximation when the shear is large.

  8. Strong jump traceability and Demuth randomness

    CERN Document Server

    Greenberg, Noam

    2011-01-01

    We solve the covering problem for Demuth randomness, showing that a computably enumerable set is computable from a Demuth random set if and only if it is strongly jump-traceable. We show that on the other hand, the class of sets which form a base for Demuth randomness is a proper subclass of the class of strongly jump-traceable sets.

  9. European Option Pricing with Transaction Costs in Lévy Jump Environment

    Directory of Open Access Journals (Sweden)

    Jiayin Li

    2014-01-01

    Full Text Available The European option pricing problem with transaction costs is investigated for a risky asset price model with Lévy jump. By the aid of arbitrage pricing theory and the generalized Itô formula (which includes Poisson jump, the explicit solution to the risk asset price model is given. According to arbitrage-free principle, we first discretize the continuous-time model. Then, in each small time interval, the transaction costs are introduced. By using the Δ-hedging strategy, the explicit solutions of the European options pricing formula with transaction costs are given for the risky asset price model with Lévy jump.

  10. Stochastic stability properties of jump linear systems

    Science.gov (United States)

    Feng, Xiangbo; Loparo, Kenneth A.; Ji, Yuandong; Chizeck, Howard J.

    1992-01-01

    Jump linear systems are defined as a family of linear systems with randomly jumping parameters (usually governed by a Markov jump process) and are used to model systems subject to failures or changes in structure. The authors study stochastic stability properties in jump linear systems and the relationship among various moment and sample path stability properties. It is shown that all second moment stability properties are equivalent and are sufficient for almost sure sample path stability, and a testable necessary and sufficient condition for second moment stability is derived. The Lyapunov exponent method for the study of almost sure sample stability is discussed, and a theorem which characterizes the Lyapunov exponents of jump linear systems is presented.

  11. A review on the basketball jump shot.

    Science.gov (United States)

    Okazaki, Victor H A; Rodacki, André L F; Satern, Miriam N

    2015-06-01

    The ability to shoot an effective jump shot in the sport of basketball is critical to a player's success. In an attempt to better understand the aspects related to expert performance, researchers have investigated successful free throws and jump shots of various basketball players and identified movement variables that contribute to their success. The purpose of this study was to complete a systematic review of the scientific literature on the basketball free throw and jump shot for the purpose of revealing the critical components of shooting that coaches, teachers, and players should focus on when teaching, learning, practising, and performing a jump shot. The results of this review are presented in three sections: (a) variables that affect ball trajectory, (b) phases of the jump shot, and

  12. Mechanical output in jumps of marmosets (Callithrix jacchus).

    Science.gov (United States)

    Bobbert, Maarten F; Plas, Rogier L C; Weide, Guido; Clairbois, H E Bert; Hofman, Sam O; Jaspers, Richard T; Philippens, Ingrid H C H M

    2014-02-15

    In this study we determined the mechanical output of common marmosets (Callithrix jacchus) during jumping. Vertical ground reaction forces were measured in 18 animals while they jumped from an instrumented crossbar to a crossbar located 70 cm higher. From the vertical force time histories, we calculated the rate of change of mechanical energy of the centre of mass (dE/dt). The mean value of dE/dt during the push-off amounted to 51.8±6.2 W kg(-1) body mass, and the peak value to 116.4±17.6 W kg(-1) body mass. We used these values in combination with masses of leg muscles, determined in two specimens, to estimate mean and peak values of dE/dt of 430 and 970 W kg(-1) muscle, respectively. These values are higher than values reported in the literature for jumps of humans and bonobos, but smaller than those of jumps of bushbabies. Surprisingly, the mean value of dE/dt of 430 W kg(-1) muscle was close to the maximal power output of 516 W kg(-1) muscle reported in the literature for isokinetic contractions of rat medial gastrocnemius, one of the fastest mammalian muscles. Further study of the force-velocity relationship of muscle tissue of small primates is indicated.

  13. Ioffe-time distributions instead of parton momentum distributions in description of deep inelastic scattering

    CERN Document Server

    Braun, V M; Mankiewicz, L; Braun, V; Górnicki, P; Mankiewicz, L

    1995-01-01

    We argue that parton distributions in coordinate space provide a more natural object for nonperturbative methods compared to the usual momentum distributions in which the physics of different longitudinal distances is being mixed. To illustrate the advantages of the coordinate space formulation, we calculate the coordinate space distributions for valence quarks in the proton using the QCD sum rule approach. A remarkable agreement is found between the calculated and the experimentally measured u-quark distribution up to distances of order \\sim 2 fm in the proton rest frame. The standard calculation completely fails, however, for valence d quarks; the reasons for this discrepancy are discussed.

  14. The kinematics of swimming and relocation jumps in copepod nauplii.

    Directory of Open Access Journals (Sweden)

    Christian Marc Andersen Borg

    Full Text Available Copepod nauplii move in a world dominated by viscosity. Their swimming-by-jumping propulsion mode, with alternating power and recovery strokes of three pairs of cephalic appendages, is fundamentally different from the way other microplankters move. Protozoans move using cilia or flagella, and copepodites are equipped with highly specialized swimming legs. In some species the nauplius may also propel itself more slowly through the water by beating and rotating the appendages in a different, more complex pattern. We use high-speed video to describe jumping and swimming in nauplii of three species of pelagic copepods: Temora longicornis, Oithona davisae and Acartia tonsa. The kinematics of jumping is similar between the three species. Jumps result in a very erratic translation with no phase of passive coasting and the nauplii move backwards during recovery strokes. This is due to poorly synchronized recovery strokes and a low beat frequency relative to the coasting time scale. For the same reason, the propulsion efficiency of the nauplii is low. Given the universality of the nauplius body plan, it is surprising that they seem to be inefficient when jumping, which is different from the very efficient larger copepodites. A slow-swimming mode is only displayed by T. longicornis. In this mode, beating of the appendages results in the creation of a strong feeding current that is about 10 times faster than the average translation speed of the nauplius. The nauplius is thus essentially hovering when feeding, which results in a higher feeding efficiency than that of a nauplius cruising through the water.

  15. Just-in-time Data Distribution for Analytical Query Processing

    NARCIS (Netherlands)

    Ivanova, M.G.; Kersten, M.L.; Groffen, F.E.

    2012-01-01

    Distributed processing commonly requires data spread across machines using a priori static or hash-based data allocation. In this paper, we explore an alternative approach that starts from a master node in control of the complete database, and a variable number of worker nodes for delegated

  16. Just-In-Time Data Distribution for Analytical Query Processing

    NARCIS (Netherlands)

    Ivanova, M.; Kersten, M.; Groffen, F.

    2012-01-01

    Distributed processing commonly requires data spread across machines using a priori static or hash-based data allocation. In this paper, we explore an alternative approach that starts from a master node in control of the complete database, and a variable number of worker nodes for delegated query pr

  17. Time and the Distribution of L2 Instruction.

    Science.gov (United States)

    Collins, Laura; Halter, Randall H.; Lightbown, Patsy M.; Spada, Nina

    1999-01-01

    Reports the results of research investigating the effectiveness of three types of English-as-Second-Language (ESL) programs in Quebec. Equivalent ESL curricula were taught over the regular 10-month school year in "distributed" programs, over a 5-month period in "massed" programs, and over a 5-month period along with extracurricular activities in…

  18. Liver allocation and distribution: time for a change.

    Science.gov (United States)

    Deshpande, Ranjit; Hirose, Ryutaro; Mulligan, David

    2017-04-01

    Liver allograft allocation has been a topic of hot debate for over a decade. New redistricting changes have been proposed by the Liver and Intestinal Transplant Committee to the existing United Network for Organ Sharing (UNOS) liver allocation policy. The basis of this new proposal is similar to the old one with an aim to distribute organs in a fair, efficient and equitable fashion. In this review, we plan to look in depth at the redistribution proposals thus far, their merits and how they may help patients who do not have adequate access to livers. Many authors have criticized the proposed changes to organ distribution to reduce geographic disparity in access to liver transplantation. Our focus in this article is to bring forth the most recent literature and proposed changes in the current distribution system. We will also mention two other possible methods that have been proposed to redesign distribution using concentric circles and neighborhoods. In this article, we also look at the economics of the redistricting proposal and its effects on transplant centers. The UNOS Liver and Intestinal Transplant Committee has recommended a proposal using the eight-district model with proximity circles and three additional Model for End-Stage Liver Disease (MELD) points with initial sharing MELD threshold of 25 as a starting point to reduce disparity in patient access to deceased donor livers for transplantation. This proposal has met with significant resistance because of concerns of cost, logistics and impact on existing transplant centers. Other methodologies have also been proposed that have the potential to significantly improve our current disparity of access to life-saving organs. Variation in the supply of donor organs vs. the demand or need for liver transplant by geography and the current defined areas of distribution drive this disparity. Cost benefits to the healthcare system in caring for patients with advanced stages of liver disease may outweigh increased

  19. Catchment residence and travel time distributions: The master equation

    National Research Council Canada - National Science Library

    Gianluca Botter; Enrico Bertuzzo; Andrea Rinaldo

    2011-01-01

      Travel/residence time pdf's are related objects with different physical meaning A Master Equation for the residence time pdf is derived and solved analytically We develop a mathematical framework...

  20. Jumping from the Brooklyn Bridge.

    Science.gov (United States)

    Kurtz, R J; Pizzi, W F; Richman, H; Tiefenbrun, J

    1987-07-01

    In an attempt to identify factors contributing to survival of free fall and impact, we evaluated the records of four patients who survived a jump from the Brooklyn Bridge into the East River in New York Harbor between 1977 and 1985. All four patients were male and ranged in age from 22 to 67 years. They had free falls of between 41.0 and 48.8 meters. All of the patients were brought to the hospital within 24 minutes of entering the water. Three of the four had emergency surgical treatment and the fourth patient had only minor injuries. All four patients survived the suicide attempts. The length of the hospital stay ranged from two to 26 days.

  1. The asteroid belt outer region under jumping-Jupiter migration

    Science.gov (United States)

    Gaspar, H. S.; Winter, O. C.; Vieira Neto, E.

    2017-09-01

    The radial configuration of the outer region of the main asteroid belt is quite peculiar, and has much to say about the past evolution of Jupiter. In this work, we investigate the dynamical effects of a jumping-Jupiter-like migration over a more extended primordial asteroid belt. Jupiter's migrations are simulated using a fast jumping-Jupiter synthesizer. Among the results, we highlight non-negligible fractions of primordial objects trapped in 3:2 and 4:3 mean motion resonances (MMRs) with Jupiter. They survived the whole truculent phase of migration and originated populations that are like Hildas and Thules. Fractions ranging from 3 to 6 per cent of the initial distribution remained trapped in 3:2 MMR, and at least 0.05 per cent in 4:3. These results show that the resonance trapping of primordial objects may have originated these resonant populations. This theory is consistent even for Jupiter's truculent evolution.

  2. Forecasting Exchange Rate Volatility in the Presence of Jumps

    DEFF Research Database (Denmark)

    Busch, Thomas; Christensen, Bent Jesper; Nielsen, Morten Ørregaard

    of exchange rate futures options, allowingcalculation of option implied volatility. We find that implied volatility is an informationallyefficient but biased forecast of future realized exchange rate volatility. Furthermore,we show that log-normality is an even better distributional approximation...... for impliedvolatility than for realized volatility in this market. Finally, we show that the jump componentof future realized exchange rate volatility is to some extent predictable, and thatoption implied volatility is the dominant forecast of the future jump component.......We study measures of foreign exchange rate volatility based on high-frequency (5-minute) $/DM exchange rate returns using recent nonparametric statistical techniquesto compute realized return volatility and its separate continuous sample path and jumpcomponents, and measures based on prices...

  3. Option Pricing with Stochastic Volatility and Jump Diffusion Processes

    Directory of Open Access Journals (Sweden)

    Radu Lupu

    2006-05-01

    Full Text Available Option pricing by the use of Black Scholes Merton (BSM model is based on the assumption that asset prices have a lognormal distribution. In spite of the use of these models on a large scale, both by practioners and academics, the assumption of lognormality is rejected by the history of returns. The objective of this article is to present the methods that developed after the Black Scholes Merton environment and deals with the option pricing model adjustment to the empirical properties of asset returns. The main models that appeared after BSM allowed for special changes of the returns that materialized in jump-diffusion and stochastic volatility processes. The article presents the foundations of risk neutral options evaluation and the empirical evidence that fed the amendment of the lognormal assumption in the first part and shows the evaluation procedure under the assumption of stock prices following the jump-diffusion process and the stochastic volatility process.

  4. Option Pricing with Stochastic Volatility and Jump Diffusion Processes

    Directory of Open Access Journals (Sweden)

    Radu Lupu

    2006-03-01

    Full Text Available Option pricing by the use of Black Scholes Merton (BSM model is based on the assumption that asset prices have a lognormal distribution. In spite of the use of these models on a large scale, both by practioners and academics, the assumption of lognormality is rejected by the history of returns. The objective of this article is to present the methods that developed after the Black Scholes Merton environment and deals with the option pricing model adjustment to the empirical properties of asset returns. The main models that appeared after BSM allowed for special changes of the returns that materialized in jump-diffusion and stochastic volatility processes. The article presents the foundations of risk neutral options evaluation and the empirical evidence that fed the amendment of the lognormal assumption in the first part and shows the evaluation procedure under the assumption of stock prices following the jump-diffusion process and the stochastic volatility process.

  5. Migrating to a real-time distributed parallel simulator architecture

    CSIR Research Space (South Africa)

    Duvenhage, B

    2007-07-01

    Full Text Available DEVS. Ogata, et al. [7] tested the real-time performance of DIS and different versions of the RTI-NG HLA Run-Time Infrastructure (RTI). Their real-time vehicle model simulation within a 3D graphi- cal environment reached a frame rate ceiling... to mili- tary training simulation: A guide for discrete event sim- ulationists. In Proceedings of the 1998 Winter Simula- tion Conference, 1998. [7] Michihiko Ogata, Akira Higashide, Mike Cammarano, and Toshinao Takagi. Rti performance...

  6. 7 CFR 1435.504 - Timing of distribution of CCC-owned sugar.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 10 2010-01-01 2010-01-01 false Timing of distribution of CCC-owned sugar. 1435.504... CORPORATION, DEPARTMENT OF AGRICULTURE LOANS, PURCHASES, AND OTHER OPERATIONS SUGAR PROGRAM Processor Sugar Payment-In-Kind (PIK) Program § 1435.504 Timing of distribution of CCC-owned sugar. Distribution of sugar...

  7. Real Time Emulation of Dynamic Tariff for Congestion Management in Distribution Networks

    DEFF Research Database (Denmark)

    Rasmussen, Theis Bo; Wu, Qiuwei; Huang, Shaojun

    2016-01-01

    This paper presents the real time evaluation of the dynamic tariff (DT) method for alleviating congestion in a distribution networks with high penetration of distributed energy resources (DERs). The DT method is implemented in a real time digital testing platform that emulates a real distribution...

  8. Psycho-physiological response in an automatic parachute jump.

    Science.gov (United States)

    Clemente-Suárez, Vicente Javier; Robles-Pérez, José Juan; Fernández-Lucas, Jesús

    2016-10-11

    Parachute jump is an extreme activity that elicits an intense stress response that affects jumpers' body systems being able to put them at risk. The present research analysed modifications in blood oxygen saturation (BOS), heart rate (HR), cortisol, glucose, lactate, creatine kinase (CK), muscles strength, cortical arousal, autonomic modulation, pistol magazine reload time (PMRT) and state anxiety before and after an automatic open parachute jump in 38 male Spanish soldiers (25.6 ± 5.9 years). A MANOVA with samples as a fixed factor and Effect Size (ES) were conducted. MANOVA showed (Wilks lambda = .225; F = 5.980; P = .000) a significantly increase in cortisol (6.2 ± 3.2 vs. 8.2 ± 4.3 nmol/l; P = .025; ES = .47), HR (75.0 ± 14.6 vs. 87.4 ± 17.3 bpm; P = .004; ES = .72), lactate (1.8 ± 1.2 vs. 4.4 ± 2.2 mmol · l(-1); P = .002; ES = 1.18), sympathetic nervous system and leg strength manifestation after the parachute jump. By contrary BOS, PMRT (55.6 ± 27.6 vs. 48.0 ± 16.7 s; P = .021; ES = .46) and somatic anxiety (SA), evaluated by CSAI2R questionnaire, decreased. An automatic parachute jump increased physiological and cortical response and decreased SA of participants. This stress response can affect the jumpers' abilities and allow us to have a better understanding of the organism stress response and to improve training for both military and sport parachute jumps.

  9. Changes in biomechanical properties during drop jumps of incremental height.

    Science.gov (United States)

    Peng, Hsien-Te

    2011-09-01

    The purpose of this study was to investigate changing biomechanical properties with increasing drop jump height. Sixteen physically active college students participated in this study and performed drop jumps from heights of 20, 30, 40, 50, and 60 cm (DJ20-DJ60). Kinematic and kinetic data were collected using 11 Eagle cameras and 2 force platforms. Data pertaining to the dominant leg for each of 3 trials for each drop height were recorded and analyzed. Statistical comparisons of vertical ground reaction force (vGRF), impulse, moment, power, work, and stiffness were made between different drop jump heights. The peak vGRF of the dominant leg exceeded 3 times the body weight during DJ50 and DJ60; these values were significantly greater than those for DJ20, DJ30, and DJ40 (all p height jumped during DJ60 was significantly less than that during DJ20 and DJ30 (both p = 0.010). Both the landing impulse and total impulse during the contact phase were significantly different between each drop height (all p height. There were no significant differences in the takeoff impulse. Peak and mean power absorption and negative work at the knee and ankle joints during DJ40, DJ50, and DJ60 were significantly greater than those during DJ20 and DJ30 (all p heights >40 cm offered no advantages in terms of mechanical efficiency (SSC power output) and stiffness. Drop jumps from heights in excess of 60 cm are not recommended because of the lack of biomechanical efficiency and the potentially increased risk of injury.

  10. Strain hardening and jump-like deformation of ultrafine polycrystalline Al-Li solid solutions at 0.5 K

    Science.gov (United States)

    Isaev, N. V.; Shumilin, S. E.; Zabrodin, P. A.; Geidarov, V. G.; Grigorova, T. V.; Fomenko, V. S.; Braude, I. S.; Pustovalov, V. V.

    2013-07-01

    This is a study of the effect of microstructure created by severe plastic deformation (SPD) and annealing on strain hardening and jump-like deformation in Al-Li alloys. It is shown that under tension at 0.5 K, SPD processed polycrystals retain a significant strain hardening rate and have high strength and ductility. SPD also simulates unstable (jump-like) flow of the polycrystals owing to dislocation dynamics that shows up as stress jumps in the tension curve. The average amplitude of the jumps increases with strain, while the dislocation amplitude distribution corresponds to collective motion of dislocation avalanches with a distinctive scale. Jump-like deformation is partially suppressed by high-temperature annealing, while the distribution of the jump amplitudes is described by a power law. The relationship established between the coefficient of strain hardening and the average stress jump amplitude suggests a common dislocation dynamic for strain hardening and jump-like deformation at low temperatures. The observed features of low-temperature plastic deformation are treated as a consequence of changes in the grain sizes and density of dislocations owing to SPD and annealing.

  11. Jumping without using legs: the jump of the click-beetles (Elateridae is morphologically constrained.

    Directory of Open Access Journals (Sweden)

    Gal Ribak

    Full Text Available To return to their feet, inverted click-beetles (Elateridae jump without using their legs. When a beetle is resting on its dorsal side, a hinge mechanism is locked to store elastic energy in the body and releases it abruptly to launch the beetle into the air. While the functional morphology of the jumping mechanism is well known, the level of control that the beetle has over this jumping technique and the mechanical constraints governing the jumps are not entirely clear. Here we show that while body rotations in air are highly variable, the jumps are morphologically constrained to a constant "takeoff" angle (79.9°±1.56°, n = 9 beetles that directs 98% of the jumping force vertically against gravity. A physical-mathematical model of the jumping action, combined with measurements from live beetle, imply that the beetle may control the speed at takeoff but not the jumping angle. In addition, the model shows that very subtle changes in the exact point of contact with the ground can explain the vigorous rotations of the body seen while the beetle is airborne. These findings suggest that the evolution of this unique non-legged jumping mechanism resulted in a jumping technique that is capable of launching the body high into the air but it is too constrained and unstable to allow control of body orientation at landing.

  12. Time Truncated Testing Strategy using Multiple Testers: Lognormal Distributed Lifetime

    Directory of Open Access Journals (Sweden)

    Itrat Batool Naqvi

    2014-06-01

    Full Text Available In this study, group acceptance sampling plan proposed by Aslam et al. (2011 is reconsidered when the lifetime variant of the test item follows lognormal distribution. The optimal plan parameters are obtained by considering various pre-specified parameters. The plan parameters are obtained using the non-linear optimization solution using two points approach. The advantage of the proposed plan is discussed over the existing plan using the single point approach and the proposed plan is more efficient than the existing plan.

  13. Storm blueprints patterns for distributed real-time computation

    CERN Document Server

    Goetz, P Taylor

    2014-01-01

    A blueprints book with 10 different projects built in 10 different chapters which demonstrate the various use cases of storm for both beginner and intermediate users, grounded in real-world example applications.Although the book focuses primarily on Java development with Storm, the patterns are more broadly applicable and the tips, techniques, and approaches described in the book apply to architects, developers, and operations.Additionally, the book should provoke and inspire applications of distributed computing to other industries and domains. Hadoop enthusiasts will also find this book a go

  14. Increased medial foot loading during drop jump in subjects with patellofemoral pain.

    Science.gov (United States)

    Rathleff, Michael S; Richter, Camilla; Brushøj, Christoffer; Bencke, Jesper; Bandholm, Thomas; Hölmich, Per; Thorborg, Kristian

    2014-10-01

    To compare medial-to-lateral plantar forces during drop jump and single leg squat in individuals with and without patellofemoral pain. This cross-sectional study compared 23 young adults with patellofemoral pain to 20 age- and sex-matched controls without knee pain. The plantar pressure distribution was collected during drop jump and single leg squat using pressure-sensitive Pedar insoles, inserted into a standard flat shoe. The primary outcome was the medial-to-lateral force, quantified as the peak force under the medial forefoot as the percentage of force under the total forefoot during drop jump. Secondary outcomes included peak medial-to-lateral force during single leg squat and mean forces during drop jump and single leg squat. The primary outcome showed that individuals with patellofemoral pain had a 22% higher medial-to-lateral peak force during drop jump, (p=0.03). Secondary outcomes showed 32% higher medial-to-lateral peak force during single leg squat (p=0.01) and 19-23% higher medial-to-lateral mean force during drop jump and single leg squat (p=0.02-0.04). These findings indicate that individuals with patellofemoral pain display a more medially oriented loading pattern of the forefoot compared to individuals without knee pain. This loading pattern may be associated with the distribution of forces acting on the patellofemoral joint and suggest treatment of PFP should consider interventions that target normalisation of foot loading. III.

  15. On Clustering Criteria for Smooth Distributions

    CERN Document Server

    Bharath, Karthik; Dey, Dipak K

    2012-01-01

    We develop a clustering framework, motivated by the problem of testing for jumps in continuous-time stochastic process models, and derive its asymptotic properties under a general setup. Our technique is applicable whenever we have data from a population with a smooth distribution function. We then propose an intuitive and easily verifiable clustering criterion, based on the Empirical Cross-over Function, which provides us with the requisite tools to develop a test for the presence of jumps. We illustrate the validity of our theory on the popular Merton and Kou models for asset pricing with the objective of investigating jumps occurring in these models as a phenomena which leads to the formation of clusters.

  16. Realized Jump Risk and Equity Return in China

    Directory of Open Access Journals (Sweden)

    Guojin Chen

    2014-01-01

    Full Text Available We utilize the realized jump components to explore a new jump (including nonsystematic jump and systematic jump risk factor model. After estimating daily realized jumps from high-frequency transaction data of the Chinese A-share stocks, we calculate monthly jump size, monthly jump standard deviation, and monthly jump arrival rate and then use those monthly jump factors to explain the return of the following month. Our empirical results show that the jump tail risk can explain the equity return. For the large capital-size stocks, large cap stock portfolios, and index, one-month lagged jump risk factor significantly explains the asset return variation. Our results remain the same even when we add the size and value factors in the robustness tests.

  17. Effects of slackline training on postural control, jump performance, and myoelectrical activity in female basketball players

    DEFF Research Database (Denmark)

    Santos, Luis; Fernández-Río, Javier; Fernández-García, Benjamín

    2016-01-01

    The main goal of the study was to assess the effects of slackline training on the postural control system and jump performance of athletes. Twenty-five female basketball players were randomized into 2 groups: control (N 12) and experimental (N 13). The latter experienced a 6-week supervised...... training in both groups. Performance on a countermovement jump test significantly improved only in the experimental group (effect side was 3.21 and 1.36 [flight time and jump height, respectively], which is described as a large effect). Mechanical power of the legs, as measured through the 30-second...

  18. Modeling and forecasting electricity price jumps in the Nord Pool power market

    DEFF Research Database (Denmark)

    Knapik, Oskar

    extreme prices and forecasting of the price jumps is crucial for risk management and market design. In this paper, we consider the problem of the impact of fundamental price drivers on forecasting of price jumps in NordPool intraday market. We develop categorical time series models which take into account...... i) price drivers, ii) persistence, iii) seasonality of electricity prices. The models are shown to outperform commonly-used benchmark. The paper shows how crucial for price jumps forecasting is to incorporate additional knowledge on price drivers like loads, temperature and water reservoir level...

  19. Comprehensive Cost Minimization in Distribution Networks Using Segmented-time Feeder Reconfiguration and Reactive Power Control of Distributed Generators

    DEFF Research Database (Denmark)

    Chen, Shuheng; Hu, Weihao; Chen, Zhe

    2016-01-01

    In this paper, an efficient methodology is proposed to deal with segmented-time reconfiguration problem of distribution networks coupled with segmented-time reactive power control of distributed generators. The target is to find the optimal dispatching schedule of all controllable switches...... and distributed generators’ reactive powers in order to minimize comprehensive cost. Corresponding constraints, including voltage profile, maximum allowable daily switching operation numbers (MADSON), reactive power limits, and so on, are considered. The strategy of grouping branches is used to simplify...... (FAHPSO) is implemented in VC++ 6.0 program language. A modified version of the typical 70-node distribution network and several real distribution networks are used to test the performance of the proposed method. Numerical results show that the proposed methodology is an efficient method for comprehensive...

  20. The MARS for squat, countermovement, and standing long jump performance analyses: are measures reproducible?

    Science.gov (United States)

    Hébert-Losier, Kim; Beaven, C Martyn

    2014-07-01

    Jump tests are often used to assess the effect of interventions because their outcomes are reported valid indicators of functional performance. In this study, we examined the reproducibility of performance parameters from 3 common jump tests obtained using the commercially available Kistler Measurement, Analysis and Reporting Software (MARS). On 2 separate days, 32 men performed 3 squat jumps (SJs), 3 countermovement jumps (CMJs), and 3 standing long jumps (LJs) on a Kistler force-plate. On both days, the performance measures from the best jump of each series were extracted using the MARS. Changes in the mean scores, intraclass correlation coefficients (ICCs), and coefficients of variations (CVs) were computed to quantify the between-day reproducibility of each parameter. Moreover, the reproducibility quantifiers specific to the 3 separate jumps were compared using nonparametric tests. Overall, an acceptable between-day reproducibility (mean ± SD, ICC, and CV) of SJ (0.88 ± 0.06 and 7.1 ± 3.8%), CMJ (0.84 ± 0.17 and 5.9 ± 4.1%), and LJ (0.80 ± 0.13 and 8.1 ± 4.1%) measures was found using the MARS, except for parameters directly relating to the rate of force development (i.e., time to maximal force) and change in momentum during countermovement (i.e., negative force impulse) where reproducibility was lower. A greater proportion of the performance measures from the standing LJs had low ICCs and/or high CVs values most likely owing to the complex nature of the LJ test. Practitioners and researchers can use most of the jump test parameters from the MARS with confidence to quantify changes in the functional ability of individuals over time, except for those relating to the rate of force development or change in momentum during countermovement phases of jumps.

  1. Bubble visualization in a simulated hydraulic jump

    CERN Document Server

    Witt, Adam; Shen, Lian

    2013-01-01

    This is a fluid dynamics video of two- and three-dimensional computational fluid dynamics simulations carried out at St. Anthony Falls Laboratory. A transient hydraulic jump is simulated using OpenFOAM, an open source numerical solver. A Volume of Fluid numerical method is employed with a realizable k-epsilon turbulence model. The goal of this research is to model the void fraction and bubble size in a transient hydraulic jump. This fluid dynamics video depicts the air entrainment characteristics and bubble behavior within a hydraulic jump of Froude number 4.82.

  2. Use of video observation and motor imagery on jumping performance in national rhythmic gymnastics athletes.

    Science.gov (United States)

    Battaglia, Claudia; D'Artibale, Emanuele; Fiorilli, Giovanni; Piazza, Marina; Tsopani, Despina; Giombini, Arrigo; Calcagno, Giuseppe; di Cagno, Alessandra

    2014-12-01

    The aim of this study was to evaluate whether a mental training protocol could improve gymnastic jumping performance. Seventy-two rhythmic gymnasts were randomly divided into an experimental and control group. At baseline, experimental group completed the Movement Imagery Questionnaire Revised (MIQ-R) to assess the gymnast ability to generate movement imagery. A repeated measures design was used to compare two different types of training aimed at improving jumping performance: (a) video observation and PETTLEP mental training associated with physical practice, for the experimental group, and (b) physical practice alone for the control group. Before and after six weeks of training, their jumping performance was measured using the Hopping Test (HT), Drop Jump (DJ), and Counter Movement Jump (CMJ). Results revealed differences between jumping parameters F(1,71)=11.957; p<.01, and between groups F(1,71)=10.620; p<.01. In the experimental group there were significant correlations between imagery ability and the post-training Flight Time of the HT, r(34)=-.295, p<.05 and the DJ, r(34)=-.297, p<.05. The application of the protocol described herein was shown to improve jumping performance, thereby preserving the elite athlete's energy for other tasks. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. pH-jump induced α-helix folding of poly-L-glutamic acid

    Energy Technology Data Exchange (ETDEWEB)

    Donten, Mateusz L. [Institute of Physical Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zürich (Switzerland); Hamm, Peter, E-mail: phamm@pci.uzh.ch [Institute of Physical Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zürich (Switzerland)

    2013-08-30

    Highlights: ► pH-jump as truly biomimetic tool to initiate non-equilibrium dynamics of biomolecules. ► Design criteria to widen the applicability of pH-jumps are developed. ► Folding of poly-L-Glu in dependence of starting pH, pH jump size and helix length. ► Length dependence provides strong evidence for a nucleation–propagation scenario. - Abstract: pH jumps are a truly biomimetic technique to initiate non-equilibrium dynamics of biomolecules. In this work, the pH jump induced α-helix folding of poly-L-glutamic acid is investigated upon proton release from o-nitrobenzaldehyde. The aim of this work is twofold: On the one hand, design criteria of pH jump experiments are discussed, on the other hand, the folding mechanism of poly-L-glutamic acid is clarified by probing the IR response of the amide I band. Its folding kinetics is studied in dependence of the starting pD, the size of the pD jump and the length of the helix. While no dependence on the first two parameters could be detected, the folding time varies from 0.6 μs to 1.8 μs for helix lengths of 20 residue to 440 residue, respectively. It converges to a long-length limit at about 50 residue, a result which is attributed to a nucleation–propagation mechanism.

  4. Segmental and kinetic contributions in vertical jumps performed with and without an arm swing.

    Science.gov (United States)

    Feltner, Michael E; Bishop, Elijah J; Perez, Cassandra M

    2004-09-01

    To determine the contributions of the motions of the body segments to the vertical ground reaction force (Fz), the joint torques produced by the leg muscles, and the time course of vertical velocity generation during a vertical jump, 15 men were videotaped performing countermovement vertical jumps from a force plate with and without an arm swing. Linear kinematic, Fz, and joint torque data were computed and compared using repeated measures analysis of variance. Maximum jump height was significantly larger in the arm swing jumps compared to the no arm swing jumps and was due to both a higher height of the center of mass (CM) at takeoff (54%) and a larger vertical velocity of the CM at takeoff (46%). The net vertical impulse created during the propulsive phase of the arm swing jumps was greater due to a trend of an increased duration (0.021 s) of the propulsive phase and not to larger average values of Fz. In the arm swing jumps, the arm motion resulted in the arms making a larger maximal contribution to Fz during the middle of the propulsive phase and decreased the negative contribution of the trunk-head and thigh to Fz late in the propulsive phase. Last, the arm swing decreased the extensor torques at the hip (13%), knee (10%), and ankle (10%) early in the propulsive phase but augmented these same extensor torques later in the propulsive phase.

  5. Timing and Spatial Distribution of Loess in Xinjiang, NW China.

    Directory of Open Access Journals (Sweden)

    Yun Li

    Full Text Available Central Asia is one of the most significant loess regions on Earth, with an important role in understanding Quaternary climate and environmental change. However, in contrast to the widely investigated loess deposits in the Chinese Loess Plateau, the Central Asian loess-paleosol sequences are still insufficiently known and poorly understood. Through field investigation and review of the previous literature, the authors have investigated the distribution, thickness and age of the Xinjiang loess, and analyzed factors that control these parameters in the Xinjiang in northwest China, Central Asia. The loess sediments cover river terraces, low uplands, the margins of deserts and the slopes of the Tianshan Mountains and Kunlun Mountains and are also present in the Ili Basin. The thickness of the Xinjiang loess deposits varies from several meters to 670 m. The variation trend of the sand fraction (>63 μm grain-size contour can indicate the local major wind directions, so we conclude that the NW and NE winds are the main wind directions in the North and South Xinjiang, and the westerly wind mainly transport dust into the Ili basin. We consider persistent drying, adequate regional wind energy and well-developed river terraces to be the main factors controlling the distribution, thickness and formation age of the Xinjiang loess. The well-outcropped loess sections have mainly developed since the middle Pleistocene in Xinjiang, reflecting the appearance of the persistent drying and the present air circulation system. However, the oldest loess deposits are as old as the beginning of the Pliocene in the Tarim Basin, which suggests that earlier aridification occurred in the Tarim Basin rather than in the Ili Basin and the Junggar Basin.

  6. The VLBA Correlator---Real-Time in the Distributed ERA

    Science.gov (United States)

    Wells, Donald C.

    1993-01-01

    The Correlator is the signal processing engine of the Very Long Baseline Array [VLBA]. Radio signals are recorded on special wideband digital recorders at the 10 VLBA antennas and are shipped to the Array Operations Center in Socorro, New Mexico, where they are played back simultaneously into the Correlator. Real-time software and firmware controls the playback drives to achieve synchronization, compute models of the wavefront delay, control the numerous modules of the Correlator, and record FITS files of the fringe visibilities at the back-end of the Correlator. The Correlator system contains a total of more than 100 programmable computers, which communicate by means of various protocols. The VLBA Correlator's dependence on network protocols is an example of the radical transformation of the real-time world over the past five years: real-time is becoming more like conventional computing.

  7. Critical capacity, travel time delays and travel time distribution of rapid mass transit systems

    Science.gov (United States)

    Legara, Erika Fille; Monterola, Christopher; Lee, Kee Khoon; Hung, Gih Guang

    2014-07-01

    We set up a mechanistic agent-based model of a rapid mass transit system. Using empirical data from Singapore's unidentifiable smart fare card, we validate our model by reconstructing actual travel demand and duration of travel statistics. We subsequently use this model to investigate two phenomena that are known to significantly affect the dynamics within the RTS: (1) overloading in trains and (2) overcrowding in the RTS platform. We demonstrate that by varying the loading capacity of trains, a tipping point emerges at which an exponential increase in the duration of travel time delays is observed. We also probe the impact on the rail system dynamics of three types of passenger growth distribution across stations: (i) Dirac delta, (ii) uniform and (iii) geometric, which is reminiscent of the effect of land use on transport. Under the assumption of a fixed loading capacity, we demonstrate the dependence of a given origin-destination (OD) pair on the flow volume of commuters in station platforms.

  8. Representing real time semantics for distributed application integration

    NARCIS (Netherlands)

    Poon, P.M.S.; Dillon, T.S.; Chang, E.; Feng, L.

    2006-01-01

    Traditional real time system design and development are driven by technological requirements. With the ever growing complexity of requirements and the advances in software design, the alignment of focus has gradually been shifted to the perspective of business and industrial needs. This paper discus

  9. Distributed energy resources scheduling considering real-time resources forecast

    DEFF Research Database (Denmark)

    Silva, M.; Sousa, T.; Ramos, S.

    2014-01-01

    grids and considering day-ahead, hour-ahead and realtime time horizons. This method considers that energy resources are managed by a VPP which establishes contracts with their owners. The full AC power flow calculation included in the model takes into account network constraints. In this paper...

  10. Residence time distribution in twin-screw extruders.

    NARCIS (Netherlands)

    Jager, T.

    1992-01-01

    For the twin-screw extruders used in the food industry at short time high temperature processes the knowledge of their reactor properties is incomplete for mass- and heat flow. Therefore each process change such as: scale-up or product development requires a great number of measurements before an ac

  11. Poverty index with time-varying consumption and income distributions

    Science.gov (United States)

    Chattopadhyay, Amit K.; Kumar, T. Krishna; Mallick, Sushanta K.

    2017-03-01

    Starting from a stochastic agent-based model to represent market exchange in a developing economy, we study time variations of the probability density function of income with simultaneous variation of the consumption deprivation (CD), where CD represents the shortfall in consumption from the saturation level of an essential commodity, cereal. Together, these two models combine income-expenditure-based market dynamics with time variations in consumption due to income. In this new unified theoretical structure, exchange of trade in assets is only allowed when the income exceeds consumption-deprivation while CD itself is endogenously obtained from a separate kinetic model. Our results reveal that the nature of time variation of the CD function leads to a downward trend in the threshold level of consumption of basic necessities, suggesting a possible dietary transition in terms of lower saturation level of food-grain consumption, possibly through an improvement in the level of living. The new poverty index, defined as CD, is amenable to approximate probabilistic prediction within a short time horizon. A major achievement of this work is the intrinsic independence of the poverty index from an exogenous poverty line, making it more objective for policy formulation as opposed to existing poverty indices in the literature.

  12. Residence time distribution in twin-screw extruders

    NARCIS (Netherlands)

    Jager, T.

    1992-01-01

    For the twin-screw extruders used in the food industry at short time high temperature processes the knowledge of their reactor properties is incomplete for mass- and heat flow. Therefore each process change such as: scale-up or product development requires a great number of measurements

  13. The VLBA correlator: Real-time in the distributed era

    Science.gov (United States)

    Wells, D. C.

    1992-01-01

    The correlator is the signal processing engine of the Very Long Baseline Array (VLBA). Radio signals are recorded on special wideband (128 Mb/s) digital recorders at the 10 telescopes, with sampling times controlled by hydrogen maser clocks. The magnetic tapes are shipped to the Array Operations Center in Socorro, New Mexico, where they are played back simultaneously into the correlator. Real-time software and firmware controls the playback drives to achieve synchronization, compute models of the wavefront delay, control the numerous modules of the correlator, and record FITS files of the fringe visibilities at the back-end of the correlator. In addition to the more than 3000 custom VLSI chips which handle the massive data flow of the signal processing, the correlator contains a total of more than 100 programmable computers, 8-, 16- and 32-bit CPUs. Code is downloaded into front-end CPU's dependent on operating mode. Low-level code is assembly language, high-level code is C running under a RT OS. We use VxWorks on Motorola MVME147 CPU's. Code development is on a complex of SPARC workstations connected to the RT CPU's by Ethernet. The overall management of the correlation process is dependent on a database management system. We use Ingres running on a Sparcstation-2. We transfer logging information from the database of the VLBA Monitor and Control System to our database using Ingres/NET. Job scripts are computed and are transferred to the real-time computers using NFS, and correlation job execution logs and status flow back by the route. Operator status and control displays use windows on workstations, interfaced to the real-time processes by network protocols. The extensive network protocol support provided by VxWorks is invaluable. The VLBA Correlator's dependence on network protocols is an example of the radical transformation of the real-time world over the past five years. Real-time is becoming more like conventional computing. Paradoxically, 'conventional

  14. Tunneling time distribution by means of Nelson’s quantum mechanics and wave-particle duality

    Indian Academy of Sciences (India)

    Koh'Ichiro Hara; Ichiro Ohba

    2002-08-01

    We construct a tunneling time distribution by means of Nelson’s quantum mechanics and investigate statistical properties of the tunneling time distribution. As a result, we find that the relationship between the average and the variance of the tunneling time shows ‘wave-particle duality’.

  15. Ratio limits and limiting conditional distributions for discrete-time birth-death processes

    NARCIS (Netherlands)

    Doorn, van Erik A.; Schrijner, Pauline

    1995-01-01

    We consider discrete-time birth-death processes with an absorbing state and study the conditional state distribution at time n given that absorption has not occurred by that time but will occur eventually. In particular, we establish conditions for the convergence of these distributions to a proper

  16. Stabilization of stochastic systems with hidden Markovian jumps

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    This paper considers the adaptive control of discrete-time hybrid stochastic systems with unknown randomly jumping parameters described by a finite-state hidden Markov chain. An intuitive yet longstanding conjecture in this area is that such hybrid systems can be adaptively stabilized whenever the rate of transition of the hidden Markov chain is small enough. This paper provides a rigorous positive answer to this conjecture by establishing the global stability of a gradient-algorithm-based adaptive linear-quadratic control.

  17. Triple jump examinations for dental student assessment.

    Science.gov (United States)

    Navazesh, Mahvash; Rich, Sandra K; Chopiuk, Nasrin Bahari; Keim, Robert G

    2013-10-01

    The triple jump examination (TJE) attempts to assess a higher level of learning with demand for analysis, critical thinking, and resolution of problems presented by written scenarios based on patient care situations. The purpose of this study was to examine the internal consistency, scale reliability, and interrater reliability of the TJE used at the Ostrow School of Dentistry, University of Southern California. On the sample of 2,227 examinations administered by seventy-seven raters across a three-year time period, the Cronbach's coefficient alpha for internal consistency of the overall TJE was found to be good (a=0.869). The internal consistency of the three subscales was found to be acceptable (a=0.731), good (a=0.820), and good (a=0.820). Average and single measures intraclass correlation coefficients (ICC) for scale reliability were significant at p<0.001, indicating strong interrater reliability. There were no statistically significant differences (p≤0.05) in the mean scores assigned on the TJE between rater groups defined by rater experience level with the TJE. A very high level of agreement among rater pairs was also observed. Across the entire three-year study period, with over 19,152 ratings, the seventy-seven raters were in general agreement 99.5 percent of the time and in exact agreement 77.2 percent of the time.

  18. Resilin and chitinous cuticle form a composite structure for energy storage in jumping by froghopper insects

    Directory of Open Access Journals (Sweden)

    Shaw Stephen R

    2008-09-01

    Full Text Available Abstract Background Many insects jump by storing and releasing energy in elastic structures within their bodies. This allows them to release large amounts of energy in a very short time to jump at very high speeds. The fastest of the insect jumpers, the froghopper, uses a catapult-like elastic mechanism to achieve their jumping prowess in which energy, generated by the slow contraction of muscles, is released suddenly to power rapid and synchronous movements of the hind legs. How is this energy stored? Results The hind coxae of the froghopper are linked to the hinges of the ipsilateral hind wings by pleural arches, complex bow-shaped internal skeletal structures. They are built of chitinous cuticle and the rubber-like protein, resilin, which fluoresces bright blue when illuminated with ultra-violet light. The ventral and posterior end of this fluorescent region forms the thoracic part of the pivot with a hind coxa. No other structures in the thorax or hind legs show this blue fluorescence and it is not found in larvae which do not jump. Stimulating one trochanteral depressor muscle in a pattern that simulates its normal action, results in a distortion and forward movement of the posterior part of a pleural arch by 40 μm, but in natural jumping, the movement is at least 100 μm. Conclusion Calculations showed that the resilin itself could only store 1% to 2% of the energy required for jumping. The stiffer cuticular parts of the pleural arches could, however, easily meet all the energy storage needs. The composite structure therefore, combines the stiffness of the chitinous cuticle with the elasticity of resilin. Muscle contractions bend the chitinous cuticle with little deformation and therefore, store the energy needed for jumping, while the resilin rapidly returns its stored energy and thus restores the body to its original shape after a jump and allows repeated jumping.

  19. Volatility jumps and their economic determinants

    DEFF Research Database (Denmark)

    Caporin, Massimiliano; Rossi, Eduardo; Santucci de Magistris, Paolo

    that there is a positive probability of jumps in volatility. A common factor in the volatility jumps is shown to be related to a set of financial covariates (such as variance risk premium, S&P500 volume, credit-default swap, and federal fund rates). The credit-default swap on US banks and variance risk premium have...... predictive power on expected jump moves, thus confirming the common interpretation that sudden and large increases in equity volatility can be anticipated by credit deterioration of the US bank sector as well as changes in the market expectations of future risks. Finally, the model is extended to incorporate...... the credit-default swap and the variance risk premium in the dynamics of the jump size and intensity....

  20. NONINVASIVE DETERMINATION OF KNEE CARTILAGE DEFORMATION DURING JUMPING

    Directory of Open Access Journals (Sweden)

    Djordje Kosanic

    2009-12-01

    Full Text Available The purpose of this investigation was to use a combination of image processing, force measurements and finite element modeling to calculate deformation of the knee cartilage during jumping. Professional athletes performed jumps analyzed using a force plate and high-speed video camera system. Image processing was performed on each frame of video using a color recognition algorithm. A simplified mass-spring-damper model was utilized for determination of global force and moment on the knee. Custom software for fitting the coupling characteristics was created. Simulated results were used as input data for the finite element calculation of cartilage deformation in the athlete's knee. Computer simulation data was compared with the average experimental ground reaction forces. The results show the three-dimensional mechanical deformation distribution inside the cartilage volume. A combination of the image recognition technology, force plate measurements and the finite element cartilage deformation in the knee may be used in the future as an effective noninvasive tool for prediction of injury during jumping

  1. Jump Horse Safety: Reconciling Public Debate and Australian Thoroughbred Jump Racing Data, 2012-2014.

    Science.gov (United States)

    Ruse, Karen; Davison, Aidan; Bridle, Kerry

    2015-10-22

    Thoroughbred jump racing sits in the spotlight of contemporary welfare and ethical debates about horse racing. In Australia, jump racing comprises hurdle and steeplechase races and has ceased in all but two states, Victoria and South Australia. This paper documents the size, geography, composition, and dynamics of Australian jump racing for the 2012, 2013, and 2014 seasons with a focus on debate about risks to horses. We found that the majority of Australian jump racing is regional, based in Victoria, and involves a small group of experienced trainers and jockeys. Australian jump horses are on average 6.4 years of age. The jump career of the majority of horses involves participating in three or less hurdle races and over one season. Almost one quarter of Australian jump horses race only once. There were ten horse fatalities in races over the study period, with an overall fatality rate of 5.1 fatalities per 1000 horses starting in a jump race (0.51%). There was significant disparity between the fatality rate for hurdles, 0.75 fatalities per 1000 starts (0.075%) and steeplechases, 14 fatalities per 1000 starts (1.4%). Safety initiatives introduced by regulators in 2010 appear to have significantly decreased risks to horses in hurdles but have had little or no effect in steeplechases. Our discussion considers these Animals 2015, 5 1073 data in light of public controversy, political debate, and industry regulation related to jump horse safety.

  2. Jump Horse Safety: Reconciling Public Debate and Australian Thoroughbred Jump Racing Data, 2012–2014

    Directory of Open Access Journals (Sweden)

    Karen Ruse

    2015-10-01

    Full Text Available Thoroughbred jump racing sits in the spotlight of contemporary welfare and ethical debates about horse racing. In Australia, jump racing comprises hurdle and steeplechase races and has ceased in all but two states, Victoria and South Australia. This paper documents the size, geography, composition, and dynamics of Australian jump racing for the 2012, 2013, and 2014 seasons with a focus on debate about risks to horses. We found that the majority of Australian jump racing is regional, based in Victoria, and involves a small group of experienced trainers and jockeys. Australian jump horses are on average 6.4 years of age. The jump career of the majority of horses involves participating in three or less hurdle races and over one season. Almost one quarter of Australian jump horses race only once. There were ten horse fatalities in races over the study period, with an overall fatality rate of 5.1 fatalities per 1000 horses starting in a jump race (0.51%. There was significant disparity between the fatality rate for hurdles, 0.75 fatalities per 1000 starts (0.075% and steeplechases, 14 fatalities per 1000 starts (1.4%. Safety initiatives introduced by regulators in 2010 appear to have significantly decreased risks to horses in hurdles but have had little or no effect in steeplechases. Our discussion considers these Animals 2015, 5 1073 data in light of public controversy, political debate, and industry regulation related to jump horse safety.

  3. Shock jump relations for a dusty gas atmosphere

    Science.gov (United States)

    Anand, R. K.

    2014-01-01

    This paper presents simplified forms of jump relations for one dimensional shock waves propagating in a dusty gas. The dusty gas is assumed to be a mixture of a perfect gas and spherically small solid particles, in which solid particles are continuously distributed. The simplified jump relations for the pressure, the temperature, the density, the velocity of the mixture and the speed of sound have been derived in terms of the upstream Mach number. The expressions for the adiabatic compressibility of the mixture and the change-in-entropy across the shock front have also been derived in terms of the upstream Mach number. Further, the handy forms of shock jump relations have been obtained in terms of the initial volume fraction of small solid particles and the ratio of specific heats of the mixture, simultaneously for the two cases viz., (i) when the shock is weak and, (ii) when it is strong. The simplified shock jump relations reduce to the Rankine-Hugoniot conditions for shock waves in an ideal gas when the mass fraction (concentration) of solid particles in the mixture becomes zero. Finally, the effects due to the mass fraction of solid particles in the mixture, and the ratio of the density of solid particles to the initial density of the gas are studied on the pressure, the temperature, the density, the velocity of the mixture, the speed of sound, the adiabatic compressibility of the mixture and the change-in-entropy across the shock front. The results provided a clear picture of whether and how the presence of dust particles affects the flow field behind the shock front. The aim of this paper is to contribute to the understanding of how the shock waves behave in the gas-solid particle two-phase flows.

  4. A Statistical Approach to Performance Monitoring in Soft Real-Time Distributed Systems

    CERN Document Server

    Bickson, Danny; Hoch, Ezra N; Shagin, Konstantin

    2009-01-01

    Soft real-time applications require timely delivery of messages conforming to the soft real-time constraints. Satisfying such requirements is a complex task both due to the volatile nature of distributed environments, as well as due to numerous domain-specific factors that affect message latency. Prompt detection of the root-cause of excessive message delay allows a distributed system to react accordingly. This may significantly improve compliance with the required timeliness constraints. In this work, we present a novel approach for distributed performance monitoring of soft-real time distributed systems. We propose to employ recent distributed algorithms from the statistical signal processing and learning domains, and to utilize them in a different context of online performance monitoring and root-cause analysis, for pinpointing the reasons for violation of performance requirements. Our approach is general and can be used for monitoring of any distributed system, and is not limited to the soft real-time dom...

  5. Joint DOA and time delay estimation method for space-time coherent distributed signals based on search

    Institute of Scientific and Technical Information of China (English)

    Qian Bin; Yang Wanlin; Wan Qun

    2007-01-01

    Under dense urban fading environment, performance of joint multi-path parameter estimation method based on traditional point signal model degrades seriously.In this paper, a new space and time signal model based on multipath distribution function is given after new space and time manifold is reconstructed.Then joint spacetime signal subspace is obtained by converting acquired channel from time domain to frequency domain .Then space and time spectrum is formulated by the space sub-matrix and time sub-matrix taken out of joint space-time signal subspace, and parameters are estimated by searching the minimum eigenvalues of the space matrix and the time matrix.Lastly, A space and time parameters matching process is performed by using the orthogonal property between joint noise subspace and the space-time manifold.In contrast with tradition MUSIC, the algorithm we present here only need two 1- dimension searching and was not sensitive to different distribution function.

  6. Uncertainties of the 50-year wind from short time series using generalized extreme value distribution and generalized Pareto distribution

    DEFF Research Database (Denmark)

    Larsén, Xiaoli Guo; Mann, Jakob; Rathmann, Ole

    2015-01-01

    as a guideline for applying GEVD and GPD to wind time series of limited length. The data analysis shows that, with reasonable choice of relevant parameters, GEVD and GPD give consistent estimates of the return winds. For GEVD, the base period should be chosen in accordance with the occurrence of the extreme wind......This study examines the various sources to the uncertainties in the application of two widely used extreme value distribution functions, the generalized extreme value distribution (GEVD) and the generalized Pareto distribution (GPD). The study is done through the analysis of measurements from...

  7. Reconciling fault-tolerant distributed algorithms and real-time computing.

    Science.gov (United States)

    Moser, Heinrich; Schmid, Ulrich

    We present generic transformations, which allow to translate classic fault-tolerant distributed algorithms and their correctness proofs into a real-time distributed computing model (and vice versa). Owing to the non-zero-time, non-preemptible state transitions employed in our real-time model, scheduling and queuing effects (which are inherently abstracted away in classic zero step-time models, sometimes leading to overly optimistic time complexity results) can be accurately modeled. Our results thus make fault-tolerant distributed algorithms amenable to a sound real-time analysis, without sacrificing the wealth of algorithms and correctness proofs established in classic distributed computing research. By means of an example, we demonstrate that real-time algorithms generated by transforming classic algorithms can be competitive even w.r.t. optimal real-time algorithms, despite their comparatively simple real-time analysis.

  8. Kinetic parameters as determinants of vertical jump performance. DOI: 10.5007/1980-0037.2012v14n1p41

    Directory of Open Access Journals (Sweden)

    Saray Giovana dos Santos

    2012-01-01

    Full Text Available The aim of this study was to identify force and velocity parameters related to vertical jump performance in counter movement jump (CMJ and squat jump (SJ, and to compare these parameters between sprint runners and volleyball players. Twenty-four male athletes (12 regional/national-level sprint runners and 12 national-level volleyball players participated in this study. The athletes performed CMJ and SJ on a force platform. The following variables were analyzed: jump performance (jump height and power, peak velocity (PV, absolute and relative maximum force (Fmax, rate of force development (RFD, and time to reach maximum force (TFmax. In CMJ, jump height was correlated with PV (r=0.97 and normalized Fmax (r=0.47, whereas jump power was significantly correlated with all variables, except for Fmax (r=0.12. In SJ, PV and normalized Fmax were significantly correlated with jump height (r=0.95 and r=0.51, respectively and power (r=0.80 and r=0.87, respectively. In addition, TFmax was inversely correlated with power (r=-0.49. Runners presented higher performance variables (height and power, normalized Fmax and PV than volleyball players in both CMJ and SJ. In conclusion, velocity and maximum force were the main determinants of height and power in the two types of vertical jump. However, explosive force (RFD and TFmax was also important for power production in vertical jumps. Finally, runners presented a better vertical jump performance than volleyball players.

  9. Performance analysis of jump-gliding locomotion for miniature robotics.

    Science.gov (United States)

    Vidyasagar, A; Zufferey, Jean-Christohphe; Floreano, Dario; Kovač, M

    2015-03-26

    Recent work suggests that jumping locomotion in combination with a gliding phase can be used as an effective mobility principle in robotics. Compared to pure jumping without a gliding phase, the potential benefits of hybrid jump-gliding locomotion includes the ability to extend the distance travelled and reduce the potentially damaging impact forces upon landing. This publication evaluates the performance of jump-gliding locomotion and provides models for the analysis of the relevant dynamics of flight. It also defines a jump-gliding envelope that encompasses the range that can be achieved with jump-gliding robots and that can be used to evaluate the performance and improvement potential of jump-gliding robots. We present first a planar dynamic model and then a simplified closed form model, which allow for quantification of the distance travelled and the impact energy on landing. In order to validate the prediction of these models, we validate the model with experiments using a novel jump-gliding robot, named the 'EPFL jump-glider'. It has a mass of 16.5 g and is able to perform jumps from elevated positions, perform steered gliding flight, land safely and traverse on the ground by repetitive jumping. The experiments indicate that the developed jump-gliding model fits very well with the measured flight data using the EPFL jump-glider, confirming the benefits of jump-gliding locomotion to mobile robotics. The jump-glide envelope considerations indicate that the EPFL jump-glider, when traversing from a 2 m height, reaches 74.3% of optimal jump-gliding distance compared to pure jumping without a gliding phase which only reaches 33.4% of the optimal jump-gliding distance. Methods of further improving flight performance based on the models and inspiration from biological systems are presented providing mechanical design pathways to future jump-gliding robot designs.

  10. Impact of acute static-stretching on the optimal height in drop jumps

    Directory of Open Access Journals (Sweden)

    Leonardo A. Pasqua

    2014-03-01

    Full Text Available This study analyzed the effect of static stretching on performance during drop jumps. Furthermore, we investigated if a reduction in drop height would compensate the stretching-caused alterations. Ten physically active male subjects performed drop jumps at four different drop heights without static stretching for the optimal drop height determination. After, they performed drop jumps on two drop heights with static stretching previously. The jump height, contact time and reactive strength index were significantly affected by static stretching. However, only the contact time was significantly improved by the reduction in drop height with previous static stretching. Our results suggest that the decrement in performance after static stretching could be partially compensated by a reduction in drop height, which decreases the contact time near a non-stretching jump condition. This can be explained by the lower landing velocity and, possibly, the smaller reduction in the activation of the plantar flexors muscles. In conclusion, the reduction in drop height seems to be interesting after a static stretching session, aiming to expose the athletes to lower impact forces to maintain jump performance.

  11. Pricing Asian power options under jump-fraction process

    Directory of Open Access Journals (Sweden)

    Bin Peng

    2012-12-01

    Full Text Available A framework for pricing Asian power options is developed when the underlying asset follows a jump-fraction process. The partial differential equation (PDE in the fractional environment with jump is constructed for such option using general Itô's lemma and self-financing dynamic strategy. With the boundary condition, an analytic formula for the option with geometric average starting at any time before maturity is derived by solving the PDE, and the option with arithmetic average is evaluated in Monte Carlo simulation using control variate technique with the help of the above analytic solution. Overwhelming numerical evidence indicates that the technique proposed is computationally efficient and dramatically improves the accuracy of the simulated price. Moreover, this study will pave a novel way to copy with the option contracts based on thinly-traded assets like oil, or currencies or interest rates.

  12. Pricing FX Options in the Heston/CIR Jump-Diffusion Model with Log-Normal and Log-Uniform Jump Amplitudes

    Directory of Open Access Journals (Sweden)

    Rehez Ahlip

    2015-01-01

    model for the exchange rate with log-normal jump amplitudes and the volatility model with log-uniformly distributed jump amplitudes. We assume that the domestic and foreign stochastic interest rates are governed by the CIR dynamics. The instantaneous volatility is correlated with the dynamics of the exchange rate return, whereas the domestic and foreign short-term rates are assumed to be independent of the dynamics of the exchange rate and its volatility. The main result furnishes a semianalytical formula for the price of the foreign exchange European call option.

  13. Impact of Androstenone on Leash Pulling and Jumping Up in Dogs

    Directory of Open Access Journals (Sweden)

    Glenna Pirner

    2016-05-01

    Full Text Available Dogs are relinquished to shelters due to behavioral problems, such as leash pulling and jumping up. Interomones are chemical cues produced by one species that elicit a response in a different species. We reported earlier that androstenone, a swine sex pheromone, acts as an interomone to reduce barking in dogs. Here we report two models using 10 dogs/study: a dog jumping and a dog walking model. For the leash-pulling model, each time the dog pulled on the leash the walker either did nothing (NOT, or sprayed the dog with water (H2O, androstenone + water (ANH, androstenone 0.1 µg/mL (AND1, or androstenone 1.0 µg/mL (AND2. The number of pulls during each walk was counted. For the jumping up model, each time the dog jumped the researcher did nothing (NOT, or sprayed the dog with H2O, ANH, AND1, or AND2. The number of jumps and the time between jumps were recorded. In Study 1, ANH, AND1, and AND2 each reduced leash pulling more than NOT and H2O (p< 0.01. In Study 2, all treatments were effective in reducing jumping up behavior. Androstenone reduced jumping up, but not beyond that elicited by a spray of water alone. We conclude that androstenone in multiple delivery vehicles reduced leash pulling. The burst of air intended as a disruptive stimulus in the correction sprays may be too harsh for more sensitive dogs, and as such use of these sprays is cautioned in these animals. For other dogs, this interomone can be used to stop some behavior immediately or as a part of a training program to reduce undesirable behavior.

  14. A Theory for the Initial Allocating of Real Time Tasks in Distributed Systems

    Institute of Scientific and Technical Information of China (English)

    鄢勇; 金灿明

    1992-01-01

    Referring to a set of real time tasks with arriving time,executing time and deadline,this paper discusses the problem of polynomial time initial-allocating approximation algorithms in a distributed system and five new results are gained which provide a theory for the designing of initial-allocating algorithms of real time tasks.

  15. Jump Horse Safety: Reconciling Public Debate and Australian Thoroughbred Jump Racing Data, 2012–2014

    Science.gov (United States)

    Ruse, Karen; Davison, Aidan; Bridle, Kerry

    2015-01-01

    Simple Summary This paper documents the dynamics of Australian thoroughbred jump racing in the 2012, 2013, and 2014 seasons with the aim of informing debate about risks to horses and the future of this activity. We conclude that the safety of Australian jump racing has improved in recent years but that steeplechases are considerably riskier for horses than hurdle races. Abstract Thoroughbred jump racing sits in the spotlight of contemporary welfare and ethical debates about horse racing. In Australia, jump racing comprises hurdle and steeplechase races and has ceased in all but two states, Victoria and South Australia. This paper documents the size, geography, composition, and dynamics of Australian jump racing for the 2012, 2013, and 2014 seasons with a focus on debate about risks to horses. We found that the majority of Australian jump racing is regional, based in Victoria, and involves a small group of experienced trainers and jockeys. Australian jump horses are on average 6.4 years of age. The jump career of the majority of horses involves participating in three or less hurdle races and over one season. Almost one quarter of Australian jump horses race only once. There were ten horse fatalities in races over the study period, with an overall fatality rate of 5.1 fatalities per 1000 horses starting in a jump race (0.51%). There was significant disparity between the fatality rate for hurdles, 0.75 fatalities per 1000 starts (0.075%) and steeplechases, 14 fatalities per 1000 starts (1.4%). Safety initiatives introduced by regulators in 2010 appear to have significantly decreased risks to horses in hurdles but have had little or no effect in steeplechases. Our discussion considers these data in light of public controversy, political debate, and industry regulation related to jump horse safety. PMID:26506396

  16. Overcoming horizontal depolarizing resonances with multiple tune jumps

    Science.gov (United States)

    Huang, H.; Ahrens, L. A.; Bai, M.; Brown, K. A.; Dutheil, Y.; Gardner, C.; Glenn, J. W.; Lin, F.; MacKay, W. W.; Meot, F.; Poblaguev, A.; Ranjbar, V.; Roser, T.; Schoefer, V.; Tepikian, S.; Tsoupas, N.; Yip, K.; Zelenski, A.; Zeno, K.

    2014-08-01

    In a medium energy proton synchrotron, strong enough partial Siberian snakes can be used to avoid both imperfection and vertical intrinsic depolarizing resonances. However, partial snakes tilt the stable spin direction away from vertical, which generates depolarizing resonances associated with horizontal tune. The relatively weak but numerous horizontal intrinsic resonances are the main source of the residual polarization losses. A pair of horizontal tune jump quads have been used in the Brookhaven Alternating Gradient Synchrotron to overcome these weak resonances. The locations of the two quads have to be chosen such that the disturbance to the beam optics is minimum. The emittance growth has to be mitigated for this method to work. In addition, this technique needs very accurate jump timing. Using two partial Siberian snakes, with vertical tune inside the spin tune gap and 80% polarization at the Alternating Gradient Synchrotron injection, polarized proton beam had reached 1.5×1011 proton per bunch with 65% polarization. With the tune jump timing optimized and emittance preserved, more than 70% polarization with 2×1011 protons per bunch has been achieved. The polarization transport efficiency is close to 90%.

  17. Overcoming horizontal depolarizing resonances with multiple tune jumps

    Directory of Open Access Journals (Sweden)

    H. Huang

    2014-08-01

    Full Text Available In a medium energy proton synchrotron, strong enough partial Siberian snakes can be used to avoid both imperfection and vertical intrinsic depolarizing resonances. However, partial snakes tilt the stable spin direction away from vertical, which generates depolarizing resonances associated with horizontal tune. The relatively weak but numerous horizontal intrinsic resonances are the main source of the residual polarization losses. A pair of horizontal tune jump quads have been used in the Brookhaven Alternating Gradient Synchrotron to overcome these weak resonances. The locations of the two quads have to be chosen such that the disturbance to the beam optics is minimum. The emittance growth has to be mitigated for this method to work. In addition, this technique needs very accurate jump timing. Using two partial Siberian snakes, with vertical tune inside the spin tune gap and 80% polarization at the Alternating Gradient Synchrotron injection, polarized proton beam had reached 1.5×10^{11} proton per bunch with 65% polarization. With the tune jump timing optimized and emittance preserved, more than 70% polarization with 2×10^{11} protons per bunch has been achieved. The polarization transport efficiency is close to 90%.

  18. Jumping to conclusions in schizophrenia

    Directory of Open Access Journals (Sweden)

    Evans SL

    2015-07-01

    Full Text Available Simon L Evans,1 Bruno B Averbeck,2 Nicholas Furl31School of Psychology, University of Sussex, Brighton, East Sussex, UK; 2Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA; 3Department of Psychology, Royal Holloway, University of London, Egham, Surrey, UKAbstract: Schizophrenia is a mental disorder associated with a variety of symptoms, including hallucinations, delusions, social withdrawal, and cognitive dysfunction. Impairments on decision-making tasks are routinely reported: evidence points to a particular deficit in learning from and revising behavior following feedback. In addition, patients tend to make hasty decisions when probabilistic judgments are required. This is known as “jumping to conclusions” (JTC and has typically been demonstrated by presenting participants with colored beads drawn from one of two “urns” until they claim to be sure which urn the beads are being drawn from (the proportions of colors vary in each urn. Patients tend to make early decisions on this task, and there is evidence to suggest that a hasty decision-making style might be linked to delusion formation and thus be of clinical relevance. Various accounts have been proposed regarding what underlies this behavior. In this review, we briefly introduce the disorder and the decision-making deficits associated with it. We then explore the evidence for each account of JTC in the context of a wider decision-making deficit and then go on to summarize work exploring JTC in healthy controls using pharmacological manipulations and functional imaging. Finally, we assess whether JTC might have a role in therapy.Keywords: ketamine, decision making, delusions, fMRI, urn task

  19. Real-Time Distributed Embedded Oscillator Operating Frequency Monitoring

    Science.gov (United States)

    Pollock, Julie; Oliver, Brett; Brickner, Christopher

    2012-01-01

    A document discusses the utilization of embedded clocks inside of operating network data links as an auxiliary clock source to satisfy local oscillator monitoring requirements. Modem network interfaces, typically serial network links, often contain embedded clocking information of very tight precision to recover data from the link. This embedded clocking data can be utilized by the receiving device to monitor the local oscillator for tolerance to required specifications, often important in high-integrity fault-tolerant applications. A device can utilize a received embedded clock to determine if the local or the remote device is out of tolerance by using a single link. The local device can determine if it is failing, assuming a single fault model, with two or more active links. Network fabric components, containing many operational links, can potentially determine faulty remote or local devices in the presence of multiple faults. Two methods of implementation are described. In one method, a recovered clock can be directly used to monitor the local clock as a direct replacement of an external local oscillator. This scheme is consistent with a general clock monitoring function whereby clock sources are clocking two counters and compared over a fixed interval of time. In another method, overflow/underflow conditions can be used to detect clock relationships for monitoring. These network interfaces often provide clock compensation circuitry to allow data to be transferred from the received (network) clock domain to the internal clock domain. This circuit could be modified to detect overflow/underflow conditions of the buffering required and report a fast or slow receive clock, respectively.

  20. Analysis and design of Markov jump systems with complex transition probabilities

    CERN Document Server

    Zhang, Lixian; Shi, Peng; Zhu, Yanzheng

    2016-01-01

    The book addresses the control issues such as stability analysis, control synthesis and filter design of Markov jump systems with the above three types of TPs, and thus is mainly divided into three parts. Part I studies the Markov jump systems with partially unknown TPs. Different methodologies with different conservatism for the basic stability and stabilization problems are developed and compared. Then the problems of state estimation, the control of systems with time-varying delays, the case involved with both partially unknown TPs and uncertain TPs in a composite way are also tackled. Part II deals with the Markov jump systems with piecewise homogeneous TPs. Methodologies that can effectively handle control problems in the scenario are developed, including the one coping with the asynchronous switching phenomenon between the currently activated system mode and the controller/filter to be designed. Part III focuses on the Markov jump systems with memory TPs. The concept of σ-mean square stability is propo...

  1. Transition from discrete to continuous time of arrival distribution for a quantum particle

    CERN Document Server

    Galapon, E A; Egusquiza, I; Muga, J G; Egusquiza, Inigo; Galapon, Eric A.

    2005-01-01

    We show that the Kijowski distribution for time of arrivals in the entire real line is the limiting distribution of the time of arrival distribution in a confining box as its length increases to infinity. The dynamics of the confined time of arrival eigenfunctions is also numerically investigated and demonstrated that the eigenfunctions evolve to have point supports at the arrival point at their respective eigenvalues in the limit of arbitrarilly large confining lengths, giving insight into the ideal physical content of the Kijowsky distribution.

  2. The waiting time distribution as a graphical approach to epidemiologic measures of drug utilization

    DEFF Research Database (Denmark)

    Hallas, J; Gaist, D; Bjerrum, L

    1997-01-01

    of the window. After a few months, the graph will be dominated by new, incident users. As examples, we present waiting time distributions for insulin, ulcer drugs, systemic corticosteroids, antidepressants, and disulfiram. Appropriately analyzed and interpreted, the waiting time distributions can provide...

  3. Quasi Serializable Concurrency Control in Distributed Real-Time Database Systems

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    This paper formally defines and analyses the new notion of correctness called quasi serializability, and then outlines corresponding concurrency control protocol QDHP for distributed real-time databases. Finally, through a series of simulation studies, it shows that using the new concurrency control protocol the performance of distributed real-time databases can be much improved.

  4. Just-in-Time Retail Distribution : A Systems Perspective on Cross-Docking

    NARCIS (Netherlands)

    Buijs, Paul; Danhof, Hans W.; Wortmann, J.(Hans) C.

    2016-01-01

    Cross-docking is a just-in-time strategy for distribution logistics. It is aimed at reducing inventory levels and distribution lead times by creating a seamless flow of products from suppliers to customers. Prior supply chain literature has argued that creating such a seamless product flows requires

  5. Just-in-Time Retail Distribution : A Systems Perspective on Cross-Docking

    NARCIS (Netherlands)

    Buijs, Paul; Danhof, Hans W.; Wortmann, J.(Hans) C.

    2016-01-01

    Cross-docking is a just-in-time strategy for distribution logistics. It is aimed at reducing inventory levels and distribution lead times by creating a seamless flow of products from suppliers to customers. Prior supply chain literature has argued that creating such a seamless product flows requires

  6. The distribution of first-passage times and durations in FOREX and future markets

    Science.gov (United States)

    Sazuka, Naoya; Inoue, Jun-ichi; Scalas, Enrico

    2009-07-01

    Possible distributions are discussed for intertrade durations and first-passage processes in financial markets. The view-point of renewal theory is assumed. In order to represent market data with relatively long durations, two types of distributions are used, namely a distribution derived from the Mittag-Leffler survival function and the Weibull distribution. For the Mittag-Leffler type distribution, the average waiting time (residual life time) is strongly dependent on the choice of a cut-off parameter tmax, whereas the results based on the Weibull distribution do not depend on such a cut-off. Therefore, a Weibull distribution is more convenient than a Mittag-Leffler type if one wishes to evaluate relevant statistics such as average waiting time in financial markets with long durations. On the other hand, we find that the Gini index is rather independent of the cut-off parameter. Based on the above considerations, we propose a good candidate for describing the distribution of first-passage time in a market: The Weibull distribution with a power-law tail. This distribution compensates the gap between theoretical and empirical results more efficiently than a simple Weibull distribution. It should be stressed that a Weibull distribution with a power-law tail is more flexible than the Mittag-Leffler distribution, which itself can be approximated by a Weibull distribution and a power-law. Indeed, the key point is that in the former case there is freedom of choice for the exponent of the power-law attached to the Weibull distribution, which can exceed 1 in order to reproduce decays faster than possible with a Mittag-Leffler distribution. We also give a useful formula to determine an optimal crossover point minimizing the difference between the empirical average waiting time and the one predicted from renewal theory. Moreover, we discuss the limitation of our distributions by applying our distribution to the analysis of the BTP future and calculating the average waiting

  7. Design and Demonstration of a Locust-Like Jumping Mechanism for Small-Scale Robots

    Institute of Scientific and Technical Information of China (English)

    Quoc-Viet Nguyen; Hoon Cheol Park

    2012-01-01

    A jumping mechanism can be an efficient mode of motion for small robots to overcome large obstacles on the ground and rough terrain.In this paper,we present a 7 g prototype of locust-inspired jumping mechanism that uses springs,wire,reduction gears,and a motor as the actuation components.The leg structure and muscles of a locust or grasshopper were mimicked using springs and wire,springs for passive extensor muscles,and a wire as a flexor muscle.A small motor was used to slowly charge the spring through a lever and gear system,and a cam with a special profile was used as a clicking mechanism for quick release of elastic energy stored in the springs to create a sudden kick for a quick jump.Performance analysis and experiments were conducted for comparison and performance estimation of the jumping mechanism prototype.Our prototype could produce standing jumps over obstacles that were about 14 times its own size (approximate to 71 cm) and a jumping distance of 20 times its own size (approximate to 100 cm).

  8. Alterations of Vertical Jump Mechanics after a Half-Marathon Mountain Running Race

    Directory of Open Access Journals (Sweden)

    Elissavet N. Rousanoglou, Konstantinos Noutsos, Achilleas Pappas, Gregory Bogdanis, Georgios Vagenas, Ioannis A. Bayios, Konstantinos D. Boudolos

    2016-06-01

    Full Text Available The fatiguing effect of long-distance running has been examined in the context of a variety of parameters. However, there is scarcity of data regarding its effect on the vertical jump mechanics. The purpose of this study was to investigate the alterations of countermovement jump (CMJ mechanics after a half-marathon mountain race. Twenty-seven runners performed CMJs before the race (Pre, immediately after the race (Post 1 and five minutes after Post 1 (Post 2. Instantaneous and ensemble-average analysis focused on jump height and, the maximum peaks and time-to-maximum peaks of: Displacement, vertical force (Fz, anterior-posterior force (Fx, Velocity and Power, in the eccentric (tECC and concentric (tCON phase of the jump, respectively. Repeated measures ANOVAs were used for statistical analysis (p ≤ 0.05. The jump height decrease was significant in Post 2 (-7.9% but not in Post 1 (-4.1%. Fx and Velocity decreased significantly in both Post 1 (only in tECC and Post 2 (both tECC and tCON. Α timing shift of the Fz peaks (earlier during tECC and later during tCON and altered relative peak times (only in tECC were also observed. Ensemble-average analysis revealed several time intervals of significant post-race alterations and a timing shift in the Fz-Velocity loop. An overall trend of lowered post-race jump output and mechanics was characterised by altered jump timing, restricted anterior-posterior movement and altered force-velocity relations. The specificity of mountain running fatigue to eccentric muscle work, appears to be reflected in the different time order of the post-race reductions, with the eccentric phase reductions preceding those of the concentric one. Thus, those who engage in mountain running should particularly consider downhill training to optimise eccentric muscular action.

  9. Radar signal analysis of ballistic missile with micro-motion based on time-frequency distribution

    Science.gov (United States)

    Wang, Jianming; Liu, Lihua; Yu, Hua

    2015-12-01

    The micro-motion of ballistic missile targets induces micro-Doppler modulation on the radar return signal, which is a unique feature for the warhead discrimination during flight. In order to extract the micro-Doppler feature of ballistic missile targets, time-frequency analysis is employed to process the micro-Doppler modulated time-varying radar signal. The images of time-frequency distribution (TFD) reveal the micro-Doppler modulation characteristic very well. However, there are many existing time-frequency analysis methods to generate the time-frequency distribution images, including the short-time Fourier transform (STFT), Wigner distribution (WD) and Cohen class distribution, etc. Under the background of ballistic missile defence, the paper aims at working out an effective time-frequency analysis method for ballistic missile warhead discrimination from the decoys.

  10. A jumping shape memory alloy under heat.

    Science.gov (United States)

    Yang, Shuiyuan; Omori, Toshihiro; Wang, Cuiping; Liu, Yong; Nagasako, Makoto; Ruan, Jingjing; Kainuma, Ryosuke; Ishida, Kiyohito; Liu, Xingjun

    2016-02-16

    Shape memory alloys are typical temperature-sensitive metallic functional materials due to superelasticity and shape recovery characteristics. The conventional shape memory effect involves the formation and deformation of thermally induced martensite and its reverse transformation. The shape recovery process usually takes place over a temperature range, showing relatively low temperature-sensitivity. Here we report novel Cu-Al-Fe-Mn shape memory alloys. Their stress-strain and shape recovery behaviors are clearly different from the conventional shape memory alloys. In this study, although the Cu-12.2Al-4.3Fe-6.6Mn and Cu-12.9Al-3.8Fe-5.6Mn alloys possess predominantly L2(1) parent before deformation, the 2H martensite stress-induced from L2(1) parent could be retained after unloading. Furthermore, their shape recovery response is extremely temperature-sensitive, in which a giant residual strain of about 9% recovers instantly and completely during heating. At the same time, the phenomenon of the jumping of the sample occurs. It is originated from the instantaneous completion of the reverse transformation of the stabilized 2H martensite. This novel Cu-Al-Fe-Mn shape memory alloys have great potentials as new temperature-sensitive functional materials.

  11. Orthogonal Expansions for VIX Options Under Affine Jump Diffusions

    DEFF Research Database (Denmark)

    Barletta, Andrea; Nicolato, Elisa

    2017-01-01

    In this work we derive new closed–form pricing formulas for VIX options in the jump-diffusion SVJJ model proposed by Duffie et al. (2000). Our approach is based on the classic methodology of approximating a density function with an orthogonal expansion of polynomials weighted by a kernel....... Orthogonal expansions based on the Gaussian distribution, such as Edgeworth or Gram–Charlier expansions, have been successfully employed by a number of authors in the context of equity options. However, these expansions are not quite suitable for volatility or variance densities as they inherently assign...

  12. Real-time Trading Strategies for Proactive Distribution Company with Distributed Generation and Demand Response

    DEFF Research Database (Denmark)

    Wang, Qi

    and DR resources, and upwardly trading in the TL real-time market, resulting in a proactive manner. The DL aggregator (DA) is dened to manage these small-scale and dispersed DGs and DRs. A methodology is proposed in this thesis for a proactive DISCO (PDISCO) to strategically trade with DAs...

  13. The effect of wind on jumping distance in ski jumping--fairness assessed.

    Science.gov (United States)

    Virmavirta, Mikko; Kivekäs, Juha

    2012-09-01

    The special wind compensation system recently adopted by Fédération Internationale de Ski (FIS; International Ski Federation) to consider the effects of changing wind conditions has caused some controversy. Here, the effect of wind on jumping distance in ski jumping was studied by means of computer simulation and compared with the wind compensation factors used by FIS during the World Cup season 2009/2010. The results showed clearly that the effect of increasing head/tail wind on jumping distance is not linear: +17.4 m/-29.1 m, respectively, for a wind speed of 3 m/s. The linear formula used in the trial period of the wind compensation system was found to be appropriate only for a limited range of jumping distances as the gradient of the landing slope slows down the rate of distance change in long jumps.

  14. JUMP LANDING CHARACTERISTICS IN ELITE SOCCER PLAYERS WITH CEREBRAL PALSY

    Directory of Open Access Journals (Sweden)

    Jesús Cámara

    2013-04-01

    Full Text Available The aim of the present study was to analyse the parameters that characterize the vertical ground reaction force during the landing phase of a jump, and to determine the relationship among these parameters in elite soccer players with cerebral palsy (CP. Thirteen male members of the Spanish national soccer team for people with CP (mean age: 27.1 ± 4.7 years volunteered for the study. Each participant performed three counter movement jumps. The characteristics of the first peak of the vertical ground reaction force during the landing phase of a jump, which corresponds to the forefoot contact with the ground, were similar to the results obtained in previous studies. However, a higher magnitude of rearfoot contact with the ground (F2 was observed in participants with CP than in participants without CP. Furthermore, a significant correlation between F2 magnitude and the elapsed time until its production (T2 was not observed (r = -0.474 for p = 0.102. This result implies that a landing technique based on a delay in the production of F2 might not be effective to reduce its magnitude, contrary to what has been observed in participants without CP. The absence of a significant correlation between these two parameters in the present study, and the high magnitude of F2, suggest that elite soccer players with CP should use footwear with proper cushioning characteristics.

  15. The kinematics of swimming and relocation jumps in copepod nauplii

    DEFF Research Database (Denmark)

    Borg, Marc Andersen; Bruno, Eleonora; Kiørboe, Thomas

    2012-01-01

    Copepod nauplii move in a world dominated by viscosity. Their swimming-by-jumping propulsion mode, with alternating power and recovery strokes of three pairs of cephalic appendages, is fundamentally different from the way other microplankters move. Protozoans move using cilia or flagella, and cop......Copepod nauplii move in a world dominated by viscosity. Their swimming-by-jumping propulsion mode, with alternating power and recovery strokes of three pairs of cephalic appendages, is fundamentally different from the way other microplankters move. Protozoans move using cilia or flagella......, and copepodites are equipped with highly specialized swimming legs. In some species the nauplius may also propel itself more slowly through the water by beating and rotating the appendages in a different, more complex pattern. We use high-speed video to describe jumping and swimming in nauplii of three species...... larger copepodites. A slow-swimming mode is only displayed by T. longicornis. In this mode, beating of the appendages results in the creation of a strong feeding current that is about 10 times faster than the average translation speed of the nauplius. The nauplius is thus essentially hovering when...

  16. LOAD THAT MAXIMIZES POWER OUTPUT IN COUNTERMOVEMENT JUMP

    Directory of Open Access Journals (Sweden)

    Pedro Jimenez-Reyes

    2016-02-01

    Full Text Available ABSTRACT Introduction: One of the main problems faced by strength and conditioning coaches is the issue of how to objectively quantify and monitor the actual training load undertaken by athletes in order to maximize performance. It is well known that performance of explosive sports activities is largely determined by mechanical power. Objective: This study analysed the height at which maximal power output is generated and the corresponding load with which is achieved in a group of male-trained track and field athletes in the test of countermovement jump (CMJ with extra loads (CMJEL. Methods: Fifty national level male athletes in sprinting and jumping performed a CMJ test with increasing loads up to a height of 16 cm. The relative load that maximized the mechanical power output (Pmax was determined using a force platform and lineal encoder synchronization and estimating the power by peak power, average power and flight time in CMJ. Results: The load at which the power output no longer existed was at a height of 19.9 ± 2.35, referring to a 99.1 ± 1% of the maximum power output. The load that maximizes power output in all cases has been the load with which an athlete jump a height of approximately 20 cm. Conclusion: These results highlight the importance of considering the height achieved in CMJ with extra load instead of power because maximum power is always attained with the same height. We advise for the preferential use of the height achieved in CMJEL test, since it seems to be a valid indicative of an individual's actual neuromuscular potential providing a valid information for coaches and trainers when assessing the performance status of our athletes and to quantify and monitor training loads, measuring only the height of the jump in the exercise of CMJEL.

  17. Filtering and control of stochastic jump hybrid systems

    CERN Document Server

    Yao, Xiuming; Zheng, Wei Xing

    2016-01-01

    This book presents recent research work on stochastic jump hybrid systems. Specifically, the considered stochastic jump hybrid systems include Markovian jump Ito stochastic systems, Markovian jump linear-parameter-varying (LPV) systems, Markovian jump singular systems, Markovian jump two-dimensional (2-D) systems, and Markovian jump repeated scalar nonlinear systems. Some sufficient conditions are first established respectively for the stability and performances of those kinds of stochastic jump hybrid systems in terms of solution of linear matrix inequalities (LMIs). Based on the derived analysis conditions, the filtering and control problems are addressed. The book presents up-to-date research developments and novel methodologies on stochastic jump hybrid systems. The contents can be divided into two parts: the first part is focused on robust filter design problem, while the second part is put the emphasis on robust control problem. These methodologies provide a framework for stability and performance analy...

  18. A locust-inspired miniature jumping robot.

    Science.gov (United States)

    Zaitsev, Valentin; Gvirsman, Omer; Ben Hanan, Uri; Weiss, Avi; Ayali, Amir; Kosa, Gabor

    2015-11-25

    Unmanned ground vehicles are mostly wheeled, tracked, or legged. These locomotion mechanisms have a limited ability to traverse rough terrain and obstacles that are higher than the robot's center of mass. In order to improve the mobility of small robots it is necessary to expand the variety of their motion gaits. Jumping is one of nature's solutions to the challenge of mobility in difficult terrain. The desert locust is the model for the presented bio-inspired design of a jumping mechanism for a small mobile robot. The basic mechanism is similar to that of the semilunar process in the hind legs of the locust, and is based on the cocking of a torsional spring by wrapping a tendon-like wire around the shaft of a miniature motor. In this study we present the jumping mechanism design, and the manufacturing and performance analysis of two demonstrator prototypes. The most advanced jumping robot demonstrator is power autonomous, weighs 23 gr, and is capable of jumping to a height of 3.35 m, covering a distance of 1.37 m.

  19. Design and Research of Distributed Real TimeSurveillance Control System

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    Distributed real time surveillance control system is used especially in distributed computer measure and control system, mostly inwidely dispersed measure points without human surveillance. This paper describes theory、construction、control strategy, stabilityanalysis of distributed real time supervisory control and data acquisition system, implements distributed measure signals collectionand design of supervisory control system. The realization of virtual instrument based on VC++ can accomplish measurementsignals acquisition, storage, display and analysis, also the result of surveillance control system is provided, and shows thefunctional powerful agility of virtual instrument based on VC++.

  20. Nonstandard Analysis and Shock Wave Jump Conditions in a One-Dimensional Compressible Gas

    Energy Technology Data Exchange (ETDEWEB)

    Roy S. Baty, F. Farassat, John A. Hargreaves

    2007-05-25

    Nonstandard analysis is a relatively new area of mathematics in which infinitesimal numbers can be defined and manipulated rigorously like real numbers. This report presents a fairly comprehensive tutorial on nonstandard analysis for physicists and engineers with many examples applicable to generalized functions. To demonstrate the power of the subject, the problem of shock wave jump conditions is studied for a one-dimensional compressible gas. It is assumed that the shock thickness occurs on an infinitesimal interval and the jump functions in the thermodynamic and fluid dynamic parameters occur smoothly across this interval. To use conservations laws, smooth pre-distributions of the Dirac delta measure are applied whose supports are contained within the shock thickness. Furthermore, smooth pre-distributions of the Heaviside function are applied which vary from zero to one across the shock wave. It is shown that if the equations of motion are expressed in nonconservative form then the relationships between the jump functions for the flow parameters may be found unambiguously. The analysis yields the classical Rankine-Hugoniot jump conditions for an inviscid shock wave. Moreover, non-monotonic entropy jump conditions are obtained for both inviscid and viscous flows. The report shows that products of generalized functions may be defined consistently using nonstandard analysis; however, physically meaningful products of generalized functions must be determined from the physics of the problem and not the mathematical form of the governing equations.