WorldWideScience

Sample records for jump stochastic process

  1. Option Pricing with Stochastic Volatility and Jump Diffusion Processes

    Directory of Open Access Journals (Sweden)

    Radu Lupu

    2006-03-01

    Full Text Available Option pricing by the use of Black Scholes Merton (BSM model is based on the assumption that asset prices have a lognormal distribution. In spite of the use of these models on a large scale, both by practioners and academics, the assumption of lognormality is rejected by the history of returns. The objective of this article is to present the methods that developed after the Black Scholes Merton environment and deals with the option pricing model adjustment to the empirical properties of asset returns. The main models that appeared after BSM allowed for special changes of the returns that materialized in jump-diffusion and stochastic volatility processes. The article presents the foundations of risk neutral options evaluation and the empirical evidence that fed the amendment of the lognormal assumption in the first part and shows the evaluation procedure under the assumption of stock prices following the jump-diffusion process and the stochastic volatility process.

  2. Stochastic stability of mechanical systems under renewal jump process parametric excitation

    DEFF Research Database (Denmark)

    Iwankiewicz, R.; Nielsen, Søren R.K.; Larsen, Jesper Winther

    2005-01-01

    A dynamic system under parametric excitation in the form of a non-Erlang renewal jump process is considered. The excitation is a random train of nonoverlapping rectangular pulses with equal, deterministic heights. The time intervals between two consecutive jumps up (or down), are the sum of two...

  3. Stochastic stability of mechanical systems under renewal jump process parametric excitation

    DEFF Research Database (Denmark)

    Iwankiewicz, R.; Nielsen, Søren R.K.; Larsen, Jesper Winther

    2005-01-01

    independent, negative exponential distributed variables; hence, the arrival process may be termed as a generalized Erlang renewal process. The excitation process is governed by the stochastic equation driven by two independent Poisson processes, with different parameters. If the response in a single mode...... is investigated, the problem is governed in the state space by two stochastic equations, because the stochastic equation for the excitation process is autonomic. However due to the parametric nature of the excitation, the nonlinear term appears at the right-hand sides of the equations. The equations become linear...... of the stochastic equation governing the natural logarithm of the hyperspherical amplitude process and using the modification of the method wherein the time averaging of the pertinent expressions is replaced by ensemble averaging. It is found that the direct simulation is more suitable and that the asymptotic mean...

  4. Stochastic stability of mechanical systems under renewal jump process parametric excitation

    DEFF Research Database (Denmark)

    Iwankiewicz, R.; Nielsen, Søren R.K.; Larsen, Jesper Winther

    2005-01-01

    independent, negative exponential distributed variables; hence, the arrival process may be termed as a generalized Erlang renewal process. The excitation process is governed by the stochastic equation driven by two independent Poisson processes, with different parameters. If the response in a single mode...

  5. Pricing of American Put Option under a Jump Diffusion Process with Stochastic Volatility in an Incomplete Market

    Directory of Open Access Journals (Sweden)

    Shuang Li

    2014-01-01

    Full Text Available We study the pricing of American options in an incomplete market in which the dynamics of the underlying risky asset is driven by a jump diffusion process with stochastic volatility. By employing a risk-minimization criterion, we obtain the Radon-Nikodym derivative for the minimal martingale measure and consequently a linear complementarity problem (LCP for American option price. An iterative method is then established to solve the LCP problem for American put option price. Our numerical results show that the model and numerical scheme are robust in capturing the feature of incomplete finance market, particularly the influence of market volatility on the price of American options.

  6. Impact of wave phase jumps on stochastic heating

    International Nuclear Information System (INIS)

    Zasenko, V.I.; Zagorodny, A.G.; Cherniak, O.M.

    2016-01-01

    Interaction of charged particles with fields of random waves brings about known effects of stochastic acceleration and heating. Jumps of wave phases can increase the intensity of these processes substantially. Numerical simulation of particle heating and acceleration by waves with regular phases, waves with jumping phase and stochastic electric field impulses is performed. Comparison of the results shows that to some extent an impact of phase jumps is similar to the action of separate field impulses. Jumps of phase not only increase the intensity of resonant particle heating but involves in this process non-resonant particles from a wide range of initial velocities

  7. Stochastic processes

    CERN Document Server

    Borodin, Andrei N

    2017-01-01

    This book provides a rigorous yet accessible introduction to the theory of stochastic processes. A significant part of the book is devoted to the classic theory of stochastic processes. In turn, it also presents proofs of well-known results, sometimes together with new approaches. Moreover, the book explores topics not previously covered elsewhere, such as distributions of functionals of diffusions stopped at different random times, the Brownian local time, diffusions with jumps, and an invariance principle for random walks and local times. Supported by carefully selected material, the book showcases a wealth of examples that demonstrate how to solve concrete problems by applying theoretical results. It addresses a broad range of applications, focusing on concrete computational techniques rather than on abstract theory. The content presented here is largely self-contained, making it suitable for researchers and graduate students alike.

  8. Determination of the carbon market incremental payoff considering a stochastic jump-diffusion process

    Directory of Open Access Journals (Sweden)

    Fabio Rodrigo Siqueira Batista

    2013-12-01

    Full Text Available The objective of this paper is to verify the robustness of the Least Square Monte Carlo and Grant, Vora & Weeks methods when used to determine the incremental payoff of the carbon market for renewable electricity generation projects, considering that the behavior of the price of Certified Emission Reductions, otherwise known as Carbon Credits, may be modeled using a jump-diffusion process. In addition, this paper analyses particular characteristics, such as absence of monotonicity, found in trigger curves obtained through use of the Grant, Vora & Weeks method to valuate these types of project.

  9. Stochastic Games for Continuous-Time Jump Processes Under Finite-Horizon Payoff Criterion

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Qingda, E-mail: weiqd@hqu.edu.cn [Huaqiao University, School of Economics and Finance (China); Chen, Xian, E-mail: chenxian@amss.ac.cn [Peking University, School of Mathematical Sciences (China)

    2016-10-15

    In this paper we study two-person nonzero-sum games for continuous-time jump processes with the randomized history-dependent strategies under the finite-horizon payoff criterion. The state space is countable, and the transition rates and payoff functions are allowed to be unbounded from above and from below. Under the suitable conditions, we introduce a new topology for the set of all randomized Markov multi-strategies and establish its compactness and metrizability. Then by constructing the approximating sequences of the transition rates and payoff functions, we show that the optimal value function for each player is a unique solution to the corresponding optimality equation and obtain the existence of a randomized Markov Nash equilibrium. Furthermore, we illustrate the applications of our main results with a controlled birth and death system.

  10. Stochastic Games for Continuous-Time Jump Processes Under Finite-Horizon Payoff Criterion

    International Nuclear Information System (INIS)

    Wei, Qingda; Chen, Xian

    2016-01-01

    In this paper we study two-person nonzero-sum games for continuous-time jump processes with the randomized history-dependent strategies under the finite-horizon payoff criterion. The state space is countable, and the transition rates and payoff functions are allowed to be unbounded from above and from below. Under the suitable conditions, we introduce a new topology for the set of all randomized Markov multi-strategies and establish its compactness and metrizability. Then by constructing the approximating sequences of the transition rates and payoff functions, we show that the optimal value function for each player is a unique solution to the corresponding optimality equation and obtain the existence of a randomized Markov Nash equilibrium. Furthermore, we illustrate the applications of our main results with a controlled birth and death system.

  11. Numerical Analysis for Stochastic Partial Differential Delay Equations with Jumps

    OpenAIRE

    Li, Yan; Hu, Junhao

    2013-01-01

    We investigate the convergence rate of Euler-Maruyama method for a class of stochastic partial differential delay equations driven by both Brownian motion and Poisson point processes. We discretize in space by a Galerkin method and in time by using a stochastic exponential integrator. We generalize some results of Bao et al. (2011) and Jacob et al. (2009) in finite dimensions to a class of stochastic partial differential delay equations with jumps in infinite dimensions.

  12. Heart rate variability as determinism with jump stochastic parameters.

    Science.gov (United States)

    Zheng, Jiongxuan; Skufca, Joseph D; Bollt, Erik M

    2013-08-01

    We use measured heart rate information (RR intervals) to develop a one-dimensional nonlinear map that describes short term deterministic behavior in the data. Our study suggests that there is a stochastic parameter with persistence which causes the heart rate and rhythm system to wander about a bifurcation point. We propose a modified circle map with a jump process noise term as a model which can qualitatively capture such this behavior of low dimensional transient determinism with occasional (stochastically defined) jumps from one deterministic system to another within a one parameter family of deterministic systems.

  13. Filtering and control of stochastic jump hybrid systems

    CERN Document Server

    Yao, Xiuming; Zheng, Wei Xing

    2016-01-01

    This book presents recent research work on stochastic jump hybrid systems. Specifically, the considered stochastic jump hybrid systems include Markovian jump Ito stochastic systems, Markovian jump linear-parameter-varying (LPV) systems, Markovian jump singular systems, Markovian jump two-dimensional (2-D) systems, and Markovian jump repeated scalar nonlinear systems. Some sufficient conditions are first established respectively for the stability and performances of those kinds of stochastic jump hybrid systems in terms of solution of linear matrix inequalities (LMIs). Based on the derived analysis conditions, the filtering and control problems are addressed. The book presents up-to-date research developments and novel methodologies on stochastic jump hybrid systems. The contents can be divided into two parts: the first part is focused on robust filter design problem, while the second part is put the emphasis on robust control problem. These methodologies provide a framework for stability and performance analy...

  14. Stochastic processes

    CERN Document Server

    Parzen, Emanuel

    1962-01-01

    Well-written and accessible, this classic introduction to stochastic processes and related mathematics is appropriate for advanced undergraduate students of mathematics with a knowledge of calculus and continuous probability theory. The treatment offers examples of the wide variety of empirical phenomena for which stochastic processes provide mathematical models, and it develops the methods of probability model-building.Chapter 1 presents precise definitions of the notions of a random variable and a stochastic process and introduces the Wiener and Poisson processes. Subsequent chapters examine

  15. Stochastic processes in cell biology

    CERN Document Server

    Bressloff, Paul C

    2014-01-01

    This book develops the theory of continuous and discrete stochastic processes within the context of cell biology.  A wide range of biological topics are covered including normal and anomalous diffusion in complex cellular environments, stochastic ion channels and excitable systems, stochastic calcium signaling, molecular motors, intracellular transport, signal transduction, bacterial chemotaxis, robustness in gene networks, genetic switches and oscillators, cell polarization, polymerization, cellular length control, and branching processes. The book also provides a pedagogical introduction to the theory of stochastic process – Fokker Planck equations, stochastic differential equations, master equations and jump Markov processes, diffusion approximations and the system size expansion, first passage time problems, stochastic hybrid systems, reaction-diffusion equations, exclusion processes, WKB methods, martingales and branching processes, stochastic calculus, and numerical methods.   This text is primarily...

  16. Stochastic stability analysis for delayed neural networks of neutral type with Markovian jump parameters

    International Nuclear Information System (INIS)

    Lou Xuyang; Cui Baotong

    2009-01-01

    In this paper, the problem of stochastic stability for a class of delayed neural networks of neutral type with Markovian jump parameters is investigated. The jumping parameters are modelled as a continuous-time, discrete-state Markov process. A sufficient condition guaranteeing the stochastic stability of the equilibrium point is derived for the Markovian jumping delayed neural networks (MJDNNs) with neutral type. The stability criterion not only eliminates the differences between excitatory and inhibitory effects on the neural networks, but also can be conveniently checked. The sufficient condition obtained can be essentially solved in terms of linear matrix inequality. A numerical example is given to show the effectiveness of the obtained results.

  17. Stochastic exponential stability of the delayed reaction-diffusion recurrent neural networks with Markovian jumping parameters

    International Nuclear Information System (INIS)

    Wang Linshan; Zhang Zhe; Wang Yangfan

    2008-01-01

    Some criteria for the global stochastic exponential stability of the delayed reaction-diffusion recurrent neural networks with Markovian jumping parameters are presented. The jumping parameters considered here are generated from a continuous-time discrete-state homogeneous Markov process, which are governed by a Markov process with discrete and finite state space. By employing a new Lyapunov-Krasovskii functional, a linear matrix inequality (LMI) approach is developed to establish some easy-to-test criteria of global exponential stability in the mean square for the stochastic neural networks. The criteria are computationally efficient, since they are in the forms of some linear matrix inequalities

  18. A Jump-Diffusion Model with Stochastic Volatility and Durations

    DEFF Research Database (Denmark)

    Wei, Wei; Pelletier, Denis

    jumps in two ways: as exogenous sampling intervals, and through the interaction with volatility. We adopt a bivariate Ornstein-Ulenbeck process to model intraday volatility and conditional duration. We develop a MCMC algorithm for the inference on irregularly spaced multivariate processes with jumps...

  19. Jump locations of jump-diffusion processes with state-dependent rates

    International Nuclear Information System (INIS)

    Miles, Christopher E; Keener, James P

    2017-01-01

    We propose a general framework for studying statistics of jump-diffusion systems driven by both Brownian noise (diffusion) and a jump process with state-dependent intensity. Of particular natural interest in many physical systems are the jump locations: the system evaluated at the jump times. As an example, this could be the voltage at which a neuron fires, or the so-called ‘threshold voltage’. However, the state-dependence of the jump rate provides direct coupling between the diffusion and jump components, making it difficult to disentangle the two to study individually. In this work, we provide an iterative map formulation of the sequence of distributions of jump locations. The distributions computed by this map can be used to elucidate other interesting quantities about the process, including statistics of the interjump times. Ultimately, the limit of the map reveals that knowledge of the stationary distribution of the full process is sufficient to recover (but not necessarily equal to) the distribution of jump locations. We propose two biophysical examples to illustrate the use of this framework to provide insight about a system. We find that a sharp threshold voltage emerges robustly in a simple stochastic integrate-and-fire neuronal model. The interplay between the two sources of noise is also investigated in a stepping model of molecular motor in intracellular transport pulling a diffusive cargo. (paper)

  20. Age distribution dynamics with stochastic jumps in mortality.

    Science.gov (United States)

    Calabrese, Salvatore; Porporato, Amilcare; Laio, Francesco; D'Odorico, Paolo; Ridolfi, Luca

    2017-11-01

    While deterministic age distribution models have been extensively studied and applied in various disciplines, little work has been devoted to understanding the role of stochasticity in birth and mortality terms. In this paper, we analyse a stochastic M'Kendrick-von Foerster equation in which jumps in mortality represent intense losses of population due to external events. We present explicit solutions for the probability density functions of the age distribution and the total population and for the temporal dynamics of their moments. We also derive the dynamics of the mean age of the population and its harmonic mean. The framework is then used to calculate the age distribution of salt in the soil root zone, where the accumulation of salt by atmospheric deposition is counteracted by plant uptake and by jump losses due to percolation events.

  1. Jumps and stochastic volatility in oil prices: Time series evidence

    International Nuclear Information System (INIS)

    Larsson, Karl; Nossman, Marcus

    2011-01-01

    In this paper we examine the empirical performance of affine jump diffusion models with stochastic volatility in a time series study of crude oil prices. We compare four different models and estimate them using the Markov Chain Monte Carlo method. The support for a stochastic volatility model including jumps in both prices and volatility is strong and the model clearly outperforms the others in terms of a superior fit to data. Our estimation method allows us to obtain a detailed study of oil prices during two periods of extreme market stress included in our sample; the Gulf war and the recent financial crisis. We also address the economic significance of model choice in two option pricing applications. The implied volatilities generated by the different estimated models are compared and we price a real option to develop an oil field. Our findings indicate that model choice can have a material effect on the option values.

  2. An Analytically Tractable Model for Pricing Multiasset Options with Correlated Jump-Diffusion Equity Processes and a Two-Factor Stochastic Yield Curve

    Directory of Open Access Journals (Sweden)

    Tristan Guillaume

    2016-01-01

    Full Text Available This paper shows how to value multiasset options analytically in a modeling framework that combines both continuous and discontinuous variations in the underlying equity or foreign exchange processes and a stochastic, two-factor yield curve. All correlations are taken into account, between the factors driving the yield curve, between fixed income and equity as asset classes, and between the individual equity assets themselves. The valuation method is applied to three of the most popular two-asset options.

  3. Theory of stochastic differential equations with jumps and applications mathematical and analytical techniques with applications to engineering

    CERN Document Server

    SITU, Rong

    2005-01-01

    Derivation of Ito's formulas, Girsanov's theorems and martingale representation theorem for stochastic DEs with jumpsApplications to population controlReflecting stochastic DE techniqueApplications to the stock market. (Backward stochastic DE approach)Derivation of Black-Scholes formula for market with and without jumpsNon-linear filtering problems with jumps.

  4. Stability analysis for neutral stochastic differential equation of second order driven by Poisson jumps

    Science.gov (United States)

    Chadha, Alka; Bora, Swaroop Nandan

    2017-11-01

    This paper studies the existence, uniqueness, and exponential stability in mean square for the mild solution of neutral second order stochastic partial differential equations with infinite delay and Poisson jumps. By utilizing the Banach fixed point theorem, first the existence and uniqueness of the mild solution of neutral second order stochastic differential equations is established. Then, the mean square exponential stability for the mild solution of the stochastic system with Poisson jumps is obtained with the help of an established integral inequality.

  5. Stochastic processes inference theory

    CERN Document Server

    Rao, Malempati M

    2014-01-01

    This is the revised and enlarged 2nd edition of the authors’ original text, which was intended to be a modest complement to Grenander's fundamental memoir on stochastic processes and related inference theory. The present volume gives a substantial account of regression analysis, both for stochastic processes and measures, and includes recent material on Ridge regression with some unexpected applications, for example in econometrics. The first three chapters can be used for a quarter or semester graduate course on inference on stochastic processes. The remaining chapters provide more advanced material on stochastic analysis suitable for graduate seminars and discussions, leading to dissertation or research work. In general, the book will be of interest to researchers in probability theory, mathematical statistics and electrical and information theory.

  6. Bayesian inference for Markov jump processes with informative observations.

    Science.gov (United States)

    Golightly, Andrew; Wilkinson, Darren J

    2015-04-01

    In this paper we consider the problem of parameter inference for Markov jump process (MJP) representations of stochastic kinetic models. Since transition probabilities are intractable for most processes of interest yet forward simulation is straightforward, Bayesian inference typically proceeds through computationally intensive methods such as (particle) MCMC. Such methods ostensibly require the ability to simulate trajectories from the conditioned jump process. When observations are highly informative, use of the forward simulator is likely to be inefficient and may even preclude an exact (simulation based) analysis. We therefore propose three methods for improving the efficiency of simulating conditioned jump processes. A conditioned hazard is derived based on an approximation to the jump process, and used to generate end-point conditioned trajectories for use inside an importance sampling algorithm. We also adapt a recently proposed sequential Monte Carlo scheme to our problem. Essentially, trajectories are reweighted at a set of intermediate time points, with more weight assigned to trajectories that are consistent with the next observation. We consider two implementations of this approach, based on two continuous approximations of the MJP. We compare these constructs for a simple tractable jump process before using them to perform inference for a Lotka-Volterra system. The best performing construct is used to infer the parameters governing a simple model of motility regulation in Bacillus subtilis.

  7. Jumps in binomial AR(1) processes

    OpenAIRE

    Weiß , Christian H.

    2009-01-01

    Abstract We consider the binomial AR(1) model for serially dependent processes of binomial counts. After a review of its definition and known properties, we investigate marginal and serial properties of jumps in such processes. Based on these results, we propose the jumps control chart for monitoring a binomial AR(1) process. We show how to evaluate the performance of this control chart and give design recommendations. correspondance: Tel.: +49 931 31 84968; ...

  8. Composite stochastic processes

    NARCIS (Netherlands)

    Kampen, N.G. van

    Certain problems in physics and chemistry lead to the definition of a class of stochastic processes. Although they are not Markovian they can be treated explicitly to some extent. In particular, the probability distribution for large times can be found. It is shown to obey a master equation. This

  9. Research in Stochastic Processes.

    Science.gov (United States)

    1982-10-31

    Office of Scientific Research Grant AFOSR F49620 82 C 0009 Period: 1 Noveber 1981 through 31 October 1982 Title: Research in Stochastic Processes Co...STA4ATIS CAMBANIS The work briefly described here was developed in connection with problems arising from and related to the statistical comunication

  10. Stationary distribution and ergodicity of a stochastic food-chain model with Lévy jumps

    Science.gov (United States)

    Yu, Jingyi; Liu, Meng

    2017-09-01

    In this paper, a three-species stochastic food-chain model with Lévy jumps is proposed and analyzed. Sharp sufficient criteria for the existence and uniqueness of an ergodic stationary distribution are established. The effects of Lévy jumps on the existence of the stationary distribution are revealed: in some cases, the Lévy jumps could make the stationary distribution appear, while in some cases, the Lévy jumps could make the stationary distribution disappear. Some numerical simulations are introduced to illustrate the theoretical results.

  11. Essentials of stochastic processes

    CERN Document Server

    Durrett, Richard

    2016-01-01

    Building upon the previous editions, this textbook is a first course in stochastic processes taken by undergraduate and graduate students (MS and PhD students from math, statistics, economics, computer science, engineering, and finance departments) who have had a course in probability theory. It covers Markov chains in discrete and continuous time, Poisson processes, renewal processes, martingales, and option pricing. One can only learn a subject by seeing it in action, so there are a large number of examples and more than 300 carefully chosen exercises to deepen the reader’s understanding. Drawing from teaching experience and student feedback, there are many new examples and problems with solutions that use TI-83 to eliminate the tedious details of solving linear equations by hand, and the collection of exercises is much improved, with many more biological examples. Originally included in previous editions, material too advanced for this first course in stochastic processes has been eliminated while treatm...

  12. Rate estimation in partially observed Markov jump processes with measurement errors

    OpenAIRE

    Amrein, Michael; Kuensch, Hans R.

    2010-01-01

    We present a simulation methodology for Bayesian estimation of rate parameters in Markov jump processes arising for example in stochastic kinetic models. To handle the problem of missing components and measurement errors in observed data, we embed the Markov jump process into the framework of a general state space model. We do not use diffusion approximations. Markov chain Monte Carlo and particle filter type algorithms are introduced, which allow sampling from the posterior distribution of t...

  13. Stochastic inequalities and applications to dynamics analysis of a novel SIVS epidemic model with jumps

    Directory of Open Access Journals (Sweden)

    Xiaona Leng

    2017-06-01

    Full Text Available Abstract This paper proposes a new nonlinear stochastic SIVS epidemic model with double epidemic hypothesis and Lévy jumps. The main purpose of this paper is to investigate the threshold dynamics of the stochastic SIVS epidemic model. By using the technique of a series of stochastic inequalities, we obtain sufficient conditions for the persistence in mean and extinction of the stochastic system and the threshold which governs the extinction and the spread of the epidemic diseases. Finally, this paper describes the results of numerical simulations investigating the dynamical effects of stochastic disturbance. Our results significantly improve and generalize the corresponding results in recent literatures. The developed theoretical methods and stochastic inequalities technique can be used to investigate the high-dimensional nonlinear stochastic differential systems.

  14. Stochastic conditional intensity processes

    DEFF Research Database (Denmark)

    Bauwens, Luc; Hautsch, Nikolaus

    2006-01-01

    model allows for a wide range of (cross-)autocorrelation structures in multivariate point processes. The model is estimated by simulated maximum likelihood (SML) using the efficient importance sampling (EIS) technique. By modeling price intensities based on NYSE trading, we provide significant evidence......In this article, we introduce the so-called stochastic conditional intensity (SCI) model by extending Russell’s (1999) autoregressive conditional intensity (ACI) model by a latent common dynamic factor that jointly drives the individual intensity components. We show by simulations that the proposed...... for a joint latent factor and show that its inclusion allows for an improved and more parsimonious specification of the multivariate intensity process...

  15. Intertime jump statistics of state-dependent Poisson processes.

    Science.gov (United States)

    Daly, Edoardo; Porporato, Amilcare

    2007-01-01

    A method to obtain the probability distribution of the interarrival times of jump occurrences in systems driven by state-dependent Poisson noise is proposed. Such a method uses the survivor function obtained by a modified version of the master equation associated to the stochastic process under analysis. A model for the timing of human activities shows the capability of state-dependent Poisson noise to generate power-law distributions. The application of the method to a model for neuron dynamics and to a hydrological model accounting for land-atmosphere interaction elucidates the origin of characteristic recurrence intervals and possible persistence in state-dependent Poisson models.

  16. A generalized integral fluctuation theorem for general jump processes

    International Nuclear Information System (INIS)

    Liu Fei; Ouyang Zhongcan; Luo Yupin; Huang Mingchang

    2009-01-01

    Using the Feynman-Kac and Cameron-Martin-Girsanov formulae, we obtain a generalized integral fluctuation theorem (GIFT) for discrete jump processes by constructing a time-invariable inner product. The existing discrete IFTs can be derived as its specific cases. A connection between our approach and the conventional time-reversal method is also established. Unlike the latter approach that has been extensively employed in the existing literature, our approach can naturally bring out the definition of a time reversal of a Markovian stochastic system. Additionally, we find that the robust GIFT usually does not result in a detailed fluctuation theorem. (fast track communication)

  17. Dynamics of the stochastic low concentration trimolecular oscillatory chemical system with jumps

    Science.gov (United States)

    Wei, Yongchang; Yang, Qigui

    2018-06-01

    This paper is devoted to discern long time dynamics through the stochastic low concentration trimolecular oscillatory chemical system with jumps. By Lyapunov technique, this system is proved to have a unique global positive solution, and the asymptotic stability in mean square of such model is further established. Moreover, the existence of random attractor and Lyapunov exponents are obtained for the stochastic homeomorphism flow generated by the corresponding global positive solution. And some numerical simulations are given to illustrate the presented results.

  18. Analytic Approximation of the Solutions of Stochastic Differential Delay Equations with Poisson Jump and Markovian Switching

    Directory of Open Access Journals (Sweden)

    Hua Yang

    2012-01-01

    Full Text Available We are concerned with the stochastic differential delay equations with Poisson jump and Markovian switching (SDDEsPJMSs. Most SDDEsPJMSs cannot be solved explicitly as stochastic differential equations. Therefore, numerical solutions have become an important issue in the study of SDDEsPJMSs. The key contribution of this paper is to investigate the strong convergence between the true solutions and the numerical solutions to SDDEsPJMSs when the drift and diffusion coefficients are Taylor approximations.

  19. Control Improvement for Jump-Diffusion Processes with Applications to Finance

    International Nuclear Information System (INIS)

    Bäuerle, Nicole; Rieder, Ulrich

    2012-01-01

    We consider stochastic control problems with jump-diffusion processes and formulate an algorithm which produces, starting from a given admissible control π, a new control with a better value. If no improvement is possible, then π is optimal. Such an algorithm is well-known for discrete-time Markov Decision Problems under the name Howard’s policy improvement algorithm. The idea can be traced back to Bellman. Here we show with the help of martingale techniques that such an algorithm can also be formulated for stochastic control problems with jump-diffusion processes. As an application we derive some interesting results in financial portfolio optimization.

  20. Controllability of nonlocal second-order impulsive neutral stochastic functional integro-differential equations with delay and Poisson jumps

    Directory of Open Access Journals (Sweden)

    Diem Dang Huan

    2015-12-01

    Full Text Available The current paper is concerned with the controllability of nonlocal second-order impulsive neutral stochastic functional integro-differential equations with infinite delay and Poisson jumps in Hilbert spaces. Using the theory of a strongly continuous cosine family of bounded linear operators, stochastic analysis theory and with the help of the Banach fixed point theorem, we derive a new set of sufficient conditions for the controllability of nonlocal second-order impulsive neutral stochastic functional integro-differential equations with infinite delay and Poisson jumps. Finally, an application to the stochastic nonlinear wave equation with infinite delay and Poisson jumps is given.

  1. Filtering of a Markov Jump Process with Counting Observations

    International Nuclear Information System (INIS)

    Ceci, C.; Gerardi, A.

    2000-01-01

    This paper concerns the filtering of an R d -valued Markov pure jump process when only the total number of jumps are observed. Strong and weak uniqueness for the solutions of the filtering equations are discussed

  2. Stochastic processes and quantum theory

    International Nuclear Information System (INIS)

    Klauder, J.R.

    1975-01-01

    The author analyses a variety of stochastic processes, namely real time diffusion phenomena, which are analogues of imaginary time quantum theory and convariant imaginary time quantum field theory. He elaborates some standard properties involving probability measures and stochastic variables and considers a simple class of examples. Finally he develops the fact that certain stochastic theories actually exhibit divergences that simulate those of covariant quantum field theory and presents examples of both renormaizable and unrenormalizable behavior. (V.J.C.)

  3. A renewal jump-diffusion process with threshold dividend strategy

    Science.gov (United States)

    Li, Bo; Wu, Rong; Song, Min

    2009-06-01

    In this paper, we consider a jump-diffusion risk process with the threshold dividend strategy. Both the distributions of the inter-arrival times and the claims are assumed to be in the class of phase-type distributions. The expected discounted dividend function and the Laplace transform of the ruin time are discussed. Motivated by Asmussen [S. Asmussen, Stationary distributions for fluid flow models with or without Brownian noise, Stochastic Models 11 (1) (1995) 21-49], instead of studying the original process, we study the constructed fluid flow process and their closed-form formulas are obtained in terms of matrix expression. Finally, numerical results are provided to illustrate the computation.

  4. Robust H∞ Filtering for Uncertain Neutral Stochastic Systems with Markovian Jumping Parameters and Time Delay

    Directory of Open Access Journals (Sweden)

    Yajun Li

    2015-01-01

    Full Text Available This paper deals with the robust H∞ filter design problem for a class of uncertain neutral stochastic systems with Markovian jumping parameters and time delay. Based on the Lyapunov-Krasovskii theory and generalized Finsler Lemma, a delay-dependent stability condition is proposed to ensure not only that the filter error system is robustly stochastically stable but also that a prescribed H∞ performance level is satisfied for all admissible uncertainties. All obtained results are expressed in terms of linear matrix inequalities which can be easily solved by MATLAB LMI toolbox. Numerical examples are given to show that the results obtained are both less conservative and less complicated in computation.

  5. Optimal control strategy for an impulsive stochastic competition system with time delays and jumps

    Science.gov (United States)

    Liu, Lidan; Meng, Xinzhu; Zhang, Tonghua

    2017-07-01

    Driven by both white and jump noises, a stochastic delayed model with two competitive species in a polluted environment is proposed and investigated. By using the comparison theorem of stochastic differential equations and limit superior theory, sufficient conditions for persistence in mean and extinction of two species are established. In addition, we obtain that the system is asymptotically stable in distribution by using ergodic method. Furthermore, the optimal harvesting effort and the maximum of expectation of sustainable yield (ESY) are derived from Hessian matrix method and optimal harvesting theory of differential equations. Finally, some numerical simulations are provided to illustrate the theoretical results.

  6. A Hull and White Formula for a General Stochastic Volatility Jump-Diffusion Model with Applications to the Study of the Short-Time Behavior of the Implied Volatility

    Directory of Open Access Journals (Sweden)

    Elisa Alòs

    2008-01-01

    Full Text Available We obtain a Hull and White type formula for a general jump-diffusion stochastic volatility model, where the involved stochastic volatility process is correlated not only with the Brownian motion driving the asset price but also with the asset price jumps. Towards this end, we establish an anticipative Itô's formula, using Malliavin calculus techniques for Lévy processes on the canonical space. As an application, we show that the dependence of the volatility process on the asset price jumps has no effect on the short-time behavior of the at-the-money implied volatility skew.

  7. 100 years after Smoluchowski: stochastic processes in cell biology

    International Nuclear Information System (INIS)

    Holcman, D; Schuss, Z

    2017-01-01

    100 years after Smoluchowski introduced his approach to stochastic processes, they are now at the basis of mathematical and physical modeling in cellular biology: they are used for example to analyse and to extract features from a large number (tens of thousands) of single molecular trajectories or to study the diffusive motion of molecules, proteins or receptors. Stochastic modeling is a new step in large data analysis that serves extracting cell biology concepts. We review here Smoluchowski’s approach to stochastic processes and provide several applications for coarse-graining diffusion, studying polymer models for understanding nuclear organization and finally, we discuss the stochastic jump dynamics of telomeres across cell division and stochastic gene regulation. (topical review)

  8. Structural estimation of jump-diffusion processes in macroeconomics

    DEFF Research Database (Denmark)

    Posch, Olaf

    2009-01-01

    This paper shows how to solve and estimate a continuous-time dynamic stochastic general equilibrium (DSGE) model with jumps. It also shows that a continuous-time formulation can make it simpler (relative to its discrete-time version) to compute and estimate the deep parameters using the likelihoo...

  9. H∞ Filtering for Networked Markovian Jump Systems with Multiple Stochastic Communication Delays

    Directory of Open Access Journals (Sweden)

    Hui Dong

    2015-01-01

    Full Text Available This paper is concerned with the H∞ filtering for a class of networked Markovian jump systems with multiple communication delays. Due to the existence of communication constraints, the measurement signal cannot arrive at the filter completely on time, and the stochastic communication delays are considered in the filter design. Firstly, a set of stochastic variables is introduced to model the occurrence probabilities of the delays. Then based on the stochastic system approach, a sufficient condition is obtained such that the filtering error system is stable in the mean-square sense and with a prescribed H∞ disturbance attenuation level. The optimal filter gain parameters can be determined by solving a convex optimization problem. Finally, a simulation example is given to show the effectiveness of the proposed filter design method.

  10. An introduction to probability and stochastic processes

    CERN Document Server

    Melsa, James L

    2013-01-01

    Geared toward college seniors and first-year graduate students, this text is designed for a one-semester course in probability and stochastic processes. Topics covered in detail include probability theory, random variables and their functions, stochastic processes, linear system response to stochastic processes, Gaussian and Markov processes, and stochastic differential equations. 1973 edition.

  11. Applied probability and stochastic processes

    CERN Document Server

    Sumita, Ushio

    1999-01-01

    Applied Probability and Stochastic Processes is an edited work written in honor of Julien Keilson. This volume has attracted a host of scholars in applied probability, who have made major contributions to the field, and have written survey and state-of-the-art papers on a variety of applied probability topics, including, but not limited to: perturbation method, time reversible Markov chains, Poisson processes, Brownian techniques, Bayesian probability, optimal quality control, Markov decision processes, random matrices, queueing theory and a variety of applications of stochastic processes. The book has a mixture of theoretical, algorithmic, and application chapters providing examples of the cutting-edge work that Professor Keilson has done or influenced over the course of his highly-productive and energetic career in applied probability and stochastic processes. The book will be of interest to academic researchers, students, and industrial practitioners who seek to use the mathematics of applied probability i...

  12. Optimal harvesting of a stochastic delay tri-trophic food-chain model with Lévy jumps

    Science.gov (United States)

    Qiu, Hong; Deng, Wenmin

    2018-02-01

    In this paper, the optimal harvesting of a stochastic delay tri-trophic food-chain model with Lévy jumps is considered. We introduce two kinds of environmental perturbations in this model. One is called white noise which is continuous and is described by a stochastic integral with respect to the standard Brownian motion. And the other one is jumping noise which is modeled by a Lévy process. Under some mild assumptions, the critical values between extinction and persistent in the mean of each species are established. The sufficient and necessary criteria for the existence of optimal harvesting policy are established and the optimal harvesting effort and the maximum of sustainable yield are also obtained. We utilize the ergodic method to discuss the optimal harvesting problem. The results show that white noises and Lévy noises significantly affect the optimal harvesting policy while time delays is harmless for the optimal harvesting strategy in some cases. At last, some numerical examples are introduced to show the validity of our results.

  13. Moderate Deviation Principles for Stochastic Differential Equations with Jumps

    Science.gov (United States)

    2014-01-15

    N ŕ’"(dt; dy) and the controls ’" : X [0; T ] ! [0;1) are predictable processes satisfying LT (’") Ma2 (") for some constantM . Here LT denotes...space. Although in the moderate deviations problem one has the stronger bound LT (’") Ma2 (") on the cost of controls, the mere tightness of ’" does not...suitable quadratic form. For " > 0 and M ə, consider the spaces SM+;" : = f’ : X [0; T ]! R+j LT (’) Ma2 (")g (2.5) SM" : = f : X [0; T ]! Rj

  14. Probability, Statistics, and Stochastic Processes

    CERN Document Server

    Olofsson, Peter

    2011-01-01

    A mathematical and intuitive approach to probability, statistics, and stochastic processes This textbook provides a unique, balanced approach to probability, statistics, and stochastic processes. Readers gain a solid foundation in all three fields that serves as a stepping stone to more advanced investigations into each area. This text combines a rigorous, calculus-based development of theory with a more intuitive approach that appeals to readers' sense of reason and logic, an approach developed through the author's many years of classroom experience. The text begins with three chapters that d

  15. Equilibrium Asset and Option Pricing under Jump-Diffusion Model with Stochastic Volatility

    Directory of Open Access Journals (Sweden)

    Xinfeng Ruan

    2013-01-01

    Full Text Available We study the equity premium and option pricing under jump-diffusion model with stochastic volatility based on the model in Zhang et al. 2012. We obtain the pricing kernel which acts like the physical and risk-neutral densities and the moments in the economy. Moreover, the exact expression of option valuation is derived by the Fourier transformation method. We also discuss the relationship of central moments between the physical measure and the risk-neutral measure. Our numerical results show that our model is more realistic than the previous model.

  16. Non-cooperative stochastic differential game theory of generalized Markov jump linear systems

    CERN Document Server

    Zhang, Cheng-ke; Zhou, Hai-ying; Bin, Ning

    2017-01-01

    This book systematically studies the stochastic non-cooperative differential game theory of generalized linear Markov jump systems and its application in the field of finance and insurance. The book is an in-depth research book of the continuous time and discrete time linear quadratic stochastic differential game, in order to establish a relatively complete framework of dynamic non-cooperative differential game theory. It uses the method of dynamic programming principle and Riccati equation, and derives it into all kinds of existence conditions and calculating method of the equilibrium strategies of dynamic non-cooperative differential game. Based on the game theory method, this book studies the corresponding robust control problem, especially the existence condition and design method of the optimal robust control strategy. The book discusses the theoretical results and its applications in the risk control, option pricing, and the optimal investment problem in the field of finance and insurance, enriching the...

  17. Optimising stochastic trajectories in exact quantum jump approaches of interacting systems

    International Nuclear Information System (INIS)

    Lacroix, D.

    2004-11-01

    The standard methods used to substitute the quantum dynamics of two interacting systems by a quantum jump approach based on the Stochastic Schroedinger Equation (SSE) are described. It turns out that for a given situation, there exists an infinite number of SSE reformulation. This fact is used to propose general strategies to optimise the stochastic paths in order to reduce the statistical fluctuations. In this procedure, called the 'adaptative noise method', a specific SSE is obtained for which the noise depends explicitly on both the initial state and on the properties of the interaction Hamiltonian. It is also shown that this method can be further improved by the introduction of a mean-field dynamics. The different optimisation procedures are illustrated quantitatively in the case of interacting spins. A significant reduction of the statistical fluctuations is obtained. Consequently, a much smaller number of trajectories is needed to accurately reproduce the exact dynamics as compared to the standard SSE method. (author)

  18. The dynamics of stochastic processes

    DEFF Research Database (Denmark)

    Basse-O'Connor, Andreas

    In the present thesis the dynamics of stochastic processes is studied with a special attention to the semimartingale property. This is mainly motivated by the fact that semimartingales provide the class of the processes for which it is possible to define a reasonable stochastic calculus due...... to the Bichteler-Dellacherie Theorem. The semimartingale property of Gaussian processes is characterized in terms of their covariance function, spectral measure and spectral representation. In addition, representation and expansion of filtration results are provided as well. Special attention is given to moving...... average processes, and when the driving process is a Lévy or a chaos process the semimartingale property is characterized in the filtration spanned by the driving process and in the natural filtration when the latter is a Brownian motion. To obtain some of the above results an integrability of seminorm...

  19. Distance covariance for stochastic processes

    DEFF Research Database (Denmark)

    Matsui, Muneya; Mikosch, Thomas Valentin; Samorodnitsky, Gennady

    2017-01-01

    The distance covariance of two random vectors is a measure of their dependence. The empirical distance covariance and correlation can be used as statistical tools for testing whether two random vectors are independent. We propose an analog of the distance covariance for two stochastic processes...

  20. Fourier analysis and stochastic processes

    CERN Document Server

    Brémaud, Pierre

    2014-01-01

    This work is unique as it provides a uniform treatment of the Fourier theories of functions (Fourier transforms and series, z-transforms), finite measures (characteristic functions, convergence in distribution), and stochastic processes (including arma series and point processes). It emphasises the links between these three themes. The chapter on the Fourier theory of point processes and signals structured by point processes is a novel addition to the literature on Fourier analysis of stochastic processes. It also connects the theory with recent lines of research such as biological spike signals and ultrawide-band communications. Although the treatment is mathematically rigorous, the convivial style makes the book accessible to a large audience. In particular, it will be interesting to anyone working in electrical engineering and communications, biology (point process signals) and econometrics (arma models). A careful review of the prerequisites (integration and probability theory in the appendix, Hilbert spa...

  1. The Relationship between the Stochastic Maximum Principle and the Dynamic Programming in Singular Control of Jump Diffusions

    Directory of Open Access Journals (Sweden)

    Farid Chighoub

    2014-01-01

    the stochastic calculus of jump diffusions and some properties of singular controls. Then, we give, under smoothness conditions, a useful verification theorem and we show that the solution of the adjoint equation coincides with the spatial gradient of the value function, evaluated along the optimal trajectory of the state equation. Finally, using these theoretical results, we solve explicitly an example, on optimal harvesting strategy, for a geometric Brownian motion with jumps.

  2. Introduction to stochastic processes

    CERN Document Server

    Cinlar, Erhan

    2013-01-01

    Clear presentation employs methods that recognize computer-related aspects of theory. Topics include expectations and independence, Bernoulli processes and sums of independent random variables, Markov chains, renewal theory, more. 1975 edition.

  3. Dynamical and hamiltonian dilations of stochastic processes

    International Nuclear Information System (INIS)

    Baumgartner, B.; Gruemm, H.-R.

    1982-01-01

    This is a study of the problem, which stochastic processes could arise from dynamical systems by loss of information. The notions of ''dilation'' and ''approximate dilation'' of a stochastic process are introduced to give exact definitions of this particular relationship. It is shown that every generalized stochastic process is approximately dilatable by a sequence of dynamical systems, but for stochastic processes in full generality one needs nets. (Author)

  4. Exponential Synchronization for Stochastic Neural Networks with Mixed Time Delays and Markovian Jump Parameters via Sampled Data

    Directory of Open Access Journals (Sweden)

    Yingwei Li

    2014-01-01

    Full Text Available The exponential synchronization issue for stochastic neural networks (SNNs with mixed time delays and Markovian jump parameters using sampled-data controller is investigated. Based on a novel Lyapunov-Krasovskii functional, stochastic analysis theory, and linear matrix inequality (LMI approach, we derived some novel sufficient conditions that guarantee that the master systems exponentially synchronize with the slave systems. The design method of the desired sampled-data controller is also proposed. To reflect the most dynamical behaviors of the system, both Markovian jump parameters and stochastic disturbance are considered, where stochastic disturbances are given in the form of a Brownian motion. The results obtained in this paper are a little conservative comparing the previous results in the literature. Finally, two numerical examples are given to illustrate the effectiveness of the proposed methods.

  5. Stochastic processes and filtering theory

    CERN Document Server

    Jazwinski, Andrew H

    1970-01-01

    This unified treatment of linear and nonlinear filtering theory presents material previously available only in journals, and in terms accessible to engineering students. Its sole prerequisites are advanced calculus, the theory of ordinary differential equations, and matrix analysis. Although theory is emphasized, the text discusses numerous practical applications as well.Taking the state-space approach to filtering, this text models dynamical systems by finite-dimensional Markov processes, outputs of stochastic difference, and differential equations. Starting with background material on probab

  6. Verification of Stochastic Process Calculi

    DEFF Research Database (Denmark)

    Skrypnyuk, Nataliya

    algorithms for constructing bisimulation relations, computing (overapproximations of) sets of reachable states and computing the expected time reachability, the last for a linear fragment of IMC. In all the cases we have the complexities of algorithms which are low polynomial in the size of the syntactic....... In support of this claim we have developed analysis methods that belong to a particular type of Static Analysis { Data Flow / Pathway Analysis. These methods have previously been applied to a number of non-stochastic process calculi. In this thesis we are lifting them to the stochastic calculus...... of Interactive Markov Chains (IMC). We have devised the Pathway Analysis of IMC that is not only correct in the sense of overapproximating all possible behaviour scenarios, as is usual for Static Analysis methods, but is also precise. This gives us the possibility to explicitly decide on the trade-o between...

  7. Stochastic processes, slaves and supersymmetry

    International Nuclear Information System (INIS)

    Drummond, I T; Horgan, R R

    2012-01-01

    We extend the work of Tănase-Nicola and Kurchan on the structure of diffusion processes and the associated supersymmetry algebra by examining the responses of a simple statistical system to external disturbances of various kinds. We consider both the stochastic differential equations (SDEs) for the process and the associated diffusion equation. The influence of the disturbances can be understood by augmenting the original SDE with an equation for slave variables. The evolution of the slave variables describes the behaviour of line elements carried along in the stochastic flow. These line elements, together with the associated surface and volume elements constructed from them, provide the basis of the supersymmetry properties of the theory. For ease of visualization, and in order to emphasize a helpful electromagnetic analogy, we work in three dimensions. The results are all generalizable to higher dimensions and can be specialized to one and two dimensions. The electromagnetic analogy is a useful starting point for calculating asymptotic results at low temperature that can be compared with direct numerical evaluations. We also examine the problems that arise in a direct numerical simulation of the stochastic equation together with the slave equations. We pay special attention to the dependence of the slave variable statistics on temperature. We identify in specific models the critical temperature below which the slave variable distribution ceases to have a variance and consider the effect on estimates of susceptibilities. (paper)

  8. Robustness of Quadratic Hedging Strategies in Finance via Backward Stochastic Differential Equations with Jumps

    International Nuclear Information System (INIS)

    Di Nunno, Giulia; Khedher, Asma; Vanmaele, Michèle

    2015-01-01

    We consider a backward stochastic differential equation with jumps (BSDEJ) which is driven by a Brownian motion and a Poisson random measure. We present two candidate-approximations to this BSDEJ and we prove that the solution of each candidate-approximation converges to the solution of the original BSDEJ in a space which we specify. We use this result to investigate in further detail the consequences of the choice of the model to (partial) hedging in incomplete markets in finance. As an application, we consider models in which the small variations in the price dynamics are modeled with a Poisson random measure with infinite activity and models in which these small variations are modeled with a Brownian motion or are cut off. Using the convergence results on BSDEJs, we show that quadratic hedging strategies are robust towards the approximation of the market prices and we derive an estimation of the model risk

  9. Robustness of Quadratic Hedging Strategies in Finance via Backward Stochastic Differential Equations with Jumps

    Energy Technology Data Exchange (ETDEWEB)

    Di Nunno, Giulia, E-mail: giulian@math.uio.no [University of Oslo, Center of Mathematics for Applications (Norway); Khedher, Asma, E-mail: asma.khedher@tum.de [Technische Universität München, Chair of Mathematical Finance (Germany); Vanmaele, Michèle, E-mail: michele.vanmaele@ugent.be [Ghent University, Department of Applied Mathematics, Computer Science and Statistics (Belgium)

    2015-12-15

    We consider a backward stochastic differential equation with jumps (BSDEJ) which is driven by a Brownian motion and a Poisson random measure. We present two candidate-approximations to this BSDEJ and we prove that the solution of each candidate-approximation converges to the solution of the original BSDEJ in a space which we specify. We use this result to investigate in further detail the consequences of the choice of the model to (partial) hedging in incomplete markets in finance. As an application, we consider models in which the small variations in the price dynamics are modeled with a Poisson random measure with infinite activity and models in which these small variations are modeled with a Brownian motion or are cut off. Using the convergence results on BSDEJs, we show that quadratic hedging strategies are robust towards the approximation of the market prices and we derive an estimation of the model risk.

  10. Fuzzy Stochastic Optimal Guaranteed Cost Control of Bio-Economic Singular Markovian Jump Systems.

    Science.gov (United States)

    Li, Li; Zhang, Qingling; Zhu, Baoyan

    2015-11-01

    This paper establishes a bio-economic singular Markovian jump model by considering the price of the commodity as a Markov chain. The controller is designed for this system such that its biomass achieves the specified range with the least cost in a finite-time. Firstly, this system is described by Takagi-Sugeno fuzzy model. Secondly, a new design method of fuzzy state-feedback controllers is presented to ensure not only the regularity, nonimpulse, and stochastic singular finite-time boundedness of this kind of systems, but also an upper bound achieved for the cost function in the form of strict linear matrix inequalities. Finally, two examples including a practical example of eel seedling breeding are given to illustrate the merit and usability of the approach proposed in this paper.

  11. Joint Pricing of VIX and SPX Options with Stochastic Volatility and Jump models

    DEFF Research Database (Denmark)

    Kokholm, Thomas; Stisen, Martin

    2015-01-01

    to existing literature, we derive numerically simpler VIX option and futures pricing formulas in the case of the SVJ model. Moreover, the paper is the first to study the pricing performance of three widely used models to SPX options and VIX derivatives.......With the existence of active markets for volatility derivatives and options on the underlying instrument, the need for models that are able to price these markets consistently has increased. Although pricing formulas for VIX and vanilla options are now available for commonly employed models...... and variance (SVJJ) are jointly calibrated to market quotes on SPX and VIX options together with VIX futures. The full flexibility of having jumps in both returns and volatility added to a stochastic volatility model is essential. Moreover, we find that the SVJJ model with the Feller condition imposed...

  12. The exit-time problem for a Markov jump process

    Science.gov (United States)

    Burch, N.; D'Elia, M.; Lehoucq, R. B.

    2014-12-01

    The purpose of this paper is to consider the exit-time problem for a finite-range Markov jump process, i.e, the distance the particle can jump is bounded independent of its location. Such jump diffusions are expedient models for anomalous transport exhibiting super-diffusion or nonstandard normal diffusion. We refer to the associated deterministic equation as a volume-constrained nonlocal diffusion equation. The volume constraint is the nonlocal analogue of a boundary condition necessary to demonstrate that the nonlocal diffusion equation is well-posed and is consistent with the jump process. A critical aspect of the analysis is a variational formulation and a recently developed nonlocal vector calculus. This calculus allows us to pose nonlocal backward and forward Kolmogorov equations, the former equation granting the various moments of the exit-time distribution.

  13. Mathematical statistics and stochastic processes

    CERN Document Server

    Bosq, Denis

    2013-01-01

    Generally, books on mathematical statistics are restricted to the case of independent identically distributed random variables. In this book however, both this case AND the case of dependent variables, i.e. statistics for discrete and continuous time processes, are studied. This second case is very important for today's practitioners.Mathematical Statistics and Stochastic Processes is based on decision theory and asymptotic statistics and contains up-to-date information on the relevant topics of theory of probability, estimation, confidence intervals, non-parametric statistics and rob

  14. Probability, Statistics, and Stochastic Processes

    CERN Document Server

    Olofsson, Peter

    2012-01-01

    This book provides a unique and balanced approach to probability, statistics, and stochastic processes.   Readers gain a solid foundation in all three fields that serves as a stepping stone to more advanced investigations into each area.  The Second Edition features new coverage of analysis of variance (ANOVA), consistency and efficiency of estimators, asymptotic theory for maximum likelihood estimators, empirical distribution function and the Kolmogorov-Smirnov test, general linear models, multiple comparisons, Markov chain Monte Carlo (MCMC), Brownian motion, martingales, and

  15. Mean-Square Convergence of Drift-Implicit One-Step Methods for Neutral Stochastic Delay Differential Equations with Jump Diffusion

    Directory of Open Access Journals (Sweden)

    Lin Hu

    2011-01-01

    Full Text Available A class of drift-implicit one-step schemes are proposed for the neutral stochastic delay differential equations (NSDDEs driven by Poisson processes. A general framework for mean-square convergence of the methods is provided. It is shown that under certain conditions global error estimates for a method can be inferred from estimates on its local error. The applicability of the mean-square convergence theory is illustrated by the stochastic θ-methods and the balanced implicit methods. It is derived from Theorem 3.1 that the order of the mean-square convergence of both of them for NSDDEs with jumps is 1/2. Numerical experiments illustrate the theoretical results. It is worth noting that the results of mean-square convergence of the stochastic θ-methods and the balanced implicit methods are also new.

  16. Neural network connectivity and response latency modelled by stochastic processes

    DEFF Research Database (Denmark)

    Tamborrino, Massimiliano

    is connected to thousands of other neurons. The rst question is: how to model neural networks through stochastic processes? A multivariate Ornstein-Uhlenbeck process, obtained as a diffusion approximation of a jump process, is the proposed answer. Obviously, dependencies between neurons imply dependencies......Stochastic processes and their rst passage times have been widely used to describe the membrane potential dynamics of single neurons and to reproduce neuronal spikes, respectively.However, cerebral cortex in human brains is estimated to contain 10-20 billions of neurons and each of them...... between their spike times. Therefore, the second question is: how to detect neural network connectivity from simultaneously recorded spike trains? Answering this question corresponds to investigate the joint distribution of sequences of rst passage times. A non-parametric method based on copulas...

  17. Estimation of Jump Tails

    DEFF Research Database (Denmark)

    Bollerslev, Tim; Todorov, Victor

    We propose a new and flexible non-parametric framework for estimating the jump tails of Itô semimartingale processes. The approach is based on a relatively simple-to-implement set of estimating equations associated with the compensator for the jump measure, or its "intensity", that only utilizes...... the weak assumption of regular variation in the jump tails, along with in-fill asymptotic arguments for uniquely identifying the "large" jumps from the data. The estimation allows for very general dynamic dependencies in the jump tails, and does not restrict the continuous part of the process...... and the temporal variation in the stochastic volatility. On implementing the new estimation procedure with actual high-frequency data for the S&P 500 aggregate market portfolio, we find strong evidence for richer and more complex dynamic dependencies in the jump tails than hitherto entertained in the literature....

  18. Stability in distribution of a stochastic hybrid competitive Lotka–Volterra model with Lévy jumps

    International Nuclear Information System (INIS)

    Zhao, Yu; Yuan, Sanling

    2016-01-01

    Stability in distribution, implying the existence of the invariant probability measure, is an important measure of stochastic hybrid system. However, the effect of Lévy jumps on the stability in distribution is still unclear. In this paper, we consider a n-species competitive Lotka–Volterra model with Lévy jumps under regime-switching. First, we prove the existence of the global positive solution, obtain the upper and lower boundedness. Then, asymptotic stability in distribution as the main result of our paper is derived under some sufficient conditions. Finally, numerical simulations are carried out to support our theoretical results and a brief discussion is given.

  19. Ambit processes and stochastic partial differential equations

    DEFF Research Database (Denmark)

    Barndorff-Nielsen, Ole; Benth, Fred Espen; Veraart, Almut

    Ambit processes are general stochastic processes based on stochastic integrals with respect to Lévy bases. Due to their flexible structure, they have great potential for providing realistic models for various applications such as in turbulence and finance. This papers studies the connection betwe...... ambit processes and solutions to stochastic partial differential equations. We investigate this relationship from two angles: from the Walsh theory of martingale measures and from the viewpoint of the Lévy noise analysis....

  20. Discrete stochastic processes and applications

    CERN Document Server

    Collet, Jean-François

    2018-01-01

    This unique text for beginning graduate students gives a self-contained introduction to the mathematical properties of stochastics and presents their applications to Markov processes, coding theory, population dynamics, and search engine design. The book is ideal for a newly designed course in an introduction to probability and information theory. Prerequisites include working knowledge of linear algebra, calculus, and probability theory. The first part of the text focuses on the rigorous theory of Markov processes on countable spaces (Markov chains) and provides the basis to developing solid probabilistic intuition without the need for a course in measure theory. The approach taken is gradual beginning with the case of discrete time and moving on to that of continuous time. The second part of this text is more applied; its core introduces various uses of convexity in probability and presents a nice treatment of entropy.

  1. Prescription-induced jump distributions in multiplicative Poisson processes.

    Science.gov (United States)

    Suweis, Samir; Porporato, Amilcare; Rinaldo, Andrea; Maritan, Amos

    2011-06-01

    Generalized Langevin equations (GLE) with multiplicative white Poisson noise pose the usual prescription dilemma leading to different evolution equations (master equations) for the probability distribution. Contrary to the case of multiplicative Gaussian white noise, the Stratonovich prescription does not correspond to the well-known midpoint (or any other intermediate) prescription. By introducing an inertial term in the GLE, we show that the Itô and Stratonovich prescriptions naturally arise depending on two time scales, one induced by the inertial term and the other determined by the jump event. We also show that, when the multiplicative noise is linear in the random variable, one prescription can be made equivalent to the other by a suitable transformation in the jump probability distribution. We apply these results to a recently proposed stochastic model describing the dynamics of primary soil salinization, in which the salt mass balance within the soil root zone requires the analysis of different prescriptions arising from the resulting stochastic differential equation forced by multiplicative white Poisson noise, the features of which are tailored to the characters of the daily precipitation. A method is finally suggested to infer the most appropriate prescription from the data.

  2. Prescription-induced jump distributions in multiplicative Poisson processes

    Science.gov (United States)

    Suweis, Samir; Porporato, Amilcare; Rinaldo, Andrea; Maritan, Amos

    2011-06-01

    Generalized Langevin equations (GLE) with multiplicative white Poisson noise pose the usual prescription dilemma leading to different evolution equations (master equations) for the probability distribution. Contrary to the case of multiplicative Gaussian white noise, the Stratonovich prescription does not correspond to the well-known midpoint (or any other intermediate) prescription. By introducing an inertial term in the GLE, we show that the Itô and Stratonovich prescriptions naturally arise depending on two time scales, one induced by the inertial term and the other determined by the jump event. We also show that, when the multiplicative noise is linear in the random variable, one prescription can be made equivalent to the other by a suitable transformation in the jump probability distribution. We apply these results to a recently proposed stochastic model describing the dynamics of primary soil salinization, in which the salt mass balance within the soil root zone requires the analysis of different prescriptions arising from the resulting stochastic differential equation forced by multiplicative white Poisson noise, the features of which are tailored to the characters of the daily precipitation. A method is finally suggested to infer the most appropriate prescription from the data.

  3. Global exponential stability of neutral high-order stochastic Hopfield neural networks with Markovian jump parameters and mixed time delays.

    Science.gov (United States)

    Huang, Haiying; Du, Qiaosheng; Kang, Xibing

    2013-11-01

    In this paper, a class of neutral high-order stochastic Hopfield neural networks with Markovian jump parameters and mixed time delays is investigated. The jumping parameters are modeled as a continuous-time finite-state Markov chain. At first, the existence of equilibrium point for the addressed neural networks is studied. By utilizing the Lyapunov stability theory, stochastic analysis theory and linear matrix inequality (LMI) technique, new delay-dependent stability criteria are presented in terms of linear matrix inequalities to guarantee the neural networks to be globally exponentially stable in the mean square. Numerical simulations are carried out to illustrate the main results. © 2013 ISA. Published by ISA. All rights reserved.

  4. Population density equations for stochastic processes with memory kernels

    Science.gov (United States)

    Lai, Yi Ming; de Kamps, Marc

    2017-06-01

    We present a method for solving population density equations (PDEs)-a mean-field technique describing homogeneous populations of uncoupled neurons—where the populations can be subject to non-Markov noise for arbitrary distributions of jump sizes. The method combines recent developments in two different disciplines that traditionally have had limited interaction: computational neuroscience and the theory of random networks. The method uses a geometric binning scheme, based on the method of characteristics, to capture the deterministic neurodynamics of the population, separating the deterministic and stochastic process cleanly. We can independently vary the choice of the deterministic model and the model for the stochastic process, leading to a highly modular numerical solution strategy. We demonstrate this by replacing the master equation implicit in many formulations of the PDE formalism by a generalization called the generalized Montroll-Weiss equation—a recent result from random network theory—describing a random walker subject to transitions realized by a non-Markovian process. We demonstrate the method for leaky- and quadratic-integrate and fire neurons subject to spike trains with Poisson and gamma-distributed interspike intervals. We are able to model jump responses for both models accurately to both excitatory and inhibitory input under the assumption that all inputs are generated by one renewal process.

  5. Jump Telegraph Processes and Financial Markets with Memory

    Directory of Open Access Journals (Sweden)

    Nikita Ratanov

    2007-01-01

    Full Text Available The paper develops a new class of financial market models. These models are based on generalized telegraph processes with alternating velocities and jumps occurring at switching velocities. The model under consideration is arbitrage-free and complete if the directions of jumps in stock prices are in a certain correspondence with their velocity and with the behaviour of the interest rate. A risk-neutral measure and arbitrage-free formulae for a standard call option are constructed. This model has some features of models with memory, but it is more simple.

  6. Berman-Konsowa principle for reversible Markov jump processes

    NARCIS (Netherlands)

    Hollander, den W.Th.F.; Jansen, S.

    2013-01-01

    In this paper we prove a version of the Berman-Konsowa principle for reversible Markov jump processes on Polish spaces. The Berman-Konsowa principle provides a variational formula for the capacity of a pair of disjoint measurable sets. There are two versions, one involving a class of probability

  7. Statistical inference for stochastic processes

    National Research Council Canada - National Science Library

    Basawa, Ishwar V; Prakasa Rao, B. L. S

    1980-01-01

    The aim of this monograph is to attempt to reduce the gap between theory and applications in the area of stochastic modelling, by directing the interest of future researchers to the inference aspects...

  8. Space-time-modulated stochastic processes

    Science.gov (United States)

    Giona, Massimiliano

    2017-10-01

    Starting from the physical problem associated with the Lorentzian transformation of a Poisson-Kac process in inertial frames, the concept of space-time-modulated stochastic processes is introduced for processes possessing finite propagation velocity. This class of stochastic processes provides a two-way coupling between the stochastic perturbation acting on a physical observable and the evolution of the physical observable itself, which in turn influences the statistical properties of the stochastic perturbation during its evolution. The definition of space-time-modulated processes requires the introduction of two functions: a nonlinear amplitude modulation, controlling the intensity of the stochastic perturbation, and a time-horizon function, which modulates its statistical properties, providing irreducible feedback between the stochastic perturbation and the physical observable influenced by it. The latter property is the peculiar fingerprint of this class of models that makes them suitable for extension to generic curved-space times. Considering Poisson-Kac processes as prototypical examples of stochastic processes possessing finite propagation velocity, the balance equations for the probability density functions associated with their space-time modulations are derived. Several examples highlighting the peculiarities of space-time-modulated processes are thoroughly analyzed.

  9. INARCH(1) processes: Higher-order moments and jumps

    OpenAIRE

    Weiß , Christian H.

    2010-01-01

    Abstract The INARCH(1) model is a simple but practically relevant, two-parameter model for processes of overdispersed counts with an autoregressive serial dependence structure. We derive closed-form expressions for the joint (central) moments and cumulants of the INARCH(1) model up to order 4. These expressions are applied to derive moments of jumps in INARCH(1) processes. We illustrate this kind of application with a real-data example, and outline further potential applications. ...

  10. Stochastic differential equation model to Prendiville processes

    Energy Technology Data Exchange (ETDEWEB)

    Granita, E-mail: granitafc@gmail.com [Dept. of Mathematical Science, Universiti Teknologi Malaysia, 81310, Johor Malaysia (Malaysia); Bahar, Arifah [Dept. of Mathematical Science, Universiti Teknologi Malaysia, 81310, Johor Malaysia (Malaysia); UTM Center for Industrial & Applied Mathematics (UTM-CIAM) (Malaysia)

    2015-10-22

    The Prendiville process is another variation of the logistic model which assumes linearly decreasing population growth rate. It is a continuous time Markov chain (CTMC) taking integer values in the finite interval. The continuous time Markov chain can be approximated by stochastic differential equation (SDE). This paper discusses the stochastic differential equation of Prendiville process. The work started with the forward Kolmogorov equation in continuous time Markov chain of Prendiville process. Then it was formulated in the form of a central-difference approximation. The approximation was then used in Fokker-Planck equation in relation to the stochastic differential equation of the Prendiville process. The explicit solution of the Prendiville process was obtained from the stochastic differential equation. Therefore, the mean and variance function of the Prendiville process could be easily found from the explicit solution.

  11. Stochastic differential equation model to Prendiville processes

    International Nuclear Information System (INIS)

    Granita; Bahar, Arifah

    2015-01-01

    The Prendiville process is another variation of the logistic model which assumes linearly decreasing population growth rate. It is a continuous time Markov chain (CTMC) taking integer values in the finite interval. The continuous time Markov chain can be approximated by stochastic differential equation (SDE). This paper discusses the stochastic differential equation of Prendiville process. The work started with the forward Kolmogorov equation in continuous time Markov chain of Prendiville process. Then it was formulated in the form of a central-difference approximation. The approximation was then used in Fokker-Planck equation in relation to the stochastic differential equation of the Prendiville process. The explicit solution of the Prendiville process was obtained from the stochastic differential equation. Therefore, the mean and variance function of the Prendiville process could be easily found from the explicit solution

  12. Modelling and application of stochastic processes

    CERN Document Server

    1986-01-01

    The subject of modelling and application of stochastic processes is too vast to be exhausted in a single volume. In this book, attention is focused on a small subset of this vast subject. The primary emphasis is on realization and approximation of stochastic systems. Recently there has been considerable interest in the stochastic realization problem, and hence, an attempt has been made here to collect in one place some of the more recent approaches and algorithms for solving the stochastic realiza­ tion problem. Various different approaches for realizing linear minimum-phase systems, linear nonminimum-phase systems, and bilinear systems are presented. These approaches range from time-domain methods to spectral-domain methods. An overview of the chapter contents briefly describes these approaches. Also, in most of these chapters special attention is given to the problem of developing numerically ef­ ficient algorithms for obtaining reduced-order (approximate) stochastic realizations. On the application side,...

  13. Modelling on optimal portfolio with exchange rate based on discontinuous stochastic process

    Science.gov (United States)

    Yan, Wei; Chang, Yuwen

    2016-12-01

    Considering the stochastic exchange rate, this paper is concerned with the dynamic portfolio selection in financial market. The optimal investment problem is formulated as a continuous-time mathematical model under mean-variance criterion. These processes follow jump-diffusion processes (Weiner process and Poisson process). Then the corresponding Hamilton-Jacobi-Bellman(HJB) equation of the problem is presented and its efferent frontier is obtained. Moreover, the optimal strategy is also derived under safety-first criterion.

  14. Stochastic Processes in Epidemic Theory

    CERN Document Server

    Lefèvre, Claude; Picard, Philippe

    1990-01-01

    This collection of papers gives a representative cross-selectional view of recent developments in the field. After a survey paper by C. Lefèvre, 17 other research papers look at stochastic modeling of epidemics, both from a theoretical and a statistical point of view. Some look more specifically at a particular disease such as AIDS, malaria, schistosomiasis and diabetes.

  15. Stochastic processes in mechanical engineering

    NARCIS (Netherlands)

    Brouwers, J.J.H.

    2006-01-01

    Stochastic or random vibrations occur in a variety of applications of mechanicalengineering. Examples are: the dynamics of a vehicle on an irregular roadsurface; the variation in time of thermodynamic variables in municipal wasteincinerators due to fluctuations in heating value of the waste; the

  16. Towards Model Checking Stochastic Process Algebra

    NARCIS (Netherlands)

    Hermanns, H.; Grieskamp, W.; Santen, T.; Katoen, Joost P.; Stoddart, B.; Meyer-Kayser, J.; Siegle, M.

    2000-01-01

    Stochastic process algebras have been proven useful because they allow behaviour-oriented performance and reliability modelling. As opposed to traditional performance modelling techniques, the behaviour- oriented style supports composition and abstraction in a natural way. However, analysis of

  17. Mixed H-Infinity and Passive Filtering for Discrete Fuzzy Neural Networks With Stochastic Jumps and Time Delays.

    Science.gov (United States)

    Shi, Peng; Zhang, Yingqi; Chadli, Mohammed; Agarwal, Ramesh K

    2016-04-01

    In this brief, the problems of the mixed H-infinity and passivity performance analysis and design are investigated for discrete time-delay neural networks with Markovian jump parameters represented by Takagi-Sugeno fuzzy model. The main purpose of this brief is to design a filter to guarantee that the augmented Markovian jump fuzzy neural networks are stable in mean-square sense and satisfy a prescribed passivity performance index by employing the Lyapunov method and the stochastic analysis technique. Applying the matrix decomposition techniques, sufficient conditions are provided for the solvability of the problems, which can be formulated in terms of linear matrix inequalities. A numerical example is also presented to illustrate the effectiveness of the proposed techniques.

  18. Transport properties of stochastic Lorentz models

    NARCIS (Netherlands)

    Beijeren, H. van

    Diffusion processes are considered for one-dimensional stochastic Lorentz models, consisting of randomly distributed fixed scatterers and one moving light particle. In waiting time Lorentz models the light particle makes instantaneous jumps between scatterers after a stochastically distributed

  19. Selected papers on noise and stochastic processes

    CERN Document Server

    1954-01-01

    Six classic papers on stochastic process, selected to meet the needs of physicists, applied mathematicians, and engineers. Contents: 1.Chandrasekhar, S.: Stochastic Problems in Physics and Astronomy. 2. Uhlenbeck, G. E. and Ornstein, L. S.: On the Theory of the Browninan Motion. 3. Ming Chen Wang and Uhlenbeck, G. E.: On the Theory of the Browninan Motion II. 4. Rice, S. O.: Mathematical Analysis of Random Noise. 5. Kac, Mark: Random Walk and the Theory of Brownian Motion. 6. Doob, J. L.: The Brownian Movement and Stochastic Equations. Unabridged republication of the Dover reprint (1954). Pre

  20. Stability analysis of Markovian jumping stochastic Cohen—Grossberg neural networks with discrete and distributed time varying delays

    International Nuclear Information System (INIS)

    Ali, M. Syed

    2014-01-01

    In this paper, the global asymptotic stability problem of Markovian jumping stochastic Cohen—Grossberg neural networks with discrete and distributed time-varying delays (MJSCGNNs) is considered. A novel LMI-based stability criterion is obtained by constructing a new Lyapunov functional to guarantee the asymptotic stability of MJSCGNNs. Our results can be easily verified and they are also less restrictive than previously known criteria and can be applied to Cohen—Grossberg neural networks, recurrent neural networks, and cellular neural networks. Finally, the proposed stability conditions are demonstrated with numerical examples

  1. Structural estimation of jump-diffusion processes in macroeconomics

    DEFF Research Database (Denmark)

    Posch, Olaf

    Understanding the process of economic growth involves comparing competing theoretical models and evaluating their empirical relevance. Our approach is to take the neoclassical stochastic growth model directly to the data and make inferences about the model parameters of interest. In this paper...

  2. Is human failure a stochastic process?

    International Nuclear Information System (INIS)

    Dougherty, Ed M.

    1997-01-01

    Human performance results in failure events that occur with a risk-significant frequency. System analysts have taken for granted the random (stochastic) nature of these events in engineering assessments such as risk assessment. However, cognitive scientists and error technologists, at least those who have interest in human reliability, have, over the recent years, claimed that human error does not need this stochastic framework. Yet they still use the language appropriate to stochastic processes. This paper examines the potential for the stochastic nature of human failure production as the basis for human reliability analysis. It distinguishes and leaves to others, however, the epistemic uncertainties over the possible probability models for the real variability of human performance

  3. A fast exact simulation method for a class of Markov jump processes.

    Science.gov (United States)

    Li, Yao; Hu, Lili

    2015-11-14

    A new method of the stochastic simulation algorithm (SSA), named the Hashing-Leaping method (HLM), for exact simulations of a class of Markov jump processes, is presented in this paper. The HLM has a conditional constant computational cost per event, which is independent of the number of exponential clocks in the Markov process. The main idea of the HLM is to repeatedly implement a hash-table-like bucket sort algorithm for all times of occurrence covered by a time step with length τ. This paper serves as an introduction to this new SSA method. We introduce the method, demonstrate its implementation, analyze its properties, and compare its performance with three other commonly used SSA methods in four examples. Our performance tests and CPU operation statistics show certain advantages of the HLM for large scale problems.

  4. Mean square stabilization and mean square exponential stabilization of stochastic BAM neural networks with Markovian jumping parameters

    International Nuclear Information System (INIS)

    Ye, Zhiyong; Zhang, He; Zhang, Hongyu; Zhang, Hua; Lu, Guichen

    2015-01-01

    Highlights: •This paper introduces a non-conservative Lyapunov functional. •The achieved results impose non-conservative and can be widely used. •The conditions are easily checked by the Matlab LMI Tool Box. The desired state feedback controller can be well represented by the conditions. -- Abstract: This paper addresses the mean square exponential stabilization problem of stochastic bidirectional associative memory (BAM) neural networks with Markovian jumping parameters and time-varying delays. By establishing a proper Lyapunov–Krasovskii functional and combining with LMIs technique, several sufficient conditions are derived for ensuring exponential stabilization in the mean square sense of such stochastic BAM neural networks. In addition, the achieved results are not difficult to verify for determining the mean square exponential stabilization of delayed BAM neural networks with Markovian jumping parameters and impose less restrictive and less conservative than the ones in previous papers. Finally, numerical results are given to show the effectiveness and applicability of the achieved results

  5. Markov Jump Processes Approximating a Non-Symmetric Generalized Diffusion

    International Nuclear Information System (INIS)

    Limić, Nedžad

    2011-01-01

    Consider a non-symmetric generalized diffusion X(⋅) in ℝ d determined by the differential operator A(x) = -Σ ij ∂ i a ij (x)∂ j + Σ i b i (x)∂ i . In this paper the diffusion process is approximated by Markov jump processes X n (⋅), in homogeneous and isotropic grids G n ⊂ℝ d , which converge in distribution in the Skorokhod space D([0,∞),ℝ d ) to the diffusion X(⋅). The generators of X n (⋅) are constructed explicitly. Due to the homogeneity and isotropy of grids, the proposed method for d≥3 can be applied to processes for which the diffusion tensor {a ij (x)} 11 dd fulfills an additional condition. The proposed construction offers a simple method for simulation of sample paths of non-symmetric generalized diffusion. Simulations are carried out in terms of jump processes X n (⋅). For piece-wise constant functions a ij on ℝ d and piece-wise continuous functions a ij on ℝ 2 the construction and principal algorithm are described enabling an easy implementation into a computer code.

  6. Lectures on Topics in Spatial Stochastic Processes

    CERN Document Server

    Capasso, Vincenzo; Ivanoff, B Gail; Dozzi, Marco; Dalang, Robert C; Mountford, Thomas S

    2003-01-01

    The theory of stochastic processes indexed by a partially ordered set has been the subject of much research over the past twenty years. The objective of this CIME International Summer School was to bring to a large audience of young probabilists the general theory of spatial processes, including the theory of set-indexed martingales and to present the different branches of applications of this theory, including stochastic geometry, spatial statistics, empirical processes, spatial estimators and survival analysis. This theory has a broad variety of applications in environmental sciences, social sciences, structure of material and image analysis. In this volume, the reader will find different approaches which foster the development of tools to modelling the spatial aspects of stochastic problems.

  7. Computer Aided Continuous Time Stochastic Process Modelling

    DEFF Research Database (Denmark)

    Kristensen, N.R.; Madsen, Henrik; Jørgensen, Sten Bay

    2001-01-01

    A grey-box approach to process modelling that combines deterministic and stochastic modelling is advocated for identification of models for model-based control of batch and semi-batch processes. A computer-aided tool designed for supporting decision-making within the corresponding modelling cycle...

  8. Topological superposition of abstractions of stochastic processes

    NARCIS (Netherlands)

    Bujorianu, L.M.; Bujorianu, M.C.

    2008-01-01

    In this paper, we present a sound integration mechanism for Markov processes that are abstractions of stochastic hybrid systems (SHS). In a previous work, we have defined a very general model of SHS and we proved that the realization of an SHS is a Markov process. Moreover, we have developed a

  9. From individual to collective behaviour of coupled velocity jump processes: A locust example

    KAUST Repository

    Erban, Radek; Haskovec, Jan

    2012-01-01

    A class of stochastic individual-based models, written in terms of coupled velocity jump processes, is presented and analysed. This modelling approach incorporates recent experimental findings on the behaviour of locusts. It exhibits nontrivial dynamics with a pitchfork bifurcation and recovers the observed group directional switching. Estimates of the expected switching times, in terms of the number of individuals and values of the model coefi-cients, are obtained using the corresponding Fokker-Planck equation. In the limit of large populations, a system of two kinetic equations (with nonlocal and nonlinear right hand side) is derived and analyzed. The existence of its solutions is proven and the system's long-time behaviour is investigated. Finally, a first step towards the mean field limit of topological interactions is made by studying the efiect of shrinking the interaction radius in the individual-based model. © American Institute of Mathematical Sciences.

  10. From individual to collective behaviour of coupled velocity jump processes: A locust example

    KAUST Repository

    Erban, Radek

    2012-11-01

    A class of stochastic individual-based models, written in terms of coupled velocity jump processes, is presented and analysed. This modelling approach incorporates recent experimental findings on the behaviour of locusts. It exhibits nontrivial dynamics with a pitchfork bifurcation and recovers the observed group directional switching. Estimates of the expected switching times, in terms of the number of individuals and values of the model coefi-cients, are obtained using the corresponding Fokker-Planck equation. In the limit of large populations, a system of two kinetic equations (with nonlocal and nonlinear right hand side) is derived and analyzed. The existence of its solutions is proven and the system\\'s long-time behaviour is investigated. Finally, a first step towards the mean field limit of topological interactions is made by studying the efiect of shrinking the interaction radius in the individual-based model. © American Institute of Mathematical Sciences.

  11. Deriving appropriate boundary conditions, and accelerating position-jump simulations, of diffusion using non-local jumping

    International Nuclear Information System (INIS)

    Taylor, P R; Baker, R E; Yates, C A

    2015-01-01

    In this paper we explore lattice-based position-jump models of diffusion, and the implications of introducing non-local jumping; particles can jump to a range of nearby boxes rather than only to their nearest neighbours. We begin by deriving conditions for equivalence with traditional local jumping models in the continuum limit. We then generalize a previously postulated implementation of the Robin boundary condition for a non-local process of arbitrary maximum jump length, and present a novel implementation of flux boundary conditions, again generalized for a non-local process of arbitrary maximum jump length. In both these cases we validate our results using stochastic simulation. We then proceed to consider two variations on the basic diffusion model: a hybrid local/non-local scheme suitable for models involving sharp concentration gradients, and the implementation of biased jumping. In all cases we show that non-local jumping can deliver substantial time savings for stochastic simulations. (paper)

  12. Stochastic Interest Model Based on Compound Poisson Process and Applications in Actuarial Science

    OpenAIRE

    Li, Shilong; Yin, Chuancun; Zhao, Xia; Dai, Hongshuai

    2017-01-01

    Considering stochastic behavior of interest rates in financial market, we construct a new class of interest models based on compound Poisson process. Different from the references, this paper describes the randomness of interest rates by modeling the force of interest with Poisson random jumps directly. To solve the problem in calculation of accumulated interest force function, one important integral technique is employed. And a conception called the critical value is introduced to investigat...

  13. Quantization by stochastic relaxation processes and supersymmetry

    International Nuclear Information System (INIS)

    Kirschner, R.

    1984-01-01

    We show the supersymmetry mechanism resposible for the quantization by stochastic relaxation processes and for the effective cancellation of the additional time dimension against the two Grassmann dimensions. We give a non-perturbative proof of the validity of this quantization procedure. (author)

  14. ON REGRESSION REPRESENTATIONS OF STOCHASTIC-PROCESSES

    NARCIS (Netherlands)

    RUSCHENDORF, L; DEVALK, [No Value

    We construct a.s. nonlinear regression representations of general stochastic processes (X(n))n is-an-element-of N. As a consequence we obtain in particular special regression representations of Markov chains and of certain m-dependent sequences. For m-dependent sequences we obtain a constructive

  15. Weak convergence of marked point processes generated by crossings of multivariate jump processes

    DEFF Research Database (Denmark)

    Tamborrino, Massimiliano; Sacerdote, Laura; Jacobsen, Martin

    2014-01-01

    We consider the multivariate point process determined by the crossing times of the components of a multivariate jump process through a multivariate boundary, assuming to reset each component to an initial value after its boundary crossing. We prove that this point process converges weakly...... process converging to a multivariate Ornstein–Uhlenbeck process is discussed as a guideline for applying diffusion limits for jump processes. We apply our theoretical findings to neural network modeling. The proposed model gives a mathematical foundation to the generalization of the class of Leaky...

  16. Convergence Analysis of Semi-Implicit Euler Methods for Solving Stochastic Age-Dependent Capital System with Variable Delays and Random Jump Magnitudes

    Directory of Open Access Journals (Sweden)

    Qinghui Du

    2014-01-01

    Full Text Available We consider semi-implicit Euler methods for stochastic age-dependent capital system with variable delays and random jump magnitudes, and investigate the convergence of the numerical approximation. It is proved that the numerical approximate solutions converge to the analytical solutions in the mean-square sense under given conditions.

  17. Stochastic transport processes in discrete biological systems

    CERN Document Server

    Frehland, Eckart

    1982-01-01

    These notes are in part based on a course for advanced students in the applications of stochastic processes held in 1978 at the University of Konstanz. These notes contain the results of re­ cent studies on the stochastic description of ion transport through biological membranes. In particular, they serve as an introduction to an unified theory of fluctuations in complex biological transport systems. We emphasize that the subject of this volume is not to introduce the mathematics of stochastic processes but to present a field of theoretical biophysics in which stochastic methods are important. In the last years the study of membrane noise has become an important method in biophysics. Valuable information on the ion transport mechanisms in membranes can be obtained from noise analysis. A number of different processes such as the opening and closing of ion channels have been shown to be sources of the measured current or voltage fluctuations. Bio­ logical 'transport systems can be complex. For example, the tr...

  18. Stationary stochastic processes theory and applications

    CERN Document Server

    Lindgren, Georg

    2012-01-01

    Some Probability and Process BackgroundSample space, sample function, and observablesRandom variables and stochastic processesStationary processes and fieldsGaussian processesFour historical landmarksSample Function PropertiesQuadratic mean propertiesSample function continuityDerivatives, tangents, and other characteristicsStochastic integrationAn ergodic resultExercisesSpectral RepresentationsComplex-valued stochastic processesBochner's theorem and the spectral distributionSpectral representation of a stationary processGaussian processesStationary counting processesExercisesLinear Filters - General PropertiesLinear time invariant filtersLinear filters and differential equationsWhite noise in linear systemsLong range dependence, non-integrable spectra, and unstable systemsThe ARMA-familyLinear Filters - Special TopicsThe Hilbert transform and the envelopeThe sampling theoremKarhunen-Loève expansionClassical Ergodic Theory and MixingThe basic ergodic theorem in L2Stationarity and transformationsThe ergodic th...

  19. Stochastic Stability for Time-Delay Markovian Jump Systems with Sector-Bounded Nonlinearities and More General Transition Probabilities

    Directory of Open Access Journals (Sweden)

    Dan Ye

    2013-01-01

    Full Text Available This paper is concerned with delay-dependent stochastic stability for time-delay Markovian jump systems (MJSs with sector-bounded nonlinearities and more general transition probabilities. Different from the previous results where the transition probability matrix is completely known, a more general transition probability matrix is considered which includes completely known elements, boundary known elements, and completely unknown ones. In order to get less conservative criterion, the state and transition probability information is used as much as possible to construct the Lyapunov-Krasovskii functional and deal with stability analysis. The delay-dependent sufficient conditions are derived in terms of linear matrix inequalities to guarantee the stability of systems. Finally, numerical examples are exploited to demonstrate the effectiveness of the proposed method.

  20. Probability of stochastic processes and spacetime geometry

    International Nuclear Information System (INIS)

    Canessa, E.

    2007-01-01

    We made a first attempt to associate a probabilistic description of stochastic processes like birth-death processes with spacetime geometry in the Schwarzschild metrics on distance scales from the macro- to the micro-domains. We idealize an ergodic system in which system states communicate through a curved path composed of transition arrows where each arrow corresponds to a positive, analogous birth or death rate. (author)

  1. Stochastic Processes in Finance and Behavioral Finance

    OpenAIRE

    Steinbacher, Matjaz

    2008-01-01

    In the paper, we put some foundations for studying asset pricing and finance as a stochastic and behavioral process. In such process, preferences and psychology of agents represent the most important factor in the decision-making of people. Individuals have their own ways of acquiring the information they need, how to deal with them and how to make predictions and decisions. People usually also do not behave consistent in time, but learn. Therefore, in order to understand the behavior on the ...

  2. Extinction and persistence of a stochastic nonlinear SIS epidemic model with jumps

    Science.gov (United States)

    Ge, Qing; Ji, Guilin; Xu, Jiabo; Fan, Xiaolin

    2016-11-01

    In this paper, Brownian motion and L e ´ vy jumps are introduced to a SIS type epidemic model with nonlinear incidence rate. The dynamical behavior of the considered model is investigated. In order to reveal the extinction and permanence of the disease, two threshold values R˜0 ,R¯0 are showed. We find that if R˜0 1, the disease may be persistent. Finally, the numerical simulations are presented to illustrate our mathematical results.

  3. Periodic linear differential stochastic processes

    NARCIS (Netherlands)

    Kwakernaak, H.

    1975-01-01

    Periodic linear differential processes are defined and their properties are analyzed. Equivalent representations are discussed, and the solutions of related optimal estimation problems are given. An extension is presented of Kailath and Geesey’s [1] results concerning the innovations representation

  4. Irreversible stochastic processes on lattices

    International Nuclear Information System (INIS)

    Nord, R.S.

    1986-01-01

    Models for irreversible random or cooperative filling of lattices are required to describe many processes in chemistry and physics. Since the filling is assumed to be irreversible, even the stationary, saturation state is not in equilibrium. The kinetics and statistics of these processes are described by recasting the master equations in infinite hierarchical form. Solutions can be obtained by implementing various techniques: refinements in these solution techniques are presented. Programs considered include random dimer, trimer, and tetramer filling of 2D lattices, random dimer filling of a cubic lattice, competitive filling of two or more species, and the effect of a random distribution of inactive sites on the filling. Also considered is monomer filling of a linear lattice with nearest neighbor cooperative effects and solve for the exact cluster-size distribution for cluster sizes up to the asymptotic regime. Additionally, a technique is developed to directly determine the asymptotic properties of the cluster size distribution. Finally cluster growth is considered via irreversible aggregation involving random walkers. In particular, explicit results are provided for the large-lattice-size asymptotic behavior of trapping probabilities and average walk lengths for a single walker on a lattice with multiple traps. Procedures for exact calculation of these quantities on finite lattices are also developed

  5. Optimal dividend policies with transaction costs for a class of jump-diffusion processes

    DEFF Research Database (Denmark)

    Hunting, Martin; Paulsen, Jostein

    2013-01-01

    his paper addresses the problem of finding an optimal dividend policy for a class of jump-diffusion processes. The jump component is a compound Poisson process with negative jumps, and the drift and diffusion components are assumed to satisfy some regularity and growth restrictions. Each dividend...... payment is changed by a fixed and a proportional cost, meaning that if ξ is paid out by the company, the shareholders receive kξ−K, where k and K are positive. The aim is to maximize expected discounted dividends until ruin. It is proved that when the jumps belong to a certain class of light...

  6. Stochastic Simulation of Process Calculi for Biology

    Directory of Open Access Journals (Sweden)

    Andrew Phillips

    2010-10-01

    Full Text Available Biological systems typically involve large numbers of components with complex, highly parallel interactions and intrinsic stochasticity. To model this complexity, numerous programming languages based on process calculi have been developed, many of which are expressive enough to generate unbounded numbers of molecular species and reactions. As a result of this expressiveness, such calculi cannot rely on standard reaction-based simulation methods, which require fixed numbers of species and reactions. Rather than implementing custom stochastic simulation algorithms for each process calculus, we propose to use a generic abstract machine that can be instantiated to a range of process calculi and a range of reaction-based simulation algorithms. The abstract machine functions as a just-in-time compiler, which dynamically updates the set of possible reactions and chooses the next reaction in an iterative cycle. In this short paper we give a brief summary of the generic abstract machine, and show how it can be instantiated with the stochastic simulation algorithm known as Gillespie's Direct Method. We also discuss the wider implications of such an abstract machine, and outline how it can be used to simulate multiple calculi simultaneously within a common framework.

  7. Rate Theory for Correlated Processes: Double Jumps in Adatom Diffusion

    DEFF Research Database (Denmark)

    Jacobsen, J.; Jacobsen, Karsten Wedel; Sethna, J.

    1997-01-01

    We study the rate of activated motion over multiple barriers, in particular the correlated double jump of an adatom diffusing on a missing-row reconstructed platinum (110) surface. We develop a transition path theory, showing that the activation energy is given by the minimum-energy trajectory...... which succeeds in the double jump. We explicitly calculate this trajectory within an effective-medium molecular dynamics simulation. A cusp in the acceptance region leads to a root T prefactor for the activated rate of double jumps. Theory and numerical results agree....

  8. Expectation propagation for continuous time stochastic processes

    International Nuclear Information System (INIS)

    Cseke, Botond; Schnoerr, David; Sanguinetti, Guido; Opper, Manfred

    2016-01-01

    We consider the inverse problem of reconstructing the posterior measure over the trajectories of a diffusion process from discrete time observations and continuous time constraints. We cast the problem in a Bayesian framework and derive approximations to the posterior distributions of single time marginals using variational approximate inference, giving rise to an expectation propagation type algorithm. For non-linear diffusion processes, this is achieved by leveraging moment closure approximations. We then show how the approximation can be extended to a wide class of discrete-state Markov jump processes by making use of the chemical Langevin equation. Our empirical results show that the proposed method is computationally efficient and provides good approximations for these classes of inverse problems. (paper)

  9. Minimum uncertainty and squeezing in diffusion processes and stochastic quantization

    Science.gov (United States)

    Demartino, S.; Desiena, S.; Illuminati, Fabrizo; Vitiello, Giuseppe

    1994-01-01

    We show that uncertainty relations, as well as minimum uncertainty coherent and squeezed states, are structural properties for diffusion processes. Through Nelson stochastic quantization we derive the stochastic image of the quantum mechanical coherent and squeezed states.

  10. Doubly stochastic Poisson processes in artificial neural learning.

    Science.gov (United States)

    Card, H C

    1998-01-01

    This paper investigates neuron activation statistics in artificial neural networks employing stochastic arithmetic. It is shown that a doubly stochastic Poisson process is an appropriate model for the signals in these circuits.

  11. Jump diffusion models and the evolution of financial prices

    International Nuclear Information System (INIS)

    Figueiredo, Annibal; Castro, Marcio T. de; Silva, Sergio da; Gleria, Iram

    2011-01-01

    We analyze a stochastic model to describe the evolution of financial prices. We consider the stochastic term as a sum of the Wiener noise and a jump process. We point to the effects of the jumps on the return time evolution, a central concern of the econophysics literature. The presence of jumps suggests that the process can be described by an infinitely divisible characteristic function belonging to the De Finetti class. We then extend the De Finetti functions to a generalized nonlinear model and show the model to be capable of explaining return behavior. -- Highlights: → We analyze a stochastic model to describe the evolution of financial prices. → The stochastic term is considered as a sum of the Wiener noise and a jump process. → The process can be described by an infinitely divisible characteristic function belonging to the De Finetti class. → We extend the De Finetti functions to a generalized nonlinear model.

  12. Large deviations and stochastic volatility with jumps: asymptotic implied volatility for affine models

    OpenAIRE

    Antoine Jacquier; Martin Keller-Ressel; Aleksandar Mijatovic

    2011-01-01

    Let $\\sigma_t(x)$ denote the implied volatility at maturity $t$ for a strike $K=S_0 e^{xt}$, where $x\\in\\bbR$ and $S_0$ is the current value of the underlying. We show that $\\sigma_t(x)$ has a uniform (in $x$) limit as maturity $t$ tends to infinity, given by the formula $\\sigma_\\infty(x)=\\sqrt{2}(h^*(x)^{1/2}+(h^*(x)-x)^{1/2})$, for $x$ in some compact neighbourhood of zero in the class of affine stochastic volatility models. The function $h^*$ is the convex dual of the limiting cumulant gen...

  13. A first course in stochastic processes

    CERN Document Server

    Karlin, Samuel

    1975-01-01

    The purpose, level, and style of this new edition conform to the tenets set forth in the original preface. The authors continue with their tack of developing simultaneously theory and applications, intertwined so that they refurbish and elucidate each other.The authors have made three main kinds of changes. First, they have enlarged on the topics treated in the first edition. Second, they have added many exercises and problems at the end of each chapter. Third, and most important, they have supplied, in new chapters, broad introductory discussions of several classes of stochastic processe

  14. Stationary stochastic processes for scientists and engineers

    CERN Document Server

    Lindgren, Georg; Sandsten, Maria

    2013-01-01

    ""This book is designed for a first course in stationary stochastic processes in science and engineering and does a very good job in introducing many concepts and ideas to students in these fields. … the book has probably been tested in the classroom many times, which also manifests itself in its virtual lack of typos. … Another great feature of the book is that it contains a wealth of worked example from many different fields. These help clarify concepts and theorems and I believe students will appreciate them-I certainly did. … The book is well suited for a one-semester course as it contains

  15. Birth-jump processes and application to forest fire spotting.

    Science.gov (United States)

    Hillen, T; Greese, B; Martin, J; de Vries, G

    2015-01-01

    Birth-jump models are designed to describe population models for which growth and spatial spread cannot be decoupled. A birth-jump model is a nonlinear integro-differential equation. We present two different derivations of this equation, one based on a random walk approach and the other based on a two-compartmental reaction-diffusion model. In the case that the redistribution kernels are highly concentrated, we show that the integro-differential equation can be approximated by a reaction-diffusion equation, in which the proliferation rate contributes to both the diffusion term and the reaction term. We completely solve the corresponding critical domain size problem and the minimal wave speed problem. Birth-jump models can be applied in many areas in mathematical biology. We highlight an application of our results in the context of forest fire spread through spotting. We show that spotting increases the invasion speed of a forest fire front.

  16. Synchronization of Markovian jumping stochastic complex networks with distributed time delays and probabilistic interval discrete time-varying delays

    International Nuclear Information System (INIS)

    Li Hongjie; Yue Dong

    2010-01-01

    The paper investigates the synchronization stability problem for a class of complex dynamical networks with Markovian jumping parameters and mixed time delays. The complex networks consist of m modes and the networks switch from one mode to another according to a Markovian chain with known transition probability. The mixed time delays are composed of discrete and distributed delays, the discrete time delay is assumed to be random and its probability distribution is known a priori. In terms of the probability distribution of the delays, the new type of system model with probability-distribution-dependent parameter matrices is proposed. Based on the stochastic analysis techniques and the properties of the Kronecker product, delay-dependent synchronization stability criteria in the mean square are derived in the form of linear matrix inequalities which can be readily solved by using the LMI toolbox in MATLAB, the solvability of derived conditions depends on not only the size of the delay, but also the probability of the delay-taking values in some intervals. Finally, a numerical example is given to illustrate the feasibility and effectiveness of the proposed method.

  17. XI Symposium on Probability and Stochastic Processes

    CERN Document Server

    Pardo, Juan; Rivero, Víctor; Bravo, Gerónimo

    2015-01-01

    This volume features lecture notes and a collection of contributed articles from the XI Symposium on Probability and Stochastic Processes, held at CIMAT Mexico in September 2013. Since the symposium was part of the activities organized in Mexico to celebrate the International Year of Statistics, the program included topics from the interface between statistics and stochastic processes. The book starts with notes from the mini-course given by Louigi Addario-Berry with an accessible description of some features of the multiplicative coalescent and its connection with random graphs and minimum spanning trees. It includes a number of exercises and a section on unanswered questions. Further contributions provide the reader with a broad perspective on the state-of-the art of active areas of research. Contributions by: Louigi Addario-Berry Octavio Arizmendi Fabrice Baudoin Jochen Blath Loïc Chaumont J. Armando Domínguez-Molina Bjarki Eldon Shui Feng Tulio Gaxiola Adrián González Casanova Evgueni Gordienko Daniel...

  18. Motoneuron membrane potentials follow a time inhomogeneous jump diffusion process

    DEFF Research Database (Denmark)

    Jahn, Patrick; Berg, Rune W; Hounsgaard, Jørn

    2011-01-01

    models can only be applied over short time windows. However, experimental data show varying time constants, state dependent noise, a graded firing threshold and time-inhomogeneous input. In the present study we build a jump diffusion model that incorporates these features, and introduce a firing...

  19. Stochastic processes from physics to finance

    CERN Document Server

    Paul, Wolfgang

    2013-01-01

    This book introduces the theory of stochastic processes with applications taken from physics and finance. Fundamental concepts like the random walk or Brownian motion but also Levy-stable distributions are discussed. Applications are selected to show the interdisciplinary character of the concepts and methods. In the second edition of the book a discussion of extreme events ranging from their mathematical definition to their importance for financial crashes was included. The exposition of basic notions of probability theory and the Brownian motion problem as well as the relation between conservative diffusion processes and quantum mechanics is expanded. The second edition also enlarges the treatment of financial markets. Beyond a presentation of geometric Brownian motion and the Black-Scholes approach to option pricing as well as the econophysics analysis of the stylized facts of financial markets, an introduction to agent based modeling approaches is given.

  20. EFFICIENT QUANTITATIVE RISK ASSESSMENT OF JUMP PROCESSES: IMPLICATIONS FOR FOOD SAFETY

    OpenAIRE

    Nganje, William E.

    1999-01-01

    This paper develops a dynamic framework for efficient quantitative risk assessment from the simplest general risk, combining three parameters (contamination, exposure, and dose response) in a Kataoka safety-first model and a Poisson probability representing the uncertainty effect or jump processes associated with food safety. Analysis indicates that incorporating jump processes in food safety risk assessment provides more efficient cost/risk tradeoffs. Nevertheless, increased margin of safety...

  1. Applied probability and stochastic processes. 2. ed.

    Energy Technology Data Exchange (ETDEWEB)

    Feldman, Richard M. [Texas A and M Univ., College Station, TX (United States). Industrial and Systems Engineering Dept.; Valdez-Flores, Ciriaco [Sielken and Associates Consulting, Inc., Bryan, TX (United States)

    2010-07-01

    This book presents applied probability and stochastic processes in an elementary but mathematically precise manner, with numerous examples and exercises to illustrate the range of engineering and science applications of the concepts. The book is designed to give the reader an intuitive understanding of probabilistic reasoning, in addition to an understanding of mathematical concepts and principles. The initial chapters present a summary of probability and statistics and then Poisson processes, Markov chains, Markov processes and queuing processes are introduced. Advanced topics include simulation, inventory theory, replacement theory, Markov decision theory, and the use of matrix geometric procedures in the analysis of queues. Included in the second edition are appendices at the end of several chapters giving suggestions for the use of Excel in solving the problems of the chapter. Also new in this edition are an introductory chapter on statistics and a chapter on Poisson processes that includes some techniques used in risk assessment. The old chapter on queues has been expanded and broken into two new chapters: one for simple queuing processes and one for queuing networks. Support is provided through the web site http://apsp.tamu.edu where students will have the answers to odd numbered problems and instructors will have access to full solutions and Excel files for homework. (orig.)

  2. An introduction to stochastic processes with applications to biology

    CERN Document Server

    Allen, Linda J S

    2010-01-01

    An Introduction to Stochastic Processes with Applications to Biology, Second Edition presents the basic theory of stochastic processes necessary in understanding and applying stochastic methods to biological problems in areas such as population growth and extinction, drug kinetics, two-species competition and predation, the spread of epidemics, and the genetics of inbreeding. Because of their rich structure, the text focuses on discrete and continuous time Markov chains and continuous time and state Markov processes.New to the Second EditionA new chapter on stochastic differential equations th

  3. Mapping stochastic processes onto complex networks

    International Nuclear Information System (INIS)

    Shirazi, A H; Reza Jafari, G; Davoudi, J; Peinke, J; Reza Rahimi Tabar, M; Sahimi, Muhammad

    2009-01-01

    We introduce a method by which stochastic processes are mapped onto complex networks. As examples, we construct the networks for such time series as those for free-jet and low-temperature helium turbulence, the German stock market index (the DAX), and white noise. The networks are further studied by contrasting their geometrical properties, such as the mean length, diameter, clustering, and average number of connections per node. By comparing the network properties of the original time series investigated with those for the shuffled and surrogate series, we are able to quantify the effect of the long-range correlations and the fatness of the probability distribution functions of the series on the networks constructed. Most importantly, we demonstrate that the time series can be reconstructed with high precision by means of a simple random walk on their corresponding networks

  4. Chemical kinetics, stochastic processes, and irreversible thermodynamics

    CERN Document Server

    Santillán, Moisés

    2014-01-01

    This book brings theories in nonlinear dynamics, stochastic processes, irreversible thermodynamics, physical chemistry, and biochemistry together in an introductory but formal and comprehensive manner.  Coupled with examples, the theories are developed stepwise, starting with the simplest concepts and building upon them into a more general framework.  Furthermore, each new mathematical derivation is immediately applied to one or more biological systems.  The last chapters focus on applying mathematical and physical techniques to study systems such as: gene regulatory networks and ion channels. The target audience of this book are mainly final year undergraduate and graduate students with a solid mathematical background (physicists, mathematicians, and engineers), as well as with basic notions of biochemistry and cellular biology.  This book can also be useful to students with a biological background who are interested in mathematical modeling, and have a working knowledge of calculus, differential equatio...

  5. Reversibility in Quantum Models of Stochastic Processes

    Science.gov (United States)

    Gier, David; Crutchfield, James; Mahoney, John; James, Ryan

    Natural phenomena such as time series of neural firing, orientation of layers in crystal stacking and successive measurements in spin-systems are inherently probabilistic. The provably minimal classical models of such stochastic processes are ɛ-machines, which consist of internal states, transition probabilities between states and output values. The topological properties of the ɛ-machine for a given process characterize the structure, memory and patterns of that process. However ɛ-machines are often not ideal because their statistical complexity (Cμ) is demonstrably greater than the excess entropy (E) of the processes they represent. Quantum models (q-machines) of the same processes can do better in that their statistical complexity (Cq) obeys the relation Cμ >= Cq >= E. q-machines can be constructed to consider longer lengths of strings, resulting in greater compression. With code-words of sufficiently long length, the statistical complexity becomes time-symmetric - a feature apparently novel to this quantum representation. This result has ramifications for compression of classical information in quantum computing and quantum communication technology.

  6. Process theory for supervisory control of stochastic systems with data

    NARCIS (Netherlands)

    Markovski, J.

    2012-01-01

    We propose a process theory for supervisory control of stochastic nondeterministic plants with data-based observations. The Markovian process theory with data relies on the notion of Markovian partial bisimulation to capture controllability of stochastic nondeterministic systems. It presents a

  7. Stochastic processes and long range dependence

    CERN Document Server

    Samorodnitsky, Gennady

    2016-01-01

    This monograph is a gateway for researchers and graduate students to explore the profound, yet subtle, world of long-range dependence (also known as long memory). The text is organized around the probabilistic properties of stationary processes that are important for determining the presence or absence of long memory. The first few chapters serve as an overview of the general theory of stochastic processes which gives the reader sufficient background, language, and models for the subsequent discussion of long memory. The later chapters devoted to long memory begin with an introduction to the subject along with a brief history of its development, followed by a presentation of what is currently the best known approach, applicable to stationary processes with a finite second moment. The book concludes with a chapter devoted to the author’s own, less standard, point of view of long memory as a phase transition, and even includes some novel results. Most of the material in the book has not previously been publis...

  8. Stochastic differential equations and diffusion processes

    CERN Document Server

    Ikeda, N

    1989-01-01

    Being a systematic treatment of the modern theory of stochastic integrals and stochastic differential equations, the theory is developed within the martingale framework, which was developed by J.L. Doob and which plays an indispensable role in the modern theory of stochastic analysis.A considerable number of corrections and improvements have been made for the second edition of this classic work. In particular, major and substantial changes are in Chapter III and Chapter V where the sections treating excursions of Brownian Motion and the Malliavin Calculus have been expanded and refined. Sectio

  9. Statistical Analysis of the First Passage Path Ensemble of Jump Processes

    Science.gov (United States)

    von Kleist, Max; Schütte, Christof; Zhang, Wei

    2018-02-01

    The transition mechanism of jump processes between two different subsets in state space reveals important dynamical information of the processes and therefore has attracted considerable attention in the past years. In this paper, we study the first passage path ensemble of both discrete-time and continuous-time jump processes on a finite state space. The main approach is to divide each first passage path into nonreactive and reactive segments and to study them separately. The analysis can be applied to jump processes which are non-ergodic, as well as continuous-time jump processes where the waiting time distributions are non-exponential. In the particular case that the jump processes are both Markovian and ergodic, our analysis elucidates the relations between the study of the first passage paths and the study of the transition paths in transition path theory. We provide algorithms to numerically compute statistics of the first passage path ensemble. The computational complexity of these algorithms scales with the complexity of solving a linear system, for which efficient methods are available. Several examples demonstrate the wide applicability of the derived results across research areas.

  10. American option pricing with stochastic volatility processes

    Directory of Open Access Journals (Sweden)

    Ping LI

    2017-12-01

    Full Text Available In order to solve the problem of option pricing more perfectly, the option pricing problem with Heston stochastic volatility model is considered. The optimal implementation boundary of American option and the conditions for its early execution are analyzed and discussed. In view of the fact that there is no analytical American option pricing formula, through the space discretization parameters, the stochastic partial differential equation satisfied by American options with Heston stochastic volatility is transformed into the corresponding differential equations, and then using high order compact finite difference method, numerical solutions are obtained for the option price. The numerical experiments are carried out to verify the theoretical results and simulation. The two kinds of optimal exercise boundaries under the conditions of the constant volatility and the stochastic volatility are compared, and the results show that the optimal exercise boundary also has stochastic volatility. Under the setting of parameters, the behavior and the nature of volatility are analyzed, the volatility curve is simulated, the calculation results of high order compact difference method are compared, and the numerical option solution is obtained, so that the method is verified. The research result provides reference for solving the problems of option pricing under stochastic volatility such as multiple underlying asset option pricing and barrier option pricing.

  11. Stochastic resonance during a polymer translocation process

    International Nuclear Information System (INIS)

    Mondal, Debasish; Muthukumar, M.

    2016-01-01

    We have studied the occurrence of stochastic resonance when a flexible polymer chain undergoes a single-file translocation through a nano-pore separating two spherical cavities, under a time-periodic external driving force. The translocation of the chain is controlled by a free energy barrier determined by chain length, pore length, pore-polymer interaction, and confinement inside the donor and receiver cavities. The external driving force is characterized by a frequency and amplitude. By combining the Fokker-Planck formalism for polymer translocation and a two-state model for stochastic resonance, we have derived analytical formulas for criteria for emergence of stochastic resonance during polymer translocation. We show that no stochastic resonance is possible if the free energy barrier for polymer translocation is purely entropic in nature. The polymer chain exhibits stochastic resonance only in the presence of an energy threshold in terms of polymer-pore interactions. Once stochastic resonance is feasible, the chain entropy controls the optimal synchronization conditions significantly.

  12. Visualisation for Stochastic Process Algebras: The Graphic Truth

    DEFF Research Database (Denmark)

    Smith, Michael James Andrew; Gilmore, Stephen

    2011-01-01

    and stochastic activity networks provide an automaton-based view of the model, which may be easier to visualise, at the expense of portability. In this paper, we argue that we can achieve the benefits of both approaches by generating a graphical view of a stochastic process algebra model, which is synchronised...

  13. Soil Erosion as a stochastic process

    Science.gov (United States)

    Casper, Markus C.

    2015-04-01

    corrected experimentally. To overcome this disadvantage of our actual models, soil erosion models are needed that are able to use stochastic directly variables and parameter distributions. There are only some minor approaches in this direction. The most advanced is the model "STOSEM" proposed by Sidorchuk in 2005. In this model, only a small part of the soil erosion processes is described, the aggregate detachment and the aggregate transport by flowing water. The concept is highly simplified, for example, many parameters are temporally invariant. Nevertheless, the main problem is that our existing measurements and experiments are not geared to provide stochastic parameters (e.g. as probability density functions); in the best case they deliver a statistical validation of the mean values. Again, we get effective parameters, spatially and temporally averaged. There is an urgent need for laboratory and field experiments on overland flow structure, raindrop effects and erosion rate, which deliver information on spatial and temporal structure of soil and surface properties and processes.

  14. Introduction to probability and stochastic processes with applications

    CERN Document Server

    Castañ, Blanco; Arunachalam, Viswanathan; Dharmaraja, Selvamuthu

    2012-01-01

    An easily accessible, real-world approach to probability and stochastic processes Introduction to Probability and Stochastic Processes with Applications presents a clear, easy-to-understand treatment of probability and stochastic processes, providing readers with a solid foundation they can build upon throughout their careers. With an emphasis on applications in engineering, applied sciences, business and finance, statistics, mathematics, and operations research, the book features numerous real-world examples that illustrate how random phenomena occur in nature and how to use probabilistic t

  15. Main Achievements 2003-2004 - Interdisciplinary Research - Applications of theoretical physics - Stochastic processes

    International Nuclear Information System (INIS)

    2005-01-01

    Some specific stochastic, jumping processes have been studied. They are defined in terms of the jump size distribution and the waiting time distribution which are mutually dependent. For the simplest case (the kangaroo process), the corresponding master equation has been completely solved and simple asymptotic expressions for the time-dependent probability distributions have been derived. A generalized version of that process, which takes into account the memory effects, has been proposed and a connection to transport processes, namely to the Boltzmann kinetic theory and diffusion, has been demonstrated. The same process, but defined on the circle instead of the axis, can possess the power law autocorrelation function; a simple formula for this function has been derived. Therefore, the process can serve as a useful model for the colored noises, in particular for the 1/f noise. It has been applied as a model of the driving force in the generalized Langevin equation, an impossible task with the standard kangaroo process. The equation has been solved by means of the Monte Carlo simulations. The resulting velocity and energy distributions exhibit extremely long memory about the initial conditions, despite an apparent fast equilibration of their comprehensive shape. The tails of both distributions fall faster than in the Maxwellian case

  16. Verification and Planning for Stochastic Processes with Asynchronous Events

    National Research Council Canada - National Science Library

    Younes, Hakan L

    2005-01-01

    .... The most common assumption is that of history-independence: the Markov assumption. In this thesis, the author considers the problems of verification and planning for stochastic processes with asynchronous events, without relying on the Markov assumption...

  17. Bibliography on the stochastic processes in plasma and related problems

    International Nuclear Information System (INIS)

    Polovin, R.V.

    1976-01-01

    Stochastic processes in plasma and related matters. The bibliography contains 500 references and was compiled from the open literature only. Some references are annotated or completed with short abstracts. There are subject and authors indexes

  18. Simulation and inference for stochastic processes with YUIMA a comprehensive R framework for SDEs and other stochastic processes

    CERN Document Server

    Iacus, Stefano M

    2018-01-01

    The YUIMA package is the first comprehensive R framework based on S4 classes and methods which allows for the simulation of stochastic differential equations driven by Wiener process, Lévy processes or fractional Brownian motion, as well as CARMA processes. The package performs various central statistical analyses such as quasi maximum likelihood estimation, adaptive Bayes estimation, structural change point analysis, hypotheses testing, asynchronous covariance estimation, lead-lag estimation, LASSO model selection, and so on. YUIMA also supports stochastic numerical analysis by fast computation of the expected value of functionals of stochastic processes through automatic asymptotic expansion by means of the Malliavin calculus. All models can be multidimensional, multiparametric or non parametric.The book explains briefly the underlying theory for simulation and inference of several classes of stochastic processes and then presents both simulation experiments and applications to real data. Although these ...

  19. Bidirectional Classical Stochastic Processes with Measurements and Feedback

    Science.gov (United States)

    Hahne, G. E.

    2005-01-01

    A measurement on a quantum system is said to cause the "collapse" of the quantum state vector or density matrix. An analogous collapse occurs with measurements on a classical stochastic process. This paper addresses the question of describing the response of a classical stochastic process when there is feedback from the output of a measurement to the input, and is intended to give a model for quantum-mechanical processes that occur along a space-like reaction coordinate. The classical system can be thought of in physical terms as two counterflowing probability streams, which stochastically exchange probability currents in a way that the net probability current, and hence the overall probability, suitably interpreted, is conserved. The proposed formalism extends the . mathematics of those stochastic processes describable with linear, single-step, unidirectional transition probabilities, known as Markov chains and stochastic matrices. It is shown that a certain rearrangement and combination of the input and output of two stochastic matrices of the same order yields another matrix of the same type. Each measurement causes the partial collapse of the probability current distribution in the midst of such a process, giving rise to calculable, but non-Markov, values for the ensuing modification of the system's output probability distribution. The paper concludes with an analysis of a classical probabilistic version of the so-called grandfather paradox.

  20. Data-based inference of generators for Markov jump processes using convex optimization

    NARCIS (Netherlands)

    D.T. Crommelin (Daan); E. Vanden-Eijnden (Eric)

    2009-01-01

    textabstractA variational approach to the estimation of generators for Markov jump processes from discretely sampled data is discussed and generalized. In this approach, one first calculates the spectrum of the discrete maximum likelihood estimator for the transition matrix consistent with

  1. Forecasting financial asset processes: stochastic dynamics via learning neural networks.

    Science.gov (United States)

    Giebel, S; Rainer, M

    2010-01-01

    Models for financial asset dynamics usually take into account their inherent unpredictable nature by including a suitable stochastic component into their process. Unknown (forward) values of financial assets (at a given time in the future) are usually estimated as expectations of the stochastic asset under a suitable risk-neutral measure. This estimation requires the stochastic model to be calibrated to some history of sufficient length in the past. Apart from inherent limitations, due to the stochastic nature of the process, the predictive power is also limited by the simplifying assumptions of the common calibration methods, such as maximum likelihood estimation and regression methods, performed often without weights on the historic time series, or with static weights only. Here we propose a novel method of "intelligent" calibration, using learning neural networks in order to dynamically adapt the parameters of the stochastic model. Hence we have a stochastic process with time dependent parameters, the dynamics of the parameters being themselves learned continuously by a neural network. The back propagation in training the previous weights is limited to a certain memory length (in the examples we consider 10 previous business days), which is similar to the maximal time lag of autoregressive processes. We demonstrate the learning efficiency of the new algorithm by tracking the next-day forecasts for the EURTRY and EUR-HUF exchange rates each.

  2. Convergence of trajectories in fractal interpolation of stochastic processes

    International Nuclear Information System (INIS)

    MaIysz, Robert

    2006-01-01

    The notion of fractal interpolation functions (FIFs) can be applied to stochastic processes. Such construction is especially useful for the class of α-self-similar processes with stationary increments and for the class of α-fractional Brownian motions. For these classes, convergence of the Minkowski dimension of the graphs in fractal interpolation of the Hausdorff dimension of the graph of original process was studied in [Herburt I, MaIysz R. On convergence of box dimensions of fractal interpolation stochastic processes. Demonstratio Math 2000;4:873-88.], [MaIysz R. A generalization of fractal interpolation stochastic processes to higher dimension. Fractals 2001;9:415-28.], and [Herburt I. Box dimension of interpolations of self-similar processes with stationary increments. Probab Math Statist 2001;21:171-8.]. We prove that trajectories of fractal interpolation stochastic processes converge to the trajectory of the original process. We also show that convergence of the trajectories in fractal interpolation of stochastic processes is equivalent to the convergence of trajectories in linear interpolation

  3. Stochastic Analysis of Gaussian Processes via Fredholm Representation

    Directory of Open Access Journals (Sweden)

    Tommi Sottinen

    2016-01-01

    Full Text Available We show that every separable Gaussian process with integrable variance function admits a Fredholm representation with respect to a Brownian motion. We extend the Fredholm representation to a transfer principle and develop stochastic analysis by using it. We show the convenience of the Fredholm representation by giving applications to equivalence in law, bridges, series expansions, stochastic differential equations, and maximum likelihood estimations.

  4. Fast Quantum Algorithm for Predicting Descriptive Statistics of Stochastic Processes

    Science.gov (United States)

    Williams Colin P.

    1999-01-01

    Stochastic processes are used as a modeling tool in several sub-fields of physics, biology, and finance. Analytic understanding of the long term behavior of such processes is only tractable for very simple types of stochastic processes such as Markovian processes. However, in real world applications more complex stochastic processes often arise. In physics, the complicating factor might be nonlinearities; in biology it might be memory effects; and in finance is might be the non-random intentional behavior of participants in a market. In the absence of analytic insight, one is forced to understand these more complex stochastic processes via numerical simulation techniques. In this paper we present a quantum algorithm for performing such simulations. In particular, we show how a quantum algorithm can predict arbitrary descriptive statistics (moments) of N-step stochastic processes in just O(square root of N) time. That is, the quantum complexity is the square root of the classical complexity for performing such simulations. This is a significant speedup in comparison to the current state of the art.

  5. Stochastic interest model driven by compound Poisson process andBrownian motion with applications in life contingencies

    Directory of Open Access Journals (Sweden)

    Shilong Li

    2018-03-01

    Full Text Available In this paper, we introduce a class of stochastic interest model driven by a compoundPoisson process and a Brownian motion, in which the jumping times of force of interest obeyscompound Poisson process and the continuous tiny fluctuations are described by Brownian motion, andthe adjustment in each jump of interest force is assumed to be random. Based on the proposed interestmodel, we discuss the expected discounted function, the validity of the model and actuarial presentvalues of life annuities and life insurances under different parameters and distribution settings. Ournumerical results show actuarial values could be sensitive to the parameters and distribution settings,which shows the importance of introducing this kind interest model.

  6. Diffusive processes in a stochastic magnetic field

    International Nuclear Information System (INIS)

    Wang, H.; Vlad, M.; Vanden Eijnden, E.; Spineanu, F.; Misguich, J.H.; Balescu, R.

    1995-01-01

    The statistical representation of a fluctuating (stochastic) magnetic field configuration is studied in detail. The Eulerian correlation functions of the magnetic field are determined, taking into account all geometrical constraints: these objects form a nondiagonal matrix. The Lagrangian correlations, within the reasonable Corrsin approximation, are reduced to a single scalar function, determined by an integral equation. The mean square perpendicular deviation of a geometrical point moving along a perturbed field line is determined by a nonlinear second-order differential equation. The separation of neighboring field lines in a stochastic magnetic field is studied. We find exponentiation lengths of both signs describing, in particular, a decay (on the average) of any initial anisotropy. The vanishing sum of these exponentiation lengths ensures the existence of an invariant which was overlooked in previous works. Next, the separation of a particle's trajectory from the magnetic field line to which it was initially attached is studied by a similar method. Here too an initial phase of exponential separation appears. Assuming the existence of a final diffusive phase, anomalous diffusion coefficients are found for both weakly and strongly collisional limits. The latter is identical to the well known Rechester-Rosenbluth coefficient, which is obtained here by a more quantitative (though not entirely deductive) treatment than in earlier works

  7. Numerical simulations of piecewise deterministic Markov processes with an application to the stochastic Hodgkin-Huxley model

    Science.gov (United States)

    Ding, Shaojie; Qian, Min; Qian, Hong; Zhang, Xuejuan

    2016-12-01

    The stochastic Hodgkin-Huxley model is one of the best-known examples of piecewise deterministic Markov processes (PDMPs), in which the electrical potential across a cell membrane, V(t), is coupled with a mesoscopic Markov jump process representing the stochastic opening and closing of ion channels embedded in the membrane. The rates of the channel kinetics, in turn, are voltage-dependent. Due to this interdependence, an accurate and efficient sampling of the time evolution of the hybrid stochastic systems has been challenging. The current exact simulation methods require solving a voltage-dependent hitting time problem for multiple path-dependent intensity functions with random thresholds. This paper proposes a simulation algorithm that approximates an alternative representation of the exact solution by fitting the log-survival function of the inter-jump dwell time, H(t), with a piecewise linear one. The latter uses interpolation points that are chosen according to the time evolution of the H(t), as the numerical solution to the coupled ordinary differential equations of V(t) and H(t). This computational method can be applied to all PDMPs. Pathwise convergence of the approximated sample trajectories to the exact solution is proven, and error estimates are provided. Comparison with a previous algorithm that is based on piecewise constant approximation is also presented.

  8. Outcome and Process in Motor Performance: A Comparison of Jumping by Typically Developing Children and Those with Low Motor Proficiency

    Science.gov (United States)

    Williams, Morgan D.; Saunders, John E.; Maschette, Wayne E.; Wilson, Cameron J.

    2013-01-01

    The motivation for this study was to explore a conceptual framework to understand the outcomes and processes of motor performance in children. Vertical jumping, a fundamental movement skill, was used to compare children (ages 6-12 years) who were typically developing (TD) and those identified as having low motor proficiency (LMP). Jumps were…

  9. Stochastic Interest Model Based on Compound Poisson Process and Applications in Actuarial Science

    Directory of Open Access Journals (Sweden)

    Shilong Li

    2017-01-01

    Full Text Available Considering stochastic behavior of interest rates in financial market, we construct a new class of interest models based on compound Poisson process. Different from the references, this paper describes the randomness of interest rates by modeling the force of interest with Poisson random jumps directly. To solve the problem in calculation of accumulated interest force function, one important integral technique is employed. And a conception called the critical value is introduced to investigate the validity condition of this new model. We also discuss actuarial present values of several life annuities under this new interest model. Simulations are done to illustrate the theoretical results and the effect of parameters in interest model on actuarial present values is also analyzed.

  10. Classical and spatial stochastic processes with applications to biology

    CERN Document Server

    Schinazi, Rinaldo B

    2014-01-01

    The revised and expanded edition of this textbook presents the concepts and applications of random processes with the same illuminating simplicity as its first edition, but with the notable addition of substantial modern material on biological modeling. While still treating many important problems in fields such as engineering and mathematical physics, the book also focuses on the highly relevant topics of cancerous mutations, influenza evolution, drug resistance, and immune response. The models used elegantly apply various classical stochastic models presented earlier in the text, and exercises are included throughout to reinforce essential concepts. The second edition of Classical and Spatial Stochastic Processes is suitable as a textbook for courses in stochastic processes at the advanced-undergraduate and graduate levels, or as a self-study resource for researchers and practitioners in mathematics, engineering, physics, and mathematical biology. Reviews of the first edition: An appetizing textbook for a f...

  11. Analyzing Properties of Stochastic Business Processes By Model Checking

    DEFF Research Database (Denmark)

    Herbert, Luke Thomas; Sharp, Robin

    2013-01-01

    This chapter presents an approach to precise formal analysis of business processes with stochastic properties. The method presented here allows for both qualitative and quantitative properties to be individually analyzed at design time without requiring a full specification. This provides...... an effective means to explore possible designs for a business process and to debug any flaws....

  12. ? filtering for stochastic systems driven by Poisson processes

    Science.gov (United States)

    Song, Bo; Wu, Zheng-Guang; Park, Ju H.; Shi, Guodong; Zhang, Ya

    2015-01-01

    This paper investigates the ? filtering problem for stochastic systems driven by Poisson processes. By utilising the martingale theory such as the predictable projection operator and the dual predictable projection operator, this paper transforms the expectation of stochastic integral with respect to the Poisson process into the expectation of Lebesgue integral. Then, based on this, this paper designs an ? filter such that the filtering error system is mean-square asymptotically stable and satisfies a prescribed ? performance level. Finally, a simulation example is given to illustrate the effectiveness of the proposed filtering scheme.

  13. Analysis of Evolutionary Processes of Species Jump in Waterfowl Parvovirus

    Science.gov (United States)

    Fan, Wentao; Sun, Zhaoyu; Shen, Tongtong; Xu, Danning; Huang, Kehe; Zhou, Jiyong; Song, Suquan; Yan, Liping

    2017-01-01

    Waterfowl parvoviruses are classified into goose parvovirus (GPV) and Muscovy duck parvovirus (MDPV) according to their antigenic features and host preferences. A novel duck parvovirus (NDPV), identified as a new variant of GPV, is currently infecting ducks, thus causing considerable economic loss. This study analyzed the molecular evolution and population dynamics of the emerging parvovirus capsid gene to investigate the evolutionary processes concerning the host shift of NDPV. Two important amino acids changes (Asn-489 and Asn-650) were identified in NDPV, which may be responsible for host shift of NDPV. Phylogenetic analysis indicated that the currently circulating NDPV originated from the GPV lineage. The Bayesian Markov chain Monte Carlo tree indicated that the NDPV diverged from GPV approximately 20 years ago. Evolutionary rate analyses demonstrated that GPV evolved with 7.674 × 10-4 substitutions/site/year, and the data for MDPV was 5.237 × 10-4 substitutions/site/year, whereas the substitution rate in NDPV branch was 2.25 × 10-3 substitutions/site/year. Meanwhile, viral population dynamics analysis revealed that the GPV major clade, including NDPV, grew exponentially at a rate of 1.717 year-1. Selection pressure analysis showed that most sites are subject to strong purifying selection and no positively selected sites were found in NDPV. The unique immune-epitopes in waterfowl parvovirus were also estimated, which may be helpful for the prediction of antibody binding sites against NDPV in ducks. PMID:28352261

  14. Risk-Sensitive Control of Pure Jump Process on Countable Space with Near Monotone Cost

    International Nuclear Information System (INIS)

    Suresh Kumar, K.; Pal, Chandan

    2013-01-01

    In this article, we study risk-sensitive control problem with controlled continuous time pure jump process on a countable space as state dynamics. We prove multiplicative dynamic programming principle, elliptic and parabolic Harnack’s inequalities. Using the multiplicative dynamic programing principle and the Harnack’s inequalities, we prove the existence and a characterization of optimal risk-sensitive control under the near monotone condition

  15. Anomalous scaling of stochastic processes and the Moses effect.

    Science.gov (United States)

    Chen, Lijian; Bassler, Kevin E; McCauley, Joseph L; Gunaratne, Gemunu H

    2017-04-01

    The state of a stochastic process evolving over a time t is typically assumed to lie on a normal distribution whose width scales like t^{1/2}. However, processes in which the probability distribution is not normal and the scaling exponent differs from 1/2 are known. The search for possible origins of such "anomalous" scaling and approaches to quantify them are the motivations for the work reported here. In processes with stationary increments, where the stochastic process is time-independent, autocorrelations between increments and infinite variance of increments can cause anomalous scaling. These sources have been referred to as the Joseph effect and the Noah effect, respectively. If the increments are nonstationary, then scaling of increments with t can also lead to anomalous scaling, a mechanism we refer to as the Moses effect. Scaling exponents quantifying the three effects are defined and related to the Hurst exponent that characterizes the overall scaling of the stochastic process. Methods of time series analysis that enable accurate independent measurement of each exponent are presented. Simple stochastic processes are used to illustrate each effect. Intraday financial time series data are analyzed, revealing that their anomalous scaling is due only to the Moses effect. In the context of financial market data, we reiterate that the Joseph exponent, not the Hurst exponent, is the appropriate measure to test the efficient market hypothesis.

  16. Anomalous scaling of stochastic processes and the Moses effect

    Science.gov (United States)

    Chen, Lijian; Bassler, Kevin E.; McCauley, Joseph L.; Gunaratne, Gemunu H.

    2017-04-01

    The state of a stochastic process evolving over a time t is typically assumed to lie on a normal distribution whose width scales like t1/2. However, processes in which the probability distribution is not normal and the scaling exponent differs from 1/2 are known. The search for possible origins of such "anomalous" scaling and approaches to quantify them are the motivations for the work reported here. In processes with stationary increments, where the stochastic process is time-independent, autocorrelations between increments and infinite variance of increments can cause anomalous scaling. These sources have been referred to as the Joseph effect and the Noah effect, respectively. If the increments are nonstationary, then scaling of increments with t can also lead to anomalous scaling, a mechanism we refer to as the Moses effect. Scaling exponents quantifying the three effects are defined and related to the Hurst exponent that characterizes the overall scaling of the stochastic process. Methods of time series analysis that enable accurate independent measurement of each exponent are presented. Simple stochastic processes are used to illustrate each effect. Intraday financial time series data are analyzed, revealing that their anomalous scaling is due only to the Moses effect. In the context of financial market data, we reiterate that the Joseph exponent, not the Hurst exponent, is the appropriate measure to test the efficient market hypothesis.

  17. A Constructive Sharp Approach to Functional Quantization of Stochastic Processes

    OpenAIRE

    Junglen, Stefan; Luschgy, Harald

    2010-01-01

    We present a constructive approach to the functional quantization problem of stochastic processes, with an emphasis on Gaussian processes. The approach is constructive, since we reduce the infinite-dimensional functional quantization problem to a finite-dimensional quantization problem that can be solved numerically. Our approach achieves the sharp rate of the minimal quantization error and can be used to quantize the path space for Gaussian processes and also, for example, Lévy processes.

  18. Learning Theory Estimates with Observations from General Stationary Stochastic Processes.

    Science.gov (United States)

    Hang, Hanyuan; Feng, Yunlong; Steinwart, Ingo; Suykens, Johan A K

    2016-12-01

    This letter investigates the supervised learning problem with observations drawn from certain general stationary stochastic processes. Here by general, we mean that many stationary stochastic processes can be included. We show that when the stochastic processes satisfy a generalized Bernstein-type inequality, a unified treatment on analyzing the learning schemes with various mixing processes can be conducted and a sharp oracle inequality for generic regularized empirical risk minimization schemes can be established. The obtained oracle inequality is then applied to derive convergence rates for several learning schemes such as empirical risk minimization (ERM), least squares support vector machines (LS-SVMs) using given generic kernels, and SVMs using gaussian kernels for both least squares and quantile regression. It turns out that for independent and identically distributed (i.i.d.) processes, our learning rates for ERM recover the optimal rates. For non-i.i.d. processes, including geometrically [Formula: see text]-mixing Markov processes, geometrically [Formula: see text]-mixing processes with restricted decay, [Formula: see text]-mixing processes, and (time-reversed) geometrically [Formula: see text]-mixing processes, our learning rates for SVMs with gaussian kernels match, up to some arbitrarily small extra term in the exponent, the optimal rates. For the remaining cases, our rates are at least close to the optimal rates. As a by-product, the assumed generalized Bernstein-type inequality also provides an interpretation of the so-called effective number of observations for various mixing processes.

  19. Stochastic analysis in production process and ecology under uncertainty

    CERN Document Server

    Bieda, Bogusław

    2014-01-01

    The monograph addresses a problem of stochastic analysis based on the uncertainty assessment by simulation and application of this method in ecology and steel industry under uncertainty. The first chapter defines the Monte Carlo (MC) method and random variables in stochastic models. Chapter two deals with the contamination transport in porous media. Stochastic approach for Municipal Solid Waste transit time contaminants modeling using MC simulation has been worked out. The third chapter describes the risk analysis of the waste to energy facility proposal for Konin city, including the financial aspects. Environmental impact assessment of the ArcelorMittal Steel Power Plant, in Kraków - in the chapter four - is given. Thus, four scenarios of the energy mix production processes were studied. Chapter five contains examples of using ecological Life Cycle Assessment (LCA) - a relatively new method of environmental impact assessment - which help in preparing pro-ecological strategy, and which can lead to reducing t...

  20. Counting statistics of non-markovian quantum stochastic processes

    DEFF Research Database (Denmark)

    Flindt, Christian; Novotny, T.; Braggio, A.

    2008-01-01

    We derive a general expression for the cumulant generating function (CGF) of non-Markovian quantum stochastic transport processes. The long-time limit of the CGF is determined by a single dominating pole of the resolvent of the memory kernel from which we extract the zero-frequency cumulants...

  1. Gene regulation and noise reduction by coupling of stochastic processes

    Science.gov (United States)

    Ramos, Alexandre F.; Hornos, José Eduardo M.; Reinitz, John

    2015-02-01

    Here we characterize the low-noise regime of a stochastic model for a negative self-regulating binary gene. The model has two stochastic variables, the protein number and the state of the gene. Each state of the gene behaves as a protein source governed by a Poisson process. The coupling between the two gene states depends on protein number. This fact has a very important implication: There exist protein production regimes characterized by sub-Poissonian noise because of negative covariance between the two stochastic variables of the model. Hence the protein numbers obey a probability distribution that has a peak that is sharper than those of the two coupled Poisson processes that are combined to produce it. Biochemically, the noise reduction in protein number occurs when the switching of the genetic state is more rapid than protein synthesis or degradation. We consider the chemical reaction rates necessary for Poisson and sub-Poisson processes in prokaryotes and eucaryotes. Our results suggest that the coupling of multiple stochastic processes in a negative covariance regime might be a widespread mechanism for noise reduction.

  2. Gene regulation and noise reduction by coupling of stochastic processes.

    Science.gov (United States)

    Ramos, Alexandre F; Hornos, José Eduardo M; Reinitz, John

    2015-02-01

    Here we characterize the low-noise regime of a stochastic model for a negative self-regulating binary gene. The model has two stochastic variables, the protein number and the state of the gene. Each state of the gene behaves as a protein source governed by a Poisson process. The coupling between the two gene states depends on protein number. This fact has a very important implication: There exist protein production regimes characterized by sub-Poissonian noise because of negative covariance between the two stochastic variables of the model. Hence the protein numbers obey a probability distribution that has a peak that is sharper than those of the two coupled Poisson processes that are combined to produce it. Biochemically, the noise reduction in protein number occurs when the switching of the genetic state is more rapid than protein synthesis or degradation. We consider the chemical reaction rates necessary for Poisson and sub-Poisson processes in prokaryotes and eucaryotes. Our results suggest that the coupling of multiple stochastic processes in a negative covariance regime might be a widespread mechanism for noise reduction.

  3. Conditional Stochastic Processes Applied to Wave Load Predictions

    DEFF Research Database (Denmark)

    Jensen, Jørgen Juncher

    2015-01-01

    The concept of conditional stochastic processes provides a powerful tool for evaluation and estimation of wave loads on ships and offshore structures. This article first considers conditional waves with a focus on critical wave episodes. Then the inherent uncertainty in the results is illustrated...

  4. Stochastic evolution of the Universe: A possible dynamical process ...

    Indian Academy of Sciences (India)

    C Sivakumar

    2017-12-11

    Dec 11, 2017 ... https://doi.org/10.1007/s12043-017-1491-z. Stochastic evolution of the Universe: A possible dynamical process leading to fractal structures. C SIVAKUMAR. Department of Physics, Maharaja's College, Ernakulam 682 011, India. E-mail: thrisivc@yahoo.com. MS received 6 July 2016; revised 26 June 2017; ...

  5. Jumping together

    DEFF Research Database (Denmark)

    Lund, Ole; Ravn, Susanne; Christensen, Mette Krogh

    2014-01-01

    , in order to reach a deeper understanding of how practice facilitates learning. Results: We encircle the athletes’ interrelated learning processes by introducing the training environment of the national team and situations in which the athletes guide each other verbally or by jumping together. Discussion...

  6. Uncertainty Reduction for Stochastic Processes on Complex Networks

    Science.gov (United States)

    Radicchi, Filippo; Castellano, Claudio

    2018-05-01

    Many real-world systems are characterized by stochastic dynamical rules where a complex network of interactions among individual elements probabilistically determines their state. Even with full knowledge of the network structure and of the stochastic rules, the ability to predict system configurations is generally characterized by a large uncertainty. Selecting a fraction of the nodes and observing their state may help to reduce the uncertainty about the unobserved nodes. However, choosing these points of observation in an optimal way is a highly nontrivial task, depending on the nature of the stochastic process and on the structure of the underlying interaction pattern. In this paper, we introduce a computationally efficient algorithm to determine quasioptimal solutions to the problem. The method leverages network sparsity to reduce computational complexity from exponential to almost quadratic, thus allowing the straightforward application of the method to mid-to-large-size systems. Although the method is exact only for equilibrium stochastic processes defined on trees, it turns out to be effective also for out-of-equilibrium processes on sparse loopy networks.

  7. The Perpetual American Put Option for Jump-Diffusions

    OpenAIRE

    Aase, Knut K.

    2010-01-01

    -This is the author's version of the article"The Perpetual American Put Option for Jump-Diffusions" Energy Systems pp 493-507. We solve a specific optimal stopping problem with an infinite time horizon, when the state variable follows a jump-diffusion. The novelty of the paper is related to the inclusion of a jump component in this stochastic process. Under certain conditions, our solution can be interpreted as the price of an American perpetual put option. We characterize the continuation...

  8. Stochastic processes and applications diffusion processes, the Fokker-Planck and Langevin equations

    CERN Document Server

    Pavliotis, Grigorios A

    2014-01-01

    This book presents various results and techniques from the theory of stochastic processes that are useful in the study of stochastic problems in the natural sciences. The main focus is analytical methods, although numerical methods and statistical inference methodologies for studying diffusion processes are also presented. The goal is the development of techniques that are applicable to a wide variety of stochastic models that appear in physics, chemistry and other natural sciences. Applications such as stochastic resonance, Brownian motion in periodic potentials and Brownian motors are studied and the connection between diffusion processes and time-dependent statistical mechanics is elucidated.                 The book contains a large number of illustrations, examples, and exercises. It will be useful for graduate-level courses on stochastic processes for students in applied mathematics, physics and engineering. Many of the topics covered in this book (reversible diffusions, convergence to eq...

  9. Optimal Reinsurance-Investment Problem for an Insurer and a Reinsurer with Jump-Diffusion Process

    Directory of Open Access Journals (Sweden)

    Hanlei Hu

    2018-01-01

    Full Text Available The optimal reinsurance-investment strategies considering the interests of both the insurer and reinsurer are investigated. The surplus process is assumed to follow a jump-diffusion process and the insurer is permitted to purchase proportional reinsurance from the reinsurer. Applying dynamic programming approach and dual theory, the corresponding Hamilton-Jacobi-Bellman equations are derived and the optimal strategies for exponential utility function are obtained. In addition, several sensitivity analyses and numerical illustrations in the case with exponential claiming distributions are presented to analyze the effects of parameters about the optimal strategies.

  10. Deterministic geologic processes and stochastic modeling

    International Nuclear Information System (INIS)

    Rautman, C.A.; Flint, A.L.

    1992-01-01

    This paper reports that recent outcrop sampling at Yucca Mountain, Nevada, has produced significant new information regarding the distribution of physical properties at the site of a potential high-level nuclear waste repository. consideration of the spatial variability indicates that her are a number of widespread deterministic geologic features at the site that have important implications for numerical modeling of such performance aspects as ground water flow and radionuclide transport. Because the geologic processes responsible for formation of Yucca Mountain are relatively well understood and operate on a more-or-less regional scale, understanding of these processes can be used in modeling the physical properties and performance of the site. Information reflecting these deterministic geologic processes may be incorporated into the modeling program explicitly using geostatistical concepts such as soft information, or implicitly, through the adoption of a particular approach to modeling

  11. Dynamics of a stochastic delayed SIR epidemic model with vaccination and double diseases driven by Lévy jumps

    Science.gov (United States)

    Liu, Qun; Jiang, Daqing; Shi, Ningzhong; Hayat, Tasawar

    2018-02-01

    In this paper, we study the dynamics of a stochastic delayed SIR epidemic model with vaccination and double diseases which make the research more complex. The environment variability in this paper is characterized by white noise and Lévy noise. We establish sufficient conditions for extinction and persistence in the mean of the two epidemic diseases. It is shown that: (i) time delay and Lévy noise have important effects on the persistence and extinction of epidemic diseases; (ii) two diseases can coexist under certain conditions.

  12. Stochasticity in processes fundamentals and applications to chemistry and biology

    CERN Document Server

    Schuster, Peter

    2016-01-01

    This book has developed over the past fifteen years from a modern course on stochastic chemical kinetics for graduate students in physics, chemistry and biology. The first part presents a systematic collection of the mathematical background material needed to understand probability, statistics, and stochastic processes as a prerequisite for the increasingly challenging practical applications in chemistry and the life sciences examined in the second part. Recent advances in the development of new techniques and in the resolution of conventional experiments at nano-scales have been tremendous: today molecular spectroscopy can provide insights into processes down to scales at which current theories at the interface of physics, chemistry and the life sciences cannot be successful without a firm grasp of randomness and its sources. Routinely measured data is now sufficiently accurate to allow the direct recording of fluctuations. As a result, the sampling of data and the modeling of relevant processes are doomed t...

  13. Stochastic Models in the Identification Process

    Czech Academy of Sciences Publication Activity Database

    Slovák, Dalibor; Zvárová, Jana

    2011-01-01

    Roč. 7, č. 1 (2011), s. 44-50 ISSN 1801-5603 R&D Projects: GA MŠk(CZ) 1M06014 Institutional research plan: CEZ:AV0Z10300504 Keywords : identification process * weight-of evidence formula * coancestry coefficient * beta-binomial sampling formula * DNA mixtures Subject RIV: IN - Informatics, Computer Science http://www.ejbi.eu/images/2011-1/Slovak_en.pdf

  14. 5th Seminar on Stochastic Processes, Random Fields and Applications

    CERN Document Server

    Russo, Francesco; Dozzi, Marco

    2008-01-01

    This volume contains twenty-eight refereed research or review papers presented at the 5th Seminar on Stochastic Processes, Random Fields and Applications, which took place at the Centro Stefano Franscini (Monte Verità) in Ascona, Switzerland, from May 30 to June 3, 2005. The seminar focused mainly on stochastic partial differential equations, random dynamical systems, infinite-dimensional analysis, approximation problems, and financial engineering. The book will be a valuable resource for researchers in stochastic analysis and professionals interested in stochastic methods in finance. Contributors: Y. Asai, J.-P. Aubin, C. Becker, M. Benaïm, H. Bessaih, S. Biagini, S. Bonaccorsi, N. Bouleau, N. Champagnat, G. Da Prato, R. Ferrière, F. Flandoli, P. Guasoni, V.B. Hallulli, D. Khoshnevisan, T. Komorowski, R. Léandre, P. Lescot, H. Lisei, J.A. López-Mimbela, V. Mandrekar, S. Méléard, A. Millet, H. Nagai, A.D. Neate, V. Orlovius, M. Pratelli, N. Privault, O. Raimond, M. Röckner, B. Rüdiger, W.J. Runggaldi...

  15. Stochastic processes dominate during boreal bryophyte community assembly.

    Science.gov (United States)

    Fenton, Nicole J; Bergeron, Yves

    2013-09-01

    Why are plant species found in certain locations and not in others? The study of community assembly rules has attempted to answer this question, and many studies articulate the historic dichotomy of deterministic (predictable niches) vs. stochastic (random or semi-random processes). The study of successional sequences to determine whether they converge, as would be expected by deterministic theory, or diverge, as stochastic theory would suggest, has been one method used to investigate this question. In this article we ask the question: Do similar boreal bryophyte communities develop in the similar habitat created by convergent succession after fires of different severities? Or do the stochastic processes generated by fires of different severity lead to different communities? Specifically we predict that deterministic structure will be more important for large forest-floor species than stochastic processes, and that the inverse will be true for small bryophyte species. We used multivariate regression trees and model selection to determine the relative weight of structure (forest structure, substrates, soil structure) and processes (fire severity) for two groups of bryophyte species sampled in 12 sites (seven high-severity and five low-severity fires). Contrary to our first hypothesis, processes were as important for large forest-floor bryophytes as for small pocket species. Fire severity, its interaction with the quality of available habitat, and its impact on the creation of biological legacies played dominant roles in determining community structure. In this study, sites with nearly identical forest structure, generated via convergent succession after high- and low-severity fire, were compared to see whether these sites supported similar bryophyte communities. While similar to some degree, both the large forest-floor species and the pocket species differed after high-severity fire compared to low-severity fire. This result suggests that the "how," or process of

  16. Discrete stochastic processes and optimal filtering

    CERN Document Server

    Bertein, Jean-Claude

    2012-01-01

    Optimal filtering applied to stationary and non-stationary signals provides the most efficient means of dealing with problems arising from the extraction of noise signals. Moreover, it is a fundamental feature in a range of applications, such as in navigation in aerospace and aeronautics, filter processing in the telecommunications industry, etc. This book provides a comprehensive overview of this area, discussing random and Gaussian vectors, outlining the results necessary for the creation of Wiener and adaptive filters used for stationary signals, as well as examining Kalman filters which ar

  17. Hermite-Hadamard type inequality for φ{sub h}-convex stochastic processes

    Energy Technology Data Exchange (ETDEWEB)

    Sarıkaya, Mehmet Zeki, E-mail: sarikayamz@gmail.com [Department of Mathematics, Faculty of Science and Arts, Düzce University, Düzce (Turkey); Kiriş, Mehmet Eyüp, E-mail: kiris@aku.edu.tr [Department of Mathematics, Institute of Science and Arts, Afyon Kocatepe University, Afyonkarahisar (Turkey); Çelik, Nuri, E-mail: ncelik@bartin.edu.tr [Department of Statistics, Faculty of Science, Bartın University, Bartın-Turkey (Turkey)

    2016-04-18

    The main aim of the present paper is to introduce φ{sub h}-convex stochastic processes and we investigate main properties of these mappings. Moreover, we prove the Hadamard-type inequalities for φ{sub h}-convex stochastic processes. We also give some new general inequalities for φ{sub h}-convex stochastic processes.

  18. Dividend Maximization when Cash Reserves Follow a Jump-diffusion Process

    Institute of Scientific and Technical Information of China (English)

    LI LI-LI; FENG JIN-GHAI; SONG LI-XIN

    2009-01-01

    This paper deals with the dividend optimization problem for an insur-ance company, whose surplus follows a jump-diffusion process. The objective of the company is to maximize the expected total discounted dividends paid out until the time of ruin. Under concavity assumption on the optimal value function, the paper states some general properties and, in particular, smoothness results on the optimal value function, whose analysis mainly relies on viscosity solutions of the associated Hamilton-Jacobi-Bellman (HJB) equations. Based on these properties, the explicit expression of the optimal value function is obtained. And some numerical calculations are presented as the application of the results.

  19. Simulation of anaerobic digestion processes using stochastic algorithm.

    Science.gov (United States)

    Palanichamy, Jegathambal; Palani, Sundarambal

    2014-01-01

    The Anaerobic Digestion (AD) processes involve numerous complex biological and chemical reactions occurring simultaneously. Appropriate and efficient models are to be developed for simulation of anaerobic digestion systems. Although several models have been developed, mostly they suffer from lack of knowledge on constants, complexity and weak generalization. The basis of the deterministic approach for modelling the physico and bio-chemical reactions occurring in the AD system is the law of mass action, which gives the simple relationship between the reaction rates and the species concentrations. The assumptions made in the deterministic models are not hold true for the reactions involving chemical species of low concentration. The stochastic behaviour of the physicochemical processes can be modeled at mesoscopic level by application of the stochastic algorithms. In this paper a stochastic algorithm (Gillespie Tau Leap Method) developed in MATLAB was applied to predict the concentration of glucose, acids and methane formation at different time intervals. By this the performance of the digester system can be controlled. The processes given by ADM1 (Anaerobic Digestion Model 1) were taken for verification of the model. The proposed model was verified by comparing the results of Gillespie's algorithms with the deterministic solution for conversion of glucose into methane through degraders. At higher value of 'τ' (timestep), the computational time required for reaching the steady state is more since the number of chosen reactions is less. When the simulation time step is reduced, the results are similar to ODE solver. It was concluded that the stochastic algorithm is a suitable approach for the simulation of complex anaerobic digestion processes. The accuracy of the results depends on the optimum selection of tau value.

  20. Modeling nanoparticle uptake and intracellular distribution using stochastic process algebras

    Energy Technology Data Exchange (ETDEWEB)

    Dobay, M. P. D., E-mail: maria.pamela.david@physik.uni-muenchen.de; Alberola, A. Piera; Mendoza, E. R.; Raedler, J. O., E-mail: joachim.raedler@physik.uni-muenchen.de [Ludwig-Maximilians University, Faculty of Physics, Center for NanoScience (Germany)

    2012-03-15

    Computational modeling is increasingly important to help understand the interaction and movement of nanoparticles (NPs) within living cells, and to come to terms with the wealth of data that microscopy imaging yields. A quantitative description of the spatio-temporal distribution of NPs inside cells; however, it is challenging due to the complexity of multiple compartments such as endosomes and nuclei, which themselves are dynamic and can undergo fusion and fission and exchange their content. Here, we show that stochastic pi calculus, a widely-used process algebra, is well suited for mapping surface and intracellular NP interactions and distributions. In stochastic pi calculus, each NP is represented as a process, which can adopt various states such as bound or aggregated, as well as be passed between processes representing location, as a function of predefined stochastic channels. We created a pi calculus model of gold NP uptake and intracellular movement and compared the evolution of surface-bound, cytosolic, endosomal, and nuclear NP densities with electron microscopy data. We demonstrate that the computational approach can be extended to include specific molecular binding and potential interaction with signaling cascades as characteristic for NP-cell interactions in a wide range of applications such as nanotoxicity, viral infection, and drug delivery.

  1. Modeling nanoparticle uptake and intracellular distribution using stochastic process algebras

    International Nuclear Information System (INIS)

    Dobay, M. P. D.; Alberola, A. Piera; Mendoza, E. R.; Rädler, J. O.

    2012-01-01

    Computational modeling is increasingly important to help understand the interaction and movement of nanoparticles (NPs) within living cells, and to come to terms with the wealth of data that microscopy imaging yields. A quantitative description of the spatio-temporal distribution of NPs inside cells; however, it is challenging due to the complexity of multiple compartments such as endosomes and nuclei, which themselves are dynamic and can undergo fusion and fission and exchange their content. Here, we show that stochastic pi calculus, a widely-used process algebra, is well suited for mapping surface and intracellular NP interactions and distributions. In stochastic pi calculus, each NP is represented as a process, which can adopt various states such as bound or aggregated, as well as be passed between processes representing location, as a function of predefined stochastic channels. We created a pi calculus model of gold NP uptake and intracellular movement and compared the evolution of surface-bound, cytosolic, endosomal, and nuclear NP densities with electron microscopy data. We demonstrate that the computational approach can be extended to include specific molecular binding and potential interaction with signaling cascades as characteristic for NP-cell interactions in a wide range of applications such as nanotoxicity, viral infection, and drug delivery.

  2. Modeling nanoparticle uptake and intracellular distribution using stochastic process algebras

    Science.gov (United States)

    Dobay, M. P. D.; Alberola, A. Piera; Mendoza, E. R.; Rädler, J. O.

    2012-03-01

    Computational modeling is increasingly important to help understand the interaction and movement of nanoparticles (NPs) within living cells, and to come to terms with the wealth of data that microscopy imaging yields. A quantitative description of the spatio-temporal distribution of NPs inside cells; however, it is challenging due to the complexity of multiple compartments such as endosomes and nuclei, which themselves are dynamic and can undergo fusion and fission and exchange their content. Here, we show that stochastic pi calculus, a widely-used process algebra, is well suited for mapping surface and intracellular NP interactions and distributions. In stochastic pi calculus, each NP is represented as a process, which can adopt various states such as bound or aggregated, as well as be passed between processes representing location, as a function of predefined stochastic channels. We created a pi calculus model of gold NP uptake and intracellular movement and compared the evolution of surface-bound, cytosolic, endosomal, and nuclear NP densities with electron microscopy data. We demonstrate that the computational approach can be extended to include specific molecular binding and potential interaction with signaling cascades as characteristic for NP-cell interactions in a wide range of applications such as nanotoxicity, viral infection, and drug delivery.

  3. Random migration processes between two stochastic epidemic centers.

    Science.gov (United States)

    Sazonov, Igor; Kelbert, Mark; Gravenor, Michael B

    2016-04-01

    We consider the epidemic dynamics in stochastic interacting population centers coupled by random migration. Both the epidemic and the migration processes are modeled by Markov chains. We derive explicit formulae for the probability distribution of the migration process, and explore the dependence of outbreak patterns on initial parameters, population sizes and coupling parameters, using analytical and numerical methods. We show the importance of considering the movement of resident and visitor individuals separately. The mean field approximation for a general migration process is derived and an approximate method that allows the computation of statistical moments for networks with highly populated centers is proposed and tested numerically. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Quantitative Sociodynamics Stochastic Methods and Models of Social Interaction Processes

    CERN Document Server

    Helbing, Dirk

    2010-01-01

    This new edition of Quantitative Sociodynamics presents a general strategy for interdisciplinary model building and its application to a quantitative description of behavioral changes based on social interaction processes. Originally, the crucial methods for the modeling of complex systems (stochastic methods and nonlinear dynamics) were developed in physics and mathematics, but they have very often proven their explanatory power in chemistry, biology, economics and the social sciences as well. Quantitative Sociodynamics provides a unified and comprehensive overview of the different stochastic methods, their interrelations and properties. In addition, it introduces important concepts from nonlinear dynamics (e.g. synergetics, chaos theory). The applicability of these fascinating concepts to social phenomena is carefully discussed. By incorporating decision-theoretical approaches, a fundamental dynamic model is obtained, which opens new perspectives in the social sciences. It includes many established models a...

  5. Quantitative sociodynamics stochastic methods and models of social interaction processes

    CERN Document Server

    Helbing, Dirk

    1995-01-01

    Quantitative Sociodynamics presents a general strategy for interdisciplinary model building and its application to a quantitative description of behavioural changes based on social interaction processes. Originally, the crucial methods for the modeling of complex systems (stochastic methods and nonlinear dynamics) were developed in physics but they have very often proved their explanatory power in chemistry, biology, economics and the social sciences. Quantitative Sociodynamics provides a unified and comprehensive overview of the different stochastic methods, their interrelations and properties. In addition, it introduces the most important concepts from nonlinear dynamics (synergetics, chaos theory). The applicability of these fascinating concepts to social phenomena is carefully discussed. By incorporating decision-theoretical approaches a very fundamental dynamic model is obtained which seems to open new perspectives in the social sciences. It includes many established models as special cases, e.g. the log...

  6. Multiple-scale stochastic processes: Decimation, averaging and beyond

    Energy Technology Data Exchange (ETDEWEB)

    Bo, Stefano, E-mail: stefano.bo@nordita.org [Nordita, KTH Royal Institute of Technology and Stockholm University, Roslagstullsbacken 23, SE-106 91 Stockholm (Sweden); Celani, Antonio [Quantitative Life Sciences, The Abdus Salam International Centre for Theoretical Physics (ICTP), Strada Costiera 11, I-34151 - Trieste (Italy)

    2017-02-07

    The recent experimental progresses in handling microscopic systems have allowed to probe them at levels where fluctuations are prominent, calling for stochastic modeling in a large number of physical, chemical and biological phenomena. This has provided fruitful applications for established stochastic methods and motivated further developments. These systems often involve processes taking place on widely separated time scales. For an efficient modeling one usually focuses on the slower degrees of freedom and it is of great importance to accurately eliminate the fast variables in a controlled fashion, carefully accounting for their net effect on the slower dynamics. This procedure in general requires to perform two different operations: decimation and coarse-graining. We introduce the asymptotic methods that form the basis of this procedure and discuss their application to a series of physical, biological and chemical examples. We then turn our attention to functionals of the stochastic trajectories such as residence times, counting statistics, fluxes, entropy production, etc. which have been increasingly studied in recent years. For such functionals, the elimination of the fast degrees of freedom can present additional difficulties and naive procedures can lead to blatantly inconsistent results. Homogenization techniques for functionals are less covered in the literature and we will pedagogically present them here, as natural extensions of the ones employed for the trajectories. We will also discuss recent applications of these techniques to the thermodynamics of small systems and their interpretation in terms of information-theoretic concepts.

  7. Multilevel Approximations of Markovian Jump Processes with Applications in Communication Networks

    KAUST Repository

    Vilanova, Pedro

    2015-05-04

    This thesis focuses on the development and analysis of efficient simulation and inference techniques for Markovian pure jump processes with a view towards applications in dense communication networks. These techniques are especially relevant for modeling networks of smart devices —tiny, abundant microprocessors with integrated sensors and wireless communication abilities— that form highly complex and diverse communication networks. During 2010, the number of devices connected to the Internet exceeded the number of people on Earth: over 12.5 billion devices. By 2015, Cisco’s Internet Business Solutions Group predicts that this number will exceed 25 billion. The first part of this work proposes novel numerical methods to estimate, in an efficient and accurate way, observables from realizations of Markovian jump processes. In particular, hybrid Monte Carlo type methods are developed that combine the exact and approximate simulation algorithms to exploit their respective advantages. These methods are tailored to keep a global computational error below a prescribed global error tolerance and within a given statistical confidence level. Indeed, the computational work of these methods is similar to the one of an exact method, but with a smaller constant. Finally, the methods are extended to systems with a disparity of time scales. The second part develops novel inference methods to estimate the parameters of Markovian pure jump process. First, an indirect inference approach is presented, which is based on upscaled representations and does not require sampling. This method is simpler than dealing directly with the likelihood of the process, which, in general, cannot be expressed in closed form and whose maximization requires computationally intensive sampling techniques. Second, a forward-reverse Monte Carlo Expectation-Maximization algorithm is provided to approximate a local maximum or saddle point of the likelihood function of the parameters given a set of

  8. From quantum mechanics to finance: Microfoundations for jumps, spikes and high volatility phases in diffusion price processes

    Science.gov (United States)

    Henkel, Christof

    2017-03-01

    We present an agent behavior based microscopic model that induces jumps, spikes and high volatility phases in the price process of a traded asset. We transfer dynamics of thermally activated jumps of an unexcited/excited two state system discussed in the context of quantum mechanics to agent socio-economic behavior and provide microfoundations. After we link the endogenous agent behavior to price dynamics we establish the circumstances under which the dynamics converge to an Itô-diffusion price processes in the large market limit.

  9. Simulation of Stochastic Processes by Coupled ODE-PDE

    Science.gov (United States)

    Zak, Michail

    2008-01-01

    A document discusses the emergence of randomness in solutions of coupled, fully deterministic ODE-PDE (ordinary differential equations-partial differential equations) due to failure of the Lipschitz condition as a new phenomenon. It is possible to exploit the special properties of ordinary differential equations (represented by an arbitrarily chosen, dynamical system) coupled with the corresponding Liouville equations (used to describe the evolution of initial uncertainties in terms of joint probability distribution) in order to simulate stochastic processes with the proscribed probability distributions. The important advantage of the proposed approach is that the simulation does not require a random-number generator.

  10. An extension of clarke's model with stochastic amplitude flip processes

    KAUST Repository

    Hoel, Hakon

    2014-07-01

    Stochastic modeling is an essential tool for studying statistical properties of wireless channels. In multipath fading channel (MFC) models, the signal reception is modeled by a sum of wave path contributions, and Clarke\\'s model is an important example of such which has been widely accepted in many wireless applications. However, since Clarke\\'s model is temporally deterministic, Feng and Field noted that it does not model real wireless channels with time-varying randomness well. Here, we extend Clarke\\'s model to a novel time-varying stochastic MFC model with scatterers randomly flipping on and off. Statistical properties of the MFC model are analyzed and shown to fit well with real signal measurements, and a limit Gaussian process is derived from the model when the number of active wave paths tends to infinity. A second focus of this work is a comparison study of the error and computational cost of generating signal realizations from the MFC model and from its limit Gaussian process. By rigorous analysis and numerical studies, we show that in many settings, signal realizations are generated more efficiently by Gaussian process algorithms than by the MFC model\\'s algorithm. Numerical examples that strengthen these observations are also presented. © 2014 IEEE.

  11. Accelerating population balance-Monte Carlo simulation for coagulation dynamics from the Markov jump model, stochastic algorithm and GPU parallel computing

    International Nuclear Information System (INIS)

    Xu, Zuwei; Zhao, Haibo; Zheng, Chuguang

    2015-01-01

    This paper proposes a comprehensive framework for accelerating population balance-Monte Carlo (PBMC) simulation of particle coagulation dynamics. By combining Markov jump model, weighted majorant kernel and GPU (graphics processing unit) parallel computing, a significant gain in computational efficiency is achieved. The Markov jump model constructs a coagulation-rule matrix of differentially-weighted simulation particles, so as to capture the time evolution of particle size distribution with low statistical noise over the full size range and as far as possible to reduce the number of time loopings. Here three coagulation rules are highlighted and it is found that constructing appropriate coagulation rule provides a route to attain the compromise between accuracy and cost of PBMC methods. Further, in order to avoid double looping over all simulation particles when considering the two-particle events (typically, particle coagulation), the weighted majorant kernel is introduced to estimate the maximum coagulation rates being used for acceptance–rejection processes by single-looping over all particles, and meanwhile the mean time-step of coagulation event is estimated by summing the coagulation kernels of rejected and accepted particle pairs. The computational load of these fast differentially-weighted PBMC simulations (based on the Markov jump model) is reduced greatly to be proportional to the number of simulation particles in a zero-dimensional system (single cell). Finally, for a spatially inhomogeneous multi-dimensional (multi-cell) simulation, the proposed fast PBMC is performed in each cell, and multiple cells are parallel processed by multi-cores on a GPU that can implement the massively threaded data-parallel tasks to obtain remarkable speedup ratio (comparing with CPU computation, the speedup ratio of GPU parallel computing is as high as 200 in a case of 100 cells with 10 000 simulation particles per cell). These accelerating approaches of PBMC are

  12. Time Series, Stochastic Processes and Completeness of Quantum Theory

    International Nuclear Information System (INIS)

    Kupczynski, Marian

    2011-01-01

    Most of physical experiments are usually described as repeated measurements of some random variables. Experimental data registered by on-line computers form time series of outcomes. The frequencies of different outcomes are compared with the probabilities provided by the algorithms of quantum theory (QT). In spite of statistical predictions of QT a claim was made that it provided the most complete description of the data and of the underlying physical phenomena. This claim could be easily rejected if some fine structures, averaged out in the standard descriptive statistical analysis, were found in time series of experimental data. To search for these structures one has to use more subtle statistical tools which were developed to study time series produced by various stochastic processes. In this talk we review some of these tools. As an example we show how the standard descriptive statistical analysis of the data is unable to reveal a fine structure in a simulated sample of AR (2) stochastic process. We emphasize once again that the violation of Bell inequalities gives no information on the completeness or the non locality of QT. The appropriate way to test the completeness of quantum theory is to search for fine structures in time series of the experimental data by means of the purity tests or by studying the autocorrelation and partial autocorrelation functions.

  13. Nonparametric estimation of stochastic differential equations with sparse Gaussian processes.

    Science.gov (United States)

    García, Constantino A; Otero, Abraham; Félix, Paulo; Presedo, Jesús; Márquez, David G

    2017-08-01

    The application of stochastic differential equations (SDEs) to the analysis of temporal data has attracted increasing attention, due to their ability to describe complex dynamics with physically interpretable equations. In this paper, we introduce a nonparametric method for estimating the drift and diffusion terms of SDEs from a densely observed discrete time series. The use of Gaussian processes as priors permits working directly in a function-space view and thus the inference takes place directly in this space. To cope with the computational complexity that requires the use of Gaussian processes, a sparse Gaussian process approximation is provided. This approximation permits the efficient computation of predictions for the drift and diffusion terms by using a distribution over a small subset of pseudosamples. The proposed method has been validated using both simulated data and real data from economy and paleoclimatology. The application of the method to real data demonstrates its ability to capture the behavior of complex systems.

  14. Stability of impulsive systems driven by renewal processes

    NARCIS (Netherlands)

    Guerreiro Tome Antunes, D.J.; Hespanha, J.P.; Silvestre, C.J.

    2009-01-01

    Necessary and sufficient conditions are provided for stochastic stability and mean exponential stability of impulsive systems with jumps triggered by a renewal process, that is, the intervals between jumps are independent and identically distributed. The conditions for stochastic stability can be

  15. Evolution and mass extinctions as lognormal stochastic processes

    Science.gov (United States)

    Maccone, Claudio

    2014-10-01

    In a series of recent papers and in a book, this author put forward a mathematical model capable of embracing the search for extra-terrestrial intelligence (SETI), Darwinian Evolution and Human History into a single, unified statistical picture, concisely called Evo-SETI. The relevant mathematical tools are: (1) Geometric Brownian motion (GBM), the stochastic process representing evolution as the stochastic increase of the number of species living on Earth over the last 3.5 billion years. This GBM is well known in the mathematics of finances (Black-Sholes models). Its main features are that its probability density function (pdf) is a lognormal pdf, and its mean value is either an increasing or, more rarely, decreasing exponential function of the time. (2) The probability distributions known as b-lognormals, i.e. lognormals starting at a certain positive instant b>0 rather than at the origin. These b-lognormals were then forced by us to have their peak value located on the exponential mean-value curve of the GBM (Peak-Locus theorem). In the framework of Darwinian Evolution, the resulting mathematical construction was shown to be what evolutionary biologists call Cladistics. (3) The (Shannon) entropy of such b-lognormals is then seen to represent the `degree of progress' reached by each living organism or by each big set of living organisms, like historic human civilizations. Having understood this fact, human history may then be cast into the language of b-lognormals that are more and more organized in time (i.e. having smaller and smaller entropy, or smaller and smaller `chaos'), and have their peaks on the increasing GBM exponential. This exponential is thus the `trend of progress' in human history. (4) All these results also match with SETI in that the statistical Drake equation (generalization of the ordinary Drake equation to encompass statistics) leads just to the lognormal distribution as the probability distribution for the number of extra

  16. Efficient rare-event simulation for multiple jump events in regularly varying random walks and compound Poisson processes

    NARCIS (Netherlands)

    B. Chen (Bohan); J. Blanchet; C.H. Rhee (Chang-Han); A.P. Zwart (Bert)

    2017-01-01

    textabstractWe propose a class of strongly efficient rare event simulation estimators for random walks and compound Poisson processes with a regularly varying increment/jump-size distribution in a general large deviations regime. Our estimator is based on an importance sampling strategy that hinges

  17. Suprathreshold stochastic resonance in neural processing tuned by correlation.

    Science.gov (United States)

    Durrant, Simon; Kang, Yanmei; Stocks, Nigel; Feng, Jianfeng

    2011-07-01

    Suprathreshold stochastic resonance (SSR) is examined in the context of integrate-and-fire neurons, with an emphasis on the role of correlation in the neuronal firing. We employed a model based on a network of spiking neurons which received synaptic inputs modeled by Poisson processes stimulated by a stepped input signal. The smoothed ensemble firing rate provided an output signal, and the mutual information between this signal and the input was calculated for networks with different noise levels and different numbers of neurons. It was found that an SSR effect was present in this context. We then examined a more biophysically plausible scenario where the noise was not controlled directly, but instead was tuned by the correlation between the inputs. The SSR effect remained present in this scenario with nonzero noise providing improved information transmission, and it was found that negative correlation between the inputs was optimal. Finally, an examination of SSR in the context of this model revealed its connection with more traditional stochastic resonance and showed a trade-off between supratheshold and subthreshold components. We discuss these results in the context of existing empirical evidence concerning correlations in neuronal firing.

  18. Stochastic investigation of precipitation process for climatic variability identification

    Science.gov (United States)

    Sotiriadou, Alexia; Petsiou, Amalia; Feloni, Elisavet; Kastis, Paris; Iliopoulou, Theano; Markonis, Yannis; Tyralis, Hristos; Dimitriadis, Panayiotis; Koutsoyiannis, Demetris

    2016-04-01

    The precipitation process is important not only to hydrometeorology but also to renewable energy resources management. We use a dataset consisting of daily and hourly records around the globe to identify statistical variability with emphasis on the last period. Specifically, we investigate the occurrence of mean, maximum and minimum values and we estimate statistical properties such as marginal probability distribution function and the type of decay of the climacogram (i.e., mean process variance vs. scale). Acknowledgement: This research is conducted within the frame of the undergraduate course "Stochastic Methods in Water Resources" of the National Technical University of Athens (NTUA). The School of Civil Engineering of NTUA provided moral support for the participation of the students in the Assembly.

  19. Time-variant reliability assessment through equivalent stochastic process transformation

    International Nuclear Information System (INIS)

    Wang, Zequn; Chen, Wei

    2016-01-01

    Time-variant reliability measures the probability that an engineering system successfully performs intended functions over a certain period of time under various sources of uncertainty. In practice, it is computationally prohibitive to propagate uncertainty in time-variant reliability assessment based on expensive or complex numerical models. This paper presents an equivalent stochastic process transformation approach for cost-effective prediction of reliability deterioration over the life cycle of an engineering system. To reduce the high dimensionality, a time-independent reliability model is developed by translating random processes and time parameters into random parameters in order to equivalently cover all potential failures that may occur during the time interval of interest. With the time-independent reliability model, an instantaneous failure surface is attained by using a Kriging-based surrogate model to identify all potential failure events. To enhance the efficacy of failure surface identification, a maximum confidence enhancement method is utilized to update the Kriging model sequentially. Then, the time-variant reliability is approximated using Monte Carlo simulations of the Kriging model where system failures over a time interval are predicted by the instantaneous failure surface. The results of two case studies demonstrate that the proposed approach is able to accurately predict the time evolution of system reliability while requiring much less computational efforts compared with the existing analytical approach. - Highlights: • Developed a new approach for time-variant reliability analysis. • Proposed a novel stochastic process transformation procedure to reduce the dimensionality. • Employed Kriging models with confidence-based adaptive sampling scheme to enhance computational efficiency. • The approach is effective for handling random process in time-variant reliability analysis. • Two case studies are used to demonstrate the efficacy

  20. Statistical Methods for Stochastic Differential Equations

    CERN Document Server

    Kessler, Mathieu; Sorensen, Michael

    2012-01-01

    The seventh volume in the SemStat series, Statistical Methods for Stochastic Differential Equations presents current research trends and recent developments in statistical methods for stochastic differential equations. Written to be accessible to both new students and seasoned researchers, each self-contained chapter starts with introductions to the topic at hand and builds gradually towards discussing recent research. The book covers Wiener-driven equations as well as stochastic differential equations with jumps, including continuous-time ARMA processes and COGARCH processes. It presents a sp

  1. QUANTUM STOCHASTIC PROCESSES: BOSON AND FERMION BROWNIAN MOTION

    Directory of Open Access Journals (Sweden)

    A.E.Kobryn

    2003-01-01

    Full Text Available Dynamics of quantum systems which are stochastically perturbed by linear coupling to the reservoir can be studied in terms of quantum stochastic differential equations (for example, quantum stochastic Liouville equation and quantum Langevin equation. In order to work it out one needs to define the quantum Brownian motion. As far as only its boson version has been known until recently, in the present paper we present the definition which makes it possible to consider the fermion Brownian motion as well.

  2. A measure theoretical approach to quantum stochastic processes

    Energy Technology Data Exchange (ETDEWEB)

    Waldenfels, Wilhelm von

    2014-04-01

    Authored by a leading researcher in the field. Self-contained presentation of the subject matter. Examines a number of worked examples in detail. This monograph takes as starting point that abstract quantum stochastic processes can be understood as a quantum field theory in one space and in one time coordinate. As a result it is appropriate to represent operators as power series of creation and annihilation operators in normal-ordered form, which can be achieved using classical measure theory. Considering in detail four basic examples (e.g. a two-level atom coupled to a heat bath of oscillators), in each case the Hamiltonian of the associated one-parameter strongly continuous group is determined and the spectral decomposition is explicitly calculated in the form of generalized eigen-vectors. Advanced topics include the theory of the Hudson-Parthasarathy equation and the amplified oscillator problem. To that end, a chapter on white noise calculus has also been included.

  3. Stochastic calculus for fractional Brownian motion and related processes

    CERN Document Server

    Mishura, Yuliya S

    2008-01-01

    The theory of fractional Brownian motion and other long-memory processes are addressed in this volume. Interesting topics for PhD students and specialists in probability theory, stochastic analysis and financial mathematics demonstrate the modern level of this field. Among these are results about Levy characterization of fractional Brownian motion, maximal moment inequalities for Wiener integrals including the values 0

  4. Kolmogorov's refined similarity hypotheses for turbulence and general stochastic processes

    International Nuclear Information System (INIS)

    Stolovitzky, G.; Sreenivasan, K.R.

    1994-01-01

    Kolmogorov's refined similarity hypotheses are shown to hold true for a variety of stochastic processes besides high-Reynolds-number turbulent flows, for which they were originally proposed. In particular, just as hypothesized for turbulence, there exists a variable V whose probability density function attains a universal form. Analytical expressions for the probability density function of V are obtained for Brownian motion as well as for the general case of fractional Brownian motion---the latter under some mild assumptions justified a posteriori. The properties of V for the case of antipersistent fractional Brownian motion with the Hurst exponent of 1/3 are similar in many details to those of high-Reynolds-number turbulence in atmospheric boundary layers a few meters above the ground. The one conspicuous difference between turbulence and the antipersistent fractional Brownian motion is that the latter does not possess the required skewness. Broad implications of these results are discussed

  5. A measure theoretical approach to quantum stochastic processes

    CERN Document Server

    Von Waldenfels, Wilhelm

    2014-01-01

    This monograph takes as starting point that abstract quantum stochastic processes can be understood as a quantum field theory in one space and in one time coordinate. As a result it is appropriate to represent operators as power series of creation and annihilation operators in normal-ordered form, which can be achieved using classical measure theory. Considering in detail four basic examples (e.g. a two-level atom coupled to a heat bath of oscillators), in each case the Hamiltonian of the associated one-parameter strongly continuous group is determined and the spectral decomposition is explicitly calculated in the form of generalized eigen-vectors. Advanced topics include the theory of the Hudson-Parthasarathy equation and the amplified oscillator problem. To that end, a chapter on white noise calculus has also been included.

  6. SUPERPOSITION OF STOCHASTIC PROCESSES AND THE RESULTING PARTICLE DISTRIBUTIONS

    International Nuclear Information System (INIS)

    Schwadron, N. A.; Dayeh, M. A.; Desai, M.; Fahr, H.; Jokipii, J. R.; Lee, M. A.

    2010-01-01

    Many observations of suprathermal and energetic particles in the solar wind and the inner heliosheath show that distribution functions scale approximately with the inverse of particle speed (v) to the fifth power. Although there are exceptions to this behavior, there is a growing need to understand why this type of distribution function appears so frequently. This paper develops the concept that a superposition of exponential and Gaussian distributions with different characteristic speeds and temperatures show power-law tails. The particular type of distribution function, f ∝ v -5 , appears in a number of different ways: (1) a series of Poisson-like processes where entropy is maximized with the rates of individual processes inversely proportional to the characteristic exponential speed, (2) a series of Gaussian distributions where the entropy is maximized with the rates of individual processes inversely proportional to temperature and the density of individual Gaussian distributions proportional to temperature, and (3) a series of different diffusively accelerated energetic particle spectra with individual spectra derived from observations (1997-2002) of a multiplicity of different shocks. Thus, we develop a proof-of-concept for the superposition of stochastic processes that give rise to power-law distribution functions.

  7. Stochastic process corrosion growth models for pipeline reliability

    International Nuclear Information System (INIS)

    Bazán, Felipe Alexander Vargas; Beck, André Teófilo

    2013-01-01

    Highlights: •Novel non-linear stochastic process corrosion growth model is proposed. •Corrosion rate modeled as random Poisson pulses. •Time to corrosion initiation and inherent time-variability properly represented. •Continuous corrosion growth histories obtained. •Model is shown to precisely fit actual corrosion data at two time points. -- Abstract: Linear random variable corrosion models are extensively employed in reliability analysis of pipelines. However, linear models grossly neglect well-known characteristics of the corrosion process. Herein, a non-linear model is proposed, where corrosion rate is represented as a Poisson square wave process. The resulting model represents inherent time-variability of corrosion growth, produces continuous growth and leads to mean growth at less-than-one power of time. Different corrosion models are adjusted to the same set of actual corrosion data for two inspections. The proposed non-linear random process corrosion growth model leads to the best fit to the data, while better representing problem physics

  8. The Impact of Jump Distributions on the Implied Volatility of Variance

    DEFF Research Database (Denmark)

    Nicolato, Elisa; Pisani, Camilla; Pedersen, David Sloth

    2017-01-01

    We consider a tractable affine stochastic volatility model that generalizes the seminal Heston (1993) model by augmenting it with jumps in the instantaneous variance process. In this framework, we consider both realized variance options and VIX options, and we examine the impact of the distribution...... of jumps on the associated implied volatility smile. We provide sufficient conditions for the asymptotic behavior of the implied volatility of variance for small and large strikes. In particular, by selecting alternative jump distributions, we show that one can obtain fundamentally different shapes...

  9. Profiles of the stochastic star formation process in spiral galaxies

    International Nuclear Information System (INIS)

    Comins, N.

    1981-01-01

    The formation of spiral arms in disc galaxies is generally attributed to the effects of spiral density waves. These relatively small (i.e. 5 per cent) non-axisymmetric perturbations of the interstellar medium cause spiral arms highlighted by O and B type stars to be created. In this paper another mechanism for spiral arm formation, the stochastic self-propagating star formation (SSPSF) process is examined. The SSPSF process combines the theory that shock waves from supernovae will compress the interstellar medium to create new stars, some of which will be massive enough to also supernova, with a disc galaxy's differential rotation to create spiral arms. The present work extends this process to the case where the probability of star formation from supernova shocks decreases with galactic radius. Where this work and previous investigations overlap (namely the uniform probability case), the agreement is very good, pretty spirals with various numbers of arms are generated. The decreasing probability cases, taken to vary as rsup(-j), still form spiral arms for 0 1.5 the spiral structure is essentially non-existent. (author)

  10. Heterogeneous recurrence monitoring and control of nonlinear stochastic processes

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Hui, E-mail: huiyang@usf.edu; Chen, Yun [Complex Systems Monitoring, Modeling and Analysis Laboratory, University of South Florida, Tampa, Florida 33620 (United States)

    2014-03-15

    Recurrence is one of the most common phenomena in natural and engineering systems. Process monitoring of dynamic transitions in nonlinear and nonstationary systems is more concerned with aperiodic recurrences and recurrence variations. However, little has been done to investigate the heterogeneous recurrence variations and link with the objectives of process monitoring and anomaly detection. Notably, nonlinear recurrence methodologies are based on homogeneous recurrences, which treat all recurrence states in the same way as black dots, and non-recurrence is white in recurrence plots. Heterogeneous recurrences are more concerned about the variations of recurrence states in terms of state properties (e.g., values and relative locations) and the evolving dynamics (e.g., sequential state transitions). This paper presents a novel approach of heterogeneous recurrence analysis that utilizes a new fractal representation to delineate heterogeneous recurrence states in multiple scales, including the recurrences of both single states and multi-state sequences. Further, we developed a new set of heterogeneous recurrence quantifiers that are extracted from fractal representation in the transformed space. To that end, we integrated multivariate statistical control charts with heterogeneous recurrence analysis to simultaneously monitor two or more related quantifiers. Experimental results on nonlinear stochastic processes show that the proposed approach not only captures heterogeneous recurrence patterns in the fractal representation but also effectively monitors the changes in the dynamics of a complex system.

  11. Stochastic simulation of destruction processes in self-irradiated materials

    Directory of Open Access Journals (Sweden)

    T. Patsahan

    2017-09-01

    Full Text Available Self-irradiation damages resulting from fission processes are common phenomena observed in nuclear fuel containing (NFC materials. Numerous α-decays lead to local structure transformations in NFC materials. The damages appearing due to the impacts of heavy nuclear recoils in the subsurface layer can cause detachments of material particles. Such a behaviour is similar to sputtering processes observed during a bombardment of the material surface by a flux of energetic particles. However, in the NFC material, the impacts are initiated from the bulk. In this work we propose a two-dimensional mesoscopic model to perform a stochastic simulation of the destruction processes occurring in a subsurface region of NFC material. We describe the erosion of the material surface, the evolution of its roughness and predict the detachment of the material particles. Size distributions of the emitted particles are obtained in this study. The simulation results of the model are in a qualitative agreement with the size histogram of particles produced from the material containing lava-like fuel formed during the Chernobyl nuclear power plant disaster.

  12. Jumping Dynamics

    DEFF Research Database (Denmark)

    Sannino, Francesco

    2013-01-01

    paradigm the physical scale and henceforth also the massive spectrum of the theory jump at the lower boundary of the conformal window. In particular we propose that a theory can suddenly jump from a Quantum Chromodynamics type spectrum, at the lower boundary of the conformal window, to a conformal one...... without particle interpretation. The jumping scenario, therefore, does not support a near-conformal dynamics of walking type. We will also discuss the impact of jumping dynamics on the construction of models of dynamical electroweak symmetry breaking....

  13. Stochastic model of template-directed elongation processes in biology.

    Science.gov (United States)

    Schilstra, Maria J; Nehaniv, Chrystopher L

    2010-10-01

    We present a novel modular, stochastic model for biological template-based linear chain elongation processes. In this model, elongation complexes (ECs; DNA polymerase, RNA polymerase, or ribosomes associated with nascent chains) that span a finite number of template units step along the template, one after another, with semaphore constructs preventing overtaking. The central elongation module is readily extended with modules that represent initiation and termination processes. The model was used to explore the effect of EC span on motor velocity and dispersion, and the effect of initiation activator and repressor binding kinetics on the overall elongation dynamics. The results demonstrate that (1) motors that move smoothly are able to travel at a greater velocity and closer together than motors that move more erratically, and (2) the rate at which completed chains are released is proportional to the occupancy or vacancy of activator or repressor binding sites only when initiation or activator/repressor dissociation is slow in comparison with elongation. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  14. Stochastic growth logistic model with aftereffect for batch fermentation process

    Science.gov (United States)

    Rosli, Norhayati; Ayoubi, Tawfiqullah; Bahar, Arifah; Rahman, Haliza Abdul; Salleh, Madihah Md

    2014-06-01

    In this paper, the stochastic growth logistic model with aftereffect for the cell growth of C. acetobutylicum P262 and Luedeking-Piret equations for solvent production in batch fermentation system is introduced. The parameters values of the mathematical models are estimated via Levenberg-Marquardt optimization method of non-linear least squares. We apply Milstein scheme for solving the stochastic models numerically. The effciency of mathematical models is measured by comparing the simulated result and the experimental data of the microbial growth and solvent production in batch system. Low values of Root Mean-Square Error (RMSE) of stochastic models with aftereffect indicate good fits.

  15. Stochastic growth logistic model with aftereffect for batch fermentation process

    International Nuclear Information System (INIS)

    Rosli, Norhayati; Ayoubi, Tawfiqullah; Bahar, Arifah; Rahman, Haliza Abdul; Salleh, Madihah Md

    2014-01-01

    In this paper, the stochastic growth logistic model with aftereffect for the cell growth of C. acetobutylicum P262 and Luedeking-Piret equations for solvent production in batch fermentation system is introduced. The parameters values of the mathematical models are estimated via Levenberg-Marquardt optimization method of non-linear least squares. We apply Milstein scheme for solving the stochastic models numerically. The effciency of mathematical models is measured by comparing the simulated result and the experimental data of the microbial growth and solvent production in batch system. Low values of Root Mean-Square Error (RMSE) of stochastic models with aftereffect indicate good fits

  16. Stochastic growth logistic model with aftereffect for batch fermentation process

    Energy Technology Data Exchange (ETDEWEB)

    Rosli, Norhayati; Ayoubi, Tawfiqullah [Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang, Lebuhraya Tun Razak, 26300 Gambang, Pahang (Malaysia); Bahar, Arifah; Rahman, Haliza Abdul [Department of Mathematical Sciences, Faculty of Science, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor (Malaysia); Salleh, Madihah Md [Department of Biotechnology Industry, Faculty of Biosciences and Bioengineering, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor (Malaysia)

    2014-06-19

    In this paper, the stochastic growth logistic model with aftereffect for the cell growth of C. acetobutylicum P262 and Luedeking-Piret equations for solvent production in batch fermentation system is introduced. The parameters values of the mathematical models are estimated via Levenberg-Marquardt optimization method of non-linear least squares. We apply Milstein scheme for solving the stochastic models numerically. The effciency of mathematical models is measured by comparing the simulated result and the experimental data of the microbial growth and solvent production in batch system. Low values of Root Mean-Square Error (RMSE) of stochastic models with aftereffect indicate good fits.

  17. Stochastic Modelling, Analysis, and Simulations of the Solar Cycle Dynamic Process

    Science.gov (United States)

    Turner, Douglas C.; Ladde, Gangaram S.

    2018-03-01

    Analytical solutions, discretization schemes and simulation results are presented for the time delay deterministic differential equation model of the solar dynamo presented by Wilmot-Smith et al. In addition, this model is extended under stochastic Gaussian white noise parametric fluctuations. The introduction of stochastic fluctuations incorporates variables affecting the dynamo process in the solar interior, estimation error of parameters, and uncertainty of the α-effect mechanism. Simulation results are presented and analyzed to exhibit the effects of stochastic parametric volatility-dependent perturbations. The results generalize and extend the work of Hazra et al. In fact, some of these results exhibit the oscillatory dynamic behavior generated by the stochastic parametric additative perturbations in the absence of time delay. In addition, the simulation results of the modified stochastic models influence the change in behavior of the very recently developed stochastic model of Hazra et al.

  18. Stochastic chaos induced by diffusion processes with identical spectral density but different probability density functions.

    Science.gov (United States)

    Lei, Youming; Zheng, Fan

    2016-12-01

    Stochastic chaos induced by diffusion processes, with identical spectral density but different probability density functions (PDFs), is investigated in selected lightly damped Hamiltonian systems. The threshold amplitude of diffusion processes for the onset of chaos is derived by using the stochastic Melnikov method together with a mean-square criterion. Two quasi-Hamiltonian systems, namely, a damped single pendulum and damped Duffing oscillator perturbed by stochastic excitations, are used as illustrative examples. Four different cases of stochastic processes are taking as the driving excitations. It is shown that in such two systems the spectral density of diffusion processes completely determines the threshold amplitude for chaos, regardless of the shape of their PDFs, Gaussian or otherwise. Furthermore, the mean top Lyapunov exponent is employed to verify analytical results. The results obtained by numerical simulations are in accordance with the analytical results. This demonstrates that the stochastic Melnikov method is effective in predicting the onset of chaos in the quasi-Hamiltonian systems.

  19. Stochastic volatility and stochastic leverage

    DEFF Research Database (Denmark)

    Veraart, Almut; Veraart, Luitgard A. M.

    This paper proposes the new concept of stochastic leverage in stochastic volatility models. Stochastic leverage refers to a stochastic process which replaces the classical constant correlation parameter between the asset return and the stochastic volatility process. We provide a systematic...... treatment of stochastic leverage and propose to model the stochastic leverage effect explicitly, e.g. by means of a linear transformation of a Jacobi process. Such models are both analytically tractable and allow for a direct economic interpretation. In particular, we propose two new stochastic volatility...... models which allow for a stochastic leverage effect: the generalised Heston model and the generalised Barndorff-Nielsen & Shephard model. We investigate the impact of a stochastic leverage effect in the risk neutral world by focusing on implied volatilities generated by option prices derived from our new...

  20. Reliability Analysis Based on a Jump Diffusion Model with Two Wiener Processes for Cloud Computing with Big Data

    Directory of Open Access Journals (Sweden)

    Yoshinobu Tamura

    2015-06-01

    Full Text Available At present, many cloud services are managed by using open source software, such as OpenStack and Eucalyptus, because of the unification management of data, cost reduction, quick delivery and work savings. The operation phase of cloud computing has a unique feature, such as the provisioning processes, the network-based operation and the diversity of data, because the operation phase of cloud computing changes depending on many external factors. We propose a jump diffusion model with two-dimensional Wiener processes in order to consider the interesting aspects of the network traffic and big data on cloud computing. In particular, we assess the stability of cloud software by using the sample paths obtained from the jump diffusion model with two-dimensional Wiener processes. Moreover, we discuss the optimal maintenance problem based on the proposed jump diffusion model. Furthermore, we analyze actual data to show numerical examples of dependability optimization based on the software maintenance cost considering big data on cloud computing.

  1. Stochastic Modelling of Shiroro River Stream flow Process

    OpenAIRE

    Musa, J. J

    2013-01-01

    Economists, social scientists and engineers provide insights into the drivers of anthropogenic climate change and the options for adaptation and mitigation, and yet other scientists, including geographers and biologists, study the impacts of climate change. This project concentrates mainly on the discharge from the Shiroro River. A stochastic approach is presented for modeling a time series by an Autoregressive Moving Average model (ARMA). The development and use of a stochastic stream flow m...

  2. Simulating biological processes: stochastic physics from whole cells to colonies

    Science.gov (United States)

    Earnest, Tyler M.; Cole, John A.; Luthey-Schulten, Zaida

    2018-05-01

    The last few decades have revealed the living cell to be a crowded spatially heterogeneous space teeming with biomolecules whose concentrations and activities are governed by intrinsically random forces. It is from this randomness, however, that a vast array of precisely timed and intricately coordinated biological functions emerge that give rise to the complex forms and behaviors we see in the biosphere around us. This seemingly paradoxical nature of life has drawn the interest of an increasing number of physicists, and recent years have seen stochastic modeling grow into a major subdiscipline within biological physics. Here we review some of the major advances that have shaped our understanding of stochasticity in biology. We begin with some historical context, outlining a string of important experimental results that motivated the development of stochastic modeling. We then embark upon a fairly rigorous treatment of the simulation methods that are currently available for the treatment of stochastic biological models, with an eye toward comparing and contrasting their realms of applicability, and the care that must be taken when parameterizing them. Following that, we describe how stochasticity impacts several key biological functions, including transcription, translation, ribosome biogenesis, chromosome replication, and metabolism, before considering how the functions may be coupled into a comprehensive model of a ‘minimal cell’. Finally, we close with our expectation for the future of the field, focusing on how mesoscopic stochastic methods may be augmented with atomic-scale molecular modeling approaches in order to understand life across a range of length and time scales.

  3. Introduction to Stochastic Simulations for Chemical and Physical Processes: Principles and Applications

    Science.gov (United States)

    Weiss, Charles J.

    2017-01-01

    An introduction to digital stochastic simulations for modeling a variety of physical and chemical processes is presented. Despite the importance of stochastic simulations in chemistry, the prevalence of turn-key software solutions can impose a layer of abstraction between the user and the underlying approach obscuring the methodology being…

  4. A criterion for testing hypotheses about the covariance function of a stationary Gaussian stochastic process

    OpenAIRE

    Kozachenko, Yuriy; Troshki, Viktor

    2015-01-01

    We consider a measurable stationary Gaussian stochastic process. A criterion for testing hypotheses about the covariance function of such a process using estimates for its norm in the space $L_p(\\mathbb {T}),\\,p\\geq1$, is constructed.

  5. Modified stochastic fragmentation of an interval as an ageing process

    Science.gov (United States)

    Fortin, Jean-Yves

    2018-02-01

    We study a stochastic model based on modified fragmentation of a finite interval. The mechanism consists of cutting the interval at a random location and substituting a unique fragment on the right of the cut to regenerate and preserve the interval length. This leads to a set of segments of random sizes, with the accumulation of small fragments near the origin. This model is an example of record dynamics, with the presence of ‘quakes’ and slow dynamics. The fragment size distribution is a universal inverse power law with logarithmic corrections. The exact distribution for the fragment number as function of time is simply related to the unsigned Stirling numbers of the first kind. Two-time correlation functions are defined, and computed exactly. They satisfy scaling relations, and exhibit aging phenomena. In particular, the probability that the same number of fragments is found at two different times t>s is asymptotically equal to [4πlog(s)]-1/2 when s\\gg 1 and the ratio t/s is fixed, in agreement with the numerical simulations. The same process with a reset impedes the aging phenomenon-beyond a typical time scale defined by the reset parameter.

  6. Jump spillover between oil prices and exchange rates

    Science.gov (United States)

    Li, Xiao-Ping; Zhou, Chun-Yang; Wu, Chong-Feng

    2017-11-01

    In this paper, we investigate the jump spillover effects between oil prices and exchange rates. To identify the latent historical jumps for exchange rates and oil prices, we use a Bayesian MCMC approach to estimate the stochastic volatility model with correlated jumps in both returns and volatilities for each. We examine the simultaneous jump intensities and the conditional jump spillover probabilities between oil prices and exchange rates, finding strong evidence of jump spillover effects. Further analysis shows that the jump spillovers are mainly due to exogenous events such as financial crises and geopolitical events. Thus, the findings have important implications for financial risk management.

  7. Stochastic differential equation model for linear growth birth and death processes with immigration and emigration

    International Nuclear Information System (INIS)

    Granita; Bahar, A.

    2015-01-01

    This paper discusses on linear birth and death with immigration and emigration (BIDE) process to stochastic differential equation (SDE) model. Forward Kolmogorov equation in continuous time Markov chain (CTMC) with a central-difference approximation was used to find Fokker-Planckequation corresponding to a diffusion process having the stochastic differential equation of BIDE process. The exact solution, mean and variance function of BIDE process was found

  8. Stochastic differential equation model for linear growth birth and death processes with immigration and emigration

    Energy Technology Data Exchange (ETDEWEB)

    Granita, E-mail: granitafc@gmail.com [Dept. Mathematical Education, State Islamic University of Sultan Syarif Kasim Riau, 28293 Indonesia and Dept. of Mathematical Science, Universiti Teknologi Malaysia, 81310,Johor (Malaysia); Bahar, A. [Dept. of Mathematical Science, Universiti Teknologi Malaysia, 81310,Johor Malaysia and UTM Center for Industrial and Applied Mathematics (UTM-CIAM) (Malaysia)

    2015-03-09

    This paper discusses on linear birth and death with immigration and emigration (BIDE) process to stochastic differential equation (SDE) model. Forward Kolmogorov equation in continuous time Markov chain (CTMC) with a central-difference approximation was used to find Fokker-Planckequation corresponding to a diffusion process having the stochastic differential equation of BIDE process. The exact solution, mean and variance function of BIDE process was found.

  9. ARMA modeling of stochastic processes in nuclear reactor with significant detection noise

    International Nuclear Information System (INIS)

    Zavaljevski, N.

    1992-01-01

    The theoretical basis of ARMA modelling of stochastic processes in nuclear reactor was presented in a previous paper, neglecting observational noise. The identification of real reactor data indicated that in some experiments the detection noise is significant. Thus a more rigorous theoretical modelling of stochastic processes in nuclear reactor is performed. Starting from the fundamental stochastic differential equations of the Langevin type for the interaction of the detector with neutron field, a new theoretical ARMA model is developed. preliminary identification results confirm the theoretical expectations. (author)

  10. Stochastic analysis in discrete and continuous settings with normal martingales

    CERN Document Server

    Privault, Nicolas

    2009-01-01

    This volume gives a unified presentation of stochastic analysis for continuous and discontinuous stochastic processes, in both discrete and continuous time. It is mostly self-contained and accessible to graduate students and researchers having already received a basic training in probability. The simultaneous treatment of continuous and jump processes is done in the framework of normal martingales; that includes the Brownian motion and compensated Poisson processes as specific cases. In particular, the basic tools of stochastic analysis (chaos representation, gradient, divergence, integration by parts) are presented in this general setting. Applications are given to functional and deviation inequalities and mathematical finance.

  11. Stochastic processes analysis in nuclear reactor using ARMA models

    International Nuclear Information System (INIS)

    Zavaljevski, N.

    1990-01-01

    The analysis of ARMA model derived from general stochastic state equations of nuclear reactor is given. The dependence of ARMA model parameters on the main physical characteristics of RB nuclear reactor in Vinca is presented. Preliminary identification results are presented, observed discrepancies between theory and experiment are explained and the possibilities of identification improvement are anticipated. (author)

  12. Stochastic Modeling and Deterministic Limit of Catalytic Surface Processes

    DEFF Research Database (Denmark)

    Starke, Jens; Reichert, Christian; Eiswirth, Markus

    2007-01-01

    of stochastic origin can be observed in experiments. The models include a new approach to the platinum phase transition, which allows for a unification of existing models for Pt(100) and Pt(110). The rich nonlinear dynamical behavior of the macroscopic reaction kinetics is investigated and shows good agreement...

  13. Stochastic process variation in deep-submicron CMOS circuits and algorithms

    CERN Document Server

    Zjajo, Amir

    2014-01-01

    One of the most notable features of nanometer scale CMOS technology is the increasing magnitude of variability of the key device parameters affecting performance of integrated circuits. The growth of variability can be attributed to multiple factors, including the difficulty of manufacturing control, the emergence of new systematic variation-generating mechanisms, and most importantly, the increase in atomic-scale randomness, where device operation must be described as a stochastic process. In addition to wide-sense stationary stochastic device variability and temperature variation, existence of non-stationary stochastic electrical noise associated with fundamental processes in integrated-circuit devices represents an elementary limit on the performance of electronic circuits. In an attempt to address these issues, Stochastic Process Variation in Deep-Submicron CMOS: Circuits and Algorithms offers unique combination of mathematical treatment of random process variation, electrical noise and temperature and ne...

  14. On the Stochastic Properties of Carbon Futures Prices

    International Nuclear Information System (INIS)

    Chevallier, Julien; Sevi, Benoit

    2012-10-01

    Pricing carbon is a central concern in environmental economics, due to the importance of emissions trading schemes worldwide to regulate pollution. This paper documents the presence of small and large jumps in the stochastic process of the CO 2 futures price. The large jumps have a discrete origin, i.e. they can arise from various demand factors or institutional decisions on the tradable permits market. Contrary to the previously established literature, we show that the stochastic process of the carbon futures prices does not contain a continuous component (Brownian motion). The results are derived by using high-frequency data in the activity signature function framework (Todorov and Tauchen (2010, 2011)). The implication is that the carbon futures price should be rather modelled as an appropriately sampled, centered Levy or Poisson process. The pure-jump behavior of the carbon price could be explained by the lower volume of trades on this allowance market (compared to other highly liquid financial markets). (authors)

  15. A stochastic version of the Price equation reveals the interplay of deterministic and stochastic processes in evolution

    Directory of Open Access Journals (Sweden)

    Rice Sean H

    2008-09-01

    Full Text Available Abstract Background Evolution involves both deterministic and random processes, both of which are known to contribute to directional evolutionary change. A number of studies have shown that when fitness is treated as a random variable, meaning that each individual has a distribution of possible fitness values, then both the mean and variance of individual fitness distributions contribute to directional evolution. Unfortunately the most general mathematical description of evolution that we have, the Price equation, is derived under the assumption that both fitness and offspring phenotype are fixed values that are known exactly. The Price equation is thus poorly equipped to study an important class of evolutionary processes. Results I present a general equation for directional evolutionary change that incorporates both deterministic and stochastic processes and applies to any evolving system. This is essentially a stochastic version of the Price equation, but it is derived independently and contains terms with no analog in Price's formulation. This equation shows that the effects of selection are actually amplified by random variation in fitness. It also generalizes the known tendency of populations to be pulled towards phenotypes with minimum variance in fitness, and shows that this is matched by a tendency to be pulled towards phenotypes with maximum positive asymmetry in fitness. This equation also contains a term, having no analog in the Price equation, that captures cases in which the fitness of parents has a direct effect on the phenotype of their offspring. Conclusion Directional evolution is influenced by the entire distribution of individual fitness, not just the mean and variance. Though all moments of individuals' fitness distributions contribute to evolutionary change, the ways that they do so follow some general rules. These rules are invisible to the Price equation because it describes evolution retrospectively. An equally general

  16. Estimation and prediction under local volatility jump-diffusion model

    Science.gov (United States)

    Kim, Namhyoung; Lee, Younhee

    2018-02-01

    Volatility is an important factor in operating a company and managing risk. In the portfolio optimization and risk hedging using the option, the value of the option is evaluated using the volatility model. Various attempts have been made to predict option value. Recent studies have shown that stochastic volatility models and jump-diffusion models reflect stock price movements accurately. However, these models have practical limitations. Combining them with the local volatility model, which is widely used among practitioners, may lead to better performance. In this study, we propose a more effective and efficient method of estimating option prices by combining the local volatility model with the jump-diffusion model and apply it using both artificial and actual market data to evaluate its performance. The calibration process for estimating the jump parameters and local volatility surfaces is divided into three stages. We apply the local volatility model, stochastic volatility model, and local volatility jump-diffusion model estimated by the proposed method to KOSPI 200 index option pricing. The proposed method displays good estimation and prediction performance.

  17. Susceptibility of optimal train schedules to stochastic disturbances of process times

    DEFF Research Database (Denmark)

    Larsen, Rune; Pranzo, Marco; D’Ariano, Andrea

    2013-01-01

    study, an advanced branch and bound algorithm, on average, outperforms a First In First Out scheduling rule both in deterministic and stochastic traffic scenarios. However, the characteristic of the stochastic processes and the way a stochastic instance is handled turn out to have a serious impact...... and dwell times). In fact, the objective of railway traffic management is to reduce delay propagation and to increase disturbance robustness of train schedules at a network scale. We present a quantitative study of traffic disturbances and their effects on the schedules computed by simple and advanced...

  18. Stochastic models for transport in a fluidized bed

    NARCIS (Netherlands)

    Dehling, H.G; Hoffmann, A.C; Stuut, H.W.

    1999-01-01

    In this paper we study stochastic models for the transport of particles in a fluidized bed reactor and compute the associated residence time distribution (RTD). Our main model is basically a diffusion process in [0;A] with reflecting/absorbing boundary conditions, modified by allowing jumps to the

  19. Electricity price modeling with stochastic time change

    International Nuclear Information System (INIS)

    Borovkova, Svetlana; Schmeck, Maren Diane

    2017-01-01

    In this paper, we develop a novel approach to electricity price modeling, based on the powerful technique of stochastic time change. This technique allows us to incorporate the characteristic features of electricity prices (such as seasonal volatility, time varying mean reversion and seasonally occurring price spikes) into the model in an elegant and economically justifiable way. The stochastic time change introduces stochastic as well as deterministic (e.g., seasonal) features in the price process' volatility and in the jump component. We specify the base process as a mean reverting jump diffusion and the time change as an absolutely continuous stochastic process with seasonal component. The activity rate of the stochastic time change can be related to the factors that influence supply and demand. Here we use the temperature as a proxy for the demand and hence, as the driving factor of the stochastic time change, and show that this choice leads to realistic price paths. We derive properties of the resulting price process and develop the model calibration procedure. We calibrate the model to the historical EEX power prices and apply it to generating realistic price paths by Monte Carlo simulations. We show that the simulated price process matches the distributional characteristics of the observed electricity prices in periods of both high and low demand. - Highlights: • We develop a novel approach to electricity price modeling, based on the powerful technique of stochastic time change. • We incorporate the characteristic features of electricity prices, such as seasonal volatility and spikes into the model. • We use the temperature as a proxy for the demand and hence, as the driving factor of the stochastic time change • We derive properties of the resulting price process and develop the model calibration procedure. • We calibrate the model to the historical EEX power prices and apply it to generating realistic price paths.

  20. An introduction to continuous-time stochastic processes theory, models, and applications to finance, biology, and medicine

    CERN Document Server

    Capasso, Vincenzo

    2015-01-01

    This textbook, now in its third edition, offers a rigorous and self-contained introduction to the theory of continuous-time stochastic processes, stochastic integrals, and stochastic differential equations. Expertly balancing theory and applications, the work features concrete examples of modeling real-world problems from biology, medicine, industrial applications, finance, and insurance using stochastic methods. No previous knowledge of stochastic processes is required. Key topics include: * Markov processes * Stochastic differential equations * Arbitrage-free markets and financial derivatives * Insurance risk * Population dynamics, and epidemics * Agent-based models New to the Third Edition: * Infinitely divisible distributions * Random measures * Levy processes * Fractional Brownian motion * Ergodic theory * Karhunen-Loeve expansion * Additional applications * Additional  exercises * Smoluchowski  approximation of  Langevin systems An Introduction to Continuous-Time Stochastic Processes, Third Editio...

  1. Description of quantum-mechanical motion by using the formalism of non-Markov stochastic process

    International Nuclear Information System (INIS)

    Skorobogatov, G.A.; Svertilov, S.I.

    1999-01-01

    The principle possibilities of mathematical modeling of quantum mechanical motion by the theory of a real stochastic processes is considered. The set of equations corresponding to the simplest case of a two-level system undergoing transitions under the influence of electromagnetic field are obtained. It is shown that quantum-mechanical processes are purely discrete processes of non-Markovian type. They are continuous processes in the space of probability amplitudes and posses the properties of quantum Markovity. The formulation of quantum mechanics in terms of the theory of stochastic processes is necessary for its generalization on small space-time intervals [ru

  2. Stochastic Modeling and Deterministic Limit of Catalytic Surface Processes

    DEFF Research Database (Denmark)

    Starke, Jens; Reichert, Christian; Eiswirth, Markus

    2007-01-01

    Three levels of modeling, microscopic, mesoscopic and macroscopic are discussed for the CO oxidation on low-index platinum single crystal surfaces. The introduced models on the microscopic and mesoscopic level are stochastic while the model on the macroscopic level is deterministic. It can......, such that in contrast to the microscopic model the spatial resolution is reduced. The derivation of deterministic limit equations is in correspondence with the successful description of experiments under low-pressure conditions by deterministic reaction-diffusion equations while for intermediate pressures phenomena...

  3. ARMA modelling of neutron stochastic processes with large measurement noise

    International Nuclear Information System (INIS)

    Zavaljevski, N.; Kostic, Lj.; Pesic, M.

    1994-01-01

    An autoregressive moving average (ARMA) model of the neutron fluctuations with large measurement noise is derived from langevin stochastic equations and validated using time series data obtained during prompt neutron decay constant measurements at the zero power reactor RB in Vinca. Model parameters are estimated using the maximum likelihood (ML) off-line algorithm and an adaptive pole estimation algorithm based on the recursive prediction error method (RPE). The results show that subcriticality can be determined from real data with high measurement noise using much shorter statistical sample than in standard methods. (author)

  4. Effect of multiplicative noise on stationary stochastic process

    Science.gov (United States)

    Kargovsky, A. V.; Chikishev, A. Yu.; Chichigina, O. A.

    2018-03-01

    An open system that can be analyzed using the Langevin equation with multiplicative noise is considered. The stationary state of the system results from a balance of deterministic damping and random pumping simulated as noise with controlled periodicity. The dependence of statistical moments of the variable that characterizes the system on parameters of the problem is studied. A nontrivial decrease in the mean value of the main variable with an increase in noise stochasticity is revealed. Applications of the results in several physical, chemical, biological, and technical problems of natural and humanitarian sciences are discussed.

  5. Unifying three perspectives on information processing in stochastic thermodynamics.

    Science.gov (United States)

    Barato, A C; Seifert, U

    2014-03-07

    So far, feedback-driven systems have been discussed using (i) measurement and control, (ii) a tape interacting with a system, or (iii) by identifying an implicit Maxwell demon in steady-state transport. We derive the corresponding second laws from one master fluctuation theorem and discuss their relationship. In particular, we show that both the entropy production involving mutual information between system and controller and the one involving a Shannon entropy difference of an information reservoir like a tape carry an extra term different from the usual current times affinity. We, thus, generalize stochastic thermodynamics to the presence of an information reservoir.

  6. Aperiodic signals processing via parameter-tuning stochastic resonance in a photorefractive ring cavity

    Directory of Open Access Journals (Sweden)

    Xuefeng Li

    2014-04-01

    Full Text Available Based on solving numerically the generalized nonlinear Langevin equation describing the nonlinear dynamics of stochastic resonance by Fourth-order Runge-Kutta method, an aperiodic stochastic resonance based on an optical bistable system is numerically investigated. The numerical results show that a parameter-tuning stochastic resonance system can be realized by choosing the appropriate optical bistable parameters, which performs well in reconstructing aperiodic signals from a very high level of noise background. The influences of optical bistable parameters on the stochastic resonance effect are numerically analyzed via cross-correlation, and a maximum cross-correlation gain of 8 is obtained by optimizing optical bistable parameters. This provides a prospective method for reconstructing noise-hidden weak signals in all-optical signal processing systems.

  7. Consensus states of local majority rule in stochastic process

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Yu-Pin [Department of Electronic Engineering, National Formosa University, Huwei, 63201, Taiwan (China); Tang, Chia-Wei; Xu, Hong-Yuan [Department of Physics, Chung-Yuan Christian University, Chungli, 32023, Taiwan (China); Wu, Jinn-Wen [Department of Applied Mathematics, Chung-Yuan Christian University, Chungli, 32023, Taiwan (China); Huang, Ming-Chang, E-mail: mchuang@cycu.edu.tw [Center for Theoretical Science and Department of Physics, Chung-Yuan Christian University, Chungli, 32023, Taiwan (China)

    2015-04-03

    A sufficient condition for a network system to reach a consensus state of the local majority rule is shown. The influence of interpersonal environment on the occurrence probability of consensus states for Watts–Strogatz and scale-free networks with random initial states is analyzed by numerical method. We also propose a stochastic local majority rule to study the mean first passage time from a random state to a consensus and the escape rate from a consensus state for systems in a noisy environment. Our numerical results show that there exists a window of fluctuation strengths for which the mean first passage time from a random to a consensus state reduces greatly, and the escape rate of consensus states obeys the Arrhenius equation in the window. - Highlights: • A sufficient condition for reaching a consensus. • The relation between the geometry of networks and the reachability of a consensus. • Stochastic local majority rule. • The mean first-passage time and the escape rate of consensus states.

  8. Consensus states of local majority rule in stochastic process

    International Nuclear Information System (INIS)

    Luo, Yu-Pin; Tang, Chia-Wei; Xu, Hong-Yuan; Wu, Jinn-Wen; Huang, Ming-Chang

    2015-01-01

    A sufficient condition for a network system to reach a consensus state of the local majority rule is shown. The influence of interpersonal environment on the occurrence probability of consensus states for Watts–Strogatz and scale-free networks with random initial states is analyzed by numerical method. We also propose a stochastic local majority rule to study the mean first passage time from a random state to a consensus and the escape rate from a consensus state for systems in a noisy environment. Our numerical results show that there exists a window of fluctuation strengths for which the mean first passage time from a random to a consensus state reduces greatly, and the escape rate of consensus states obeys the Arrhenius equation in the window. - Highlights: • A sufficient condition for reaching a consensus. • The relation between the geometry of networks and the reachability of a consensus. • Stochastic local majority rule. • The mean first-passage time and the escape rate of consensus states

  9. Effect of the Potential Shape on the Stochastic Resonance Processes

    Science.gov (United States)

    Kenmoé, G. Djuidjé; Ngouongo, Y. J. Wadop; Kofané, T. C.

    2015-10-01

    The stochastic resonance (SR) induced by periodic signal and white noises in a periodic nonsinusoidal potential is investigated. This phenomenon is studied as a function of the friction coefficient as well as the shape of the potential. It is done through an investigation of the hysteresis loop area which is equivalent to the input energy lost by the system to the environment per period of the external force. SR is evident in some range of the shape parameter of the potential, but cannot be observed in the other range. Specially, variation of the shape potential affects significantly and not trivially the heigh of the potential barrier in the Kramers rate as well as the occurrence of SR. The finding results show crucial dependence of the temperature of occurrence of SR on the shape of the potential. It is noted that the maximum of the input energy generally decreases when the friction coefficient is increased.

  10. Asymptotic Behaviour and Extinction of Delay Lotka-Volterra Model with Jump-Diffusion

    OpenAIRE

    Dan Li; Jing’an Cui; Guohua Song

    2014-01-01

    This paper studies the effect of jump-diffusion random environmental perturbations on the asymptotic behaviour and extinction of Lotka-Volterra population dynamics with delays. The contributions of this paper lie in the following: (a) to consider delay stochastic differential equation with jumps, we introduce a proper initial data space, in which the initial data may be discontinuous function with downward jumps; (b) we show that the delay stochastic differential equation with jumps associate...

  11. Changing contributions of stochastic and deterministic processes in community assembly over a successional gradient.

    Science.gov (United States)

    Måren, Inger Elisabeth; Kapfer, Jutta; Aarrestad, Per Arild; Grytnes, John-Arvid; Vandvik, Vigdis

    2018-01-01

    Successional dynamics in plant community assembly may result from both deterministic and stochastic ecological processes. The relative importance of different ecological processes is expected to vary over the successional sequence, between different plant functional groups, and with the disturbance levels and land-use management regimes of the successional systems. We evaluate the relative importance of stochastic and deterministic processes in bryophyte and vascular plant community assembly after fire in grazed and ungrazed anthropogenic coastal heathlands in Northern Europe. A replicated series of post-fire successions (n = 12) were initiated under grazed and ungrazed conditions, and vegetation data were recorded in permanent plots over 13 years. We used redundancy analysis (RDA) to test for deterministic successional patterns in species composition repeated across the replicate successional series and analyses of co-occurrence to evaluate to what extent species respond synchronously along the successional gradient. Change in species co-occurrences over succession indicates stochastic successional dynamics at the species level (i.e., species equivalence), whereas constancy in co-occurrence indicates deterministic dynamics (successional niche differentiation). The RDA shows high and deterministic vascular plant community compositional change, especially early in succession. Co-occurrence analyses indicate stochastic species-level dynamics the first two years, which then give way to more deterministic replacements. Grazed and ungrazed successions are similar, but the early stage stochasticity is higher in ungrazed areas. Bryophyte communities in ungrazed successions resemble vascular plant communities. In contrast, bryophytes in grazed successions showed consistently high stochasticity and low determinism in both community composition and species co-occurrence. In conclusion, stochastic and individualistic species responses early in succession give way to more

  12. Levy-Student processes for a stochastic model of beam halos

    Energy Technology Data Exchange (ETDEWEB)

    Petroni, N. Cufaro [Department of Mathematics, University of Bari, and INFN Sezione di Bari, via E. Orabona 4, 70125 Bari (Italy)]. E-mail: cufaro@ba.infn.it; De Martino, S. [Department of Physics, University of Salerno, and INFN Sezione di Napoli (gruppo di Salerno), Via S. Allende, I-84081 Baronissi (SA) (Italy); De Siena, S. [Department of Physics, University of Salerno, and INFN Sezione di Napoli (gruppo di Salerno), Via S. Allende, I-84081 Baronissi (SA) (Italy); Illuminati, F. [Department of Physics, University of Salerno, and INFN Sezione di Napoli (gruppo di Salerno), Via S. Allende, I-84081 Baronissi (SA) (Italy)

    2006-06-01

    We describe the transverse beam distribution in particle accelerators within the controlled, stochastic dynamical scheme of the stochastic mechanics which produces time reversal invariant diffusion processes. In this paper we analyze the consequences of introducing the generalized Student laws, namely non-Gaussian, Levy infinitely divisible (but not stable) distributions. We will analyze this idea from two different standpoints: (a) first by supposing that the stationary distribution of our (Wiener powered) stochastic model is a Student distribution; (b) by supposing that our model is based on a (non-Gaussian) Levy process whose increments are Student distributed. In the case (a) the longer tails of the power decay of the Student laws, and in the case (b) the discontinuities of the Levy-Student process can well account for the rare escape of particles from the beam core, and hence for the formation of a halo in intense beams.

  13. Levy-Student processes for a stochastic model of beam halos

    International Nuclear Information System (INIS)

    Petroni, N. Cufaro; De Martino, S.; De Siena, S.; Illuminati, F.

    2006-01-01

    We describe the transverse beam distribution in particle accelerators within the controlled, stochastic dynamical scheme of the stochastic mechanics which produces time reversal invariant diffusion processes. In this paper we analyze the consequences of introducing the generalized Student laws, namely non-Gaussian, Levy infinitely divisible (but not stable) distributions. We will analyze this idea from two different standpoints: (a) first by supposing that the stationary distribution of our (Wiener powered) stochastic model is a Student distribution; (b) by supposing that our model is based on a (non-Gaussian) Levy process whose increments are Student distributed. In the case (a) the longer tails of the power decay of the Student laws, and in the case (b) the discontinuities of the Levy-Student process can well account for the rare escape of particles from the beam core, and hence for the formation of a halo in intense beams

  14. Stochastic processes, multiscale modeling, and numerical methods for computational cellular biology

    CERN Document Server

    2017-01-01

    This book focuses on the modeling and mathematical analysis of stochastic dynamical systems along with their simulations. The collected chapters will review fundamental and current topics and approaches to dynamical systems in cellular biology. This text aims to develop improved mathematical and computational methods with which to study biological processes. At the scale of a single cell, stochasticity becomes important due to low copy numbers of biological molecules, such as mRNA and proteins that take part in biochemical reactions driving cellular processes. When trying to describe such biological processes, the traditional deterministic models are often inadequate, precisely because of these low copy numbers. This book presents stochastic models, which are necessary to account for small particle numbers and extrinsic noise sources. The complexity of these models depend upon whether the biochemical reactions are diffusion-limited or reaction-limited. In the former case, one needs to adopt the framework of s...

  15. Comments on the use of stochastic processes in the field of the ionizing radiations

    International Nuclear Information System (INIS)

    Alvarez Romero, Jose T.

    2008-01-01

    Stochastic process is the name given to a time dependent random process, unfortunately, its time dependence is not always clearly emphasized. In fact, such dependence is not unequivocally stated in the different disciplines of radiation physics, radiobiology or in radiation protection. This is the cause of some conceptual confusion when interpreting relationships between quantities is analyzed, e.g.: imparted energy vs. absorbed dose, stochastic vs. deterministic biological effects; or in radiation protection models, whether: linear or quadratic, relative or absolute. Most of these relationships are associated to stochastic phenomena, and they carry a time dependence that requires clarification. To mention some examples, in radiation physics: the absorbed dose is a non stochastic quantity resulting from averaging a stochastic one namely, the imparted energy, over a representative ensemble via an operation analogous to the Gibbs-Einstein algorithm. On the other hand stochastic quantities require specialized mathematical techniques of stochastic processes to handle them. These refinements are unfortunately ignored in the reports of ICRU 33 and 60. Essentially, a problem to be solved is to establish a clear relationship between micro or mesoscopic stochastic quantities and their macroscopic counterparts, these latter ones possibly being time dependent or not. This is the main objective of microdosimetry. Another problem is to describe phenomena such as electronic equilibrium which is nothing else than a stationary state thus exhibiting no time dependence. Still a different question is the interpretation of radioactive decay as a stochastic process of the Poisson and Markov type. In radiobiology a basic problem is the study of biological stochastic phenomena is to determine the characteristics and structure of those time dependent probabilistic functions allowing the quantification of macroscopic biological manifestations, such as carcinogenesis or genetic effects

  16. Stationary distributions of stochastic processes described by a linear neutral delay differential equation

    International Nuclear Information System (INIS)

    Frank, T D

    2005-01-01

    Stationary distributions of processes are derived that involve a time delay and are defined by a linear stochastic neutral delay differential equation. The distributions are Gaussian distributions. The variances of the Gaussian distributions are either monotonically increasing or decreasing functions of the time delays. The variances become infinite when fixed points of corresponding deterministic processes become unstable. (letter to the editor)

  17. Disentangling mechanisms that mediate the balance between stochastic and deterministic processes in microbial succession

    NARCIS (Netherlands)

    Dini-Andreote, Francisco; Stegen, James C.; van Elsas, Jan Dirk; Salles, Joana Falcao

    2015-01-01

    Ecological succession and the balance between stochastic and deterministic processes are two major themes within microbial ecology, but these conceptual domains have mostly developed independent of each other. Here we provide a framework that integrates shifts in community assembly processes with

  18. Doubly stochastic Poisson process models for precipitation at fine time-scales

    Science.gov (United States)

    Ramesh, Nadarajah I.; Onof, Christian; Xie, Dichao

    2012-09-01

    This paper considers a class of stochastic point process models, based on doubly stochastic Poisson processes, in the modelling of rainfall. We examine the application of this class of models, a neglected alternative to the widely-known Poisson cluster models, in the analysis of fine time-scale rainfall intensity. These models are mainly used to analyse tipping-bucket raingauge data from a single site but an extension to multiple sites is illustrated which reveals the potential of this class of models to study the temporal and spatial variability of precipitation at fine time-scales.

  19. A Family of Poisson Processes for Use in Stochastic Models of Precipitation

    Science.gov (United States)

    Penland, C.

    2013-12-01

    Both modified Poisson processes and compound Poisson processes can be relevant to stochastic parameterization of precipitation. This presentation compares the dynamical properties of these systems and discusses the physical situations in which each might be appropriate. If the parameters describing either class of systems originate in hydrodynamics, then proper consideration of stochastic calculus is required during numerical implementation of the parameterization. It is shown here that an improper numerical treatment can have severe implications for estimating rainfall distributions, particularly in the tails of the distributions and, thus, on the frequency of extreme events.

  20. Continuous strong Markov processes in dimension one a stochastic calculus approach

    CERN Document Server

    Assing, Sigurd

    1998-01-01

    The book presents an in-depth study of arbitrary one-dimensional continuous strong Markov processes using methods of stochastic calculus. Departing from the classical approaches, a unified investigation of regular as well as arbitrary non-regular diffusions is provided. A general construction method for such processes, based on a generalization of the concept of a perfect additive functional, is developed. The intrinsic decomposition of a continuous strong Markov semimartingale is discovered. The book also investigates relations to stochastic differential equations and fundamental examples of irregular diffusions.

  1. Entropy Measures for Stochastic Processes with Applications in Functional Anomaly Detection

    Directory of Open Access Journals (Sweden)

    Gabriel Martos

    2018-01-01

    Full Text Available We propose a definition of entropy for stochastic processes. We provide a reproducing kernel Hilbert space model to estimate entropy from a random sample of realizations of a stochastic process, namely functional data, and introduce two approaches to estimate minimum entropy sets. These sets are relevant to detect anomalous or outlier functional data. A numerical experiment illustrates the performance of the proposed method; in addition, we conduct an analysis of mortality rate curves as an interesting application in a real-data context to explore functional anomaly detection.

  2. Modelling and simulating decision processes of linked lives: An approach based on concurrent processes and stochastic race.

    Science.gov (United States)

    Warnke, Tom; Reinhardt, Oliver; Klabunde, Anna; Willekens, Frans; Uhrmacher, Adelinde M

    2017-10-01

    Individuals' decision processes play a central role in understanding modern migration phenomena and other demographic processes. Their integration into agent-based computational demography depends largely on suitable support by a modelling language. We are developing the Modelling Language for Linked Lives (ML3) to describe the diverse decision processes of linked lives succinctly in continuous time. The context of individuals is modelled by networks the individual is part of, such as family ties and other social networks. Central concepts, such as behaviour conditional on agent attributes, age-dependent behaviour, and stochastic waiting times, are tightly integrated in the language. Thereby, alternative decisions are modelled by concurrent processes that compete by stochastic race. Using a migration model, we demonstrate how this allows for compact description of complex decisions, here based on the Theory of Planned Behaviour. We describe the challenges for the simulation algorithm posed by stochastic race between multiple concurrent complex decisions.

  3. Stochastic Analysis 2010

    CERN Document Server

    Crisan, Dan

    2011-01-01

    "Stochastic Analysis" aims to provide mathematical tools to describe and model high dimensional random systems. Such tools arise in the study of Stochastic Differential Equations and Stochastic Partial Differential Equations, Infinite Dimensional Stochastic Geometry, Random Media and Interacting Particle Systems, Super-processes, Stochastic Filtering, Mathematical Finance, etc. Stochastic Analysis has emerged as a core area of late 20th century Mathematics and is currently undergoing a rapid scientific development. The special volume "Stochastic Analysis 2010" provides a sa

  4. Supersonic Jump

    Science.gov (United States)

    Muller, Andreas

    2013-01-01

    On October 14,2012, Felix Baumgartner, an Austrian sky-diver, set some new world records for his discipline. Jumping from a height of about 39 km, he reached a top speed of 1342 km/h, becoming the first human being to break the sound barrier in free fall. In order to understand some essential physics aspects of this remarkable feat, we wonder why…

  5. Modeling persistence of motion in a crowded environment: The diffusive limit of excluding velocity-jump processes

    Science.gov (United States)

    Gavagnin, Enrico; Yates, Christian A.

    2018-03-01

    Persistence of motion is the tendency of an object to maintain motion in a direction for short time scales without necessarily being biased in any direction in the long term. One of the most appropriate mathematical tools to study this behavior is an agent-based velocity-jump process. In the absence of agent-agent interaction, the mean-field continuum limit of the agent-based model (ABM) gives rise to the well known hyperbolic telegraph equation. When agent-agent interaction is included in the ABM, a strictly advective system of partial differential equations (PDEs) can be derived at the population level. However, no diffusive limit of the ABM has been obtained from such a model. Connecting the microscopic behavior of the ABM to a diffusive macroscopic description is desirable, since it allows the exploration of a wider range of scenarios and establishes a direct connection with commonly used statistical tools of movement analysis. In order to connect the ABM at the population level to a diffusive PDE at the population level, we consider a generalization of the agent-based velocity-jump process on a two-dimensional lattice with three forms of agent interaction. This generalization allows us to take a diffusive limit and obtain a faithful population-level description. We investigate the properties of the model at both the individual and population levels and we elucidate some of the models' key characteristic features. In particular, we show an intrinsic anisotropy inherent to the models and we find evidence of a spontaneous form of aggregation at both the micro- and macroscales.

  6. Stochastic evolutionary voluntary public goods game with punishment in a Quasi-birth-and-death process.

    Science.gov (United States)

    Quan, Ji; Liu, Wei; Chu, Yuqing; Wang, Xianjia

    2017-11-23

    Traditional replication dynamic model and the corresponding concept of evolutionary stable strategy (ESS) only takes into account whether the system can return to the equilibrium after being subjected to a small disturbance. In the real world, due to continuous noise, the ESS of the system may not be stochastically stable. In this paper, a model of voluntary public goods game with punishment is studied in a stochastic situation. Unlike the existing model, we describe the evolutionary process of strategies in the population as a generalized quasi-birth-and-death process. And we investigate the stochastic stable equilibrium (SSE) instead. By numerical experiments, we get all possible SSEs of the system for any combination of parameters, and investigate the influence of parameters on the probabilities of the system to select different equilibriums. It is found that in the stochastic situation, the introduction of the punishment and non-participation strategies can change the evolutionary dynamics of the system and equilibrium of the game. There is a large range of parameters that the system selects the cooperative states as its SSE with a high probability. This result provides us an insight and control method for the evolution of cooperation in the public goods game in stochastic situations.

  7. Stochastic light-cone CTMRG: a new DMRG approach to stochastic models 02.50.Ey Stochastic processes; 64.60.Ht Dynamic critical phenomena; 02.70.-c Computational techniques; 05.10.Cc Renormalization group methods;

    CERN Document Server

    Kemper, A; Nishino, T; Schadschneider, A; Zittartz, J

    2003-01-01

    We develop a new variant of the recently introduced stochastic transfer matrix DMRG which we call stochastic light-cone corner-transfer-matrix DMRG (LCTMRG). It is a numerical method to compute dynamic properties of one-dimensional stochastic processes. As suggested by its name, the LCTMRG is a modification of the corner-transfer-matrix DMRG, adjusted by an additional causality argument. As an example, two reaction-diffusion models, the diffusion-annihilation process and the branch-fusion process are studied and compared with exact data and Monte Carlo simulations to estimate the capability and accuracy of the new method. The number of possible Trotter steps of more than 10 sup 5 shows a considerable improvement on the old stochastic TMRG algorithm.

  8. Mean-Variance Hedging on Uncertain Time Horizon in a Market with a Jump

    International Nuclear Information System (INIS)

    Kharroubi, Idris; Lim, Thomas; Ngoupeyou, Armand

    2013-01-01

    In this work, we study the problem of mean-variance hedging with a random horizon T∧τ, where T is a deterministic constant and τ is a jump time of the underlying asset price process. We first formulate this problem as a stochastic control problem and relate it to a system of BSDEs with a jump. We then provide a verification theorem which gives the optimal strategy for the mean-variance hedging using the solution of the previous system of BSDEs. Finally, we prove that this system of BSDEs admits a solution via a decomposition approach coming from filtration enlargement theory

  9. Mean-Variance Hedging on Uncertain Time Horizon in a Market with a Jump

    Energy Technology Data Exchange (ETDEWEB)

    Kharroubi, Idris, E-mail: kharroubi@ceremade.dauphine.fr [Université Paris Dauphine, CEREMADE, CNRS UMR 7534 (France); Lim, Thomas, E-mail: lim@ensiie.fr [Université d’Evry and ENSIIE, Laboratoire d’Analyse et Probabilités (France); Ngoupeyou, Armand, E-mail: armand.ngoupeyou@univ-paris-diderot.fr [Université Paris 7, Laboratoire de Probabilités et Modèles Aléatoires (France)

    2013-12-15

    In this work, we study the problem of mean-variance hedging with a random horizon T∧τ, where T is a deterministic constant and τ is a jump time of the underlying asset price process. We first formulate this problem as a stochastic control problem and relate it to a system of BSDEs with a jump. We then provide a verification theorem which gives the optimal strategy for the mean-variance hedging using the solution of the previous system of BSDEs. Finally, we prove that this system of BSDEs admits a solution via a decomposition approach coming from filtration enlargement theory.

  10. Modeling and estimating the jump risk of exchange rates: Applications to RMB

    Science.gov (United States)

    Wang, Yiming; Tong, Hanfei

    2008-11-01

    In this paper we propose a new type of continuous-time stochastic volatility model, SVDJ, for the spot exchange rate of RMB, and other foreign currencies. In the model, we assume that the change of exchange rate can be decomposed into two components. One is the normally small-cope innovation driven by the diffusion motion; the other is a large drop or rise engendered by the Poisson counting process. Furthermore, we develop a MCMC method to estimate our model. Empirical results indicate the significant existence of jumps in the exchange rate. Jump components explain a large proportion of the exchange rate change.

  11. Pressure Jumps during Drainage in Macroporous Soils

    DEFF Research Database (Denmark)

    Soto, Diego; Paradelo Pérez, Marcos; Corral, A

    2018-01-01

    Tensiometer readings obtained at high resolution during drainage of structured soil columns revealed pressure jumps with long range correlations and burst sequences with a hierarchical structure. The statistical properties of jumps are similar to Haines jumps described in invasion percolation...... processes at pore scale, but they are much larger in amplitude and duration. Pressure jumps can result from transient redistribution of water potential in internal regions of soil and can be triggered during drainage by capillary displacements at the scale of structural pores....

  12. Indirect Inference for Stochastic Differential Equations Based on Moment Expansions

    KAUST Repository

    Ballesio, Marco

    2016-01-06

    We provide an indirect inference method to estimate the parameters of timehomogeneous scalar diffusion and jump diffusion processes. We obtain a system of ODEs that approximate the time evolution of the first two moments of the process by the approximation of the stochastic model applying a second order Taylor expansion of the SDE s infinitesimal generator in the Dynkin s formula. This method allows a simple and efficient procedure to infer the parameters of such stochastic processes given the data by the maximization of the likelihood of an approximating Gaussian process described by the two moments equations. Finally, we perform numerical experiments for two datasets arising from organic and inorganic fouling deposition phenomena.

  13. ℋ∞ constant gain state feedback stabilization of stochastic hybrid systems with Wiener process

    Directory of Open Access Journals (Sweden)

    E. K. Boukas

    2004-01-01

    Full Text Available This paper considers the stabilization problem of the class of continuous-time linear stochastic hybrid systems with Wiener process. The ℋ∞ state feedback stabilization problem is treated. A state feedback controller with constant gain that does not require access to the system mode is designed. LMI-based conditions are developed to design the state feedback controller with constant gain that stochastically stabilizes the studied class of systems and, at the same time, achieve the disturbance rejection of a desired level. The minimum disturbance rejection is also determined. Numerical examples are given to show the usefulness of the proposed results.

  14. Stochastic processes and functional analysis a volume of recent advances in honor of M. M. Rao

    CERN Document Server

    Krinik, Alan C

    2004-01-01

    This extraordinary compilation is an expansion of the recent American Mathematical Society Special Session celebrating M. M. Rao's distinguished career and includes most of the presented papers as well as ancillary contributions from session invitees. This book shows the effectiveness of abstract analysis for solving fundamental problems of stochastic theory, specifically the use of functional analytic methods for elucidating stochastic processes, as made manifest in M. M. Rao's prolific research achievements. Featuring a biography of M. M. Rao, a complete bibliography of his published works,

  15. Information transfer with rate-modulated Poisson processes: a simple model for nonstationary stochastic resonance.

    Science.gov (United States)

    Goychuk, I

    2001-08-01

    Stochastic resonance in a simple model of information transfer is studied for sensory neurons and ensembles of ion channels. An exact expression for the information gain is obtained for the Poisson process with the signal-modulated spiking rate. This result allows one to generalize the conventional stochastic resonance (SR) problem (with periodic input signal) to the arbitrary signals of finite duration (nonstationary SR). Moreover, in the case of a periodic signal, the rate of information gain is compared with the conventional signal-to-noise ratio. The paper establishes the general nonequivalence between both measures notwithstanding their apparent similarity in the limit of weak signals.

  16. Strategy Complexity of Finite-Horizon Markov Decision Processes and Simple Stochastic Games

    DEFF Research Database (Denmark)

    Ibsen-Jensen, Rasmus; Chatterjee, Krishnendu

    2012-01-01

    Markov decision processes (MDPs) and simple stochastic games (SSGs) provide a rich mathematical framework to study many important problems related to probabilistic systems. MDPs and SSGs with finite-horizon objectives, where the goal is to maximize the probability to reach a target state in a given...

  17. Using Max-Plus Algebra for the Evaluation of Stochastic Process Algebra Prefixes

    NARCIS (Netherlands)

    Cloth, L.; de Alfaro, L.; Gilmore, S.; Bohnenkamp, H.C.; Haverkort, Boudewijn R.H.M.

    2001-01-01

    In this paper, the concept of complete finite prefixes for process algebra expressions is extended to stochastic models. Events are supposed to happen after a delay that is determined by random variables assigned to the preceding conditions. Max-plus algebra expressions are shown to provide an

  18. On structural properties of the value function for an unbounded jump Markov process with an application to a processor-sharing retrial queue

    NARCIS (Netherlands)

    Bhulai, S.; Brooms, A.C.; Spieksma, F.M.

    2014-01-01

    The derivation of structural properties for unbounded jump Markov processes cannot be done using standard mathematical tools, since the analysis is hindered due to the fact that the system is not uniformizable. We present a promising technique, a smoothed rate truncation method, to overcome the

  19. Explicit calibration and simulation of stochastic fields by low-order ARMA processes

    DEFF Research Database (Denmark)

    Krenk, Steen

    2011-01-01

    A simple framework for autoregressive simulation of stochastic fields is presented. The autoregressive format leads to a simple exponential correlation structure in the time-dimension. In the case of scalar processes a more detailed correlation structure can be obtained by adding memory...... to the process via an extension to autoregressive moving average (ARMA) processes. The ARMA format incorporates a more detailed correlation structure by including previous values of the simulated process. Alternatively, a more detailed correlation structure can be obtained by including additional 'state......-space' variables in the simulation. For a scalar process this would imply an increase of the dimension of the process to be simulated. In the case of a stochastic field the correlation in the time-dimension is represented, although indirectly, in the simultaneous spatial correlation. The model with the shortest...

  20. Kinetic theory of age-structured stochastic birth-death processes

    Science.gov (United States)

    Greenman, Chris D.; Chou, Tom

    2016-01-01

    Classical age-structured mass-action models such as the McKendrick-von Foerster equation have been extensively studied but are unable to describe stochastic fluctuations or population-size-dependent birth and death rates. Stochastic theories that treat semi-Markov age-dependent processes using, e.g., the Bellman-Harris equation do not resolve a population's age structure and are unable to quantify population-size dependencies. Conversely, current theories that include size-dependent population dynamics (e.g., mathematical models that include carrying capacity such as the logistic equation) cannot be easily extended to take into account age-dependent birth and death rates. In this paper, we present a systematic derivation of a new, fully stochastic kinetic theory for interacting age-structured populations. By defining multiparticle probability density functions, we derive a hierarchy of kinetic equations for the stochastic evolution of an aging population undergoing birth and death. We show that the fully stochastic age-dependent birth-death process precludes factorization of the corresponding probability densities, which then must be solved by using a Bogoliubov--Born--Green--Kirkwood--Yvon-like hierarchy. Explicit solutions are derived in three limits: no birth, no death, and steady state. These are then compared with their corresponding mean-field results. Our results generalize both deterministic models and existing master equation approaches by providing an intuitive and efficient way to simultaneously model age- and population-dependent stochastic dynamics applicable to the study of demography, stem cell dynamics, and disease evolution.

  1. Estimation of Stochastic Volatility Models by Nonparametric Filtering

    DEFF Research Database (Denmark)

    Kanaya, Shin; Kristensen, Dennis

    2016-01-01

    /estimated volatility process replacing the latent process. Our estimation strategy is applicable to both parametric and nonparametric stochastic volatility models, and can handle both jumps and market microstructure noise. The resulting estimators of the stochastic volatility model will carry additional biases...... and variances due to the first-step estimation, but under regularity conditions we show that these vanish asymptotically and our estimators inherit the asymptotic properties of the infeasible estimators based on observations of the volatility process. A simulation study examines the finite-sample properties...

  2. Environmentally transmitted parasites: Host-jumping in a heterogeneous environment.

    Science.gov (United States)

    Caraco, Thomas; Cizauskas, Carrie A; Wang, Ing-Nang

    2016-05-21

    Groups of chronically infected reservoir-hosts contaminate resource patches by shedding a parasite׳s free-living stage. Novel-host groups visit the same patches, where they are exposed to infection. We treat arrival at patches, levels of parasite deposition, and infection of the novel host as stochastic processes, and derive the expected time elapsing until a host-jump (initial infection of a novel host) occurs. At stationarity, mean parasite densities are independent of reservoir-host group size. But within-patch parasite-density variances increase with reservoir group size. The probability of infecting a novel host declines with parasite-density variance; consequently larger reservoir groups extend the mean waiting time for host-jumping. Larger novel-host groups increase the probability of a host-jump during any single patch visit, but also reduce the total number of visits per unit time. Interaction of these effects implies that the waiting time for the first infection increases with the novel-host group size. If the reservoir-host uses resource patches in any non-uniform manner, reduced spatial overlap between host species increases the waiting time for host-jumping. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Stochastic calculus for uncoupled continuous-time random walks.

    Science.gov (United States)

    Germano, Guido; Politi, Mauro; Scalas, Enrico; Schilling, René L

    2009-06-01

    The continuous-time random walk (CTRW) is a pure-jump stochastic process with several applications not only in physics but also in insurance, finance, and economics. A definition is given for a class of stochastic integrals driven by a CTRW, which includes the Itō and Stratonovich cases. An uncoupled CTRW with zero-mean jumps is a martingale. It is proved that, as a consequence of the martingale transform theorem, if the CTRW is a martingale, the Itō integral is a martingale too. It is shown how the definition of the stochastic integrals can be used to easily compute them by Monte Carlo simulation. The relations between a CTRW, its quadratic variation, its Stratonovich integral, and its Itō integral are highlighted by numerical calculations when the jumps in space of the CTRW have a symmetric Lévy alpha -stable distribution and its waiting times have a one-parameter Mittag-Leffler distribution. Remarkably, these distributions have fat tails and an unbounded quadratic variation. In the diffusive limit of vanishing scale parameters, the probability density of this kind of CTRW satisfies the space-time fractional diffusion equation (FDE) or more in general the fractional Fokker-Planck equation, which generalizes the standard diffusion equation, solved by the probability density of the Wiener process, and thus provides a phenomenologic model of anomalous diffusion. We also provide an analytic expression for the quadratic variation of the stochastic process described by the FDE and check it by Monte Carlo.

  4. An extension of clarke's model with stochastic amplitude flip processes

    KAUST Repository

    Hoel, Hakon; Nyberg, Henrik

    2014-01-01

    . By rigorous analysis and numerical studies, we show that in many settings, signal realizations are generated more efficiently by Gaussian process algorithms than by the MFC model's algorithm. Numerical examples that strengthen these observations are also

  5. Coordination in vertical jumping

    NARCIS (Netherlands)

    Bobbert, Maarten F.; van Ingen Schenau, Gerrit Jan

    1988-01-01

    The present study was designed to investigate for vertical jumping the relationships between muscle actions, movement pattern and jumping achievement. Ten skilled jumpers performed jumps with preparatory countermovement. Ground reaction forces and cinematographic data were recorded. In addition,

  6. A stochastic model of multiple scattering of charged particles: process, transport equation and solutions

    International Nuclear Information System (INIS)

    Papiez, L.; Moskvin, V.; Tulovsky, V.

    2001-01-01

    The process of angular-spatial evolution of multiple scattering of charged particles can be described by a special case of Boltzmann integro-differential equation called Lewis equation. The underlying stochastic process for this evolution is the compound Poisson process on the surface of the unit sphere. The significant portion of events that constitute compound Poisson process that describes multiple scattering have diffusional character. This property allows to analyze the process of angular-spatial evolution of multiple scattering of charged particles as combination of soft and hard collision processes and compute appropriately its transition densities. These computations provide a method of the approximate solution to the Lewis equation. (orig.)

  7. An effective streamflow process model for optimal reservoir operation using stochastic dual dynamic programming

    OpenAIRE

    Raso , L.; Malaterre , P.O.; Bader , J.C.

    2017-01-01

    International audience; This article presents an innovative streamflow process model for use in reservoir operational rule design in stochastic dual dynamic programming (SDDP). Model features, which can be applied independently, are (1) a multiplicative process model for the forward phase and its linearized version for the backward phase; and (2) a nonuniform time-step length that is inversely proportional to seasonal variability. The advantages are (1) guaranteeing positive streamflow values...

  8. Stochastic Analysis of a Queue Length Model Using a Graphics Processing Unit

    Czech Academy of Sciences Publication Activity Database

    Přikryl, Jan; Kocijan, J.

    2012-01-01

    Roč. 5, č. 2 (2012), s. 55-62 ISSN 1802-971X R&D Projects: GA MŠk(CZ) MEB091015 Institutional support: RVO:67985556 Keywords : graphics processing unit * GPU * Monte Carlo simulation * computer simulation * modeling Subject RIV: BC - Control Systems Theory http://library.utia.cas.cz/separaty/2012/AS/prikryl-stochastic analysis of a queue length model using a graphics processing unit.pdf

  9. Modeling laser velocimeter signals as triply stochastic Poisson processes

    Science.gov (United States)

    Mayo, W. T., Jr.

    1976-01-01

    Previous models of laser Doppler velocimeter (LDV) systems have not adequately described dual-scatter signals in a manner useful for analysis and simulation of low-level photon-limited signals. At low photon rates, an LDV signal at the output of a photomultiplier tube is a compound nonhomogeneous filtered Poisson process, whose intensity function is another (slower) Poisson process with the nonstationary rate and frequency parameters controlled by a random flow (slowest) process. In the present paper, generalized Poisson shot noise models are developed for low-level LDV signals. Theoretical results useful in detection error analysis and simulation are presented, along with measurements of burst amplitude statistics. Computer generated simulations illustrate the difference between Gaussian and Poisson models of low-level signals.

  10. Learning process mapping heuristics under stochastic sampling overheads

    Science.gov (United States)

    Ieumwananonthachai, Arthur; Wah, Benjamin W.

    1991-01-01

    A statistical method was developed previously for improving process mapping heuristics. The method systematically explores the space of possible heuristics under a specified time constraint. Its goal is to get the best possible heuristics while trading between the solution quality of the process mapping heuristics and their execution time. The statistical selection method is extended to take into consideration the variations in the amount of time used to evaluate heuristics on a problem instance. The improvement in performance is presented using the more realistic assumption along with some methods that alleviate the additional complexity.

  11. Analysis and design of singular Markovian jump systems

    CERN Document Server

    Wang, Guoliang; Yan, Xinggang

    2014-01-01

    This monograph is an up-to-date presentation of the analysis and design of singular Markovian jump systems (SMJSs) in which the transition rate matrix of the underlying systems is generally uncertain, partially unknown and designed. The problems addressed include stability, stabilization, H∞ control and filtering, observer design, and adaptive control. applications of Markov process are investigated by using Lyapunov theory, linear matrix inequalities (LMIs), S-procedure and the stochastic Barbalat's Lemma, among other techniques.Features of the book include:·???????? study of the stability pr

  12. Uniform asymptotics for compound Poisson processes with regularly varying jumps and vanishing drift

    NARCIS (Netherlands)

    Kamphorst, B.; Zwart, B.

    2015-01-01

    This paper addresses heavy-tailed asymptotics of functionals of a class of spectrally one-sided L\\'evy process that remain valid in a near-critical regime. This complements recent similar results that have been obtained for the all-time supremum of such processes. Specifically, we consider local

  13. Stochastic model of milk homogenization process using Markov's chain

    Directory of Open Access Journals (Sweden)

    A. A. Khvostov

    2016-01-01

    Full Text Available The process of development of a mathematical model of the process of homogenization of dairy products is considered in the work. The theory of Markov's chains was used in the development of the mathematical model, Markov's chain with discrete states and continuous parameter for which the homogenisation pressure is taken, being the basis for the model structure. Machine realization of the model is implemented in the medium of structural modeling MathWorks Simulink™. Identification of the model parameters was carried out by minimizing the standard deviation calculated from the experimental data for each fraction of dairy products fat phase. As the set of experimental data processing results of the micrographic images of fat globules of whole milk samples distribution which were subjected to homogenization at different pressures were used. Pattern Search method was used as optimization method with the Latin Hypercube search algorithm from Global Optimization Тoolbox library. The accuracy of calculations averaged over all fractions of 0.88% (the relative share of units, the maximum relative error was 3.7% with the homogenization pressure of 30 MPa, which may be due to the very abrupt change in properties from the original milk in the particle size distribution at the beginning of the homogenization process and the lack of experimental data at homogenization pressures of below the specified value. The mathematical model proposed allows to calculate the profile of volume and mass distribution of the fat phase (fat globules in the product, depending on the homogenization pressure and can be used in the laboratory and research of dairy products composition, as well as in the calculation, design and modeling of the process equipment of the dairy industry enterprises.

  14. Effects of stochastic interest rates in decision making under risk: A Markov decision process model for forest management

    Science.gov (United States)

    Mo Zhou; Joseph Buongiorno

    2011-01-01

    Most economic studies of forest decision making under risk assume a fixed interest rate. This paper investigated some implications of this stochastic nature of interest rates. Markov decision process (MDP) models, used previously to integrate stochastic stand growth and prices, can be extended to include variable interest rates as well. This method was applied to...

  15. Conditioning exercises in ski jumping: biomechanical relationship of squat jumps, imitation jumps, and hill jumps.

    Science.gov (United States)

    Lorenzetti, Silvio; Ammann, Fabian; Windmüller, Sabrina; Häberle, Ramona; Müller, Sören; Gross, Micah; Plüss, Michael; Plüss, Stefan; Schödler, Berni; Hübner, Klaus

    2017-11-22

    As hill jumps are very time-consuming, ski jumping athletes often perform various imitation jumps during training. The performed jumps should be similar to hill jumps, but a direct comparison of the kinetic and kinematic parameters has not been performed yet. Therefore, this study aimed to correlate 11 common parameters during hill jumps (Oberstdorf Germany), squat jumps (wearing indoor shoes), and various imitation jumps (rolling 4°, rolling flat, static; jumping equipment or indoor shoes) on a custom-built instrumented vehicle with a catch by the coach. During the performed jumps, force and video data of the take-off of 10 athletes were measured. The imitation and squat jumps were then ranked. The main difference between the hill jumps and the imitation and squat jumps is the higher maximal force loading rate during the hill jumps. Imitation jumps performed on a rolling platform, on flat ground were the most similar to hill jumps in terms of the force-time, and leg joint kinematic properties. Thus, non-hill jumps with a technical focus should be performed from a rolling platform with a flat inrun with normal indoor shoes or jumping equipment, and high normal force loading rates should be the main focus of imitation training.

  16. Stochastic behavior of cooling processes in hot nuclei

    International Nuclear Information System (INIS)

    de Oliveira, P.M.; Sa Martins, J.S.; Szanto de Toledo, A.

    1997-01-01

    The collapse of structure effects observed in hot nuclei is interpreted in terms of a dynamic lattice model which describes the process of nucleon (clusters) evaporation from a hot nucleus, predicting the final mass distribution. Results are compared with experimental data for the 10 B+ 9 Be and 10 B+ 10 B reactions, and indicate that the structures observed in the low-energy mass distributions in both simulation and experiment are a consequence of the competition between the residual interactions and the thermalization dissipative process. As a characteristic feature of complex evolving systems, this competition leads to long term memory during the dissipative path, the observables becoming thus insensitive to the actual microscopic interactions. copyright 1997 The American Physical Society

  17. Exact protein distributions for stochastic models of gene expression using partitioning of Poisson processes.

    Science.gov (United States)

    Pendar, Hodjat; Platini, Thierry; Kulkarni, Rahul V

    2013-04-01

    Stochasticity in gene expression gives rise to fluctuations in protein levels across a population of genetically identical cells. Such fluctuations can lead to phenotypic variation in clonal populations; hence, there is considerable interest in quantifying noise in gene expression using stochastic models. However, obtaining exact analytical results for protein distributions has been an intractable task for all but the simplest models. Here, we invoke the partitioning property of Poisson processes to develop a mapping that significantly simplifies the analysis of stochastic models of gene expression. The mapping leads to exact protein distributions using results for mRNA distributions in models with promoter-based regulation. Using this approach, we derive exact analytical results for steady-state and time-dependent distributions for the basic two-stage model of gene expression. Furthermore, we show how the mapping leads to exact protein distributions for extensions of the basic model that include the effects of posttranscriptional and posttranslational regulation. The approach developed in this work is widely applicable and can contribute to a quantitative understanding of stochasticity in gene expression and its regulation.

  18. Exact protein distributions for stochastic models of gene expression using partitioning of Poisson processes

    Science.gov (United States)

    Pendar, Hodjat; Platini, Thierry; Kulkarni, Rahul V.

    2013-04-01

    Stochasticity in gene expression gives rise to fluctuations in protein levels across a population of genetically identical cells. Such fluctuations can lead to phenotypic variation in clonal populations; hence, there is considerable interest in quantifying noise in gene expression using stochastic models. However, obtaining exact analytical results for protein distributions has been an intractable task for all but the simplest models. Here, we invoke the partitioning property of Poisson processes to develop a mapping that significantly simplifies the analysis of stochastic models of gene expression. The mapping leads to exact protein distributions using results for mRNA distributions in models with promoter-based regulation. Using this approach, we derive exact analytical results for steady-state and time-dependent distributions for the basic two-stage model of gene expression. Furthermore, we show how the mapping leads to exact protein distributions for extensions of the basic model that include the effects of posttranscriptional and posttranslational regulation. The approach developed in this work is widely applicable and can contribute to a quantitative understanding of stochasticity in gene expression and its regulation.

  19. Existence and Uniqueness of Solutions to the Stochastic Porous Media Equations of Saturated Flows

    International Nuclear Information System (INIS)

    Ciotir, Ioana

    2010-01-01

    This paper proves the existence and uniqueness of nonnegative solutions for the stochastic porous media equations with multiplicative noise, infinite jump and discontinuous diffusivity function relevant in description of saturation processes in underground water infiltration in a bounded domain of R 3 .

  20. "Just another hoop to jump through?" using environmental laws and processes to protect indigenous rights.

    Science.gov (United States)

    Middleton, Beth Rose

    2013-11-01

    Protection of culturally important indigenous landscapes has become an increasingly important component of environmental management processes, for both companies and individuals striving to comply with environmental regulations, and for indigenous groups seeking stronger laws to support site protection and cultural/human rights. Given that indigenous stewardship of culturally important sites, species, and practices continues to be threatened or prohibited on lands out of indigenous ownership, this paper examines whether or not indigenous people can meaningfully apply mainstream environmental management laws and processes to achieve protection of traditional sites and associated stewardship activities. While environmental laws can provide a "back door" to protect traditional sites and practices, they are not made for this purpose, and, as such, require specific amendments to become more useful for indigenous practitioners. Acknowledging thoughtful critiques of the cultural incommensurability of environmental law with indigenous environmental stewardship of sacred sites, I interrogate the ability of four specific environmental laws and processes-the Uniform Conservation Easement Act; the National Environmental Policy Act and the California Environmental Quality Act; the Pacific Stewardship Council land divestiture process; and Senate Bill 18 (CA-2004)-to protect culturally important landscapes and practices. I offer suggestions for improving these laws and processes to make them more applicable to indigenous stewardship of traditional landscapes.

  1. Jump probabilities in the non-Markovian quantum jump method

    International Nuclear Information System (INIS)

    Haerkoenen, Kari

    2010-01-01

    The dynamics of a non-Markovian open quantum system described by a general time-local master equation is studied. The propagation of the density operator is constructed in terms of two processes: (i) deterministic evolution and (ii) evolution of a probability density functional in the projective Hilbert space. The analysis provides a derivation for the jump probabilities used in the recently developed non-Markovian quantum jump (NMQJ) method (Piilo et al 2008 Phys. Rev. Lett. 100 180402).

  2. Reflection Positive Stochastic Processes Indexed by Lie Groups

    Science.gov (United States)

    Jorgensen, Palle E. T.; Neeb, Karl-Hermann; Ólafsson, Gestur

    2016-06-01

    Reflection positivity originates from one of the Osterwalder-Schrader axioms for constructive quantum field theory. It serves as a bridge between euclidean and relativistic quantum field theory. In mathematics, more specifically, in representation theory, it is related to the Cartan duality of symmetric Lie groups (Lie groups with an involution) and results in a transformation of a unitary representation of a symmetric Lie group to a unitary representation of its Cartan dual. In this article we continue our investigation of representation theoretic aspects of reflection positivity by discussing reflection positive Markov processes indexed by Lie groups, measures on path spaces, and invariant gaussian measures in spaces of distribution vectors. This provides new constructions of reflection positive unitary representations.

  3. Tempered stable distributions stochastic models for multiscale processes

    CERN Document Server

    Grabchak, Michael

    2015-01-01

    This brief is concerned with tempered stable distributions and their associated Levy processes. It is a good text for researchers interested in learning about tempered stable distributions.  A tempered stable distribution is one which takes a stable distribution and modifies its tails to make them lighter. The motivation for this class comes from the fact that infinite variance stable distributions appear to provide a good fit to data in a variety of situations, but the extremely heavy tails of these models are not realistic for most real world applications. The idea of using distributions that modify the tails of stable models to make them lighter seems to have originated in the influential paper of Mantegna and Stanley (1994). Since then, these distributions have been extended and generalized in a variety of ways. They have been applied to a wide variety of areas including mathematical finance, biostatistics,computer science, and physics.

  4. Using Institutional Survey Data to Jump-Start Your Benchmarking Process

    Science.gov (United States)

    Chow, Timothy K. C.

    2012-01-01

    Guided by the missions and visions, higher education institutions utilize benchmarking processes to identify better and more efficient ways to carry out their operations. Aside from the initial planning and organization steps involved in benchmarking, a matching or selection step is crucial for identifying other institutions that have good…

  5. Reliability and maintenance in European nuclear power plants: A structural analysis of a controlled stochastic process

    International Nuclear Information System (INIS)

    Sturm, R.

    1991-01-01

    Two aspects of performance are of main concern: plant availability and plant reliability (defined as the conditional probability of an unplanned shutdown). The goal of the research is a unified framework that combines behavioral models of optimizing agents with models of complex technical systems that take into account the dynamic and stochastic features of the system. In order to achieve this synthesis, two liens of work are necessary. One line requires a deeper understanding of complex production systems and the type of data they give rise to; the other line involves the specification and estimation of a rigorously specified behavioral model. Plant operations are modeled as a controlled stochastic process, and the sequence of up and downtime spells is analyzed during failure time and point process models. Similar to work on rational expectations and structural econometric models, the behavior model of how the plant process is controlled is formulated at the level of basic processes, i.e., the objective function of the plant manager, technical constraints, and stochastic disturbances

  6. Coarse-grained stochastic processes and kinetic Monte Carlo simulators for the diffusion of interacting particles

    Science.gov (United States)

    Katsoulakis, Markos A.; Vlachos, Dionisios G.

    2003-11-01

    We derive a hierarchy of successively coarse-grained stochastic processes and associated coarse-grained Monte Carlo (CGMC) algorithms directly from the microscopic processes as approximations in larger length scales for the case of diffusion of interacting particles on a lattice. This hierarchy of models spans length scales between microscopic and mesoscopic, satisfies a detailed balance, and gives self-consistent fluctuation mechanisms whose noise is asymptotically identical to the microscopic MC. Rigorous, detailed asymptotics justify and clarify these connections. Gradient continuous time microscopic MC and CGMC simulations are compared under far from equilibrium conditions to illustrate the validity of our theory and delineate the errors obtained by rigorous asymptotics. Information theory estimates are employed for the first time to provide rigorous error estimates between the solutions of microscopic MC and CGMC, describing the loss of information during the coarse-graining process. Simulations under periodic boundary conditions are used to verify the information theory error estimates. It is shown that coarse-graining in space leads also to coarse-graining in time by q2, where q is the level of coarse-graining, and overcomes in part the hydrodynamic slowdown. Operation counting and CGMC simulations demonstrate significant CPU savings in continuous time MC simulations that vary from q3 for short potentials to q4 for long potentials. Finally, connections of the new coarse-grained stochastic processes to stochastic mesoscopic and Cahn-Hilliard-Cook models are made.

  7. An adaptive algorithm for simulation of stochastic reaction-diffusion processes

    International Nuclear Information System (INIS)

    Ferm, Lars; Hellander, Andreas; Loetstedt, Per

    2010-01-01

    We propose an adaptive hybrid method suitable for stochastic simulation of diffusion dominated reaction-diffusion processes. For such systems, simulation of the diffusion requires the predominant part of the computing time. In order to reduce the computational work, the diffusion in parts of the domain is treated macroscopically, in other parts with the tau-leap method and in the remaining parts with Gillespie's stochastic simulation algorithm (SSA) as implemented in the next subvolume method (NSM). The chemical reactions are handled by SSA everywhere in the computational domain. A trajectory of the process is advanced in time by an operator splitting technique and the timesteps are chosen adaptively. The spatial adaptation is based on estimates of the errors in the tau-leap method and the macroscopic diffusion. The accuracy and efficiency of the method are demonstrated in examples from molecular biology where the domain is discretized by unstructured meshes.

  8. Correlation techniques for the improvement of signal-to-noise ratio in measurements with stochastic processes

    CERN Document Server

    Reddy, V R; Reddy, T G; Reddy, P Y; Reddy, K R

    2003-01-01

    An AC modulation technique is described to convert stochastic signal variations into an amplitude variation and its retrieval through Fourier analysis. It is shown that this AC detection of signals of stochastic processes when processed through auto- and cross-correlation techniques improve the signal-to-noise ratio; the correlation techniques serve a similar purpose of frequency and phase filtering as that of phase-sensitive detection. A few model calculations applied to nuclear spectroscopy measurements such as Angular Correlations, Mossbauer spectroscopy and Pulse Height Analysis reveal considerable improvement in the sensitivity of signal detection. Experimental implementation of the technique is presented in terms of amplitude variations of harmonics representing the derivatives of normal spectra. Improved detection sensitivity to spectral variations is shown to be significant. These correlation techniques are general and can be made applicable to all the fields of particle counting where measurements ar...

  9. Whole-field visual motion drives swimming in larval zebrafish via a stochastic process.

    Science.gov (United States)

    Portugues, Ruben; Haesemeyer, Martin; Blum, Mirella L; Engert, Florian

    2015-05-01

    Caudo-rostral whole-field visual motion elicits forward locomotion in many organisms, including larval zebrafish. Here, we investigate the dependence on the latency to initiate this forward swimming as a function of the speed of the visual motion. We show that latency is highly dependent on speed for slow speeds (1.5 s, which is much longer than neuronal transduction processes. What mechanisms underlie these long latencies? We propose two alternative, biologically inspired models that could account for this latency to initiate swimming: an integrate and fire model, which is history dependent, and a stochastic Poisson model, which has no history dependence. We use these models to predict the behavior of larvae when presented with whole-field motion of varying speed and find that the stochastic process shows better agreement with the experimental data. Finally, we discuss possible neuronal implementations of these models. © 2015. Published by The Company of Biologists Ltd.

  10. Bi-Objective Flexible Job-Shop Scheduling Problem Considering Energy Consumption under Stochastic Processing Times.

    Science.gov (United States)

    Yang, Xin; Zeng, Zhenxiang; Wang, Ruidong; Sun, Xueshan

    2016-01-01

    This paper presents a novel method on the optimization of bi-objective Flexible Job-shop Scheduling Problem (FJSP) under stochastic processing times. The robust counterpart model and the Non-dominated Sorting Genetic Algorithm II (NSGA-II) are used to solve the bi-objective FJSP with consideration of the completion time and the total energy consumption under stochastic processing times. The case study on GM Corporation verifies that the NSGA-II used in this paper is effective and has advantages to solve the proposed model comparing with HPSO and PSO+SA. The idea and method of the paper can be generalized widely in the manufacturing industry, because it can reduce the energy consumption of the energy-intensive manufacturing enterprise with less investment when the new approach is applied in existing systems.

  11. Stationary and related stochastic processes sample function properties and their applications

    CERN Document Server

    Cramér, Harald

    2004-01-01

    This graduate-level text offers a comprehensive account of the general theory of stationary processes, with special emphasis on the properties of sample functions. Assuming a familiarity with the basic features of modern probability theory, the text develops the foundations of the general theory of stochastic processes, examines processes with a continuous-time parameter, and applies the general theory to procedures key to the study of stationary processes. Additional topics include analytic properties of the sample functions and the problem of time distribution of the intersections between a

  12. Low Variance Couplings for Stochastic Models of Intracellular Processes with Time-Dependent Rate Functions.

    Science.gov (United States)

    Anderson, David F; Yuan, Chaojie

    2018-04-18

    A number of coupling strategies are presented for stochastically modeled biochemical processes with time-dependent parameters. In particular, the stacked coupling is introduced and is shown via a number of examples to provide an exceptionally low variance between the generated paths. This coupling will be useful in the numerical computation of parametric sensitivities and the fast estimation of expectations via multilevel Monte Carlo methods. We provide the requisite estimators in both cases.

  13. A decision dependent stochastic process model for repairable systems with applications

    Directory of Open Access Journals (Sweden)

    Paul F. Zantek

    2015-12-01

    This paper mathematically formalizes the notion of how management actions impact the functioning of a repairable system over time by developing a new stochastic process model for such systems. The proposed model is illustrated using both simulated and real data. The proposed model compares favorably to other models for well-known data on Boeing airplanes. The model is further illustrated and compared to other models on failure time and maintenance data stemming from the South Texas Project nuclear power plant.

  14. Disentangling mechanisms that mediate the balance between stochastic and deterministic processes in microbial succession.

    Science.gov (United States)

    Dini-Andreote, Francisco; Stegen, James C; van Elsas, Jan Dirk; Salles, Joana Falcão

    2015-03-17

    Ecological succession and the balance between stochastic and deterministic processes are two major themes within microbial ecology, but these conceptual domains have mostly developed independent of each other. Here we provide a framework that integrates shifts in community assembly processes with microbial primary succession to better understand mechanisms governing the stochastic/deterministic balance. Synthesizing previous work, we devised a conceptual model that links ecosystem development to alternative hypotheses related to shifts in ecological assembly processes. Conceptual model hypotheses were tested by coupling spatiotemporal data on soil bacterial communities with environmental conditions in a salt marsh chronosequence spanning 105 years of succession. Analyses within successional stages showed community composition to be initially governed by stochasticity, but as succession proceeded, there was a progressive increase in deterministic selection correlated with increasing sodium concentration. Analyses of community turnover among successional stages--which provide a larger spatiotemporal scale relative to within stage analyses--revealed that changes in the concentration of soil organic matter were the main predictor of the type and relative influence of determinism. Taken together, these results suggest scale-dependency in the mechanisms underlying selection. To better understand mechanisms governing these patterns, we developed an ecological simulation model that revealed how changes in selective environments cause shifts in the stochastic/deterministic balance. Finally, we propose an extended--and experimentally testable--conceptual model integrating ecological assembly processes with primary and secondary succession. This framework provides a priori hypotheses for future experiments, thereby facilitating a systematic approach to understand assembly and succession in microbial communities across ecosystems.

  15. Model-free stochastic processes studied with q-wavelet-based informational tools

    International Nuclear Information System (INIS)

    Perez, D.G.; Zunino, L.; Martin, M.T.; Garavaglia, M.; Plastino, A.; Rosso, O.A.

    2007-01-01

    We undertake a model-free investigation of stochastic processes employing q-wavelet based quantifiers, that constitute a generalization of their Shannon counterparts. It is shown that (i) interesting physical information becomes accessible in such a way (ii) for special q values the quantifiers are more sensitive than the Shannon ones and (iii) there exist an implicit relationship between the Hurst parameter H and q within this wavelet framework

  16. Stochastic processes, optimization, and control theory a volume in honor of Suresh Sethi

    CERN Document Server

    Yan, Houmin

    2006-01-01

    This edited volume contains 16 research articles. It presents recent and pressing issues in stochastic processes, control theory, differential games, optimization, and their applications in finance, manufacturing, queueing networks, and climate control. One of the salient features is that the book is highly multi-disciplinary. The book is dedicated to Professor Suresh Sethi on the occasion of his 60th birthday, in view of his distinguished career.

  17. Power Laws in Stochastic Processes for Social Phenomena: An Introductory Review

    Science.gov (United States)

    Kumamoto, Shin-Ichiro; Kamihigashi, Takashi

    2018-03-01

    Many phenomena with power laws have been observed in various fields of the natural and social sciences, and these power laws are often interpreted as the macro behaviors of systems that consist of micro units. In this paper, we review some basic mathematical mechanisms that are known to generate power laws. In particular, we focus on stochastic processes including the Yule process and the Simon process as well as some recent models. The main purpose of this paper is to explain the mathematical details of their mechanisms in a self-contained manner.

  18. The Black-Scholes option pricing problem in mathematical finance: generalization and extensions for a large class of stochastic processes

    Science.gov (United States)

    Bouchaud, Jean-Philippe; Sornette, Didier

    1994-06-01

    The ability to price risks and devise optimal investment strategies in thé présence of an uncertain "random" market is thé cornerstone of modern finance theory. We first consider thé simplest such problem of a so-called "European call option" initially solved by Black and Scholes using Ito stochastic calculus for markets modelled by a log-Brownien stochastic process. A simple and powerful formalism is presented which allows us to generalize thé analysis to a large class of stochastic processes, such as ARCH, jump or Lévy processes. We also address thé case of correlated Gaussian processes, which is shown to be a good description of three différent market indices (MATIF, CAC40, FTSE100). Our main result is thé introduction of thé concept of an optimal strategy in the sense of (functional) minimization of the risk with respect to the portfolio. If the risk may be made to vanish for particular continuous uncorrelated 'quasiGaussian' stochastic processes (including Black and Scholes model), this is no longer the case for more general stochastic processes. The value of the residual risk is obtained and suggests the concept of risk-corrected option prices. In the presence of very large deviations such as in Lévy processes, new criteria for rational fixing of the option prices are discussed. We also apply our method to other types of options, `Asian', `American', and discuss new possibilities (`doubledecker'...). The inclusion of transaction costs leads to the appearance of a natural characteristic trading time scale. L'aptitude à quantifier le coût du risque et à définir une stratégie optimale de gestion de portefeuille dans un marché aléatoire constitue la base de la théorie moderne de la finance. Nous considérons d'abord le problème le plus simple de ce type, à savoir celui de l'option d'achat `européenne', qui a été résolu par Black et Scholes à l'aide du calcul stochastique d'Ito appliqué aux marchés modélisés par un processus Log

  19. Dimension reduction of Karhunen-Loeve expansion for simulation of stochastic processes

    Science.gov (United States)

    Liu, Zhangjun; Liu, Zixin; Peng, Yongbo

    2017-11-01

    Conventional Karhunen-Loeve expansions for simulation of stochastic processes often encounter the challenge of dealing with hundreds of random variables. For breaking through the barrier, a random function embedded Karhunen-Loeve expansion method is proposed in this paper. The updated scheme has a similar form to the conventional Karhunen-Loeve expansion, both involving a summation of a series of deterministic orthonormal basis and uncorrelated random variables. While the difference from the updated scheme lies in the dimension reduction of Karhunen-Loeve expansion through introducing random functions as a conditional constraint upon uncorrelated random variables. The random function is expressed as a single-elementary-random-variable orthogonal function in polynomial format (non-Gaussian variables) or trigonometric format (non-Gaussian and Gaussian variables). For illustrative purposes, the simulation of seismic ground motion is carried out using the updated scheme. Numerical investigations reveal that the Karhunen-Loeve expansion with random functions could gain desirable simulation results in case of a moderate sample number, except the Hermite polynomials and the Laguerre polynomials. It has the sound applicability and efficiency in simulation of stochastic processes. Besides, the updated scheme has the benefit of integrating with probability density evolution method, readily for the stochastic analysis of nonlinear structures.

  20. A mixed methods process evaluation of the implementation of JUMP-in, a multilevel school-based intervention aimed at physical activity promotion.

    Science.gov (United States)

    de Meij, Judith S B; van der Wal, Marcel F; van Mechelen, Willem; Chinapaw, Mai J M

    2013-09-01

    The aim of the present study was to investigate factors influencing the adoption, implementation, and institutionalization process of JUMP-in-a multilevel school-based physical activity promotion program-to optimize the dissemination of the intervention and improve its effectiveness. The process evaluation concerned the constraints and success and failure factors at sociopolitical, organizational, user, and intervention levels. A mixed methods approach including qualitative and quantitative data was conducted during two school years (2006-2008). JUMP-in was successfully embedded in the Amsterdam municipal policy and in the organizational structure and daily practices of the sectors involved. A general impeding factor was the complexity of the multilevel programme requiring multidisciplinary collaboration between organizations. In addition, there was a discrepancy between the recommendation to standardize and simplify the innovation and the need to tailor the strategies to local environmental, social, and cultural aspects. This process evaluation provides challenges and remedies for managing discrepancies between prerequisites for an effective innovation and demands of daily implementation practice. The main recommendations are (a) standardized, simplified guidelines; (b) stepwise implementation; (c) formalized coalitions, integration of policy, and synchronization of tasks and protocols; and (d) smart planning and control by clear communication and feedback instruments. If these recommendations are incorporated into the JUMP-in intervention and organization, increased effectiveness and long-term effects can be expected.

  1. Contribution to the stochastically studies of space-time dependable hydrological processes

    International Nuclear Information System (INIS)

    Kjaevski, Ivancho

    2002-12-01

    One of the fundaments of today's planning and water economy is Science of Hydrology. Science of Hydrology through the history had followed the development of the water management systems. Water management systems, during the time from single-approach evolved to complex and multi purpose systems. The dynamic and development of the today's society contributed for increasing the demand of clean water, and in the same time, the resources of clean water in the nature are reduced. In this kind of conditions, water management systems should resolve problems that are more complicated during managing of water sources. Solving the problems in water management, enable development and applying new methods and technologies in planning and management with water resources and water management systems like: systematical analyses, operational research, hierarchy decisions, expert systems, computer technology etc. Planning and management of water sources needs historical measured data for hydro metrological processes. In our country there are data of hydro metrological processes in period of 50-70, but in some Europe countries there are data more than 100 years. Water economy trends follow the hydro metrological trend research. The basic statistic techniques like sampling, probability distribution function, correlation and regression, are used about one intended and simple water management problems. Solving new problems about water management needs using of space-time stochastic technique, modem mathematical and statistical techniques during simulation and optimization of complex water systems. We need tree phases of development of the techniques to get secure hydrological models: i) Estimate the quality of hydro meteorological data, analyzing of their consistency, and homogeneous; ii) Structural analyze of hydro meteorological processes; iii) Mathematical models for modeling hydro meteorological processes. Very often, the third phase is applied for analyzing and modeling of hydro

  2. On a stochastic process associated to non-abelian gauge fields

    International Nuclear Information System (INIS)

    Vilela Mendes, R.

    1989-01-01

    A stochastic process is constructed from a ground state measure that generalizes to non-abelian fields the ground state of abelian (free) gauge fields without fermions. Using a latticized version one shows how the process leads to a well-defined quantum theory in the Schroedinger representation. An analysis of the qualitative behaviour of the theory seems to imply a quasi-free behaviour at short distances and a maximally disordered field strength configuration for the low-momentum component of the ground state. Scaling relations for the mass gap are inferred from the theory of small random perturbations of dynamical systems. (orig.)

  3. On time-dependent diffusion coefficients arising from stochastic processes with memory

    Science.gov (United States)

    Carpio-Bernido, M. Victoria; Barredo, Wilson I.; Bernido, Christopher C.

    2017-08-01

    Time-dependent diffusion coefficients arise from anomalous diffusion encountered in many physical systems such as protein transport in cells. We compare these coefficients with those arising from analysis of stochastic processes with memory that go beyond fractional Brownian motion. Facilitated by the Hida white noise functional integral approach, diffusion propagators or probability density functions (pdf) are obtained and shown to be solutions of modified diffusion equations with time-dependent diffusion coefficients. This should be useful in the study of complex transport processes.

  4. SDE decomposition and A-type stochastic interpretation in nonequilibrium processes

    Science.gov (United States)

    Yuan, Ruoshi; Tang, Ying; Ao, Ping

    2017-12-01

    An innovative theoretical framework for stochastic dynamics based on the decomposition of a stochastic differential equation (SDE) into a dissipative component, a detailed-balance-breaking component, and a dual-role potential landscape has been developed, which has fruitful applications in physics, engineering, chemistry, and biology. It introduces the A-type stochastic interpretation of the SDE beyond the traditional Ito or Stratonovich interpretation or even the α-type interpretation for multidimensional systems. The potential landscape serves as a Hamiltonian-like function in nonequilibrium processes without detailed balance, which extends this important concept from equilibrium statistical physics to the nonequilibrium region. A question on the uniqueness of the SDE decomposition was recently raised. Our review of both the mathematical and physical aspects shows that uniqueness is guaranteed. The demonstration leads to a better understanding of the robustness of the novel framework. In addition, we discuss related issues including the limitations of an approach to obtaining the potential function from a steady-state distribution.

  5. Modelling and predicting electricity consumption in Spain using the stochastic Gamma diffusion process with exogenous factors

    International Nuclear Information System (INIS)

    Nafidi, A.; Gutiérrez, R.; Gutiérrez-Sánchez, R.; Ramos-Ábalos, E.; El Hachimi, S.

    2016-01-01

    The aim of this study is to model electric power consumption during a period of economic crisis, characterised by declining gross domestic product. A novel aspect of this study is its use of a Gamma-type diffusion process for short and medium-term forecasting – other techniques that have been used to describe such consumption patterns are not valid in this situation. In this study, we consider a new extension of the stochastic Gamma diffusion process by introducing time functions (exogenous factors) that affect its trend. This extension is defined in terms of Kolmogorov backward and forward equations. After obtaining the transition probability density function and the moments (specifically, the trend function), the inference on the process parameters is obtained by discrete sampling of the sample paths. Finally, this stochastic process is applied to model total net electricity consumption in Spain, when affected by the following set of exogenous factors: Gross Domestic Product (GDP), Gross Fixed Capital Formation (GFCF) and Final Domestic Consumption (FDC). - Highlights: • The aim is modelling and predicting electricity consumption in Spain. • We propose a Gamma-type diffusion process for short and medium-term forecasting. • We compared the fit using diffusion processes with different exogenous factors.

  6. Hidden symmetries and equilibrium properties of multiplicative white-noise stochastic processes

    Science.gov (United States)

    González Arenas, Zochil; Barci, Daniel G.

    2012-12-01

    Multiplicative white-noise stochastic processes continue to attract attention in a wide area of scientific research. The variety of prescriptions available for defining them makes the development of general tools for their characterization difficult. In this work, we study equilibrium properties of Markovian multiplicative white-noise processes. For this, we define the time reversal transformation for such processes, taking into account that the asymptotic stationary probability distribution depends on the prescription. Representing the stochastic process in a functional Grassmann formalism, we avoid the necessity of fixing a particular prescription. In this framework, we analyze equilibrium properties and study hidden symmetries of the process. We show that, using a careful definition of the equilibrium distribution and taking into account the appropriate time reversal transformation, usual equilibrium properties are satisfied for any prescription. Finally, we present a detailed deduction of a covariant supersymmetric formulation of a multiplicative Markovian white-noise process and study some of the constraints that it imposes on correlation functions using Ward-Takahashi identities.

  7. Hidden symmetries and equilibrium properties of multiplicative white-noise stochastic processes

    International Nuclear Information System (INIS)

    Arenas, Zochil González; Barci, Daniel G

    2012-01-01

    Multiplicative white-noise stochastic processes continue to attract attention in a wide area of scientific research. The variety of prescriptions available for defining them makes the development of general tools for their characterization difficult. In this work, we study equilibrium properties of Markovian multiplicative white-noise processes. For this, we define the time reversal transformation for such processes, taking into account that the asymptotic stationary probability distribution depends on the prescription. Representing the stochastic process in a functional Grassmann formalism, we avoid the necessity of fixing a particular prescription. In this framework, we analyze equilibrium properties and study hidden symmetries of the process. We show that, using a careful definition of the equilibrium distribution and taking into account the appropriate time reversal transformation, usual equilibrium properties are satisfied for any prescription. Finally, we present a detailed deduction of a covariant supersymmetric formulation of a multiplicative Markovian white-noise process and study some of the constraints that it imposes on correlation functions using Ward–Takahashi identities. (paper)

  8. Stochastic analysis for Poisson point processes Malliavin calculus, Wiener-Itô chaos expansions and stochastic geometry

    CERN Document Server

    Peccati, Giovanni

    2016-01-01

    Stochastic geometry is the branch of mathematics that studies geometric structures associated with random configurations, such as random graphs, tilings and mosaics. Due to its close ties with stereology and spatial statistics, the results in this area are relevant for a large number of important applications, e.g. to the mathematical modeling and statistical analysis of telecommunication networks, geostatistics and image analysis. In recent years – due mainly to the impetus of the authors and their collaborators – a powerful connection has been established between stochastic geometry and the Malliavin calculus of variations, which is a collection of probabilistic techniques based on the properties of infinite-dimensional differential operators. This has led in particular to the discovery of a large number of new quantitative limit theorems for high-dimensional geometric objects. This unique book presents an organic collection of authoritative surveys written by the principal actors in this rapidly evolvi...

  9. Risk, Jumps, and Diversification

    DEFF Research Database (Denmark)

    Bollerslev, Tim; Law, Tzuo Hann; Tauchen, George

    We test for price discontinuities, or jumps, in a panel of high-frequency intraday returns for forty large-cap stocks and an equiweighted index from these same stocks. Jumps are naturally classified into two types: common and idiosyncratic. Common jumps affect all stocks, albeit to varying degrees......, while idiosyncratic jumps are stock-specific. Despite the fact that each of the stocks has a of about unity with respect to the index, common jumps are virtually never detected in the individual stocks. This is truly puzzling, as an index can jump only if one or more of its components jump. To resolve...... this puzzle, we propose a new test for cojumps. Using this new test we find strong evidence for many modest-sized common jumps that simply pass through the standard jump detection statistic, while they appear highly significant in the cross section based on the new cojump identification scheme. Our results...

  10. Birth of a hydraulic jump

    Science.gov (United States)

    Duchesne, Alexis; Bohr, Tomas; Andersen, Anders

    2017-11-01

    The hydraulic jump, i.e., the sharp transition between a supercritical and a subcritical free-surface flow, has been extensively studied in the past centuries. However, ever since Leonardo da Vinci asked it for the first time, an important question has been left unanswered: How does a hydraulic jump form? We present an experimental and theoretical study of the formation of stationary hydraulic jumps in centimeter wide channels. Two starting situations are considered: The channel is, respectively, empty or filled with liquid, the liquid level being fixed by the wetting properties and the boundary conditions. We then change the flow-rate abruptly from zero to a constant value. In an empty channel, we observe the formation of a stationary hydraulic jump in a two-stage process: First, the channel fills by the advancing liquid front, which undergoes a transition from supercritical to subcritical at some position in the channel. Later the influence of the downstream boundary conditions makes the jump move slowly upstream to its final position. In the pre-filled channel, the hydraulic jump forms at the injector edge and then moves downstream to its final position.

  11. Quantum learning of classical stochastic processes: The completely positive realization problem

    Science.gov (United States)

    Monràs, Alex; Winter, Andreas

    2016-01-01

    Among several tasks in Machine Learning, a specially important one is the problem of inferring the latent variables of a system and their causal relations with the observed behavior. A paradigmatic instance of this is the task of inferring the hidden Markov model underlying a given stochastic process. This is known as the positive realization problem (PRP), [L. Benvenuti and L. Farina, IEEE Trans. Autom. Control 49(5), 651-664 (2004)] and constitutes a central problem in machine learning. The PRP and its solutions have far-reaching consequences in many areas of systems and control theory, and is nowadays an important piece in the broad field of positive systems theory. We consider the scenario where the latent variables are quantum (i.e., quantum states of a finite-dimensional system) and the system dynamics is constrained only by physical transformations on the quantum system. The observable dynamics is then described by a quantum instrument, and the task is to determine which quantum instrument — if any — yields the process at hand by iterative application. We take as a starting point the theory of quasi-realizations, whence a description of the dynamics of the process is given in terms of linear maps on state vectors and probabilities are given by linear functionals on the state vectors. This description, despite its remarkable resemblance with the hidden Markov model, or the iterated quantum instrument, is however devoid of any stochastic or quantum mechanical interpretation, as said maps fail to satisfy any positivity conditions. The completely positive realization problem then consists in determining whether an equivalent quantum mechanical description of the same process exists. We generalize some key results of stochastic realization theory, and show that the problem has deep connections with operator systems theory, giving possible insight to the lifting problem in quotient operator systems. Our results have potential applications in quantum machine

  12. Quantum learning of classical stochastic processes: The completely positive realization problem

    Energy Technology Data Exchange (ETDEWEB)

    Monràs, Alex [Física Teòrica: Informació i Fenòmens Quàntics, Universitat Autònoma de Barcelona, 08193 Bellaterra (Barcelona) (Spain); Centre for Quantum Technologies, National University of Singapore, 3 Science Drive 2, Singapore 117543 (Singapore); Winter, Andreas [Física Teòrica: Informació i Fenòmens Quàntics, Universitat Autònoma de Barcelona, 08193 Bellaterra (Barcelona) (Spain); Centre for Quantum Technologies, National University of Singapore, 3 Science Drive 2, Singapore 117543 (Singapore); ICREA—Institució Catalana de Recerca i Estudis Avançats, Pg. Lluis Companys, 23, 08010 Barcelona (Spain)

    2016-01-15

    Among several tasks in Machine Learning, a specially important one is the problem of inferring the latent variables of a system and their causal relations with the observed behavior. A paradigmatic instance of this is the task of inferring the hidden Markov model underlying a given stochastic process. This is known as the positive realization problem (PRP), [L. Benvenuti and L. Farina, IEEE Trans. Autom. Control 49(5), 651–664 (2004)] and constitutes a central problem in machine learning. The PRP and its solutions have far-reaching consequences in many areas of systems and control theory, and is nowadays an important piece in the broad field of positive systems theory. We consider the scenario where the latent variables are quantum (i.e., quantum states of a finite-dimensional system) and the system dynamics is constrained only by physical transformations on the quantum system. The observable dynamics is then described by a quantum instrument, and the task is to determine which quantum instrument — if any — yields the process at hand by iterative application. We take as a starting point the theory of quasi-realizations, whence a description of the dynamics of the process is given in terms of linear maps on state vectors and probabilities are given by linear functionals on the state vectors. This description, despite its remarkable resemblance with the hidden Markov model, or the iterated quantum instrument, is however devoid of any stochastic or quantum mechanical interpretation, as said maps fail to satisfy any positivity conditions. The completely positive realization problem then consists in determining whether an equivalent quantum mechanical description of the same process exists. We generalize some key results of stochastic realization theory, and show that the problem has deep connections with operator systems theory, giving possible insight to the lifting problem in quotient operator systems. Our results have potential applications in quantum machine

  13. Quantum learning of classical stochastic processes: The completely positive realization problem

    International Nuclear Information System (INIS)

    Monràs, Alex; Winter, Andreas

    2016-01-01

    Among several tasks in Machine Learning, a specially important one is the problem of inferring the latent variables of a system and their causal relations with the observed behavior. A paradigmatic instance of this is the task of inferring the hidden Markov model underlying a given stochastic process. This is known as the positive realization problem (PRP), [L. Benvenuti and L. Farina, IEEE Trans. Autom. Control 49(5), 651–664 (2004)] and constitutes a central problem in machine learning. The PRP and its solutions have far-reaching consequences in many areas of systems and control theory, and is nowadays an important piece in the broad field of positive systems theory. We consider the scenario where the latent variables are quantum (i.e., quantum states of a finite-dimensional system) and the system dynamics is constrained only by physical transformations on the quantum system. The observable dynamics is then described by a quantum instrument, and the task is to determine which quantum instrument — if any — yields the process at hand by iterative application. We take as a starting point the theory of quasi-realizations, whence a description of the dynamics of the process is given in terms of linear maps on state vectors and probabilities are given by linear functionals on the state vectors. This description, despite its remarkable resemblance with the hidden Markov model, or the iterated quantum instrument, is however devoid of any stochastic or quantum mechanical interpretation, as said maps fail to satisfy any positivity conditions. The completely positive realization problem then consists in determining whether an equivalent quantum mechanical description of the same process exists. We generalize some key results of stochastic realization theory, and show that the problem has deep connections with operator systems theory, giving possible insight to the lifting problem in quotient operator systems. Our results have potential applications in quantum machine

  14. Modeling delay in genetic networks: from delay birth-death processes to delay stochastic differential equations.

    Science.gov (United States)

    Gupta, Chinmaya; López, José Manuel; Azencott, Robert; Bennett, Matthew R; Josić, Krešimir; Ott, William

    2014-05-28

    Delay is an important and ubiquitous aspect of many biochemical processes. For example, delay plays a central role in the dynamics of genetic regulatory networks as it stems from the sequential assembly of first mRNA and then protein. Genetic regulatory networks are therefore frequently modeled as stochastic birth-death processes with delay. Here, we examine the relationship between delay birth-death processes and their appropriate approximating delay chemical Langevin equations. We prove a quantitative bound on the error between the pathwise realizations of these two processes. Our results hold for both fixed delay and distributed delay. Simulations demonstrate that the delay chemical Langevin approximation is accurate even at moderate system sizes. It captures dynamical features such as the oscillatory behavior in negative feedback circuits, cross-correlations between nodes in a network, and spatial and temporal information in two commonly studied motifs of metastability in biochemical systems. Overall, these results provide a foundation for using delay stochastic differential equations to approximate the dynamics of birth-death processes with delay.

  15. Modeling delay in genetic networks: From delay birth-death processes to delay stochastic differential equations

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Chinmaya; López, José Manuel; Azencott, Robert; Ott, William [Department of Mathematics, University of Houston, Houston, Texas 77004 (United States); Bennett, Matthew R. [Department of Biochemistry and Cell Biology, Rice University, Houston, Texas 77204, USA and Institute of Biosciences and Bioengineering, Rice University, Houston, Texas 77005 (United States); Josić, Krešimir [Department of Mathematics, University of Houston, Houston, Texas 77004 (United States); Department of Biology and Biochemistry, University of Houston, Houston, Texas 77204 (United States)

    2014-05-28

    Delay is an important and ubiquitous aspect of many biochemical processes. For example, delay plays a central role in the dynamics of genetic regulatory networks as it stems from the sequential assembly of first mRNA and then protein. Genetic regulatory networks are therefore frequently modeled as stochastic birth-death processes with delay. Here, we examine the relationship between delay birth-death processes and their appropriate approximating delay chemical Langevin equations. We prove a quantitative bound on the error between the pathwise realizations of these two processes. Our results hold for both fixed delay and distributed delay. Simulations demonstrate that the delay chemical Langevin approximation is accurate even at moderate system sizes. It captures dynamical features such as the oscillatory behavior in negative feedback circuits, cross-correlations between nodes in a network, and spatial and temporal information in two commonly studied motifs of metastability in biochemical systems. Overall, these results provide a foundation for using delay stochastic differential equations to approximate the dynamics of birth-death processes with delay.

  16. Modeling delay in genetic networks: From delay birth-death processes to delay stochastic differential equations

    International Nuclear Information System (INIS)

    Gupta, Chinmaya; López, José Manuel; Azencott, Robert; Ott, William; Bennett, Matthew R.; Josić, Krešimir

    2014-01-01

    Delay is an important and ubiquitous aspect of many biochemical processes. For example, delay plays a central role in the dynamics of genetic regulatory networks as it stems from the sequential assembly of first mRNA and then protein. Genetic regulatory networks are therefore frequently modeled as stochastic birth-death processes with delay. Here, we examine the relationship between delay birth-death processes and their appropriate approximating delay chemical Langevin equations. We prove a quantitative bound on the error between the pathwise realizations of these two processes. Our results hold for both fixed delay and distributed delay. Simulations demonstrate that the delay chemical Langevin approximation is accurate even at moderate system sizes. It captures dynamical features such as the oscillatory behavior in negative feedback circuits, cross-correlations between nodes in a network, and spatial and temporal information in two commonly studied motifs of metastability in biochemical systems. Overall, these results provide a foundation for using delay stochastic differential equations to approximate the dynamics of birth-death processes with delay

  17. Nonlinear stochastic dynamics of mesoscopic homogeneous biochemical reaction systems—an analytical theory

    International Nuclear Information System (INIS)

    Qian, Hong

    2011-01-01

    The nonlinear dynamics of biochemical reactions in a small-sized system on the order of a cell are stochastic. Assuming spatial homogeneity, the populations of n molecular species follow a multi-dimensional birth-and-death process on Z n . We introduce the Delbrück–Gillespie process, a continuous-time Markov jump process, whose Kolmogorov forward equation has been known as the chemical master equation, and whose stochastic trajectories can be computed via the Gillespie algorithm. Using simple models, we illustrate that a system of nonlinear ordinary differential equations on R n emerges in the infinite system size limit. For finite system size, transitions among multiple attractors of the nonlinear dynamical system are rare events with exponentially long transit times. There is a separation of time scales between the deterministic ODEs and the stochastic Markov jumps between attractors. No diffusion process can provide a global representation that is accurate on both short and long time scales for the nonlinear, stochastic population dynamics. On the short time scale and near deterministic stable fixed points, Ornstein–Uhlenbeck Gaussian processes give linear stochastic dynamics that exhibit time-irreversible circular motion for open, driven chemical systems. Extending this individual stochastic behaviour-based nonlinear population theory of molecular species to other biological systems is discussed. (invited article)

  18. Stochastic Processes and Queueing Theory used in Cloud Computer Performance Simulations

    Directory of Open Access Journals (Sweden)

    Florin-Catalin ENACHE

    2015-10-01

    Full Text Available The growing character of the cloud business has manifested exponentially in the last 5 years. The capacity managers need to concentrate on a practical way to simulate the random demands a cloud infrastructure could face, even if there are not too many mathematical tools to simulate such demands.This paper presents an introduction into the most important stochastic processes and queueing theory concepts used for modeling computer performance. Moreover, it shows the cases where such concepts are applicable and when not, using clear programming examples on how to simulate a queue, and how to use and validate a simulation, when there are no mathematical concepts to back it up.

  19. The ‘hit’ phenomenon: a mathematical model of human dynamics interactions as a stochastic process

    Science.gov (United States)

    Ishii, Akira; Arakaki, Hisashi; Matsuda, Naoya; Umemura, Sanae; Urushidani, Tamiko; Yamagata, Naoya; Yoshida, Narihiko

    2012-06-01

    A mathematical model for the ‘hit’ phenomenon in entertainment within a society is presented as a stochastic process of human dynamics interactions. The model uses only the advertisement budget time distribution as an input, and word-of-mouth (WOM), represented by posts on social network systems, is used as data to make a comparison with the calculated results. The unit of time is days. The WOM distribution in time is found to be very close to the revenue distribution in time. Calculations for the Japanese motion picture market based on the mathematical model agree well with the actual revenue distribution in time.

  20. Poisson Stochastic Process and Basic Schauder and Sobolev Estimates in the Theory of Parabolic Equations

    Science.gov (United States)

    Krylov, N. V.; Priola, E.

    2017-09-01

    We show, among other things, how knowing Schauder or Sobolev-space estimates for the one-dimensional heat equation allows one to derive their multidimensional analogs for equations with coefficients depending only on the time variable with the same constants as in the case of the one-dimensional heat equation. The method is quite general and is based on using the Poisson stochastic process. It also applies to equations involving non-local operators. It looks like no other methods are available at this time and it is a very challenging problem to find a purely analytical approach to proving such results.

  1. Stochastic approach for round-off error analysis in computing application to signal processing algorithms

    International Nuclear Information System (INIS)

    Vignes, J.

    1986-01-01

    Any result of algorithms provided by a computer always contains an error resulting from floating-point arithmetic round-off error propagation. Furthermore signal processing algorithms are also generally performed with data containing errors. The permutation-perturbation method, also known under the name CESTAC (controle et estimation stochastique d'arrondi de calcul) is a very efficient practical method for evaluating these errors and consequently for estimating the exact significant decimal figures of any result of algorithms performed on a computer. The stochastic approach of this method, its probabilistic proof, and the perfect agreement between the theoretical and practical aspects are described in this paper [fr

  2. Asymptotic Behaviour and Extinction of Delay Lotka-Volterra Model with Jump-Diffusion

    Directory of Open Access Journals (Sweden)

    Dan Li

    2014-01-01

    Full Text Available This paper studies the effect of jump-diffusion random environmental perturbations on the asymptotic behaviour and extinction of Lotka-Volterra population dynamics with delays. The contributions of this paper lie in the following: (a to consider delay stochastic differential equation with jumps, we introduce a proper initial data space, in which the initial data may be discontinuous function with downward jumps; (b we show that the delay stochastic differential equation with jumps associated with our model has a unique global positive solution and give sufficient conditions that ensure stochastically ultimate boundedness, moment average boundedness in time, and asymptotic polynomial growth of our model; (c the sufficient conditions for the extinction of the system are obtained, which generalized the former results and showed that the sufficiently large random jump magnitudes and intensity (average rate of jump events arrival may lead to extinction of the population.

  3. Analysis methods of stochastic transient electro–magnetic processes in electric traction system

    Directory of Open Access Journals (Sweden)

    T. M. Mishchenko

    2013-04-01

    Full Text Available Purpose. The essence and basic characteristics of calculation methods of transient electromagnetic processes in the elements and devices of non–linear dynamic electric traction systems taking into account the stochastic changes of voltages and currents in traction networks of power supply subsystem and power circuits of electric rolling stock are developed. Methodology. Classical methods and the methods of non–linear electric engineering, as well as probability theory method, especially the methods of stationary ergodic and non–stationary stochastic processes application are used in the research. Findings. Using the above-mentioned methods an equivalent circuit and the system of nonlinear integra–differential equations for electromagnetic condition of the double–track inter-substation zone of alternating current electric traction system are drawn up. Calculations allow obtaining electric traction current distribution in the areas of feeder zones. Originality. First of all the paper is interesting and important from scientific point of view due to the methods, which allow taking into account probabilistic character of change for traction voltages and electric traction system currents. On the second hand the researches develop the most efficient methods of nonlinear circuits’ analysis. Practical value. The practical value of the research is presented in application of the methods to the analysis of electromagnetic and electric energy processes in the traction power supply system in the case of high-speed train traffic.

  4. Strategic WIP Inventory Positioning for Make-to-Order Production with Stochastic Processing Times

    Directory of Open Access Journals (Sweden)

    Jingjing Jiang

    2017-01-01

    Full Text Available It is vital for make-to-order manufacturers to shorten the lead time to meet the customers’ requirements. Holding work-in-process (WIP inventory at more stations can reduce the lead time, but it also brings about higher inventory holding cost. Therefore, it is important to seek out the optimal set of stations to hold WIP inventory to minimize the total inventory holding cost, while meeting the required due date for the final product at the same time. Since the problem with deterministic processing times at the stations has been addressed, as a natural extension, in this study, we address the problem with stochastic processing times, which is more realistic in the manufacturing environment. Assuming that the processing times follow normal distributions, we propose a solution procedure using genetic algorithm.

  5. Superior memory efficiency of quantum devices for the simulation of continuous-time stochastic processes

    Science.gov (United States)

    Elliott, Thomas J.; Gu, Mile

    2018-03-01

    Continuous-time stochastic processes pervade everyday experience, and the simulation of models of these processes is of great utility. Classical models of systems operating in continuous-time must typically track an unbounded amount of information about past behaviour, even for relatively simple models, enforcing limits on precision due to the finite memory of the machine. However, quantum machines can require less information about the past than even their optimal classical counterparts to simulate the future of discrete-time processes, and we demonstrate that this advantage extends to the continuous-time regime. Moreover, we show that this reduction in the memory requirement can be unboundedly large, allowing for arbitrary precision even with a finite quantum memory. We provide a systematic method for finding superior quantum constructions, and a protocol for analogue simulation of continuous-time renewal processes with a quantum machine.

  6. Jumping in Arithmetic

    NARCIS (Netherlands)

    Visser, Albert

    In this paper we study a new relation between sentences: the jump relation. The idea of the jump relation is based on an analysis of Feferman's Theorem that the inconsistency of a theory U is interpretable over U. The jump relation is based on a converse of Feferman's Theorem: if a sentence is

  7. Jumping in Arithmetic

    NARCIS (Netherlands)

    Visser, Albert

    2014-01-01

    In this paper we study a new relation between sentences: the jump relation. The idea of the jump relation is based on an analysis of Feferman's Theorem that the inconsistency of a theory U is interpretable over U. The jump relation is based on a converse of Feferman's Theorem: if a sentence is

  8. URDME: a modular framework for stochastic simulation of reaction-transport processes in complex geometries.

    Science.gov (United States)

    Drawert, Brian; Engblom, Stefan; Hellander, Andreas

    2012-06-22

    Experiments in silico using stochastic reaction-diffusion models have emerged as an important tool in molecular systems biology. Designing computational software for such applications poses several challenges. Firstly, realistic lattice-based modeling for biological applications requires a consistent way of handling complex geometries, including curved inner- and outer boundaries. Secondly, spatiotemporal stochastic simulations are computationally expensive due to the fast time scales of individual reaction- and diffusion events when compared to the biological phenomena of actual interest. We therefore argue that simulation software needs to be both computationally efficient, employing sophisticated algorithms, yet in the same time flexible in order to meet present and future needs of increasingly complex biological modeling. We have developed URDME, a flexible software framework for general stochastic reaction-transport modeling and simulation. URDME uses Unstructured triangular and tetrahedral meshes to resolve general geometries, and relies on the Reaction-Diffusion Master Equation formalism to model the processes under study. An interface to a mature geometry and mesh handling external software (Comsol Multiphysics) provides for a stable and interactive environment for model construction. The core simulation routines are logically separated from the model building interface and written in a low-level language for computational efficiency. The connection to the geometry handling software is realized via a Matlab interface which facilitates script computing, data management, and post-processing. For practitioners, the software therefore behaves much as an interactive Matlab toolbox. At the same time, it is possible to modify and extend URDME with newly developed simulation routines. Since the overall design effectively hides the complexity of managing the geometry and meshes, this means that newly developed methods may be tested in a realistic setting already at

  9. Hybrid stochastic simplifications for multiscale gene networks

    Directory of Open Access Journals (Sweden)

    Debussche Arnaud

    2009-09-01

    Full Text Available Abstract Background Stochastic simulation of gene networks by Markov processes has important applications in molecular biology. The complexity of exact simulation algorithms scales with the number of discrete jumps to be performed. Approximate schemes reduce the computational time by reducing the number of simulated discrete events. Also, answering important questions about the relation between network topology and intrinsic noise generation and propagation should be based on general mathematical results. These general results are difficult to obtain for exact models. Results We propose a unified framework for hybrid simplifications of Markov models of multiscale stochastic gene networks dynamics. We discuss several possible hybrid simplifications, and provide algorithms to obtain them from pure jump processes. In hybrid simplifications, some components are discrete and evolve by jumps, while other components are continuous. Hybrid simplifications are obtained by partial Kramers-Moyal expansion 123 which is equivalent to the application of the central limit theorem to a sub-model. By averaging and variable aggregation we drastically reduce simulation time and eliminate non-critical reactions. Hybrid and averaged simplifications can be used for more effective simulation algorithms and for obtaining general design principles relating noise to topology and time scales. The simplified models reproduce with good accuracy the stochastic properties of the gene networks, including waiting times in intermittence phenomena, fluctuation amplitudes and stationary distributions. The methods are illustrated on several gene network examples. Conclusion Hybrid simplifications can be used for onion-like (multi-layered approaches to multi-scale biochemical systems, in which various descriptions are used at various scales. Sets of discrete and continuous variables are treated with different methods and are coupled together in a physically justified approach.

  10. Stochastic and Deterministic Models for the Metastatic Emission Process: Formalisms and Crosslinks.

    Science.gov (United States)

    Gomez, Christophe; Hartung, Niklas

    2018-01-01

    Although the detection of metastases radically changes prognosis of and treatment decisions for a cancer patient, clinically undetectable micrometastases hamper a consistent classification into localized or metastatic disease. This chapter discusses mathematical modeling efforts that could help to estimate the metastatic risk in such a situation. We focus on two approaches: (1) a stochastic framework describing metastatic emission events at random times, formalized via Poisson processes, and (2) a deterministic framework describing the micrometastatic state through a size-structured density function in a partial differential equation model. Three aspects are addressed in this chapter. First, a motivation for the Poisson process framework is presented and modeling hypotheses and mechanisms are introduced. Second, we extend the Poisson model to account for secondary metastatic emission. Third, we highlight an inherent crosslink between the stochastic and deterministic frameworks and discuss its implications. For increased accessibility the chapter is split into an informal presentation of the results using a minimum of mathematical formalism and a rigorous mathematical treatment for more theoretically interested readers.

  11. Simulation of multivariate stationary stochastic processes using dimension-reduction representation methods

    Science.gov (United States)

    Liu, Zhangjun; Liu, Zenghui; Peng, Yongbo

    2018-03-01

    In view of the Fourier-Stieltjes integral formula of multivariate stationary stochastic processes, a unified formulation accommodating spectral representation method (SRM) and proper orthogonal decomposition (POD) is deduced. By introducing random functions as constraints correlating the orthogonal random variables involved in the unified formulation, the dimension-reduction spectral representation method (DR-SRM) and the dimension-reduction proper orthogonal decomposition (DR-POD) are addressed. The proposed schemes are capable of representing the multivariate stationary stochastic process with a few elementary random variables, bypassing the challenges of high-dimensional random variables inherent in the conventional Monte Carlo methods. In order to accelerate the numerical simulation, the technique of Fast Fourier Transform (FFT) is integrated with the proposed schemes. For illustrative purposes, the simulation of horizontal wind velocity field along the deck of a large-span bridge is proceeded using the proposed methods containing 2 and 3 elementary random variables. Numerical simulation reveals the usefulness of the dimension-reduction representation methods.

  12. Analysis and Prediction on Vehicle Ownership Based on an Improved Stochastic Gompertz Diffusion Process

    Directory of Open Access Journals (Sweden)

    Huapu Lu

    2017-01-01

    Full Text Available This paper aims at introducing a new improved stochastic differential equation related to Gompertz curve for the projection of vehicle ownership growth. This diffusion model explains the relationship between vehicle ownership and GDP per capita, which has been studied as a Gompertz-like function before. The main innovations of the process lie in two parts: by modifying the deterministic part of the original Gompertz equation, the model can present the remaining slow increase when the S-shaped curve has reached its saturation level; by introducing the stochastic differential equation, the model can better fit the real data when there are fluctuations. Such comparisons are carried out based on data from US, UK, Japan, and Korea with a time span of 1960–2008. It turns out that the new process behaves better in fitting curves and predicting short term growth. Finally, a prediction of Chinese vehicle ownership up to 2025 is presented with the new model, as China is on the initial stage of motorization with much fluctuations in growth.

  13. The development of stochastic process modeling through risk analysis derived from scheduling of NPP project

    International Nuclear Information System (INIS)

    Lee, Kwang Ho; Roh, Myung Sub

    2013-01-01

    There are so many different factors to consider when constructing a nuclear power plant successfully from planning to decommissioning. According to PMBOK, all projects have nine domains from a holistic project management perspective. They are equally important to all projects, however, this study focuses mostly on the processes required to manage timely completion of the project and conduct risk management. The overall objective of this study is to let you know what the risk analysis derived from scheduling of NPP project is, and understand how to implement the stochastic process modeling through risk management. Building the Nuclear Power Plant is required a great deal of time and fundamental knowledge related to all engineering. That means that integrated project scheduling management with so many activities is necessary and very important. Simulation techniques for scheduling of NPP project using Open Plan program, Crystal Ball program, and Minitab program can be useful tools for designing optimal schedule planning. Thus far, Open Plan and Monte Carlo programs have been used to calculate the critical path for scheduling network analysis. And also, Minitab program has been applied to monitor the scheduling risk. This approach to stochastic modeling through risk analysis of project activities is very useful for optimizing the schedules of activities using Critical Path Method and managing the scheduling control of NPP project. This study has shown new approach to optimal scheduling of NPP project, however, this does not consider the characteristic of activities according to the NPP site conditions. Hence, this study needs more research considering those factors

  14. The development of stochastic process modeling through risk analysis derived from scheduling of NPP project

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kwang Ho; Roh, Myung Sub [KEPCO International Nuclear Graduate School, Ulsan (Korea, Republic of)

    2013-10-15

    There are so many different factors to consider when constructing a nuclear power plant successfully from planning to decommissioning. According to PMBOK, all projects have nine domains from a holistic project management perspective. They are equally important to all projects, however, this study focuses mostly on the processes required to manage timely completion of the project and conduct risk management. The overall objective of this study is to let you know what the risk analysis derived from scheduling of NPP project is, and understand how to implement the stochastic process modeling through risk management. Building the Nuclear Power Plant is required a great deal of time and fundamental knowledge related to all engineering. That means that integrated project scheduling management with so many activities is necessary and very important. Simulation techniques for scheduling of NPP project using Open Plan program, Crystal Ball program, and Minitab program can be useful tools for designing optimal schedule planning. Thus far, Open Plan and Monte Carlo programs have been used to calculate the critical path for scheduling network analysis. And also, Minitab program has been applied to monitor the scheduling risk. This approach to stochastic modeling through risk analysis of project activities is very useful for optimizing the schedules of activities using Critical Path Method and managing the scheduling control of NPP project. This study has shown new approach to optimal scheduling of NPP project, however, this does not consider the characteristic of activities according to the NPP site conditions. Hence, this study needs more research considering those factors.

  15. Nonparametric Inference of Doubly Stochastic Poisson Process Data via the Kernel Method.

    Science.gov (United States)

    Zhang, Tingting; Kou, S C

    2010-01-01

    Doubly stochastic Poisson processes, also known as the Cox processes, frequently occur in various scientific fields. In this article, motivated primarily by analyzing Cox process data in biophysics, we propose a nonparametric kernel-based inference method. We conduct a detailed study, including an asymptotic analysis, of the proposed method, and provide guidelines for its practical use, introducing a fast and stable regression method for bandwidth selection. We apply our method to real photon arrival data from recent single-molecule biophysical experiments, investigating proteins' conformational dynamics. Our result shows that conformational fluctuation is widely present in protein systems, and that the fluctuation covers a broad range of time scales, highlighting the dynamic and complex nature of proteins' structure.

  16. Finding Order in Randomness: Single-Molecule Studies Reveal Stochastic RNA Processing | Center for Cancer Research

    Science.gov (United States)

    Producing a functional eukaryotic messenger RNA (mRNA) requires the coordinated activity of several large protein complexes to initiate transcription, elongate nascent transcripts, splice together exons, and cleave and polyadenylate the 3’ end. Kinetic competition between these various processes has been proposed to regulate mRNA maturation, but this model could lead to multiple, randomly determined, or stochastic, pathways or outcomes. Regulatory checkpoints have been suggested as a means of ensuring quality control. However, current methods have been unable to tease apart the contributions of these processes at a single gene or on a time scale that could provide mechanistic insight. To begin to investigate the kinetic relationship between transcription and splicing, Daniel Larson, Ph.D., of CCR’s Laboratory of Receptor Biology and Gene Expression, and his colleagues employed a single-molecule RNA imaging approach to monitor production and processing of a human β-globin reporter gene in living cells.

  17. Jump Detection in the Danish Stock Market

    DEFF Research Database (Denmark)

    Høg, Esben

    2002-01-01

    It is well known in financial economics that stock market return data are often modelled by a diffusion process with some regular drift function. Occasionally, however, sudden changes or jumps occur in the return data. Wavelet scaling methods are used to detect jumps and cusps in stock market...

  18. Monitoring and pollution control: A stochastic process approach to model oil spills

    International Nuclear Information System (INIS)

    Viladrich-Grau, M.

    1991-01-01

    The first chapter analyzes the behavior of a firm in an environment with pollution externalities and technological progress. It is assumed that firms may not purposely violate the pollution control regulations but nonetheless, generate some pollution due to negligence. The model allows firms two possible actions: either increase the level of treated waste or pay an expected penalty if illegal pollution is detected. The results of the first chapter show that in a world with pollution externalities, technological progress does not guarantee increases in the welfare level. The second chapter models the occurrence of an oil spill as a stochastic event. The stochastic model developed allows one to see how each step of the spilling process is affected by each policy measure and to compare the relative efficiency of different measures in reducing spills. The third chapter estimates the parameters that govern oil spill frequency and size distribution. The author models how these parameters depend on two pollution prevention measures: monitoring of transfer operations and assessment of penalties. He shows that these measures reduce the frequency of oil spills

  19. Modeling Stochastic Complexity in Complex Adaptive Systems: Non-Kolmogorov Probability and the Process Algebra Approach.

    Science.gov (United States)

    Sulis, William H

    2017-10-01

    Walter Freeman III pioneered the application of nonlinear dynamical systems theories and methodologies in his work on mesoscopic brain dynamics.Sadly, mainstream psychology and psychiatry still cling to linear correlation based data analysis techniques, which threaten to subvert the process of experimentation and theory building. In order to progress, it is necessary to develop tools capable of managing the stochastic complexity of complex biopsychosocial systems, which includes multilevel feedback relationships, nonlinear interactions, chaotic dynamics and adaptability. In addition, however, these systems exhibit intrinsic randomness, non-Gaussian probability distributions, non-stationarity, contextuality, and non-Kolmogorov probabilities, as well as the absence of mean and/or variance and conditional probabilities. These properties and their implications for statistical analysis are discussed. An alternative approach, the Process Algebra approach, is described. It is a generative model, capable of generating non-Kolmogorov probabilities. It has proven useful in addressing fundamental problems in quantum mechanics and in the modeling of developing psychosocial systems.

  20. Timeless Approach to Quantum Jumps

    Directory of Open Access Journals (Sweden)

    Ignazio Licata

    2015-10-01

    Full Text Available According to the usual quantum description, the time evolution of the quantum state is continuous and deterministic except when a discontinuous and indeterministic collapse of state vector occurs. The collapse has been a central topic since the origin of the theory, although there are remarkable theoretical proposals to understand its nature, such as the Ghirardi–Rimini–Weber. Another possibility could be the assimilation of collapse with the now experimentally well established phenomenon of quantum jump, postulated by Bohr already in 1913. The challenge of nonlocality offers an opportunity to reconsider the quantum jump as a fundamental element of the logic of the physical world, rather than a subsidiary accident. We propose here a simple preliminary model that considers quantum jumps as processes of entry to and exit from the usual temporal domain to a timeless vacuum, without contradicting the quantum relativistic formalism, and we present some potential connections with particle physics. Quanta 2015; 4: 10–26.

  1. Comment on "Fault Tolerant analysis for stochastic systems using switching diffusion processes' by Yang, Jiang and Cocquempot

    DEFF Research Database (Denmark)

    Schiøler, Henrik; Leth, John-Josef

    2011-01-01

    Results are given in [Yang et. al. 2009] regarding the overall stability of switched diffusion processes based on stability properties of separate processes combined through stochastic switching. This paper argues two main results to be empty, in that the presented hypotheses are logically...

  2. Conference on Stochastic Processes and their Applications (16th) Held in Stanford, California on 16-21 August 1987.

    Science.gov (United States)

    1987-08-21

    examples of so-called self-similar processes. 522 -°- °.. 0 * - -= uu~.~w- - v , LOCAL BEHAVIOUR OF SIMPLE STOCHASTIC MODELS by Rudolf Grfibel...theorem en- tails results on the growth of matchings, Steiner trees, traveling-salesman processes as well as triangulations in large areas. These

  3. Quantum stochastics

    CERN Document Server

    Chang, Mou-Hsiung

    2015-01-01

    The classical probability theory initiated by Kolmogorov and its quantum counterpart, pioneered by von Neumann, were created at about the same time in the 1930s, but development of the quantum theory has trailed far behind. Although highly appealing, the quantum theory has a steep learning curve, requiring tools from both probability and analysis and a facility for combining the two viewpoints. This book is a systematic, self-contained account of the core of quantum probability and quantum stochastic processes for graduate students and researchers. The only assumed background is knowledge of the basic theory of Hilbert spaces, bounded linear operators, and classical Markov processes. From there, the book introduces additional tools from analysis, and then builds the quantum probability framework needed to support applications to quantum control and quantum information and communication. These include quantum noise, quantum stochastic calculus, stochastic quantum differential equations, quantum Markov semigrou...

  4. Stochastic Dynamics of Discrete Curves and Exclusion Processes. Part 1: Hydrodynamic Limit of the ASEP System

    CERN Document Server

    Fayolle, G; Fayolle, Guy; Furtlehner, Cyril

    2006-01-01

    This report is the foreword of a series of stochastic deformations of curves. Problems are set in terms of exclusion processes, the ultimate goal being to derive hydrodynamic limits for these systems after proper scalings. In this study, solely the basic texts system on the torus is analyzed. The usual sequence of empirical measures, converges in probability to a deterministic measure, which is the unique weak solution of a Cauchy problem. The method presents some new features, letting hope for extensions to higher dimension. It relies on the analysis of a family of parabolic differential operators, involving variational calculus. Namely, the variables are the values of functions at given points, their number being possibly infinite.

  5. Stochastic dynamical model of a growing citation network based on a self-exciting point process.

    Science.gov (United States)

    Golosovsky, Michael; Solomon, Sorin

    2012-08-31

    We put under experimental scrutiny the preferential attachment model that is commonly accepted as a generating mechanism of the scale-free complex networks. To this end we chose a citation network of physics papers and traced the citation history of 40,195 papers published in one year. Contrary to common belief, we find that the citation dynamics of the individual papers follows the superlinear preferential attachment, with the exponent α=1.25-1.3. Moreover, we show that the citation process cannot be described as a memoryless Markov chain since there is a substantial correlation between the present and recent citation rates of a paper. Based on our findings we construct a stochastic growth model of the citation network, perform numerical simulations based on this model and achieve an excellent agreement with the measured citation distributions.

  6. Leaf optical system modeled as a stochastic process. [solar radiation interaction with terrestrial vegetation

    Science.gov (United States)

    Tucker, C. J.; Garratt, M. W.

    1977-01-01

    A stochastic leaf radiation model based upon physical and physiological properties of dicot leaves has been developed. The model accurately predicts the absorbed, reflected, and transmitted radiation of normal incidence as a function of wavelength resulting from the leaf-irradiance interaction over the spectral interval of 0.40-2.50 micron. The leaf optical system has been represented as Markov process with a unique transition matrix at each 0.01-micron increment between 0.40 micron and 2.50 micron. Probabilities are calculated at every wavelength interval from leaf thickness, structure, pigment composition, and water content. Simulation results indicate that this approach gives accurate estimations of actual measured values for dicot leaf absorption, reflection, and transmission as a function of wavelength.

  7. Rapid core field variations during the satellite era: Investigations using stochastic process based field models

    DEFF Research Database (Denmark)

    Finlay, Chris; Olsen, Nils; Gillet, Nicolas

    We present a new ensemble of time-dependent magnetic field models constructed from satellite and observatory data spanning 1997-2013 that are compatible with prior information concerning the temporal spectrum of core field variations. These models allow sharper field changes compared to tradition...... physical hypotheses can be tested by asking questions of the entire ensemble of core field models, rather than by interpreting any single model.......We present a new ensemble of time-dependent magnetic field models constructed from satellite and observatory data spanning 1997-2013 that are compatible with prior information concerning the temporal spectrum of core field variations. These models allow sharper field changes compared to traditional...... regularization methods based on minimizing the square of second or third time derivative. We invert satellite and observatory data directly by adopting the external field and crustal field modelling framework of the CHAOS model, but apply the stochastic process method of Gillet et al. (2013) to the core field...

  8. Stochastic modeling of stock price process induced from the conjugate heat equation

    Science.gov (United States)

    Paeng, Seong-Hun

    2015-02-01

    Currency can be considered as a ruler for values of commodities. Then the price is the measured value by the ruler. We can suppose that inflation and variation of exchange rate are caused by variation of the scale of the ruler. In geometry, variation of the scale means that the metric is time-dependent. The conjugate heat equation is the modified heat equation which satisfies the heat conservation law for the time-dependent metric space. We propose a new model of stock prices by using the stochastic process whose transition probability is determined by the kernel of the conjugate heat equation. Our model of stock prices shows how the volatility term is affected by inflation and exchange rate. This model modifies the Black-Scholes equation in light of inflation and exchange rate.

  9. A data-driven wavelet-based approach for generating jumping loads

    Science.gov (United States)

    Chen, Jun; Li, Guo; Racic, Vitomir

    2018-06-01

    This paper suggests an approach to generate human jumping loads using wavelet transform and a database of individual jumping force records. A total of 970 individual jumping force records of various frequencies were first collected by three experiments from 147 test subjects. For each record, every jumping pulse was extracted and decomposed into seven levels by wavelet transform. All the decomposition coefficients were stored in an information database. Probability distributions of jumping cycle period, contact ratio and energy of the jumping pulse were statistically analyzed. Inspired by the theory of DNA recombination, an approach was developed by interchanging the wavelet coefficients between different jumping pulses. To generate a jumping force time history with N pulses, wavelet coefficients were first selected randomly from the database at each level. They were then used to reconstruct N pulses by the inverse wavelet transform. Jumping cycle periods and contract ratios were then generated randomly based on their probabilistic functions. These parameters were assigned to each of the N pulses which were in turn scaled by the amplitude factors βi to account for energy relationship between successive pulses. The final jumping force time history was obtained by linking all the N cycles end to end. This simulation approach can preserve the non-stationary features of the jumping load force in time-frequency domain. Application indicates that this approach can be used to generate jumping force time history due to single people jumping and also can be extended further to stochastic jumping loads due to groups and crowds.

  10. Magnetization jumps in nanostructured Nd–Fe–B alloy at low temperatures

    International Nuclear Information System (INIS)

    Neznakhin, D.S.; Bolyachkin, A.S.; Volegov, A.S.; Markin, P.E.; Andreev, S.V.; Kudrevatykh, N.V.

    2015-01-01

    Magnetic properties of the nanostructured isotropic alloy on the base of Nd 2 Fe 14 B type phase were investigated at low temperatures. The evaluated average grain size of this phase was much smaller than its critical single domain diameter. Hence the magnetization and demagnetization processes were expected to be performed by coherent magnetization rotation. For such coercivity type system magnetization jumps were revealed on the demagnetization hysteresis loop branch in the vicinity of the coercive force at temperatures below 4 K. It was shown that magnetization jumps have a stochastic behavior and their number strongly depends on the temperature and the mass of measured samples. High temperature spikes corresponding to magnetization discontinuities were observed. All these results allowed to propose that magnetization jumps in nanostructured magnetics with magnetization rotation reversal processes comply with the local heating model. - Highlights: • Magnetization reversals of the nanostructured Nd–Fe–B-type alloy were obtained below 4 K. • Magnetization jumps were first observed for magnetization rotation coercivity type magnets. • Staircase magnetization reversal was explained within the framework of the local heating model

  11. Stochastic integration in Banach spaces theory and applications

    CERN Document Server

    Mandrekar, Vidyadhar

    2015-01-01

    Considering Poisson random measures as the driving sources for stochastic (partial) differential equations allows us to incorporate jumps and to model sudden, unexpected phenomena. By using such equations the present book introduces a new method for modeling the states of complex systems perturbed by random sources over time, such as interest rates in financial markets or temperature distributions in a specific region. It studies properties of the solutions of the stochastic equations, observing the long-term behavior and the sensitivity of the solutions to changes in the initial data. The authors consider an integration theory of measurable and adapted processes in appropriate Banach spaces as well as the non-Gaussian case, whereas most of the literature only focuses on predictable settings in Hilbert spaces. The book is intended for graduate students and researchers in stochastic (partial) differential equations, mathematical finance and non-linear filtering and assumes a knowledge of the required integrati...

  12. Comparative analysis of cogeneration power plants optimization based on stochastic method using superstructure and process simulator

    Energy Technology Data Exchange (ETDEWEB)

    Araujo, Leonardo Rodrigues de [Instituto Federal do Espirito Santo, Vitoria, ES (Brazil)], E-mail: leoaraujo@ifes.edu.br; Donatelli, Joao Luiz Marcon [Universidade Federal do Espirito Santo (UFES), Vitoria, ES (Brazil)], E-mail: joaoluiz@npd.ufes.br; Silva, Edmar Alino da Cruz [Instituto Tecnologico de Aeronautica (ITA/CTA), Sao Jose dos Campos, SP (Brazil); Azevedo, Joao Luiz F. [Instituto de Aeronautica e Espaco (CTA/IAE/ALA), Sao Jose dos Campos, SP (Brazil)

    2010-07-01

    Thermal systems are essential in facilities such as thermoelectric plants, cogeneration plants, refrigeration systems and air conditioning, among others, in which much of the energy consumed by humanity is processed. In a world with finite natural sources of fuels and growing energy demand, issues related with thermal system design, such as cost estimative, design complexity, environmental protection and optimization are becoming increasingly important. Therefore the need to understand the mechanisms that degrade energy, improve energy sources use, reduce environmental impacts and also reduce project, operation and maintenance costs. In recent years, a consistent development of procedures and techniques for computational design of thermal systems has occurred. In this context, the fundamental objective of this study is a performance comparative analysis of structural and parametric optimization of a cogeneration system using stochastic methods: genetic algorithm and simulated annealing. This research work uses a superstructure, modelled in a process simulator, IPSEpro of SimTech, in which the appropriate design case studied options are included. Accordingly, the cogeneration system optimal configuration is determined as a consequence of the optimization process, restricted within the configuration options included in the superstructure. The optimization routines are written in MsExcel Visual Basic, in order to work perfectly coupled to the simulator process. At the end of the optimization process, the system optimal configuration, given the characteristics of each specific problem, should be defined. (author)

  13. What are quantum jumps?

    International Nuclear Information System (INIS)

    Cook, R.J.

    1988-01-01

    This paper answers the title question by giving an operational definition of quantum jumps based on measurement theory. This definition forms the basis of a theory of quantum jumps which leads to a number of testable predictions. Experiments are proposed to test the theory. The suggested experiments also test the quantum Zeno paradox, i.e., they test the proposition that frequent observation of a quantum system inhibits quantum jumps in that system. (orig.)

  14. Theory of boiling-up jump

    International Nuclear Information System (INIS)

    Labuntsov, D.A.; Avdeev, A.A.

    1981-01-01

    Concept of boiling-up jump representing a zone of intense volume boiling-up separating overtaking flow of overheated metastable liquid from an area of equilibrium flow located below along the flow is introduced. It is shown that boiling-up jump is a shock wave of rarefaction. It is concluded that entropy increment occurs on the jump. Characteristics of adiabatic shock wave curve of boiling- up in ''pressure-specific volume'' coordinates have been found and its form has been investigated. Stability of boiling-up jump has been analyzed as well. On the basis of approach developed analysis is carried out on the shock adiobatic curve of condensation. Concept of boiling-up jump may be applied to the analysis of boiling-up processes when flowing liquid through packings during emergency pressure drop etc [ru

  15. Stochastic disturbances and dynamics of thermal processes. With application to municipal solid waste combustion

    Energy Technology Data Exchange (ETDEWEB)

    Van Kessel, L.B.M.

    2003-06-11

    with the on-line calorific value sensor from chapter 2 and a validated dynamic model of the process is available, the theory from stochastic processes can be applied to MSWC. This new application field of stochastics is discussed in chapter 4. The results obtained in chapter 2 will be used in this analysis. Also new linear transfer functions for thermal processes will be given and applied to MSWC. Finally, applications of the new developed tools will be discussed. As already mentioned, the validation experiments lead to the conclusion that the dynamics of the combustion process can change when the primary air temperature changes. This was a new result, which has never been reported in literature before. For that reason during the research it was decided to start an extensive study into the influence of the primary air temperature on the combustion process. This has been performed by using laboratory experiments. In chapter 5 the results from this search will be presented. The existing theory for combustion of solid fuels is extended with a qualitative as well as a quantitative description of the influence of primary preheating. The new theory is used to explain observations from real plants and the results from system identification. Furthermore, the value of laboratory experiments to simulate the real combustion process on a grate is discussed.

  16. Stochastic ℋ∞ Finite-Time Control of Discrete-Time Systems with Packet Loss

    Directory of Open Access Journals (Sweden)

    Yingqi Zhang

    2012-01-01

    Full Text Available This paper investigates the stochastic finite-time stabilization and ℋ∞ control problem for one family of linear discrete-time systems over networks with packet loss, parametric uncertainties, and time-varying norm-bounded disturbance. Firstly, the dynamic model description studied is given, which, if the packet dropout is assumed to be a discrete-time homogenous Markov process, the class of discrete-time linear systems with packet loss can be regarded as Markovian jump systems. Based on Lyapunov function approach, sufficient conditions are established for the resulting closed-loop discrete-time system with Markovian jumps to be stochastic ℋ∞ finite-time boundedness and then state feedback controllers are designed to guarantee stochastic ℋ∞ finite-time stabilization of the class of stochastic systems. The stochastic ℋ∞ finite-time boundedness criteria can be tackled in the form of linear matrix inequalities with a fixed parameter. As an auxiliary result, we also give sufficient conditions on the robust stochastic stabilization of the class of linear systems with packet loss. Finally, simulation examples are presented to illustrate the validity of the developed scheme.

  17. Using stochastic language models (SLM) to map lexical, syntactic, and phonological information processing in the brain.

    Science.gov (United States)

    Lopopolo, Alessandro; Frank, Stefan L; van den Bosch, Antal; Willems, Roel M

    2017-01-01

    Language comprehension involves the simultaneous processing of information at the phonological, syntactic, and lexical level. We track these three distinct streams of information in the brain by using stochastic measures derived from computational language models to detect neural correlates of phoneme, part-of-speech, and word processing in an fMRI experiment. Probabilistic language models have proven to be useful tools for studying how language is processed as a sequence of symbols unfolding in time. Conditional probabilities between sequences of words are at the basis of probabilistic measures such as surprisal and perplexity which have been successfully used as predictors of several behavioural and neural correlates of sentence processing. Here we computed perplexity from sequences of words and their parts of speech, and their phonemic transcriptions. Brain activity time-locked to each word is regressed on the three model-derived measures. We observe that the brain keeps track of the statistical structure of lexical, syntactic and phonological information in distinct areas.

  18. Modeling Aggregation Processes of Lennard-Jones particles Via Stochastic Networks

    Science.gov (United States)

    Forman, Yakir; Cameron, Maria

    2017-07-01

    We model an isothermal aggregation process of particles/atoms interacting according to the Lennard-Jones pair potential by mapping the energy landscapes of each cluster size N onto stochastic networks, computing transition probabilities from the network for an N-particle cluster to the one for N+1, and connecting these networks into a single joint network. The attachment rate is a control parameter. The resulting network representing the aggregation of up to 14 particles contains 6427 vertices. It is not only time-irreversible but also reducible. To analyze its transient dynamics, we introduce the sequence of the expected initial and pre-attachment distributions and compute them for a wide range of attachment rates and three values of temperature. As a result, we find the configurations most likely to be observed in the process of aggregation for each cluster size. We examine the attachment process and conduct a structural analysis of the sets of local energy minima for every cluster size. We show that both processes taking place in the network, attachment and relaxation, lead to the dominance of icosahedral packing in small (up to 14 atom) clusters.

  19. Cyto-Sim: a formal language model and stochastic simulator of membrane-enclosed biochemical processes.

    Science.gov (United States)

    Sedwards, Sean; Mazza, Tommaso

    2007-10-15

    Compartments and membranes are the basis of cell topology and more than 30% of the human genome codes for membrane proteins. While it is possible to represent compartments and membrane proteins in a nominal way with many mathematical formalisms used in systems biology, few, if any, explicitly model the topology of the membranes themselves. Discrete stochastic simulation potentially offers the most accurate representation of cell dynamics. Since the details of every molecular interaction in a pathway are often not known, the relationship between chemical species in not necessarily best described at the lowest level, i.e. by mass action. Simulation is a form of computer-aided analysis, relying on human interpretation to derive meaning. To improve efficiency and gain meaning in an automatic way, it is necessary to have a formalism based on a model which has decidable properties. We present Cyto-Sim, a stochastic simulator of membrane-enclosed hierarchies of biochemical processes, where the membranes comprise an inner, outer and integral layer. The underlying model is based on formal language theory and has been shown to have decidable properties (Cavaliere and Sedwards, 2006), allowing formal analysis in addition to simulation. The simulator provides variable levels of abstraction via arbitrary chemical kinetics which link to ordinary differential equations. In addition to its compact native syntax, Cyto-Sim currently supports models described as Petri nets, can import all versions of SBML and can export SBML and MATLAB m-files. Cyto-Sim is available free, either as an applet or a stand-alone Java program via the web page (http://www.cosbi.eu/Rpty_Soft_CytoSim.php). Other versions can be made available upon request.

  20. Modelling and performance analysis of clinical pathways using the stochastic process algebra PEPA.

    Science.gov (United States)

    Yang, Xian; Han, Rui; Guo, Yike; Bradley, Jeremy; Cox, Benita; Dickinson, Robert; Kitney, Richard

    2012-01-01

    Hospitals nowadays have to serve numerous patients with limited medical staff and equipment while maintaining healthcare quality. Clinical pathway informatics is regarded as an efficient way to solve a series of hospital challenges. To date, conventional research lacks a mathematical model to describe clinical pathways. Existing vague descriptions cannot fully capture the complexities accurately in clinical pathways and hinders the effective management and further optimization of clinical pathways. Given this motivation, this paper presents a clinical pathway management platform, the Imperial Clinical Pathway Analyzer (ICPA). By extending the stochastic model performance evaluation process algebra (PEPA), ICPA introduces a clinical-pathway-specific model: clinical pathway PEPA (CPP). ICPA can simulate stochastic behaviours of a clinical pathway by extracting information from public clinical databases and other related documents using CPP. Thus, the performance of this clinical pathway, including its throughput, resource utilisation and passage time can be quantitatively analysed. A typical clinical pathway on stroke extracted from a UK hospital is used to illustrate the effectiveness of ICPA. Three application scenarios are tested using ICPA: 1) redundant resources are identified and removed, thus the number of patients being served is maintained with less cost; 2) the patient passage time is estimated, providing the likelihood that patients can leave hospital within a specific period; 3) the maximum number of input patients are found, helping hospitals to decide whether they can serve more patients with the existing resource allocation. ICPA is an effective platform for clinical pathway management: 1) ICPA can describe a variety of components (state, activity, resource and constraints) in a clinical pathway, thus facilitating the proper understanding of complexities involved in it; 2) ICPA supports the performance analysis of clinical pathway, thereby assisting

  1. StochPy: A Comprehensive, User-Friendly Tool for Simulating Stochastic Biological Processes

    NARCIS (Netherlands)

    T.R. Maarleveld (Timo); B.G. Olivier (Brett); F.J. Bruggeman (Frank)

    2013-01-01

    htmlabstractSingle-cell and single-molecule measurements indicate the importance of stochastic phenomena in cell biology. Stochasticity creates spontaneous differences in the copy numbers of key macromolecules and the timing of reaction events between genetically-identical cells. Mathematical models

  2. Stochastic Evolution Dynamic of the Rock-Scissors-Paper Game Based on a Quasi Birth and Death Process.

    Science.gov (United States)

    Yu, Qian; Fang, Debin; Zhang, Xiaoling; Jin, Chen; Ren, Qiyu

    2016-06-27

    Stochasticity plays an important role in the evolutionary dynamic of cyclic dominance within a finite population. To investigate the stochastic evolution process of the behaviour of bounded rational individuals, we model the Rock-Scissors-Paper (RSP) game as a finite, state dependent Quasi Birth and Death (QBD) process. We assume that bounded rational players can adjust their strategies by imitating the successful strategy according to the payoffs of the last round of the game, and then analyse the limiting distribution of the QBD process for the game stochastic evolutionary dynamic. The numerical experiments results are exhibited as pseudo colour ternary heat maps. Comparisons of these diagrams shows that the convergence property of long run equilibrium of the RSP game in populations depends on population size and the parameter of the payoff matrix and noise factor. The long run equilibrium is asymptotically stable, neutrally stable and unstable respectively according to the normalised parameters in the payoff matrix. Moreover, the results show that the distribution probability becomes more concentrated with a larger population size. This indicates that increasing the population size also increases the convergence speed of the stochastic evolution process while simultaneously reducing the influence of the noise factor.

  3. Conference on Stochastic Processes and their Applications (16th) Held in Stanford, California on August 17-21, 1987.

    Science.gov (United States)

    1987-08-01

    ESTIMATION FOR STOCHASTIC PROCESSES by C. C. Heyde Australian National University Canberra, Australia ABSTRACT Optimality is a widely and loosely used...Case 240 S. Australia 1211 Geneva 24 Switzerland Christopher C. Heyde Dept. of Statistics, IAS Patricia Jacobs . Australian National University...Universitat Regensburg USA Postfach D-8400 Regensburg Anatole Joffe W. Germany Dept. of Mathematics & Statatistics Frank Kelly Universite de Montreal

  4. A customizable stochastic state point process filter (SSPPF) for neural spiking activity.

    Science.gov (United States)

    Xin, Yao; Li, Will X Y; Min, Biao; Han, Yan; Cheung, Ray C C

    2013-01-01

    Stochastic State Point Process Filter (SSPPF) is effective for adaptive signal processing. In particular, it has been successfully applied to neural signal coding/decoding in recent years. Recent work has proven its efficiency in non-parametric coefficients tracking in modeling of mammal nervous system. However, existing SSPPF has only been realized in commercial software platforms which limit their computational capability. In this paper, the first hardware architecture of SSPPF has been designed and successfully implemented on field-programmable gate array (FPGA), proving a more efficient means for coefficient tracking in a well-established generalized Laguerre-Volterra model for mammalian hippocampal spiking activity research. By exploring the intrinsic parallelism of the FPGA, the proposed architecture is able to process matrices or vectors with random size, and is efficiently scalable. Experimental result shows its superior performance comparing to the software implementation, while maintaining the numerical precision. This architecture can also be potentially utilized in the future hippocampal cognitive neural prosthesis design.

  5. Drop jumping. I. The influence of jumping technique on the biomechanics of jumping

    NARCIS (Netherlands)

    Bobbert, M F; Huijing, P A; van Ingen Schenau, G J

    In the literature, drop jumping is advocated as an effective exercise for athletes who prepare themselves for explosive activities. When executing drop jumps, different jumping techniques can be used. In this study, the influence of jumping technique on the biomechanics of jumping is investigated.

  6. A Jump Diffusion Model for Volatility and Duration

    DEFF Research Database (Denmark)

    Wei, Wei; Pelletier, Denis

    by the market microstructure theory. Traditional measures of volatility do not utilize durations. I adopt a jump diffusion process to model the persistence of intraday volatility and conditional duration, and their interdependence. The jump component is disentangled from the continuous part of the price......, volatility and conditional duration process. I develop a MCMC algorithm for the inference of irregularly spaced multivariate process with jumps. The algorithm provides smoothed estimates of the latent variables such as spot volatility, jump times and jump sizes. I apply this model to IBM data and I find...... meaningful relationship between volatility and conditional duration. Also, jumps play an important role in the total variation, but the jump variation is smaller than traditional measures that use returns sampled at lower frequency....

  7. Optimal Ski Jump

    Science.gov (United States)

    Rebilas, Krzysztof

    2013-01-01

    Consider a skier who goes down a takeoff ramp, attains a speed "V", and jumps, attempting to land as far as possible down the hill below (Fig. 1). At the moment of takeoff the angle between the skier's velocity and the horizontal is [alpha]. What is the optimal angle [alpha] that makes the jump the longest possible for the fixed magnitude of the…

  8. The Effect of Jump on Evaluating Natural Resource Investments

    Institute of Scientific and Technical Information of China (English)

    Yang Haisheng; Zhou Yongzhang; Wang Shugong

    2004-01-01

    The evaluation of mining and other natural resource projects is made particularly difficult by the high degree of uncertainty attaching to output prices.It is shown that the techniques of continuous time arbitrage and stochastic control theory may be used not only to value such projects but also to determine the optimal policies for developing managing. This paper describes a model for evaluating natural resource investments under uncertainty from a new perspective. The previous works in this field mostly regard the movements of natural resource prices as a continuous GBM process, which pays few attentions to the shock of unexpected bad news. Our model provides the first theoretical method to analyze the impact of such "jump" on investment decisions. It concludes that the more frequently bad news happens,the earlier a project will be invested.

  9. Quantum jumps in a three-level system

    International Nuclear Information System (INIS)

    Javanainen, J.

    1986-01-01

    The authors study fluorescence in a scheme which is easy to treat theoretically: a two-level system driven by a laser and a third metastable state such that slow spontaneous transitions take place both from the excited state of a two-level system to the metastable state and from the metastable state to the ground state of the two-level system. With the aid of the quantum regression theorem the authors calculate the whole photon counting statistics at a detector which records scattering of the laser photons. In the limit of high intensity of the laser, the statistics of photon counts is found to be the same as the statistics of a two-state Markov jumps process. Thus, if the sequence of photon counts can be interpreted as a realization of a stochastic process, in a single experimental run the fluorescence should abruptly turn on and off for random intervals of time. The result is the same as given by the quantum-jump argument

  10. Deterministic flows of order-parameters in stochastic processes of quantum Monte Carlo method

    International Nuclear Information System (INIS)

    Inoue, Jun-ichi

    2010-01-01

    In terms of the stochastic process of quantum-mechanical version of Markov chain Monte Carlo method (the MCMC), we analytically derive macroscopically deterministic flow equations of order parameters such as spontaneous magnetization in infinite-range (d(= ∞)-dimensional) quantum spin systems. By means of the Trotter decomposition, we consider the transition probability of Glauber-type dynamics of microscopic states for the corresponding (d + 1)-dimensional classical system. Under the static approximation, differential equations with respect to macroscopic order parameters are explicitly obtained from the master equation that describes the microscopic-law. In the steady state, we show that the equations are identical to the saddle point equations for the equilibrium state of the same system. The equation for the dynamical Ising model is recovered in the classical limit. We also check the validity of the static approximation by making use of computer simulations for finite size systems and discuss several possible extensions of our approach to disordered spin systems for statistical-mechanical informatics. Especially, we shall use our procedure to evaluate the decoding process of Bayesian image restoration. With the assistance of the concept of dynamical replica theory (the DRT), we derive the zero-temperature flow equation of image restoration measure showing some 'non-monotonic' behaviour in its time evolution.

  11. Stochastic production phase design for an open pit mining complex with multiple processing streams

    Science.gov (United States)

    Asad, Mohammad Waqar Ali; Dimitrakopoulos, Roussos; van Eldert, Jeroen

    2014-08-01

    In a mining complex, the mine is a source of supply of valuable material (ore) to a number of processes that convert the raw ore to a saleable product or a metal concentrate for production of the refined metal. In this context, expected variation in metal content throughout the extent of the orebody defines the inherent uncertainty in the supply of ore, which impacts the subsequent ore and metal production targets. Traditional optimization methods for designing production phases and ultimate pit limit of an open pit mine not only ignore the uncertainty in metal content, but, in addition, commonly assume that the mine delivers ore to a single processing facility. A stochastic network flow approach is proposed that jointly integrates uncertainty in supply of ore and multiple ore destinations into the development of production phase design and ultimate pit limit. An application at a copper mine demonstrates the intricacies of the new approach. The case study shows a 14% higher discounted cash flow when compared to the traditional approach.

  12. Aboveground and belowground arthropods experience different relative influences of stochastic versus deterministic community assembly processes following disturbance

    Directory of Open Access Journals (Sweden)

    Scott Ferrenberg

    2016-10-01

    Full Text Available Background Understanding patterns of biodiversity is a longstanding challenge in ecology. Similar to other biotic groups, arthropod community structure can be shaped by deterministic and stochastic processes, with limited understanding of what moderates the relative influence of these processes. Disturbances have been noted to alter the relative influence of deterministic and stochastic processes on community assembly in various study systems, implicating ecological disturbances as a potential moderator of these forces. Methods Using a disturbance gradient along a 5-year chronosequence of insect-induced tree mortality in a subalpine forest of the southern Rocky Mountains, Colorado, USA, we examined changes in community structure and relative influences of deterministic and stochastic processes in the assembly of aboveground (surface and litter-active species and belowground (species active in organic and mineral soil layers arthropod communities. Arthropods were sampled for all years of the chronosequence via pitfall traps (aboveground community and modified Winkler funnels (belowground community and sorted to morphospecies. Community structure of both communities were assessed via comparisons of morphospecies abundance, diversity, and composition. Assembly processes were inferred from a mixture of linear models and matrix correlations testing for community associations with environmental properties, and from null-deviation models comparing observed vs. expected levels of species turnover (Beta diversity among samples. Results Tree mortality altered community structure in both aboveground and belowground arthropod communities, but null models suggested that aboveground communities experienced greater relative influences of deterministic processes, while the relative influence of stochastic processes increased for belowground communities. Additionally, Mantel tests and linear regression models revealed significant associations between the

  13. Aboveground and belowground arthropods experience different relative influences of stochastic versus deterministic community assembly processes following disturbance

    Science.gov (United States)

    Martinez, Alexander S.; Faist, Akasha M.

    2016-01-01

    Background Understanding patterns of biodiversity is a longstanding challenge in ecology. Similar to other biotic groups, arthropod community structure can be shaped by deterministic and stochastic processes, with limited understanding of what moderates the relative influence of these processes. Disturbances have been noted to alter the relative influence of deterministic and stochastic processes on community assembly in various study systems, implicating ecological disturbances as a potential moderator of these forces. Methods Using a disturbance gradient along a 5-year chronosequence of insect-induced tree mortality in a subalpine forest of the southern Rocky Mountains, Colorado, USA, we examined changes in community structure and relative influences of deterministic and stochastic processes in the assembly of aboveground (surface and litter-active species) and belowground (species active in organic and mineral soil layers) arthropod communities. Arthropods were sampled for all years of the chronosequence via pitfall traps (aboveground community) and modified Winkler funnels (belowground community) and sorted to morphospecies. Community structure of both communities were assessed via comparisons of morphospecies abundance, diversity, and composition. Assembly processes were inferred from a mixture of linear models and matrix correlations testing for community associations with environmental properties, and from null-deviation models comparing observed vs. expected levels of species turnover (Beta diversity) among samples. Results Tree mortality altered community structure in both aboveground and belowground arthropod communities, but null models suggested that aboveground communities experienced greater relative influences of deterministic processes, while the relative influence of stochastic processes increased for belowground communities. Additionally, Mantel tests and linear regression models revealed significant associations between the aboveground arthropod

  14. Two-boundary first exit time of Gauss-Markov processes for stochastic modeling of acto-myosin dynamics.

    Science.gov (United States)

    D'Onofrio, Giuseppe; Pirozzi, Enrica

    2017-05-01

    We consider a stochastic differential equation in a strip, with coefficients suitably chosen to describe the acto-myosin interaction subject to time-varying forces. By simulating trajectories of the stochastic dynamics via an Euler discretization-based algorithm, we fit experimental data and determine the values of involved parameters. The steps of the myosin are represented by the exit events from the strip. Motivated by these results, we propose a specific stochastic model based on the corresponding time-inhomogeneous Gauss-Markov and diffusion process evolving between two absorbing boundaries. We specify the mean and covariance functions of the stochastic modeling process taking into account time-dependent forces including the effect of an external load. We accurately determine the probability density function (pdf) of the first exit time (FET) from the strip by solving a system of two non singular second-type Volterra integral equations via a numerical quadrature. We provide numerical estimations of the mean of FET as approximations of the dwell-time of the proteins dynamics. The percentage of backward steps is given in agreement to experimental data. Numerical and simulation results are compared and discussed.

  15. Option Valuation with Observable Volatility and Jump Dynamics

    DEFF Research Database (Denmark)

    Christoffersen, Peter; Feunoua, Bruno; Jeon, Yoontae

    Under very general conditions, the total quadratic variation of a jump-diffusion process can be decomposed into diffusive volatility and squared jump variation. We use this result to develop a new option valuation model in which the underlying asset price exhibits volatility and jump intensity...... dynamics. The volatility and jump intensity dynamics in the model are directly driven by model-free empirical measures of diffusive volatility and jump variation. Because the empirical measures are observed in discrete intervals, our option valuation model is cast in discrete time, allowing...

  16. Option Valuation with Observable Volatility and Jump Dynamics

    DEFF Research Database (Denmark)

    Christoffersen, Peter; Feunoua, Bruno; Jeon, Yoontae

    2015-01-01

    Under very general conditions, the total quadratic variation of a jump-diffusion process can be decomposed into diffusive volatility and squared jump variation. We use this result to develop a new option valuation model in which the underlying asset price exhibits volatility and jump intensity...... dynamics. The volatility and jump intensity dynamics in the model are directly driven by model-free empirical measures of diffusive volatility and jump variation. Because the empirical measures are observed in discrete intervals, our option valuation model is cast in discrete time, allowing...

  17. Phenomenological and ratio bifurcations of a class of discrete time stochastic processes

    NARCIS (Netherlands)

    Diks, C.G.H.; Wagener, F.O.O.

    2011-01-01

    Zeeman proposed a classification of stochastic dynamical systems based on the Morse classification of their invariant probability densities; the associated bifurcations are the ‘phenomenological bifurcations’ of L. Arnold. The classification is however not invariant under diffeomorphisms of the

  18. Relative importance of deterministic and stochastic processes in driving arbuscular mycorrhizal fungal assemblage during the spreading of a toxic plant.

    Directory of Open Access Journals (Sweden)

    Guoxi Shi

    Full Text Available Both deterministic and stochastic processes are expected to drive the assemblages of arbuscular mycorrhizal (AM fungi, but little is known about the relative importance of these processes during the spreading of toxic plants. Here, the species composition and phylogenetic structure of AM fungal communities colonizing the roots of a toxic plant, Ligularia virgaurea, and its neighborhood plants, were analyzed in patches with different individual densities of L. virgaurea (represents the spreading degree. Community compositions of AM fungi in both root systems were changed significantly by the L. virgaurea spreading, and also these communities fitted the neutral model very well. AM fungal communities in patches with absence and presence of L. virgaurea were phylogenetically random and clustered, respectively, suggesting that the principal ecological process determining AM fungal assemblage shifted from stochastic process to environmental filtering when this toxic plant was present. Our results indicate that deterministic and stochastic processes together determine the assemblage of AM fungi, but the dominant process would be changed by the spreading of toxic plants, and suggest that the spreading of toxic plants in alpine meadow ecosystems might be involving the mycorrhizal symbionts.

  19. Stochastic Signal Processing for Sound Environment System with Decibel Evaluation and Energy Observation

    Directory of Open Access Journals (Sweden)

    Akira Ikuta

    2014-01-01

    Full Text Available In real sound environment system, a specific signal shows various types of probability distribution, and the observation data are usually contaminated by external noise (e.g., background noise of non-Gaussian distribution type. Furthermore, there potentially exist various nonlinear correlations in addition to the linear correlation between input and output time series. Consequently, often the system input and output relationship in the real phenomenon cannot be represented by a simple model using only the linear correlation and lower order statistics. In this study, complex sound environment systems difficult to analyze by using usual structural method are considered. By introducing an estimation method of the system parameters reflecting correlation information for conditional probability distribution under existence of the external noise, a prediction method of output response probability for sound environment systems is theoretically proposed in a suitable form for the additive property of energy variable and the evaluation in decibel scale. The effectiveness of the proposed stochastic signal processing method is experimentally confirmed by applying it to the observed data in sound environment systems.

  20. From stochastic processes to numerical methods: A new scheme for solving reaction subdiffusion fractional partial differential equations

    Energy Technology Data Exchange (ETDEWEB)

    Angstmann, C.N.; Donnelly, I.C. [School of Mathematics and Statistics, UNSW Australia, Sydney NSW 2052 (Australia); Henry, B.I., E-mail: B.Henry@unsw.edu.au [School of Mathematics and Statistics, UNSW Australia, Sydney NSW 2052 (Australia); Jacobs, B.A. [School of Computer Science and Applied Mathematics, University of the Witwatersrand, Johannesburg, Private Bag 3, Wits 2050 (South Africa); DST–NRF Centre of Excellence in Mathematical and Statistical Sciences (CoE-MaSS) (South Africa); Langlands, T.A.M. [Department of Mathematics and Computing, University of Southern Queensland, Toowoomba QLD 4350 (Australia); Nichols, J.A. [School of Mathematics and Statistics, UNSW Australia, Sydney NSW 2052 (Australia)

    2016-02-15

    We have introduced a new explicit numerical method, based on a discrete stochastic process, for solving a class of fractional partial differential equations that model reaction subdiffusion. The scheme is derived from the master equations for the evolution of the probability density of a sum of discrete time random walks. We show that the diffusion limit of the master equations recovers the fractional partial differential equation of interest. This limiting procedure guarantees the consistency of the numerical scheme. The positivity of the solution and stability results are simply obtained, provided that the underlying process is well posed. We also show that the method can be applied to standard reaction–diffusion equations. This work highlights the broader applicability of using discrete stochastic processes to provide numerical schemes for partial differential equations, including fractional partial differential equations.

  1. On the source of stochastic volatility: Evidence from CAC40 index options during the subprime crisis

    Science.gov (United States)

    Slim, Skander

    2016-12-01

    This paper investigates the performance of time-changed Lévy processes with distinct sources of return volatility variation for modeling cross-sectional option prices on the CAC40 index during the subprime crisis. Specifically, we propose a multi-factor stochastic volatility model: one factor captures the diffusion component dynamics and two factors capture positive and negative jump variations. In-sample and out-of-sample tests show that our full-fledged model significantly outperforms nested lower-dimensional specifications. We find that all three sources of return volatility variation, with different persistence, are needed to properly account for market pricing dynamics across moneyness, maturity and volatility level. Besides, the model estimation reveals negative risk premium for both diffusive volatility and downward jump intensity whereas a positive risk premium is found to be attributed to upward jump intensity.

  2. Portfolio Selection with Jumps under Regime Switching

    Directory of Open Access Journals (Sweden)

    Lin Zhao

    2010-01-01

    Full Text Available We investigate a continuous-time version of the mean-variance portfolio selection model with jumps under regime switching. The portfolio selection is proposed and analyzed for a market consisting of one bank account and multiple stocks. The random regime switching is assumed to be independent of the underlying Brownian motion and jump processes. A Markov chain modulated diffusion formulation is employed to model the problem.

  3. The measurement problem on classical diffusion process: inverse method on stochastic processes

    International Nuclear Information System (INIS)

    Bigerelle, M.; Iost, A.

    2004-01-01

    In a high number of diffusive systems, measures are processed to calculate material parameters such as diffusion coefficients, or to verify the accuracy of mathematical models. However, the precision of the parameter determination or of the model relevance depends on the location of the measure itself. The aim of this paper is first to analyse, for a mono-dimensional system, the precision of the measure in relation with its location by an inverse problem algorithm and secondly to examine the physical meaning of the results. Statistical mechanic considerations show that, passing over a time-distance criterion, measurement becomes uncertain whatever the initial conditions. The criterion proves that this chaotic mode is related to the production of anti-entropy at a mesoscopique scale that is in violation to quantum theory about measurement

  4. A stochastic post-processing method for solar irradiance forecasts derived from NWPs models

    Science.gov (United States)

    Lara-Fanego, V.; Pozo-Vazquez, D.; Ruiz-Arias, J. A.; Santos-Alamillos, F. J.; Tovar-Pescador, J.

    2010-09-01

    Solar irradiance forecast is an important area of research for the future of the solar-based renewable energy systems. Numerical Weather Prediction models (NWPs) have proved to be a valuable tool for solar irradiance forecasting with lead time up to a few days. Nevertheless, these models show low skill in forecasting the solar irradiance under cloudy conditions. Additionally, climatic (averaged over seasons) aerosol loading are usually considered in these models, leading to considerable errors for the Direct Normal Irradiance (DNI) forecasts during high aerosols load conditions. In this work we propose a post-processing method for the Global Irradiance (GHI) and DNI forecasts derived from NWPs. Particularly, the methods is based on the use of Autoregressive Moving Average with External Explanatory Variables (ARMAX) stochastic models. These models are applied to the residuals of the NWPs forecasts and uses as external variables the measured cloud fraction and aerosol loading of the day previous to the forecast. The method is evaluated for a set one-moth length three-days-ahead forecast of the GHI and DNI, obtained based on the WRF mesoscale atmospheric model, for several locations in Andalusia (Southern Spain). The Cloud fraction is derived from MSG satellite estimates and the aerosol loading from the MODIS platform estimates. Both sources of information are readily available at the time of the forecast. Results showed a considerable improvement of the forecasting skill of the WRF model using the proposed post-processing method. Particularly, relative improvement (in terms of the RMSE) for the DNI during summer is about 20%. A similar value is obtained for the GHI during the winter.

  5. Quantum jumps are more quantum than quantum diffusion

    International Nuclear Information System (INIS)

    Daryanoosh, Shakib; M Wiseman, Howard

    2014-01-01

    It was recently argued (Wiseman and Gambetta 2012 Phys. Rev. Lett. 108 220402) that the stochastic dynamics (jumps or diffusion) of an open quantum system are not inherent to the system, but rather depend on the existence and nature of a distant detector. The proposed experimental tests involved homodyne detection, giving rise to quantum diffusion, and required efficiencies η of well over 50%. Here we prove that this requirement (η>0.5) is universal for diffusive-type detection, even if the system is coupled to multiple baths. However, this no-go theorem does not apply to quantum jumps, and we propose a test involving a qubit with jump-type detectors, with a threshold efficiency of only 37%. That is, quantum jumps are ‘more quantum’, and open the way to practical experimental tests. Our scheme involves a novel sort of adaptive monitoring scheme on a system coupled to two baths. (paper)

  6. On the stability and dynamics of stochastic spiking neuron models: Nonlinear Hawkes process and point process GLMs.

    Science.gov (United States)

    Gerhard, Felipe; Deger, Moritz; Truccolo, Wilson

    2017-02-01

    Point process generalized linear models (PP-GLMs) provide an important statistical framework for modeling spiking activity in single-neurons and neuronal networks. Stochastic stability is essential when sampling from these models, as done in computational neuroscience to analyze statistical properties of neuronal dynamics and in neuro-engineering to implement closed-loop applications. Here we show, however, that despite passing common goodness-of-fit tests, PP-GLMs estimated from data are often unstable, leading to divergent firing rates. The inclusion of absolute refractory periods is not a satisfactory solution since the activity then typically settles into unphysiological rates. To address these issues, we derive a framework for determining the existence and stability of fixed points of the expected conditional intensity function (CIF) for general PP-GLMs. Specifically, in nonlinear Hawkes PP-GLMs, the CIF is expressed as a function of the previous spike history and exogenous inputs. We use a mean-field quasi-renewal (QR) approximation that decomposes spike history effects into the contribution of the last spike and an average of the CIF over all spike histories prior to the last spike. Fixed points for stationary rates are derived as self-consistent solutions of integral equations. Bifurcation analysis and the number of fixed points predict that the original models can show stable, divergent, and metastable (fragile) dynamics. For fragile models, fluctuations of the single-neuron dynamics predict expected divergence times after which rates approach unphysiologically high values. This metric can be used to estimate the probability of rates to remain physiological for given time periods, e.g., for simulation purposes. We demonstrate the use of the stability framework using simulated single-neuron examples and neurophysiological recordings. Finally, we show how to adapt PP-GLM estimation procedures to guarantee model stability. Overall, our results provide a

  7. Jumping on water

    Science.gov (United States)

    Kim, Ho-Young

    2016-11-01

    Water striders can jump on water as high as they can jump on land. Quick jumps allow them to avoid sudden dangers such as predators' attacks, and therefore understanding how they make such a dramatic motion for survival can shed light on the ultimate level of semi-aquatic motility achievable through evolution. However, the mechanism of their vertical jumping from a water surface has eluded hydrodynamic explanations so far. By observing movements of water strider legs and theoretically analyzing their dynamic interactions with deforming liquid-air interface, we have recently found that different species of jumping striders always tune their leg rotation speed with a force just below that required to break the water surface to reach the maximum take-off velocity. Here, we start with discussing the fundamental theories of dynamics of floating and sinking of small objects. The theories then enable us to analyze forces acting on a water strider while it presses down the water surface to fully exploit the capillary force. We further introduce a 68-milligram at-scale robotic insect capable of jumping on water without splash, strikingly similar to the real strider, by utilizing the water surface just as a trampoline.

  8. Option Panels in Pure-Jump Settings

    DEFF Research Database (Denmark)

    Andersen, Torben Gustav; Fusari, Nicola; Todorov, Viktor

    We develop parametric inference procedures for large panels of noisy option data in the setting where the underlying process is of pure-jump type, i.e., evolve only through a sequence of jumps. The panel consists of options written on the underlying asset with a (different) set of strikes...... specification for the risk-neutral asset return dynamics, the option prices are nonlinear functions of a time-invariant parameter vector and a time-varying latent state vector (or factors). Furthermore, no-arbitrage restrictions impose a direct link between some of the quantities that may be identified from...... the return and option data. These include the so-called jump activity index as well as the time-varying jump intensity. We propose penalized least squares estimation in which we minimize L_2 distance between observed and model-implied options and further penalize for the deviation of model-implied quantities...

  9. Stochastic modeling of catalytic processes in nanoporous materials: Beyond mean-field approach

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, Andres [Iowa State Univ., Ames, IA (United States)

    2017-08-05

    Transport and reaction in zeolites and other porous materials, such as mesoporous silica particles, has been a focus of interest in recent years. This is in part due to the possibility of anomalous transport effects (e.g. single-file diffusion) and its impact in the reaction yield in catalytic processes. Computational simulations are often used to study these complex nonequilibrium systems. Computer simulations using Molecular Dynamics (MD) techniques are prohibitive, so instead coarse grained one-dimensional models with the aid of Kinetic Monte Carlo (KMC) simulations are used. Both techniques can be computationally expensive, both time and resource wise. These coarse-grained systems can be exactly described by a set of coupled stochastic master equations, that describe the reaction-diffusion kinetics of the system. The equations can be written exactly, however, coupling between the equations and terms within the equations make it impossible to solve them exactly; approximations must be made. One of the most common methods to obtain approximate solutions is to use Mean Field (MF) theory. MF treatments yield reasonable results at high ratios of reaction rate k to hop rate h of the particles, but fail completely at low k=h due to the over-estimation of fluxes of particles within the pore. We develop a method to estimate fluxes and intrapore diffusivity in simple one- dimensional reaction-diffusion models at high and low k=h, where the pores are coupled to an equilibrated three-dimensional fluid. We thus successfully describe analytically these simple reaction-diffusion one-dimensional systems. Extensions to models considering behavior with long range steric interactions and wider pores require determination of multiple boundary conditions. We give a prescription to estimate the required parameters for these simulations. For one dimensional systems, if single-file diffusion is relaxed, additional parameters to describe particle exchange have to be introduced. We use

  10. ANALYSIS OF EFFECTIVENESS OF METHODOLOGICAL SYSTEM FOR PROBABILITY AND STOCHASTIC PROCESSES COMPUTER-BASED LEARNING FOR PRE-SERVICE ENGINEERS

    Directory of Open Access Journals (Sweden)

    E. Chumak

    2015-04-01

    Full Text Available The author substantiates that only methodological training systems of mathematical disciplines with implementation of information and communication technologies (ICT can meet the requirements of modern educational paradigm and make possible to increase the educational efficiency. Due to this fact, the necessity of developing the methodology of theory of probability and stochastic processes computer-based learning for pre-service engineers is underlined in the paper. The results of the experimental study for analysis of the efficiency of methodological system of theory of probability and stochastic processes computer-based learning for pre-service engineers are shown. The analysis includes three main stages: ascertaining, searching and forming. The key criteria of the efficiency of designed methodological system are the level of probabilistic and stochastic skills of students and their learning motivation. The effect of implementing the methodological system of probability theory and stochastic processes computer-based learning on the level of students’ IT literacy is shown in the paper. The expanding of the range of objectives of ICT applying by students is described by author. The level of formation of students’ learning motivation on the ascertaining and forming stages of the experiment is analyzed. The level of intrinsic learning motivation for pre-service engineers is defined on these stages of the experiment. For this purpose, the methodology of testing the students’ learning motivation in the chosen specialty is presented in the paper. The increasing of intrinsic learning motivation of the experimental group students (E group against the control group students (C group is demonstrated.

  11. The stochastic chemomechanics of the F(1)-ATPase molecular motor.

    Science.gov (United States)

    Gaspard, P; Gerritsma, E

    2007-08-21

    We report a theoretical study of the F(1)-ATPase molecular rotary motor experimentally studied by R. Yasuda, H. Noji, M. Yoshida, K. Kinosita Jr., H. Itoh [Nature 410 (2001) 898]. The motor is modeled as a stochastic process for the angle of its shaft and the chemical state of its catalytic sites. The stochastic process is ruled by six coupled Fokker-Planck equations for the biased diffusion of the angle and the random jumps between the chemical states. The model reproduces the experimental observations that the motor proceeds by substeps and the rotation rate saturates at high concentrations of adenosine triphosphate or at low values of the friction coefficient. Moreover, predictions are made about the dependence of the rotation rate on temperature, and about the behavior of the F(1) motor under the effect of an external torque, especially, in the regime of synthesis of adenosine triphosphate.

  12. Improved stochastic approximation methods for discretized parabolic partial differential equations

    Science.gov (United States)

    Guiaş, Flavius

    2016-12-01

    We present improvements of the stochastic direct simulation method, a known numerical scheme based on Markov jump processes which is used for approximating solutions of ordinary differential equations. This scheme is suited especially for spatial discretizations of evolution partial differential equations (PDEs). By exploiting the full path simulation of the stochastic method, we use this first approximation as a predictor and construct improved approximations by Picard iterations, Runge-Kutta steps, or a combination. This has as consequence an increased order of convergence. We illustrate the features of the improved method at a standard benchmark problem, a reaction-diffusion equation modeling a combustion process in one space dimension (1D) and two space dimensions (2D).

  13. Continuous stochastic approach to birth and death processes and co-operative behaviour of systems far from equilibrium

    Energy Technology Data Exchange (ETDEWEB)

    Chechetkin, V.R.; Lutovinov, V.S.

    1986-09-11

    The continuous stochastic formalism for the description of systems with birth and death processes randomly distributed in space is developed with the use of local birth and death operators and local generalization of the corresponding Chapman-Kolmogorov equation. The functional stochastic equation for the evolution of the probability functional is derived and its modifications for evolution of the characteristic functional and the first passage time problem are given. The corresponding evolution equations for equal-time correlators are also derived. The results are generalized then on the exothermic and endothermic chemical reactions. As examples of the particular applications of the results the small fluctuations near stable equilibrium state and fluctuations in mono-molecular reactions, Lotka-Volterra model, Schloegl reaction and brusselator are considered. It is shown that the two-dimensional Lotka-Volterra model may exhibit synergetic phase transition analogous to the topological transition of the Kosterlitz-Thouless-Berezinskii type. At the end of the paper some general consequences from stochastic evolution of the birth and death processes are discussed and the arguments on their importance in evolution of populations, cellular dynamics and in applications to various chemical and biological problems are presented.

  14. Trickle or clumped infection process? A stochastic model for the infection process of the parasitic roundworm of humans, Ascaris lumbricoides.

    Science.gov (United States)

    Walker, Martin; Hall, Andrew; Basáñez, María-Gloria

    2010-10-01

    The importance of the mode of acquisition of infectious stages of directly-transmitted parasitic helminths has been acknowledged in population dynamics models; hosts may acquire eggs/larvae singly in a "trickle" type manner or in "clumps". Such models have shown that the mode of acquisition influences the distribution and dynamics of parasite loads, the stability of host-parasite systems and the rate of emergence of anthelmintic resistance, yet very few field studies have allowed these questions to be explored with empirical data. We have analysed individual worm weight data for the parasitic roundworm of humans, Ascaris lumbricoides, collected from a three-round chemo-expulsion study in Dhaka, Bangladesh, with the aim of discerning whether a trickle or a clumped infection process predominates. We found that hosts tend to harbour female worms of a similar weight, indicative of a clumped infection process, but acknowledged that unmeasured host heterogeneities (random effects) could not be completely excluded as a cause. Here, we complement our previous statistical analyses using a stochastic infection model to simulate sizes of individual A. lumbricoides infecting a population of humans. We use the intraclass correlation coefficient (ICC) as a quantitative measure of similarity among simulated worm sizes and explore the behaviour of this statistic under assumptions corresponding to trickle or clumped infections and unmeasured host heterogeneities. We confirm that both mechanisms are capable of generating aggregates of similar-sized worms, but that the particular pattern of ICCs described pre- and post-anthelmintic treatment in the data is more consistent with aggregation generated by clumped infections than by host heterogeneities alone. This provides support to the notion that worms may be acquired in clumps. We discuss our results in terms of the population biology of A. lumbricoides and highlight the significance of our modelling approach for the study of the

  15. A stochastic process model for life cycle cost analysis of nuclear power plant systems

    NARCIS (Netherlands)

    Van der Weide, J.A.M.; Pandey, M.D.

    2013-01-01

    The paper presents a general stochastic model to analyze the life cycle cost of an engineering system that is affected by minor but repairable failures interrupting the operation and a major failure that would require the replacement or renewal of the failed system. It is commonly observed that the

  16. Stochastic Greybox Modeling for Control of an Alternating Activated Sludge Process

    DEFF Research Database (Denmark)

    Halvgaard, Rasmus Fogtmann; Vezzaro, Luca; Grum, M.

    We present a stochastic greybox model of a BioDenitro WWTP that can be used for short time horizon Model Predictive Control. The model is based on a simplified ASM1 model and takes model uncertainty in to account. It estimates unmeasured state variables in the system, e.g. the inlet concentration...

  17. Stochastic thermodynamics

    Science.gov (United States)

    Eichhorn, Ralf; Aurell, Erik

    2014-04-01

    theory for small deviations from equilibrium, in which a general framework is constructed from the analysis of non-equilibrium states close to equilibrium. In a next step, Prigogine and others developed linear irreversible thermodynamics, which establishes relations between transport coefficients and entropy production on a phenomenological level in terms of thermodynamic forces and fluxes. However, beyond the realm of linear response no general theoretical results were available for quite a long time. This situation has changed drastically over the last 20 years with the development of stochastic thermodynamics, revealing that the range of validity of thermodynamic statements can indeed be extended deep into the non-equilibrium regime. Early developments in that direction trace back to the observations of symmetry relations between the probabilities for entropy production and entropy annihilation in non-equilibrium steady states [5-8] (nowadays categorized in the class of so-called detailed fluctuation theorems), and the derivations of the Bochkov-Kuzovlev [9, 10] and Jarzynski relations [11] (which are now classified as so-called integral fluctuation theorems). Apart from its fundamental theoretical interest, the developments in stochastic thermodynamics have experienced an additional boost from the recent experimental progress in fabricating, manipulating, controlling and observing systems on the micro- and nano-scale. These advances are not only of formidable use for probing and monitoring biological processes on the cellular, sub-cellular and molecular level, but even include the realization of a microscopic thermodynamic heat engine [12] or the experimental verification of Landauer's principle in a colloidal system [13]. The scientific program Stochastic Thermodynamics held between 4 and 15 March 2013, and hosted by The Nordic Institute for Theoretical Physics (Nordita), was attended by more than 50 scientists from the Nordic countries and elsewhere, amongst them

  18. Tests for nonrandomness in quantum jumps

    International Nuclear Information System (INIS)

    Berkeland, D.J.; Raymondson, D.A.; Tassin, V.M.

    2004-01-01

    In a fundamental test of quantum mechanics, we have observed 228 000 quantum jumps of a single trapped and laser cooled 88 Sr + ion. This represents a statistical increase of two orders of magnitude over previous similar analyses of quantum jumps. Compared to other searches for nonrandomness in quantum-mechanical processes, using quantum jumps simplifies the interpretation of data by eliminated multiparticle effects and providing near-unit detection efficiency of transitions. We measure the fractional reduction in the entropy of information to be -4 when the value of any interval between quantum jumps is known. We also find that the number of runs of successively increasing or decreasing interval times agrees with the theoretically expected values. Furthermore, we analyze 238 000 quantum jumps from two simultaneously confined ions and find that the number of apparently coincidental transitions is as expected. Finally, we observe 8400 spontaneous decays of two simultaneously trapped ions and find that the number of apparently coincidental decays from the metastable state agrees with the expected value. We find no evidence for short- or long-term correlations in the intervals of the quantum jumps or in the decay of the quantum states, in agreement with quantum theory

  19. Viscosity Solutions for a System of Integro-PDEs and Connections to Optimal Switching and Control of Jump-Diffusion Processes

    International Nuclear Information System (INIS)

    Biswas, Imran H.; Jakobsen, Espen R.; Karlsen, Kenneth H.

    2010-01-01

    We develop a viscosity solution theory for a system of nonlinear degenerate parabolic integro-partial differential equations (IPDEs) related to stochastic optimal switching and control problems or stochastic games. In the case of stochastic optimal switching and control, we prove via dynamic programming methods that the value function is a viscosity solution of the IPDEs. In our setting the value functions or the solutions of the IPDEs are not smooth, so classical verification theorems do not apply.

  20. Relationships Between Countermovement Jump Ground Reaction Forces and Jump Height, Reactive Strength Index, and Jump Time.

    Science.gov (United States)

    Barker, Leland A; Harry, John R; Mercer, John A

    2018-01-01

    Barker, LA, Harry, JR, and Mercer, JA. Relationships between countermovement jump ground reaction forces and jump height, reactive strength index, and jump time. J Strength Cond Res 32(1): 248-254, 2018-The purpose of this study was to determine the relationship between ground reaction force (GRF) variables to jump height, jump time, and the reactive strength index (RSI). Twenty-six, Division-I, male, soccer players performed 3 maximum effort countermovement jumps (CMJs) on a dual-force platform system that measured 3-dimensional kinetic data. The trial producing peak jump height was used for analysis. Vertical GRF (Fz) variables were divided into unloading, eccentric, amortization, and concentric phases and correlated with jump height, RSI (RSI = jump height/jump time), and jump time (from start to takeoff). Significant correlations were observed between jump height and RSI, concentric kinetic energy, peak power, concentric work, and concentric displacement. Significant correlations were observed between RSI and jump time, peak power, unload Fz, eccentric work, eccentric rate of force development (RFD), amortization Fz, amortization time, second Fz peak, average concentric Fz, and concentric displacement. Significant correlations were observed between jump time and unload Fz, eccentric work, eccentric RFD, amortization Fz, amortization time, average concentric Fz, and concentric work. In conclusion, jump height correlated with variables derived from the concentric phase only (work, power, and displacement), whereas Fz variables from the unloading, eccentric, amortization, and concentric phases correlated highly with RSI and jump time. These observations demonstrate the importance of countermovement Fz characteristics for time-sensitive CMJ performance measures. Researchers and practitioners should include RSI and jump time with jump height to improve their assessment of jump performance.

  1. Random function representation of stationary stochastic vector processes for probability density evolution analysis of wind-induced structures

    Science.gov (United States)

    Liu, Zhangjun; Liu, Zenghui

    2018-06-01

    This paper develops a hybrid approach of spectral representation and random function for simulating stationary stochastic vector processes. In the proposed approach, the high-dimensional random variables, included in the original spectral representation (OSR) formula, could be effectively reduced to only two elementary random variables by introducing the random functions that serve as random constraints. Based on this, a satisfactory simulation accuracy can be guaranteed by selecting a small representative point set of the elementary random variables. The probability information of the stochastic excitations can be fully emerged through just several hundred of sample functions generated by the proposed approach. Therefore, combined with the probability density evolution method (PDEM), it could be able to implement dynamic response analysis and reliability assessment of engineering structures. For illustrative purposes, a stochastic turbulence wind velocity field acting on a frame-shear-wall structure is simulated by constructing three types of random functions to demonstrate the accuracy and efficiency of the proposed approach. Careful and in-depth studies concerning the probability density evolution analysis of the wind-induced structure have been conducted so as to better illustrate the application prospects of the proposed approach. Numerical examples also show that the proposed approach possesses a good robustness.

  2. Power Scheduling Method for Demand Response based on Home Energy Management System using Stochastic Process

    OpenAIRE

    Moreno, Pablo; García, Marcelo

    2016-01-01

    The increase in energy consumption, especially in residential consumers, means that the electrical system should grow at pair, in infrastructure and installed capacity, the energy prices vary to meet these needs, so this paper uses the methodology of demand response using stochastic methods such as Markov, to optimize energy consumption of residential users. It is necessary to involve customers in the electrical system because in this way it can be verified the actual amount of electric charg...

  3. Stochastic processes and the non-perturbative structure of the QCD vacuum

    International Nuclear Information System (INIS)

    Vilela Mendes, R.

    1992-01-01

    Based on a local Gaussian evaluation of the functional integral representation, a method is developed to obtain ground state functionals. The method is applied to the gluon sector of QCD. For the leading term in the ground state functional, stochastic techniques are used to check consistency of the quantum theory, finiteness of the mass gap and the scaling relation in the continuum limit. The functional also implies strong chromomagnetic fluctuations which constrain the propagators in the fermion sector. (orig.)

  4. Stochastic Mixed-Effects Parameters Bertalanffy Process, with Applications to Tree Crown Width Modeling

    Directory of Open Access Journals (Sweden)

    Petras Rupšys

    2015-01-01

    Full Text Available A stochastic modeling approach based on the Bertalanffy law gained interest due to its ability to produce more accurate results than the deterministic approaches. We examine tree crown width dynamic with the Bertalanffy type stochastic differential equation (SDE and mixed-effects parameters. In this study, we demonstrate how this simple model can be used to calculate predictions of crown width. We propose a parameter estimation method and computational guidelines. The primary goal of the study was to estimate the parameters by considering discrete sampling of the diameter at breast height and crown width and by using maximum likelihood procedure. Performance statistics for the crown width equation include statistical indexes and analysis of residuals. We use data provided by the Lithuanian National Forest Inventory from Scots pine trees to illustrate issues of our modeling technique. Comparison of the predicted crown width values of mixed-effects parameters model with those obtained using fixed-effects parameters model demonstrates the predictive power of the stochastic differential equations model with mixed-effects parameters. All results were implemented in a symbolic algebra system MAPLE.

  5. Why is countermovement jump height greater than squat jump height?

    NARCIS (Netherlands)

    Bobbert, Maarten F.; Gerritsen, Karin G M; Litjens, Maria C A; Van Soest, Arthur J.

    1996-01-01

    In the literature, it is well established that subjects are able to jump higher in a countermovement jump (CMJ) than in a squat jump (SJ). The purpose of this study was to estimate the relative contribution of the time available for force development and the storage and reutilization of elastic

  6. Drop Jumping as a Training Method for Jumping Ability

    NARCIS (Netherlands)

    Bobbert, Maarten F.

    1990-01-01

    Vertical jumping ability is of importance for good performance in sports such as basketball and volleyball. Coaches are in need of exercises that consume only little time and still help to improve their players’ jumping ability, without involving a high risk of injury. Drop jumping is assumed to

  7. Instantaneous stochastic perturbation theory

    International Nuclear Information System (INIS)

    Lüscher, Martin

    2015-01-01

    A form of stochastic perturbation theory is described, where the representative stochastic fields are generated instantaneously rather than through a Markov process. The correctness of the procedure is established to all orders of the expansion and for a wide class of field theories that includes all common formulations of lattice QCD.

  8. Stochastic kinetics

    International Nuclear Information System (INIS)

    Colombino, A.; Mosiello, R.; Norelli, F.; Jorio, V.M.; Pacilio, N.

    1975-01-01

    A nuclear system kinetics is formulated according to a stochastic approach. The detailed probability balance equations are written for the probability of finding the mixed population of neutrons and detected neutrons, i.e. detectrons, at a given level for a given instant of time. Equations are integrated in search of a probability profile: a series of cases is analyzed through a progressive criterium. It tends to take into account an increasing number of physical processes within the chosen model. The most important contribution is that solutions interpret analytically experimental conditions of equilibrium (moise analysis) and non equilibrium (pulsed neutron measurements, source drop technique, start up procedures)

  9. Jump into Action

    Science.gov (United States)

    Ball, Stephen; Cohen, Ann; Meyer, Margaret

    2012-01-01

    Jump Into Action (JIA) is a school-based team-taught program to help fifth-grade students make healthy food choices and be more active. The JIA team (physical education teacher, classroom teacher, school nurse, and parent) work together to provide a supportive environment as students set goals to improve food choices and increase activity.…

  10. Egg Bungee Jump!

    Science.gov (United States)

    Fitzgerald, Mike; Brand, Lance

    2004-01-01

    In this article, the authors present an egg bungee jumping activity. This activity introduces students to ways that engineers might apply calculations of failure to meet a challenge. Students are required to use common, everyday materials such as rubber bands, string, plastic bags, and eggs. They will apply technological problem solving, material…

  11. SARS – virus jumps species

    Indian Academy of Sciences (India)

    SARS – virus jumps species. Coronavirus reshuffles genes; Rotteir et al, Rotterdam showed the virus to jump from cats to mouse cells after single gene mutation ? Human disease due to virus jumping from wild or domestic animals; Present favourite animal - the cat; - edible or domestic.

  12. Sub-Poissonian statistics of quantum jumps in single molecule or atomic ion

    International Nuclear Information System (INIS)

    Osad'ko, I.S.; Gus'kov, D.N.

    2007-01-01

    A theory for statistics of quantum jumps in single molecule or ion driven by continues wave laser field is developed. These quantum jumps can relate to nonradiative singlet-triplet transitions in a molecule or to on → off jumps in a single ion with shelving processes. Distribution function w N (T) of quantum jumps in time interval T is found. Computer simulation of quantum jumps is realized. Statistical treatment of simulated jumps reveals sub-Poissonian statistics of quantum jumps. The theoretical distribution function w N (T) fits well the distribution of jumps found from simulated data. Experimental data on quantum jumps found in experiments with single Hg + ion are described by the function w N (T) well

  13. Effluent trading in river systems through stochastic decision-making process: a case study.

    Science.gov (United States)

    Zolfagharipoor, Mohammad Amin; Ahmadi, Azadeh

    2017-09-01

    The objective of this paper is to provide an efficient framework for effluent trading in river systems. The proposed framework consists of two pessimistic and optimistic decision-making models to increase the executability of river water quality trading programs. The models used for this purpose are (1) stochastic fallback bargaining (SFB) to reach an agreement among wastewater dischargers and (2) stochastic multi-criteria decision-making (SMCDM) to determine the optimal treatment strategy. The Monte-Carlo simulation method is used to incorporate the uncertainty into analysis. This uncertainty arises from stochastic nature and the errors in the calculation of wastewater treatment costs. The results of river water quality simulation model are used as the inputs of models. The proposed models are used in a case study on the Zarjoub River in northern Iran to determine the best solution for the pollution load allocation. The best treatment alternatives selected by each model are imported, as the initial pollution discharge permits, into an optimization model developed for trading of pollution discharge permits among pollutant sources. The results show that the SFB-based water pollution trading approach reduces the costs by US$ 14,834 while providing a relative consensus among pollutant sources. Meanwhile, the SMCDM-based water pollution trading approach reduces the costs by US$ 218,852, but it is less acceptable by pollutant sources. Therefore, it appears that giving due attention to stability, or in other words acceptability of pollution trading programs for all pollutant sources, is an essential element of their success.

  14. Minimal representation of matrix valued white stochastic processes and U–D factorisation of algorithms for optimal control

    NARCIS (Netherlands)

    Willigenburg, van L.G.; Koning, de W.L.

    2013-01-01

    Two different descriptions are used in the literature to formulate the optimal dynamic output feedback control problem for linear dynamical systems with white stochastic parameters and quadratic criteria, called the optimal compensation problem. One describes the matrix valued white stochastic

  15. Accuracy of Jump-Mat Systems for Measuring Jump Height.

    Science.gov (United States)

    Pueo, Basilio; Lipinska, Patrycja; Jiménez-Olmedo, José M; Zmijewski, Piotr; Hopkins, Will G

    2017-08-01

    Vertical-jump tests are commonly used to evaluate lower-limb power of athletes and nonathletes. Several types of equipment are available for this purpose. To compare the error of measurement of 2 jump-mat systems (Chronojump-Boscosystem and Globus Ergo Tester) with that of a motion-capture system as a criterion and to determine the modifying effect of foot length on jump height. Thirty-one young adult men alternated 4 countermovement jumps with 4 squat jumps. Mean jump height and standard deviations representing technical error of measurement arising from each device and variability arising from the subjects themselves were estimated with a novel mixed model and evaluated via standardization and magnitude-based inference. The jump-mat systems produced nearly identical measures of jump height (differences in means and in technical errors of measurement ≤1 mm). Countermovement and squat-jump height were both 13.6 cm higher with motion capture (90% confidence limits ±0.3 cm), but this very large difference was reduced to small unclear differences when adjusted to a foot length of zero. Variability in countermovement and squat-jump height arising from the subjects was small (1.1 and 1.5 cm, respectively, 90% confidence limits ±0.3 cm); technical error of motion capture was similar in magnitude (1.7 and 1.6 cm, ±0.3 and ±0.4 cm), and that of the jump mats was similar or smaller (1.2 and 0.3 cm, ±0.5 and ±0.9 cm). The jump-mat systems provide trustworthy measurements for monitoring changes in jump height. Foot length can explain the substantially higher jump height observed with motion capture.

  16. Asymptotic inference for jump diffusions with state-dependent intensity

    NARCIS (Netherlands)

    Becheri, Gaia; Drost, Feico; Werker, Bas

    2016-01-01

    We establish the local asymptotic normality property for a class of ergodic parametric jump-diffusion processes with state-dependent intensity and known volatility function sampled at high frequency. We prove that the inference problem about the drift and jump parameters is adaptive with respect to

  17. Modeling and identification of ARMG models for stochastic processes: application to on-line computation of the power spectral density

    International Nuclear Information System (INIS)

    Zwingelstein, Gilles; Thabet, Gabriel.

    1977-01-01

    Control algorithms for components of nuclear power plants are currently based on external diagnostic methods. Modeling and identification techniques for autoregressive moving average models (ARMA) for stochastic processes are described. The identified models provide a means of estimating the power spectral density with improved accuracy and computer time compared with the classical methods. They are particularly will suited for on-line estimation of the power spectral density. The observable stochastic process y (t) is modeled assuming that it is the output of a linear filter driven by Gaussian while noise w (t). Two identification schemes were tested to find the orders m and n of the ARMA (m,n) models and to estimate the parameters of the recursion equation relating the input and output signals. The first scheme consists in transforming the ARMA model to an autoregressive model. The parameters of this AR model are obtained using least squares estimation techniques. The second scheme consists in finding the parameters of the ARMA by nonlinear programming techniques. The power spectral density of y(t) is instantaneously deduced from these ARMA models [fr

  18. Dynamic analysis and reliability assessment of structures with uncertain-but-bounded parameters under stochastic process excitations

    International Nuclear Information System (INIS)

    Do, Duy Minh; Gao, Wei; Song, Chongmin; Tangaramvong, Sawekchai

    2014-01-01

    This paper presents the non-deterministic dynamic analysis and reliability assessment of structures with uncertain-but-bounded parameters under stochastic process excitations. Random ground acceleration from earthquake motion is adopted to illustrate the stochastic process force. The exact change ranges of natural frequencies, random vibration displacement and stress responses of structures are investigated under the interval analysis framework. Formulations for structural reliability are developed considering the safe boundary and structural random vibration responses as interval parameters. An improved particle swarm optimization algorithm, namely randomised lower sequence initialized high-order nonlinear particle swarm optimization algorithm, is employed to capture the better bounds of structural dynamic characteristics, random vibration responses and reliability. Three numerical examples are used to demonstrate the presented method for interval random vibration analysis and reliability assessment of structures. The accuracy of the results obtained by the presented method is verified by the randomised Quasi-Monte Carlo simulation method (QMCSM) and direct Monte Carlo simulation method (MCSM). - Highlights: • Interval uncertainty is introduced into structural random vibration responses. • Interval dynamic reliability assessments of structures are implemented. • Boundaries of structural dynamic response and reliability are achieved

  19. A locust-inspired miniature jumping robot.

    Science.gov (United States)

    Zaitsev, Valentin; Gvirsman, Omer; Ben Hanan, Uri; Weiss, Avi; Ayali, Amir; Kosa, Gabor

    2015-11-25

    Unmanned ground vehicles are mostly wheeled, tracked, or legged. These locomotion mechanisms have a limited ability to traverse rough terrain and obstacles that are higher than the robot's center of mass. In order to improve the mobility of small robots it is necessary to expand the variety of their motion gaits. Jumping is one of nature's solutions to the challenge of mobility in difficult terrain. The desert locust is the model for the presented bio-inspired design of a jumping mechanism for a small mobile robot. The basic mechanism is similar to that of the semilunar process in the hind legs of the locust, and is based on the cocking of a torsional spring by wrapping a tendon-like wire around the shaft of a miniature motor. In this study we present the jumping mechanism design, and the manufacturing and performance analysis of two demonstrator prototypes. The most advanced jumping robot demonstrator is power autonomous, weighs 23 gr, and is capable of jumping to a height of 3.35 m, covering a distance of 1.37 m.

  20. Stochastic modeling of soil salinity

    Science.gov (United States)

    Suweis, S.; Porporato, A. M.; Daly, E.; van der Zee, S.; Maritan, A.; Rinaldo, A.

    2010-12-01

    A minimalist stochastic model of primary soil salinity is proposed, in which the rate of soil salinization is determined by the balance between dry and wet salt deposition and the intermittent leaching events caused by rainfall events. The equations for the probability density functions of salt mass and concentration are found by reducing the coupled soil moisture and salt mass balance equations to a single stochastic differential equation (generalized Langevin equation) driven by multiplicative Poisson noise. Generalized Langevin equations with multiplicative white Poisson noise pose the usual Ito (I) or Stratonovich (S) prescription dilemma. Different interpretations lead to different results and then choosing between the I and S prescriptions is crucial to describe correctly the dynamics of the model systems. We show how this choice can be determined by physical information about the timescales involved in the process. We also show that when the multiplicative noise is at most linear in the random variable one prescription can be made equivalent to the other by a suitable transformation in the jump probability distribution. We then apply these results to the generalized Langevin equation that drives the salt mass dynamics. The stationary analytical solutions for the probability density functions of salt mass and concentration provide insight on the interplay of the main soil, plant and climate parameters responsible for long term soil salinization. In particular, they show the existence of two distinct regimes, one where the mean salt mass remains nearly constant (or decreases) with increasing rainfall frequency, and another where mean salt content increases markedly with increasing rainfall frequency. As a result, relatively small reductions of rainfall in drier climates may entail dramatic shifts in longterm soil salinization trends, with significant consequences, e.g. for climate change impacts on rain fed agriculture.

  1. Stochastic interaction between TAE and alpha particles

    International Nuclear Information System (INIS)

    Krlin, L.; Pavlo, P.; Malijevsky, I.

    1996-01-01

    The interaction of toroidicity-induced Alfven eigenmodes with thermonuclear alpha particles in the intrinsic stochasticity regime was investigated based on the numerical integration of the equation of motion of alpha particles in the tokamak. The first results obtained for the ITER parameters and moderate wave amplitudes indicate that the stochasticity is highest in the trapped/passing boundary region, where the alpha particles jump stochastically between the two regimes with an appreciable radial excursion (about 0.5 m amplitudes). A similar chaotic behavior was also found for substantially lower energies (about 350 keV). 7 figs., 15 refs

  2. Monte Carlo calculations with dynamical fermions by a local stochastic process

    International Nuclear Information System (INIS)

    Rossi, P.; Zwanziger, D.

    1984-01-01

    We develop and test numerically a Monte Carlo method for fermions on a lattice which accounts for the effect of the fermionic determinant to arbitrary accuracy. It is tested numerically in a 4-dimensional model with SU(2) color group and scalar fermionic quarks interacting with gluons. Computer time grows linearly with the volume of the lattice and the updating of gluons is not restricted to small jumps. The method is based on random location updating, instead of an ordered sweep, in which quarks are updated, on the average, R times more frequently than gluons. It is proven that the error in R is only of order 1/R instead of 1/Rsup(1/2) as one might naively expect. Quarks are represented by pseudofermionic variables in M pseudoflavors (which requires M times more memory for each physical fermionic degree of freedom) with an error in M of order 1/M. The method is tested by calculating the self-energy of an external quark, a quantity which would be infinite in the absence of dynamical or sea quarks. For the quantities measured, the dependence on R -1 is linear for R >= 8, and, within our statistical uncertainty, M = 2 is already asymptotic. (orig.)

  3. Optimal Ski Jump

    Science.gov (United States)

    Rebilas, Krzysztof

    2013-02-01

    Consider a skier who goes down a takeoff ramp, attains a speed V, and jumps, attempting to land as far as possible down the hill below (Fig. 1). At the moment of takeoff the angle between the skier's velocity and the horizontal is α. What is the optimal angle α that makes the jump the longest possible for the fixed magnitude of the velocity V? Of course, in practice, this is a very sophisticated problem; the skier's range depends on a variety of complex factors in addition to V and α. However, if we ignore these and assume the jumper is in free fall between the takeoff ramp and the landing point below, the problem becomes an exercise in kinematics that is suitable for introductory-level students. The solution is presented here.

  4. Some functional limit theorems for compound Cox processes

    Energy Technology Data Exchange (ETDEWEB)

    Korolev, Victor Yu. [Faculty of Computational Mathematics and Cybernetics, Moscow State University, Moscow (Russian Federation); Institute of Informatics Problems FRC CSC RAS (Russian Federation); Chertok, A. V. [Faculty of Computational Mathematics and Cybernetics, Moscow State University, Moscow (Russian Federation); Euphoria Group LLC (Russian Federation); Korchagin, A. Yu. [Faculty of Computational Mathematics and Cybernetics, Moscow State University, Moscow (Russian Federation); Kossova, E. V. [Higher School of Economics National Research University, Moscow (Russian Federation); Zeifman, Alexander I. [Vologda State University, S.Orlova, 6, Vologda (Russian Federation); Institute of Informatics Problems FRC CSC RAS, ISEDT RAS (Russian Federation)

    2016-06-08

    An improved version of the functional limit theorem is proved establishing weak convergence of random walks generated by compound doubly stochastic Poisson processes (compound Cox processes) to Lévy processes in the Skorokhod space under more realistic moment conditions. As corollaries, theorems are proved on convergence of random walks with jumps having finite variances to Lévy processes with variance-mean mixed normal distributions, in particular, to stable Lévy processes.

  5. Some functional limit theorems for compound Cox processes

    International Nuclear Information System (INIS)

    Korolev, Victor Yu.; Chertok, A. V.; Korchagin, A. Yu.; Kossova, E. V.; Zeifman, Alexander I.

    2016-01-01

    An improved version of the functional limit theorem is proved establishing weak convergence of random walks generated by compound doubly stochastic Poisson processes (compound Cox processes) to Lévy processes in the Skorokhod space under more realistic moment conditions. As corollaries, theorems are proved on convergence of random walks with jumps having finite variances to Lévy processes with variance-mean mixed normal distributions, in particular, to stable Lévy processes.

  6. Jumping hoops on water

    Science.gov (United States)

    Yang, Eunjin; Kim, Ho-Young

    2015-11-01

    Small aquatic arthropods, such as water striders and fishing spiders, are able to jump off water to a height several times their body length. Inspired by the unique biological motility on water, we study a simple model using a flexible hoop to provide fundamental understanding and a mimicking principle of small jumpers on water. Behavior of a hoop on water, which is coated with superhydrophobic particles and initially bent into an ellipse from an equilibrium circular shape, is visualized with a high speed camera upon launching it into air by releasing its initial elastic strain energy. We observe that jumping of our hoops is dominated by the dynamic pressure of water rather than surface tension, and thus it corresponds to the dynamic condition experienced by fishing spiders. We calculate the reaction forces provided by water adopting the unsteady Bernoulli equation as well as the momentum loss into liquid inertia and viscous friction. Our analysis allows us to predict the jumping efficiency of the hoop on water in comparison to that on ground, and to discuss the evolutionary pressure rendering fishing spiders select such dynamic behavior.

  7. Undular Hydraulic Jump

    Directory of Open Access Journals (Sweden)

    Oscar Castro-Orgaz

    2015-04-01

    Full Text Available The transition from subcritical to supercritical flow when the inflow Froude number Fo is close to unity appears in the form of steady state waves called undular hydraulic jump. The characterization of the undular hydraulic jump is complex due to the existence of a non-hydrostatic pressure distribution that invalidates the gradually-varied flow theory, and supercritical shock waves. The objective of this work is to present a mathematical model for the undular hydraulic jump obtained from an approximate integration of the Reynolds equations for turbulent flow assuming that the Reynolds number R is high. Simple analytical solutions are presented to reveal the physics of the theory, and a numerical model is used to integrate the complete equations. The limit of application of the theory is discussed using a wave breaking condition for the inception of a surface roller. The validity of the mathematical predictions is critically assessed using physical data, thereby revealing aspects on which more research is needed

  8. Stochastic quantization and gravity

    International Nuclear Information System (INIS)

    Rumpf, H.

    1984-01-01

    We give a preliminary account of the application of stochastic quantization to the gravitational field. We start in Section I from Nelson's formulation of quantum mechanics as Newtonian stochastic mechanics and only then introduce the Parisi-Wu stochastic quantization scheme on which all the later discussion will be based. In Section II we present a generalization of the scheme that is applicable to fields in physical (i.e. Lorentzian) space-time and treat the free linearized gravitational field in this manner. The most remarkable result of this is the noncausal propagation of conformal gravitons. Moreover the concept of stochastic gauge-fixing is introduced and a complete discussion of all the covariant gauges is given. A special symmetry relating two classes of covariant gauges is exhibited. Finally Section III contains some preliminary remarks on full nonlinear gravity. In particular we argue that in contrast to gauge fields the stochastic gravitational field cannot be transformed to a Gaussian process. (Author)

  9. Stochastic modeling

    CERN Document Server

    Lanchier, Nicolas

    2017-01-01

    Three coherent parts form the material covered in this text, portions of which have not been widely covered in traditional textbooks. In this coverage the reader is quickly introduced to several different topics enriched with 175 exercises which focus on real-world problems. Exercises range from the classics of probability theory to more exotic research-oriented problems based on numerical simulations. Intended for graduate students in mathematics and applied sciences, the text provides the tools and training needed to write and use programs for research purposes. The first part of the text begins with a brief review of measure theory and revisits the main concepts of probability theory, from random variables to the standard limit theorems. The second part covers traditional material on stochastic processes, including martingales, discrete-time Markov chains, Poisson processes, and continuous-time Markov chains. The theory developed is illustrated by a variety of examples surrounding applications such as the ...

  10. Simulations of Technology-Induced and Crisis-Led Stochastic and Chaotic Fluctuations in Higher Education Processes: A Model and a Case Study for Performance and Expected Employment

    Science.gov (United States)

    Ahmet, Kara

    2015-01-01

    This paper presents a simple model of the provision of higher educational services that considers and exemplifies nonlinear, stochastic, and potentially chaotic processes. I use the methods of system dynamics to simulate these processes in the context of a particular sociologically interesting case, namely that of the Turkish higher education…

  11. Stochastic models for the Trojan Y-Chromosome eradication strategy of an invasive species.

    Science.gov (United States)

    Wang, Xueying; Walton, Jay R; Parshad, Rana D

    2016-01-01

    The Trojan Y-Chromosome (TYC) strategy, an autocidal genetic biocontrol method, has been proposed to eliminate invasive alien species. In this work, we develop a Markov jump process model for this strategy, and we verify that there is a positive probability for wild-type females going extinct within a finite time. Moreover, when sex-reversed Trojan females are introduced at a constant population size, we formulate a stochastic differential equation (SDE) model as an approximation to the proposed Markov jump process model. Using the SDE model, we investigate the probability distribution and expectation of the extinction time of wild-type females by solving Kolmogorov equations associated with these statistics. The results indicate how the probability distribution and expectation of the extinction time are shaped by the initial conditions and the model parameters.

  12. KNO scaling functions given by Buras and Koba and by Barshay and Yamaguchi, and stochastic Rayleigh and Ornstein-Uhlenbeck processes

    International Nuclear Information System (INIS)

    Biyajima, M.

    1984-01-01

    Stochastic backgrounds of the KNO scaling functions given by Buras and Koba and by Barshay and Yamaguchi are investigated. It is found that they are connected with the stochastic Rayleigh process, and the (1+2)- and (1+4)-dimensional Ornstein-Uhlenbeck process. Moreover those KNO scaling functions are transformed into the KNO scaling functions given by the Perina-McGill formula in terms of a nonlinear transformation. Analyses of data by means of them are made. Probability distributions of the former KNO scaling functions are also calculated by the Poisson transformation. (orig.)

  13. Modeling bias and variation in the stochastic processes of small RNA sequencing.

    Science.gov (United States)

    Argyropoulos, Christos; Etheridge, Alton; Sakhanenko, Nikita; Galas, David

    2017-06-20

    The use of RNA-seq as the preferred method for the discovery and validation of small RNA biomarkers has been hindered by high quantitative variability and biased sequence counts. In this paper we develop a statistical model for sequence counts that accounts for ligase bias and stochastic variation in sequence counts. This model implies a linear quadratic relation between the mean and variance of sequence counts. Using a large number of sequencing datasets, we demonstrate how one can use the generalized additive models for location, scale and shape (GAMLSS) distributional regression framework to calculate and apply empirical correction factors for ligase bias. Bias correction could remove more than 40% of the bias for miRNAs. Empirical bias correction factors appear to be nearly constant over at least one and up to four orders of magnitude of total RNA input and independent of sample composition. Using synthetic mixes of known composition, we show that the GAMLSS approach can analyze differential expression with greater accuracy, higher sensitivity and specificity than six existing algorithms (DESeq2, edgeR, EBSeq, limma, DSS, voom) for the analysis of small RNA-seq data. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  14. Modelling the cancer growth process by Stochastic Differential Equations with the effect of Chondroitin Sulfate (CS) as anticancer therapeutics

    Science.gov (United States)

    Syahidatul Ayuni Mazlan, Mazma; Rosli, Norhayati; Jauhari Arief Ichwan, Solachuddin; Suhaity Azmi, Nina

    2017-09-01

    A stochastic model is introduced to describe the growth of cancer affected by anti-cancer therapeutics of Chondroitin Sulfate (CS). The parameters values of the stochastic model are estimated via maximum likelihood function. The numerical method of Euler-Maruyama will be employed to solve the model numerically. The efficiency of the stochastic model is measured by comparing the simulated result with the experimental data.

  15. Stochastic process of pragmatic information for 2D spiral wave turbulence in globally and locally coupled Alief-Panfilov oscillators

    Science.gov (United States)

    Kuwahara, Jun; Miyata, Hajime; Konno, Hidetoshi

    2017-09-01

    Recently, complex dynamics of globally coupled oscillators have been attracting many researcher's attentions. In spite of their numerous studies, their features of nonlinear oscillator systems with global and local couplings in two-dimension (2D) are not understood fully. The paper focuses on 2D states of coherent, clustered and chaotic oscillation especially under the effect of negative global coupling (NGC) in 2D Alief-Panfilov model. It is found that the tuning NGC can cause various new coupling-parameter dependency on the features of oscillations. Then quantitative characterization of various states of oscillations (so called spiral wave turbulence) is examined by using the pragmatic information (PI) which have been utilized in analyzing multimode laser, solar activity and neuronal systems. It is demonstrated that the dynamics of the PI for various oscillations can be characterized successfully by the Hyper-Gamma stochastic process.

  16. Modeling of long-range memory processes with inverse cubic distributions by the nonlinear stochastic differential equations

    Science.gov (United States)

    Kaulakys, B.; Alaburda, M.; Ruseckas, J.

    2016-05-01

    A well-known fact in the financial markets is the so-called ‘inverse cubic law’ of the cumulative distributions of the long-range memory fluctuations of market indicators such as a number of events of trades, trading volume and the logarithmic price change. We propose the nonlinear stochastic differential equation (SDE) giving both the power-law behavior of the power spectral density and the long-range dependent inverse cubic law of the cumulative distribution. This is achieved using the suggestion that when the market evolves from calm to violent behavior there is a decrease of the delay time of multiplicative feedback of the system in comparison to the driving noise correlation time. This results in a transition from the Itô to the Stratonovich sense of the SDE and yields a long-range memory process.

  17. Option Valuation with Observable Volatility and Jump Dynamics

    DEFF Research Database (Denmark)

    Christoffersen, Peter; Feunou, Bruno; Jeon, Yoontae

    Under very general conditions, the total quadratic variation of a jump-diffusion process can be decomposed into diffusive volatility and squared jump variation. We use this result to develop a new option valuation model in which the underlying asset price exhibits volatility and jump intensity...... dynamics. The volatility and jump intensity dynamics in the model are directly driven by model-free empirical measures of diffusive volatility and jump variation. Because the empirical measures are observed in discrete intervals, our option valuation model is cast in discrete time, allowing...... for straightforward filtering and estimation of the model. Our model belongs to the affine class enabling us to derive the conditional characteristic function so that option values can be computed rapidly without simulation. When estimated on S&P500 index options and returns the new model performs well compared...

  18. BPS Jumping Loci are Automorphic

    Science.gov (United States)

    Kachru, Shamit; Tripathy, Arnav

    2018-06-01

    We show that BPS jumping loci-loci in the moduli space of string compactifications where the number of BPS states jumps in an upper semi-continuous manner—naturally appear as Fourier coefficients of (vector space-valued) automorphic forms. For the case of T 2 compactification, the jumping loci are governed by a modular form studied by Hirzebruch and Zagier, while the jumping loci in K3 compactification appear in a story developed by Oda and Kudla-Millson in arithmetic geometry. We also comment on some curious related automorphy in the physics of black hole attractors and flux vacua.

  19. Sequential stochastic optimization

    CERN Document Server

    Cairoli, Renzo

    1996-01-01

    Sequential Stochastic Optimization provides mathematicians and applied researchers with a well-developed framework in which stochastic optimization problems can be formulated and solved. Offering much material that is either new or has never before appeared in book form, it lucidly presents a unified theory of optimal stopping and optimal sequential control of stochastic processes. This book has been carefully organized so that little prior knowledge of the subject is assumed; its only prerequisites are a standard graduate course in probability theory and some familiarity with discrete-paramet

  20. Hybrid framework for the simulation of stochastic chemical kinetics

    International Nuclear Information System (INIS)

    Duncan, Andrew; Erban, Radek; Zygalakis, Konstantinos

    2016-01-01

    Stochasticity plays a fundamental role in various biochemical processes, such as cell regulatory networks and enzyme cascades. Isothermal, well-mixed systems can be modelled as Markov processes, typically simulated using the Gillespie Stochastic Simulation Algorithm (SSA) [25]. While easy to implement and exact, the computational cost of using the Gillespie SSA to simulate such systems can become prohibitive as the frequency of reaction events increases. This has motivated numerous coarse-grained schemes, where the “fast” reactions are approximated either using Langevin dynamics or deterministically. While such approaches provide a good approximation when all reactants are abundant, the approximation breaks down when one or more species exist only in small concentrations and the fluctuations arising from the discrete nature of the reactions become significant. This is particularly problematic when using such methods to compute statistics of extinction times for chemical species, as well as simulating non-equilibrium systems such as cell-cycle models in which a single species can cycle between abundance and scarcity. In this paper, a hybrid jump-diffusion model for simulating well-mixed stochastic kinetics is derived. It acts as a bridge between the Gillespie SSA and the chemical Langevin equation. For low reactant reactions the underlying behaviour is purely discrete, while purely diffusive when the concentrations of all species are large, with the two different behaviours coexisting in the intermediate region. A bound on the weak error in the classical large volume scaling limit is obtained, and three different numerical discretisations of the jump-diffusion model are described. The benefits of such a formalism are illustrated using computational examples.

  1. Hybrid framework for the simulation of stochastic chemical kinetics

    Science.gov (United States)

    Duncan, Andrew; Erban, Radek; Zygalakis, Konstantinos

    2016-12-01

    Stochasticity plays a fundamental role in various biochemical processes, such as cell regulatory networks and enzyme cascades. Isothermal, well-mixed systems can be modelled as Markov processes, typically simulated using the Gillespie Stochastic Simulation Algorithm (SSA) [25]. While easy to implement and exact, the computational cost of using the Gillespie SSA to simulate such systems can become prohibitive as the frequency of reaction events increases. This has motivated numerous coarse-grained schemes, where the "fast" reactions are approximated either using Langevin dynamics or deterministically. While such approaches provide a good approximation when all reactants are abundant, the approximation breaks down when one or more species exist only in small concentrations and the fluctuations arising from the discrete nature of the reactions become significant. This is particularly problematic when using such methods to compute statistics of extinction times for chemical species, as well as simulating non-equilibrium systems such as cell-cycle models in which a single species can cycle between abundance and scarcity. In this paper, a hybrid jump-diffusion model for simulating well-mixed stochastic kinetics is derived. It acts as a bridge between the Gillespie SSA and the chemical Langevin equation. For low reactant reactions the underlying behaviour is purely discrete, while purely diffusive when the concentrations of all species are large, with the two different behaviours coexisting in the intermediate region. A bound on the weak error in the classical large volume scaling limit is obtained, and three different numerical discretisations of the jump-diffusion model are described. The benefits of such a formalism are illustrated using computational examples.

  2. Hybrid framework for the simulation of stochastic chemical kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Duncan, Andrew, E-mail: a.duncan@imperial.ac.uk [Department of Mathematics, Imperial College, South Kensington Campus, London, SW7 2AZ (United Kingdom); Erban, Radek, E-mail: erban@maths.ox.ac.uk [Mathematical Institute, University of Oxford, Radcliffe Observatory Quarter, Woodstock Road, Oxford, OX2 6GG (United Kingdom); Zygalakis, Konstantinos, E-mail: k.zygalakis@ed.ac.uk [School of Mathematics, University of Edinburgh, Peter Guthrie Tait Road, Edinburgh, EH9 3FD (United Kingdom)

    2016-12-01

    Stochasticity plays a fundamental role in various biochemical processes, such as cell regulatory networks and enzyme cascades. Isothermal, well-mixed systems can be modelled as Markov processes, typically simulated using the Gillespie Stochastic Simulation Algorithm (SSA) [25]. While easy to implement and exact, the computational cost of using the Gillespie SSA to simulate such systems can become prohibitive as the frequency of reaction events increases. This has motivated numerous coarse-grained schemes, where the “fast” reactions are approximated either using Langevin dynamics or deterministically. While such approaches provide a good approximation when all reactants are abundant, the approximation breaks down when one or more species exist only in small concentrations and the fluctuations arising from the discrete nature of the reactions become significant. This is particularly problematic when using such methods to compute statistics of extinction times for chemical species, as well as simulating non-equilibrium systems such as cell-cycle models in which a single species can cycle between abundance and scarcity. In this paper, a hybrid jump-diffusion model for simulating well-mixed stochastic kinetics is derived. It acts as a bridge between the Gillespie SSA and the chemical Langevin equation. For low reactant reactions the underlying behaviour is purely discrete, while purely diffusive when the concentrations of all species are large, with the two different behaviours coexisting in the intermediate region. A bound on the weak error in the classical large volume scaling limit is obtained, and three different numerical discretisations of the jump-diffusion model are described. The benefits of such a formalism are illustrated using computational examples.

  3. STABILITY OF LINEAR SYSTEMS WITH MARKOVIAN JUMPS

    Directory of Open Access Journals (Sweden)

    Jorge Enrique Mayta Guillermo

    2016-12-01

    Full Text Available In this work we will analyze the stability of linear systems governed by a Markov chain, this family is known in the specialized literature as linear systems with Markov jumps or by its acronyms in English MJLS as it is denoted in [1]. Linear systems governed by a Markov chain are dynamic systems with abrupt changes. We give some denitions of stability for the MJLS system, where these types of stability are equivalent as long as the state space of the Markov chain is nite. Finally we present a theorem that characterizes the stochastic stability by means of an equation of the Lyapunov type. The result is a generalization of a theorem in classical theory.

  4. Exploring Lightning Jump Characteristics

    Science.gov (United States)

    Chronis, Themis; Carey, Larry D.; Schultz, Christopher J.; Schultz, Elise; Calhoun, Kristin; Goodman, Steven J.

    2014-01-01

    This study is concerned with the characteristics of storms exhibiting an abrupt temporal increase in the total lightning flash rate (i.e., lightning jump, LJ). An automated storm tracking method is used to identify storm "clusters" and total lightning activity from three different lightning detection systems over Oklahoma, northern Alabama and Washington, D.C. On average and for different employed thresholds, the clusters that encompass at least one LJ (LJ1) last longer, relate to higher Maximum Expected Size of Hail, Vertical Integrated Liquid and lightning flash rates (area-normalized) than the clusters that did not exhibit any LJ (LJ0). The respective mean values for LJ1 (LJ0) clusters are 80 min (35 min), 14 mm (8 mm), 25 kg per square meter (18 kg per square meter) and 0.05 flash per min per square kilometer (0.01 flash per min per square kilometer). Furthermore, the LJ1 clusters are also characterized by slower decaying autocorrelation functions, a result that implies a less "random" behavior in the temporal flash rate evolution. In addition, the temporal occurrence of the last LJ provides an estimate of the time remaining to the storm's dissipation. Depending of the LJ strength (i.e., varying thresholds), these values typically range between 20-60 min, with stronger jumps indicating more time until storm decay. This study's results support the hypothesis that the LJ is a proxy for the storm's kinematic and microphysical state rather than a coincidental value.

  5. Advances in the control of markov jump linear systems with no mode observation

    CERN Document Server

    Vargas, Alessandro N; do Val, João B R

    2016-01-01

    This brief broadens readers’ understanding of stochastic control by highlighting recent advances in the design of optimal control for Markov jump linear systems (MJLS). It also presents an algorithm that attempts to solve this open stochastic control problem, and provides a real-time application for controlling the speed of direct current motors, illustrating the practical usefulness of MJLS. Particularly, it offers novel insights into the control of systems when the controller does not have access to the Markovian mode.

  6. Bayesian inference for hybrid discrete-continuous stochastic kinetic models

    International Nuclear Information System (INIS)

    Sherlock, Chris; Golightly, Andrew; Gillespie, Colin S

    2014-01-01

    We consider the problem of efficiently performing simulation and inference for stochastic kinetic models. Whilst it is possible to work directly with the resulting Markov jump process (MJP), computational cost can be prohibitive for networks of realistic size and complexity. In this paper, we consider an inference scheme based on a novel hybrid simulator that classifies reactions as either ‘fast’ or ‘slow’ with fast reactions evolving as a continuous Markov process whilst the remaining slow reaction occurrences are modelled through a MJP with time-dependent hazards. A linear noise approximation (LNA) of fast reaction dynamics is employed and slow reaction events are captured by exploiting the ability to solve the stochastic differential equation driving the LNA. This simulation procedure is used as a proposal mechanism inside a particle MCMC scheme, thus allowing Bayesian inference for the model parameters. We apply the scheme to a simple application and compare the output with an existing hybrid approach and also a scheme for performing inference for the underlying discrete stochastic model. (paper)

  7. Stochastic Modeling of Wind Derivatives in Energy Markets

    Directory of Open Access Journals (Sweden)

    Fred Espen Benth

    2018-05-01

    Full Text Available We model the logarithm of the spot price of electricity with a normal inverse Gaussian (NIG process and the wind speed and wind power production with two Ornstein–Uhlenbeck processes. In order to reproduce the correlation between the spot price and the wind power production, namely between a pure jump process and a continuous path process, respectively, we replace the small jumps of the NIG process by a Brownian term. We then apply our models to two different problems: first, to study from the stochastic point of view the income from a wind power plant, as the expected value of the product between the electricity spot price and the amount of energy produced; then, to construct and price a European put-type quanto option in the wind energy markets that allows the buyer to hedge against low prices and low wind power production in the plant. Calibration of the proposed models and related price formulas is also provided, according to specific datasets.

  8. Exponential stability of delayed recurrent neural networks with Markovian jumping parameters

    International Nuclear Information System (INIS)

    Wang Zidong; Liu Yurong; Yu Li; Liu Xiaohui

    2006-01-01

    In this Letter, the global exponential stability analysis problem is considered for a class of recurrent neural networks (RNNs) with time delays and Markovian jumping parameters. The jumping parameters considered here are generated from a continuous-time discrete-state homogeneous Markov process, which are governed by a Markov process with discrete and finite state space. The purpose of the problem addressed is to derive some easy-to-test conditions such that the dynamics of the neural network is stochastically exponentially stable in the mean square, independent of the time delay. By employing a new Lyapunov-Krasovskii functional, a linear matrix inequality (LMI) approach is developed to establish the desired sufficient conditions, and therefore the global exponential stability in the mean square for the delayed RNNs can be easily checked by utilizing the numerically efficient Matlab LMI toolbox, and no tuning of parameters is required. A numerical example is exploited to show the usefulness of the derived LMI-based stability conditions

  9. Jump conditions in transonic equilibria

    International Nuclear Information System (INIS)

    Guazzotto, L.; Betti, R.; Jardin, S. C.

    2013-01-01

    In the present paper, the numerical calculation of transonic equilibria, first introduced with the FLOW code in Guazzotto et al.[Phys. Plasmas 11, 604 (2004)], is critically reviewed. In particular, the necessity and effect of imposing explicit jump conditions at the transonic discontinuity are investigated. It is found that “standard” (low-β, large aspect ratio) transonic equilibria satisfy the correct jump condition with very good approximation even if the jump condition is not explicitly imposed. On the other hand, it is also found that high-β, low aspect ratio equilibria require the correct jump condition to be explicitly imposed. Various numerical approaches are described to modify FLOW to include the jump condition. It is proved that the new methods converge to the correct solution even in extreme cases of very large β, while they agree with the results obtained with the old implementation of FLOW in lower-β equilibria.

  10. Mechanics of jumping on water

    Science.gov (United States)

    Kim, Ho-Young; Amauger, Juliette; Jeong, Han-Bi; Lee, Duck-Gyu; Yang, Eunjin; Jablonski, Piotr G.

    2017-10-01

    Some species of semiaquatic arthropods including water striders and springtails can jump from the water surface to avoid sudden dangers like predator attacks. It was reported recently that the jump of medium-sized water striders is a result of surface-tension-dominated interaction of thin cylindrical legs and water, with the leg movement speed nearly optimized to achieve the maximum takeoff velocity. Here we describe the mathematical theories to analyze this exquisite feat of nature by combining the review of existing models for floating and jumping and the introduction of the hitherto neglected capillary forces at the cylinder tips. The theoretically predicted dependence of body height on time is shown to match the observations of the jumps of the water striders and springtails regardless of the length of locomotory appendages. The theoretical framework can be used to understand the design principle of small jumping animals living on water and to develop biomimetic locomotion technology in semiaquatic environments.

  11. Absolute continuity under time shift of trajectories and related stochastic calculus

    CERN Document Server

    Löbus, Jörg-Uwe

    2017-01-01

    The text is concerned with a class of two-sided stochastic processes of the form X=W+A. Here W is a two-sided Brownian motion with random initial data at time zero and A\\equiv A(W) is a function of W. Elements of the related stochastic calculus are introduced. In particular, the calculus is adjusted to the case when A is a jump process. Absolute continuity of (X,P) under time shift of trajectories is investigated. For example under various conditions on the initial density with respect to the Lebesgue measure, m, and on A with A_0=0 we verify \\frac{P(dX_{\\cdot -t})}{P(dX_\\cdot)}=\\frac{m(X_{-t})}{m(X_0)}\\cdot \\prod_i\\left|\

  12. Unified theory for stochastic modelling of hydroclimatic processes: Preserving marginal distributions, correlation structures, and intermittency

    Science.gov (United States)

    Papalexiou, Simon Michael

    2018-05-01

    Hydroclimatic processes come in all "shapes and sizes". They are characterized by different spatiotemporal correlation structures and probability distributions that can be continuous, mixed-type, discrete or even binary. Simulating such processes by reproducing precisely their marginal distribution and linear correlation structure, including features like intermittency, can greatly improve hydrological analysis and design. Traditionally, modelling schemes are case specific and typically attempt to preserve few statistical moments providing inadequate and potentially risky distribution approximations. Here, a single framework is proposed that unifies, extends, and improves a general-purpose modelling strategy, based on the assumption that any process can emerge by transforming a specific "parent" Gaussian process. A novel mathematical representation of this scheme, introducing parametric correlation transformation functions, enables straightforward estimation of the parent-Gaussian process yielding the target process after the marginal back transformation, while it provides a general description that supersedes previous specific parameterizations, offering a simple, fast and efficient simulation procedure for every stationary process at any spatiotemporal scale. This framework, also applicable for cyclostationary and multivariate modelling, is augmented with flexible parametric correlation structures that parsimoniously describe observed correlations. Real-world simulations of various hydroclimatic processes with different correlation structures and marginals, such as precipitation, river discharge, wind speed, humidity, extreme events per year, etc., as well as a multivariate example, highlight the flexibility, advantages, and complete generality of the method.

  13. A software framework for process flow execution of stochastic multi-scale integrated models

    NARCIS (Netherlands)

    Schmitz, Oliver; de Kok, Jean Luc; Karssenberg, Derek

    2016-01-01

    Dynamic environmental models use a state transition function, external inputs and parameters to simulate the change of real-world processes over time. Modellers specify the state transition function and the external inputs required in the process calculation of each time step in a component model, a

  14. On stochastic integration for volatility modulated Brownian-driven Volterra processes via white noise analysis

    DEFF Research Database (Denmark)

    E. Barndorff-Nielsen, Ole; Benth, Fred Espen; Szozda, Benedykt

    This paper generalizes the integration theory for volatility modulated Brownian-driven Volterra processes onto the space G* of Potthoff-Timpel distributions. Sufficient conditions for integrability of generalized processes are given, regularity results and properties of the integral are discussed...

  15. On stochastic integration for volatility modulated Brownian-driven Volterra processes via white noise analysis

    DEFF Research Database (Denmark)

    Barndorff-Nielsen, Ole E.; Benth, Fred Espen; Szozda, Benedykt

    This paper generalizes the integration theory for volatility modulated Brownian-driven Volterra processes onto the space G∗ of Potthoff--Timpel distributions. Sufficient conditions for integrability of generalized processes are given, regularity results and properties of the integral are discusse...

  16. Thersites: a `jumping' Trojan?

    Science.gov (United States)

    Tsiganis, K.; Dvorak, R.; Pilat-Lohinger, E.

    2000-02-01

    In this paper, we examine the dynamical evolution of the asteroid (1868) Thersites, a member of the Trojan belt. Thersites is librating around the Lagrangian point L_4, following, however, a chaotic orbit. The equations of motion for Thersites as well as for a distribution of neighboring initial conditions are integrated numerically for 50 million years in the Outer Solar System model (OSS), which consists of the Sun and the four giant planets. Our results indicate that the probability that this asteroid will eventually escape from the Trojan swarm is rather high. In fact, 20% from our initial distribution escaped within the integration time. Many of the remaining ones also show characteristic `jumps' in the orbital elements, especially the inclination. Secular resonances involving the nodes of the outer planets are found to be responsible for this chaotic behavior. The width of libration and eccentricity values that lead to grossly unstable orbits are calculated and compared with previously known results on the stability of the Trojans. Finally, a very interesting behavior has been observed for one of the escaping asteroids as he `jumped' from L_4 to L_5 where he remained performing a highly inclined libration for ~ 2 Myrs before escaping from the Trojan swarm. According to Homer, Thersites was not only the ugliest of all Greeks that took part in the Trojan war, but also had the most intolerable personality. His nasty habit of making fun of everybody cost him his life, as the last person for whom he spoke ironically about was Achilles, the mightiest warrior of all Greeks, who killed Thersites with just one punch!

  17. Operational Efficiency Forecasting Model of an Existing Underground Mine Using Grey System Theory and Stochastic Diffusion Processes

    Directory of Open Access Journals (Sweden)

    Svetlana Strbac Savic

    2015-01-01

    Full Text Available Forecasting the operational efficiency of an existing underground mine plays an important role in strategic planning of production. Degree of Operating Leverage (DOL is used to express the operational efficiency of production. The forecasting model should be able to involve common time horizon, taking the characteristics of the input variables that directly affect the value of DOL. Changes in the magnitude of any input variable change the value of DOL. To establish the relationship describing the way of changing we applied multivariable grey modeling. Established time sequence multivariable response formula is also used to forecast the future values of operating leverage. Operational efficiency of production is often associated with diverse sources of uncertainties. Incorporation of these uncertainties into multivariable forecasting model enables mining company to survive in today’s competitive environment. Simulation of mean reversion process and geometric Brownian motion is used to describe the stochastic diffusion nature of metal price, as a key element of revenues, and production costs, respectively. By simulating a forecasting model, we imitate its action in order to measure its response to different inputs. The final result of simulation process is the expected value of DOL for every year of defined time horizon.

  18. Thermal mixtures in stochastic mechanics

    Energy Technology Data Exchange (ETDEWEB)

    Guerra, F [Rome Univ. (Italy). Ist. di Matematica; Loffredo, M I [Salerno Univ. (Italy). Ist. di Fisica

    1981-01-17

    Stochastic mechanics is extended to systems in thermal equilibrium. The resulting stochastic processes are mixtures of Nelson processes. Their Markov property is investigated in some simple cases. It is found that in order to inforce Markov property the algebra of observable associated to the present must be suitably enlarged.

  19. Stochastic Pi-calculus Revisited

    DEFF Research Database (Denmark)

    Cardelli, Luca; Mardare, Radu Iulian

    2013-01-01

    We develop a version of stochastic Pi-calculus with a semantics based on measure theory. We dene the behaviour of a process in a rate environment using measures over the measurable space of processes induced by structural congruence. We extend the stochastic bisimulation to include the concept of...

  20. A geometric stochastic approach based on marked point processes for road mark detection from high resolution aerial images

    Science.gov (United States)

    Tournaire, O.; Paparoditis, N.

    Road detection has been a topic of great interest in the photogrammetric and remote sensing communities since the end of the 70s. Many approaches dealing with various sensor resolutions, the nature of the scene or the wished accuracy of the extracted objects have been presented. This topic remains challenging today as the need for accurate and up-to-date data is becoming more and more important. Based on this context, we will study in this paper the road network from a particular point of view, focusing on road marks, and in particular dashed lines. Indeed, they are very useful clues, for evidence of a road, but also for tasks of a higher level. For instance, they can be used to enhance quality and to improve road databases. It is also possible to delineate the different circulation lanes, their width and functionality (speed limit, special lanes for buses or bicycles...). In this paper, we propose a new robust and accurate top-down approach for dashed line detection based on stochastic geometry. Our approach is automatic in the sense that no intervention from a human operator is necessary to initialise the algorithm or to track errors during the process. The core of our approach relies on defining geometric, radiometric and relational models for dashed lines objects. The model also has to deal with the interactions between the different objects making up a line, meaning that it introduces external knowledge taken from specifications. Our strategy is based on a stochastic method, and in particular marked point processes. Our goal is to find the objects configuration minimising an energy function made-up of a data attachment term measuring the consistency of the image with respect to the objects and a regularising term managing the relationship between neighbouring objects. To sample the energy function, we use Green algorithm's; coupled with a simulated annealing to find its minimum. Results from aerial images at various resolutions are presented showing that our