WorldWideScience

Sample records for jump rope program

  1. The Effects of the Rope Jump Training Program in Physical Education Lessons on Strength, Speed and VO[subscript 2] Max in Children

    Science.gov (United States)

    Eler, Nebahat; Acar, Hakan

    2018-01-01

    The aim of this study is to examine the effects of rope-jump training program in physical education lessons on strength, speed and VO[subscript 2] max in 10-12 year old boys. 240 male students; rope-jump group (n = 120) and control group (n = 120) participated in the study. Rope-Jump group continued 10 weeks of regular physical education and sport…

  2. Teaching Jump Rope to Children with Visual Impairments

    Science.gov (United States)

    Lieberman, Lauren J.; Schedlin, Haley; Pierce, Tristan

    2009-01-01

    This article presents strategies for jumping rope for children with visual impairments. Giving choices related to the types of rope and the use of mats is important. In addition, using appropriate instructional strategies and modifications will make jumping rope a skill that the children will enjoy and will lead to their involvement in other…

  3. Double the Fun with Two-Person, One-Rope Jump Rope

    Science.gov (United States)

    Heumann, Kristin J.; Murray, Steven Ross

    2018-01-01

    One popular activity within physical education curricula today is jump rope. Jump rope is recognized as an excellent activity for developing motor skills and the affective domain, and it aligns with several recommended outcomes for physical education listed by the SHAPE America--Society of Health and Physical Educators. This article describes…

  4. Jump Rope Skills for Fun and Fitness in Grades K-12

    Science.gov (United States)

    Michiels Hernandez, Barbara L.; Gober, Donna; Boatwright, Douglas; Strickland, George

    2009-01-01

    A jump rope is a remarkable piece of exercise equipment. It is inexpensive and easy to store, and it can be used by a wide variety of age groups to improve cardiovascular fitness, increase agility, and tone the body's muscles all at the same time. Consequently, the teaching of jump rope skills is highly suitable for physical education classes in…

  5. The effects of dance music jump rope exercise on pulmonary function and body mass index after music jump rope exercise in overweight adults in 20's.

    Science.gov (United States)

    Seo, KyoChul

    2017-08-01

    [Purpose] The purpose of this study was to examine the effect of a dance music jump rope exercise on changes Pulmonary Function and body mass index in female overweight subjects in their 20's. [Subjects and Methods] The subjects were randomly assigned to the dance music jump rope exercise group and the stationary cycle exercise group. All subjects have conducted the exercises three times a week for four weeks. Pulmonary function was evaluated using a spirometer, and body mass index was evaluated using an InBody 3.0. [Results] The findings of this study showed significant improvements in the voluntary capacity and body mass index of the experimental groups. Vital capacity was higher in the music jump rope exercise group than the stationary cycle exercise group, and body mass index was lower in the music jump rope exercise group than the stationary cycle exercise group. [Conclusion] This study showed that the dance music jump rope exercise can be used to improve vital capacity and body mass index.

  6. The Effect of Rope Jumping Exercise on Postural Control, Static and Dynamic Balance in Male Students with Cavus Foot

    Directory of Open Access Journals (Sweden)

    Mahdi Ghaderiyan

    2016-06-01

    Full Text Available Background and Objectives: Plantar foot is a very active part in leap activities, such as rope jumping and with its small surface playes an important role in balance control. In this research, the effect of 12 week rope jumping exercise was investigated on postural control and static and dynamic balance in 10-13 years old male students with cavus foot. Methods: This quasi-experimental study was done on 450 male students aged 13-10 years in Jarghouyeh sofla. After the initial evaluation by pedescope (qualitative and then measurement by a foot scanner (quantitative and Staheli index, 30 students were selected as samples and were divided into two groups (experimental and control, each 15 cases. To measure the postural control, a foot scanner device was used and changes in plantar center of pressure was recorded for 20 seconds. Static balance was evaluated with stork test and dynamic balance by Y balance test. The subjects of the experimental group participated in a rope jumping training protocol three 45-minute sessions per week for 12 weeks. In this period of time, the subjects of the control group did not participate in any regular physical activity program in this time. Data were analyzed using dependent and independent t-tests. The significance level was considered p<0/05. Results: A 12-week rope jumping exercise improved postural control and static and dynamic balance in patients with cavus foot, which this change was significant (p<0.001. Conclusion: According to the results of this study, rope jumping can be a useful exercise to improve static and dynamic balance and postural control in individuals with cavus foot.

  7. The Impact of Rope Jumping Exercise on Physical Fitness of Visually Impaired Students

    Science.gov (United States)

    Chen, Chao-Chien; Lin, Shih-Yen

    2011-01-01

    The main purpose of this study was to investigate the impact of rope jumping exercise on the health-related physical fitness of visually impaired students. The participants' physical fitness was examined before and after the training. The exercise intensity of the experimental group was controlled with Rating of Perceived Exertion (RPE) (values…

  8. Jump Rope Training: Balance and Motor Coordination in Preadolescent Soccer Players

    Directory of Open Access Journals (Sweden)

    Athos Trecroci, Luca Cavaggioni, Riccardo Caccia, Giampietro Alberti

    2015-12-01

    Full Text Available General physical practice and multidimensional exercises are essential elements that allow young athletes to enhance their coordinative traits, balance, and strength and power levels, which are linked to the learning soccer-specific skills. Jumping rope is a widely-used and non-specific practical method for the development of athletic conditioning, balance and coordination in several disciplines. Thus, the aim of this study was to investigate the effects of a short-term training protocol including jumping rope (JR exercises on motor abilities and body balance in young soccer players. Twenty-four preadolescent soccer players were recruited and placed in two different groups. In the Experimental group (EG, children performed JR training at the beginning of the training session. The control group (CG, executed soccer specific drills. Harre circuit test (HCT and Lower Quarter Y balance test (YBT-LQ were selected to evaluate participant’s motor ability (e.g. ability to perform rapidly a course with different physical tasks such as somersault and passages above/below obstacles and to assess unilateral dynamic lower limb balance after 8 weeks of training. Statistical analysis consisted of paired t-test and mixed analysis of variance scores to determine any significant interactions. Children who performed jumping rope exercises showed a significant decrease of 9% (p 0.05, ES = 0.05-0.2 from pre- to post-training. A training-by-group interaction was found for the composite score in both legs (p 0.14. Our findings demonstrated that JR practice within regular soccer training enhanced general motor coordination and balance in preadolescent soccer players. Therefore, the inclusion of JR practice within regular soccer training session should encouraged to improve children’s motor skills.

  9. The effects of two different explosive strength training programs on vertical jump performance in basketball.

    Science.gov (United States)

    Ciacci, Simone; Bartolomei, Sandro

    2017-06-08

    The aim of this study was to compare the effects of two different training programs oriented to improve vertical jump performance and leg stiffness in basketball players. Fifty-eight male basketball players were involved, divided into three age groups (Senior, U19 and U17). Subsequently, within any age group, the players were randomly divided into two training groups, respectively performing a 16-week "hang-clean" training program (HCL), and a "half-squat" training program (HSQ), lasting for the same duration. HCL was based on the hang clean exercise and included also jump rope training; HSQ was based on the half squat exercise and included also speed ladder training. The Squat jump (SJ), the Countermovement jump without and with arm swing, and with one step approach (respectively, CMJ, CMJS, and TCMJS) and explosive strength indices obtained with a leg stiffness test were assessed pre- and post-training. In Senior and U19 athletes both training programs involved an improvement of Vertical Jump performance, with some differences between different age groups. Instead, for the U17 players, only the HSQ led to an enhancement of SJ and TCMJS. Significant enhancement of leg stiffness was observed only in U19 and U17 groups after training. The present study showed that the programs based on the hang-clean and half squat allowed to improve explosive strength in basketball training. However, only HSQ was effective for the U17 group. Thus, the present findings demonstrate that specific training programs should be designed according to the age of the players.

  10. Immediate Effects of Different Trunk Exercise Programs on Jump Performance.

    Science.gov (United States)

    Imai, A; Kaneoka, K; Okubo, Y; Shiraki, H

    2016-03-01

    The aim of this study was to investigate the immediate effects of trunk stabilization exercise (SE) and conventional trunk exercise (CE) programs on jump performance. 13 adolescent male soccer players performed 2 kinds of jump testing before and immediate after 3 experimental conditions: SE, CE, and non-exercise (NE). The SE program consisted of the elbow-toe, hand-knee, and back bridge, and the CE program consisted of the sit-up, sit-up with trunk rotation and back extension. Testing of a countermovement jump (CMJ) and rebound jump (RJ) were performed to assess jump performance. Jump height of the CMJ and RJ-index, contact time, and jump height of the RJ were analyzed. The RJ index was improved significantly only after SE (p=0.017). However, contact time and jump height did not improve significantly in the SE condition. Moreover, no significant interaction or main effects of time or group were observed in the CMJ. Consequently, this study showed the different immediate effect on the RJ between the SE and CE, and suggested the possibility that the SE used in this study is useful as a warm-up program to improve the explosive movements. © Georg Thieme Verlag KG Stuttgart · New York.

  11. RunJumpCode: An Educational Game for Educating Programming

    Science.gov (United States)

    Hinds, Matthew; Baghaei, Nilufar; Ragon, Pedrito; Lambert, Jonathon; Rajakaruna, Tharindu; Houghton, Travers; Dacey, Simon

    2017-01-01

    Programming promotes critical thinking, problem solving and analytic skills through creating solutions that can solve everyday problems. However, learning programming can be a daunting experience for a lot of students. "RunJumpCode" is an educational 2D platformer video game, designed and developed in Unity, to teach players the…

  12. The Jump Training Program. In Season Conditioning for Women's Basketball.

    Science.gov (United States)

    Hannam, Sue; And Others

    1988-01-01

    Women athletes have been successful in maintaining and/or increasing their conditioning and vertical jump levels when they participate in the in-season circuit training program described in this article. An exercise guide, sample individual score card, and photos of women practicing the exercises are included. (IAH)

  13. Effect of a neuromuscular training program on the kinetics and kinematics of jumping tasks.

    Science.gov (United States)

    Chappell, Jonathan D; Limpisvasti, Orr

    2008-06-01

    Altered motor control strategies are a proposed cause of the female athlete's increased risk for noncontact anterior cruciate ligament injury. Injury prevention programs have shown promising results in decreasing the incidence of anterior cruciate ligament injury. To evaluate the effect of the Kerlan-Jobe Orthopaedic Clinic Modified Neuromuscular Training Program on the biomechanics of select jumping tasks in the female collegiate athlete. Controlled laboratory study. Thirty female National Collegiate Athletic Association Division I soccer and basketball players performed vertical jump, hopping tests, and 2 jumping tasks (drop jump and stop jump). All subjects completed a 6-week neuromuscular training program with core strengthening and plyometric training. Three-dimensional motion analysis and force plate data were used to compare the kinetics and kinematics of jumping tasks before and after training. Dynamic knee valgus moment during the stance phase of stop jump tasks decreased after completion of the neuromuscular training program (P = .04), but differences were not observed for the drop jump. Initial knee flexion (P = .003) and maximum knee flexion (P = .006) angles increased during the stance phase of drop jumps after training, but differences were not observed for the stop jump. The athletes showed improved performance in vertical jump (P training program improved select athletic performance measures and changed movement patterns during jumping tasks in the subject population. The use of this neuromuscular training program could potentially modify the collegiate athlete's motion strategies, improve performance, and lower the athlete's risk for injury.

  14. Kinematic characteristics of motor patterns in rope skipping

    Directory of Open Access Journals (Sweden)

    Luiz Henrique da Silva

    2009-09-01

    Full Text Available Rope skipping seems to be an easy task to be performed. However, careful analysis of this motor skill shows how complex the execution of this task is. The objective of this study was to examine kinematic variables of jump patterns as a function of skipping frequency. Eight male university students performed a sequence of 30 rope jumps using two jump patterns (alternating support of the feet and simultaneous support of the feet at three skipping frequencies (1.5, 1.7,1.9 Hz. Frequencies were determined with a digital metronome and the rope was turned by the student himself. Rope jumping performance was recorded with two digital cameras for 3Danalysis. Passive markers were attached to the rope and to the ankle, knee and hip joints forcollection of the following dependent variables: continuous relative phase, time interval betweenthe loss of contact of the feet with the ground and cross of the rope under the feet of the volunteer,jump height, and rope height. ANOVA showed that for the pattern with alternating support ofthe feet the jump is executed at a lower height. In addition, analysis of the time interval revealeda delay in the withdrawal of the feet for crossing the rope in the case of the jump pattern with simultaneous support of the feet.

  15. EFFECTS OF ELECTROSTIMULATION AND PLYOMETRIC TRAINING PROGRAM COMBINATION ON JUMP HEIGHT IN TEENAGE ATHLETES

    Directory of Open Access Journals (Sweden)

    Emilio J. Martínez-López

    2012-12-01

    Full Text Available The purpose of this study was to examine the effects of eight- week (2 days/week training periods of plyometric exercises (PT and neuromuscular electrostimulation (EMS on jump height in young athletes. Squat jump (SJ, counter movement jump (CMJ and drop jump (DJ were performed to assess the effects of the training protocols 98 athletes (100 & 200m and 100m & 110m hurdles voluntarily took part in this study, 51 males (52% and 47 females (48%, 17.91 ± 1.42 years old, and 5.16 ± 2.56 years of training experience. The participants were randomly assigned to four different groups according to the frequency and the timing of the stimulation. Analysis of covariance was used to analyze the effects of every training program on jump height. Our findings suggest that compared to control (Plyometrics (PT only, the combination of 150Hz EMS + PT simultaneously combined in an 8 week (2days/week training program, we could observe significant jump height improvements in the different types of strength: explosive, explosive-elastic, and explosive-elastic-reactive. The combination of PT after < 85 Hz EMS did not show any jump height significant increase in sprinters. In conclusion, an eight week training program (with just two days per week of EMS combined with plyometric exercises has proven useful for the improvement of every kind of vertical jump ability required for sprint and hurdles disciplines in teenage athletes

  16. Rope coiling

    Indian Academy of Sciences (India)

    Sitichoke Amnuanpol

    2017-10-19

    Oct 19, 2017 ... The catenary is associated with the purely imaginary wave number and the helix is associated with the real wave number. ... Rope; bending; twisting; buckling instability; Froude number. PACS Nos 46.32.+x; 46.70.Hg; 61.43 .... a laser photoelectric sensor. and moment of inertia of the cross-section I = A2/2π.

  17. Making ropes work

    Energy Technology Data Exchange (ETDEWEB)

    Gower, E. [WRCA (United States)

    2006-11-15

    The article looks at types of rope for different applications of surface mining ropes. The Wire Rope Corp. of America (WRCA), a leading producer, has over the last three years introduced shovel hoist rope, a new line of dragline ropes and a new drag rope designed for reverse bend fairlead systems. Each of these is discussed in the short article, with results from actual field use.

  18. Effect of a submaximal half-squats warm-up program on vertical jumping ability.

    Science.gov (United States)

    Gourgoulis, Vassilios; Aggeloussis, Nickos; Kasimatis, Panagiotis; Mavromatis, Giorgos; Garas, Athanasios

    2003-05-01

    The purpose of the current research was to study the effect of a warm-up program including submaximal half-squats on vertical jumping ability. Twenty physically active men participated in the study. Each subject performed 5 sets of half-squats with 2 repetitions at each of the following intensities: 20, 40, 60, 80, and 90% of the 1 repetition maximum (1RM) load. Prior to the first set and immediately after the end of the last set, the subjects performed 2 countermovement jumps on a Kistler force platform; the primary goal was to jump as high as possible. The results showed that mean vertical jumping ability improved by 2.39% after the warm-up period. Subjects were then divided into 2 groups according to their 1RM values for the half-squat. Subjects with greater maximal strength ability improved their vertical jumping ability (4.01%) more than did subjects with lower maximal strength (0.42%). A warm-up protocol including half-squats with submaximal loads and explosive execution can be used for short-term improvements of vertical jumping performance, and this effect is greater in athletes with a relatively high strength ability.

  19. THE EFFECTS OF SIXWEEKS PROGRAM OF PLYOMETRIC TRENING ON VOLLEYBALL JUMPING

    Directory of Open Access Journals (Sweden)

    Vladan Milić

    2008-08-01

    Full Text Available With goal to examine effects of plyometric training program on development of jumping strength for volleyball players, it was organized an experimental research on pattern of 23 volleyball players from cadet team and 23 students from high-school. Guided by general principles for plyometric training, individual plans for training were made. For estimating the effects of sports training on development of jumping, eight variables were used. For needs of this research four tests are valid for estimation, jump in block with left and right leg and jump in spike with left and right leg. Experiment has been realized in the second part on conditional preparations, and lasted for six weeks with two or three trainings per week. Control group had physical education lessons at their schools twice a week. Data were processed by in variant, multivariate analysis and analysis of covariance. On the results of research and discussion we can say that the model of training we used for development of jumping as a basic factor in experimental group brought statistically bigger difference in improving jumping that it brought in control group.

  20. Effects of a plyometric training program with and without added load on jumping ability in basketball players.

    Science.gov (United States)

    Khlifa, Riadh; Aouadi, Ridha; Hermassi, Souhail; Chelly, Mohamed Souhaiel; Jlid, Mohamed Chedly; Hbacha, Hamdi; Castagna, Carlo

    2010-11-01

    The purpose of this investigation was to examine the effect of a standard plyometric training protocol with or without added load in improving vertical jumping ability in male basketball players. Twenty-seven players were randomly assigned to 3 groups: a control group (no plyometric training), plyometric training group (PG), and loaded plyometric group (LPG, weighted vests 10-11% body mass). Before and after the 10-week training program, all the players were tested for the 5-jump test (5JT), the squat jump (SJ), and the countermovement jump (CMJ). The PG and LPG groups performed 2 and 3 training sessions per week, during the first 3 and the last 7 weeks, respectively. The results showed that SJ, CMJ, and 5JT were significantly improved only in the PG and LPG groups. The best effects for jumps were observed in LPG (p training program may result in greater vertical and horizontal-jump performances in basketball players.

  1. Jump start: a targeted substance abuse prevention program.

    Science.gov (United States)

    Harrington, N G; Donohew, L

    1997-10-01

    A substance abuse prevention and life skills program for economically disadvantaged, high sensation seeking African American teens was developed and tested in Cincinnati, Ohio. Formative research was conducted to determine program content and format. Over two implementations, 289 individuals in the target population were recruited as participants for the field test of the program. For the first implementation, participants were randomly selected from the city's summer youth employment program. For the second, a media campaign was designed to recruit participants. Process evaluation indicated that participants evaluated the program extremely positively. Outcome evaluation indicated that significant pretest differences between high and low sensation seekers were neutralized for liquor and marijuana in both years of the program and for attitude toward drugs in the first year of the program. These results suggest that sensation seeking is a useful message design and audience-targeting variable for substance abuse prevention program design. Implications and recommendations for future research are discussed.

  2. Reading Roundup: Rope a Good Book. Louisiana Summer Reading Program, 1995 Manual.

    Science.gov (United States)

    White, Dorothy, J., Ed.

    A manual for the Louisiana Summer Reading Program is presented in 14 sections with a western theme and illustrations. An evaluation form, a 1995 calendar, and a list of audiovisual materials with addresses and prices are also provided. Section 1 discusses promotion, publicity, and programs; and includes sample news releases; program ideas, and…

  3. Thermal properties of Fiber ropes

    DEFF Research Database (Denmark)

    Bossolini, Elena; Nielsen, Ole Wennerberg; Oland, Espen

    There is a trend within the oil and gas market to shift from steel wire ropes to fiber ropes for lifting, hoisting and mooring applications. The cost of fiber ropes is about 2-3 times that of steel wire ropes, but the natural buoyancy of fiber ropes reduces the overall weight resulting in smaller...

  4. Mechanical Rope and Cable

    Science.gov (United States)

    1975-04-01

    well known and preventable. 2. Present testing and inspection procedures are inadequate as monitors of the production and acceptance of rope. 3...attracted serious scientific and engineering attention to the product , the system involved, or their misuse--a lack often manifested by in-service rope...state regulations. In critical app] frations involving hoisting people, such as ropes for hoisting shaft cars and aerial t’• amways , federal and state

  5. The effect of a 3-month prevention program on the jump-landing technique in basketball: a randomized controlled trial.

    Science.gov (United States)

    Aerts, Inne; Cumps, Elke; Verhagen, Evert; Wuyts, Bram; Van De Gucht, Sam; Meeusen, Romain

    2015-02-01

    In jump-landing sports, the injury mechanism that most frequently results in an injury is the jump-landing movement. Influencing the movement patterns and biomechanical predisposing factors are supposed to decrease injury occurrence. To evaluate the influence of a 3-mo coach-supervised jump-landing prevention program on jump-landing technique using the jump-landing scoring (JLS) system. Randomized controlled trial. On-field. 116 athletes age 15-41 y, with 63 athletes in the control group and 53 athletes in the intervention group. The intervention program in this randomized control trial was administered at the start of the basketball season 2010-11. The jump-landing training program, supervised by the athletic trainers, was performed for a period of 3 mo. The jump-landing technique was determined by registering the jump-landing technique of all athletes with the JLS system, pre- and postintervention. After the prevention program, the athletes of the male and female intervention groups landed with a significantly less erect position than those in the control groups (P < .05). This was presented by a significant improvement in maximal hip flexion, maximal knee flexion, hip active range of motion, and knee active range of motion. Another important finding was that postintervention, knee valgus during landing diminished significantly (P < .05) in the female intervention group compared with their control group. Furthermore, the male intervention group significantly improved (P < .05) the scores of the JLS system from pre- to postintervention. Malalignments such as valgus position and insufficient knee flexion and hip flexion, previously identified as possible risk factors for lower-extremity injuries, improved significantly after the completion of the prevention program. The JLS system can help in identifying these malalignments. Therapy, prevention, level 1b.

  6. Neuromuscular Changes in Female Collegiate Athletes Resulting From a Plyometric Jump-Training Program.

    Science.gov (United States)

    Wilkerson, Gary B.; Colston, Marisa A.; Short, Nancy I.; Neal, Kristina L.; Hoewischer, Paul E.; Pixley, Jennifer J.

    2004-03-01

    OBJECTIVE: To assess performance changes induced by a 6- week plyometric jump-training program. DESIGN AND SETTING: We used a quasiexperimental design to compare groups formed on the basis of team membership. Testing was conducted in an athletic training research laboratory, both before and after a 6-week period of preseason basketball conditioning. SUBJECTS: Nineteen female collegiate basketball players from a National Collegiate Athletic Association Division I program (8 subjects) and a National Association of Intercollegiate Athletics Division II program (11 subjects) who had no history of anterior cruciate ligament injury and who had no history of any lower extremity injury during the preceding 6 months. MEASUREMENTS: The variables of primary interest were hamstrings and quadriceps isokinetic peak torque. Of secondary interest were 5 variables derived from step-down and lunging maneuvers performed on a computerized forceplate system and 4 variables derived from tracking the position of the body core during performance of a T-pattern agility drill with a computerized infrared tracking system. RESULTS: A significant group x trial interaction was found for hamstrings peak torque at 60 degrees.s(-1) (F(1,17) = 9.16, P =.008.), and the proportion of total variance attributable to the treatment effect produced by the jump-training program was relatively large (eta(2) =.35, omega(2) =.30). None of the other variables demonstrated statistically significant changes. CONCLUSIONS: Our primary results support plyometric jump training as a strategy for improving neuromuscular attributes that are believed to reduce the risk of anterior cruciate ligament injury in female college basketball players. They also provide the basis for reasonable isokinetic strength goals.

  7. Liquid rope coiling

    NARCIS (Netherlands)

    Ribe, N.M.; Habibi, M.; Bonn, D.

    2012-01-01

    A thin stream or rope of viscous fluid falling from a sufficient height onto a surface forms a steadily rotating helical coil. Tabletop laboratory experiments in combination with a numerical model for slender liquid ropes reveal that finite-amplitude coiling can occur in four distinct regimes

  8. The Effect of an Eight-Week Rope Skipping Exercise Program on Interleukin-10 and C-Reactive Protein in Overweight and Obese Adolescents

    Directory of Open Access Journals (Sweden)

    Zakavi

    2015-08-01

    Full Text Available Background The different effects of exercise on obesity in obese adolescents have not sufficiently been studied. Objectives This study aimed to investigate the effect of an eight-week rope skipping exercise on interleukin-10 (IL-10 and C-reactive protein (CRP in obese and overweight adolescents. Patients and Methods In this semi-experimental study, using purposive convenience sampling 30 overweight and obese teens were randomly divided into two groups: the experimental (height 165.28 cm; weight 85.53 kg and age 13.73 years old and control (height 164.54 cm; weight 83.02 kg and age 13.93 years old groups. Then the experimental group performed the eight-week rope skipping exercise program while the control group did not receive any intervention and was only following up. Before and after the exercise, the variables including weight, fat percentage, body mass index (BMI and the maximum oxygen consumption (Vo2max in both groups were measured. To assess the amount of serum IL-10, CRP, 48 hours before and after the exercise, fasting blood samples were taken during the two-stage mode. The correlated t-test and the independent t-test were used to compare the intragroup and intergroup relationships, respectively. Results There was no significant change in the serum levels of IL-10 (P > 0.05; however, the intragroup comparison in the experimental group showed a significant increase in serum levels of IL.10 (P < 0.05. Moreover, the variables of the weight, BMI, fat percentage, V02max and CRP were significantly changed (P < 0.05. Conclusions A rope skipping protocol increases the anti-inflammatory index, reduces the risk of cardiovascular disease, and improves the body compounds and immune system of the obese and overweight teens.

  9. Deterioration mechanisms of drum winder ropes

    CSIR Research Space (South Africa)

    Van Zyl, M

    2000-12-01

    Full Text Available the mentioned uncertainties. The investigations of this report generally only considered triangular strand ropes. Rope fatigue studies and tests were carried out, bending stresses in wire ropes were analysed and measured, contact stresses on ropes were... of the ropes. Under such circumstances broken wires will be generated by the tension-tension fatigue loading of the ropes. However, rope service lives of 100 000 winding cycles will be achievable for triangular strand ropes if the lubrication of a rope...

  10. The effect of a combined high-intensity plyometric and speed training program on the running and jumping ability of male handball players.

    Science.gov (United States)

    Cherif, Monsef; Said, Mohamed; Chaatani, Sana; Nejlaoui, Olfa; Gomri, Daghbaji; Abdallah, Aouidet

    2012-03-01

    The aim of this study was to investigate the effect of a combined program including sprint repetitions and drop jump training in the same session on male handball players. Twenty-two male handball players aged more than 20 years were assigned into 2 groups: experimental group (n=11) and control group (n=11). Selection was based on variables "axis" and "lines", goalkeepers were not included. The experimental group was subjected to 2 testing periods (test and retest) separated by 12 weeks of an additional combined plyometric and running speed training program. The control group performed the usual handball training. The testing period comprised, at the first day, a medical checking, anthropometric measurements and an incremental exercise test called yo-yo intermittent recovery test. 2 days later, participants performed the Repeated Sprint Ability test (RSA), and performed the Jumping Performance using 3 different events: Squat jump (SJ), Countermovement jump without (CMJ) and with arms (CMJA), and Drop jump (DJ). At the end of the training period, participants performed again the repeated sprint ability test, and the jumping performance. The conventional combined program improved the explosive force ability of handball players in CMJ (P=0.01), CMJA (P=0.01) and DJR (P=0.03). The change was 2.78, 2.42 and 2.62% respectively. No significant changes were noted in performances of the experimental group at the squat jump test and the drop jump with the left leg test. The training intervention also improved the running speed ability of the experimental group (P=0.003). No statistical differences were observed between lines or axes. Additional combined training program between sprint repetition and vertical jump in the same training session positively influence the jumping ability and the sprint ability of handball players.

  11. Comparing the Effectiveness of a Short-Term Vertical Jump vs. Weightlifting Program on Athletic Power Development.

    Science.gov (United States)

    Teo, Shaun Y M; Newton, Michael J; Newton, Robert U; Dempsey, Alasdair R; Fairchild, Timothy J

    2016-10-01

    Teo, SYM, Newton, MJ, Newton, RU, Dempsey, AR, and Fairchild, TJ. Comparing the effectiveness of a short-term vertical jump vs. weightlifting program on athletic power development. J Strength Cond Res 30(10): 2741-2748, 2016-Efficient training of neuromuscular power and the translation of this power to sport-specific tasks is a key objective in the preparation of athletes involved in team-based sports. The purpose of this study was to compare changes in center of mass (COM) neuromuscular power and performance of sport-specific tasks after short-term (6-week) training adopting either Olympic-style weightlifting (WL) exercises or vertical jump (VJ) exercises. Twenty-six recreationally active men (18-30 years; height: 178.7 ± 8.3 cm; mass: 78.6 ± 12.2 kg) were randomly allocated to either a WL or VJ training group and performance during the countermovement jump (CMJ), squat jump (SJ), depth jump (DJ), 20-m sprint, and the 5-0-5 agility test-assessed pre and posttraining. Despite the WL group demonstrating larger increases in peak power output during the CMJ (WL group: 10% increase, d = 0.701; VJ group: 5.78% increase, d = 0.328) and SJ (WL group: 12.73% increase, d = 0.854; VJ group: 7.27% increase, d = 0.382), no significant between-group differences were observed in any outcome measure studied. There was a significant main effect of time observed for the 3 VJs (CMJ, SJ, and DJ), 0- to 5-m and 0- to 20-m sprint times, and the 5-0-5 agility test time, which were all shown to improve after the training (all main effects of time p sports, even in athletes with limited preseason training periods.

  12. A 3-month jump-landing training program: a feasibility study using the RE-AIM framework.

    Science.gov (United States)

    Aerts, Inne; Cumps, Elke; Verhagen, Evert; Mathieu, Niels; Van Schuerbeeck, Sander; Meeusen, Romain

    2013-01-01

    Evaluating the translatability and feasibility of an intervention program has become as important as determining the effectiveness of the intervention. To evaluate the applicability of a 3-month jump-landing training program in basketball players, using the RE-AIM (reach, effectiveness, adoption, implementation, and maintenance) framework. Randomized controlled trial. National and regional basketball teams. Twenty-four teams of the second highest national division and regional basketball divisions in Flanders, Belgium, were randomly assigned (1:1) to a control group and intervention group. A total of 243 athletes (control group = 129, intervention group = 114), ages 15 to 41 years, volunteered. All exercises in the intervention program followed a progressive development, emphasizing lower extremity alignment during jump-landing activities. The results of the process evaluation of the intervention program were based on the 5 dimensions of the RE-AIM framework. The injury incidence density, hazard ratios, and 95% confidence intervals were determined. The participation rate of the total sample was 100% (reach). The hazard ratio was different between the intervention group and the control group (0.40 [95% confidence interval = 0.16, 0.99]; effectiveness). Of the 12 teams in the intervention group, 8 teams (66.7%) agreed to participate in the study (adoption). Eight of the participating coaches (66.7%) felt positively about the intervention program and stated that they had implemented the training sessions of the program as intended (implementation). All coaches except 1 (87.5%) intended to continue the intervention program the next season (maintenance). Compliance of the coaches in this coach-supervised jump-landing training program was high. In addition, the program was effective in preventing lower extremity injuries.

  13. DOWNWARD CATASTROPHE OF SOLAR MAGNETIC FLUX ROPES

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Quanhao; Wang, Yuming; Hu, Youqiu; Liu, Rui, E-mail: zhangqh@mail.ustc.edu.cn [CAS Key Laboratory of Geospace Environment, Department of Geophysics and Planetary Sciences, University of Science and Technology of China, Hefei 230026 (China)

    2016-07-10

    2.5-dimensional time-dependent ideal magnetohydrodynamic (MHD) models in Cartesian coordinates were used in previous studies to seek MHD equilibria involving a magnetic flux rope embedded in a bipolar, partially open background field. As demonstrated by these studies, the equilibrium solutions of the system are separated into two branches: the flux rope sticks to the photosphere for solutions at the lower branch but is suspended in the corona for those at the upper branch. Moreover, a solution originally at the lower branch jumps to the upper, as the related control parameter increases and reaches a critical value, and the associated jump is here referred to as an upward catastrophe. The present paper advances these studies in three aspects. First, the magnetic field is changed to be force-free; the system still experiences an upward catastrophe with an increase in each control parameter. Second, under the force-free approximation, there also exists a downward catastrophe, characterized by the jump of a solution from the upper branch to the lower. Both catastrophes are irreversible processes connecting the two branches of equilibrium solutions so as to form a cycle. Finally, the magnetic energy in the numerical domain is calculated. It is found that there exists a magnetic energy release for both catastrophes. The Ampère's force, which vanishes everywhere for force-free fields, appears only during the catastrophes and does positive work, which serves as a major mechanism for the energy release. The implications of the downward catastrophe and its relevance to solar activities are briefly discussed.

  14. DOWNWARD CATASTROPHE OF SOLAR MAGNETIC FLUX ROPES

    International Nuclear Information System (INIS)

    Zhang, Quanhao; Wang, Yuming; Hu, Youqiu; Liu, Rui

    2016-01-01

    2.5-dimensional time-dependent ideal magnetohydrodynamic (MHD) models in Cartesian coordinates were used in previous studies to seek MHD equilibria involving a magnetic flux rope embedded in a bipolar, partially open background field. As demonstrated by these studies, the equilibrium solutions of the system are separated into two branches: the flux rope sticks to the photosphere for solutions at the lower branch but is suspended in the corona for those at the upper branch. Moreover, a solution originally at the lower branch jumps to the upper, as the related control parameter increases and reaches a critical value, and the associated jump is here referred to as an upward catastrophe. The present paper advances these studies in three aspects. First, the magnetic field is changed to be force-free; the system still experiences an upward catastrophe with an increase in each control parameter. Second, under the force-free approximation, there also exists a downward catastrophe, characterized by the jump of a solution from the upper branch to the lower. Both catastrophes are irreversible processes connecting the two branches of equilibrium solutions so as to form a cycle. Finally, the magnetic energy in the numerical domain is calculated. It is found that there exists a magnetic energy release for both catastrophes. The Ampère's force, which vanishes everywhere for force-free fields, appears only during the catastrophes and does positive work, which serves as a major mechanism for the energy release. The implications of the downward catastrophe and its relevance to solar activities are briefly discussed.

  15. Technology transfer of winder ropes research

    CSIR Research Space (South Africa)

    Van Zyl, M

    2002-07-01

    Full Text Available fault torque and slack rope have been investigated. ? A large information base has been established. Conclusions and recommendations A large part of the SIMRAC investigations were concerned with rope discard and rope deterioration in order...

  16. Jumping Dynamics

    DEFF Research Database (Denmark)

    Sannino, Francesco

    2013-01-01

    paradigm the physical scale and henceforth also the massive spectrum of the theory jump at the lower boundary of the conformal window. In particular we propose that a theory can suddenly jump from a Quantum Chromodynamics type spectrum, at the lower boundary of the conformal window, to a conformal one...... without particle interpretation. The jumping scenario, therefore, does not support a near-conformal dynamics of walking type. We will also discuss the impact of jumping dynamics on the construction of models of dynamical electroweak symmetry breaking....

  17. Physics of magnetic flux ropes

    Science.gov (United States)

    Russell, C. T.; Priest, E. R.; Lee, L. C.

    The present work encompasses papers on the structure, waves, and instabilities of magnetic flux ropes (MFRs), photospheric flux tubes (PFTs), the structure and heating of coronal loops, solar prominences, coronal mass ejections and magnetic clouds, flux ropes in planetary ionospheres, the magnetopause, magnetospheric field-aligned currents and flux tubes, and the magnetotail. Attention is given to the equilibrium of MFRs, resistive instability, magnetic reconnection and turbulence in current sheets, dynamical effects and energy transport in intense flux tubes, waves in solar PFTs, twisted flux ropes in the solar corona, an electrodynamical model of solar flares, filament cooling and condensation in a sheared magnetic field, the magnetopause, the generation of twisted MFRs during magnetic reconnection, ionospheric flux ropes above the South Pole, substorms and MFR structures, evidence for flux ropes in the earth magnetotail, and MFRs in 3D MHD simulations.

  18. Regularized Biot-Savart Laws for Modeling Magnetic Flux Ropes

    Science.gov (United States)

    Titov, Viacheslav; Downs, Cooper; Mikic, Zoran; Torok, Tibor; Linker, Jon A.

    2017-08-01

    Many existing models assume that magnetic flux ropes play a key role in solar flares and coronal mass ejections (CMEs). It is therefore important to develop efficient methods for constructing flux-rope configurations constrained by observed magnetic data and the initial morphology of CMEs. As our new step in this direction, we have derived and implemented a compact analytical form that represents the magnetic field of a thin flux rope with an axis of arbitrary shape and a circular cross-section. This form implies that the flux rope carries axial current I and axial flux F, so that the respective magnetic field is a curl of the sum of toroidal and poloidal vector potentials proportional to I and F, respectively. The vector potentials are expressed in terms of Biot-Savart laws whose kernels are regularized at the rope axis. We regularized them in such a way that for a straight-line axis the form provides a cylindrical force-free flux rope with a parabolic profile of the axial current density. So far, we set the shape of the rope axis by tracking the polarity inversion lines of observed magnetograms and estimating its height and other parameters of the rope from a calculated potential field above these lines. In spite of this heuristic approach, we were able to successfully construct pre-eruption configurations for the 2009 February13 and 2011 October 1 CME events. These applications demonstrate that our regularized Biot-Savart laws are indeed a very flexible and efficient method for energizing initial configurations in MHD simulations of CMEs. We discuss possible ways of optimizing the axis paths and other extensions of the method in order to make it more useful and robust.Research supported by NSF, NASA's HSR and LWS Programs, and AFOSR.

  19. Evaluation of Jump into Action: A Program to Reduce the Risk of Non-Insulin Dependent Diabetes Mellitus in School Children on the Texas-Mexico Border.

    Science.gov (United States)

    Holcomb, J. David; Lira, Juanita; Kingery, Paul M.; Smith, D. W.; Lane, Dorothy; Goodway, Jackie

    1998-01-01

    Evaluated Jump into Action, a non-insulin dependent diabetes mellitus (NIDDM)-prevention program that encouraged students to eat well and exercise regularly to reduce NIDDM risks. Surveys of predominantly Hispanic fifth graders and their teachers at Texas-Mexico border schools indicated that the program increased NIDDM-prevention knowledge and…

  20. Jump into Action

    Science.gov (United States)

    Ball, Stephen; Cohen, Ann; Meyer, Margaret

    2012-01-01

    Jump Into Action (JIA) is a school-based team-taught program to help fifth-grade students make healthy food choices and be more active. The JIA team (physical education teacher, classroom teacher, school nurse, and parent) work together to provide a supportive environment as students set goals to improve food choices and increase activity.…

  1. Effects of In-Season Short-term Plyometric Training Program on Sprint and Jump Performance of Young Male Track Athletes.

    Science.gov (United States)

    Chelly, Mohamed Souhaiel; Hermassi, Souhail; Shephard, Roy J

    2015-08-01

    We studied the effect of supplementing normal in-season training by a 10-week lower limb plyometric training program (hurdle and depth jumping), examining measures of competitive potential (peak power output [PP], sprint running velocity, squat jump [SJ], countermovement jump [CMJ], drop jump [DJ], and lower limb muscle volume). The subjects (27 male track athletes, aged 11.9 ± 1.0 years; body mass: 39.1 ± 6.1 kg; height: 1.56 ± 0.02 m; body fat: 12.8 ± 4.4%) were randomly assigned between a control (normal training) group (C; n = 13) and an experimental group (E; n = 14) who also performed plyometric training 3 times per week. A force-velocity ergometer test determined PP and SJ, and an Optojump apparatus evaluated CMJ height and DJ (height and power). A multiple-5-bound test assessed horizontal jumping, and video-camera analyses over a 40-m sprint yielded velocities for the first step (VS), the first 5 m (V5m), and between 35 and 40 m (Vmax). Leg muscle volume was estimated anthropometrically. Experimental group showed gains relative to C in SJ height (p plyometric training improved important components of athletic performance relative to standard in-season training in young runners.

  2. Jumping together

    DEFF Research Database (Denmark)

    Lund, Ole; Ravn, Susanne; Christensen, Mette Krogh

    2014-01-01

    , in order to reach a deeper understanding of how practice facilitates learning. Results: We encircle the athletes’ interrelated learning processes by introducing the training environment of the national team and situations in which the athletes guide each other verbally or by jumping together. Discussion...

  3. Experimental Snap Loading of Synthetic Ropes

    Directory of Open Access Journals (Sweden)

    C.M. Hennessey

    2005-01-01

    Full Text Available Large tensile forces, known as snap loads, can occur when a slack rope becomes taut. Such forces may damage the rope or masses connected to it. Experiments are described in which one end of a rope is attached to the top of a drop tower and the bottom end is attached to a weight. The weight is raised to a certain height and then released. The force at the top of the rope and the acceleration of the weight are recorded during the first snap load that occurs. Repeated drop tests are performed on each rope. The effects of the type of rope, drop height, drop weight, whether the rope has been subjected to static precycling, and the number of previous dynamic tests are examined. A mathematical model is proposed for the rope force as a function of the displacement and velocity of the weight.

  4. Physics of Magnetic Flux Ropes

    CERN Document Server

    Priest, E R; Lee, L C

    1990-01-01

    The American Geophysical Union Chapman Conference on the Physics of Magnetic Flux Ropes was held at the Hamilton Princess Hotel, Hamilton, Bermuda on March 27–31, 1989. Topics discussed ranged from solar flux ropes, such as photospheric flux tubes, coronal loops and prominences, to flux ropes in the solar wind, in planetary ionospheres, at the Earth's magnetopause, in the geomagnetic tail and deep in the Earth's magnetosphere. Papers presented at that conference form the nucleus of this book, but the book is more than just a proceedings of the conference. We have solicited articles from all interested in this topic. Thus, there is some material in the book not discussed at the conference. Even in the case of papers presented at the conference, there is generally a much more detailed and rigorous presentation than was possible in the time allowed by the oral and poster presentations.

  5. Measurements of the Canonical Helicity Evolution of a Gyrating Kinked Flux Rope

    Science.gov (United States)

    von der Linden, J.; Sears, J.; Intrator, T.; You, S.

    2017-12-01

    Magnetic structures in the solar corona and planetary magnetospheres are often modelled as magnetic flux ropes governed by magnetohydrodynamics (MHD); however, inside these structures, as exhibited in reconnection, conversions between magnetic and kinetic energies occur over a wide range of scales. Flux ropes based on the flux of canonical momentum circulation extend the flux rope concept to include effects of finite particle momentum and present the distinct advantage of reconciling all plasma regimes - e.g. kinetic, two-fluid, and MHD - with the topological concept of helicity: twists, writhes, and linkages. This presentation shows the first visualization and analysis of the 3D dynamics of canonical flux ropes and their relative helicity evolution from laboratory measurements. Ion and electron canonical flux ropes are visualized from a dataset of Mach, triple, and Ḃ probe measurements at over 10,000 spatial locations of a gyrating kinked flux rope. The flux ropes co-gyrate with the peak density and electron temperature in and out of a measurement volume. The electron and ion canonical flux ropes twist with opposite handedness and the ion flux ropes writhe around the electron flux ropes. The relative cross helicity between the magnetic and ion flow vorticity flux ropes dominates the relative ion canonical helicity and is anti-correlated with the relative magnetic helicity. The 3D nature of the kink and a reverse eddy current affect the helicity evolution. This work is supported by DOE Grant DE-SC0010340 and the DOE Office of Science Graduate Student Research Program and prepared in part by LLNL under Contract DE-AC52-07NA27344. LLNL-ABS-735426

  6. 30 CFR 75.1429 - Guide ropes.

    Science.gov (United States)

    2010-07-01

    ... Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Hoisting and Mantrips Wire Ropes § 75.1429 Guide ropes. If guide... strength (manufacturer's published catalog strength) of the guide rope at installation shall meet the...

  7. Synthetic rope applications in Appalachian logging

    Science.gov (United States)

    Ben D. Spong; Jingxin Wang

    2008-01-01

    New ultra-high molecular weight polyethylene rope has shown good results as a replacement for wire rope in logging applications in the western United States. A single case study trial was performed in Appalachian forest conditions to assess the appropriateness of this technology for hardwood logging applications. The study focused on use of the rope in West Virginia...

  8. Supersonic Jump

    Science.gov (United States)

    Muller, Andreas

    2013-01-01

    On October 14,2012, Felix Baumgartner, an Austrian sky-diver, set some new world records for his discipline. Jumping from a height of about 39 km, he reached a top speed of 1342 km/h, becoming the first human being to break the sound barrier in free fall. In order to understand some essential physics aspects of this remarkable feat, we wonder why…

  9. Deterioration of mine winders ropes

    CSIR Research Space (South Africa)

    Hecker, GFK

    1998-07-01

    Full Text Available The objective of this research project was to determine how winder design parameters affect the safe working life of rope operating of drum winders with the view to refine requirements in the code of practice for the performance, operation...

  10. The Relationship between the Stochastic Maximum Principle and the Dynamic Programming in Singular Control of Jump Diffusions

    Directory of Open Access Journals (Sweden)

    Farid Chighoub

    2014-01-01

    the stochastic calculus of jump diffusions and some properties of singular controls. Then, we give, under smoothness conditions, a useful verification theorem and we show that the solution of the adjoint equation coincides with the spatial gradient of the value function, evaluated along the optimal trajectory of the state equation. Finally, using these theoretical results, we solve explicitly an example, on optimal harvesting strategy, for a geometric Brownian motion with jumps.

  11. High-risk adolescent girls, resiliency and a ropes course | Bloemhoff ...

    African Journals Online (AJOL)

    African Journal for Physical Activity and Health Sciences ... of an outdoor adventure-based recreation programme (ropes course) on the resiliency of ... potential benefits of adventure-based recreation programming in developing resiliency in ...

  12. Coordination in vertical jumping

    NARCIS (Netherlands)

    Bobbert, Maarten F.; van Ingen Schenau, Gerrit Jan

    1988-01-01

    The present study was designed to investigate for vertical jumping the relationships between muscle actions, movement pattern and jumping achievement. Ten skilled jumpers performed jumps with preparatory countermovement. Ground reaction forces and cinematographic data were recorded. In addition,

  13. Conditioning exercises in ski jumping: biomechanical relationship of squat jumps, imitation jumps, and hill jumps.

    Science.gov (United States)

    Lorenzetti, Silvio; Ammann, Fabian; Windmüller, Sabrina; Häberle, Ramona; Müller, Sören; Gross, Micah; Plüss, Michael; Plüss, Stefan; Schödler, Berni; Hübner, Klaus

    2017-11-22

    As hill jumps are very time-consuming, ski jumping athletes often perform various imitation jumps during training. The performed jumps should be similar to hill jumps, but a direct comparison of the kinetic and kinematic parameters has not been performed yet. Therefore, this study aimed to correlate 11 common parameters during hill jumps (Oberstdorf Germany), squat jumps (wearing indoor shoes), and various imitation jumps (rolling 4°, rolling flat, static; jumping equipment or indoor shoes) on a custom-built instrumented vehicle with a catch by the coach. During the performed jumps, force and video data of the take-off of 10 athletes were measured. The imitation and squat jumps were then ranked. The main difference between the hill jumps and the imitation and squat jumps is the higher maximal force loading rate during the hill jumps. Imitation jumps performed on a rolling platform, on flat ground were the most similar to hill jumps in terms of the force-time, and leg joint kinematic properties. Thus, non-hill jumps with a technical focus should be performed from a rolling platform with a flat inrun with normal indoor shoes or jumping equipment, and high normal force loading rates should be the main focus of imitation training.

  14. Safe use of mine winding ropes, volume 5: training manuals for incumbent rope inspectors.

    CSIR Research Space (South Africa)

    Wainwright, EJ

    1996-04-01

    Full Text Available An objective of this study guide for “wire rope inspectors” was to provide an overview of the training modules and to identify the most important features of winder operation and rope inspection....

  15. Jumping combined exercise programs reduce fall risk and improve balance and life quality of elderly people who live in a long-term care facility.

    Science.gov (United States)

    Cakar, E; Dincer, U; Kiralp, M Z; Cakar, D B; Durmus, O; Kilac, H; Soydan, F C; Sevinc, S; Alper, C

    2010-03-01

    The objective of this study was to determine whether regular combined exercise program, which consists strength, stretching and aerobic exercises and additional jumping training, improve balance, fall risk, quality of life and depression status of older people living in a residential care. A total of 168 residents who live in a long term care facility were screened. The trial began with 78 eligible participants and they were randomly grouped as combined exercises program (COM) group that includes stretching, strength and aerobic exercises, and COM plus jumping (COMpJ) group. 66 of the participants finished the trial. The groups were convened three times a week for six weeks. Each group had a warm-up, effective training and a cooling down periods. The total exercising time was no longer than 45 minutes in each group. Berg balance test and Biodex Balance System for the assessment of the dynamic balance and fall risk, short form 36 (SF 36) for the health related quality of life and Geriatric Depression Scale (GDS) for evaluation of the depression status were used. The balance improvement and fall risk reduction were observed in both of the groups at the end of the trial; however, the improvements were statistically better in jumping combined group. Also health related quality of life improved in both groups. Regular group exercise in a long term care facility have several beneficial effects on the elderly residents in regard to balance improvement, fall risk reduction and quality of life. The addition of jumping to strength, stretching and aerobic exercises provides important contributions to balance improvement and fall risk reduction.

  16. The ancient art of laying rope

    DEFF Research Database (Denmark)

    Bohr, Jakob; Olsen, Kasper

    2011-01-01

    We describe a geometrical property of helical structures and show how it accounts for the early art of rope-making. Helices have a maximum number of rotations that can be added to them — and it is shown that this is a geometrical feature, not a material property. This geometrical insight explains...... for the rope to be stretched while being laid, known from Egyptian tomb scenes, follows straightforwardly, as does the function of the top, an old tool for laying ropes....

  17. FILAMENT INTERACTION MODELED BY FLUX ROPE RECONNECTION

    International Nuclear Information System (INIS)

    Toeroek, T.; Chandra, R.; Pariat, E.; Demoulin, P.; Schmieder, B.; Aulanier, G.; Linton, M. G.; Mandrini, C. H.

    2011-01-01

    Hα observations of solar active region NOAA 10501 on 2003 November 20 revealed a very uncommon dynamic process: during the development of a nearby flare, two adjacent elongated filaments approached each other, merged at their middle sections, and separated again, thereby forming stable configurations with new footpoint connections. The observed dynamic pattern is indicative of 'slingshot' reconnection between two magnetic flux ropes. We test this scenario by means of a three-dimensional zero β magnetohydrodynamic simulation, using a modified version of the coronal flux rope model by Titov and Demoulin as the initial condition for the magnetic field. To this end, a configuration is constructed that contains two flux ropes which are oriented side-by-side and are embedded in an ambient potential field. The choice of the magnetic orientation of the flux ropes and of the topology of the potential field is guided by the observations. Quasi-static boundary flows are then imposed to bring the middle sections of the flux ropes into contact. After sufficient driving, the ropes reconnect and two new flux ropes are formed, which now connect the former adjacent flux rope footpoints of opposite polarity. The corresponding evolution of filament material is modeled by calculating the positions of field line dips at all times. The dips follow the morphological evolution of the flux ropes, in qualitative agreement with the observed filaments.

  18. Discard criteria for mine winder ropes.

    CSIR Research Space (South Africa)

    Van Zyl, M

    2000-09-01

    Full Text Available , the most important finding of this report ensued from a thorough analysis of "cut-wire" tests. Very few rope samples from discarded non-spin ropes were, or could be, obtained for the establishment and verification of the discard criteria for non...-spin ropes. The effects of broken wires in non-spin ropes were therefore simulated by testing laboratory prepared specimens with selected wires cut in the outer and inner strands. These tests were a continuation of work carried in two previous SIMRAC...

  19. Correlation between the sudden jump-like increases of the atrio-Hisian interval induced during burst atrial pacing and during programmed atrial stimulation in patients with atrioventricular nodal reentrant tachycardia.

    Science.gov (United States)

    Bayraktarova, Iskra H; Stoyanov, Milko K; Kunev, Boyan T; Shalganov, Tchavdar N

    To study the correlation between the sudden prolongations of the atrio-Hisian (AH) interval with ≥50 ms during burst and programmed atrial stimulation, and to define whether the AH jump during burst atrial pacing is a reliable diagnostic criterion for dual AV nodal physiology. Retrospective data on 304 patients with preliminary ECG diagnosis of AV nodal reentrant tachycardia (AVNRT), confirmed during electrophysiological study, was analyzed for the presence of AH jump during burst and programmed atrial stimulation, and for correlation between the pacing modes for inducing the jump. Wilcoxon signed-ranks test and Spearman's bivariate correlation coefficient were applied, significant was P-value jump occurred during burst atrial pacing in 81% of the patients, and during programmed stimulation - in 78%, P = 0.366. In 63.2% AH jump was induced by both pacing modes; in 17.8% - only by burst pacing; in 14.8% - only by programmed pacing; in 4.2% there was no inducible jump. There was negative correlation between both pacing modes, ρ = -0.204, Р<0.001. Burst and programmed atrial stimulation separately prove the presence of dual AV nodal physiology in 81 and 78% of the patients with AVNRT, respectively. There is negative correlation between the two pacing modes, allowing the combination of the two methods to prove diagnostic in 95.8% of the patients. Copyright © 2017 Indian Heart Rhythm Society. Production and hosting by Elsevier B.V. All rights reserved.

  20. The Effect of a 3-Month Prevention Program on the Jump-Landing Technique in Basketball: A Randomized Controlled Trial

    NARCIS (Netherlands)

    Aerts, I.; Cumps, E.; Verhagen, E.A.L.M.; Wuyts, B.; De Gucht, S.V.; Meeusen, R.

    2015-01-01

    Context: In jump-landing sports, the injury mechanism that most frequently results in an injury is the jumplanding movement. Influencing the movement patterns and biomechanical predisposing factors are supposed to decrease injury occurrence. Objectives: To evaluate the influence of a 3-mo

  1. Comparing preseason frontal and sagittal plane plyometric programs on vertical jump height in high-school basketball players.

    Science.gov (United States)

    King, Jeffrey A; Cipriani, Daniel J

    2010-08-01

    The primary purpose of this study was to evaluate whether frontal plane (FP) plyometrics, which are defined as plyometrics dominated with a lateral component, would produce similar increases in vertical jump height (VJH) compared to sagittal plane (SP) Plyometrics. Thirty-two junior varsity and varsity high-school basketball players participated in 6 weeks of plyometric training. Players participated in either FP or SP plyometrics for the entire study. Vertical jump height was measured on 3 occasions: preintervention (baseline), at week 3 of preparatory training, and at week 6 of training. Descriptive statistics were calculated for VJH. A 2-way analysis of variance (ANOVA) with repeated measures was used to test the difference in mean vertical jump scores using FP and SP training modalities. Results showed a significant effect over time for vertical jump (p training did not have a significant effect on VJH and significant improvement in VJH was seen in subjects participating in SP plyometrics thus reinforcing the specificity principle of training. However, coaches should implement both types of plyometrics because both training modalities can improve power and quickness among basketball players.

  2. Studying the Formation and Evolution of Eruptive Solar Magnetic Flux Ropes

    Science.gov (United States)

    Linton, M.

    2017-12-01

    Solar magnetic eruptions are dramatic sources of solar activity, and dangerous sources of space weather hazards. Many of these eruptions take the form of magnetic flux ropes, i.e., magnetic fieldlines wrapping around a core magnetic flux tube. Investigating the processes which form these flux ropes both prior to and during eruption, and investigating their evolution after eruption, can give us a critical window into understanding the sources of and processes involved in these eruptions. This presentation will discuss modeling and observational investigations into these various phases of flux rope formation, eruption, and evolution, and will discuss how these different explorations can be used to develop a more complete picture of erupting flux rope dynamics. This work is funded by the NASA Living with a Star program.

  3. The ancient art of laying rope

    Science.gov (United States)

    Bohr, J.; Olsen, K.

    2011-03-01

    We describe a geometrical property of helical structures and show how it accounts for the early art of rope-making. Helices have a maximum number of rotations that can be added to them — and it is shown that this is a geometrical feature, not a material property. This geometrical insight explains why nearly identically appearing ropes can be made from very different materials and it is also the reason behind the unyielding nature of ropes. Maximally rotated strands behave as zero-twist structures. Hence, under strain they neither rotate in one direction nor in the other. The necessity for the rope to be stretched while being laid, known from Egyptian tomb scenes, follows straightforwardly, as does the function of the top, an old tool for laying ropes.

  4. Risk, Jumps, and Diversification

    DEFF Research Database (Denmark)

    Bollerslev, Tim; Law, Tzuo Hann; Tauchen, George

    We test for price discontinuities, or jumps, in a panel of high-frequency intraday returns for forty large-cap stocks and an equiweighted index from these same stocks. Jumps are naturally classified into two types: common and idiosyncratic. Common jumps affect all stocks, albeit to varying degrees......, while idiosyncratic jumps are stock-specific. Despite the fact that each of the stocks has a of about unity with respect to the index, common jumps are virtually never detected in the individual stocks. This is truly puzzling, as an index can jump only if one or more of its components jump. To resolve...... this puzzle, we propose a new test for cojumps. Using this new test we find strong evidence for many modest-sized common jumps that simply pass through the standard jump detection statistic, while they appear highly significant in the cross section based on the new cojump identification scheme. Our results...

  5. The Effects of Aquatic Plyometric Training on Repeated Jumps, Drop Jumps and Muscle Damage.

    Science.gov (United States)

    Jurado-Lavanant, A; Alvero-Cruz, J R; Pareja-Blanco, F; Melero-Romero, C; Rodríguez-Rosell, D; Fernandez-Garcia, J C

    2015-09-22

    The purpose of this study was to compare the effects of land- vs. aquatic based plyometric training programs on the drop jump, repeated jump performance and muscle damage. Sixty-five male students were randomly assigned to one of 3 groups: aquatic plyometric training group (APT), plyometric training group (PT) and control group (CG). Both experimental groups trained twice a week for 10 weeks performing the same number of sets and total jumps. The following variables were measured prior to, halfway through and after the training programs: creatine kinase (CK) concentration, maximal height during a drop jump from the height of 30 (DJ30) and 50 cm (DJ50), and mean height during a repeated vertical jump test (RJ). The training program resulted in a significant increase (Pplyometric training, PT produced greater gains on reactive jumps performance than APT. © Georg Thieme Verlag KG Stuttgart · New York.

  6. Rope skipping increases bone mineral density at calcanei of pubertal girls in Hong Kong: A quasi-experimental investigation.

    Directory of Open Access Journals (Sweden)

    Amy S Ha

    Full Text Available Bone mineral accrual during puberty is important, especially in girls, because it is related to reduced risks of osteoporosis in adulthood. Previous research has shown that jumping or plyometric exercises may be effective in increasing bone mineral density in adolescents. Rope skipping is a form of activity that involves jumping, thus regular skipping may also increase bone mineral density in pubertal girls. To this end, we conducted a quasi-experimental to examine the effects of rope skipping on girls' bone mineral density and cardiovascular fitness. 176 Hong Kong girls (age = 12.23 ± 1.80 years at baseline were recruited to take part in the study. Bone density at their forearms and calcanei were measured twice over two academic years (mean time between visits was 10.3 months. Using multilevel modeling analyses and adjusting for participants' height and physical activity, we found that girls who participated in weekly rope skipping activities, compared to those who did not, had higher levels of bone density at the calcanei (B = 0.023, p < .01. However, no differences were found for bone density at forearms or participants' cardiovascular fitness. The rates of change of these variables across time were also not significantly different. Results suggest that regular rope skipping may increase girls' bone density at the lower extremities, irrespective of the amount of self-report physical activity. However, further research is required to examine the potential dose-response relation between skipping behaviors and the measured outcomes.

  7. 30 CFR 56.19021 - Minimum rope strength.

    Science.gov (United States)

    2010-07-01

    ... feet: Minimum Value=Static Load×(7.0-0.001L) For rope lengths 3,000 feet or greater: Minimum Value=Static Load×4.0 (b) Friction drum ropes. For rope lengths less than 4,000 feet: Minimum Value=Static Load×(7.0-0.0005L) For rope lengths 4,000 feet or greater: Minimum Value=Static Load×5.0 (c) Tail ropes...

  8. 30 CFR 75.1431 - Minimum rope strength.

    Science.gov (United States)

    2010-07-01

    ..., including rotation resistant). For rope lengths less than 3,000 feet: Minimum Value=Static Load×(7.0−0.001L) For rope lengths 3,000 feet or greater: Minimum Value=Static Load×4.0 (b) Friction drum ropes. For rope lengths less than 4,000 feet: Minimum Value=Static Load×(7.0−0.0005L) For rope lengths 4,000 feet...

  9. Wire rope superconducting cable for diurnal load leveling SMES

    International Nuclear Information System (INIS)

    Costello, G.A.

    1980-01-01

    The design of a wire rope cable for a superconducting magnetic energy storage (SMES) unit is discussed. The superconducting wires in the rope permit the passage of large currents in the relatively small conductors of the windings and hence cause large electromagnetic forces to act on the rope. The diameter of the rope, from a strength point of view, can be considerably reduced by supporting the rope at various points along its length

  10. Effects of in-season short-term aerobic and high-intensity interval training program on repeated sprint ability and jump performance in handball players.

    Science.gov (United States)

    Hermassi, Souhail; Ingebrigtsen, Jørgen; Schwesig, René; Fieseler, Georg; Delank, Karl-Stefan; Chamari, Karim; Shephard, Roy J; Chelly, Mohamed-Souhaiel

    2018-01-01

    This study examined the effects of a 7-week in-season aerobic and high-intensity interval-training program on performance tests linked to successful handball play (e.g., repeated sprint and jumping ability). Thirty participants (age 17.0±1.2 years, body mass 81.1±3.4 kg, height 1.82±0.07 m) performed a Yo-Yo Intermittent Recovery Test level 1 (Yo-Yo IR1), a squat (SJ) and a Countermovement Jump Test (CMJ), as well as a repeated Sprint Ability Test (RSA). From this, maximal aerobic speed (MAS, reached at the end of the Yo-Yo IR1), jumping ability, best time in a single sprint trial (RSAbest), total time (RSATT) and the performance decrement (RSAdec) during all sprints were calculated. Later, subjects were randomly assigned to a control group (CG; N.=15) performing their normal training schedule (5 weekly sessions of ~90 minutes of handball training) or an experimental group (EG; N.=15). The EG performed two 30 min sessions per week of high-intensity aerobic exercises at 100-130% of MAS in addition to their normal training schedule. A significant improvement in MAS (d=4.1), RSAbest (d=1.9), RSATT (d=1.5) and RSAdec (d=2.3) after the training period was demonstrated. Also, significant interaction effects (time x group) were found for all parameters as the EG significantly improved performances in all tests after training. The greatest interaction effects were observed in MAS (η2=0.811) and CMJ (η2=0.759). No relevant changes in test performances were found in the CG (mean d=-0.02). These results indicate that individually speed-controlled aerobic and interval training is effective for improving specific handball performance.

  11. Wire-rope emplacement of diagnostics systems

    International Nuclear Information System (INIS)

    Burden, W.L.

    1982-01-01

    The study reported here was initiated to determine if, with the Cable Downhole System (CDS) currently under development, there is an advantage to using continuous wire rope to lower the emplacement package to the bottom of the hole. A baseline design using two wire ropes as well as several alternatives are discussed in this report. It was concluded that the advantages of the wire-rope emplacement system do not justify the cost of converting to such a system, especially for LLNL's maximum emplacement package weights

  12. Jumping in Arithmetic

    NARCIS (Netherlands)

    Visser, Albert

    In this paper we study a new relation between sentences: the jump relation. The idea of the jump relation is based on an analysis of Feferman's Theorem that the inconsistency of a theory U is interpretable over U. The jump relation is based on a converse of Feferman's Theorem: if a sentence is

  13. Jumping in Arithmetic

    NARCIS (Netherlands)

    Visser, Albert

    2014-01-01

    In this paper we study a new relation between sentences: the jump relation. The idea of the jump relation is based on an analysis of Feferman's Theorem that the inconsistency of a theory U is interpretable over U. The jump relation is based on a converse of Feferman's Theorem: if a sentence is

  14. Assessment of elevator rope using Hall Sensor

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jong O; Yoon, Woon Ha; Son, Young Ho; Kim, Jung Woo [Korea Institute of Machinery and Materials, Daejeon (Korea, Republic of); Lee, Jong Ku [Pukyung National University, Pusan (Korea, Republic of)

    2003-07-01

    Defect detection of wire rope for an elevator was investigated through the measurement of magnetic flux leakage. The types of defect usually found in wire rope categorized such as inner and outer wire breakage and wear. The specimens that has artificial defects were magnetized via permanent magnet, and measurement of magnetic flux leakage on the defects was performed with Hall sensor. In wire broken model, a defect smaller than 0.4 mm and 1 mm in depth on outer and inner wire rope, respectively, could be detected well. In wear model, smaller defect could not be detected clearly, however, appearance of changing of total magnetic flux during magnetic pole of the sensor passing through a defect 0.2 mm in depth at 4 mm or above width could make possible to detect it. From the results, the measurement via Hall sensor might be useful tool for defect detection of wire rope.

  15. Assesment of elevator rope using hall sensor

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jong O; Yoon, Woon Ha; Son, Young Ho [Korea Institute of Machinery and Materials, Daejeon (Korea, Republic of); Kim, Jung Woo; Lee, Jong Ku [Pukyong National University, Pusan (Korea, Republic of)

    2003-05-15

    Defect detection of wire rope for an elevator was investigated through the measurement of magnetic flux leakage. The types of defect usually found in wire rope categorized such as inner and outer wire breakage and wear. The specimens that has artificial defects were magnetized via permanent magnet, and measurement of magnetic flux leakage on the defects was performed with Hall sensor. In wire broken model, a defect smaller than 0.4mm and 1mm in depth on outer and inner wire rope, respectively, could be detected well. In wear model, smaller defect could not be detected clearly, however, appearance of changing of total magnetic flux during magnetic pole of the sensor passing through a defect 0.2mm in depth at 4mm or above width could make possible to detect it. From the results, the measurement via Hall sensor might be useful tool for defect detection of wire rope.

  16. Buoy-Rope-Drum Wave Power System

    Directory of Open Access Journals (Sweden)

    Linsen Zhu

    2013-01-01

    Full Text Available A buoy-rope-drum wave power system is a new type of floating oscillating buoy wave power device, which absorbs energy from waves by buoy-rope-drum device. Based on the linear deep water wave theory and pure resistive load, with cylinder buoy as an example, the research sets up the theoretical model of direct-drive buoy-rope-drum wave power efficiency and analyzes the influence of the mass and load of the system on its generating efficiency. It points out the two main categories of the efficient buoy-rope-drum wave power system: light thin type and resonance type, and optimal designs of their major parameters are carried out on the basis of the above theoretical model of generating efficiency.

  17. Assessment of elevator rope using Hall Sensor

    International Nuclear Information System (INIS)

    Lee, Jong O; Yoon, Woon Ha; Son, Young Ho; Kim, Jung Woo; Lee, Jong Ku

    2003-01-01

    Defect detection of wire rope for an elevator was investigated through the measurement of magnetic flux leakage. The types of defect usually found in wire rope categorized such as inner and outer wire breakage and wear. The specimens that has artificial defects were magnetized via permanent magnet, and measurement of magnetic flux leakage on the defects was performed with Hall sensor. In wire broken model, a defect smaller than 0.4 mm and 1 mm in depth on outer and inner wire rope, respectively, could be detected well. In wear model, smaller defect could not be detected clearly, however, appearance of changing of total magnetic flux during magnetic pole of the sensor passing through a defect 0.2 mm in depth at 4 mm or above width could make possible to detect it. From the results, the measurement via Hall sensor might be useful tool for defect detection of wire rope.

  18. Assesment of elevator rope using hall sensor

    International Nuclear Information System (INIS)

    Lee, Jong O; Yoon, Woon Ha; Son, Young Ho; Kim, Jung Woo; Lee, Jong Ku

    2003-01-01

    Defect detection of wire rope for an elevator was investigated through the measurement of magnetic flux leakage. The types of defect usually found in wire rope categorized such as inner and outer wire breakage and wear. The specimens that has artificial defects were magnetized via permanent magnet, and measurement of magnetic flux leakage on the defects was performed with Hall sensor. In wire broken model, a defect smaller than 0.4mm and 1mm in depth on outer and inner wire rope, respectively, could be detected well. In wear model, smaller defect could not be detected clearly, however, appearance of changing of total magnetic flux during magnetic pole of the sensor passing through a defect 0.2mm in depth at 4mm or above width could make possible to detect it. From the results, the measurement via Hall sensor might be useful tool for defect detection of wire rope.

  19. Does trampoline or hard surface jumping influence lower extremity alignment?

    Science.gov (United States)

    Akasaka, Kiyokazu; Tamura, Akihiro; Katsuta, Aoi; Sagawa, Ayako; Otsudo, Takahiro; Okubo, Yu; Sawada, Yutaka; Hall, Toby

    2017-12-01

    [Purpose] To determine whether repetitive trampoline or hard surface jumping affects lower extremity alignment on jump landing. [Subjects and Methods] Twenty healthy females participated in this study. All subjects performed a drop vertical jump before and after repeated maximum effort trampoline or hard surface jumping. A three-dimensional motion analysis system and two force plates were used to record lower extremity angles, moments, and vertical ground reaction force during drop vertical jumps. [Results] Knee extensor moment after trampoline jumping was greater than that after hard surface jumping. There were no significant differences between trials in vertical ground reaction force and lower extremity joint angles following each form of exercise. Repeated jumping on a trampoline increased peak vertical ground reaction force, hip extensor, knee extensor moments, and hip adduction angle, while decreasing hip flexion angle during drop vertical jumps. In contrast, repeated jumping on a hard surface increased peak vertical ground reaction force, ankle dorsiflexion angle, and hip extensor moment during drop vertical jumps. [Conclusion] Repeated jumping on the trampoline compared to jumping on a hard surface has different effects on lower limb kinetics and kinematics. Knowledge of these effects may be useful in designing exercise programs for different clinical presentations.

  20. Drop jumping. II. The influence of dropping height on the biomechanics of drop jumping

    NARCIS (Netherlands)

    Bobbert, M F; Huijing, P A; van Ingen Schenau, G J

    In the literature, athletes preparing for explosive activities are recommended to include drop jumping in their training programs. For the execution of drop jumps, different techniques and different dropping heights can be used. This study was designed to investigate for the performance of bounce

  1. Safe use of mine winding rope, volume 2: recommendations for changes in rope safety factors.

    CSIR Research Space (South Africa)

    Hecker, GFK

    1996-04-01

    Full Text Available conducted in order to substantiate the recommendations. The results of these projects have shown that a new set of regulations could be recommended for drum winder ropes even though detailed knowledge on rope deterioration was still lacking. The regulations...

  2. A model for heliospheric flux-ropes

    Science.gov (United States)

    Nieves-Chinchilla, T.; Linton, M.; Vourlidas, A.; Hidalgo, M. A. U.

    2017-12-01

    This work is presents an analytical flux-rope model, which explores different levels of complexity starting from a circular-cylindrical geometry. The framework of this series of models was established by Nieves-Chinchilla et al. 2016 with the circular-cylindrical analytical flux rope model. The model attempts to describe the magnetic flux rope topology with distorted cross-section as a possible consequence of the interaction with the solar wind. In this model, the flux rope is completely described in a non-orthogonal geometry. The Maxwell equations are solved using tensor calculus consistent with the geometry chosen, invariance along the axial direction, and with the assumption of no radial current density. The model is generalized in terms of the radial and azimuthal dependence of the poloidal current density component and axial current density component. The misalignment between current density and magnetic field is studied in detail for several example profiles of the axial and poloidal current density components. This theoretical analysis provides a map of the force distribution inside of the flux-rope. For reconstruction of the heliospheric flux-ropes, the circular-cylindrical reconstruction technique has been adapted to the new geometry and applied to in situ ICMEs with a flux-rope entrained and tested with cases with clear in situ signatures of distortion. The model adds a piece in the puzzle of the physical-analytical representation of these magnetic structures that should be evaluated with the ultimate goal of reconciling in-situ reconstructions with imaging 3D remote sensing CME reconstructions. Other effects such as axial curvature and/or expansion could be incorporated in the future to fully understand the magnetic structure.

  3. Estimation of Jump Tails

    DEFF Research Database (Denmark)

    Bollerslev, Tim; Todorov, Victor

    We propose a new and flexible non-parametric framework for estimating the jump tails of Itô semimartingale processes. The approach is based on a relatively simple-to-implement set of estimating equations associated with the compensator for the jump measure, or its "intensity", that only utilizes...... the weak assumption of regular variation in the jump tails, along with in-fill asymptotic arguments for uniquely identifying the "large" jumps from the data. The estimation allows for very general dynamic dependencies in the jump tails, and does not restrict the continuous part of the process...... and the temporal variation in the stochastic volatility. On implementing the new estimation procedure with actual high-frequency data for the S&P 500 aggregate market portfolio, we find strong evidence for richer and more complex dynamic dependencies in the jump tails than hitherto entertained in the literature....

  4. Regularized Biot-Savart Laws for Modeling Magnetic Configurations with Flux Ropes

    Science.gov (United States)

    Titov, V. S.; Downs, C.; Mikic, Z.; Torok, T.; Linker, J.

    2017-12-01

    Many existing models assume that magnetic flux ropes play a key role in solar flares and coronal mass ejections (CMEs). It is therefore important to develop efficient methods for constructing flux-rope configurations constrained by observed magnetic data and the initial morphology of CMEs. For this purpose, we have derived and implemented a compact analytical form that represents the magnetic field of a thin flux rope with an axis of arbitrary shape and a circular cross-section. This form implies that the flux rope carries axial current I and axial flux F, so that the respective magnetic field is the curl of the sum of toroidal and poloidal vector potentials proportional to I and F, respectively. We expressed the vector potentials in terms of modified Biot-Savart laws whose kernels are regularized at the axis in such a way that these laws define a cylindrical force-free flux rope with a parabolic profile of the axial current density, when the axis is straight. For the cases we have studied so far, we determined the shape of the rope axis by following the polarity inversion line of the eruptions' source region, using observed magnetograms. The height variation along the axis and other flux-rope parameters are estimated by means of potential field extrapolations. Using this heuristic approach, we were able to construct pre-eruption configurations for the 2009 February13 and 2011 October 1 CME events. These applications demonstrate the flexibility and efficiency of our new method for energizing pre-eruptive configurations in MHD simulations of CMEs. We discuss possible ways of optimizing the axis paths and other extensions of the method in order to make it more useful and robust. Research supported by NSF, NASA's HSR and LWS Programs, and AFOSR.

  5. What are quantum jumps?

    International Nuclear Information System (INIS)

    Cook, R.J.

    1988-01-01

    This paper answers the title question by giving an operational definition of quantum jumps based on measurement theory. This definition forms the basis of a theory of quantum jumps which leads to a number of testable predictions. Experiments are proposed to test the theory. The suggested experiments also test the quantum Zeno paradox, i.e., they test the proposition that frequent observation of a quantum system inhibits quantum jumps in that system. (orig.)

  6. Knots, splices and rope-work an illustrated handbook

    CERN Document Server

    Verrill, A Hyatt

    2006-01-01

    This treasury of practical and ornamental knots ranges from easy half-hitches and bow-lines to intricate rope-work projects, such as rope buckles and cask slings. Detailed instructions accompany the 148 drawings.

  7. Signals analysis of fluxgate array for wire rope defaults

    International Nuclear Information System (INIS)

    Gu Wei; Chu Jianxin

    2005-01-01

    In order to detecting the magnetic leakage fields of the wire rope defaults, a transducer made up of the fluxgate array is designed, and a series of the characteristic values of wire rope defaults signals are defined. By processing the characteristic signals, the LF or LMA of wire rope are distinguished, and the default extent is estimated. The experiment results of the new method for detecting the wire rope faults are introduced

  8. Drop jumping. I. The influence of jumping technique on the biomechanics of jumping

    NARCIS (Netherlands)

    Bobbert, M F; Huijing, P A; van Ingen Schenau, G J

    In the literature, drop jumping is advocated as an effective exercise for athletes who prepare themselves for explosive activities. When executing drop jumps, different jumping techniques can be used. In this study, the influence of jumping technique on the biomechanics of jumping is investigated.

  9. Develop discard criteria for non-spin wire ropes

    CSIR Research Space (South Africa)

    Hecker, GFK

    2004-01-01

    Full Text Available The initial project objective was to correlate the level of internal broken wire indications, obtained using a magnetic rope test instrument, with rope strength loss and then to propose a given indication level at which non-spin ropes...

  10. Optimal Ski Jump

    Science.gov (United States)

    Rebilas, Krzysztof

    2013-01-01

    Consider a skier who goes down a takeoff ramp, attains a speed "V", and jumps, attempting to land as far as possible down the hill below (Fig. 1). At the moment of takeoff the angle between the skier's velocity and the horizontal is [alpha]. What is the optimal angle [alpha] that makes the jump the longest possible for the fixed magnitude of the…

  11. A 3-Month Jump-Landing Training Program: A Feasibility Study Using the RE-AIM Framework

    NARCIS (Netherlands)

    Aerts, I.; Cumps, E.; Verhagen, E.A.L.M.; Mathieu, N.; Van Schuerbeeck, S.; Meeusen, R.

    2013-01-01

    Context: Evaluating the translatability and feasibility of an intervention program has become as important as determining the effectiveness of the intervention. Objective: To evaluate the applicability of a 3-month jumplanding training program in basketball players, using the RE-AIM (reach,

  12. 30 CFR 77.1431 - Minimum rope strength.

    Science.gov (United States)

    2010-07-01

    ... feet: Minimum Value=Static Load×(7.0−0.001L) For rope lengths 3,000 feet or greater: Minimum Value=Static Load×4.0 (b) Friction drum ropes. For rope lengths less than 4,000 feet: Minimum Value=Static Load×(7.0−0.0005L) For rope lengths 4,000 feet or greater: Minimum Value=Static Load×5.0 (c) Tail ropes...

  13. 30 CFR 57.19019 - Guide ropes.

    Science.gov (United States)

    2010-07-01

    ... Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Personnel Hoisting Wire Ropes... than shaft development, the nominal strength (manufacturer's published catalog strength) of the guide...

  14. Jumping on water

    Science.gov (United States)

    Kim, Ho-Young

    2016-11-01

    Water striders can jump on water as high as they can jump on land. Quick jumps allow them to avoid sudden dangers such as predators' attacks, and therefore understanding how they make such a dramatic motion for survival can shed light on the ultimate level of semi-aquatic motility achievable through evolution. However, the mechanism of their vertical jumping from a water surface has eluded hydrodynamic explanations so far. By observing movements of water strider legs and theoretically analyzing their dynamic interactions with deforming liquid-air interface, we have recently found that different species of jumping striders always tune their leg rotation speed with a force just below that required to break the water surface to reach the maximum take-off velocity. Here, we start with discussing the fundamental theories of dynamics of floating and sinking of small objects. The theories then enable us to analyze forces acting on a water strider while it presses down the water surface to fully exploit the capillary force. We further introduce a 68-milligram at-scale robotic insect capable of jumping on water without splash, strikingly similar to the real strider, by utilizing the water surface just as a trampoline.

  15. Elasticity and mechanical advantage in cables and ropes

    International Nuclear Information System (INIS)

    O'Shea, M J

    2007-01-01

    The conditions under which one can gain mechanical advantage by pulling with a force F perpendicular to a cable (or rope) that is fixed at both ends are examined. While this is a commonly discussed example in introductory physics classes, its solution in terms of fundamental properties of the cable requires one to model the elasticity of the cable. This solution has several complex and interesting features, e.g. a large increase in the tension in the cable may occur upon application of F if (i) F lies in a certain range and (ii) the initial tension T 1 in the cable (before F is applied) satisfies T 1 < 0.0340 κ. Here, κ is the spring constant of a unit length of the cable. For steel cables and cables composed of other materials such as carbon nanorods where the elasticity is low, significant increases in tension are possible. Examples involving walking a tightrope and attempting to increase the tension in a rope hauling a load are considered. Two programs to solve the equations of this work are available in the electronic version of this journal

  16. Influence of Knee-to-Feet Jump Training on Vertical Jump and Hang Clean Performance.

    Science.gov (United States)

    Stark, Laura; Pickett, Karla; Bird, Michael; King, Adam C

    2016-11-01

    Stark, L, Pickett, K, Bird, M, and King, AC. Influence of knee-to-feet jump training on vertical jump and hang clean performance. J Strength Cond Res 30(11): 3084-3089, 2016-From a motor learning perspective, the practice/training environment can result in positive, negative, or neutral transfer to the testing conditions. The purpose of this study was to examine the training effect of a novel movement (knee-to-feet [K2F] jumps) and whether a 6-week training program induced a positive transfer effect to other power-related movements (vertical jump and hang clean [HC]). Twenty-six intercollegiate athletes from power-emphasized sports were paired and counter-balanced into a control (i.e., maintained their respective sport-specific lifting regimen) or an experimental group (i.e., completed a 6-week progressive training program of K2F jumps in addition to respective lifting regimen). A pre- and posttest design was used to investigate the effect of training on K2F jump height and transfer effect to vertical jump height (VJH) and 2-repetition maximum (RM) HC performance. A significant increase in K2F jump height was found for the experimental group. Vertical jump height significantly increased from pre- to posttest but no group or interaction (group × time) effect was found, and there were nonsignificant differences for HC. Posttest data showed significant correlations between all pairs of the selected exercises with the highest correlation between K2F jump height and VJ H (R = 0.40) followed by VJH and 2RM HC (R = 0.38) and 2RM HC and K2F jump height (R = 0.23). The results suggest that K2F jump training induced the desired learning effect but was specific to the movement in that no effect of transfer occurred to the other power-related movements. This finding is value for strength and condition professionals who design training programs to enhance athletic performance.

  17. Moral Relativism on the Ropes.

    Science.gov (United States)

    Gabler, Mel; Gabler, Norma

    1987-01-01

    Finds that most current public school sex education programs and all values clarification programs are based on moral relativism and are intellectually indefensible because they are (1) methodologically defective, (2) present tautologies instead of values, (3) depend on circular reasoning, and (4) undemocratic. (NKA)

  18. Relationships Between Countermovement Jump Ground Reaction Forces and Jump Height, Reactive Strength Index, and Jump Time.

    Science.gov (United States)

    Barker, Leland A; Harry, John R; Mercer, John A

    2018-01-01

    Barker, LA, Harry, JR, and Mercer, JA. Relationships between countermovement jump ground reaction forces and jump height, reactive strength index, and jump time. J Strength Cond Res 32(1): 248-254, 2018-The purpose of this study was to determine the relationship between ground reaction force (GRF) variables to jump height, jump time, and the reactive strength index (RSI). Twenty-six, Division-I, male, soccer players performed 3 maximum effort countermovement jumps (CMJs) on a dual-force platform system that measured 3-dimensional kinetic data. The trial producing peak jump height was used for analysis. Vertical GRF (Fz) variables were divided into unloading, eccentric, amortization, and concentric phases and correlated with jump height, RSI (RSI = jump height/jump time), and jump time (from start to takeoff). Significant correlations were observed between jump height and RSI, concentric kinetic energy, peak power, concentric work, and concentric displacement. Significant correlations were observed between RSI and jump time, peak power, unload Fz, eccentric work, eccentric rate of force development (RFD), amortization Fz, amortization time, second Fz peak, average concentric Fz, and concentric displacement. Significant correlations were observed between jump time and unload Fz, eccentric work, eccentric RFD, amortization Fz, amortization time, average concentric Fz, and concentric work. In conclusion, jump height correlated with variables derived from the concentric phase only (work, power, and displacement), whereas Fz variables from the unloading, eccentric, amortization, and concentric phases correlated highly with RSI and jump time. These observations demonstrate the importance of countermovement Fz characteristics for time-sensitive CMJ performance measures. Researchers and practitioners should include RSI and jump time with jump height to improve their assessment of jump performance.

  19. Kubo Resistivity of magnetic flux ropes

    Science.gov (United States)

    Gekelman, Walter; Dehaas, Tim; Pribyl, Pat; Vincena, Stephen; van Compernolle, Bart; Sydora, Rick; Tang, Shawn Wenjie

    2017-10-01

    Magnetic flux ropes are bundles of twisted magnetic fields and their associated current. They are common on the surface of the sun (and presumably all other stars) and are observed to have a large range of sizes and lifetimes. They can become unstable and resulting in coronal mass ejections that can travel to earth and indeed, have been observed by satellites. Two side by side flux ropes are generated in the LAPD device at UCLA. Using a series of novel diagnostics the following key quantities, B, u, Vp, n, Te have been measured at more than 48,000 spatial locations and 7,000 time steps. Every term in Ohm's law is also evaluated across and along the local magnetic field and the plasma resistivity derived and it is shown that Ohms law is non-local. The electron distribution function parallel and antiparallel to the background magnetic field was measured and found to be a drifting Kappa function. The Kubo AC conductivity at the flux rope rotation frequency, a 3X3 tensor, was evaluated using velocity correlations and will be presented. This yields meaningful results for the global resistivity. Frequency spectra and the presence of time domain structures may offer a clue to the enhanced resistivity. Work supported by the Department of Energy and National Science Foundation.

  20. 30 CFR 57.19021 - Minimum rope strength.

    Science.gov (United States)

    2010-07-01

    ... feet: Minimum Value=Static Load×(7.0−0.001L) For rope lengths 3,000 feet or greater: Minimum Value=Static Load×4.0. (b) Friction drum ropes. For rope lengths less than 4,000 feet: Minimum Value=Static Load×(7.0−0.0005L) For rope lengths 4,000 feet or greater: Minimum Value=Static Load×5.0. (c) Tail...

  1. Why is countermovement jump height greater than squat jump height?

    NARCIS (Netherlands)

    Bobbert, Maarten F.; Gerritsen, Karin G M; Litjens, Maria C A; Van Soest, Arthur J.

    1996-01-01

    In the literature, it is well established that subjects are able to jump higher in a countermovement jump (CMJ) than in a squat jump (SJ). The purpose of this study was to estimate the relative contribution of the time available for force development and the storage and reutilization of elastic

  2. Drop Jumping as a Training Method for Jumping Ability

    NARCIS (Netherlands)

    Bobbert, Maarten F.

    1990-01-01

    Vertical jumping ability is of importance for good performance in sports such as basketball and volleyball. Coaches are in need of exercises that consume only little time and still help to improve their players’ jumping ability, without involving a high risk of injury. Drop jumping is assumed to

  3. Magnetohydrodynamic simulations of the ejection of a magnetic flux rope

    Science.gov (United States)

    Pagano, P.; Mackay, D. H.; Poedts, S.

    2013-06-01

    Context. Coronal mass ejections (CME's) are one of the most violent phenomena found on the Sun. One model to explain their occurrence is the flux rope ejection model. In this model, magnetic flux ropes form slowly over time periods of days to weeks. They then lose equilibrium and are ejected from the solar corona over a few hours. The contrasting time scales of formation and ejection pose a serious problem for numerical simulations. Aims: We simulate the whole life span of a flux rope from slow formation to rapid ejection and investigate whether magnetic flux ropes formed from a continuous magnetic field distribution, during a quasi-static evolution, can erupt to produce a CME. Methods: To model the full life span of magnetic flux ropes we couple two models. The global non-linear force-free field (GNLFFF) evolution model is used to follow the quasi-static formation of a flux rope. The MHD code ARMVAC is used to simulate the production of a CME through the loss of equilibrium and ejection of this flux rope. Results: We show that the two distinct models may be successfully coupled and that the flux rope is ejected out of our simulation box, where the outer boundary is placed at 2.5 R⊙. The plasma expelled during the flux rope ejection travels outward at a speed of 100 km s-1, which is consistent with the observed speed of CMEs in the low corona. Conclusions: Our work shows that flux ropes formed in the GNLFFF can lead to the ejection of a mass loaded magnetic flux rope in full MHD simulations. Coupling the two distinct models opens up a new avenue of research to investigate phenomena where different phases of their evolution occur on drastically different time scales. Movies are available in electronic form at http://www.aanda.org

  4. New constructions of wire ropes for the industry

    Directory of Open Access Journals (Sweden)

    ŠŠaderová Jana

    1996-03-01

    Full Text Available The wire ropes are used in different industrial fields. Their construction depends on the type of equipment and its purpose. Most frequently we meet with ropes at different transport and hoisting equipments and very freqently in the civil industry. For users characteristics are important which must meet requirements of the individual regulations and standards of the selection of wire ropes for the concrete equipment. The most important is the factor of safety being safeguarded by the corresponding bearing capacity of the rope. The service life of rope is interesting for the user, too, because of having an influence on the economy of the equipment on which the rope is working. These problems are solved by the grant project at our department . We are aimed at questions of the optimization of construction of wire rope with regard to their geometric construction and service life. Respectively on the basis of elaborated computer software eightstrand ropes of parallel construction were disigned and produced at the Drôtov ň a Hlohovec. The results of the fatigue tests confirmed their better qualitative properties, longer service life and economy advantages for users, too. Their using is possible and suitable on the new hoisting eguipment on the surface, in the undeground and in the hole drilling industry. By the application of the computer technique is also possible to improve the parametres of six-strands` construction of rope, the classic and parallel constructions, especially their bearing capacity. This fact follows from the knowledge that for the production of rope we use calculated diameters of wires, which secure better utilization of the metal cross-section of the wire ropes.

  5. Egg Bungee Jump!

    Science.gov (United States)

    Fitzgerald, Mike; Brand, Lance

    2004-01-01

    In this article, the authors present an egg bungee jumping activity. This activity introduces students to ways that engineers might apply calculations of failure to meet a challenge. Students are required to use common, everyday materials such as rubber bands, string, plastic bags, and eggs. They will apply technological problem solving, material…

  6. SARS – virus jumps species

    Indian Academy of Sciences (India)

    SARS – virus jumps species. Coronavirus reshuffles genes; Rotteir et al, Rotterdam showed the virus to jump from cats to mouse cells after single gene mutation ? Human disease due to virus jumping from wild or domestic animals; Present favourite animal - the cat; - edible or domestic.

  7. A Thin-Flux-Rope Approximation as a Basis for Modeling of Pre- and Post-Eruptive Magnetic Configurations

    Science.gov (United States)

    Titov, V. S.; Mikic, Z.; Torok, T.; Linker, J.

    2016-12-01

    Many existing models of solar flares and coronal mass ejections (CMEs) assume a key role of magnetic flux ropes in these phenomena. It is therefore important to have efficient methods for constructing flux-rope configurations consistent with the observed photospheric magnetic data and morphology of CMEs. As our new step in this direction, we propose an analytical formulation that succinctly represents the magnetic field of a thin flux rope, which has an axis of arbitrary shape and a circular cross-section with the diameter slowly varying along the axis. This representation implies also that the flux rope carries axial current I and axial flux F, so that the respective magnetic field is a curl of the sum of toroidal and poloidal vector potentials proportional to I and F, respectively. Each of the two potentials is individually expressed in terms of a modified Biot-Savart law with separate kernels, both regularized at the rope axis. We argue that the proposed representation is flexible enough to be used in MHD simulations for initializing pre-eruptive configurations in the low corona or post-eruptive configurations (interplanetary CMEs) in the heliosphere. We discuss the potential advantages of our approach, and the subsequent steps to be performed, to develop a fully operative and highly competitive method compared to existing methods. Research supported by NSF, NASA's HSR and LWS Programs, and AFOSR.

  8. Wire Rope Failure on the Guppy Winch

    Science.gov (United States)

    Figert, John

    2016-01-01

    On January 6, 2016 at El Paso, the Guppy winch motor was changed. After completion of the operational checks, the load bar was being reinstalled on the cargo pallet when the motor control FORWARD relay failed in the energized position. The pallet was pinned at all locations (each pin has a load capacity of 16,000 lbs.) while the winch was running. The wire rope snapped before aircraft power could be removed. After disassembly, the fractured wire rope was shipped to ES4 lab for further characterization of the wire rope portion of the failure. The system was being operated without a clear understanding of the system capability and function. The proximate cause was the failure of the K48 -Forward Winch Control Relay in the energized position, which allowed the motor to continuously run without command from the hand controller, and operation of the winch system with both controllers connected to the system. This prevented the emergency stop feature on the hand controller from functioning as designed. An electrical checkout engineering work instruction was completed and identified the failed relay and confirmed the emergency stop only paused the system when the STOP button on both connected hand controllers were depressed simultaneously. The winch system incorporates a torque limiting clutch. It is suspected that the clutch did not slip and the motor did not stall or overload the current limiter. Aircraft Engineering is looking at how to change the procedures to provide a checkout of the clutch and set to a slip torque limit appropriate to support operations.

  9. Muscle Activity during Unilateral Vs. Bilateral Battle Rope Exercises

    DEFF Research Database (Denmark)

    Calatayud, J.; Martin, F.; Colado, J. C.

    2015-01-01

    Calatayud, J, Martin, F, Colado, JC, Benitez, JC, Jakobsen, MD, and Andersen, LL. Muscle activity during unilateral vs. bilateral battle rope exercises. J Strength Cond Res 29(10): 2854-2859, 2015High training intensity is important for efficient strength gains. Although battle rope training is m...

  10. Flux ropes in the magnetic solar convection zone

    DEFF Research Database (Denmark)

    Dorch, S. B. F.

    2006-01-01

    In this contribution results are presented on how twisted magnetic flux ropes interact with a magnetized model envelope similar to the solar convection zone. Both the flux ropes and the atmosphere are modelled as idealized 2.5-dimensional concepts using high resolution numerical MHD simulations (on...

  11. Accuracy of Jump-Mat Systems for Measuring Jump Height.

    Science.gov (United States)

    Pueo, Basilio; Lipinska, Patrycja; Jiménez-Olmedo, José M; Zmijewski, Piotr; Hopkins, Will G

    2017-08-01

    Vertical-jump tests are commonly used to evaluate lower-limb power of athletes and nonathletes. Several types of equipment are available for this purpose. To compare the error of measurement of 2 jump-mat systems (Chronojump-Boscosystem and Globus Ergo Tester) with that of a motion-capture system as a criterion and to determine the modifying effect of foot length on jump height. Thirty-one young adult men alternated 4 countermovement jumps with 4 squat jumps. Mean jump height and standard deviations representing technical error of measurement arising from each device and variability arising from the subjects themselves were estimated with a novel mixed model and evaluated via standardization and magnitude-based inference. The jump-mat systems produced nearly identical measures of jump height (differences in means and in technical errors of measurement ≤1 mm). Countermovement and squat-jump height were both 13.6 cm higher with motion capture (90% confidence limits ±0.3 cm), but this very large difference was reduced to small unclear differences when adjusted to a foot length of zero. Variability in countermovement and squat-jump height arising from the subjects was small (1.1 and 1.5 cm, respectively, 90% confidence limits ±0.3 cm); technical error of motion capture was similar in magnitude (1.7 and 1.6 cm, ±0.3 and ±0.4 cm), and that of the jump mats was similar or smaller (1.2 and 0.3 cm, ±0.5 and ±0.9 cm). The jump-mat systems provide trustworthy measurements for monitoring changes in jump height. Foot length can explain the substantially higher jump height observed with motion capture.

  12. Focused Ion Beam Nanopatterning for Carbon Nanotube Ropes Based Sensor

    Directory of Open Access Journals (Sweden)

    Vera LA FERRARA

    2007-11-01

    Full Text Available Focused Ion Beam (FIB technology has been used to realize electrode patterns for contacting Single Walled Carbon Nanotubes (SWCNTs ropes for chemical gas sensor applications. Two types of transducers, based on a single rope and on bundles, have been realized starting from silicon/Si3N4 substrate. Electrical behaviour, at room temperature, in toxic gas environments, has been investigated and compared to evaluate contribution of a single rope based sensor respect to bundles one. For all the devices, upon exposure to NO2 and NH3, the conductance has been found to increase or decrease respectively. Conductance signal is stronger for sensor based on bundles, but it also evident that response time in NO2 is faster for device based on a single rope. FIB technology offers, then, the possibility to contact easily a single sensitive nanowire, as carbon nanotube rope.

  13. The modelling and analysis of the mechanics of ropes

    CERN Document Server

    Leech, C M

    2014-01-01

    This book considers the modelling and analysis of the many types of ropes, linear fibre assemblies. The construction of these structures is very diverse and in the work these are considered from the modelling point of view. As well as the conventional twisted structures, braid and plaited structures and parallel assemblies are modelled and analysed, first for their assembly and secondly for their mechanical behaviour. Also since the components are assemblies of components, fibres into yarns, into strands, and into ropes the hierarchical nature of the construction is considered. The focus of the modelling is essentially toward load extension behaviour but there is reference to bending of ropes, encompassed by the two extremes, no slip between the components and zero friction resistance to component slip. Friction in ropes is considered both between the rope components, sliding, sawing and scissoring, and within the components, dilation and distortion, these latter modes being used to model component set, the p...

  14. Evidence for flux ropes in the earth's magnetotail

    International Nuclear Information System (INIS)

    Sibeck, D.G.

    1990-01-01

    Magnetic field reconnection is a fundamental process that occurs in the magnetotail during geomagnetic substorms. Some 2D reconnection models predict the formation of a plasmoid, or closed loop of magnetic field lines, in the noon-midnight meridional plane at those times. When the 3D magnetotail magnetic field is considered, it becomes clear that reconnection produces a flux rope with an axis transverse to the earth-sun line. Three signatures mark both 2D plasmoids and 3D flux ropes: (1) a bipolar magnetic field signature, (2) tailward flow of a hot plasma, and (3) convecting isotropic energetic particle distributions. Plasmoids and flux ropes may be distinguished by (4) the axial magnetic field that only flux ropes possess. All four signatures have been identified in near-earth, middle, and distant magnetotail observations, but their interpretation is disputed. Thus, the existence of magnetotail flux ropes remains a controversial subject. 59 refs

  15. Physics of magnetic flux ropes. Geophysical Monograph, No. 58

    International Nuclear Information System (INIS)

    Russell, C.T.; Priest, E.R.; Lee, L.C.

    1990-01-01

    The present work encompasses papers on the structure, waves, and instabilities of magnetic flux ropes (MFRs), photospheric flux tubes (PFTs), the structure and heating of coronal loops, solar prominences, coronal mass ejections and magnetic clouds, flux ropes in planetary ionospheres, the magnetopause, magnetospheric field-aligned currents and flux tubes, and the magnetotail. Attention is given to the equilibrium of MFRs, resistive instability, magnetic reconnection and turbulence in current sheets, dynamical effects and energy transport in intense flux tubes, waves in solar PFTs, twisted flux ropes in the solar corona, an electrodynamical model of solar flares, filament cooling and condensation in a sheared magnetic field, the magnetopause, the generation of twisted MFRs during magnetic reconnection, ionospheric flux ropes above the South Pole, substorms and MFR structures, evidence for flux ropes in the earth magnetotail, and MFRs in 3D MHD simulations

  16. Research of x-ray nondestructive detector for high-speed running conveyor belt with steel wire ropes

    Science.gov (United States)

    Wang, Junfeng; Miao, Changyun; Wang, Wei; Lu, Xiaocui

    2008-03-01

    An X-ray nondestructive detector for high-speed running conveyor belt with steel wire ropes is researched in the paper. The principle of X-ray nondestructive testing (NDT) is analyzed, the general scheme of the X-ray nondestructive testing system is proposed, and the nondestructive detector for high-speed running conveyor belt with steel wire ropes is developed. The hardware of system is designed with Xilinx's VIRTEX-4 FPGA that embeds PowerPC and MAC IP core, and its network communication software based on TCP/IP protocol is programmed by loading LwIP to PowerPC. The nondestructive testing of high-speed conveyor belt with steel wire ropes and network transfer function are implemented. It is a strong real-time system with rapid scanning speed, high reliability and remotely nondestructive testing function. The nondestructive detector can be applied to the detection of product line in industry.

  17. Geometrical Relationship Between Interplanetary Flux Ropes and Their Solar Sources

    Science.gov (United States)

    Marubashi, K.; Akiyama, S.; Yashiro, S.; Gopalswamy, N.; Cho, K.-S.; Park, Y.-D.

    2015-05-01

    We investigated the physical connection between interplanetary flux ropes (IFRs) near Earth and coronal mass ejections (CMEs) by comparing the magnetic field structures of IFRs and CME source regions. The analysis is based on the list of 54 pairs of ICMEs (interplanetary coronal mass ejections) and CMEs that are taken to be the most probable solar source events. We first attempted to identify the flux rope structure in each of the 54 ICMEs by fitting models with a cylinder and torus magnetic field geometry, both with a force-free field structure. This analysis determined the possible geometries of the identified flux ropes. Then we compared the flux rope geometries with the magnetic field structure of the solar source regions. We obtained the following results: (1) Flux rope structures are seen in 51 ICMEs out of the 54. The result implies that all ICMEs have an intrinsic flux rope structure, if the three exceptional cases are attributed to unfavorable observation conditions. (2) It is possible to find flux rope geometries with the main axis orientation close to the orientation of the magnetic polarity inversion line (PIL) in the solar source regions, the differences being less than 25°. (3) The helicity sign of an IFR is strongly controlled by the location of the solar source: flux ropes with positive (negative) helicity are associated with sources in the southern (northern) hemisphere (six exceptions were found). (4) Over two-thirds of the sources in the northern hemisphere are concentrated along PILs with orientations of 45° ± 30° (measured clockwise from the east), and over two-thirds in the southern hemisphere along PILs with orientations of 135° ± 30°, both corresponding to the Hale boundaries. These results strongly support the idea that a flux rope with the main axis parallel to the PIL erupts in a CME and that the erupted flux rope propagates through the interplanetary space with its orientation maintained and is observed as an IFR.

  18. Safe use of mine winding ropes, volume 4: studies towards a code of practice for rope condition assessment.

    CSIR Research Space (South Africa)

    Borrello, M

    1996-06-01

    Full Text Available The aim of this investigation was the verification of the code of Practice for Rope Condition Assessment. Ropes were meant to be discarded according to the discard criteria as outlined in the code and then tested by the CSIR. The results...

  19. Optimal Ski Jump

    Science.gov (United States)

    Rebilas, Krzysztof

    2013-02-01

    Consider a skier who goes down a takeoff ramp, attains a speed V, and jumps, attempting to land as far as possible down the hill below (Fig. 1). At the moment of takeoff the angle between the skier's velocity and the horizontal is α. What is the optimal angle α that makes the jump the longest possible for the fixed magnitude of the velocity V? Of course, in practice, this is a very sophisticated problem; the skier's range depends on a variety of complex factors in addition to V and α. However, if we ignore these and assume the jumper is in free fall between the takeoff ramp and the landing point below, the problem becomes an exercise in kinematics that is suitable for introductory-level students. The solution is presented here.

  20. The effects of a combined resisted jump training and rugby-conditioning program on selected physical, motor ability and anthropometric components of rugby players / Jacobus Johannes Oosthuizen

    OpenAIRE

    Oosthuizen, Jacobus Johannes

    2013-01-01

    Plyometrics is primarily used by coaches and sport scientists to improve explosive power among athletes who participate in dynamic, high intensity type of sports. One of the plyometric-related training methods that has received attention in recent years, is loaded or resistance (resistive) jump training. Limited research does, however, exist with regard to the benefits and use of this training method as well as in conjunction with other training methods, especially among team spor...

  1. Initial Steps in Creating a Developmentally Valid Tool for Observing/Assessing Rope Jumping

    Science.gov (United States)

    Roberton, Mary Ann; Thompson, Gregory; Langendorfer, Stephen J.

    2017-01-01

    Background: Valid motor development sequences show the various behaviors that children display as they progress toward competence in specific motor skills. Teachers can use these sequences to observe informally or formally assess their students. While longitudinal study is ultimately required to validate developmental sequences, there are earlier,…

  2. Defect detection of elevator wire rope by using wavelet analysis; Wavelet kaiseki ni yoru elevator rope no sonsho kenshutsu

    Energy Technology Data Exchange (ETDEWEB)

    Kaneda, M.; Kawata, A.; Hayashi, S. [Kansai University, Osaka (Japan). Faculty of Engineering; Tokui, K. [Mitsubishi Electric Building Techno-Service Co. Ltd., Tokyo (Japan)

    1998-10-31

    Detecting strand breakage and local wear of elevator wire rope uses currently a method using a rope tester. This method magnetizes a rope with electric magnet and detects defected part as leakage flux. Pulsed signals are issued from the defected part, variation in magnetic flux leakage due to rope swinging produces noise, and both get mixed together. Therefore, the detection is performed finally by visual check and palpation. This paper discusses a method that analyzes measurement data derived by the rope tester by using wavelet conversion, and detects the defected part automatically without being confused by noise. The pulsed signals generated from the defected part can be detected from noise by decomposing multiplex resolution using the Haar basis. As a result of the experiment, cases that may be overlooked in visual check because of S/N ratio being too small or the pulsed signals being too weak were all detected. 11 refs., 14 figs.

  3. Magnetic reconnection during eruptive magnetic flux ropes

    Science.gov (United States)

    Mei, Z. X.; Keppens, R.; Roussev, I. I.; Lin, J.

    2017-08-01

    Aims: We perform a three-dimensional (3D) high resolution numerical simulation in isothermal magnetohydrodynamics to study the magnetic reconnection process in a current sheet (CS) formed during an eruption of a twisted magnetic flux rope (MFR). Because the twist distribution violates the Kruskal-Shafranov condition, the kink instability occurs, and the MFR is distorted. The centre part of the MFR loses its equilibrium and erupts upward, which leads to the formation of a 3D CS underneath it. Methods: In order to study the magnetic reconnection inside the CS in detail, mesh refinement has been used to reduce the numerical diffusion and we estimate a Lundquist number S = 104 in the vicinity of the CS. Results: The refined mesh allows us to resolve fine structures inside the 3D CS: a bifurcating sheet structure signaling the 3D generalization of Petschek slow shocks, some distorted-cylindrical substructures due to the tearing mode instabilities, and two turbulence regions near the upper and the lower tips of the CS. The topological characteristics of the MFR depend sensitively on the observer's viewing angle: it presents as a sigmoid structure, an outwardly expanding MFR with helical distortion, or a flare-CS-coronal mass ejection symbiosis as in 2D flux-rope models when observed from the top, the front, or the side. The movie associated to Fig. 2 is available at http://www.aanda.org

  4. Jumping hoops on water

    Science.gov (United States)

    Yang, Eunjin; Kim, Ho-Young

    2015-11-01

    Small aquatic arthropods, such as water striders and fishing spiders, are able to jump off water to a height several times their body length. Inspired by the unique biological motility on water, we study a simple model using a flexible hoop to provide fundamental understanding and a mimicking principle of small jumpers on water. Behavior of a hoop on water, which is coated with superhydrophobic particles and initially bent into an ellipse from an equilibrium circular shape, is visualized with a high speed camera upon launching it into air by releasing its initial elastic strain energy. We observe that jumping of our hoops is dominated by the dynamic pressure of water rather than surface tension, and thus it corresponds to the dynamic condition experienced by fishing spiders. We calculate the reaction forces provided by water adopting the unsteady Bernoulli equation as well as the momentum loss into liquid inertia and viscous friction. Our analysis allows us to predict the jumping efficiency of the hoop on water in comparison to that on ground, and to discuss the evolutionary pressure rendering fishing spiders select such dynamic behavior.

  5. Undular Hydraulic Jump

    Directory of Open Access Journals (Sweden)

    Oscar Castro-Orgaz

    2015-04-01

    Full Text Available The transition from subcritical to supercritical flow when the inflow Froude number Fo is close to unity appears in the form of steady state waves called undular hydraulic jump. The characterization of the undular hydraulic jump is complex due to the existence of a non-hydrostatic pressure distribution that invalidates the gradually-varied flow theory, and supercritical shock waves. The objective of this work is to present a mathematical model for the undular hydraulic jump obtained from an approximate integration of the Reynolds equations for turbulent flow assuming that the Reynolds number R is high. Simple analytical solutions are presented to reveal the physics of the theory, and a numerical model is used to integrate the complete equations. The limit of application of the theory is discussed using a wave breaking condition for the inception of a surface roller. The validity of the mathematical predictions is critically assessed using physical data, thereby revealing aspects on which more research is needed

  6. ROPE: Recoverable Order-Preserving Embedding of Natural Language

    Energy Technology Data Exchange (ETDEWEB)

    Widemann, David P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Wang, Eric X. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Thiagarajan, Jayaraman J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-02-11

    We present a novel Recoverable Order-Preserving Embedding (ROPE) of natural language. ROPE maps natural language passages from sparse concatenated one-hot representations to distributed vector representations of predetermined fixed length. We use Euclidean distance to return search results that are both grammatically and semantically similar. ROPE is based on a series of random projections of distributed word embeddings. We show that our technique typically forms a dictionary with sufficient incoherence such that sparse recovery of the original text is possible. We then show how our embedding allows for efficient and meaningful natural search and retrieval on Microsoft’s COCO dataset and the IMDB Movie Review dataset.

  7. Vortex rope instabilities in a model of conical draft tube

    Science.gov (United States)

    Skripkin, Sergey; Tsoy, Mikhail; Kuibin, Pavel; Shtork, Sergey

    2017-10-01

    We report on experimental studies of the formation of vortex ropes in a laboratory simplified model of hydroturbine draft tube. Work is focused on the observation of various flow patterns at the different rotational speed of turbine runner at fixed flow rate. The measurements involve high-speed visualization and pressure pulsations recordings. Draft tube wall pressure pulsations are registered by pressure transducer for different flow regimes. Vortex rope precession frequency were calculated using FFT transform. The experiments showed interesting features of precessing vortex rope like twin spiral and formation of vortex ring.

  8. Vortex rope instabilities in a model of conical draft tube

    Directory of Open Access Journals (Sweden)

    Skripkin Sergey

    2017-01-01

    Full Text Available We report on experimental studies of the formation of vortex ropes in a laboratory simplified model of hydroturbine draft tube. Work is focused on the observation of various flow patterns at the different rotational speed of turbine runner at fixed flow rate. The measurements involve high-speed visualization and pressure pulsations recordings. Draft tube wall pressure pulsations are registered by pressure transducer for different flow regimes. Vortex rope precession frequency were calculated using FFT transform. The experiments showed interesting features of precessing vortex rope like twin spiral and formation of vortex ring.

  9. BPS Jumping Loci are Automorphic

    Science.gov (United States)

    Kachru, Shamit; Tripathy, Arnav

    2018-06-01

    We show that BPS jumping loci-loci in the moduli space of string compactifications where the number of BPS states jumps in an upper semi-continuous manner—naturally appear as Fourier coefficients of (vector space-valued) automorphic forms. For the case of T 2 compactification, the jumping loci are governed by a modular form studied by Hirzebruch and Zagier, while the jumping loci in K3 compactification appear in a story developed by Oda and Kudla-Millson in arithmetic geometry. We also comment on some curious related automorphy in the physics of black hole attractors and flux vacua.

  10. Rope wind-up type control rod

    International Nuclear Information System (INIS)

    Tsuji, Teruaki; Watanabe, Shigeru.

    1979-01-01

    Purpose: To hold a control rod at a certain position even if the sealed cover of the rod drive mechanism should fail. Constitution: A plurality of friction plates, engaging wheels and a threaded shaft are provided to the wind-up drum for winding up a rope which moves the control rod up and down. While the control rod is adapted to drop by its own weight upon insertion, it is adapted to stop at a predetermined position exactly with no shocks by gradually increasing braking force by the sliding friction caused from the friction plates or the like. A ratch mechanism is provided to the upper portion of the control rod so that the top of the ratch piece may automatically engage the guide passage wall of the control rod upon uncontrolled running of the control rod to prevent further uncontrolled running thereof. (Ikeda, J.)

  11. Exploring Lightning Jump Characteristics

    Science.gov (United States)

    Chronis, Themis; Carey, Larry D.; Schultz, Christopher J.; Schultz, Elise; Calhoun, Kristin; Goodman, Steven J.

    2014-01-01

    This study is concerned with the characteristics of storms exhibiting an abrupt temporal increase in the total lightning flash rate (i.e., lightning jump, LJ). An automated storm tracking method is used to identify storm "clusters" and total lightning activity from three different lightning detection systems over Oklahoma, northern Alabama and Washington, D.C. On average and for different employed thresholds, the clusters that encompass at least one LJ (LJ1) last longer, relate to higher Maximum Expected Size of Hail, Vertical Integrated Liquid and lightning flash rates (area-normalized) than the clusters that did not exhibit any LJ (LJ0). The respective mean values for LJ1 (LJ0) clusters are 80 min (35 min), 14 mm (8 mm), 25 kg per square meter (18 kg per square meter) and 0.05 flash per min per square kilometer (0.01 flash per min per square kilometer). Furthermore, the LJ1 clusters are also characterized by slower decaying autocorrelation functions, a result that implies a less "random" behavior in the temporal flash rate evolution. In addition, the temporal occurrence of the last LJ provides an estimate of the time remaining to the storm's dissipation. Depending of the LJ strength (i.e., varying thresholds), these values typically range between 20-60 min, with stronger jumps indicating more time until storm decay. This study's results support the hypothesis that the LJ is a proxy for the storm's kinematic and microphysical state rather than a coincidental value.

  12. Deterioration and discard of mine winder ropes, volume 2

    CSIR Research Space (South Africa)

    Van Zyl, MN

    1997-11-01

    Full Text Available This volume 2 of the GAP 324 report discusses the parts of the project that dealt with the sinking of very deep shafts, and an initial study into the behaviour of triangular strand ropes for deep shafts....

  13. Comparison of stretch reflex responses evoked during drop jumping in highly skilled atheles versus untrained subjects.

    Science.gov (United States)

    Judge, L W; Burke, J R

    2015-06-01

    The purpose of the study was to describe changes in the excitability of the stretch reflex response (SRR) during different drop jumps as a function of training background and as an adaptation to a preseason sport-specific resistance training program. Twelve collegiate field event athletes (discus, hammer, javelin, shot put, and weight; 9 males and 3 females) and 12 college-aged control subjects performed the following three jumps: (1) countermovement jump (CMJ); (2) countermovement drop jump; and (3) bounce-drop jump (BDJ). Neuromechanical changes in the performance of drop jumps by athletes were measured during the sport-specific resistance training program. Pre-post testing of drop jump performance by control subjects was included for comparison. For each jump trial, ground reaction forces (GRF), electromyograms (EMG) and cinematographic data were collected. There were no training adaptations. However, jump heights were greater for the athletes than the controls among the different jumps with the jump heights for all subjects being less during the BDJ than CMJ and CDJ. In athletes only, there was a differential modulation of the SRR from the gastrocnemius muscle with different levels of background muscle activity for the CDJ and BDJ. There were changes in excitability of SRR from the gastrocnemius muscle as a function of training background. Interrelated neuromechanical mechanisms to include landing biomechanics, intrinsic musculotendinous tissue properties of the ankle, and centrally regulated motor commands may underlie the facilitation of the SRR from the gastrocnemius muscle in athletes as compared to controls.

  14. The ropes and challenge course: a quasi-experimental examination.

    Science.gov (United States)

    Meyer, B B

    2000-06-01

    In answering the call for empirical documentation of the effect of ropes and challenge course participation on the psychosocial function and sport performance of athletes and teams, exploratory studies have identified postcourse changes in group cohesion and approaches to sport competition. The purpose of the current study was to utilize a pretest-posttest comparison group design to expand knowledge in this area. 35 members of a girls' high school tennis team participated. The 16 individuals who participated in a preseason program and the 19 individuals who did not comprised the treatment and comparison groups, respectively. Team members completed the Group Environment Questionnaire and the Sport Orientation Questionnaire four days prior to and two days after the course experience. A series of 2 x 2 analyses of variance, (group x time) run on each of the scales, gave a significant group x time interaction on one social cohesion scale but none for scores on the Sport Orientation Questionnaire. The findings are discussed in relation to research and the implementation of these programs with athletes.

  15. A cage position monitor based on magnetically striped rope

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, V M

    1978-01-01

    Following the winding disaster at Markham Colliery in July 1973 recommendations to monitor the position of the cage directly at all times throughout the winding cycle, and to provide a system of communication with persons in the conveyance were made. The system adopted by MRDE was the 'magnetically striped rope'. An experimental system was installed at Maltby Colliery, South Yorkshire, and has been working successfully for well over a year. Magnetic marking of a hoist or guide rope can be carried out using permanent magnets but a much more convenient method has been devised using a pulsed electromagnet sliding on the rope. Detection is achieved by two static magnetic sensors spaced to give quadrature output. By processing the signals and using an up/down counter it is possible to sense the direction of movement and the distance travelled by the cage from a given datum. The information can be further processed to indicate velocity, overspeed and overwind, and when referenced to drum revolutions may be used to monitor rope slip in friction winders or slack rope in drum winders. When the guide rope is magnetically marked and sensed, the information must be transmitted from the cage to the surface. Such a data communication link, developed by MRDE, also provides a base for a general shaft communication system.

  16. A COMPARISON OF PAIRS FIGURE SKATERS IN REPEATED JUMPS

    Directory of Open Access Journals (Sweden)

    William A. Sands

    2012-03-01

    Full Text Available Trends in pairs figure skating have shown that increasingly difficult jumps have become an essential aspect of high-level performance, especially in the latter part of a competitive program. We compared a repeated jump power index in a 60 s repeated jump test to determine the relationship of repeated jump test to competitive rank and to measure 2D hip, knee, and ankle angles and angular velocities at 0, 20, 40, and 60 s. Eighteen National Team Pairs Figure Skaters performed a 60 s repeated jump test on a large switch-mat with timing of flight and ground durations and digital video recording. Each 60-s period was divided into 6, 10-s intervals, with power indexes (W/kg calculated for each 10-s interval. Power index by 10-s interval repeated measures ANOVAs (RMANOVA showed that males exceeded females at all intervals, and the highest power index interval was during 10 to 20 s for both sexes. RMANOVAs of angles and angular velocities showed main effects for time only. Power index and jumping techniques among figure skaters showed rapid and steady declines over the test duration. Power index can predict approximately 50% of competitive rank variance, and sex differences in jumping technique were rare

  17. Jump conditions in transonic equilibria

    International Nuclear Information System (INIS)

    Guazzotto, L.; Betti, R.; Jardin, S. C.

    2013-01-01

    In the present paper, the numerical calculation of transonic equilibria, first introduced with the FLOW code in Guazzotto et al.[Phys. Plasmas 11, 604 (2004)], is critically reviewed. In particular, the necessity and effect of imposing explicit jump conditions at the transonic discontinuity are investigated. It is found that “standard” (low-β, large aspect ratio) transonic equilibria satisfy the correct jump condition with very good approximation even if the jump condition is not explicitly imposed. On the other hand, it is also found that high-β, low aspect ratio equilibria require the correct jump condition to be explicitly imposed. Various numerical approaches are described to modify FLOW to include the jump condition. It is proved that the new methods converge to the correct solution even in extreme cases of very large β, while they agree with the results obtained with the old implementation of FLOW in lower-β equilibria.

  18. Mechanics of jumping on water

    Science.gov (United States)

    Kim, Ho-Young; Amauger, Juliette; Jeong, Han-Bi; Lee, Duck-Gyu; Yang, Eunjin; Jablonski, Piotr G.

    2017-10-01

    Some species of semiaquatic arthropods including water striders and springtails can jump from the water surface to avoid sudden dangers like predator attacks. It was reported recently that the jump of medium-sized water striders is a result of surface-tension-dominated interaction of thin cylindrical legs and water, with the leg movement speed nearly optimized to achieve the maximum takeoff velocity. Here we describe the mathematical theories to analyze this exquisite feat of nature by combining the review of existing models for floating and jumping and the introduction of the hitherto neglected capillary forces at the cylinder tips. The theoretically predicted dependence of body height on time is shown to match the observations of the jumps of the water striders and springtails regardless of the length of locomotory appendages. The theoretical framework can be used to understand the design principle of small jumping animals living on water and to develop biomimetic locomotion technology in semiaquatic environments.

  19. The effects of electromyostimulation training and basketball practice on muscle strength and jumping ability.

    Science.gov (United States)

    Maffiuletti, N A; Cometti, G; Amiridis, I G; Martin, A; Pousson, M; Chatard, J C

    2000-08-01

    The aim of this study was to investigate the influence of a 4-week electromyostimulation training program on the strength of the knee extensors and the vertical jump performance of 10 basketball players. Electromyostimulation sessions were carried out 3 times weekly; each session consisted of 48 contractions. Testing was carried out before and after the electromyostimulation training program (week 4) and once more after 4 weeks of normal basketball training (week 8). At week 4, isokinetic strength increased significantly (p training increased also isometric strength at the two angles adjacent to the training angle (p jump increased significantly by 14% at week 4 (p jump showed no change. At week 8, gains in isokinetic, isometric strength and squat-jump performance were maintained and the counter movement jump performance increased significantly by 17% (ptraining program enhanced knee extensor strength and squat jump performance of basketball players.

  20. Thersites: a `jumping' Trojan?

    Science.gov (United States)

    Tsiganis, K.; Dvorak, R.; Pilat-Lohinger, E.

    2000-02-01

    In this paper, we examine the dynamical evolution of the asteroid (1868) Thersites, a member of the Trojan belt. Thersites is librating around the Lagrangian point L_4, following, however, a chaotic orbit. The equations of motion for Thersites as well as for a distribution of neighboring initial conditions are integrated numerically for 50 million years in the Outer Solar System model (OSS), which consists of the Sun and the four giant planets. Our results indicate that the probability that this asteroid will eventually escape from the Trojan swarm is rather high. In fact, 20% from our initial distribution escaped within the integration time. Many of the remaining ones also show characteristic `jumps' in the orbital elements, especially the inclination. Secular resonances involving the nodes of the outer planets are found to be responsible for this chaotic behavior. The width of libration and eccentricity values that lead to grossly unstable orbits are calculated and compared with previously known results on the stability of the Trojans. Finally, a very interesting behavior has been observed for one of the escaping asteroids as he `jumped' from L_4 to L_5 where he remained performing a highly inclined libration for ~ 2 Myrs before escaping from the Trojan swarm. According to Homer, Thersites was not only the ugliest of all Greeks that took part in the Trojan war, but also had the most intolerable personality. His nasty habit of making fun of everybody cost him his life, as the last person for whom he spoke ironically about was Achilles, the mightiest warrior of all Greeks, who killed Thersites with just one punch!

  1. Evaluation of international and local magnetic rope testing instrument defect detection capabilities and resolution, particularly in respect of low rotation, multi-layer rope constructions.

    CSIR Research Space (South Africa)

    Dohm, M

    1999-05-01

    Full Text Available testing machine and pre-tensioned to 9,6 tons, which is 10% of the ultimate breaking strength of a new rope. The reason for tensioning the rope is to simulate rope conditions in-service. Each contractor was required to fit his instrument to the rope...-of-strength estimate.14. The above literature indicates that instruments are commercially available which exhibit high resolution which result in acceptable non-destructive rope inspection results. At the Mine Hoisting 93 Conference in London the following...

  2. Regularized Biot–Savart Laws for Modeling Magnetic Flux Ropes

    Science.gov (United States)

    Titov, Viacheslav S.; Downs, Cooper; Mikić, Zoran; Török, Tibor; Linker, Jon A.; Caplan, Ronald M.

    2018-01-01

    Many existing models assume that magnetic flux ropes play a key role in solar flares and coronal mass ejections (CMEs). It is therefore important to develop efficient methods for constructing flux-rope configurations constrained by observed magnetic data and the morphology of the pre-eruptive source region. For this purpose, we have derived and implemented a compact analytical form that represents the magnetic field of a thin flux rope with an axis of arbitrary shape and circular cross-sections. This form implies that the flux rope carries axial current I and axial flux F, so that the respective magnetic field is the curl of the sum of axial and azimuthal vector potentials proportional to I and F, respectively. We expressed the vector potentials in terms of modified Biot–Savart laws, whose kernels are regularized at the axis in such a way that, when the axis is straight, these laws define a cylindrical force-free flux rope with a parabolic profile for the axial current density. For the cases we have studied so far, we determined the shape of the rope axis by following the polarity inversion line of the eruptions’ source region, using observed magnetograms. The height variation along the axis and other flux-rope parameters are estimated by means of potential-field extrapolations. Using this heuristic approach, we were able to construct pre-eruption configurations for the 2009 February 13 and 2011 October 1 CME events. These applications demonstrate the flexibility and efficiency of our new method for energizing pre-eruptive configurations in simulations of CMEs.

  3. Jump probabilities in the non-Markovian quantum jump method

    International Nuclear Information System (INIS)

    Haerkoenen, Kari

    2010-01-01

    The dynamics of a non-Markovian open quantum system described by a general time-local master equation is studied. The propagation of the density operator is constructed in terms of two processes: (i) deterministic evolution and (ii) evolution of a probability density functional in the projective Hilbert space. The analysis provides a derivation for the jump probabilities used in the recently developed non-Markovian quantum jump (NMQJ) method (Piilo et al 2008 Phys. Rev. Lett. 100 180402).

  4. Choice of jumping strategy in two standard jumps, squat and countermovement jump--effect of training background or inherited preference?

    DEFF Research Database (Denmark)

    Ravn, Susanne; Voigt, M; Simonsen, Erik Bruun

    1999-01-01

    . The jumps were recorded on highspeed film (500 Hz) combined with registration of ground reaction forces, and net joint moments were calculated by inverse dynamics. The purpose was to investigate the choice of strategy in two standard jumps, squat jump and countermovement jump. The volleyball jump...... was performed with a sequential strategy and the ballet jump was performed with a simultaneous strategy. In the two standard jumps, the choice of strategy was individual and not related to training background. This was additionally confirmed in a test of seven ballet dancers and seven volleyball players....

  5. Hydraulic jumps in a channel

    DEFF Research Database (Denmark)

    Bonn, D.; Andersen, Anders Peter; Bohr, Tomas

    2009-01-01

    We present a study of hydraulic jumps with flow predominantly in one direction, created either by confining the flow to a narrow channel with parallel walls or by providing an inflow in the form of a narrow sheet. In the channel flow, we find a linear height profile upstream of the jump as expected......'s mixing-length theory with a mixing length that is proportional to the height of the fluid layer. Using averaged boundary-layer equations, taking into account the friction with the channel walls and the eddy viscosity, the flow both upstream and downstream of the jump can be understood. For the downstream...... subcritical flow, we assume that the critical height is attained close to the channel outlet. We use mass and momentum conservation to determine the position of the jump and obtain an estimate which is in rough agreement with our experiment. We show that the averaging method with a varying velocity profile...

  6. Observations of magnetic flux ropes during magnetic reconnection in the Earth's magnetotail

    Directory of Open Access Journals (Sweden)

    A. L. Borg

    2012-05-01

    Full Text Available We present an investigation of magnetic flux ropes observed by the four Cluster spacecraft during periods of magnetic reconnection in the Earth's magnetotail. Using a list of 21 Cluster encounters with the reconnection process in the period 2001–2006 identified in Borg et al. (2012, we present the distribution and characteristics of the flux ropes. We find 27 flux ropes embedded in the reconnection outflows of only 11 of the 21 reconnection encounters. Reconnection processes associated with no flux rope observations were not distinguishable from those where flux ropes were observed. Only 7 of the 27 flux ropes show evidence of enhanced energetic electron flux above 50 keV, and there was no clear signature of the flux rope in the thermal particle measurements. We found no clear correlation between the flux rope core field and the prevailing IMF By direction.

  7. Tribological Aspects of the Process of Winding the Steel Rope Around the Winch Drum

    Directory of Open Access Journals (Sweden)

    M. Matejić, , , ,

    2014-03-01

    Full Text Available Proper winding of the steel rope around the winch drum is great importance, mostly for: prolonging the service life of the rope, reduction of deformations of the body and the sides of the drum if the winding of the rope is multilayered, increasing of the safety factors, easier unwinding of the rope while lowering the load, even running of the drive unit, etc. The focus of this paper is on the analysis of the friction which occurs in the process of winding and unwinding the rope around the winch drum. Friction force is in its highest intensity when the rope passes from one layer to another, if the winding of the rope is multilayered. As the result of the research, certain mechanisms of winding of the rope from the aspects of the friction force were obtained, and the effects of the forces on the sides of the drum were analyzed.

  8. Birth of a hydraulic jump

    Science.gov (United States)

    Duchesne, Alexis; Bohr, Tomas; Andersen, Anders

    2017-11-01

    The hydraulic jump, i.e., the sharp transition between a supercritical and a subcritical free-surface flow, has been extensively studied in the past centuries. However, ever since Leonardo da Vinci asked it for the first time, an important question has been left unanswered: How does a hydraulic jump form? We present an experimental and theoretical study of the formation of stationary hydraulic jumps in centimeter wide channels. Two starting situations are considered: The channel is, respectively, empty or filled with liquid, the liquid level being fixed by the wetting properties and the boundary conditions. We then change the flow-rate abruptly from zero to a constant value. In an empty channel, we observe the formation of a stationary hydraulic jump in a two-stage process: First, the channel fills by the advancing liquid front, which undergoes a transition from supercritical to subcritical at some position in the channel. Later the influence of the downstream boundary conditions makes the jump move slowly upstream to its final position. In the pre-filled channel, the hydraulic jump forms at the injector edge and then moves downstream to its final position.

  9. A FLUX ROPE ERUPTION TRIGGERED BY JETS

    International Nuclear Information System (INIS)

    Guo Juan; Zhang Hongqi; Deng Yuanyong; Lin Jiaben; Su Jiangtao; Liu Yu

    2010-01-01

    We present an observation of a filament eruption caused by recurrent chromospheric plasma injections (surges/jets) on 2006 July 6. The filament eruption was associated with an M2.5 two-ribbon flare and a coronal mass ejection (CME). There was a light bridge in the umbra of the main sunspot of NOAA 10898; one end of the filament was terminated at the region close to the light bridge, and recurrent surges were observed to be ejected from the light bridge. The surges occurred intermittently for about 8 hr before the filament eruption, and finally a clear jet was found at the light bridge to trigger the filament eruption. We analyzed the evolutions of the relative darkness of the filament and the loaded mass by the continuous surges quantitatively. It was found that as the occurrence of the surges, the relative darkness of the filament body continued growing for about 3-4 hr, reached its maximum, and kept stable for more than 2 hr until it erupted. If suppose 50% of the ejected mass by the surges could be trapped by the filament channel, then the total loaded mass into the filament channelwill be about 0.57x10 16 g with a momentum of 0.57x10 22 g cm s -1 by 08:08 UT, which is a non-negligible effect on the stability of the filament. Based on the observations, we present a model showing the important role that recurrent chromospheric mass injection play in the evolution and eruption of a flux rope. Our study confirms that the surge activities can efficiently supply the necessary material for some filament formation. Furthermore, our study indicates that the continuous mass with momentum loaded by the surge activities to the filament channel could make the filament unstable and cause it to erupt.

  10. Mussel Spat Ropes Assist Redfin Bully Gobiomorphus huttoni Passage through Experimental Culverts with Velocity Barriers

    Directory of Open Access Journals (Sweden)

    Jonathan D. Tonkin

    2012-09-01

    Full Text Available The application of mussel spat rope for enabling the passage of redfin bully Gobiomorphus huttoni through culverts, which create velocity barriers, was trialled in the laboratory. No fish were able to access the un-roped control pipes whereas 52% successfully negotiated the pipes in the rope treatments. The success of fish ascending treatment pipes suggests mussel spat rope may be effective for enabling the passage of this and other similar fish species through otherwise impassable culverts with velocity barriers.

  11. Acoustic Emission from Elevator Wire Ropes During Tensile Testing

    Science.gov (United States)

    Bai, Wenjie; Chai, Mengyu; Li, Lichan; Li, Yongquan; Duan, Quan

    The acoustic emission (AE) technique was used to monitor the tensile testing process for two kinds of elevator wire ropes in our work. The AE signals from wire breaks were obtained and analyzed by AE parameters and waveforms. The results showed that AE technique can be a useful tool to monitor wire break phenomenon of wire ropes and effectively capture information of wire break signal. The relationship between AE signal characteristics and wire breaks is investigated and it is found that the most effective acoustic signal discriminators are amplitude and absolute energy. Moreover, the wire break signal of two kinds of ropes is a type of burst signal and it is believed that the waveform and spectrum can be applied to analyze the AE wire break signals.

  12. Apex Dips of Experimental Flux Ropes: Helix or Cusp?

    Energy Technology Data Exchange (ETDEWEB)

    Wongwaitayakornkul, Pakorn; Haw, Magnus A.; Bellan, Paul M. [Applied Physics, California Institute of Technology, Pasadena, CA 91125 (United States); Li, Hui [Theoretical Division, Los Alamos National Laboratory, Mail Stop B227, Los Alamos, NM 87545 (United States); Li, Shengtai, E-mail: pwongwai@caltech.edu, E-mail: mhaw@caltech.edu [Mathematical Modeling and Analysis, Los Alamos National Laboratory, Mail Stop B284, Los Alamos, NM 87545 (United States)

    2017-10-20

    We present a new theory for the presence of apex dips in certain experimental flux ropes. Previously such dips were thought to be projections of a helical loop axis generated by the kink instability. However, new evidence from experiments and simulations suggest that the feature is a 2D cusp rather than a 3D helix. The proposed mechanism for cusp formation is a density pileup region generated by nonlinear interaction of neutral gas cones emitted from fast-gas nozzles. The results indicate that density perturbations can result in large distortions of an erupting flux rope, even in the absence of significant pressure or gravitational forces. The density pileup at the apex also suppresses the m = 1 kink mode by acting as a stationary node. Consequently, more accurate density profiles should be considered when attempting to model the stability and shape of solar and astrophysical flux ropes.

  13. Magneto-inductive Sensors for Metallic Ropes in Lift Application

    Directory of Open Access Journals (Sweden)

    Aldo CANOVA

    2010-12-01

    Full Text Available In this paper an innovative system for the contemporary, selective and reliable control of integrity of multiple rope plants is presented. The system is based on magneto-inductive technology and is composed by a magnetic detector connected to an acquisition system. The core of the detector is constituted by an array of Hall sensors properly placed inside the instrument. After a brief introduction to the Non Destructive Techniques applied to the control of metallic ropes, the first part paper deals with the design and behavior of the detector and the acquisition system. In the second part of the paper a performance analysis for different rope size and experimental results on an elevator plants is presented and discussed.

  14. Comparison of the Hang High-Pull and Loaded Jump Squat for the Development of Vertical Jump and Isometric Force-Time Characteristics.

    Science.gov (United States)

    Oranchuk, Dustin J; Robinson, Tracey L; Switaj, Zachary J; Drinkwater, Eric J

    2017-04-15

    Weightlifting movements have high skill demands and require expert coaching. Loaded jumps have a comparably lower skill demand, but may be similarly effective for improving explosive performance. The purpose of this study was to compare vertical jump performance, isometric force, and rate of force development (RFD) following a ten-week intervention employing the hang high-pull (hang-pull) or trap-bar jump squat (jump-squat). Eighteen NCAA Division II swimmers (8 males, 10 females) with at least one year of resistance training experience volunteered to participate. Testing included the squat jump (SJ), countermovement jump (CMJ) and the isometric mid-thigh pull (IMTP). Vertical ground reaction forces were analyzed to obtain jump height and relative peak power. Relative peak force, peak RFD and relative force at five time bands were obtained from the IMTP. Subjects were randomly assigned to either a hang-pull (n = 9) or jump-squat (n = 9) training group and completed a ten-week, volume-equated, periodized training program. While there was a significant main effect of training for both groups, no statistically significant between-group differences were found (p ≥ 0.17) for any of the dependent variables. However, medium effect sizes in favor of the jump-squat training group were seen in SJ height (d = 0.56) and SJ peak power (d = 0.69). Loaded jumps seem equally effective as weightlifting derivatives for improving lower-body power in experienced athletes. Since loaded jumps require less skill and less coaching expertise than weightlifting, loaded jumps should be considered where coaching complex movements is difficult.

  15. 40 CFR 180.1097 - GBM-ROPE; exemption from the requirement of a tolerance.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false GBM-ROPE; exemption from the... Exemptions From Tolerances § 180.1097 GBM-ROPE; exemption from the requirement of a tolerance. The grape berry moth pheromone (GBM-ROPE) containing the active ingredients (Z)-9-dedecenyl acetate and (Z)-11...

  16. Flux ropes and 3D dynamics in the relaxation scaling experiment

    International Nuclear Information System (INIS)

    Intrator, T P; Feng, Y; Weber, T E; Swan, H O; Sun, X; Dorf, L; Sears, J A

    2013-01-01

    Flux ropes form basic building blocks for magnetic dynamics in many plasmas, are macroscopic analogues of magnetic field lines, and are irreducibly three dimensional (3D). We have used the relaxation scaling experiment (RSX) to study flux ropes, and have found many new features involving 3D dynamics, kink instability driven reconnection, nonlinearly stable but kinking flux ropes, and large flows. (paper)

  17. Elliptic-cylindrical analytical flux-rope model for ICMEs

    Science.gov (United States)

    Nieves-Chinchilla, T.; Linton, M.; Hidalgo, M. A. U.; Vourlidas, A.

    2016-12-01

    We present an analytical flux-rope model for realistic magnetic structures embedded in Interplanetary Coronal Mass Ejections. The framework of this model was established by Nieves-Chinchilla et al. (2016) with the circular-cylindrical analytical flux rope model and under the concept developed by Hidalgo et al. (2002). Elliptic-cylindrical geometry establishes the first-grade of complexity of a series of models. The model attempts to describe the magnetic flux rope topology with distorted cross-section as a possible consequence of the interaction with the solar wind. In this model, the flux rope is completely described in the non-euclidean geometry. The Maxwell equations are solved using tensor calculus consistently with the geometry chosen, invariance along the axial component, and with the only assumption of no radial current density. The model is generalized in terms of the radial dependence of the poloidal current density component and axial current density component. The misalignment between current density and magnetic field is studied in detail for the individual cases of different pairs of indexes for the axial and poloidal current density components. This theoretical analysis provides a map of the force distribution inside of the flux-rope. The reconstruction technique has been adapted to the model and compared with in situ ICME set of events with different in situ signatures. The successful result is limited to some cases with clear in-situ signatures of distortion. However, the model adds a piece in the puzzle of the physical-analytical representation of these magnetic structures. Other effects such as axial curvature, expansion and/or interaction could be incorporated in the future to fully understand the magnetic structure. Finally, the mathematical formulation of this model opens the door to the next model: toroidal flux rope analytical model.

  18. Testing methods of steel wi re ropes at the anchor

    Directory of Open Access Journals (Sweden)

    Stanislav Kropuch

    2012-12-01

    Full Text Available The present paper introduces an application of the acoustic andthermographic method in the defectoscopic testing of immobilesteel wire ropes at the most critical point, the anchor. Firstmeasurements and their results by these new defectoscopic methodsare shown. In defectoscopic tests at the anchor, the widelyused magnetic method gives unreliable results, and therefore presentsa problem for steel wire defectoscopy. Application of the two new methods in the steel wire defectoscopy at the anchor point will enableincreased safety measures at the anchor of steel wire ropes in bridge, roof, tower and aerial cable lift constructions.

  19. Variation in free jumping technique within and among horses with little experience in show jumping

    NARCIS (Netherlands)

    Santamaria, S.; Bobbert, M.F.; Back, W.; Barneveld, A.; van Weeren, P.R.

    2004-01-01

    Objective - To quantify variation in the jumping technique within and among young horses with little jumping experience, establish relationships between kinetic and kinematic variables, and identify a limited set of variables characteristic for detecting differences in jumping performance among

  20. Role of steel wire ropes in mine safety

    CSIR Research Space (South Africa)

    Peake, A

    2008-11-01

    Full Text Available Today there are an estimated 2 300 steel wire ropes installed in roughly 200 underground mines in South Africa. These mines employ more than 280 000 workers underground and hoist several millions of tonnes of rock to the surface every month...

  1. Coronal Flux Rope Catastrophe Associated With Internal Energy Release

    Science.gov (United States)

    Zhuang, Bin; Hu, Youqiu; Wang, Yuming; Zhang, Quanhao; Liu, Rui; Gou, Tingyu; Shen, Chenglong

    2018-04-01

    Magnetic energy during the catastrophe was predominantly studied by the previous catastrophe works since it is believed to be the main energy supplier for the solar eruptions. However, the contribution of other types of energies during the catastrophe cannot be neglected. This paper studies the catastrophe of the coronal flux rope system in the solar wind background, with emphasis on the transformation of different types of energies during the catastrophe. The coronal flux rope is characterized by its axial and poloidal magnetic fluxes and total mass. It is shown that a catastrophe can be triggered by not only an increase but also a decrease of the axial magnetic flux. Moreover, the internal energy of the rope is found to be released during the catastrophe so as to provide energy for the upward eruption of the flux rope. As far as the magnetic energy is concerned, it provides only part of the energy release, or even increases during the catastrophe, so the internal energy may act as the dominant or even the unique energy supplier during the catastrophe.

  2. Counterstreaming electrons in small interplanetary magnetic flux ropes

    Science.gov (United States)

    Feng, H. Q.; Zhao, G. Q.; Wang, J. M.

    2015-12-01

    Small interplanetary magnetic flux ropes (SIMFRs) are commonly observed by spacecraft at 1 AU, and their origin still remains disputed. We investigated the counterstreaming suprathermal electron (CSE) signatures of 106 SIMFRs measured by Wind during 1995-2005. We found that 79 (75%) of the 106 flux ropes contain CSEs, and the percentages of counterstreaming vary from 8% to 98%, with a mean value of 51%. CSEs are often observed in magnetic clouds (MCs), and this indicates these MCs are still attached to the Sun at both ends. CSEs are also related to heliospheric current sheets (HCSs) and the Earth's bow shock. We divided the SIMFRs into two categories: The first category is far from HCSs, and the second category is in the vicinity of HCSs. The first category has 57 SIMFRs, and only 7 of 57 ropes have no CSEs. This ratio is similar to that of MCs. The second category has 49 SIMFRs; however, 20 of the 49 events have no CSEs. This ratio is larger than that of MCs. These two categories have different origins. One category originates from the solar corona, and most ropes are still connected to the Sun at both ends. The other category is formed near HCSs in the interplanetary space.

  3. Timeless Approach to Quantum Jumps

    Directory of Open Access Journals (Sweden)

    Ignazio Licata

    2015-10-01

    Full Text Available According to the usual quantum description, the time evolution of the quantum state is continuous and deterministic except when a discontinuous and indeterministic collapse of state vector occurs. The collapse has been a central topic since the origin of the theory, although there are remarkable theoretical proposals to understand its nature, such as the Ghirardi–Rimini–Weber. Another possibility could be the assimilation of collapse with the now experimentally well established phenomenon of quantum jump, postulated by Bohr already in 1913. The challenge of nonlocality offers an opportunity to reconsider the quantum jump as a fundamental element of the logic of the physical world, rather than a subsidiary accident. We propose here a simple preliminary model that considers quantum jumps as processes of entry to and exit from the usual temporal domain to a timeless vacuum, without contradicting the quantum relativistic formalism, and we present some potential connections with particle physics. Quanta 2015; 4: 10–26.

  4. Quantum jumps on Anderson attractors

    Science.gov (United States)

    Yusipov, I. I.; Laptyeva, T. V.; Ivanchenko, M. V.

    2018-01-01

    In a closed single-particle quantum system, spatial disorder induces Anderson localization of eigenstates and halts wave propagation. The phenomenon is vulnerable to interaction with environment and decoherence that is believed to restore normal diffusion. We demonstrate that for a class of experimentally feasible non-Hermitian dissipators, which admit signatures of localization in asymptotic states, quantum particle opts between diffusive and ballistic regimes, depending on the phase parameter of dissipators, with sticking about localization centers. In a diffusive regime, statistics of quantum jumps is non-Poissonian and has a power-law interval, a footprint of intermittent locking in Anderson modes. Ballistic propagation reflects dispersion of an ordered lattice and introduces the second timescale for jumps, resulting in non-nonmonotonous probability distribution. Hermitian dephasing dissipation makes localization features vanish, and Poissonian jump statistics along with normal diffusion are recovered.

  5. Pull-pull position control of dual motor wire rope transmission.

    Science.gov (United States)

    Guo, Quan; Jiao, Zongxia; Yan, Liang; Yu, Qian; Shang, Yaoxing

    2016-08-01

    Wire rope transmission is very efficient because of the small total moving object mass. The wire rope could only transmit pulling force. Therefore it has to be kept in a tightened state during transmission; in high speed applications the dynamic performance depends on the rope's stiffness, which can be adjusted by the wire rope tension. To improve the system dynamic performance output, this paper proposes a novel pull-pull method based on dual motors connected by wire ropes, for precise, high speed position control applications. The method can regulate target position and wire rope tension simultaneously. Wire ropes remain in a pre-tightening state at all times, which prevents the influence of elasticity and reduces the position tracking error in the changing direction process. Simulations and experiments were conducted; the results indicate that both position precision and superior dynamic performance can be synchronously achieved. The research is relevant to space craft precision pointing instruments.

  6. Scaling of interfacial jump conditions

    International Nuclear Information System (INIS)

    Quezada G, S.; Vazquez R, A.; Espinosa P, G.

    2015-09-01

    To model the behavior of a nuclear reactor accurately is needed to have balance models that take into account the different phenomena occurring in the reactor. These balances have to be coupled together through boundary conditions. The boundary conditions have been studied and different treatments have been given to the interface. In this paper is a brief description of some of the interfacial jump conditions that have been proposed in recent years. Also, the scaling of an interfacial jump condition is proposed, for coupling the different materials that are in contact within a nuclear reactor. (Author)

  7. Flux rope breaking and formation of a rotating blowout jet

    Science.gov (United States)

    Joshi, Navin Chandra; Nishizuka, Naoto; Filippov, Boris; Magara, Tetsuya; Tlatov, Andrey G.

    2018-05-01

    We analysed a small flux rope eruption converted into a helical blowout jet in a fan-spine configuration using multiwavelength observations taken by Solar Dynamics Observatory, which occurred near the limb on 2016 January 9. In our study, first, we estimated the fan-spine magnetic configuration with the potential-field calculation and found a sinistral small filament inside it. The filament along with the flux rope erupted upwards and interacted with the surrounding fan-spine magnetic configuration, where the flux rope breaks in the middle section. We observed compact brightening, flare ribbons, and post-flare loops underneath the erupting filament. The northern section of the flux rope reconnected with the surrounding positive polarity, while the southern section straightened. Next, we observed the untwisting motion of the southern leg, which was transformed into a rotating helical blowout jet. The sign of the helicity of the mini-filament matches the one of the rotating jets. This is consistent with recent jet models presented by Adams et al. and Sterling et al. We focused on the fine thread structure of the rotating jet and traced three blobs with the speed of 60-120 km s- 1, while the radial speed of the jet is ˜400 km s- 1. The untwisting motion of the jet accelerated plasma upwards along the collimated outer spine field lines, and it finally evolved into a narrow coronal mass ejection at the height of ˜9Rsun. On the basis of detailed analysis, we discussed clear evidence of the scenario of the breaking of the flux rope and the formation of the helical blowout jet in the fan-spine magnetic configuration.

  8. I like to jump on my trampoline: an analysis of drawings from 8- to 12-year-old children beginning a weight-management program.

    Science.gov (United States)

    Walker, Kathleen; Caine-Bish, Natalie; Wait, Samantha

    2009-07-01

    The main objective of this exploratory study was to assess children's perceptions of their activity choices as they began a weight-management program for overweight children and their families. During pretesting of a 10-week weight-management program, participating children were asked to draw pictures of themselves doing something. The drawings of 35 children, ages 8 to 12, were qualitatively analyzed. The analysis focused on (a) the type of activities (i.e., physical or sedentary) children chose to convey, (b) the specific focus of the activities described, (c) the children's future activity choices, and (d) the children's responses to the activities they drew. Seventy-one percent of the participating children drew themselves engaged in a physical activity. These results are notable and suggest positive perceptions of physical activities. Children's views related to their activity choices might play a role in designing weight-management programs that successfully increase children's adherence to long-term physical activity.

  9. Jump Training in Youth Soccer Players: Effects of Haltere Type Handheld Loading.

    Science.gov (United States)

    Rosas, F; Ramirez-Campillo, R; Diaz, D; Abad-Colil, F; Martinez-Salazar, C; Caniuqueo, A; Cañas-Jamet, R; Loturco, I; Nakamura, F Y; McKenzie, C; Gonzalez-Rivera, J; Sanchez-Sanchez, J; Izquierdo, M

    2016-12-01

    The aim of this study was to compare the effects of a jump training program, with or without haltere type handheld loading, on maximal intensity exercise performance. Youth soccer players (12.1±2.2 y) were assigned to either a jump training group (JG, n=21), a jump training group plus haltere type handheld loading (LJG, n=21), or a control group following only soccer training (CG, n=21). Athletes were evaluated for maximal-intensity performance measures before and after 6 weeks of training, during an in-season training period. The CG achieved a significant change in maximal kicking velocity only (ES=0.11-0.20). Both jump training groups improved in right leg (ES=0.28-0.45) and left leg horizontal countermovement jump with arms (ES=0.32-0.47), horizontal countermovement jump with arms (ES=0.28-0.37), vertical countermovement jump with arms (ES=0.26), 20-cm drop jump reactive strength index (ES=0.20-0.37), and maximal kicking velocity (ES=0.27-0.34). Nevertheless, compared to the CG, only the LJG exhibited greater improvements in all performance tests. Therefore, haltere type handheld loading further enhances performance adaptations during jump training in youth soccer players. © Georg Thieme Verlag KG Stuttgart · New York.

  10. Aerial Rotation Effects on Vertical Jump Performance Among Highly Skilled Collegiate Soccer Players.

    Science.gov (United States)

    Barker, Leland A; Harry, John R; Dufek, Janet S; Mercer, John A

    2017-04-01

    Barker, LA, Harry, JR, Dufek, JS, and Mercer, JA. Aerial rotation effects on vertical jump performance among highly skilled collegiate soccer players. J Strength Cond Res 31(4): 932-938, 2017-In soccer matches, jumps involving rotations occur when attempting to head the ball for a shot or pass from set pieces, such as corner kicks, goal kicks, and lob passes. However, the 3-dimensional ground reaction forces used to perform rotational jumping tasks are currently unknown. Therefore, the purpose of this study was to compare bilateral, 3-dimensional, and ground reaction forces of a standard countermovement jump (CMJ0) with those of a countermovement jump with a 180° rotation (CMJ180) among Division-1 soccer players. Twenty-four participants from the soccer team of the University of Nevada performed 3 trials of CMJ0 and CMJ180. Dependent variables included jump height, downward and upward phase times, vertical (Fz) peak force and net impulse relative to mass, and medial-lateral and anterior-posterior force couple values. Statistical significance was set a priori at α = 0.05. CMJ180 reduced jump height, increased the anterior-posterior force couple in the downward and upward phases, and increased upward peak Fz (p ≤ 0.05). All other variables were not significantly different between groups (p > 0.05). However, we did recognize that downward peak Fz trended lower in the CMJ0 condition (p = 0.059), and upward net impulse trended higher in the CMJ0 condition (p = 0.071). It was concluded that jump height was reduced during the rotational jumping task, and rotation occurred primarily via AP ground reaction forces through the entire countermovement jump. Coaches and athletes may consider additional rotational jumping in their training programs to mediate performance decrements during rotational jump tasks.

  11. Jump as Far as You Can [Problem Solvers: Solutions

    Science.gov (United States)

    Yigit, Melike; Bofferding, Laura; Warnock, Miranda

    2014-01-01

    The How Far Do You Think You Can Jump? activity (see EJ1174770) was completed in three different contexts: an after-school mathematics enrichment program at Woodland and Country Schools in Weston, Massachusetts; a small-group pull-out of second graders at Wren Elementary in Piedmont, South Carolina; and a family math night in Lafayette, Indiana.…

  12. Pressure Jumps during Drainage in Macroporous Soils

    DEFF Research Database (Denmark)

    Soto, Diego; Paradelo Pérez, Marcos; Corral, A

    2018-01-01

    Tensiometer readings obtained at high resolution during drainage of structured soil columns revealed pressure jumps with long range correlations and burst sequences with a hierarchical structure. The statistical properties of jumps are similar to Haines jumps described in invasion percolation...... processes at pore scale, but they are much larger in amplitude and duration. Pressure jumps can result from transient redistribution of water potential in internal regions of soil and can be triggered during drainage by capillary displacements at the scale of structural pores....

  13. The identification of price jumps

    Czech Academy of Sciences Publication Activity Database

    Hanousek, Jan; Kočenda, Evžen; Novotný, Jan

    2012-01-01

    Roč. 18, č. 1 (2012), s. 53-77 ISSN 0929-9629 R&D Projects: GA ČR(CZ) GAP403/11/0020; GA ČR(CZ) GBP402/12/G097 Institutional support: PRVOUK-P23 Keywords : price jumps * non-parametric testing * financial econometrics Subject RIV: AH - Economics

  14. Regime Jumps in Electricity Prices

    NARCIS (Netherlands)

    R. Huisman (Ronald); R.J. Mahieu (Ronald)

    2001-01-01

    textabstractElectricity prices are known to be very volatile and subject to frequent jumps due to system breakdown, demand shocks, and inelastic supply. As many international electricity markets are in some state of deregulation, more and more participants in these markets are exposed to these

  15. Mesopause Jumps: Observations and Explanation

    Science.gov (United States)

    Luebken, F. J.; Becker, E.; Höffner, J.; Viehl, T. P.; Latteck, R.

    2017-12-01

    Recent high resolution temperature measurements by resonance lidar at Davis (69°S) occasionally showed a sudden mesopause altitude increase by 5km and an associated mesopause temperature decrease by 10K. We present further observations which are closely related to this `mesopause jump', namely the increase of mean height of polar mesospheric summer echoes (PMSE) observed by a VHF radar, very strong westward winds in the upper mesosphere measured by an MF radar, and relatively large eastward winds in the stratosphere taken from reanalysis. We compare to similar observations in the Northern Hemisphere, namely at ALOMAR (69°N) where such mesopause jumps have never been observed. We present a detailed explanation of mesopause jumps. They occur only when stratospheric winds are moderately eastward and mesospheric winds are very large (westward). Under these conditions, gravity waves with comparatively large eastward phase speeds can pass the stratosphere and propagate to the lower thermosphere because their vertical wavelengths in the mesosphere are rather large which implies reduced dynamical stability. When finally breaking in the lower thermosphere, these waves drive an enhanced residual circulation that causes a cold and high-altitude mesopause. The conditions for a mesopause jump occur only in the Southern Hemisphere (SH) and are associated with the late breakdown of the polar vortex.Mesopause jumps are primarily, but not only, observed prior and close to solstice. We also show that during the onset of PMSE in the SH, stratospheric zonal winds are still eastward (up to 30m/s), and that the onset is not closely related to the transition of the stratospheric circulation.

  16. Effects of timing of signal indicating jump directions on knee biomechanics in jump-landing-jump tasks.

    Science.gov (United States)

    Stephenson, Mitchell L; Hinshaw, Taylour J; Wadley, Haley A; Zhu, Qin; Wilson, Margaret A; Byra, Mark; Dai, Boyi

    2018-03-01

    A variety of the available time to react (ATR) has been utilised to study knee biomechanics during reactive jump-landing tasks. The purpose was to quantify knee kinematics and kinetics during a jump-land-jump task of three possible directions as the ATR was reduced. Thirty-four recreational athletes performed 45 trials of a jump-land-jump task, during which the direction of the second jump (lateral, medial or vertical) was indicated before they initiated the first jump, the instant they initiated the first jump, 300 ms before landing, 150 ms before landing or at the instant of landing. Knee joint angles and moments close to the instant of landing were significantly different when the ATR was equal to or more than 300 ms before landing, but became similar when the ATR was 150 ms or 0 ms before landing. As the ATR was decreased, knee moments decreased for the medial jump direction, but increased for the lateral jump direction. When the ATR is shorter than an individual's reaction time, the movement pattern cannot be pre-planned before landing. Knee biomechanics are dependent on the timing of the signal and the subsequent jump direction. Precise control of timing and screening athletes with low ATR are suggested.

  17. A Novel Ropes-DrivenWideband Piezoelectric Vibration Energy Harvester

    Directory of Open Access Journals (Sweden)

    Jinhui Zhang

    2016-12-01

    Full Text Available This paper presents a novel piezoelectric vibration energy harvester (PVEH in which a high-frequency generating beam (HFGB is driven by an array of low-frequency driving beams (LFDBs using ropes. Two mechanisms based on frequency upconversion and multimodal harvesting work together to broaden the frequency bandwidth of the proposed vibration energy harvester (VEH. The experimental results show that the output power of generating beam (GB remains unchanged with the increasing number of driving beams (DBs, compared with the traditional arrays of beams vibration energy harvester (AB-VEH, and the output power and bandwidth behavior can be adjusted by parameters such as acceleration, rope margin, and stiffness of LFDBs, which shows the potential to achieve unlimited wideband vibration energy-harvesting for a variable environment.

  18. HOOKED FLARE RIBBONS AND FLUX-ROPE-RELATED QSL FOOTPRINTS

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Jie; Li, Hui [Key Laboratory of Dark Matter and Space Astronomy, Purple Mountain Observatory, CAS, Nanjing 210008 (China); Gilchrist, Stuart A.; Aulanier, Guillaume; Schmieder, Brigitte; Pariat, Etienne, E-mail: nj.lihui@pmo.ac.cn [LESIA, Observatoire de Paris, PSL Research University, CNRS, Sorbonne Universités, UPMC Univ. Paris 06, Univ. Paris-Diderot, Sorbonne Paris Cité, 5 place Jules Janssen, F-92195 Meudon (France)

    2016-05-20

    We studied the magnetic topology of active region 12158 on 2014 September 10 and compared it with the observations before and early in the flare that begins at 17:21 UT (SOL2014-09-10T17:45:00). Our results show that the sigmoidal structure and flare ribbons of this active region observed by the Solar Dynamics Observatory /Atmospheric Imaging Assembly can be well reproduced from a Grad–Rubin nonlinear force-free field extrapolation method. Various inverse-S- and inverse-J-shaped magnetic field lines, which surround a coronal flux rope, coincide with the sigmoid as observed in different extreme-ultraviolet wavelengths, including its multithreaded curved ends. Also, the observed distribution of surface currents in the magnetic polarity where it was not prescribed is well reproduced. This validates our numerical implementation and setup of the Grad–Rubin method. The modeled double inverse-J-shaped quasi-separatrix layer (QSL) footprints match the observed flare ribbons during the rising phase of the flare, including their hooked parts. The spiral-like shape of the latter may be related to a complex pre-eruptive flux rope with more than one turn of twist, as obtained in the model. These ribbon-associated flux-rope QSL footprints are consistent with the new standard flare model in 3D, with the presence of a hyperbolic flux tube located below an inverse-teardrop-shaped coronal QSL. This is a new step forward forecasting the locations of reconnection and ribbons in solar flares and the geometrical properties of eruptive flux ropes.

  19. Material Selection for a Manual Winch Rope Drum

    OpenAIRE

    Moses F. Oduori; Enoch K. Musyoka; Thomas O. Mbuya

    2016-01-01

    The selection of materials is an essential task in mechanical design processes. This paper sets out to demonstrate the application of analytical decision making during mechanical design and, particularly, in selecting a suitable material for a given application. Equations for the mechanical design of a manual winch rope drum are used to derive quantitative material performance indicators, which are then used in a multiple attribute decision making (MADM) model to rank the candidate materials....

  20. HOOKED FLARE RIBBONS AND FLUX-ROPE-RELATED QSL FOOTPRINTS

    International Nuclear Information System (INIS)

    Zhao, Jie; Li, Hui; Gilchrist, Stuart A.; Aulanier, Guillaume; Schmieder, Brigitte; Pariat, Etienne

    2016-01-01

    We studied the magnetic topology of active region 12158 on 2014 September 10 and compared it with the observations before and early in the flare that begins at 17:21 UT (SOL2014-09-10T17:45:00). Our results show that the sigmoidal structure and flare ribbons of this active region observed by the Solar Dynamics Observatory /Atmospheric Imaging Assembly can be well reproduced from a Grad–Rubin nonlinear force-free field extrapolation method. Various inverse-S- and inverse-J-shaped magnetic field lines, which surround a coronal flux rope, coincide with the sigmoid as observed in different extreme-ultraviolet wavelengths, including its multithreaded curved ends. Also, the observed distribution of surface currents in the magnetic polarity where it was not prescribed is well reproduced. This validates our numerical implementation and setup of the Grad–Rubin method. The modeled double inverse-J-shaped quasi-separatrix layer (QSL) footprints match the observed flare ribbons during the rising phase of the flare, including their hooked parts. The spiral-like shape of the latter may be related to a complex pre-eruptive flux rope with more than one turn of twist, as obtained in the model. These ribbon-associated flux-rope QSL footprints are consistent with the new standard flare model in 3D, with the presence of a hyperbolic flux tube located below an inverse-teardrop-shaped coronal QSL. This is a new step forward forecasting the locations of reconnection and ribbons in solar flares and the geometrical properties of eruptive flux ropes.

  1. Deployment of a pentagonal hollow-rope tensegrity module

    OpenAIRE

    Rhode-Barbarigos , Landolf; Bel Hadj Ali , Nizar; Motro , René; Smith , Ian F.C.

    2011-01-01

    International audience; Tensegrity structures are spatial reticulated structures composed of cables and struts. Tensegrity systems are good candidates for adaptive and deployable structures and thus have applications in various engineering fields. A "hollow-rope" tensegrity system composed of tensegrity-ring modules has been demonstrated by the authors to be a viable system for a pedestrian bridge. This paper focuses on the deployment of pentagonal ring modules. A geometric study is performed...

  2. Design aspects of a deployable tensegrity-hollow-rope footbridge

    OpenAIRE

    Rhode-Barbarigos , Landolf; Bel Hadj Ali , Nizar; Motro , René; Smith , Ian F.C.

    2012-01-01

    International audience; Tensegrity structures are composed of cables and struts in a pre-stressed self-equilibrium. Although tensegrity first appeared in the 1950s, it is seldom used in civil engineering. This paper focuses on the design aspects of a deployable tensegrity-hollow-rope footbridge. Deployment is usually not a critical design case for traditional deployable structures. However, for tensegrity systems deployment may be critical due to the actuation required. In this paper, deploym...

  3. The Role of Kinetic Alfven Waves in Plasma Transport in an Ion-scale Flux Rope

    Science.gov (United States)

    Tang, B.; Li, W.; Wang, C.; Dai, L.

    2017-12-01

    Magnetic flux ropes, if generated by multiply X-line reconnections, would be born as a crater type one, meaning the plasma density within is relatively high. They will then evolve into typical flux ropes as plasma are transported away along the magnetic field lines [Zhang et al., 2010]. In this study, we report an ion-scale flux rope observed by MMS on November 28, 2016, which is accompanied by strong kinetic Alfven waves (KAW). The related wave parallel electric field can effectively accelerate electrons inside the flux rope by Landau resonance, resulting into a significant decrease of the electron at 90° pitch angle. The change of electron pitch angle distribution would cause the rapid plasma transport along the magnetic field lines, and help the flux rope evolve into a strong magnetic core in a short time. This wave-particle interaction would be a candidate mechanism to explain the rareness of crater flux ropes in reality.

  4. Flux Rope Acceleration and Enhanced Magnetic Reconnection Rate

    International Nuclear Information System (INIS)

    C.Z. Cheng; Y. Ren; G.S. Choe; Y.-J. Moon

    2003-01-01

    A physical mechanism of flares, in particular for the flare rise phase, has emerged from our 2-1/2-dimensional resistive MHD simulations. The dynamical evolution of current-sheet formation and magnetic reconnection and flux-rope acceleration subject to continuous, slow increase of magnetic shear in the arcade are studied by employing a non-uniform anomalous resistivity in the reconnecting current sheet under gravity. The simulation results directly relate the flux rope's accelerated rising motion with an enhanced magnetic reconnection rate and thus an enhanced reconnection electric field in the current sheet during the flare rise phase. The simulation results provide good quantitative agreements with observations of the acceleration of flux rope, which manifests in the form of SXR ejecta or erupting filament or CMEs, in the low corona. Moreover, for the X-class flare events studied in this paper the peak reconnection electric field is about O(10 2 V/m) or larger, enough to accelerate p articles to over 100 keV in a field-aligned distance of 10 km. Nonthermal electrons thus generated can produce hard X-rays, consistent with impulsive HXR emission observed during the flare rise phase

  5. The sagging rope sign in achondroplasia - different from Perthes' disease

    International Nuclear Information System (INIS)

    Shingade, Viraj U.; Song, Hae-Ryong; Lee, Seok-Hyun; Suh, Seung-Woo; Oh, Chang-Wug; Hong, Jun-Seok

    2006-01-01

    The sagging rope sign is a radio-opaque line, seen on radiographs of the hips, with Perthes' disease. The main purpose of this study was to determine the incidence, cause and importance of this sign in achondroplasia, and to reveal how it differs from in Perthes' disease. Serial radiograms, along with 2-dimensional and 3-dimensional CT images were studied in 42 achondroplasic patients. Forty-two achondroplasic patients, reported at our institute (for routine outpatient consultation, spine surgeries, deformity corrections, limb-lengthening procedures) were included in this study. There were 26 males and 16 females. The sign was observed bilaterally, in all patients. Evaluation of CT images revealed spherical heads, with presence of circumferential overhang in all hips. This circumferential overhang, seen on 3-D CT scan, corresponded to the sagging rope sign on radiographs. Presence of the sagging rope sign in bilateral hips is a characteristic feature of achondroplasia. It usually appears before epiphyseal closure. Its cause, incidence, and nature differ from Perthes' disease, and its presence does not carry a bad prognosis in achondroplasia. (orig.)

  6. Time domain structures in a colliding magnetic flux rope experiment

    Science.gov (United States)

    Tang, Shawn Wenjie; Gekelman, Walter; Dehaas, Timothy; Vincena, Steve; Pribyl, Patrick

    2017-10-01

    Electron phase-space holes, regions of positive potential on the scale of the Debye length, have been observed in auroras as well as in laboratory experiments. These potential structures, also known as Time Domain Structures (TDS), are packets of intense electric field spikes that have significant components parallel to the local magnetic field. In an ongoing investigation at UCLA, TDS were observed on the surface of two magnetized flux ropes produced within the Large Plasma Device (LAPD). A barium oxide (BaO) cathode was used to produce an 18 m long magnetized plasma column and a lanthanum hexaboride (LaB6) source was used to create 11 m long kink unstable flux ropes. Using two probes capable of measuring the local electric and magnetic fields, correlation analysis was performed on tens of thousands of these structures and their propagation velocities, probability distribution function and spatial distribution were determined. The TDS became abundant as the flux ropes collided and appear to emanate from the reconnection region in between them. In addition, a preliminary analysis of the permutation entropy and statistical complexity of the data suggests that the TDS signals may be chaotic in nature. Work done at the Basic Plasma Science Facility (BaPSF) at UCLA which is supported by DOE and NSF.

  7. Experiments and simulations of flux rope dynamics in a plasma

    Science.gov (United States)

    Intrator, Thomas; Abbate, Sara; Ryutov, Dmitri

    2005-10-01

    The behavior of flux ropes is a key issue in solar, space and astrophysics. For instance, magnetic fields and currents on the Sun are sheared and twisted as they store energy, experience an as yet unidentified instability, open into interplanetary space, eject the plasma trapped in them, and cause a flare. The Reconnection Scaling Experiment (RSX) provides a simple means to systematically characterize the linear and non-linear evolution of driven, dissipative, unstable plasma-current filaments. Topology evolves in three dimensions, supports multiple modes, and can bifurcate to quasi-helical equilibria. The ultimate saturation to a nonlinear force and energy balance is the link to a spectrum of relaxation processes. RSX has adjustable energy density β1 to β 1, non-negligible equilibrium plasma flows, driven steady-state scenarios, and adjustable line tying at boundaries. We will show magnetic structure of a kinking, rotating single line tied column, magnetic reconnection between two flux ropes, and pictures of three braided flux ropes. We use computed simulation movies to bridge the gap between the solar physics scales and experimental data with computational modeling. In collaboration with Ivo Furno, Tsitsi Madziwa-Nussinovm Giovanni Lapenta, Adam Light, Los Alamos National Laboratory; Sara Abbate, Torino Polytecnico; and Dmitri Ryutov, Lawrence Livermore National Laboratory.

  8. Locomotion of Mexican jumping beans

    International Nuclear Information System (INIS)

    West, Daniel M; K Lal, Ishan; Leamy, Michael J; Hu, David L

    2012-01-01

    The Mexican jumping bean, Laspeyresia saltitans, consists of a hollow seed housing a moth larva. Heating by the sun induces movements by the larva which appear as rolls, jumps and flips by the bean. In this combined experimental, numerical and robotic study, we investigate this unique means of rolling locomotion. Time-lapse videography is used to record bean trajectories across a series of terrain types, including one-dimensional channels and planar surfaces of varying inclination. We find that the shell encumbers the larva's locomotion, decreasing its speed on flat surfaces by threefold. We also observe that the two-dimensional search algorithm of the bean resembles the run-and-tumble search of bacteria. We test this search algorithm using both an agent-based simulation and a wheeled Scribbler robot. The algorithm succeeds in propelling the robot away from regions of high temperature and may have application in biomimetic micro-scale navigation systems. (paper)

  9. Model for polygonal hydraulic jumps

    DEFF Research Database (Denmark)

    Martens, Erik Andreas; Watanabe, Shinya; Bohr, Tomas

    2012-01-01

    We propose a phenomenological model for the polygonal hydraulic jumps discovered by Ellegaard and co-workers [Nature (London) 392, 767 (1998); Nonlinearity 12, 1 (1999); Physica B 228, 1 (1996)], based on the known flow structure for the type-II hydraulic jumps with a "roller" (separation eddy...... nonhydrostatic pressure contributions from surface tension in light of recent observations by Bush and co-workers [J. Fluid Mech. 558, 33 (2006); Phys. Fluids 16, S4 (2004)]. The model can be analyzed by linearization around the circular state, resulting in a parameter relationship for nearly circular polygonal...... states. A truncated but fully nonlinear version of the model can be solved analytically. This simpler model gives rise to polygonal shapes that are very similar to those observed in experiments, even though surface tension is neglected, and the condition for the existence of a polygon with N corners...

  10. Quasi-Static Evolution, Catastrophe, and Failed Eruption of Solar Flux Ropes

    Science.gov (United States)

    2016-12-30

    Ropes James Chen Beam Physics Branch Plasma Physics Division December 30, 2016 Approved for public release; distribution is unlimited. i REPORT...pressure gradient force combine to balance the major radial hoop force. The macroscopic forces on the flux ropes and onset conditions are quantified...Solar physics theory 67-4989-07 Quasi-Static Evolution, Catastrophe, and “Failed” Eruption of Solar Flux Ropes James Chen1 Plasma Physics Division

  11. Transport properties of a potassium-doped single-wall carbon nanotube rope

    International Nuclear Information System (INIS)

    Lee, R. S.; Kim, H. J.; Fischer, J. E.; Lefebvre, J.; Radosavljevic, M.; Hone, J.; Johnson, A. T.

    2000-01-01

    Four-probe resistance vs temperature and gate voltage are reported for an individual single-wall carbon nanotube rope before and after doping in situ with potassium. All the features in R(T) from unoriented bulk material, before and after doping, are qualitatively reproduced by the rope data. The 5.3 K conductance of the pristine rope decreases with positive gate voltage, while G vs V g becomes featureless after K doping. (c) 2000 The American Physical Society

  12. Data-Driven Jump Detection Thresholds for Application in Jump Regressions

    Directory of Open Access Journals (Sweden)

    Robert Davies

    2018-03-01

    Full Text Available This paper develops a method to select the threshold in threshold-based jump detection methods. The method is motivated by an analysis of threshold-based jump detection methods in the context of jump-diffusion models. We show that over the range of sampling frequencies a researcher is most likely to encounter that the usual in-fill asymptotics provide a poor guide for selecting the jump threshold. Because of this we develop a sample-based method. Our method estimates the number of jumps over a grid of thresholds and selects the optimal threshold at what we term the ‘take-off’ point in the estimated number of jumps. We show that this method consistently estimates the jumps and their indices as the sampling interval goes to zero. In several Monte Carlo studies we evaluate the performance of our method based on its ability to accurately locate jumps and its ability to distinguish between true jumps and large diffusive moves. In one of these Monte Carlo studies we evaluate the performance of our method in a jump regression context. Finally, we apply our method in two empirical studies. In one we estimate the number of jumps and report the jump threshold our method selects for three commonly used market indices. In the other empirical application we perform a series of jump regressions using our method to select the jump threshold.

  13. Jump Starting Entrepreneurship

    DEFF Research Database (Denmark)

    Burcharth, Ana; Smith, Pernille; Frederiksen, Lars

    How do laid-off employees become entrepreneurs after receiving a dream start into self-employment? This question is relevant for policy makers and entrepreneurship researchers alike since it raises the possibility of a reverse entrepreneurial opportunity, in which the chance of becoming an entrep......How do laid-off employees become entrepreneurs after receiving a dream start into self-employment? This question is relevant for policy makers and entrepreneurship researchers alike since it raises the possibility of a reverse entrepreneurial opportunity, in which the chance of becoming...... an entrepreneur emerges before the discovery of a profitable opportunity. We empirically examine this question on the unique setting of a corporate entrepreneurship program. In the midst of a corporate crisis, Nokia supported laid-off employees to start their own ventures under favorable conditions. We...... persevered in their endeavors and eventually became comfortable with their new career prospects. We discuss the psychological factors that impact career transition after organizational closure and theorize weather they encourage or discourage entrepreneurship....

  14. Signal Acquisition and Processing in the Magnetic Defectoscopy of Steel Wire Ropes

    Directory of Open Access Journals (Sweden)

    N. S. Jovičić

    2012-11-01

    Full Text Available The system that resolves the problem of wire rope defects using a magnetic method of inspection is presented in this paper. Implementation of the system should provide for full monitoring of wire rope condition, according to the prescribed international standards. The purpose of this system, in addition to identifying defects in the rope, is to determine to what extent damage has been done. The measurement procedure provides for a better understanding of the defects that occur, as well as the rejection criteria of used ropes, that way increasing their security. Hardware and software design of appliance for recording defects and test results are presented in this paper.

  15. Effects of jumping skill training on walking balance for children with mental retardation and Down's syndrome.

    Science.gov (United States)

    Wang, W Y; Chang, J J

    1997-08-01

    In the present study, we hypothesized that the enhancements obtained from the practice of jumping activity could be transferred to improve the walking balance in children with mental retardation (MR) and Down's syndrome (DS). Fourteen children with the diagnosis of MR or DS, aged 3 to 6 years, were recruited from a day care institution. They were ambulant but without jumping ability. Sixty-one non-handicapped children was used to serve as a normative comparison group. Before the training program, the performances of walking balance, jump skills and jumping distances were assessed individually by one physical therapist. The balance sub-test in the Bruininks Oseretsky Test of Motor Proficiency (BOTMP) was administered to assess the walking balance. Motor Skill Inventory (MSI) was used to assess the qualitative levels of jumping skills. A jumping skill training lesson that included horizontal jumps and vertical jumps was designed and integrated into the educational program. The recruited children received 3 sessions of training per-week for 6 weeks. A post-training test and a follow-up test were administered to the handicapped children. In BOTMP scores, statistical differences exited between the pre-training and post-training tests in the tested items of floor walk and beam walk. However, no significant difference was found in the items of floor stand, beam stand and floor heel-toe walk. MSI scales revealed there were significant differences between pre-training and post-training tests. There was no significant difference between the scores of post-training test and the follow-up test. The results implicated that the jumping activity might effectively evoke the automatic and dynamic postural control. Moreover, the significant improvements of the floor walk and beam walk performances might be due to the transferred effects via the practice of dynamic jumping activity. Furthermore, implications and suggestions are discussed.

  16. Simulating AIA observations of a flux rope ejection

    Science.gov (United States)

    Pagano, P.; Mackay, D. H.; Poedts, S.

    2014-08-01

    Context. Coronal mass ejections (CMEs) are the most violent phenomena observed on the Sun. Currently, extreme ultraviolet (EUV) images from the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamic Observatory (SDO) are providing new insights into the early phase of CME evolution. In particular, observations now show the ejection of magnetic flux ropes from the solar corona and how they evolve into CMEs. While this is the case, these observations are difficult to interpret in terms of basic physical mechanisms and quantities. To fully understand CMEs we need to compare equivalent quantities derived from both observations and theoretical models. This will aid in bridging the gap between observations and models. Aims: To this end, we aim to produce synthesised AIA observations from simulations of a flux rope ejection. To carry this out we include the role of thermal conduction and radiative losses, both of which are important for determining the temperature distribution of the solar corona during a CME. Methods: We perform a simulation where a flux rope is ejected from the solar corona. From the density and temperature of the plasma in the simulation we synthesise AIA observations. The emission is then integrated along the line of sight using the instrumental response function of AIA. Results: We sythesise observations of AIA in the channels at 304 Å, 171 Å, 335 Å, and 94 Å. The synthesised observations show a number of features similar to actual observations and in particular reproduce the general development of CMEs in the low corona as observed by AIA. In particular we reproduce an erupting and expanding arcade in the 304 Å and 171 Å channels with a high density core. Conclusions: The ejection of a flux rope reproduces many of the features found in the AIA observations. This work is therefore a step forward in bridging the gap between observations and models, and can lead to more direct interpretations of EUV observations in terms of flux rope

  17. Analysis of Steel Wire Rope Diagnostic Data Applying Multi-Criteria Methods

    Directory of Open Access Journals (Sweden)

    Audrius Čereška

    2018-02-01

    Full Text Available Steel ropes are complex flexible structures used in many technical applications, such as elevators, cable cars, and funicular cabs. Due to the specific design and critical safety requirements, diagnostics of ropes remains an important issue. Broken wire number in the steel ropes is limited by safety standards when they are used in the human lifting and carrying installations. There are some practical issues on loose wires—firstly, it shows end of lifetime of the entire rope, independently of wear, lubrication or wrong winding on the drums or through pulleys; and, secondly, it can stick in the tight pulley—support gaps and cause deterioration of rope structure up to birdcage formations. Normal rope operation should not generate broken wires, so increasing of their number shows a need for rope installation maintenance. This paper presents a methodology of steel rope diagnostics and the results of analysis using multi-criteria analysis methods. The experimental part of the research was performed using an original test bench to detect broken wires on the rope surface by its vibrations. Diagnostics was performed in the range of frequencies from 60 to 560 Hz with a pitch of 50 Hz. The obtained amplitudes of the broken rope wire vibrations, different from the entire rope surface vibration parameters, was the significant outcome. Later analysis of the obtained experimental results revealed the most significant values of the diagnostic parameters. The evaluation of the power of the diagnostics was implemented by using multi-criteria decision-making (MCDM methods. Various decision-making methods are necessary due to unknown efficiencies with respect to the physical phenomena of the evaluated processes. The significance of the methods was evaluated using objective methods from the structure of the presented data. Some of these methods were proposed by authors of this paper. Implementation of MCDM in diagnostic data analysis and definition of the

  18. The Effects of Peer-Administered Token Reinforcement on Jump Rope Behaviors of Elementary Physical Education Students

    Science.gov (United States)

    Alstot, Andrew E.

    2012-01-01

    Token economies have a long research and applied history within clinical settings and classroom education (Kazdin, 1982). However, despite reported successes in improving physical activity behaviors (Alstot, 2012), research examining token reinforcement implemented specifically in physical education is virtually nonexistent. Therefore, the purpose…

  19. Psychophysiological response in parachute jumps, the effect of experience and type of jump.

    Science.gov (United States)

    Clemente-Suárez, Vicente Javier; Robles-Pérez, José Juan; Fernández-Lucas, Jesús

    2017-10-01

    We aimed to analyse the effect of experience and type of parachute jump on the psychophysiological responses of jumpers. We analysed blood oxygen saturation, heart rate, blood glucose, lactate and creatinkinase, leg strength, isometric hand strength, cortical arousal, specific fine motor skills, self-confidence and cognition, and somatic and state anxiety, before and after four different parachute jumps: a sport parachute jump, a manual tactical parachute jump, tandem pilots, and tandem passengers. Independently of the parachute jump, the psychophysiological responses of experienced paratroopers were not affected by the jumps, except for an increase in anaerobic metabolism. Novice parachute jumpers presented a higher psychophysiological stress response than the experienced jumpers, together with a large anticipatory anxiety response before the jump; however, this decreased after the jump, although the high physiological activation was maintained. This information could be used by civil and military paratroopers' instructors to improve their training programmes. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Dynamic jump intensities and risk premiums

    DEFF Research Database (Denmark)

    Christoffersen, Peter; Ornthanalai, Chayawat; Jacobs, Kris

    2012-01-01

    We build a new class of discrete-time models that are relatively easy to estimate using returns and/or options. The distribution of returns is driven by two factors: dynamic volatility and dynamic jump intensity. Each factor has its own risk premium. The models significantly outperform standard...... models without jumps when estimated on S&P500 returns. We find very strong support for time-varying jump intensities. Compared to the risk premium on dynamic volatility, the risk premium on the dynamic jump intensity has a much larger impact on option prices. We confirm these findings using joint...

  1. Characteristics of Air Entrainment in Hydraulic Jump

    Science.gov (United States)

    Albarkani, M. S. S.; Tan, L. W.; Al-Gheethi, A.

    2018-04-01

    The characteristics of hydraulic jump, especially the air entrainment within jump is still not properly understood. Therefore, the current work aimed to determine the size and number of air entrainment formed in hydraulic jump at three different Froude numbers and to obtain the relationship between Froude number with the size and number of air entrainment in hydraulic jump. Experiments of hydraulic jump were conducted in a 10 m long and 0.3 m wide Armfield S6MKII glass-sided tilting flume. Hydraulic jumps were produced by flow under sluice gate with varying Froude number. The air entrainment of the hydraulic jump was captured with a Canon Power Shot SX40 HS digital camera in video format at 24 frames per second. Three discharges have been considered, i.e. 0.010 m3/s, 0.011 m3/s, and 0.013 m3/s. For hydraulic jump formed in each discharge, 32 frames were selected for the purpose of analysing the size and number of air entrainment in hydraulic jump. The results revealed that that there is a tendency to have greater range in sizes of air bubbles as Fr1 increases. Experiments with Fr1 = 7.547. 7.707, and 7.924 shown that the number of air bubbles increases exponentially with Fr1 at a relationship of N = 1.3814 e 0.9795Fr1.

  2. Improved safety in ski jumping.

    Science.gov (United States)

    Wester, K

    1988-01-01

    Among approximately 2,600 licensed Norwegian ski jumpers, only three injuries that caused a permanent medical disability of at least 10% were incurred during the 5 year period from 1982 through 1986. When compared to the previous 5 year period (1977 to 1981), a dramatic improvement in safety is seen, as both number and severity of such injuries were markedly reduced. There are several probable reasons for this improved safety record: better preparation of the jumps, the return to using only one standard heel block, and the fact that coaches are being more responsible, especially with younger jumpers.

  3. A tale of quantum jumps

    International Nuclear Information System (INIS)

    Carmichael, H.J.

    2015-01-01

    This paper cannot provide anything like a complete overview of quantum optics in New Zealand. The scope over 40 years is far too broad and the number of players far too large. Nevertheless, the story of quantum jumps, from the days of the Old Quantum Theory up to the present, serves to highlight some small part of the New Zealand experience. It also offers an encounter with the oddities of light as a quantum mechanical 'something', oddities that the gallant proposers of technologies for the future aim to exploit. (author).

  4. The effects of 4 weeks of jump training on landing knee valgus and crossover hop performance in female basketball players.

    Science.gov (United States)

    Herrington, Lee

    2010-12-01

    Female basketball players would appear particularly prone to knee injuries. These injuries have been associated with the nature of the sport, but more specifically with the particular movement strategies adopted. A valgus or abducted position of the knee on landing has been reported to be associated with a number of different knee injuries. Jump-training programs have been reported to improve both landing knee valgus and functional performance. The majority of the jump-training programs have been of 6 weeks' duration, 3 sessions per week often lasting up to 1 hour. For most sports coaches, team conditioners, and athletes, this duration and program length is not acceptable. The aim of this study was to assess if an abridged jump-training program could have similar effects to those previously reported. Fifteen female basketball players had their knee valgus angles assessed during 2 landing tasks, drop jump landing, and when undertaking a jump shot and along with crossover hop distance before and after a progressive jump-training program. The jump-training program lasted 4 weeks, 3 times per week, each session lasting 15 minutes. After training, crossover hop distance showed an average percentage improvement on distance jumped of 73.6% (p = 0.001); the drop jump knee valgus angle in the left leg on average was reduced by 9.8° (p = 0.002), right leg reduced by 12.3° (p = 0.0001); during the jump shot, the knee valgus angle in the left leg showed a mean reduction of 4.5° (p = 0.035), and the right leg was reduced by 4.3° (p = 0.01). The study undertaken achieved comparable results to those previously reported with an abridged program over considerably shortened session duration and training period.

  5. Kinematics and Kinetics of Squats, Drop Jumps and Imitation Jumps of Ski Jumpers.

    Science.gov (United States)

    Pauli, Carole A; Keller, Melanie; Ammann, Fabian; Hübner, Klaus; Lindorfer, Julia; Taylor, William R; Lorenzetti, Silvio

    2016-03-01

    Squats, drop jumps, and imitation jumps are commonly used training exercises in ski jumping to enhance maximum force, explosive force, and sport-specific skills. The purpose of this study was to evaluate the kinetics and kinematics of training exercises in ski jumping and to find objective parameters in training exercises that most correlate with the competition performance of ski jumpers. To this end, barbell squats, drop jumps, and imitation jumps were measured in a laboratory environment for 10 elite ski jumpers. Force and motion data were captured, and the influence of maximum vertical force, force difference, vertical take-off velocity, knee moments, knee joint power, and a knee valgus/varus index was evaluated and correlated with their season jump performance. The results indicate that, especially for the imitation jumps, a good correlation exists between the vertical take-off velocity and the personal jump performance on the hill (R = 0.718). Importantly, however, the more the athletes tended toward a valgus knee alignment during the measured movements, the worse their performance (R = 0.729 imitation jumps; R = 0.685 squats). Although an evaluation of the athletes' lower limb alignment during competitive jumping on the hill is still required, these preliminary data suggest that performance training should additionally concentrate on improving knee alignment to increase ski jumping performance.

  6. Transport of timber by rope-and-pulley lift in steep seams

    Energy Technology Data Exchange (ETDEWEB)

    Spaniol, J

    1980-11-01

    This paper describes the rope-and-pulley lift used to transport timber and small items of equipment, which has been installed in tubbing in the return air drop-hole. Gives details of how the lift works and the equipment involved (winch, rope, slings, pulleys, safety and signalling arrangements). Looks at the future prospects of installing these lifts. (In French)

  7. Investigation into the effects of steel wire rope specimen length on breaking force

    CSIR Research Space (South Africa)

    O'Brien, TM

    2004-03-01

    Full Text Available (2000). The methodology employed was to test different length of triangular strand and non-spin rope to destruction, and to evaluate these results against SABS 0293:1996. For each rope construction, specimens were prepared both with and without cut wires...

  8. Modeling of Local Magnetic Field Enhancements within Solar Flux Ropes

    OpenAIRE

    Romashets, E; Vandas, M; Poedts, Stefaan

    2010-01-01

    To model and study local magnetic-field enhancements in a solar flux rope we consider the magnetic field in its interior as a superposition of two linear (constant alpha) force-free magnetic-field distributions, viz. a global one, which is locally similar to a part of the cylinder, and a local torus-shaped magnetic distribution. The newly derived solution for a toroid with an aspect ratio close to unity is applied. The symmetry axis of the toroid and that of the cylinder may or may not coinci...

  9. Strangeness production in nuclear collisions: Color rope formations?

    International Nuclear Information System (INIS)

    Toneev, V.D.; Amelin, N.S.; Csernai, L.P.; Gudima, K.K.; Sivoklokov, S.Yu.

    1992-12-01

    Strangeness production at SPS-CERN energies is studied within the Quark Gluon String Model. This analysis indicates that the observed shape of rapidity and transverse mass distributions are reproduced fairly well for both peripheral and central heavy ion collisions. However, for central collisions the model underpredicts strange particles abundance by a factor of about 2:2:4 for K S 0 , Λ and anti Λ, respectively. This discrepancy can be considered as a possible manifestation of string-string interactions of a collective type similar to the formation of a color rope. The model predictions for coming experiments with the Pb beam at CERN are given. (orig.)

  10. Direct ultimate disposal of spent fuel. Simulation of shaft transport. Study of rope slippage (TA 10)

    International Nuclear Information System (INIS)

    Filbert, W.; Weber, H.; Gerlach, A.; Sindern, W.

    1994-03-01

    The test results show that rope slippage does occur occasionally in Koepe hoists, mainly with hinged loads. The countermeasures chosen in most cases include modification of the rope lubrication (coefficient of friction), of load ratios S 1 /S 2 , (ballast, reduction of payload), or organisational measures (maintenance). Results and data are reported giving evidence that with the proposed, additional measures for preventing or managing rope slippage, the designed Koepe hoist for hinged payloads up to 85 t can be operated safely without risk of damage caused by rope slippage. It is also proven that there is no need to change ballast in case of transport of varying payloads, as this will not create the risk of undue rope slippage. (orig./HP) [de

  11. Load carrying capacity of shear wall t-connections reinforced with high strength wire ropes

    DEFF Research Database (Denmark)

    Jørgensen, Henrik B.; Bryndom, Thor; Larsen, Michael

    2016-01-01

    -friendly solution. The wire ropes have no bending stiffness and therefore allow for an easier vertical installation of the wall elements. During the last 10 – 15 years, a number of shear tests on plane wire rope connections have been carried out. However, to the best knowledge of the authors, tests on wire rope......Traditionally, U-bar loop connections with keyed joints have been used in vertical shear connections between precast concrete wall elements. However, in the recent years, connections with looped high strength wire ropes instead of U-bar loops have proven to be a much more construction...... connections for assembly of precast elements in different planes, such as T- and L-connections, have not yet been published. This paper presents the results of a large test series recently conducted at the University of Southern Denmark to study the shear behaviour of high strength wire rope T...

  12. Pre-eruptive Magnetic Reconnection within a Multi-flux-rope System in the Solar Corona

    Science.gov (United States)

    Awasthi, Arun Kumar; Liu, Rui; Wang, Haimin; Wang, Yuming; Shen, Chenglong

    2018-04-01

    The solar corona is frequently disrupted by coronal mass ejections (CMEs), whose core structure is believed to be a flux rope made of helical magnetic field. This has become a “standard” picture; though, it remains elusive how the flux rope forms and evolves toward eruption. While one-third of the ejecta passing through spacecraft demonstrate a flux-rope structure, the rest have complex magnetic fields. Are they originating from a coherent flux rope, too? Here we investigate the source region of a complex ejecta, focusing on a flare precursor with definitive signatures of magnetic reconnection, i.e., nonthermal electrons, flaring plasma, and bidirectional outflowing blobs. Aided by nonlinear force-free field modeling, we conclude that the reconnection occurs within a system of multiple braided flux ropes with different degrees of coherency. The observation signifies the importance of internal structure and dynamics in understanding CMEs and in predicting their impacts on Earth.

  13. Ethics in radiology: wait lists queue jumping.

    Science.gov (United States)

    Cunningham, Natalie; Reid, Lynette; MacSwain, Sarah; Clarke, James R

    2013-08-01

    Education in ethics is a requirement for all Royal College residency training programs as laid out in the General Standards of Accreditation for residency programs in Canada. The ethical challenges that face radiologists in clinical practice are often different from those that face other physicians, because the nature of the physician-patient interaction is unlike that of many other specialties. Ethics education for radiologists and radiology residents will benefit from the development of teaching materials and resources that focus on the issues that are specific to the specialty. This article is intended to serve as an educational resource for radiology training programs to facilitate teaching ethics to residents and also as a continuing medical education resource for practicing radiologists. In an environment of limited health care resources, radiologists are frequently asked to expedite imaging studies for patients and, in some respects, act as gatekeepers for specialty care. The issues of wait lists, queue jumping, and balancing the needs of individuals and society are explored from the perspective of a radiologist. Copyright © 2013 Canadian Association of Radiologists. Published by Elsevier Inc. All rights reserved.

  14. Formation and evolution of plasmoids and flux-ropes in the Earth's Magnetotail

    Science.gov (United States)

    Ge, Y.; Raeder, J.

    2013-12-01

    The observation of plasmoids and flux-ropes in the Earth's magnetotail was crucial to establish the simultaneous presence of multiple x-lines in the tail, and has become the basis for the Near Earth Neutral Line (NENL) model of substorms. While the 'classical' NENL model envisions x-lines that extend across the entire tail, recent observations have shown that neither do the x-lines and resulting plasmoids encompass the entire tail, nor do the x-lines have to lie along the y-axis. Furthermore, several x-line/plasmoid/flux-rope structures can exist simultaneously. The fragmentation of the tail by spatially and temporally limited x-lines has important consequences for the mass and energy budget of the tail. Recent ARTEMIS observations have shown that the plasmoids in the distant tail are limited in the Y direction and some flux ropes are tilted during their tailward propagation. In this study we simulate plasmoids and flux-ropes in the Earth's magnetotail using the Open Global Geospace Circulation Model (OpenGGCM). We investigate the generation mechanisms for tail plasmoids and flux-ropes and their evolution as they propagate in the magnetotail. The simulation results show that the limited extend of NENL controls the length or the Y scale of tail plasmoid and flux rope. In addition, by studying their 3D magnetic topology we find that tilted flux ropes form due to a progressive spreading of the reconnection line along the east-west direction, which produces and releases the two ends of the flux rope at different times and at different speeds. By constructing a catalogue of observational signatures of plasmoid and flux rope we compare the differences of their signatures and find that large-scale plasmoids have much weaker core fields than that found inside the small-scale flux ropes.

  15. Magnetic Flux Rope Identification and Characterization from Observationally Driven Solar Coronal Models

    Science.gov (United States)

    Lowder, Chris; Yeates, Anthony

    2017-09-01

    Formed through magnetic field shearing and reconnection in the solar corona, magnetic flux ropes are structures of twisted magnetic field, threaded along an axis. Their evolution and potential eruption are of great importance for space weather. Here we describe a new methodology for the automated detection of flux ropes in simulated magnetic fields, utilizing field-line helicity. Our Flux Rope Detection and Organization (FRoDO) code, which measures the magnetic flux and helicity content of pre-erupting flux ropes over time, as well as detecting eruptions, is publicly available. As a first demonstration, the code is applied to the output from a time-dependent magnetofrictional model, spanning 1996 June 15-2014 February 10. Over this period, 1561 erupting and 2099 non-erupting magnetic flux ropes are detected, tracked, and characterized. For this particular model data, erupting flux ropes have a mean net helicity magnitude of 2.66× {10}43 Mx2, while non-erupting flux ropes have a significantly lower mean of 4.04× {10}42 Mx2, although there is overlap between the two distributions. Similarly, the mean unsigned magnetic flux for erupting flux ropes is 4.04× {10}21 Mx, significantly higher than the mean value of 7.05× {10}20 Mx for non-erupting ropes. These values for erupting flux ropes are within the broad range expected from observational and theoretical estimates, although the eruption rate in this particular model is lower than that of observed coronal mass ejections. In the future, the FRoDO code will prove to be a valuable tool for assessing the performance of different non-potential coronal simulations and comparing them with observations.

  16. Separation and pattern formation in hydraulic jumps

    DEFF Research Database (Denmark)

    Bohr, Tomas; Ellegaard, C.; Hansen, A. Espe

    1998-01-01

    We present theory and experiments on the circular hydraulic jump in the stationary regime. The theory can handle the situation in which the fluid flows over an edge far away from the jump. In the experiments the external height is controlled, and a series of transitions in the flow structure appe...

  17. Biomechanical analysis of drop and countermovement jumps

    NARCIS (Netherlands)

    Bobbert, M. F.; Mackay, M.T.; Schinkelshoek, D.; Huijing, P. A.; van Ingen Schenau, G. J.

    For 13 subjects the performance of drop jumps from a height of 40 cm (DJ) and of countermovement jumps (CMJ) was analysed and compared. From force plate and cine data biomechanical variables including forces, moments, power output and amount of work done were calculated for hip, knee and ankle

  18. Jump Detection in the Danish Stock Market

    DEFF Research Database (Denmark)

    Høg, Esben

    2002-01-01

    It is well known in financial economics that stock market return data are often modelled by a diffusion process with some regular drift function. Occasionally, however, sudden changes or jumps occur in the return data. Wavelet scaling methods are used to detect jumps and cusps in stock market...

  19. You Say Jump, I Say How High?

    DEFF Research Database (Denmark)

    Fasterhold, Martin; Pichlmair, Martin; Holmgård, Christoffer

    This paper explores the design of jumping in 2D platform games. Through creating a method for measuring existing games, applying this method to a selection of different platformer games, and analysing the results, the paper arrives at a comprehensive data model for jumping. The model supports the...

  20. Effect of Ankle Joint Contact Angle and Ground Contact Time on Depth Jump Performance.

    Science.gov (United States)

    Phillips, Joshua H; Flanagan, Sean P

    2015-11-01

    position. However, it should be acknowledged that this technique leads to larger impact forces, which should be considered when prescribing the number of foot contacts in a plyometrics program. The ability of athletes to truly land in a DF position during depth jumps is questioned and needs further investigation.

  1. PERBANDINGAN JUMP SHOOT DENGAN AWALAN DAN TANPA AWALAN TERHADAP PENINGKATAN KETEPATAN SHOOTING DALAM PERMAINAN BOLABASKET

    Directory of Open Access Journals (Sweden)

    I Gusti Ngurah Agung Cahya Prananta

    2015-01-01

    Full Text Available The effectiveness of  jump-shoot technique step jump shoot and still jump shoot in a game is still questionable,  because many different assumptions arise. One opinion stated that step jump shoot was more effective and the other stated that and still jump shoot was more efective. Therefore it is necessary to do research on the analysis of the results of step jump shoot and and still jump shoot to improve the accuracy of shooting in a basketball. The experimental research had been conducted on 20samples of people whowere selected randomly from the men's basketball club of the Faculty of Physical Educationand Health of Teacher Training Institute PGRI Bali. Samples were divided into two groups each  consisting of 10 people. Group I was given training step  jump shoot four sets of 10 reps  and Group II training still jump shoot four sets of 10 reps. The data before and after treatment were tested by SPSS computer program. The data were normally distributed and homogeneous so further tested using pairedt-test to compare the average values?? before and after training between each group, while the independent t-test was used to determine differences in mean values?? between the two groups. Paired t-test resulted the obtained data were significantly increased in both treatment groups p=0,001 in Group I and p=0,000 in Group II (p <0.05. Results of independent t-test found that both groups before training did not differ significantly p=0,926 (p>0.05 and after training both groups equally improve the accuracy of shooting because p=0,133 (p>0.05. It was concluded that botht raining improved the shooting accuracy and there was no difference between the effect of step jumps hoot and still jump shoot toward the shooting accuracy. It was suggested to improve the shooting accuracy in basketball used step jump shoot training and still jump shoot training four sets of 10 reps with a training frequency of 4 times a week for 6 weeks

  2. Usefulness of the jump-and-reach test in assessment of vertical jump performance.

    Science.gov (United States)

    Menzel, Hans-Joachim; Chagas, Mauro H; Szmuchrowski, Leszek A; Araujo, Silvia R; Campos, Carlos E; Giannetti, Marcus R

    2010-02-01

    The objective was to estimate the reliability and criterion-related validity of the Jump-and-Reach Test for the assessment of squat, countermovement, and drop jump performance of 32 male Brazilian professional volleyball players. Performance of squat, countermovement, and drop jumps with different dropping heights was assessed on the Jump-and-Reach Test and the measurement of flight time, then compared across different jump trials. The very high reliability coefficients of both assessment methods and the lower correlation coefficients between scores on the assessments indicate a very high consistency of each method but only moderate covariation, which means that they measure partly different items. As a consequence, the Jump-and-Reach Test has good ecological validity in situations when reaching height during the flight phase is critical for performance (e.g., basketball and volleyball) but only limited accuracy for the assessment of vertical impulse production with different jump techniques and conditions.

  3. A review on the basketball jump shot.

    Science.gov (United States)

    Okazaki, Victor H A; Rodacki, André L F; Satern, Miriam N

    2015-06-01

    The ability to shoot an effective jump shot in the sport of basketball is critical to a player's success. In an attempt to better understand the aspects related to expert performance, researchers have investigated successful free throws and jump shots of various basketball players and identified movement variables that contribute to their success. The purpose of this study was to complete a systematic review of the scientific literature on the basketball free throw and jump shot for the purpose of revealing the critical components of shooting that coaches, teachers, and players should focus on when teaching, learning, practising, and performing a jump shot. The results of this review are presented in three sections: (a) variables that affect ball trajectory, (b) phases of the jump shot, and (c) additional variables that influence shooting.

  4. Theory of boiling-up jump

    International Nuclear Information System (INIS)

    Labuntsov, D.A.; Avdeev, A.A.

    1981-01-01

    Concept of boiling-up jump representing a zone of intense volume boiling-up separating overtaking flow of overheated metastable liquid from an area of equilibrium flow located below along the flow is introduced. It is shown that boiling-up jump is a shock wave of rarefaction. It is concluded that entropy increment occurs on the jump. Characteristics of adiabatic shock wave curve of boiling- up in ''pressure-specific volume'' coordinates have been found and its form has been investigated. Stability of boiling-up jump has been analyzed as well. On the basis of approach developed analysis is carried out on the shock adiobatic curve of condensation. Concept of boiling-up jump may be applied to the analysis of boiling-up processes when flowing liquid through packings during emergency pressure drop etc [ru

  5. Colour rope model for extreme relativistic heavy ion collisions

    International Nuclear Information System (INIS)

    Biro, T.S.; Nielsen, H.B.; Knoll, J.

    1984-04-01

    Our goal is to investigate the possible cumulative effects of the colour fields of the observable meson multiplicity distribution in the central rapidity region in extreme relativistic heavy ion collisions. In the first Chapter we overview the space-time picture of the string formation in a central heavy ion collision. We take into account trivial geometrical factors in a straight line geometry. In the second Chapter we consider the colour chargation process of heavy ions as a random walk. We calculate the expectation value and the relative standard deviation of the total effective charge square. In the third Chapter we consider the stochastic decay of a K-fold string-rope to mesons by the Schwinger-mechanism. We calculate the expected lifetime of a K-fold string and the time for the first quark antiquark pair creation. In the fourth Chapter we deal with the meson production of a K-fold rope relative to that of a single string and hence we look for a scaling between A + A and p + p collisions. (orig./HSI)

  6. Kinematics and Kinetics of Squats, Drop Jumps and Imitation Jumps of Ski Jumpers

    Science.gov (United States)

    Pauli, Carole A.; Keller, Melanie; Ammann, Fabian; Hübner, Klaus; Lindorfer, Julia; Taylor, William R.

    2016-01-01

    Abstract Pauli, CA, Keller, M, Ammann, F, Hübner, K, Lindorfer, J, Taylor, WR, and Lorenzetti, S. Kinematics and kinetics of squats, drop jumps and imitation jumps of ski jumpers. J Strength Cond Res 30(3): 643–652, 2016—Squats, drop jumps, and imitation jumps are commonly used training exercises in ski jumping to enhance maximum force, explosive force, and sport-specific skills. The purpose of this study was to evaluate the kinetics and kinematics of training exercises in ski jumping and to find objective parameters in training exercises that most correlate with the competition performance of ski jumpers. To this end, barbell squats, drop jumps, and imitation jumps were measured in a laboratory environment for 10 elite ski jumpers. Force and motion data were captured, and the influence of maximum vertical force, force difference, vertical take-off velocity, knee moments, knee joint power, and a knee valgus/varus index was evaluated and correlated with their season jump performance. The results indicate that, especially for the imitation jumps, a good correlation exists between the vertical take-off velocity and the personal jump performance on the hill (R = 0.718). Importantly, however, the more the athletes tended toward a valgus knee alignment during the measured movements, the worse their performance (R = 0.729 imitation jumps; R = 0.685 squats). Although an evaluation of the athletes' lower limb alignment during competitive jumping on the hill is still required, these preliminary data suggest that performance training should additionally concentrate on improving knee alignment to increase ski jumping performance. PMID:26418370

  7. Mobile Jump Assessment (mJump): A Descriptive and Inferential Study.

    Science.gov (United States)

    Mateos-Angulo, Alvaro; Galán-Mercant, Alejandro; Cuesta-Vargas, Antonio

    2015-08-26

    Vertical jump tests are used in athletics and rehabilitation to measure physical performance in people of different age ranges and fitness. Jumping ability can be analyzed through different variables, and the most commonly used are fly time and jump height. They can be obtained by a variety of measuring devices, but most are limited to laboratory use only. The current generation of smartphones contains inertial sensors that are able to record kinematic variables for human motion analysis, since they are tools for easy access and portability for clinical use. The aim of this study was to describe and analyze the kinematics characteristics using the inertial sensor incorporated in the iPhone 4S, the lower limbs strength through a manual dynamometer, and the jump variables obtained with a contact mat in the squat jump and countermovement jump tests (fly time and jump height) from a cohort of healthy people. A cross sectional study was conducted on a population of healthy young adults. Twenty-seven participants performed three trials (n=81 jumps) of squat jump and countermovement jump tests. Acceleration variables were measured through a smartphone's inertial sensor. Additionally, jump variables from a contact mat and lower limbs dynamometry were collected. In the present study, the kinematic variables derived from acceleration through the inertial sensor of a smartphone iPhone 4S, dynamometry of lower limbs with a handheld dynamometer, and the height and flight time with a contact mat have been described in vertical jump tests from a cohort of young healthy subjects. The development of the execution has been described, examined and identified in a squat jump test and countermovement jump test under acceleration variables that were obtained with the smartphone. The built-in iPhone 4S inertial sensor is able to measure acceleration variables while performing vertical jump tests for the squat jump and countermovement jump in healthy young adults. The acceleration

  8. Rope NDT as means to raise safety of crane and elevator use

    Energy Technology Data Exchange (ETDEWEB)

    Kotelnikov, V. [Gosgortechnadzor, Moscow (Russian Federation); Sukhorukov, V. [Intron Plus, Ltd., Moscow (Russian Federation)

    2006-03-15

    Steel rope NDT by magnetic flaw detectors is usual for mine hoist inspection through the world. But it is no ordinary by crane and especially by elevator inspection. However, magnetic NDT statistic data of 60 crane and 227 elevator ropes in use shows that about 23% of crane and 9% of elevator ropes should be discarded in accordance with actual discarding criterion in Russia. Russian State Rules for crane safe exploitation require the magnetic NDT while periodically inspection. But not all the inspecting companies meet it in Russia, contenting themselves by visual inspection only. This is not objective and does not provide rope inner faults detection. That is a reason of rope break rather high percentage in general statistics of crane accidents and damages. Investigation of accidents with crane ropes in Moscow region in 2001 shows that they would de prevented by the magnetic NDT fulfilled timely. The elevator rope NDT problem is not so sharp but attention should de attracted to it to raise safety of elevators. (author)

  9. Rope NDT as means to raise safety of crane and elevator use

    International Nuclear Information System (INIS)

    Kotelnikov, V.; Sukhorukov, V.

    2006-01-01

    Steel rope NDT by magnetic flaw detectors is usual for mine hoist inspection through the world. But it is no ordinary by crane and especially by elevator inspection. However, magnetic NDT statistic data of 60 crane and 227 elevator ropes in use shows that about 23% of crane and 9% of elevator ropes should be discarded in accordance with actual discarding criterion in Russia. Russian State Rules for crane safe exploitation require the magnetic NDT while periodically inspection. But not all the inspecting companies meet it in Russia, contenting themselves by visual inspection only. This is not objective and does not provide rope inner faults detection. That is a reason of rope break rather high percentage in general statistics of crane accidents and damages. Investigation of accidents with crane ropes in Moscow region in 2001 shows that they would de prevented by the magnetic NDT fulfilled timely. The elevator rope NDT problem is not so sharp but attention should de attracted to it to raise safety of elevators. (author)

  10. Calves Use an Automated Brush and a Hanging Rope When Pair-Housed

    Directory of Open Access Journals (Sweden)

    Gosia Zobel

    2017-11-01

    Full Text Available Calf housing often only meets the basic needs of calves, but there is a growing interest in providing enrichments. This study described the behaviour of calves when they were given the opportunity to interact with two commonly available enrichment items. Female and male calves (approximately 11 days old were pair-housed in 8 identical pens fitted with an automated brush and a hanging rope. Frequency and duration of behaviours were recorded on 3 separate days (from 12:00 until 08:00 the following day. Calves spent equal time using the brush and rope (27.1 min/day, but there was less variation in the use of the brush as opposed to the rope (coefficient of variation, CV: 23 vs. 78%, respectively. Calves had more frequent (94 bouts, CV: 24% and shorter (17.8 s/bout, CV: 24% brush use bouts compared to fewer (38 bouts, CV: 43% and longer (38.3 s/bout, CV: 53% rope use bouts. There was a diurnal pattern of use for both items. Frequency of play was similar to rope use, but total time playing was 8% of rope and brush use. Variability among calves suggested that individual preference existed; however, the social dynamics of the pair-housed environment were not measured and therefore could have influenced brush and rope use. Multiple enrichment items should be considered when designing improvements to calf housing.

  11. Dynamic Contact between a Wire Rope and a Pulley Using Absolute Nodal Coordinate Formulation

    Directory of Open Access Journals (Sweden)

    Shoichiro Takehara

    2016-01-01

    Full Text Available Wire rope and pulley devices are used in various machines. To use these machines more safely, it is necessary to analyze the behavior of the contact between them. In this study, we represent a wire rope by a numerical model of a flexible body. This flexible body is expressed in the absolute nodal coordinate formulation (ANCF, and the model includes the normal contact force and the frictional force between the wire rope and the pulley. The normal contact force is expressed by spring-damper elements, and the frictional force is expressed by the Quinn method. The advantage of the Quinn method is that it reduces the numerical problems associated with the discontinuities in Coulomb friction at zero velocity. By using the numerical model, simulations are performed, and the validity of this model is shown by comparing its results with those of an experiment. Through numerical simulations, we confirm the proposed model for the contact between the wire rope and the pulley. We confirmed that the behavior of the wire rope changes when both the bending elastic modulus of the wire rope and the mass added to each end of the wire rope are changed.

  12. Testing a new flux rope model using the HELCATS CME catalogue

    Science.gov (United States)

    Rouillard, Alexis Paul; Lavarra, Michael

    2017-04-01

    We present a magnetically-driven flux rope model that computes the forces acting on a twisted magnetic flux rope from the Sun to 1AU. This model assumes a more realistic flux rope geometry than assumed before by these types of models. The balance of force is computed in an analogous manner to the well-known Chen flux-rope model. The 3-D vector components of the magnetic field measured by a probe flying through the flux rope can be extracted for any flux rope orientation imposed near the Sun. We test this model through a parametric study and a systematic comparison of the model with the HELCATS catalogues (imagery and in situ). We also report on our investigations of other physical mechanisms such as the shift of flux-surfaces associated with the magnetic forces acting to accelerate the flux rope from the lower to upper corona. Finally, we present an evaluation of this model for space-weather predictions. This work was partly funded by the HELCATS project under the FP7 EU contract number 606692.

  13. Realized Jump Risk and Equity Return in China

    Directory of Open Access Journals (Sweden)

    Guojin Chen

    2014-01-01

    Full Text Available We utilize the realized jump components to explore a new jump (including nonsystematic jump and systematic jump risk factor model. After estimating daily realized jumps from high-frequency transaction data of the Chinese A-share stocks, we calculate monthly jump size, monthly jump standard deviation, and monthly jump arrival rate and then use those monthly jump factors to explain the return of the following month. Our empirical results show that the jump tail risk can explain the equity return. For the large capital-size stocks, large cap stock portfolios, and index, one-month lagged jump risk factor significantly explains the asset return variation. Our results remain the same even when we add the size and value factors in the robustness tests.

  14. The effect of assisted jumping on vertical jump height in high-performance volleyball players.

    Science.gov (United States)

    Sheppard, Jeremy M; Dingley, Andrew A; Janssen, Ina; Spratford, Wayne; Chapman, Dale W; Newton, Robert U

    2011-01-01

    Assisted jumping may be useful in training higher concentric movement speed in jumping, thereby potentially increasing the jumping abilities of athletes. The purpose of this study was to evaluate the effects of assisted jump training on counter-movement vertical jump (CMVJ) and spike jump (SPJ) ability in a group of elite male volleyball players. Seven junior national team volleyball players (18.0±1.0 yrs, 200.4±6.7 cm, and 84.0±7.2 kg) participated in this within-subjects cross-over counter-balanced training study. Assisted training involved 3 sessions per week of CMVJ training with 10 kg of assistance, applied through use of a bungee system, whilst normal jump training involved equated volume of unassisted counter-movement vertical jumps. Training periods were 5 weeks duration, with a 3-week wash-out separating them. Prior to and at the conclusion of each training period jump testing for CMVJ and SPJ height was conducted. Assisted jump training resulted in gains of 2.7±0.7 cm (pSports Medicine Australia. All rights reserved.

  15. Strength Determinants of Jump Height in the Jump Throw Movement in Women Handball Players.

    Science.gov (United States)

    McGhie, David; Østerås, Sindre; Ettema, Gertjan; Paulsen, Gøran; Sandbakk, Øyvind

    2018-06-08

    McGhie, D, Østerås, S, Ettema, G, Paulsen, G, and Sandbakk, Ø. Strength determinants of jump height in the jump throw movement in women handball players. J Strength Cond Res XX(X): 000-000, 2018-The purpose of the study was to improve the understanding of the strength demands of a handball-specific jump through examining the associations between jump height in a jump throw jump (JTJ) and measures of lower-body maximum strength and impulse in handball players. For comparison, whether the associations between jump height and strength differed between the JTJ and the customarily used countermovement jump (CMJ) was also examined. Twenty women handball players from a Norwegian top division club participated in the study. Jump height was measured in the JTJ and in unilateral and bilateral CMJ. Lower-body strength (maximum isometric force, one-repetition maximum [1RM], impulse at ∼60% and ∼35% 1RM) was measured in seated leg press. The associations between jump height and strength were assessed with correlation analyses and t-tests of dependent r's were performed to determine if correlations differed between jump tests. Only impulse at ∼35% 1RM correlated significantly with JTJ height (p jump height and strength were significantly weaker in the JTJ than in both CMJ tests for all strength measures (p = 0.001-0.044) except one. Maximum strength and impulse at ∼60% 1RM did not seem to sufficiently capture the capabilities associated with JTJ height, highlighting the importance of employing tests targeting performance-relevant neuromuscular characteristics when assessing jump-related strength in handball players. Further, CMJ height seemed to represent a wider range of strength capabilities and care should be taken when using it as a proxy for handball-specific movements.

  16. MHD Simulations of the Eruption of Coronal Flux Ropes under Coronal Streamers

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Yuhong, E-mail: yfan@ucar.edu [High Altitude Observatory, National Center for Atmospheric Research, 3080 Center Green Drive, Boulder, CO 80301 (United States)

    2017-07-20

    Using three-dimensional magnetohydrodynamic (MHD) simulations, we investigate the eruption of coronal flux ropes underlying coronal streamers and the development of a prominence eruption. We initialize a quasi-steady solution of a coronal helmet streamer, into which we impose at the lower boundary the slow emergence of a part of a twisted magnetic torus. As a result, a quasi-equilibrium flux rope is built up under the streamer. With varying streamer sizes and different lengths and total twists of the flux rope that emerges, we found different scenarios for the evolution from quasi-equilibrium to eruption. In the cases with a broad streamer, the flux rope remains well confined until there is sufficient twist such that it first develops the kink instability and evolves through a sequence of kinked, confined states with increasing height until it eventually develops a “hernia-like” ejective eruption. For significantly twisted flux ropes, prominence condensations form in the dips of the twisted field lines due to runaway radiative cooling. Once formed, the prominence-carrying field becomes significantly non-force-free due to the weight of the prominence, despite having low plasma β . As the flux rope erupts, the prominence erupts, showing substantial draining along the legs of the erupting flux rope. The prominence may not show a kinked morphology even though the flux rope becomes kinked. On the other hand, in the case with a narrow streamer, the flux rope with less than one wind of twist can erupt via the onset of the torus instability.

  17. The formation and launch of a coronal mass ejection flux rope: a narrative based on observations

    International Nuclear Information System (INIS)

    Howard, T. A.; DeForest, C. E.

    2014-01-01

    We present a data-driven narrative of the launch and early evolution of the magnetic structure that gave rise to the coronal mass ejection (CME) on 2008 December 12. The structure formed on December 7 and launched early on December 12. We interpret this structure as a flux rope based on prelaunch morphology, postlaunch magnetic measurements, and the lack of large-scale magnetic reconnection signatures at launch. We ascribe three separate onset mechanisms to the complete disconnection of the flux rope from the Sun. It took 19 hr for the flux rope to be fully removed from the Sun, by which time the segment that first disconnected was around 40 R ☉ away. This implies that the original flux rope was stretched or broken; we provide evidence for a possible bisection. A transient dark arcade was observed on the Sun that was later obscured by a bright arcade, which we interpret as the strapping field stretching and magnetically reconnecting as it disconnected from the coronal field. We identify three separate structures in coronagraph images to be manifestations of the same original flux rope, and we describe the implications for CME interpretation. We cite the rotation in the central flux rope vector of the magnetic clouds observed in situ by ACE/Wind and STEREO-B as evidence of the kink instability of the eastern segment of the flux rope. Finally, we discuss possible alternative narratives, including multiple prelaunch magnetic structures and the nonflux rope scenario. Our results support the view that, in at least some CMEs, flux rope formation occurs before launch.

  18. Structures of interplanetary magnetic flux ropes and comparison with their solar sources

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Qiang [Department of Space Science/CSPAR, University of Alabama in Huntsville, Huntsville, AL 35805 (United States); Qiu, Jiong [Department of Physics, Montana State University, Bozeman, MT 59717-3840 (United States); Dasgupta, B.; Khare, A.; Webb, G. M., E-mail: qh0001@uah.edu, E-mail: qiu@physics.montana.edu [Center for Space Plasma and Aeronomic Research (CSPAR), University of Alabama in Huntsville, Huntsville, AL 35805 (United States)

    2014-09-20

    Whether a magnetic flux rope is pre-existing or formed in situ in the Sun's atmosphere, there is little doubt that magnetic reconnection is essential to release the flux rope during its ejection. During this process, the question remains: how does magnetic reconnection change the flux-rope structure? In this work, we continue with the original study of Qiu et al. by using a larger sample of flare-coronal mass ejection (CME)-interplanetary CME (ICME) events to compare properties of ICME/magnetic cloud (MC) flux ropes measured at 1 AU and properties of associated solar progenitors including flares, filaments, and CMEs. In particular, the magnetic field-line twist distribution within interplanetary magnetic flux ropes is systematically derived and examined. Our analysis shows that, similar to what was found before, for most of these events, the amount of twisted flux per AU in MCs is comparable with the total reconnection flux on the Sun, and the sign of the MC helicity is consistent with the sign of the helicity of the solar source region judged from the geometry of post-flare loops. Remarkably, we find that about half of the 18 magnetic flux ropes, most of them associated with erupting filaments, have a nearly uniform and relatively low twist distribution from the axis to the edge, and the majority of the other flux ropes exhibit very high twist near the axis, up to ≳ 5 turns per AU, which decreases toward the edge. The flux ropes are therefore not linearly force-free. We also conduct detailed case studies showing the contrast of two events with distinct twist distribution in MCs as well as different flare and dimming characteristics in solar source regions, and discuss how reconnection geometry reflected in flare morphology may be related to the structure of the flux rope formed on the Sun.

  19. Formation and evolution of plasmoid and flux-rope in the Earth's Magnetotail

    Science.gov (United States)

    Ge, Yasong; Raeder, Joachim

    2015-04-01

    The observation of plasmoids and flux-ropes in the Earth's magnetotail was crucial to establish the simultaneous presence of multiple x-lines in the tail, and has become the basis for the Near Earth Neutral Line (NENL) model of substorms. While the "classical" NENL model envisions x-lines that extend across the entire tail, recent observations have shown that neither do the x-lines and resulting plasmoids encompass the entire tail, nor do the x-lines have to lie along the y-axis. The fragmentation of the tail by spatially and temporally limited x-lines has important consequences for the mass and energy budget of the tail. Recent ARTEMIS observations have shown that the plasmoids in the distant tail are limited in the Y direction and some flux ropes are tilted during their tailward propagation. Understanding their formation and evolution during their propagation through the magnetotail shall shred more light on the general energy and flux transport of the Earth's magnetosphere. In this study we simulate plasmoids and flux-ropes in the Earth's magnetotail using the Open Global Geospace Circulation Model (OpenGGCM). We investigate the generation mechanisms for tail plasmoids and flux-ropes and their evolution as they propagate in the magnetotail. The simulation results show that the limited extend of NENL controls the length or the Y scale of tail plasmoid and flux rope. In addition, by studying their 3D magnetic topology we find that the tilted flux rope forms due to a progressive spreading of reconnection line along the east-west direction, which produces and releases two ends of the flux rope at different times and in different speeds. By constructing a catalogue of observational signatures of plasmoid and flux rope we compare the differences of their signatures and find that large-scale plasmoids have much weaker core fields than that inside the small-scale flux ropes.

  20. Global simulation of formation and evolution of plasmoid and flux-rope in the Earth's Magnetotail

    Science.gov (United States)

    Ge, Y.; Raeder, J.; Du, A.

    2014-12-01

    The observation of plasmoids and flux-ropes in the Earth's magnetotail was crucial to establish the simultaneous presence of multiple x-lines in the tail, and has become the basis for the Near Earth Neutral Line (NENL) model of substorms. While the "classical" NENL model envisions x-lines that extend across the entire tail, recent observations have shown that neither do the x-lines and resulting plasmoids encompass the entire tail, nor do the x-lines have to lie along the y-axis. The fragmentation of the tail by spatially and temporally limited x-lines has important consequences for the mass and energy budget of the tail. Recent ARTEMIS observations have shown that the plasmoids in the distant tail are limited in the Y direction and some flux ropes are tilted during their tailward propagation. Understanding their formation and evolution during their propagation through the magnetotail shall shred more light on the general energy and flux transport of the Earth's magnetosphere. In this study we simulate plasmoids and flux-ropes in the Earth's magnetotail using the Open Global Geospace Circulation Model (OpenGGCM). We investigate the generation mechanisms for tail plasmoids and flux-ropes and their evolution as they propagate in the magnetotail. The simulation results show that the limited extend of NENL controls the length or the Y scale of tail plasmoid and flux rope. In addition, by studying their 3D magnetic topology we find that the tilted flux rope forms due to a progressive spreading of reconnection line along the east-west direction, which produces and releases two ends of the flux rope at different times and in different speeds. By constructing a catalogue of observational signatures of plasmoid and flux rope we compare the differences of their signatures and find that large-scale plasmoids have much weaker core fields than that inside the small-scale flux ropes.

  1. Dosimetric study of the 15 mm ROPES eye plaque

    International Nuclear Information System (INIS)

    Granero, D.; Perez-Calatayud, J.; Ballester, F.; Casal, E.; Frutos, J.M. de

    2004-01-01

    The main aim of this paper is to make a study of dose-rate distributions obtained around the 15 mm, radiation oncology physics and engineering services, Australia (ROPES) eye plaque loaded with 125 I model 6711 radioactive seeds. In this study, we have carried out a comparison of the dose-rate distributions obtained by the algorithm used by the Plaque Simulator (PS) (BEBIG GmbH, Berlin, Germany) treatment planning system with those obtained by means of the Monte Carlo method for the ROPES eye plaque. A simple method to obtain the dose-rate distributions in a treatment planning system via the superposition of the dose-rate distributions of a seed placed in the eye plaque has been developed. The method uses eye plaque located in a simplified geometry of the head anatomy and distributions obtained by means of the Monte Carlo code GEANT4. The favorable results obtained in the development of this method suggest that it could be implemented on a treatment planning system to improve dose-rate calculations. We have also found that the dose-rate falls sharply along the eye and that outside the eye the dose-rate is very low. Furthermore, the lack of backscatter photons from the air located outside the eye-head phantom produces a dose reduction negligible for distances from the eye-plaque r<1 cm but reaches up to 20% near the air-eye interface. Results showed that the treatment planning system lacks accuracy around the border of the eye (in the sclera and the surrounding area) due to the simplicity of the algorithm used. The BEBIG treatment planning system uses a global attenuation factor that takes into account the effect of the eye plaque seed carrier and the lack of backscatter photons caused by the metallic cover, which in the case of a ROPES eye plaque has a default value of T=1 (no correction). In the present study, a global attenuation factor T=0.96 and an air-interface correction factor which improve on treatment planning system calculations were obtained

  2. A rope-net support system for the liquid scintillator detector for the SNO+ experiment

    Energy Technology Data Exchange (ETDEWEB)

    Bialek, A., E-mail: abialek@snolab.ca [University of Alberta, Edmonton (Canada); Chen, M. [Queen' s University, Kingston (Canada); Cleveland, B. [SNOLAB, Lively (Canada); Gorel, P.; Hallin, A. [University of Alberta, Edmonton (Canada); Harvey, P.J.; Heise, J. [Queen' s University, Kingston (Canada); Kraus, C. [Laurentian University, Sudbury (Canada); Krauss, C.B. [University of Alberta, Edmonton (Canada); Lawson, I. [SNOLAB, Lively (Canada); Ng, C.J.; Pinkney, B. [University of Alberta, Edmonton (Canada); Rogowsky, D.M. [Rogowsky Engineering Ltd, AECOM Canada Ltd (Canada); Sibley, L.; Soluk, R.; Soukup, J. [University of Alberta, Edmonton (Canada); Vázquez-Jáuregui, E. [SNOLAB, Lively (Canada); Laurentian University, Sudbury (Canada)

    2016-08-11

    The detector for the SNO+ experiment consists of 780 000 kg of liquid scintillator contained in an acrylic vessel that is surrounded by water. A mechanical system has been installed to counteract the 1.25 MN of buoyant force on the acrylic and prevent the vessel from moving. The system is a rope net, designed using a Finite Element Analysis to calculate the amount of stress on the acrylic induced by the ropes, hydrostatic pressures and gravity. A dedicated test was performed to measure strains in the acrylic arising from the complex geometry of the knots in the rope system. The ratio between measured and FEA calculated strains was 1.3.

  3. Experimental investigation of pressure fluctuations caused by a vortex rope in a draft tube

    International Nuclear Information System (INIS)

    Kirschner, O; Ruprecht, A; Göde, E; Riedelbauch, S

    2012-01-01

    In the last years hydro power plants have taken the task of power-frequency control for the electrical grid. Therefore turbines in storage hydro power plants often operate outside their optimum. If Francis-turbines and pump-turbines operate at off-design conditions, a vortex rope in the draft tube can develop. The vortex rope can cause pressure oscillations. In addition to low frequencies caused by the rotation of the vortex rope and the harmonics of these frequencies, pressure fluctuations with higher frequencies can be observed in some operating points too. In this experimental investigation the flow structure and behavior of the vortex rope movement in the draft tube of a model pump-turbine are analyzed. The investigation focuses on the correlation of the pressure fluctuation frequency measured at the draft tube wall with the movement of the vortex rope. The movement of the vortex rope is analyzed by the velocity field in the draft tube which was measured with particle image velocimetry. Additionally, the vortex rope movement has been analyzed with the captures of high-speed-movies from the cavitating vortex rope. Besides the rotation of the vortex rope due to pressure fluctuation with low frequencies the results of the measurement also show a correlation between the rotation of the elliptical or deformed rope cross-section and the higher frequency pressure pulsation. An approximation shows that the frequencies of the pressure fluctuation and the movement of the vortex rope are also connected with the velocity of the flow. Taking into account the size and position of the cavitating vortex core as well as the velocity at the position of the surface of the cavitating vortex core the time-period of the rotation of the vortex core can be approximated. The results show that both, the low frequency pressure fluctuation and the higher frequency pressure fluctuation are correlating with the vortex rope movement. With this estimation, the period of the higher frequency

  4. Influence of Plyometrics on Jump Capabilities in Technical and Aesthetical Sports

    Directory of Open Access Journals (Sweden)

    Mlsnová Gabriela

    2017-05-01

    Full Text Available The aim of the study was to examine the effect of plyometric exercises on explosive strength of lower extremities in girls performing of technical and aesthetical sports. Experiment was carried out on three groups; artistic gymnasts (VG, n = 15; age = 12.4 ± 0.7 years, fitness girls (VF, n = 15; age = 13.8 ± 1.9 years and dancers (VD, n = 15; age = 13.8 ± 2 years. To check, the control group of general population was involved in the study (VK, n = 15; age = 13.9 ± 1.5 years. Following tests on jump ergometer Fitro Jumper were carried out at the beginning and at the end of experimental period: countermovement jump without and with arms swing and 10- second series of repeated vertical jumps. Plyometric program consisted of two plyometric units a week during thirty weeks. The results show that higher improvement in all evaluated tests achieved the group of fitness. In the countermovement jump without arm swing was observed improvement height of the jump 3.4 ± 1.4 cm (p ˂ 0.00001, in the countermovement jump with arm swing 5.7 ± 1.5 cm (p ˂ 0.00001, in difference of height of the jump between countermovement jump with and without arms swing 2.3 ± 1 cm (p ˂ 0.00001, in ten second series of repeated vertical jumps without arms swing in the height of jump 4.2 ± 1.6 cm (p ˂ 0.00001 and in power in active take off phase 8.8 ± 2.2 W.kg-1 (p ˂ 0.00001. Based on finding the study and in coherence with data from literature, we can conclude the effect of plyometric exercises was effective in combination with specific-strength training. Jumping ability is limiting factor of sport performance in technical and aesthetical sports and implementation of plyometric exercises to the training is highly recommend. The high level of jump capabilities can improve the quality and technique of performance complex acrobatic elements and dance leaps thereby increasing overall evaluation of performance in selected sports.

  5. The AGS γt-jump system

    International Nuclear Information System (INIS)

    Syphers, M.J.; Ahrens, L.; van Asselt, W.; Brennan, J.M.

    1994-01-01

    In an attempt to generate a lossless crossing of an accelerator's transition energy, one procedure is to alter the transition energy of the accelerator quickly as the beam passes through this energy region by changing the optics of the lattice -- a so-called ''transition jump,'' or '' γt -jump'' scheme. Such a system was first implemented at CERN and later adopted at other accelerator laboratories. A scheme for the AGS was developed in 1986. A description of the AGS γt -jump system, and recent results from its commissioning are presented in this report

  6. Predicting vertical jump height from bar velocity.

    Science.gov (United States)

    García-Ramos, Amador; Štirn, Igor; Padial, Paulino; Argüelles-Cienfuegos, Javier; De la Fuente, Blanca; Strojnik, Vojko; Feriche, Belén

    2015-06-01

    The objective of the study was to assess the use of maximum (Vmax) and final propulsive phase (FPV) bar velocity to predict jump height in the weighted jump squat. FPV was defined as the velocity reached just before bar acceleration was lower than gravity (-9.81 m·s(-2)). Vertical jump height was calculated from the take-off velocity (Vtake-off) provided by a force platform. Thirty swimmers belonging to the National Slovenian swimming team performed a jump squat incremental loading test, lifting 25%, 50%, 75% and 100% of body weight in a Smith machine. Jump performance was simultaneously monitored using an AMTI portable force platform and a linear velocity transducer attached to the barbell. Simple linear regression was used to estimate jump height from the Vmax and FPV recorded by the linear velocity transducer. Vmax (y = 16.577x - 16.384) was able to explain 93% of jump height variance with a standard error of the estimate of 1.47 cm. FPV (y = 12.828x - 6.504) was able to explain 91% of jump height variance with a standard error of the estimate of 1.66 cm. Despite that both variables resulted to be good predictors, heteroscedasticity in the differences between FPV and Vtake-off was observed (r(2) = 0.307), while the differences between Vmax and Vtake-off were homogenously distributed (r(2) = 0.071). These results suggest that Vmax is a valid tool for estimating vertical jump height in a loaded jump squat test performed in a Smith machine. Key pointsVertical jump height in the loaded jump squat can be estimated with acceptable precision from the maximum bar velocity recorded by a linear velocity transducer.The relationship between the point at which bar acceleration is less than -9.81 m·s(-2) and the real take-off is affected by the velocity of movement.Mean propulsive velocity recorded by a linear velocity transducer does not appear to be optimal to monitor ballistic exercise performance.

  7. Plyometric Long Jump Training With Progressive Loading Improves Kinetic and Kinematic Swimming Start Parameters.

    Science.gov (United States)

    Rebutini, Vanessa Z; Pereira, Gleber; Bohrer, Roberta C D; Ugrinowitsch, Carlos; Rodacki, André L F

    2016-09-01

    Rebutini, VZ, Pereira, G, Bohrer, RCD, Ugrinowitsch, C, and Rodacki, ALF. Plyometric long jump training with progressive loading improves kinetic and kinematic swimming start parameters. J Strength Cond Res 30(9): 2392-2398, 2016-This study was aimed to determine the effects of a plyometric long jump training program on torque around the lower limb joints and kinetic and kinematics parameters during the swimming jump start. Ten swimmers performed 3 identical assessment sessions, measuring hip and knee muscle extensors during maximal voluntary isometric contraction and kinetic and kinematics parameters during the swimming jump start, at 3 instants: INI (2 weeks before the training program, control period), PRE (2 weeks after INI measurements), and POST (24-48 hours after 9 weeks of training). There were no significant changes from INI to PRE measurements. However, the peak torque and rate of torque development increased significantly from PRE to POST measurements for both hip (47 and 108%) and knee (24 and 41%) joints. There were significant improvements to the horizontal force (7%), impulse (9%), and angle of resultant force (19%). In addition, there were significant improvements to the center of mass displacement (5%), horizontal takeoff velocity (16%), horizontal velocity at water entrance (22%), and peak angle velocity for the knee (15%) and hip joints (16%). Therefore, the plyometric long jump training protocol was effective to enhance torque around the lower limb joints and to control the resultant vector direction, to increase the swimming jump start performance. These findings suggest that coaches should use long jump training instead of vertical jump training to improve swimming start performance.

  8. EFFECT OF DIFFERENT STRETCHING PROTOCOLS ON VERTICAL JUMP PERFORMANCE

    Directory of Open Access Journals (Sweden)

    Emre Serin

    2018-04-01

    Full Text Available This study aimed to examine the effect of different stretching exercises on vertical jump performance. A total of 14 national male athletes sporting in the elite level took part in the study. The age average of the participants was 20.25±1.03 year, the average height was 1.80±.08 m, the average body weight was 77.14±18.91 kg, average of sporting age was 9.87±3.31 year and the average number of participation in international games was 10.0±3.31. As stretching protocol: Method 1 (5 minutes of jogging and 2 minutes of active rest followed by Method 2 (static stretching for 4 different muscle groups 3 repetitions for 15 seconds of static stretching, rest for 10 seconds between groups and then consecutively, Method 3 (Dynamic stretching exercises with 3 repetitions for 15 seconds and 10 seconds rest between different muscle groups were applied in the study. The vertical jump performance before and after different stretching exercises of the participants was determined by means of the vertical jump test using the smart speed lite system. Before and after the training of all athletes, HR was recorded with a heart rate monitor (RS 800, Polar Vantage NV, Polar Electro Oy, Finland with 5 seconds intervals. Before the study, the chest band of the heartbeat monitor was placed on the chest of the athlete and the HR was recorded from the monitor. SPSS 15.0 statistical package program was used for evaluation and calculation of the data. In this study in addition to descriptive statistics (mean and standard deviation paired samples t-test was used to determine the difference between the vertical jump performance of the participants before and after different stretching exercises. As a result, this study showed that; applying the dynamic and static stretching exercises consecutively affected the vertical jump performance 4.5 cm positively (p<.05. It is suggested that different dynamic and static stretching exercises should be included in the vertical jump.

  9. Rope rescue in National fire-fighting and rescue system

    OpenAIRE

    SOCHACKI MARIAN

    2008-01-01

    Автор описывает организацию, функционирование и место системы спасения с высоты в Государственной спасательно-гасящей системе.The author describes organization, working and place of rope rescue in National Firefighting and Rescue System (KSRG).

  10. Measurements of K shell absorption jump factors and jump ratios using EDXRF technique

    Science.gov (United States)

    Kacal, Mustafa Recep; Han, İbrahim; Akman, Ferdi

    2015-04-01

    In the present work, the K-shell absorption jump factors and jump ratios for 30 elements between Ti ( Z = 22) and Er ( Z = 68) were measured by energy dispersive X-ray fluorescence (EDXRF) technique. The jump factors and jump ratios for these elements were determined by measuring the K shell fluorescence parameters such as the Kα X-ray production cross-sections, K shell fluorescence yields, Kβ-to- Kα X-rays intensity ratios, total atomic absorption cross sections and mass attenuation coefficients. The measurements were performed using an Am-241 radioactive point source and a Si (Li) detector in direct excitation and transmission experimental geometry. The results for jump factors and jump ratios were compared with theoretically calculated and the ones available in the literature.

  11. Non-Gaussianity and cross-scale coupling in interplanetary magnetic field turbulence during a rope-rope magnetic reconnection event

    Science.gov (United States)

    Miranda, Rodrigo A.; Schelin, Adriane B.; Chian, Abraham C.-L.; Ferreira, José L.

    2018-03-01

    In a recent paper (Chian et al., 2016) it was shown that magnetic reconnection at the interface region between two magnetic flux ropes is responsible for the genesis of interplanetary intermittent turbulence. The normalized third-order moment (skewness) and the normalized fourth-order moment (kurtosis) display a quadratic relation with a parabolic shape that is commonly observed in observational data from turbulence in fluids and plasmas, and is linked to non-Gaussian fluctuations due to coherent structures. In this paper we perform a detailed study of the relation between the skewness and the kurtosis of the modulus of the magnetic field |B| during a triple interplanetary magnetic flux rope event. In addition, we investigate the skewness-kurtosis relation of two-point differences of |B| for the same event. The parabolic relation displays scale dependence and is found to be enhanced during magnetic reconnection, rendering support for the generation of non-Gaussian coherent structures via rope-rope magnetic reconnection. Our results also indicate that a direct coupling between the scales of magnetic flux ropes and the scales within the inertial subrange occurs in the solar wind.

  12. Option Panels in Pure-Jump Settings

    DEFF Research Database (Denmark)

    Andersen, Torben Gustav; Fusari, Nicola; Todorov, Viktor

    We develop parametric inference procedures for large panels of noisy option data in the setting where the underlying process is of pure-jump type, i.e., evolve only through a sequence of jumps. The panel consists of options written on the underlying asset with a (different) set of strikes...... specification for the risk-neutral asset return dynamics, the option prices are nonlinear functions of a time-invariant parameter vector and a time-varying latent state vector (or factors). Furthermore, no-arbitrage restrictions impose a direct link between some of the quantities that may be identified from...... the return and option data. These include the so-called jump activity index as well as the time-varying jump intensity. We propose penalized least squares estimation in which we minimize L_2 distance between observed and model-implied options and further penalize for the deviation of model-implied quantities...

  13. Microscopic models of quantum-jump superoperators

    International Nuclear Information System (INIS)

    Dodonov, A.V.; Mizrahi, S.S.; Dodonov, V.V.

    2005-01-01

    We discuss the quantum-jump operation in an open system and show that jump superoperators related to a system under measurement can be derived from the interaction of that system with a quantum measurement apparatus. We give two examples for the interaction of a monochromatic electromagnetic field in a cavity (the system) with two-level atoms and with a harmonic oscillator (representing two different kinds of detectors). We show that the derived quantum-jump superoperators have a 'nonlinear' form Jρ=γ diag[F(n)aρa † F(n)], where the concrete form of the function F(n) depends on assumptions made about the interaction between the system and detector. Under certain conditions the asymptotical power-law dependence F(n)=(n+1) -β is obtained. A continuous transition to the standard Srinivas-Davies form of the quantum-jump superoperator (corresponding to β=0) is shown

  14. Human Long Jump — A Deductive Approach

    Directory of Open Access Journals (Sweden)

    Miloš Jovanović

    2012-10-01

    Full Text Available This paper presents a useful application of a generalized approach to the modelling of human and humanoid motion using the deductive approach. It starts with formulating a completely general problem and deriving different real situations as special cases. The concept and the software realization are verified by comparing the results with the ones obtained using “classical” software for one well-known particular problem – biped walking. New applicability and potentials of the proposed method are demonstrated by simulation of a selected example – the long jump. The simulated motion included jumping and landing on the feet (after a jump. Additional analysis is done in the paper regarding the joint torque and joint angle during the jumping. Separate stages of the simulation are defined and explained.

  15. Volatility jumps and their economic determinants

    DEFF Research Database (Denmark)

    Caporin, Massimiliano; Rossi, Eduardo; Santucci de Magistris, Paolo

    that there is a positive probability of jumps in volatility. A common factor in the volatility jumps is shown to be related to a set of financial covariates (such as variance risk premium, S&P500 volume, credit-default swap, and federal fund rates). The credit-default swap on US banks and variance risk premium have...... predictive power on expected jump moves, thus confirming the common interpretation that sudden and large increases in equity volatility can be anticipated by credit deterioration of the US bank sector as well as changes in the market expectations of future risks. Finally, the model is extended to incorporate...... the credit-default swap and the variance risk premium in the dynamics of the jump size and intensity....

  16. A simple strategy for jumping straight up.

    Science.gov (United States)

    Hemami, Hooshang; Wyman, Bostwick F

    2012-05-01

    Jumping from a stationary standing position into the air is a transition from a constrained motion in contact with the ground to an unconstrained system not in contact with the ground. A simple case of the jump, as it applies to humans, robots and humanoids, is studied in this paper. The dynamics of the constrained rigid body are expanded to define a larger system that accommodates the jump. The formulation is applied to a four-link, three-dimensional system in order to articulate the ballistic motion involved. The activity of the muscular system and the role of the major sagittal muscle groups are demonstrated. The control strategy, involving state feedback and central feed forward signals, is formulated and computer simulations are presented to assess the feasibility of the formulations, the strategy and the jump. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. How quick is a quantum jump?

    International Nuclear Information System (INIS)

    Schulman, L.S.

    1997-01-01

    Although the only time scale one ordinarily associates with a quantum transition is its lifetime, observations of ''quantum jumps'' in recent years show that the actual transition time is much shorter. I define a ''jump time'' as the time scale such that perturbations occurring at intervals of this duration affect the decay. In terms of the ''Zeno time'' (related to the second moment of the Hamiltonian) the jump time is τ J is identical to τ 2 Z /τ L . Corroboration is given. I also show that observing the ''jumping'' will not seriously affect the system lifetime, but will affect the linewidth. This is consistent with Bohr's ideas on measurement as well as with a heuristic time-energy uncertainty principle. (author)

  18. A Correction Equation for Jump Height Measured Using the Just Jump System.

    Science.gov (United States)

    McMahon, John J; Jones, Paul A; Comfort, Paul

    2016-05-01

    To determine the concurrent validity and reliability of the popular Just Jump system (JJS) for determining jump height and, if necessary, provide a correction equation for future reference. Eighteen male college athletes performed 3 bilateral countermovement jumps (CMJs) on 2 JJSs (alternative method) that were placed on top of a force platform (criterion method). Two JJSs were used to establish consistency between systems. Jump height was calculated from flight time obtained from the JJS and force platform. Intraclass correlation coefficients (ICCs) demonstrated excellent within-session reliability of the CMJ height measurement derived from both the JJS (ICC = .96, P jump height (0.46 ± 0.09 m vs 0.33 ± 0.08 m) than the force platform (P jump height = (0.8747 × alternative jump height) - 0.0666. The JJS provides a reliable but overestimated measure of jump height. It is suggested, therefore, that practitioners who use the JJS as part of future work apply the correction equation presented in this study to resultant jump-height values.

  19. Jump Horse Safety: Reconciling Public Debate and Australian Thoroughbred Jump Racing Data, 2012–2014

    Directory of Open Access Journals (Sweden)

    Karen Ruse

    2015-10-01

    Full Text Available Thoroughbred jump racing sits in the spotlight of contemporary welfare and ethical debates about horse racing. In Australia, jump racing comprises hurdle and steeplechase races and has ceased in all but two states, Victoria and South Australia. This paper documents the size, geography, composition, and dynamics of Australian jump racing for the 2012, 2013, and 2014 seasons with a focus on debate about risks to horses. We found that the majority of Australian jump racing is regional, based in Victoria, and involves a small group of experienced trainers and jockeys. Australian jump horses are on average 6.4 years of age. The jump career of the majority of horses involves participating in three or less hurdle races and over one season. Almost one quarter of Australian jump horses race only once. There were ten horse fatalities in races over the study period, with an overall fatality rate of 5.1 fatalities per 1000 horses starting in a jump race (0.51%. There was significant disparity between the fatality rate for hurdles, 0.75 fatalities per 1000 starts (0.075% and steeplechases, 14 fatalities per 1000 starts (1.4%. Safety initiatives introduced by regulators in 2010 appear to have significantly decreased risks to horses in hurdles but have had little or no effect in steeplechases. Our discussion considers these Animals 2015, 5 1073 data in light of public controversy, political debate, and industry regulation related to jump horse safety.

  20. Jump Horse Safety: Reconciling Public Debate and Australian Thoroughbred Jump Racing Data, 2012-2014.

    Science.gov (United States)

    Ruse, Karen; Davison, Aidan; Bridle, Kerry

    2015-10-22

    Thoroughbred jump racing sits in the spotlight of contemporary welfare and ethical debates about horse racing. In Australia, jump racing comprises hurdle and steeplechase races and has ceased in all but two states, Victoria and South Australia. This paper documents the size, geography, composition, and dynamics of Australian jump racing for the 2012, 2013, and 2014 seasons with a focus on debate about risks to horses. We found that the majority of Australian jump racing is regional, based in Victoria, and involves a small group of experienced trainers and jockeys. Australian jump horses are on average 6.4 years of age. The jump career of the majority of horses involves participating in three or less hurdle races and over one season. Almost one quarter of Australian jump horses race only once. There were ten horse fatalities in races over the study period, with an overall fatality rate of 5.1 fatalities per 1000 horses starting in a jump race (0.51%). There was significant disparity between the fatality rate for hurdles, 0.75 fatalities per 1000 starts (0.075%) and steeplechases, 14 fatalities per 1000 starts (1.4%). Safety initiatives introduced by regulators in 2010 appear to have significantly decreased risks to horses in hurdles but have had little or no effect in steeplechases. Our discussion considers these Animals 2015, 5 1073 data in light of public controversy, political debate, and industry regulation related to jump horse safety.

  1. Jump spillover between oil prices and exchange rates

    Science.gov (United States)

    Li, Xiao-Ping; Zhou, Chun-Yang; Wu, Chong-Feng

    2017-11-01

    In this paper, we investigate the jump spillover effects between oil prices and exchange rates. To identify the latent historical jumps for exchange rates and oil prices, we use a Bayesian MCMC approach to estimate the stochastic volatility model with correlated jumps in both returns and volatilities for each. We examine the simultaneous jump intensities and the conditional jump spillover probabilities between oil prices and exchange rates, finding strong evidence of jump spillover effects. Further analysis shows that the jump spillovers are mainly due to exogenous events such as financial crises and geopolitical events. Thus, the findings have important implications for financial risk management.

  2. Aerodynamics of ski jumping flight and its control: II. Simulations

    Science.gov (United States)

    Lee, Jungil; Lee, Hansol; Kim, Woojin; Choi, Haecheon

    2015-11-01

    In a ski jumping competition, it is essential to analyze the effect of various posture parameters of a ski jumper to achieve a longer flight distance. For this purpose, we conduct a large eddy simulation (LES) of turbulent flow past a model ski jumper which is obtained by 3D scanning a ski jumper's body (Mr. Chil-Ku Kang, member of the Korean national team). The angle of attack of the jump ski is 30° and the Reynolds number based on the length of the jump ski is 540,000. The flow statistics including the drag and lift coefficients in flight are in good agreements with our own experimental data. We investigate the flow characteristics such as the flow separation and three-dimensional vortical structures and their effects on the drag and lift. In addition to LES, we construct a simple geometric model of a ski jumper where each part of the ski jumper is modeled as a canonical bluff body such as the sphere, cylinder and flat plate, to find its optimal posture. The results from this approach will be compared with those by LES and discussed. Supported by NRF program (2014M3C1B1033848, 2014R1A1A1002671).

  3. A multiplicity jump trigger using silicon planes

    International Nuclear Information System (INIS)

    Alexopoulos, T.; Erwin, A.R.

    1993-01-01

    Since silicon tracking planes are already present in a B decay experiment, it is an attractive idea to use these as part of a multiplicity jump detector. Two average B decays would produce a multiplicity jump of around 10 in the final state. Such a trigger has been tried for a fixed target Charm experiment with disappointing success. The failure was attributed to the difficulty in adequately controlling the gains of a large number of microstrip amplifies

  4. Portfolio Selection with Jumps under Regime Switching

    Directory of Open Access Journals (Sweden)

    Lin Zhao

    2010-01-01

    Full Text Available We investigate a continuous-time version of the mean-variance portfolio selection model with jumps under regime switching. The portfolio selection is proposed and analyzed for a market consisting of one bank account and multiple stocks. The random regime switching is assumed to be independent of the underlying Brownian motion and jump processes. A Markov chain modulated diffusion formulation is employed to model the problem.

  5. Jumps in binomial AR(1) processes

    OpenAIRE

    Weiß , Christian H.

    2009-01-01

    Abstract We consider the binomial AR(1) model for serially dependent processes of binomial counts. After a review of its definition and known properties, we investigate marginal and serial properties of jumps in such processes. Based on these results, we propose the jumps control chart for monitoring a binomial AR(1) process. We show how to evaluate the performance of this control chart and give design recommendations. correspondance: Tel.: +49 931 31 84968; ...

  6. Computational fluid dynamics modeling of rope-guided conveyances in two typical kinds of shaft layouts.

    Directory of Open Access Journals (Sweden)

    Renyuan Wu

    Full Text Available The behavior of rope-guided conveyances is so complicated that the rope-guided hoisting system hasn't been understood thoroughly so far. In this paper, with user-defined functions loaded, ANSYS FLUENT 14.5 was employed to simulate lateral motion of rope-guided conveyances in two typical kinds of shaft layouts. With rope-guided mine elevator and mine cages taken into account, results show that the lateral aerodynamic buffeting force is much larger than the Coriolis force, and the side aerodynamic force have the same order of magnitude as the Coriolis force. The lateral aerodynamic buffeting forces should also be considered especially when the conveyance moves along the ventilation air direction. The simulation shows that the closer size of the conveyances can weaken the transverse aerodynamic buffeting effect.

  7. A finite element model for independent wire rope core with double ...

    Indian Academy of Sciences (India)

    1Istanbul Technical University, Institute of Informatics, Computational Science and ... a little work has been done using the double helical geometry and real ... Finite element approach has been embedded in wire rope analysis since 1999.

  8. GENESIS OF INTERPLANETARY INTERMITTENT TURBULENCE: A CASE STUDY OF ROPE–ROPE MAGNETIC RECONNECTION

    Energy Technology Data Exchange (ETDEWEB)

    Chian, Abraham C.-L.; Loew, Murray H. [Department of Biomedical Engineering, George Washington University, Washington, DC 20052 (United States); Feng, Heng Q. [Institute of Space Physics, Luoyang Normal University, Luoyang (China); Hu, Qiang [Department of Space Science and CSPAR, University of Alabama in Huntsville, Huntsville, AL 35805 (United States); Miranda, Rodrigo A. [UnB-Gama Campus, and Plasma Physics Laboratory, Institute of Physics, University of Brasília (UnB), Brasília DF 70910-900 (Brazil); Muñoz, Pablo R. [Department of Physics and Astronomy, University of La Serena, Av. Juan Cisternas 1200, La Serena (Chile); Sibeck, David G. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Wu, De J., E-mail: abraham.chian@gmail.com [Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210008 (China)

    2016-12-01

    In a recent paper, the relation between current sheet, magnetic reconnection, and turbulence at the leading edge of an interplanetary coronal mass ejection was studied. We report here the observation of magnetic reconnection at the interface region of two interplanetary magnetic flux ropes. The front and rear boundary layers of three interplanetary magnetic flux ropes are identified, and the structures of magnetic flux ropes are reconstructed by the Grad–Shafranov method. A quantitative analysis of the reconnection condition and the degree of intermittency reveals that rope–rope magnetic reconnection is the most likely site for genesis of interplanetary intermittency turbulence in this event. The dynamic pressure pulse resulting from this reconnection triggers the onset of a geomagnetic storm.

  9. Strength of precast concrete shear joints reinforced with high-strength wire ropes

    DEFF Research Database (Denmark)

    Joergensen, Henrik B.; Hoang, Linh Cao; Hagsten, Lars German

    2017-01-01

    This paper concerns the in-plane shear strength of connections between precast concrete wall elements reinforced with looped high-strength wire ropes. The looped wire ropes are pre-installed in so-called ‘wire boxes’ which function as shear keys. Although only a small amount of research...... on the shear strength of such connections can be found in the literature, this type of connection is increasingly being used because wire ropes are much more construction-friendly than traditional U-bars. A rigid plastic upper bound model for the shear strength of wall connections reinforced with looped wire...... ropes that are pre-installed in wire boxes is presented along with test results on the shear strength of connections with double-wire boxes. It is shown that the plastic solution agrees well with both the obtained test results and results from previously conducted tests....

  10. Load carrying capacity of keyed joints reinforced with high strength wire rope loops

    DEFF Research Database (Denmark)

    Jørgensen, Henrik B.; Hoang, Linh Cao

    2015-01-01

    friendly shear connection can be obtained by replacing the U-bars with high strength looped wire ropes. The wire ropes have the advantage of being flexible (they have virtually no bending stiffness) which makes installation of wall elements much easier. The looped wire ropes are usually pre-installed in so......-called wire boxes which are embedded in the precast wall elements. Once the joint is grouted with mortar, the boxes will function as shear keys and the overlapping wire loops will function as transverse reinforcement that replaces the U-bars. This paper presents a rigid-plastic upper bound model to determine...... the shear capacity of wire loop connections. Tests have shown that the shear capacity of such joints – due to the relatively high tensile strength of the wire ropes - is more prone to be governed by fracture of the joint mortar in combination with yielding of the locking bar. To model this type of failure...

  11. Tests for nonrandomness in quantum jumps

    International Nuclear Information System (INIS)

    Berkeland, D.J.; Raymondson, D.A.; Tassin, V.M.

    2004-01-01

    In a fundamental test of quantum mechanics, we have observed 228 000 quantum jumps of a single trapped and laser cooled 88 Sr + ion. This represents a statistical increase of two orders of magnitude over previous similar analyses of quantum jumps. Compared to other searches for nonrandomness in quantum-mechanical processes, using quantum jumps simplifies the interpretation of data by eliminated multiparticle effects and providing near-unit detection efficiency of transitions. We measure the fractional reduction in the entropy of information to be -4 when the value of any interval between quantum jumps is known. We also find that the number of runs of successively increasing or decreasing interval times agrees with the theoretically expected values. Furthermore, we analyze 238 000 quantum jumps from two simultaneously confined ions and find that the number of apparently coincidental transitions is as expected. Finally, we observe 8400 spontaneous decays of two simultaneously trapped ions and find that the number of apparently coincidental decays from the metastable state agrees with the expected value. We find no evidence for short- or long-term correlations in the intervals of the quantum jumps or in the decay of the quantum states, in agreement with quantum theory

  12. Hydrodynamics of vertical jumping in Archer fish

    Science.gov (United States)

    Techet, Alexandra H.; Mendelson, Leah

    2017-11-01

    Vertical jumping for aerial prey from an aquatic environment requires both propulsive power and precise aim to succeed. Rapid acceleration to a ballistic velocity sufficient for reaching the prey height occurs before the fish leaves the water completely and experiences a thousandfold drop in force-producing ability. In addition to speed, accuracy and stability are crucial for successful feeding by jumping. This talk examines the physics of jumping using the archer fish as a model. Better known for their spitting abilities, archer fish will jump multiple body lengths out of the water for prey capture, from a stationary position just below the free surface. Modulation of oscillatory body kinematics and use of multiple fins for force production are identified as methods through which the fish can meet requirements for both acceleration and stabilization in limited space. Quantitative 3D PIV wake measurements reveal how variations in tail kinematics relate to thrust production throughout the course of a jumping maneuver and over a range of jump heights. By performing measurements in 3D, the timing, interactions, and relative contributions to thrust and lateral forces from each fin can be evaluated, elucidating the complex hydrodynamics that enable archer fish water exit.

  13. ROPES reveals past land cover and pollen productivity estimates from single pollen records

    Science.gov (United States)

    Theuerkauf, Martin; Couwenberg, John

    2018-04-01

    Quantitative reconstructions of past vegetation cover commonly require pollen productivity estimates (PPEs). PPEs are calibrated in extensive and rather cumbersome surface-sample studies, and are so far only available for selected regions. Moreover, it may be questioned whether present-day pollen-landcover relationships are valid for palaeo-situations. We here introduce the ROPES approach that simultaneously derives PPEs and mean plant abundances from single pollen records. ROPES requires pollen counts and pollen accumulation rates (PARs, grains cm-2 year-1). Pollen counts are used to reconstruct plant abundances following the REVEALS approach. The principle of ROPES is that changes in plant abundance are linearly represented in observed PAR values. For example, if the PAR of pine doubles, so should the REVEALS reconstructed abundance of pine. Consequently, if a REVEALS reconstruction is ‘correct’ (i.e. ‘correct’ PPEs are used) the ratio ‘PAR over REVEALS’ is constant for each taxon along all samples of a record. With incorrect PPEs, the ratio will instead vary. ROPES starts from random (likely incorrect) PPEs, but then adjusts them using an optimization algorithm with the aim to minimize variation in the ‘PAR over REVEALS’ ratio across the record. ROPES thus simultaneously calculates mean plant abundances and PPEs. We illustrate the approach with test applications on nine synthetic pollen records. The results show that good performance of ROPES requires data sets with high underlying variation, many samples and low noise in the PAR data. ROPES can deliver first landcover reconstructions in regions for which PPEs are not yet available. The PPEs provided by ROPES may then allow for further REVEALS-based reconstructions. Similarly, ROPES can provide insight in pollen productivity during distinct periods of the past such as the Lateglacial. We see a potential to study spatial and temporal variation in pollen productivity for example in relation to site

  14. Performance analysis of jump-gliding locomotion for miniature robotics.

    Science.gov (United States)

    Vidyasagar, A; Zufferey, Jean-Christohphe; Floreano, Dario; Kovač, M

    2015-03-26

    Recent work suggests that jumping locomotion in combination with a gliding phase can be used as an effective mobility principle in robotics. Compared to pure jumping without a gliding phase, the potential benefits of hybrid jump-gliding locomotion includes the ability to extend the distance travelled and reduce the potentially damaging impact forces upon landing. This publication evaluates the performance of jump-gliding locomotion and provides models for the analysis of the relevant dynamics of flight. It also defines a jump-gliding envelope that encompasses the range that can be achieved with jump-gliding robots and that can be used to evaluate the performance and improvement potential of jump-gliding robots. We present first a planar dynamic model and then a simplified closed form model, which allow for quantification of the distance travelled and the impact energy on landing. In order to validate the prediction of these models, we validate the model with experiments using a novel jump-gliding robot, named the 'EPFL jump-glider'. It has a mass of 16.5 g and is able to perform jumps from elevated positions, perform steered gliding flight, land safely and traverse on the ground by repetitive jumping. The experiments indicate that the developed jump-gliding model fits very well with the measured flight data using the EPFL jump-glider, confirming the benefits of jump-gliding locomotion to mobile robotics. The jump-glide envelope considerations indicate that the EPFL jump-glider, when traversing from a 2 m height, reaches 74.3% of optimal jump-gliding distance compared to pure jumping without a gliding phase which only reaches 33.4% of the optimal jump-gliding distance. Methods of further improving flight performance based on the models and inspiration from biological systems are presented providing mechanical design pathways to future jump-gliding robot designs.

  15. On the upper part load vortex rope in Francis turbine: Experimental investigation

    International Nuclear Information System (INIS)

    Nicolet, C; Zobeiri, A; Maruzewski, P; Avellan, F

    2010-01-01

    The swirling flow developing in Francis turbine draft tube under part load operation leads to pressure fluctuations usually in the range of 0.2 to 0.4 times the runner rotational frequency resulting from the so-called vortex breakdown. For low cavitation number, the flow features a cavitation vortex rope animated with precession motion. Under given conditions, these pressure fluctuations may lead to undesirable pressure fluctuations in the entire hydraulic system and also produce active power oscillations. For the upper part load range, between 0.7 and 0.85 times the best efficiency discharge, pressure fluctuations may appear in a higher frequency range of 2 to 4 times the runner rotational speed and feature modulations with vortex rope precession. It has been pointed out that for this particular operating point, the vortex rope features elliptical cross section and is animated of a self-rotation. This paper presents an experimental investigation focusing on this peculiar phenomenon, defined as the upper part load vortex rope. The experimental investigation is carried out on a high specific speed Francis turbine scale model installed on a test rig of the EPFL Laboratory for Hydraulic Machines. The selected operating point corresponds to a discharge of 0.83 times the best efficiency discharge. Observations of the cavitation vortex carried out with high speed camera have been recorded and synchronized with pressure fluctuations measurements at the draft tube cone. First, the vortex rope self rotation frequency is evidenced and the related frequency is deduced. Then, the influence of the sigma cavitation number on vortex rope shape and pressure fluctuations is presented. The waterfall diagram of the pressure fluctuations evidences resonance effects with the hydraulic circuit. The time evolution of the vortex rope volume is compared with pressure fluctuations time evolution using image processing. Finally, the influence of the Froude number on the vortex rope shape and

  16. On the upper part load vortex rope in Francis turbine: Experimental investigation

    Energy Technology Data Exchange (ETDEWEB)

    Nicolet, C [Power Vision Engineering sarl Ch. des Champs-Courbes 1, CH-1024 Ecublens (Switzerland); Zobeiri, A; Maruzewski, P; Avellan, F, E-mail: christophe.nicolet@powervision-eng.c [Laboratory for Hydraulic Machines, Ecole polytechnique federale de Lausanne, EPFL Av. de Cour 33bis, CH-1007 Lausanne (Switzerland)

    2010-08-15

    The swirling flow developing in Francis turbine draft tube under part load operation leads to pressure fluctuations usually in the range of 0.2 to 0.4 times the runner rotational frequency resulting from the so-called vortex breakdown. For low cavitation number, the flow features a cavitation vortex rope animated with precession motion. Under given conditions, these pressure fluctuations may lead to undesirable pressure fluctuations in the entire hydraulic system and also produce active power oscillations. For the upper part load range, between 0.7 and 0.85 times the best efficiency discharge, pressure fluctuations may appear in a higher frequency range of 2 to 4 times the runner rotational speed and feature modulations with vortex rope precession. It has been pointed out that for this particular operating point, the vortex rope features elliptical cross section and is animated of a self-rotation. This paper presents an experimental investigation focusing on this peculiar phenomenon, defined as the upper part load vortex rope. The experimental investigation is carried out on a high specific speed Francis turbine scale model installed on a test rig of the EPFL Laboratory for Hydraulic Machines. The selected operating point corresponds to a discharge of 0.83 times the best efficiency discharge. Observations of the cavitation vortex carried out with high speed camera have been recorded and synchronized with pressure fluctuations measurements at the draft tube cone. First, the vortex rope self rotation frequency is evidenced and the related frequency is deduced. Then, the influence of the sigma cavitation number on vortex rope shape and pressure fluctuations is presented. The waterfall diagram of the pressure fluctuations evidences resonance effects with the hydraulic circuit. The time evolution of the vortex rope volume is compared with pressure fluctuations time evolution using image processing. Finally, the influence of the Froude number on the vortex rope shape and

  17. 3DCORE: Forward modeling of solar storm magnetic flux ropes for space weather prediction

    Science.gov (United States)

    Möstl, C.; Amerstorfer, T.; Palmerio, E.; Isavnin, A.; Farrugia, C. J.; Lowder, C.; Winslow, R. M.; Donnerer, J. M.; Kilpua, E. K. J.; Boakes, P. D.

    2018-05-01

    3DCORE forward models solar storm magnetic flux ropes called 3-Dimensional Coronal Rope Ejection (3DCORE). The code is able to produce synthetic in situ observations of the magnetic cores of solar coronal mass ejections sweeping over planets and spacecraft. Near Earth, these data are taken currently by the Wind, ACE and DSCOVR spacecraft. Other suitable spacecraft making these kind of observations carrying magnetometers in the solar wind were MESSENGER, Venus Express, MAVEN, and even Helios.

  18. Load carrying capacity of keyed joints reinforced with high strength wire rope loops

    OpenAIRE

    Jørgensen, Henrik B.; Hoang, Linh Cao

    2015-01-01

    Vertical shear connections between precast concrete wall elements are usually made as keyed joints reinforced with overlapping U-bars. The overlapping U-bars form a cylindrical core in which the locking bar is placed and the connection is subsequently grouted with mortar. A more construction friendly shear connection can be obtained by replacing the U-bars with high strength looped wire ropes. The wire ropes have the advantage of being flexible (they have virtually no bending stiffness) which...

  19. Evaluation of mechanical properties of steel wire ropes by statistical methods

    Directory of Open Access Journals (Sweden)

    Boroška Ján

    1999-12-01

    Full Text Available The contribution deals with the evaluation of mechanical properties of steel wire ropes using statistical methods from the viewpoint of the quality of single wires as well as the internal construction of the wire ropes. The evaluation is based on the loading capacity calculated from the strength, number of folds and torsions. For the better ilustration, a box plot has been constructed.

  20. On the upper part load vortex rope in Francis turbine: Experimental investigation

    Science.gov (United States)

    Nicolet, C.; Zobeiri, A.; Maruzewski, P.; Avellan, F.

    2010-08-01

    The swirling flow developing in Francis turbine draft tube under part load operation leads to pressure fluctuations usually in the range of 0.2 to 0.4 times the runner rotational frequency resulting from the so-called vortex breakdown. For low cavitation number, the flow features a cavitation vortex rope animated with precession motion. Under given conditions, these pressure fluctuations may lead to undesirable pressure fluctuations in the entire hydraulic system and also produce active power oscillations. For the upper part load range, between 0.7 and 0.85 times the best efficiency discharge, pressure fluctuations may appear in a higher frequency range of 2 to 4 times the runner rotational speed and feature modulations with vortex rope precession. It has been pointed out that for this particular operating point, the vortex rope features elliptical cross section and is animated of a self-rotation. This paper presents an experimental investigation focusing on this peculiar phenomenon, defined as the upper part load vortex rope. The experimental investigation is carried out on a high specific speed Francis turbine scale model installed on a test rig of the EPFL Laboratory for Hydraulic Machines. The selected operating point corresponds to a discharge of 0.83 times the best efficiency discharge. Observations of the cavitation vortex carried out with high speed camera have been recorded and synchronized with pressure fluctuations measurements at the draft tube cone. First, the vortex rope self rotation frequency is evidenced and the related frequency is deduced. Then, the influence of the sigma cavitation number on vortex rope shape and pressure fluctuations is presented. The waterfall diagram of the pressure fluctuations evidences resonance effects with the hydraulic circuit. The time evolution of the vortex rope volume is compared with pressure fluctuations time evolution using image processing. Finally, the influence of the Froude number on the vortex rope shape and

  1. Impact of Androstenone on Leash Pulling and Jumping Up in Dogs

    Directory of Open Access Journals (Sweden)

    Glenna Pirner

    2016-05-01

    Full Text Available Dogs are relinquished to shelters due to behavioral problems, such as leash pulling and jumping up. Interomones are chemical cues produced by one species that elicit a response in a different species. We reported earlier that androstenone, a swine sex pheromone, acts as an interomone to reduce barking in dogs. Here we report two models using 10 dogs/study: a dog jumping and a dog walking model. For the leash-pulling model, each time the dog pulled on the leash the walker either did nothing (NOT, or sprayed the dog with water (H2O, androstenone + water (ANH, androstenone 0.1 µg/mL (AND1, or androstenone 1.0 µg/mL (AND2. The number of pulls during each walk was counted. For the jumping up model, each time the dog jumped the researcher did nothing (NOT, or sprayed the dog with H2O, ANH, AND1, or AND2. The number of jumps and the time between jumps were recorded. In Study 1, ANH, AND1, and AND2 each reduced leash pulling more than NOT and H2O (p< 0.01. In Study 2, all treatments were effective in reducing jumping up behavior. Androstenone reduced jumping up, but not beyond that elicited by a spray of water alone. We conclude that androstenone in multiple delivery vehicles reduced leash pulling. The burst of air intended as a disruptive stimulus in the correction sprays may be too harsh for more sensitive dogs, and as such use of these sprays is cautioned in these animals. For other dogs, this interomone can be used to stop some behavior immediately or as a part of a training program to reduce undesirable behavior.

  2. Relative Intensity Influences the Degree of Correspondence of Jump Squats and Push Jerks to Countermovement Jumps.

    Science.gov (United States)

    Cushion, Emily J; Goodwin, Jon E; Cleather, Daniel J

    2016-05-01

    The aim of this study was to determine the mechanical similarity between push jerk (PJ) and jump squat (JS) to countermovement jump (CMJ) and further understand the effect increasing external load may have on this relationship. Eight physically trained men (age 22 ± 3; height 176 ± 7 kg; weight 83 ± 8 kg) performed an unloaded CMJ followed by JS under a range of loads (10, 25, 35, and 50% 1RM back squat) and PJ (30, 50, 65, and 75% 1RM push jerk). A portable force platform and high-speed camera both collecting at 250 Hz were used to establish joint moments and impulse during the propulsive phase of the movements. A standard inverse dynamics model was used to determine joint moment and impulse at the hip, knee, and ankle. Significant correlations (p ≤ 0.05) were shown between CMJ knee joint moment and JS knee joint moment at 25% load and PJ knee joint moment at 30 and 50% load. Significant correlations were also observed between CMJ knee joint impulse and JS knee joint impulse at 10% load and PJ knee joint moment at 30 and 65% load. Significant correlation was also observed between CMJ hip joint impulse and PJ hip joint impulse at 30% load. No significant joint × load interaction was shown as load increased for either PJ or JS. Results from the study suggest partial correspondence between PJ and JS to CMJ, where a greater mechanical similarity was observed between the PJ and CMJ. This interaction is load and joint dependent where lower relative loads showed greatest mechanical similarity. Therefore using lower relative loads when programming may provide a greater transfer of training effect.

  3. Jump Horse Safety: Reconciling Public Debate and Australian Thoroughbred Jump Racing Data, 2012–2014

    Science.gov (United States)

    Ruse, Karen; Davison, Aidan; Bridle, Kerry

    2015-01-01

    Simple Summary This paper documents the dynamics of Australian thoroughbred jump racing in the 2012, 2013, and 2014 seasons with the aim of informing debate about risks to horses and the future of this activity. We conclude that the safety of Australian jump racing has improved in recent years but that steeplechases are considerably riskier for horses than hurdle races. Abstract Thoroughbred jump racing sits in the spotlight of contemporary welfare and ethical debates about horse racing. In Australia, jump racing comprises hurdle and steeplechase races and has ceased in all but two states, Victoria and South Australia. This paper documents the size, geography, composition, and dynamics of Australian jump racing for the 2012, 2013, and 2014 seasons with a focus on debate about risks to horses. We found that the majority of Australian jump racing is regional, based in Victoria, and involves a small group of experienced trainers and jockeys. Australian jump horses are on average 6.4 years of age. The jump career of the majority of horses involves participating in three or less hurdle races and over one season. Almost one quarter of Australian jump horses race only once. There were ten horse fatalities in races over the study period, with an overall fatality rate of 5.1 fatalities per 1000 horses starting in a jump race (0.51%). There was significant disparity between the fatality rate for hurdles, 0.75 fatalities per 1000 starts (0.075%) and steeplechases, 14 fatalities per 1000 starts (1.4%). Safety initiatives introduced by regulators in 2010 appear to have significantly decreased risks to horses in hurdles but have had little or no effect in steeplechases. Our discussion considers these data in light of public controversy, political debate, and industry regulation related to jump horse safety. PMID:26506396

  4. Multiple flux rope events at the magnetopause observations by TC-1 on 18 March 2004

    Directory of Open Access Journals (Sweden)

    C. J. Xiao

    2005-11-01

    Full Text Available From 23:10 to 23:50 UT on 18 March 2004, the Double Star TC-1 spacecraft detected eight flux ropes at the outbound crossing of the southern dawnside magnetopause. A notable guide field existed inside all ropes. In the mean time the Cluster spacecraft were staying in the magnetosheath and found that the events occurred under the condition of southward IMF Bz and dominant negative IMF By. There are six ropes that appeared quasi-periodically, with a repeated period being approximately 1-4 min. The last flux rope lasts for a longer time interval with a larger peak in the BN variations; it can thus be referred to as a typical FTE. The 18 March 2004 event is quite similar to the multiple flux rope event observed by Cluster on 26 January 2001 at the northern duskside high-latitude magnetopause. A detailed comparison of these two events is made in the paper. Preliminary studies imply that both of these multiple flux ropes events seem to be produced by component reconnection at the dayside low-latitude magnetopause.

  5. FINE-SCALE STRUCTURES OF FLUX ROPES TRACKED BY ERUPTING MATERIAL

    Energy Technology Data Exchange (ETDEWEB)

    Li Ting; Zhang Jun, E-mail: liting@nao.cas.cn, E-mail: zjun@nao.cas.cn [Key Laboratory of Solar Activity, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China)

    2013-06-20

    We present Solar Dynamics Observatory observations of two flux ropes tracked out by material from a surge and a failed filament eruption on 2012 July 29 and August 4, respectively. For the first event, the interaction between the erupting surge and a loop-shaped filament in the east seems to 'peel off' the filament and add bright mass into the flux rope body. The second event is associated with a C-class flare that occurs several minutes before the filament activation. The two flux ropes are, respectively, composed of 85 {+-} 12 and 102 {+-} 15 fine-scale structures, with an average width of about 1.''6. Our observations show that two extreme ends of the flux rope are rooted in opposite polarity fields and each end is composed of multiple footpoints (FPs) of fine-scale structures. The FPs of the fine-scale structures are located at network magnetic fields, with magnetic fluxes from 5.6 Multiplication-Sign 10{sup 18} Mx to 8.6 Multiplication-Sign 10{sup 19} Mx. Moreover, almost half of the FPs show converging motion of smaller magnetic structures over 10 hr before the appearance of the flux rope. By calculating the magnetic fields of the FPs, we deduce that the two flux ropes occupy at least 4.3 Multiplication-Sign 10{sup 20} Mx and 7.6 Multiplication-Sign 10{sup 20} Mx magnetic fluxes, respectively.

  6. Magnetospheric Multiscale Mission Observations of Magnetic Flux Ropes in the Earth's Plasma Sheet

    Science.gov (United States)

    Slavin, J. A.; Akhavan-Tafti, M.; Poh, G.; Le, G.; Russell, C. T.; Nakamura, R.; Baumjohann, W.; Torbert, R. B.; Gershman, D. J.; Pollock, C. J.; Giles, B. L.; Moore, T. E.; Burch, J. L.

    2017-12-01

    A major discovery by the Cluster mission and the previous generation of science missions is the presence of earthward and tailward moving magnetic flux ropes in the Earth's plasma sheet. However, the lack of high-time resolution plasma measurements severely limited progress concerning the formation and evolution of these reconnection generated structures. We use high-time resolution magnetic and electric field and plasma measurements from the Magnetospheric Multiscale mission's first tail season to investigate: 1) the distribution of flux rope diameters relative to the local ion and electron inertial lengths; 2) the internal force balance sustaining these structures; and 3) the magnetic connectivity of the flux ropes to the Earth and/or the interplanetary medium; 4) the specific entropy of earthward moving flux ropes and the possible effect of "buoyancy" on how deep they penetrate into the inner magnetosphere; and 5) evidence for coalescence of adjacent flux ropes and/or the division of existing flux ropes through the formation of secondary X-lines. The results of these initial analyses will be discussed in terms of their implications for reconnection-driven magnetospheric dynamics and substorms.

  7. A quantitative assessment of the weakening of wire ropes based on the magnetic testing

    Energy Technology Data Exchange (ETDEWEB)

    Kwasniewski, J.; Lankosz, L.; Tytko, A.

    1985-01-01

    Discusses the use of magnetic defectoscopes and defectographs in the nondestructive testing of wire ropes. Emphasizes the need for laboratory pre-calibration where quantitave results are required. Individual system calibration is recommended where instruments with a 95% confidence level in reading are used, e.g. MD-8 defectograph and DLS unit, but improved tolerances achieved in sensor head manufacture have made possible a universal calibration characteristic for use with defectoscopes and a wide variety of heads. A chart is given covering all heads and induction sensors available in Poland. Describes methods of interpreting presented results to indicate degree of wear due to fatigue, abrasion and corrosion in ropes with constituent wires of differing profile. States that the form of rope wear can be deduced from the character of the defectograph pulse readings. Formulae relating the degree of rope weakening to these readings and also to the integrated output are given. Briefly describes a method for determining the loss of rope cross sectional area based on Hall effect chart records. Outlines the use of the MD-9 and MD-10 defectoscopes in assessing rope wear in discrete ranges. Suggests that regular measurements permit an accurate determination of the character of progressive wear and further that pulse analysis of MD-10 results can permit a quantitative determination of wear. 4 refs.

  8. Sunward-propagating Solar Energetic Electrons inside Multiple Interplanetary Flux Ropes

    Energy Technology Data Exchange (ETDEWEB)

    Gómez-Herrero, Raúl; Hidalgo, Miguel A.; Carcaboso, Fernando; Blanco, Juan J. [Dpto. de Física y Matemáticas, Universidad de Alcalá, E-28871 Alcalá de Henares, Madrid (Spain); Dresing, Nina; Klassen, Andreas; Heber, Bernd [Institut für Experimentelle und Angewandte Physik, University of Kiel, D-24118, Kiel (Germany); Temmer, Manuela; Veronig, Astrid [Institute of Physics/Kanzelhöhe Observatory, University of Graz, A-8010 Graz (Austria); Bučík, Radoslav [Institut für Astrophysik, Georg-August-Universität Göttingen, D-37077, Göttingen (Germany); Lario, David, E-mail: raul.gomezh@uah.es [The Johns Hopkins University, Applied Physics Laboratory, Laurel, MD 20723 (United States)

    2017-05-10

    On 2013 December 2 and 3, the SEPT and STE instruments on board STEREO-A observed two solar energetic electron events with unusual sunward-directed fluxes. Both events occurred during a time interval showing typical signatures of interplanetary coronal mass ejections (ICMEs). The electron timing and anisotropies, combined with extreme-ultraviolet solar imaging and radio wave spectral observations, are used to confirm the solar origin and the injection times of the energetic electrons. The solar source of the ICME is investigated using remote-sensing observations and a three-dimensional reconstruction technique. In situ plasma and magnetic field data combined with energetic electron observations and a flux-rope model are used to determine the ICME magnetic topology and the interplanetary electron propagation path from the Sun to 1 au. Two consecutive flux ropes crossed the STEREO-A location and each electron event occurred inside a different flux rope. In both cases, the electrons traveled from the solar source to 1 au along the longest legs of the flux ropes still connected to the Sun. During the December 2 event, energetic electrons propagated along the magnetic field, while during the December 3 event they were propagating against the field. As found by previous studies, the energetic electron propagation times are consistent with a low number of field line rotations N < 5 of the flux rope between the Sun and 1 au. The flux rope model used in this work suggests an even lower number of rotations.

  9. Load Carrying Capacity of Shear Wall T-Connections Reinforced with High Strength Wire Ropes

    DEFF Research Database (Denmark)

    Jørgensen, Henrik Brøner; Bryndum, Thor; Larsen, Michael

    2017-01-01

    Traditionally, U-bar loop connections with keyed joints have been used in vertical shear connections between precast concrete wall elements. However, in the recent years, connections with looped high strength wire ropes instead of U-bar loops have proven to be a much more construction-friendly so......Traditionally, U-bar loop connections with keyed joints have been used in vertical shear connections between precast concrete wall elements. However, in the recent years, connections with looped high strength wire ropes instead of U-bar loops have proven to be a much more construction......-friendly solution. The wire ropes have no bending stiffness and therefore allow for an easier vertical installation of the wall elements. During the last 10 – 15 years, a number of shear tests on plane wire rope connections have been carried out. However, to the best knowledge of the authors, tests on wire rope...... connections for assembly of precast elements in different planes, such as T- and L-connections, have not yet been published. This paper presents the results of a large test series recently conducted at the University of Southern Denmark to study the shear behaviour of high strength wire rope T...

  10. Behavioral and Physiological Responses of Calves to Marshalling and Roping in a Simulated Rodeo Event

    Directory of Open Access Journals (Sweden)

    Michelle Sinclair

    2016-04-01

    Full Text Available Rodeos are public events at which stockpeople face tests of their ability to manage cattle and horses, some of which relate directly to rangeland cattle husbandry. One of these is calf roping, in which a calf released from a chute is pursued by a horse and rider, who lassoes, lifts and drops the calf to the ground and finally ties it around the legs. Measurements were made of behavior and stress responses of ten rodeo-naïve calves marshalled by a horse and rider, and ten rodeo-experienced calves that were roped. Naïve calves marshalled by a horse and rider traversed the arena slowly, whereas rodeo-experienced calves ran rapidly until roped. Each activity was repeated once after two hours. Blood samples taken before and after each activity demonstrated increased cortisol, epinephrine and nor-epinephrine in both groups. However, there was no evidence of a continued increase in stress hormones in either group by the start of the repeated activity, suggesting that the elevated stress hormones were not a response to a prolonged effect of the initial blood sampling. It is concluded that both the marshalling of calves naïve to the roping chute by stockpeople and the roping and dropping of experienced calves are stressful in a simulated rodeo calf roping event.

  11. STRENGTHENING OF A REINFORCED CONCRETE BRIDGE WITH PRESTRESSED STEEL WIRE ROPES

    Directory of Open Access Journals (Sweden)

    Kexin Zhang

    2017-10-01

    Full Text Available This paper describes prestressed steel wire ropes as a way to strengthen a 20-year-old RC T-beam bridge. High strength, low relaxation steel wire ropes with minor radius, high tensile strain and good corrosion resistance were used in this reinforcement. The construction process for strengthening with prestressed steel wire ropes—including wire rope measuring, extruding anchor heads making, anchorage installing, tensioning steel wire ropes and pouring mortar was described. Ultimate bearing capacity of the bridge after strengthening was discussed based on the concrete structure theory. The flexural strength of RC T-beam bridges strengthened with prestressed steel wire ropes was governed by the failure of concrete crushing. To investigate effectiveness of the strengthening method, fielding-load tests were carried out before and after strengthening. The results of concrete strain and deflection show that the flexural strength and stiffness of the strengthened beam are improved. The crack width measurement also indicates that this technique could increase the durability of the bridge. Thus, this strengthened way with prestressed steel wire rope is feasible and effective.

  12. Observing Formation of Flux Rope by Tether-cutting Reconnection in the Sun

    Energy Technology Data Exchange (ETDEWEB)

    Xue, Zhike; Yan, Xiaoli; Yang, Liheng; Wang, Jincheng; Zhao, Li, E-mail: zkxue@ynao.ac.cn [Yunnan Observatories, Chinese Academy of Sciences, Kunming Yunnan 650216 (China)

    2017-05-10

    Tether-cutting reconnection is considered as one mechanism for the formation of a flux rope. It has been proposed for more than 30 years; however, so far, direct observations of it are very rare. In this Letter, we present observations of the formation of a flux rope via tether-cutting reconnection in NOAA AR 11967 on 2014 February 2 by combining observations with the New Vacuum Solar Telescope and the Solar Dynamic Observatory . The tether-cutting reconnection occurs between two sets of highly sheared magnetic arcades. Comprehensive observational evidence of the reconnection is as follows: changes of the connections between the arcades, brightenings at the reconnection site, hot outflows, formation of a flux rope, slow-rise motion of the flux rope, and flux cancelation. The outflows are along three directions from the reconnection site to the footpoints with the velocities from 24 ± 1 km s{sup −1} to 69 ± 5 km s{sup −1}. Additionally, it is found that the newly formed flux rope connects far footpoints and has a left-handed twisted structure with many fine threads and a concave-up-shape structure in the middle. All the observations are in agreement with the tether-cutting model and provide evidence that tether-cutting reconnection leads to the formation of the flux rope associated with flux shear flow and cancelation.

  13. Jumping to conclusions in schizophrenia

    Directory of Open Access Journals (Sweden)

    Evans SL

    2015-07-01

    Full Text Available Simon L Evans,1 Bruno B Averbeck,2 Nicholas Furl31School of Psychology, University of Sussex, Brighton, East Sussex, UK; 2Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA; 3Department of Psychology, Royal Holloway, University of London, Egham, Surrey, UKAbstract: Schizophrenia is a mental disorder associated with a variety of symptoms, including hallucinations, delusions, social withdrawal, and cognitive dysfunction. Impairments on decision-making tasks are routinely reported: evidence points to a particular deficit in learning from and revising behavior following feedback. In addition, patients tend to make hasty decisions when probabilistic judgments are required. This is known as “jumping to conclusions” (JTC and has typically been demonstrated by presenting participants with colored beads drawn from one of two “urns” until they claim to be sure which urn the beads are being drawn from (the proportions of colors vary in each urn. Patients tend to make early decisions on this task, and there is evidence to suggest that a hasty decision-making style might be linked to delusion formation and thus be of clinical relevance. Various accounts have been proposed regarding what underlies this behavior. In this review, we briefly introduce the disorder and the decision-making deficits associated with it. We then explore the evidence for each account of JTC in the context of a wider decision-making deficit and then go on to summarize work exploring JTC in healthy controls using pharmacological manipulations and functional imaging. Finally, we assess whether JTC might have a role in therapy.Keywords: ketamine, decision making, delusions, fMRI, urn task

  14. The reliability of vertical jump tests between the Vertec and My Jump phone application.

    Science.gov (United States)

    Yingling, Vanessa R; Castro, Dimitri A; Duong, Justin T; Malpartida, Fiorella J; Usher, Justin R; O, Jenny

    2018-01-01

    The vertical jump is used to estimate sports performance capabilities and physical fitness in children, elderly, non-athletic and injured individuals. Different jump techniques and measurement tools are available to assess vertical jump height and peak power; however, their use is limited by access to laboratory settings, excessive cost and/or time constraints thus making these tools oftentimes unsuitable for field assessment. A popular field test uses the Vertec and the Sargent vertical jump with countermovement; however, new low cost, easy to use tools are becoming available, including the My Jump iOS mobile application (app). The purpose of this study was to assess the reliability of the My Jump relative to values obtained by the Vertec for the Sargent stand and reach vertical jump (VJ) test. One hundred and thirty-five healthy participants aged 18-39 years (94 males, 41 females) completed three maximal Sargent VJ with countermovement that were simultaneously measured using the Vertec and the My Jump . Jump heights were quantified for each jump and peak power was calculated using the Sayers equation. Four separate ICC estimates and their 95% confidence intervals were used to assess reliability. Two analyses (with jump height and calculated peak power as the dependent variables, respectively) were based on a single rater, consistency, two-way mixed-effects model, while two others (with jump height and calculated peak power as the dependent variables, respectively) were based on a single rater, absolute agreement, two-way mixed-effects model. Moderate to excellent reliability relative to the degree of consistency between the Vertec and My Jump values was found for jump height (ICC = 0.813; 95% CI [0.747-0.863]) and calculated peak power (ICC = 0.926; 95% CI [0.897-0.947]). However, poor to good reliability relative to absolute agreement for VJ height (ICC = 0.665; 95% CI [0.050-0.859]) and poor to excellent reliability relative to absolute agreement for peak power

  15. A Markov chain analysis of the effectiveness of drum-buffer-rope material flow management in job shop environment

    Directory of Open Access Journals (Sweden)

    Masoud Rabbani

    2015-09-01

    Full Text Available The theory of constraints is an approach for production planning and control, which emphasizes on the constraints in the system to increase throughput. The theory of constraints is often referred to as Drum-Buffer-Rope developed originally by Goldratt. Drum-Buffer-Rope uses the drum or constraint to create a schedule based on the finite capacity of the first bottleneck. Because of complexity of the job shop environment, Drum-Buffer-Rope material flow management has very little attention to job shop environment. The objective of this paper is to apply the Drum-Buffer-Rope technique in the job shop environment using a Markov chain analysis to compare traditional method with Drum-Buffer-Rope. Four measurement parameters were considered and the result showed the advantage of Drum-Buffer-Rope approach compared with traditional one.

  16. Jump locations of jump-diffusion processes with state-dependent rates

    International Nuclear Information System (INIS)

    Miles, Christopher E; Keener, James P

    2017-01-01

    We propose a general framework for studying statistics of jump-diffusion systems driven by both Brownian noise (diffusion) and a jump process with state-dependent intensity. Of particular natural interest in many physical systems are the jump locations: the system evaluated at the jump times. As an example, this could be the voltage at which a neuron fires, or the so-called ‘threshold voltage’. However, the state-dependence of the jump rate provides direct coupling between the diffusion and jump components, making it difficult to disentangle the two to study individually. In this work, we provide an iterative map formulation of the sequence of distributions of jump locations. The distributions computed by this map can be used to elucidate other interesting quantities about the process, including statistics of the interjump times. Ultimately, the limit of the map reveals that knowledge of the stationary distribution of the full process is sufficient to recover (but not necessarily equal to) the distribution of jump locations. We propose two biophysical examples to illustrate the use of this framework to provide insight about a system. We find that a sharp threshold voltage emerges robustly in a simple stochastic integrate-and-fire neuronal model. The interplay between the two sources of noise is also investigated in a stepping model of molecular motor in intracellular transport pulling a diffusive cargo. (paper)

  17. Experimental study of the hydraulic jump in a hydraulic jump in a ...

    African Journals Online (AJOL)

    The hydraulic jump in a sloped rectangular channel is theoretically and experimentally examined. The study aims to determine the effect of the channel's slope on the sequent depth ratio of the jump. A theoretical relation is proposed for the inflow Froude number as function of the sequent depth ratio and the channel slope.

  18. Increase in Jumping Height Associated with Maximal Effort Vertical Depth Jumps.

    Science.gov (United States)

    Bedi, John F.; And Others

    1987-01-01

    In order to assess if there existed a statistically significant increase in jumping performance when dropping from different heights, 32 males, aged 19 to 26, performed a series of maximal effort vertical jumps after dropping from eight heights onto a force plate. Results are analyzed. (Author/MT)

  19. The effect of wind on jumping distance in ski jumping--fairness assessed.

    Science.gov (United States)

    Virmavirta, Mikko; Kivekäs, Juha

    2012-09-01

    The special wind compensation system recently adopted by Fédération Internationale de Ski (FIS; International Ski Federation) to consider the effects of changing wind conditions has caused some controversy. Here, the effect of wind on jumping distance in ski jumping was studied by means of computer simulation and compared with the wind compensation factors used by FIS during the World Cup season 2009/2010. The results showed clearly that the effect of increasing head/tail wind on jumping distance is not linear: +17.4 m/-29.1 m, respectively, for a wind speed of 3 m/s. The linear formula used in the trial period of the wind compensation system was found to be appropriate only for a limited range of jumping distances as the gradient of the landing slope slows down the rate of distance change in long jumps.

  20. Performance Enhancement of the Space Shuttle RSRM Nozzle-to-Case Joint Using a Carbon Rope Barrier

    Science.gov (United States)

    Ewing, M. E.; McGuire, J. R.; McWhorter, B. B.; Frost, D. L.

    1999-01-01

    A carbon rope "thermal barrier" is being considered as a component to enhance performance of the Reusable Solid Rocket Motor (RSRM) nozzle-to-case joint. Fundamental performance characteristics of the rope have been considered in this paper. In particular, resistance to erosion, ability to filter particulate matter, thermal capacitance, and flow resistance have been considered. Testing results have shown the rope to be resistant to the corrosive internal environment of the RSRM. The rope has also been shown to be an effective "slag barrier." A desirable feature of the rope would be the ability to act as a heat sink. However, analyses have indicated that the thermal capacitance of the rope is not large enough to reduce the temperature of an impinging gas stream below the ablation temperature of the 0-ring for significant time periods, The real value of the rope is its ability to act as a flow diffuser. Flow resistance test, were performed on the rope In the course of testing the rope between parallel plates, an undesirable "blow-by" phenomenon was observed when the compressive stress in the rope was smaller than the upstream gas pressure. It was found, however, that in the converging passage of the actual design, the rope would consistently "Self-seat" and thereby prevent blow-by, even in the absence of any precompression. Flow resistance values have been quantified for use in future analyses. The work presented here provides an initial thermal-fluid assessment of the rope for this application, and lays the groundwork for future development.

  1. THE RELATIONSHIP BETWEEN STIFFNESS LOSSES AND LOSSES IN BEARINGS OF ROPE BLOCKS

    Directory of Open Access Journals (Sweden)

    V. M. Bohomaz

    2017-08-01

    Full Text Available Purpose. To determine the efficiency of rope blocks, it is necessary to determine the stiffness coefficient of the ropes of blocks, taking into account the classification group of the mechanism and the wrapping angle of a block by a rope. At this one should use well-tested values of the efficiency coefficients of the rope blocks, taking into account the wrapping angle of a block by a rope and the analytically found friction coefficients of the rolling bearings given to the trunnion. Methodology. The work presents the analytical method of determining the coefficient of bearing resistance of the block when it is rotated by both the inner and outer cages, as well as the design scheme of the bearing of the block. Findings. The analysis of the lubrication method effect, the operating mode of the mechanism and the wrapping angle of a block by a rope on losses in bearings was carried out for rope blocks. The corresponding comparative tables of losses are given. Analysis of the obtained calculation results allows us to establish: 1 the main resistance affecting the cable blocks efficiency is the resistance in bearings; 2 the second largest component is the stiffness losses, depending on the operating mode, the wrapping angle of a block by a rope, the type of bearing lubrication; 3 the block efficiency when rotating the inner cage is higher than rotating the outer one by about 3% with thick lubrication and 1M mode; 4 in the sequential location of assemblies with a rolling bearing, it is necessary to strive for the design of the assembly in which the inner cage rotates; 5 with the number of blocks up to 5, one can use the recommended definitions of block bearings in the literature with an error in the efficiency value of up to 10%. Originality. The authors obtained values of resistances in the rolling bearings of the rope blocks and stiffness losses due to the girth of the block by the rope. In this case, dependences were used to determine the coefficient

  2. Analysis of optimum wire rope configuration for equal unidirectional torsional stiffness for flexible steering shaft

    Directory of Open Access Journals (Sweden)

    Hussain Najaf

    2016-01-01

    Full Text Available The design and modeling of Low Stiffness Resilience Shaft (LSRS for the Semi-Active Steering (SAS system using wire ropes is discussed in this paper, along with the static structural torsion test simulation of the wire ropes in order to determine the best possible configuration which serves the purpose of an LSRS. The importance of this study arises due to the unidirectional torsional properties of a wire rope. For an effective operational LSRS, the wire ropes need to have similar angular deflection in both the clockwise and anti-clockwise direction. LSRS, an integral component of the SAS is a flexible shaft that can replace the conventional rigid shaft of the steering system and allows active control to be performed. 3D solid models of the simple strand and the 4 strand wire ropes used in finite element analysis were generated in CAD software SolidWorksTM. The single strand and the different configuration of wire ropes required to function the LSRS effectively were then analyzed using Finite element simulation in ANSYSTM. A single wire rope could not be used because its construction has inconsistency in the torsional stiffness in clockwise and anti-clockwise direction. The single-strand right-direction lay wire rope is found to have 16.05% angular deflection percentage difference in the clockwise and anticlockwise directions which indicates that using a single strand wire rope for the LSRS will cause the vehicle to have a variable response in the clockwise and anti clockwise direction upon turning the steering wheel. Due to this inconsistency, two variations namely Variation 1 and Variation 2 with arrangement of 4 strand wire rope were devised so that the angular deflection percentage difference would be negligible. Simulation results indicated that Variation 1 of the two variations with an angular deflection percentage difference of 0.34% in the clockwise and anti-clockwise direction respectively is best suited for the use in LSRS as it has

  3. Filtering and control of stochastic jump hybrid systems

    CERN Document Server

    Yao, Xiuming; Zheng, Wei Xing

    2016-01-01

    This book presents recent research work on stochastic jump hybrid systems. Specifically, the considered stochastic jump hybrid systems include Markovian jump Ito stochastic systems, Markovian jump linear-parameter-varying (LPV) systems, Markovian jump singular systems, Markovian jump two-dimensional (2-D) systems, and Markovian jump repeated scalar nonlinear systems. Some sufficient conditions are first established respectively for the stability and performances of those kinds of stochastic jump hybrid systems in terms of solution of linear matrix inequalities (LMIs). Based on the derived analysis conditions, the filtering and control problems are addressed. The book presents up-to-date research developments and novel methodologies on stochastic jump hybrid systems. The contents can be divided into two parts: the first part is focused on robust filter design problem, while the second part is put the emphasis on robust control problem. These methodologies provide a framework for stability and performance analy...

  4. Determinants of the abilities to jump higher and shorten the contact time in a running 1-legged vertical jump in basketball.

    Science.gov (United States)

    Miura, Ken; Yamamoto, Masayoshi; Tamaki, Hiroyuki; Zushi, Koji

    2010-01-01

    This study was conducted to obtain useful information for developing training techniques for the running 1-legged vertical jump in basketball (lay-up shot jump). The ability to perform the lay-up shot jump and various basic jumps was measured by testing 19 male basketball players. The basic jumps consisted of the 1-legged repeated rebound jump, the 2-legged repeated rebound jump, and the countermovement jump. Jumping height, contact time, and jumping index (jumping height/contact time) were measured and calculated using a contact mat/computer system that recorded the contact and air times. The jumping index indicates power. No significant correlation existed between the jumping height and contact time of the lay-up shot jump, the 2 components of the lay-up shot jump index. As a result, jumping height and contact time were found to be mutually independent abilities. The relationships in contact time between the lay-up shot jump to the 1-legged repeated rebound jump and the 2-legged repeated rebound jump were correlated on the same significance levels (p jumping height existed between the 1-legged repeated rebound jump and the lay-up shot jump (p jumping height between the lay-up shot jump and both the 2-legged repeated rebound jump and countermovement jump. The lay-up shot index correlated more strongly to the 1-legged repeated rebound jump index (p jump index (p jump is effective in improving both contact time and jumping height in the lay-up shot jump.

  5. Temperature jump boundary conditions in radiation diffusion

    International Nuclear Information System (INIS)

    Alonso, C.T.

    1976-12-01

    The radiation diffusion approximation greatly simplifies radiation transport problems. Yet the application of this method has often been unnecessarily restricted to optically thick regions, or has been extended through the use of such ad hoc devices as flux limiters. The purpose of this paper is to review and draw attention to the use of the more physically appropriate temperature jump boundary conditions for extending the range of validity of the diffusion approximation. Pioneering work has shown that temperature jump boundary conditions remove the singularity in flux that occurs in ordinary diffusion at small optical thicknesses. In this review paper Deissler's equations for frequency-dependent jump boundary conditions are presented and specific geometric examples are calculated analytically for steady state radiation transfer. When jump boundary conditions are applied to radiation diffusion, they yield exact solutions which are naturally flux- limited and geometry-corrected. We believe that the presence of temperature jumps on source boundaries is probably responsible in some cases for the past need for imposing ad hoc flux-limiting constraints on pure diffusion solutions. The solution for transfer between plane slabs, which is exact to all orders of optical thickness, also provides a useful tool for studying the accuracy of computer codes

  6. Scaling the viscous circular hydraulic jump

    Science.gov (United States)

    Argentina, Mederic; Cerda, Enrique; Duchesne, Alexis; Limat, Laurent

    2017-11-01

    The formation mechanism of hydraulic jumps has been proposed by Belanger in 1828 and rationalised by Lord Rayleigh in 1914. As the Froude number becomes higher than one, the flow super criticality induces an instability which yields the emergence of a steep structure at the fluid surface. Strongly deformed liquid-air interface can be observed as a jet of viscous fluid impinges a flat boundary at high enough velocity. In this experimental setup, the location of the jump depends on the viscosity of the liquid, as shown by T. Bohr et al. in 1997. In 2014, A. Duchesne et al. have established the constancy of the Froude number at jump. Hence, it remains a contradiction, in which the radial hydraulic jump location might be explained through inviscid theory, but is also viscosity dependent. We present a model based on the 2011 Rojas et al. PRL, which solves this paradox. The agreement with experimental measurements is excellent not only for the prediction of the position of the hydraulic jump, but also for the determination of the fluid thickness profile. We predict theoretically the critical value of the Froude number, which matches perfectly to that measured by Duchesne et al. We acknowledge the support of the CNRS and the Universit Cte d'Azur, through the IDEX funding.

  7. A locust-inspired miniature jumping robot.

    Science.gov (United States)

    Zaitsev, Valentin; Gvirsman, Omer; Ben Hanan, Uri; Weiss, Avi; Ayali, Amir; Kosa, Gabor

    2015-11-25

    Unmanned ground vehicles are mostly wheeled, tracked, or legged. These locomotion mechanisms have a limited ability to traverse rough terrain and obstacles that are higher than the robot's center of mass. In order to improve the mobility of small robots it is necessary to expand the variety of their motion gaits. Jumping is one of nature's solutions to the challenge of mobility in difficult terrain. The desert locust is the model for the presented bio-inspired design of a jumping mechanism for a small mobile robot. The basic mechanism is similar to that of the semilunar process in the hind legs of the locust, and is based on the cocking of a torsional spring by wrapping a tendon-like wire around the shaft of a miniature motor. In this study we present the jumping mechanism design, and the manufacturing and performance analysis of two demonstrator prototypes. The most advanced jumping robot demonstrator is power autonomous, weighs 23 gr, and is capable of jumping to a height of 3.35 m, covering a distance of 1.37 m.

  8. Biomechanics of stair walking and jumping.

    Science.gov (United States)

    Loy, D J; Voloshin, A S

    1991-01-01

    Physical activities such as stair walking and jumping result in increased dynamic loading on the human musculoskeletal system. Use of light weight, externally attached accelerometers allows for in-vivo monitoring of the shock waves invading the human musculoskeletal system during those activities. Shock waves were measured in four subjects performing stair walking up and down, jumping in place and jumping off a fixed elevation. The results obtained show that walking down a staircase induced shock waves with amplitude of 130% of that observed in walking up stairs and 250% of the shock waves experienced in level gait. The jumping test revealed levels of the shock waves nearly eight times higher than that in level walking. It was also shown that the shock waves invading the human musculoskeletal system may be generated not only by the heel strike, but also by the metatarsal strike. To moderate the risk of degenerative joint disorders four types of viscoelastic insoles were utilized to reduce the impact generated shock waves. The insoles investigated were able to reduce the amplitude of the shock wave by between 9% and 41% depending on the insole type and particular physical activity. The insoles were more effective in the reduction of the heel strike impacts than in the reduction of the metatarsal strike impacts. In all instances, the shock attenuation capacities of the insoles tested were greater in the jumping trials than in the stair walking studies. The insoles were ranked in three groups on the basis of their shock absorbing capacity.

  9. Mussel Spat Ropes Assist Redfin Bully Gobiomorphus huttoni Passage through Experimental Culverts with Velocity Barriers

    Directory of Open Access Journals (Sweden)

    Liam A.H. Wright

    2012-09-01

    Full Text Available The application of mussel spat rope for enabling the passage of redfin bully Gobiomorphus huttoni through culverts, which create velocity barriers, was trialled in the laboratory. No fish were able to access the un-roped control pipes whereas 52% successfully negotiated the pipes in the rope treatments. The success of fish ascending treatment pipes suggests mussel spat rope may be effective for enabling the passage of this and other similar fish species through otherwise impassable culverts with velocity barriers.

  10. Biomechanical Differences of Multidirectional Jump Landings Among Female Basketball and Soccer Players.

    Science.gov (United States)

    Taylor, Jeffrey B; Ford, Kevin R; Schmitz, Randy J; Ross, Scott E; Ackerman, Terry A; Shultz, Sandra J

    2017-11-01

    Taylor, JB, Ford, KR, Schmitz, RJ, Ross, SE, Ackerman, TA, and Shultz, SJ. Biomechanical differences of multidirectional jump landings among female basketball and soccer players. J Strength Cond Res 31(11): 3034-3045, 2017-Anterior cruciate ligament (ACL) injury prevention programs are less successful in basketball than soccer and may be due to distinct movement strategies that these athletes develop from sport-specific training. The purpose of this study was to identify biomechanical differences between female basketball and soccer players during multidirectional jump landings. Lower extremity biomechanics of 89 female athletes who played competitive basketball (n = 40) or soccer (n = 49) at the middle- or high-school level were analyzed with 3-dimensional motion analysis during a drop vertical jump, double- (SAG-DL) and single-leg forward jump (SAG-SL), and double- (FRONT-DL) and single-leg (FRONT-SL) lateral jump. Basketball players landed with either less hip or knee, or both hip and knee excursion during all tasks (p ≤ 0.05) except for the SAGSL task, basketball players landed with greater peak hip flexion angles (p = 0.04). The FRONT-SL task elicited the most distinct sport-specific differences, including decreased hip adduction (p soccer players exhibited a more protective landing strategy than basketball players, justifying future efforts toward sport-specific ACL injury prevention programs.

  11. Forward Modeling of Coronal Mass Ejection Flux Ropes in the Inner Heliosphere with 3DCORE

    Science.gov (United States)

    Möstl, C.; Amerstorfer, T.; Palmerio, E.; Isavnin, A.; Farrugia, C. J.; Lowder, C.; Winslow, R. M.; Donnerer, J. M.; Kilpua, E. K. J.; Boakes, P. D.

    2018-03-01

    Forecasting the geomagnetic effects of solar storms, known as coronal mass ejections (CMEs), is currently severely limited by our inability to predict the magnetic field configuration in the CME magnetic core and by observational effects of a single spacecraft trajectory through its 3-D structure. CME magnetic flux ropes can lead to continuous forcing of the energy input to the Earth's magnetosphere by strong and steady southward-pointing magnetic fields. Here we demonstrate in a proof-of-concept way a new approach to predict the southward field Bz in a CME flux rope. It combines a novel semiempirical model of CME flux rope magnetic fields (Three-Dimensional Coronal ROpe Ejection) with solar observations and in situ magnetic field data from along the Sun-Earth line. These are provided here by the MESSENGER spacecraft for a CME event on 9-13 July 2013. Three-Dimensional Coronal ROpe Ejection is the first such model that contains the interplanetary propagation and evolution of a 3-D flux rope magnetic field, the observation by a synthetic spacecraft, and the prediction of an index of geomagnetic activity. A counterclockwise rotation of the left-handed erupting CME flux rope in the corona of 30° and a deflection angle of 20° is evident from comparison of solar and coronal observations. The calculated Dst matches reasonably the observed Dst minimum and its time evolution, but the results are highly sensitive to the CME axis orientation. We discuss assumptions and limitations of the method prototype and its potential for real time space weather forecasting and heliospheric data interpretation.

  12. Shear behavior of concrete beams externally prestressed with Parafil ropes

    Directory of Open Access Journals (Sweden)

    A.H. Ghallab

    2013-03-01

    Full Text Available Although extensive work has been carried out investigating the use of external prestressing system for flexural strengthening, a few studies regarding the shear behavior of externally prestressed beams can be found. Five beams, four of them were externally strengthened using Parafil rope, were loaded up to failure to investigate the effect of shear span/depth ratio, external prestressing force and concrete strength on their shear behavior. Test results showed that the shear span to depth ratio has a significant effect on both the shear strength and failure mode of the strengthened beams and the presence of external prestressing force increased the ultimate load of the tested beams by about 75%. Equations proposed by different codes for both the conventional reinforced concrete beams and for ordinary prestressed beams were used to evaluate the obtained experimental results. In general, codes equations showed a high level of conservatism in predicting the shear strength of the beams. Also, using the full strength rather than half of the concrete shear strength in the Egyptian code PC-method improves the accuracy of the calculated ultimate shear strength.

  13. Observational Evidence of a Flux Rope within a Sunspot Umbra

    Energy Technology Data Exchange (ETDEWEB)

    Guglielmino, Salvo L.; Zuccarello, Francesca [Dipartimento di Fisica e Astronomia—Sezione Astrofisica, Università di Catania, Via S. Sofia 78, I-95125 Catania (Italy); Romano, Paolo, E-mail: salvo.guglielmino@oact.inaf.it [INAF—Osservatorio Astrofisico di Catania, Via S. Sofia 78, I-95125 Catania (Italy)

    2017-09-10

    We observed an elongated filamentary bright structure inside the umbra of the big sunspot in active region NOAA 12529, which differs from the light bridges usually observed in sunspots for its morphology, magnetic configuration, and velocity field. We used observations taken with the Solar Dynamic Observatory satellite to characterize this feature. Its lifetime is 5 days, during which it reaches a maximum length of about 30″. In the maps of the vertical component of the photospheric magnetic field, a portion of the feature has a polarity opposite to that of the hosting sunspot. At the same time, in the entire feature the horizontal component of the magnetic field is about 2000 G, substantially stronger than in the surrounding penumbral filaments. Doppler velocity maps reveal the presence of both upward and downward plasma motions along the structure at the photospheric level. Moreover, looking at the chromospheric level, we noted that it is located in a region corresponding to the edge of a small filament that seems rooted in the sunspot umbra. Therefore, we interpreted the bright structure as the photospheric counterpart of a flux rope touching the sunspot and giving rise to penumbral-like filaments in the umbra.

  14. Results of two years of water training on jump height in postmenopausal women with moderate hip risk fracture

    Directory of Open Access Journals (Sweden)

    María Carrasco Poyatos

    2010-01-01

    Full Text Available The aim of the present study was to investigate the effect of a water-based calisthenics and resistance program on jump height in postmenopausal women with moderate hip risk fracture. 39 women were divided into three groups: swimming group (GN; n = 17, calisthenics and resistance group (GIR; n = 14, and control group (GC; n = 8. Body composition test included body mass index (IMC and waist to hip ratio (ICC. Jump height was assessed by a countermovement jump (CMJ. GN showed a significant (p<0.05 decrease in ICC (5.81%. GIR showed a significant decrease in IMC (3.65% and a significant increase in CMJ (15.5%. Two years of water-based calisthenics and resistance training can offer significant benefits in jump height in postmenopausal women with moderate hip risk fracture. Both exercise programs can also improve body composition.

  15. Serious ski jumping injuries in Norway.

    Science.gov (United States)

    Wester, K

    1985-01-01

    Injuries caused by ski jumping have been poorly investigated. Among approximately 2,200 licensed jumpers in Norway, there occurred at least 12 injuries with a permanent medical disability of greater than or equal to 10%. The risk of being seriously injured is approximately 5% in a 5 year period (1977 to 1981); it is higher in the age group 15 to 17 years. Seven injuries were very serious [four central nervous system (CNS) lesions, two leg amputations, and one blindness of one eye], and five were less serious (sequelae to fractures of the lower extremities). The first jump of the day is particularly dangerous, and so is the beginning and end of the season. It seems dangerous to use more than one standard heel block. Poor preparation of the jump may have contributed to the accidents. Based on the findings, several prophylactic measures are suggested.

  16. Recent Advancements in Lightning Jump Algorithm Work

    Science.gov (United States)

    Schultz, Christopher J.; Petersen, Walter A.; Carey, Lawrence D.

    2010-01-01

    In the past year, the primary objectives were to show the usefulness of total lightning as compared to traditional cloud-to-ground (CG) networks, test the lightning jump algorithm configurations in other regions of the country, increase the number of thunderstorms within our thunderstorm database, and to pinpoint environments that could prove difficult for any lightning jump configuration. A total of 561 thunderstorms have been examined in the past year (409 non-severe, 152 severe) from four regions of the country (North Alabama, Washington D.C., High Plains of CO/KS, and Oklahoma). Results continue to indicate that the 2 lightning jump algorithm configuration holds the most promise in terms of prospective operational lightning jump algorithms, with a probability of detection (POD) at 81%, a false alarm rate (FAR) of 45%, a critical success index (CSI) of 49% and a Heidke Skill Score (HSS) of 0.66. The second best performing algorithm configuration was the Threshold 4 algorithm, which had a POD of 72%, FAR of 51%, a CSI of 41% and an HSS of 0.58. Because a more complex algorithm configuration shows the most promise in terms of prospective operational lightning jump algorithms, accurate thunderstorm cell tracking work must be undertaken to track lightning trends on an individual thunderstorm basis over time. While these numbers for the 2 configuration are impressive, the algorithm does have its weaknesses. Specifically, low-topped and tropical cyclone thunderstorm environments are present issues for the 2 lightning jump algorithm, because of the suppressed vertical depth impact on overall flash counts (i.e., a relative dearth in lightning). For example, in a sample of 120 thunderstorms from northern Alabama that contained 72 missed events by the 2 algorithm 36% of the misses were associated with these two environments (17 storms).

  17. Validity of a Jump Mat for assessing Countermovement Jump Performance in Elite Rugby Players.

    Science.gov (United States)

    Dobbin, Nick; Hunwicks, Richard; Highton, Jamie; Twist, Craig

    2017-02-01

    This study determined the validity of the Just Jump System ® (JJS) for measuring flight time, jump height and peak power output (PPO) in elite rugby league players. 37 elite rugby league players performed 6 countermovement jumps (CMJ; 3 with and 3 without arms) on a jump mat and force platform. A sub-sample (n=28) was used to cross-validate the equations for flight time, jump height and PPO. The JJS systematically overestimated flight time and jump height compared to the force platform (Pjump height ( with R 2 =0.945; without R 2 =0.987). Our equations revealed no systematic difference between corrected and force platform scores and an improved the agreement for flight time (Ratio limits of agreement: with 1.00 vs. 1.36; without 1.00 vs. 1.16) and jump height ( with 1.01 vs. 1.34; without 1.01 vs. 1.15), meaning that our equations can be used to correct JJS scores for elite rugby players. While our equation improved the estimation of PPO ( with 1.02; without 1.01) compared to existing equations (Harman: 1.20; Sayers: 1.04), this only accounted for 64 and 69% of PPO. © Georg Thieme Verlag KG Stuttgart · New York.

  18. CLIMATIC JUMP IN THE POLAR REGION (I)

    OpenAIRE

    ヤマモト, リョウザブロウ; イワシマ, タツヤ; ホシアイ, マコト; Ryozaburo, YAMAMOTO; Tatsuya, IWASHIMA; Makoto, HOSHIAI

    1987-01-01

    From the analysis of the climatic elements over Japan, we can detect the "climatic jumps" around the years 1920 and 1950,which is a new concept in the climatic diagnosis proposed by the present authors (R. YAMAMOTO et al. : J. Meteorol. Soc. Jpn., 63,1157,1985,64,273,1986). Taking account of several results which show the simultaneous occurrence of the climatic jumps of the surface air temperature, precipitation, etc., in the other regions by the other investigators, we may infer the "climati...

  19. Test-retest reliability of jump execution variables using mechanography: a comparison of jump protocols.

    Science.gov (United States)

    Fitzgerald, John S; Johnson, LuAnn; Tomkinson, Grant; Stein, Jesse; Roemmich, James N

    2018-05-01

    Mechanography during the vertical jump may enhance screening and determining mechanistic causes underlying physical performance changes. Utility of jump mechanography for evaluation is limited by scant test-retest reliability data on force-time variables. This study examined the test-retest reliability of eight jump execution variables assessed from mechanography. Thirty-two women (mean±SD: age 20.8 ± 1.3 yr) and 16 men (age 22.1 ± 1.9 yr) attended a familiarization session and two testing sessions, all one week apart. Participants performed two variations of the squat jump with squat depth self-selected and controlled using a goniometer to 80º knee flexion. Test-retest reliability was quantified as the systematic error (using effect size between jumps), random error (using coefficients of variation), and test-retest correlations (using intra-class correlation coefficients). Overall, jump execution variables demonstrated acceptable reliability, evidenced by small systematic errors (mean±95%CI: 0.2 ± 0.07), moderate random errors (mean±95%CI: 17.8 ± 3.7%), and very strong test-retest correlations (range: 0.73-0.97). Differences in random errors between controlled and self-selected protocols were negligible (mean±95%CI: 1.3 ± 2.3%). Jump execution variables demonstrated acceptable reliability, with no meaningful differences between the controlled and self-selected jump protocols. To simplify testing, a self-selected jump protocol can be used to assess force-time variables with negligible impact on measurement error.

  20. Bilateral contact ground reaction forces and contact times during plyometric drop jumping.

    Science.gov (United States)

    Ball, Nick B; Stock, Christopher G; Scurr, Joanna C

    2010-10-01

    Drop jumping (DJ) is used in training programs aimed to improve lower extremity explosive power. When performing double-leg drop jumps, it is important to provide an equal stimulus to both legs to ensure balanced development of the lower legs. The aim of this study was to bilaterally analyze the ground reactions forces and temporal components of drop jumping from 3 heights. Ten recreationally active male subjects completed 3 bounce-drop jumps from 3 starting heights (0.2, 0.4, and 0.6 m). Two linked force platforms were used to record left- and right-leg peak vertical force, time to peak force, average force, ground contact time, impulse and time differential. Between-height and between-leg comparisons for each variable were made using a multivariate analysis of variance with post hoc Wilcoxon tests (p < 0.05). Results indicated that force and time variables increased as drop jump height increased (p < 0.0001). Post hoc analyses showed that at 0.2- and 0.4-m bilateral differences were present in the time to peak force, average force, and impulse. No bilateral differences for any variables were shown at 0.6-m starting height. The contact time for all jumps was <0.26 seconds. At 0.2 m, only 63% of the subjects had a starting time differential of <0.01 seconds, rising to 96.3% at 0.6 m. The results indicated that 0.6 m is the suggested drop jump height to ensure that no bilateral differences in vertical forces and temporal components occur; however, shorter contact times were found at the lower heights.

  1. Neuromuscular Responses of Elite Skaters During Different Roller Figure Skating Jumps

    Directory of Open Access Journals (Sweden)

    Pantoja Patrícia Dias

    2014-07-01

    Full Text Available This study aimed to describe the neuromuscular activity of elite athletes who performed various roller figure skating jumps, to determine whether the muscle activation is greater during jumps with more rotations and in which phase the muscles are more active. This study also aimed to analyze if there is any difference in the muscle activity pattern between female and male skaters. Four elite skaters were evaluated, and each participated in two experimental sessions. During the first session, anthropometric data were collected, and the consent forms were signed. For the second session, neuromuscular data were collected during jumps, which were performed with skates at a rink. The following four roller figure skating jumps were evaluated: single Axel, double Axel, double Mapes and triple Mapes. The neuromuscular activity of the following seven muscles was obtained with an electromyograph which was fixed to the waist of each skater with a strap: biceps femoris, lateral gastrocnemius, tibialis anterior, rectus femoris, vastus lateralis, vastus medialis and gluteus maximus. The signal was transmitted wirelessly to a laptop. During the roller figure skating jumps, the lateral gastrocnemius, rectus femoris, vastus lateralis, biceps femoris and gluteus maximus, showed more activation during the jumps with more rotations, and the activation mainly occurred during the propulsion and flight phases. Female skaters demonstrated higher muscle activities in tibialis anterior, vastus lateralis, vastus medialis and gluteus maximus during the landing phase of the triple Mapes, when compared to their male counterparts. The results obtained in this study should be considered when planning training programs with specific exercises that closely resemble the roller figure skating jumps. This may be important for the success of elite skaters in competitions.

  2. Neuromuscular Responses of Elite Skaters During Different Roller Figure Skating Jumps

    Science.gov (United States)

    Pantoja, Patrícia Dias; Mello, André; Liedtke, Giane Veiga; Kanitz, Ana Carolina; Cadore, Eduardo Lusa; Pinto, Stephanie Santana; Alberton, Cristine Lima; Kruel, Luiz Fernando Martins

    2014-01-01

    This study aimed to describe the neuromuscular activity of elite athletes who performed various roller figure skating jumps, to determine whether the muscle activation is greater during jumps with more rotations and in which phase the muscles are more active. This study also aimed to analyze if there is any difference in the muscle activity pattern between female and male skaters. Four elite skaters were evaluated, and each participated in two experimental sessions. During the first session, anthropometric data were collected, and the consent forms were signed. For the second session, neuromuscular data were collected during jumps, which were performed with skates at a rink. The following four roller figure skating jumps were evaluated: single Axel, double Axel, double Mapes and triple Mapes. The neuromuscular activity of the following seven muscles was obtained with an electromyograph which was fixed to the waist of each skater with a strap: biceps femoris, lateral gastrocnemius, tibialis anterior, rectus femoris, vastus lateralis, vastus medialis and gluteus maximus. The signal was transmitted wirelessly to a laptop. During the roller figure skating jumps, the lateral gastrocnemius, rectus femoris, vastus lateralis, biceps femoris and gluteus maximus, showed more activation during the jumps with more rotations, and the activation mainly occurred during the propulsion and flight phases. Female skaters demonstrated higher muscle activities in tibialis anterior, vastus lateralis, vastus medialis and gluteus maximus during the landing phase of the triple Mapes, when compared to their male counterparts. The results obtained in this study should be considered when planning training programs with specific exercises that closely resemble the roller figure skating jumps. This may be important for the success of elite skaters in competitions. PMID:25114728

  3. Effects of fishing rope strength on the severity of large whale entanglements.

    Science.gov (United States)

    Knowlton, Amy R; Robbins, Jooke; Landry, Scott; McKenna, Henry A; Kraus, Scott D; Werner, Timothy B

    2016-04-01

    Entanglement in fixed fishing gear affects whales worldwide. In the United States, deaths of North Atlantic right (Eubalaena glacialis) and humpback whales (Megaptera novaeangliae) have exceeded management limits for decades. We examined live and dead whales entangled in fishing gear along the U.S. East Coast and the Canadian Maritimes from 1994 to 2010. We recorded whale species, age, and injury severity and determined rope polymer type, breaking strength, and diameter of the fishing gear. For the 132 retrieved ropes from 70 cases, tested breaking strength range was 0.80-39.63 kN (kiloNewtons) and the mean was 11.64 kN (SD 8.29), which is 26% lower than strength at manufacture (range 2.89-53.38 kN, mean = 15.70 kN [9.89]). Median rope diameter was 9.5 mm. Right and humpback whales were found in ropes with significantly stronger breaking strengths at time of manufacture than minke whales (Balaenoptera acuturostrata) (19.30, 17.13, and 10.47 mean kN, respectively). Adult right whales were found in stronger ropes (mean 34.09 kN) than juvenile right whales (mean 15.33 kN) and than all humpback whale age classes (mean 17.37 kN). For right whales, severity of injuries increased since the mid 1980s, possibly due to changes in rope manufacturing in the mid 1990s that resulted in production of stronger ropes at the same diameter. Our results suggest that broad adoption of ropes with breaking strengths of ≤ 7.56 kN (≤ 1700 lbsf) could reduce the number of life-threatening entanglements for large whales by at least 72%, and yet could provide sufficient strength to withstand the routine forces involved in many fishing operations. A reduction of this magnitude would achieve nearly all the mitigation legally required for U.S. stocks of North Atlantic right and humpback whales. Ropes with reduced breaking strength should be developed and tested to determine the feasibility of their use in a variety of fisheries. © 2015 The Authors. Conservation Biology published by Wiley

  4. Coexisting Flux Rope and Dipped Arcade Sections Along One Solar Filament

    Science.gov (United States)

    Guo, Y.; Schmieder, B.; Démoulin, P.; Wiegelmann, T.; Aulanier, G.; Török, T.; Bommier, V.

    2010-05-01

    We compute the three-dimensional magnetic field of an active region in order to study the magnetic configuration of active region filaments. The nonlinear force-free field model is adopted to compute the magnetic field above the photosphere, where the vector magnetic field was observed by THEMIS/MTR on 2005 May 27. We propose a new method to remove the 180° ambiguity of the transverse field. Next, we analyze the implications of the preprocessing of the data by minimizing the total force and torque in the observed vector fields. This step provides a consistent bottom boundary condition for the nonlinear force-free field model. Then, using the optimization method to compute the coronal field, we find a magnetic flux rope along the polarity inversion line. The magnetic flux rope aligns well with part of an Hα filament, while the total distribution of the magnetic dips coincides with the whole Hα filament. This implies that the magnetic field structure in one section of the filament is a flux rope, while the other is a sheared arcade. The arcade induced a left-bearing filament in the magnetic field of negative helicity, which is opposite to the chirality of barbs that a flux rope would induce in a magnetic field of the same helicity sign. The field strength in the center of the flux rope is about 700 G, and the twist of the field lines is ~1.4 turns.

  5. Evolution of the magnetic helicity flux during the formation and eruption of flux ropes

    Energy Technology Data Exchange (ETDEWEB)

    Romano, P. [INAF—Osservatorio Astrofisico di Catania, Via S. Sofia 78, I-95123 Catania (Italy); Zuccarello, F. P. [Centre for Mathematical Plasma-Astrophysics, KU Leuven, Celestijnenlaan 200B, B-3001 Leuven (Belgium); Guglielmino, S. L.; Zuccarello, F., E-mail: paolo.romano@oact.inaf.it [Dipartimento di Fisica e Astronomia—Sezione Astrofisica, Università di Catania, Via S. Sofia 78, I-95123 Catania (Italy)

    2014-10-20

    We describe the evolution and the magnetic helicity flux for two active regions (ARs) since their appearance on the solar disk: NOAA 11318 and NOAA 11675. Both ARs hosted the formation and destabilization of magnetic flux ropes. In the former AR, the formation of the flux rope culminated in a flare of C2.3 GOES class and a coronal mass ejection (CME) observed by Large Angle and Spectrometric Coronagraph Experiment. In the latter AR, the region hosting the flux rope was involved in several flares, but only a partial eruption with signatures of a minor plasma outflow was observed. We found a different behavior in the accumulation of the magnetic helicity flux in the corona, depending on the magnetic configuration and on the location of the flux ropes in the ARs. Our results suggest that the complexity and strength of the photospheric magnetic field is only a partial indicator of the real likelihood of an AR producing the eruption of a flux rope and a subsequent CME.

  6. Filtering of a Markov Jump Process with Counting Observations

    International Nuclear Information System (INIS)

    Ceci, C.; Gerardi, A.

    2000-01-01

    This paper concerns the filtering of an R d -valued Markov pure jump process when only the total number of jumps are observed. Strong and weak uniqueness for the solutions of the filtering equations are discussed

  7. Method of moments approach to pricing double barrier contracts in polynomial jump-diffusion models

    NARCIS (Netherlands)

    Eriksson, B.; Pistorius, M.

    2011-01-01

    Abstract: We present a method of moments approach to pricing double barrier contracts when the underlying is modelled by a polynomial jump-diffusion. By general principles the price is linked to certain infinite dimensional linear programming problems. Subsequently approximating these by finite

  8. THE MODEL CHARACTERISTICS OF JUMP ACTIONS STRUCTURE OF HIGH PERFORMANCE FEMALE VOLLEYBALL PLAYERS

    Directory of Open Access Journals (Sweden)

    Stech M.

    2012-12-01

    Full Text Available The purpose of this study was to develop generalized and individual models of the jump actions of skilled female volleyball players. The main prerequisite for the development of the jump actions models were the results of our earlier studies of factor structure of jump actions of 10 sportswomen of the Polish volleyball team "Gedania" (Premier League in the preparatory and competitive periods of the annual cycle of preparation. The athletes age was 22.0 +- 2.9 years, the sports experience - 8.1 +- 3.1 years, body height - 181.9 +- 8.4 years and body weight - 72.8 +- 10.8 kg. Mathematical and statistical processing of the data (the definition of M ± SD and significant differences between the samples was performed using a standard computer program "STATISTICA 7,0". Based on the analysis of the factor structure of 20 jump actions of skilled women volleyball players determined to within 5 of the most informative indexes and their tentative values recommended for the formation of a generalized model of this structure. Comparison of individual models of jump actions of skilled women volleyball players with their generalized models in different periods of preparation can be used for the rational choice of means and methods for the increasing of the training process efficiency.

  9. Jumping on the Social Media Bandwagon

    Science.gov (United States)

    Blakeslee, Lori

    2012-01-01

    Should a school district jump on the social media bandwagon? Yes! Social media provide a low-cost way to communicate school district priorities, influence decision makers, and tell its story without filters. Equally important, social media are where constituents are spending a lot of their time. With more than 800 million members, Facebook is an…

  10. The influence of musical cadence into aquatic jumping jacks kinematics.

    Science.gov (United States)

    Costa, Mário J; Oliveira, Cristiana; Teixeira, Genoveva; Marinho, Daniel A; Silva, António J; Barbosa, Tiago M

    2011-01-01

    The aim of this study was to analyze the relationships between the head-out aquatic exercise "Jumping jacks" kinematics and the musical cadence in healthy and fit subjects. Five young women, with at least one year of experience conducting head- out aquatic programs were videotaped in the frontal plane, with a pair of cameras providing a double projection (above and below the water surface). Subjects performed an incremental protocol of five bouts (120 b·min(-1), 135 b·min(-1), 150 b·min(-1), 165 b·min(-1) and 180 b·min(-1)) with 16 full cycles of the "Jumping jacks" exercise. Data processing and calculation of upper limbs' (i.e. hands), lower limbs' (i.e. feet) and center of mass' 2D linear velocity and displacement were computed with the software Ariel Performance Analysis System and applying the 2D-DLT algorithm. Subjects decreased the cycle period during the incremental protocol. Significant and negative relationships with the musical cadence were verified for the center of mass and upper limbs vertical displacement. On the other hand, for the lower limbs lateral velocity, a significant and positive relationship was observed. It is concluded that expert and fit subjects increase the lower limb's velocity to maintain the range of motion, while the upper limb's displacement is reduced to coupe the music cadence. Key pointsWhile performing the Jumping Jacks, expert and fit subjects increase their lower limbs segmental velocity to maintain the range of motion.The upper limbs displacement is reduced to maintain the music cadence.Expert and fit subjects present similar response for alternating or simultaneously head-out aquatic exercises when increasing the music cadence.

  11. Jump as Far as You Can [Problem Solvers: Problem

    Science.gov (United States)

    Bofferding, Laura; Yigit, Melike

    2013-01-01

    The standing long jump was an Olympic event until 1912. In 1904, Ray Ewry set the world record for the longest standing long jump, which was about 11.5 feet, or 138 inches. Although the standing long jump is no longer an Olympic event, the Norwegians still include it in their National Competition, and Arne Tvervaag set a new world record at about…

  12. Thomson's Jumping Ring over a Long Coil

    Science.gov (United States)

    Jeffery, Rondo N.; Amiri, Farhang

    2018-01-01

    The classic jumping ring apparatus consists of a coil with an iron core that extends out of the coil. A copper or aluminum ring placed over the iron core jumps upward when AC power is applied to the coil. In this paper we will examine a modified design of the jumping ring apparatus, called the "long-coil design." It allows the ring to…

  13. Vorticity determination in a hydraulic jump by application of method ...

    African Journals Online (AJOL)

    The method of characteristics for solving systems of partial differential equations coupled with jump conditions is used in analysing flow downstream of a hydraulic jump instead of the normal analytical approach adopted in Hornung [1]. It is shown that the method of characteristics together with the jump conditions can ...

  14. Scaling and jumping: Gravity loses grip on small jumpers

    NARCIS (Netherlands)

    Scholz, M.N.; Bobbert, M.F.; van Soest, A.J.

    2006-01-01

    There are several ways to quantify jumping performance, a common definition being the height gained by the body's centre of mass (CM) in the airborne phase. Under this definition, jump height is determined by take-off velocity. According to the existing literature on jumping and scaling, take-off

  15. Effect of early training on the jumping technique of horses

    NARCIS (Netherlands)

    Santamaría, Susana; Bobbert, Maarten F.; Back, Willem; Barneveld, Ab; van Weeren, P. Rene

    Objective - To investigate the effects of early training for jumping by comparing the jumping technique of horses that had received early training with that of horses raised conventionally. Animals - 40 Dutch Warmblood horses. Procedure - The horses were analyzed kinematically during free jumping at

  16. Deriving appropriate boundary conditions, and accelerating position-jump simulations, of diffusion using non-local jumping

    International Nuclear Information System (INIS)

    Taylor, P R; Baker, R E; Yates, C A

    2015-01-01

    In this paper we explore lattice-based position-jump models of diffusion, and the implications of introducing non-local jumping; particles can jump to a range of nearby boxes rather than only to their nearest neighbours. We begin by deriving conditions for equivalence with traditional local jumping models in the continuum limit. We then generalize a previously postulated implementation of the Robin boundary condition for a non-local process of arbitrary maximum jump length, and present a novel implementation of flux boundary conditions, again generalized for a non-local process of arbitrary maximum jump length. In both these cases we validate our results using stochastic simulation. We then proceed to consider two variations on the basic diffusion model: a hybrid local/non-local scheme suitable for models involving sharp concentration gradients, and the implementation of biased jumping. In all cases we show that non-local jumping can deliver substantial time savings for stochastic simulations. (paper)

  17. Topology of magnetic flux ropes and formation of fossil flux transfer events and boundary layer plasmas

    Science.gov (United States)

    Lee, L. C.; Ma, Z. W.; Fu, Z. F.; Otto, A.

    1993-01-01

    A mechanism for the formation of fossil flux transfer events and the low-level boundary layer within the framework of multiple X-line reconnection is proposed. Attention is given to conditions for which the bulk of magnetic flux in a flux rope of finite extent has a simple magnetic topology, where the four possible connections of magnetic field lines are: IMF to MSP, MSP to IMF, IMF to IMF, and MSP to MSP. For a sufficient relative shift of the X lines, magnetic flux may enter a flux rope from the magnetosphere and exit into the magnetosphere. This process leads to the formation of magnetic flux ropes which contain a considerable amount of magnetosheath plasma on closed magnetospheric field lines. This process is discussed as a possible explanation for the formation of fossil flux transfer events in the magnetosphere and the formation of the low-latitude boundary layer.

  18. Continuous micron-scaled rope engineering using a rotating multi-nozzle electrospinning emitter

    Science.gov (United States)

    Zhang, Chunchen; Gao, Chengcheng; Chang, Ming-Wei; Ahmad, Zeeshan; Li, Jing-Song

    2016-10-01

    Electrospinning (ES) enables simple production of fibers for broad applications (e.g., biomedical engineering, energy storage, and electronics). However, resulting structures are predominantly random; displaying significant disordered fiber entanglement, which inevitably gives rise to structural variations and reproducibility on the micron scale. Surface and structural features on this scale are critical for biomaterials, tissue engineering, and pharmaceutical sciences. In this letter, a modified ES technique using a rotating multi-nozzle emitter is developed and utilized to fabricate continuous micron-scaled polycaprolactone (PCL) ropes, providing control on fiber intercalation (twist) and structural order. Micron-scaled ropes comprising 312 twists per millimeter are generated, and rope diameter and pitch length are regulated using polymer concentration and process parameters. Electric field simulations confirm vector and distribution mechanisms, which influence fiber orientation and deposition during the process. The modified fabrication system provides much needed control on reproducibility and fiber entanglement which is crucial for electrospun biomedical materials.

  19. Kinetic Simulations of Plasma Energization and Particle Acceleration in Interacting Magnetic Flux Ropes

    Science.gov (United States)

    Du, S.; Guo, F.; Zank, G. P.; Li, X.; Stanier, A.

    2017-12-01

    The interaction between magnetic flux ropes has been suggested as a process that leads to efficient plasma energization and particle acceleration (e.g., Drake et al. 2013; Zank et al. 2014). However, the underlying plasma dynamics and acceleration mechanisms are subject to examination of numerical simulations. As a first step of this effort, we carry out 2D fully kinetic simulations using the VPIC code to study the plasma energization and particle acceleration during coalescence of two magnetic flux ropes. Our analysis shows that the reconnection electric field and compression effect are important in plasma energization. The results may help understand the energization process associated with magnetic flux ropes frequently observed in the solar wind near the heliospheric current sheet.

  20. ARTHROSCOPIC TREATMENT OF ACROMIOCLAVICULAR JOINT DISLOCATION BY TIGHT ROPE TECHNIQUE (ARTHREX®)

    Science.gov (United States)

    GÓmez Vieira, Luis Alfredo; Visco, Adalberto; Daneu Fernandes, Luis Filipe; GÓmez Cordero, Nicolas Gerardo

    2015-01-01

    Presenting the arthroscopic treatment by Tight Rope - Arthrex® system for acute acromioclavicular dislocation and to evaluate results obtained with this procedure. Methods: Between August 2006 and May 2007, 10 shoulders of 10 patients with acute acromioclavicular dislocation were submitted to arthroscopic repair using the Tight Rope - Arthrex® system. Minimum follow-up was 12 months, with a mean of 15 months. Age ranged from 26 to 42, mean 34 years. All patients were male. Radiology evaluation was made by trauma series x-ray. The patients were assisted in the first month weekly and after three months after the procedure. Clinical evaluation was based on the University of California at Los Angeles (UCLA) criteria. Results: All patients were satisfied after the arthroscopic procedure and the mean UCLA score was 32,5. Conclusion: The arthroscopic treatment by Tight Rope – Arthrex® system for acute acromioclavicular dislocation showed to be an efficient technique. PMID:26998453

  1. Comparison of CME radial velocities from a flux rope model and an ice cream cone model

    Science.gov (United States)

    Kim, T.; Moon, Y.; Na, H.

    2011-12-01

    Coronal Mass Ejections (CMEs) on the Sun are the largest energy release process in the solar system and act as the primary driver of geomagnetic storms and other space weather phenomena on the Earth. So it is very important to infer their directions, velocities and three-dimensional structures. In this study, we choose two different models to infer radial velocities of halo CMEs since 2008 : (1) an ice cream cone model by Xue et al (2005) using SOHO/LASCO data, (2) a flux rope model by Thernisien et al. (2009) using the STEREO/SECCHI data. In addition, we use another flux rope model in which the separation angle of flux rope is zero, which is morphologically similar to the ice cream cone model. The comparison shows that the CME radial velocities from among each model have very good correlations (R>0.9). We will extending this comparison to other partial CMEs observed by STEREO and SOHO.

  2. Safe use of mine winding ropes, volume 6: studies towards a code of practice for the performance, operation, testing and maintenance of drub winders.

    CSIR Research Space (South Africa)

    Hecker, GFK

    1996-04-01

    Full Text Available This research study attempts to determine the maximum rope force in the rope of a mine winding system subsequent to a break control system failure. Four different winder ropes were evaluated: a 4000m Blair multi system; a 2300m Blair multi system; a...

  3. Magnetar giant flares in multipolar magnetic fields. II. Flux rope eruptions with current sheets

    International Nuclear Information System (INIS)

    Huang, Lei; Yu, Cong

    2014-01-01

    We propose a physical mechanism to explain giant flares and radio afterglows in terms of a magnetospheric model containing both a helically twisted flux rope and a current sheet (CS). With the appearance of a CS, we solve a mixed boundary value problem to get the magnetospheric field based on a domain decomposition method. We investigate properties of the equilibrium curve of the flux rope when the CS is present in background multipolar fields. In response to the variations at the magnetar surface, it quasi-statically evolves in stable equilibrium states. The loss of equilibrium occurs at a critical point and, beyond that point, it erupts catastrophically. New features show up when the CS is considered. In particular, we find two kinds of physical behaviors, i.e., catastrophic state transition and catastrophic escape. Magnetic energy would be released during state transitions. This released magnetic energy is sufficient to drive giant flares, and the flux rope would, therefore, go away from the magnetar quasi-statically, which is inconsistent with the radio afterglow. Fortunately, in the latter case, i.e., the catastrophic escape, the flux rope could escape the magnetar and go to infinity in a dynamical way. This is more consistent with radio afterglow observations of giant flares. We find that the minor radius of the flux rope has important implications for its eruption. Flux ropes with larger minor radii are more prone to erupt. We stress that the CS provides an ideal place for magnetic reconnection, which would further enhance the energy release during eruptions.

  4. A maximum power point tracking algorithm for buoy-rope-drum wave energy converters

    Science.gov (United States)

    Wang, J. Q.; Zhang, X. C.; Zhou, Y.; Cui, Z. C.; Zhu, L. S.

    2016-08-01

    The maximum power point tracking control is the key link to improve the energy conversion efficiency of wave energy converters (WEC). This paper presents a novel variable step size Perturb and Observe maximum power point tracking algorithm with a power classification standard for control of a buoy-rope-drum WEC. The algorithm and simulation model of the buoy-rope-drum WEC are presented in details, as well as simulation experiment results. The results show that the algorithm tracks the maximum power point of the WEC fast and accurately.

  5. In-Situ TEM-STM Observations of SWCNT Ropes/Tubular Transformations

    Science.gov (United States)

    Sola, F.; Lebron-Colon, M.; Ferreira, P. J.; Fonseca, L. F.; Meador, M. A.; Marin, C.

    2010-01-01

    Single-walled carbon nanotubes (SWCNTs) prepared by the HiPco process were purified using a modified gas phase purification technique. A TEM-STM holder was used to study the morphological changes of SWCNT ropes as a function of applied voltage. Kink formation, buckling behavior, tubular transformation and eventual breakdown of the system were observed. The tubular formation was attributed to a transformation from SWCNT ropes to multi-walled carbon nanotube (MWCNT) structures. It is likely mediated by the patching and tearing mechanism which is promoted primarily by the mobile vacancies generated due to current-induced heating and, to some extent, by electron irradiation.

  6. Nonlocal Ohms Law, Plasma Resistivity, and Reconnection During Collisions of Magnetic Flux Ropes

    Science.gov (United States)

    Gekelman, W.; DeHaas, T.; Pribyl, P.; Vincena, S.; Van Compernolle, B.; Sydora, R.; Tripathi, S. K. P.

    2018-01-01

    The plasma resistivity was evaluated in an experiment on the collision of two magnetic flux ropes. Whenever the ropes collide, some magnetic energy is lost as a result of reconnection. Volumetric data, in which all the relevant time-varying quantities were recorded in detail, are presented. Ohm’s law is shown to be nonlocal and cannot be used to evaluate the plasma resistivity. The resistivity was instead calculated using the AC Kubo resistivity and shown to be anomalously high in certain regions of space.

  7. The anchors of steel wire ropes, testing methods and their results

    Directory of Open Access Journals (Sweden)

    J. Krešák

    2012-10-01

    Full Text Available The present paper introduces an application of the acoustic and thermographic method in the defectoscopic testing of immobile steel wire ropes at the most critical point, the anchor. First measurements and their results by these new defectoscopic methods are shown. In defectoscopic tests at the anchor, the widely used magnetic method gives unreliable results, and therefore presents a problem for steel wire defectoscopy. Application of the two new methods in the steel wire defectoscopy at the anchor point will enable increased safety measures at the anchor of steel wire ropes in bridge, roof, tower and aerial cable lift constructions.

  8. Scented guide ropes as a method to enhance brown treesnake (Boiga irregularis) trap capture success on Guam

    Science.gov (United States)

    Mason, L.C.; Savidge, J.A.; Rodda, G.H.; Yackel Adams, A.A.

    2011-01-01

    Current methods for controlling the invasive Brown Treesnake (Boiga irregularis) on Guam include a modified minnow trap with a live mouse lure. We investigated the effects on capture success of augmenting these traps with scented guide ropes leading to trap entrances. Initial screening of scent preferences was based on time spent in scented and unscented arms of a Y-maze. Preferences of large and small snakes were scored for six different prey scents (live and carrion gecko, skink, and mouse). Large snakes spent more time in the maze arm scented with live gecko and carrion gecko, whereas small snakes spent more time in the arm scented with carrion mouse and carrion gecko. After the laboratory study, a pilot trapping session was conducted in the field using three treatments (live mouse-scented ropes, carrion gecko-scented ropes, and carrion mouse-scented ropes) and two controls (traps with unscented guide ropes and those with no ropes attached). Contrary to laboratory results, live mouse-scented ropes were most effective. We conducted a second trapping session using live mouse-scented ropes as well as the two controls used in the pilot study. For snakes of below-average to average condition, the number of captures for traps with live mouse-scented ropes was higher than for traps with no ropes. However, for snakes of above-average condition, there were no differences in capture rates between trap treatments. Overall, treatment effects were weaker than latent individual heterogeneity and the influence of snake body size, with large snakes trapped more readily. ?? 2011 Society for the Study of Amphibians and Reptiles.

  9. Option Valuation with Observable Volatility and Jump Dynamics

    DEFF Research Database (Denmark)

    Christoffersen, Peter; Feunoua, Bruno; Jeon, Yoontae

    Under very general conditions, the total quadratic variation of a jump-diffusion process can be decomposed into diffusive volatility and squared jump variation. We use this result to develop a new option valuation model in which the underlying asset price exhibits volatility and jump intensity...... dynamics. The volatility and jump intensity dynamics in the model are directly driven by model-free empirical measures of diffusive volatility and jump variation. Because the empirical measures are observed in discrete intervals, our option valuation model is cast in discrete time, allowing...

  10. Option Valuation with Observable Volatility and Jump Dynamics

    DEFF Research Database (Denmark)

    Christoffersen, Peter; Feunoua, Bruno; Jeon, Yoontae

    2015-01-01

    Under very general conditions, the total quadratic variation of a jump-diffusion process can be decomposed into diffusive volatility and squared jump variation. We use this result to develop a new option valuation model in which the underlying asset price exhibits volatility and jump intensity...... dynamics. The volatility and jump intensity dynamics in the model are directly driven by model-free empirical measures of diffusive volatility and jump variation. Because the empirical measures are observed in discrete intervals, our option valuation model is cast in discrete time, allowing...

  11. DESIGN OF A FAST CHROMATICITY JUMP IN RHIC

    International Nuclear Information System (INIS)

    MONTAG, C.; KEWISCH, J.; BRUNO, D.; GANETIS, G.; LOUIE, W.

    2003-01-01

    During transition crossing in the .Relativistic Heavy Ion Collider (RHIC), chromaticities have to change sign. This sign change is partially accomplished by the γ t quadrupole jump; however, the resulting chromaticity jump is only Δξ x = 2.1 in the horizontal and Δξ y = 2.4 in the vertical plane. To increase the jump height, a dedicated chromaticity jump scheme has been designed, consisting of fast power supplies connected to six sextupoles per ring, which is capable of providing a chromaticity jump of Δξ = 6

  12. Aerodynamics of ski jumping flight and its control: I. Experiments

    Science.gov (United States)

    Jung, Daehan; Bang, Kyeongtae; Kim, Heesu; Ahn, Eunhye; Choi, Haecheon

    2015-11-01

    In a ski jumping competition, it is essential to analyze the effect of various posture parameters of a ski jumper to achieve a longer flight distance. For this purpose, we construct a model of a ski jumper by using three-dimensional surface data obtained by scanning a ski jumper's body (Mr. Chil-Ku Kang, member of the Korean national team). An experiment on this model is conducted in a wind tunnel. We consider four posture parameters (forward leaning angle, ski opening angle, ski rolling angle, and ski spacing) and measure the drag and lift forces for various flight postures at various angles of attack (α = 0° - 40°) and Reynolds numbers (Re = 5.4 × 105 - 1.6 × 106) based on the length of the jump ski. Then, we derive optimum values of posture parameters for maximum lift-to-drag ratio using a response surface method. We also conduct a full-scale wind tunnel experiment with members of the Korean national team and confirm the results obtained from the experiment on the model. Supported by the NRF program (2014M3C1B1033848).

  13. Biomechanical Analysis of the Jump Shot in Basketball

    Directory of Open Access Journals (Sweden)

    Struzik Artur

    2014-10-01

    Full Text Available Basketball players usually score points during the game using the jump shot. For this reason, the jump shot is considered to be the most important element of technique in basketball and requires a high level of performance. The aim of this study was to compare the biomechanical characteristics of the lower limbs during a jump shot without the ball and a countermovement jump without an arm swing. The differences between variables provide information about the potential that an athlete can utilise during a game when performing a jump shot. The study was conducted among 20 second-league basketball players by means of a Kistler force plate and the BTS SMART system for motion analysis. The variables measured included the take-off time, mean power, peak power, relative mean power, jump height, maximum landing force and calculated impact ratio. Surprisingly, more advantageous variables were found for the jump shot. This finding suggests a very high performance level in the jump shot in the studied group and a maximum utilisation of their motor abilities. Both types of jumps were characterised by high mean and peak power values and average heights. The high forces at landing, which result in considerable impact ratios, may have prompted the studied group to land softly. Use of the countermovement jump without an arm swing is recommended to assess and predict the progression of player’s jumping ability

  14. Validity of Hip-worn Inertial Measurement Unit Compared to Jump Mat for Jump Height Measurement in Adolescents.

    Science.gov (United States)

    Rantalainen, T; Hesketh, K D; Rodda, C; Duckham, R L

    2018-06-16

    Jump tests assess lower body power production capacity, and can be used to evaluate athletic ability and development during growth. Wearable inertial measurement units (IMU) seem to offer a feasible alternative to laboratory-based equipment for jump height assessments. Concurrent validity of these devices for jump height assessments has only been established in adults. Therefore, the purpose of this study was to evaluate the concurrent validity of IMU-based jump height estimate compared to contact mat-based jump height estimate in adolescents. Ninety-five adolescents (10-13 years-of-age; girls N=41, height = 154 (SD 9) cm, weight = 44 (11) kg; boys N=54, height=156 (10) cm, weight = 46 (13) kg) completed three counter-movement jumps for maximal jump height on a contact mat. Inertial recordings (accelerations, rotations) were concurrently recorded with a hip-worn IMU (sampling at 256 Hz). Jump height was evaluated based on flight time. The mean IMU-derived jump height was 27.1 (SD 3.8) cm, and the corresponding mean jump-mat-derived value was 21.5 (3.4) cm. While a significant 26% mean difference was observed between the methods (5.5 [95% limits of agreement 2.2 to 8.9] cm, p = 0.006), the correspondence between methods was excellent (ICC = 0.89). The difference between methods was weakly positively associated with jump height (r = 0.28, P = 0.007). Take-off velocity derived jump height was also explored but produced only fair congruence. In conclusion, IMU-derived jump height exhibited excellent congruence to contact mat-based jump height and therefore presents a feasible alternative for jump height assessments in adolescents. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  15. A Jump Diffusion Model for Volatility and Duration

    DEFF Research Database (Denmark)

    Wei, Wei; Pelletier, Denis

    by the market microstructure theory. Traditional measures of volatility do not utilize durations. I adopt a jump diffusion process to model the persistence of intraday volatility and conditional duration, and their interdependence. The jump component is disentangled from the continuous part of the price......, volatility and conditional duration process. I develop a MCMC algorithm for the inference of irregularly spaced multivariate process with jumps. The algorithm provides smoothed estimates of the latent variables such as spot volatility, jump times and jump sizes. I apply this model to IBM data and I find...... meaningful relationship between volatility and conditional duration. Also, jumps play an important role in the total variation, but the jump variation is smaller than traditional measures that use returns sampled at lower frequency....

  16. Propulsion efficiency and imposed flow fields of a copepod jump

    DEFF Research Database (Denmark)

    Jiang, H.; Kiørboe, Thomas

    2011-01-01

    Pelagic copepods jump to relocate, to attack prey and to escape predators. However, there is a price to be paid for these jumps in terms of their energy costs and the hydrodynamic signals they generate to rheotactic predators. Using observed kinematics of various types of jumps, we computed...... the imposed flow fields and associated energetics of jumps by means of computational fluid dynamics simulations by modeling the copepod as a self-propelled body. The computational fluid dynamics simulation was validated by particle image velocimetry data. The flow field generated by a repositioning jump...... the flow structure. The flow field associated with an escape jump sequence also includes two dominant vortex structures: one leading wake vortex generated as a result of the first jump and one around the body, but between these two vortex structures is an elongated, long-lasting flow trail with flow...

  17. Risk-Sensitive Control of Pure Jump Process on Countable Space with Near Monotone Cost

    International Nuclear Information System (INIS)

    Suresh Kumar, K.; Pal, Chandan

    2013-01-01

    In this article, we study risk-sensitive control problem with controlled continuous time pure jump process on a countable space as state dynamics. We prove multiplicative dynamic programming principle, elliptic and parabolic Harnack’s inequalities. Using the multiplicative dynamic programing principle and the Harnack’s inequalities, we prove the existence and a characterization of optimal risk-sensitive control under the near monotone condition

  18. Gamma Transition Jump for PS2

    CERN Document Server

    Bartmann, W; Métral, E; Möhl, D; Peggs, S

    2008-01-01

    The PS2, which is proposed as a replacement for the existing ~50-year old PS accelerator, is presently considered to be a normal conducting synchrotron with an injection kinetic energy of 4 GeV and a maximum energy of 50 GeV. One of the possible lattices (FODO option) foresees crossing of transition energy near 10 GeV. Since the phase-slip-factor $\\eta$ becomes very small near transition energy, many intensity dependent effects can take place in both longitudinal and transverse planes. The aim of the present paper is on the one hand to scale the gamma transition jump, used since 1973 in the PS, to the projected PS2 and on the other hand based on these results the analysis of the implementation and feasibility of a gamma transition jump scheme in a conventional FODO lattice.

  19. Testing jumps via false discovery rate control.

    Science.gov (United States)

    Yen, Yu-Min

    2013-01-01

    Many recently developed nonparametric jump tests can be viewed as multiple hypothesis testing problems. For such multiple hypothesis tests, it is well known that controlling type I error often makes a large proportion of erroneous rejections, and such situation becomes even worse when the jump occurrence is a rare event. To obtain more reliable results, we aim to control the false discovery rate (FDR), an efficient compound error measure for erroneous rejections in multiple testing problems. We perform the test via the Barndorff-Nielsen and Shephard (BNS) test statistic, and control the FDR with the Benjamini and Hochberg (BH) procedure. We provide asymptotic results for the FDR control. From simulations, we examine relevant theoretical results and demonstrate the advantages of controlling the FDR. The hybrid approach is then applied to empirical analysis on two benchmark stock indices with high frequency data.

  20. Testing jumps via false discovery rate control.

    Directory of Open Access Journals (Sweden)

    Yu-Min Yen

    Full Text Available Many recently developed nonparametric jump tests can be viewed as multiple hypothesis testing problems. For such multiple hypothesis tests, it is well known that controlling type I error often makes a large proportion of erroneous rejections, and such situation becomes even worse when the jump occurrence is a rare event. To obtain more reliable results, we aim to control the false discovery rate (FDR, an efficient compound error measure for erroneous rejections in multiple testing problems. We perform the test via the Barndorff-Nielsen and Shephard (BNS test statistic, and control the FDR with the Benjamini and Hochberg (BH procedure. We provide asymptotic results for the FDR control. From simulations, we examine relevant theoretical results and demonstrate the advantages of controlling the FDR. The hybrid approach is then applied to empirical analysis on two benchmark stock indices with high frequency data.

  1. Entropy jump across an inviscid shock wave

    Science.gov (United States)

    Salas, Manuel D.; Iollo, Angelo

    1995-01-01

    The shock jump conditions for the Euler equations in their primitive form are derived by using generalized functions. The shock profiles for specific volume, speed, and pressure are shown to be the same, however density has a different shock profile. Careful study of the equations that govern the entropy shows that the inviscid entropy profile has a local maximum within the shock layer. We demonstrate that because of this phenomenon, the entropy, propagation equation cannot be used as a conservation law.

  2. Price jumps on European stock markets

    Czech Academy of Sciences Publication Activity Database

    Hanousek, Jan; Kočenda, Evžen; Novotný, Jan

    2014-01-01

    Roč. 14, č. 1 (2014), s. 10-22 ISSN 2214-8450 R&D Projects: GA ČR(CZ) GAP403/11/0020; GA ČR(CZ) GBP402/12/G097 Grant - others:UK(CZ) UNCE 204005/2012 Institutional support: PRVOUK-P23 Keywords : stock markets * price jump indicators * non-parametric testing Subject RIV: AH - Economics

  3. Biomechanical differences in female basketball and soccer players during multi-directional jump landings.

    Science.gov (United States)

    Taylor, Jeffrey B; Ford, Kevin R; Schmitz, Randy J; Ross, Scott E; Ackerman, Terry A; Shultz, Sandra J

    2017-07-14

    Anterior cruciate ligament injury prevention programs are less successful in basketball than soccer and may be due to distinct movement strategies that these athletes develop from sport-specific training. The purpose of this study was to identify biomechanical differences between female basketball and soccer players during multi-directional jump landings. Lower extremity biomechanics of eighty-nine female athletes who played competitive basketball (n=40) or soccer (n=49) at the middle- or high-school level were analyzed with three-dimensional motion analysis during a drop vertical jump (DVJ), double- (SAG-DL) and single-leg forward jump (SAG-SL), and double- (FRONT-DL) and single-leg (FRONT-SL) lateral jump. Basketball players landed with less hip and/or knee excursion during all tasks (pbasketball players landed with greater peak hip flexion angles (p=.04). The FRONT-SL task elicited the most distinct sport-specific differences, including decreased hip adduction (pbasketball players. Additionally, the FRONT-SL task elicited greater forces in knee abduction (p=.003) and lesser forces in hip adduction (p=.001) and knee external rotation (pbasketball players. Joint energetics were different during the FRONT-DL task, as basketball players exhibited less sagittal plane energy absorption at the hip (pjump landing tasks, such that soccer players exhibited a more protective landing strategy than basketball players, justifying future efforts toward sport-specific ACL injury prevention programs.

  4. Take-off aerodynamics in ski jumping.

    Science.gov (United States)

    Virmavirta, M; Kivekäs, J; Komi, P V

    2001-04-01

    The effect of aerodynamic forces on the force-time characteristics of the simulated ski jumping take-off was examined in a wind tunnel. Vertical and horizontal ground reaction forces were recorded with a force plate installed under the wind tunnel floor. The jumpers performed take-offs in non-wind conditions and in various wind conditions (21-33 m s(-1)). EMGs of the important take-off muscles were recorded from one jumper. The dramatic decrease in take-off time found in all jumpers can be considered as the result of the influence of aerodynamic lift. The loss in impulse due to the shorter force production time with the same take-off force is compensated with the increase in lift force, resulting in a higher vertical velocity (V(v)) than is expected from the conventional calculation of V(v) from the force impulse. The wind conditions emphasized the explosiveness of the ski jumping take-off. The aerodynamic lift and drag forces which characterize the aerodynamic quality of the initial take-off position (static in-run position) varied widely even between the examined elite ski jumpers. According to the computer simulation these differences can decisively affect jumping distance. The proper utilization of the prevailing aerodynamic forces before and during take-off is a very important prerequisite for achieving a good flight position.

  5. Hydraulic jumps in ''viscous'' accretion disks

    International Nuclear Information System (INIS)

    Michel, F.C.

    1984-01-01

    We propose that the dissipative process necessary for rapid accretion disk evolution is driven by hydraulic jump waves on the surface of the disk. These waves are excited by the asymmetric nature of the central rotator (e.g., neutron star magnetosphere) and spiral out into the disk to form a pattern corotating with the central object. Disk matter in turn is slowed slightly at each encounter with the jump and spirals inward. In this process, the disk is heated by true turbulence produced in the jumps. Additional effects, such as a systematic misalignment of the magnetic moment of the neutron star until it is nearly orthogonal, and systematic distortion of the magnetosphere in such a way as to form an even more asymmetric central ''paddle wheel'' may enhance the interaction with inflowing matter. The application to X-ray sources corresponds to the ''slow'' solutions of Ghosh and Lamb, and therefore to rms magnetic fields of about 4 x 10 10 gauss. Analogous phenomena have been proposed to act in the formation of galactic spiral structure

  6. Sex Differences in Countermovement Jump Phase Characteristics

    Directory of Open Access Journals (Sweden)

    John J. McMahon

    2017-01-01

    Full Text Available The countermovement jump (CMJ is commonly used to explore sex differences in neuromuscular function, but previous studies have only reported gross CMJ measures or have partly examined CMJ phase characteristics. The purpose of this study was to explore differences in CMJ phase characteristics between male and female athletes by comparing the force-, power-, velocity-, and displacement-time curves throughout the entire CMJ, in addition to gross measures. Fourteen men and fourteen women performed three CMJs on a force platform from which a range of kinetic and kinematic variables were calculated via forward dynamics. Jump height (JH, reactive strength index modified, relative peak concentric power, and eccentric and concentric displacement, velocity, and relative impulse were all greater for men (g = 0.58–1.79. Relative force-time curves were similar between sexes, but relative power-, velocity-, and displacement-time curves were greater for men at 90%–95% (immediately before and after peak power, 47%–54% (start of eccentric phase and 85%–100% (latter half of concentric phase, and 65%–87% (bottom of countermovement and initial concentric phase of normalized jump time, respectively. The CMJ distinguished between sexes, with men demonstrating greater JH through applying a larger concentric impulse and, thus, achieving greater velocity throughout most of the concentric phase, including take-off.

  7. Jump Squat is More Related to Sprinting and Jumping Abilities than Olympic Push Press.

    Science.gov (United States)

    Loturco, I; Kobal, R; Maldonado, T; Piazzi, A F; Bottino, A; Kitamura, K; Abad, C C C; Pereira, L A; Nakamura, F Y

    2017-07-01

    The aim of this study was to test the relationships between jump squat (JS) and Olympic push press (OPP) power outputs and performance in sprint, squat jump (SJ), countermovement jump (CMJ) and change of direction (COD) speed tests in elite soccer players. 27 athletes performed a maximum power load test to determine their bar mean propulsive power (MPP) and bar mean propulsive velocity (MPV) in the JS and OPP exercises. Magnitude-based inference was used to compare the exercises. The MPV was almost certainly higher in the OPP than in the JS. The MPP relative to body mass (MPP REL) was possibly higher in the OPP. Only the JS MPP REL presented very large correlations with linear speed ( r> 0.7, for speed in 5, 10, 20 and 30 m) and vertical jumping abilities ( r> 0.8, for SJ and CMJ), and moderate correlation with COD speed ( r= 0.45). Although significant (except for COD), the associations between OPP outcomes and field-based measurements (speed, SJ and CMJ) were all moderate, ranging from 0.40 to 0.48. In a group composed of elite soccer players, the JS exercise is more associated with jumping and sprinting abilities than the OPP. Longitudinal studies are needed to confirm if these strong relationships imply superior training effects in favor of the JS exercise. © Georg Thieme Verlag KG Stuttgart · New York.

  8. An efficient interpolation technique for jump proposals in reversible-jump Markov chain Monte Carlo calculations

    Science.gov (United States)

    Farr, W. M.; Mandel, I.; Stevens, D.

    2015-01-01

    Selection among alternative theoretical models given an observed dataset is an important challenge in many areas of physics and astronomy. Reversible-jump Markov chain Monte Carlo (RJMCMC) is an extremely powerful technique for performing Bayesian model selection, but it suffers from a fundamental difficulty and it requires jumps between model parameter spaces, but cannot efficiently explore both parameter spaces at once. Thus, a naive jump between parameter spaces is unlikely to be accepted in the Markov chain Monte Carlo (MCMC) algorithm and convergence is correspondingly slow. Here, we demonstrate an interpolation technique that uses samples from single-model MCMCs to propose intermodel jumps from an approximation to the single-model posterior of the target parameter space. The interpolation technique, based on a kD-tree data structure, is adaptive and efficient in modest dimensionality. We show that our technique leads to improved convergence over naive jumps in an RJMCMC, and compare it to other proposals in the literature to improve the convergence of RJMCMCs. We also demonstrate the use of the same interpolation technique as a way to construct efficient ‘global’ proposal distributions for single-model MCMCs without prior knowledge of the structure of the posterior distribution, and discuss improvements that permit the method to be used in higher dimensional spaces efficiently. PMID:26543580

  9. Force generation and temperature-jump and length-jump tension transients in muscle fibers.

    Science.gov (United States)

    Davis, J S; Rodgers, M E

    1995-01-01

    Muscle tension rises with increasing temperature. The kinetics that govern the tension rise of maximally Ca(2+)-activated, skinned rabbit psoas fibers over a temperature range of 0-30 degrees C was characterized in laser temperature-jump experiments. The kinetic response is simple and can be readily interpreted in terms of a basic three-step mechanism of contraction, which includes a temperature-sensitive rapid preequilibrium(a) linked to a temperature-insensitive rate-limiting step and followed by a temperature-sensitive tension-generating step. These data and mechanism are compared and contrasted with the more complex length-jump Huxley-Simmons phases in which all states that generate tension or bear tension are perturbed. The rate of the Huxley-Simmons phase 4 is temperature sensitive at low temperatures but plateaus at high temperatures, indicating a change in rate-limiting step from a temperature-sensitive (phase 4a) to a temperature-insensitive reaction (phase 4b); the latter appears to correlate with the slow, temperature-insensitive temperature-jump relaxation. Phase 3 is absent in the temperature-jump, which excludes it from tension generation. We confirm that de novo tension generation occurs as an order-disorder transition during phase 2slow and the equivalent, temperature-sensitive temperature-jump relaxation. PMID:7612845

  10. IS FLUX ROPE A NECESSARY CONDITION FOR THE PROGENITOR OF CORONAL MASS EJECTIONS?

    Energy Technology Data Exchange (ETDEWEB)

    Ouyang, Y.; Yang, K.; Chen, P. F., E-mail: chenpf@nju.edu.cn [School of Astronomy and Space Science, Nanjing University, Nanjing 210023 (China)

    2015-12-10

    A magnetic flux rope structure is believed to exist in most coronal mass ejections (CMEs). However, it has been long debated whether the flux rope exists before eruption or if it is formed during eruption via magnetic reconnection. The controversy has continued because of our lack of routine measurements of the magnetic field in the pre-eruption structure, such as solar filaments. However, recently an indirect method was proposed to infer the magnetic field configuration based on the sign of helicity and the bearing direction of the filament barbs. In this paper, we apply this method to two erupting filament events, one on 2014 September 2 and the other on 2011 March 7, and find that the first filament is supported by a magnetic flux rope and the second filament is supported by a sheared arcade, i.e., the first one is an inverse-polarity filament and the second one is a normal-polarity filament. With the identification of the magnetic configurations in these two filaments, we stress that a flux rope is not a necessary condition for the pre-CME structure.

  11. Is Flux Rope a Necessary Condition for the Progenitor of Coronal Mass Ejections?

    Science.gov (United States)

    Ouyang, Y.; Yang, K.; Chen, P. F.

    2015-12-01

    A magnetic flux rope structure is believed to exist in most coronal mass ejections (CMEs). However, it has been long debated whether the flux rope exists before eruption or if it is formed during eruption via magnetic reconnection. The controversy has continued because of our lack of routine measurements of the magnetic field in the pre-eruption structure, such as solar filaments. However, recently an indirect method was proposed to infer the magnetic field configuration based on the sign of helicity and the bearing direction of the filament barbs. In this paper, we apply this method to two erupting filament events, one on 2014 September 2 and the other on 2011 March 7, and find that the first filament is supported by a magnetic flux rope and the second filament is supported by a sheared arcade, i.e., the first one is an inverse-polarity filament and the second one is a normal-polarity filament. With the identification of the magnetic configurations in these two filaments, we stress that a flux rope is not a necessary condition for the pre-CME structure.

  12. IS FLUX ROPE A NECESSARY CONDITION FOR THE PROGENITOR OF CORONAL MASS EJECTIONS?

    International Nuclear Information System (INIS)

    Ouyang, Y.; Yang, K.; Chen, P. F.

    2015-01-01

    A magnetic flux rope structure is believed to exist in most coronal mass ejections (CMEs). However, it has been long debated whether the flux rope exists before eruption or if it is formed during eruption via magnetic reconnection. The controversy has continued because of our lack of routine measurements of the magnetic field in the pre-eruption structure, such as solar filaments. However, recently an indirect method was proposed to infer the magnetic field configuration based on the sign of helicity and the bearing direction of the filament barbs. In this paper, we apply this method to two erupting filament events, one on 2014 September 2 and the other on 2011 March 7, and find that the first filament is supported by a magnetic flux rope and the second filament is supported by a sheared arcade, i.e., the first one is an inverse-polarity filament and the second one is a normal-polarity filament. With the identification of the magnetic configurations in these two filaments, we stress that a flux rope is not a necessary condition for the pre-CME structure

  13. Design of dual energy x-ray detector for conveyor belt with steel wire ropes

    Science.gov (United States)

    Dai, Yue; Miao, Changyun; Rong, Feng

    2009-07-01

    A dual energy X-ray detector for conveyor belt with steel wire ropes is researched in the paper. Conveyor belt with steel wire ropes is one of primary transfer equipments in modern production. The traditional test methods like electromagnetic induction principle could not display inner image of steel wire ropes directly. So X-ray detection technology has used to detect the conveyor belt. However the image was not so clear by the interference of the rubber belt. Therefore, the dualenergy X-ray detection technology with subtraction method is developed to numerically remove the rubber belt from radiograph, thus improving the definition of the ropes image. The purpose of this research is to design a dual energy Xray detector that could make the operator easier to found the faulty of the belt. This detection system is composed of Xray source, detector controlled by FPGA chip, PC for running image processing system and so on. With the result of the simulating, this design really improved the capability of the staff to test the conveyor belt.

  14. An analytical study on the static vertical stiffness of wire rope isolators

    Energy Technology Data Exchange (ETDEWEB)

    Balaji, P. S.; Rahman, M. E.; Ho, Lau Hieng [Curtin University Sarawak, Miri (Malaysia); Moussa, Leblouba [University of Sharjah, Sharjah (United Arab Emirates)

    2016-01-15

    The vibrations caused by earthquake ground motions or the operations of heavy machineries can affect the functionality of equipment and cause damages to the hosting structures and surrounding equipment. A Wire rope isolator (WRI), which is a type of passive isolator known to be effective in isolating shocks and vibrations, can be used for vibration isolation of lightweight structures and equipment. The primary advantage of the WRI is that it can provide isolation in all three planes and in any orientation. The load-supporting capability of the WRI is identified from the static stiffness in the loading direction. Static stiffness mainly depends on the geometrical and material properties of the WRI. This study develops an analytical model for the static stiffness in the vertical direction by using Castigliano's second theorem. The model is validated by using the experimental results obtained from a series of monotonic loading tests. The flexural rigidity of the wire ropes required in the model is obtained from the transverse bending test. Then, the analytical model is used to conduct a parametric analysis on the effects of wire rope diameter, width, height, and number of turns (loops) on vertical stiffness. The wire rope diameter influences stiffness more than the other geometric parameters. The developed model can be accurately used for the evaluation and design of WRIs.

  15. Wire rope isolators for vibration isolation of equipment and structures – A review

    International Nuclear Information System (INIS)

    Balaji, P S; Rahman, M E; Lau, H H; Moussa, Leblouba

    2015-01-01

    Vibrations and shocks are studied using various techniques and analyzed to predict their detrimental effect on the equipment and structures. In cases, where the effects of vibration become unacceptable, it may cause structural damage and affect the operation of the equipment. Hence, adding a discrete system to isolate the vibration from source becomes necessary. The Wire Rope Isolator (WRI) can be used to effectively isolate the system from disturbing vibrations. The WRI is a type of passive isolator that exhibits nonlinear behavior. It consists of stranded wire rope held between two metal retainer bars and the metal wire rope is made up of individual wire strands that are in frictional contact with each other, hence, it is a kind of friction-type isolator. This paper compiles the research work on wire rope isolators. This paper presents the research work under two categories, namely monotonic and cyclic loading behaviors of WRI. The review also discusses the different terminologies associated with vibration isolation system and highlights the comparison between various isolation systems. (paper)

  16. Extending "the Rubber Rope": Convergent Series, Divergent Series and the Integrating Factor

    Science.gov (United States)

    McCartney, Mark

    2013-01-01

    A well-known mathematical puzzle regarding a worm crawling along an elastic rope is considered. The resulting generalizations provide examples for use in a teaching context including applications of series summation, the use of the integrating factor for the solution of differential equations, and the evaluation of definite integrals. A number of…

  17. Design Guide for Selection and Specification of Kevlar Rope for Ocean Engineering and Construction.

    Science.gov (United States)

    1976-07-01

    public rtoieco cnd sol . It i Idim .buttm Is ul"rnimi.. OCEAN ENGINEERING AND CONSTRUCTION PROJECT OFFICE CHESAPEAKE DIVISION NAVAL FACILITIES ENGINEERING...be to have no more than one layer. This is impractical for oceano - graphic purposes. Assuming a need to spooi many layers of rope under tension

  18. Research on magnetic excitation model of magnetic flux leakage for coal mine hoisting wire rope

    Directory of Open Access Journals (Sweden)

    Jie Tian

    2015-11-01

    Full Text Available This study presents the optimal design of a magnetic excitation model for developing a nondestructive sensor for coal mine hoist wire ropes. The model was established using axial-symmetry finite-element analysis and calculations. The influence of the excitation device parameters on the local magnetization effect of the wire rope was investigated in detail using the axial-symmetry finite-element model. The excitation model parameters of the sensor were optimally designed using a combination of finite-element analysis and an optimization method. The experiments were performed to measure the leakage flux and evaluate the performance of the optimally designed sensor. The results show that the sensor based on the newly designed excitation model can not only improve the signal-to-noise ratio for defect detection in a coal mine hoist wire rope by 11% compared to an existing sensor but also reliably detect small defects with a high detection speed (5 m/s along the length of the coal mine wire rope.

  19. An Analytical Diffusion–Expansion Model for Forbush Decreases Caused by Flux Ropes

    Science.gov (United States)

    Dumbović, Mateja; Heber, Bernd; Vršnak, Bojan; Temmer, Manuela; Kirin, Anamarija

    2018-06-01

    We present an analytical diffusion–expansion Forbush decrease (FD) model ForbMod, which is based on the widely used approach of an initially empty, closed magnetic structure (i.e., flux rope) that fills up slowly with particles by perpendicular diffusion. The model is restricted to explaining only the depression caused by the magnetic structure of the interplanetary coronal mass ejection (ICME). We use remote CME observations and a 3D reconstruction method (the graduated cylindrical shell method) to constrain initial boundary conditions of the FD model and take into account CME evolutionary properties by incorporating flux rope expansion. Several flux rope expansion modes are considered, which can lead to different FD characteristics. In general, the model is qualitatively in agreement with observations, whereas quantitative agreement depends on the diffusion coefficient and the expansion properties (interplay of the diffusion and expansion). A case study was performed to explain the FD observed on 2014 May 30. The observed FD was fitted quite well by ForbMod for all expansion modes using only the diffusion coefficient as a free parameter, where the diffusion parameter was found to correspond to an expected range of values. Our study shows that, in general, the model is able to explain the global properties of an FD caused by a flux rope and can thus be used to help understand the underlying physics in case studies.

  20. Two-dimensional numerical simulation of flow around three-stranded rope

    Science.gov (United States)

    Wang, Xinxin; Wan, Rong; Huang, Liuyi; Zhao, Fenfang; Sun, Peng

    2016-08-01

    Three-stranded rope is widely used in fishing gear and mooring system. Results of numerical simulation are presented for flow around a three-stranded rope in uniform flow. The simulation was carried out to study the hydrodynamic characteristics of pressure and velocity fields of steady incompressible laminar and turbulent wakes behind a three-stranded rope. A three-cylinder configuration and single circular cylinder configuration are used to model the three-stranded rope in the two-dimensional simulation. The governing equations, Navier-Stokes equations, are solved by using two-dimensional finite volume method. The turbulence flow is simulated using Standard κ-ɛ model and Shear-Stress Transport κ-ω (SST) model. The drag of the three-cylinder model and single cylinder model is calculated for different Reynolds numbers by using control volume analysis method. The pressure coefficient is also calculated for the turbulent model and laminar model based on the control surface method. From the comparison of the drag coefficient and the pressure of the single cylinder and three-cylinder models, it is found that the drag coefficients of the three-cylinder model are generally 1.3-1.5 times those of the single circular cylinder for different Reynolds numbers. Comparing the numerical results with water tank test data, the results of the three-cylinder model are closer to the experiment results than the single cylinder model results.

  1. Do Bilateral Vertical Jumps With Reactive Jump Landings Achieve Osteogenic Thresholds With and Without Instruction in Premenopausal Women?

    Science.gov (United States)

    Clissold, Tracey L; Winwood, Paul W; Cronin, John B; De Souza, Mary Jane

    2018-04-01

    Jumps have been investigated as a stimulus for bone development; however, effects of instruction, jump type, and jump-landing techniques need investigation. This study sought to identify whether ground reaction forces (GRFs) for bilateral vertical jumps (countermovement jumps and drop jumps) with reactive jump-landings (ie, jumping immediately after initial jump-landing), with instruction and with instruction withdrawn, achieve magnitudes and rates of strain previously shown to improve bone mass among premenopausal women. Twenty-one women (Mean ± SD: 43.3 ± 5.9 y; 69.4 ± 9.6 kg; 167 ± 5.5 cm; 27.5 ± 8.7% body fat) performed a testing session 'with instruction' followed by a testing session performed 1 week later with 'instruction withdrawn.' The magnitudes (4.59 to 5.49 body weight [BW]) and rates of strain (263 to 359 BW·s -1 ) for the jump-landings, performed on an AMTI force plate, exceeded previously determined thresholds (>3 BWs and >43 BW·s -1 ). Interestingly, significantly larger peak resultant forces, (↑10%; P = .002) and peak rates of force development (↑20%; P jump-landing (postreactive jump). Small increases (ES = 0.22-0.42) in all landing forces were observed in the second jump-landing with 'instruction withdrawn.' These jumps represent a unique training stimulus for premenopausal women and achieve osteogenic thresholds thought prerequisite for bone growth.

  2. SLIPPING MAGNETIC RECONNECTION OF FLUX-ROPE STRUCTURES AS A PRECURSOR TO AN ERUPTIVE X-CLASS SOLAR FLARE

    Energy Technology Data Exchange (ETDEWEB)

    Li, Ting; Hou, Yijun; Zhang, Jun [Key Laboratory of Solar Activity, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China); Yang, Kai, E-mail: liting@nao.cas.cn [School of Astronomy and Space Science, Nanjing University, Nanjing 210023 (China)

    2016-10-20

    We present the quasi-periodic slipping motion of flux-rope structures prior to the onset of an eruptive X-class flare on 2015 March 11, obtained by the Interface Region Imaging Spectrograph and the Solar Dynamics Observatory . The slipping motion occurred at the north part of the flux rope and seemed to successively peel off the flux rope. The speed of the slippage was 30−40 km s{sup −1}, with an average period of 130 ± 30 s. The Si iv λ 1402.77 line showed a redshift of 10−30 km s{sup −1} and a line width of 50−120 km s{sup −1} at the west legs of slipping structures, indicative of reconnection downflow. The slipping motion lasted about 40 minutes, and the flux rope started to rise up slowly at the late stage of the slippage. Then an X2.1 flare was initiated, and the flux rope was impulsively accelerated. One of the flare ribbons swept across a negative-polarity sunspot, and the penumbral segments of the sunspot decayed rapidly after the flare. We studied the magnetic topology at the flaring region, and the results showed the existence of a twisted flux rope, together with quasi-separatrix layer (QSL) structures binding the flux rope. Our observations imply that quasi-periodic slipping magnetic reconnection occurs along the flux-rope-related QSLs in the preflare stage, which drives the later eruption of the flux rope and the associated flare.

  3. RADIO DIAGNOSTICS OF ELECTRON ACCELERATION SITES DURING THE ERUPTION OF A FLUX ROPE IN THE SOLAR CORONA

    Energy Technology Data Exchange (ETDEWEB)

    Carley, Eoin P.; Gallagher, Peter T. [Astrophysics Research Group, School of Physics, Trinity College Dublin, Dublin 2 (Ireland); Vilmer, Nicole, E-mail: eoin.carley@obspm.fr [LESIA, Observatoire de Paris, PSL Research University, CNRS, Sorbonne Universités, UPMC Univ. Paris 06, Univ. Paris Diderot, Sorbonne Paris Cité, 5 place Jules Janssen, F-92195 Meudon (France)

    2016-12-10

    Electron acceleration in the solar corona is often associated with flares and the eruption of twisted magnetic structures known as flux ropes. However, the locations and mechanisms of such particle acceleration during the flare and eruption are still subject to much investigation. Observing the exact sites of particle acceleration can help confirm how the flare and eruption are initiated and how they evolve. Here we use the Atmospheric Imaging Assembly to analyze a flare and erupting flux rope on 2014 April 18, while observations from the Nançay Radio Astronomy Facility allow us to diagnose the sites of electron acceleration during the eruption. Our analysis shows evidence of a pre-formed flux rope that slowly rises and becomes destabilized at the time of a C-class flare, plasma jet, and the escape of ≳75 keV electrons from the rope center into the corona. As the eruption proceeds, continued acceleration of electrons with energies of ∼5 keV occurs above the flux rope for a period over 5 minutes. At the flare peak, one site of electron acceleration is located close to the flare site, while another is driven by the erupting flux rope into the corona at speeds of up to 400 km s{sup −1}. Energetic electrons then fill the erupting volume, eventually allowing the flux rope legs to be clearly imaged from radio sources at 150–445 MHz. Following the analysis of Joshi et al. (2015), we conclude that the sites of energetic electrons are consistent with flux rope eruption via a tether cutting or flux cancellation scenario inside a magnetic fan-spine structure. In total, our radio observations allow us to better understand the evolution of a flux rope eruption and its associated electron acceleration sites, from eruption initiation to propagation into the corona.

  4. Jump Shrug Height and Landing Forces Across Various Loads.

    Science.gov (United States)

    Suchomel, Timothy J; Taber, Christopher B; Wright, Glenn A

    2016-01-01

    The purpose of this study was to examine the effect that load has on the mechanics of the jump shrug. Fifteen track and field and club/intramural athletes (age 21.7 ± 1.3 y, height 180.9 ± 6.6 cm, body mass 84.7 ± 13.2 kg, 1-repetition-maximum (1RM) hang power clean 109.1 ± 17.2 kg) performed repetitions of the jump shrug at 30%, 45%, 65%, and 80% of their 1RM hang power clean. Jump height, peak landing force, and potential energy of the system at jump-shrug apex were compared between loads using a series of 1-way repeated-measures ANOVAs. Statistical differences in jump height (P .05). The greatest magnitudes of jump height, peak landing force, and potential energy of the system at the apex of the jump shrug occurred at 30% 1RM hang power clean and decreased as the external load increased from 45% to 80% 1RM hang power clean. Relationships between peak landing force and potential energy of the system at jump-shrug apex indicate that the landing forces produced during the jump shrug may be due to the landing strategy used by the athletes, especially at lighter loads. Practitioners may prescribe heavier loads during the jump-shrug exercise without viewing landing force as a potential limitation.

  5. Jumping robots: a biomimetic solution to locomotion across rough terrain.

    Science.gov (United States)

    Armour, Rhodri; Paskins, Keith; Bowyer, Adrian; Vincent, Julian; Megill, William; Bomphrey, Richard

    2007-09-01

    This paper introduces jumping robots as a means to traverse rough terrain; such terrain can pose problems for traditional wheeled, tracked and legged designs. The diversity of jumping mechanisms found in nature is explored to support the theory that jumping is a desirable ability for a robot locomotion system to incorporate, and then the size-related constraints are determined from first principles. A series of existing jumping robots are presented and their performance summarized. The authors present two new biologically inspired jumping robots, Jollbot and Glumper, both of which incorporate additional locomotion techniques of rolling and gliding respectively. Jollbot consists of metal hoop springs forming a 300 mm diameter sphere, and when jumping it raises its centre of gravity by 0.22 m and clears a height of 0.18 m. Glumper is of octahedral shape, with four 'legs' that each comprise two 500 mm lengths of CFRP tube articulating around torsion spring 'knees'. It is able to raise its centre of gravity by 1.60 m and clears a height of 1.17 m. The jumping performance of the jumping robot designs presented is discussed and compared against some specialized jumping animals. Specific power output is thought to be the performance-limiting factor for a jumping robot, which requires the maximization of the amount of energy that can be stored together with a minimization of mass. It is demonstrated that this can be achieved through optimization and careful materials selection.

  6. Neuromuscular function during drop jumps in young and elderly males.

    Science.gov (United States)

    Piirainen, Jarmo M; Linnamo, Vesa; Sippola, Niina; Avela, Janne

    2012-12-01

    The Hoffman reflex (H-reflex), indicating alpha-motoneuron pool activity, has been shown to be task - and in resting conditions - age dependent. How aging affects H-reflex activity during explosive movements is not clear at present. The purpose of this study was to examine the effects of aging on H-reflexes during drop jumps, and its possible role in drop jump performance. Ten young (26.8 ± 2.7 years) and twenty elderly (64.2 ± 2.7 years) subjects participated in the study. Maximal drop jump performance and soleus H-reflex response (H/M jump) 20 ms after ground contact were measured in a sledge ergometer. Maximal H-reflex, maximal M-wave, Hmax/Mmax-ratio and H-reflex excitability curves were measured during standing rest. Although in young the H-reflex response (Hmax/Mmax) was 6.5% higher during relaxed standing and 19.7% higher during drop jumps (H jump/M jump) than in the elderly group, these differences were not statistically significant. In drop jumps, the elderly subjects had lower jumping height (30.4%, p push-off force (18.0%, p push-off time (31.0% p push-off force (r = 0.833, p push-off time (r = -0.857, p < 0.01) in young but not in the elderly. Correlations between H-reflex response and jumping parameters in young may indicate different jumping and activation strategies in drop jumps. However, it does not fully explain age related differences in jumping performance, since age related differences in H-reflex activity were non-significant. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Substorm topology in the ionosphere and magnetosphere during a flux rope event in the magnetotail

    Directory of Open Access Journals (Sweden)

    O. Amm

    2006-03-01

    Full Text Available On 13 August 2002, at ~23:00 UT, about 10 min after a substorm intensification, Cluster observes a flux rope in the central magnetotail, followed by a localised fast flow event about oneminute later. Associated with the flux rope event, a traveling compression region (TCR is seen by those Cluster spacecraft which reside in the lobe. In the conjugate ionospheric region in Northern Scandinavia, the MIRACLE network observes the ionospheric equivalent currents, and the electron densities and electric fields are measured by the EISCAT radar along a meridional scanning profile. Further, the auroral evolution is observed with the Wideband Imaging Camera (WIC on the IMAGE satellite. We compare in detail the substorm evolution as observed in the ionosphere and in the magnetosphere, and examine whether topological correspondences to the flux rope event exist in the ionospheric signatures. The large-scale mapping of both the location and the direction of the flux rope to the ionosphere shows an excellent correspondence to a lens-shaped region of an auroral emission minimum. This region is bracketed by an auroral region equatorward of it which was preexisting to the substorm intensification, and a substorm-related auroral region poleward of it. It is characterised by reduced ionospheric conductances with respect to its environment, and downward field-aligned current (FAC observed both in the magnetosphere and in the ionosphere. As determined from the ionospheric data, this downward FAC area is moving eastward with a speed of ~2 km s-1, in good agreement with the mapped plasma bulk velocity measured at the Cluster satellite closest to that area. Further southwestward to this leading downward FAC area, a trailing upward FAC area is observed that moves eastward with the same speed. The direction of the ionospheric electric field permits a current closure between these two FAC areas through the ionosphere. We speculate that these FAC areas may correspond to

  8. Ski jumping boots limit effective take-off in ski jumping.

    Science.gov (United States)

    Virmavirta, M; Komi, P V

    2001-12-01

    In this study, we measured the vertical and horizontal take-off forces, plantar pressures and activation patterns of four muscles (vastus lateralis, gluteus maximus, tibialis anterior, gastrocnemius) in 10 ski jumpers in simulated laboratory conditions when wearing either training shoes or ski jumping boots. We found significant differences in vertical (P boots condition resulted in a smaller displacement in the final position of the following joint angles: ankle angle (P knee angle (P boots condition, significantly more pressure was recorded under the heel (P knee and hip extensors when wearing jumping boots. We conclude that the stiffness of the structure of the jumping boots may result in a forward shift of pressure, thus limiting the effective vertical force. To avoid this pressure shift, the pattern of movement of simulated take-offs should be carefully controlled, particularly when wearing training shoes.

  9. MHD Collimation Mechanism in Arched Flux Ropes Characterized Using Volumetric, Time-Dependent B-Vector Measurements

    Science.gov (United States)

    Haw, Magnus A.; Bellan, Paul M.

    2017-10-01

    Laboratory measurements of B(x,t) in a volume enclosing portions of two arched flux ropes show flux rope collimation driven by gradients in axial current density. These measurements verify the three predictions of a proposed MHD collimation mechanism: (1) axial magnetic forces exist in current channels with spatially varying minor radius, (2) these forces can drive counterpropagating axial flows, and (3) this process collimates the flux rope. This mechanism may explain the axial uniformity of solar loops and is relevant to other systems with current channels of varying minor radius such as solar prominences and astrophysical jets.

  10. Jump Tails, Extreme Dependencies, and the Distribution of Stock Returns

    DEFF Research Database (Denmark)

    Bollerslev, Tim; Todorov, Viktor

    We provide a new framework for estimating the systematic and idiosyncratic jump tail risks in financial asset prices. The theory underlying our estimates are based on in-fill asymptotic arguments for directly identifying the systematic and idiosyncratic jumps, together with conventional long...... market portfolio, we find that the distributions of the systematic and idiosyncratic jumps are both generally heavy-tailed and not necessarily symmetric. Our estimates also point to the existence of strong dependencies between the market-wide jumps and the corresponding systematic jump tails for all...... of the stocks in the sample. We also show how the jump tail dependencies deduced from the high-frequency data together with the day-to-day temporal variation in the volatility are able to explain the “extreme” dependencies vis-a-vis the market portfolio....

  11. Influence of magnetic history on flux jump fields

    International Nuclear Information System (INIS)

    Sosnowski, J.

    1986-01-01

    A formalism describing the fields at which flux jumps occur in hard superconductors has been confirmed by the description of an experimentally observed shift of flux jump fields in the second hysteresis loop of a Nb 3 Al superconducting sample. By fitting the theoretical model to experimental data, values of the proportionality parameter between the stability limit and the flux jump field, the first stability limit, and the first penetration field have been estimated

  12. Dynamics and stability of directional jumps in the desert locust.

    Science.gov (United States)

    Gvirsman, Omer; Kosa, Gabor; Ayali, Amir

    2016-01-01

    Locusts are known for their ability to jump large distances to avoid predation. The jump also serves to launch the adult locust into the air in order to initiate flight. Various aspects of this important behavior have been studied extensively, from muscle physiology and biomechanics, to the energy storage systems involved in powering the jump, and more. Less well understood are the mechanisms participating in control of the jump trajectory. Here we utilise video monitoring and careful analysis of experimental directional jumps by adult desert locusts, together with dynamic computer simulation, in order to understand how the locusts control the direction and elevation of the jump, the residual angular velocities resulting from the jump and the timing of flapping-flight initiation. Our study confirms and expands early findings regarding the instrumental role of the initial body position and orientation. Both real-jump video analysis and simulations based on our expanded dynamical model demonstrate that the initial body coordinates of position (relative to the hind-legs ground-contact points) are dominant in predicting the jumps' azimuth and elevation angles. We also report a strong linear correlation between the jumps' pitch-angular-velocity and flight initiation timing, such that head downwards rotations lead to earlier wing opening. In addition to offering important insights into the bio-mechanical principles of locust jumping and flight initiation, the findings from this study will be used in designing future prototypes of a bio-inspired miniature jumping robot that will be employed in animal behaviour studies and environmental monitoring applications.

  13. The Effect of an Altitude Training Camp on Swimming Start Time and Loaded Squat Jump Performance.

    Directory of Open Access Journals (Sweden)

    Amador García-Ramos

    Full Text Available This study evaluated the influence of an altitude training (AT camp on swimming start time and loaded squat jump performance. To accomplish this goal, 13 international swimmers (8 women, 5 men were allocated to both the control (Sea Level Training, SLT and experimental conditions (AT, 2320 m above sea level that were separated by a one year period. All tests (15 m freestyle swimming start and loaded squat jumps with additional loads of 25%, 50%, 75%, and 100% of swimmers' body weight were performed before and after a concurrent 3-week strength and endurance training program prescribed by the national coach. Following the SLT camp, significant impairments in swimming start times to 10 (+3.1% and 15 m (+4.0% were observed (P 0.05. Trivial changes in peak velocity were obtained during the loaded squat jump after both training periods (effect sizes: < 0.20. Based on these results we can conclude that a traditional training high-living high strategy concurrent training of 3 weeks does not adversely affect swimming start time and loaded squat jump performance in high level swimmers, but further studies are necessary to assess the effectiveness of power-oriented resistance training in the development of explosive actions.

  14. The Effect of an Altitude Training Camp on Swimming Start Time and Loaded Squat Jump Performance.

    Science.gov (United States)

    García-Ramos, Amador; Štirn, Igor; Padial, Paulino; Argüelles-Cienfuegos, Javier; De la Fuente, Blanca; Calderón, Carmen; Bonitch-Góngora, Juan; Tomazin, Katja; Strumbelj, Boro; Strojnik, Vojko; Feriche, Belén

    2016-01-01

    This study evaluated the influence of an altitude training (AT) camp on swimming start time and loaded squat jump performance. To accomplish this goal, 13 international swimmers (8 women, 5 men) were allocated to both the control (Sea Level Training, SLT) and experimental conditions (AT, 2320 m above sea level) that were separated by a one year period. All tests (15 m freestyle swimming start and loaded squat jumps with additional loads of 25%, 50%, 75%, and 100% of swimmers' body weight) were performed before and after a concurrent 3-week strength and endurance training program prescribed by the national coach. Following the SLT camp, significant impairments in swimming start times to 10 (+3.1%) and 15 m (+4.0%) were observed (P 0.05). Trivial changes in peak velocity were obtained during the loaded squat jump after both training periods (effect sizes: training high-living high strategy concurrent training of 3 weeks does not adversely affect swimming start time and loaded squat jump performance in high level swimmers, but further studies are necessary to assess the effectiveness of power-oriented resistance training in the development of explosive actions.

  15. Differences In Male Collegiate And Recreationally Trained Soccer Players On Balance, Agility, And Vertical Jump Performance

    Directory of Open Access Journals (Sweden)

    Nicole M. Sauls

    2017-10-01

    Full Text Available Objective: The purpose of this investigation was to determine the differences in collegiate and recreationally trained soccer players in sprint, vertical jump, and balance performance. Methods: Twenty-one soccer players, twelve Division II collegiate and nine recreationally trained volunteered to participate. Session one acted as a familiarization day, where the participants were familiarized with testing day protocols. During testing day, participants performed a dynamic warm-up, followed by balance measurements, three countermovement vertical jumps, and pro-agility shuttle test. Results: There were no significant (p>0.05 differences between groups in the all balance variables. Collegiate soccer players had a significantly (p0.05 differences in groups in all other variables. Conclusion: These results indicate that collegiate, Division II, soccer players had greater vertical jumping and sprinting velocities when compared to recreationally trained soccer players. These results may have been impacted by the lack of resistance training background in either of the two groups. With the addition of more time on a collegiate resistance training program, it is very likely the Division II athletes will see a significant increase in all balance, sprint, and vertical jump performance measures compared to recreationally trained players who receive little to no specialized resistance training.

  16. Biomechanics research in ski jumping, 1991-2006.

    Science.gov (United States)

    Schwameder, Hermann

    2008-01-01

    In this paper, I review biomechanics research in ski jumping with a specific focus on publications presented between 1991 and 2006 on performance enhancement, limiting factors of the take-off, specific training and conditioning, aerodynamics, and safety. The first section presents a brief description of ski jumping phases (in-run, take-off, early flight, stable flight, and landing) regarding the biomechanical and functional fundamentals. The most important and frequently used biomechanical methods in ski jumping (kinematics, ground reaction force analyses, muscle activation patterns, aerodynamics) are summarized in the second section. The third section focuses on ski jumping articles and research findings published after the establishment of the V-technique in 1991, as the introduction of this technique has had a major influence on performance enhancement, ski jumping regulations, and the construction of hill profiles. The final section proposes topics for future research in the biomechanics of ski jumping, including: take-off and early flight and the relative roles of vertical velocity and forward somersaulting angular momentum; optimal jumping patterns utilizing the capabilities of individual athletes; development of kinematic and kinetic feedback systems for hill jumps; comparisons of simulated and hill jumps; effect of equipment modifications on performance and safety enhancement.

  17. Jump phenomena. [large amplitude responses of nonlinear systems

    Science.gov (United States)

    Reiss, E. L.

    1980-01-01

    The paper considers jump phenomena composed of large amplitude responses of nonlinear systems caused by small amplitude disturbances. Physical problems where large jumps in the solution amplitude are important features of the response are described, including snap buckling of elastic shells, chemical reactions leading to combustion and explosion, and long-term climatic changes of the earth's atmosphere. A new method of rational functions was then developed which consists of representing the solutions of the jump problems as rational functions of the small disturbance parameter; this method can solve jump problems explicitly.

  18. Effect of drop jump technique on the reactive strength index.

    Science.gov (United States)

    Struzik, Artur; Juras, Grzegorz; Pietraszewski, Bogdan; Rokita, Andrzej

    2016-09-01

    The basic drill of plyometric training aimed at improving lower limb power and jump height is a drop jump. This exercise can be performed using different techniques, which substantially affects jump variables. Therefore, the aim of this study was to compare the values of the reactive strength index (RSI) for countermovement drop jumps (CDJs) and bounce drop jumps (BDJs). The study was carried out in a group of 8 male youth basketball players. The tests were conducted using the AMTI BP600900 force plate to measure ground reaction forces and the Noraxon MyoMotion system to record kinematic data. Each player performed two CDJs and two BDJs from the height of 15, 30, 45 and 60 cm. The RSI was calculated as a ratio of jump height and contact time. Moreover, the RSI was determined for the amortization and take-off phases separately. Significant differences (p jumps from 30, 45 and 60 cm. Differences in RSI values for jumps from 15 cm were not significant. Furthermore, CDJ height values were significantly higher (p jump technique that is commonly performed by basketball players.

  19. Impact of wave phase jumps on stochastic heating

    International Nuclear Information System (INIS)

    Zasenko, V.I.; Zagorodny, A.G.; Cherniak, O.M.

    2016-01-01

    Interaction of charged particles with fields of random waves brings about known effects of stochastic acceleration and heating. Jumps of wave phases can increase the intensity of these processes substantially. Numerical simulation of particle heating and acceleration by waves with regular phases, waves with jumping phase and stochastic electric field impulses is performed. Comparison of the results shows that to some extent an impact of phase jumps is similar to the action of separate field impulses. Jumps of phase not only increase the intensity of resonant particle heating but involves in this process non-resonant particles from a wide range of initial velocities

  20. Jump Testing and the Speed of Market Adjustment

    DEFF Research Database (Denmark)

    Rasmussen, Torben B.

    Asymptotic properties of jump tests rely on the property that any jump occurs within a single time interval no matter what the observation frequency is. Market microstructure effects in relation to news-induced revaluation of the underlying variable is likely to make this an unrealistic assumption...... for high-frequency transaction data. To capture these microstructure effects, this paper suggests a model in which market prices adjust gradually to jumps in the underlying effcient price. A case study illustrates the empirical relevance of the model, and the performance of different jump tests...

  1. Development of a Minimally Actuated Jumping-Rolling Robot

    Directory of Open Access Journals (Sweden)

    Thanhtam Ho

    2015-04-01

    Full Text Available This paper presents development of a hybrid mobile robot in order to take advantage of both rolling and jumping locomotion on the ground. According to the unique design of the mechanism, the robot is able to execute both jumping and rolling skilfully by using only one DC motor. Changing the centre of gravity enables rolling of the robot and storage of energy is utilized for jumping. Mechanism design and control logic are validated by computer simulation. Simulation results show that the robot can jump nearly 1.3 times its diameter and roll at the speed of 3.3 times its diameter per second.

  2. Effect of drop jump technique on the reactive strength index

    Directory of Open Access Journals (Sweden)

    Struzik Artur

    2016-09-01

    Full Text Available The basic drill of plyometric training aimed at improving lower limb power and jump height is a drop jump. This exercise can be performed using different techniques, which substantially affects jump variables. Therefore, the aim of this study was to compare the values of the reactive strength index (RSI for countermovement drop jumps (CDJs and bounce drop jumps (BDJs. The study was carried out in a group of 8 male youth basketball players. The tests were conducted using the AMTI BP600900 force plate to measure ground reaction forces and the Noraxon MyoMotion system to record kinematic data. Each player performed two CDJs and two BDJs from the height of 15, 30, 45 and 60 cm. The RSI was calculated as a ratio of jump height and contact time. Moreover, the RSI was determined for the amortization and take-off phases separately. Significant differences (p < 0.05 between RSI values for CDJs and BDJs were recorded for jumps from 30, 45 and 60 cm. Differences in RSI values for jumps from 15 cm were not significant. Furthermore, CDJ height values were significantly higher (p < 0.05 than the values recorded for BDJs. Times of contact, amortization and take-off during BDJs were significantly shorter (p < 0.05 than the respective values obtained for CDJs. Therefore, the use of the RSI to monitor plyometric training should be based on the drop jump technique that is commonly performed by basketball players.

  3. Measurement of K-shell absorption jump factors and jump ratios in some lanthanide elements using EDXRF technique

    International Nuclear Information System (INIS)

    Polat, Recep; İçelli, Orhan; Yalçın, Zeynel; Pesen, Erhan; Orak, Salim

    2013-01-01

    Highlights: ► Mass attenuation coefficients, jump factor and jump ratio for lanthanide elements are obtained. ► The method used in this experiment is combined both transmission and scattering geometry. ► Secondary gamma rays energy is 59.5 keV. ► Experimental values of jump factor and jump ratio for K shell are new. ► The experimental values are in good agreement with those calculated theoretically. - Abstract: 59.5 keV gamma rays scattered by an aluminum foil have been used as a radiation source to measure the absorption jump factor and jump ratios for absorbers Ce, Pr, Nd, Sm, Eu and Tb. The theoretical and experimental values are compared with the corresponding ones in the literature

  4. Locally Perturbed Random Walks with Unbounded Jumps

    OpenAIRE

    Paulin, Daniel; Szász, Domokos

    2010-01-01

    In \\cite{SzT}, D. Sz\\'asz and A. Telcs have shown that for the diffusively scaled, simple symmetric random walk, weak convergence to the Brownian motion holds even in the case of local impurities if $d \\ge 2$. The extension of their result to finite range random walks is straightforward. Here, however, we are interested in the situation when the random walk has unbounded range. Concretely we generalize the statement of \\cite{SzT} to unbounded random walks whose jump distribution belongs to th...

  5. Multiobjective Optimization Methodology A Jumping Gene Approach

    CERN Document Server

    Tang, KS

    2012-01-01

    Complex design problems are often governed by a number of performance merits. These markers gauge how good the design is going to be, but can conflict with the performance requirements that must be met. The challenge is reconciling these two requirements. This book introduces a newly developed jumping gene algorithm, designed to address the multi-functional objectives problem and supplies a viably adequate solution in speed. The text presents various multi-objective optimization techniques and provides the technical know-how for obtaining trade-off solutions between solution spread and converg

  6. Multiple Flux Rope Events at the High-Latitude Magnetopause: Cluster/Rapid Observation on January 26, 2001

    Science.gov (United States)

    Huang, Zong-Ying; Pu, Zu-Yin; Xiao, Chi-Jie; Xong, Qui-Gang; Fu, Sui-Yan; Xie, Lun; Shi, Quan-Qi; Cao, Jin-Bin; Liu, Zhen-Xing; Shen, Cao; Shi, Jian-Kui; Lu, Li; Wang, Nai-Quan; Chen, Tao; Fritz, T.; Glasmeier, K.-H.; Daly, P.; Reme, H.

    2004-04-01

    From 11:10 to 11:40UT on January 26, 2001 the four Cluster II spacecraft were located in the duskside high latitude regions of the magnetosheath and magnetosheath boundary layer (MSBL). During this time Interval the interplanetary magnetic field (IMF) had a negative Bz component. A detailed study on the multiple flux ropes (MFRs) observed in this period is conducted in this paper. It is found that: (1) The multiple flux ropes in the high latitude MSBL appeared quasi-periodically with a repeated time period of about 78s, which is much shorter than the averaged occurring period (about 8-11min) of the flux transfer events (FTEs) at the dayside magnetopause (MP). (2) All the flux ropes observed in this event had a strong core magnetic field. The axial orientation of the most flux ropes is found to lie in the direction of the minimum magnetic field variance; a few flux ropes had their axes lying in the direction of the middle magnetic field variance; while for the remainders their principle axes could not be determined by the method of Principal Axis Analysis (PAA). The reason that causes this complexity relys on the different trajectories of the spacecraft passing through the flux ropes. (3) Each flux rope had a good corresponding HT frame of reference in which it was in a quasi-steady state. All flux ropes moved along the surface of the MP in a similar direction indicating that these flux ropes all came from the dawnside low latitude. Their radial scale is 1-2RE, comparable to the normal diameter of FTEs observed atthe dayside MP. (4) The energetic ions originated from the magnetosphere flowed out to the magnetosheath on the whole, while the solar wind plasma flowed into the magnetosphere along the axis of the flux ropes. The flux ropes offered channels for the transport of the solar wind plasma into the magnetosphere and the escaping of the magnetospheric plasma into the interplanetary space. (5) Each event was accompanied by an enhanced reversal of the dusk

  7. MMS observations of magnetic reconnection signatures of dissipating ion inertial-scale flux ropes associated with dipolarization events

    Science.gov (United States)

    Poh, G.; Slavin, J. A.; Lu, S.; Le, G.; Cassak, P.; Eastwood, J. P.; Ozturk, D. S.; Zou, S.; Nakamura, R.; Baumjohann, W.; Russell, C. T.; Gershman, D. J.; Giles, B. L.; Pollock, C.; Moore, T. E.; Torbert, R. B.; Burch, J. L.

    2017-12-01

    The formation of flux ropes is thought to be an integral part of the process that may have important consequences for the onset and subsequent rate of reconnection in the tail. Earthward flows, i.e. bursty bulk flows (BBFs), generate dipolarization fronts (DFs) as they interact with the closed magnetic flux in their path. Global hybrid simulations and THEMIS observations have shown that earthward-moving flux ropes can undergo magnetic reconnection with the near-Earth dipole field in the downtail region between the Near Earth Neutral Line and the near-Earth dipole field to create DFs-like signatures. In this study, we analyzed sequential "chains" of earthward-moving, ion-scale flux ropes embedded within DFs observed during MMS first tail season. MMS high-resolution plasma measurements indicate that these earthward flux ropes embedded in DFs have a mean bulk flow velocity and diameter of 250 km/s and 1000 km ( 2‒3 ion inertial length λi), respectively. Magnetic reconnection signatures preceding the flux rope/DF encounter were also observed. As the southward-pointing magnetic field in the leading edge of the flux rope reconnects with the northward-pointing geomagnetic field, the characteristic quadrupolar Hall magnetic field in the ion diffusion region and electron outflow jets in the north-south direction are observed. Our results strongly suggest that the earthward moving flux ropes brake and gradually dissipate due to magnetic reconnection with the near Earth magnetic field. We have also examined the occurrence rate of these dissipating flux ropes/DF events as a function of downtail distances.

  8. INFLUENCE ANALYSIS OF ELASTIC DEFORMATIONS OF THE TRACK CABLE ON EFFORTS IN THE HAULING ROPE OF AERIAL ROPEWAY

    Directory of Open Access Journals (Sweden)

    S. V. Raksha

    2013-10-01

    Full Text Available Purpose. To estimate influence of elastic deformations of the track cable arising at movement of cars, on effort in a hauling rope of the aerial ropeway. Methodology. The method of consecutive approaches was used for research influence of elastic deformations of a track cable on effort in a hauling rope. Thus, definition of a tension of a track cable was carried out with use of the technique based on principles of modular configuration, the essence of which consists in formation of mathematical model by a combination of blocks of the formulas describing balance of the track cable on supports. Findings. The research has shown that influence of elastic deformations of a track cable on effort in a hauling rope was insignificant (less than 1 %. That points to possibility not to consider change of the track cable length, caused by its elastic properties, when modeling loading of elements of system «drive – traction rope – tension device». Also it has been found that use of the tension device of a track cable increased influence of its elastic properties on loading of rope system elements. At the same time the elastic component of the track cable tension in the test flight does not depend on a car position in the adjacent span, but only determines by the parameters of the rope system. Originality. The possibility of excluding the changes of track cable length caused by its elastic properties, when modeling loading of elements of system «drive – traction rope – tension device» was proved. Practical value. The use of these techniques and the results will simplify the mathematical model of loading of elements of the cable system and the system «drive – traction rope – tension device» as a whole.

  9. Determinant Factors of the Squat Jump in Sprinting and Jumping Athletes

    Directory of Open Access Journals (Sweden)

    González-Badillo Juan José

    2017-08-01

    Full Text Available The aim of this study was to assess the relationship between strength variables and maximum velocity (Vmax in the squat jump (SJ in sprinting and jumping athletes. Thirty-two sprinting and jumping athletes of national level (25.4 ± 4.5 years; 79.4 ± 6.9 kg and 180.4 ± 6.0 cm participated in the study. Vmax in the SJ showed significant relationships with peak force 1 (PF1 (r = 0.82, p ≤ 0.001, peak force 2 (PF2 (r = 0.68, p ≤ 0.001, PF2 by controlling for PF1 (r = 0.30, non-significant, the maximum rate of force development at peak force 1 (RFDmax1 (r = 0.62, p ≤ 0.001, mean RFD 1 (RFDmean1 (r = 0.48, p ≤ 0.01, mean RFD 2 (RFDmean2 (r = 0.70, p ≤ 0.001, force at RFDmax1 (r = 0.36, p ≤ 0.05, force at RFDmax2 (r = 0.83, p ≤ 0.001 and force at RFDmax2 by controlling for PF1 (r = 0.40, p ≤ 0.05. However, Vmax in the SJ was associated negatively with the ratio PF2/PF1 (r = -0.54, p ≤ 0.01, time at peak force 2 (Tp2 (r = -0.64, p ≤ 0.001 and maximum rate of force development at peak force 2 (RFDmax2 (r = -0.71, p ≤ 0.001. These findings indicate that the peak force achieved at the beginning of the movement (PF1 is the main predictor of performance in jumping, although the RFDmax values and the ratio PF2/PF1 are also variables to be taken into account when analyzing the determinant factors of vertical jumping.

  10. Testing a solar coronal magnetic field extrapolation code with the Titov–Démoulin magnetic flux rope model

    International Nuclear Information System (INIS)

    Jiang, Chao-Wei; Feng, Xue-Shang

    2016-01-01

    In the solar corona, the magnetic flux rope is believed to be a fundamental structure that accounts for magnetic free energy storage and solar eruptions. Up to the present, the extrapolation of the magnetic field from boundary data has been the primary way to obtain fully three-dimensional magnetic information about the corona. As a result, the ability to reliably recover the coronal magnetic flux rope is important for coronal field extrapolation. In this paper, our coronal field extrapolation code is examined with an analytical magnetic flux rope model proposed by Titov and Démoulin, which consists of a bipolar magnetic configuration holding a semi-circular line-tied flux rope in force-free equilibrium. By only using the vector field at the bottom boundary as input, we test our code with the model in a representative range of parameter space and find that the model field can be reconstructed with high accuracy. In particular, the magnetic topological interfaces formed between the flux rope and the surrounding arcade, i.e., the “hyperbolic flux tube” and “bald patch separatrix surface,” are also reliably reproduced. By this test, we demonstrate that our CESE–MHD–NLFFF code can be applied to recovering the magnetic flux rope in the solar corona as long as the vector magnetogram satisfies the force-free constraints. (paper)

  11. Variability of Plyometric and Ballistic Exercise Technique Maintains Jump Performance.

    Science.gov (United States)

    Chandler, Phillip T; Greig, Matthew; Comfort, Paul; McMahon, John J

    2018-06-01

    Chandler, PT, Greig, M, Comfort, P, and McMahon, JJ. Variability of plyometric and ballistic exercise technique maintains jump performance. J Strength Cond Res 32(6): 1571-1582, 2018-The aim of this study was to investigate changes in vertical jump technique over the course of a training session. Twelve plyometric and ballistic exercise-trained male athletes (age = 23.4 ± 4.6 years, body mass = 78.7 ± 18.8 kg, height = 177.1 ± 9.0 cm) performed 3 sets of 10 repetitions of drop jump (DJ), rebound jump (RJ) and squat jump (SJ). Each exercise was analyzed from touchdown to peak joint flexion and peak joint flexion to take-off. Squat jump was analyzed from peak joint flexion to take-off only. Jump height, flexion and extension time and range of motion, and instantaneous angles of the ankle, knee, and hip joints were measured. Separate 1-way repeated analyses of variance compared vertical jump technique across exercise sets and repetitions. Exercise set analysis found that SJ had lower results than DJ and RJ for the angle at peak joint flexion for the hip, knee, and ankle joints and take-off angle of the hip joint. Exercise repetition analysis found that the ankle joint had variable differences for the angle at take-off, flexion, and extension time for RJ. The knee joint had variable differences for flexion time for DJ and angle at take-off and touchdown for RJ. There was no difference in jump height. Variation in measured parameters across repetitions highlights variable technique across plyometric and ballistic exercises. This did not affect jump performance, but likely maintained jump performance by overcoming constraints (e.g., level of rate coding).

  12. CAPTURE OF TROJANS BY JUMPING JUPITER

    International Nuclear Information System (INIS)

    Nesvorný, David; Vokrouhlický, David; Morbidelli, Alessandro

    2013-01-01

    Jupiter Trojans are thought to be survivors of a much larger population of planetesimals that existed in the planetary region when planets formed. They can provide important constraints on the mass and properties of the planetesimal disk, and its dispersal during planet migration. Here, we tested a possibility that the Trojans were captured during the early dynamical instability among the outer planets (aka the Nice model), when the semimajor axis of Jupiter was changing as a result of scattering encounters with an ice giant. The capture occurs in this model when Jupiter's orbit and its Lagrange points become radially displaced in a scattering event and fall into a region populated by planetesimals (that previously evolved from their natal transplanetary disk to ∼5 AU during the instability). Our numerical simulations of the new capture model, hereafter jump capture, satisfactorily reproduce the orbital distribution of the Trojans and their total mass. The jump capture is potentially capable of explaining the observed asymmetry in the number of leading and trailing Trojans. We find that the capture probability is (6-8) × 10 –7 for each particle in the original transplanetary disk, implying that the disk contained (3-4) × 10 7 planetesimals with absolute magnitude H disk ∼ 14-28 M Earth , is consistent with the mass deduced from recent dynamical simulations of the planetary instability.

  13. Data concerning the effect of plyometric training on jump performance in soccer players: A meta-analysis

    Directory of Open Access Journals (Sweden)

    Maamer Slimani

    2017-12-01

    Full Text Available Plyometric training (PT enhances soccer performance, particularly vertical jump. However, the effectiveness of PT depends on various factors. A systematic search of the research literature was conducted for randomized controlled trials (RCTs studying the effects of PT on countermovement jump (CMJ height in soccer players. Ten studies were obtained through manual and electronic journal searches (up to April 2017. Significant differences were observed when compared: (1 PT group vs. control group (ES=0.85; 95% CI 0.47–1.23; I2=68.71%; p<0.001, (2 male vs. female soccer players (Q=4.52; p=0.033, (3 amateur vs. high-level players (Q=6.56; p=0.010, (4 single session volume (<120 jumps vs. ≥120 jumps; Q=6.12, p=0.013, (5 rest between repetitions (5 s vs. 10 s vs. 15 s vs. 30 s; Q=19.10, p<0.001, (6 rest between sets (30 s vs. 60 s vs. 90 s vs. 120 s vs. 240 s; Q=19.83, p=0.001 and (7 and overall training volume (low: <1600 jumps vs. high: ≥1600 jumps; Q=5.08, p=0.024. PT is an effective form of training to improve vertical jump performance (i.e., CMJ in soccer players. The benefits of PT on CMJ performance are greater for interventions of longer rest interval between repetitions (30 s and sets (240 s with higher volume of more than 120 jumps per session and 1600 jumps in total. Gender and competitive level differences should be considered when planning PT programs in soccer players. Keywords: Stretch-shortening cycle, Meta-analysis, Jump height, Soccer

  14. Quantitative Inspection of Remanence of Broken Wire Rope Based on Compressed Sensing.

    Science.gov (United States)

    Zhang, Juwei; Tan, Xiaojiang

    2016-08-25

    Most traditional strong magnetic inspection equipment has disadvantages such as big excitation devices, high weight, low detection precision, and inconvenient operation. This paper presents the design of a giant magneto-resistance (GMR) sensor array collection system. The remanence signal is collected to acquire two-dimensional magnetic flux leakage (MFL) data on the surface of wire ropes. Through the use of compressed sensing wavelet filtering (CSWF), the image expression of wire ropes MFL on the surface was obtained. Then this was taken as the input of the designed back propagation (BP) neural network to extract three kinds of MFL image geometry features and seven invariant moments of defect images. Good results were obtained. The experimental results show that nondestructive inspection through the use of remanence has higher accuracy and reliability compared with traditional inspection devices, along with smaller volume, lighter weight and higher precision.

  15. Use of rope guides in uranium mining and their innovations in techniques

    International Nuclear Information System (INIS)

    Hu Erlian.

    1984-01-01

    Thanks to some innovations and effective measures, the rope guides have been successfully used in multi-level operation in some uranium mines since the year of 1968. These innovations and measures are as follows: (1) by the use of the intermediate fixing grips of guide ropes, etc., to increase the rigidity of the guides and restrain swaying of the hoisting conveyance. (2) by the use of modified screw tensioning device to replace the weight tensioning one to cut down operation cost apparently. (3) By the use of mobile platform in the form of arc plate, or the shiftable guides as the cage stabilizer for intermediate levels to firm the cage horizontally and prevent it from vertical tilting owing to impulsive force from the motion of mine cars, etc. (Author)

  16. Quantitative Inspection of Remanence of Broken Wire Rope Based on Compressed Sensing

    Science.gov (United States)

    Zhang, Juwei; Tan, Xiaojiang

    2016-01-01

    Most traditional strong magnetic inspection equipment has disadvantages such as big excitation devices, high weight, low detection precision, and inconvenient operation. This paper presents the design of a giant magneto-resistance (GMR) sensor array collection system. The remanence signal is collected to acquire two-dimensional magnetic flux leakage (MFL) data on the surface of wire ropes. Through the use of compressed sensing wavelet filtering (CSWF), the image expression of wire ropes MFL on the surface was obtained. Then this was taken as the input of the designed back propagation (BP) neural network to extract three kinds of MFL image geometry features and seven invariant moments of defect images. Good results were obtained. The experimental results show that nondestructive inspection through the use of remanence has higher accuracy and reliability compared with traditional inspection devices, along with smaller volume, lighter weight and higher precision. PMID:27571077

  17. ON THE ROLE OF REPETITIVE MAGNETIC RECONNECTIONS IN EVOLUTION OF MAGNETIC FLUX ROPES IN SOLAR CORONA

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Sanjay; Bhattacharyya, R.; Joshi, Bhuwan [Udaipur Solar Observatory, Physical Research Laboratory, Dewali, Bari Road, Udaipur-313001 (India); Smolarkiewicz, P. K. [European Centre for Medium-Range Weather Forecasts, Reading RG2 9AX (United Kingdom)

    2016-10-20

    Parker's magnetostatic theorem, extended to astrophysical magnetofluids with large magnetic Reynolds number, supports ceaseless regeneration of current sheets and, hence, spontaneous magnetic reconnections recurring in time. Consequently, a scenario is possible where the repeated reconnections provide an autonomous mechanism governing emergence of coherent structures in astrophysical magnetofluids. In this work, such a scenario is explored by performing numerical computations commensurate with the magnetostatic theorem. In particular, the computations explore the evolution of a flux rope governed by repeated reconnections in a magnetic geometry resembling bipolar loops of solar corona. The revealed morphology of the evolution process—including onset and ascent of the rope, reconnection locations, and the associated topology of the magnetic field lines—agrees with observations, and thus substantiates physical realizability of the advocated mechanism.

  18. Unsteady hydraulic simulation of the cavitating part load vortex rope in Francis turbines

    Science.gov (United States)

    Brammer, J.; Segoufin, C.; Duparchy, F.; Lowys, P. Y.; Favrel, A.; Avellan, F.

    2017-04-01

    For Francis turbines at part load operation a helical vortex rope is formed due to the swirling nature of the flow exiting the runner. This vortex creates pressure fluctuations which can lead to power swings, and the unsteady loading can lead to fatigue damage of the runner. In the case that the vortex rope cavitates there is the additional risk that hydro-acoustic resonance can occur. It is therefore important to be able to accurately simulate this phenomenon to address these issues. In this paper an unsteady, multi-phase CFD model was used to simulate two part-load operating points, for two different cavitation conditions. The simulation results were validated with test-rig data, and showed very good agreement. These results also served as an input for FEA calculations and fatigue analysis, which are presented in a separate study.

  19. Steel wire ropes. Proven performer of shaft winding systems; Stahldrahtseile. Bewaehrte Leistungstraeger von Schachtfoerderanlagen

    Energy Technology Data Exchange (ETDEWEB)

    Sindern, Winfried [DMT GmbH und Co. KG, Bochum (Germany). Fachstelle fuer Sicherheit - Seilpruefstelle; Gronau, Olivier [DMT GmbH und Co. KG, Bochum (Germany). DMT-Prueflab. fuer Zerstoerungsfreie und Zerstoerende Pruefung - Seilpruefstelle

    2010-04-15

    In particular, the DMT centre for safety rope inspection in Bochum (Federal Republic of Germany) accomplishes non-destructive examinations of ropes of shaft winding systems as well as of its final connections outside of the mining industry used as high-strength draft members in buildings such as bridges, broadcasting poles, fire-places and roof structures and in many areas of conveying engineering. The test laboratory is accredited according to DIN EN ISO/IEC 17025:2005. In the year 1990, the former institute for mine safety in Leipzig (Federal Republic for Germany) was integrated to DMT and forms the branch office of DMT in Leipzig. The Saarland hard coal district is cared for by a further branch office of the DMT in Saarbruecken (Federal Republic of Germany). The knowledge existing at all three locations, further experiences and the research results today are used commonly and developed further.

  20. Ion-Scale Secondary Flux Ropes Generated by Magnetopause Reconnection as Resolved by MMS

    Science.gov (United States)

    Eastwood, J. P.; Phan, T. D.; Cassak, P. A.; Gershman, D. J.; Haggerty, C.; Malakit, K.; Shay, M. A.; Mistry, R.; Oieroset, M.; Russell, C. T.; hide

    2016-01-01

    New Magnetospheric Multiscale (MMS) observations of small-scale (approx. 7 ion inertial length radius) flux transfer events (FTEs) at the dayside magnetopause are reported. The 1O km MMS tetrahedron size enables their structure and properties to be calculated using a variety of multispacecraft techniques, allowing them to be identified as flux ropes, whose flux content is small (approx. 22 kWb).The current density, calculated using plasma and magnetic field measurements independently, is found to be filamentary. lntercomparison of the plasma moments with electric and magnetic field measurements reveals structured non-frozen-in ion behavior. The data are further compared with a particle-in-cell simulation. It is concluded that these small-scale flux ropes, which are not seen to be growing, represent a distinct class of FTE which is generated on the magnetopause by secondary reconnection.

  1. Quantitative Inspection of Remanence of Broken Wire Rope Based on Compressed Sensing

    Directory of Open Access Journals (Sweden)

    Juwei Zhang

    2016-08-01

    Full Text Available Most traditional strong magnetic inspection equipment has disadvantages such as big excitation devices, high weight, low detection precision, and inconvenient operation. This paper presents the design of a giant magneto-resistance (GMR sensor array collection system. The remanence signal is collected to acquire two-dimensional magnetic flux leakage (MFL data on the surface of wire ropes. Through the use of compressed sensing wavelet filtering (CSWF, the image expression of wire ropes MFL on the surface was obtained. Then this was taken as the input of the designed back propagation (BP neural network to extract three kinds of MFL image geometry features and seven invariant moments of defect images. Good results were obtained. The experimental results show that nondestructive inspection through the use of remanence has higher accuracy and reliability compared with traditional inspection devices, along with smaller volume, lighter weight and higher precision.

  2. Experimental study on vertical static stiffnesses of polycal wire rope isolators

    Science.gov (United States)

    Balaji, P. S.; Moussa, Leblouba; Khandoker, Noman; Yuk Shyh, Ting; Rahman, M. E.; Hieng Ho, Lau

    2017-07-01

    Wire rope isolator is one of the most effective isolation system that can be used to attenuate the vibration disturbances and shocks during the operation of machineries. This paper presents the results of investigation on static elastic stiffnesses (both in tension and in compression) of Polycal Wire Rope Isolator (PWRI) under quasi-static monotonic loading conditions. It also studied effect of variations in height and width of PWRI on its static stiffnesses. Suitable experimental setup was designed and manufactured to meet the test conditions. The results show that their elastic stiffnesses for both tension and compression loading conditions are highly influenced by their geometric dimensions. It is found that their compressive stiffness reduced by 55% for an increment of 20% in their height to width ratio. Therefore, the stiffness of PWRI can be fine-tuned by controlling their dimensions according to the requirements of the application.

  3. Magnetar giant flares in multipolar magnetic fields. I. Fully and partially open eruptions of flux ropes

    International Nuclear Information System (INIS)

    Huang, Lei; Yu, Cong

    2014-01-01

    We propose a catastrophic eruption model for the enormous energy release of magnetars during giant flares, in which a toroidal and helically twisted flux rope is embedded within a force-free magnetosphere. The flux rope stays in stable equilibrium states initially and evolves quasi-statically. Upon the loss of equilibrium, the flux rope cannot sustain the stable equilibrium states and erupts catastrophically. During the process, the magnetic energy stored in the magnetosphere is rapidly released as the result of destabilization of global magnetic topology. The magnetospheric energy that could be accumulated is of vital importance for the outbursts of magnetars. We carefully establish the fully open fields and partially open fields for various boundary conditions at the magnetar surface and study the relevant energy thresholds. By investigating the magnetic energy accumulated at the critical catastrophic point, we find that it is possible to drive fully open eruptions for dipole-dominated background fields. Nevertheless, it is hard to generate fully open magnetic eruptions for multipolar background fields. Given the observational importance of the multipolar magnetic fields in the vicinity of the magnetar surface, it would be worthwhile to explore the possibility of the alternative eruption approach in multipolar background fields. Fortunately, we find that flux ropes may give rise to partially open eruptions in the multipolar fields, which involve only partial opening of background fields. The energy release fractions are greater for cases with central-arcaded multipoles than those with central-caved multipoles that emerged in background fields. Eruptions would fail only when the centrally caved multipoles become extremely strong.

  4. The structure of an earthward propagating magnetic flux rope early in its evolution: comparison of methods

    Directory of Open Access Journals (Sweden)

    C. Möstl

    2009-05-01

    Full Text Available We analyze a magnetic signature associated with the leading edge of a bursty bulk flow observed by Cluster at −19 RE downtail on 22 August 2001. A distinct rotation of the magnetic field was seen by all four spacecraft. This event was previously examined by Slavin et al. (2003b using both linear force-free modeling as well as a curlometer technique. Extending this work, we apply here single- and multi-spacecraft Grad-Shafranov (GS reconstruction techniques to the Cluster observations and find good evidence that the structure encountered is indeed a magnetic flux rope and contains helical magnetic field lines. We find that the flux rope has a diameter of approximately 1 RE, an axial field of 26.4 nT, a velocity of ≈650 km/s, a total axial current of 0.16 MA and magnetic fluxes of order 105 Wb. The field line twist is estimated as half a turn per RE. The invariant axis is inclined at 40° to the ecliptic plane and 10° to the GSM equatorial plane. The flux rope has a force-free core and non-force-free boundaries. When we compare and contrast our results with those obtained from minimum variance, single-spacecraft force-free fitting and curlometer techniques, we find in general fair agreement, but also clear differences such as a higher inclination of the axis to the ecliptic. We further conclude that single-spacecraft methods have limitations which should be kept in mind when applied to THEMIS observations, and that non-force-free GS and curlometer techniques are to be preferred in their analysis. Some properties we derived for this earthward– moving structure are similar to those inferred by Lui et al. (2007, using a different approach, for a tailward-moving flux rope observed during the expansion phase of the same substorm.

  5. Interplanetary Magnetic Flux Ropes as Agents Connecting Solar Eruptions and Geomagnetic Activities

    Science.gov (United States)

    Marubashi, K.; Cho, K.-S.; Ishibashi, H.

    2017-12-01

    We investigate the solar wind structure for 11 cases that were selected for the campaign study promoted by the International Study of Earth-affecting Solar Transients (ISEST) MiniMax24 Working Group 4. We can identify clear flux rope signatures in nine cases. The geometries of the nine interplanetary magnetic flux ropes (IFRs) are examined with a model-fitting analysis with cylindrical and toroidal force-free flux rope models. For seven cases in which magnetic fields in the solar source regions were observed, we compare the IFR geometries with magnetic structures in their solar source regions. As a result, we can confirm the coincidence between the IFR orientation and the orientation of the magnetic polarity inversion line (PIL) for six cases, as well as the so-called helicity rule as regards the handedness of the magnetic chirality of the IFR, depending on which hemisphere of the Sun the IFR originated from, the northern or southern hemisphere; namely, the IFR has right-handed (left-handed) magnetic chirality when it is formed in the southern (northern) hemisphere of the Sun. The relationship between the orientation of IFRs and PILs can be taken as evidence that the flux rope structure created in the corona is in most cases carried through interplanetary space with its orientation maintained. In order to predict magnetic field variations on Earth from observations of solar eruptions, further studies are needed about the propagation of IFRs because magnetic fields observed at Earth significantly change depending on which part of the IFR hits the Earth.

  6. Potential Magnetic Field around a Helical Flux-rope Current Structure in the Solar Corona

    OpenAIRE

    Petrie, G. J. D.

    2007-01-01

    We consider the potential magnetic field associated with a helical electric line current flow, idealizing the near-potential coronal field within which a highly localized twisted current structure is embedded. It is found that this field has a significant axial component off the helical magnetic axis where there is no current flow, such that the flux winds around the axis. The helical line current field, in including the effects of flux rope writhe, is therefore more topologically complex tha...

  7. On the Characteristics of Footpoints of Solar Magnetic Flux Ropes during the Eruption

    OpenAIRE

    Cheng, X.; Ding, M. D.

    2016-01-01

    We investigate the footpoints of four erupted magnetic flux ropes (MFRs) that appear as sigmoidal hot channels prior to the eruptions in the Atmospheric Imaging Assembly high temperaure passbands. The simultaneous Helioseismic and Magnetic Imager observations disclose that one footpoint of the MFRs originates in the penumbra or penumbra edge with a stronger magnetic field, while the other in the moss region with a weaker magnetic field. The significant deviation of the axis of the MFRs from t...

  8. Evolving Playable Content for Cut the Rope through a Simulation-Based Approach

    DEFF Research Database (Denmark)

    Shaker, Mohammad; Shaker, Noor; Togelius, Julian

    2013-01-01

    and such an agent is not always readily available. We discuss this prob- lem in the context of the physics-based puzzle game Cut the Rope, which features continuous time and state space, mak- ing several approaches such as exhaustive search and reactive agents inefficient. We show that a deliberative Prolog...... in this paper is likely to be useful for a large variety of games with similar characteristics....

  9. A novel mechanical design of broken rope protection device for enhancing the safety performances of overhead manned equipment in coal mine

    Directory of Open Access Journals (Sweden)

    Xiaoguang Zhang

    2015-08-01

    Full Text Available A novel mechanical design of the broken rope protection device is proposed to enhance the safety performances of the overhead manned equipment. According to the operating characteristics and functional requirements of the overhead manned equipment, a three-dimensional mechanical model of the broken rope protection device was redesigned. Based on the known parameters of the mechanical model, the stress and strength of the main components are readjusted using the statics characteristics of finite element analysis. To ensure the reliability of the control system of the broken rope protection device, the process of people’s falling, the response performance of the tension sensor, and the signal extraction of the broken rope are analyzed under different loading and unloading speeds. The working principle of the broken rope protection device is expounded in detail. The experimental results showed that better effect is obtained by the new broken rope protection device, which is characterized by good durability, low investment, and high reliability.

  10. The world price of jump and volatility risk

    NARCIS (Netherlands)

    Driessen, J.; Maenhout, P.

    2006-01-01

    Jump and volatility risk are important for understanding equity returns, option pricing and asset allocation. This paper is the first to study international integration of markets for jump and volatility risk, using data on index options for each of the three main global markets: US S&P 500 index

  11. Asymptotic inference for jump diffusions with state-dependent intensity

    NARCIS (Netherlands)

    Becheri, Gaia; Drost, Feico; Werker, Bas

    2016-01-01

    We establish the local asymptotic normality property for a class of ergodic parametric jump-diffusion processes with state-dependent intensity and known volatility function sampled at high frequency. We prove that the inference problem about the drift and jump parameters is adaptive with respect to

  12. Long multiplication by instruction sequences with backward jump instructions

    NARCIS (Netherlands)

    Bergstra, J.A.; Middelburg, C.A.

    2013-01-01

    For each function on bit strings, its restriction to bit strings of any given length can be computed by a finite instruction sequence that contains only instructions to set and get the content of Boolean registers, forward jump instructions, and a termination instruction. Backward jump instructions

  13. Knee Muscular Control During Jump Landing in Multidirections.

    Science.gov (United States)

    Sinsurin, Komsak; Vachalathiti, Roongtiwa; Jalayondeja, Wattana; Limroongreungrat, Weerawat

    2016-06-01

    Jump landing is a complex movement in sports. While competing and practicing, athletes frequently perform multi-planar jump landing. Anticipatory muscle activity could influence the amount of knee flexion and prepare the knee for dynamic weight bearing such as landing tasks. The aim of the present study was to examine knee muscle function and knee flexion excursion as athletes naturally performed multi-direction jump landing. Eighteen male athletes performed the jump-landing test in four directions: forward (0°), 30° diagonal, 60° diagonal, and lateral (90°). Muscles tested were vastus medialis (VM), vastus lateralis (VL), rectus femoris (RF), semitendinosus (ST), and biceps femoris (BF). A Vicon(TM) 612 workstation collected the kinematic data. An electromyography was synchronized with the Vicon(TM) Motion system to quantify dynamic muscle function. Repeated measure ANOVA was used to analyze the data. Jump-landing direction significantly influenced (P jump landing. A higher risk of knee injury might occur during lateral jump landing than forward and diagonal directions. Athletes should have more practice in jump landing in lateral direction to avoid injury. Landing technique with high knee flexion in multi-directions should be taught to jumpers for knee injury prevention.

  14. A Jump-Diffusion Model with Stochastic Volatility and Durations

    DEFF Research Database (Denmark)

    Wei, Wei; Pelletier, Denis

    jumps in two ways: as exogenous sampling intervals, and through the interaction with volatility. We adopt a bivariate Ornstein-Ulenbeck process to model intraday volatility and conditional duration. We develop a MCMC algorithm for the inference on irregularly spaced multivariate processes with jumps...

  15. Dynamics of force and muscle stimulation in human vertical jumping

    NARCIS (Netherlands)

    Bobbert, M.F.; van Zandwijk, J.P.

    1999-01-01

    PURPOSE: The purpose of this study was to gain insight into the importance of stimulation dynamics for force development in human vertical jumping. METHODS: Maximum height squat jumps were performed by 21 male subjects. As a measure of signal dynamics, rise time (RT) was used, i.e., the time taken

  16. Role of the hamstrings in human vertical jumping

    NARCIS (Netherlands)

    Bobbert, Maarten F.

    1996-01-01

    In some human subjects performing maximum-height squat jumps, the EMG-pattern of semitendinosus is bi-phasic and that of biceps femoris is mono-phasic. The purpose of this study was to investigate the roles of biceps femoris and semitendinosus in squat jumping, and to explain why they are different.

  17. Forces exerted by jumping children: A pilot study

    NARCIS (Netherlands)

    Moes, C.C.M.; Bakker, H.E.

    1998-01-01

    This article reports on a pilot study of the loads exerted vertically by children when jumping. The subjects of the study were 17 children, aged from two to twelve years. Measurements were made using video recordings and a force-plate. The influence of the stiffness of the base and of jumping with

  18. On Pathos Adjacency Cut Vertex Jump Graph of a Tree

    OpenAIRE

    Nagesh.H.M; R.Chandrasekhar

    2014-01-01

    In this paper the concept of pathos adjacency cut vertex jump graph PJC(T) of a tree T is introduced. We also present a characterization of graphs whose pathos adjacency cut vertex jump graphs are planar, outerplanar, minimally non-outerplanar, Eulerian and Hamiltonian.

  19. The validity and reliability of the my jump 2 app for measuring the reactive strength index and drop jump performance.

    Science.gov (United States)

    Haynes, Tom; Bishop, Chris; Antrobus, Mark; Brazier, Jon

    2018-03-27

    This is the first study to independently assess the concurrent validity and reliability of the My Jump 2 app for measuring drop jump performance. It is also the first to evaluate the app's ability to measure the reactive strength index (RSI). Fourteen male sport science students (age: 29.5 ± 9.9 years) performed three drop jumps from 20 cm and 40 cm (totalling 84 jumps), assessed via a force platform and the My Jump 2 app. Reported metrics included reactive strength index, jump height, ground contact time, and mean power. Measurements from both devices were compared using the intraclass correlation coefficient (ICC), Pearson product moment correlation coefficient (r), Cronbach's alpha (α), coefficient of variation (CV) and BlandAltman plots. Near perfect agreement was seen between devices at 20 cm for RSI (ICC = 0.95) and contact time (ICC = 0.99) and at 40 cm for RSI (ICC = 0.98), jump height (ICC = 0.96) and contact time (ICC = 0.92); with very strong agreement seen at 20 cm for jump height (ICC = 0.80). In comparison with the force plate the app showed good validity for RSI (20 cm: r = 0.94; 40 cm; r = 0.97), jump height (20 cm: r = 0.80; 40 cm; r = 0.96) and contact time (20 cm = 0.96; 40 cm; r = 0.98). The results of the present study show that the My Jump 2 app is a valid and reliable tool for assessing drop jump performance.

  20. Control strategy of maximum vertical jumps: The preferred countermovement depth may not be fully optimized for jump height

    Directory of Open Access Journals (Sweden)

    Mandic Radivoj

    2016-09-01

    Full Text Available The aim of the present study was to explore the control strategy of maximum countermovement jumps regarding the preferred countermovement depth preceding the concentric jump phase. Elite basketball players and physically active non-athletes were tested on the jumps performed with and without an arm swing, while the countermovement depth was varied within the interval of almost 30 cm around its preferred value. The results consistently revealed 5.1-11.2 cm smaller countermovement depth than the optimum one, but the same difference was more prominent in non-athletes. In addition, although the same differences revealed a marked effect on the recorded force and power output, they reduced jump height for only 0.1-1.2 cm. Therefore, the studied control strategy may not be based solely on the countermovement depth that maximizes jump height. In addition, the comparison of the two groups does not support the concept of a dual-task strategy based on the trade-off between maximizing jump height and minimizing the jumping quickness that should be more prominent in the athletes that routinely need to jump quickly. Further research could explore whether the observed phenomenon is based on other optimization principles, such as the minimization of effort and energy expenditure. Nevertheless, future routine testing procedures should take into account that the control strategy of maximum countermovement jumps is not fully based on maximizing the jump height, while the countermovement depth markedly confound the relationship between the jump height and the assessed force and power output of leg muscles.

  1. Control strategy of maximum vertical jumps: The preferred countermovement depth may not be fully optimized for jump height.

    Science.gov (United States)

    Mandic, Radivoj; Knezevic, Olivera M; Mirkov, Dragan M; Jaric, Slobodan

    2016-09-01

    The aim of the present study was to explore the control strategy of maximum countermovement jumps regarding the preferred countermovement depth preceding the concentric jump phase. Elite basketball players and physically active non-athletes were tested on the jumps performed with and without an arm swing, while the countermovement depth was varied within the interval of almost 30 cm around its preferred value. The results consistently revealed 5.1-11.2 cm smaller countermovement depth than the optimum one, but the same difference was more prominent in non-athletes. In addition, although the same differences revealed a marked effect on the recorded force and power output, they reduced jump height for only 0.1-1.2 cm. Therefore, the studied control strategy may not be based solely on the countermovement depth that maximizes jump height. In addition, the comparison of the two groups does not support the concept of a dual-task strategy based on the trade-off between maximizing jump height and minimizing the jumping quickness that should be more prominent in the athletes that routinely need to jump quickly. Further research could explore whether the observed phenomenon is based on other optimization principles, such as the minimization of effort and energy expenditure. Nevertheless, future routine testing procedures should take into account that the control strategy of maximum countermovement jumps is not fully based on maximizing the jump height, while the countermovement depth markedly confound the relationship between the jump height and the assessed force and power output of leg muscles.

  2. Methodological Considerations on the Relationship Between the 1,500-M Rowing Ergometer Performance and Vertical Jump in National-Level Adolescent Rowers.

    Science.gov (United States)

    Maciejewski, Hugo; Rahmani, Abderrahmane; Chorin, Frédéric; Lardy, Julien; Samozino, Pierre; Ratel, Sébastien

    2018-03-12

    The purpose of the present study was to investigate whether three different approaches for evaluating squat jump performance were correlated to rowing ergometer performance in elite adolescent rowers. Fourteen young male competitive rowers (15.3 ± 0.6 years), who took part in the French rowing national championships, performed a 1,500-m all-out rowing ergometer performance (P1500) and a squat jump (SJ) test. The performance in SJ was determined by calculating the jump height (HSJ in cm), a jump index (ISJ = HSJ · body mass · gravity, in J) and the mean power output (PSJ in W) from the Samozino et al.'s method. Furthermore, allometric modelling procedures were used to consider the importance of body mass (BM) in the assessment of HSJ, ISJ and PSJ, and their relationships with between P1500 and jump scores. P1500 was significantly correlated to HSJ (r2 = 0.29, P jump and rowing ergometer performances at the same rate, and that PSJ could be the best correlate of P1500. Therefore, the calculation of power seems to be more relevant than HSJ and ISJ to (i) evaluate jump performance, and (ii) infer the capacity of adolescent rowers to perform 1,500-m all-out rowing ergometer performance, irrespective of their body mass. This could help coaches to improve their training program and potentially identify talented young rowers.

  3. Solar Prominences Embedded in Flux Ropes: Morphological Features and Dynamics from 3D MHD Simulations

    Science.gov (United States)

    Terradas, J.; Soler, R.; Luna, M.; Oliver, R.; Ballester, J. L.; Wright, A. N.

    2016-04-01

    The temporal evolution of a solar prominence inserted in a three-dimensional magnetic flux rope is investigated numerically. Using the model of Titov & Démoulin under the regime of weak twist, the cold and dense prominence counteracts gravity by modifying the initially force-free magnetic configuration. In some cases a quasi-stationary situation is achieved after the relaxation phase, characterized by the excitation of standing vertical oscillations. These oscillations show a strong attenuation with time produced by the mechanism of continuum damping due to the inhomogeneous transition between the prominence and solar corona. The characteristic period of the vertical oscillations does not depend strongly on the twist of the flux rope. Nonlinearity is responsible for triggering the Kelvin-Helmholtz instability associated with the vertical oscillations and that eventually produces horizontal structures. Contrary to other configurations in which the longitudinal axis of the prominence is permeated by a perpendicular magnetic field, like in unsheared arcades, the orientation of the prominence along the flux rope axis prevents the development of Rayleigh-Taylor instabilities and therefore the appearance of vertical structuring along this axis.

  4. The sagging rope sign in achondroplasia - different from Perthes' disease

    Energy Technology Data Exchange (ETDEWEB)

    Shingade, Viraj U. [Korea University, Department of Paediatric Orthopaedics, College of Medicine, Guro Hospital, Seoul (Korea); Song, Hae-Ryong [Korea University, Department of Paediatric Orthopaedic Surgery, College of Medicine, Guro Hospital, Seoul (Korea); Lee, Seok-Hyun; Suh, Seung-Woo [Korea University, Department of Orthopaedic Surgery, College of Medicine, Guro Hospital, Seoul (Korea); Oh, Chang-Wug [Kyungpook National University Hospital, Department of Orthopaedic Surgery, Daegu (Korea); Hong, Jun-Seok [Ansan Hospital, Department of Orthopaedic Surgery, Korea University, Ansan, Gyeonggi do (Korea)

    2006-12-15

    The sagging rope sign is a radio-opaque line, seen on radiographs of the hips, with Perthes' disease. The main purpose of this study was to determine the incidence, cause and importance of this sign in achondroplasia, and to reveal how it differs from in Perthes' disease. Serial radiograms, along with 2-dimensional and 3-dimensional CT images were studied in 42 achondroplasic patients. Forty-two achondroplasic patients, reported at our institute (for routine outpatient consultation, spine surgeries, deformity corrections, limb-lengthening procedures) were included in this study. There were 26 males and 16 females. The sign was observed bilaterally, in all patients. Evaluation of CT images revealed spherical heads, with presence of circumferential overhang in all hips. This circumferential overhang, seen on 3-D CT scan, corresponded to the sagging rope sign on radiographs. Presence of the sagging rope sign in bilateral hips is a characteristic feature of achondroplasia. It usually appears before epiphyseal closure. Its cause, incidence, and nature differ from Perthes' disease, and its presence does not carry a bad prognosis in achondroplasia. (orig.)

  5. Characteristics and Geoeffectiveness of Small-scale Magnetic Flux Ropes in the Solar Wind

    Science.gov (United States)

    Kim, Myeong Joon; Park, Kyung Sun; Lee, Dae-Young; Choi, Cheong-Rim; Kim, Rok Soon; Cho, Kyungsuk; Choi, Kyu-Cheol; Kim, Jaehun

    2017-12-01

    Magnetic flux ropes, often observed during intervals of interplanetary coronal mass ejections, have long been recognized to be critical in space weather. In this work, we focus on magnetic flux rope structure but on a much smaller scale, and not necessarily related to interplanetary coronal mass ejections. Using near-Earth solar wind advanced composition explorer (ACE) observations from 1998 to 2016, we identified a total of 309 small-scale magnetic flux ropes (SMFRs). We compared the characteristics of identified SMFR events with those of normal magnetic cloud (MC) events available from the existing literature. First, most of the MCs and SMFRs have similar values of accompanying solar wind speed and proton densities. However, the average magnetic field intensity of SMFRs is weaker ( 7.4 nT) than that of MCs ( 10.6 nT). Also, the average duration time and expansion speed of SMFRs are 2.5 hr and 2.6 km/s, respectively, both of which are smaller by a factor of 10 than those of MCs. In addition, we examined the geoeffectiveness of SMFR events by checking their correlation with magnetic storms and substorms. Based on the criteria Sym-H database than used in previous studies, all these previously known features are now firmly confirmed by the current work. Accordingly, the results emphasize the significance of SMFRs from the viewpoint of possible triggering of substorms.

  6. [Vehicle-assisted suicide with a nylon rope causing complete decapitation].

    Science.gov (United States)

    Blässer, Katharina; Tatschner, Thomas; Bohnert, Michael

    2013-01-01

    The present case deals with the unusual suicide method of a 36-year-old man who fastened one end of a nylon rope to a tree, guided the other end into a van through the open tailgate and placed the loop round his neck. Then he stepped on the accelerator. Before, he had marked the point on the ground where the rope would tighten. As the rope tightened complete decapitation occurred at a speed of about 35 km/h. Autopsy showed a nearly circular abrasion zone around the site of transection slightly ascending towards the nape, a fracture of the cervical spine between the 3rd and 4th vertebra and a fracture of the thoracic spine between the 7th and 8th vertebra. The test for air embolism of the heart was positive. Macroscopically, no evidence of blood aspiration was found. Histological investigation showed general anaemia and minor blood aspiration in the lungs. Wound morphology was largely in line with the injury patterns described after decapitation in the literature. However, our results differed in that blood aspiration was discernible only under the microscope and there was a second fracture of the spine. Decapitation as a suicide method is an expression of enormous autoaggression and is categorized as a "hard" suicide method. It is used predominantly by men and its occurrence in the spectrum of suicidal actions is rare. Police investigations revealed that the man had led a sort of double life with a sexually motivated background and had suffered from depressive episodes.

  7. Evaluation of Composite Wire Ropes Using Unsaturated Magnetic Excitation and Reconstruction Image with Super-Resolution

    Directory of Open Access Journals (Sweden)

    Xiaojiang Tan

    2018-05-01

    Full Text Available Estimating the exact residual lifetime of wire rope involves the security of industry manufacturing, mining, tourism, and so on. In this paper, a novel testing technology was developed based on unsaturated magnetic excitation, and a fabricating prototype overcame the shortcomings of traditional detection equipment in terms of volume, sensibility, reliability, and weight. Massive artificial discontinuities were applied to examine the effectiveness of this new technology with a giant magneto resistance(GMR sensor array, which included types of small gaps, curling wires, wide fractures, and abrasion. A resolution enhancement method, which was adopted for multiframe images, was proposed for promoting magnetic flux leakage images of a few sensors. Characteristic vectors of statistics and geometry were extracted, then we applied a radial basis function neural network to achieve a quantitative recognition rate of 91.43% with one wire-limiting error. Experimental results showed that the new device can detect defects in various types of wire rope and prolong the service life with high lift-off distance and high reliability, and the system could provide useful options to evaluate the lifetime of wire rope.

  8. SOLAR PROMINENCES EMBEDDED IN FLUX ROPES: MORPHOLOGICAL FEATURES AND DYNAMICS FROM 3D MHD SIMULATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Terradas, J.; Soler, R.; Oliver, R.; Ballester, J. L. [Departament de Física, Universitat de les Illes Balears, E-07122 Palma de Mallorca (Spain); Luna, M. [Instituto de Astrofsíca de Canarias, E-38205 La Laguna, Tenerife (Spain); Wright, A. N., E-mail: jaume.terradas@uib.es [School of Mathematics and Statistics, University of St Andrews, St Andrews, KY16 9SS (United Kingdom)

    2016-04-01

    The temporal evolution of a solar prominence inserted in a three-dimensional magnetic flux rope is investigated numerically. Using the model of Titov and Démoulin under the regime of weak twist, the cold and dense prominence counteracts gravity by modifying the initially force-free magnetic configuration. In some cases a quasi-stationary situation is achieved after the relaxation phase, characterized by the excitation of standing vertical oscillations. These oscillations show a strong attenuation with time produced by the mechanism of continuum damping due to the inhomogeneous transition between the prominence and solar corona. The characteristic period of the vertical oscillations does not depend strongly on the twist of the flux rope. Nonlinearity is responsible for triggering the Kelvin–Helmholtz instability associated with the vertical oscillations and that eventually produces horizontal structures. Contrary to other configurations in which the longitudinal axis of the prominence is permeated by a perpendicular magnetic field, like in unsheared arcades, the orientation of the prominence along the flux rope axis prevents the development of Rayleigh–Taylor instabilities and therefore the appearance of vertical structuring along this axis.

  9. Transtheoretical Model Based Exercise Counseling Combined with Music Skipping Rope Exercise on Childhood Obesity.

    Science.gov (United States)

    Ham, Ok Kyung; Sung, Kyung Mi; Lee, Bo Gyeong; Choi, Hee Won; Im, Eun-Ok

    2016-06-01

    The purpose was to evaluate the effects of a transtheoretical model (TTM) based exercise counseling offered with music skipping rope exercise on components of the TTM (stages of change, decisional balance, and self-efficacy), body mass index, glucose, and lipid profile of overweight/obese children in Korea. This study used a nonequivalent pretest and posttest experimental study design. A total of 75 overweight/obese children participated in the study. Eight sessions of exercise counseling combined with music skipping rope exercise for 12 weeks were offered for children in the experimental group, while one session of exercise counseling with music skipping rope exercise for 12 weeks was offered for children in the control group. Outcomes were measured at baseline, and 6 months after the intervention. After the intervention, self-efficacy significantly improved among children in the experimental group (p = .049), while these children maintained their baseline BMI at 6-month follow-up (p > .05). Among children in the control group, BMI significantly increased (p effective in maintaining BMI and improving self-efficacy of overweight/obese children. The TTM-based counseling combined with exercise classes has potential to control weight among overweight/obese children, while involvement of parents and children in the development of the theory-based intervention may generate further benefits regarding health and well-being of overweight/obese children. Copyright © 2016. Published by Elsevier B.V.

  10. Effects of Strand Lay Direction and Crossing Angle on Tribological Behavior of Winding Hoist Rope.

    Science.gov (United States)

    Chang, Xiang-Dong; Peng, Yu-Xing; Zhu, Zhen-Cai; Gong, Xian-Sheng; Yu, Zhang-Fa; Mi, Zhen-Tao; Xu, Chun-Ming

    2017-06-09

    Friction and wear behavior exists between hoisting ropes that are wound around the drums of a multi-layer winding hoist. It decreases the service life of ropes and threatens mine safety. In this research, a series of experiments were conducted using a self-made test rig to study the effects of the strand lay direction and crossing angle on the winding rope's tribological behavior. Results show that the friction coefficient in the steady-state period shows a decreasing tendency with an increase of the crossing angle in both cross directions, but the variation range is different under different cross directions. Using thermal imaging, the high temperature regions always distribute along the strand lay direction in the gap between adjacent strands, as the cross direction is the same with the strand lay direction (right cross contact). Additionally, the temperature rise in the steady-state increases with the increase of the crossing angle in both cross directions. The differences of the wear scar morphology are obvious under different cross directions, especially for the large crossing angle tests. In the case of right cross, the variation range of wear mass loss is larger than that in left cross. The damage that forms on the wear surface is mainly ploughing, pits, plastic deformation, and fatigue fracture. The major wear mechanisms are adhesive wear, and abrasive and fatigue wear.

  11. Option Valuation with Observable Volatility and Jump Dynamics

    DEFF Research Database (Denmark)

    Christoffersen, Peter; Feunou, Bruno; Jeon, Yoontae

    Under very general conditions, the total quadratic variation of a jump-diffusion process can be decomposed into diffusive volatility and squared jump variation. We use this result to develop a new option valuation model in which the underlying asset price exhibits volatility and jump intensity...... dynamics. The volatility and jump intensity dynamics in the model are directly driven by model-free empirical measures of diffusive volatility and jump variation. Because the empirical measures are observed in discrete intervals, our option valuation model is cast in discrete time, allowing...... for straightforward filtering and estimation of the model. Our model belongs to the affine class enabling us to derive the conditional characteristic function so that option values can be computed rapidly without simulation. When estimated on S&P500 index options and returns the new model performs well compared...

  12. Nonstandard jump functions for radically symmetric shock waves

    International Nuclear Information System (INIS)

    Baty, Roy S.; Tucker, Don H.; Stanescu, Dan

    2008-01-01

    Nonstandard analysis is applied to derive generalized jump functions for radially symmetric, one-dimensional, magnetogasdynamic shock waves. It is assumed that the shock wave jumps occur on infinitesimal intervals and the jump functions for the physical parameters occur smoothly across these intervals. Locally integrable predistributions of the Heaviside function are used to model the flow variables across a shock wave. The equations of motion expressed in nonconservative form are then applied to derive unambiguous relationships between the jump functions for the physical parameters for two families of self-similar flows. It is shown that the microstructures for these families of radially symmetric, magnetogasdynamic shock waves coincide in a nonstandard sense for a specified density jump function.

  13. Study of brittle crack jump rate using acoustic emission method

    International Nuclear Information System (INIS)

    Yasnij, P.V.; Pokrovskij, V.V.; Strizhalo, V.A.; Dobrovol'skij, Yu.V.

    1987-01-01

    A new peocedure is elaborated to detect brittle jumps of small length (0.1...5mm) occuring both inside the specimen and along the crack front under static and cyclic loading using the phenomena of acoustic emission (AE). Recording of the crack start and stop moments with an AE sensor as well as evaluation of the brittle crack jump length by the after-failure specimen fracture make it possible to find the mean crack propagation rate. Experimental dependences are obtained for the crack propagation rate with a brittle crack jump in steel 15Kh2MFA (σ B =1157 MPa, σ 0.2 =100 MPa) at 293 K and under cyclic loading as a function of the jump length and also as a function of the critical stress intensity factor K jc i corresponding to the crack jump

  14. Approaching stationarity: competition between long jumps and long waiting times

    International Nuclear Information System (INIS)

    Dybiec, Bartłomiej

    2010-01-01

    Within the continuous-time random walk (CTRW) scenarios, properties of the overall motion are determined by the waiting time and the jump length distributions. In the decoupled case, with power-law distributed waiting times and jump lengths, the CTRW scenario is asymptotically described by the double (space and time) fractional Fokker–Planck equation. Properties of a system described by such an equation are determined by the subdiffusion parameter and the jump length exponent. Nevertheless, the stationary state is determined solely by the jump length distribution and the potential. The waiting time distribution determines only the rate of convergence to the stationary state. Here, we inspect the competition between long waiting times and long jumps and how this competition is reflected in the way in which a stationary state is reached. In particular, we show that the distance between a time-dependent and a stationary solution changes in time as a double power law

  15. The hydraulic jump and ripples in liquid helium

    International Nuclear Information System (INIS)

    Rolley, E.; Guthmann, C.; Pettersen, M.S.

    2007-01-01

    We have studied the characteristics of the circular hydraulic jump using liquid helium. Surprisingly, the radius of the jump does not change at the superfluid transition. We think that the flow is still dissipative below the lambda point because the velocity exceeds the critical one. The jump radius R j is compared with various models. In our parameter range, we find that the jump can be treated as a shock, and that capillary effects are important. Below the superfluid transition, we observed a standing capillary wave between the impact of the jet and the jump. Assuming that the superfluid flow can be described with an effective viscosity, we calculate the wave vector and thus obtain the value of the liquid thickness, which is in reasonable agreement with predictions. However, the spatial variation of the wave amplitude depends much more strongly on temperature than we calculate

  16. Ballistic Jumping Drops on Superhydrophobic Surfaces via Electrostatic Manipulation.

    Science.gov (United States)

    Li, Ning; Wu, Lei; Yu, Cunlong; Dai, Haoyu; Wang, Ting; Dong, Zhichao; Jiang, Lei

    2018-02-01

    The ballistic ejection of liquid drops by electrostatic manipulating has both fundamental and practical implications, from raindrops in thunderclouds to self-cleaning, anti-icing, condensation, and heat transfer enhancements. In this paper, the ballistic jumping behavior of liquid drops from a superhydrophobic surface is investigated. Powered by the repulsion of the same kind of charges, water drops can jump from the surface. The electrostatic acting time for the jumping of a microliter supercooled drop only takes several milliseconds, even shorter than the time for icing. In addition, one can control the ballistic jumping direction precisely by the relative position above the electrostatic field. The approach offers a facile method that can be used to manipulate the ballistic drop jumping via an electrostatic field, opening the possibility of energy efficient drop detaching techniques in various applications. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Do people with intellectual disability use Nintendo Wii when placed in their home as part of a physiotherapy program? An observational study.

    Science.gov (United States)

    Chung, Alison M J; Harvey, Lisa A; Hassett, Leanne M

    2016-01-01

    To examine how much, and in what way, Nintendo Wii™ (Wii) is used when prescribed as part of a home-physiotherapy program for people with intellectual disability. Twenty people with intellectual disability were recruited. The following parameters were recorded about play patterns over a 12-week period: frequency, duration, perceived exertion, play position, play mode, initiation of play and games from Wii Sports and Wii Fit Plus. Participants used the Wii for a median of 101 min per week (interquartile range [IQR]: 50-172) in weeks one and two across a median of three days per week (IQR: 3-4), decreasing down to a median of 35 min per week (IQR: 0-141) in weeks 11 and 12 across a median of one day per week (IQR: 0-3). Usage of the Wii drops off rapidly when it is placed in the homes of people with intellectual disability as part of a physiotherapy program. Implications for Rehabilitation Usage of the Nintendo Wii drops off rapidly when it is placed in the homes of people with intellectual disability and they are instructed to use it as part of a home physiotherapy program. Games commonly played include bowling and boxing in Wii Sport, and penguin slide, ski jump and tight rope walk in Wii Fit Plus. Physiotherapists should use person and family centred practice to ensure that Nintendo Wii is a suitable intervention for the person with an intellectual disability and provide support to encourage ongoing usage.

  18. Dynamics and stability of directional jumps in the desert locust

    Directory of Open Access Journals (Sweden)

    Omer Gvirsman

    2016-09-01

    Full Text Available Locusts are known for their ability to jump large distances to avoid predation. The jump also serves to launch the adult locust into the air in order to initiate flight. Various aspects of this important behavior have been studied extensively, from muscle physiology and biomechanics, to the energy storage systems involved in powering the jump, and more. Less well understood are the mechanisms participating in control of the jump trajectory. Here we utilise video monitoring and careful analysis of experimental directional jumps by adult desert locusts, together with dynamic computer simulation, in order to understand how the locusts control the direction and elevation of the jump, the residual angular velocities resulting from the jump and the timing of flapping-flight initiation. Our study confirms and expands early findings regarding the instrumental role of the initial body position and orientation. Both real-jump video analysis and simulations based on our expanded dynamical model demonstrate that the initial body coordinates of position (relative to the hind-legs ground-contact points are dominant in predicting the jumps’ azimuth and elevation angles. We also report a strong linear correlation between the jumps’ pitch-angular-velocity and flight initiation timing, such that head downwards rotations lead to earlier wing opening. In addition to offering important insights into the bio-mechanical principles of locust jumping and flight initiation, the findings from this study will be used in designing future prototypes of a bio-inspired miniature jumping robot that will be employed in animal behaviour studies and environmental monitoring applications.

  19. Effects of Isometric Scaling on Vertical Jumping Performance

    Science.gov (United States)

    Bobbert, Maarten F.

    2013-01-01

    Jump height, defined as vertical displacement in the airborne phase, depends on vertical takeoff velocity. For centuries, researchers have speculated on how jump height is affected by body size and many have adhered to what has come to be known as Borelli’s law, which states that jump height does not depend on body size per se. The underlying assumption is that the amount of work produced per kg body mass during the push-off is independent of size. However, if a big body is isometrically downscaled to a small body, the latter requires higher joint angular velocities to achieve a given takeoff velocity and work production will be more impaired by the force-velocity relationship of muscle. In the present study, the effects of pure isometric scaling on vertical jumping performance were investigated using a biologically realistic model of the human musculoskeletal system. The input of the model, muscle stimulation over time, was optimized using jump height as criterion. It was found that when the human model was miniaturized to the size of a mouse lemur, with a mass of about one-thousandth that of a human, jump height dropped from 40 cm to only 6 cm, mainly because of the force-velocity relationship. In reality, mouse lemurs achieve jump heights of about 33 cm. By implication, the unfavourable effects of the small body size of mouse lemurs on jumping performance must be counteracted by favourable effects of morphological and physiological adaptations. The same holds true for other small jumping animals. The simulations for the first time expose and explain the sheer magnitude of the isolated effects of isometric downscaling on jumping performance, to be counteracted by morphological and physiological adaptations. PMID:23936494

  20. Effects of isometric scaling on vertical jumping performance.

    Directory of Open Access Journals (Sweden)

    Maarten F Bobbert

    Full Text Available Jump height, defined as vertical displacement in the airborne phase, depends on vertical takeoff velocity. For centuries, researchers have speculated on how jump height is affected by body size and many have adhered to what has come to be known as Borelli's law, which states that jump height does not depend on body size per se. The underlying assumption is that the amount of work produced per kg body mass during the push-off is independent of size. However, if a big body is isometrically downscaled to a small body, the latter requires higher joint angular velocities to achieve a given takeoff velocity and work production will be more impaired by the force-velocity relationship of muscle. In the present study, the effects of pure isometric scaling on vertical jumping performance were investigated using a biologically realistic model of the human musculoskeletal system. The input of the model, muscle stimulation over time, was optimized using jump height as criterion. It was found that when the human model was miniaturized to the size of a mouse lemur, with a mass of about one-thousandth that of a human, jump height dropped from 40 cm to only 6 cm, mainly because of the force-velocity relationship. In reality, mouse lemurs achieve jump heights of about 33 cm. By implication, the unfavourable effects of the small body size of mouse lemurs on jumping performance must be counteracted by favourable effects of morphological and physiological adaptations. The same holds true for other small jumping animals. The simulations for the first time expose and explain the sheer magnitude of the isolated effects of isometric downscaling on jumping performance, to be counteracted by morphological and physiological adaptations.

  1. Measurement of L3 subshell absorption jump ratios and jump factors for high Z elements using EDXRF technique

    International Nuclear Information System (INIS)

    Kaçal, M.R.

    2014-01-01

    Energy dispersive X-ray fluorescence technique (EDXRF) has been employed for measuring L 3 -subshell absorption jump ratios, r L 3 and jump factors, J L 3 for high Z elements. Jump factors and jump ratios for these elements have been determined by measuring L 3 subshell fluorescence parameters such as L 3 subshell X-ray production cross section σ L 3 , L 3 subshell fluorescence yield, ω L 3 , total L 3 subshell and higher subshells photoionization cross section σ L T . Measurements were performed using a Cd-109 radioactive point source and an Si(Li) detector in direct excitation experimental geometry. Measured values for jump factors and jump ratios have been compared with theoretically calculated and other experimental values. - Highlights: • This paper regards L 3 subshell absorption jump ratios and jump factors using the EDXRF method. • These parameters were measured using a new method. • This method is more useful than other methods which require much effort. • Results are in good agreement with theoretical and experimental values

  2. 175 years of wire rope. A reminiscence of Mining Councillor Albert's invention; 175 Jahre Drahtseil. Eine Erinnerung an Oberbergrat Alberts Erfindung

    Energy Technology Data Exchange (ETDEWEB)

    Lampe, Wolfgang [NLA Niedersachsen, Clausthal-Zellerfeld (Germany); Rueckbrodt, Kai [Landesamt fuer Bergbau, Energie und Geologie, Clausthal-Zellerfeld (Germany)

    2010-06-15

    There is a vague consensus that the wire rope can be designated as the most sustainable invention from the mining industry in Harz mountains. Such wire ropes are not to be excluded any longer from the today's life. These ropes really seem quite self-evident not only in the mining industry. The name of the Mining Councillor Wilhelm August Julius Albert inseparably is connected with wire ropes. The development of the first, in Clausthal-Zellerfeld (Federal Republic of Germany) successfully used wire rope consisting of iron wires succeeded to him. The year 2009 is the 175th anniversary of the invention of wire ropes. In 2009, the mountain city Clausthal-Zellerfeld evoked this anniversary with a week-long festival. At 22nd and 23th July1834, two wire ropes consisting of iron wires with a length of 605 m were put into operation for the first time at the 408 m deep pit Caroline in Clausthal-Zellerfeld. Instead of the past belt conveyors or hemp ropes, the new hoisting ropes proved to be a great success so that other pits also were retrofitted, accordingly.

  3. Ropes parks as a way of increase of the motor activity of students [Verevochnye parki kak sredstvo povysheniia dvigatel'noj aktivnosti uchashchejsia molodezhi

    Directory of Open Access Journals (Sweden)

    Kozіna Zh.L.

    2011-11-01

    Full Text Available Psychological and physiological reasons of attractiveness of rope parks are considered for studying young people. 25 sources of network are analysed in the Internet. The questionnaire of 52 visitors of rope park is conducted (youths in age 16-19 years. It is set that overcoming of rope obstacles helps to get the necessary physical loading. Also to get feelings, characteristic for the extreme types of sport. It is found out that overcoming of rope obstacles helps people to be delivered from fear before difficulties and agitation before important events.

  4. The effect of heavy- vs. light-load jump squats on the development of strength, power, and speed.

    Science.gov (United States)

    McBride, Jeffrey M; Triplett-McBride, Travis; Davie, Allan; Newton, Robert U

    2002-02-01

    The purpose of this investigation was to examine the effect of an 8-week training program with heavy- vs. light-load jump squats on various physical performance measures and electromyography (EMG). Twenty-six athletic men with varying levels of resistance training experience performed sessions of jump squats with either 30% (JS30, n = 9) or 80% (JS80, n = 10) of their one repetition maximum in the squat (1RM) or served as a control (C, n = 7). An agility test, 20-m sprint, and jump squats with 30% (30J), 55% (55J), and 80% (80J) of their 1RM were performed before and after training. Peak force, peak velocity (PV), peak power (PP), jump height, and average EMG (concentric phase) were calculated for the jumps. There were significant increases in PP and PV in the 30J, 55J, and 80J for the JS30 group (p squats results in increased movement velocity capabilities and that velocity-specific changes in muscle activity may play a key role in this adaptation.

  5. What does determine the sign of core in Magnetic Flux Rope structures of the Earth's magnetotail

    Directory of Open Access Journals (Sweden)

    D. V. Sarafopoulos

    2014-09-01

    Full Text Available This paper primarily examines the key factors being involved in precisely determining the sign of the core field in a magnetic flux rope (MFR like structure embedded in the tailward plasma flow associated with the Earth's magnetotail. Magnetic flux ropes are frequently detected by satellites moving smoothly northwards (upwards or southwards (downwards and crossing almost the whole plasma sheet; the sign of the rope's core is associated with the local tail's motion: If the tail is bending to an upward or downward direction, then the sign of the rope's core, being essentially an intense By deviation, will be positive or negative correspondingly. On the basis of this observational finding, a major question concerns the mechanism by which the tail's motion is dictated. The reconnection process acting in the tail will obviously produce symmetric structures of MFRs (with respect to the neutral sheet plane; therefore, the detected organized asymmetry may be an additional indication in the whole magnetotail' s dynamics. Moreover, we discuss the issue of the core's sign in cases without any significant magnetotail's motion. A model interpreting the diagnosed behavior is introduced: Once a tailward ion jet is produced in a thinned plasma sheet, it might form clockwise or counterclockwise ion vortices (i.e., loop-like ion currents providing the "magnetic core" with the appropriate sign. The crucial role of the interplanetary By deviation of the magnetic field (IMF is scrutinized and taken into account. The whole model is tested under the condition of long-lasting extraordinary events characterized by a persistent-intense By deviation with a duration up to 34 min. This work, based on Geotail single-satellite measurements, is not a statistical one; it is a first approach allowing the reconstruction of measurements in the whole range of the magnetotail's deflections, from negligible up to stronger significant magnetotail movements, and should be therefore

  6. STABILITY OF LINEAR SYSTEMS WITH MARKOVIAN JUMPS

    Directory of Open Access Journals (Sweden)

    Jorge Enrique Mayta Guillermo

    2016-12-01

    Full Text Available In this work we will analyze the stability of linear systems governed by a Markov chain, this family is known in the specialized literature as linear systems with Markov jumps or by its acronyms in English MJLS as it is denoted in [1]. Linear systems governed by a Markov chain are dynamic systems with abrupt changes. We give some denitions of stability for the MJLS system, where these types of stability are equivalent as long as the state space of the Markov chain is nite. Finally we present a theorem that characterizes the stochastic stability by means of an equation of the Lyapunov type. The result is a generalization of a theorem in classical theory.

  7. Seismic tomography with the reversible jump algorithm

    Science.gov (United States)

    Bodin, Thomas; Sambridge, Malcolm

    2009-09-01

    The reversible jump algorithm is a statistical method for Bayesian inference with a variable number of unknowns. Here, we apply this method to the seismic tomography problem. The approach lets us consider the issue of model parametrization (i.e. the way of discretizing the velocity field) as part of the inversion process. The model is parametrized using Voronoi cells with mobile geometry and number. The size, position and shape of the cells defining the velocity model are directly determined by the data. The inverse problem is tackled within a Bayesian framework and explicit regularization of model parameters is not required. The mobile position and number of cells means that global damping procedures, controlled by an optimal regularization parameter, are avoided. Many velocity models with variable numbers of cells are generated via a transdimensional Markov chain and information is extracted from the ensemble as a whole. As an aid to interpretation we visualize the expected earth model that is obtained via Monte Carlo integration in a straightforward manner. The procedure is particularly adept at imaging rapid changes or discontinuities in wave speed. While each velocity model in the final ensemble consists of many discontinuities at cell boundaries, these are smoothed out in the averaged ensemble solution while those required by the data are reinforced. The ensemble of models can also be used to produce uncertainty estimates and experiments with synthetic data suggest that they represent actual uncertainty surprisingly well. We use the fast marching method in order to iteratively update the ray geometry and account for the non-linearity of the problem. The method is tested here with synthetic data in a 2-D application and compared with a subspace method that is a more standard matrix-based inversion scheme. Preliminary results illustrate the advantages of the reversible jump algorithm. A real data example is also shown where a tomographic image of Rayleigh wave

  8. Validity of a jump training apparatus using Wii Balance Board.

    Science.gov (United States)

    Yamamoto, Keizo; Matsuzawa, Mamoru

    2013-05-01

    The dynamic quantification of jump ability is useful for sports performance evaluation. We developed a force measurement system using the Wii Balance Board (WBB). This study was conducted to validate the system in comparison with a laboratory-grade force plate (FP). For a static validation, weights of 10-180kg were put progressively on the WBB put on the FP. The vertical component of the ground reaction force (vGRF) was measured using both devices and compared. For the dynamic validation, 10 subjects without lower limb pathology participated in the study and performed vertical jumping twice on the WBB on the FP. The range of analysis was set from the landing after the first jump to taking off of the second jump. The peak values during the landing phase and jumping phase were obtained and the force-time integral (force impulse) was measured. The relations of the values measured using each device were compared using Pearson's correlation coefficient test and Bland-Altman plots (BAP). Significant correlation (P<.01, r=.99) was found between the values of both devices in the static and the dynamic test. Examination of the BAP revealed a proportion error in the landing phase and showed no relation in the jumping phase between the difference and the mean in the dynamic test. The WBB detects the vGRF in the jumping phase with high precision. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. The effect of sprinting after each set of heavy resistance training on the running speed and jumping performance of young basketball players.

    Science.gov (United States)

    Tsimahidis, Konstantinos; Galazoulas, Christos; Skoufas, Dimitrios; Papaiakovou, Georgios; Bassa, Eleni; Patikas, Dimitrios; Kotzamanidis, Christos

    2010-08-01

    The purpose of this study was to investigate the effect of a 10-week heavy resistance combined with a running training program on the strength, running speed (RS), and vertical jump performance of young basketball players. Twenty-six junior basketball players were equally divided in 2 groups. The control (CON) group performed only technical preparation and the group that followed the combined training program (CTP) performed additionally 5 sets of 8-5 repetition maximum (RM) half squat with 1 30-m sprint after each set. The evaluation took place before training and after the 5th and 10th weeks of training. Apart from the 1RM half squat test, the 10- and 30-m running time was measured using photocells and the jump height (squat, countermovement jump, and drop jump) was estimated taking into account the flight time. The 1RM increased by 30.3 +/- 1.5% at the 10th week of training for the CTP group (p 0.05). In general, all measured parameters showed a statistically significant increase after the 5th and 10th weeks (p 0.05). This suggests that the applied CTP is beneficial for the strength, RS, and jump height of young basketball players. The observed adaptations in the CTP group could be attributed to learning factors and to a more optimal transfer of the strength gain to running and jumping performance.

  10. Optimizing the Distribution of Leg Muscles for Vertical Jumping.

    Directory of Open Access Journals (Sweden)

    Jeremy D Wong

    Full Text Available A goal of biomechanics and motor control is to understand the design of the human musculoskeletal system. Here we investigated human functional morphology by making predictions about the muscle volume distribution that is optimal for a specific motor task. We examined a well-studied and relatively simple human movement, vertical jumping. We investigated how high a human could jump if muscle volume were optimized for jumping, and determined how the optimal parameters improve performance. We used a four-link inverted pendulum model of human vertical jumping actuated by Hill-type muscles, that well-approximates skilled human performance. We optimized muscle volume by allowing the cross-sectional area and muscle fiber optimum length to be changed for each muscle, while maintaining constant total muscle volume. We observed, perhaps surprisingly, that the reference model, based on human anthropometric data, is relatively good for vertical jumping; it achieves 90% of the jump height predicted by a model with muscles designed specifically for jumping. Alteration of cross-sectional areas-which determine the maximum force deliverable by the muscles-constitutes the majority of improvement to jump height. The optimal distribution results in large vastus, gastrocnemius and hamstrings muscles that deliver more work, while producing a kinematic pattern essentially identical to the reference model. Work output is increased by removing muscle from rectus femoris, which cannot do work on the skeleton given its moment arm at the hip and the joint excursions during push-off. The gluteus composes a disproportionate amount of muscle volume and jump height is improved by moving it to other muscles. This approach represents a way to test hypotheses about optimal human functional morphology. Future studies may extend this approach to address other morphological questions in ethological tasks such as locomotion, and feature other sets of parameters such as properties of

  11. Optimizing the Distribution of Leg Muscles for Vertical Jumping

    Science.gov (United States)

    Wong, Jeremy D.; Bobbert, Maarten F.; van Soest, Arthur J.; Gribble, Paul L.; Kistemaker, Dinant A.

    2016-01-01

    A goal of biomechanics and motor control is to understand the design of the human musculoskeletal system. Here we investigated human functional morphology by making predictions about the muscle volume distribution that is optimal for a specific motor task. We examined a well-studied and relatively simple human movement, vertical jumping. We investigated how high a human could jump if muscle volume were optimized for jumping, and determined how the optimal parameters improve performance. We used a four-link inverted pendulum model of human vertical jumping actuated by Hill-type muscles, that well-approximates skilled human performance. We optimized muscle volume by allowing the cross-sectional area and muscle fiber optimum length to be changed for each muscle, while maintaining constant total muscle volume. We observed, perhaps surprisingly, that the reference model, based on human anthropometric data, is relatively good for vertical jumping; it achieves 90% of the jump height predicted by a model with muscles designed specifically for jumping. Alteration of cross-sectional areas—which determine the maximum force deliverable by the muscles—constitutes the majority of improvement to jump height. The optimal distribution results in large vastus, gastrocnemius and hamstrings muscles that deliver more work, while producing a kinematic pattern essentially identical to the reference model. Work output is increased by removing muscle from rectus femoris, which cannot do work on the skeleton given its moment arm at the hip and the joint excursions during push-off. The gluteus composes a disproportionate amount of muscle volume and jump height is improved by moving it to other muscles. This approach represents a way to test hypotheses about optimal human functional morphology. Future studies may extend this approach to address other morphological questions in ethological tasks such as locomotion, and feature other sets of parameters such as properties of the skeletal

  12. Propulsion efficiency and imposed flow fields of a copepod jump.

    Science.gov (United States)

    Jiang, Houshuo; Kiørboe, Thomas

    2011-02-01

    Pelagic copepods jump to relocate, to attack prey and to escape predators. However, there is a price to be paid for these jumps in terms of their energy costs and the hydrodynamic signals they generate to rheotactic predators. Using observed kinematics of various types of jumps, we computed the imposed flow fields and associated energetics of jumps by means of computational fluid dynamics simulations by modeling the copepod as a self-propelled body. The computational fluid dynamics simulation was validated by particle image velocimetry data. The flow field generated by a repositioning jump quickly evolves into two counter-rotating viscous vortex rings that are near mirror image of one another, one in the wake and one around the body of the copepod; this near symmetrical flow may provide hydrodynamic camouflage because it contains no information about the position of the copepod prey within the flow structure. The flow field associated with an escape jump sequence also includes two dominant vortex structures: one leading wake vortex generated as a result of the first jump and one around the body, but between these two vortex structures is an elongated, long-lasting flow trail with flow velocity vectors pointing towards the copepod; such a flow field may inform the predator of the whereabouts of the escaping copepod prey. High Froude propulsion efficiency (0.94-0.98) was obtained for individual power stroke durations of all simulated jumps. This is unusual for small aquatic organisms but is caused by the rapidity and impulsiveness of the jump that allows only a low-cost viscous wake vortex to travel backwards.

  13. Numerical simulations of katabatic jumps in coats land, Antartica

    Science.gov (United States)

    Yu, Ye; Cai, Xiaoming; King, John C.; Renfrew, Ian A.

    A non-hydrostatic numerical model, the Regional Atmospheric Modeling System (RAMS), has been used to investigate the development of katabatic jumps in Coats Land, Antarctica. In the control run with a 5 m s-1downslope directed initial wind, a katabatic jump develops near the foot of the idealized slope. The jump is manifested as a rapid deceleration of the downslope flow and a change from supercritical to subcritical flow, in a hydraulic sense, i.e., the Froude number (Fr) of the flow changes from Fr > 1 to Fr> 1. Results from sensitivity experiments show that an increase in the upstream flow rate strengthens the jump, while an increase in the downstream inversion-layer depth results in a retreat of the jump. Hydraulic theory and Bernoulli''s theorem have been used to explain the surface pressure change across the jump. It is found that hydraulic theory always underestimates the surface pressure change, while Bernoulli''s theorem provides a satisfactory estimation. An analysis of the downs balance for the katabatic jump indicates that the important forces are those related to the pressure gradient, advection and, to a lesser extent, the turbulent momentum divergence. The development of katabatic jumps can be divided into two phases. In phase I, the t gradient force is nearly balanced by advection, while in phase II, the pressure gradient force is counterbalanced by turbulent momentum divergence. The upslope pressure gradient force associated with a pool of cold air over the ice shelf facilitates the formation of the katabatic jump.

  14. Jump-Down Performance Alterations after Space Flight

    Science.gov (United States)

    Reschke, M. F.; Kofman, I. S.; Cerisano, J. M.; Fisher, E. A.; Peters, B. T.; Miller, C. A.; Harm, D. L.; Bloomberg, J. J.

    2011-01-01

    INTRODUCTION: Successful jump performance requires functional coordination of visual, vestibular, and somatosensory systems, which are affected by prolonged exposure to microgravity. Astronauts returning from space flight exhibit impaired ability to coordinate effective landing strategies when jumping from a platform to the ground. This study compares jump strategies used by astronauts before and after flight, changes to those strategies within a test session, and recoveries in jump-down performance parameters across several postflight test sessions. These data were obtained as part of an ongoing interdisciplinary study (Functional Task Test, FTT) designed to evaluate both astronaut postflight functional performance and related physiological changes. METHODS: Seven astronauts from short-duration (Shuttle) and three from long-duration (International Space Station) flights performed 3 two-footed jumps from a platform 30 cm high onto a force plate that measured the ground reaction forces and center-of-pressure displacement from the landings. Neuromuscular activation data were collected from the medial gastrocnemius and anterior tibialis of both legs using surface electromyography electrodes. Two load cells in the platform measured the load exerted by each foot during the takeoff phase of the jump. Data were collected in 2 preflight sessions, on landing day (Shuttle only), and 1, 6, and 30 days after flight. RESULTS: Postural settling time was significantly increased on the first postflight test session and many of the astronauts tested were unable to maintain balance on their first jump landing but recovered by the third jump, showing a learning progression in which performance improvements could be attributed to adjustments in takeoff or landing strategy. Jump strategy changes were evident in reduced air time (time between takeoff and landing) and also in increased asymmetry in foot latencies on takeoff. CONCLUSIONS: The test results revealed significant decrements

  15. Temperature Jump Pyrolysis Studies of RP 2 Fuel

    Science.gov (United States)

    2017-01-09

    Briefing Charts 3. DATES COVERED (From - To) 15 December 2016 – 11 January 2017 4. TITLE AND SUBTITLE Temperature Jump Pyrolysis Studies of RP-2 Fuel...Rev. 8- 98) Prescribed by ANSI Std. 239.18 1 TEMPERATURE JUMP PYROLYSIS STUDIES OF RP-2 FUEL Owen Pryor1, Steven D. Chambreau2, Ghanshyam L...17026 7 Temperature Jump Pyrolysis at AFRL Edwards Rapid heating of a metal filament at a rate of 600 – 800 K/s, and the set temperature is held for

  16. Effects of kettlebell training on postural coordination and jump performance

    DEFF Research Database (Denmark)

    Jay, Kenneth; Jakobsen, Markus Due; Sundstrup, Emil

    2013-01-01

    ABSTRACT: The aim of this study was to investigate the effectiveness of a worksite intervention using kettlebell training to improve postural reactions to perturbation and jump performance.This single-blind randomized controlled trial involved 40 adults (n=40) from occupations with a high....... The outcome measures were postural reactions to sudden perturbation and maximal countermovement jump height.Compared to the control group, the training group significant decreased stopping time following perturbation (-109ms, 95% CI [-196:-21]). Jump height increased significantly in the training group (1.5cm...

  17. Diarylethene microcrystals make directional jumps upon ultraviolet irradiation

    International Nuclear Information System (INIS)

    Colombier, I.; Spagnoli, S.; Corval, A.; Baldeck, P. L.; Giraud, M.; Leaustic, A.; Yu, P.; Irie, M.

    2007-01-01

    Microcrystals of a diarylethene {1,2-bis[5 ' -methyl-2 ' -(2 '' -pyridyl)thiazolyl]perfluorocyclo-pentene } undergo jumps upon photoirradiation. These photochromic crystals present molecular structural changes upon irradiation with ultraviolet light because of reversible photocyclization reactions. When the energy absorbed by crystals reaches about 10 μJ, the uniaxial stress induced in the crystal lattice relaxes through directional jumps. If one prevents crystals from jumping, then parallel, equidistant cracks appear on crystal surfaces. These photomechanical effects could result from a Grinfeld surface instability

  18. Developing an Enhanced Lightning Jump Algorithm for Operational Use

    Science.gov (United States)

    Schultz, Christopher J.; Petersen, Walter A.; Carey, Lawrence D.

    2009-01-01

    Overall Goals: 1. Build on the lightning jump framework set through previous studies. 2. Understand what typically occurs in nonsevere convection with respect to increases in lightning. 3. Ultimately develop a lightning jump algorithm for use on the Geostationary Lightning Mapper (GLM). 4 Lightning jump algorithm configurations were developed (2(sigma), 3(sigma), Threshold 10 and Threshold 8). 5 algorithms were tested on a population of 47 nonsevere and 38 severe thunderstorms. Results indicate that the 2(sigma) algorithm performed best over the entire thunderstorm sample set with a POD of 87%, a far of 35%, a CSI of 59% and a HSS of 75%.

  19. The Perpetual American Put Option for Jump-Diffusions

    OpenAIRE

    Aase, Knut K.

    2010-01-01

    -This is the author's version of the article"The Perpetual American Put Option for Jump-Diffusions" Energy Systems pp 493-507. We solve a specific optimal stopping problem with an infinite time horizon, when the state variable follows a jump-diffusion. The novelty of the paper is related to the inclusion of a jump component in this stochastic process. Under certain conditions, our solution can be interpreted as the price of an American perpetual put option. We characterize the continuation...

  20. Mechanism design and optimization of a bionic kangaroo jumping robot

    Science.gov (United States)

    Zhang, Y. H.; Zheng, L.; Ge, W. J.; Zou, Z. H.

    2018-03-01

    Hopping robots have broad application prospects in the fields of military reconnaissance, field search or life rescue. However, current hopping robots still face the problems of weak jumping ability and load bearing. Inspired by the jumping of kangaroo, we design a Kangaroo hopping robot “Zbot”, which has two degrees of freedom and three joints. The geared five-bar mechanism is used to decouple the knee and ankle joints of the robot. In order to get a bionic performance, the coupling mechanism parameters are optimized. The simulation and experiments show that the robot has an excellent jumping ability and load capacity.

  1. Jumps in the curve of creep of the stainless steel

    International Nuclear Information System (INIS)

    Silveira, T.L.; Monteiro, S.N.

    The discontinuous flow observed in creep for several stainless steels at certain streels conditions in the interval of temperatures from 550 to 800 0 C has been investigated. This phenomenon appears as repetitive jumps with strain and stress increments that could be evaluated and related to the tests variables. The stress increment increases, consistently, with the stress level at the jump. This Δo versus sigma relation is due to strain aging effects and is a consequence of the variation of the stain rate during the deformation band propagation which causes the jump [pt

  2. Rate Theory for Correlated Processes: Double Jumps in Adatom Diffusion

    DEFF Research Database (Denmark)

    Jacobsen, J.; Jacobsen, Karsten Wedel; Sethna, J.

    1997-01-01

    We study the rate of activated motion over multiple barriers, in particular the correlated double jump of an adatom diffusing on a missing-row reconstructed platinum (110) surface. We develop a transition path theory, showing that the activation energy is given by the minimum-energy trajectory...... which succeeds in the double jump. We explicitly calculate this trajectory within an effective-medium molecular dynamics simulation. A cusp in the acceptance region leads to a root T prefactor for the activated rate of double jumps. Theory and numerical results agree....

  3. Change in Counter movement Jump Strategy by Varying Jump Height Based on Simplified Framework for Center of Mass Mechanics

    International Nuclear Information System (INIS)

    Kim, Seyoung

    2017-01-01

    In this study, we investigated how a jumping strategy changes with an increase in the vertical jump height for a resultant ground reaction force (GRF) vector. We expected that the resultant force vector between two sequential motion phases (i.e., countermovement and push-off) of the counter movement jump would significantly change with the vertical jump height to take advantage of the resulting supportive force (i.e., an initial push-off force larger than the body weight) through the counter movement phase. Nine healthy young subjects were instructed to jump straight up to five different height levels ranging from 191 cm to 221 cm, and the kinematic and kinetic data were obtained in regular trials. The results showed that a lower center of mass position and larger resultant force vector were clearly observed in a higher jump, implying that the counter movement strategy changed with the vertical jump height to prepare for sufficient joint deviation and obtain a force advantage for larger push-off work.

  4. Change in Counter movement Jump Strategy by Varying Jump Height Based on Simplified Framework for Center of Mass Mechanics

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seyoung [Korea Institute of Machinery and Materials(KIMM), Daejeon (Korea, Republic of)

    2017-04-15

    In this study, we investigated how a jumping strategy changes with an increase in the vertical jump height for a resultant ground reaction force (GRF) vector. We expected that the resultant force vector between two sequential motion phases (i.e., countermovement and push-off) of the counter movement jump would significantly change with the vertical jump height to take advantage of the resulting supportive force (i.e., an initial push-off force larger than the body weight) through the counter movement phase. Nine healthy young subjects were instructed to jump straight up to five different height levels ranging from 191 cm to 221 cm, and the kinematic and kinetic data were obtained in regular trials. The results showed that a lower center of mass position and larger resultant force vector were clearly observed in a higher jump, implying that the counter movement strategy changed with the vertical jump height to prepare for sufficient joint deviation and obtain a force advantage for larger push-off work.

  5. Predicting lower body power from vertical jump prediction equations for loaded jump squats at different intensities in men and women.

    Science.gov (United States)

    Wright, Glenn A; Pustina, Andrew A; Mikat, Richard P; Kernozek, Thomas W

    2012-03-01

    The purpose of this study was to determine the efficacy of estimating peak lower body power from a maximal jump squat using 3 different vertical jump prediction equations. Sixty physically active college students (30 men, 30 women) performed jump squats with a weighted bar's applied load of 20, 40, and 60% of body mass across the shoulders. Each jump squat was simultaneously monitored using a force plate and a contact mat. Peak power (PP) was calculated using vertical ground reaction force from the force plate data. Commonly used equations requiring body mass and vertical jump height to estimate PP were applied such that the system mass (mass of body + applied load) was substituted for body mass. Jump height was determined from flight time as measured with a contact mat during a maximal jump squat. Estimations of PP (PP(est)) for each load and for each prediction equation were compared with criterion PP values from a force plate (PP(FP)). The PP(est) values had high test-retest reliability and were strongly correlated to PP(FP) in both men and women at all relative loads. However, only the Harman equation accurately predicted PP(FP) at all relative loads. It can therefore be concluded that the Harman equation may be used to estimate PP of a loaded jump squat knowing the system mass and peak jump height when more precise (and expensive) measurement equipment is unavailable. Further, high reliability and correlation with criterion values suggest that serial assessment of power production across training periods could be used for relative assessment of change by either of the prediction equations used in this study.

  6. [Effects of Reactive Jump Training in Handball Players Regarding Jump Height and Power Development in the Triceps Surae Muscle].

    Science.gov (United States)

    Rensing, N; Westermann, A; Möller, D; von Piekartz, H

    2015-12-01

    Studies have shown changes in the technical and physical demands in modern handball. The game has increased considerably in speed, power and dynamics. Jump training has, therefore, become ever more important in the training of the athletes. These developments contribute to the fact that handball is now one of the most injury-prone types of sport, with the lower extremities being most frequently affected. Reactive jump training is not only used in training by now, but also increasingly in injury prevention. The aim of this study was to investigate the effectiveness of reactive jump training with handball players. 21 regional league handball players were randomly divided into an intervention group (n = 12) and a control group (n = 9). The intervention group completed a six-week reactive jump training programme while the control group went through a non-specific training programme. Jump height (squat and counter movement jump), isokinetic and isometric maximum power as well as muscle activity served as measuring parameters. A comparison of the intervention and control groups revealed that the reactive jump training led to significant improvements in jump height. The isometric and isokinetic maximum power measurements and the electromyographic activities of the triceps surae muscle demonstrated an improvement in the values within the intervention group. However, this improvement was not significant compared with the control group. Likewise both jumps correlated with the muscle activity of the soleus muscle as shown by electromyography. A moderate correlation was noticed between the isokinetic maximum power measurement and the electromyographic activity of the soleus and gastrocnemius medialis muscles. Furthermore, the correlations of the isometric and isokinetic maximum power meas-urements resulted in a strong correlation coefficient. This study revealed a significant increase in jump height after reactive jump training. There was no significant difference in

  7. Detection of Dew-Point by substantial Raman Band Frequency Jumps (A new Method)

    DEFF Research Database (Denmark)

    Hansen, Susanne Brunsgaard; Berg, Rolf W.; Stenby, Erling Halfdan

    Detection of Dew-Point by substantial Raman Band Frequency Jumps (A new Method). See poster at http://www.kemi.dtu.dk/~ajo/rolf/jumps.pdf......Detection of Dew-Point by substantial Raman Band Frequency Jumps (A new Method). See poster at http://www.kemi.dtu.dk/~ajo/rolf/jumps.pdf...

  8. The Analytical Diffusion-Expansion Model for Forbush Decreases Caused by Flux Ropes

    Science.gov (United States)

    Dumbovic, M.; Temmer, M.

    2017-12-01

    Identification and tracking of interplanetary coronal mass ejections (ICMEs) throughout the heliosphere is a growingly important aspect of space weather research. One of the "signatures" of ICME passage is the corresponding Forbush decrease (FD), a short term decrease in the galactic cosmic ray flux. These depressions are observed at the surface of the Earth for over 50 years, by several spacecraft in interplanetary space in the past couple of decades, and recently also on Mars' surface with Curiosity rover. In order to use FDs as ICME signatures efficiently, it is important to model ICME interaction with energetic particles by taking into account ICME evolution and constraining the model with observational data. We present an analytical diffusion-expansion FD model ForbMod which is based on the widely used approach of the initially empty, closed magnetic structure (i.e. flux rope) which fills up slowly with particles by perpendicular diffusion. The model is restricted to explain only the depression caused by the magnetic structure of the ICME and not of the associated shock. We use remote CME observations and a 3D reconstruction method (the Graduated Cylindrical Shell method) to constrain initial and boundary conditions of the FD model and take into account CME evolutionary properties by incorporating flux rope expansion. Several options of flux rope expansion are regarded as the competing mechanism to diffusion which can lead to different FD characteristics. This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 745782.

  9. Quantum jumps are more quantum than quantum diffusion

    International Nuclear Information System (INIS)

    Daryanoosh, Shakib; M Wiseman, Howard

    2014-01-01

    It was recently argued (Wiseman and Gambetta 2012 Phys. Rev. Lett. 108 220402) that the stochastic dynamics (jumps or diffusion) of an open quantum system are not inherent to the system, but rather depend on the existence and nature of a distant detector. The proposed experimental tests involved homodyne detection, giving rise to quantum diffusion, and required efficiencies η of well over 50%. Here we prove that this requirement (η>0.5) is universal for diffusive-type detection, even if the system is coupled to multiple baths. However, this no-go theorem does not apply to quantum jumps, and we propose a test involving a qubit with jump-type detectors, with a threshold efficiency of only 37%. That is, quantum jumps are ‘more quantum’, and open the way to practical experimental tests. Our scheme involves a novel sort of adaptive monitoring scheme on a system coupled to two baths. (paper)

  10. Hydraulic jump and Bernoulli equation in nonlinear shallow water model

    Science.gov (United States)

    Sun, Wen-Yih

    2018-06-01

    A shallow water model was applied to study the hydraulic jump and Bernoulli equation across the jump. On a flat terrain, when a supercritical flow plunges into a subcritical flow, discontinuity develops on velocity and Bernoulli function across the jump. The shock generated by the obstacle may propagate downstream and upstream. The latter reflected from the inflow boundary, moves downstream and leaves the domain. Before the reflected wave reaching the obstacle, the short-term integration (i.e., quasi-steady) simulations agree with Houghton and Kasahara's results, which may have unphysical complex solutions. The quasi-steady flow is quickly disturbed by the reflected wave, finally, flow reaches steady and becomes critical without complex solutions. The results also indicate that Bernoulli function is discontinuous but the potential of mass flux remains constant across the jump. The latter can be used to predict velocity/height in a steady flow.

  11. A quasi-static treatment of multiple phase jumps

    International Nuclear Information System (INIS)

    Englman, R; Vertesi, T

    2005-01-01

    A quasi-static, WKB-type treatment accounts well for the surprising phase jumps that are odd multiples of π (1 + 2n)π, found as a molecular system journeys adiabatically in a configuration coordinate plane that contains several points of degeneracies. We show that the number n in the phase jump is an integer close to |n'| that appears in the expression for the complex wavefunction amplitude valid (approximately) for times close to when the phase jump occurs: -δT + 2πθ+πn'sinδT -i[1-πn'cosδT](δT is a shifted and rescaled trajectory-time parameter and θ is a numerical fraction (<1) which depends on the adiabaticity of the motion.) The central quantity n' is local, i.e., depends on the values of the parameters in the Hamiltonian only at the beginning of the trajectory and at the instant of the phase jump

  12. Trading price jump clusters in foreign exchange markets

    Czech Academy of Sciences Publication Activity Database

    Novotný, Jan; Petrov, D.; Urga, G.

    2015-01-01

    Roč. 24, June (2015), s. 66-92 ISSN 1386-4181 Institutional support: PRVOUK-P23 Keywords : price jumps * foreign exchange markets * trading Subject RIV: AH - Economics Impact factor: 1.726, year: 2015

  13. The fluid dynamics of swimming by jumping in copepods

    DEFF Research Database (Denmark)

    Jiang, Houshuo; Kiørboe, Thomas

    2011-01-01

    Copepods swim either continuously by vibrating their feeding appendages or erratically by repeatedly beating their swimming legs resulting in a series of small jumps. The two swimming modes generate different hydrodynamic disturbances and therefore expose the swimmers differently to rheotactic...... limited and temporally ephemeral owing to jump-impulsiveness and viscous decay. In contrast, continuous steady swimming generates two well-extended long-lasting momentum jets both in front of and behind the swimmer, as suggested by the well-known steady stresslet model. Based on the observed jump-swimming...... kinematics of a small copepod Oithona davisae, we further showed that jump-swimming produces a hydrodynamic disturbance with much smaller spatial extension and shorter temporal duration than that produced by a same-size copepod cruising steadily at the same average translating velocity. Hence, small copepods...

  14. Hiding information in open auctions with jump bids

    Czech Academy of Sciences Publication Activity Database

    Ettinger, D.; Michelucci, Fabio

    2016-01-01

    Roč. 126, č. 594 (2016), s. 1484-1502 ISSN 0013-0133 Institutional support: RVO:67985998 Keywords : hiding information * open auctions * jump bids Subject RIV: AH - Economics Impact factor: 2.608, year: 2016

  15. METRIC TESTS CHARACTERISTIC FOR ESTIMATING JUMPING FOR VOLLEYBALL PLAYERS

    Directory of Open Access Journals (Sweden)

    Toplica Stojanović

    2008-08-01

    Full Text Available With goal to establish metric tests characteristics for estimating jumping for volleyball players, it was organized a pilot research on pattern of 23 volleyball players from cadet team and 23 students from high-school. For needs of this research four tests are valid for estimation, jump in block with left and right leg and jump in spike with left and right leg. Each test has been taken three times, so that we could with test-re test method determine their reliability, and with factor analysis their validity. Data were processed by multivariate analysis (item analysis, factor analysis from statistical package „Statistica 6.0 for windows“. On the results of research and discussion we can say that the tests had high coefficient of reliability, as well as factor validity, and these tests can be used to estimate jumping for volleyball players.

  16. Jump diffusion models and the evolution of financial prices

    International Nuclear Information System (INIS)

    Figueiredo, Annibal; Castro, Marcio T. de; Silva, Sergio da; Gleria, Iram

    2011-01-01

    We analyze a stochastic model to describe the evolution of financial prices. We consider the stochastic term as a sum of the Wiener noise and a jump process. We point to the effects of the jumps on the return time evolution, a central concern of the econophysics literature. The presence of jumps suggests that the process can be described by an infinitely divisible characteristic function belonging to the De Finetti class. We then extend the De Finetti functions to a generalized nonlinear model and show the model to be capable of explaining return behavior. -- Highlights: → We analyze a stochastic model to describe the evolution of financial prices. → The stochastic term is considered as a sum of the Wiener noise and a jump process. → The process can be described by an infinitely divisible characteristic function belonging to the De Finetti class. → We extend the De Finetti functions to a generalized nonlinear model.

  17. Hiding information in open auctions with jump bids

    Czech Academy of Sciences Publication Activity Database

    Ettinger, D.; Michelucci, Fabio

    2016-01-01

    Roč. 126, č. 594 (2016), s. 1484-1502 ISSN 0013-0133 Institutional support: PRVOUK-P23 Keywords : hiding information * open auctions * jump bids Subject RIV: AH - Economics Impact factor: 2.608, year: 2016

  18. The exit-time problem for a Markov jump process

    Science.gov (United States)

    Burch, N.; D'Elia, M.; Lehoucq, R. B.

    2014-12-01

    The purpose of this paper is to consider the exit-time problem for a finite-range Markov jump process, i.e, the distance the particle can jump is bounded independent of its location. Such jump diffusions are expedient models for anomalous transport exhibiting super-diffusion or nonstandard normal diffusion. We refer to the associated deterministic equation as a volume-constrained nonlocal diffusion equation. The volume constraint is the nonlocal analogue of a boundary condition necessary to demonstrate that the nonlocal diffusion equation is well-posed and is consistent with the jump process. A critical aspect of the analysis is a variational formulation and a recently developed nonlocal vector calculus. This calculus allows us to pose nonlocal backward and forward Kolmogorov equations, the former equation granting the various moments of the exit-time distribution.

  19. Impulsive evolution inclusions with infinite delay and multivalued jumps

    Directory of Open Access Journals (Sweden)

    Mouffak Benchohra

    2012-08-01

    Full Text Available In this paper we prove the existence of a mild solution for a class of impulsive semilinear evolution differential inclusions with infinite delay and multivalued jumps in a Banach space.

  20. Swarm algorithms with chaotic jumps for optimization of multimodal functions

    Science.gov (United States)

    Krohling, Renato A.; Mendel, Eduardo; Campos, Mauro

    2011-11-01

    In this article, the use of some well-known versions of particle swarm optimization (PSO) namely the canonical PSO, the bare bones PSO (BBPSO) and the fully informed particle swarm (FIPS) is investigated on multimodal optimization problems. A hybrid approach which consists of swarm algorithms combined with a jump strategy in order to escape from local optima is developed and tested. The jump strategy is based on the chaotic logistic map. The hybrid algorithm was tested for all three versions of PSO and simulation results show that the addition of the jump strategy improves the performance of swarm algorithms for most of the investigated optimization problems. Comparison with the off-the-shelf PSO with local topology (l best model) has also been performed and indicates the superior performance of the standard PSO with chaotic jump over the standard both using local topology (l best model).