WorldWideScience

Sample records for jump linear controller

  1. Advances in the control of markov jump linear systems with no mode observation

    CERN Document Server

    Vargas, Alessandro N; do Val, João B R

    2016-01-01

    This brief broadens readers’ understanding of stochastic control by highlighting recent advances in the design of optimal control for Markov jump linear systems (MJLS). It also presents an algorithm that attempts to solve this open stochastic control problem, and provides a real-time application for controlling the speed of direct current motors, illustrating the practical usefulness of MJLS. Particularly, it offers novel insights into the control of systems when the controller does not have access to the Markovian mode.

  2. Stochastic Stability of Sampled Data Systems with a Jump Linear Controller

    Science.gov (United States)

    Gonzalez, Oscar R.; Herencia-Zapana, Heber; Gray, W. Steven

    2004-01-01

    In this paper an equivalence between the stochastic stability of a sampled-data system and its associated discrete-time representation is established. The sampled-data system consists of a deterministic, linear, time-invariant, continuous-time plant and a stochastic, linear, time-invariant, discrete-time, jump linear controller. The jump linear controller models computer systems and communication networks that are subject to stochastic upsets or disruptions. This sampled-data model has been used in the analysis and design of fault-tolerant systems and computer-control systems with random communication delays without taking into account the inter-sample response. This paper shows that the known equivalence between the stability of a deterministic sampled-data system and the associated discrete-time representation holds even in a stochastic framework.

  3. Modeling, analysis, and design of Networked Control Systems using jump linear systems

    Energy Technology Data Exchange (ETDEWEB)

    Blind, R.; Muenz, U.; Allgoewer, F. [Stuttgart Univ. (Germany). Inst. fuer Systemtheorie und Regelungstechnik

    2008-07-01

    Based on recent results from the literature, we give an introduction on modeling, analysis, and design of networked control systems (NCS) using a jump linear system (JLS) formulation. In particular, we consider linear, discrete-time models with a packet-switched communication channel between the sensors and the controller. We assume that the packet-delay and drop-out in the channel can be modeled with independent, identically distributed random processes or Markov chains. With this assumption, we reformulate the problem as a jump system and present both stability conditions and three different controller design algorithms. These results are taken from the literature except for one controller design procedure which is new and has the advantage of giving a fast solution at the expense of higher conservatism. Finally, all design algorithms are illustrated and compared, based on a common simulation example. (orig.)

  4. Robust H∞ Control for Uncertain Markovian Jump Linear Time-Delay Systems

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    This paper studies the robust stochastic stabilization and robust H∞ control for linear time-delay systems with both Markovian jump parameters and unknown norm-bounded parameter uncertainties. This problem can be solved on the basis of stochastic Lyapunov approach and linear matrix inequality (LMI) technique. Sufficient conditions for the existence of stochastic stabilization and robust H∞ state feedback controller are presented in terms of a set of solutions of coupled LMIs. Finally, a numerical example is included to demonstrate the practicability of the proposed methods.

  5. Stochastic Stability of Nonlinear Sampled Data Systems with a Jump Linear Controller

    Science.gov (United States)

    Gonzalez, Oscar R.; Herencia-Zapana, Heber; Gray, W. Steven

    2004-01-01

    This paper analyzes the stability of a sampled- data system consisting of a deterministic, nonlinear, time- invariant, continuous-time plant and a stochastic, discrete- time, jump linear controller. The jump linear controller mod- els, for example, computer systems and communication net- works that are subject to stochastic upsets or disruptions. This sampled-data model has been used in the analysis and design of fault-tolerant systems and computer-control systems with random communication delays without taking into account the inter-sample response. To analyze stability, appropriate topologies are introduced for the signal spaces of the sampled- data system. With these topologies, the ideal sampling and zero-order-hold operators are shown to be measurable maps. This paper shows that the known equivalence between the stability of a deterministic, linear sampled-data system and its associated discrete-time representation as well as between a nonlinear sampled-data system and a linearized representation holds even in a stochastic framework.

  6. Robust reliable H∞ control for discrete-time Markov jump linear systems with actuator failures

    Institute of Scientific and Technical Information of China (English)

    Chen Jiaorong; Liu Fei

    2008-01-01

    The robust reliable H∞ control problem for discrete-time Markovian jump systems with actuator failures is studied.A more practical model of actuator failures than outage is considered.Based on the state feedback method,the resulting closed-loop systems are reliable in that they remain robust stochastically stable and satisfy a certain level of Hex disturbance attenuation not only when all actuators are operational,but also in case of some actuator failures.The solvability condition of controllers can be equivalent to a feasibility problem of coupled linear matrix inequalities (LMIs).A numerical example is also given to illustrate the design procedures and their effectiveness.

  7. Markov Jump-Linear Performance Models for Recoverable Flight Control Computers

    Science.gov (United States)

    Zhang, Hong; Gray, W. Steven; Gonzalez, Oscar R.

    2004-01-01

    Single event upsets in digital flight control hardware induced by atmospheric neutrons can reduce system performance and possibly introduce a safety hazard. One method currently under investigation to help mitigate the effects of these upsets is NASA Langley s Recoverable Computer System. In this paper, a Markov jump-linear model is developed for a recoverable flight control system, which will be validated using data from future experiments with simulated and real neutron environments. The method of tracking error analysis and the plan for the experiments are also described.

  8. Stability and performance analysis of a jump linear control system subject to digital upsets

    Institute of Scientific and Technical Information of China (English)

    王蕊; 孙辉; 马振洋

    2015-01-01

    This paper focuses on the methodology analysis for the stability and the corresponding tracking performance of a closed-loop digital jump linear control system with a stochastic switching signal. The method is applied to a flight control system. A distributed recoverable platform is implemented on the flight control system and subject to independent digital upsets. The upset processes are used to stimulate electromagnetic environments. Specifically, the paper presents the scenarios that the upset process is directly injected into the distributed flight control system, which is modeled by independent Markov upset processes and independent and identically distributed (IID) processes. A theoretical performance analysis and simulation modelling are both presented in detail for a more complete independent digital upset injection. The specific examples are proposed to verify the methodology of tracking performance analysis. The general analyses for different configurations are also proposed. Comparisons among different configurations are conducted to demonstrate the availability and the characteristics of the design.

  9. Design of robust controller for linear systems with Markovian jumping parameters

    Directory of Open Access Journals (Sweden)

    Benjelloun K.

    1998-01-01

    Full Text Available This paper deals with the robustness of the class of uncertain linear systems with Markovian jumping parameters (ULSMJP. The uncertainty is taken to be time-varying norm bounded. Under the assumptions of the boundedness of the uncertainties and the complete access to the system's state and its modes, a sufficient condition for stochastic stabilizability of this class of systems is established. An example is provided to demonstrate the usefulness of the proposed theoretical results.

  10. Robust Stabilization for Uncertain Linear Delay Markow Jump System

    Institute of Scientific and Technical Information of China (English)

    钟麦英; 汤兵勇; 黄小原

    2001-01-01

    Markov jump linear systems are defined as a family of linear systems with randomly Markov jumping parameters and are used to model systems subject to failures or changes in structure. The robust stabilization problem of jump linear delay system with umcerratnty was studied. By using of linear matrix inequalities, the existence conditions of robust stabilizing and the state feedback controller designing methods are also presented and proved. Finally, an illustrated example shows the effectiveness of this approach.

  11. Stochastic stability properties of jump linear systems

    Science.gov (United States)

    Feng, Xiangbo; Loparo, Kenneth A.; Ji, Yuandong; Chizeck, Howard J.

    1992-01-01

    Jump linear systems are defined as a family of linear systems with randomly jumping parameters (usually governed by a Markov jump process) and are used to model systems subject to failures or changes in structure. The authors study stochastic stability properties in jump linear systems and the relationship among various moment and sample path stability properties. It is shown that all second moment stability properties are equivalent and are sufficient for almost sure sample path stability, and a testable necessary and sufficient condition for second moment stability is derived. The Lyapunov exponent method for the study of almost sure sample stability is discussed, and a theorem which characterizes the Lyapunov exponents of jump linear systems is presented.

  12. H2 Control for the Continuous-Time Markovian Jump Linear Uncertain Systems with Partly Known Transition Rates and Input Quantization

    Directory of Open Access Journals (Sweden)

    Xin-Gang Zhao

    2013-01-01

    Full Text Available For a class of continuous-time Markovian jump linear uncertain systems with partly known transition rates and input quantization, the H2 state-feedback control design is considered. The elements in the transition rates matrix include completely known, boundary known, and completely unknown ones. First, an H2 cost index for Markovian jump linear uncertain systems is introduced; then by introducing a new matrix inequality condition, sufficient conditions are formulated in terms of linear matrix inequalities (LMIs for the H2 control of the Markovian jump linear uncertain systems. Less conservativeness is achieved than the result obtained with the existing technique. Finally, a numerical example is given to verify the validity of the theoretical results.

  13. Filtering and control of stochastic jump hybrid systems

    CERN Document Server

    Yao, Xiuming; Zheng, Wei Xing

    2016-01-01

    This book presents recent research work on stochastic jump hybrid systems. Specifically, the considered stochastic jump hybrid systems include Markovian jump Ito stochastic systems, Markovian jump linear-parameter-varying (LPV) systems, Markovian jump singular systems, Markovian jump two-dimensional (2-D) systems, and Markovian jump repeated scalar nonlinear systems. Some sufficient conditions are first established respectively for the stability and performances of those kinds of stochastic jump hybrid systems in terms of solution of linear matrix inequalities (LMIs). Based on the derived analysis conditions, the filtering and control problems are addressed. The book presents up-to-date research developments and novel methodologies on stochastic jump hybrid systems. The contents can be divided into two parts: the first part is focused on robust filter design problem, while the second part is put the emphasis on robust control problem. These methodologies provide a framework for stability and performance analy...

  14. Full-State Linearization and Stabilization of SISO Markovian Jump Nonlinear Systems

    Directory of Open Access Journals (Sweden)

    Zhongwei Lin

    2013-01-01

    Full Text Available This paper investigates the linearization and stabilizing control design problems for a class of SISO Markovian jump nonlinear systems. According to the proposed relative degree set definition, the system can be transformed into the canonical form through the appropriate coordinate changes followed with the Markovian switchings; that is, the system can be full-state linearized in every jump mode with respect to the relative degree set n,…,n. Then, a stabilizing control is designed through applying the backstepping technique, which guarantees the asymptotic stability of Markovian jump nonlinear systems. A numerical example is presented to illustrate the effectiveness of our results.

  15. Robust mean field games for coupled Markov jump linear systems

    Science.gov (United States)

    Moon, Jun; Başar, Tamer

    2016-07-01

    We consider robust stochastic large population games for coupled Markov jump linear systems (MJLSs). The N agents' individual MJLSs are governed by different infinitesimal generators, and are affected not only by the control input but also by an individual disturbance (or adversarial) input. The mean field term, representing the average behaviour of N agents, is included in the individual worst-case cost function to capture coupling effects among agents. To circumvent the computational complexity and analyse the worst-case effect of the disturbance, we use robust mean field game theory to design low-complexity robust decentralised controllers and to characterise the associated worst-case disturbance. We show that with the individual robust decentralised controller and the corresponding worst-case disturbance, which constitute a saddle-point solution to a generic stochastic differential game for MJLSs, the actual mean field behaviour can be approximated by a deterministic function which is a fixed-point solution to the constructed mean field system. We further show that the closed-loop system is uniformly stable independent of N, and an approximate optimality can be obtained in the sense of ε-Nash equilibrium, where ε can be taken to be arbitrarily close to zero as N becomes sufficiently large. A numerical example is included to illustrate the results.

  16. Stochastic Stabilization of Itô Stochastic Systems with Markov Jumping and Linear Fractional Uncertainty

    Directory of Open Access Journals (Sweden)

    Fei Long

    2013-01-01

    Full Text Available For a class of Itô stochastic linear systems with the Markov jumping and linear fractional uncertainty, the stochastic stabilization problem is investigated via state feedback and dynamic output feedback, respectively. In order to guarantee the stochastic stability of such uncertain systems, state feedback and dynamic output control law are, respectively, designed by using multiple Lyapunov function technique and LMI approach. Finally, two numerical examples are presented to illustrate our results.

  17. FBSDE with Poisson Process and Its Application to Linear Quadratic Stochastic Optimal Control Problem with Random Jumps%带有随机跳跃干扰的线性二次随机最优控制问题

    Institute of Scientific and Technical Information of China (English)

    吴臻; 王向荣

    2003-01-01

    给出一类布朗运动和泊松过程混合驱动的正倒向随机微分方程解的存在唯一性结果,应用这一结果研究带有随机跳跃干扰的线性二次随机最优控制问题,并得到最优控制的显式形式,可以证明最优控制是唯一的.然后,引入和研究一类推广的黎卡提方程系统,讨论该方程系统的可解性并由该方程的解得到带有随机跳跃干扰的线性二次随机最优控制问题最优的线性反馈.%One kind of existence and uniqueness result of forward-backward stochastic differential equations with Brownian motion and Poisson process is given. The result is applied to get the explicit form of the optimal control for linear quadratic stochastic optimal control problem with random jumps. The optimal control can be proved to be unique. One kind of generalized Riccati equation system is introduced and its solvability is discussed. The linear feedback regulator for the optimal control problem with random jump is given by the solution of the generalized Riccati equation system

  18. Control and filtering for semi-Markovian jump systems

    CERN Document Server

    Li, Fanbiao; Wu, Ligang

    2017-01-01

    This book presents up-to-date research developments and novel methodologies on semi-Markovian jump systems (S-MJS). It presents solutions to a series of problems with new approaches for the control and filtering of S-MJS, including stability analysis, sliding mode control, dynamic output feedback control, robust filter design, and fault detection. A set of newly developed techniques such as piecewise analysis method, positively invariant set approach, event-triggered method, and cone complementary linearization approaches are presented. Control and Filtering for Semi-Markovian Jump Systems is a comprehensive reference for researcher and practitioners working in control engineering, system sciences and applied mathematics, and is also a useful source of information for senior undergraduates and graduates in these areas. The readers will benefit from some new concepts, new models and new methodologies with practical significance in control engineering and signal processing.

  19. Towards Stability Analysis of Jump Linear Systems with State-Dependent and Stochastic Switching

    Science.gov (United States)

    Tejada, Arturo; Gonzalez, Oscar R.; Gray, W. Steven

    2004-01-01

    This paper analyzes the stability of hierarchical jump linear systems where the supervisor is driven by a Markovian stochastic process and by the values of the supervised jump linear system s states. The stability framework for this class of systems is developed over infinite and finite time horizons. The framework is then used to derive sufficient stability conditions for a specific class of hybrid jump linear systems with performance supervision. New sufficient stochastic stability conditions for discrete-time jump linear systems are also presented.

  20. 一类具有Markov跳跃参数的不确定线性跳跃系统鲁棒非脆弱H∞控制问题研究%Robust and Non-fragile H∞ Control for a Class of Uncertain Jump Linear Systems

    Institute of Scientific and Technical Information of China (English)

    康宇; 奚宏生; 张大力; 季海波

    2006-01-01

    This paper describes the synthesis of robust and non-fragile H∞ state feedback controllers for a class of uncertain jump linear systems with Markovian jumping parameters and state multiplicative noises. Under the assumption of a complete access to the norm-bounds of the system uncertainties and controller gain variations, sufficient conditions on the existence of robust stochastic stability and γ-disturbanee attenuation H∞ property are presented. A key feature of this scheme is that the gain matrices of controller are only based on lt, the observed projection of the current regime rt.

  1. On the Stability of Jump-Linear Systems Driven by Finite-State Machines with Markovian Inputs

    Science.gov (United States)

    Patilkulkarni, Sudarshan; Herencia-Zapana, Heber; Gray, W. Steven; Gonzalez, Oscar R.

    2004-01-01

    This paper presents two mean-square stability tests for a jump-linear system driven by a finite-state machine with a first-order Markovian input process. The first test is based on conventional Markov jump-linear theory and avoids the use of any higher-order statistics. The second test is developed directly using the higher-order statistics of the machine s output process. The two approaches are illustrated with a simple model for a recoverable computer control system.

  2. The Mechanics and Trajectory Control in Locust Jumping

    Institute of Scientific and Technical Information of China (English)

    Longbao Han; Zhouyi Wang; Aihong Ji; Zhendong Dai

    2013-01-01

    Locusts (Locusta migratoria manilensis) are characterised by their flying ability and abiding jump ability.Research on the jumping mechanics and behavior of locusts plays an important role in elucidating the mechanism of hexapod locomotion.The jump gestures of locusts were observed using high-speed video camera at 250 fps.The reaction forces of the hindlegs were measured using two three-dimensional sensors,in case the two hindlegs attached on separated sensor plates.The jump gestures and reaction forces were used to illustrate the locust jumping mechanism.Results show that the trajectory control is achieved by rapid rolling and yawing movements of the locust body,caused by the forelegs,midlegs and hindlegs in different jumping phases.The final jump trajectory was not determined until hind tarsi left platform.The horizontal co-impulse between two hindlegs might play a key role in jump stability and accuracy.Besides,the angle between two hindlegs affects the control of jump trajectory but has a little effect on the elevation angle of a jump,which is controlled mechanically by the initial position of the hindlegs.This research lays the groundwork for the probable design and development of biomimetic robotics.

  3. Non-cooperative stochastic differential game theory of generalized Markov jump linear systems

    CERN Document Server

    Zhang, Cheng-ke; Zhou, Hai-ying; Bin, Ning

    2017-01-01

    This book systematically studies the stochastic non-cooperative differential game theory of generalized linear Markov jump systems and its application in the field of finance and insurance. The book is an in-depth research book of the continuous time and discrete time linear quadratic stochastic differential game, in order to establish a relatively complete framework of dynamic non-cooperative differential game theory. It uses the method of dynamic programming principle and Riccati equation, and derives it into all kinds of existence conditions and calculating method of the equilibrium strategies of dynamic non-cooperative differential game. Based on the game theory method, this book studies the corresponding robust control problem, especially the existence condition and design method of the optimal robust control strategy. The book discusses the theoretical results and its applications in the risk control, option pricing, and the optimal investment problem in the field of finance and insurance, enriching the...

  4. Bounded Real Lemma for Generalized Linear System with Finite Discrete Jumps

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The strict bounded real lemma for linear system with finite discrete jumps was considered. Especially,the case where D matrices in the system are not assumed to be zero was dealt. Several versions of the bounded real lemma are presented in terms of solution to Riccati differential equations or inequalities with finite discrete jumps.Both the finite and infinite horizon cases are considered. These results generalize the existed bounded real lemma for linear systems.

  5. LINEAR QUADRATIC NONZERO-SUM DIFFERENTIAL GAMES WITH RANDOM JUMPS

    Institute of Scientific and Technical Information of China (English)

    WU Zhen; YU Zhi-yong

    2005-01-01

    The existence and uniqueness of the solutions for one kind of forwardbackward stochastic differential equations with Brownian motion and Poisson process as the noise source were given under the monotone conditions. Then these results were applied to nonzero-sum differential games with random jumps to get the explicit form of the open-loop Nash equilibrium point by the solution of the forward-backward stochastic differential equations.

  6. Infinite horizon jump-diffusion forward-backward stochastic differential equations and their application to backward linear-quadratic problems

    OpenAIRE

    Yu, Zhiyong

    2016-01-01

    In this paper, we investigate infinite horizon jump-diffusion forward-backward stochastic differential equations under some monotonicity conditions. We establish an existence and uniqueness theorem, two stability results and a comparison theorem for solutions to such kind of equations. Then the theoretical results are applied to study a kind of infinite horizon backward stochastic linear-quadratic optimal control problems, and then differential game problems. The unique optimal controls for t...

  7. A RISK-SENSITIVE STOCHASTIC MAXIMUM PRINCIPLE FOR OPTIMAL CONTROL OF JUMP DIFFUSIONS AND ITS APPLICATIONS

    Institute of Scientific and Technical Information of China (English)

    Shi Jingtao; Wu Zhen

    2011-01-01

    A stochastic maximum principle for the risk-sensitive optimal control prob- lem of jump diffusion processes with an exponential-of-integral cost functional is derived assuming that the value function is smooth, where the diffusion and jump term may both depend on the control. The form of the maximum principle is similar to its risk-neutral counterpart. But the adjoint equations and the maximum condition heavily depend on the risk-sensitive parameter. As applications, a linear-quadratic risk-sensitive control problem is solved by using the maximum principle derived and explicit optimal control is obtained.

  8. Robust guaranteed cost observer design for linear uncertain jump systems with state delays

    Institute of Scientific and Technical Information of China (English)

    FU Yan-ming; ZHANG Bo; DUAN Guang-ren

    2008-01-01

    This paper deals with the robust guaranteed cost observer with guaranteed cost performance for a class of linear uncertain jump systems with state delay. The transition of the jumping parameters in systems is governed by a finite-state Markov process. Based on the stability theory in stochastic differential equations, a sufficient condition on the existence of the proposed robust guaranteed cost observer is derived. Robust guaran-teed cost observers are designed in terms of a set of linear coupled matrix inequalities. A convex optimization problem with LMI constraints is formulated to design the suboptimal guaranteed cost observers.

  9. Stochastic stability of linear time-delay system with Markovian jumping parameters

    Directory of Open Access Journals (Sweden)

    K. Benjelloun

    1997-01-01

    Full Text Available This paper deals with the class of linear time-delay systems with Markovian jumping parameters (LTDSMJP. We mainly extend the stability results of the deterministic class of linear systems with time-delay to this class of systems. A delay-independent necessary condition and sufficient conditions for checking the stochastic stability are established. A sufficient condition is also given. Some numerical examples are provided to show the usefulness of the proposed theoretical results.

  10. On necessity proof of strict bounded real lemma for generalized linear systems with finite discrete jumps

    Institute of Scientific and Technical Information of China (English)

    Xiaojun YANG; Zhengxin WENG; Zuohua TIAN

    2004-01-01

    Some preliminary results on strict bounded real lemma for time-varying continuous linear systems are proposed,where uncertainty in initial conditions,terminal cost and extreme of the cost function are dealt with explicitly.Based on these results,a new recursive approach is proposed in the necessity proof of strict bounded real lemma for generalized linear system with finite discrete jumps.

  11. Stability and Linear Quadratic Differential Games of Discrete-Time Markovian Jump Linear Systems with State-Dependent Noise

    Directory of Open Access Journals (Sweden)

    Huiying Sun

    2014-01-01

    Full Text Available We mainly consider the stability of discrete-time Markovian jump linear systems with state-dependent noise as well as its linear quadratic (LQ differential games. A necessary and sufficient condition involved with the connection between stochastic Tn-stability of Markovian jump linear systems with state-dependent noise and Lyapunov equation is proposed. And using the theory of stochastic Tn-stability, we give the optimal strategies and the optimal cost values for infinite horizon LQ stochastic differential games. It is demonstrated that the solutions of infinite horizon LQ stochastic differential games are concerned with four coupled generalized algebraic Riccati equations (GAREs. Finally, an iterative algorithm is presented to solve the four coupled GAREs and a simulation example is given to illustrate the effectiveness of it.

  12. On the Boundary between Nonlinear Jump Phenomenon and Linear Response of Hypoid Gear Dynamics

    Directory of Open Access Journals (Sweden)

    Jun Wang

    2011-01-01

    Full Text Available A nonlinear time-varying (NLTV dynamic model of a hypoid gear pair system with time-dependent mesh point, line-of-action vector, mesh stiffness, mesh damping, and backlash nonlinearity is formulated to analyze the transitional phase between nonlinear jump phenomenon and linear response. It is found that the classical jump discontinuity will occur if the dynamic mesh force exceeds the mean value of tooth mesh force. On the other hand, the propensity for the gear response to jump disappears when the dynamic mesh force is lower than the mean mesh force. Furthermore, the dynamic analysis is able to distinguish the specific tooth impact types from analyzing the behaviors of the dynamic mesh force. The proposed theory is general and also applicable to high-speed spur, helical and spiral bevel gears even though those types of gears are not the primary focus of this paper.

  13. Controllability of nonlocal second-order impulsive neutral stochastic functional integro-differential equations with delay and Poisson jumps

    Directory of Open Access Journals (Sweden)

    Diem Dang Huan

    2015-12-01

    Full Text Available The current paper is concerned with the controllability of nonlocal second-order impulsive neutral stochastic functional integro-differential equations with infinite delay and Poisson jumps in Hilbert spaces. Using the theory of a strongly continuous cosine family of bounded linear operators, stochastic analysis theory and with the help of the Banach fixed point theorem, we derive a new set of sufficient conditions for the controllability of nonlocal second-order impulsive neutral stochastic functional integro-differential equations with infinite delay and Poisson jumps. Finally, an application to the stochastic nonlinear wave equation with infinite delay and Poisson jumps is given.

  14. The Viability Property of Controlled Jump Diffusion Processes

    Institute of Scientific and Technical Information of China (English)

    Shi Ge PENG; Xue Hong ZHU

    2008-01-01

    In this paper,we first give a comparison theorem of viscosity solution to some nonlinear second order integrodifferential equation.And then using the comparison theorem,we obtain a necessary and sufficient condition for the viability property of some controlled jump diffusion processes which can keep the solution within a constraint K.

  15. A novel suboptimal algorithm for state estimation of Markov jump linear systems

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    This paper is concerned with state estimation problem for Markov jump linear systems where the disturbances involved in the systems equations and measurement equations are assumed to be Gaussian noise sequences.Based on two properties of conditional expectation,orthogonal projective theorem is applied to the state estimation problem of the considered systems so that a novel suboptimal algorithm is obtained.The novelty of the algorithm lies in using orthogonal projective theorem instead of Kalman filters to ...

  16. Markov Jump Linear Systems-Based Position Estimation for Lower Limb Exoskeletons

    Directory of Open Access Journals (Sweden)

    Samuel L. Nogueira

    2014-01-01

    Full Text Available In this paper, we deal with Markov Jump Linear Systems-based filtering applied to robotic rehabilitation. The angular positions of an impedance-controlled exoskeleton, designed to help stroke and spinal cord injured patients during walking rehabilitation, are estimated. Standard position estimate approaches adopt Kalman filters (KF to improve the performance of inertial measurement units (IMUs based on individual link configurations. Consequently, for a multi-body system, like a lower limb exoskeleton, the inertial measurements of one link (e.g., the shank are not taken into account in other link position estimation (e.g., the foot. In this paper, we propose a collective modeling of all inertial sensors attached to the exoskeleton, combining them in a Markovian estimation model in order to get the best information from each sensor. In order to demonstrate the effectiveness of our approach, simulation results regarding a set of human footsteps, with four IMUs and three encoders attached to the lower limb exoskeleton, are presented. A comparative study between the Markovian estimation system and the standard one is performed considering a wide range of parametric uncertainties.

  17. Markov jump linear systems-based position estimation for lower limb exoskeletons.

    Science.gov (United States)

    Nogueira, Samuel L; Siqueira, Adriano A G; Inoue, Roberto S; Terra, Marco H

    2014-01-22

    In this paper, we deal with Markov Jump Linear Systems-based filtering applied to robotic rehabilitation. The angular positions of an impedance-controlled exoskeleton, designed to help stroke and spinal cord injured patients during walking rehabilitation, are estimated. Standard position estimate approaches adopt Kalman filters (KF) to improve the performance of inertial measurement units (IMUs) based on individual link configurations. Consequently, for a multi-body system, like a lower limb exoskeleton, the inertial measurements of one link (e.g., the shank) are not taken into account in other link position estimation (e.g., the foot). In this paper, we propose a collective modeling of all inertial sensors attached to the exoskeleton, combining them in a Markovian estimation model in order to get the best information from each sensor. In order to demonstrate the effectiveness of our approach, simulation results regarding a set of human footsteps, with four IMUs and three encoders attached to the lower limb exoskeleton, are presented. A comparative study between the Markovian estimation system and the standard one is performed considering a wide range of parametric uncertainties.

  18. Improved H_∞ filtering for Markov jumping linear systems with non-accessible mode information

    Institute of Scientific and Technical Information of China (English)

    GUO YaFeng; LI ShaoYuan

    2009-01-01

    This paper is concerned with the H_∞ filtering problems for both continuous-and discrete-time Markov jumping linear systems (MJLS) with non-accessible mode Information.A new design method is proposed,which greatly reduces the overdesign Introduced in the derivation process.The desired filters can be obtained from the solution of convex optimization problems in terms of linear matrix inequalities (LMIs),which can be solved via efficient interior-point algorithms.Numerical examples are provided to Illustrate the advantages of the proposed approach.

  19. H∞ filtering of Markov jump linear systems with general transition probabilities and output quantization.

    Science.gov (United States)

    Shen, Mouquan; Park, Ju H

    2016-07-01

    This paper addresses the H∞ filtering of continuous Markov jump linear systems with general transition probabilities and output quantization. S-procedure is employed to handle the adverse influence of the quantization and a new approach is developed to conquer the nonlinearity induced by uncertain and unknown transition probabilities. Then, sufficient conditions are presented to ensure the filtering error system to be stochastically stable with the prescribed performance requirement. Without specified structure imposed on introduced slack variables, a flexible filter design method is established in terms of linear matrix inequalities. The effectiveness of the proposed method is validated by a numerical example.

  20. H2 control of discrete-time periodic systems with Markovian jumps and multiplicative noise

    Science.gov (United States)

    Ma, Hongji; Jia, Yingmin

    2013-10-01

    This paper addresses the problem of optimal and robust H2 control for discrete-time periodic systems with Markov jump parameters and multiplicative noise. To analyse the system performance in the presence of exogenous random disturbance, an H2 norm is firstly established on the basis of Gramian matrices. Further, under the condition of exact observability, a necessary and sufficient condition is presented for the solvability of H2 optimal control problem by means of a generalised Riccati equation. When the transition probabilities of jump parameter are incompletely measurable, an H2-guaranteed cost norm is exploited and the robust H2 controller is designed through a linear matrix inequality (LMI) optimisation approach. An example of a networked control system is supplied to illustrate the proposed results.

  1. Robust H ∞ control for uncertain Markovian jump systems with mixed delays

    Science.gov (United States)

    R, Saravanakumar; M Syed, Ali

    2016-07-01

    We scrutinize the problem of robust H ∞ control for a class of Markovian jump uncertain systems with interval time-varying and distributed delays. The Markovian jumping parameters are modeled as a continuous-time finite-state Markov chain. The main aim is to design a delay-dependent robust H ∞ control synthesis which ensures the mean-square asymptotic stability of the equilibrium point. By constructing a suitable Lyapunov-Krasovskii functional (LKF), sufficient conditions for delay-dependent robust H ∞ control criteria are obtained in terms of linear matrix inequalities (LMIs). The advantage of the proposed method is illustrated by numerical examples. The results are also compared with the existing results to show the less conservativeness. Project supported by Department of Science and Technology (DST) under research project No. SR/FTP/MS-039/2011.

  2. Robust H∞control for uncertain Markovian jump systems with mixed delays

    Institute of Scientific and Technical Information of China (English)

    R Saravanakumar; M Syed Ali‡

    2016-01-01

    We scrutinize the problem of robust H∞control for a class of Markovian jump uncertain systems with interval time-varying and distributed delays. The Markovian jumping parameters are modeled as a continuous-time finite-state Markov chain. The main aim is to design a delay-dependent robust H∞control synthesis which ensures the mean-square asymptotic stability of the equilibrium point. By constructing a suitable Lyapunov–Krasovskii functional (LKF), sufficient conditions for delay-dependent robust H∞control criteria are obtained in terms of linear matrix inequalities (LMIs). The advantage of the proposed method is illustrated by numerical examples. The results are also compared with the existing results to show the less conservativeness.

  3. On Optimal Fault Detection for Discrete-time Markovian Jump Linear Systems

    Institute of Scientific and Technical Information of China (English)

    LI Yue-Yang; ZHONG Mai-Ying

    2013-01-01

    This paper deals with the problem of fault detection for discrete-time Markovian jump linear systems (MJLS).Using an observer-based fault detection filter (FDF) as a residual generator,the design of the FDF is formulated as an optimization problem for maximizing stochastic H_/H∞ or H∞/H∞ performance index.With the aid of an operator optimization method,it is shown that a unified optimal solution can be derived by solving a coupled Riccati equation.Numerical examples are given to show the effectiveness of the proposed method.

  4. Jump bifurcations in some degenerate planar piecewise linear differential systems with three zones

    Science.gov (United States)

    Euzébio, Rodrigo; Pazim, Rubens; Ponce, Enrique

    2016-06-01

    We consider continuous piecewise-linear differential systems with three zones where the central one is degenerate, that is, the determinant of its linear part vanishes. By moving one parameter which is associated to the equilibrium position, we detect some new bifurcations exhibiting jump transitions both in the equilibrium location and in the appearance of limit cycles. In particular, we introduce the scabbard bifurcation, characterized by the birth of a limit cycle from a continuum of equilibrium points. Some of the studied bifurcations are detected, after an appropriate choice of parameters, in a piecewise linear Morris-Lecar model for the activity of a single neuron activity, which is usually considered as a reduction of the celebrated Hodgkin-Huxley equations.

  5. Thermodynamics of quantum-jump-conditioned feedback control.

    Science.gov (United States)

    Strasberg, Philipp; Schaller, Gernot; Brandes, Tobias; Esposito, Massimiliano

    2013-12-01

    We consider open quantum systems weakly coupled to thermal reservoirs and subjected to quantum feedback operations triggered with or without delay by monitored quantum jumps. We establish a thermodynamic description of such systems and analyze how the first and second law of thermodynamics are modified by the feedback. We apply our formalism to study the efficiency of a qubit subjected to a quantum feedback control and operating as a heat pump between two reservoirs. We also demonstrate that quantum feedbacks can be used to stabilize coherences in nonequilibrium stationary states which in some cases may even become pure quantum states.

  6. Dynamic control of droplet jumping by tailoring nanoparticle concentrations

    Science.gov (United States)

    Hao, Chonglei; Zhou, Yang; Zhou, Xiaofeng; Che, Lufeng; Chu, Baojin; Wang, Zuankai

    2016-07-01

    The dynamic impact behavior of droplets from solid surfaces has attracted increasing interest, especially propelled by the advances in the bio-inspired interfacial materials. In this work, we investigate the impact and bouncing dynamics of ethylene glycol droplets containing silica nanoparticles on superhydrophobic surfaces (SHS). We find that the rebounding of droplets from SHS is highly dependent on the impact velocity and suspension concentrations. By increasing the impact velocity or suspension concentrations, the probability of droplet bouncing from SHS is greatly reduced. The presence of nanoparticles can significantly increase the viscous energy dissipation inside the liquid droplets, therefore suppressing the jumping from surfaces. Based on the energy dissipation characterization, we also find the critical concentration to determine the manifestation of the viscous effect, above which the liquid suspensions exhibit non-Newtonian fluid properties. Our study provides an efficient approach to dynamically control the liquid jumping behaviors on SHS by tailoring the suspension concentrations. The insights learned from this study can be very useful in many industrial applications.

  7. Optimal control for unknown discrete-time nonlinear Markov jump systems using adaptive dynamic programming.

    Science.gov (United States)

    Zhong, Xiangnan; He, Haibo; Zhang, Huaguang; Wang, Zhanshan

    2014-12-01

    In this paper, we develop and analyze an optimal control method for a class of discrete-time nonlinear Markov jump systems (MJSs) with unknown system dynamics. Specifically, an identifier is established for the unknown systems to approximate system states, and an optimal control approach for nonlinear MJSs is developed to solve the Hamilton-Jacobi-Bellman equation based on the adaptive dynamic programming technique. We also develop detailed stability analysis of the control approach, including the convergence of the performance index function for nonlinear MJSs and the existence of the corresponding admissible control. Neural network techniques are used to approximate the proposed performance index function and the control law. To demonstrate the effectiveness of our approach, three simulation studies, one linear case, one nonlinear case, and one single link robot arm case, are used to validate the performance of the proposed optimal control method.

  8. A Separated Approach to Control of Markov Jump Nonlinear Systems With General Transition Probabilities.

    Science.gov (United States)

    Shen, Mouquan; Park, Ju H; Ye, Dan

    2016-09-01

    This paper is devoted to the control of Markov jump nonlinear systems with general transition probabilities (TPs) allowed to be known, uncertain, and unknown. With the help of the S-procedure to dispose the system nonlinearities and the TP property to eliminate the coupling between unknown TP and Lyapunov variable, an extended bounded real lemma for the considered system to be stochastically stable with the prescribed H∞ performance is established in the framework of linear matrix inequalities. To handle the nonlinearity incurred by uncertain TP for controller synthesis, a separated method is proposed to decouple the interconnection between Lyapunov variables and controller gains. A numerical example is given to show the effectiveness of the proposed method.

  9. Control linear motor with DSP

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jeong Han

    2003-06-15

    This book consists of control linear motor with DSP, which is composed of two parts. The title of the first part is control Algorithm and software with introduction and tracking controller, drive profile on decision of motion time, floating point DSP and quantization effect, motion override Algorithm and drive profile summary, design of digital controller on design for controller structure and analysis of PID control Loop and Motor turning, design for IIR digital filter and protocol structure for communication wit host. The second part describes control hardware, which mentions Linear motor and Amplifier, motor and power supply, DSP board and interface, control of Micro Linear Stepping Motor and conclusion.

  10. Effects of fatigue of plantarflexors on control and performance in vertical jumping.

    Science.gov (United States)

    Bobbert, Maarten F; van der Krogt, Marjolein M; van Doorn, Hemke; de Ruiter, Cornelis J

    2011-04-01

    We investigated the effects of a mismatch between control and musculoskeletal properties on performance in vertical jumping. Six subjects performed maximum-effort vertical squat jumps before (REF) and after the plantarflexors of the right leg had been fatigued (FAT) while kinematic data, ground reaction forces, and EMG of leg muscles were collected. Inverse dynamics was used to calculate the net work at joints, and EMG was rectified and smoothed to obtain the smoothed rectified EMG (SREMG). The jumps of the subjects were also simulated with a musculoskeletal model comprising seven body segments and 12 Hill-type muscles, and having as only input muscle stimulation. Jump height was approximately 6 cm less in FAT jumps than in REF jumps. In FAT jumps, peak SREMG level was reduced by more than 35% in the right plantarflexors and by approximately 20% in the right hamstrings but not in any other muscles. In FAT jumps, the net joint work was reduced not only at the right ankle (by 70%) but also at the right hip (by 40%). Because the right hip was not spanned by fatigued muscles and the reduction in SREMG of the right hamstrings was relatively small, this indicated that the reduction in performance was partly due to a mismatch between control and musculoskeletal properties. The differences between REF and FAT jumps of the subjects were confirmed and explained by the simulation model. Reoptimization of control for the FAT model caused performance to be partly restored by approximately 2.5 cm. The reduction in performance in FAT jumps was partly due to a mismatch between control and musculoskeletal properties.

  11. Optimal Linear Control.

    Science.gov (United States)

    1979-12-01

    with Uncertain Components 44 13 Component Uncertainty Representation of Uncertain Pole-Zero Locations 46 12 A Feedback Control System 60 i 1 I vii €in...OF FEEDBACK SYSTEM ROBUSTNESS A feedback control system design is said to be robust if it is able to meet design specifications despite differences... feedback control system design problems, the design specifications usually demand that the system be "robust" against the effects of deviations within

  12. Effects of slackline training on postural control, jump performance, and myoelectrical activity in female basketball players

    DEFF Research Database (Denmark)

    Santos, Luis; Fernández-Río, Javier; Fernández-García, Benjamín

    2016-01-01

    The main goal of the study was to assess the effects of slackline training on the postural control system and jump performance of athletes. Twenty-five female basketball players were randomized into 2 groups: control (N 12) and experimental (N 13). The latter experienced a 6-week supervised...... training in both groups. Performance on a countermovement jump test significantly improved only in the experimental group (effect side was 3.21 and 1.36 [flight time and jump height, respectively], which is described as a large effect). Mechanical power of the legs, as measured through the 30-second...

  13. TCP Congestion Control for the Networks with Markovian Jump Parameters

    Directory of Open Access Journals (Sweden)

    MOMENI, H. R.

    2011-05-01

    Full Text Available This paper is concerned with the problem of TCP congestion control for the class of communication networks with random parameters. The linear dynamic model of TCP New Reno in congestion avoidance mode is considered which contains round trip delays in both state and input. The randomness of link capacity, round trip time delay and the number of TCP sessions is modeled with a continuous-time finite state Markov process. An Active Queue Management (AQM technique is then used to adjust the queue level of the congested link to a predefined value. For this purpose, a dynamic output feedback controller with mode dependent parameters is synthesized to stochastically stabilize the TCP/AQM dynamics. The procedure of the control synthesis is implemented by solving a linear matrix inequality (LMI. The results are tested within a simulation example and the effectiveness of the proposed design method is verified.

  14. Towards a neuronal network controller for vertical jumping from different initial squat depths.

    Science.gov (United States)

    Bobbert, Maarten F

    2010-01-01

    In this study, a forward dynamic simulation model of the human musculoskeletal system was used to explore various strategies of generating muscle stimulation patterns for vertical squat jumping. It was shown that a simple mapping from joint angles to muscle stimulation onsets yielded successful control, albeit not optimal control, for jumps from different initial squat depths. Furthermore, it was shown that this mapping could be implemented in a straightforward way in a simple network of Hodgkin-Huxley type neurons.

  15. Robust H-Infinity Filtering for Networked Control Systems with Markovian Jumps and Packet Dropouts

    Directory of Open Access Journals (Sweden)

    Fangwen Li

    2014-07-01

    Full Text Available This paper deals with the H-Infinity filtering problem for uncertain networked control systems. In the study, network-induced delays, limited communication capacity due to signal quantization and packet dropout are all taken into consideration. The finite distributed delays with probability of occurrence in a random way is introduced in the network.The packet dropout is described by a Bernoulli process. The system is modeled as Markovian jumps system with partially known transition probabilities. A full-order filter is designed to estimate the system state. By linear inequality approach, a sufficient condition is derived for the resulting filtering error system to be mean square stable with a prescribed H-Infinity performance level. Finally, a numerical example is given to illustrate the effectiveness and efficiency of the proposed design method.

  16. Chaotic synchronization via linear controller

    Institute of Scientific and Technical Information of China (English)

    Chen Feng-Xiang; Zhang Wei-Dong

    2007-01-01

    A technical framework of constructing a linear controller for chaotic synchronization by utilizing the stability theory of cascade-connected system is presented. Based on the method developed in the paper, two simple and linear feedback controllers, as examples, are derived for the synchronization of Liu chaotic system and Duffing oscillator, respectively.This method is quite flexible in constructing a control law. Its effectiveness is also illustrated by the simulation results.

  17. Manipulator control by exact linearization

    Science.gov (United States)

    Kruetz, K.

    1987-01-01

    Comments on the application to rigid link manipulators of geometric control theory, resolved acceleration control, operational space control, and nonlinear decoupling theory are given, and the essential unity of these techniques for externally linearizing and decoupling end effector dynamics is discussed. Exploiting the fact that the mass matrix of a rigid link manipulator is positive definite, a consequence of rigid link manipulators belonging to the class of natural physical systems, it is shown that a necessary and sufficient condition for a locally externally linearizing and output decoupling feedback law to exist is that the end effector Jacobian matrix be nonsingular. Furthermore, this linearizing feedback is easy to produce.

  18. Linear kinematics at take-off in horses jumping the wall in an international Puissance competition.

    Science.gov (United States)

    Powers, Pippa

    2005-07-01

    Sagittal plane SVHS video recordings (50 Hz) were made of horses jumping the wall at an international Puissance competition. Video sequences were manually digitized and six kinematic variables at take-off were analyzed. Nine horses started the competition with the fence height at 1.80 m, and two horses attempted the fence in the fifth and final round with the fence height at 2.27 m. For successful performances, fence height was correlated with the following take-off variables: vertical velocity of the centre of mass (r = 0.45, p = 0.03); height of centre of mass (r = 0.44, p = 0.04); distance of centre of mass from fence (r = 0.46, p = 0.03); and distance from leading hind limb to centre of mass (r = -0.61, p horses jumping over a Puissance wall. The results should help horse riders and trainers improve performance in Puissance jumping horses, and perhaps help in the early selection of horses with a talent for jumping high fences.

  19. Linear feedback controls the essentials

    CERN Document Server

    Haidekker, Mark A

    2013-01-01

    The design of control systems is at the very core of engineering. Feedback controls are ubiquitous, ranging from simple room thermostats to airplane engine control. Helping to make sense of this wide-ranging field, this book provides a new approach by keeping a tight focus on the essentials with a limited, yet consistent set of examples. Analysis and design methods are explained in terms of theory and practice. The book covers classical, linear feedback controls, and linear approximations are used when needed. In parallel, the book covers time-discrete (digital) control systems and juxtapos

  20. Aerodynamics of ski jumping flight and its control: II. Simulations

    Science.gov (United States)

    Lee, Jungil; Lee, Hansol; Kim, Woojin; Choi, Haecheon

    2015-11-01

    In a ski jumping competition, it is essential to analyze the effect of various posture parameters of a ski jumper to achieve a longer flight distance. For this purpose, we conduct a large eddy simulation (LES) of turbulent flow past a model ski jumper which is obtained by 3D scanning a ski jumper's body (Mr. Chil-Ku Kang, member of the Korean national team). The angle of attack of the jump ski is 30° and the Reynolds number based on the length of the jump ski is 540,000. The flow statistics including the drag and lift coefficients in flight are in good agreements with our own experimental data. We investigate the flow characteristics such as the flow separation and three-dimensional vortical structures and their effects on the drag and lift. In addition to LES, we construct a simple geometric model of a ski jumper where each part of the ski jumper is modeled as a canonical bluff body such as the sphere, cylinder and flat plate, to find its optimal posture. The results from this approach will be compared with those by LES and discussed. Supported by NRF program (2014M3C1B1033848, 2014R1A1A1002671).

  1. Optimal control linear quadratic methods

    CERN Document Server

    Anderson, Brian D O

    2007-01-01

    This augmented edition of a respected text teaches the reader how to use linear quadratic Gaussian methods effectively for the design of control systems. It explores linear optimal control theory from an engineering viewpoint, with step-by-step explanations that show clearly how to make practical use of the material.The three-part treatment begins with the basic theory of the linear regulator/tracker for time-invariant and time-varying systems. The Hamilton-Jacobi equation is introduced using the Principle of Optimality, and the infinite-time problem is considered. The second part outlines the

  2. Intra-task variability of trunk coordination during a rate-controlled bipedal dance jump.

    Science.gov (United States)

    Smith, Jo Armour; Siemienski, Adam; Popovich, John M; Kulig, Kornelia

    2012-01-01

    In this study, we investigated trunk coordination during rate-controlled bipedal vertical dance jumps. The aims of the study were to investigate the pattern of coordination and the magnitude of coordination variability within jump phases and relative to phase-defining events during the jump. Lumbar and thoracic kinematics were collected from seven dancers during a series of jumps at 95 beats per minute. The vector coding technique was used to quantify the pattern and variability of trunk coordination. Coordination was predominantly anti-phase during propulsion and landing. Mean coordination variability peaked just before the landing phase and at the transition from landing to propulsion phases, and was lowest during the propulsion phase just before toe-off. The results indicate that peaks in variability could be explained by task and phase-specific biomechanical demands.

  3. Control Improvement for Jump-Diffusion Processes with Applications to Finance

    Energy Technology Data Exchange (ETDEWEB)

    Baeuerle, Nicole, E-mail: nicole.baeuerle@kit.edu [Karlsruhe Institute of Technology, Institute for Stochastics (Germany); Rieder, Ulrich, E-mail: ulrich.rieder@uni-ulm.de [University of Ulm, Department of Optimization and Operations Research (Germany)

    2012-02-15

    We consider stochastic control problems with jump-diffusion processes and formulate an algorithm which produces, starting from a given admissible control {pi}, a new control with a better value. If no improvement is possible, then {pi} is optimal. Such an algorithm is well-known for discrete-time Markov Decision Problems under the name Howard's policy improvement algorithm. The idea can be traced back to Bellman. Here we show with the help of martingale techniques that such an algorithm can also be formulated for stochastic control problems with jump-diffusion processes. As an application we derive some interesting results in financial portfolio optimization.

  4. Aerodynamics of ski jumping flight and its control: I. Experiments

    Science.gov (United States)

    Jung, Daehan; Bang, Kyeongtae; Kim, Heesu; Ahn, Eunhye; Choi, Haecheon

    2015-11-01

    In a ski jumping competition, it is essential to analyze the effect of various posture parameters of a ski jumper to achieve a longer flight distance. For this purpose, we construct a model of a ski jumper by using three-dimensional surface data obtained by scanning a ski jumper's body (Mr. Chil-Ku Kang, member of the Korean national team). An experiment on this model is conducted in a wind tunnel. We consider four posture parameters (forward leaning angle, ski opening angle, ski rolling angle, and ski spacing) and measure the drag and lift forces for various flight postures at various angles of attack (α = 0° - 40°) and Reynolds numbers (Re = 5.4 × 105 - 1.6 × 106) based on the length of the jump ski. Then, we derive optimum values of posture parameters for maximum lift-to-drag ratio using a response surface method. We also conduct a full-scale wind tunnel experiment with members of the Korean national team and confirm the results obtained from the experiment on the model. Supported by the NRF program (2014M3C1B1033848).

  5. Effect of jumping interval training on neuromuscular and physiological parameters: a randomized controlled study.

    Science.gov (United States)

    Ache-Dias, Jonathan; Dellagrana, Rodolfo A; Teixeira, Anderson S; Dal Pupo, Juliano; Moro, Antônio R P

    2016-01-01

    This study analyzed the effect of 4 weeks of jumping interval training (JIT), included in endurance training, on neuromuscular and physiological parameters. Eighteen recreational runners, randomized in control and experimental groups, performed 40 min of running at 70% of velocity at peak oxygen uptake, for 3 times per week. Additionally, the experimental group performed the JIT twice per week, which consisted of 4 to 6 bouts of continuous vertical jumps (30 s) with 5-min intervals. Three days before and after the training period, the countermovement (CMJ) and continuous jump (CJ30), isokinetic and isometric evaluation of knee extensors/flexors, progressive maximal exercise, and submaximal constant-load exercise were performed. The JIT provoked improvement in neuromuscular performance, indicated by (i) increased jump height (4.7%; effect size (ES) = 0.99) and power output (≈ 3.7%; ES ≈ 0.82) of CMJ and rate of torque development of knee extensors in isometric contraction (29.5%; ES = 1.02); (ii) anaerobic power and capacity, represented by the mean of jump height (7.4%; ES = 0.8), and peak power output (PPO) (5.6%; ES = 0.73) of the first jumps of CJ30 and the mean of jump height (10.2%, ES = 1.04) and PPO (9.5%, ES = 1.1), considering all jumps of CJ30; and (iii) aerobic power and capacity, represented by peak oxygen uptake (9.1%, ES = 1.28), velocity at peak oxygen uptake (2.7%, ES = 1.11), and velocity corresponding to the onset of blood lactate accumulation (9.7%, ES = 1.23). These results suggest that the JIT included in traditional endurance training induces moderate to large effects on neuromuscular and physiological parameters.

  6. Controlling the quantum-memory-assisted entropic uncertainty relation by quantum-jump-based feedback control in dissipative environments

    Science.gov (United States)

    Yu, Min; Fang, Mao-Fa

    2017-09-01

    The dynamic properties of the quantum-memory-assisted entropic uncertainty relation for a system comprised of a qubit to be measured and a memory qubit are investigated. We explore the behaviors of the entropic uncertainty and its lower bound in three different cases: Only one of the two qubits interacts with an external environment and subjects to quantum-jump-based feedback control, or both of the two qubits independently experience their own environments and local quantum-jump-based feedback control. Our results reveal that the quantum-jump-based feedback control with an appropriate feedback parameter can reduce the entropic uncertainty and its lower bound, and for the three different scenarios, the reduction in the uncertainty relates to different physical quantities. Besides, we find out that the quantum-jump-based feedback control not only can remarkably decrease the entropic uncertainty, but also can make the uncertainty reach its lower bound where the dynamical map becomes unital.

  7. Humans adjust control to initial squat depth in vertical squat jumping.

    Science.gov (United States)

    Bobbert, Maarten F; Casius, L J Richard; Sijpkens, Igor W T; Jaspers, Richard T

    2008-11-01

    The purpose of this study was to gain insight into the control strategy that humans use in jumping. Eight male gymnasts performed vertical squat jumps from five initial postures that differed in squat depth (P1-P5) while kinematic data, ground reaction forces, and electromyograms (EMGs) of leg muscles were collected; the latter were rectified and smoothed to obtain SREMGs. P3 was the preferred initial posture; in P1, P2, P4, and P5 height of the mass center was +13, +7, -7 and -14 cm, respectively, relative to that in P3. Furthermore, maximum-height jumps from the initial postures observed in the subjects were simulated with a model comprising four body segments and six Hill-type muscles. The only input was the onset of stimulation of each of the muscles (Stim). The subjects were able to perform well-coordinated squat jumps from all postures. Peak SREMG levels did not vary among P1-P5, but SREMG onset of plantarflexors occurred before that of gluteus maximus in P1 and > 90 ms after that in P5 (P < 0.05). In the simulation study, similar systematic shifts occurred in Stim onsets across the optimal control solutions for jumps from P1-P5. Because the adjustments in SREMG onsets to initial posture observed in the subjects were very similar to the adjustments in optimal Stim onsets of the model, it was concluded that the SREMG adjustments were functional, in the sense that they contributed to achieving the greatest jump height possible from each initial posture. For the model, we were able to develop a mapping from initial posture to Stim onsets that generated successful jumps from P1-P5. It appears that to explain how subjects adjust their control to initial posture there is no need to assume that the brain contains an internal dynamics model of the musculoskeletal system.

  8. Humans make near-optimal adjustments of control to initial body configuration in vertical squat jumping.

    Science.gov (United States)

    Bobbert, Maarten F; Richard Casius, L J; Kistemaker, Dinant A

    2013-05-01

    We investigated adjustments of control to initial posture in squat jumping. Eleven male subjects jumped from three initial postures: preferred initial posture (PP), a posture in which the trunk was rotated 18° more backward (BP) and a posture in which it was rotated 15° more forward (FP) than in PP. Kinematics, ground reaction forces and electromyograms (EMG) were collected. EMG was rectified and smoothed to obtain smoothed rectified EMG (srEMG). Subjects showed adjustments in srEMG histories, most conspicuously a shift in srEMG-onset of rectus femoris (REC): from early in BP to late in FP. Jumps from the subjects' initial postures were simulated with a musculoskeletal model comprising four segments and six Hill-type muscles, which had muscle stimulation (STIM) over time as input. STIM of each muscle changed from initial to maximal at STIM-onset, and STIM-onsets were optimized using jump height as criterion. Optimal simulated jumps from BP, PP and FP were similar to jumps of the subjects. Optimal solutions primarily differed in STIM-onset of REC: from early in BP to late in FP. Because the subjects' adjustments in srEMG-onsets were similar to adjustments of the model's optimal STIM-onsets, it was concluded that the former were near-optimal. With the model we also showed that near-maximum jumps from BP, PP and FP could be achieved when STIM-onset of REC depended on initial hip joint angle and STIM-onsets of the other muscles were posture-independent. A control theory that relies on a mapping from initial posture to STIM-onsets seems a parsimonious alternative to theories relying on internal optimal control models. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

  9. Robust H∞ Finite-Time Control for Discrete Markovian Jump Systems with Disturbances of Probabilistic Distributions

    Directory of Open Access Journals (Sweden)

    Haiyang Chen

    2015-01-01

    Full Text Available This paper is concerned with the robust H∞ finite-time control for discrete delayed nonlinear systems with Markovian jumps and external disturbances. It is usually assumed that the disturbance affects the system states and outputs with the same influence degree of 100%, which is not evident enough to reflect the situation where the disturbance affects these two parts by different influence degrees. To tackle this problem, a probabilistic distribution denoted by binomial sequences is introduced to describe the external disturbance. Throughout the paper, the definitions of the finite-time boundedness (FTB and the H∞ FTB are firstly given respectively. To extend the results further, a model which combines a linear dynamic system and a static nonlinear operator is referred to describe the system under discussion. Then by virtue of state feedback control method, some new sufficient criteria are derived which guarantee the FTB and H∞ FTB performances for the considered system. Finally, an example is provided to demonstrate the effectiveness of the developed control laws.

  10. Markov chain Monte Carlo inference for Markov jump processes via the linear noise approximation.

    Science.gov (United States)

    Stathopoulos, Vassilios; Girolami, Mark A

    2013-02-13

    Bayesian analysis for Markov jump processes (MJPs) is a non-trivial and challenging problem. Although exact inference is theoretically possible, it is computationally demanding, thus its applicability is limited to a small class of problems. In this paper, we describe the application of Riemann manifold Markov chain Monte Carlo (MCMC) methods using an approximation to the likelihood of the MJP that is valid when the system modelled is near its thermodynamic limit. The proposed approach is both statistically and computationally efficient whereas the convergence rate and mixing of the chains allow for fast MCMC inference. The methodology is evaluated using numerical simulations on two problems from chemical kinetics and one from systems biology.

  11. Switching Controller Design for a Class of Markovian Jump Nonlinear Systems Using Stochastic Small-Gain Theorem

    Directory of Open Access Journals (Sweden)

    Jin Zhu

    2009-01-01

    Full Text Available Switching controller design for a class of Markovian jump nonlinear systems with unmodeled dynamics is considered in this paper. Based on the differential equation and infinitesimal generator of jump systems, the concept of Jump Input-to-State practical Stability (JISpS in probability and stochastic Lyapunov stability criterion are put forward. By using backsetpping technology and stochastic small-gain theorem, a switching controller is proposed which ensures JISpS in probability for the jump nonlinear system. A simulation example illustrates the validity of this design.

  12. Computational aspects of linear control

    CERN Document Server

    2002-01-01

    Many devices (we say dynamical systems or simply systems) behave like black boxes: they receive an input, this input is transformed following some laws (usually a differential equation) and an output is observed. The problem is to regulate the input in order to control the output, that is for obtaining a desired output. Such a mechanism, where the input is modified according to the output measured, is called feedback. The study and design of such automatic processes is called control theory. As we will see, the term system embraces any device and control theory has a wide variety of applications in the real world. Control theory is an interdisci­ plinary domain at the junction of differential and difference equations, system theory and statistics. Moreover, the solution of a control problem involves many topics of numerical analysis and leads to many interesting computational problems: linear algebra (QR, SVD, projections, Schur complement, structured matrices, localization of eigenvalues, computation of the...

  13. Linear Design Approach to a Fuzzy Controller

    DEFF Research Database (Denmark)

    Jantzen, Jan

    1999-01-01

    A ball-balancer, basically an inverted pendulum problem, is stabilised by a linear controller. With certain design choices, a fuzzy controller is equivalent to a summation; thus it can replace the linear controller. It can be claimed, that the fuzzy controller performs at least as well...... as the linear controller, since the linear controller is contained in the fuzzy controller. The approach makes it somewhat easier to design a fuzzy controller....

  14. Risk-Sensitive Control of Pure Jump Process on Countable Space with Near Monotone Cost

    Energy Technology Data Exchange (ETDEWEB)

    Suresh Kumar, K., E-mail: suresh@math.iitb.ac.in; Pal, Chandan, E-mail: cpal@math.iitb.ac.in [Indian Institute of Technology Bombay, Department of Mathematics (India)

    2013-12-15

    In this article, we study risk-sensitive control problem with controlled continuous time pure jump process on a countable space as state dynamics. We prove multiplicative dynamic programming principle, elliptic and parabolic Harnack’s inequalities. Using the multiplicative dynamic programing principle and the Harnack’s inequalities, we prove the existence and a characterization of optimal risk-sensitive control under the near monotone condition.

  15. A space vector control stradegy for improvement of control speed and reduction of sensitivity of phase jump

    DEFF Research Database (Denmark)

    Rasmussen, Tonny Wederberg

    1999-01-01

    The paper describes a full space vector control stradegy. The synchronisation used to improveboth the control speed of reactive power and reduce the sensitivity to large phase jumps in the grid caused by switching arge loads. The control stradegy is tested with a 5-level 10kvar laboratory model....

  16. Sliding mode control scheme for a jumping robot with multi-joint based on floating basis

    Science.gov (United States)

    Jianjun, Yao; Duotao, Di; Shuang, Gao; Lei, He; Shenghai, Hu

    2012-01-01

    A jumping robot has different jumping characteristics. The emphasis of its motion characteristics is placed on the sagittal plane, and every phase of a whole jumping motion has different constraints, so it is a variable constraint system. Its kinematic and dynamic equations, both of the stance phase and of the flight phase are established. Furthermore, the floating basis method is applied to unify the dynamic equations of the stance phase and the flight phase. The generalised coordinate is found based on the union of the tiptoe translation and the joint variables to obtain dynamic equations with constraints. Since the jumping robot is a strongly coupled system and has great impact when it lands on the ground, a reaching law is applied in the development of sliding mode controller in task space such that the state trajectory starting from anywhere can move towards the switching surface, making the system tracking error converge exponentially to zero. Simulation results demonstrate the efficiency and validity of the proposed control system.

  17. Linear control design for guaranteed stability of uncertain linear systems

    Science.gov (United States)

    Yedavalli, R. K.

    1986-01-01

    In this paper, a linear control design algorithm based on the elemental perturbation bounds developed recently is presented for a simple second order linear uncertain system satisfying matching conditions. The proposed method is compared with Guaranteed Cost Control (GCC), Multistep Guaranteed Cost Control (MGCC) and the Matching Condition (MC) methods and is shown to give guaranteed stability with lesser values for the control gains than some of the existing methods for the example considered.

  18. Efficacy of a 3 month training program on the jump-landing technique in jump-landing sports. Design of a cluster randomized controlled trial

    Directory of Open Access Journals (Sweden)

    Verhagen Evert

    2010-12-01

    Full Text Available Abstract Background With the relatively high rate of injuries to the lower extremity due to jump-landing movement patterns and the accompanied high costs, there is need for determining potential preventive programs. A program on the intervention of jump-landing technique is possibly an important preventative measure since it appeared to reduce the incidence of lower extremity injuries. In real life situations, amateur sports lack the infrastructure and funds to have a sports physician or therapist permanently supervising such a program. Therefore the current prevention program is designed so that it could be implemented by coaches alone. Objective The objective of this randomized controlled trial is to evaluate the effect of a coach supervised intervention program targeting jump-landing technique on the incidence of lower extremity injuries. Methods Of the 110 Flemish teams of the elite division, 24 teams are included and equally randomized to two study groups. An equal selection of female and male teams with allocation to intervention and control group is obtained. The program is a modification of other prevention programs previously proven to be effective. All exercises in the current program are adjusted so that a more progressive development in the exercise is presented. Both the control and intervention group continue with their normal training routine, while the intervention group carries out the program on jump-landing technique. The full intervention program has a duration of three months and is performed 2 times a week during warm-up (5-10 min. Injuries are registered during the entire season. Discussion The results of this study can give valuable information on the effect of a coach supervised intervention program on jump-landing technique and injury occurrence. Results will become available in 2011. Trial registration Trial registration number: NTR2560

  19. Jumping improves hip and lumbar spine bone mass in prepubescent children: a randomized controlled trial.

    Science.gov (United States)

    Fuchs, R K; Bauer, J J; Snow, C M

    2001-01-01

    Physical activity during childhood is advocated as one strategy for enhancing peak bone mass (bone mineral content [BMC]) as a means to reduce osteoporosis-related fractures. Thus, we investigated the effects of high-intensity jumping on hip and lumbar spine bone mass in children. Eighty-nine prepubescent children between the ages of 5.9 and 9.8 years were randomized into a jumping (n = 25 boys and n = 20 girls) or control group (n = 26 boys and n = 18 girls). Both groups participated in the 7-month exercise intervention during the school day three times per week. The jumping group performed 100, two-footed jumps off 61-cm boxes each session, while the control group performed nonimpact stretching exercises. BMC (g), bone area (BA; cm2), and bone mineral density (BMD; g/cm2) of the left proximal femoral neck and lumbar spine (L1-L4) were assessed by dual-energy X-ray absorptiometry (DXA; Hologic QDR/4500-A). Peak ground reaction forces were calculated across 100, two-footed jumps from a 61-cm box. In addition, anthropometric characteristics (height, weight, and body fat), physical activity, and dietary calcium intake were assessed. At baseline there were no differences between groups for anthropometric characteristics, dietary calcium intake, or bone variables. After 7 months, jumpers and controls had similar increases in height, weight, and body fat. Using repeated measures analysis of covariance (ANCOVA; covariates, initial age and bone values, and changes in height and weight) for BMC, the primary outcome variable, jumpers had significantly greater 7-month changes at the femoral neck and lumbar spine than controls (4.5% and 3.1%, respectively). In repeated measures ANCOVA of secondary outcomes (BMD and BA), BMD at the lumbar spine was significantly greater in jumpers than in controls (2.0%) and approached statistical significance at the femoral neck (1.4%; p = 0.085). For BA, jumpers had significantly greater increases at the femoral neck area than controls (2

  20. Robust Control of Uncertain Markov Jump Singularly Perturbed Systems%Markov跳变线性奇异摄动系统鲁棒H∞控制

    Institute of Scientific and Technical Information of China (English)

    刘华平; 孙富春; 李春文; 孙增圻

    2005-01-01

    In this paper, we study the robust control for uncertain Markov jump linear singularly perturbed systems (MJLSPS), whose transition probability matrix is unknown. An improved heuristic algorithm is proposed to solve the nonlinear matrix inequalities. The results of this paper can apply not only to standard, but also to nonstandard MJLSPS. Moreover, the proposed approach is independent of the perturbation parameter and therefore avoids the ill-conditioned numerical problems.

  1. Design and Implementation of a Remote Control System for a Bio-inspired Jumping Robot

    Directory of Open Access Journals (Sweden)

    Jun Zhang

    2012-10-01

    Full Text Available This paper presents the design and implementation of a remote control system for a bio‐ inspired jumping robot. The system is composed of a server, a gateway, and a jumping robot. The proposed remote control system is used to monitor the posture of the jumping robot and control it in remote places. A three‐axis accelerometer is used to detect the tilts of the robot. A compass is used to sense the azimuth of the robot. The calibrations of the accelerometer and the compass are conducted. The sensor data of the robot can be sent to the server through a ZigBee wireless sensor network (WSN. An algorithm is designed to calculate the posture of the robot from the sensor data. The posture of the robot can be displayed on the human‐computer interface of the server using the virtual reality technology of OpenGL. The robots can be controlled by the operator through the interface. Two experiments have been done to verify the posture detection method and test the performance of the system.

  2. Observer-Based Controller Design for Singular Stochastic Markov Jump Systems with State Dependent Noise

    Institute of Scientific and Technical Information of China (English)

    ZHAO Yong; ZHANG Weihai

    2016-01-01

    This paper is concerned with the problem of observer-based controller design for singular stochastic Markov jump systems with state-dependent noise.Two concepts called "non-impulsiveness" and "mean square admissibility" are introduced,which are different from previous ones.Sufficient conditions for the open-and closed-loop singular stochastic Markov jump systems with state-dependent noise to be mean square admissible are provided in terms of strict LMIs.The controller gain and the observer gain which guarantee the resulting closed-loop error system to be mean square admissible are obtained in turn by solving the strict LMIs.A numerical example is presented to show the efficiency of the design approach.

  3. Guaranteed control performance robust LQG regulator for discrete-time Markovian jump systems with uncertain noise

    Institute of Scientific and Technical Information of China (English)

    Zhu Jin; Xi Hongsheng; Xiao Xiaobo; Ji Haibo

    2007-01-01

    Robust LQG problems of discrete-time Markovian jump systems with uncertain noises are investigated.The problem addressed is the construction of perturbation upper bounds on the uncertain noise covariances so as to guarantee that the deviation of the control performance remains within the precision prescribed in actual problems.Furthermore, this regulator is capable of minimizing the worst performance in an uncertain case. A numerical example is exploited to show the validity of the method.

  4. COMPARISON OF LINEAR CONTROLLERS FOR A

    DEFF Research Database (Denmark)

    Andersen, Torben Ole; Hansen, Michael Rygaard; Pedersen, Henrik C.;

    2005-01-01

    In many hydraulic control applications, classic linear controllers are still employed, although there exist a number of number of nonlinear control methods, which may be better suited for handling the intrensic non-linearities often found in hydraulic systems. The focus of this paper is therefore...... on comparing different linear controllers, based on both simulation and experimental results, to determine what is obtainable when applying standard linear controllers to a hydraulic SISO servo system. The paper furthermore addresses how the performance may be improved by using internal pressure control...

  5. Linear Controllers for Turbulent Boundary Layers

    Science.gov (United States)

    Lim, Junwoo; Kim, John; Kang, Sung-Moon; Speyer, Jason

    2000-11-01

    Several recent studies have shown that controllers based on a linear system theory work surprisingly well in turbulent flows, suggesting that a linear mechanism may play an important role even in turbulent flows. It has been also shown that non-normality of the linearized Navier-Stokes equations is an essential characteristic in the regeneration of near-wall turbulence structures in turbulent boundary layers. A few controllers designed to reduce the role of different linear mechanisms, including that to minimize the non-normality of the linearized Navier-Stokes equations, have been developed and applied to a low Reynolds nubmer turbulent channel flow. A reduced-order model containing the most controllable and observables modes is derived for each system. Other existing control schemes, such as Choi et al's opposition control, have been examined from the point of a linear system control. Further discussion on controller design, such as choice of cost function and other control parameters, will be presented.

  6. H∞control for uncertain Markovian jump systems with mode-dependent mixed delays

    Institute of Scientific and Technical Information of China (English)

    Yingchun Wang; Huaguang Zhang

    2008-01-01

    We study the problem of H∞ control for a class of Markovian jump systems with norm-bounded parameter uncertainties and mode-dependent mixed delays including discrete delays and distributed delays in this paper. Our aim is to present a new delay-dependent control approach such that the resulting closed-loop system is robust mean-square (MS) exponentially stable and satisfies a prescribed H∞ performance level, irrespective of the parameter uncertainties. Such delay-dependent approach does not require system transformation or free-weighting matrix. A numerical example shows that the results are less conservative and more effective.

  7. Theory of stochastic differential equations with jumps and applications mathematical and analytical techniques with applications to engineering

    CERN Document Server

    SITU, Rong

    2005-01-01

    Derivation of Ito's formulas, Girsanov's theorems and martingale representation theorem for stochastic DEs with jumpsApplications to population controlReflecting stochastic DE techniqueApplications to the stock market. (Backward stochastic DE approach)Derivation of Black-Scholes formula for market with and without jumpsNon-linear filtering problems with jumps.

  8. Mixed H2/H∞ Pitch Control of Wind Turbine with a Markovian Jump Model

    DEFF Research Database (Denmark)

    Lin, Zhongwei; Liu, Jizhen; Wu, Qiuwei

    2016-01-01

    to guarantee both the disturbance rejection and the mechanical loads objectives, which can reduce the power volatility and the generator torque fluctuation of the whole transmission mechanism efficiently. Simulation results for a 2 MW wind turbine show the effectiveness of the proposed method.......This paper proposes a Markovian jump model and the corresponding H2 /H∞ control strategy for the wind turbine driven by the stochastic switching wind speed, which can be used to regulate the generator speed in order to harvest the rated power while reducing the fatigue loads on the mechanical side...

  9. Effect of kinesio taping on jumping and balance in athletes: a crossover randomized controlled trial.

    Science.gov (United States)

    Nunes, Guilherme S; de Noronha, Marcos; Cunha, Helder S; Ruschel, Caroline; Borges, Noé G

    2013-11-01

    The purpose of this crossover randomized controlled trial was to verify the effect of Kinesio Taping (KT) applied to the triceps surae with the aim to improve muscle performance during vertical jump (VJ), horizontal jump (HJ), and dynamic balance (DB) in healthy college athletes. The participants were 20 athletes (11 men) who competed in 4 different sports modalities (track and field, handball, volleyball, and soccer). Participants had a mean age of 22.3 ± 3.3 years, mean height of 1.74 ± 0.08 m, and mean body mass of 67.8 ± 10.1 kg. The intervention consisted of applying KT from the origin of the triceps surae to its insertion with the purpose of increasing muscle performance, and the placebo consisted of applying tape with nonelastic properties. There were no significant differences between KT and placebo conditions for height (m) in VJ (KT, 0.18 ± 0.06; placebo, 0.17 ± 0.06; p = 0.14), distance (m) in HJ (KT, 1.48 ± 0.3; placebo, 1.47 ± 0.3; p = 0.40), and DB in distance reached (m) in the star excursion balance test, normalized by lower limb length (anterior: KT, 90.0 ± 6.7; placebo, 89.5 ± 7.5; p = 0.56; posterolateral: KT, 92.5 ± 7.5; placebo, 93.2 ± 5.8; p = 0.52; posteromedial: KT, 98.3 ± 6.7; placebo, 98.7 ± 7.4; p = 0.69). The KT technique was not found to be useful in improving performance in some sports-related movements in healthy college athletes; therefore, KT applied to the triceps surae should not be considered by athletes when the sole reason of the application is to increase performance during jumping and balance.

  10. Neural Networks for Non-linear Control

    DEFF Research Database (Denmark)

    Sørensen, O.

    1994-01-01

    This paper describes how a neural network, structured as a Multi Layer Perceptron, is trained to predict, simulate and control a non-linear process.......This paper describes how a neural network, structured as a Multi Layer Perceptron, is trained to predict, simulate and control a non-linear process....

  11. Neural Networks for Non-linear Control

    DEFF Research Database (Denmark)

    Sørensen, O.

    1994-01-01

    This paper describes how a neural network, structured as a Multi Layer Perceptron, is trained to predict, simulate and control a non-linear process.......This paper describes how a neural network, structured as a Multi Layer Perceptron, is trained to predict, simulate and control a non-linear process....

  12. Gain tuning PI controllers for boiler turbine unit using a new hybrid jump PSO

    Directory of Open Access Journals (Sweden)

    Mohamed Sayed

    2015-05-01

    Full Text Available In this paper, a new hybrid jump PSO (HJPSO is proposed for tuning the gains of PI controllers to the boiler turbine unit. HJPSO based Gaussian and Cauchy mutation is proposed to improve the standard PSO performance. The new strategy is based on observing the local and global best particles which are not improved in a predefined number of iterations and moving these particles to a new best position. Besides, forming a new particle that handles the minimum error of each controller to replace the global best particle if it has best fitness. The simulation results show that the proposed algorithm has its ability in optimizing the control parameters and effectively achieved better performance when compared with other PSO algorithms.

  13. Linear control of the flywheel inverted pendulum.

    Science.gov (United States)

    Olivares, Manuel; Albertos, Pedro

    2014-09-01

    The flywheel inverted pendulum is an underactuated mechanical system with a nonlinear model but admitting a linear approximation around the unstable equilibrium point in the upper position. Although underactuated systems usually require nonlinear controllers, the easy tuning and understanding of linear controllers make them more attractive for designers and final users. In a recent paper, a simple PID controller was proposed by the authors, leading to an internally unstable controlled plant. To achieve global stability, two options are developed here: first by introducing an internal stabilizing controller and second by replacing the PID controller by an observer-based state feedback control. Simulation and experimental results show the effectiveness of the design.

  14. Linear optimal control of tokamak fusion devices

    Energy Technology Data Exchange (ETDEWEB)

    Kessel, C.E.; Firestone, M.A.; Conn, R.W.

    1989-05-01

    The control of plasma position, shape and current in a tokamak fusion reactor is examined using linear optimal control. These advanced tokamaks are characterized by non up-down symmetric coils and structure, thick structure surrounding the plasma, eddy currents, shaped plasmas, superconducting coils, vertically unstable plasmas, and hybrid function coils providing ohmic heating, vertical field, radial field, and shaping field. Models of the electromagnetic environment in a tokamak are derived and used to construct control gains that are tested in nonlinear simulations with initial perturbations. The issues of applying linear optimal control to advanced tokamaks are addressed, including complex equilibrium control, choice of cost functional weights, the coil voltage limit, discrete control, and order reduction. Results indicate that the linear optimal control is a feasible technique for controlling advanced tokamaks where the more common classical control will be severely strained or will not work. 28 refs., 13 figs.

  15. Geometric Control of Patterned Linear Systems

    CERN Document Server

    Hamilton, Sarah C

    2012-01-01

    This monograph is aiming at researchers of systems control, especially those interested in multiagent systems, distributed and decentralized control, and structured systems. The book assumes no prior background in geometric control theory; however, a first year graduate course in linear control systems is desirable.  Since not all control researchers today are exposed to geometric control theory, the book also adopts a tutorial style by way of examples that illustrate the geometric and abstract algebra concepts used in linear geometric control. In addition, the matrix calculations required for the studied control synthesis problems of linear multivariable control are illustrated via a set of running design examples. As such, some of the design examples are of higher dimension than one may typically see in a text; this is so that all the geometric features of the design problem are illuminated.

  16. Output feedback model matching in linear impulsive systems with control feedthrough: a structural approach

    Science.gov (United States)

    Zattoni, Elena

    2017-01-01

    This paper investigates the problem of structural model matching by output feedback in linear impulsive systems with control feedthrough. Namely, given a linear impulsive plant, possibly featuring an algebraic link from the control input to the output, and given a linear impulsive model, the problem consists in finding a linear impulsive regulator that achieves exact matching between the respective forced responses of the linear impulsive plant and of the linear impulsive model, for all the admissible input functions and all the admissible sequences of jump times, by means of a dynamic feedback of the plant output. The problem solvability is characterized by a necessary and sufficient condition. The regulator synthesis is outlined through the proof of sufficiency, which is constructive.

  17. Exact Linearization For Control Of Robots

    Science.gov (United States)

    Kreutz, Kenneth K.

    1990-01-01

    Equivalence of several theoretical approaches discussed. Report comments on application of geometric control theory (GCT), resolved-acceleration control (RAC), operational-space control (OSC), and nonlinear-decoupling theory (NDT) to remote manipulator consisting of multiple rigid links. Principal concern, search for nonlinear feedback law making end effector behave, for purposes of control, as though its dynamics linear and decoupled.

  18. Robust fuzzy control for stochastic Markovian jumping systems via sliding mode method

    Science.gov (United States)

    Chen, Bei; Jia, Tinggang; Niu, Yugang

    2016-07-01

    This paper considers the problem of sliding mode control for stochastic Markovian jumping systems by means of fuzzy method. The Takagi-Sugeno (T-S) fuzzy stochastic model subject to state-dependent noise is presented. A key feature in this work is to remove the restricted condition that each local system model had to share the same input channel, which is usually assumed in some existing results. The integral sliding surface is constructed for every mode and the connections among various sliding surfaces are established via a set of coupled matrices. Moreover, the present sliding mode controller including the transition rates of modes can cope with the effect of Markovian switching. It is shown that both the reachability of sliding surfaces and the stability of sliding mode dynamics can be ensured. Finally, numerical simulation results are given.

  19. Telemetric control of heart adaptation during automatic and free-fall parachute jumps.

    Science.gov (United States)

    Deroanne, R; Cession-Fossion, A; Juchmes, J; Servais, J C; Petit, J M

    1975-02-01

    Telmetered heart rate recordings have been ovtaine from 17 parachutists (6 during automatic jumps) 9 Catecholamine (adrenaline and noradrenaline) concentrations have been measured in urine and plasma of six of these subjects. No difference appears between heart rates recorded in the two jumps at egress and at parachute deployment. On the other hand, higher heart rate values are recorded during automatic jumps during descent and at ground impace. The urine catecholamine analysis after jump shows a statistically significant increase in adrenaline and noradrenaline concentration. It is suggested that simulation of the orthosympathetic system is due to two facts; muscular work performed during jumping and the emotional stress which it involves. The importance of these two causes varies with the jump circumstances.

  20. Linearizing control of continuous anaerobic fermentation processes

    Energy Technology Data Exchange (ETDEWEB)

    Babary, J.P. [Centre National d`Etudes Spatiales (CNES), 31 - Toulouse (France). Laboratoire d`Analyse et d`Architecture des Systemes; Simeonov, I. [Institute of Microbiology, Bulgarian Academy of Sciences (Bulgaria); Ljubenova, V. [Institute of Control and System Research, BAS (Country unknown/Code not available); Dochain, D. [Universite Catholique de Louvain (UCL), Louvain-la-Neuve (Belgium)

    1997-09-01

    Biotechnological processes (BTP) involve living organisms. In the anaerobic fermentation (biogas production process) the organic matter is mineralized by microorganisms into biogas (methane and carbon dioxide) in the absence of oxygen. The biogas is an additional energy source. Generally this process is carried out as a continuous BTP. It has been widely used in life process and has been confirmed as a promising method of solving some energy and ecological problems in the agriculture and industry. Because of the very restrictive on-line information the control of this process in continuous mode is often reduced to control of the biogas production rate or the concentration of the polluting organic matter (de-pollution control) at a desired value in the presence of some perturbations. Investigations show that classical linear controllers have good performances only in the linear zone of the strongly non-linear input-output characteristics. More sophisticated robust and with variable structure (VSC) controllers are studied. Due to the strongly non-linear dynamics of the process the performances of the closed loop system may be degrading in this case. The aim of this paper is to investigate different linearizing algorithms for control of a continuous non-linear methane fermentation process using the dilution rate as a control action and taking into account some practical implementation aspects. (authors) 8 refs.

  1. Robust control of linear descriptor systems

    CERN Document Server

    Feng, Yu

    2017-01-01

    This book develops original results regarding singular dynamic systems following two different paths. The first consists of generalizing results from classical state-space cases to linear descriptor systems, such as dilated linear matrix inequality (LMI) characterizations for descriptor systems and performance control under regulation constraints. The second is a new path, which considers descriptor systems as a powerful tool for conceiving new control laws, understanding and deciphering some controller’s architecture and even homogenizing different—existing—ways of obtaining some new and/or known results for state-space systems. The book also highlights the comprehensive control problem for descriptor systems as an example of using the descriptor framework in order to transform a non-standard control problem into a classic stabilization control problem. In another section, an accurate solution is derived for the sensitivity constrained linear optimal control also using the descriptor framework. The boo...

  2. Physically based sound synthesis and control of jumping sounds on an elastic trampoline

    DEFF Research Database (Denmark)

    Turchet, Luca; Pugliese, Roberto; Takala, Tapio

    2013-01-01

    This paper describes a system to interactively sonify the foot-floor contacts resulting from jumping on an elastic trampoline. The sonification was achieved by means of a synthesis engine based on physical models reproducing the sounds of jumping on several surface materials. The engine was contr...... on multi-sensory perception involving the auditory and the foot- haptic modalities....

  3. Linear Riccati Dynamics, Constant Feedback, and Controllability in Linear Quadratic Control Problems

    OpenAIRE

    Ronald J. Balvers; Douglas W. Mitchell

    2005-01-01

    Conditions are derived for linear-quadratic control (LQC) problems to exhibit linear evolution of the Riccati matrix and constancy of the control feedback matrix. One of these conditions involves a matrix upon whose rank a necessary condition and a sufficient condition for controllability are based. Linearity of Riccati evolution allows for rapid iterative calculation, and constancy of the control feedback matrix allows for time-invariant comparative static analysis of policy reactions.

  4. Unipedal Postural Balance and Countermovement Jumps After a Warm-up and Plyometric Training Session: A Randomized Controlled Trial.

    Science.gov (United States)

    Romero-Franco, Natalia; Jiménez-Reyes, Pedro

    2015-11-01

    The purpose of this study was to analyze the immediate effects of a plyometric training protocol on unipedal postural balance and countermovement jumps. In addition, we analyzed the effects of a warm-up on these parameters. Thirty-two amateur male sprinters (24.9 ± 4.1 years; 72.3 ± 10.7 kg; 1.78 ± 0.05 m; 22.6 ± 3.3 kg·m) were randomly sorted into a control group (n = 16) (they did not perform any physical activity) and a plyometric training group (n = 16) (they performed a 15-minute warm-up and a high-intensity plyometric protocol consisting of 10 sets of 15 vertical jumps). Before and after the warm-up, and immediately after and 5 minutes after the plyometric protocol, all athletes indicated the perceived exertion on calf and quad regions on a scale from 0 (no exertion) to 10 (maximum exertion). They also carried out a maximum countermovement jump and a unipedal postural balance test (athletes would remain as still as possible for 15 seconds in a left leg and right leg support stance). Results showed that, in the plyometric group, length and velocity of center-of-pressure movement in right leg support stance increased compared with baseline (p = 0.001 and p = 0.004, respectively) and to the control group (p = 0.035 and p = 0.029, respectively) immediately after the plyometric protocol. In addition, the countermovement jump height decreased right after the plyometric protocol (p postural balance remained unaltered. As a conclusion, high-intensity plyometric exercises blunt unipedal postural balance and countermovement jump performance. The deterioration lasts at least 5 minutes, which may influence future exercises in the training session. Coaches should plan the training routine according to the immediate effects of plyometry on postural balance and vertical jumps, which play a role in injury prevention and sports performance.

  5. A nonlinear plate control without linearization

    Directory of Open Access Journals (Sweden)

    Yildirim Kenan

    2017-03-01

    Full Text Available In this paper, an optimal vibration control problem for a nonlinear plate is considered. In order to obtain the optimal control function, wellposedness and controllability of the nonlinear system is investigated. The performance index functional of the system, to be minimized by minimum level of control, is chosen as the sum of the quadratic 10 functional of the displacement. The velocity of the plate and quadratic functional of the control function is added to the performance index functional as a penalty term. By using a maximum principle, the nonlinear control problem is transformed to solving a system of partial differential equations including state and adjoint variables linked by initial-boundary-terminal conditions. Hence, it is shown that optimal control of the nonlinear systems can be obtained without linearization of the nonlinear term and optimal control function can be obtained analytically for nonlinear systems without linearization.

  6. Controllability analysis of decentralised linear controllers for polymeric fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Serra, Maria; Aguado, Joaquin; Ansede, Xavier; Riera, Jordi [Institut de Robotica i Informatica Industrial, Universitat Politecnica de Catalunya - Consejo Superior de Investigaciones Cientificas, C. Llorens i Artigas 4, 08028 Barcelona (Spain)

    2005-10-10

    This work deals with the control of polymeric fuel cells. It includes a linear analysis of the system at different operating points, the comparison and selection of different control structures, and the validation of the controlled system by simulation. The work is based on a complex non linear model which has been linearised at several operating points. The linear analysis tools used are the Morari resiliency index, the condition number, and the relative gain array. These techniques are employed to compare the controllability of the system with different control structures and at different operating conditions. According to the results, the most promising control structures are selected and their performance with PI based diagonal controllers is evaluated through simulations with the complete non linear model. The range of operability of the examined control structures is compared. Conclusions indicate good performance of several diagonal linear controllers. However, very few have a wide operability range. (author)

  7. Fault tolerant control for switched linear systems

    CERN Document Server

    Du, Dongsheng; Shi, Peng

    2015-01-01

    This book presents up-to-date research and novel methodologies on fault diagnosis and fault tolerant control for switched linear systems. It provides a unified yet neat framework of filtering, fault detection, fault diagnosis and fault tolerant control of switched systems. It can therefore serve as a useful textbook for senior and/or graduate students who are interested in knowing the state-of-the-art of filtering, fault detection, fault diagnosis and fault tolerant control areas, as well as recent advances in switched linear systems.  

  8. Digitally Controlled Linear Four-Port Network

    Directory of Open Access Journals (Sweden)

    V. Michalek

    1994-09-01

    Full Text Available The paper deals with the design of a universal linear multipart. The circuit is based on digitally controlled multiple voltage-controlled voltage sources (MVCVSs. The main advantages of this control are accuracy, invariability, and very small area requirements. The whole system is simply connected to a PC via its parallel port. This multipart can generally be used as a building block for any model of a nonlinear dynamic system, namely for the piecewise-linear (PWL model in both explicit and implicit forms.

  9. Feedback linearization application for LLRF control system

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, S.; Regan, A.; Wang, Y.M.; Rohlev, T.

    1999-06-01

    The Low Energy Demonstration Accelerator (LEDA) being constructed at Los Alamos National Laboratory will serve as the prototype for the low energy section of Acceleration Production of Tritium (APT) accelerator. This paper addresses the problem of the LLRF control system for LEDA. The authors propose a control law which is based on exact feedback linearization coupled with gain scheduling which reduces the effect of the deterministic klystron cathode voltage ripple that is due to harmonics of the high voltage power supply and achieves tracking of desired set points. Also, they propose an estimator of the ripple and its time derivative and the estimates based feedback linearization controller.

  10. Feedback linearization application for LLRF control system

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, S.; Regan, A.; Wang, Y.M.; Rohlev, T.

    1998-12-31

    The Low Energy Demonstration Accelerator (LEDA) being constructed at Los Alamos National Laboratory will serve as the prototype for the low energy section of Acceleration Production of Tritium (APT) accelerator. This paper addresses the problem of the LLRF control system for LEDA. The authors propose a control law which is based on exact feedback linearization coupled with gain scheduling which reduces the effect of the deterministic klystron cathode voltage ripple that is due to harmonics of the high voltage power supply and achieves tracking of desired set points. Also, they propose an estimator of the ripple and its time derivative and the estimates based feedback linearization controller.

  11. On manipulator control by exact linearization

    Science.gov (United States)

    Kreutz, Kenneth

    1989-01-01

    Comments are given on the application to rigid-link manipulators of geometric control theory, resolved acceleration control, operational space control, and nonlinear decoupling theory, and the essential unity of these techniques for externally linearizing and decoupling end-effector dynamics is discussed. Exploiting the fact that the mass matrix of a rigid-link manipulator is positive definite, and the fact that there is an independent input for each degree of freedom, it is shown that a necessary and sufficient condition for a locally externally linearizing and output decoupling feedback law to exist is that the end effector Jacobian matrix be nonsingular.

  12. Controller design approach based on linear programming.

    Science.gov (United States)

    Tanaka, Ryo; Shibasaki, Hiroki; Ogawa, Hiromitsu; Murakami, Takahiro; Ishida, Yoshihisa

    2013-11-01

    This study explains and demonstrates the design method for a control system with a load disturbance observer. Observer gains are determined by linear programming (LP) in terms of the Routh-Hurwitz stability criterion and the final-value theorem. In addition, the control model has a feedback structure, and feedback gains are determined to be the linear quadratic regulator. The simulation results confirmed that compared with the conventional method, the output estimated by our proposed method converges to a reference input faster when a load disturbance is added to a control system. In addition, we also confirmed the effectiveness of the proposed method by performing an experiment with a DC motor.

  13. Controlling attribute effect in linear regression

    KAUST Repository

    Calders, Toon

    2013-12-01

    In data mining we often have to learn from biased data, because, for instance, data comes from different batches or there was a gender or racial bias in the collection of social data. In some applications it may be necessary to explicitly control this bias in the models we learn from the data. This paper is the first to study learning linear regression models under constraints that control the biasing effect of a given attribute such as gender or batch number. We show how propensity modeling can be used for factoring out the part of the bias that can be justified by externally provided explanatory attributes. Then we analytically derive linear models that minimize squared error while controlling the bias by imposing constraints on the mean outcome or residuals of the models. Experiments with discrimination-aware crime prediction and batch effect normalization tasks show that the proposed techniques are successful in controlling attribute effects in linear regression models. © 2013 IEEE.

  14. The construction of the program control with probability one for stochastic dynamic systems with jumps

    CERN Document Server

    Karachanskaya, Elena

    2012-01-01

    Investigate the stochastic dynamic non-linear system with the Wiener and the Poisson perturbations. For such systems we construct the program control with probability one, which allows this system to move on the given trajectory. In this case the control program is solution of the algebraic system of linear equations. Considered algorithm is based on the first integral theory for stochastic differential equations system.

  15. Controller reconfiguration for non-linear systems

    NARCIS (Netherlands)

    Kanev, S.; Verhaegen, M.

    2000-01-01

    This paper outlines an algorithm for controller reconfiguration for non-linear systems, based on a combination of a multiple model estimator and a generalized predictive controller. A set of models is constructed, each corresponding to a different operating condition of the system. The interacting m

  16. An example in linear quadratic optimal control

    NARCIS (Netherlands)

    Weiss, George; Zwart, Heiko J.

    1998-01-01

    We construct a simple example of a quadratic optimal control problem for an infinite-dimensional linear system based on a shift semigroup. This system has an unbounded control operator. The cost is quadratic in the input and the state, and the weighting operators are bounded. Despite its extreme

  17. An example in linear quadratic optimal control

    NARCIS (Netherlands)

    Weiss, George; Zwart, Heiko J.

    1998-01-01

    We construct a simple example of a quadratic optimal control problem for an infinite-dimensional linear system based on a shift semigroup. This system has an unbounded control operator. The cost is quadratic in the input and the state, and the weighting operators are bounded. Despite its extreme sim

  18. Land-Jump Performance in Patients with Juvenile Idiopathic Arthritis (JIA): A Comparison to Matched Controls

    Science.gov (United States)

    Ford, Kevin R.; Myer, Gregory D.; Melson, Paula G.; Darnell, Shannon C.; Brunner, Hermine I.; Hewett, Timothy E.

    2009-01-01

    Objective. The purpose of this study was to determine if high functioning children with Juvenile Idiopathic Arthritis (JIA) with minimal disease activity have different biomechanics during high loading tasks compared to controls. Patients were included if they had minimal inflammation documented in one or both knees. Methods. The subject groups consisted of eleven patients with JIA and eleven sex, age, height, and weight matched controls. Sagittal plane kinematic and kinetics were calculated during a drop vertical jump maneuver. The Child Health Assessment Questionnaire (CHAQ) was collected on each patient with JIA. Results. The subjects with JIA had increased knee (P = .011) and hip flexion (P < .001) compared to control subjects. Subjects with JIA also demonstrated decreased knee extensor moments during take-off (P = .028) and ankle plantar flexor moments during landing (P = .024) and take-off (P = .004). In the JIA group, increased hip extensor moments were predictive of increased disability (R2 = .477, SEE = .131). Conclusions. Patients with JIA may demonstrate underlying biomechanical deviations compared to controls. In addition, biomechanical assessment of hip extensor mechanics during dynamic tasks may provide an objective assessment tool to determine overall function in patients with JIA. PMID:20148070

  19. Land-Jump Performance in Patients with Juvenile Idiopathic Arthritis (JIA: A Comparison to Matched Controls

    Directory of Open Access Journals (Sweden)

    Kevin R. Ford

    2009-01-01

    Full Text Available Objective. The purpose of this study was to determine if high functioning children with Juvenile Idiopathic Arthritis (JIA with minimal disease activity have different biomechanics during high loading tasks compared to controls. Patients were included if they had minimal inflammation documented in one or both knees. Methods. The subject groups consisted of eleven patients with JIA and eleven sex, age, height, and weight matched controls. Sagittal plane kinematic and kinetics were calculated during a drop vertical jump maneuver. The Child Health Assessment Questionnaire (CHAQ was collected on each patient with JIA. Results. The subjects with JIA had increased knee (=.011 and hip flexion (<.001 compared to control subjects. Subjects with JIA also demonstrated decreased knee extensor moments during take-off (=.028 and ankle plantar flexor moments during landing (=.024 and take-off (=.004. In the JIA group, increased hip extensor moments were predictive of increased disability (2=.477, =.131. Conclusions. Patients with JIA may demonstrate underlying biomechanical deviations compared to controls. In addition, biomechanical assessment of hip extensor mechanics during dynamic tasks may provide an objective assessment tool to determine overall function in patients with JIA.

  20. Nonlinear Stochastic H∞ Control with Markov Jumps and (x,u,v-Dependent Noise: Finite and Infinite Horizon Cases

    Directory of Open Access Journals (Sweden)

    Li Sheng

    2014-01-01

    Full Text Available This paper is concerned with the H∞ control problem for nonlinear stochastic Markov jump systems with state, control, and external disturbance-dependent noise. By means of inequality techniques and coupled Hamilton-Jacobi inequalities, both finite and infinite horizon H∞ control designs of such systems are developed. Two numerical examples are provided to illustrate the effectiveness of the proposed design method.

  1. Input-Output Approach to Control for Fuzzy Markov Jump Systems With Time-Varying Delays and Uncertain Packet Dropout Rate.

    Science.gov (United States)

    Zhang, Lixian; Ning, Zepeng; Shi, Peng

    2015-11-01

    This paper is concerned with H∞ control problem for a class of discrete-time Takagi-Sugeno fuzzy Markov jump systems with time-varying delays under unreliable communication links. It is assumed that the data transmission between the plant and the controller are subject to randomly occurred packet dropouts satisfying Bernoulli distribution and the dropout rate is uncertain. Based on a fuzzy-basis-dependent and mode-dependent Lyapunov function, the existence conditions of the desired H∞ state-feedback controllers are derived by employing the scaled small gain theorem such that the closed-loop system is stochastically stable and achieves a guaranteed H∞ performance. The gains of the controllers are constructed by solving a set of linear matrix inequalities. Finally, a practical example of robot arm is provided to illustrate the performance of the proposed approach.

  2. Increased external hip-rotation strength relates to reduced frontal-plane knee control during drop jumping in recreational female athletes: paradox or adaptation?

    DEFF Research Database (Denmark)

    Bandholm, Thomas; Thorborg, Kristian; Andersson, Elin;

    2011-01-01

    The purpose of the present study was to examine the relationship between hip muscle strength (abduction and external rotation) and frontal-plane knee control during drop jumping in recreational female athletes. Thirty-three healthy young recreational female athletes were included. Maximal isometric...... hip abduction and external rotation torque were measured using hand-held dynamometry, and frontal-plane knee control during drop jumping was assessed using three-dimensional motion analysis. Frontal-plane knee control during drop jumping was expressed as the absolute (cm) and relative (cm/cm body...... in knee marker distance during drop jumping. Maximal hip-abduction torque did not correlate with the absolute (r=0.18, P=0.31) or relative (r=0.19, P=0.29) change in knee marker distance during drop jumping. Contrary to our expectations, greater maximal external hip-rotation torque was related to greater...

  3. Light-controllable linear dichroism in nematics.

    Science.gov (United States)

    Petriashvili, Gia; Hamdi, Ridha; De Santo, Maria Penelope; Gary, Ramla; Barberi, Riccardo

    2015-10-01

    We report a method to obtain a light-controllable dichroism. The main effect is achieved using spiropyran-doped (SP-doped) nematic liquid crystal mixtures. SP molecules exhibit a high solubility in the liquid crystal host, which can vary between 1% and 4% in weight, without destroying the liquid crystalline phase. Due to their elongated shape, SP molecules are oriented along the nematic liquid crystal director. The obtained linear dichroism was measured to be 1.08 with a dichroic ratio of 7.12. Further, a two-direction linear dichroism was obtained by adding a dichroic dye to the mixture. The angle between the two dichroic axes was found to be 11°. Two-direction linear dichroism is also light controllable and can be switched back to one-direction dichroism.

  4. Quad-copter UAV BLDC Motor Control: Linear v/s non-linear control maps

    Directory of Open Access Journals (Sweden)

    Deep Parikh

    2015-08-01

    Full Text Available This paper presents some investigations and comparison of using linear versus non-linear static motor-control maps for the speed control of a BLDC (Brush Less Direct Current motors used in quad-copter UAV (Unmanned Aerial Vehicles. The motor-control map considered here is the inverse of the static map relating motor-speed output to motor-voltage input for a typical out-runner type Brushless DC Motors (BLDCM.  Traditionally, quad-copter BLDC motor speed control uses simple linear motor-control map defined by the motor-constant specification. However, practical BLDC motors show non-linear characteristic, particularly when operated across wide operating speed-range as is commonly required in quad-copter UAV flight operations. In this paper, our investigations to compare performance of linear versus non-linear motor-control maps are presented. The investigations cover simulation-based and experimental study of BLDC motor speed control systems for  quad-copter vehicle available. First the non-linear map relating rotor RPM to motor voltage for quad-copter BLDC motor is obtained experimentally using an optical speed encoder. The performance of the linear versus non-linear motor-control-maps for the speed control are studied. The investigations also cover study of time-responses for various standard test input-signals e.g. step, ramp and pulse inputs, applied as the reference speed-commands. Also, simple 2-degree of freedom test-bed is developed in our laboratory to help test the open-loop and closed-loop experimental investigations. The non-linear motor-control map is found to perform better in BLDC motor speed tracking control performance and thereby helping achieve better quad-copter roll-angle attitude control.

  5. Could the deep squat jump predict weightlifting performance?

    Science.gov (United States)

    Vizcaya, Francisco J; Viana, Oscar; del Olmo, Miguel Fernandez; Acero, Rafael Martin

    2009-05-01

    This research was carried out with the aim of describing the deep squat jump (DSJ) and comparing it with the squat (SJ) and countermovement (CMJ) jumps, to introduce it as a strength testing tool in the monitoring and control of training in strength and power sports. Forty-eight male subjects (21 weightlifters, 12 triathletes, and 15 physical education students) performed 3 trials of DSJ, SJ, and CMJ with a 1-minute rest among them. For the weightlifters, snatch and clean and jerk results during the Spanish Championship 2004 and the 35th EU Championships 2007 were collected to study the relationship among vertical jumps and weightlifters' performance. A 1-way analysis of variance (ANOVA) showed significant differences between groups in the vertical jumps, with the highest jumps for the weightlifters and the lowest for the triathletes. An ANOVA for repeated measures (type of jump) showed better results for DSJ and CMJ than SJ in all groups. A linear regression analysis was performed to determine the association between weightlifting and vertical jump performances. Correlations among the weightlifting performance and the vertical jumps were also calculated and determined using Pearson r. Results have shown that both CMJ and DSJ are strongly correlated with weightlifting ability. Therefore, both measures can be useful for coaches as a strength testing tool in the monitoring and control of training in weightlifting.

  6. Constrained linear control design of continuous bioreactor

    Energy Technology Data Exchange (ETDEWEB)

    Tarbouriech, S.; Queinnec, I.

    1994-12-31

    The control problem of a continuous bio-process is expressed in terms of stabilization and disturbances attenuation of an uncertain linear system under state and control constraints. A static output feedback is realized to obtain a suitable Eigen-structure assignment in closed-loop; then a positively invariant set of admissible initial states is determined by using cones properties, in order to respect the constraints. (authors) 19 refs.

  7. Linear control theory for gene network modeling.

    Science.gov (United States)

    Shin, Yong-Jun; Bleris, Leonidas

    2010-09-16

    Systems biology is an interdisciplinary field that aims at understanding complex interactions in cells. Here we demonstrate that linear control theory can provide valuable insight and practical tools for the characterization of complex biological networks. We provide the foundation for such analyses through the study of several case studies including cascade and parallel forms, feedback and feedforward loops. We reproduce experimental results and provide rational analysis of the observed behavior. We demonstrate that methods such as the transfer function (frequency domain) and linear state-space (time domain) can be used to predict reliably the properties and transient behavior of complex network topologies and point to specific design strategies for synthetic networks.

  8. Quad-copter UAV BLDC Motor Control: Linear v/s non-linear control maps

    OpenAIRE

    Deep Parikh; Jignesh Patel; Jayesh Barve

    2015-01-01

    This paper presents some investigations and comparison of using linear versus non-linear static motor-control maps for the speed control of a BLDC (Brush Less Direct Current) motors used in quad-copter UAV (Unmanned Aerial Vehicles). The motor-control map considered here is the inverse of the static map relating motor-speed output to motor-voltage input for a typical out-runner type Brushless DC Motors (BLDCM).  Traditionally, quad-copter BLDC motor speed control uses simple linear motor-cont...

  9. Hydraulic jumps in a channel

    DEFF Research Database (Denmark)

    Bonn, D.; Andersen, Anders Peter; Bohr, Tomas

    2009-01-01

    We present a study of hydraulic jumps with flow predominantly in one direction, created either by confining the flow to a narrow channel with parallel walls or by providing an inflow in the form of a narrow sheet. In the channel flow, we find a linear height profile upstream of the jump as expected...

  10. Stochastic asymptotical synchronization of chaotic Markovian jumping fuzzy cellular neural networks with mixed delays and the Wiener process based on sampled-data control

    Institute of Scientific and Technical Information of China (English)

    M.Kalpana; P.Balasubramaniam

    2013-01-01

    We investigate the stochastic asymptotical synchronization of chaotic Markovian jumping fuzzy cellular neural networks (MJFCNNs) with discrete,unbounded distributed delays,and the Wiener process based on sampled-data control using the linear matrix inequality (LMI) approach.The Lyapunov-Krasovskii functional combined with the input delay approach as well as the free-weighting matrix approach is employed to derive several sufficient criteria in terms of LMIs to ensure that the delayed MJFCNNs with the Wiener process is stochastic asymptotical synchronous.Restrictions (e.g.,time derivative is smaller than one) are removed to obtain a proposed sampled-data controller.Finally,a numerical example is provided to demonstrate the reliability of the derived results.

  11. Criteria for Stability of Linear Control Systems

    Institute of Scientific and Technical Information of China (English)

    JING Yan-fei; HUANG Ting-zhu

    2007-01-01

    As it is well known, it is significant to know whether a matrix is an H-matrix or not in stability analysis of linear control systems. However, to distinguish H-matrices is difficult in real applications. In this paper, a practical extension of the sufficient conditions for H-matrices is investigated under some conditions. A larger scale of H-matrices which can be judged by the proposed method is shown by the numerical examples.

  12. Linear systems optimal and robust control

    CERN Document Server

    Sinha, Alok

    2007-01-01

    Introduction Overview Contents of the Book State Space Description of a Linear System Transfer Function of a Single Input/Single Output (SISO) System State Space Realizations of a SISO System SISO Transfer Function from a State Space Realization Solution of State Space Equations Observability and Controllability of a SISO System Some Important Similarity Transformations Simultaneous Controllability and Observability Multiinput/Multioutput (MIMO) Systems State Space Realizations of a Transfer Function Matrix Controllability and Observability of a MIMO System Matrix-Fraction Description (MFD) MFD of a Transfer Function Matrix for the Minimal Order of a State Space Realization Controller Form Realization from a Right MFD Poles and Zeros of a MIMO Transfer Function Matrix Stability Analysis State Feedback Control and Optimization State Variable Feedback for a Single Input System Computation of State Feedback Gain Matrix for a Multiinput System State Feedback Gain Matrix for a Multi...

  13. Jumping Dynamics

    DEFF Research Database (Denmark)

    Sannino, Francesco

    2013-01-01

    We propose an alternative paradigm to the conjectured Miransky scaling potentially underlying the physics describing the transition from the conformally broken to the conformally restored phase when tuning certain parameters such as the number of flavors in gauge theories. According to the new...... paradigm the physical scale and henceforth also the massive spectrum of the theory jump at the lower boundary of the conformal window. In particular we propose that a theory can suddenly jump from a Quantum Chromodynamics type spectrum, at the lower boundary of the conformal window, to a conformal one...... without particle interpretation. The jumping scenario, therefore, does not support a near-conformal dynamics of walking type. We will also discuss the impact of jumping dynamics on the construction of models of dynamical electroweak symmetry breaking....

  14. Multiparameter Fractional Difference Linear Control Systems

    Directory of Open Access Journals (Sweden)

    Dorota Mozyrska

    2014-01-01

    Full Text Available The Riemann-Liouville-, Caputo-, and Grünwald-Letnikov-type fractional order difference operators are discussed and used to state and solve the controllability and observability problems of linear fractional order discrete-time control systems with multiorder and multistep. It is shown that the obtained results do not depend on the type of fractional operators and steps. The comparison of systems is made under the number of steps needed, firstly to achieve a final point, and secondly to distinguish initial conditions for particular operator.

  15. Linearizing Control of Induction Motor Based on Networked Control Systems

    Institute of Scientific and Technical Information of China (English)

    Jun Ren; Chun-Wen Li; De-Zong Zhao

    2009-01-01

    A new approach to speed control of induction motors is developed by introducing networked control systems (NCSs) into the induction motor driving system. The control strategy is to stabilize and track the rotor speed of the induction motor when the network time delay occurs in the transport medium of network data. First, a feedback linearization method is used to achieve input-output linearization and decoupling control of the induction motor driving system based on rotor flux model, and then the characteristic of network data is analyzed in terms of the inherent network time delay. A networked control model of an induction motor is established. The sufficient condition of asymptotic stability for the networked induction motor driving system is given, and the state feedback controller is obtained by solving the linear matrix inequalities (LMIs). Simulation results verify the efficiency of the proposed scheme.

  16. Dynamics and stability of directional jumps in the desert locust

    Science.gov (United States)

    Gvirsman, Omer

    2016-01-01

    Locusts are known for their ability to jump large distances to avoid predation. The jump also serves to launch the adult locust into the air in order to initiate flight. Various aspects of this important behavior have been studied extensively, from muscle physiology and biomechanics, to the energy storage systems involved in powering the jump, and more. Less well understood are the mechanisms participating in control of the jump trajectory. Here we utilise video monitoring and careful analysis of experimental directional jumps by adult desert locusts, together with dynamic computer simulation, in order to understand how the locusts control the direction and elevation of the jump, the residual angular velocities resulting from the jump and the timing of flapping-flight initiation. Our study confirms and expands early findings regarding the instrumental role of the initial body position and orientation. Both real-jump video analysis and simulations based on our expanded dynamical model demonstrate that the initial body coordinates of position (relative to the hind-legs ground-contact points) are dominant in predicting the jumps’ azimuth and elevation angles. We also report a strong linear correlation between the jumps’ pitch-angular-velocity and flight initiation timing, such that head downwards rotations lead to earlier wing opening. In addition to offering important insights into the bio-mechanical principles of locust jumping and flight initiation, the findings from this study will be used in designing future prototypes of a bio-inspired miniature jumping robot that will be employed in animal behaviour studies and environmental monitoring applications. PMID:27703846

  17. Dynamics and stability of directional jumps in the desert locust

    Directory of Open Access Journals (Sweden)

    Omer Gvirsman

    2016-09-01

    Full Text Available Locusts are known for their ability to jump large distances to avoid predation. The jump also serves to launch the adult locust into the air in order to initiate flight. Various aspects of this important behavior have been studied extensively, from muscle physiology and biomechanics, to the energy storage systems involved in powering the jump, and more. Less well understood are the mechanisms participating in control of the jump trajectory. Here we utilise video monitoring and careful analysis of experimental directional jumps by adult desert locusts, together with dynamic computer simulation, in order to understand how the locusts control the direction and elevation of the jump, the residual angular velocities resulting from the jump and the timing of flapping-flight initiation. Our study confirms and expands early findings regarding the instrumental role of the initial body position and orientation. Both real-jump video analysis and simulations based on our expanded dynamical model demonstrate that the initial body coordinates of position (relative to the hind-legs ground-contact points are dominant in predicting the jumps’ azimuth and elevation angles. We also report a strong linear correlation between the jumps’ pitch-angular-velocity and flight initiation timing, such that head downwards rotations lead to earlier wing opening. In addition to offering important insights into the bio-mechanical principles of locust jumping and flight initiation, the findings from this study will be used in designing future prototypes of a bio-inspired miniature jumping robot that will be employed in animal behaviour studies and environmental monitoring applications.

  18. Robust Control Design via Linear Programming

    Science.gov (United States)

    Keel, L. H.; Bhattacharyya, S. P.

    1998-01-01

    This paper deals with the problem of synthesizing or designing a feedback controller of fixed dynamic order. The closed loop specifications considered here are given in terms of a target performance vector representing a desired set of closed loop transfer functions connecting various signals. In general these point targets are unattainable with a fixed order controller. By enlarging the target from a fixed point set to an interval set the solvability conditions with a fixed order controller are relaxed and a solution is more easily enabled. Results from the parametric robust control literature can be used to design the interval target family so that the performance deterioration is acceptable, even when plant uncertainty is present. It is shown that it is possible to devise a computationally simple linear programming approach that attempts to meet the desired closed loop specifications.

  19. Kinematic control of extreme jump angles in the red leg running frog (Kassina maculata).

    Science.gov (United States)

    Richards, Christopher Thomas; Porro, Laura Beatriz; Collings, Amber Jade

    2017-03-08

    The kinematic flexibility of frog hindlimbs enables multiple locomotor modes within a single species. Prior work has extensively explored maximum performance capacity in frogs; however, the mechanisms by which anurans modulate performance within locomotor modes remain unclear. We explored how Kassina maculata, a species known for both running and jumping abilities, modulates takeoff angle from horizontal to nearly vertical. Specifically, how do 3D motions of leg segments coordinate to move the center of mass (COM) upwards and forwards? How do joint rotations modulate jump angle? High-speed video was used to quantify 3D joint angles and their respective rotation axis vectors. Inverse kinematics was used to determine how hip, knee and ankle rotations contribute to components of COM motion. Independent of takeoff angle, leg segment retraction (rearward rotation) was twofold greater than adduction (downward rotation). Additionally, the joint rotation axis vectors reoriented through time suggesting dynamic shifts in relative roles of joints. We found two hypothetical mechanisms for increasing takeoff angle: Firstly, greater knee and ankle excursion increased shank adduction, elevating the COM. Secondly, during the steepest jumps the body rotated rapidly backwards to redirect the COM velocity. This rotation was not caused by pelvic angle extension, but rather by kinematic transmission from leg segments via reorientation of the joint rotation axes. We propose that K. maculata uses proximal leg retraction as the principal kinematic drive while dynamically tuning jump trajectory by knee and ankle joint modulation.

  20. H2 OPTIMAL CONTROLLERS FOR A LARGE CLASS OF LINEAR STOCHASTIC SYSTEMS WITH PERIODIC COEFFICIENTS

    Directory of Open Access Journals (Sweden)

    Adrian-Mihail Stoica

    2011-07-01

    Full Text Available In this paper the H2 type optimization problem for a class of timevarying linear stochastic systems modeled by Ito differential equations and Markovian jumping with periodic coefficients is considered. The main goal of such an optimization problem is to minimize the effect of additive white noise perturbations on a suitable output of the controlled system. It is assumed that only an output is available for measurements.The solution of the considered optimization problem is constructed via the stabilizing solutions of some suitable systems of generalized Riccati differential equations with periodic coefficients.

  1. Stabilization of Semi-Markovian Jump Systems with Uncertain Probability Intensities and Its Extension to Quantized Control

    Directory of Open Access Journals (Sweden)

    Ngoc Hoai An Nguyen

    2016-01-01

    Full Text Available This paper concentrates on the issue of stability analysis and control synthesis for semi-Markovian jump systems (S-MJSs with uncertain probability intensities. Here, to construct a more applicable transition model for S-MJSs, the probability intensities are taken to be uncertain, and this property is totally reflected in the stabilization condition via a relaxation process established on the basis of time-varying transition rates. Moreover, an extension of the proposed approach is made to tackle the quantized control problem of S-MJSs, where the infinitesimal operator of a stochastic Lyapunov function is clearly discussed with consideration of input quantization errors.

  2. Operator approach to linear control systems

    CERN Document Server

    Cheremensky, A

    1996-01-01

    Within the framework of the optimization problem for linear control systems with quadratic performance index (LQP), the operator approach allows the construction of a systems theory including a number of particular infinite-dimensional optimization problems with hardly visible concreteness. This approach yields interesting interpretations of these problems and more effective feedback design methods. This book is unique in its emphasis on developing methods for solving a sufficiently general LQP. Although this is complex material, the theory developed here is built on transparent and relatively simple principles, and readers with less experience in the field of operator theory will find enough material to give them a good overview of the current state of LQP theory and its applications. Audience: Graduate students and researchers in the fields of mathematical systems theory, operator theory, cybernetics, and control systems.

  3. Linear control of oscillator and amplifier flows*

    Science.gov (United States)

    Schmid, Peter J.; Sipp, Denis

    2016-08-01

    Linear control applied to fluid systems near an equilibrium point has important applications for many flows of industrial or fundamental interest. In this article we give an exposition of tools and approaches for the design of control strategies for globally stable or unstable flows. For unstable oscillator flows a feedback configuration and a model-based approach is proposed, while for stable noise-amplifier flows a feedforward setup and an approach based on system identification is advocated. Model reduction and robustness issues are addressed for the oscillator case; statistical learning techniques are emphasized for the amplifier case. Effective suppression of global and convective instabilities could be demonstrated for either case, even though the system-identification approach results in a superior robustness to off-design conditions.

  4. Design of saturated controllers for linear singular systems

    Institute of Scientific and Technical Information of China (English)

    Wang Ruliang; Liu Yongqing

    2005-01-01

    A designing method is presented to find stabilizing saturated linear controllers for linear continuous time and discrete time singular systems with control constraints. The idea is as follows: The system is first stabilized by a low-gain linear state feedback control. A general Lyapunov function is found, on the basis of which another linear state feedback control is computed.The second step is very similar to a relay control design. The two controls are added and saturated.

  5. Optimal Control of Investment-Reinsurance Problem for an Insurer with Jump-Diffusion Risk Process: Independence of Brownian Motions

    Directory of Open Access Journals (Sweden)

    De-Lei Sheng

    2014-01-01

    Full Text Available This paper investigates the excess-of-loss reinsurance and investment problem for a compound Poisson jump-diffusion risk process, with the risk asset price modeled by a constant elasticity of variance (CEV model. It aims at obtaining the explicit optimal control strategy and the optimal value function. Applying stochastic control technique of jump diffusion, a Hamilton-Jacobi-Bellman (HJB equation is established. Moreover, we show that a closed-form solution for the HJB equation can be found by maximizing the insurer’s exponential utility of terminal wealth with the independence of two Brownian motions W(t and W1(t. A verification theorem is also proved to verify that the solution of HJB equation is indeed a solution of this optimal control problem. Then, we quantitatively analyze the effect of different parameter impacts on optimal control strategy and the optimal value function, which show that optimal control strategy is decreasing with the initial wealth x and decreasing with the volatility rate of risk asset price. However, the optimal value function V(t;x;s is increasing with the appreciation rate μ of risk asset.

  6. Long Jump

    CERN Document Server

    Dorobantu, V

    2012-01-01

    When the laws of Physics are taken seriously, the sports can benefit in getting better results, as was the case of the high jump in Flop style, so that the athlete sprints diagonally towards the bar,then curve and leap backwards over it. The jumper, in this case, has the center of mass under the bar, fact which allows improvement of the performance.

  7. Non-linear controllers in ship tracking control system

    Institute of Scientific and Technical Information of China (English)

    LESZEK M

    2005-01-01

    The cascade systems which stabilize the transverse deviation of the ship in relation to the set path is presented. The ship's path is determined as a broken line with specified coordinates of way points. Three controllers are used in the system. The main primary controller is the trajectory controller. The set value of heading for the course control system or angular velocity for the turning control system is generated. The course control system is used on the straight line of the set trajectory while the turning controller is used during a change of the set trajectory segment. The characteristics of the non-linear controllers are selected in such a way that the properties of the control system with the rate of turn controller are modelled by the first-order inertia, while the system with the course keeping controller is modelled by a second-order linear term. The presented control system is tested in computer simulation. Some results of simulation tests are presented and discussed.

  8. Optimal Control for Insurers with a Jump-diffusion Risk Pro cess

    Institute of Scientific and Technical Information of China (English)

    WU Kun; XIAO Jian-wu; LUO Rong-hua

    2015-01-01

    In this paper, the optimal XL-reinsurance of an insurer with jump-diffusion risk process is studied. With the assumptions that the risk process is a compound Possion pro-cess perturbed by a standard Brownian motion and the reinsurance premium is calculated according to the variance principle, the implicit expression of the priority and corresponding value function when the utility function is exponential are obtained. At last, the value func-tion is argued, the properties of the priority about parameters are discussed and numerical results of the priority for various claim-size distributions are shown.

  9. Optimal control strategy for an impulsive stochastic competition system with time delays and jumps

    Science.gov (United States)

    Liu, Lidan; Meng, Xinzhu; Zhang, Tonghua

    2017-07-01

    Driven by both white and jump noises, a stochastic delayed model with two competitive species in a polluted environment is proposed and investigated. By using the comparison theorem of stochastic differential equations and limit superior theory, sufficient conditions for persistence in mean and extinction of two species are established. In addition, we obtain that the system is asymptotically stable in distribution by using ergodic method. Furthermore, the optimal harvesting effort and the maximum of expectation of sustainable yield (ESY) are derived from Hessian matrix method and optimal harvesting theory of differential equations. Finally, some numerical simulations are provided to illustrate the theoretical results.

  10. Model Based Adaptive Piecewise Linear Controller for Complicated Control Systems

    Directory of Open Access Journals (Sweden)

    Tain-Sou Tsay

    2014-01-01

    Full Text Available A model based adaptive piecewise linear control scheme for industry processes with specifications on peak overshoots and rise times is proposed. It is a gain stabilized control technique. Large gain is used for large tracking error to get fast response. Small gain is used between large and small tracking error for good performance. Large gain is used again for small tracking error to cope with large disturbance. Parameters of the three-segment piecewise linear controller are found by an automatic regulating time series which is function of output characteristics of the plant and reference model. The time series will be converged to steady values after the time response of the considered system matching that of the reference model. The proposed control scheme is applied to four numerical examples which have been compensated by PID controllers. Parameters of PID controllers are found by optimization method. It gives an almost command independent response and gives significant improvements for response time and performance.

  11. High Accuracy Attitude Control of a Spacecraft Using Feedback Linearization

    Science.gov (United States)

    1992-05-01

    and Spacecraft Body from Gyro Measurements ......... .................................. 119 D.2 An Approximation to Exact Linearization using IPSRU...31 2-4 Attitude Determination and Control System Architecture ................. 33 3-1 Exact Linearization Using Nonlinear Feedback...though basic techniques were adapted from recent references on the use of exact linearization (such as [8] and [27]), the specific control approach

  12. Electrostatic charging of jumping droplets

    Science.gov (United States)

    Miljkovic, Nenad; Preston, Daniel J.; Enright, Ryan; Wang, Evelyn N.

    2013-09-01

    With the broad interest in and development of superhydrophobic surfaces for self-cleaning, condensation heat transfer enhancement and anti-icing applications, more detailed insights on droplet interactions on these surfaces have emerged. Specifically, when two droplets coalesce, they can spontaneously jump away from a superhydrophobic surface due to the release of excess surface energy. Here we show that jumping droplets gain a net positive charge that causes them to repel each other mid-flight. We used electric fields to quantify the charge on the droplets and identified the mechanism for the charge accumulation, which is associated with the formation of the electric double layer at the droplet-surface interface. The observation of droplet charge accumulation provides insight into jumping droplet physics as well as processes involving charged liquid droplets. Furthermore, this work is a starting point for more advanced approaches for enhancing jumping droplet surface performance by using external electric fields to control droplet jumping.

  13. Linear and Nonlinear Controllers Applied to Fixed-Wing UAV

    OpenAIRE

    Tadeo Espinoza; Alejandro Dzul; Miguel Llama

    2013-01-01

    This article presents a comparison of controllers which have been applied to a fixed‐wing Unmanned Aerial Vehicle (UAV). The comparison is realized between classical linear controllers and nonlinear control laws. The concerned linear controllers are: Proportional‐ Derivative (PD) and Proportional‐Integral‐Derivative (PID), while the nonlinear controllers are: backstepping, sliding modes, nested saturation and fuzzy control. These controllers are compared and analysed for altitude, yaw and rol...

  14. Singular linear quadratic control problem for systems with linear and constant delay

    Science.gov (United States)

    Sesekin, A. N.; Andreeva, I. Yu.; Shlyakhov, A. S.

    2016-12-01

    This article is devoted to the singular linear-quadratic optimization problem on the trajectories of the linear non-autonomous system of differential equations with linear and constant delay. It should be noted that such task does not solve the class of integrable controls, so to ensure the existence of a solution is needed to expand the class of controls to include the control impulse components. For the problem under consideration, we have built program control containing impulse components in the initial and final moments time. This is done under certain assumptions on the functional and the right side of the control system.

  15. A Riccati approach for constrained linear quadratic optimal control

    Science.gov (United States)

    Sideris, Athanasios; Rodriguez, Luis A.

    2011-02-01

    An active-set method is proposed for solving linear quadratic optimal control problems subject to general linear inequality path constraints including mixed state-control and state-only constraints. A Riccati-based approach is developed for efficiently solving the equality constrained optimal control subproblems generated during the procedure. The solution of each subproblem requires computations that scale linearly with the horizon length. The algorithm is illustrated with numerical examples.

  16. Neural Generalized Predictive Control of a non-linear Process

    DEFF Research Database (Denmark)

    Sørensen, Paul Haase; Nørgård, Peter Magnus; Ravn, Ole

    1998-01-01

    qualities. The controller is a non-linear version of the well-known generalized predictive controller developed in linear control theory. It involves minimization of a cost function which in the present case has to be done numerically. Therefore, we develop the numerical algorithms necessary in substantial...

  17. Linear Parameter Varying Control of Induction Motors

    DEFF Research Database (Denmark)

    Trangbæk, Klaus

    for high performance applications. This thesis demonstrates how LPV control theory provides a systematic way to achieve good performance for these problems. The main contributions of this thesis are the application of the LPV control theory to induction motor control as well as various contributions...... to the field of LPV control theory itself...

  18. Evaluation of Linear and Non-Linear Control Schemes Applied to a Hydraulic Servo System

    DEFF Research Database (Denmark)

    Andersen, Torben Ole; Hansen, Michael Rygaard; Pedersen, Henrik Clemmensen

    2005-01-01

    Due to the innovation of low-cost electronics such as sensors, microcontrollers etc., the focus on highperformance motion control is increasing. This work focuses on position control of single-input single-output hydraulic servo-systems in general. A hydraulically actuated robotic manipulator...... is used as test facility acting as load for the hydraulic servo system. An experimentally verified non-linear model of the complete system has been developed and used to design a series of both linear and non-linear control schemes. The controllers from each category are compared with respect to design...

  19. Controllability of Linear Systems with inner derivation on Lie Groups

    OpenAIRE

    Jouan, Philippe

    2011-01-01

    A vector field on a connected Lie group is said to be linear if its flow is a one parameter group of automorphisms. A control-affine system is linear if the drift is linear and the controlled vector fields right invariant. The controllability properties of such systems are studied, mainly in the case where the derivation of the group Lie algebra that can be associated to the linear vector field is inner. After some general considerations controllability properties on semi simple, nilpotent an...

  20. Age-Related Variation in Male Youth Athletes' Countermovement Jump After Plyometric Training: A Meta-Analysis of Controlled Trials.

    Science.gov (United States)

    Moran, Jason J; Sandercock, Gavin R H; Ramírez-Campillo, Rodrigo; Meylan, César M P; Collison, Jay A; Parry, Dave A

    2017-02-01

    Moran, J, Sandercock, GRH, Ramírez-Campillo, R, Meylan, CMP, Collison, J, and Parry, DA. Age-related variation in male youth athletes' countermovement jump after plyometric training: A meta-analysis of controlled trials. J Strength Cond Res 31(2): 552-565, 2017-Recent debate on the trainability of youths has focused on the existence of periods of accelerated adaptation to training. Accordingly, the purpose of this meta-analysis was to identify the age- and maturation-related pattern of adaptive responses to plyometric training in youth athletes. Thirty effect sizes were calculated from the data of 21 sources with studies qualifying based on the following criteria: (a) healthy male athletes who were engaged in organized sport; (b) groups of participants with a mean age between 10 and 18 years; and (c) plyometric-training intervention duration between 4 and 16 weeks. Standardized mean differences showed plyometric training to be moderately effective in increasing countermovement jump (CMJ) height (Effect size = 0.73 95% confidence interval: 0.47-0.99) across PRE-, MID-, and POST-peak height velocity groups. Adaptive responses were of greater magnitude between the mean ages of 10 and 12.99 years (PRE) (ES = 0.91 95% confidence interval: 0.47-1.36) and 16 and 18 years (POST) (ES = 1.02 [0.52-1.53]). The magnitude of adaptation to plyometric training between the mean ages of 13 and 15.99 years (MID) was lower (ES = 0.47 [0.16-0.77]), despite greater training exposure. Power performance as measured by CMJ may be mediated by biological maturation. Coaches could manipulate training volume and modality during periods of lowered response to maximize performance.

  1. Numerical methods for control optimization in linear systems

    Science.gov (United States)

    Tyatyushkin, A. I.

    2015-05-01

    Numerical methods are considered for solving optimal control problems in linear systems, namely, terminal control problems with control and phase constraints and time-optimal control problems. Several algorithms with various computer storage requirements are proposed for solving these problems. The algorithms are intended for finding an optimal control in linear systems having certain features, for example, when the reachable set of a system has flat faces.

  2. Ensemble control of linear systems with parameter uncertainties

    Science.gov (United States)

    Kou, Kit Ian; Liu, Yang; Zhang, Dandan; Tu, Yanshuai

    2016-07-01

    In this paper, we study the optimal control problem for a class of four-dimensional linear systems based on quaternionic and Fourier analysis. When the control is unconstrained, the optimal ensemble controller for this linear ensemble control systems is given in terms of prolate spheroidal wave functions. For the constrained convex optimisation problem of such systems, the quadratic programming is presented to obtain the optimal control laws. Simulations are given to verity the effectiveness of the proposed theory.

  3. Design and Simulation of PMSM Feedback Linearization Control System

    Directory of Open Access Journals (Sweden)

    SONG Xiao-jing

    2013-01-01

    Full Text Available With the theory of AC adjustable speed as well as a new control theory research is unceasingly thorough, the permanent magnet synchronous motor control system requires high precision of control and high reliability of the occasion, access to a wide range of applications, in the modern AC motor has play a decisive role position. Based on the deep research on the feedback linearization technique based on, by choosing appropriate state transformation and control transform, PMSM model input output linearization, and the design of the feedback linearization controller, realized PMSM decoupling control based on Matlab, and PMSM feedback linearization control system simulation. The simulation results show that, the system in a certain range of speed than the traditional PI controller has better control performance, but to the parameter variation has strong sensitivity. It also determines the direction for future research. 

  4. Robust Control for Uncertain Linear System Subject to Input Saturation

    Directory of Open Access Journals (Sweden)

    Qingyun Yang

    2014-01-01

    Full Text Available A robust control scheme using composite nonlinear feedback (CNF technology is proposed to improve tracking control performance for the uncertain linear system with input saturation and unknown external disturbances. A disturbance observer is presented to estimate the unknown disturbance generated by a linear exogenous system. The designed gain matrix of the disturbance observer is determined by solving linear matrix inequalities (LMIs. Based on the output of the designed disturbance observer, a robust CNF controller including a linear feedback control item and a nonlinear item is developed to follow the desired tracking signals. The linear feedback controller is designed using LMIs and the stability of the closed-loop system is proved via rigorous Lyapunov analysis. Finally, the extensive simulation results are presented to illustrate the effectiveness of the proposed control scheme.

  5. Robust control of robots via linear estimated state feedback

    NARCIS (Netherlands)

    Berghuis, Harry; Nijmeijer, Henk

    1994-01-01

    In this note we propose a robust tracking controller for robots that requires only position measurements. The controller consists of two parts: a linear observer part that generates an estimated error state from the error on the joint position and a linear feedback part that utilizes this estimated

  6. Laminar circular hydraulic jumps without separation

    Science.gov (United States)

    Dasgupta, Ratul; Tomar, Gaurav; Govindarajan, Rama

    2009-11-01

    The traditional inviscid criterion for the occurrence of a planar, standing hydraulic jump is to have the Froude number decrease downstream and go through a value of 1 at some location. Here, upstream propagating, small-amplitude, long, non-dispersive gravity waves are trapped, and non-linear steepening is said to result in a near-discontinuous height profile, but it is not clear how. Such a condition on the Froude number is shown in the present axisymmetric Navier-Stokes computations to hold for a circular jump as well. The relevance of non-linear steepening to a circular jump is therefore a question we wish to answer. In circular jumps, moreover, a region of recirculation is usually observed underneath the jump, underlining the importance of viscosity in this process. This led Tani (J. Phys. Soc. Japan, 1949) to hypothesise that boundary-layer separation was the cause of the circular jump. This hypothesis has been debated extensively and the possibility of circular jumps without separation hinted at. In our simulations, we are able to obtain circular hydraulic jumps without any flow separation. This, and the necessity or otherwise of viscosity in jump formation will be discussed.

  7. Optimal impulse control problems and linear programming.

    OpenAIRE

    Bauso, D.

    2009-01-01

    Optimal impulse control problems are, in general, difficult to solve. A current research goal is to isolate those problems that lead to tractable solutions. In this paper, we identify a special class of optimal impulse control problems which are easy to solve. Easy to solve means that solution algorithms are polynomial in time and therefore suitable to the on-line implementation in real-time problems. We do this by using a paradigm borrowed from the Operations Research field. As main result, ...

  8. Marginal linearization method in modeling on fuzzy control systems

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Marginal linearization method in modeling on fuzzy control systems is proposed, which is to deal with the nonlinear model with variable coefficients. The method can turn a nonlinear model with variable coefficients into a linear model with variable coefficients in the way that the membership functions of the fuzzy sets in fuzzy partitions of the universes are changed from triangle waves into rectangle waves. However, the linearization models are incomplete in their forms because of their lacking some items. For solving this problem, joint approximation by using linear models is introduced. The simulation results show that marginal linearization models are of higher approximation precision than their original nonlinear models.

  9. Flexible Satellite Attitude Control via Adaptive Fuzzy Linearization

    Institute of Scientific and Technical Information of China (English)

    GUAN Ping; LIU Xiang-dong; CHEN Jia-bin; LIU Xiao-he

    2005-01-01

    The adaptive fuzzy control is combined with input-output linearization control to constitute the hybrid controller. The control method is then applied to the attitude maneuver control of the flexible satellite.The basic control structure is given. The rules of the controller parameter selection, which guarantee the attitude stabilization of the satellite with parameter uncertainties, have been analyzed. Simulation results show that the precise attitude control is accomplished in spite of the uncertainty in the system.

  10. Stabilization of stochastic systems with hidden Markovian jumps

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    This paper considers the adaptive control of discrete-time hybrid stochastic systems with unknown randomly jumping parameters described by a finite-state hidden Markov chain. An intuitive yet longstanding conjecture in this area is that such hybrid systems can be adaptively stabilized whenever the rate of transition of the hidden Markov chain is small enough. This paper provides a rigorous positive answer to this conjecture by establishing the global stability of a gradient-algorithm-based adaptive linear-quadratic control.

  11. Satisfactory control of discrete-time linear periodic systems

    Institute of Scientific and Technical Information of China (English)

    Shiqian LIU; Jihong ZHU; JinChun HU

    2007-01-01

    In this paper satisfactory control for discrete-time linear periodic systems is studied.Based on a suitable time-invariant state sampled reformulation,periodic state feedback controller has been designed such that desired requirements of steady state covariance,H-infinity rejection bound and regional pole assignment for the periodic system are met simultaneously.By using satisfactory control theory,the problem of satisfactory periodic controller can be transformed into a linear programming problem subject to a set of linear matrix inequalities(LMIs).and a feasible designing approach is presented via LMI technique.Numeric example validates the obtained conclusion.

  12. Control linearity and jitter of relaxation oscillators

    NARCIS (Netherlands)

    Gierkink, Sander Laurentius Johannes

    1999-01-01

    The body of this thesis (chapters 3,4 and 5) deals with the analysis and improvement of a specific class of voltage- or current controlled oscillators (VCO’s respectively CCO’s) called relaxation oscillators. Before going into detail on this particular class of oscillators, first the function and ap

  13. Direct Torque Control With Feedback Linearization for Induction Motor Drives

    DEFF Research Database (Denmark)

    Lascu, Cristian Vaslie; Jafarzadeh, Saeed; Fadali, Sami M.

    2017-01-01

    This paper describes a direct-torque-controlled (DTC) induction motor (IM) drive that employs feedback linearization and sliding-mode control (SMC). A new feedback linearization approach is proposed, which yields a decoupled linear IM model with two state variables: torque and stator flux magnitude....... This intuitive linear model is used to implement a DTC-type controller that preserves all DTC advantages and eliminates its main drawback, the flux and torque ripple. Robust, fast, and ripple-free control is achieved by using SMC with proportional control in the vicinity of the sliding surface. SMC assures...... robustness as in DTC, while the proportional component eliminates the torque and flux ripple. The torque time response is similar to conventional DTC and the proposed solution is flexible and highly tunable due to the P component. The controller design is presented, and its robust stability is analyzed...

  14. Embodied linearity of speed control in Drosophila melanogaster.

    Science.gov (United States)

    Medici, V; Fry, S N

    2012-12-01

    Fruitflies regulate flight speed by adjusting their body angle. To understand how low-level posture control serves an overall linear visual speed control strategy, we visually induced free-flight acceleration responses in a wind tunnel and measured the body kinematics using high-speed videography. Subsequently, we reverse engineered the transfer function mapping body pitch angle onto flight speed. A linear model is able to reproduce the behavioural data with good accuracy. Our results show that linearity in speed control is realized already at the level of body posture-mediated speed control and is therefore embodied at the level of the complex aerodynamic mechanisms of body and wings. Together with previous results, this study reveals the existence of a linear hierarchical control strategy, which can provide relevant control principles for biomimetic implementations, such as autonomous flying micro air vehicles.

  15. Evaluation of Linear Regression Simultaneous Myoelectric Control Using Intramuscular EMG.

    Science.gov (United States)

    Smith, Lauren H; Kuiken, Todd A; Hargrove, Levi J

    2016-04-01

    The objective of this study was to evaluate the ability of linear regression models to decode patterns of muscle coactivation from intramuscular electromyogram (EMG) and provide simultaneous myoelectric control of a virtual 3-DOF wrist/hand system. Performance was compared to the simultaneous control of conventional myoelectric prosthesis methods using intramuscular EMG (parallel dual-site control)-an approach that requires users to independently modulate individual muscles in the residual limb, which can be challenging for amputees. Linear regression control was evaluated in eight able-bodied subjects during a virtual Fitts' law task and was compared to performance of eight subjects using parallel dual-site control. An offline analysis also evaluated how different types of training data affected prediction accuracy of linear regression control. The two control systems demonstrated similar overall performance; however, the linear regression method demonstrated improved performance for targets requiring use of all three DOFs, whereas parallel dual-site control demonstrated improved performance for targets that required use of only one DOF. Subjects using linear regression control could more easily activate multiple DOFs simultaneously, but often experienced unintended movements when trying to isolate individual DOFs. Offline analyses also suggested that the method used to train linear regression systems may influence controllability. Linear regression myoelectric control using intramuscular EMG provided an alternative to parallel dual-site control for 3-DOF simultaneous control at the wrist and hand. The two methods demonstrated different strengths in controllability, highlighting the tradeoff between providing simultaneous control and the ability to isolate individual DOFs when desired.

  16. Linear and non-linear control of wind farms. Contribution to the grid stability

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, R.D. [Laboratorio de Electronica, Facultad de Ingenieria, Universidad Nacional de la Patagonia San Juan Bosco, Ciudad Universitaria, Km. 4, 9000, Comodoro Rivadavia (Argentina); Mantz, R.J. [Laboratorio de Electronica Industrial, Control e Instrumentacion (LEICI), Facultad de Ingenieria, Universidad Nacional de La Plata, CC 91, 1900, La Plata (Argentina); Comision de Investigaciones Cientificas de la Provincia de Buenos Aires, CICpBA, La Plata (Argentina); Battaiotto, P.E. [Laboratorio de Electronica Industrial, Control e Instrumentacion (LEICI), Facultad de Ingenieria, Universidad Nacional de La Plata, CC 91, 1900, La Plata (Argentina)

    2010-06-15

    This paper deals with linear and non-linear control of wind farms equipped with doubly-fed induction generators (DFIG). Both, active and reactive wind farm powers are employed in two independent control laws in order to increase the damping of the oscillation modes of a power system. In this way, it presented a general strategy where two correction terms are added, one by each independent control, to the normal operating condition of a wind farm. The proposed control laws are derived from the Lyapunov approach. Meanwhile for the reactive power a non-linear correction is presented, for the wind farm active power it is demonstrated that the classical proportional and inertial laws can be considered via the Lyapunov approach if wind farms are considered as real power plants, i.e. equivalent to conventional synchronous generation. Finally, some simulations are presented in order to support the theoretical considerations demonstrating the potential contributions of both control laws. (author)

  17. On-line control models for the Stanford Linear Collider

    Energy Technology Data Exchange (ETDEWEB)

    Sheppard, J.C.; Helm, R.H.; Lee, M.J.; Woodley, M.D.

    1983-03-01

    Models for computer control of the SLAC three-kilometer linear accelerator and damping rings have been developed as part of the control system for the Stanford Linear Collider. Some of these models have been tested experimentally and implemented in the control program for routine linac operations. This paper will describe the development and implementation of these models, as well as some of the operational results.

  18. Asymptotically optimal feedback control for a system of linear oscillators

    Science.gov (United States)

    Ovseevich, Alexander; Fedorov, Aleksey

    2013-12-01

    We consider problem of damping of an arbitrary number of linear oscillators under common bounded control. We are looking for a feedback control steering the system to the equilibrium. The obtained control is asymptotically optimal: the ratio of motion time to zero with this control to the minimum one is close to 1, if the initial energy of the system is large.

  19. Control of Linear Systems Over Commutative Normed Algebras with Applications.

    Science.gov (United States)

    1987-02-01

    Identify by block number) System Theory, Linear Systems, Control, Systems with Time Delays, Time - Varying Systems, State- Space Models, Pole...modes for the class of linear time -varying systems. These concepts are defined in terms of a noncommutative factorization of opera- tor polynomials...classes of complex linear systems, including systems with time delays, systems with unknown parameters and time -varying systems. In the work on

  20. Direct torque control with feedback linearization for induction motor drives

    DEFF Research Database (Denmark)

    Lascu, Cristian; Jafarzadeh, Saeed; Fadali, Sami M.

    2015-01-01

    This paper describes a Direct Torque Controlled (DTC) Induction Machine (IM) drive that employs feedback linearization and sliding-mode control. A feedback linearization approach is investigated, which yields a decoupled linear IM model with two state variables: torque and stator flux magnitude...... of the sliding surface. The VSC component assures robustness as in DTC, while the proportional component eliminates the torque and flux ripple. The torque time response is similar to DTC and the proposed solution is flexible and highly tunable due to the proportional controller. The controller design and its...... robust stability analysis are presented. The sliding controller is compared with a linear DTC scheme, and experimental results for a sensorless IM drive validate the proposed solution....

  1. Use of probabilistic weights to enhance linear regression myoelectric control

    Science.gov (United States)

    Smith, Lauren H.; Kuiken, Todd A.; Hargrove, Levi J.

    2015-12-01

    Objective. Clinically available prostheses for transradial amputees do not allow simultaneous myoelectric control of degrees of freedom (DOFs). Linear regression methods can provide simultaneous myoelectric control, but frequently also result in difficulty with isolating individual DOFs when desired. This study evaluated the potential of using probabilistic estimates of categories of gross prosthesis movement, which are commonly used in classification-based myoelectric control, to enhance linear regression myoelectric control. Approach. Gaussian models were fit to electromyogram (EMG) feature distributions for three movement classes at each DOF (no movement, or movement in either direction) and used to weight the output of linear regression models by the probability that the user intended the movement. Eight able-bodied and two transradial amputee subjects worked in a virtual Fitts’ law task to evaluate differences in controllability between linear regression and probability-weighted regression for an intramuscular EMG-based three-DOF wrist and hand system. Main results. Real-time and offline analyses in able-bodied subjects demonstrated that probability weighting improved performance during single-DOF tasks (p amputees. Though goodness-of-fit evaluations suggested that the EMG feature distributions showed some deviations from the Gaussian, equal-covariance assumptions used in this experiment, the assumptions were sufficiently met to provide improved performance compared to linear regression control. Significance. Use of probability weights can improve the ability to isolate individual during linear regression myoelectric control, while maintaining the ability to simultaneously control multiple DOFs.

  2. Use of probabilistic weights to enhance linear regression myoelectric control.

    Science.gov (United States)

    Smith, Lauren H; Kuiken, Todd A; Hargrove, Levi J

    2015-12-01

    Clinically available prostheses for transradial amputees do not allow simultaneous myoelectric control of degrees of freedom (DOFs). Linear regression methods can provide simultaneous myoelectric control, but frequently also result in difficulty with isolating individual DOFs when desired. This study evaluated the potential of using probabilistic estimates of categories of gross prosthesis movement, which are commonly used in classification-based myoelectric control, to enhance linear regression myoelectric control. Gaussian models were fit to electromyogram (EMG) feature distributions for three movement classes at each DOF (no movement, or movement in either direction) and used to weight the output of linear regression models by the probability that the user intended the movement. Eight able-bodied and two transradial amputee subjects worked in a virtual Fitts' law task to evaluate differences in controllability between linear regression and probability-weighted regression for an intramuscular EMG-based three-DOF wrist and hand system. Real-time and offline analyses in able-bodied subjects demonstrated that probability weighting improved performance during single-DOF tasks (p linear regression control. Use of probability weights can improve the ability to isolate individual during linear regression myoelectric control, while maintaining the ability to simultaneously control multiple DOFs.

  3. Multivariable Linear Digital Control via State Space Output Matching.

    Science.gov (United States)

    1983-01-01

    relies upon only the most elementary principles of linear systems theory and hence is characterized by its conceptual and computational simplicity. 2...algebra and linear systems theory . As a result, the control technique discussed is characterized by its conceptual and practical simplicity. 19

  4. Rotational Stabilization of Cylinder Wakes Using Linear Feedback Control

    Science.gov (United States)

    Borggaard, Jeff; Gugercin, Serkan; Zietsman, Lizette

    2015-11-01

    We demonstrate the feasibility of linear feedback control to stabilize vortex shedding behind twin cylinders using the cylinder rotations. Our approach is to linearize the flow about a desired steady-state flow, use interpolation-based model reduction on the resulting linear model to generate a low-dimensional model of the input-output system with input-independent error bounds, then use this reduced model to design the feedback control law. We then consider the practical issue of limited state measurements by building a nonlinear compensator that is computed from the same linear reduced-order model an constructed through an extended Kalman filter with a proper orthogonal decomposition (POD) model. Closed-loop simulations of the Navier-Stokes equations coupled with controls generated through flow measurements demonstrate the effectiveness of this control strategy. Supported in part by the National Science Foundation.

  5. Turnpike theory of continuous-time linear optimal control problems

    CERN Document Server

    Zaslavski, Alexander J

    2015-01-01

    Individual turnpike results are of great interest due to their numerous applications in engineering and in economic theory; in this book the study is focused on new results of turnpike phenomenon in linear optimal control problems.  The book is intended for engineers as well as for mathematicians interested in the calculus of variations, optimal control, and in applied functional analysis. Two large classes of problems are studied in more depth. The first class studied in Chapter 2 consists of linear control problems with periodic nonsmooth convex integrands. Chapters 3-5 consist of linear control problems with autonomous nonconvex and nonsmooth integrands.  Chapter 6 discusses a turnpike property for dynamic zero-sum games with linear constraints. Chapter 7 examines genericity results. In Chapter 8, the description of structure of variational problems with extended-valued integrands is obtained. Chapter 9 ends the exposition with a study of turnpike phenomenon for dynamic games with extended value integran...

  6. Speed cameras, section control, and kangaroo jumps-a meta-analysis.

    Science.gov (United States)

    Høye, Alena

    2014-12-01

    A meta-analysis was conducted of the effects of speed cameras and section control (point-to-point speed cameras) on crashes. 63 effect estimates from 15 speed camera studies and five effect estimates from four section control studies were included in the analysis. Speed cameras were found to reduce total crash numbers by about 20%. The effect declines with increasing distance from the camera location. Fatal crashes were found to be reduced by 51%, this result may however be affected by regression to the mean (RTM). Section control was found to have a greater crash reducing effect than speed cameras (-30% for total crash numbers and -56% for KSI crashes). There is no indication that these results (except the one for the effect of speed cameras on fatal crashes) are affected by regression to the mean, publication bias or outlier bias. The results indicate that kangaroo driving (braking and accelerating) occurs, but no adverse effects on speed or crashes were found. Crash migration, i.e., an increase of crash numbers on other roads due to rerouting of traffic, may occur in some cases at speed cameras, but the results do not indicate that such effects are common. Both speed cameras and section control were found to achieve considerable speed reductions and the crash effects that were found in meta-analysis are of a similar size or greater than one might expect based on the effects on speed.

  7. Controlling a Linear Process in Turbulent Channel Flow

    Science.gov (United States)

    Lim, Junwoo; Kim, John

    1999-11-01

    Recent studies have shown that controllers developed based on a linear system theory work surprisingly well in reducing the viscous drag in turbulent boundary layers, suggesting that the essential dynamics of near-wall turbulence may well be approximated by the linearized model. Of particular interest is the linear process due to the coupling term between the wall-normal velocity and wall-normal vorticity terms in the linearized Navier-Stokes (N-S) equations, which enhances non-normality of the linearized system. This linear process is investigated through numerical simulations of a turbulent channel flow. It is shown that the linear coupling term plays an important role in fully turbulent -- and hence, nonlinear -- flows. Near-wall turbulence is shown to decay in the absence of the linear coupling term. The fact that the coupling term plays an essential role in maintaining near-wall turbulence suggests that an effective control algorithm for the drag reduction in turbulent flows should be aimed at reducing the effect of the coupling term in the wall region. Designing a control algorithm that directly accounts for the coupling term in a cost to be minimized will be discussed.

  8. Controllability, observability, realizability, and stability of dynamic linear systems

    OpenAIRE

    Davis, John M.; Gravagne, Ian A.; Jackson, Billy J.; Marks II, Robert J.

    2009-01-01

    We develop a linear systems theory that coincides with the existing theories for continuous and discrete dynamical systems, but that also extends to linear systems defined on nonuniform time scales. The approach here is based on generalized Laplace transform methods (e.g. shifts and convolution) from the recent work [13]. We study controllability in terms of the controllability Gramian and various rank conditions (including Kalman's) in both the time invariant and time varying settings...

  9. Synchronization of chaotic fractional-order systems via linear control

    OpenAIRE

    Odibat, Zaid,; Corson, Nathalie; Aziz-Alaoui, Moulay; Bertelle, Cyrille

    2010-01-01

    International audience; The chaotic dynamics of fractional-order systems has attracted much attention recently. Chaotic synchronization of fractional-order systems is further studied in this paper. We investigate the chaos synchronization of two identical systems via a suitable linear controller applied to the response system. Based on the stability results of linear fractional-order systems, sufficient conditions for chaos synchronization of these systems are given. Control laws are derived ...

  10. Modern linear control design a time-domain approach

    CERN Document Server

    Caravani, Paolo

    2013-01-01

    This book offers a compact introduction to modern linear control design.  The simplified overview presented of linear time-domain methodology paves the road for the study of more advanced non-linear techniques. Only rudimentary knowledge of linear systems theory is assumed - no use of Laplace transforms or frequency design tools is required. Emphasis is placed on assumptions and logical implications, rather than abstract completeness; on interpretation and physical meaning, rather than theoretical formalism; on results and solutions, rather than derivation or solvability.  The topics covered include transient performance and stabilization via state or output feedback; disturbance attenuation and robust control; regional eigenvalue assignment and constraints on input or output variables; asymptotic regulation and disturbance rejection. Lyapunov theory and Linear Matrix Inequalities (LMI) are discussed as key design methods. All methods are demonstrated with MATLAB to promote practical use and comprehension. ...

  11. Controllability of Linear Systems on Generalized Heisenberg Groups

    OpenAIRE

    Dath, Mouhamadou; Jouan, Philippe

    2015-01-01

    This paper is devoted to the study of controllability of linear systems on generalized Heisenberg groups. Some general necessary controllability conditions and some sufficient ones are provided. We introduce the notion of decoupled systems, and more precise controllability criteria are stated for them.

  12. Structured Control of Affine Linear Parameter Varying Systems

    DEFF Research Database (Denmark)

    Adegas, Fabiano Daher; Stoustrup, Jakob

    2011-01-01

    This paper presents a new procedure to design structured controllers for discrete-time affine linear parametervarying systems (A LPV). The class of control structures includes decentralized of any order, fixed order output feedback, simultaneous plant-control design, among others. A parametervarying...

  13. Control of stage by stage changing linear dynamic systems

    Directory of Open Access Journals (Sweden)

    Barseghyan V.R.

    2012-01-01

    Full Text Available In this paper, the control problems of linear dynamic systems stage by stage changing and the optimal control with the criteria of quality set for the whole range of time intervals are considered. The necessary and sufficient conditions of total controllability are also stated. The constructive solving method of a control problem is offered, as well as the definitions of conditions for the existence of programmed control and motions. The explicit form of control action for a control problem is constructed. The method for solving optimal control problem is offered, and the solution of optimal control of a specific target is brought.

  14. Optimal second order sliding mode control for linear uncertain systems.

    Science.gov (United States)

    Das, Madhulika; Mahanta, Chitralekha

    2014-11-01

    In this paper an optimal second order sliding mode controller (OSOSMC) is proposed to track a linear uncertain system. The optimal controller based on the linear quadratic regulator method is designed for the nominal system. An integral sliding mode controller is combined with the optimal controller to ensure robustness of the linear system which is affected by parametric uncertainties and external disturbances. To achieve finite time convergence of the sliding mode, a nonsingular terminal sliding surface is added with the integral sliding surface giving rise to a second order sliding mode controller. The main advantage of the proposed OSOSMC is that the control input is substantially reduced and it becomes chattering free. Simulation results confirm superiority of the proposed OSOSMC over some existing.

  15. Fringe-jump corrected far infrared tangential interferometer/polarimeter for a real-time density feedback control system of NSTX plasmas.

    Science.gov (United States)

    Juhn, J-W; Lee, K C; Hwang, Y S; Domier, C W; Luhmann, N C; Leblanc, B P; Mueller, D; Gates, D A; Kaita, R

    2010-10-01

    The far infrared tangential interferometer/polarimeter (FIReTIP) of the National Spherical Torus Experiment (NSTX) has been set up to provide reliable electron density signals for a real-time density feedback control system. This work consists of two main parts: suppression of the fringe jumps that have been prohibiting the plasma density from use in the direct feedback to actuators and the conceptual design of a density feedback control system including the FIReTIP, control hardware, and software that takes advantage of the NSTX plasma control system (PCS). By investigating numerous shot data after July 2009 when the new electronics were installed, fringe jumps in the FIReTIP are well characterized, and consequently the suppressing algorithms are working properly as shown in comparisons with the Thomson scattering diagnostic. This approach is also applicable to signals taken at a 5 kHz sampling rate, which is a fundamental constraint imposed by the digitizers providing inputs to the PCS. The fringe jump correction algorithm, as well as safety and feedback modules, will be included as submodules either in the gas injection system category or a new category of density in the PCS.

  16. Output feedback controller design for uncertain piecewise linear systems

    Institute of Scientific and Technical Information of China (English)

    Jianxiong ZHANG; Wansheng TANG

    2007-01-01

    This paper proposes output feedback controller design methods for uncertain piecewise linear systems based on piecewise quadratic Lyapunov function. The α-stability of closed-loop systems is also considered. It is shown that the output feedback controller design procedure of uncertain piecewise linear systems with α-stability constraint can be cast as solving a set of bilinear matrix inequalities (BMIs). The BMIs problem in this paper can be solved iteratively as a set of two convex optimization problems involving linear matrix inequalities (LMIs) which can be solved numerically efficiently. A numerical example shows the effectiveness of the proposed methods.

  17. MODELLING AND CONTROLLING OF INDUCTION MOTOR BY USING LINEAR ADRC

    Directory of Open Access Journals (Sweden)

    CH. NAGA KOTI KUMAR,

    2011-04-01

    Full Text Available In this paper we present a new novel approach for the speed control of an IM using Linear Active Disturbance Rejection Controller [LADRC]. The field oriented control of IM needs the accuratemathematical model of IM, but it is very difficult to develop an accurate mathematical model. The LADRC does depend on the mathematical model so it is very robust to changes in plant parameters. This controller can also estimate and compensate the general disturbances which include the unknown internal dynamics and external disturbances by using the Extended State Observer, which can reduce the system to a linear one.

  18. Application of linear programming techniques for controlling linear dynamic plants in real time

    Science.gov (United States)

    Gabasov, R.; Kirillova, F. M.; Ha, Vo Thi Thanh

    2016-03-01

    The problem of controlling a linear dynamic plant in real time given its nondeterministic model and imperfect measurements of the inputs and outputs is considered. The concepts of current distributions of the initial state and disturbance parameters are introduced. The method for the implementation of disclosable loop using the separation principle is described. The optimal control problem under uncertainty conditions is reduced to the problems of optimal observation, optimal identification, and optimal control of the deterministic system. To extend the domain where a solution to the optimal control problem under uncertainty exists, a two-stage optimal control method is proposed. Results are illustrated using a dynamic plant of the fourth order.

  19. Linear-constraint wavefront control for exoplanet coronagraphic imaging systems

    Science.gov (United States)

    Sun, He; Eldorado Riggs, A. J.; Kasdin, N. Jeremy; Vanderbei, Robert J.; Groff, Tyler Dean

    2017-01-01

    A coronagraph is a leading technology for achieving high-contrast imaging of exoplanets in a space telescope. It uses a system of several masks to modify the diffraction and achieve extremely high contrast in the image plane around target stars. However, coronagraphic imaging systems are very sensitive to optical aberrations, so wavefront correction using deformable mirrors (DMs) is necessary to avoid contrast degradation in the image plane. Electric field conjugation (EFC) and Stroke minimization (SM) are two primary high-contrast wavefront controllers explored in the past decade. EFC minimizes the average contrast in the search areas while regularizing the strength of the control inputs. Stroke minimization calculates the minimum DM commands under the constraint that a target average contrast is achieved. Recently in the High Contrast Imaging Lab at Princeton University (HCIL), a new linear-constraint wavefront controller based on stroke minimization was developed and demonstrated using numerical simulation. Instead of only constraining the average contrast over the entire search area, the new controller constrains the electric field of each single pixel using linear programming, which could led to significant increases in speed of the wavefront correction and also create more uniform dark holes. As a follow-up of this work, another linear-constraint controller modified from EFC is demonstrated theoretically and numerically and the lab verification of the linear-constraint controllers is reported. Based on the simulation and lab results, the pros and cons of linear-constraint controllers are carefully compared with EFC and stroke minimization.

  20. Tracking control of robot manipulators via output feedback linearization

    Institute of Scientific and Technical Information of China (English)

    FEI Yue-nong; Wu Qing-hua

    2006-01-01

    This paper presents a robot manipulator tracking controller based on output feedback linearization.A sliding mode perturbation observer (SPO) is designed to estimate unmeasurable states and system perturbations that involve system nonlinearities,disturbances and unmodelled dynamics.The use of SPO allows to input/output linearize and decouple the strongly coupled nonlinear robot manipulator system merely by the feedback of joint angles.The controller design does not need an accurate model of the robot manipulator.Simulation studies are undertaken based on a two-link robot manipulator to evaluate the proposed approach.The simulation results show that the proposed controller has more superior tracking control performance,with payload changing in a wide range,in comparison with a sliding mode controller (SMC) designed based on state feedback linearization with full states available.

  1. Linear dynamical quantum systems analysis, synthesis, and control

    CERN Document Server

    Nurdin, Hendra I

    2017-01-01

    This monograph provides an in-depth treatment of the class of linear-dynamical quantum systems. The monograph presents a detailed account of the mathematical modeling of these systems using linear algebra and quantum stochastic calculus as the main tools for a treatment that emphasizes a system-theoretic point of view and the control-theoretic formulations of quantum versions of familiar problems from the classical (non-quantum) setting, including estimation and filtering, realization theory, and feedback control. Both measurement-based feedback control (i.e., feedback control by a classical system involving a continuous-time measurement process) and coherent feedback control (i.e., feedback control by another quantum system without the intervention of any measurements in the feedback loop) are treated. Researchers and graduates studying systems and control theory, quantum probability and stochastics or stochastic control whether from backgrounds in mechanical or electrical engineering or applied mathematics ...

  2. State Predictive Model Following Control System for Linear Time Delays

    Institute of Scientific and Technical Information of China (English)

    Da-Zhong Wang; Shu-Jing Wu; Shigenori Okubo

    2009-01-01

    In this paper, we propose a new state predictive model following control system (MFCS). The considered system has linear time delays. With the MFCS method, we obtain a simple input control law. The bounded property of the internal states for the control is given and the utility of this control design is guaranteed. Finally, an example is given to illustrate the effectiveness of the proposed method.

  3. Control of Non-linear Marine Cooling System

    DEFF Research Database (Denmark)

    Hansen, Michael; Stoustrup, Jakob; Bendtsen, Jan Dimon

    2011-01-01

    We consider the problem of designing control laws for a marine cooling system used for cooling the main engine and auxiliary components aboard several classes of container vessels. We focus on achieving simple set point control for the system and do not consider compensation of the non......-linearities, closed circuit flow dynamics or transport delays that are present in the system. Control laws are therefore designed using classical control theory and the performance of the design is illustrated through two simulation examples....

  4. Linear operators and linear systems an analytical approach to control theory

    CERN Document Server

    Partington, Jonathan R

    2004-01-01

    This book presents an introduction to the common ground between operator theory and linear systems theory. Suitable for students of functional analysis, this book also acts as an introduction to a mathematical approach to systems and control for graduate students in departments of applied mathematics or engineering.

  5. Implementation of neural network based non-linear predictive control

    DEFF Research Database (Denmark)

    Sørensen, Paul Haase; Nørgård, Peter Magnus; Ravn, Ole

    1999-01-01

    of non-linear systems. GPC is model based and in this paper we propose the use of a neural network for the modeling of the system. Based on the neural network model, a controller with extended control horizon is developed and the implementation issues are discussed, with particular emphasis...

  6. Further results on switched control of linear systems with constraints

    NARCIS (Netherlands)

    Persis, Claudio De; Santis, Raffaella De; Morse, A. Stephen

    2002-01-01

    In a previous paper we proposed a supervisory control system to globally regulate to zero the state of a very poorly modeled, open-loop unstable but not exponentially unstable, linear process in the presence of input constraints. The process to control was unknown but assumed to belong to a finite f

  7. State Space Reduction of Linear Processes Using Control Flow Reconstruction

    NARCIS (Netherlands)

    Pol, van de Jaco; Timmer, Mark; Liu, Z.; Ravn, A.P.

    2009-01-01

    We present a new method for fighting the state space explosion of process algebraic specifications, by performing static analysis on an intermediate format: linear process equations (LPEs). Our method consists of two steps: (1) we reconstruct the LPE's control flow, detecting control flow parameters

  8. State Space Reduction of Linear Processes using Control Flow Reconstruction

    NARCIS (Netherlands)

    Pol, van de Jaco; Timmer, Mark

    2009-01-01

    We present a new method for fighting the state space explosion of process algebraic specifications, by performing static analysis on an intermediate format: linear process equations (LPEs). Our method consists of two steps: (1) we reconstruct the LPE's control flow, detecting control flow parameters

  9. A Result on Output Feedback Linear Quadratic Control

    NARCIS (Netherlands)

    Engwerda, J.C.; Weeren, A.J.T.M.

    2006-01-01

    In this note we consider the static output feedback linear quadratic control problem.We present both necessary and sufficient conditions under which this problem has a solution in case the involved cost depend only on the output and control variables.This result is used to present both necessary and

  10. Development and Control of a Non Linear Magnetic Levitation System

    Directory of Open Access Journals (Sweden)

    A Sanjeevi Gandhi

    2013-06-01

    Full Text Available Nowadays, studies to develop and control non linear systems is of great significance. Magnetic Levitation System has gained considerable interests due to its great practical importance in different engineering fields In this paper an electromagnetic levitation system was developed and mathematical model for the system was derived. The developed system was controlled manually.

  11. Linear Perturbation Adaptive Control of Hydraulically Driven Manipulators

    DEFF Research Database (Denmark)

    Andersen, T.O.; Hansen, M.R.; Conrad, Finn

    2004-01-01

    control.Using the Lyapunov approach, under slowly time-varying assumptions, it is shown that the tracking error and the parameter error remain bounded. This bound is a function of the ideal parameters and a bounded disturbance. The control algorithm decouples and linearizes the manipulator so that each...

  12. Discrete Time Optimal Adaptive Control for Linear Stochastic Systems

    Institute of Scientific and Technical Information of China (English)

    JIANG Rui; LUO Guiming

    2007-01-01

    The least-squares(LS)algorithm has been used for system modeling for a long time. Without any excitation conditions, only the convergence rate of the common LS algorithm can be obtained. This paper analyzed the weighted least-squares(WLS)algorithm and described the good properties of the WLS algorithm. The WLS algorithm was then used for daptive control of linear stochastic systems to show that the linear closed-loop system was globally stable and that the system identification was consistent. Compared to the past optimal adaptive controller,this controller does not impose restricted conditions on the coefficients of the system, such as knowing the first coefficient before the controller. Without any persistent excitation conditions, the analysis shows that, with the regulation of the adaptive control, the closed-loop system was globally stable and the adaptive controller converged to the one-step-ahead optimal controller in some sense.

  13. STATISTIC LINEARIZATION CONTROL FOR HYDRAULIC ACTIVE DAMPING SUSPENSION

    Institute of Scientific and Technical Information of China (English)

    Wang Qingfeng; Zhao Ju; Yang Botao

    2000-01-01

    A statistic linearization analysis method of bad nolinear hydraulic active damping suspensiop is provided.Also the optimum control strategy of semi-active suspension and graded control strategy based on it are puted forward.Experimental researches are carried out on a 2 DOF (degree of freedom ) hydraulic active damping suspension test system.The results showed that an excellent control effectiveness could be obtained by using statistic linearization optimum control which unfortunely requests continuously regulationg the damp in an accurate way and costs much in engeering application.On the contrary,the results also showed that graded control is more practicable which has a control effectiveness close to the optimum control and costs less.

  14. Risk, Jumps, and Diversification

    DEFF Research Database (Denmark)

    Bollerslev, Tim; Law, Tzuo Hann; Tauchen, George

    We test for price discontinuities, or jumps, in a panel of high-frequency intraday returns for forty large-cap stocks and an equiweighted index from these same stocks. Jumps are naturally classified into two types: common and idiosyncratic. Common jumps affect all stocks, albeit to varying degree...

  15. Jumping in Arithmetic

    NARCIS (Netherlands)

    Visser, Albert

    2014-01-01

    In this paper we study a new relation between sentences: the jump relation. The idea of the jump relation is based on an analysis of Feferman's Theorem that the inconsistency of a theory U is interpretable over U. The jump relation is based on a converse of Feferman's Theorem: if a sentence is inter

  16. Tracking control of chaotic dynamical systems with feedback linearization

    Institute of Scientific and Technical Information of China (English)

    QI Dong-lian; MA Guo-jin

    2005-01-01

    A new method was proposed for tracking the desired output of chaotic dynamical system using the feedback linearization and nonlinear extended statement observer method. The feedback linearization was used to convert the nonlinear chaotic system into linear system. The extended Luenberger-like statements observer was designed to reconstructing and observing the unmeasured statements when the tracking controller was designed. By this way, the chaotic system could be forced to track variable desired output, which could be a time variant function or an equilibrium points.Taken the Lorenz chaotic system as example, the simulation results show the validity of the conclusion and effectiveness of the algorithm.

  17. Gravity current jump conditions, revisited

    Science.gov (United States)

    Ungarish, Marius; Hogg, Andrew J.

    2016-11-01

    Consider the flow of a high-Reynolds-number gravity current of density ρc in an ambient fluid of density ρa in a horizontal channel z ∈ [ 0 , H ] , with gravity in - z direction. The motion is often modeled by a two-layer formulation which displays jumps (shocks) in the height of the interface, in particular at the leading front of the dense layer. Various theoretical models have been advanced to predict the dimensionless speed of the jump, Fr = U /√{g' h } ; g' , h are reduced gravity and jump height. We revisit this problem and using the Navier-Stokes equations, integrated over a control volume embedding the jump, derive balances of mass and momentum fluxes. We focus on understanding the closures needed to complete this model and we show the vital need to understand the pressure head losses over the jump, which we show can be related to the vorticity fluxes at the boundaries of the control volume. Our formulation leads to two governing equations for three dimensionless quantities. Closure requires one further assumption, depending on which we demonstrate that previous models for gravity current fronts and internal bores can be recovered. This analysis yield new insights into existing results, and also provides constraints for potential new formulae.

  18. H 2 guaranteed cost control of discrete linear systems

    Directory of Open Access Journals (Sweden)

    Colmenares W.

    2000-01-01

    Full Text Available This paper presents necessary and sufficient conditions for the existence of a quadratically stabilizing output feedback controller which also assures H 2 guaranteed cost performance on a discrete linear uncertain system where the uncertainty is of the norm bounded type. The conditions are presented as a collection of linear matrix inequalities.The solution, however requires a search over a scalar parameter space.

  19. Non-contact electromagnetic exciter design with linear control method

    Science.gov (United States)

    Wang, Lin; Xiong, Xianzhi; Xu, Hua

    2017-01-01

    A non-contact type force actuator is necessary for studying the dynamic performance of a high-speed spindle system owing to its high-speed operating conditions. A non-contact electromagnetic exciter is designed for identifying the dynamic coefficients of journal bearings in high-speed grinding spindles. A linear force control method is developed based on PID controller. The influence of amplitude and frequency of current, misalignment and rotational speed on magnetic field and excitation force is investigated based on two-dimensional finite element analysis. The electromagnetic excitation force is measured with the auxiliary coils and calibrated by load cells. The design is validated by the experimental results. Theoretical and experimental investigations show that the proposed design can accurately generate linear excitation force with sufficiently large amplitude and higher signal to noise ratio. Moreover, the fluctuations in force amplitude are reduced to a greater extent with the designed linear control method even when the air gap changes due to the rotor vibration at high-speed conditions. Besides, it is possible to apply various types of excitations: constant, synchronous, and non-synchronous excitation forces based on the proposed linear control method. This exciter can be used as linear-force exciting and controlling system for dynamic performance study of different high-speed rotor-bearing systems.

  20. Linear, Parameter-Varying Control of Aeroservoelastic Systems

    Science.gov (United States)

    Moreno Chicunque, Claudia Patricia

    Modern aircraft designers are adopting light-weight, high-aspect ratio flexible wings to improve performance and reduce operation costs. A technical challenge associated with these designs is that the large deformations in flight of the wings lead to adverse interactions between the aircraft aerodynamic forces and structural forces. These adverse interactions produce excessive vibrations that can degrade flying qualities and may result in severe structural damages or catastrophic failure. This dissertation is focused on the application of multivariable robust control techniques for suppression of these adverse interactions in flexible aircraft. Here, the aircraft coupled nonlinear equations of motion are represented in the linear, parameter-varying framework. These equations account for the coupled aerodynamics, rigid body dynamics, and deformable body dynamics of the aircraft. Unfortunately, the inclusion of this coupled dynamics results in high-order models that increase the computational complexity of linear, parameter-varying control techniques. This dissertation addresses three key technologies for linear, parameter-varying control of flexible aircraft: (i) linear, parameter-varying model reduction; (ii) selection of actuators and sensors for vibration suppression; and (iii) design of linear, parameter-varying controllers for vibration suppression. All of these three technologies are applied to an experimental research platform located at the University of Minnesota. The objective of this dissertation is to provide to the flight control community with a set of design methodologies to safely exploit the benefits of light-weight flexible aircraft.

  1. Continuous path control of servo pneumatic drives - a comparison of linear and non linear controllers; Bahnregelung servopneumatischer Antriebe - ein Vergleich von linearen und nichtlinearen Reglern

    Energy Technology Data Exchange (ETDEWEB)

    Goettert, M.; Neumann, R. [Festo AG und Co.KG, Esslingen (Germany)

    2007-02-15

    For the design of a continuous path control of servopneumatic drives two design methods are investigated: Non linear controllers based on exact linearization techniques and a linear controller based on linearization along a reference trajectory. With the nonlinear controller better results can be achieved with less realisation effort. (orig.)

  2. Jumping without using legs: the jump of the click-beetles (Elateridae is morphologically constrained.

    Directory of Open Access Journals (Sweden)

    Gal Ribak

    Full Text Available To return to their feet, inverted click-beetles (Elateridae jump without using their legs. When a beetle is resting on its dorsal side, a hinge mechanism is locked to store elastic energy in the body and releases it abruptly to launch the beetle into the air. While the functional morphology of the jumping mechanism is well known, the level of control that the beetle has over this jumping technique and the mechanical constraints governing the jumps are not entirely clear. Here we show that while body rotations in air are highly variable, the jumps are morphologically constrained to a constant "takeoff" angle (79.9°±1.56°, n = 9 beetles that directs 98% of the jumping force vertically against gravity. A physical-mathematical model of the jumping action, combined with measurements from live beetle, imply that the beetle may control the speed at takeoff but not the jumping angle. In addition, the model shows that very subtle changes in the exact point of contact with the ground can explain the vigorous rotations of the body seen while the beetle is airborne. These findings suggest that the evolution of this unique non-legged jumping mechanism resulted in a jumping technique that is capable of launching the body high into the air but it is too constrained and unstable to allow control of body orientation at landing.

  3. Asymptotic control theory for a system of linear oscillators

    OpenAIRE

    Fedorov, Aleksey; Ovseevich, Alexander

    2013-01-01

    We present an asymptotic control theory for a system of an arbitrary number of linear oscillators under a common bounded control. We suggest a design method of a feedback control for this system. By using the DiPerna-Lions theory of singular ODEs, we prove that the suggested control law correctly defines the motion of the system. The obtained control is asymptotically optimal: the ratio of the motion time to zero under this control to the minimum one is close to 1 if the initial energy of the...

  4. LMI approach to reliable H∞ control of linear systems

    Institute of Scientific and Technical Information of China (English)

    Yao Bo; Wang Fuzhong

    2006-01-01

    The reliable design problem for linear systems is concerned with. A more practical model of actuator faults than outage is considered. An LMI approach of designing reliable controller is presented for the case of actuator faults that can be modeled by a scaling factor. The resulting control systems are reliable in that they provide guaranteed asymptotic stability and H∞ performance when some control component (actuator) faults occur. A numerical example is also given to illustrate the design procedure and their effectiveness. Furthermore, the optimal standard controller and the optimal reliable controller are compared to show the necessity of reliable control.

  5. Feedback Linearization Controller Of The Delta WingRock Phenomena

    Directory of Open Access Journals (Sweden)

    Mohammed Alkandari

    2015-05-01

    Full Text Available This project deals with the control of the wing rock phenomena of a delta wing aircraft. a control schemeis proposed to stabilize the system. The controlleris a feedback linearization controller. It is shown that the proposed control scheme guarantee the asymptotic convergence to zero of all the states of the system. To illustrate the performance of the proposed controller, simulation results are presented and discussed. It is found that the proposed control scheme work well for the wing rock phenomena of a delta wing aircraft.

  6. The effect of wind on jumping distance in ski jumping--fairness assessed.

    Science.gov (United States)

    Virmavirta, Mikko; Kivekäs, Juha

    2012-09-01

    The special wind compensation system recently adopted by Fédération Internationale de Ski (FIS; International Ski Federation) to consider the effects of changing wind conditions has caused some controversy. Here, the effect of wind on jumping distance in ski jumping was studied by means of computer simulation and compared with the wind compensation factors used by FIS during the World Cup season 2009/2010. The results showed clearly that the effect of increasing head/tail wind on jumping distance is not linear: +17.4 m/-29.1 m, respectively, for a wind speed of 3 m/s. The linear formula used in the trial period of the wind compensation system was found to be appropriate only for a limited range of jumping distances as the gradient of the landing slope slows down the rate of distance change in long jumps.

  7. Robust linear parameter varying induction motor control with polytopic models

    Directory of Open Access Journals (Sweden)

    Dalila Khamari

    2013-01-01

    Full Text Available This paper deals with a robust controller for an induction motor which is represented as a linear parameter varying systems. To do so linear matrix inequality (LMI based approach and robust Lyapunov feedback controller are associated. This new approach is related to the fact that the synthesis of a linear parameter varying (LPV feedback controller for the inner loop take into account rotor resistance and mechanical speed as varying parameter. An LPV flux observer is also synthesized to estimate rotor flux providing reference to cited above regulator. The induction motor is described as a polytopic model because of speed and rotor resistance affine dependence their values can be estimated on line during systems operations. The simulation results are presented to confirm the effectiveness of the proposed approach where robustness stability and high performances have been achieved over the entire operating range of the induction motor.

  8. Controlling ultrafast currents by the non-linear photogalvanic effect

    CERN Document Server

    Wachter, Georg; Lemell, Christoph; Tong, Xiao-Min; Yabana, Kazuhiro; Burgdörfer, Joachim

    2015-01-01

    We theoretically investigate the effect of broken inversion symmetry on the generation and control of ultrafast currents in a transparent dielectric (SiO2) by strong femto-second optical laser pulses. Ab-initio simulations based on time-dependent density functional theory predict ultrafast DC currents that can be viewed as a non-linear photogalvanic effect. Most surprisingly, the direction of the current undergoes a sudden reversal above a critical threshold value of laser intensity I_c ~ 3.8*10^13 W/cm2. We trace this switching to the transition from non-linear polarization currents to the tunneling excitation regime. We demonstrate control of the ultrafast currents by the time delay between two laser pulses. We find the ultrafast current control by the non-linear photogalvanic effect to be remarkably robust and insensitive to laser-pulse shape and carrier-envelope phase.

  9. Neural Generalized Predictive Control of a non-linear Process

    DEFF Research Database (Denmark)

    Sørensen, Paul Haase; Nørgård, Peter Magnus; Ravn, Ole

    1998-01-01

    The use of neural network in non-linear control is made difficult by the fact the stability and robustness is not guaranteed and that the implementation in real time is non-trivial. In this paper we introduce a predictive controller based on a neural network model which has promising stability...... detail and discuss the implementation difficulties. The neural generalized predictive controller is tested on a pneumatic servo sys-tem....

  10. Null controllability for linear parabolic cascade systems with interior degeneracy

    Directory of Open Access Journals (Sweden)

    Idriss Boutaayamou

    2016-11-01

    Full Text Available We study the null controllability problem for linear degenerate parabolic systems with one control force through Carleman estimates for the associated adjoint problem. The novelty of this article is that for the first time it is considered a problem with an interior degeneracy and a control set that only requires to contain an interval lying on one side of the degeneracy points. The obtained result improves and complements a number of earlier works. As a consequence, observability inequalities are established.

  11. Separation and pattern formation in hydraulic jumps

    DEFF Research Database (Denmark)

    Bohr, Tomas; Ellegaard, C.; Hansen, A. Espe;

    1998-01-01

    We present theory and experiments on the circular hydraulic jump in the stationary regime. The theory can handle the situation in which the fluid flows over an edge far away from the jump. In the experiments the external height is controlled, and a series of transitions in the flow structure appe...

  12. Unobservable Planar Bimodal Linear Systems: Miniversal Deformations, Controllability and Stabilization

    CERN Document Server

    Ferrer, Josep; Pacha, Juan R; Peña, Marta

    2012-01-01

    We consider the set of bimodal linear systems consisting of two linear dynamics acting on each side of a given hyperplane, assuming continuity along the separating hyperplane. Focusing on the unobservable planar ones, we obtain a simple explicit characterization of controllability. Moreover, we apply the canonical forms of these systems depending on two state variables to obtain explicitly miniversal deformations, to illustrate bifurcation diagrams and to prove that the unobservable controllable systems are stabilizable. Preprint of an article submitted for consideration in IJBC \\copyright 2011 copyright World Scientific Publishing Company http://www.worldscinet.com/ijbc/

  13. Non-fragile H∞ Control for a Class of Discrete-time Singular Markovian Jump System%一类离散奇异Markovian跳变系统的非脆弱H∞控制

    Institute of Scientific and Technical Information of China (English)

    冉华军; 张涛

    2011-01-01

    The problem of non-fragile H∞ control for a class of discrete-time singular Markovian jump system is studied. Considering nominal system with controller in the presence of parameter variation, a sufficient condition is first established in terms of some coupled matrix inequalities on robust stochastical admissibility and H∞ disturbance attenuation property for resulting closed-loop uncertain system. Then the sufficient condition on non-fragile state feedback H∞ controller is presented. It is shown that non-fragile state feedback H∞ controller can be constructed through numerical solusion of a set of coupled linear matrix inequalities. Finally,the result with repect to nominal system is extended to robust non-fragile H∞ controller design for uncertain discrete-time singular Markovian jump system.%本文研究了一类离散奇异Markovian跳变系统的非脆弱H∞问题.首先针对标称离散奇异Markovian跳变系统,得到考虑控制器参数摄动后不确定闭环系统的关于鲁棒随机可容许性及H∞扰动衰减性能分析的结论;然后推导出标称离散奇异Markovian跳变系统非脆弱H∞控制器的设计方法,该方法表明可通过求解一组耦合线性矩阵不等式来构建非脆弱H∞控制器;最后将标称系统的结果进一步推广到考虑系统不确定性的鲁棒非脆弱H∞控制器设计.

  14. Practical Implementations of Advanced Process Control for Linear Systems

    DEFF Research Database (Denmark)

    Knudsen, Jørgen K . H.; Huusom, Jakob Kjøbsted; Jørgensen, John Bagterp

    2013-01-01

    Most advanced process control systems are based on Model Predictive Control (MPC). In this paper we discuss three critical issues for the practical implementation of linear MPC for process control applications. The rst issue is related to oset free control and disturbance models; the second issue...... implications for process control. If the control and evaluation intervals are chosen too short, the predicted behaviour of the controllers may have unstable characteristics. Depending of the degrees of freedom, oset-free control of a number of the controlled variables can be achieved by introduction of noise...... models and integration of the innovation errors. If the disturbances increases, oset-free control cannot be achieved without violation of process constraints. A target calculation function is used to calculate the optimal achievable target for the process. The use of soft constraints for process output...

  15. Optimal traffic control in highway transportation networks using linear programming

    KAUST Repository

    Li, Yanning

    2014-06-01

    This article presents a framework for the optimal control of boundary flows on transportation networks. The state of the system is modeled by a first order scalar conservation law (Lighthill-Whitham-Richards PDE). Based on an equivalent formulation of the Hamilton-Jacobi PDE, the problem of controlling the state of the system on a network link in a finite horizon can be posed as a Linear Program. Assuming all intersections in the network are controllable, we show that the optimization approach can be extended to an arbitrary transportation network, preserving linear constraints. Unlike previously investigated transportation network control schemes, this framework leverages the intrinsic properties of the Halmilton-Jacobi equation, and does not require any discretization or boolean variables on the link. Hence this framework is very computational efficient and provides the globally optimal solution. The feasibility of this framework is illustrated by an on-ramp metering control example.

  16. Linear Control Technique for Anti-Lock Braking System

    Directory of Open Access Journals (Sweden)

    Chankit Jain

    2014-08-01

    Full Text Available Antilock braking systems are used in modern cars to prevent the wheels from locking after brakes are applied. The dynamics of the controller needed for antilock braking system depends on various factors. The vehicle model often is in nonlinear form. Controller needs to provide a controlled torque necessary to maintain optimum value of the wheel slip ratio. The slip ratio is represented in terms of vehicle speed and wheel rotation. In present work first of all system dynamic equations are explained and a slip ratio is expressed in terms of system variables namely vehicle linear velocity and angular velocity of the wheel. By applying a bias braking force system, response is obtained using Simulink models. Using the linear control strategies like PI-type the effectiveness of maintaining desired slip ratio is tested. It is always observed that a steady state error of 10% occurring in all the control system models.

  17. Combined Sliding Mode Control with a Feedback Linearization for Speed Control of Induction Motor

    Directory of Open Access Journals (Sweden)

    Aamir Hashim Obeid Ahmed

    2011-06-01

    Full Text Available Induction Motor (IM speed control is an area of research that has been in prominence for some time now. In this paper, a nonlinear controller is presented for IM drives. The nonlinear controller is designed based on input-output feedback linearization control technique, combined with sliding mode control (SMC to obtain a robust, fast and precise control of IM speed. The input-output feedback linearization control decouples the flux control from the speed control and makes the synthesis of linear controllers possible. To validate the performances of the proposed control scheme, we provided a series of simulation results and a comparative study between the performances of the proposed control strategy and those of the feedback linearization control (FLC schemes. Simulation results show that the proposed control strategy scheme shows better performance than the FLC strategy in the face of system parameters variation

  18. Linearized models for a new magnetic control in MAST

    Energy Technology Data Exchange (ETDEWEB)

    Artaserse, G., E-mail: giovanni.artaserse@enea.it [Associazione Euratom-ENEA sulla Fusione, Via Enrico Fermi 45, I-00044 Frascati (RM) (Italy); Maviglia, F.; Albanese, R. [Associazione Euratom-ENEA-CREATE sulla Fusione, Via Claudio 21, I-80125 Napoli (Italy); McArdle, G.J.; Pangione, L. [EURATOM/CCFE Fusion Association, Culham Science Centre, Abingdon, Oxon, OX14 3DB (United Kingdom)

    2013-10-15

    Highlights: ► We applied linearized models for a new magnetic control on MAST tokamak. ► A suite of procedures, conceived to be machine independent, have been used. ► We carried out model-based simulations, taking into account eddy currents effects. ► Comparison with the EFIT flux maps and the experimental magnetic signals are shown. ► A current driven model for the dynamic simulations of the experimental data have been performed. -- Abstract: The aim of this work is to provide reliable linearized models for the design and assessment of a new magnetic control system for MAST (Mega Ampère Spherical Tokamak) using rtEFIT, which can easily be exported to MAST Upgrade. Linearized models for magnetic control have been obtained using the 2D axisymmetric finite element code CREATE L. MAST linearized models include equivalent 2D axisymmetric schematization of poloidal field (PF) coils, vacuum vessel, and other conducting structures. A plasmaless and a double null configuration have been chosen as benchmark cases for the comparison with experimental data and EFIT reconstructions. Good agreement has been found with the EFIT flux map and the experimental signals coming from magnetic probes with only few mismatches probably due to broken sensors. A suite of procedures (equipped with a user friendly interface to be run even remotely) to provide linearized models for magnetic control is now available on the MAST linux machines. A new current driven model has been used to obtain a state space model having the PF coil currents as inputs. Dynamic simulations of experimental data have been carried out using linearized models, including modelling of the effects of the passive structures, showing a fair agreement. The modelling activity has been useful also to reproduce accurately the interaction between plasma current and radial position control loops.

  19. Applied Research of Enterprise Cost Control Based on Linear Programming

    Directory of Open Access Journals (Sweden)

    Yu Shuo

    2015-01-01

    This paper researches the enterprise cost control through the linear programming model, and analyzes the restriction factors of the labor of enterprise production, raw materials, processing equipment, sales price, and other factors affecting the enterprise income, so as to obtain an enterprise cost control model based on the linear programming. This model can calculate rational production mode in the case of limited resources, and acquire optimal enterprise income. The production guiding program and scheduling arrangement of the enterprise can be obtained through calculation results, so as to provide scientific and effective guidance for the enterprise production. This paper adds the sensitivity analysis in the linear programming model, so as to learn about the stability of the enterprise cost control model based on linear programming through the sensitivity analysis, and verify the rationality of the model, and indicate the direction for the enterprise cost control. The calculation results of the model can provide a certain reference for the enterprise planning in the market economy environment, which have strong reference and practical significance in terms of the enterprise cost control.

  20. Finite-time H∞ control for a class of Markovian jump systems with mode-dependent time-varying delays via new Lyapunov functionals.

    Science.gov (United States)

    Cheng, Jun; Zhu, Hong; Zhong, Shouming; Zeng, Yong; Dong, Xiucheng

    2013-11-01

    This paper is concerned with the problem of finite-time H∞ control for a class of Markovian jump systems with mode-dependent time-varying delays via new Lyapunov functionals. In order to reduce conservatism, a new Lyapunov-Krasovskii functional is constructed. Based on the derived condition, the reliable H∞ control problem is solved, and the system trajectory stays within a prescribed bound during a specified time interval. Finally, numerical examples are given to demonstrate the proposed approach is more effective than some existing ones.

  1. Linear Quadratic Integral Control for the Active Suspension of Vehicle

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    The quarter model of an active suspension is established in the form of controllable autoregressive moving average (CARMA) model. An accelerometer can be mounted on the wheel hub for measuring road disturbance; this signal is used to identify the CARMA model parameters by recursive forgetting factors least square method. The linear quadratic integral (LQI) control method for the active suspension is presented. The LQI control algorithm is fit for vehicle suspension control, for the control performance index can comprise multi controlled variables. The simulation results show that the vertical acceleration and suspension travel both are decreased with the LQI control in the low frequency band, and the suspension travel is increased with the LQI control in the middle or high frequency band. The suspension travel is very small in the middle or high frequency band, the suspension bottoming stop will not happen, so the vehicle ride quality can be improved apparently by the LQI control.

  2. Parameter Optimization of Linear Quadratic Controller Based on Genetic Algorithm

    Institute of Scientific and Technical Information of China (English)

    LI Jimin; SHANG Chaoxuan; ZOU Minghu

    2007-01-01

    The selection of weighting matrix in design of the linear quadratic optimal controller is an important topic in the control theory. In this paper, an approach based on genetic algorithm is presented for selecting the weighting matrix for the optimal controller. Genetic algorithm is adaptive heuristic search algorithm premised on the evolutionary ideas of natural selection and genetic. In this algorithm, the fitness function is used to evaluate individuals and reproductive success varies with fitness. In the design of the linear quadratic optimal controller, the fitness function has relation to the anticipated step response of the system. Not only can the controller designed by this approach meet the demand of the performance indexes of linear quadratic controller, but also satisfy the anticipated step response of close-loop system. The method possesses a higher calculating efficiency and provides technical support for the optimal controller in engineering application. The simulation of a three-order single-input single-output (SISO) system has demonstrated the feasibility and validity of the approach.

  3. 具有受限转移率的跳变系统L2-L∞模糊控制%L2-L∞ fuzzy control of jump systems with bounded transition probabilities

    Institute of Scientific and Technical Information of China (English)

    何舒平; 刘飞

    2011-01-01

    The L2-L∞ fuzzy control problem of a class of nonlinear Markov jump systems ( MJSs) with uncertain transition jump rates is studied. The uncertain transition jump rates are assumed unknown but bounded.By means of Takagi-Sugeno fuzzy models, the overall closed-loop fuzzy dynamic equalities are constructed through selected membership functions. Based on the L2-L∞ fuzzy control theory, the sufficient condition for the existence of modedependent fuzzy controller is given so that the fuzzy MJSs are stochastically stable for all admissible uncertainties and satisfy the given L2-L∞ control index. By using the constructed Lyapunov-Krasovskii function and applying linear matrix inequality techniques, the design scheme of the robust L2-L∞ fuzzy controller is derived and described as an optimization one. Simulation results demonstrate the validity of the proposed approach.%讨论了一类含不确定转移率的非线性Markov跳变系统的L2-L∞模糊控制问题.系统模态间转移概率所包含的不确定性是未知且有界的.通过Takagi-Sugeno模型模糊建模,获取了整个闭环模糊动态方程.基于L2-L∞模糊控制理论,提出了使得系统随机稳定且满足一定输入输出L2-L∞特性的模态依赖的模糊控制器存在条件.利用构造的Lyapunov-Krasovskii函数,结合线性矩阵不等式技术,给出了鲁棒L2-L∞模糊控制器的设计方法,并将其设计转化为一个优化问题.仿真示例说明了设计方法的有效性.

  4. Synchronization and Control of Linearly Coupled Singular Systems

    Directory of Open Access Journals (Sweden)

    Fang Qingxiang

    2013-01-01

    Full Text Available The synchronization and control problem of linearly coupled singular systems is investigated. The uncoupled dynamical behavior at each node is general and can be chaotic or, otherwise the coupling matrix is not assumed to be symmetrical. Some sufficient conditions for globally exponential synchronization are derived based on Lyapunov stability theory. These criteria, which are in terms of linear matrix inequality (LMI, indicate that the left and right eigenvectors corresponding to eigenvalue zero of the coupling matrix play key roles in the stability analysis of the synchronization manifold. The controllers are designed for state feedback control and pinning control, respectively. Finally, a numerical example is provided to illustrate the effectiveness of the proposed conditions.

  5. CONTROLLING L(U)-SYSTEM USING PARTIAL LINEARIZATION

    Institute of Scientific and Technical Information of China (English)

    于永光; 张锁春

    2004-01-01

    Partial linearization method is proposed for controlling Lu-system. Through partially cancelling the nonlinear cross-coupling terms the stabilization of the resulting system was realized. This method can be easily realized. The robust behavior was proved with respect to an uncertain system. Numerical simulation are provided to show the effectiveness and feasibility of the method.

  6. Observability and controllability for linear neutral type systems

    OpenAIRE

    Rabah, Rabah; Sklyar, Grigory,

    2014-01-01

    International audience; For a large class of linear neutral type systems which include distributed delays we give the duality relation between exact controllability and exact observability. This duality is based on the representation of the abstract adjoint system as a special neutral type system. As a consequence of this duality relation, a characterization of exact observability is obtained. The time of observability is precised.

  7. Linear Parameter Varying Control of Doubly Fed Induction Machines

    NARCIS (Netherlands)

    Tien, H. Nguyen; Scherer, Carsten W.; Scherpen, Jacquelien M.A.; Müller, Volkmar

    2016-01-01

    This paper is concerned with the design of a self-scheduled current controller for doubly fed induction machines. The design is based on the framework of linear parameter-varying systems where the mechanical angular speed is considered to be a measurable time-varying parameter. The objective is to o

  8. Mode jumping of split-ring resonator metamaterials controlled by high-permittivity BST and incident electric fields

    Science.gov (United States)

    Fu, Xiaojian; Zeng, Xinxi; Cui, Tie Jun; Lan, Chuwen; Guo, Yunsheng; Zhang, Hao Chi; Zhang, Qian

    2016-08-01

    We investigate the resonant modes of split-ring resonator (SRR) metamaterials that contain high-permittivity BST block numerically and experimentally. We observe interesting mode-jumping phenomena from the BST-included SRR absorber structure as the excitation wave is incident perpendicularly to the SRR plane. Specifically, when the electric field is parallel to the SRR gap, the BST block in the gap will induce a mode jumping from the LC resonance to plasmonic resonance (horizontal electric-dipole mode), because the displacement current excited by the Mie resonance in the dielectric block acts as a current channel in the gap. When the electric field is perpendicular to the gap side, the plasmonic resonance mode (vertical electric-dipole mode) in SRR changes to two joint modes contributed simultaneously by the back layer, SRR and BST block, as a result of connected back layer and SRR layer by the displacement current in the BST dielectric block. Based on the mode jumping effect as well as temperature and electric-field dependent dielectric constant, the BST-included SRR metamaterials may have great potentials for the applications in electromagnetic switches and widely tunable metamaterial devices.

  9. Mode jumping of split-ring resonator metamaterials controlled by high-permittivity BST and incident electric fields.

    Science.gov (United States)

    Fu, Xiaojian; Zeng, Xinxi; Cui, Tie Jun; Lan, Chuwen; Guo, Yunsheng; Zhang, Hao Chi; Zhang, Qian

    2016-08-09

    We investigate the resonant modes of split-ring resonator (SRR) metamaterials that contain high-permittivity BST block numerically and experimentally. We observe interesting mode-jumping phenomena from the BST-included SRR absorber structure as the excitation wave is incident perpendicularly to the SRR plane. Specifically, when the electric field is parallel to the SRR gap, the BST block in the gap will induce a mode jumping from the LC resonance to plasmonic resonance (horizontal electric-dipole mode), because the displacement current excited by the Mie resonance in the dielectric block acts as a current channel in the gap. When the electric field is perpendicular to the gap side, the plasmonic resonance mode (vertical electric-dipole mode) in SRR changes to two joint modes contributed simultaneously by the back layer, SRR and BST block, as a result of connected back layer and SRR layer by the displacement current in the BST dielectric block. Based on the mode jumping effect as well as temperature and electric-field dependent dielectric constant, the BST-included SRR metamaterials may have great potentials for the applications in electromagnetic switches and widely tunable metamaterial devices.

  10. Mode jumping of split-ring resonator metamaterials controlled by high-permittivity BST and incident electric fields

    Science.gov (United States)

    Fu, Xiaojian; Zeng, Xinxi; Cui, Tie Jun; Lan, Chuwen; Guo, Yunsheng; Zhang, Hao Chi; Zhang, Qian

    2016-01-01

    We investigate the resonant modes of split-ring resonator (SRR) metamaterials that contain high-permittivity BST block numerically and experimentally. We observe interesting mode-jumping phenomena from the BST-included SRR absorber structure as the excitation wave is incident perpendicularly to the SRR plane. Specifically, when the electric field is parallel to the SRR gap, the BST block in the gap will induce a mode jumping from the LC resonance to plasmonic resonance (horizontal electric-dipole mode), because the displacement current excited by the Mie resonance in the dielectric block acts as a current channel in the gap. When the electric field is perpendicular to the gap side, the plasmonic resonance mode (vertical electric-dipole mode) in SRR changes to two joint modes contributed simultaneously by the back layer, SRR and BST block, as a result of connected back layer and SRR layer by the displacement current in the BST dielectric block. Based on the mode jumping effect as well as temperature and electric-field dependent dielectric constant, the BST-included SRR metamaterials may have great potentials for the applications in electromagnetic switches and widely tunable metamaterial devices. PMID:27502844

  11. Design and performance of the Stanford Linear Collider Control System

    Energy Technology Data Exchange (ETDEWEB)

    Melen, R.E.

    1984-10-01

    The success of the Stanford Linear Collider (SLC) will be dependent upon the implementation of a very large advanced computer-based instrumentation and control system. This paper describes the architectural design of this system as well as a critique of its performance. This critique is based on experience obtained from its use in the control and monitoring of 1/3 of the SLAC linac and in support of an expensive experimental machine physics experimental program. 11 references, 3 figures.

  12. H∞ controller synthesis of piecewise discrete time linear systems

    Institute of Scientific and Technical Information of China (English)

    Gang FENG

    2003-01-01

    This paper presents an H∞ controller design method for piecewise discrete time linear systems based on a piecewise quadratic Lyapunov function. It is shown that the resulting closed loop system is globally stable with guaranteed H∞ perfomance and the controller can be obtained by solvng a set of bilinear matrix inequalities. It has been shown that piecewise quadratic Lyapnnov functions are less conservative than the global quadratic Lyapunov functions. A simulation example is also given to illustrate the advantage of the proposed approach.

  13. ON THE OPTIMAL CONTROL COMPUTATION OF LINEAR SYSTEMS

    Directory of Open Access Journals (Sweden)

    H. Tjahjana

    2012-05-01

    Full Text Available In this paper, we consider a numerical method for designing optimal controlon Linear Quadratic Regulator (LQR problem. In the optimal control design process through Pontryagin Maximum Principle (PMP, we obtain a system of diferential equations in state and costate variables. This system lacks of initial condition on the adjoint variables, and this situation creates classic dificulty for solving optimal control problems.This paper proposes a constructive method to approximate the initial condition of the adjoint system.

  14. Robust Adaptive Control via Neural Linearization and Compensation

    Directory of Open Access Journals (Sweden)

    Roberto Carmona Rodríguez

    2012-01-01

    Full Text Available We propose a new type of neural adaptive control via dynamic neural networks. For a class of unknown nonlinear systems, a neural identifier-based feedback linearization controller is first used. Dead-zone and projection techniques are applied to assure the stability of neural identification. Then four types of compensator are addressed. The stability of closed-loop system is also proven.

  15. A non-linear UAV altitude PSO-PD control

    Science.gov (United States)

    Orlando, Calogero

    2015-12-01

    In this work, a nonlinear model based approach is presented for the altitude stabilization of a hexarotor unmanned aerial vehicle (UAV). The mathematical model and control of the hexacopter airframe is presented. To stabilize the system along the vertical direction, a Proportional Derivative (PD) control is taken into account. A particle swarm optimization (PSO) approach is used in this paper to select the optimal parameters of the control algorithm taking into account different objective functions. Simulation sets are performed to carry out the results for the non-linear system to show how the PSO tuned PD controller leads to zero the error of the position along Z earth direction.

  16. State feedback control of switched linear systems: An LMI approach

    Science.gov (United States)

    Montagner, V. F.; Leite, V. J. S.; Oliveira, R. C. L. F.; Peres, P. L. D.

    2006-10-01

    This paper addresses the problem of state feedback control of continuous-time switched linear systems with arbitrary switching rules. A quadratic Lyapunov function with a common matrix is used to derive a stabilizing switching control strategy that guarantees: (i) the assignment of all the eigenvalues of each linear subsystem inside a chosen circle in the left-hand half of the complex plane; (ii) a minimum disturbance attenuation level for the closed-loop switched system. The proposed design conditions are given in terms of linear matrix inequalities that encompass previous results based on quadratic stability conditions with fixed control gains. Although the quadratic stability based on a fixed Lyapunov matrix has been widely used in robust control design, the use of this condition to provide a convex design method for switching feedback gains has not been fully investigated. Numerical examples show that the switching control strategy can cope with more stringent design specifications than the fixed gain strategy, being useful to improve the performance of this class of systems.

  17. Control synthesis of linear distributed parameter switched systems

    Institute of Scientific and Technical Information of China (English)

    Leping Bao; Shumin Fei; Lin Chai

    2015-01-01

    The control synthesis for switched systems is extended to distributed parameter switched systems in Hilbert space. Based on semigroup and operator theory, by means of multiple Lyapunov method incorporated average dwel time approach, sufficient con-ditions are derived in terms of linear operator inequalities frame-work for distributed parameter switched systems. Being applied to one dimensional heat propagation switched systems, these lin-ear operator inequalities are reduced to linear matrix inequalities subsequently. In particular, the state feedback gain matrices and the switching law are designed, and the state decay estimate is explicitly given whose decay coefficient completely depends on the system’s parameter and the boundary condition. Final y, two numerical examples are given to il ustrate the proposed method.

  18. Control system analysis for the perturbed linear accelerator rf system

    CERN Document Server

    Sung Il Kwon

    2002-01-01

    This paper addresses the modeling problem of the linear accelerator RF system in SNS. Klystrons are modeled as linear parameter varying systems. The effect of the high voltage power supply ripple on the klystron output voltage and the output phase is modeled as an additive disturbance. The cavity is modeled as a linear system and the beam current is modeled as the exogenous disturbance. The output uncertainty of the low level RF system which results from the uncertainties in the RF components and cabling is modeled as multiplicative uncertainty. Also, the feedback loop uncertainty and digital signal processing signal conditioning subsystem uncertainties are lumped together and are modeled as multiplicative uncertainty. Finally, the time delays in the loop are modeled as a lumped time delay. For the perturbed open loop system, the closed loop system performance, and stability are analyzed with the PI feedback controller.

  19. Sliding Mode Control Approach for Electrically Controllable Clutch of AMT Based on the Feedback Linearization

    Institute of Scientific and Technical Information of China (English)

    程东升; 张建武; 叶晓峰; 黄维纲

    2003-01-01

    A sliding mode control approach based on the feedback linearization is proposed for the electrically controllable clutch of AMT vehicles. The nonlinear dynamic model for the hydraulic actuator associated with clutch is established. By means of the exact feedback linearization procedure of differential geometry, an equivalent, fully controllable and linear model is derived via a homomorphic transformation for the AMT clutch system.Furthermore, a sliding mode control is introduced to improve robustness. The tracking tests are performed using the sliding mode control on a Santana LX passenger car, and the experimental results prove that this nonlinear controller is of fine robustness and high degree of tracking accuracy.

  20. Steerable Miniature Jumping Robot

    OpenAIRE

    Kovac, Mirko; Schlegel, Manuel; Zufferey, Jean-Christophe; Floreano, Dario

    2010-01-01

    Jumping is used in nature by many small animals to locomote in cluttered environments or in rough terrain. It offers small systems the benefit of overcoming relatively large obstacles at a low energetic cost. In order to be able to perform repetitive jumps in a given direction, it is important to be able to upright after landing, steer and jump again. In this article, we review and evaluate the uprighting and steering principles of existing jumping robots and present a novel spherical robot w...

  1. Linear quadratic servo control of a reusable rocket engine

    Science.gov (United States)

    Musgrave, Jeffrey L.

    1991-01-01

    The paper deals with the development of a design method for a servo component in the frequency domain using singular values and its application to a reusable rocket engine. A general methodology used to design a class of linear multivariable controllers for intelligent control systems is presented. Focus is placed on performance and robustness characteristics, and an estimator design performed in the framework of the Kalman-filter formalism with emphasis on using a sensor set different from the commanded values is discussed. It is noted that loop transfer recovery modifies the nominal plant noise intensities in order to obtain the desired degree of robustness to uncertainty reflected at the plant input. Simulation results demonstrating the performance of the linear design on a nonlinear engine model over all power levels during mainstage operation are discussed.

  2. Controllability, observability, realizability, and stability of dynamic linear systems

    Directory of Open Access Journals (Sweden)

    John M. Davis

    2009-03-01

    Full Text Available We develop a linear systems theory that coincides with the existing theories for continuous and discrete dynamical systems, but that also extends to linear systems defined on nonuniform time scales. The approach here is based on generalized Laplace transform methods (e.g. shifts and convolution from the recent work [13]. We study controllability in terms of the controllability Gramian and various rank conditions (including Kalman's in both the time invariant and time varying settings and compare the results. We explore observability in terms of both Gramian and rank conditions and establish related realizability results. We conclude by applying this systems theory to connect exponential and BIBO stability problems in this general setting. Numerous examples are included to show the utility of these results.

  3. Controllability, Observability, Reachability, and Stability of Dynamic Linear Systems

    CERN Document Server

    Jackson, Billy J; Gravagne, Ian A; Marks, Robert J

    2009-01-01

    We develop a linear systems theory that coincides with the existing theories for continuous and discrete dynamical systems, but that also extends to linear systems defined on nonuniform time domains. The approach here is based on generalized Laplace transform methods (e.g. shifts and convolution) from our recent work \\cite{DaGrJaMaRa}. We study controllability in terms of the controllability Gramian and various rank conditions (including Kalman's) in both the time invariant and time varying settings and compare the results. We also explore observability in terms of both Gramian and rank conditions as well as realizability results. We conclude by applying this systems theory to connect exponential and BIBO stability problems in this general setting. Numerous examples are included to show the utility of these results.

  4. Generation companies decision-making modeling by linear control theory

    Energy Technology Data Exchange (ETDEWEB)

    Gutierrez-Alcaraz, G. [Programa de Graduados e Investigacion en Ingenieria Electrica. Departamento de Ingenieria Electrica y Electronica, Instituto Tecnologico de Morelia. Av. Tecnologico 1500, Col. Lomas de Santiaguito 58120. Morelia, Mich. (Mexico); Sheble, Gerald B. [INESC Porto, Faculdade de Engenharia, Universidade do Porto, Campus da FEUP, Rua Dr. Roberto Frias, 4200-465 Porto (Portugal)

    2010-07-15

    This paper proposes four decision-making procedures to be employed by electric generating companies as part of their bidding strategies when competing in an oligopolistic market: naive, forward, adaptive, and moving average expectations. Decision-making is formulated in a dynamic framework by using linear control theory. The results reveal that interactions among all GENCOs affect market dynamics. Several numerical examples are reported, and conclusions are presented. (author)

  5. Stabilization of multiple independent linear systems with control networks

    Institute of Scientific and Technical Information of China (English)

    Zhenfu BI; Fusheng WANG

    2004-01-01

    The problem of stabilizing multiple independent linear systems sharing one common network cable is presented and solved.Both the quantization and time sequencing are studied in the field of control over networks by providing the formulated stabilizing sufficient condition which illustrates the relationship between the system instability,quantization and time sequencing,and the data rate is also presented in terms of the quantization and time sequencing. A numerical example is given to illustrate the result.

  6. Linear Quadratic Controller with Fault Detection in Compact Disk Players

    DEFF Research Database (Denmark)

    Vidal, Enrique Sanchez; Hansen, K.G.; Andersen, R.S.

    2001-01-01

    The design of the positioning controllers in Optical Disk Drives are today subjected to a trade off between an acceptable suppression of external disturbances and an acceptable immunity against surfaces defects. In this paper an algorithm is suggested to detect defects of the disk surface combined...... with an observer and a Linear Quadratic Regulator. As a result, the mentioned trade off is minimized and the playability of the tested compact disk player is considerably enhanced....

  7. Structured Linear Parameter Varying Control of Wind Turbines

    DEFF Research Database (Denmark)

    Adegas, Fabiano Daher; Sloth, Christoffer; Stoustrup, Jakob

    2012-01-01

    is presented. We specifically consider variable-speed, variable-pitch wind turbines with faults on actuators and sensors. Linear parameter-varying (LPV) controllers can be designed by a proposed method that allows the inclusion of faults in the LPV controller design. Moreover, the controller structure can......High performance and reliability are required for wind turbines to be competitive within the energy market. To capture their nonlinear behavior, wind turbines are often modeled using parameter-varying models. In this chapter, a framework for modelling and controller design of wind turbines...... be arbitrarily chosen: static output feedback, dynamic (reduced order) output feedback, decentralized, among others. The controllers are scheduled on an estimated wind speed to manage the parametervarying nature of the model and on information from a fault diagnosis system. The optimization problems involved...

  8. Practical Implementations of Advanced Process Control for Linear Systems

    DEFF Research Database (Denmark)

    Knudsen, Jørgen K . H.; Huusom, Jakob Kjøbsted; Jørgensen, John Bagterp

    This paper describes some practical problems encountered, when implementing Advanced Process Control, APC, schemes on linear processes. The implemented APC controllers discussed will be LQR, Riccati MPC and Condensed MPC controllers illustrated by simulation of the Four Tank Process...... cannot be achieved without violation of process constraints. A target calculation function can be used to calculate the optimal achievable target for the process. The use of hard and soft constraints for process input constraints in the MPC controllers, ensures feasible solutions. The computational load...... as function of controllers type, Model dimension and constraint type will be discussed. Finally the special requirements set by processes including a pure integration dynamics will be illustrated by a linearised CSTR process. The simulated results presented, will later on be implemented on and demonstrated...

  9. Feedback Linearization Controller for a Wind Energy Power System

    Directory of Open Access Journals (Sweden)

    Muthana Alrifai

    2016-09-01

    Full Text Available This paper deals with the control of a doubly-fed induction generator (DFIG-based variable speed wind turbine power system. A system of eight ordinary differential equations is used to model the wind energy conversion system. The generator has a wound rotor type with back-to-back three-phase power converter bridges between its rotor and the grid; it is modeled using the direct-quadrature rotating reference frame with aligned stator flux. An input-state feedback linearization controller is proposed for the wind energy power system. The controller guarantees that the states of the system track the desired states. Simulation results are presented to validate the proposed control scheme. Moreover, further simulation results are shown to investigate the robustness of the proposed control scheme to changes in some of the parameters of the system.

  10. Effect of early training on the jumping technique of horses.

    Science.gov (United States)

    Santamaría, Susana; Bobbert, Maarten F; Back, Willem; Barneveld, Ab; van Weeren, P Rene

    2005-03-01

    To investigate the effects of early training for jumping by comparing the jumping technique of horses that had received early training with that of horses raised conventionally. 40 Dutch Warmblood horses. The horses were analyzed kinematically during free jumping at 6 months of age. Subsequently, they were allocated into a control group that was raised conventionally and an experimental group that received 30 months of early training starting at 6 months of age. At 4 years of age, after a period of rest in pasture and a short period of training with a rider, both groups were analyzed kinematically during free jumping. Subsequently, both groups started a 1-year intensive training for jumping, and at 5 years of age, they were again analyzed kinematically during free jumping. In addition, the horses competed in a puissance competition to test maximal performance. Whereas there were no differences in jumping technique between experimental and control horses at 6 months of age, at 4 years, the experimental horses jumped in a more effective manner than the control horses; they raised their center of gravity less yet cleared more fences successfully than the control horses. However, at 5 years of age, these differences were not detected. Furthermore, the experimental horses did not perform better than the control horses in the puissance competition. Specific training for jumping of horses at an early age is unnecessary because the effects on jumping technique and jumping capacity are not permanent.

  11. Identification and robust control of linear parameter-varying systems

    Science.gov (United States)

    Lee, Lawton Hubert

    This dissertation deals with linear parameter-varying (LPV) systems: linear dynamic systems that depend on time-varying parameters. These systems appear in gain scheduling problems, and much recent research has been devoted to their prospective usefulness for systematic gain scheduling. We primarily focus on robust control of uncertain LPV systems and identification of LPV systems that are modelable as linear-fractional transformations (LFTs). Using parameter-dependent quadratic Lyapunov functions, linear matrix inequalities (LMIs), and scaled small-gain arguments, we define notions of stability and induced-{cal L}sb2 performance for uncertain LPV systems whose parameters and rates of parameter variation satisfy given bounds. The performance criterion involves integral quadratic constraints and implies naturally parameter-dependent induced-{cal L}sb2 norm bounds. We formulate and solve an {cal H}sb{infty}-like control problem for an LPV plant with measurable parameters and an "Output/State Feedback" structure: the feedback outputs include some noiselessly measured states. Necessary and sufficient solvability conditions reduce to LMIs that can be solved approximately using finite-dimensional convex programming. Reduced-order LPV controllers are constructed from the LMI solutions. A D-K iteration-like procedure provides robustness to structured, time-varying, parametric uncertainty. The design method is applied to a motivating example: flight control for the F-16 VISTA throughout its subsonic flight envelope. Parameter-dependent weights and {cal H}sb{infty} design principles describe the performance objectives. Closed-loop responses exhibited by nonlinear simulations indicate satisfactory flying qualities. Identification of linear-fractional LPV systems is treated using maximum-likelihood parameter estimation. Computing the gradient and Hessian of a maximum-likelihood cost function reduces to simulating one LPV filter per identified parameter. We use nonlinear

  12. STOCHASTIC LINEAR QUADRATIC OPTIMAL CONTROL PROBLEMS WITH RANDOM COEFFICIENTS

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    This paper studies a stochastic linear quadratic optimal control problem (LQ problem, for short), for which the coefficients are allowed to be random and the cost functional is allowed to have a negative weight on the square of the control variable. The authors introduce the stochastic Riccati equation for the LQ problem. This is a backward SDE with a complicated nonlinearity and a singularity. The local solvability of such a backward SDE is established, which by no means is obvious. For the case of deterministic coefficients, some further discussions on the Riccati equations have been carried out. Finally, an illustrative example is presented.

  13. On guaranteed cost control of linear systems with input saturation

    Institute of Scientific and Technical Information of China (English)

    FU Min-yue

    2007-01-01

    This work studies the problem of control design for linear systems with input saturation. It is well known that integral quadratic constraints (IQC) can be used to describe input saturation and that the use of IQC in analysis can lead to less conservative performance bound and larger domain of attraction. In this work, it is shown that a class of commonly used IQCs may not help in control synthesis. That is, the use of these IQCs does not enlarge the guaranteed domain of performance for synthesis.

  14. Complete Controllability of Linear Fractional Differential Systems with Singularity

    Directory of Open Access Journals (Sweden)

    Qun Huang

    2015-01-01

    Full Text Available This paper is concerned with the controllability of a class of linear fractional differential systems with singularity. The method which is used to deal with the fast subsystem N·cD0,tαx2(t=x2(t+B2u(t and y2(t=C2x2(t is an improvement of the known ones. Based on the movement orbit of the state equation, we obtain several controllability criteria which are sufficient and necessary.

  15. Optimal Ski Jump

    Science.gov (United States)

    Rebilas, Krzysztof

    2013-01-01

    Consider a skier who goes down a takeoff ramp, attains a speed "V", and jumps, attempting to land as far as possible down the hill below (Fig. 1). At the moment of takeoff the angle between the skier's velocity and the horizontal is [alpha]. What is the optimal angle [alpha] that makes the jump the longest possible for the fixed magnitude of the…

  16. Jumping Good Fun

    Science.gov (United States)

    Nye, Susan B.

    2010-01-01

    Jumping rope is an activity that can be fun and enjoyable for all students. It requires minimal activity space, can be performed individually or in small groups, and is an inexpensive way to engage students in a lifelong physical activity. Jumping rope is commonly used by coaches and athletes for training purposes to improve aerobic endurance,…

  17. Jumping Good Fun

    Science.gov (United States)

    Nye, Susan B.

    2010-01-01

    Jumping rope is an activity that can be fun and enjoyable for all students. It requires minimal activity space, can be performed individually or in small groups, and is an inexpensive way to engage students in a lifelong physical activity. Jumping rope is commonly used by coaches and athletes for training purposes to improve aerobic endurance,…

  18. Estimation of Jump Tails

    DEFF Research Database (Denmark)

    Bollerslev, Tim; Todorov, Victor

    We propose a new and flexible non-parametric framework for estimating the jump tails of Itô semimartingale processes. The approach is based on a relatively simple-to-implement set of estimating equations associated with the compensator for the jump measure, or its "intensity", that only utilizes ...

  19. 带丢包 Markov 切换线性系统的状态估计问题研究%State Estimation for Jump Markov Linear Systems with Packet Dropouts

    Institute of Scientific and Technical Information of China (English)

    周卫东; 刘萌萌

    2016-01-01

    This study is devoted to the state estimation problem for a class of jump Markov linear systems with packet dropouts.The behavior of packet dropouts is described by a two-state ( i.e.,packet-dropping and normal) Markov chain with known transition probability matrix,which is independent of the system dynamics.Therefore,the obtained system can be modeled as a jump Markov linear system with two switching parameters.A product set is defined to combine the two mode sets and the corresponding relationship between models in the product set and models in the individual mode set is giv-en.Based on the product set,we cast the model into the framework of the interacting multiple model ( IMM) algorithm and the filtering steps are carried out in a layered manner.Furthermore,an optimal estimation algorithm is combined with the IMM to obtain the filtering results of the system.A maneuvering target tracking example is presented to prove the effective-ness of the proposed algorithm.%针对一类带丢包的Markov切换系统,提出一种含有双Markov切换参数的交互式多模型算法。该算法利用一个二态的Markov链对系统是否丢包进行建模,得到双Markov链系统,通过定义乘积集将两个Markov切换参数所对应的模型集进行融合,并给出单个模型集中各模型与乘积集中各模型的对应关系。在此基础上,以交互式多模型算法为框架,采用分层的方法,并利用一种新的最优估计算法对双Markov链系统进行滤波。仿真实验证明了该算法的有效性。

  20. From linear to nonlinear control means: a practical progression.

    Science.gov (United States)

    Gao, Zhiqiang

    2002-04-01

    With the rapid advance of digital control hardware, it is time to take the simple but effective proportional-integral-derivative (PID) control technology to the next level of performance and robustness. For this purpose, a nonlinear PID and active disturbance rejection framework are introduced in this paper. It complements the existing theory in that (1) it actively and systematically explores the use of nonlinear control mechanisms for better performance, even for linear plants; (2) it represents a control strategy that is rather independent of mathematical models of the plants, thus achieving inherent robustness and reducing design complexity. Stability analysis, as well as software/hardware test results, are presented. It is evident that the proposed framework lends itself well in seeking innovative solutions to practical problems while maintaining the simplicity and the intuitiveness of the existing technology.

  1. Fuzzy attitude control of solar sail via linear matrix inequalities

    Science.gov (United States)

    Baculi, Joshua; Ayoubi, Mohammad A.

    2017-09-01

    This study presents a fuzzy tracking controller based on the Takagi-Sugeno (T-S) fuzzy model of the solar sail. First, the T-S fuzzy model is constructed by linearizing the existing nonlinear equations of motion of the solar sail. Then, the T-S fuzzy model is used to derive the state feedback controller gains for the Twin Parallel Distributed Compensation (TPDC) technique. The TPDC tracks and stabilizes the attitude of the solar sail to any desired state in the presence of parameter uncertainties and external disturbances while satisfying actuator constraints. The performance of the TPDC is compared to a PID controller that is tuned using the Ziegler-Nichols method. Numerical simulation shows the TPDC outperforms the PID controller when stabilizing the solar sail to a desired state.

  2. Time-Inconsistent Stochastic Linear--Quadratic Control

    CERN Document Server

    Hu, Ying; Zhou, Xun Yu

    2011-01-01

    In this paper, we formulate a general time-inconsistent stochastic linear--quadratic (LQ) control problem. The time-inconsistency arises from the presence of a quadratic term of the expected state as well as a state-dependent term in the objective functional. We define an equilibrium, instead of optimal, solution within the class of open-loop controls, and derive a sufficient condition for equilibrium controls via a flow of forward--backward stochastic differential equations. When the state is one dimensional and the coefficients in the problem are all deterministic, we find an explicit equilibrium control. As an application, we then consider a mean-variance portfolio selection model in a complete financial market where the risk-free rate is a deterministic function of time but all the other market parameters are possibly stochastic processes. Applying the general sufficient condition, we obtain explicit equilibrium strategies when the risk premium is both deterministic and stochastic.

  3. Exploiting knowledge of jump-up and jump-down frequencies to determine the parameters of a Duffing oscillator

    Science.gov (United States)

    Ramlan, Roszaidi; Brennan, Michael J.; Kovacic, Ivana; Mace, Brian R.; Burrow, Stephen G.

    2016-08-01

    This work concerns the application of certain non-linear phenomena - jump frequencies in a base-excited Duffing oscillator - to the estimation of the parameters of the system. First, approximate analytical expressions are derived for the relationships between the jump-up and jump-down frequencies, the damping ratio and the cubic stiffness coefficient. Then, experimental results, together with the results of numerical simulations, are presented to show how knowledge of these frequencies can be exploited.

  4. Analysis and design of singular Markovian jump systems

    CERN Document Server

    Wang, Guoliang; Yan, Xinggang

    2014-01-01

    This monograph is an up-to-date presentation of the analysis and design of singular Markovian jump systems (SMJSs) in which the transition rate matrix of the underlying systems is generally uncertain, partially unknown and designed. The problems addressed include stability, stabilization, H∞ control and filtering, observer design, and adaptive control. applications of Markov process are investigated by using Lyapunov theory, linear matrix inequalities (LMIs), S-procedure and the stochastic Barbalat's Lemma, among other techniques.Features of the book include:·???????? study of the stability pr

  5. Position Control of Linear Synchronous Motor Drives with Exploitation of Forced Dynamics Control Principles

    Directory of Open Access Journals (Sweden)

    Jan Vittek

    2004-01-01

    Full Text Available Closed-loop position control of mechanisms directly driven by linear synchronous motors with permanent magnets is presented. The control strategy is based on forced dynamic control, which is a form of feedback linearisation, yielding a non-liner multivariable control law to obtain a prescribed linear speed dynamics together with the vector control condition of mutal orthogonality between the stator current and magnetic flux vectors (assuming perfect estimates of the plant parameters. Outer position control loop is closed via simple feedback with proportional gain. Simulations of the design control sysstem, including the drive with power electronic switching, predict the intended drive performance.

  6. Distributed control of uncertain systems using superpositions of linear operators.

    Science.gov (United States)

    Sanger, Terence D

    2011-08-01

    Control in the natural environment is difficult in part because of uncertainty in the effect of actions. Uncertainty can be due to added motor or sensory noise, unmodeled dynamics, or quantization of sensory feedback. Biological systems are faced with further difficulties, since control must be performed by networks of cooperating neurons and neural subsystems. Here, we propose a new mathematical framework for modeling and simulation of distributed control systems operating in an uncertain environment. Stochastic differential operators can be derived from the stochastic differential equation describing a system, and they map the current state density into the differential of the state density. Unlike discrete-time Markov update operators, stochastic differential operators combine linearly for a large class of linear and nonlinear systems, and therefore the combined effects of multiple controllable and uncontrollable subsystems can be predicted. Design using these operators yields systems whose statistical behavior can be specified throughout state-space. The relationship to Bayesian estimation and discrete-time Markov processes is described.

  7. Linear parameter-varying control for engineering applications

    CERN Document Server

    White, Andrew P; Choi, Jongeun

    2013-01-01

    The objective of this brief is to carefully illustrate a procedure of applying linear parameter-varying (LPV) control to a class of dynamic systems via a systematic synthesis of gain-scheduling controllers with guaranteed stability and performance. The existing LPV control theories rely on the use of either H-infinity or H2 norm to specify the performance of the LPV system.  The challenge that arises with LPV control for engineers is twofold. First, there is no systematic procedure for applying existing LPV control system theory to solve practical engineering problems from modeling to control design. Second, there exists no LPV control synthesis theory to design LPV controllers with hard constraints. For example, physical systems usually have hard constraints on their required performance outputs along with their sensors and actuators. Furthermore, the H-infinity and H2 performance criteria cannot provide hard constraints on system outputs. As a result, engineers in industry could find it difficult to utiliz...

  8. The Control of Asymmetric Rolling Missiles Based on Improved Trajectory Linearization Control Method

    Directory of Open Access Journals (Sweden)

    Huadong Sun

    2016-07-01

    Full Text Available According to motion characteristic of an asymmetric rolling missile with damage fin, a three-channel controlled model is established. The controller which is used to realize non-linear tracking and decoupling control of the roll and angle motion is introduced based on an improved trajector y linearization control method. The improved method is composed of the classic trajectory linearization control method and a compensation control law. The classic trajectory linearization control method is implemented in the time-scale separation principle. The Lipschitz non-linear state observer systematically obtained by solving the linear matrix inequality approach is provided to estimate state variables and unknown parameters, and then the compensation control law utilizing the estimated unknown parameters improves the TLC method. Simulation experiments show that the adaptive decoupling control ensure tracking performance, and the robustness and accuracy of missile attitude control are ensured under the condition of the system parameters uncertainty, random observation noise and external disturbance caused by damage fin.

  9. Evaluation Performance of IC Engine: Linear Tunable Gain Computed Torque Controller vs. Sliding Mode Controller

    Directory of Open Access Journals (Sweden)

    Shahnaz Tayebi Haghighi

    2013-05-01

    Full Text Available Design a nonlinear controller for second order nonlinear uncertain dynamical systems (e.g., internal combustion engine is one of the most important challenging works. This paper focuses on the comparative study between two important nonlinear controllers namely; computed torque controller (CTC and sliding mode controller (SMC and applied to internal combustion (IC engine in presence of uncertainties. In order to provide high performance nonlinear methodology, sliding mode controller and computed torque controller are selected. Pure SMC and CTC can be used to control of partly known nonlinear dynamic parameters of IC engine. Pure sliding mode controller and computed torque controller have difficulty in handling unstructured model uncertainties. To solve this problem applied linear error-based tuning method to sliding mode controller and computed torque controller for adjusting the sliding surface gain (λ and linear inner loop gain (K. Since the sliding surface gain (λ and linear inner loop gain (K are adjusted by linear error-based tuning method. In this research new λ and new K are obtained by the previous λ and K multiple gains updating factor(α. The results demonstrate that the error-based linear SMC and CTC are model-based controllers which works well in certain and uncertain system. These controllers have acceptable performance in presence of uncertainty.

  10. Control of Linear Parameter Varying Systems with Applications

    CERN Document Server

    Mohammadpour, Javad

    2012-01-01

    Control of Linear Parameter Varying Systems with Applications compiles state-of-the-art contributions on novel analytical and computational methods to address system modeling and identification, complexity reduction, performance analysis and control design for time-varying and nonlinear systems in the LPV framework. The book has an interdisciplinary character by emphasizing techniques that can be commonly applied in various engineering fields. It also includes a rich collection of illustrative applications in diverse domains to substantiate the effectiveness of the design methodologies and provide pointers to open research directions. The book is divided into three parts. The first part collects chapters of a more tutorial character on the background of LPV systems modeling and control. The second part gathers chapters devoted to the theoretical advancement of LPV analysis and synthesis methods to cope with the design constraints such as uncertainties and time delay. The third part of the volume showcases con...

  11. Frequency weighted system identification and linear quadratic controller design

    Science.gov (United States)

    Horta, Lucas G.; Phan, Minh; Juang, Jer-Nan; Longman, Richard W.; Sulla, Jeffrey L.

    1991-01-01

    Application of filters for frequency weighting of Markov parameters (pulse response functions) is described in relation to system/observer identification. The time domain identification approach recovers a model which has a pulse response weighted according to frequency. The identified model is composed of the original system and filters. The augmented system is in a form which can be used directly for frequency weighted linear quadratic controller design. Data from either single or multiple experiments can be used to recover the Markov parameters. Measured acceleration signals from a truss structure are used for system identification and the model obtained is used for frequency weighted controller design. The procedure makes the identification and controler design complementary problems.

  12. Controllability and Observability Criteria for Linear Piecewise Constant Impulsive Systems

    Directory of Open Access Journals (Sweden)

    Hong Shi

    2012-01-01

    Full Text Available Impulsive differential systems are an important class of mathematical models for many practical systems in physics, chemistry, biology, engineering, and information science that exhibit impulsive dynamical behaviors due to abrupt changes at certain instants during the dynamical processes. This paper studies the controllability and observability of linear piecewise constant impulsive systems. Necessary and sufficient criteria for reachability and controllability are established, respectively. It is proved that the reachability is equivalent to the controllability under some mild conditions. Then, necessary and sufficient criteria for observability and determinability of such systems are established, respectively. It is also proved that the observability is equivalent to the determinability under some mild conditions. Our criteria are of the geometric type, and they can be transformed into algebraic type conveniently. Finally, a numerical example is given to illustrate the utility of our criteria.

  13. Beam Trajectory control of the future Compact LInear Collider beam

    CERN Document Server

    Balik, G; Bolzon, B; Brunetti, L; Caron, B; Deleglise, G; Jeremie, A; Le Breton, R; Lottin, J; Pacquet, L

    2011-01-01

    The future Compact LInear Collider (CLIC) currently under design at CERN (European Organization for Nuclear Research) would create high-energy particle collisions between electrons and positrons, and provide a tool for scientists to address many of the most compelling questions about the fundamental nature of matter, energy, space and time. In accelerating structure, it is well-established that vibrations generated by the ground motion constitute the main limiting factors for reaching the luminosity of 10^34 cm-2s-1. Several methods have been proposed to counteract this phenomena and active vibration controls based on the integration of mechatronic systems into the machine structure is probably one of the most promising. This paper studies the strategy of the vibration suppression. Active vibration control methods, such as optimized parameter of a numerical compensator, adaptive algorithm with real time control are investigated and implemented in the simulation layout. The requirement couldn’t be achieved w...

  14. A new hyperchaotic system and its linear feedback control

    Institute of Scientific and Technical Information of China (English)

    Cai Guo-Liang; Zheng-Song; TianLi-Xin

    2008-01-01

    This paper reports a new hyperchaotic system by adding an additional state variable into a three-dimensional chaotic dynamical system,studies some of its basic dynamical properties,such as the hyperchaotic attractor,Lyapunov exponents,bifurcation diagram and the hyperchaotic attractor evolving into periodic,quasi-periodic dynamical behaviours by varying parameter k.Furthermore,effective linear feedback control method is used to suppress hyperchaes to unstable equilibrium,periodic orbits and quasi-periodic orbits.Numerical simulations are presented to show these results.

  15. An active interferometer-stabilization scheme with linear phase control

    DEFF Research Database (Denmark)

    Vardhan Krishnamachari, Vishnu; Andresen, Esben Ravn; Potma, Eric Olaf

    2006-01-01

    We report a simple and robust computer-based active interferometer stabilization scheme which does not require modulation of the interfering beams and relies on an error signal which is linearly related to the optical path difference. In this setup, a non-collinearly propagating reference laser...... beam stabilizes the interference output of the laser light propagating collinearly through the interferometer. This stabilization scheme enables adjustable phase control with 20 ms switching times in the range from 0.02π radians to 6π radians at 632.8 nm....

  16. Linear optimal control of continuous time chaotic systems.

    Science.gov (United States)

    Merat, Kaveh; Abbaszadeh Chekan, Jafar; Salarieh, Hassan; Alasty, Aria

    2014-07-01

    In this research study, chaos control of continuous time systems has been performed by using dynamic programming technique. In the first step by crossing the response orbits with a selected Poincare section and subsequently applying linear regression method, the continuous time system is converted to a discrete type. Then, by solving the Riccati equation a sub-optimal algorithm has been devised for the obtained discrete chaotic systems. In the next step, by implementing the acquired algorithm on the quantized continuous time system, the chaos has been suppressed in the Rossler and AFM systems as some case studies.

  17. Fault-tolerant control of linear uncertain systems using H∞ robust predictive control

    Institute of Scientific and Technical Information of China (English)

    Chen Xueqin; Geng Yunhai; Zhang Yingchun; Wang Feng

    2008-01-01

    The robust fault-tolerant control problem of linear uncertain systems is studied. It is shown that a solution for this problem can be obtained from a H∞ robust predictive controller (RMPC) by the method of linear matrix inequality (LMI). This approach has the advantages of both H∞ control and MPC: the robustness and ability to handle constraints explicitly. The robust closed-loop stability of the linear uncertain system with input and output constraints is proven under an actuator and sensor faults condition. Finally, satisfactory results of simulation experiments verify the validity of this algorithm.

  18. The aerodynamics of jumping rope

    Science.gov (United States)

    Aristoff, Jeffrey; Stone, Howard

    2011-03-01

    We present the results of a combined theoretical and experimental investigation of the motion of a rotating string that is held at both ends (i.e. a jump rope). In particular, we determine how the surrounding fluid affects the shape of the string at high Reynolds numbers: the string bends toward the axis of rotation, thereby reducing its total drag. We derive a pair of coupled non-linear differential equations that describe the shape, the numerical solution of which compares well with asymptotic approximations and experiments. Implications for successful skipping will be discussed.

  19. Boundary Control of Linear Evolution PDEs - Continuous and Discrete

    DEFF Research Database (Denmark)

    Rasmussen, Jan Marthedal

    2004-01-01

    Consider a partial di erential equation (PDE) of evolution type, such as the wave equation or the heat equation. Assume now that you can influence the behavior of the solution by setting the boundary conditions as you please. This is boundary control in a broad sense. A substantial amount...... erential equations. This field has mostly concerned engineers and others with practical applications in mind. This thesis makes an attempt to bridge the two research areas. More specifically, we make finite dimensional approximations to certain evolution PDEs, and analyze how properties of the discrete...... systems resemble the properties of the continuous system. A common framework in which the continuous systems are formulated will be provided. The treatment includes many types of linear evolution PDEs and boundary conditions. We also consider di erent types of controllability, such as approximate, null...

  20. Computational models of signalling networks for non-linear control.

    Science.gov (United States)

    Fuente, Luis A; Lones, Michael A; Turner, Alexander P; Stepney, Susan; Caves, Leo S; Tyrrell, Andy M

    2013-05-01

    Artificial signalling networks (ASNs) are a computational approach inspired by the signalling processes inside cells that decode outside environmental information. Using evolutionary algorithms to induce complex behaviours, we show how chaotic dynamics in a conservative dynamical system can be controlled. Such dynamics are of particular interest as they mimic the inherent complexity of non-linear physical systems in the real world. Considering the main biological interpretations of cellular signalling, in which complex behaviours and robust cellular responses emerge from the interaction of multiple pathways, we introduce two ASN representations: a stand-alone ASN and a coupled ASN. In particular we note how sophisticated cellular communication mechanisms can lead to effective controllers, where complicated problems can be divided into smaller and independent tasks.

  1. Linear servo-controlled pressure generator for forced oscillation measurements.

    Science.gov (United States)

    de Melo, P L; Werneck, M M; Giannella-Neto, A

    1998-01-01

    In respiratory input impedance measurements, the low-frequency range contains important clinical and physiological information. However, the patient's spontaneous ventilation can contaminate the data in this range, leading to unreliable results. Unbiased estimators are a good alternative to overcome this problem, provided that the generator is considered linear. This condition is not fulfilled by most existing generators as they are based on loudspeakers, which have strong nonlinearities. The present work aims to contribute to the solution of this problem, and describes a pressure generator that minimises the nonlinearities by an optical sensor placed in a position feedback loop. The static evaluation shows a high linearity for the optical system. The well known frequency response of pressure transducers is used in the dynamic evaluation of the instrument. The analysis of the generator shows that the use of position feedback improved the frequency response. The total harmonic distortion (THD) measurement shows that closed loop resulted in an effective decrease in the nonlinearities. The reduction of THD achieved by the servo-controlled generator can contribute to the practical implementation of the unbiased estimators, increasing the reliability of the impedance data, especially in the low-frequency range. This system is compared with conventional generators and with another servo-controlled system.

  2. Stabilizing equilibrium by linear feedback control for controlling chaos in Chen system

    Energy Technology Data Exchange (ETDEWEB)

    Costa, V A [Departamento de Ciencias Basicas, Facultad de IngenierIa (UNLP), La Plata (Argentina); Gonzalez, G A, E-mail: vacosta@ing.unlp.edu.ar, E-mail: ggonzal@fi.ub.ar [Departamento de Matematica, Facultad de Ingenieria (UBA), Buenos Aires (Argentina)

    2011-03-01

    Stabilization of a chaotic system in one of its unstable equilibrium points by applying small perturbations is studied. A two-stage control strategy based on linear feedback control is applied. Improvement of system performance is addressed by exploiting the ergodicity of the original dynamics and using Lyapunov stability results for control design. Extension to the not complete observability case is also analyzed.

  3. Quantum Walk with Jumps

    CERN Document Server

    Lavička, H; Kiss, T; Lutz, E; Jex, I

    2011-01-01

    We analyze a special class of 1-D quantum walks (QWs) realized using optical multi-ports. We assume non-perfect multi-ports showing errors in the connectivity, i.e. with a small probability the multi- ports can connect not to their nearest neighbor but to another multi-port at a fixed distance - we call this a jump. We study two cases of QW with jumps where multiple displacements can emerge at one timestep. The first case assumes time-correlated jumps (static disorder). In the second case, we choose the positions of jumps randomly in time (dynamic disorder). The probability distributions of position of the QW walker in both instances differ significantly: dynamic disorder leads to a Gaussian-like distribution, while for static disorder we find two distinct behaviors depending on the parity of jump size. In the case of even-sized jumps, the distribution exhibits a three-peak profile around the position of the initial excitation, whereas the probability distribution in the odd case follows a Laplace-like discre...

  4. Jumping on water

    Science.gov (United States)

    Kim, Ho-Young

    2016-11-01

    Water striders can jump on water as high as they can jump on land. Quick jumps allow them to avoid sudden dangers such as predators' attacks, and therefore understanding how they make such a dramatic motion for survival can shed light on the ultimate level of semi-aquatic motility achievable through evolution. However, the mechanism of their vertical jumping from a water surface has eluded hydrodynamic explanations so far. By observing movements of water strider legs and theoretically analyzing their dynamic interactions with deforming liquid-air interface, we have recently found that different species of jumping striders always tune their leg rotation speed with a force just below that required to break the water surface to reach the maximum take-off velocity. Here, we start with discussing the fundamental theories of dynamics of floating and sinking of small objects. The theories then enable us to analyze forces acting on a water strider while it presses down the water surface to fully exploit the capillary force. We further introduce a 68-milligram at-scale robotic insect capable of jumping on water without splash, strikingly similar to the real strider, by utilizing the water surface just as a trampoline.

  5. Optimal control for perfect state transfer in linear quantum memory

    Science.gov (United States)

    Nakao, Hideaki; Yamamoto, Naoki

    2017-03-01

    A quantum memory is a system that enables transfer, storage, and retrieval of optical quantum states by ON/OFF switching of the control signal in each stage of the memory. In particular, it is known that, for perfect transfer of a single-photon state, appropriate shaping of the input pulse is required. However, in general, such a desirable pulse shape has a complicated form, which would be hard to generate in practice. In this paper, for a wide class of linear quantum memory systems, we develop a method that reduces the complexity of the input pulse shape of a single photon while maintaining the perfect state transfer. The key idea is twofold; (i) the control signal is allowed to vary continuously in time to introduce an additional degree of freedom, and then (ii) an optimal control problem is formulated to design a simple-formed input pulse and the corresponding control signal. Numerical simulations are conducted for Λ-type atomic media and networked atomic ensembles, to show the effectiveness of the proposed method.

  6. Predictive IP controller for robust position control of linear servo system.

    Science.gov (United States)

    Lu, Shaowu; Zhou, Fengxing; Ma, Yajie; Tang, Xiaoqi

    2016-07-01

    Position control is a typical application of linear servo system. In this paper, to reduce the system overshoot, an integral plus proportional (IP) controller is used in the position control implementation. To further improve the control performance, a gain-tuning IP controller based on a generalized predictive control (GPC) law is proposed. Firstly, to represent the dynamics of the position loop, a second-order linear model is used and its model parameters are estimated on-line by using a recursive least squares method. Secondly, based on the GPC law, an optimal control sequence is obtained by using receding horizon, then directly supplies the IP controller with the corresponding control parameters in the real operations. Finally, simulation and experimental results are presented to show the efficiency of proposed scheme.

  7. TCSC controller design based on output feedback control with linear matrix inequality

    Energy Technology Data Exchange (ETDEWEB)

    Ishimaru, Masachika; Shirai, Goro [Hosei University, Tokyo (Japan). Dept. of Electrical Engineering; Niioka, Satoru; Yokoyama, Ryuichi [Tokyo Metropolitan University (Japan). Dept. of Electrical Engineering

    2000-07-01

    The authors aim at designing the fast responsible and robust stabilizing controller. Recently, many researches propose robust stabilizing compensators based on H{sub {infinity}} control theory. Especiady, the LMI (Linear Matrix Inequality) solving efficient convex problems is very effective. LMI is based on a linear function composed by matrices, and it is expansion of conventional H{sub {infinity}} control. In addition to the LMI approach, authors pay attention to the output-feedback control for stabilizing a system using observable output values. This paper presents a stabilizing control using measurable values by using the output-feedback method. In order to discuss the advantage of the proposed method, 3-machine 9-bus system is used. Moreover, this system is applied TCSC (Thyristor Controlled Series Capacitor) controllers, and H{sub {infinity}} control based on the LMI is proposed for the design method of TCSC controllers to attain the robust stability. (author)

  8. Adaptive Control for Linear Uncertain Systems with Unmodeled Dynamics Revisited via Optimal Control Modification

    Science.gov (United States)

    Nguyen, Nhan

    2013-01-01

    This paper presents the optimal control modification for linear uncertain plants. The Lyapunov analysis shows that the modification parameter has a limiting value depending on the nature of the uncertainty. The optimal control modification exhibits a linear asymptotic property that enables it to be analyzed in a linear time invariant framework for linear uncertain plants. The linear asymptotic property shows that the closed-loop plants in the limit possess a scaled input-output mapping. Using this property, we can derive an analytical closed-loop transfer function in the limit as the adaptive gain tends to infinity. The paper revisits the Rohrs counterexample problem that illustrates the nature of non-robustness of model-reference adaptive control in the presence of unmodeled dynamics. An analytical approach is developed to compute exactly the modification parameter for the optimal control modification that stabilizes the plant in the Rohrs counterexample. The linear asymptotic property is also used to address output feedback adaptive control for non-minimum phase plants with a relative degree 1.

  9. Network-Based Robust H₂/H∞ Control for Linear Systems With Two-Channel Random Packet Dropouts and Time Delays.

    Science.gov (United States)

    Qiu, Li; Shi, Yang; Yao, Fengqi; Xu, Gang; Xu, Bugong

    2015-08-01

    This paper focuses on the robust output feedback H₂/H∞ control issue for a class of discrete-time networked control systems with uncertain parameters and external disturbance. Sensor-to-controller and controller-to-actuator packet dropouts and time delays are considered simultaneously. According to the stochastic characteristic of the packet dropouts and time delays, a model based on a Markov jump system framework is proposed to randomly compensate for the adverse effect of the two-channel packet dropouts and time delays. To analyze the robust stability of the resulting closed-loop system, a Lyapunov function is proposed, based on which sufficient conditions for the existence of the H₂/H∞ controller are derived in terms of linear matrix inequalities, ensuring robust stochastic stability as well as the prescribed H₂ and H∞ performance. Finally, an angular positioning system is exploited to demonstrate the effectiveness and applicability of the proposed design strategy.

  10. Max-plus-linear model-based predictive control for constrained hybrid systems:linear programming solution

    Institute of Scientific and Technical Information of China (English)

    Yuanyuan ZOU; Shaoyuan LI

    2007-01-01

    In this paper,a linear programming method is proposed to solve model predictive control for a class of hybrid systems.Firstly,using the(max,+)algebra,a typical subclass of hybrid systems called max-plus-linear(MPL)systems is obtained.And then,model predictive control(MPC)framework is extended to MPL systems.In general,the nonlinear optimization approach or extended linear complementarity problem(ELCP)were applied to solve the MPL-MPC optimization problem.A new optimization method based on canonical forms for max-min-plus-scaling(MMPS)functions (using the operations maximization,minimization,addition and scalar multiplication)with linear constraints on the inputs is presented.The proposed approach consists in solving several linear programming problems and is more efficient than nonlinear optimization.The validity of the algorithm is illustrated by an example.

  11. PLC Based Adaptive PID Control of Non Linear Liquid Tank System using Online Estimation of Linear Parameters by Difference Equations

    Directory of Open Access Journals (Sweden)

    Kesavan.E

    2013-04-01

    Full Text Available This paper suggests an idea to design an adaptive PID controller for Non-linear liquid tank System and is implemented in PLC. Online estimation of linear parameters (Time constant and Gain brings an exact model of the process to take perfect control action. Based on these estimated values, the controller parameters will be well tuned by internal model control. Internal model control is an unremarkably used technique and provides well tuned controller in order to have a good controlling process. PLC with its ability to have both continues control for PID Control and digital control for fault diagnosis which ascertains faults in the system and provides alerts about the status of the entire process.

  12. On the Minimum Attention and the Anytime Attention Control Problems for Linear Systems: A Linear Programming Approach

    CERN Document Server

    Donkers, M C F; Heemels, W P M H

    2011-01-01

    In this paper, we present two control laws that are tailored for control applications in which computational and/or communication resources are scarce. Namely, we consider minimum attention control, where the `attention' that a control task requires is minimised given certain performance requirements, and anytime attention control, where the performance under the `attention' given by a scheduler is maximised. Here, we interpret `attention' as the inverse of the time elapsed between two consecutive executions of a control task. By focussing on linear plants, by allowing for only a finite number of possible intervals between two subsequent executions of the control task, by making a novel extension to the notion of control Lyapunov functions and taking these novel extended control Lyapunov function to be infinity-norm-based, we can formulate the aforementioned control problems as online linear programs, which can be solved efficiently. Furthermore, we provide techniques to construct suitable infinity-norm-based...

  13. Non-linear controls on the persistence of La Nina

    Science.gov (United States)

    Di Nezio, P. N.; Deser, C.

    2013-12-01

    Non-linear controls on the persistence of La Nina Pedro DiNezio and Clara Deser Up to half of the observed La Nina events last for two years or more. Most El Nino events, in contrast, last no longer than one year. The physical processes causing this asymmetry in the duration of warm and cold ENSO events is unknown. The persistence of La Nina, not only exacerbates the climate impacts, especially in regions prone to drought, but also is highly unpredictable. In this talk we will explore the nonlinear processes that generate the persistence of La Nina in observations and in CCSM4 - a coupled climate model that simulates this feature realistically. First, we develop a non-linear delayed-oscillator model (nonlinDO) based on CCSM4's heat budget. All positive and negative feedbacks of nonlinDO capture the nonlinear and seasonal dependence exhibited by CCSM4. The nonlinear behavior is due to: 1) weaker atmospheric damping of cold events with respect to warm events, 2) stronger wind response for large warm events, and 3) weaker coupling between thermocline and sea-surface temperature anomalies when the thermocline deepens. We force the simple model with white Gaussian noise resulting in seasonal modulation of variance and skewness, and a spectral peak, that are in agreement with CCSM4. Sensitivity experiments with nonlinDO show that the thermocline nonlinearity (3) is the sole process controlling the duration of La Nina events. Linear ENSO theory indicates that La Nina events drive a delayed thermocline deepening that leads to their demise. However, the thermocline nonlinearity (3) renders this response ineffective as La Nina events become stronger. This diminishing of the delayed-thermocline feedback prevents the equatorial Pacific from returning to neutral or warm conditions and cold conditions persist for a second year. Observations show evidence for this thermocline nonlinearity suggesting that this process could be at work in the real world. Last, we show evidence that

  14. Control design for robust stability in linear regulators: Application to aerospace flight control

    Science.gov (United States)

    Yedavalli, R. K.

    1986-01-01

    Time domain stability robustness analysis and design for linear multivariable uncertain systems with bounded uncertainties is the central theme of the research. After reviewing the recently developed upper bounds on the linear elemental (structured), time varying perturbation of an asymptotically stable linear time invariant regulator, it is shown that it is possible to further improve these bounds by employing state transformations. Then introducing a quantitative measure called the stability robustness index, a state feedback conrol design algorithm is presented for a general linear regulator problem and then specialized to the case of modal systems as well as matched systems. The extension of the algorithm to stochastic systems with Kalman filter as the state estimator is presented. Finally an algorithm for robust dynamic compensator design is presented using Parameter Optimization (PO) procedure. Applications in a aircraft control and flexible structure control are presented along with a comparison with other existing methods.

  15. Development of linear parameter varying control system for autonomous underwater vehicle

    OpenAIRE

    Sutarto, Herman; Budiyono, Agus

    2011-01-01

    The development and application of Linear Parameter Varying (LPV) control system for robust longitudinal control system on an Autonomous Underwater Vehicle (AUV) are presented. The LPV system is represented as Linear Fractional Transformation (LFT) on its parameter set. The LPV control system combines LPV theory based upon Linear Matrix Inequalities (LMIs) and - synthesis to form a robust LPV control system. The LPV control design is applied for a pitch control of the AUV to fulfill control...

  16. Relationship between jump landing kinematics and peak ACL force during a jump in downhill skiing: a simulation study.

    Science.gov (United States)

    Heinrich, D; van den Bogert, A J; Nachbauer, W

    2014-06-01

    Recent data highlight that competitive skiers face a high risk of injuries especially during off-balance jump landing maneuvers in downhill skiing. The purpose of the present study was to develop a musculo-skeletal modeling and simulation approach to investigate the cause-and-effect relationship between a perturbed landing position, i.e., joint angles and trunk orientation, and the peak force in the anterior cruciate ligament (ACL) during jump landing. A two-dimensional musculo-skeletal model was developed and a baseline simulation was obtained reproducing measurement data of a reference landing movement. Based on the baseline simulation, a series of perturbed landing simulations (n = 1000) was generated. Multiple linear regression was performed to determine a relationship between peak ACL force and the perturbed landing posture. Increased backward lean, hip flexion, knee extension, and ankle dorsiflexion as well as an asymmetric position were related to higher peak ACL forces during jump landing. The orientation of the trunk of the skier was identified as the most important predictor accounting for 60% of the variance of the peak ACL force in the simulations. Teaching of tactical decisions and the inclusion of exercise regimens in ACL injury prevention programs to improve trunk control during landing motions in downhill skiing was concluded. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  17. Preschool-aged children's jumps: imitation performances.

    Science.gov (United States)

    Labiadh, Lazhar; Ramanantsoa, Marie-Martine; Golomer, Eveline

    2010-04-01

    Imitative behavior underlaid by perception and action links during children's development in complex locomotor skills has been the object of relatively few studies. In order to explore children's motor coordination modes, 130 children divided into five age groups from 3.5 to 7.5 years were instructed to imitate jumping tasks in spontaneous motor situation and in various imitative contexts by an adult providing verbal orders and gestural demonstrations. Their conformity to the model, stability and variability scores were coded from a video analysis when they performed jumps with obstacles. To evaluate their postural-motor control level, the durations of the preparatory phase and jumping flights were also timed. Results showed that all age groups generated the demonstrator's goal but not necessarily the same coordination modes of jumping. In imitation with temporal proximity, the model helped the youngest age groups to adopt his coordination modes and stabilized only the oldest age groups' performances starting from 5.5 years old, without effect on learning imitation. Differences between the youngest and oldest children in the jump duration suggested that the reproduction of a complex motor activity such as jumping with a one foot take-off would require resolution and adjustment of main postural stability.

  18. Controllability of Linear Discrete-Time Systems with Both Delayed States and Delayed Inputs

    Directory of Open Access Journals (Sweden)

    Hong Shi

    2013-01-01

    Full Text Available The controllability issues for discrete-time linear systems with delay in state and control are addressed. By introducing a new concept, the controllability realization index (CRI, the characteristic of controllability is revealed. An easily testable necessary and sufficient condition for the controllability of discrete-time linear systems with state and control delay is established.

  19. Error Control of Iterative Linear Solvers for Integrated Groundwater Models

    CERN Document Server

    Dixon, Matthew; Brush, Charles; Chung, Francis; Dogrul, Emin; Kadir, Tariq

    2010-01-01

    An open problem that arises when using modern iterative linear solvers, such as the preconditioned conjugate gradient (PCG) method or Generalized Minimum RESidual method (GMRES) is how to choose the residual tolerance in the linear solver to be consistent with the tolerance on the solution error. This problem is especially acute for integrated groundwater models which are implicitly coupled to another model, such as surface water models, and resolve both multiple scales of flow and temporal interaction terms, giving rise to linear systems with variable scaling. This article uses the theory of 'forward error bound estimation' to show how rescaling the linear system affects the correspondence between the residual error in the preconditioned linear system and the solution error. Using examples of linear systems from models developed using the USGS GSFLOW package and the California State Department of Water Resources' Integrated Water Flow Model (IWFM), we observe that this error bound guides the choice of a prac...

  20. Effects on muscle strength, maximal jump height, flexibility and postural sway after soccer and Zumba exercise among female hospital employees: a 9-month randomised controlled trial.

    Science.gov (United States)

    Barene, Svein; Holtermann, Andreas; Oseland, Harald; Brekke, Ole-Lars; Krustrup, Peter

    2016-10-01

    This 9-month randomised controlled workplace physical activity trial investigated the effects of soccer and Zumba exercise, respectively, on muscle strength, maximal jump height, sit-and-reach flexibility and postural sway among female workers. A total of 107 female hospital employees aged 25-63 were cluster-randomised to a soccer group, a Zumba group or a control group. Training was conducted outside working hours as two to three 1-h weekly sessions the first 3 months and once a week the last 6 months. Tests were conducted at baseline, after 3 and 9 months. The soccer group improved maximal neck extension strength both after 3 (1.2 kg; P flexibility. The present study indicates that workplace-initiated soccer and Zumba exercise may be beneficial for improvement of the neck and trunk strength, which may have preventive effects with regard to future perceived muscle pain in the respective body regions. Furthermore, the Zumba group revealed positive effects on lower limb lean mass and postural sway compared to the control group.

  1. Spinning hydraulic jump

    Science.gov (United States)

    Abderrahmane, Hamid; Kasimov, Aslan

    2013-11-01

    We report an experimental observation of a new symmetry breaking of circular hydraulic jump into a self-organized structure that consists of a spinning polygonal jump and logarithmic-spiral waves of fluid elevation downstream. The waves are strikingly similar to spiral density waves in galaxies. The fluid flow exhibits counterparts of salient morphological features of galactic flows, in particular the outflow from the center, jets, circum-nuclear rings, gas inflows toward the galactic center, and vortices. The hydrodynamic instability revealed here may have a counterpart that plays a role in the formation and sustainability of spiral arms in galaxies.

  2. CHAOS CONTROL AND SYNCHRONIZATION USING SYNERGETIC CONTROLLER WITH FRACTIONAL AND LINEAR EXTENDED MANIFOLD

    Directory of Open Access Journals (Sweden)

    Morteza Pourmehdi

    2016-04-01

    Full Text Available In this manuscript, for the first time, a fractional-order manifold in a synergetic approach using a fractional order controller is introduced. Furtheremore, in the synergetic theory a macro variable is expended into a linear combination of state variables. An aim is to increase the convergence rate as well as time response of the whole closed loop system. Quality of the proposed controller is investigated to control and synchronize a nonlinear chaotic Coullet system in comparison with an integer order manifold synergetic controller. The stability of the proposed controller is proven using the Lyapunov method. In this regard stabilizing control effort is yielded. Simulation result confirm convergence of states towards zero. This is achieved through a control effort with fewer oscillations and lower amplitude of signls which confirm feasibility of the control effort in practice.KEYWORDS:  synergetic control theory; fractional order system; synchronization; nonlinear chaotic Coullet system; chaos control

  3. The Grassmannian Manifold and Controllability of the Linear Time-Invariant Control Systems

    Directory of Open Access Journals (Sweden)

    Shirish M. Deshmukh

    2010-07-01

    Full Text Available The idea discussed here are mainly to develope some interesting relationship between the differential geometry of certain curves and the controllability of linear time-invariant (LTI control systems without considering any matrix riccati equation. The problem based on the basic concepts of controllability is considered here. The two point boundary value problem (TPBVP is described here as a flow in the Grassmannian manifold. Then a simple solution to determine a control function in the Grassmannian manifold is presented that transfer the system states from initial to final values and satisfies the conditions that are equivalent to the controllability of the systems.

  4. Predictive current control of permanent magnet synchronous motor based on linear active disturbance rejection control

    Science.gov (United States)

    Li, Kunpeng

    2017-01-01

    The compatibility problem between rapidity and overshooting in the traditional predictive current control structure is inevitable and difficult to solve by reason of using PI controller. A novel predictive current control (PCC) algorithm for permanent magnet synchronous motor (PMSM) based on linear active disturbance rejection control (LADRC) is presented in this paper. In order to displace PI controller, the LADRC strategy which consisted of linear state error feedback (LSEF) control algorithm and linear extended state observer (LESO), is designed based on the mathematic model of PMSM. The purpose of LSEF is to make sure fast response to load mutation and system uncertainties, and LESO is designed to estimate the uncertain disturbances. The principal structures of the proposed system are speed outer loop based on LADRC and current inner loop based on predictive current control. Especially, the instruction value of qaxis current in inner loop is derived from the control quantity which is designed in speed outer loop. The simulation is carried out in Matlab/Simulink software, and the results illustrate that the dynamic and static performances of proposed system are satisfied. Moreover the robust against model parameters mismatch is enhanced obviously.

  5. H2 guaranteed cost control of discrete linear systems

    Directory of Open Access Journals (Sweden)

    W. Colmenares

    2000-01-01

    guaranteed cost performance on a discrete linear uncertain system where the uncertainty is of the norm bounded type. The conditions are presented as a collection of linear matrix inequalities.The solution, however requires a search over a scalar parameter space.

  6. Theoretical Modeling of Internal Hydraulic Jump in Density Currents

    CERN Document Server

    Firoozabadi, Bahar; Aryanfar, Asghar; Afshin, Hossein

    2013-01-01

    In this paper, we propose an analytical framework for internal hydraulic jumps. Density jumps or internal hydraulic jumps occur when a supper critical flow of water discharges into a stagnant layer of water with slightly different density. The approach used here is control volume method which is also used to analyze ordinary hydraulic jumps. The important difference here is that entrainment is taken into account. Using conservation equations with the aid of some simplifying assumptions we come to an equation that gives jump downstream height as function of jump upstream characteristics and the entrainment. To determine the magnitude of downstream height we use an experimental equation for calculating the entrainment. Finally we verify our framework by comparing the height that we gain from the derived equation with some experimental data.

  7. Chaotic anti-control for the bounded linear continuous-time system

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    With regard to the bounded linear continuous-time system,a universal chaotic anti-controlling method was presented on the basis of tracking control.A tracking controller is designed to such an extent that it can track any chaotic reference input,thus making it possible to chaotify the linear system.The controller is identical in structure for different controlled linear systems.Computer simulations proved the effectiveness of the proposed method.

  8. Chaotic anti-control for the bounded linear continuous-time system

    Institute of Scientific and Technical Information of China (English)

    Li Jianfen; Lin Hui; Li Nong

    2008-01-01

    With regard to the bounded linear continuous-time system, a universal chaotic anti-controlling method was presented on the basis of tracking control. A tracking controller is designed to such an extent that it can track any chaotic reference input, thus making it possible to chaotify the linear system. The controller is identical in structure for different controlled linear systems. Computer simulations proved the effectiveness of the proposed method.

  9. The TOPGAME-study: effectiveness of extracorporeal shockwave therapy in jumping athletes with patellar tendinopathy. Design of a randomised controlled trial

    Directory of Open Access Journals (Sweden)

    Diercks Ron L

    2010-02-01

    Full Text Available Abstract Background Patellar tendinopathy is a major problem for many athletes, especially those involved in jumping activities. Despite its frequency and negative impact on athletic careers, no evidence-based guidelines for management of this overuse injury exist. Since functional outcomes of conservative and surgical treatments remain suboptimal, new diagnostic and therapeutic strategies have to be developed and evaluated. Extracorporeal shockwave therapy (ESWT appears to be a promising treatment in patients with chronic patellar tendinopathy. ESWT is most often applied after the known conservative treatments have failed. However, its effectiveness as primary therapy has not been studied in athletes who keep playing sports despite having patellar tendon pain. The aim of this study is to determine the effectiveness of ESWT in athletes with patellar tendinopathy who are still in training and competition. Methods/design The TOPGAME-study (Tendinopathy of Patella Groningen Amsterdam Maastricht ESWT is a multicentre two-armed randomised controlled trial with blinded participants and outcome assessors, in which the effectiveness of patient-guided focussed ESWT treatment (compared to placebo ESWT on pain reduction and recovery of function in athletes with patellar tendinopathy will be investigated. Participants are volleyball, handball and basketball players with symptoms of patellar tendinopathy for a minimum of 3 to a maximum duration of 12 months who are still able to train and compete. The intervention group receives three patient-guided focussed medium-energy density ESWT treatments without local anaesthesia at a weekly interval in the first half of the competition. The control group receives placebo treatment. The follow-up measurements take place 1, 12 and 22 weeks after the final ESWT or placebo treatment, when athletes are still in competition. Primary outcome measure is the VISA-P (Victorian Institute of Sport Assessment - patella score

  10. Quantifying show jumping horse rider expertise using IMUs.

    Science.gov (United States)

    Patterson, M; Doyle, J; Cahill, E; Caulfield, B; McCarthy Persson, U

    2010-01-01

    Horse rider ability has long been measured using horse performance, competition results and visual observation. Scientific methods of measuring rider ability on the flat are emerging such as measuring position angles and harmony of the horse-rider system. To date no research has quantified rider ability in show jumping. Kinematic analysis and motion sensors have been used in sports other than show jumping to measure the quality of motor control patterns in humans. The aim of this study was to quantify rider ability in show jumping using body-mounted IMUs. Preliminary results indicate that there are clear differences in experienced and novice riders during show jumping.

  11. Development of a Minimally Actuated Jumping-Rolling Robot

    Directory of Open Access Journals (Sweden)

    Thanhtam Ho

    2015-04-01

    Full Text Available This paper presents development of a hybrid mobile robot in order to take advantage of both rolling and jumping locomotion on the ground. According to the unique design of the mechanism, the robot is able to execute both jumping and rolling skilfully by using only one DC motor. Changing the centre of gravity enables rolling of the robot and storage of energy is utilized for jumping. Mechanism design and control logic are validated by computer simulation. Simulation results show that the robot can jump nearly 1.3 times its diameter and roll at the speed of 3.3 times its diameter per second.

  12. Controlling chaos and synchronization for new chaotic system using linear feedback control

    Energy Technology Data Exchange (ETDEWEB)

    Yassen, M.T. [Mathematics Department, Faculty of Science, Mansoura University, Mansoura 35516 (Egypt)] e-mail: mtyassen@yahoo.com

    2005-11-01

    This paper is devoted to study the problem of controlling chaos for new chaotic dynamical system (four-scroll dynamical system). Linear feedback control is used to suppress chaos to unstable equilibria and to achieve chaos synchronization of two identical four-scroll systems. Routh-Hurwitz criteria is used to study the conditions of the asymptotic stability of the equilibrium points of the controlled system. The sufficient conditions for achieving synchronization of two identical four-scroll systems are derived by using Lyapunov stability theorem. Numerical simulations are presented to demonstrate the effectiveness of the proposed chaos control and synchronization schemes.

  13. Neural network-based nonlinear model predictive control vs. linear quadratic gaussian control

    Science.gov (United States)

    Cho, C.; Vance, R.; Mardi, N.; Qian, Z.; Prisbrey, K.

    1997-01-01

    One problem with the application of neural networks to the multivariable control of mineral and extractive processes is determining whether and how to use them. The objective of this investigation was to compare neural network control to more conventional strategies and to determine if there are any advantages in using neural network control in terms of set-point tracking, rise time, settling time, disturbance rejection and other criteria. The procedure involved developing neural network controllers using both historical plant data and simulation models. Various control patterns were tried, including both inverse and direct neural network plant models. These were compared to state space controllers that are, by nature, linear. For grinding and leaching circuits, a nonlinear neural network-based model predictive control strategy was superior to a state space-based linear quadratic gaussian controller. The investigation pointed out the importance of incorporating state space into neural networks by making them recurrent, i.e., feeding certain output state variables into input nodes in the neural network. It was concluded that neural network controllers can have better disturbance rejection, set-point tracking, rise time, settling time and lower set-point overshoot, and it was also concluded that neural network controllers can be more reliable and easy to implement in complex, multivariable plants.

  14. Jump dynamics due to jump datum of compressible viscous Navier-Stokes flows in a bounded plane domain

    Science.gov (United States)

    Kweon, Jae Ryong

    2016-09-01

    In this paper, when the initial density has a jump across an interior curve in a bounded domain, we show unique existence, piecewise regularity and jump discontinuity dynamics for the density and the velocity vector governed by the Navier-Stokes equations of compressible viscous barotropic flows. A critical difficulty is in controlling the gradient of the pressure across the jump curve. This is resolved by constructing a vector function associated with the pressure jump value on the convecting curve and extending it to the whole domain.

  15. Output regulation problem for discrete-time linear time-delay systems by output feedback control

    Institute of Scientific and Technical Information of China (English)

    Yamin YAN; Jie HUANG

    2016-01-01

    In this paper, we study the output regulation problem of discrete linear time-delay systems by output feedback control. We have established some results parallel to those for the output regulation problem of continuous linear time-delay systems.

  16. Position control of linear induction motor using an adaptive fuzzy integral: Back stepping controller

    Directory of Open Access Journals (Sweden)

    Bousserhane I.K.

    2006-01-01

    Full Text Available In this paper the position control of a linear induction motor using adaptive fuzzy back stepping design with integral action is proposed. First, the indirect field oriented control for LIM is derived. Then, an integral back stepping design for indirect field oriented control of LIM is proposed to compensate the uncertainties which occur in the control. Finally, the fuzzy integral-back stepping controller is investigated, where a simple fuzzy inference mechanism is used to achieve a position tracking objective under the mechanical parameters uncertainties. The effectiveness of the proposed control scheme is verified by numerical simulation. The numerical validation results of the proposed scheme have presented good performances compared to the conventional integral back stepping control.

  17. Engine Torque Control of SI Engine using Linear Quadratic Integral Tracking (LQIT Optimal Control

    Directory of Open Access Journals (Sweden)

    Aris Triwiyatno

    2011-11-01

    Full Text Available Due to the needs of improving fuel economy and reducing emissions, it is increasingly important to achieve control over robustness behavior and meet performance objectives over the life of the vehicle. This requires the development of high performance and optimal power train controllers. The performance objectives are often conflicting, or at least interrelated. One way to potentially meet these performance requirements is to introduce a method of controlling engine torque of Spark Ignition (SI engine using Linear Quadratic Integral Tracking (LQIT optimal control. The goal is to develop simple algorithms which can control engine torque well, thus providing fuel control more efficient and simultaneously improving engine performance due to the needs of the driver based on throttle opening information. In this case, spark ignition engine with automatic transmission simulation model is used to meet a good performance under this controller design.

  18. Observer-based passive control for uncertain linear systems with delay in state and control input

    Institute of Scientific and Technical Information of China (English)

    Li Gui-Fang; Li Hui-Ying; Yang Cheng-Wu

    2005-01-01

    This paper deals with the robust passivity synthesis problem for a class of uncertain linear systems with timevarying delay in state and control input. The parameter uncertainties are norm-bounded and allowed to appear in all matrices of the model. The problem aims at designing an observer-based dynamic output-feedback controller that robustly stabilizes the uncertain systems and achieves the strict passivity of closed-loop systems for all admissible uncertainties. By converting the problem at hand into a class of strictly passive control problem for a parameterized system, the explicit solution is established and expressed in terms of a linear matrix inequality. A numerical example is provided to demonstrate the validity of the proposed approach.

  19. Direct torque control via feedback linearization for permanent magnet synchronous motor drives

    DEFF Research Database (Denmark)

    Lascu, Cristian; Boldea, Ion; Blaabjerg, Frede

    2012-01-01

    The paper describes a direct torque controlled (DTC) permanent magnet synchronous motor (PMSM) drive that employs feedback linearization and uses sliding-mode and linear controllers. We introduce a new feedback linearization approach that yields a decoupled linear PMSM model with two state...... variables, the torque and the square of stator flux magnitude. This linear model is intuitive and allows the implementation of DTC-type controllers that preserve all DTC advantages and eliminate its main drawback, the flux and torque ripple. Next, we investigate two controllers for toque and flux....... A variable structure controller (VSC) which is robust, fast, and produces low-ripple control is compared with a linear-DTC scheme which is ripple free. The torque time response is similar to a conventional DTC drive and the proposed solutions are flexible and highly tunable. We present the controller design...

  20. Controllability and Observability of 2-DOF Permanent Magnet Maglev System with Linear Control

    Institute of Scientific and Technical Information of China (English)

    CUI Tian-shi; OKa koichi; DONG Gui-ju

    2005-01-01

    A new type of 2-DOF(degree of freedom) magnetic levitation system for multi-DOF levitation is proposed. In this system, the force of permanent magnets are used for levitation and controlled by adjusting the reluctance of the magnetic circuit. Using permanent magnets, the feature of this system is effective for saving energy and avoiding heat generation. First, the principle of the levitation system and typical reluctance control methods are described. Second, an experimental device based on the principle is introduced. Finally, the feasibility of this system is considered from linear control theory.

  1. Linear and Non-linear Multi-Input Multi-Output Model Predictive Control of Continuous Stirred Tank Reactor

    Directory of Open Access Journals (Sweden)

    Muayad Al-Qaisy

    2013-04-01

    Full Text Available In this article, multi-input multi-output (MIMO linear model predictive controller (LMPC based on state space model and nonlinear model predictive controller based on neural network (NNMPC are applied on a continuous stirred tank reactor (CSTR. The idea is to have a good control system that will be able to give optimal performance, reject high load disturbance, and track set point change. In order to study the performance of the two model predictive controllers, MIMO Proportional-Integral-Derivative controller (PID strategy is used as benchmark. The LMPC, NNMPC, and PID strategies are used for controlling the residual concentration (CA and reactor temperature (T. NNMPC control shows a superior performance over the LMPC and PID controllers by presenting a smaller overshoot and shorter settling time.

  2. Spontaneous azimuthal breakout and instability at the circular hydraulic jump

    CERN Document Server

    Ray, Arnab K; Basu, Abhik; Bhattacharjee, Jayanta K

    2015-01-01

    We consider a shallow, two-dimensional flow of a liquid in which the radial and the azimuthal dynamics are coupled to each other. The steady and radial background flow of this system creates an axially symmetric circular hydraulic jump. On this background we apply time-dependent perturbations of the matter flow rate and the azimuthal flow velocity, with the latter strongly localized at the hydraulic jump. The perturbed variables depend spatially on both the radial and azimuthal coordinates. Linearization of the perturbations gives a coupled system of wave equations. The characteristic equations extracted from these wave equations show that under a marginally stable condition a spontaneous breaking of axial symmetry occurs at the position of the hydraulic jump. Departure from the marginal stability shows further that a linear instability develops in the azimuthal direction, resulting in an azimuthal transport of liquid at the hydraulic jump. The time for the growth of azimuthal instability is scaled by viscosi...

  3. Structural Controllability of Discrete-Time Linear Control Systems with Time-Delay: A Delay Node Inserting Approach

    OpenAIRE

    Ailing Qi; Xuewei Ju; Qing Zhang; Zengqiang Chen

    2016-01-01

    This paper is concerned with the structural controllability analysis for discrete-time linear control systems with time-delay. By adding virtual delay nodes, the linear systems with time-delay are transformed into corresponding linear systems without time-delay, and the structural controllability of them is equivalent. That is to say, the time-delay does not affect or change the controllability of the systems. Several examples are also presented to illustrate the theoretical results.

  4. Self-Triggered Model Predictive Control for Linear Systems Based on Transmission of Control Input Sequences

    Directory of Open Access Journals (Sweden)

    Koichi Kobayashi

    2016-01-01

    Full Text Available A networked control system (NCS is a control system where components such as plants and controllers are connected through communication networks. Self-triggered control is well known as one of the control methods in NCSs and is a control method that for sampled-data control systems both the control input and the aperiodic sampling interval (i.e., the transmission interval are computed simultaneously. In this paper, a self-triggered model predictive control (MPC method for discrete-time linear systems with disturbances is proposed. In the conventional MPC method, the first one of the control input sequence obtained by solving the finite-time optimal control problem is sent and applied to the plant. In the proposed method, the first some elements of the control input sequence obtained are sent to the plant, and each element is sequentially applied to the plant. The number of elements is decided according to the effect of disturbances. In other words, transmission intervals can be controlled. Finally, the effectiveness of the proposed method is shown by numerical simulations.

  5. Differential-Drive Mobile Robot Control Design based-on Linear Feedback Control Law

    Science.gov (United States)

    Nurmaini, Siti; Dewi, Kemala; Tutuko, Bambang

    2017-04-01

    This paper deals with the problem of how to control differential driven mobile robot with simple control law. When mobile robot moves from one position to another to achieve a position destination, it always produce some errors. Therefore, a mobile robot requires a certain control law to drive the robot’s movement to the position destination with a smallest possible error. In this paper, in order to reduce position error, a linear feedback control is proposed with pole placement approach to regulate the polynoms desired. The presented work leads to an improved understanding of differential-drive mobile robot (DDMR)-based kinematics equation, which will assist to design of suitable controllers for DDMR movement. The result show by using the linier feedback control method with pole placement approach the position error is reduced and fast convergence is achieved.

  6. Application of Feedback Linearization Method in Airplane Automatic Landing Control System

    Institute of Scientific and Technical Information of China (English)

    Wang Xiaoyan; Feng Jiang; Feng Xiujuan; Wu Junqin

    2004-01-01

    Summarizes the I/O feedback linearization about MIMO system, and applies it to nonlinear control equation of airplane. And also designs the tracing control laws for airplane longitudinal automatic landing control system.

  7. Design of Attitude Control System for UAV Based on Feedback Linearization and Adaptive Control

    Directory of Open Access Journals (Sweden)

    Wenya Zhou

    2014-01-01

    Full Text Available Attitude dynamic model of unmanned aerial vehicles (UAVs is multi-input multioutput (MIMO, strong coupling, and nonlinear. Model uncertainties and external gust disturbances should be considered during designing the attitude control system for UAVs. In this paper, feedback linearization and model reference adaptive control (MRAC are integrated to design the attitude control system for a fixed wing UAV. First of all, the complicated attitude dynamic model is decoupled into three single-input single-output (SISO channels by input-output feedback linearization. Secondly, the reference models are determined, respectively, according to the performance indexes of each channel. Subsequently, the adaptive control law is obtained using MRAC theory. In order to demonstrate the performance of attitude control system, the adaptive control law and the proportional-integral-derivative (PID control law are, respectively, used in the coupling nonlinear simulation model. Simulation results indicate that the system performance indexes including maximum overshoot, settling time (2% error range, and rise time obtained by MRAC are better than those by PID. Moreover, MRAC system has stronger robustness with respect to the model uncertainties and gust disturbance.

  8. Contouring Control for a CNC Milling Machine Driven by Direct thrust Controlled Linear Induction Motors

    Directory of Open Access Journals (Sweden)

    Khaled N. Faris

    2015-12-01

    Full Text Available According to various advantages of linear induction motor (LIM, such as high starting thrust force, high speed operation and reduction of mechanical losses, more applications have utilized this type of motors. Direct Thrust Control (DTC technique is considered as one of the most efficient techniques that can be used for LIM. DTC is preferable to give a fast and good dynamic thrust response. So, to improve the accuracy and robustness of contouring control for CNC machine tools, linear induction motors with a direct thrust control technique are introduced for driving these machines. An industry standard motion control system is applied for reducing the tracking error and improving the desired accuracy. Different loading conditions are simulated to validate the reliability and robustness of the introduced system to match the application field. The proposed system is simulated using the MATLAB/SIMULINK Package; simulation results validated both tracking accuracy and robustness of the proposed motion control system for contouring control for a CNC (Computer Numerical Control milling machine.

  9. A Linear Active Disturbance Rejection Control for a Ball and Rigid Triangle System

    Directory of Open Access Journals (Sweden)

    Carlos Aguilar-Ibanez

    2016-01-01

    Full Text Available This paper proposes an application of linear flatness control along with active disturbance rejection control (ADRC for the local stabilization and trajectory tracking problems in the underactuated ball and rigid triangle system. To this end, an observer-based linear controller of the ADRC type is designed based on the flat tangent linearization of the system around its corresponding unstable equilibrium rest position. It was accomplished through two decoupled linear extended observers and a single linear output feedback controller, with disturbance cancelation features. The controller guarantees locally exponentially asymptotic stability for the stabilization problem and practical local stability in the solution of the tracking error. An advantage of combining the flatness and the ADRC methods is that it possible to perform online estimates and cancels the undesirable effects of the higher-order nonlinearities discarded by the linearization approximation. Simulation indicates that the proposed controller behaves remarkably well, having an acceptable domain of attraction.

  10. Stability Problems for Chua System with One Linear Control

    Directory of Open Access Journals (Sweden)

    Camelia Pop Arieşanu

    2013-01-01

    Full Text Available A Hamilton-Poisson realization and some stability problems for a dynamical system arisen from Chua system are presented. The stability and dynamics of a linearized smooth version of the Chua system are analyzed using the Hamilton-Poisson formalism. This geometrical approach allows to deduce the nonlinear stabilization near different equilibria.

  11. Linear control strategies for damping of flexible structures

    DEFF Research Database (Denmark)

    Høgsberg, Jan Riess; Krenk, Steen

    2006-01-01

    Starting from the two-component representation technique for damping of structures the possible increase in damping efficiency obtained by introducing collocated active damping is illustrated. The two-component representation of the damped vibration mode is constructed as a linear combination of ...

  12. Nonlinear H∞ filtering for interconnected Markovian jump systems

    Institute of Scientific and Technical Information of China (English)

    Zhang Xiaomei; Zheng Yufan

    2006-01-01

    The problem of nonlinear H∞ filtering for interconnected Markovian jump systems is discussed. The aim of this note is the design of a nonlinear Markovian jump filter such that the resulting error system is exponentially meansquare stable and ensures a prescribed H∞ performance. A sufficient condition for the solvability of this problem is given in terms of linear matrix inequalities(LMIs). A simulation example is presented to demonstrate the effectiveness of the proposed design approach.

  13. CFORM- LINEAR CONTROL SYSTEM DESIGN AND ANALYSIS: CLOSED FORM SOLUTION AND TRANSIENT RESPONSE OF THE LINEAR DIFFERENTIAL EQUATION

    Science.gov (United States)

    Jamison, J. W.

    1994-01-01

    CFORM was developed by the Kennedy Space Center Robotics Lab to assist in linear control system design and analysis using closed form and transient response mechanisms. The program computes the closed form solution and transient response of a linear (constant coefficient) differential equation. CFORM allows a choice of three input functions: the Unit Step (a unit change in displacement); the Ramp function (step velocity); and the Parabolic function (step acceleration). It is only accurate in cases where the differential equation has distinct roots, and does not handle the case for roots at the origin (s=0). Initial conditions must be zero. Differential equations may be input to CFORM in two forms - polynomial and product of factors. In some linear control analyses, it may be more appropriate to use a related program, Linear Control System Design and Analysis (KSC-11376), which uses root locus and frequency response methods. CFORM was written in VAX FORTRAN for a VAX 11/780 under VAX VMS 4.7. It has a central memory requirement of 30K. CFORM was developed in 1987.

  14. Undular Hydraulic Jump

    Directory of Open Access Journals (Sweden)

    Oscar Castro-Orgaz

    2015-04-01

    Full Text Available The transition from subcritical to supercritical flow when the inflow Froude number Fo is close to unity appears in the form of steady state waves called undular hydraulic jump. The characterization of the undular hydraulic jump is complex due to the existence of a non-hydrostatic pressure distribution that invalidates the gradually-varied flow theory, and supercritical shock waves. The objective of this work is to present a mathematical model for the undular hydraulic jump obtained from an approximate integration of the Reynolds equations for turbulent flow assuming that the Reynolds number R is high. Simple analytical solutions are presented to reveal the physics of the theory, and a numerical model is used to integrate the complete equations. The limit of application of the theory is discussed using a wave breaking condition for the inception of a surface roller. The validity of the mathematical predictions is critically assessed using physical data, thereby revealing aspects on which more research is needed

  15. Linear control of a boiler-turbine unit: analysis and design.

    Science.gov (United States)

    Tan, Wen; Fang, Fang; Tian, Liang; Fu, Caifen; Liu, Jizhen

    2008-04-01

    Linear control of a boiler-turbine unit is discussed in this paper. Based on the nonlinear model of the unit, this paper analyzes the nonlinearity of the unit, and selects the appropriate operating points so that the linear controller can achieve wide-range performance. Simulation and experimental results at the No. 4 Unit at the Dalate Power Plant show that the linear controller can achieve the desired performance under a specific range of load variations.

  16. A Learning Based Approach to Control Synthesis of Markov Decision Processes for Linear Temporal Logic Specifications

    Science.gov (United States)

    2014-09-20

    A Learning Based Approach to Control Synthesis of Markov Decision Processes for Linear Temporal Logic Specifications Dorsa Sadigh Eric Kim Samuel...2014 to 00-00-2014 4. TITLE AND SUBTITLE A Learning Based Approach to Control Synthesis of Markov Decision Processes for Linear Temporal Logic...ABSTRACT We propose to synthesize a control policy for a Markov decision process (MDP) such that the resulting traces of the MDP satisfy a linear

  17. Linear Active Disturbance Rejection Control of Waste Heat Recovery Systems with Organic Rankine Cycles

    OpenAIRE

    Fang Fang; Hong Yue; Yeli Zhou; Jiancun Feng; Jianhua Zhang

    2012-01-01

    In this paper, a linear active disturbance rejection controller is proposed for a waste heat recovery system using an organic Rankine cycle process, whose model is obtained by applying the system identification technique. The disturbances imposed on the waste heat recovery system are estimated through an extended linear state observer and then compensated by a linear feedback control strategy. The proposed control strategy is applied to a 100 kW waste heat recovery system to handle the power ...

  18. Forward-backward Stochastic Differential Equations and Backward Linear Quadratic Stochastic Optimal Control Problem

    Institute of Scientific and Technical Information of China (English)

    ZHANG DE-TAO

    2009-01-01

    In this paper, we use the solutions of forward-backward stochastic differential equations to get the optimal control for backward stochastic linear quadratic optimal control problem. And we also give the linear feedback regulator for the optimal control problem by using the solutions of a group of Riccati equations.

  19. [The research on linear control of pneumatic artificial muscles used in medical robots].

    Science.gov (United States)

    Lin, Linang-ming; Tian, She-ping; Yan, Guo-zheng

    2002-01-01

    This paper presents the properties of Pneumatic artificial muscles and its application in medical robots. The linear model construction and minimum predictive error control algorithm for artificial muscles are discussed here too. This paper provides the experimental results of linear adaptive control, which show the control algorithm has certain applicable value.

  20. CONTROL SYSTEM OF MAGNETIC BEARINGS BASED ON LINEAR QUADRATIC METHOD OF OPTIMAL CONTROL STRATEGY

    Institute of Scientific and Technical Information of China (English)

    Zhu Huangqiu

    2005-01-01

    A state equation for radical 4-degree-of-freedom active magnetic bearings is built, and the approach on how to use linear quadratic method of optical control theory to design a centralized and decentralized parameters control system is introduced, and also Matlab language is used to simulate and analyze. The simulation results have proved that the differences are small between centralized parameters and decentralized parameters control system. The conclusions of experiments have shown that decentralized controllers designed from optimal state feedback theory meet the requirements of active magnetic bearing system. The vibration amplitude of the rotor is about 20 μm when the speed of the rotor runs between 0 to 60 000 r/min. This method may be used in the study and design of controllers of magnetic bearings.

  1. Linear matrix inequalities for analysis and control of linear vector second-order systems

    Energy Technology Data Exchange (ETDEWEB)

    Adegas, Fabiano D. [Aalborg Univ. (Denmark); Stoustrup, Jakob [Aalborg Univ. (Denmark)

    2014-10-06

    Many dynamical systems are modeled as vector second-order differential equations. This paper presents analysis and synthesis conditions in terms of LMI with explicit dependence in the coefficient matrices of vector second-order systems. These conditions benefit from the separation between the Lyapunov matrix and the system matrices by introducing matrix multipliers, which potentially reduce conservativeness in hard control problems. Multipliers facilitate the usage of parameter-dependent Lyapunov functions as certificates of stability of uncertain and time-varying vector second-order systems. The conditions introduced in this work have the potential to increase the practice of analyzing and controlling systems directly in vector second-order form.

  2. LINEAR QUADRATIC OPTIMAL CONTROL UNDER STOCHASTIC UNIFORM OBSERVABILITY AND DETECTABILITY CONDITIONS

    Directory of Open Access Journals (Sweden)

    V.M. Ungureanu

    2011-07-01

    Full Text Available In this paper we apply the results in [1] - [3] to solve some linear quadratic control problems undereither stochastic uniform observability conditions or detectability conditions.

  3. Algebraic Necessary and Sufficient Conditions for the Controllability of Conewise Linear Systems

    NARCIS (Netherlands)

    Camlibel, M. Kanat; Heemels, W. P. M. H. (Maurice); Schumacher, J. M. (Hans)

    The problem of checking certain controllability properties of even very simple piecewise linear systems is known to be undecidable. This paper focuses on conewise linear systems, i.e., systems for which the state space is partitioned into conical regions and a linear dynamics is active on each of

  4. Algebraic Necessary and Sufficient Conditions for the Controllability of Conewise Linear Systems

    NARCIS (Netherlands)

    Camlibel, M. Kanat; Heemels, W. P. M. H. (Maurice); Schumacher, J. M. (Hans)

    2008-01-01

    The problem of checking certain controllability properties of even very simple piecewise linear systems is known to be undecidable. This paper focuses on conewise linear systems, i.e., systems for which the state space is partitioned into conical regions and a linear dynamics is active on each of th

  5. Linear Matrix Inequalities for Analysis and Control of Linear Vector Second-Order Systems

    DEFF Research Database (Denmark)

    Adegas, Fabiano Daher; Stoustrup, Jakob

    2015-01-01

    the Lyapunov matrix and the system matrices by introducing matrix multipliers, which potentially reduce conservativeness in hard control problems. Multipliers facilitate the usage of parameter-dependent Lyapunov functions as certificates of stability of uncertain and time-varying vector second-order systems...

  6. Nonautonomous linear Hamiltonian systems oscillation, spectral theory and control

    CERN Document Server

    Johnson, Russell; Novo, Sylvia; Núñez, Carmen; Fabbri, Roberta

    2016-01-01

    This monograph contains an in-depth analysis of the dynamics given by a linear Hamiltonian system of general dimension with nonautonomous bounded and uniformly continuous coefficients, without other initial assumptions on time-recurrence. Particular attention is given to the oscillation properties of the solutions as well as to a spectral theory appropriate for such systems. The book contains extensions of results which are well known when the coefficients are autonomous or periodic, as well as in the nonautonomous two-dimensional case. However, a substantial part of the theory presented here is new even in those much simpler situations. The authors make systematic use of basic facts concerning Lagrange planes and symplectic matrices, and apply some fundamental methods of topological dynamics and ergodic theory. Among the tools used in the analysis, which include Lyapunov exponents, Weyl matrices, exponential dichotomy, and weak disconjugacy, a fundamental role is played by the rotation number for linear Hami...

  7. Beam trajectory control of the future Compact Linear Collider

    OpenAIRE

    Balik, G.; Badel, A.; Bolzon, B; Brunetti, L.; Caron, B.; Deleglise, G.; Jérémie, A.; Le Breton, R.; Lottin, J.; Pacquet, L.

    2011-01-01

    International audience; The future Compact LInear Collider (CLIC) currently under design at CERN (European Organization for Nuclear Research) would create high-energy particle collisions between electrons and positrons, and provide a tool for scientists to address many of the most compelling questions about the fundamental nature of matter, energy, space and time. In accelerating structure, it is well-established that vibrations generated by the ground motion constitute the main limiting fact...

  8. Chaos control and global synchronization of Liu chaotic systems using linear balanced feedback control

    Energy Technology Data Exchange (ETDEWEB)

    Chen, H.-H. [Department of Mechanical Engineering, HsiuPing Institute of Technology, Taichung 412, Taiwan (China)], E-mail: richard@mail.hit.edu.tw

    2009-04-15

    Liu chaotic systems exhibit two- or four-scroll attractors and are observed in a variety of engineering phenomena, including rigid body motion, brushless DC motor system and so forth. This study applies the Lyapunov stability theorem to identify the sufficient conditions for the asymptotic stability of the equilibrium points of Liu chaotic systems. A linear balanced feedback gain control method is then employed to design a controller to achieve the global synchronization of two identical four-scroll Liu chaotic systems. The feasibility and effectiveness of the proposed chaos stability and synchronization schemes are verified via numerical simulations.

  9. Mode localized MEMS transducers with voltage-controlled linear coupling

    Science.gov (United States)

    Manav, M.; Srikantha Phani, A.; Cretu, E.

    2017-05-01

    Recent studies have demonstrated mode localized resonant micro-electro-mechanical systems (MEMS) sensing devices with orders of magnitude improvement in sensitivity. Avoided crossings or eigenvalue veering is the physical mechanism exploited to achieve the enhancement in sensitivity of devices operating either in vacuum or in air. The mode localized MEMS devices are typically designed to be symmetric and use gap-varying electrostatic springs to couple motions of two or more resonators. The role of asymmetry in the design of devices and its influence on sensitivity is not fully understood. Furthermore, gap-varying electrostatic springs suffer from nonlinearities when gap variation between coupling plates becomes large due to mode localization, imposing limitations on the device performance. To address these shortcomings, this contribution has two principal objectives. The first objective is to critically assess the role of asymmetry in the device design and operation. We show, based on energy analysis, that carefully designed asymmetry in devices can lead to even higher sensitivities than reported in the literature. Our second objective is to design and implement linear, tunable, electrostatic springs, using shaped combs, which allow large vibration amplitudes of resonators thereby increasing the signal to noise ratio. We experimentally demonstrate linear electrostatic coupling in a two oscillator device. Our study suggests that a future avenue for progress in the mode localized resonant sensing technology is to combine asymmetric devices with tunable linear coupling designs.

  10. Boundary Control of Linear Evolution PDEs - Continuous and Discrete

    DEFF Research Database (Denmark)

    Rasmussen, Jan Marthedal

    2004-01-01

    of literature exists in the area of theoretical results concerning control of partial differential equations. The results have included existence and uniqueness of controls, minimum time requirements, regularity of domains, and many others. Another huge research field is that of control theory for ordinary di......- and exact controllability. We will consider discrete systems with a viewpoint similar to that used for the continuous systems. Most importantly, we study what is required of a discretization scheme in order for computed control functions to converge to the true, continuous, control function. Examples exist...

  11. Distributed Cooperative Secondary Control of Microgrids Using Feedback Linearization

    DEFF Research Database (Denmark)

    Bidram, Ali; Davoudi, Ali; Lewis, Frank;

    2013-01-01

    This paper proposes a secondary voltage control of microgrids based on the distributed cooperative control of multi-agent systems. The proposed secondary control is fully distributed; each distributed generator (DG) only requires its own information and the information of some neighbors...

  12. Observer-based linear parameter varying H∞ tracking control for hypersonic vehicles

    Directory of Open Access Journals (Sweden)

    Yiqing Huang

    2016-11-01

    Full Text Available This article aims to develop observer-based linear parameter varying output feedback H∞ tracking controller for hypersonic vehicles. Due to the complexity of an original nonlinear model of the hypersonic vehicle dynamics, a slow–fast loop linear parameter varying polytopic model is introduced for system stability analysis and controller design. Then, a state observer is developed by linear parameter varying technique in order to estimate the unmeasured attitude angular for slow loop system. Also, based on the designed linear parameter varying state observer, a kind of attitude tracking controller is presented to reduce tracking errors for all bounded reference attitude angular inputs. The closed-loop linear parameter varying system is proved to be quadratically stable by Lypapunov function technique. Finally, simulation results show that the developed linear parameter varying H∞ controller has good tracking capability for reference commands.

  13. Does gymnastics practice improve vertical jump reliability from the age of 8 to 10 years?

    Science.gov (United States)

    Marina, Michel; Torrado, Priscila

    2013-01-01

    The objective of this study was to confirm whether gymnastics practice from a young age can induce greater vertical jump reliability. Fifty young female gymnasts (8.84 ± 0.62 years) and 42 females in the control group (8.58 ± 0.92 years) performed the following jump tests on a contact mat: squat jump, countermovement jump, countermovement jump with arm swing and drop jump from heights of 40 and 60 cm. The two testing sessions had three trials each and were separated by one week. A 2 (groups) × 2 (sessions) × 3 (trials) repeated measures analysis of variance (ANOVA) and a test-retest correlation analysis were used to study the reliability. There was no systematic source of error in either group for non-plyometric jumps such as squat jump, countermovement jump, and countermovement jump with arm swing. A significant group per trial interaction revealed a learning effect in gymnasts' drop jumps from 40 cm height. Additionally, the test-retest correlation analysis and the higher minimum detectable error suggest that the quick drop jump technique was not fully consolidated in either group. At an introductory level of gymnastics and between the ages of 8-10 years, the condition of being a gymnast did not lead to conclusively higher reliability, aside from better overall vertical jump performance.

  14. Optimization of linear parametric circuits by the control of stability

    Directory of Open Access Journals (Sweden)

    Yu. I. Shapovalov

    2013-07-01

    Full Text Available Introduction. A brief description of the symbolic frequency method for linear parametric circuit analysis is adduced. In particular it comes to parametric transfer functions and assessment of asymptotic stability of such circuits. The formulation of optimization task. The objective function formation is done via two functions - the function of goal defined by desirable circuit characteristics (goal of optimization and function characteristics of circuit defined by the selected values of the varied parameters during optimization of electrical circuit characteristics. The coincidence degree of these two functions is objective function which is formed on their basis by the chosen method. The procedure of optimization. The solution of optimization task is determining the values с0* and m* that provide minimum value of objective function, satisfy the condition of circuit stability and conditions of physical parametric element realizability Example. There is example of single-circuit parametric amplifier optimization using the objective function based on the calculation of parametric circuit transfer function with a symbolic representation of the parametric capacity parameters. Conclusions. Frequency symbolic analysis method allows solving optimization task of parametric linear circuits designing in the frequency domain based on use of the frequency symbolic transfer functions which are approximated by trigonometric polynomials of Fourier, particularly in complex form.

  15. Ridge jump process in Iceland

    OpenAIRE

    Garcia, Sebastian

    2010-01-01

    Eastward ridge jumps bring the volcanic zones of Iceland back to the centre of the hotspot in response to the absolute westward drift of the Mid-Atlantic Ridge. Mantellic pulses triggers these ridge jumps. One of them is occurring in Southern Iceland, whereas the exact conditions of the last ridge jump in Northern Iceland remain controversial. The diachronous evolution of these two parts of Iceland may be related to the asymmetric plume-ridge interaction when comparing Northern and Southern I...

  16. and the CMJ jump height

    Directory of Open Access Journals (Sweden)

    Struzik Artur

    2016-04-01

    Full Text Available Study aim: The elastic potential energy accumulated in the musculotendinous units during the countermovement phase of a jump adds up to the energy supplied by the contracting muscles used in the take-off phase. Consequently, the total mechanical energy used during the jump may reach higher values. Stiffness represents a quantitative measure of a body’s elastic properties. Therefore, the aim of this study was to establish the relationship between leg stiffness and the countermovement jump height.

  17. Robust Control for Linear Systems with Structured Uncertainty

    Science.gov (United States)

    1988-11-01

    IEEE Transactions on Automatic Control , Vol. AC-29, no. 10, pp. 935-936, 1984. 4. Bose, N. K., "A...1985. 5. Anderson, B. D. 0., Jury, E. I., and Mansour, M., "On Robust Hurwitz Polynomials", IEEE Transactions on Automatic Control , Vol. AC-32, pp. 809...B., Berger, C. S., and Dabke, K. P., "On Stability of Polynomials with Perturbed Coefficients", IEEE Transactions on Automatic Control , Vol. AC-30,

  18. The TOPGAME-study : effectiveness of extracorporeal shockwave therapy in jumping athletes with patellar tendinopathy. Design of a randomised controlled trial

    NARCIS (Netherlands)

    Zwerver, Johannes; Verhagen, Evert; Hartgens, Fred; van den Akker-Scheek, Inge; Diercks, Ron L.

    2010-01-01

    Background: Patellar tendinopathy is a major problem for many athletes, especially those involved in jumping activities. Despite its frequency and negative impact on athletic careers, no evidence-based guidelines for management of this overuse injury exist. Since functional outcomes of conservative

  19. Adaptive Linear Parameter Varying Control for Aeroservoelastic Suppression Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Adaptive control offers an opportunity to fulfill present and future aircraft safety objectives though automated vehicle recovery while maintaining performance and...

  20. Adaptive Linear Parameter Varying Control for Aeroservoelastic Suppression Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Adaptive control offers an opportunity to fulfill aircraft safety objectives though automated vehicle recovery while maintaining performance and stability...

  1. On-Off Minimum-Time Control With Limited Fuel Usage: Global Optima Via Linear Programming

    Energy Technology Data Exchange (ETDEWEB)

    DRIESSEN,BRIAN

    1999-09-01

    A method for finding a global optimum to the on-off minimum-time control problem with limited fuel usage is presented. Each control can take on only three possible values: maximum, zero, or minimum. The simplex method for linear systems naturally yields such a solution for the re-formulation presented herein because it always produces an extreme point solution to the linear program. Numerical examples for the benchmark linear flexible system are presented.

  2. Design and Implementation of Digital Linear Control Systems on Reconfigurable Hardware

    Directory of Open Access Journals (Sweden)

    Marcus Bednara

    2003-05-01

    Full Text Available The implementation of large linear control systems requires a high amount of digital signal processing. Here, we show that reconfigurable hardware allows the design of fast yet flexible control systems. After discussing the basic concepts for the design and implementation of digital controllers for mechatronic systems, a new general and automated design flow starting from a system of differential equations to application-specific hardware implementation is presented. The advances of reconfigurable hardware as a target technology for linear controllers is discussed. In a case study, we compare the new hardware approach for implementing linear controllers with a software implementation.

  3. Numerical Methods for Solution of the Extended Linear Quadratic Control Problem

    DEFF Research Database (Denmark)

    Jørgensen, John Bagterp; Frison, Gianluca; Gade-Nielsen, Nicolai Fog

    2012-01-01

    to the Karush-Kuhn-Tucker system that constitute the majority of computational work in constrained nonlinear and linear model predictive control problems solved by efficient MPC-tailored interior-point and active-set algorithms. We state various methods of solving the extended linear quadratic control problem...

  4. An impulsive input approach to short time convergent control for linear systems

    NARCIS (Netherlands)

    Weiss, M.; Shtessel, Y.

    2013-01-01

    The paper considers the problem of bringing the state of a controllable linear system to the origin in a very short time. It takes the approach of considering an “ideal” control input consisting of a linear combination of the Dirac delta function and its derivatives that realizes this goal instantan

  5. An impulsive input approach to short time convergent control for linear systems

    NARCIS (Netherlands)

    Weiss, M.; Shtessel, Y.

    2013-01-01

    The paper considers the problem of bringing the state of a controllable linear system to the origin in a very short time. It takes the approach of considering an “ideal” control input consisting of a linear combination of the Dirac delta function and its derivatives that realizes this goal

  6. Robust Non-Linear Control of a 400 kW Wind Turbine

    DEFF Research Database (Denmark)

    Tøffner-Clausen, S.; Andersen, Palle; Knudsen, Torben

    1996-01-01

    The purpose of this paper is to describe a robust non-linear control design for a variable pitch constant speed 400 kW horisontal axis wind turbine.......The purpose of this paper is to describe a robust non-linear control design for a variable pitch constant speed 400 kW horisontal axis wind turbine....

  7. An LMI approach to stabilization of linear port-controlled Hamiltonian systems

    NARCIS (Netherlands)

    Prajna, Stephen; Schaft, van der Arjan; Meinsma, Gjerrit

    2002-01-01

    In this paper, it is shown that controllers for stabilizing linear port-controlled Hamiltonian (PCH) systems via interconnection and damping assignment can be obtained by solving a set of linear matrix inequalities (LMIs). Two sets of (almost) equivalent LMIs are proposed. In the first set, the inte

  8. Optimal Preview Control for a Class of Linear Continuous Stochastic Control Systems in the Infinite Horizon

    Directory of Open Access Journals (Sweden)

    Jiang Wu

    2016-01-01

    Full Text Available This paper discusses the optimal preview control problem for a class of linear continuous stochastic control systems in the infinite horizon, based on the augmented error system method. Firstly, an assistant system is designed and the state equation is translated to the assistant system. Then, an integrator is introduced to construct a stochastic augmented error system. As a result, the tracking problem is converted to a regulation problem. Secondly, the optimal regulator is solved based on dynamic programming principle for the stochastic system, and the optimal preview controller of the original system is obtained. Compared with the finite horizon, we simplify the performance index. We also study the stability of the stochastic augmented error system and design the observer for the original stochastic system. Finally, the simulation example shows the effectiveness of the conclusion in this paper.

  9. Parvalbumin-expressing interneurons linearly control olfactory bulb output.

    Science.gov (United States)

    Kato, Hiroyuki K; Gillet, Shea N; Peters, Andrew J; Isaacson, Jeffry S; Komiyama, Takaki

    2013-12-04

    In the olfactory bulb, odor representations by principal mitral cells are modulated by local inhibitory circuits. While dendrodendritic synapses between mitral and granule cells are typically thought to be a major source of this modulation, the contributions of other inhibitory neurons remain unclear. Here we demonstrate the functional properties of olfactory bulb parvalbumin-expressing interneurons (PV cells) and identify their important role in odor coding. Using paired recordings, we find that PV cells form reciprocal connections with the majority of nearby mitral cells, in contrast to the sparse connectivity between mitral and granule cells. In vivo calcium imaging in awake mice reveals that PV cells are broadly tuned to odors. Furthermore, selective PV cell inactivation enhances mitral cell responses in a linear fashion while maintaining mitral cell odor preferences. Thus, dense connections between mitral and PV cells underlie an inhibitory circuit poised to modulate the gain of olfactory bulb output.

  10. Gain scheduled control of linear systems with unsymmetrical saturation actuators

    Science.gov (United States)

    Wu, Wen-Juan; Duan, Guang-Ren

    2016-11-01

    The problem of stabilisation of a class of nonlinear continuous-time systems with asymmetric saturations on the control is studied in this paper. By combining the parametric Lyapunov equation approach and gain scheduling technique, a state feedback gain scheduling controller is proposed to solve the stabilisation problem of systems with unsymmetrical saturated control. The proposed gain scheduled approach is to increase the value of the design parameter so that the convergence rate of the closed-loop system can be increased. Numerical simulations show the effectiveness of the proposed approach.

  11. Non-linear and adaptive control of a refrigeration system

    DEFF Research Database (Denmark)

    Rasmussen, Henrik; Larsen, Lars F. S.

    2011-01-01

    In a refrigeration process heat is absorbed in an evaporator by evaporating a flow of liquid refrigerant at low pressure and temperature. Controlling the evaporator inlet valve and the compressor in such a way that a high degree of liquid filling in the evaporator is obtained at all compressor...... are capable of adapting to variety of systems. This paper proposes a novel method for superheat and capacity control of refrigeration systems; namely by controlling the superheat by the compressor speed and capacity by the refrigerant flow. A new low order nonlinear model of the evaporator is developed...

  12. Linearization Method for Starting Control of Speed-Sensorless Vector-Controlled Induction Motors

    Science.gov (United States)

    Fujinami, Kazuki; Kondo, Keiichiro

    A linearization method is proposed for controlling the start-up operation of a rotating induction motor. The dynamics of this motor are deteriorated when the starting operation is carried out at high frequencies. In this method, the characteristics of the method are analyzed to reveal that the aforementioned problem is caused by the low equivalent gain of the induced voltage during the rotor flux establishment. A method to compensate for the angle of the rotor-flux-induced voltage vector is proposed to overcome this problem. The proposed method is experimentally verified by a test set, and the influence of changes in the rotor resistance is analyzed.

  13. Adaptive Non-linear Control of Hydraulic Actuator Systems

    DEFF Research Database (Denmark)

    Hansen, Poul Erik; Conrad, Finn

    1998-01-01

    Presentation of two new developed adaptive non-liner controllers for hydraulic actuator systems to give stable operation and improved performance.Results from the IMCIA project supported by the Danish Technical Research Council (STVF).......Presentation of two new developed adaptive non-liner controllers for hydraulic actuator systems to give stable operation and improved performance.Results from the IMCIA project supported by the Danish Technical Research Council (STVF)....

  14. [Autogenic training in psychophysiological preparation for parachute jumps].

    Science.gov (United States)

    Reshetnikov, M M

    1978-01-01

    The efficiency of specific psychophysiological preparation--autogenic training--to parachute jumps was measured in two groups of cadets (test subjects and controls). Hetero- and autogenic training was carried out according to a scheme specially developed for this type of activity. The study of questionnaires and physiological data demonstrated that the specific psychophysiological preparation by means of autogenic training for a certain type of activity helped to develop active self-control over one's own state and emotions, alleviated tension, arrested adverse neurotic manifestations (sleep disturbances, depression, anxiety), contributed to the feeling of confidence in the successful completion of the jump and promoted positive tuning towards subsequent jumps.

  15. Exploring Lightning Jump Characteristics

    Science.gov (United States)

    Chronis, Themis; Carey, Larry D.; Schultz, Christopher J.; Schultz, Elise; Calhoun, Kristin; Goodman, Steven J.

    2014-01-01

    This study is concerned with the characteristics of storms exhibiting an abrupt temporal increase in the total lightning flash rate (i.e., lightning jump, LJ). An automated storm tracking method is used to identify storm "clusters" and total lightning activity from three different lightning detection systems over Oklahoma, northern Alabama and Washington, D.C. On average and for different employed thresholds, the clusters that encompass at least one LJ (LJ1) last longer, relate to higher Maximum Expected Size of Hail, Vertical Integrated Liquid and lightning flash rates (area-normalized) than the clusters that did not exhibit any LJ (LJ0). The respective mean values for LJ1 (LJ0) clusters are 80 min (35 min), 14 mm (8 mm), 25 kg per square meter (18 kg per square meter) and 0.05 flash per min per square kilometer (0.01 flash per min per square kilometer). Furthermore, the LJ1 clusters are also characterized by slower decaying autocorrelation functions, a result that implies a less "random" behavior in the temporal flash rate evolution. In addition, the temporal occurrence of the last LJ provides an estimate of the time remaining to the storm's dissipation. Depending of the LJ strength (i.e., varying thresholds), these values typically range between 20-60 min, with stronger jumps indicating more time until storm decay. This study's results support the hypothesis that the LJ is a proxy for the storm's kinematic and microphysical state rather than a coincidental value.

  16. More Puddle Jumping

    Science.gov (United States)

    Attari, Babak; Weislogel, Mark; Wollman, Andrew; Chen, Yongkang; Snyder, Trevor

    2016-11-01

    Large droplets and puddles jump spontaneously from sufficiently hydrophobic surfaces during routine drop tower tests. The simple low-cost passive mechanism can in turn be used as an experimental device to investigate dynamic droplet phenomena for drops up to 10,000 times larger than their normal terrestrial counterparts. We provide or confirm quick and qualitative design guides for such 'drop shooters' as employed in drop tower tests including relationships to predict droplet ejection durations and velocities as functions of drop volume, surface texture, surface contour, wettability pattern, drop volume, and fluid properties including contact angle. The latter are determined via profile image comparisons with numerical equilibrium interface computations. Water drop volumes of 0.04 to 400 mL at ejection speeds of -0.007 to 0.12 m/s are demonstrated. An example application of the puddle jump method is made to the classic problem of regime mapping for low-gravity phase change heat transfer for large impinging drops. Many other candidate problems might be identified.

  17. Robustness-tracking control based on sliding mode and H∞ theory for linear servo system

    Institute of Scientific and Technical Information of China (English)

    TIAN Yan-feng; GUO Qing-ding

    2005-01-01

    A robustness-tracking control scheme based on combining H∞ robust control and sliding mode control is proposed for a direct drive AC permanent-magnet linear motor servo system to solve the conflict between tracking and robustness of the linear servo system. The sliding mode tracking controller is designed to ensure the system has a fast tracking characteristic to the command, and the H∞ robustness controller suppresses the disturbances well within the close loop( including the load and the end effect force of linear motor etc. ) and effectively minimizes the chattering of sliding mode control which influences the steady state performance of the system. Simulation results show that this control scheme enhances the track-command-ability and the robustness of the linear servo system, and in addition, it has a strong robustness to parameter variations and resistance disturbances.

  18. On absolute stability of Lur'e control systems with multiple non-linearities using linear matrix inequalities

    Institute of Scientific and Technical Information of China (English)

    Min WU; Yong HE; Jinhua SHE

    2004-01-01

    Necessary and suffcient conditions for the existence of a Lyapunov function in the Lur'e form to guarantee the absolute stability ofLur' e control systems with multiple non-linearities are discussed in this paper. It simplifies the existence problem to one of solving a set of linear matrix inequalities (LMIs). If those LMIs are feasible, free parameters in the Lyapunov function,such as the positive definite matrix and the coefficients of the integral terms, are given by the solution of the LMIs. Otherwise, this Lyapunov function does not exist. Some sufficient conditions are also obtained for the robust absolute stability of uncertain systems.A numerical example is provided to demonstrate the effectiveness of the proposed method.

  19. Time domain analysis for discrete difference equation on discrete linear system controllable problem's research

    Institute of Scientific and Technical Information of China (English)

    DENG Shu-xian; DING Yu; GE Lei

    2008-01-01

    We usually describle a comparatively more complex control system, especially a multi-inputs and multioutputs system by time domation analytical procedure. While the system's controllability means whether the system is controllable according to certain requirements. It involves not only the system's outputs' controllability but also the controllability of the system's partial or total conditions. The movement is described by difference equation in the linear discrete-time system. Therefore, the problem of controllability of the linear discrete-time system has been converted into a problem of the controllability of discrete-time difference equation. The thesis makes out the determination method of the discrete-time system's controllability and puts forward the sufficient and necessary conditions to determine it's controllability by making a study on the controllability of the linear discrete-time equation.

  20. Robust output feedback H-infinity control and filtering for uncertain linear systems

    CERN Document Server

    Chang, Xiao-Heng

    2014-01-01

    "Robust Output Feedback H-infinity Control and Filtering for Uncertain Linear Systems" discusses new and meaningful findings on robust output feedback H-infinity control and filtering for uncertain linear systems, presenting a number of useful and less conservative design results based on the linear matrix inequality (LMI) technique. Though primarily intended for graduate students in control and filtering, the book can also serve as a valuable reference work for researchers wishing to explore the area of robust H-infinity control and filtering of uncertain systems. Dr. Xiao-Heng Chang is a Professor at the College of Engineering, Bohai University, China.

  1. Modeling and Non-Linear Self-Tuning Robust Trajectory Control of an Autonomous Underwater Vehicle

    Directory of Open Access Journals (Sweden)

    Thor Inge Fossen

    1988-10-01

    Full Text Available A non-linear self-tuning algorithm is demonstrated for an autonomous underwater vehicle. Tighter control is achieved by a non-linear parameter identification algorithm which reduces the parameter uncertainty bounds. Expensive hydrodynamic tests for parameter determination can thus be avoided. Excellent tracking performance and robustness to parameter uncertainty are guaranteed through a robust control strategy based on the estimated parameters. The nonlinear control law is highly robust for imprecise models and the neglected dynamics. The non-linear self-tuning control strategy is simulated for the horizontal positioning of an underwater vehicle.

  2. Behavioural and neurobiological implications of linear and non-linear features in larynx phonations of horseshoe bats.

    Science.gov (United States)

    Kobayasi, Kohta I; Hage, Steffen R; Berquist, Sean; Feng, Jiang; Zhang, Shuyi; Metzner, Walter

    2012-01-01

    Mammalian vocalizations exhibit large variations in their spectrotemporal features, although it is still largely unknown which result from intrinsic biomechanical properties of the larynx and which are under direct neuromuscular control. Here we show that mere changes in laryngeal air flow yield several non-linear effects on sound production, in an isolated larynx preparation from horseshoe bats. Most notably, there are sudden jumps between two frequency bands used for either echolocation or communication in natural vocalizations. These jumps resemble changes in 'registers' as in yodelling. In contrast, simulated contractions of the main larynx muscle produce linear frequency changes, but are limited to echolocation or communication frequencies. Only by combining non-linear and linear properties can this larynx, therefore, produce sounds covering the entire frequency range of natural calls. This may give behavioural meaning to yodelling-like vocal behaviour and reshape our thinking about how the brain controls the multitude of spectral vocal features in mammals.

  3. Chaos and non-linear phenomena in renal vascular control

    DEFF Research Database (Denmark)

    Yip, K P; Holstein-Rathlou, N H

    1996-01-01

    Renal autoregulation of blood flow depends on the functions of the tubuloglomerular feedback (TGF) system and the myogenic response of the afferent arteriole. Studies of the dynamic aspects of these control mechanisms at the level of both the single nephron and the whole kidney have revealed a va...

  4. Identification and adaptive control scheme using fuzzy parameterized linear filters

    NARCIS (Netherlands)

    Papp, Z.

    1998-01-01

    A nonlinear fuzzy control structure enhanced with supervised learning and/or adaption is presented. Availability of at least a partial process model is assumed. Nonlinear process identification procedure is used to complete the partial model. Based on the identification model the system sensitivity

  5. Active Control of Linear Periodic System with Two Unstable Modes.

    Science.gov (United States)

    1982-12-01

    Leonard , Methods of Analytical Dynamics, McGraw-Hill Book Company, New York, 1970. 8) Shelton,W.L., Modal Control of a Satellite in Orbit about L3, M.S...Harrisburg Pennsylvania. He was raised in New Bloomfield , Pennsylvania and graduated from Wesy Perry High School in 1977. He attended the University of

  6. Semi-active optimal control of linearized systems with multi-degree of freedom and application

    Science.gov (United States)

    Ying, Z. G.; Ni, Y. Q.; Ko, J. M.

    2005-01-01

    A semi-active optimal control method for non-linear multi-degree-of-freedom systems and its application to a building structure for random response reduction are presented in this paper. A structural system with semi-active control devices under random loading is modelled as a controlled, randomly excited and dissipated Hamiltonian system of multi-degree of freedom. The control force produced by a semi-active control device is split into semi-active part and passive part incorporated in the uncontrolled system. Applying the statistical linearization method to the non-linear multi-degree-of-freedom system with passive control force components yields quasi-linear equations of motion, which can tend to corresponding linear ones with system response reduction. By applying the dynamical programming principle to the controlled linearized system, a dynamical programming equation is established and in particular, for a non-filtering white noise excitation, is solved as an optimal regulation problem to determine the quasi-linear quadratic optimal control law and furthermore semi-active optimal control law according to the variational principle. Then the semi-active optimal control of a tall building structure with magnetorheological-tuned liquid column damper (MR-TLCD) under random wind excitation is performed by using the proposed method. The non-linear model of the structural system with semi-active MR-TLCD is formulated in structural mode space and uncoupled between structural and MR fluid accelerations. The quasi-linear equations for system states are derived from the model and the dynamical programming equation for the system is obtained. In the case that the random wind excitation with the Davenport power spectrum cannot be modelled as a linear filtering white noise, the dynamical programming equation is solved as an optimal regulation problem to obtain the semi-active optimal control force, on which the clipping treatment may be performed to ensure the control force

  7. Multivariable control of the Space Shuttle Remote Manipulator System using linearization by state feedback

    Science.gov (United States)

    Gettman, Chang-Ching L.; Adams, Neil; Bedrossian, Nazareth; Valavani, Lena

    1993-01-01

    This paper demonstrates an approach to nonlinear control system design that uses linearization by state feedback to allow faster maneuvering of payloads by the Shuttle Remote Manipulator System (SRMS). A nonlinear feedback law is defined to cancel the nonlinear plant dynamics so that a linear controller can be designed for the SRMS. First a nonlinear design model was generated via SIMULINK. This design model included nonlinear arm dynamics derived from the Lagrangian approach, linearized servo model, and linearized gearbox model. The current SRMS position hold controller was implemented on this system. Next, a trajectory was defined using a rigid body kinematics SRMS tool, KRMS. The maneuver was simulated. Finally, higher bandwidth controllers were developed. Results of the new controllers were compared with the existing SRMS automatic control modes for the Space Station Freedom Mission Build 4 Payload extended on the SRMS.

  8. Two-Link Flexible Manipulator Control Using Sliding Mode Control Based Linear Matrix Inequality

    Science.gov (United States)

    Zulfatman; Marzuki, Mohammad; Alif Mardiyah, Nur

    2017-04-01

    Two-link flexible manipulator is a manipulator robot which at least one of its arms is made of lightweight material and not rigid. Flexible robot manipulator has some advantages over the rigid robot manipulator, such as lighter, requires less power and costs, and to result greater payload. However, suitable control algorithm to maintain the two-link flexible robot manipulator in accurate positioning is very challenging. In this study, sliding mode control (SMC) was employed as robust control algorithm due to its insensitivity on the system parameter variations and the presence of disturbances when the system states are sliding on a sliding surface. SMC algorithm was combined with linear matrix inequality (LMI), which aims to reduce the effects of chattering coming from the oscillation of the state during sliding on the sliding surface. Stability of the control algorithm is guaranteed by Lyapunov function candidate. Based on simulation works, SMC based LMI resulted in better performance improvements despite the disturbances with significant chattering reduction. This was evident from the decline of the sum of squared tracking error (SSTE) and the sum of squared of control input (SSCI) indexes respectively 25.4% and 19.4%.

  9. Linear Logic Validation and Hierarchical Modeling for Interactive Storytelling Control

    OpenAIRE

    Dang, Kim Dung; Pham, Phuong Thao; Champagnat, Ronan; Rabah, Mourad

    2013-01-01

    International audience; The games are typical interactive applications where the system has to react to user actions and behavior with respect to some predefined rules established by the designer. The storytelling allows the interactive system to unfold the scenario of the game story according to these inputs and constraints. In order to improve system's behavior, the scenario should be structured and the system's control should be validated. In this paper, we deal with these two issues. We f...

  10. EXACT LINEARIZATION BASED MULTIPLE-SUBSPACE ITERATIVE RESOLUTION TO AFFINE NONLINEAR CONTROL SYSTEM

    Institute of Scientific and Technical Information of China (English)

    XU Zi-xiang; ZHOU De-yun; DENG Zi-chen

    2006-01-01

    To the optimal control problem of affine nonlinear system, based on differential geometry theory, feedback precise linearization was used. Then starting from the simulative relationship between computational structural mechanics and optimal control,multiple-substructure method was inducted to solve the optimal control problem which was linearized. And finally the solution to the original nonlinear system was found. Compared with the classical linearizational method of Taylor expansion, this one diminishes the abuse of error expansion with the enlargement of used region.

  11. Decentralised stabilising controllers for a class of large-scale linear systems

    Indian Academy of Sciences (India)

    B C Jha; K Patralekh; R Singh

    2000-12-01

    A simple method for computing decentralised stabilising controllers for a class of large-scale (interconnected) linear systems has been developed. Decentralised controls are optimal controls at subsystem level and are generated from the solution of algebraic Riccati equations for decoupled subsystems resulting from a new aggregation-decomposition technique. The method has been illustrated through a numerical example of a large-scale linear system consisting of three subsystems each of the fourth order.

  12. Modification of Elementary Operational Linear Chains in Compositional Control Unit with Code Sharing

    OpenAIRE

    Aleksander, A.; Larysa, A.; Aleksander, N.

    2009-01-01

    The new design method for compositional microprogram control units with code sharing and elementarization of operational linear chains is proposed. The method targets on reduction in the number of LUT-elements in the combinational part of control unit. Some additional control microinstructions containing codes of the classes of pseudoequivalent chains are used for operational linear chains modification. Proposed method is illustrated by an example. Most desirable GSA characteristics for using...

  13. Jump conditions in transonic equilibria

    Energy Technology Data Exchange (ETDEWEB)

    Guazzotto, L.; Betti, R. [Department of Mechanical Engineering, University of Rochester, Rochester, New York 14627 (United States); Jardin, S. C. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08540 (United States)

    2013-04-15

    In the present paper, the numerical calculation of transonic equilibria, first introduced with the FLOW code in Guazzotto et al.[Phys. Plasmas 11, 604 (2004)], is critically reviewed. In particular, the necessity and effect of imposing explicit jump conditions at the transonic discontinuity are investigated. It is found that 'standard' (low-{beta}, large aspect ratio) transonic equilibria satisfy the correct jump condition with very good approximation even if the jump condition is not explicitly imposed. On the other hand, it is also found that high-{beta}, low aspect ratio equilibria require the correct jump condition to be explicitly imposed. Various numerical approaches are described to modify FLOW to include the jump condition. It is proved that the new methods converge to the correct solution even in extreme cases of very large {beta}, while they agree with the results obtained with the old implementation of FLOW in lower-{beta} equilibria.

  14. Distributed adaptive output consensus control of second-order systems containing unknown non-linear control gains

    Science.gov (United States)

    Wang, Gang; Wang, Chaoli; Du, Qinghui; Cai, Xuan

    2016-10-01

    In this paper, we address the output consensus problem of tracking a desired trajectory for a group of second-order agents on a directed graph with a fixed topology. Each agent is modelled by a second-order non-linear system with unknown non-linear dynamics and unknown non-linear control gains. Only a subset of the agents is given access to the desired trajectory information directly. A distributed adaptive consensus protocol driving all agents to track the desired trajectory is presented using the backstepping technique and approximation technique of Fourier series (FSs). The FS structure is taken not only for tracking the non-linear dynamics but also the unknown portion in the controller design procedure, which can avoid virtual controllers containing the uncertain terms. Stability analysis and parameter convergence of the proposed algorithm are conducted based on the Lyapunov theory and the algebraic graph theory. It is also demonstrated that arbitrary small tracking errors can be achieved by appropriately choosing design parameters. Though the proposed work is applicable for second-order non-linear systems containing unknown non-linear control gains, the proposed controller design can be easily extended to higher-order non-linear systems containing unknown non-linear control gains. Simulation results show the effectiveness of the proposed schemes.

  15. L1/ℓ1-Gain analysis and synthesis of Markovian jump positive systems with time delay.

    Science.gov (United States)

    Zhang, Junfeng; Zhao, Xudong; Zhu, Fubo; Han, Zhengzhi

    2016-07-01

    This paper is concerned with stability analysis and control synthesis of Markovian jump positive systems with time delay. The notions of stochastic stability with L1- and ℓ1-gain performances are introduced for continuous- and discrete-time contexts, respectively. Using a stochastic copositive Lyapunov function, sufficient conditions for the stability with L1/ℓ1-gain performance of the systems are established. Furthermore, mode-dependent controllers are designed to achieve the stabilization with L1/ℓ1-gain of the resulting closed-loop systems. All proposed conditions are formulated in terms of linear programming. Numerical examples are provided to verify the effectiveness of the findings of theory.

  16. Non linear predictive control of a LEGO mobile robot

    Science.gov (United States)

    Merabti, H.; Bouchemal, B.; Belarbi, K.; Boucherma, D.; Amouri, A.

    2014-10-01

    Metaheuristics are general purpose heuristics which have shown a great potential for the solution of difficult optimization problems. In this work, we apply the meta heuristic, namely particle swarm optimization, PSO, for the solution of the optimization problem arising in NLMPC. This algorithm is easy to code and may be considered as alternatives for the more classical solution procedures. The PSO- NLMPC is applied to control a mobile robot for the tracking trajectory and obstacles avoidance. Experimental results show the strength of this approach.

  17. Computer Aided Design for Linear Control State Variable System (SVS).

    Science.gov (United States)

    1987-12-01

    li,1..11J of real; vrStepping,Steps step,stepp ings, Ternp 1,Temp2,valuei,value2 m, mplus , last rank,k~valueiplus kpius :integer; new Mfatrixi ,new...stepping]; new-matrixl[steps,stepping] :=B~steps,stepping]; End; End; mplus := size-i; value2:=valuel; For steps := 1 to mplus do Bgnmatrix...do BeginN biR mtrix~steps,ste ping] M= new matriX2 Lsteps,stepping,; -End; 1022 FILE: CONTROL.PAS Program Listing Page 2 End; mplus :=1; For steps :=1

  18. On improving the convergence rate of linear continuous-time systems subject to asymmetrically constrained control

    Directory of Open Access Journals (Sweden)

    A. Baddou

    2006-01-01

    Full Text Available This paper solves the problem of controlling linear continuous-time systems subject to control signals constrained in magnitude (maybe asymmetrically. A controller design methodology is proposed, based on using an asymmetric Lyapunov function, that avoids the discontinuities in the control vector components resulting from the application of a piecewise linear control law previously proposed. The proposed method gives improved speed of convergence without discontinuities of the control vector components, respecting always the imposed asymmetric constraints. An example illustrates the approach.

  19. Mixed H2/H∞ Optimal Guaranteed Cost Control of Uncertain Linear Systems

    Institute of Scientific and Technical Information of China (English)

    GuodingChen; MayingYang; LiYu

    2004-01-01

    The mixed H2/H∞ guaranteed cost control problem via state feedback control laws is considered in this paper for linear systems with norm-bounded parameter uncertainty. Based on the linear matrix inequality (LMI) approach, sufficient conditions are derived for the existence of guaranteed cost controllers whihc guarantee not only a prespecified H∞ disturbance attenuation level on one controlled output for all admissible parameter uncertainties, but also the worst-case H2 performance index on the other controlled output to be no more than a specified bound. Furthermore, a convex optimization problem is formulated to design an optimal H2/H∞ guaranteed cost controller.

  20. Tracking control of concentration profiles in a fed-batch bioreactor using a linear algebra methodology.

    Science.gov (United States)

    Rómoli, Santiago; Serrano, Mario Emanuel; Ortiz, Oscar Alberto; Vega, Jorge Rubén; Eduardo Scaglia, Gustavo Juan

    2015-07-01

    Based on a linear algebra approach, this paper aims at developing a novel control law able to track reference profiles that were previously-determined in the literature. A main advantage of the proposed strategy is that the control actions are obtained by solving a system of linear equations. The optimal controller parameters are selected through Monte Carlo Randomized Algorithm in order to minimize a proposed cost index. The controller performance is evaluated through several tests, and compared with other controller reported in the literature. Finally, a Monte Carlo Randomized Algorithm is conducted to assess the performance of the proposed controller. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  1. Feedback Linearization and Sliding Mode Control for VIENNA Rectifier Based on Differential Geometry Theory

    Directory of Open Access Journals (Sweden)

    Xiang Lu

    2015-01-01

    Full Text Available Aiming at the nonlinear characteristics of VIENNA rectifier and using differential geometry theory, a dual closed-loop control strategy is proposed, that is, outer voltage loop using sliding mode control strategy and inner current loop using feedback linearization control strategy. On the basis of establishing the nonlinear mathematical model of VIENNA rectifier in d-q synchronous rotating coordinate system, an affine nonlinear model of VIENNA rectifier is established. The theory of feedback linearization is utilized to linearize the inner current loop so as to realize the d-q axis variable decoupling. The control law of outer voltage loop is deduced by utilizing sliding mode control and index reaching law. In order to verify the feasibility of the proposed control strategy, simulation model is built in simulation platform of Matlab/Simulink. Simulation results verify the validity of the proposed control strategy, and the controller has a strong robustness in the case of parameter variations or load disturbances.

  2. Chaos Control in Three Dimensional Cancer Model by State Space Exact Linearization Based on Lie Algebra

    Directory of Open Access Journals (Sweden)

    Mohammad Shahzad

    2016-05-01

    Full Text Available This study deals with the control of chaotic dynamics of tumor cells, healthy host cells, and effector immune cells in a chaotic Three Dimensional Cancer Model (TDCM by State Space Exact Linearization (SSEL technique based on Lie algebra. A non-linear feedback control law is designed which induces a coordinate transformation thereby changing the original chaotic TDCM system into a controlled one linear system. Numerical simulation has been carried using Mathematica that witness the robustness of the technique implemented on the chosen chaotic system.

  3. Application of Bounded Linear Stability Analysis Method for Metrics-Driven Adaptive Control

    Science.gov (United States)

    Bakhtiari-Nejad, Maryam; Nguyen, Nhan T.; Krishnakumar, Kalmanje

    2009-01-01

    This paper presents the application of Bounded Linear Stability Analysis (BLSA) method for metrics-driven adaptive control. The bounded linear stability analysis method is used for analyzing stability of adaptive control models, without linearizing the adaptive laws. Metrics-driven adaptive control introduces a notion that adaptation should be driven by some stability metrics to achieve robustness. By the application of bounded linear stability analysis method the adaptive gain is adjusted during the adaptation in order to meet certain phase margin requirements. Analysis of metrics-driven adaptive control is evaluated for a second order system that represents a pitch attitude control of a generic transport aircraft. The analysis shows that the system with the metrics-conforming variable adaptive gain becomes more robust to unmodeled dynamics or time delay. The effect of analysis time-window for BLSA is also evaluated in order to meet the stability margin criteria.

  4. Choice of jumping strategy in two standard jumps, squat and countermovement jump--effect of training background or inherited preference?

    DEFF Research Database (Denmark)

    Ravn, Susanne; Voigt, M; Simonsen, Erik Bruun

    1999-01-01

    Six male subjects, three professional ballet dancers and three elite volleyball players, performed maximal vertical jumps from 1) a static preparatory position (squat jump), 2) starting with a countermovement (countermovement jump) and 3) a specific jump for ballet and for volleyball, respectively....... The jumps were recorded on highspeed film (500 Hz) combined with registration of ground reaction forces, and net joint moments were calculated by inverse dynamics. The purpose was to investigate the choice of strategy in two standard jumps, squat jump and countermovement jump. The volleyball jump...... was performed with a sequential strategy and the ballet jump was performed with a simultaneous strategy. In the two standard jumps, the choice of strategy was individual and not related to training background. This was additionally confirmed in a test of seven ballet dancers and seven volleyball players....

  5. RESEARCH ON JUMPING SEQUENCE PLANNING ISSUES OF HOPPING ROBOTS

    Institute of Scientific and Technical Information of China (English)

    LIUZhuang-zhi; ZHUJian-ying

    2004-01-01

    The wheeled or crawled robots often suffer from big obstacles or ditches, so a hopping robot needs to fit the tough landform in the field environments. In order to jump over obstacles rapidly, a jumping sequence must be generated based on the landform information from sensors or user input. The planning method for planar mobile robots is compared with that of hopping robots. Several factors can change the planning result. Adjusting these coefficients, a heuristic searching algorithm for the jumping sequence is developed on a simplified landform. Calculational result indicates that the algorithm can achieve safety and efficient control sequences for a desired goal.

  6. Asymptotic stability for a class of boundary control systems with non-linear damping

    NARCIS (Netherlands)

    Zwart, Heiko J.; Ramirez, Hector; Le Gorrec, Yann

    2016-01-01

    The asymptotic stability of boundary controlled port-Hamiltonian systems defined on a 1D spatial domain interconnected to a class of non-linear boundary damping is addressed. It is shown that if the port-Hamiltonian system is approximately observable, then any boundary damping which behaves linear

  7. Asymptotic stability for a class of boundary control systems with non-linear damping

    OpenAIRE

    Zwart, Heiko J.; Ramirez, Hector; Le Gorrec, Yann

    2016-01-01

    The asymptotic stability of boundary controlled port-Hamiltonian systems defined on a 1D spatial domain interconnected to a class of non-linear boundary damping is addressed. It is shown that if the port-Hamiltonian system is approximately observable, then any boundary damping which behaves linear for small velocities asymptotically stabilizes the system.

  8. Linear-quadratic control and quadratic differential forms for multidimensional behaviors

    NARCIS (Netherlands)

    Napp, D.; Trentelman, H.L.

    2011-01-01

    This paper deals with systems described by constant coefficient linear partial differential equations (nD-systems) from a behavioral point of view. In this context we treat the linear-quadratic control problem where the performance functional is the integral of a quadratic differential form. We look

  9. A Hamiltonian-based solution to the linear quadratic consensus control problem

    NARCIS (Netherlands)

    Weiss, M.

    2012-01-01

    The Linear Quadratic Consensus Control (LQCC) problem is a relaxation of the classical Linear Quadratic Regulation (LQR) problem, that consists of asymptotically driving the state of the system to a "consensus" point in which all coordinates are equal, in such a way that a quadratic cost function on

  10. A unified numerical scheme for linear-quadratic optimal control problems with joint control and state constraints

    NARCIS (Netherlands)

    Han, Lanshan; Camlibel, M. Kanat; Pang, Jong-Shi; Heemels, W. P. Maurice H.

    2012-01-01

    This paper presents a numerical scheme for solving the continuous-time convex linear-quadratic (LQ) optimal control problem with mixed polyhedral state and control constraints. Unifying a discretization of this optimal control problem as often employed in model predictive control and that obtained

  11. Aeromechanics of the Spider Cricket Jump: How to Jump 60+ Times Your Body Length and Still Land on Your Feet

    Science.gov (United States)

    Palmer, Emily; Deshler, Nicolas; Gorman, David; Neves, Catarina; Mittal, Rajat

    2015-11-01

    Flapping, gliding, running, crawling and swimming have all been studied extensively in the past and have served as a source of inspiration for engineering designs. In the current project, we explore a mode of locomotion that straddles ground and air: jumping. The subject of our study is among the most proficient of long-jumpers in Nature: the spider cricket of the family Rhaphidophoridae, which can jump more than 60 times its body length. Despite jumping this immense distance, these crickets usually land on their feet, indicating an ability to control their posture during ``flight.'' We employ high-speed videogrammetry, to examine the jumps and to track the crickets' posture and appendage orientation throughout their jumps. Simple aerodynamic models are developed to predict the aerodynamic forces and moment on the crickets during `flight`. The analysis shows that these wingless insects employ carefully controlled and coordinated positioning of the limbs during flight so as to increase jump distance and to stabilize body posture during flight. The principles distilled from this study could serve as an inspiration for small jumping robots that can traverse complex terrains.

  12. Neural-networks-based feedback linearization versus model predictive control of continuous alcoholic fermentation process

    Energy Technology Data Exchange (ETDEWEB)

    Mjalli, F.S.; Al-Asheh, S. [Chemical Engineering Department, Qatar University, Doha (Qatar)

    2005-10-01

    In this work advanced nonlinear neural networks based control system design algorithms are adopted to control a mechanistic model for an ethanol fermentation process. The process model equations for such systems are highly nonlinear. A neural network strategy has been implemented in this work for capturing the dynamics of the mechanistic model for the fermentation process. The neural network achieved has been validated against the mechanistic model. Two neural network based nonlinear control strategies have also been adopted using the model identified. The performance of the feedback linearization technique was compared to neural network model predictive control in terms of stability and set point tracking capabilities. Under servo conditions, the feedback linearization algorithm gave comparable tracking and stability. The feedback linearization controller achieved the control target faster than the model predictive one but with vigorous and sudden controller moves. (Abstract Copyright [2005], Wiley Periodicals, Inc.)

  13. Semi-global output regulation for linear systems with input saturation by composite nonlinear feedback control

    Science.gov (United States)

    Wang, Chongwen; Yu, Xiao; Lan, Weiyao

    2014-10-01

    To improve transient performance of output response, this paper applies composite nonlinear feedback (CNF) control technique to investigate semi-global output regulation problems for linear systems with input saturation. Based on a linear state feedback control law for a semi-global output regulation problem, a state feedback CNF control law is constructed by adding a nonlinear feedback part. The extra nonlinear feedback part can be applied to improve the transient performance of the closed-loop system. Moreover, an observer is designed to construct an output feedback CNF control law that also solves the semi-global output regulation problem. The sufficient solvability condition of the semi-global output regulation problem by CNF control is the same as that by linear control, but the CNF control technique can improve the transient performance. The effectiveness of the proposed method is illustrated by a disturbance rejection problem of a translational oscillator with rotational actuator system.

  14. Zero forcing, linear and quantum controllability for systems evolving on networks

    CERN Document Server

    Burgarth, Daniel; Hogben, Leslie; Severini, Simone; Young, Michael

    2011-01-01

    We study the dynamics of systems on networks from a linear algebraic perspective. The control theoretic concept of controllability describes the set of states that can be reached for these systems. Under appropriate conditions, there is a connection between the quantum (Lie theoretic) property of controllability and the linear systems (Kalman) controllability condition. We investigate how the graph theoretic concept of a zero forcing set impacts the controllability property. In particular, we prove that if a set of vertices is a zero forcing set, the associated dynamical system is controllable. The results open up the possibility of further exploiting the analogy between networks, linear control systems theory, and quantum systems Lie algebraic theory. This study is motivated by several quantum systems currently under study, including continuous quantum walks modeling transport phenomena. Additionally, it proposes zero forcing as a new notion in the analysis of complex networks.

  15. Direct and Indirect Couplings in Coherent Feedback Control of Linear Quantum Systems

    CERN Document Server

    Zhang, Guofeng

    2010-01-01

    The purpose of this paper is to study and design direct and indirect couplings for use in coherent feedback control of a class of linear quantum stochastic systems. A general physical model for a nominal linear quantum system coupled directly and indirectly to external systems is presented. Fundamental properties of stability, dissipation, passivity, and gain for this class of linear quantum models are presented and characterized using complex Lyapunov equations and linear matrix inequalities (LMIs). Coherent $H^\\infty$ and LQG synthesis methods are extended to accommodate direct couplings using multistep optimization. Examples are given to illustrate the results.

  16. Optimal Controller and Controller Based on Differential Flatness in a Linear Guide System: A Performance Comparison of Indexes

    Directory of Open Access Journals (Sweden)

    Fabio Abel Gómez Becerra

    2015-01-01

    Full Text Available The use of linear slide system has been augmented in recent times due to features granted to supplement electromechanical systems; new technologies have allowed the manufacture of these systems with low coefficients of friction and offer a variety of types of sliding. In this paper, we present a comparison between the performance indexes of two techniques of control applying optimal control LQR (Linear Quadratic Regulator acronym for STIs in English and the technique of differential flatness controller. The use of linear slide bolt of potency takes into account the dynamics of the DC motor; the Euler-Lagrange formalism was used to establish the mathematical model of the slide. Cosimulation via the MATLAB/Simulink-ADAMS virtual prototype package, including realistic measurement disturbances, is used to compare the performance indexes between the LQR controller versus differential flatness controller for the position tracking of linear guide system.

  17. Analysis of electric field control methods for foil coils in high-voltage linear actuators

    Directory of Open Access Journals (Sweden)

    Beek T.A. van

    2015-12-01

    Full Text Available This paper describes multiple electric field control methods for foil coils in high-voltage coreless linear actuators and their sensitivity to misalignment. The investigated field control methods consist of resistive, refractive, capacitive and geometrical solutions for mitigating electric stress at edges and corners of foil coils. These field control methods are evaluated using 2-D boundary element and finite element methods. A comparison is presented between the field control methods and their ability to mitigate electric stress in coreless linear actuators. Furthermore, the sensitivity to misalignment of the field control methods is investigated.

  18. Wind farm non-linear control for damping electromechanical oscillations of power systems

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, R.D. [Laboratorio de Electronica Industrial, Control e Instrumentacion (LEICI), Facultad de Ingenieria, Universidad Nacional de La Plata, CC 91, 1900 La Plata (Argentina); Laboratorio de Electronica. Facultad de Ingenieria, Universidad Nacional de la Patagonia San Juan Bosco, Ciudad Universitaria, Km. 4, 9000 Comodoro Rivadavia (Argentina); Battaiotto, P.E. [Laboratorio de Electronica Industrial, Control e Instrumentacion (LEICI), Facultad de Ingenieria, Universidad Nacional de La Plata, CC 91, 1900 La Plata (Argentina); Mantz, R.J. [Laboratorio de Electronica Industrial, Control e Instrumentacion (LEICI), Facultad de Ingenieria, CICpba, Universidad Nacional de La Plata, CC 91, 1900 La Plata (Argentina)

    2008-10-15

    This paper deals with the non-linear control of wind farms equipped with doubly fed induction generators (DFIGs). Both active and reactive wind farm powers are employed in two non-linear control laws in order to increase the damping of the oscillation modes of a power system. The proposed strategy is derived from the Lyapunov Theory and is independent of the network topology. In this way, the strategy can be added to the central controller as another added control function. Finally, some simulations, showing the oscillation modes of a power system, are presented in order to support the theoretical considerations demonstrating the potential contributions of both control laws. (author)

  19. Controllability of non-linear systems: generic singularities and their stability

    Energy Technology Data Exchange (ETDEWEB)

    Davydov, Alexey A; Zakalyukin, Vladimir M

    2012-04-30

    This paper presents an overview of the state of the art in applications of singularity theory to the analysis of generic singularities of controllability of non-linear systems on manifolds. Bibliography: 40 titles.

  20. Delay-dependent passive control of linear systems with nonlinear perturbation

    Institute of Scientific and Technical Information of China (English)

    Li Caina; Cui Baotong

    2008-01-01

    The problem of delay-dependent passive control of a class of linear systems with nonlinear perturbation and time-varying delay in states is studied. The main idea aims at designing a state-feedback controller such that for a time-varying delay in states, the linear system with nonlinear perturbation remains robustly stable and passive.In the system, the delay is time-varying. And the derivation of delay has the maximum and minimum value. The time-varying nonlinear perturbation is allowed to be norm-bounded. Using the effective linear matrix inequality methodology, the sufficient condition is primarily obtained for the system to have robust stability and passivity.Subsequently the existent condition of a state feedback controller is given, and the explicit expression of the controller is obtained by means of the solution of linear matrix inequalities (LMIs). In the end, a numerical example is given to demonstrate the validity and applicability of the proposed approach.

  1. Adaptive Input-Output Linearization Technique for Robust Speed Control of Brush less DC Motor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyeong Hwa; Baik, In Cheol; Kim, Hyun Soo; Youn, Myung Joong [Korea Advance Institute of Science and Technology, Taejon (Korea, Republic of)

    1997-06-01

    An adaptive input-output linearization technique for a robust speed control of a brush less DC (BLDC) motor is presented. By using this technique, the nonlinear motor model can be effectively linearized in Brunovski canonical form, and the desired speed dynamics can be obtained based on the linearized model. This control technique, however, gives an undesirable output performance under the mismatch of the system parameters and load conditions caused by the incomplete linearization. For the robust output response, the controller parameters will be estimated by a model reference adaptive technique where the disturbance torque and flux linkage are estimated. The adaptation laws are derived by the Popov`s hyper stability theory and positivity concept. The proposed control scheme is implemented on a BLDC motor using the software of DSP TMS320C30 and the effectiveness is verified through the comparative simulations and experiments. (author). 14 refs., 12 figs., 1 tab.

  2. [Effects of Reactive Jump Training in Handball Players Regarding Jump Height and Power Development in the Triceps Surae Muscle].

    Science.gov (United States)

    Rensing, N; Westermann, A; Möller, D; von Piekartz, H

    2015-12-01

    Studies have shown changes in the technical and physical demands in modern handball. The game has increased considerably in speed, power and dynamics. Jump training has, therefore, become ever more important in the training of the athletes. These developments contribute to the fact that handball is now one of the most injury-prone types of sport, with the lower extremities being most frequently affected. Reactive jump training is not only used in training by now, but also increasingly in injury prevention. The aim of this study was to investigate the effectiveness of reactive jump training with handball players. 21 regional league handball players were randomly divided into an intervention group (n = 12) and a control group (n = 9). The intervention group completed a six-week reactive jump training programme while the control group went through a non-specific training programme. Jump height (squat and counter movement jump), isokinetic and isometric maximum power as well as muscle activity served as measuring parameters. A comparison of the intervention and control groups revealed that the reactive jump training led to significant improvements in jump height. The isometric and isokinetic maximum power measurements and the electromyographic activities of the triceps surae muscle demonstrated an improvement in the values within the intervention group. However, this improvement was not significant compared with the control group. Likewise both jumps correlated with the muscle activity of the soleus muscle as shown by electromyography. A moderate correlation was noticed between the isokinetic maximum power measurement and the electromyographic activity of the soleus and gastrocnemius medialis muscles. Furthermore, the correlations of the isometric and isokinetic maximum power meas-urements resulted in a strong correlation coefficient. This study revealed a significant increase in jump height after reactive jump training. There was no significant difference in

  3. Effects of Foam Rolling on Vertical Jump Performance

    Directory of Open Access Journals (Sweden)

    Andrew Jones

    2015-07-01

    Full Text Available Background: Foam rolling is a popular activity utilized by strength and conditioning coaches as it is believed to increase muscle length and break up fibrous adhesions located in connective tissue. However, there is little research investigating the effects of foam rolling on athletic performance. Objective: The purpose of this study was to investigate the effects of lower body foam rolling on vertical jump performance. Methods: Twenty males (age 24.05 ± 2.02 years; height 177.43 ± 6.31 cm; mass 81.41 ± 8.76 kg volunteered to participate. Subjects completed three days of testing, separated by at least twenty-four hours. Day one consisted of baseline vertical jumps on a force plate, followed by familiarization with foam rolling and control protocols. Subjects returned on days two and three and performed 30-second bouts of lower body foam rolling or mimicked foam rolling movements on a skateboard followed by vertical jumps on a force plate. The highest jump from each day was used for statistical analyses. Results: Repeated measures ANOVAs revealed no significant differences in Jump height, impulse, relative ground reaction force, or take-off velocity between conditions. Conclusion: 30-second bouts of lower body foam rolling do not improve vertical jump performance. Keywords: Dynamic Warm-Up, Foam Rolling, Vertical Jump

  4. Simultaneously stabilising controllers for time-varying linear systems within the framework of nest algebras

    Science.gov (United States)

    Wang, Hongzhu; Yu, Tianqiu; Xiao, Jinmei

    2016-08-01

    From the perspective of strong transitivity, a controller design method is provided to simultaneously stabilise a collection of time-varying linear systems within the framework of nest algebras. In particular, all simultaneously stabilising controllers for a class of linear plants are characterised based on the doubly coprime factorisations. These results hold as well in the time-invariant case. An illustrative example is given to demonstrate the validity of the method.

  5. Minimum Energy Control of Descriptor Fractional Discrete–Time Linear Systems with Two Different Fractional Orders

    Directory of Open Access Journals (Sweden)

    Sajewski Łukasz

    2017-03-01

    Full Text Available Reachability and minimum energy control of descriptor fractional discrete-time linear systems with different fractional orders are addressed. Using the Weierstrass–Kronecker decomposition theorem of the regular pencil, a solution to the state equation of descriptor fractional discrete-time linear systems with different fractional orders is given. The reachability condition of this class of systems is presented and used for solving the minimum energy control problem. The discussion is illustrated with numerical examples.

  6. Robustness of controllability and observability of linear time-varying systems

    Energy Technology Data Exchange (ETDEWEB)

    Sastry, S.S.; Desoer, C.A.

    1982-08-01

    Fixed point methods from nonlinear analysis are used to establish conditions under which the uniform complete controllability of linear time-varying systems is preserved under nonlinear perturbations in the state dynamics and the zero-input uniform complete observability of linear time-varying systems is preserved under nonlinear perturbation in the state dynamics and output read-out map. Robustness of partial controllability, observability, and a specific kind of nonzero input observability are also proven.

  7. Enhanced approach to PD control design for linear time-invariant descriptor systems

    Science.gov (United States)

    Filasová, Anna; Krokavec, Dušan

    2017-01-01

    Enhanced approaches to PD controller design, adjusted for linear time-invariant descriptor systems, are proposed in the paper. Presented in the sense of the second Lyapunov method, an associated structure of linear matrix inequalities is outlined to possess the regular closed-loop system dynamic properties. A simulation example, subject to the state and output PD control, demonstrates the effiectiveness of the proposed form of the design technique.

  8. Iterated non-linear model predictive control based on tubes and contractive constraints.

    Science.gov (United States)

    Murillo, M; Sánchez, G; Giovanini, L

    2016-05-01

    This paper presents a predictive control algorithm for non-linear systems based on successive linearizations of the non-linear dynamic around a given trajectory. A linear time varying model is obtained and the non-convex constrained optimization problem is transformed into a sequence of locally convex ones. The robustness of the proposed algorithm is addressed adding a convex contractive constraint. To account for linearization errors and to obtain more accurate results an inner iteration loop is added to the algorithm. A simple methodology to obtain an outer bounding-tube for state trajectories is also presented. The convergence of the iterative process and the stability of the closed-loop system are analyzed. The simulation results show the effectiveness of the proposed algorithm in controlling a quadcopter type unmanned aerial vehicle.

  9. Frequency Jump Detection and Analysis

    Science.gov (United States)

    2008-12-01

    CUMULATIVE SUM JUMP DETECTION The Cumulative Sum ( CUSUM ) is a classic change-point analysis technique that uses the cumulative sum of the...sum and y is the average of the data. The CUSUM slope indicates the value of the data with respect to the overall average. A flat cumulative sum...sudden change in the CUSUM slope indicates a jump in the data. The CUSUM plot for a data set having a single jump will have a V or inverted V shape

  10. Controllability and observability of fractional linear systems with two different orders.

    Science.gov (United States)

    Xu, Dengguo; Li, Yanmei; Zhou, Weifeng

    2014-01-01

    This paper is concerned with the controllability and observability for a class of fractional linear systems with two different orders. The sufficient and necessary conditions for state controllability and state observability of such systems are established. The results obtained extend some existing results of controllability and observability for fractional dynamical systems.

  11. Approximate controllability of infinite dimensional linear systems in nonreflexive state spaces

    Institute of Scientific and Technical Information of China (English)

    Xin YU; Chao XU

    2005-01-01

    This paper deals with the problem of approximate controllability of infinite dimensional linear systems in nonreflexive state spaces.A necessary and sufficient condition for approximate controllability via Lp([0,T],U),1≤p<∞ is obtained,where Lp([0,T],U) is the control function space.

  12. Application of local area networks to accelerator control systems at the Stanford Linear Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Fox, J.D.; Linstadt, E.; Melen, R.

    1983-03-01

    The history and current status of SLAC's SDLC networks for distributed accelerator control systems are discussed. These local area networks have been used for instrumentation and control of the linear accelerator. Network topologies, protocols, physical links, and logical interconnections are discussed for specific applications in distributed data acquisition and control system, computer networks and accelerator operations.

  13. Modeling for control of an inflatable space reflector, the linear 2-D case

    NARCIS (Netherlands)

    Voß, T.; Scherpen, J.M.A.; Edelmayer, András

    2010-01-01

    In this paper we develop a mathematical model for the dynamics of a linear plate with piezoelectric actuation. This model can then be used to design controllers with the goal of achieving a desired shape of the plate. This control scheme can be used for several applications, e.g., vibration control

  14. Relations between (H∞) optimal control of a nonlinear system and its linearization

    NARCIS (Netherlands)

    Schaft, van der A.J.

    1991-01-01

    In a previous work (1991), the author showed some basic connections between H∞ control of a nonlinear control system and H¿ control of its linearization. A key argument was that the existence and parametrization, at least locally, of the stable invariant manifold of a certain Hamiltonian vector fiel

  15. Relations between (H∞) optimal control of a nonlinear system and its linearization

    NARCIS (Netherlands)

    Schaft, A.J. van der

    1991-01-01

    In a previous paper we showed some basic connections between H∞ control of a nonlinear control system and H∞ control of its linearization. A key argument was that the existence and parametrization, at least locally, of the stable invariant manifold of a certain Hamiltonian vector field is determined

  16. Multi-mode sliding mode control for precision linear stage based on fixed or floating stator.

    Science.gov (United States)

    Fang, Jiwen; Long, Zhili; Wang, Michael Yu; Zhang, Lufan; Dai, Xufei

    2016-02-01

    This paper presents the control performance of a linear motion stage driven by Voice Coil Motor (VCM). Unlike the conventional VCM, the stator of this VCM is regulated, which means it can be adjusted as a floating-stator or fixed-stator. A Multi-Mode Sliding Mode Control (MMSMC), including a conventional Sliding Mode Control (SMC) and an Integral Sliding Mode Control (ISMC), is designed to control the linear motion stage. The control is switched between SMC and IMSC based on the error threshold. To eliminate the chattering, a smooth function is adopted instead of a signum function. The experimental results with the floating stator show that the positioning accuracy and tracking performance of the linear motion stage are improved with the MMSMC approach.

  17. Overview of magnetic bearing control and linearization approaches for annular magnetically suspended devices

    Science.gov (United States)

    Groom, N. J.

    1984-01-01

    An overview of magnetic bearing control and linearization approaches which have been considered for annular magnetically suspended devices is presented. These devices include the Annular Momentum Control Device and the Annular Suspension and Pointing System. Two approaches were investigated for controlling the magnetic actuator. One approach involves controlling the upper and lower electromagnets differentially about a bias flux. The bias flux can either be supplied by permanent magnets in the magnetic circuit or by bias currents. In the other approach, either the upper electromagnet or the lower electromagnet is controlled depending on the direction of force required. One advantage of the bias flux is that for small gap perturbations about a fixed operating point, the force-current characteristic is linear. Linearization approaches investigated for individual element control include an analog solution of the nonlinear electromagnet force equation and a microprocessor-based table lookup method.

  18. Continuous-Discrete Time Prediction-Error Identification Relevant for Linear Model Predictive Control

    DEFF Research Database (Denmark)

    Jørgensen, John Bagterp; Jørgensen, Sten Bay

    2007-01-01

    model is realized from a continuous-discrete-time linear stochastic system specified using transfer functions with time-delays. It is argued that the prediction-error criterion should be selected such that it is compatible with the objective function of the predictive controller in which the model......A Prediction-error-method tailored for model based predictive control is presented. The prediction-error method studied are based on predictions using the Kalman filter and Kalman predictors for a linear discrete-time stochastic state space model. The linear discrete-time stochastic state space...

  19. Optimal Control Strategies in a Two Dimensional Differential Game Using Linear Equation under a Perturbed System

    Directory of Open Access Journals (Sweden)

    Musa Danjuma SHEHU

    2008-06-01

    Full Text Available This paper lays emphasis on formulation of two dimensional differential games via optimal control theory and consideration of control systems whose dynamics is described by a system of Ordinary Differential equation in the form of linear equation under the influence of two controls U(. and V(.. Base on this, strategies were constructed. Hence we determine the optimal strategy for a control say U(. under a perturbation generated by the second control V(. within a given manifold M.

  20. Linear motion device and method for inserting and withdrawing control rods

    Science.gov (United States)

    Smith, J.E.

    Disclosed is a linear motion device and more specifically a control rod drive mechanism (CRDM) for inserting and withdrawing control rods into a reactor core. The CRDM and method disclosed is capable of independently and sequentially positioning two sets of control rods with a single motor stator and rotor. The CRDM disclosed can control more than one control rod lead screw without incurring a substantial increase in the size of the mechanism.

  1. Gravity-free hydraulic jumps and metal femtocups

    OpenAIRE

    Govindarajan, Rama; Mathur, Manikandan; DasGupta, Ratul; Selvi, N. R.; John, Neena Susan; Kulkarni, G. U.

    2006-01-01

    Hydraulic jumps created by gravity are seen every day in the kitchen sink. We show that at small scales a circular hydraulic jump can be created in the absence of gravity, by surface tension. The theory is motivated by our experimental finding of a height discontinuity in spreading submicron molten metal droplets created by pulsed-laser ablation. By careful control of initial conditions, we show that this leads to solid femtolitre cups of gold, silver, copper, niobium and tin.

  2. Gravity-free hydraulic jumps and metal femtoliter cups.

    Science.gov (United States)

    Mathur, Manikandan; DasGupta, Ratul; Selvi, N R; John, Neena Susan; Kulkarni, G U; Govindarajan, Rama

    2007-04-20

    Hydraulic jumps created by gravity are seen everyday in the kitchen sink. We show that at small scales a circular hydraulic jump can be created in the absence of gravity by surface tension. The theory is motivated by our experimental finding of a height discontinuity in spreading submicron molten metal droplets created by pulsed-laser ablation. By careful control of initial conditions, this leads to solid femtoliter cups of gold, silver, copper, niobium, and tin.

  3. Linearization Techniques

    Directory of Open Access Journals (Sweden)

    Gildeberto S. Cardoso

    2011-01-01

    Full Text Available This paper presents a study of linear control systems based on exact feedback linearization and approximate feedback linearization. As exact feedback linearization is applied, a linear controller can perform the control objectives. The approximate feedback linearization is required when a nonlinear system presents a noninvolutive property. It uses a Taylor series expansion in order to compute a nonlinear transformation of coordinates to satisfy the involutivity conditions.

  4. Optimizing the Distribution of Leg Muscles for Vertical Jumping.

    Science.gov (United States)

    Wong, Jeremy D; Bobbert, Maarten F; van Soest, Arthur J; Gribble, Paul L; Kistemaker, Dinant A

    2016-01-01

    A goal of biomechanics and motor control is to understand the design of the human musculoskeletal system. Here we investigated human functional morphology by making predictions about the muscle volume distribution that is optimal for a specific motor task. We examined a well-studied and relatively simple human movement, vertical jumping. We investigated how high a human could jump if muscle volume were optimized for jumping, and determined how the optimal parameters improve performance. We used a four-link inverted pendulum model of human vertical jumping actuated by Hill-type muscles, that well-approximates skilled human performance. We optimized muscle volume by allowing the cross-sectional area and muscle fiber optimum length to be changed for each muscle, while maintaining constant total muscle volume. We observed, perhaps surprisingly, that the reference model, based on human anthropometric data, is relatively good for vertical jumping; it achieves 90% of the jump height predicted by a model with muscles designed specifically for jumping. Alteration of cross-sectional areas-which determine the maximum force deliverable by the muscles-constitutes the majority of improvement to jump height. The optimal distribution results in large vastus, gastrocnemius and hamstrings muscles that deliver more work, while producing a kinematic pattern essentially identical to the reference model. Work output is increased by removing muscle from rectus femoris, which cannot do work on the skeleton given its moment arm at the hip and the joint excursions during push-off. The gluteus composes a disproportionate amount of muscle volume and jump height is improved by moving it to other muscles. This approach represents a way to test hypotheses about optimal human functional morphology. Future studies may extend this approach to address other morphological questions in ethological tasks such as locomotion, and feature other sets of parameters such as properties of the skeletal

  5. Optimizing the Distribution of Leg Muscles for Vertical Jumping.

    Directory of Open Access Journals (Sweden)

    Jeremy D Wong

    Full Text Available A goal of biomechanics and motor control is to understand the design of the human musculoskeletal system. Here we investigated human functional morphology by making predictions about the muscle volume distribution that is optimal for a specific motor task. We examined a well-studied and relatively simple human movement, vertical jumping. We investigated how high a human could jump if muscle volume were optimized for jumping, and determined how the optimal parameters improve performance. We used a four-link inverted pendulum model of human vertical jumping actuated by Hill-type muscles, that well-approximates skilled human performance. We optimized muscle volume by allowing the cross-sectional area and muscle fiber optimum length to be changed for each muscle, while maintaining constant total muscle volume. We observed, perhaps surprisingly, that the reference model, based on human anthropometric data, is relatively good for vertical jumping; it achieves 90% of the jump height predicted by a model with muscles designed specifically for jumping. Alteration of cross-sectional areas-which determine the maximum force deliverable by the muscles-constitutes the majority of improvement to jump height. The optimal distribution results in large vastus, gastrocnemius and hamstrings muscles that deliver more work, while producing a kinematic pattern essentially identical to the reference model. Work output is increased by removing muscle from rectus femoris, which cannot do work on the skeleton given its moment arm at the hip and the joint excursions during push-off. The gluteus composes a disproportionate amount of muscle volume and jump height is improved by moving it to other muscles. This approach represents a way to test hypotheses about optimal human functional morphology. Future studies may extend this approach to address other morphological questions in ethological tasks such as locomotion, and feature other sets of parameters such as properties of

  6. Searchless tuning of linear controllers for the minimum of quadratic criterion

    Science.gov (United States)

    Pikina, G. A.; Burtseva, Yu. S.

    2014-03-01

    A searchless method of calculating the tunings of typical controllers is developed for linear plants with a time delay, the use of which makes it possible to minimize the quadratic criterion I 2 with respect to an internal disturbance. The basic idea of the method consists in obtaining the complex frequency response of a suboptimal linear controller, followed by approaching the characteristic of a typical controller to this frequency response in the essential frequency band using the least squares method. Recommendations on selecting the smoothing filter time constant and the suboptimal system's dynamic error are given for a system comprising a PID controller and a second-order plant with a time delay.

  7. Realized Jump Risk and Equity Return in China

    OpenAIRE

    Guojin Chen; Xiaoqun Liu; Peilin Hsieh; Xiangqin Zhao

    2014-01-01

    We utilize the realized jump components to explore a new jump (including nonsystematic jump and systematic jump) risk factor model. After estimating daily realized jumps from high-frequency transaction data of the Chinese A-share stocks, we calculate monthly jump size, monthly jump standard deviation, and monthly jump arrival rate and then use those monthly jump factors to explain the return of the following month. Our empirical results show that the jump tail risk can explain the equity retu...

  8. Linear active disturbance rejection control of underactuated systems: the case of the Furuta pendulum.

    Science.gov (United States)

    Ramírez-Neria, M; Sira-Ramírez, H; Garrido-Moctezuma, R; Luviano-Juárez, A

    2014-07-01

    An Active Disturbance Rejection Control (ADRC) scheme is proposed for a trajectory tracking problem defined on a nonfeedback linearizable Furuta Pendulum example. A desired rest to rest angular position reference trajectory is to be tracked by the horizontal arm while the unactuated vertical pendulum arm stays around its unstable vertical position without falling down during the entire maneuver and long after it concludes. A linear observer-based linear controller of the ADRC type is designed on the basis of the flat tangent linearization of the system around an arbitrary equilibrium. The advantageous combination of flatness and the ADRC method makes it possible to on-line estimate and cancels the undesirable effects of the higher order nonlinearities disregarded by the linearization. These effects are triggered by fast horizontal arm tracking maneuvers driving the pendulum substantially away from the initial equilibrium point. Convincing experimental results, including a comparative test with a sliding mode controller, are presented.

  9. LMI-based robust iterative learning controller design for discrete linear uncertain systems

    Institute of Scientific and Technical Information of China (English)

    Jianming XU; Mingxuan SUN; Li YU

    2005-01-01

    This paper addresses the design problem of robust iterative learning controllers for a class of linear discrete-time systems with norm-bounded parameter uncertainties.An iterative learning algorithm with current cycle feedback is proposed to achieve both robust convergence and robust stability.The synthesis problem of the proposed iterative learning control (ILC) system is reformulated as a γ-suboptimal H-infinity control problem via the linear fractional transformation (LFT).A sufficient condition for the convergence of the ILC algorithm is presented in terms of linear matrix inequalities (LMIs).Furthermore,the linear transfer operators of the ILC algorithm with high convergence speed are obtained by using existing convex optimization techniques.The simulation results demonstrate the effectiveness of the proposed method.

  10. Feedback linearization based control of a variable air volume air conditioning system for cooling applications.

    Science.gov (United States)

    Thosar, Archana; Patra, Amit; Bhattacharyya, Souvik

    2008-07-01

    Design of a nonlinear control system for a Variable Air Volume Air Conditioning (VAVAC) plant through feedback linearization is presented in this article. VAVAC systems attempt to reduce building energy consumption while maintaining the primary role of air conditioning. The temperature of the space is maintained at a constant level by establishing a balance between the cooling load generated in the space and the air supply delivered to meet the load. The dynamic model of a VAVAC plant is derived and formulated as a MIMO bilinear system. Feedback linearization is applied for decoupling and linearization of the nonlinear model. Simulation results for a laboratory scale plant are presented to demonstrate the potential of keeping comfort and maintaining energy optimal performance by this methodology. Results obtained with a conventional PI controller and a feedback linearizing controller are compared and the superiority of the proposed approach is clearly established.

  11. On Active Surge Control of Compression Systems via Characteristic Linearization and Model Nonlinearity Cancellation

    Directory of Open Access Journals (Sweden)

    Yohannes S.M. Simamora

    2014-09-01

    Full Text Available A simple approach of active surge control of compression systems is presented. Specifically, nonlinear components of the pressure ratio and rotating speed states of the Moore-Greitzer model are transferred into the input vectors. Subsequently, the compressor characteristic is linearized into two modes, which describe the stable region and the unstable region respectively. As a result, the system’s state and input matrices both appear linear, to which linear realization and analysis are applicable. A linear quadratic regulator plus integrator is then chosen as closed-loop controller. By simulation it was shown that the modified model and characteristics can describe surge behavior, while the closed-loop controller can stabilize the system in the unstable operating region. The last-mentioned was achieved when massflow was 5.38 per cent less than the surge point.

  12. Linear and nonlinear regression techniques for simultaneous and proportional myoelectric control.

    Science.gov (United States)

    Hahne, J M; Biessmann, F; Jiang, N; Rehbaum, H; Farina, D; Meinecke, F C; Muller, K-R; Parra, L C

    2014-03-01

    In recent years the number of active controllable joints in electrically powered hand-prostheses has increased significantly. However, the control strategies for these devices in current clinical use are inadequate as they require separate and sequential control of each degree-of-freedom (DoF). In this study we systematically compare linear and nonlinear regression techniques for an independent, simultaneous and proportional myoelectric control of wrist movements with two DoF. These techniques include linear regression, mixture of linear experts (ME), multilayer-perceptron, and kernel ridge regression (KRR). They are investigated offline with electro-myographic signals acquired from ten able-bodied subjects and one person with congenital upper limb deficiency. The control accuracy is reported as a function of the number of electrodes and the amount and diversity of training data providing guidance for the requirements in clinical practice. The results showed that KRR, a nonparametric statistical learning method, outperformed the other methods. However, simple transformations in the feature space could linearize the problem, so that linear models could achieve similar performance as KRR at much lower computational costs. Especially ME, a physiologically inspired extension of linear regression represents a promising candidate for the next generation of prosthetic devices.

  13. Synchronizing chaos in an experimental chaotic pendulum using methods from linear control theory.

    Science.gov (United States)

    Kaart, S; Schouten, J C; van den Bleek, C M

    1999-05-01

    Linear feedback control, specifically model predictive control (MPC), was used successfully to synchronize an experimental chaotic pendulum both on unstable periodic and aperiodic orbits. MPC enables tuning of the controller to give an optimal controller performance. That is, both the fluctuations around the target trajectory and the necessary control actions are minimized using a least-squares solution of the linearized problem. It is thus shown that linear control methods can be applied to experimental chaotic systems, as long as an adequate model is available that can be linearized along the desired trajectory. This model is used as an observer, i.e., it is synchronized with the experimental pendulum to estimate the state of the experimental pendulum. In contrast with other chaos control procedures like the map-based Ott, Grebogi, and York method [Phys. Rev. Lett. 64, 1196 (1990)], the continuous type feedback control proposed by Pyragas [Phys. Lett. A 170, 421 (1992)], or the feedback control method recently proposed by Brown and Rulkov [Chaos 7 (3), 395 (1997)], the procedure outlined in this paper automatically results in a choice for the feedback gains that gives optimum performance, i.e., minimum fluctuations around the desired trajectory using minimum control actions.

  14. Model predictive control of non-linear systems over networks with data quantization and packet loss.

    Science.gov (United States)

    Yu, Jimin; Nan, Liangsheng; Tang, Xiaoming; Wang, Ping

    2015-11-01

    This paper studies the approach of model predictive control (MPC) for the non-linear systems under networked environment where both data quantization and packet loss may occur. The non-linear controlled plant in the networked control system (NCS) is represented by a Tagaki-Sugeno (T-S) model. The sensed data and control signal are quantized in both links and described as sector bound uncertainties by applying sector bound approach. Then, the quantized data are transmitted in the communication networks and may suffer from the effect of packet losses, which are modeled as Bernoulli process. A fuzzy predictive controller which guarantees the stability of the closed-loop system is obtained by solving a set of linear matrix inequalities (LMIs). A numerical example is given to illustrate the effectiveness of the proposed method.

  15. Global stabilization of linear systems by bounded controls with guaranteed poles

    Institute of Scientific and Technical Information of China (English)

    ZHOU Bin; DUAN GuangRen

    2008-01-01

    The global stabilization of asymptotically null controllable linear systems by bounded control is considered. A nested type saturation control law is proposed which is a generalization of the existing results reported in the literature. The primary characteristic of this modified control law is that more design parameters, which are the closed-loop eigenvalues when the system is operating in linear form, are intro-duced and which can be well designed to achieve better system performance. Using this law, the pole locations of the closed-loop systems depending on a linear trans-formation can be placed arbitrarily within certain areas. Numerical example shows that the performance of the closed-loop system under this control law can be signif-icantly improved if the free parameters are properly chosen.

  16. Novel fuzzy feedback linearization strategy for control via differential geometry approach.

    Science.gov (United States)

    Li, Tzuu-Hseng S; Huang, Chiou-Jye; Chen, Chung-Cheng

    2010-07-01

    The study investigates a novel fuzzy feedback linearization strategy for control. The main contributions of this study are to construct a control strategy such that the resulting closed-loop system is valid for any initial condition with almost disturbance decoupling performance, and develop the feedback linearization design for some class of nonlinear control systems. The feedback linearization control guarantees the almost disturbance decoupling performance and the uniform ultimate bounded stability of the tracking error system. Once the tracking errors are driven to touch the global final attractor with the desired radius, the fuzzy logic control is immediately applied via a human expert's knowledge to improve the convergence rate. One example, which cannot be solved by the first paper on the almost disturbance decoupling problem, is proposed in this paper to exploit the fact that the almost disturbance decoupling and the convergence rate performances are easily achieved by the proposed approach.

  17. Rook Jumping Maze Design Considerations

    Science.gov (United States)

    Neller, Todd W.; Fisher, Adrian; Choga, Munyaradzi T.; Lalvani, Samir M.; McCarty, Kyle D.

    We define the Rook Jumping Maze, provide historical perspective, and describe a generation method for such mazes. When applying stochastic local search algorithms to maze design, most creative effort concerns the definition of an objective function that rates maze quality. We define and discuss several maze features to consider in such a function definition. Finally, we share our preferred design choices, make design process observations, and note the applicability of these techniques to variations of the Rook Jumping Maze.

  18. Delay-dependent stabilization of singular Markovian jump systems with state delay

    Institute of Scientific and Technical Information of China (English)

    Zhengguang WU; Hongye SU; Jian CHU

    2009-01-01

    This paper deals with the delay-dependent stabilization problem for singular systems with Markovian jump parameters and time delays.A delay-dependent condition is established for the considered system to be regular,impulse free and stochastically stable.Based on the condition,a design algorithm of the desired state feedback controller which guarantees the resultant closed-loop system to be regular,impulse free and stochastically stable is proposed in terms of a set of strict linear matrix inequalities (LMIs).Numerical examples show the effectiveness of the proposed methods.

  19. New Results on Stability and Stabilization of Markovian Jump Systems with Time Delay

    Directory of Open Access Journals (Sweden)

    Hongwei Xia

    2014-01-01

    Full Text Available This technical paper deals with the problem of stochastic stability and stabilization for a class of linear Markovian jumping systems with discrete time-varying delay. A novel delay-dependent stochastic stability criterion for Markovian delay systems is established based on new augmented Lyapunov-Krasovskii functional and delay fractioning techniques. Then a state feedback controller is designed to guarantee the stochastic stability of the resulting closed-loop system. Numerical examples are provided to illustrate the effectiveness of the proposed design approach in this paper.

  20. The Effect of Depth Jumps and Weight Training on Leg Strength and Vertical Jump.

    Science.gov (United States)

    Clutch, David; And Others

    1983-01-01

    Two experiments examined the results of depth jumping programs to determine: (1) whether certain depth jumping routines, when combined with weight training, are better than others; and (2) the effect of depth jumping on athletes already in training. Results indicated that depth jumping is effective, but no more so than regular jumping routines.…

  1. Central suboptimal mean-square H ∞ controller design for linear stochastic time-varying systems

    Science.gov (United States)

    Basin, Michael V.; Elvira-Ceja, Santiago; Sanchez, Edgar N.

    2011-05-01

    This article designs the central finite-dimensional H ∞ controller for linear stochastic time-varying systems with integral-quadratically bounded deterministic disturbances, that is suboptimal for a given threshold γ with respect to a modified Bolza-Meyer quadratic criterion including the attenuation control term with the opposite sign. In contrast to the previously obtained results, this article reduces the original H ∞ controller problem to the corresponding optimal H 2 controller problem, using the technique proposed in Doyle et al. (Doyle, J.C., Glover, K., Khargonekar, P.P., and Francis, B.A. (1989), 'State-space Solutions to Standard H 2 and H ∞ Control Problems', IEEE Transactions on Automatic Control, 34, 831-847). Numerical simulations are conducted to verify the performance of the designed controller for a linear stochastic system against the central suboptimal H ∞ controller available for the corresponding deterministic system.

  2. Robustness of controllability and observability of linear time-varying systems with application to the emergency control of power systems

    Energy Technology Data Exchange (ETDEWEB)

    Sastry, S. S.; Desoer, C. A.

    1980-01-01

    Fixed point methods from nonlinear anaysis are used to establish conditions under which the uniform complete controllability of linear time-varying systems is preserved under non-linear perturbations in the state dynamics and the zero-input uniform complete observability of linear time-varying systems is preserved under non-linear perturbation in the state dynamics and output read out map. Algorithms for computing the specific input to steer the perturbed systems from a given initial state to a given final state are also presented. As an application, a very specific emergency control of an interconnected power system is formulated as a steering problem and it is shown that this emergency control is indeed possible in finite time.

  3. Coordinated control of multiple HVDC links using input-output exact linearization

    Energy Technology Data Exchange (ETDEWEB)

    Eriksson, Robert; Knazkins, Valerijs; Soeder, Lennart [Royal Institute of Technology (KTH), Electric Power Systems, Teknikringen 33, 100 44 Stockholm (Sweden)

    2010-12-15

    This paper is concerned with the investigation of a new control technique for the conventional High Voltage Direct Current (HVDC) link. The proposed technique relies upon nonlinear state feedback linearization of the AC/DC power system. The idea in input-output exact feedback linearization is to algebraically transform nonlinear systems dynamics into a linear control problem using a nonlinear pre-feedback loop, and then for the linearized power system one can design another feedback loop using a well established technique such as a linear-quadratic regulator. The primary goal of the controller presented in this paper is to contribute to the enhancement of both the transient and the small-signal stability of the power system. Since the proposed state feedback linearization does not rely on the assumption that there is only small deviation of the states from an equilibrium, the enhancement of both is feasible. The simulation results obtained in the framework of the study show that the proposed controller is capable of stabilizing the system in various system operating conditions. (author)

  4. Real-time Non-linear Target Tracking Control of Wheeled Mobile Robots

    Institute of Scientific and Technical Information of China (English)

    YU Wenyong

    2006-01-01

    A control strategy for real-time target tracking for wheeled mobile robots is presented. Using a modified Kalman filter for environment perception, a novel tracking control law derived from Lyapunov stability theory is introduced. Tuning of linear velocity and angular velocity with mechanical constraints is applied. The proposed control system can simultaneously solve the target trajectory prediction, real-time tracking, and posture regulation problems of a wheeled mobile robot. Experimental results illustrate the effectiveness of the proposed tracking control laws.

  5. Gain-scheduled Linear Quadratic Control of Wind Turbines Operating at High Wind Speed

    DEFF Research Database (Denmark)

    Østergaard, Kasper Zinck; Stoustrup, Jakob; Brath, Per

    2007-01-01

    This paper addresses state estimation and linear quadratic (LQ) control of variable speed variable pitch wind turbines. On the basis of a nonlinear model of a wind turbine, a set of operating conditions is identified and a LQ controller is designed for each operating point. The controller gains....... Simulation results are given that display good performance of the observers and comparisons with a controller designed by classical methods displays the potential of the method.  ...

  6. Feedforward and feedback optimal control for linear time-varying systems with persistent disturbances

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The optimal control problem was studied for linear time-varying systems, which was affected by external persistent disturbances with known dynamic characteristics but unknown initial conditions. To damp the effect of disturbances in an optimal fashion, we obtained a new feedforward and feedback optimal control law and gave the control algorithm by solving a Riccati differential equation and a matrix differential equation. Simulation results showed that the achieved optimal control law was realizable, efficient and robust to reject the external disturbances.

  7. Design of Linear Control System for Wind Turbine Blade Fatigue Testing

    Science.gov (United States)

    Toft, Anders; Roe-Poulsen, Bjarke; Christiansen, Rasmus; Knudsen, Torben

    2016-09-01

    This paper proposes a linear method for wind turbine blade fatigue testing at Siemens Wind Power. The setup consists of a blade, an actuator (motor and load mass) that acts on the blade with a sinusoidal moment, and a distribution of strain gauges to measure the blade flexure. Based on the frequency of the sinusoidal input, the blade will start oscillating with a given gain, hence the objective of the fatigue test is to make the blade oscillate with a controlled amplitude. The system currently in use is based on frequency control, which involves some non-linearities that make the system difficult to control. To make a linear controller, a different approach has been chosen, namely making a controller which is not regulating on the input frequency, but on the input amplitude. A non-linear mechanical model for the blade and the motor has been constructed. This model has been simplified based on the desired output, namely the amplitude of the blade. Furthermore, the model has been linearised to make it suitable for linear analysis and control design methods. The controller is designed based on a simplified and linearised model, and its gain parameter determined using pole placement. The model variants have been simulated in the MATLAB toolbox Simulink, which shows that the controller design based on the simple model performs adequately with the non-linear model. Moreover, the developed controller solves the robustness issue found in the existent solution and also reduces the needed energy for actuation as it always operates at the blade eigenfrequency.

  8. Effects of 12-weeks resistance training on sprint and jump performance in competitive adolescent rugby union players.

    Science.gov (United States)

    Harries, Simon K; Lubans, David R; Buxton, Anthony; MacDougall, Thomas H J; Callister, Robin

    2017-07-17

    Sprint performance is an important characteristic for success in many sports, including rugby union. Resistance training is used to increase muscular fitness (i.e. strength, endurance and power) and may also be effective for improving sprint and jump performances. The aims of this study were to examine the effects of resistance training using two different periodized programs (linear and daily undulating) on sprint and jump performance and explore relationships between performance measures. Sixteen male (16.9 ± 1.0 y) adolescent rugby union players participated in 12 weeks of resistance training. A further 10 male (15.5 ± 1.0 y) participants were recruited as a control group. Assessments of strength (box squat), 10 and 20 m sprint (electronically timed), and jump height (maximal unloaded (body mass only) and loaded (body mass + 10 kg) countermovement jumps) were conducted before and after 12 weeks training. Large to very large increases in 1RM box squat (linear: 33.9%; p < 0.001; ES = 1.64; daily undulating: 44.5%; p < 0.001; ES = 2.33) were observed after training. Small decreases were seen in 10 (linear: -1.6%; p = 0.171; ES = -0.84; daily undulating: -2.5%; p = 0.038; ES = -0.36) and 20 m (linear: -0.5%; p = 0.506; ES = -0.20; daily undulating: -1.7%; p = 0.047; ES = -0.27) sprint times. Small-to-moderate associations between changes in lower body strength and improvements in 10 and 20 m sprint times were found. Resistance training increases lower body strength in adolescent rugby union players and increases in lower body strength may transfer to improved sprinting performance with improvements following daily undulating periodized resistance training slightly superior.

  9. Poor glycemic control impacts linear and non-linear dynamics of heart rate in DM type 2

    Directory of Open Access Journals (Sweden)

    Daniela Bassi

    2015-08-01

    Full Text Available INTRODUCTION: It is well known that type 2 diabetes mellitus (T2DM produces cardiovascular autonomic neuropathy (CAN, which may affect the cardiac autonomic modulation. However, it is unclear whether the lack of glycemic control in T2DM without CAN could impact negatively on cardiac autonomic modulation. Objective: To evaluate the relationship between glycemic control and cardiac autonomic modulation in individuals with T2DM without CAN. Descriptive, prospective and cross sectional study.METHODS: Forty-nine patients with T2DM (51±7 years were divided into two groups according to glycosylated hemoglobin (HbA1c: G1≤7% and G2>7.0%. Resting heart rate (HR and RR interval (RRi were obtained and calculated by linear (Mean iRR; Mean HR; rMSSD; STD RR; LF; HF; LF/HF, TINN and RR Tri, and non-linear (SD1; SD2; DFα1; DFα2, Shannon entropy; ApEn; SampEn and CD methods of heart rate variability (HRV. Insulin, HOMA-IR, fasting glucose and HbA1c were obtained by blood tests.RESULTS: G2 (HbA1c≤7% showed lower values for the mean of iRR; STD RR; RR Tri, TINN, SD2, CD and higher mean HR when compared with G1 (HbA1c > 7%. Additionally, HbA1c correlated negatively with mean RRi (r=0.28, p=0.044; STD RR (r=0.33, p=0.017; RR Tri (r=-0.35, p=0.013, SD2 (r=-0.39, p=0.004 and positively with mean HR (r=0.28, p=0.045. Finally, fasting glucose correlated negatively with STD RR (r=-0.36, p=0.010; RR Tri (r=-0.36, p=0.010; TINN (r=-0.33, p=0.019 and SD2 (r=-0.42, p=0.002.CONCLUSION: We concluded that poor glycemic control is related to cardiac autonomic modulation indices in individuals with T2DM even if they do not present cardiovascular autonomic neuropathy.

  10. Remarks on Hierarchic Control for a Linearized Micropolar Fluids System in Moving Domains

    Energy Technology Data Exchange (ETDEWEB)

    Jesus, Isaías Pereira de, E-mail: isaias@ufpi.edu.br [Universidade Federal do Piauí, Dpto. Matemática (Brazil)

    2015-12-15

    We study a Stackelberg strategy subject to the evolutionary linearized micropolar fluids equations in domains with moving boundaries, considering a Nash multi-objective equilibrium (non necessarily cooperative) for the “follower players” (as is called in the economy field) and an optimal problem for the leader player with approximate controllability objective. We will obtain the following main results: the existence and uniqueness of Nash equilibrium and its characterization, the approximate controllability of the linearized micropolar system with respect to the leader control and the existence and uniqueness of the Stackelberg–Nash problem, where the optimality system for the leader is given.

  11. Feedforward and Feedback Optimal Control for Linear Systems with Sinusoidal Disturbances

    Institute of Scientific and Technical Information of China (English)

    唐功友

    2001-01-01

    The linear systems affected by additive external sinusoidal disturbances is studied. he problem is to damp this forced oscillation in an optimal fashion. The main result of this paper is a new design approach is proposed of realizable feedforward and feedback optimal control law for a linear timeinvariant system with sinusoidal disturbances. The algorithm of solving the optimal control law is given. It is shown that the control law is easily realized and is robust with respect to errors produced by the external sinusoidal disturbances through simulation results.

  12. Stability Analysis and H∞ Output Tracking Control for Linear Systems with Time-Varying Delays

    Directory of Open Access Journals (Sweden)

    K. H. Kim

    2014-01-01

    Full Text Available The problem of stability analysis and H∞ output tracking control for linear systems with time-varying delays is studied. First, by construction of a newly augmented Lyapunov-Krasovskii functional, a delay-dependent stability criterion for nominal systems with time-varying delays is established in terms of linear matrix inequalities (LMIs. Second, based on the H∞ sense, the proposed method is extended to solve the problem of designing an H∞ output tracking controller to track the output of a given reference model. Finally, three examples are included to show the validity and effectiveness of the presented delay-dependent stability and the H∞ output tracking controller design.

  13. Linear discrete-time Pareto-Nash-Stackelberg control problem and principles for its solving

    Directory of Open Access Journals (Sweden)

    Valeriu Ungureanu

    2013-04-01

    Full Text Available A direct-straightforward method for solving linear discrete-time optimal control problem is applied to solve control problem of a linear discrete-time system as a mixture of multi-criteria Stackelberg and Nash games. For simplicity, the exposure starts with the simplest case of linear discrete-time optimal control problem and, by sequential considering of more general cases, investigation finalizes with the highlighted Pareto-Nash-Stackelberg and set valued control problems. Different principles of solving are compared and their equivalence is proved. Mathematics Subject Classification 2010: 49K21, 49N05, 93C05, 93C55, 90C05, 90C29, 91A10, 91A20, 91A44, 91A50.

  14. Linear Active Disturbance Rejection Control of Waste Heat Recovery Systems with Organic Rankine Cycles

    Directory of Open Access Journals (Sweden)

    Fang Fang

    2012-12-01

    Full Text Available In this paper, a linear active disturbance rejection controller is proposed for a waste heat recovery system using an organic Rankine cycle process, whose model is obtained by applying the system identification technique. The disturbances imposed on the waste heat recovery system are estimated through an extended linear state observer and then compensated by a linear feedback control strategy. The proposed control strategy is applied to a 100 kW waste heat recovery system to handle the power demand variations of grid and process disturbances. The effectiveness of this controller is verified via a simulation study, and the results demonstrate that the proposed strategy can provide satisfactory tracking performance and disturbance rejection.

  15. Linear and nonlinear schemes applied to pitch control of wind turbines.

    Science.gov (United States)

    Geng, Hua; Yang, Geng

    2014-01-01

    Linear controllers have been employed in industrial applications for many years, but sometimes they are noneffective on the system with nonlinear characteristics. This paper discusses the structure, performance, implementation cost, advantages, and disadvantages of different linear and nonlinear schemes applied to the pitch control of the wind energy conversion systems (WECSs). The linear controller has the simplest structure and is easily understood by the engineers and thus is widely accepted by the industry. In contrast, nonlinear schemes are more complicated, but they can provide better performance. Although nonlinear algorithms can be implemented in a powerful digital processor nowadays, they need time to be accepted by the industry and their reliability needs to be verified in the commercial products. More information about the system nonlinear feature is helpful to simplify the controller design. However, nonlinear schemes independent of the system model are more robust to the uncertainties or deviations of the system parameters.

  16. H infinity Integrated Fault Estimation and Fault Tolerant Control of Discrete-time Piecewise Linear Systems

    DEFF Research Database (Denmark)

    Tabatabaeipour, Seyed Mojtaba; Bak, Thomas

    2012-01-01

    In this paper we consider the problem of fault estimation and accommodation for discrete time piecewise linear systems. A robust fault estimator is designed to estimate the fault such that the estimation error converges to zero and H∞ performance of the fault estimation is minimized. Then......, the estimate of fault is used to compensate for the effect of the fault. Hence, using the estimate of fault, a fault tolerant controller using a piecewise linear static output feedback is designed such that it stabilizes the system and provides an upper bound on the H∞ performance of the faulty system....... Sufficient conditions for the existence of robust fault estimator and fault tolerant controller are derived in terms of linear matrix inequalities. Upper bounds on the H∞ performance can be minimized by solving convex optimization problems with linear matrix inequality constraints. The efficiency...

  17. Feedback Linearization Based Arc Length Control for Gas Metal Arc Welding

    DEFF Research Database (Denmark)

    Thomsen, Jesper Sandberg

    2005-01-01

    In this paper a feedback linearization based arc length controller for gas metal arc welding (GMAW) is described. A nonlinear model describing the dynamic arc length is transformed into a system where nonlinearities can be cancelled by a nonlinear state feedback control part, and thus, leaving only...

  18. A Mean-Variance Criterion for Economic Model Predictive Control of Stochastic Linear Systems

    DEFF Research Database (Denmark)

    Sokoler, Leo Emil; Dammann, Bernd; Madsen, Henrik;

    2014-01-01

    Stochastic linear systems arise in a large number of control applications. This paper presents a mean-variance criterion for economic model predictive control (EMPC) of such systems. The system operating cost and its variance is approximated based on a Monte-Carlo approach. Using convex relaxation...

  19. Linear Dynamics and Control of a Kinematic Wobble–Yoke Stirling Engine

    NARCIS (Netherlands)

    Alvarez–Aguirre, Alejandro; García–Canseco, Eloísa; Scherpen, Jacquelien M.A.

    2010-01-01

    This paper presents a control systems approach for the modeling and control of a kinematic wobble–yoke Stirling engine. The linear dynamics of the Stirling engine are analyzed based on the dynamical model of the system, developed by these authors. We show that the Stirling engine can be viewed as a

  20. Event-triggered Dynamic Output Feedback Control for Switched Linear Systems

    NARCIS (Netherlands)

    Qi, Yiwen; Cao, Ming

    2016-01-01

    Switched linear systems and their control have been an active research field in the past two decades; however, no systematic results have been reported in the literature on how such systems behave when event-triggered control is introduced. While the potential advantage of introducing event-triggere