WorldWideScience

Sample records for jump dynamic nuclear

  1. Jumping Dynamics

    DEFF Research Database (Denmark)

    Sannino, Francesco

    2013-01-01

    paradigm the physical scale and henceforth also the massive spectrum of the theory jump at the lower boundary of the conformal window. In particular we propose that a theory can suddenly jump from a Quantum Chromodynamics type spectrum, at the lower boundary of the conformal window, to a conformal one...... without particle interpretation. The jumping scenario, therefore, does not support a near-conformal dynamics of walking type. We will also discuss the impact of jumping dynamics on the construction of models of dynamical electroweak symmetry breaking....

  2. Dynamic jump intensities and risk premiums

    DEFF Research Database (Denmark)

    Christoffersen, Peter; Ornthanalai, Chayawat; Jacobs, Kris

    2012-01-01

    We build a new class of discrete-time models that are relatively easy to estimate using returns and/or options. The distribution of returns is driven by two factors: dynamic volatility and dynamic jump intensity. Each factor has its own risk premium. The models significantly outperform standard...... models without jumps when estimated on S&P500 returns. We find very strong support for time-varying jump intensities. Compared to the risk premium on dynamic volatility, the risk premium on the dynamic jump intensity has a much larger impact on option prices. We confirm these findings using joint...

  3. Option Valuation with Observable Volatility and Jump Dynamics

    DEFF Research Database (Denmark)

    Christoffersen, Peter; Feunoua, Bruno; Jeon, Yoontae

    Under very general conditions, the total quadratic variation of a jump-diffusion process can be decomposed into diffusive volatility and squared jump variation. We use this result to develop a new option valuation model in which the underlying asset price exhibits volatility and jump intensity...... dynamics. The volatility and jump intensity dynamics in the model are directly driven by model-free empirical measures of diffusive volatility and jump variation. Because the empirical measures are observed in discrete intervals, our option valuation model is cast in discrete time, allowing...

  4. Option Valuation with Observable Volatility and Jump Dynamics

    DEFF Research Database (Denmark)

    Christoffersen, Peter; Feunoua, Bruno; Jeon, Yoontae

    2015-01-01

    Under very general conditions, the total quadratic variation of a jump-diffusion process can be decomposed into diffusive volatility and squared jump variation. We use this result to develop a new option valuation model in which the underlying asset price exhibits volatility and jump intensity...... dynamics. The volatility and jump intensity dynamics in the model are directly driven by model-free empirical measures of diffusive volatility and jump variation. Because the empirical measures are observed in discrete intervals, our option valuation model is cast in discrete time, allowing...

  5. Option Valuation with Observable Volatility and Jump Dynamics

    DEFF Research Database (Denmark)

    Christoffersen, Peter; Feunou, Bruno; Jeon, Yoontae

    Under very general conditions, the total quadratic variation of a jump-diffusion process can be decomposed into diffusive volatility and squared jump variation. We use this result to develop a new option valuation model in which the underlying asset price exhibits volatility and jump intensity...... dynamics. The volatility and jump intensity dynamics in the model are directly driven by model-free empirical measures of diffusive volatility and jump variation. Because the empirical measures are observed in discrete intervals, our option valuation model is cast in discrete time, allowing...... for straightforward filtering and estimation of the model. Our model belongs to the affine class enabling us to derive the conditional characteristic function so that option values can be computed rapidly without simulation. When estimated on S&P500 index options and returns the new model performs well compared...

  6. Dynamical Jumps in a Shape Memory Alloy Oscillator

    Directory of Open Access Journals (Sweden)

    H. S. Oliveira

    2014-01-01

    Full Text Available The dynamical response of systems with shape memory alloy (SMA elements presents a rich behavior due to their intrinsic nonlinear characteristic. SMA’s nonlinear response is associated with both adaptive dissipation related to hysteretic behavior and huge changes in properties caused by phase transformations. These characteristics are attracting much technological interest in several scientific and engineering fields, varying from medical to aerospace applications. An important characteristic associated with dynamical response of SMA system is the jump phenomenon. Dynamical jumps result in abrupt changes in system behavior and its analysis is essential for a proper design of SMA systems. This paper discusses the nonlinear dynamics of a one degree of freedom SMA oscillator presenting pseudoelastic behavior and dynamical jumps. Numerical simulations show different aspects of this kind of behavior, illustrating its importance for a proper understanding of nonlinear dynamics of SMA systems.

  7. Coupled jump rotational dynamics in aqueous nitrate solutions.

    Science.gov (United States)

    Banerjee, Puja; Yashonath, Subramanian; Bagchi, Biman

    2016-12-21

    A nitrate ion (NO 3 - ) with its trigonal planar geometry and charges distributed among nitrogen and oxygen atoms can couple to the extensive hydrogen bond network of water to give rise to unique dynamical characteristics. We carry out detailed atomistic simulations and theoretical analyses to investigate these aspects and report certain interesting findings. We find that the nitrate ions in aqueous potassium nitrate solution exhibit large amplitude rotational jump motions that are coupled to the hydrogen bond rearrangement dynamics of the surrounding water molecules. The jump motion of nitrate ions bears certain similarities to the Laage-Hynes mechanism of rotational jump motions of tagged water molecules in neat liquid water. We perform a detailed atomic-level investigation of hydrogen bond rearrangement dynamics of water in aqueous KNO 3 solution to unearth two distinct mechanisms of hydrogen bond exchange that are instrumental to promote these jump motions of nitrate ions. As observed in an earlier study by Xie et al., in the first mechanism, after breaking a hydrogen bond with nitrate ion, water forms a new hydrogen bond with a water molecule, whereas the second mechanism involves just a switching of hydrogen bond between the two oxygen atoms of the same nitrate ion (W. J. Xie et al., J. Chem. Phys. 143, 224504 (2015)). The magnitude as well as nature of the reorientational jump of nitrate ion for the two mechanisms is different. In the first mechanism, nitrate ion predominantly undergoes out-of-plane rotation, while in the second mechanism, in-plane reorientation of NO 3 - is favourable. These have been deduced by computing the torque on the nitrate ion during the hydrogen bond switching event. We have defined and computed the time correlation function for coupled reorientational jump of nitrate and water and obtained the associated relaxation time which is also different for the two mechanisms. These results provide insight into the relation between the

  8. Reversal time of jump-noise magnetization dynamics in nanomagnets via Monte Carlo simulations

    Science.gov (United States)

    Parthasarathy, Arun; Rakheja, Shaloo

    2018-06-01

    The jump-noise is a nonhomogeneous Poisson process which models thermal effects in magnetization dynamics, with special applications in low temperature escape rate phenomena. In this work, we develop improved numerical methods for Monte Carlo simulation of the jump-noise dynamics and validate the method by comparing the stationary distribution obtained empirically against the Boltzmann distribution. In accordance with the Néel-Brown theory, the jump-noise dynamics display an exponential relaxation toward equilibrium with a characteristic reversal time, which we extract for nanomagnets with uniaxial and cubic anisotropy. We relate the jump-noise dynamics to the equivalent Landau-Lifshitz dynamics up to second order correction for a general energy landscape and obtain the analogous Néel-Brown theory's solution of the reversal time. We find that the reversal time of jump-noise dynamics is characterized by Néel-Brown theory's solution at the energy saddle point for small noise. For large noise, the magnetization reversal due to jump-noise dynamics phenomenologically represents macroscopic tunneling of magnetization.

  9. Dynamics of force and muscle stimulation in human vertical jumping

    NARCIS (Netherlands)

    Bobbert, M.F.; van Zandwijk, J.P.

    1999-01-01

    PURPOSE: The purpose of this study was to gain insight into the importance of stimulation dynamics for force development in human vertical jumping. METHODS: Maximum height squat jumps were performed by 21 male subjects. As a measure of signal dynamics, rise time (RT) was used, i.e., the time taken

  10. Dynamics and stability of directional jumps in the desert locust.

    Science.gov (United States)

    Gvirsman, Omer; Kosa, Gabor; Ayali, Amir

    2016-01-01

    Locusts are known for their ability to jump large distances to avoid predation. The jump also serves to launch the adult locust into the air in order to initiate flight. Various aspects of this important behavior have been studied extensively, from muscle physiology and biomechanics, to the energy storage systems involved in powering the jump, and more. Less well understood are the mechanisms participating in control of the jump trajectory. Here we utilise video monitoring and careful analysis of experimental directional jumps by adult desert locusts, together with dynamic computer simulation, in order to understand how the locusts control the direction and elevation of the jump, the residual angular velocities resulting from the jump and the timing of flapping-flight initiation. Our study confirms and expands early findings regarding the instrumental role of the initial body position and orientation. Both real-jump video analysis and simulations based on our expanded dynamical model demonstrate that the initial body coordinates of position (relative to the hind-legs ground-contact points) are dominant in predicting the jumps' azimuth and elevation angles. We also report a strong linear correlation between the jumps' pitch-angular-velocity and flight initiation timing, such that head downwards rotations lead to earlier wing opening. In addition to offering important insights into the bio-mechanical principles of locust jumping and flight initiation, the findings from this study will be used in designing future prototypes of a bio-inspired miniature jumping robot that will be employed in animal behaviour studies and environmental monitoring applications.

  11. Dynamics and stability of directional jumps in the desert locust

    Directory of Open Access Journals (Sweden)

    Omer Gvirsman

    2016-09-01

    Full Text Available Locusts are known for their ability to jump large distances to avoid predation. The jump also serves to launch the adult locust into the air in order to initiate flight. Various aspects of this important behavior have been studied extensively, from muscle physiology and biomechanics, to the energy storage systems involved in powering the jump, and more. Less well understood are the mechanisms participating in control of the jump trajectory. Here we utilise video monitoring and careful analysis of experimental directional jumps by adult desert locusts, together with dynamic computer simulation, in order to understand how the locusts control the direction and elevation of the jump, the residual angular velocities resulting from the jump and the timing of flapping-flight initiation. Our study confirms and expands early findings regarding the instrumental role of the initial body position and orientation. Both real-jump video analysis and simulations based on our expanded dynamical model demonstrate that the initial body coordinates of position (relative to the hind-legs ground-contact points are dominant in predicting the jumps’ azimuth and elevation angles. We also report a strong linear correlation between the jumps’ pitch-angular-velocity and flight initiation timing, such that head downwards rotations lead to earlier wing opening. In addition to offering important insights into the bio-mechanical principles of locust jumping and flight initiation, the findings from this study will be used in designing future prototypes of a bio-inspired miniature jumping robot that will be employed in animal behaviour studies and environmental monitoring applications.

  12. ACUTE EFFECTS OF A RESISTED DYNAMIC WARM-UP PROTOCOL ON JUMPING PERFORMANCE

    Science.gov (United States)

    Cilli, M; Yildiz, S; Saglam, T; Camur, MH

    2014-01-01

    This study aimed to investigate the kinematic and kinetic changes when resistance is applied in horizontal and vertical directions, produced by using different percentages of body weight, caused by jumping movements during a dynamic warm-up. The group of subjects consisted of 35 voluntary male athletes (19 basketball and 16 volleyball players; age: 23.4 ± 1.4 years, training experience: 9.6 ± 2.7 years; height: 177.2 ± 5.7 cm, body weight: 69.9 ± 6.9 kg) studying Physical Education, who had a jump training background and who were training for 2 hours, on 4 days in a week. A dynamic warm-up protocol containing seven specific resistance movements with specific resistance corresponding to different percentages of body weight (2%, 4%, 6%, 8%, 10%) was applied randomly on non consecutive days. Effects of different warm-up protocols were assessed by pre-/post- exercise changes in jump height in the countermovement jump (CMJ) and the squat jump (SJ) measured using a force platform and changes in hip and knee joint angles at the end of the eccentric phase measured using a video camera. A significant increase in jump height was observed in the dynamic resistance warm-up conducted with different percentages of body weight (p 0.05). In jump movements before and after the warm-up, while no significant difference between the vertical ground reaction forces applied by athletes was observed (p > 0.05), in some cases of resistance, a significant reduction was observed in hip and knee joint angles (p jumping movements, as well as an increase in jump height values. As a result, dynamic warm-up exercises could be applicable in cases of resistance corresponding to 6-10% of body weight applied in horizontal and vertical directions in order to increase the jump performance acutely. PMID:25435670

  13. Orientational dynamics in a room temperature ionic liquid: Are angular jumps predominant?

    Science.gov (United States)

    Das, Suman; Mukherjee, Biswaroop; Biswas, Ranjit

    2018-05-01

    Reorientational dynamics of the constituent ions in a room temperature ionic liquid, 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIM][PF6]), are explored via molecular dynamics simulations, and several features of orientation dynamics are summarized. The anion, [PF6]-, not only exhibits a higher propensity to orientation jumps than the cation, [BMIM]+ but also accesses a wider jump angle distribution and larger peak-angle. Jump and waiting time distributions for both the ions depict power-law dependences, suggesting temporally heterogeneous dynamics for the medium. This heterogeneity feature is further highlighted by the finding that the simulated first rank (ℓ = 1) and second rank (ℓ = 2) average reorientational correlation times reflect a severe break-down of Debye's ℓ(ℓ + 1) law for orientational diffusion in an isotropic homogeneous medium. Simulated average H-bond lifetime resides between the mean orientation jump and waiting times, while the structural H-bond relaxation suggests, as in normal liquids, a pronounced presence of translational motion of the partnering ions. Average simulated jump trajectories reveal a strong rotation-translation coupling and indicate relatively larger changes in spatial and angular arrangements for the anion during an orientation jump. In fact, a closer inspection of all these results points toward more heterogeneous dynamics for [PF6]- than [BMIM]+. This is a new observation and may simply be linked to the ion-size. However, such a generalization warrants further study.

  14. How do elite ski jumpers handle the dynamic conditions in imitation jumps?

    Science.gov (United States)

    Ettema, Gertjan; Hooiveld, Jo; Braaten, Steinar; Bobbert, Maarten

    2016-01-01

    We examined the effect of boundary conditions in imitation ski jumping on movement dynamics and coordination. We compared imitation ski jumps with--and without--the possibility to generate shear propulsion forces. Six elite ski jumpers performed imitation jumps by jumping from a fixed surface and from a rolling platform. The ground reaction force vector, kinematics of body segments, and EMG of eight lower limb muscles were recorded. Net joint dynamics were calculated using inverse dynamics. The two imitation jumps differed considerably from each other with regard to the dynamics (moments, forces), whereas the kinematics were very similar. Knee power was higher and hip power was lower on the rolling platform than on the fixed surface. Mean EMG levels were very similar for both conditions, but differences in the development of muscle activity were indicated for seven of eight muscles. These differences are reflected in a subtle difference of the alignment of ground reaction force with centre of mass: the ground reaction force runs continuously close to but behind the centre of mass on the rolling platform and fluctuates around it on the fixed surface. This likely reflects a different strategy for controlling angular momentum.

  15. Age distribution dynamics with stochastic jumps in mortality.

    Science.gov (United States)

    Calabrese, Salvatore; Porporato, Amilcare; Laio, Francesco; D'Odorico, Paolo; Ridolfi, Luca

    2017-11-01

    While deterministic age distribution models have been extensively studied and applied in various disciplines, little work has been devoted to understanding the role of stochasticity in birth and mortality terms. In this paper, we analyse a stochastic M'Kendrick-von Foerster equation in which jumps in mortality represent intense losses of population due to external events. We present explicit solutions for the probability density functions of the age distribution and the total population and for the temporal dynamics of their moments. We also derive the dynamics of the mean age of the population and its harmonic mean. The framework is then used to calculate the age distribution of salt in the soil root zone, where the accumulation of salt by atmospheric deposition is counteracted by plant uptake and by jump losses due to percolation events.

  16. Physical and Dynamical Linkages Between Lightning Jumps and Storm Conceptual Models

    Science.gov (United States)

    Schultz, Christopher J.; Carey, Lawrence D.; Schultz, Elise V.; Blakeslee, Richard J.; Goodman, Steven J.

    2014-01-01

    The presence and rates of total lightning are both correlated to and physically dependent upon storm updraft strength, mixed phase precipitation volume and the size of the charging zone. The updraft modulates the ingredients necessary for electrification within a thunderstorm, while the updraft also plays a critical role in the development of severe and hazardous weather. Therefore utilizing this relationship, the monitoring of lightning rates and jumps provides an additional piece of information on the evolution of a thunderstorm, more often than not, at higher temporal resolution than current operational radar systems. This correlation is the basis for the total lightning jump algorithm that has been developed in recent years. Currently, the lightning jump algorithm is being tested in two separate but important efforts. Schultz et al. (2014; this conference) is exploring the transition of the algorithm from its research based formulation to a fully objective algorithm that includes storm tracking, Geostationary Lightning Mapper (GLM) Proxy data and the lightning jump algorithm. Chronis et al. (2014) provides context for the transition to current operational forecasting using lightning mapping array based products. However, what remains is an end-to-end physical and dynamical basis for coupling total lightning flash rates to severe storm manifestation, so the forecaster has a reason beyond simple correlation to utilize the lightning jump algorithm within their severe storm conceptual models. Therefore, the physical basis for the lightning jump algorithm in relation to severe storm dynamics and microphysics is a key component that must be further explored. Many radar studies have examined flash rates and their relationship to updraft strength, updraft volume, precipitation-sized ice mass, etc.; however, their relationship specifically to lightning jumps is fragmented within the literature. Thus the goal of this study is to use multiple Doppler and polarimetric

  17. Dynamic Jump Intensities and Risk Premiums in Crude Oil Futures and Options Markets

    DEFF Research Database (Denmark)

    Christoffersen, Peter; Jacobs, Kris; Li, Bingxin

    2016-01-01

    Options on crude oil futures are the most actively traded commodity options. We develop a class of computationally efficient discrete-time jump models that allow for closed-form option valuation, and we use crude oil futures and options data to investigate the economic importance of jumps...... and dynamic jump intensities in these markets. Allowing for jumps is crucial for modeling crude oil futures and futures options, and we find evidence in favor of time-varying jump intensities. During crisis periods, jumps occur more frequently. The properties of the jump processes implied by the option data...... differ from those implied by the futures data, which may be due to improved parameter identification....

  18. Measurement of the dynamics in ski jumping using a wearable inertial sensor-based system.

    Science.gov (United States)

    Chardonnens, Julien; Favre, Julien; Cuendet, Florian; Gremion, Gérald; Aminian, Kamiar

    2014-01-01

    Dynamics is a central aspect of ski jumping, particularly during take-off and stable flight. Currently, measurement systems able to measure ski jumping dynamics (e.g. 3D cameras, force plates) are complex and only available in few research centres worldwide. This study proposes a method to determine dynamics using a wearable inertial sensor-based system which can be used routinely on any ski jumping hill. The system automatically calculates characteristic dynamic parameters during take-off (position and velocity of the centre of mass perpendicular to the table, force acting on the centre of mass perpendicular to the table and somersault angular velocity) and stable flight (total aerodynamic force). Furthermore, the acceleration of the ski perpendicular to the table was quantified to characterise the skis lift at take-off. The system was tested with two groups of 11 athletes with different jump distances. The force acting on the centre of mass, acceleration of the ski perpendicular to the table, somersault angular velocity and total aerodynamic force were different between groups and correlated with the jump distances. Furthermore, all dynamic parameters were within the range of prior studies based on stationary measurement systems, except for the centre of mass mean force which was slightly lower.

  19. On the Boundary between Nonlinear Jump Phenomenon and Linear Response of Hypoid Gear Dynamics

    Directory of Open Access Journals (Sweden)

    Jun Wang

    2011-01-01

    Full Text Available A nonlinear time-varying (NLTV dynamic model of a hypoid gear pair system with time-dependent mesh point, line-of-action vector, mesh stiffness, mesh damping, and backlash nonlinearity is formulated to analyze the transitional phase between nonlinear jump phenomenon and linear response. It is found that the classical jump discontinuity will occur if the dynamic mesh force exceeds the mean value of tooth mesh force. On the other hand, the propensity for the gear response to jump disappears when the dynamic mesh force is lower than the mean mesh force. Furthermore, the dynamic analysis is able to distinguish the specific tooth impact types from analyzing the behaviors of the dynamic mesh force. The proposed theory is general and also applicable to high-speed spur, helical and spiral bevel gears even though those types of gears are not the primary focus of this paper.

  20. Effect of Footwear on Dynamic Stability during Single-leg Jump Landings.

    Science.gov (United States)

    Bowser, Bradley J; Rose, William C; McGrath, Robert; Salerno, Jilian; Wallace, Joshua; Davis, Irene S

    2017-06-01

    Barefoot and minimal footwear running has led to greater interest in the biomechanical effects of different types of footwear. The effect of running footwear on dynamic stability is not well understood. The purpose of this study was to compare dynamic stability and impact loading across 3 footwear conditions; barefoot, minimal footwear and standard running shoes. 25 injury free runners (21 male, 4 female) completed 5 single-leg jump landings in each footwear condition. Dynamic stability was assessed using the dynamic postural stability index and its directional components (mediolateral, anteroposterior, vertical). Peak vertical ground reaction force and vertical loadrates were also compared across footwear conditions. Dynamic stability was dependent on footwear type for all stability indices (ANOVA, pfootwear for the anteroposterior stability index (pfootwear (p≤0.05). Dynamic stability, peak vertical force, and average loadrates during single-leg jump landings appear to be affected by footwear type. The results suggest greater dynamic stability and lower impact loading when landing barefoot or in minimal footwear. © Georg Thieme Verlag KG Stuttgart · New York.

  1. The Effect of Teeth Clenching on Dynamic Balance at Jump-Landing: A Pilot Study.

    Science.gov (United States)

    Nakamura, Tomomasa; Yoshida, Yuriko; Churei, Hiroshi; Aizawa, Junya; Hirohata, Kenji; Ohmi, Takehiro; Ohji, Shunsuke; Takahashi, Toshiyuki; Enomoto, Mitsuhiro; Ueno, Toshiaki; Yagishita, Kazuyoshi

    2017-07-01

    The aim of this study was to analyze the effect of teeth clenching on dynamic balance at jump landing. Twenty-five healthy subjects performed jump-landing tasks with or without teeth clenching. The first 3 trials were performed with no instruction; subsequently, subjects were ordered to clench at the time of landing in the following 3 trials. We collected the data of masseter muscle activity by electromyogram, the maximum vertical ground reaction force (vGRFmax) and center of pressure (CoP) parameters by force plate during jump-landing. According to the clenching status of control jump-landing, all participants were categorized into a spontaneous clenching group and no clenching group, and the CoP data were compared. The masseter muscle activity was correlated with vGRFmax during anterior jump-landing, while it was not correlated with CoP. In comparisons between the spontaneous clenching and the no clenching group during anterior jump-landing, the spontaneous clenching group showed harder landing and the CoP area became larger than the no clenching group. There were no significant differences between pre- and postintervention in both spontaneous clenching and no clenching groups. The effect of teeth clenching on dynamic balance during jump-landing was limited.

  2. Choice of jumping strategy in two standard jumps, squat and countermovement jump--effect of training background or inherited preference?

    DEFF Research Database (Denmark)

    Ravn, Susanne; Voigt, M; Simonsen, Erik Bruun

    1999-01-01

    . The jumps were recorded on highspeed film (500 Hz) combined with registration of ground reaction forces, and net joint moments were calculated by inverse dynamics. The purpose was to investigate the choice of strategy in two standard jumps, squat jump and countermovement jump. The volleyball jump...... was performed with a sequential strategy and the ballet jump was performed with a simultaneous strategy. In the two standard jumps, the choice of strategy was individual and not related to training background. This was additionally confirmed in a test of seven ballet dancers and seven volleyball players....

  3. Moderation of flux jumps dynamics by eddy-currents in a disk shape NbTi superconductor

    International Nuclear Information System (INIS)

    Vasiliev, S.; Nabialek, A.; Piechota, S.; Szymczak, H.; Chabanenko, V.V.; Rusakov, V.

    2004-01-01

    We studied the moderation of the flux jumps dynamics in a disc shape NbTi-50% superconductor caused by eddy-currents induced in two copper cylinders attached to both surfaces of the investigated sample. We investigated experimentally the time of the flux jump duration, amount of the magnetic flux entering the sample during the jump as well as the sine structure of the jumps as a function of temperature and the external magnetic field. A simple theoretical model, which describes the magnetic field dependence of the amount of the magnetic flux entering the superconducting sample during the flux jump, was developed. (author)

  4. Dual time-resolved temperature-jump fluorescence and infrared spectroscopy for the study of fast protein dynamics.

    Science.gov (United States)

    Davis, Caitlin M; Reddish, Michael J; Dyer, R Brian

    2017-05-05

    Time-resolved temperature-jump (T-jump) coupled with fluorescence and infrared (IR) spectroscopy is a powerful technique for monitoring protein dynamics. Although IR spectroscopy of the polypeptide amide I mode is more technically challenging, it offers complementary information because it directly probes changes in the protein backbone, whereas, fluorescence spectroscopy is sensitive to the environment of specific side chains. With the advent of widely tunable quantum cascade lasers (QCL) it is possible to efficiently probe multiple IR frequencies with high sensitivity and reproducibility. Here we describe a dual time-resolved T-jump fluorescence and IR spectrometer and its application to study protein folding dynamics. A Q-switched Ho:YAG laser provides the T-jump source for both time-resolved IR and fluorescence spectroscopy, which are probed by a QCL and Ti:Sapphire laser, respectively. The Ho:YAG laser simultaneously pumps the time-resolved IR and fluorescence spectrometers. The instrument has high sensitivity, with an IR absorbance detection limit of jump induced difference spectrum from 50ns to 0.5ms. This study demonstrates the power of the dual time-resolved T-jump fluorescence and IR spectroscopy to resolve complex folding mechanisms by complementary IR absorbance and fluorescence measurements of protein dynamics. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Intraday liquidity dynamics and news releases around price jumps: Evidence from the DJIA stocks

    NARCIS (Netherlands)

    Boudt, K.M.R.; Petitjean, M.

    2014-01-01

    We study the dynamics of liquidity and news releases around jumps by identifying their intraday timing for the Dow Jones Industrial Average index constituents. Jumps are found to coincide with a significant increase in trading costs and demand for immediacy, amplified by the release of news.

  6. Estimation of Jump Tails

    DEFF Research Database (Denmark)

    Bollerslev, Tim; Todorov, Victor

    We propose a new and flexible non-parametric framework for estimating the jump tails of Itô semimartingale processes. The approach is based on a relatively simple-to-implement set of estimating equations associated with the compensator for the jump measure, or its "intensity", that only utilizes...... the weak assumption of regular variation in the jump tails, along with in-fill asymptotic arguments for uniquely identifying the "large" jumps from the data. The estimation allows for very general dynamic dependencies in the jump tails, and does not restrict the continuous part of the process...... and the temporal variation in the stochastic volatility. On implementing the new estimation procedure with actual high-frequency data for the S&P 500 aggregate market portfolio, we find strong evidence for richer and more complex dynamic dependencies in the jump tails than hitherto entertained in the literature....

  7. Hidden Markov Model of atomic quantum jump dynamics in an optically probed cavity

    DEFF Research Database (Denmark)

    Gammelmark, S.; Molmer, K.; Alt, W.

    2014-01-01

    We analyze the quantum jumps of an atom interacting with a cavity field. The strong atom- field interaction makes the cavity transmission depend on the time dependent atomic state, and we present a Hidden Markov Model description of the atomic state dynamics which is conditioned in a Bayesian...... manner on the detected signal. We suggest that small variations in the observed signal may be due to spatial motion of the atom within the cavity, and we represent the atomic system by a number of hidden states to account for both the small variations and the internal state jump dynamics. In our theory...

  8. New jump mechanisms for dumbbell and induced migration of point defects by molecular dynamics simulation

    International Nuclear Information System (INIS)

    Doan, N.V.; Pontikis, V.; Tenenbaum, A.

    1978-01-01

    The induced migration of the (100) - dumbbell is studied using the molecular dynamics simulation. Two new types of jumps are discovered for the dumbbell: first the jump takes place through an intermediate crowdion configuration (110), then the crowdion is converted into the dumbbell configuration with some other orientation. The threshold energy is found for different knocked-on directions. The dependence of the interstitial jump frequency on the incident electron energy is determined for copper. The induced interstitial migration shows a maximum value, but for an electron energy around 15 Kev. The effect of new jump mechanisms on the effective recombination volume is discussed

  9. Jumping on water

    Science.gov (United States)

    Kim, Ho-Young

    2016-11-01

    Water striders can jump on water as high as they can jump on land. Quick jumps allow them to avoid sudden dangers such as predators' attacks, and therefore understanding how they make such a dramatic motion for survival can shed light on the ultimate level of semi-aquatic motility achievable through evolution. However, the mechanism of their vertical jumping from a water surface has eluded hydrodynamic explanations so far. By observing movements of water strider legs and theoretically analyzing their dynamic interactions with deforming liquid-air interface, we have recently found that different species of jumping striders always tune their leg rotation speed with a force just below that required to break the water surface to reach the maximum take-off velocity. Here, we start with discussing the fundamental theories of dynamics of floating and sinking of small objects. The theories then enable us to analyze forces acting on a water strider while it presses down the water surface to fully exploit the capillary force. We further introduce a 68-milligram at-scale robotic insect capable of jumping on water without splash, strikingly similar to the real strider, by utilizing the water surface just as a trampoline.

  10. Comparison of dynamic postural stability scores between athletes with and without chronic ankle instability during lateral jump landing.

    Science.gov (United States)

    Shiravi, Zeinab; Shadmehr, Azadeh; Moghadam, Saeed Talebian; Moghadam, Behrouz Attarbashi

    2017-01-01

    Many ankle injuries occur while participating in sports that require jumping and landing such as basketball, volleyball and soccer. Most recent studies have investigated dynamic postural stability of patients with chronic ankle instability after landing from a forward jump. The present study aimed to investigate the dynamic postural stability of the athletes who suffer from chronic ankle sprain while landing from a lateral jump. Twelve athletes with self-reported unilateral chronic ankle instability (4 females and 8 males) and 12 matched controls (3 females and 9 males) voluntarily participated in the study. Dynamic postural stability index and its directional indices were measured while performing lateral jump landing test. No differences were found between athletes with and without chronic ankle instability during our landing protocol by means of the dynamic postural stability index and its directional indices. Findings showed that in each group, medial/lateral stability index is significantly higher than anterior/posterior and vertical stability indexes. Findings showed that dynamic postural stability was not significantly different between the two groups. Future studies should examine chronic ankle instability patients with more severe disabilities and expose them to more challenging dynamic balance conditions to further explore postural stability. IIIa.

  11. Isometric and dynamic strength and neuromuscular attributes as predictors of vertical jump performance in 11- to 13-year-old male athletes.

    Science.gov (United States)

    McKinlay, Brandon John; Wallace, Phillip J; Dotan, Raffy; Long, Devon; Tokuno, Craig; Gabriel, David A; Falk, Bareket

    2017-09-01

    In explosive contractions, neural activation is a major factor in determining the rate of torque development, while the latter is an important determinant of jump performance. However, the contribution of neuromuscular activation and rate of torque development to jump performance in children and youth is unclear. The purpose of this study was to examine the relationships between the rate of neuromuscular activation, peak torque, rate of torque development, and jump performance in young male athletes. Forty-one 12.5 ± 0.5-year-old male soccer players completed explosive, unilateral isometric and dynamic (240°/s) knee extensions (Biodex System III), as well as countermovement-, squat-, and drop-jumps. Peak torque (pT), peak rate of torque development (pRTD), and rate of vastus lateralis activation (Q 30 ) during the isometric and dynamic contractions were examined in relation to attained jump heights. Isometric pT and pRTD were strongly correlated (r = 0.71) but not related to jump performance. Dynamic pT and pRTD, normalized to body mass, were significantly related to jump height in all 3 jumps (r = 0.38-0.66, p jump performance, while isometric contractions are not. These findings have implications in the choice of training and assessment methods for young athletes.

  12. Dynamic jump intensities and risk premia : Evidence from S&P500 returns and options

    NARCIS (Netherlands)

    Christoffersen, P.; Jacobs, K.; Ornthanalai, C.

    2012-01-01

    We build a new class of discrete-time models that are relatively easy to estimate using returns and/or options. The distribution of returns is driven by two factors: dynamic volatility and dynamic jump intensity. Each factor has its own risk premium. The models significantly outperform standard

  13. Joint dynamics and intra-subject variability during countermovement jumps in children and adults

    DEFF Research Database (Denmark)

    Raffalt, Peter C; Alkjær, Tine; Simonsen, Erik B

    2016-01-01

    The present study investigated lower limb joint work, lower limb joint energy transport and intra-subject variation of the joint dynamics during countermovement jumps in children and adults. Twelve healthy men and eleven healthy boys performed ten maximal countermovement jumps. Three dimensional...... kinematics and kinetics were recorded in synchrony. Hip, knee and ankle joint eccentric and concentric work, joint energy transfer, intra-subject variation of joint moment, joint power and joint moment components were calculated. The children had lower eccentric and concentric hip work and lower eccentric...... work, hip joint moment and hip and knee joint power. Higher intra-subject variation was observed in horizontal joint reaction force components for the children and higher intra-subject variation in the segment angular inertia components was observed for the adults. The joint dynamics of children during...

  14. Dropout dynamics in pulsed quantum dot lasers due to mode jumping

    Energy Technology Data Exchange (ETDEWEB)

    Sokolovskii, G. S.; Dudelev, V. V.; Deryagin, A. G.; Novikov, I. I.; Maximov, M. V.; Ustinov, V. M.; Kuchinskii, V. I. [Ioffe Physical-Technical Institute, St. Petersburg (Russian Federation); Viktorov, E. A. [National Research University of Information Technologies, Mechanics and Optics, Saint Petersburg (Russian Federation); Optique Nonlinéaire Théorique, Campus Plaine CP 231, 1050 Bruxelles (Belgium); Applied Physics Research Group (APHY), Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels (Belgium); Abusaa, M. [Applied Physics Research Group (APHY), Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels (Belgium); Arab American University, Jenin, Palestine (Country Unknown); Danckaert, J. [Applied Physics Research Group (APHY), Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels (Belgium); Kolykhalova, E. D. [St. Petersburg State Electrotechnical University “LETI,” St. Petersburg (Russian Federation); Soboleva, K. K. [St. Petersburg State Polytechnical University, St. Petersburg (Russian Federation); Zhukov, A. E. [Academic University, St. Petersburg (Russian Federation); Sibbett, W. [University of St. Andrews, St. Andrews (United Kingdom); Rafailov, E. U. [Aston Institute of Photonic Technologies, Aston University, Birmingham (United Kingdom); Erneux, T. [Optique Nonlinéaire Théorique, Campus Plaine CP 231, 1050 Bruxelles (Belgium)

    2015-06-29

    We examine the response of a pulse pumped quantum dot laser both experimentally and numerically. As the maximum of the pump pulse comes closer to the excited-state threshold, the output pulse shape becomes unstable and leads to dropouts. We conjecture that these instabilities result from an increase of the linewidth enhancement factor α as the pump parameter comes close to the excitated state threshold. In order to analyze the dynamical mechanism of the dropout, we consider two cases for which the laser exhibits either a jump to a different single mode or a jump to fast intensity oscillations. The origin of these two instabilities is clarified by a combined analytical and numerical bifurcation diagram of the steady state intensity modes.

  15. Dropout dynamics in pulsed quantum dot lasers due to mode jumping

    International Nuclear Information System (INIS)

    Sokolovskii, G. S.; Dudelev, V. V.; Deryagin, A. G.; Novikov, I. I.; Maximov, M. V.; Ustinov, V. M.; Kuchinskii, V. I.; Viktorov, E. A.; Abusaa, M.; Danckaert, J.; Kolykhalova, E. D.; Soboleva, K. K.; Zhukov, A. E.; Sibbett, W.; Rafailov, E. U.; Erneux, T.

    2015-01-01

    We examine the response of a pulse pumped quantum dot laser both experimentally and numerically. As the maximum of the pump pulse comes closer to the excited-state threshold, the output pulse shape becomes unstable and leads to dropouts. We conjecture that these instabilities result from an increase of the linewidth enhancement factor α as the pump parameter comes close to the excitated state threshold. In order to analyze the dynamical mechanism of the dropout, we consider two cases for which the laser exhibits either a jump to a different single mode or a jump to fast intensity oscillations. The origin of these two instabilities is clarified by a combined analytical and numerical bifurcation diagram of the steady state intensity modes

  16. Robophysical study of jumping dynamics on granular media

    Science.gov (United States)

    Aguilar, Jeffrey; Goldman, Daniel I.

    2016-03-01

    Characterizing forces on deformable objects intruding into sand and soil requires understanding the solid- and fluid-like responses of such substrates and their effect on the state of the object. The most detailed studies of intrusion in dry granular media have revealed that interactions of fixed-shape objects during free impact (for example, cannonballs) and forced slow penetration can be described by hydrostatic- and hydrodynamic-like forces. Here we investigate a new class of granular interactions: rapid intrusions by objects that change shape (self-deform) through passive and active means. Systematic studies of a simple spring-mass robot jumping on dry granular media reveal that jumping performance is explained by an interplay of nonlinear frictional and hydrodynamic drag as well as induced added mass (unaccounted by traditional intrusion models) characterized by a rapidly solidified region of grains accelerated by the foot. A model incorporating these dynamics reveals that added mass degrades the performance of certain self-deformations owing to a shift in optimal timing during push-off. Our systematic robophysical experiment reveals both new soft-matter physics and principles for robotic self-deformation and control, which together provide principles of movement in deformable terrestrial environments.

  17. Jump probabilities in the non-Markovian quantum jump method

    International Nuclear Information System (INIS)

    Haerkoenen, Kari

    2010-01-01

    The dynamics of a non-Markovian open quantum system described by a general time-local master equation is studied. The propagation of the density operator is constructed in terms of two processes: (i) deterministic evolution and (ii) evolution of a probability density functional in the projective Hilbert space. The analysis provides a derivation for the jump probabilities used in the recently developed non-Markovian quantum jump (NMQJ) method (Piilo et al 2008 Phys. Rev. Lett. 100 180402).

  18. Jump Horse Safety: Reconciling Public Debate and Australian Thoroughbred Jump Racing Data, 2012–2014

    Science.gov (United States)

    Ruse, Karen; Davison, Aidan; Bridle, Kerry

    2015-01-01

    Simple Summary This paper documents the dynamics of Australian thoroughbred jump racing in the 2012, 2013, and 2014 seasons with the aim of informing debate about risks to horses and the future of this activity. We conclude that the safety of Australian jump racing has improved in recent years but that steeplechases are considerably riskier for horses than hurdle races. Abstract Thoroughbred jump racing sits in the spotlight of contemporary welfare and ethical debates about horse racing. In Australia, jump racing comprises hurdle and steeplechase races and has ceased in all but two states, Victoria and South Australia. This paper documents the size, geography, composition, and dynamics of Australian jump racing for the 2012, 2013, and 2014 seasons with a focus on debate about risks to horses. We found that the majority of Australian jump racing is regional, based in Victoria, and involves a small group of experienced trainers and jockeys. Australian jump horses are on average 6.4 years of age. The jump career of the majority of horses involves participating in three or less hurdle races and over one season. Almost one quarter of Australian jump horses race only once. There were ten horse fatalities in races over the study period, with an overall fatality rate of 5.1 fatalities per 1000 horses starting in a jump race (0.51%). There was significant disparity between the fatality rate for hurdles, 0.75 fatalities per 1000 starts (0.075%) and steeplechases, 14 fatalities per 1000 starts (1.4%). Safety initiatives introduced by regulators in 2010 appear to have significantly decreased risks to horses in hurdles but have had little or no effect in steeplechases. Our discussion considers these data in light of public controversy, political debate, and industry regulation related to jump horse safety. PMID:26506396

  19. Dynamical Tangles in Third-Order Oscillator with Single Jump Function

    Directory of Open Access Journals (Sweden)

    Jiří Petržela

    2014-01-01

    Full Text Available This contribution brings a deep and detailed study of the dynamical behavior associated with nonlinear oscillator described by a single third-order differential equation with scalar jump nonlinearity. The relative primitive geometry of the vector field allows making an exhaustive numerical analysis of its possible solutions, visualizations of the invariant manifolds, and basins of attraction as well as proving the existence of chaotic motion by using the concept of both Shilnikov theorems. The aim of this paper is also to complete, carry out and link the previous works on simple Newtonian dynamics, and answer the question how individual types of the phenomenon evolve with time via understandable notes.

  20. Conditioning exercises in ski jumping: biomechanical relationship of squat jumps, imitation jumps, and hill jumps.

    Science.gov (United States)

    Lorenzetti, Silvio; Ammann, Fabian; Windmüller, Sabrina; Häberle, Ramona; Müller, Sören; Gross, Micah; Plüss, Michael; Plüss, Stefan; Schödler, Berni; Hübner, Klaus

    2017-11-22

    As hill jumps are very time-consuming, ski jumping athletes often perform various imitation jumps during training. The performed jumps should be similar to hill jumps, but a direct comparison of the kinetic and kinematic parameters has not been performed yet. Therefore, this study aimed to correlate 11 common parameters during hill jumps (Oberstdorf Germany), squat jumps (wearing indoor shoes), and various imitation jumps (rolling 4°, rolling flat, static; jumping equipment or indoor shoes) on a custom-built instrumented vehicle with a catch by the coach. During the performed jumps, force and video data of the take-off of 10 athletes were measured. The imitation and squat jumps were then ranked. The main difference between the hill jumps and the imitation and squat jumps is the higher maximal force loading rate during the hill jumps. Imitation jumps performed on a rolling platform, on flat ground were the most similar to hill jumps in terms of the force-time, and leg joint kinematic properties. Thus, non-hill jumps with a technical focus should be performed from a rolling platform with a flat inrun with normal indoor shoes or jumping equipment, and high normal force loading rates should be the main focus of imitation training.

  1. Scaling of interfacial jump conditions

    International Nuclear Information System (INIS)

    Quezada G, S.; Vazquez R, A.; Espinosa P, G.

    2015-09-01

    To model the behavior of a nuclear reactor accurately is needed to have balance models that take into account the different phenomena occurring in the reactor. These balances have to be coupled together through boundary conditions. The boundary conditions have been studied and different treatments have been given to the interface. In this paper is a brief description of some of the interfacial jump conditions that have been proposed in recent years. Also, the scaling of an interfacial jump condition is proposed, for coupling the different materials that are in contact within a nuclear reactor. (Author)

  2. The Effect of Rope Jumping Exercise on Postural Control, Static and Dynamic Balance in Male Students with Cavus Foot

    Directory of Open Access Journals (Sweden)

    Mahdi Ghaderiyan

    2016-06-01

    Full Text Available Background and Objectives: Plantar foot is a very active part in leap activities, such as rope jumping and with its small surface playes an important role in balance control. In this research, the effect of 12 week rope jumping exercise was investigated on postural control and static and dynamic balance in 10-13 years old male students with cavus foot. Methods: This quasi-experimental study was done on 450 male students aged 13-10 years in Jarghouyeh sofla. After the initial evaluation by pedescope (qualitative and then measurement by a foot scanner (quantitative and Staheli index, 30 students were selected as samples and were divided into two groups (experimental and control, each 15 cases. To measure the postural control, a foot scanner device was used and changes in plantar center of pressure was recorded for 20 seconds. Static balance was evaluated with stork test and dynamic balance by Y balance test. The subjects of the experimental group participated in a rope jumping training protocol three 45-minute sessions per week for 12 weeks. In this period of time, the subjects of the control group did not participate in any regular physical activity program in this time. Data were analyzed using dependent and independent t-tests. The significance level was considered p<0/05. Results: A 12-week rope jumping exercise improved postural control and static and dynamic balance in patients with cavus foot, which this change was significant (p<0.001. Conclusion: According to the results of this study, rope jumping can be a useful exercise to improve static and dynamic balance and postural control in individuals with cavus foot.

  3. The density jump at the inner core boundary using underground nuclear explosion records

    International Nuclear Information System (INIS)

    Krasnoshchekov, D.N.; Ovchinnikov, V.M.

    2001-01-01

    This paper presents the estimation of the minimum jump value using experimental wave forms reflected from the boundary between the Earth core and mantle (PcP) and the one between the inner and outer core (PKiKP) at a distance of 6 deg. Digital seismic records of underground nuclear tests conducted at the Semipalatinsk test site in 70s by Zerenda-Vostochny-Chkalovo seismic array have been used. (author)

  4. Immediate effects of different types of stretching exercises on badminton jump smash.

    Science.gov (United States)

    Jang, Hwi S; Kim, Daeho; Park, Jihong

    2018-01-01

    Since different types of stretching exercises may alter athletic performance, we compared the effects of three types of stretching exercises on badminton jump smash. Sixteen male collegiate badminton players performed one of three different stretching exercises in a counterbalanced order on different days. Static stretching had seven typical stretches, while dynamic stretching involved nine dynamic movements, and resistance dynamic stretching was performed with weighted vests and dumbbells. Before and after each stretching exercise, subjects performed 20 trials of jump smashes. Dependent measurements were the jump heights during jump smashes, velocities of jump-smashed shuttlecocks, and drop point of jump-smashed shuttlecocks. To test the effects of each stretching exercise, we performed mixed model ANOVAs and calculated between-time effect sizes (ES). Each stretching exercise improved the jump heights during jump smashes (type main effect: F(2,75)=1.19, P=0.31; static stretching: 22.1%, Pjump-smashed shuttlecocks (type main effect: F(2,75)=2.18, P=0.12; static stretching: 5.7%, P=0.61, ES=0.39; dynamic stretching: 3.4%, P=0.94, ES=0.28; resistance dynamic stretching: 6%, P=0.50, ES=0.66). However, there were no differences among the stretching exercises for any measurement. The drop point of jump-smashed shuttlecocks did not change (interaction: F(2,75)=0.88, P=0.42). All stretching exercises improved badminton jump smash performance, but we could not determine the best protocol. Since badminton requires high-speed movement and explosive force, we suggest performing dynamic stretching or resistance dynamic stretching.

  5. Knee Muscular Control During Jump Landing in Multidirections.

    Science.gov (United States)

    Sinsurin, Komsak; Vachalathiti, Roongtiwa; Jalayondeja, Wattana; Limroongreungrat, Weerawat

    2016-06-01

    Jump landing is a complex movement in sports. While competing and practicing, athletes frequently perform multi-planar jump landing. Anticipatory muscle activity could influence the amount of knee flexion and prepare the knee for dynamic weight bearing such as landing tasks. The aim of the present study was to examine knee muscle function and knee flexion excursion as athletes naturally performed multi-direction jump landing. Eighteen male athletes performed the jump-landing test in four directions: forward (0°), 30° diagonal, 60° diagonal, and lateral (90°). Muscles tested were vastus medialis (VM), vastus lateralis (VL), rectus femoris (RF), semitendinosus (ST), and biceps femoris (BF). A Vicon(TM) 612 workstation collected the kinematic data. An electromyography was synchronized with the Vicon(TM) Motion system to quantify dynamic muscle function. Repeated measure ANOVA was used to analyze the data. Jump-landing direction significantly influenced (P jump landing. A higher risk of knee injury might occur during lateral jump landing than forward and diagonal directions. Athletes should have more practice in jump landing in lateral direction to avoid injury. Landing technique with high knee flexion in multi-directions should be taught to jumpers for knee injury prevention.

  6. Jumping hoops on water

    Science.gov (United States)

    Yang, Eunjin; Kim, Ho-Young

    2015-11-01

    Small aquatic arthropods, such as water striders and fishing spiders, are able to jump off water to a height several times their body length. Inspired by the unique biological motility on water, we study a simple model using a flexible hoop to provide fundamental understanding and a mimicking principle of small jumpers on water. Behavior of a hoop on water, which is coated with superhydrophobic particles and initially bent into an ellipse from an equilibrium circular shape, is visualized with a high speed camera upon launching it into air by releasing its initial elastic strain energy. We observe that jumping of our hoops is dominated by the dynamic pressure of water rather than surface tension, and thus it corresponds to the dynamic condition experienced by fishing spiders. We calculate the reaction forces provided by water adopting the unsteady Bernoulli equation as well as the momentum loss into liquid inertia and viscous friction. Our analysis allows us to predict the jumping efficiency of the hoop on water in comparison to that on ground, and to discuss the evolutionary pressure rendering fishing spiders select such dynamic behavior.

  7. Performance analysis of jump-gliding locomotion for miniature robotics.

    Science.gov (United States)

    Vidyasagar, A; Zufferey, Jean-Christohphe; Floreano, Dario; Kovač, M

    2015-03-26

    Recent work suggests that jumping locomotion in combination with a gliding phase can be used as an effective mobility principle in robotics. Compared to pure jumping without a gliding phase, the potential benefits of hybrid jump-gliding locomotion includes the ability to extend the distance travelled and reduce the potentially damaging impact forces upon landing. This publication evaluates the performance of jump-gliding locomotion and provides models for the analysis of the relevant dynamics of flight. It also defines a jump-gliding envelope that encompasses the range that can be achieved with jump-gliding robots and that can be used to evaluate the performance and improvement potential of jump-gliding robots. We present first a planar dynamic model and then a simplified closed form model, which allow for quantification of the distance travelled and the impact energy on landing. In order to validate the prediction of these models, we validate the model with experiments using a novel jump-gliding robot, named the 'EPFL jump-glider'. It has a mass of 16.5 g and is able to perform jumps from elevated positions, perform steered gliding flight, land safely and traverse on the ground by repetitive jumping. The experiments indicate that the developed jump-gliding model fits very well with the measured flight data using the EPFL jump-glider, confirming the benefits of jump-gliding locomotion to mobile robotics. The jump-glide envelope considerations indicate that the EPFL jump-glider, when traversing from a 2 m height, reaches 74.3% of optimal jump-gliding distance compared to pure jumping without a gliding phase which only reaches 33.4% of the optimal jump-gliding distance. Methods of further improving flight performance based on the models and inspiration from biological systems are presented providing mechanical design pathways to future jump-gliding robot designs.

  8. Propulsion efficiency and imposed flow fields of a copepod jump

    DEFF Research Database (Denmark)

    Jiang, H.; Kiørboe, Thomas

    2011-01-01

    Pelagic copepods jump to relocate, to attack prey and to escape predators. However, there is a price to be paid for these jumps in terms of their energy costs and the hydrodynamic signals they generate to rheotactic predators. Using observed kinematics of various types of jumps, we computed...... the imposed flow fields and associated energetics of jumps by means of computational fluid dynamics simulations by modeling the copepod as a self-propelled body. The computational fluid dynamics simulation was validated by particle image velocimetry data. The flow field generated by a repositioning jump...... the flow structure. The flow field associated with an escape jump sequence also includes two dominant vortex structures: one leading wake vortex generated as a result of the first jump and one around the body, but between these two vortex structures is an elongated, long-lasting flow trail with flow...

  9. The fluid dynamics of swimming by jumping in copepods

    DEFF Research Database (Denmark)

    Jiang, Houshuo; Kiørboe, Thomas

    2011-01-01

    Copepods swim either continuously by vibrating their feeding appendages or erratically by repeatedly beating their swimming legs resulting in a series of small jumps. The two swimming modes generate different hydrodynamic disturbances and therefore expose the swimmers differently to rheotactic...... limited and temporally ephemeral owing to jump-impulsiveness and viscous decay. In contrast, continuous steady swimming generates two well-extended long-lasting momentum jets both in front of and behind the swimmer, as suggested by the well-known steady stresslet model. Based on the observed jump-swimming...... kinematics of a small copepod Oithona davisae, we further showed that jump-swimming produces a hydrodynamic disturbance with much smaller spatial extension and shorter temporal duration than that produced by a same-size copepod cruising steadily at the same average translating velocity. Hence, small copepods...

  10. Pricing FX Options in the Heston/CIR Jump-Diffusion Model with Log-Normal and Log-Uniform Jump Amplitudes

    Directory of Open Access Journals (Sweden)

    Rehez Ahlip

    2015-01-01

    model for the exchange rate with log-normal jump amplitudes and the volatility model with log-uniformly distributed jump amplitudes. We assume that the domestic and foreign stochastic interest rates are governed by the CIR dynamics. The instantaneous volatility is correlated with the dynamics of the exchange rate return, whereas the domestic and foreign short-term rates are assumed to be independent of the dynamics of the exchange rate and its volatility. The main result furnishes a semianalytical formula for the price of the foreign exchange European call option.

  11. Jump Horse Safety: Reconciling Public Debate and Australian Thoroughbred Jump Racing Data, 2012-2014.

    Science.gov (United States)

    Ruse, Karen; Davison, Aidan; Bridle, Kerry

    2015-10-22

    Thoroughbred jump racing sits in the spotlight of contemporary welfare and ethical debates about horse racing. In Australia, jump racing comprises hurdle and steeplechase races and has ceased in all but two states, Victoria and South Australia. This paper documents the size, geography, composition, and dynamics of Australian jump racing for the 2012, 2013, and 2014 seasons with a focus on debate about risks to horses. We found that the majority of Australian jump racing is regional, based in Victoria, and involves a small group of experienced trainers and jockeys. Australian jump horses are on average 6.4 years of age. The jump career of the majority of horses involves participating in three or less hurdle races and over one season. Almost one quarter of Australian jump horses race only once. There were ten horse fatalities in races over the study period, with an overall fatality rate of 5.1 fatalities per 1000 horses starting in a jump race (0.51%). There was significant disparity between the fatality rate for hurdles, 0.75 fatalities per 1000 starts (0.075%) and steeplechases, 14 fatalities per 1000 starts (1.4%). Safety initiatives introduced by regulators in 2010 appear to have significantly decreased risks to horses in hurdles but have had little or no effect in steeplechases. Our discussion considers these Animals 2015, 5 1073 data in light of public controversy, political debate, and industry regulation related to jump horse safety.

  12. Application of system dynamics on nuclear policy model

    International Nuclear Information System (INIS)

    An, N. S.; Kim, J. C.; Kim, D. W.; Kang, S. C.

    2000-01-01

    A system dynamics model for a nuclear energy policy in Korea (SIMNEP) was developed to analyze the Korea nuclear system and to predict the influence of the nuclear energy policy in the future. Two cases were analyzed using SIMNEP. The first case is to see the effect of the occurrence of severe nuclear accident in foreign country on the Korean government support. In the beginning, the Korean government support drops but jump up to the higher value than normal support due to the intelligentsia support influenced by the delay time of perception. Then, the national government support converges to the normal support. This turns out that the intelligentsia support plays a major role in increasing the government support. The second case is to see the effect of prior efforts on the foreign factors and/or on domestic factors on the U.S. government support. In the short term, effort on the U.S. government is more effective to increase U.S. government support but in the long term (about after 5 years), efforts on the domestic factors influence on the U.S. government support more than efforts on the foreign factors. The Korean government counter reaction among the influencing factors on the U.S. government support plays a major role to explain this result

  13. The Influence of External Load on Quadriceps Muscle and Tendon Dynamics during Jumping.

    Science.gov (United States)

    Earp, Jacob E; Newton, Robert U; Cormie, Prue; Blazevich, Anthony J

    2017-11-01

    Tendons possess both viscous (rate-dependent) and elastic (rate-independent) properties that determine tendon function. During high-speed movements external loading increases both the magnitude (FT) and rate (RFDT) of tendon loading. The influence of external loading on muscle and tendon dynamics during maximal vertical jumping was explored. Ten resistance-trained men performed parallel-depth, countermovement vertical jumps with and without additional load (0%, 30%, 60%, and 90% of maximum squat lift strength), while joint kinetics and kinematics, quadriceps tendon length (LT) and patellar tendon FT and RFDT were estimated using integrated ultrasound, motion analysis and force platform data and muscle tendon modelling. Estimated FT and RFDT, but not peak LT, increased with external loading. Temporal comparisons between 0% and 90% loads revealed that FT was greater with 90% loading throughout the majority of the movement (11%-81% and 87%-95% movement duration). However, RFDT was greater with 90% load only during the early movement initiation phase (8%-15% movement duration) but was greater in the 0% load condition later in the eccentric phase (27%-38% movement duration). LT was longer during the early movement (12%-23% movement duration) but shorter in the late eccentric and early concentric phases (48%-55% movement duration) with 90% load. External loading positively influenced peak FT and RFDT but tendon strain appeared unaffected, suggesting no additive effect of external loading on patellar tendon lengthening during human jumping. Temporal analysis revealed that external loading resulted in a large initial RFDT that may have caused dynamic stiffening of the tendon and attenuated tendon strain throughout the movement. These results suggest that external loading influences tendon lengthening in both a load- and movement-dependent manner.

  14. Validity of a jump training apparatus using Wii Balance Board.

    Science.gov (United States)

    Yamamoto, Keizo; Matsuzawa, Mamoru

    2013-05-01

    The dynamic quantification of jump ability is useful for sports performance evaluation. We developed a force measurement system using the Wii Balance Board (WBB). This study was conducted to validate the system in comparison with a laboratory-grade force plate (FP). For a static validation, weights of 10-180kg were put progressively on the WBB put on the FP. The vertical component of the ground reaction force (vGRF) was measured using both devices and compared. For the dynamic validation, 10 subjects without lower limb pathology participated in the study and performed vertical jumping twice on the WBB on the FP. The range of analysis was set from the landing after the first jump to taking off of the second jump. The peak values during the landing phase and jumping phase were obtained and the force-time integral (force impulse) was measured. The relations of the values measured using each device were compared using Pearson's correlation coefficient test and Bland-Altman plots (BAP). Significant correlation (P<.01, r=.99) was found between the values of both devices in the static and the dynamic test. Examination of the BAP revealed a proportion error in the landing phase and showed no relation in the jumping phase between the difference and the mean in the dynamic test. The WBB detects the vGRF in the jumping phase with high precision. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Jump Horse Safety: Reconciling Public Debate and Australian Thoroughbred Jump Racing Data, 2012–2014

    Directory of Open Access Journals (Sweden)

    Karen Ruse

    2015-10-01

    Full Text Available Thoroughbred jump racing sits in the spotlight of contemporary welfare and ethical debates about horse racing. In Australia, jump racing comprises hurdle and steeplechase races and has ceased in all but two states, Victoria and South Australia. This paper documents the size, geography, composition, and dynamics of Australian jump racing for the 2012, 2013, and 2014 seasons with a focus on debate about risks to horses. We found that the majority of Australian jump racing is regional, based in Victoria, and involves a small group of experienced trainers and jockeys. Australian jump horses are on average 6.4 years of age. The jump career of the majority of horses involves participating in three or less hurdle races and over one season. Almost one quarter of Australian jump horses race only once. There were ten horse fatalities in races over the study period, with an overall fatality rate of 5.1 fatalities per 1000 horses starting in a jump race (0.51%. There was significant disparity between the fatality rate for hurdles, 0.75 fatalities per 1000 starts (0.075% and steeplechases, 14 fatalities per 1000 starts (1.4%. Safety initiatives introduced by regulators in 2010 appear to have significantly decreased risks to horses in hurdles but have had little or no effect in steeplechases. Our discussion considers these Animals 2015, 5 1073 data in light of public controversy, political debate, and industry regulation related to jump horse safety.

  16. Acute effects of static and dynamic stretching on jump performance after 15 min of reconditioning shooting phase in basketball players.

    Science.gov (United States)

    Annino, Giuseppe; Ruscello, Bruno; Lebone, Pietro; Palazzo, Francesco; Lombardo, Mauro; Padua, Elvira; Verdecchia, Luca; Tancredi, Virginia; Iellamo, Ferdinando

    2017-04-01

    The aim of this study was to assess the effects of static (SS) and dynamic stretching (DS) on vertical jump performance executed before, immediately after and at the end of the shooting phase (i.e., 15 min later), as to simulate the actual conditions preceding a match, in professional basketball players. Ten elite basketball players (age: 29±6.73 years, height: 194.67±7.75 cm, weight: 91±8.17 kg and BMI 23.8±7.91 kg.m-2) participated to the study. SS and DS protocols were administered during the first training session of the week, 48 hours after the championship match. Stretching protocols consisted in ~7 minutes of general warm-up phase followed by ~8 minutes of SS and DS, performed with a cross-over design., and ~15 minutes of a specific warm-up shooting phase (SP). Vertical jump tests consisted in counter movement jump (CMJ) and CMJ with arm swings (CMJas) and were performed immediately after the end of each stretching phase (preS, postS, postSP). A significant decrease (P=0.05; η2partial=0.29) in jumping tests height occurred in CMJas, when performed after the SS (i.e., PostS). However, no significant differences in jumping performances, occurred after the general warm phase and the specific warm-up shooting phase, between the two stretching protocols. These results would indicate that, overall, stretching routines either dynamic or static, performed before a basketball match are transient and affect only marginally leg muscles performance. Stretching routines, particularly the dynamic ones, may be useful to maintain muscle performance before a competition, provided that this latter begins shortly after.

  17. Drop jumping. I. The influence of jumping technique on the biomechanics of jumping

    NARCIS (Netherlands)

    Bobbert, M F; Huijing, P A; van Ingen Schenau, G J

    In the literature, drop jumping is advocated as an effective exercise for athletes who prepare themselves for explosive activities. When executing drop jumps, different jumping techniques can be used. In this study, the influence of jumping technique on the biomechanics of jumping is investigated.

  18. Volatility jumps and their economic determinants

    DEFF Research Database (Denmark)

    Caporin, Massimiliano; Rossi, Eduardo; Santucci de Magistris, Paolo

    that there is a positive probability of jumps in volatility. A common factor in the volatility jumps is shown to be related to a set of financial covariates (such as variance risk premium, S&P500 volume, credit-default swap, and federal fund rates). The credit-default swap on US banks and variance risk premium have...... predictive power on expected jump moves, thus confirming the common interpretation that sudden and large increases in equity volatility can be anticipated by credit deterioration of the US bank sector as well as changes in the market expectations of future risks. Finally, the model is extended to incorporate...... the credit-default swap and the variance risk premium in the dynamics of the jump size and intensity....

  19. Dynamics of the stochastic low concentration trimolecular oscillatory chemical system with jumps

    Science.gov (United States)

    Wei, Yongchang; Yang, Qigui

    2018-06-01

    This paper is devoted to discern long time dynamics through the stochastic low concentration trimolecular oscillatory chemical system with jumps. By Lyapunov technique, this system is proved to have a unique global positive solution, and the asymptotic stability in mean square of such model is further established. Moreover, the existence of random attractor and Lyapunov exponents are obtained for the stochastic homeomorphism flow generated by the corresponding global positive solution. And some numerical simulations are given to illustrate the presented results.

  20. Research on one Bio-inspired Jumping Locomotion Robot for Search and Rescue

    Directory of Open Access Journals (Sweden)

    Dunwen Wei

    2014-10-01

    Full Text Available Jumping locomotion is much more effective than other locomotion means in order to tackle the unstructured and complex environment in research and rescue. Here, a bio-inspired jumping robot with a closed-chain mechanism is proposed to achieve the power amplification during taking-off. Through actuating one variable transmission mechanism to change the transmission ratio, the jumping robot reveals biological characteristics in the phase of posture adjustment when adjusting the height and distance of one jump. The kinematics and dynamics of the simplified jumping mechanism model in one jumping cycle sequence are analysed. A compliant contact model considering nonlinear damping is investigated for jumping performance under different terrain characteristics. The numerical simulation algorithm with regard to solving the dynamical equation is described and simulation results are discussed. Finally, one primary prototype and experiment are described. The experimental results show the distance of jumping in the horizontal direction increases with the increasing gear ratio, while the height of jumping decreases in reverse. The jumping robot can enhance the capability to adapt to unknown cluttered environments, such as those encountered in research and rescue, using this strategy.

  1. Relationships Between Countermovement Jump Ground Reaction Forces and Jump Height, Reactive Strength Index, and Jump Time.

    Science.gov (United States)

    Barker, Leland A; Harry, John R; Mercer, John A

    2018-01-01

    Barker, LA, Harry, JR, and Mercer, JA. Relationships between countermovement jump ground reaction forces and jump height, reactive strength index, and jump time. J Strength Cond Res 32(1): 248-254, 2018-The purpose of this study was to determine the relationship between ground reaction force (GRF) variables to jump height, jump time, and the reactive strength index (RSI). Twenty-six, Division-I, male, soccer players performed 3 maximum effort countermovement jumps (CMJs) on a dual-force platform system that measured 3-dimensional kinetic data. The trial producing peak jump height was used for analysis. Vertical GRF (Fz) variables were divided into unloading, eccentric, amortization, and concentric phases and correlated with jump height, RSI (RSI = jump height/jump time), and jump time (from start to takeoff). Significant correlations were observed between jump height and RSI, concentric kinetic energy, peak power, concentric work, and concentric displacement. Significant correlations were observed between RSI and jump time, peak power, unload Fz, eccentric work, eccentric rate of force development (RFD), amortization Fz, amortization time, second Fz peak, average concentric Fz, and concentric displacement. Significant correlations were observed between jump time and unload Fz, eccentric work, eccentric RFD, amortization Fz, amortization time, average concentric Fz, and concentric work. In conclusion, jump height correlated with variables derived from the concentric phase only (work, power, and displacement), whereas Fz variables from the unloading, eccentric, amortization, and concentric phases correlated highly with RSI and jump time. These observations demonstrate the importance of countermovement Fz characteristics for time-sensitive CMJ performance measures. Researchers and practitioners should include RSI and jump time with jump height to improve their assessment of jump performance.

  2. Are the take-off and landing phase dynamics of the volleyball spike jump related to patellar tendinopathy?

    NARCIS (Netherlands)

    Bisseling, R.W.; Hof, A.L.; Bredeweg, S.W.; Zwerver, J.; Mulder, T.

    Objective: The causal mechanism of the chronic sports injury patellar tendinopathy is not well understood. The aim of the present study was to compare ankle and knee joint dynamics during the performance of the volleyball spike jump between healthy volleyball players (n = 8) and asymptomatic

  3. Option Panels in Pure-Jump Settings

    DEFF Research Database (Denmark)

    Andersen, Torben Gustav; Fusari, Nicola; Todorov, Viktor

    We develop parametric inference procedures for large panels of noisy option data in the setting where the underlying process is of pure-jump type, i.e., evolve only through a sequence of jumps. The panel consists of options written on the underlying asset with a (different) set of strikes...... specification for the risk-neutral asset return dynamics, the option prices are nonlinear functions of a time-invariant parameter vector and a time-varying latent state vector (or factors). Furthermore, no-arbitrage restrictions impose a direct link between some of the quantities that may be identified from...... the return and option data. These include the so-called jump activity index as well as the time-varying jump intensity. We propose penalized least squares estimation in which we minimize L_2 distance between observed and model-implied options and further penalize for the deviation of model-implied quantities...

  4. The Effects of Short-Term Ski Trainings on Dynamic Balance Performance and Vertical Jump in Adolescents

    Science.gov (United States)

    Camliguney, Asiye Filiz

    2013-01-01

    Skiing is a sport where balance and strength are critical and which can be practiced actively especially from early years to old age. The purpose of this study is to examine the effect of a 5-day training of skiing skills on dynamic balance performance and development of vertical jump strength in adolescents. Sixteen adolescent volunteers who do…

  5. Rotational dynamics in supercooled water from nuclear spin relaxation and molecular simulations.

    Science.gov (United States)

    Qvist, Johan; Mattea, Carlos; Sunde, Erik P; Halle, Bertil

    2012-05-28

    Structural dynamics in liquid water slow down dramatically in the supercooled regime. To shed further light on the origin of this super-Arrhenius temperature dependence, we report high-precision (17)O and (2)H NMR relaxation data for H(2)O and D(2)O, respectively, down to 37 K below the equilibrium freezing point. With the aid of molecular dynamics (MD) simulations, we provide a detailed analysis of the rotational motions probed by the NMR experiments. The NMR-derived rotational correlation time τ(R) is the integral of a time correlation function (TCF) that, after a subpicosecond librational decay, can be described as a sum of two exponentials. Using a coarse-graining algorithm to map the MD trajectory on a continuous-time random walk (CTRW) in angular space, we show that the slowest TCF component can be attributed to large-angle molecular jumps. The mean jump angle is ∼48° at all temperatures and the waiting time distribution is non-exponential, implying dynamical heterogeneity. We have previously used an analogous CTRW model to analyze quasielastic neutron scattering data from supercooled water. Although the translational and rotational waiting times are of similar magnitude, most translational jumps are not synchronized with a rotational jump of the same molecule. The rotational waiting time has a stronger temperature dependence than the translation one, consistent with the strong increase of the experimentally derived product τ(R) D(T) at low temperatures. The present CTRW jump model is related to, but differs in essential ways from the extended jump model proposed by Laage and co-workers. Our analysis traces the super-Arrhenius temperature dependence of τ(R) to the rotational waiting time. We present arguments against interpreting this temperature dependence in terms of mode-coupling theory or in terms of mixture models of water structure.

  6. Accuracy of Jump-Mat Systems for Measuring Jump Height.

    Science.gov (United States)

    Pueo, Basilio; Lipinska, Patrycja; Jiménez-Olmedo, José M; Zmijewski, Piotr; Hopkins, Will G

    2017-08-01

    Vertical-jump tests are commonly used to evaluate lower-limb power of athletes and nonathletes. Several types of equipment are available for this purpose. To compare the error of measurement of 2 jump-mat systems (Chronojump-Boscosystem and Globus Ergo Tester) with that of a motion-capture system as a criterion and to determine the modifying effect of foot length on jump height. Thirty-one young adult men alternated 4 countermovement jumps with 4 squat jumps. Mean jump height and standard deviations representing technical error of measurement arising from each device and variability arising from the subjects themselves were estimated with a novel mixed model and evaluated via standardization and magnitude-based inference. The jump-mat systems produced nearly identical measures of jump height (differences in means and in technical errors of measurement ≤1 mm). Countermovement and squat-jump height were both 13.6 cm higher with motion capture (90% confidence limits ±0.3 cm), but this very large difference was reduced to small unclear differences when adjusted to a foot length of zero. Variability in countermovement and squat-jump height arising from the subjects was small (1.1 and 1.5 cm, respectively, 90% confidence limits ±0.3 cm); technical error of motion capture was similar in magnitude (1.7 and 1.6 cm, ±0.3 and ±0.4 cm), and that of the jump mats was similar or smaller (1.2 and 0.3 cm, ±0.5 and ±0.9 cm). The jump-mat systems provide trustworthy measurements for monitoring changes in jump height. Foot length can explain the substantially higher jump height observed with motion capture.

  7. Effects of timing of signal indicating jump directions on knee biomechanics in jump-landing-jump tasks.

    Science.gov (United States)

    Stephenson, Mitchell L; Hinshaw, Taylour J; Wadley, Haley A; Zhu, Qin; Wilson, Margaret A; Byra, Mark; Dai, Boyi

    2018-03-01

    A variety of the available time to react (ATR) has been utilised to study knee biomechanics during reactive jump-landing tasks. The purpose was to quantify knee kinematics and kinetics during a jump-land-jump task of three possible directions as the ATR was reduced. Thirty-four recreational athletes performed 45 trials of a jump-land-jump task, during which the direction of the second jump (lateral, medial or vertical) was indicated before they initiated the first jump, the instant they initiated the first jump, 300 ms before landing, 150 ms before landing or at the instant of landing. Knee joint angles and moments close to the instant of landing were significantly different when the ATR was equal to or more than 300 ms before landing, but became similar when the ATR was 150 ms or 0 ms before landing. As the ATR was decreased, knee moments decreased for the medial jump direction, but increased for the lateral jump direction. When the ATR is shorter than an individual's reaction time, the movement pattern cannot be pre-planned before landing. Knee biomechanics are dependent on the timing of the signal and the subsequent jump direction. Precise control of timing and screening athletes with low ATR are suggested.

  8. Dislocation dynamics in Al-Li alloys: mean jump distance and activation length of moving dislocations

    International Nuclear Information System (INIS)

    De Hosson, J.Th.M.; Huis Int Veld, A.

    1984-01-01

    It is pointed out that aluminum-lithium based alloys offer considerable promise for structural applications, especially in the aerospace industry. This promise is related to the potential for high strength in combination with a density which is lower than that found in conventional aluminum alloys. In addition, the modulus of elasticity is higher than corresponding values in conventional aluminum alloys. A nuclear magnetic resonance study of the mechanism of dislocation motion in Al-2.2 wt pct Li is reported. Information about the effective mean jump distance of mobile dislocations is provided by in situ nuclear spin relaxation measurements. The activation length of mobile dislocations has been obtained from strain-rate change experiments on Al-2.2 wt pct Li. The considered study shows that pulsed nuclear magnetic resonance is a complementary new technique for the study of moving dislocations in Al-Li alloys. 28 references

  9. Data-Driven Jump Detection Thresholds for Application in Jump Regressions

    Directory of Open Access Journals (Sweden)

    Robert Davies

    2018-03-01

    Full Text Available This paper develops a method to select the threshold in threshold-based jump detection methods. The method is motivated by an analysis of threshold-based jump detection methods in the context of jump-diffusion models. We show that over the range of sampling frequencies a researcher is most likely to encounter that the usual in-fill asymptotics provide a poor guide for selecting the jump threshold. Because of this we develop a sample-based method. Our method estimates the number of jumps over a grid of thresholds and selects the optimal threshold at what we term the ‘take-off’ point in the estimated number of jumps. We show that this method consistently estimates the jumps and their indices as the sampling interval goes to zero. In several Monte Carlo studies we evaluate the performance of our method based on its ability to accurately locate jumps and its ability to distinguish between true jumps and large diffusive moves. In one of these Monte Carlo studies we evaluate the performance of our method in a jump regression context. Finally, we apply our method in two empirical studies. In one we estimate the number of jumps and report the jump threshold our method selects for three commonly used market indices. In the other empirical application we perform a series of jump regressions using our method to select the jump threshold.

  10. A simple strategy for jumping straight up.

    Science.gov (United States)

    Hemami, Hooshang; Wyman, Bostwick F

    2012-05-01

    Jumping from a stationary standing position into the air is a transition from a constrained motion in contact with the ground to an unconstrained system not in contact with the ground. A simple case of the jump, as it applies to humans, robots and humanoids, is studied in this paper. The dynamics of the constrained rigid body are expanded to define a larger system that accommodates the jump. The formulation is applied to a four-link, three-dimensional system in order to articulate the ballistic motion involved. The activity of the muscular system and the role of the major sagittal muscle groups are demonstrated. The control strategy, involving state feedback and central feed forward signals, is formulated and computer simulations are presented to assess the feasibility of the formulations, the strategy and the jump. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. Propulsion efficiency and imposed flow fields of a copepod jump.

    Science.gov (United States)

    Jiang, Houshuo; Kiørboe, Thomas

    2011-02-01

    Pelagic copepods jump to relocate, to attack prey and to escape predators. However, there is a price to be paid for these jumps in terms of their energy costs and the hydrodynamic signals they generate to rheotactic predators. Using observed kinematics of various types of jumps, we computed the imposed flow fields and associated energetics of jumps by means of computational fluid dynamics simulations by modeling the copepod as a self-propelled body. The computational fluid dynamics simulation was validated by particle image velocimetry data. The flow field generated by a repositioning jump quickly evolves into two counter-rotating viscous vortex rings that are near mirror image of one another, one in the wake and one around the body of the copepod; this near symmetrical flow may provide hydrodynamic camouflage because it contains no information about the position of the copepod prey within the flow structure. The flow field associated with an escape jump sequence also includes two dominant vortex structures: one leading wake vortex generated as a result of the first jump and one around the body, but between these two vortex structures is an elongated, long-lasting flow trail with flow velocity vectors pointing towards the copepod; such a flow field may inform the predator of the whereabouts of the escaping copepod prey. High Froude propulsion efficiency (0.94-0.98) was obtained for individual power stroke durations of all simulated jumps. This is unusual for small aquatic organisms but is caused by the rapidity and impulsiveness of the jump that allows only a low-cost viscous wake vortex to travel backwards.

  12. Mobile Jump Assessment (mJump): A Descriptive and Inferential Study.

    Science.gov (United States)

    Mateos-Angulo, Alvaro; Galán-Mercant, Alejandro; Cuesta-Vargas, Antonio

    2015-08-26

    Vertical jump tests are used in athletics and rehabilitation to measure physical performance in people of different age ranges and fitness. Jumping ability can be analyzed through different variables, and the most commonly used are fly time and jump height. They can be obtained by a variety of measuring devices, but most are limited to laboratory use only. The current generation of smartphones contains inertial sensors that are able to record kinematic variables for human motion analysis, since they are tools for easy access and portability for clinical use. The aim of this study was to describe and analyze the kinematics characteristics using the inertial sensor incorporated in the iPhone 4S, the lower limbs strength through a manual dynamometer, and the jump variables obtained with a contact mat in the squat jump and countermovement jump tests (fly time and jump height) from a cohort of healthy people. A cross sectional study was conducted on a population of healthy young adults. Twenty-seven participants performed three trials (n=81 jumps) of squat jump and countermovement jump tests. Acceleration variables were measured through a smartphone's inertial sensor. Additionally, jump variables from a contact mat and lower limbs dynamometry were collected. In the present study, the kinematic variables derived from acceleration through the inertial sensor of a smartphone iPhone 4S, dynamometry of lower limbs with a handheld dynamometer, and the height and flight time with a contact mat have been described in vertical jump tests from a cohort of young healthy subjects. The development of the execution has been described, examined and identified in a squat jump test and countermovement jump test under acceleration variables that were obtained with the smartphone. The built-in iPhone 4S inertial sensor is able to measure acceleration variables while performing vertical jump tests for the squat jump and countermovement jump in healthy young adults. The acceleration

  13. Hydraulic jumps in a partially filled rotating cylinder

    International Nuclear Information System (INIS)

    Lundgren, T.S.; Berman, A.S.

    1979-06-01

    A nonlinear analysis is made of the fluid dynamics of a thin film of liquid completely spun up along the cylindrical wall of a rotating cylinder. The analysis allows for the possibility of hydraulic jumps in the liquid film. Conditions are simulated under which jumps can occur. Under the assumption that synchronous runouts are small relative to the film thickness, a sample calculation of jump position and extent for various operating frequencies is presented. Comparison with experimental observations indicate good qualitative agreement between the analysis and the experiment. Under the additional restriction of constant film thickness and a simple lumped-parameter dynamic model for the rotor and its supports, an analysis is also provided which predicts the amplitude and frequency of the asynchronous runout as a function of operating frequency. A numerical example of the results of such a calculation is provided. 6 figures

  14. Asymptotic Behaviour and Extinction of Delay Lotka-Volterra Model with Jump-Diffusion

    OpenAIRE

    Dan Li; Jing’an Cui; Guohua Song

    2014-01-01

    This paper studies the effect of jump-diffusion random environmental perturbations on the asymptotic behaviour and extinction of Lotka-Volterra population dynamics with delays. The contributions of this paper lie in the following: (a) to consider delay stochastic differential equation with jumps, we introduce a proper initial data space, in which the initial data may be discontinuous function with downward jumps; (b) we show that the delay stochastic differential equation with jumps associate...

  15. Knee Muscular Control During Jump Landing in Multidirections

    OpenAIRE

    Sinsurin, Komsak; Vachalathiti, Roongtiwa; Jalayondeja, Wattana; Limroongreungrat, Weerawat

    2016-01-01

    Background Jump landing is a complex movement in sports. While competing and practicing, athletes frequently perform multi-planar jump landing. Anticipatory muscle activity could influence the amount of knee flexion and prepare the knee for dynamic weight bearing such as landing tasks. Objectives The aim of the present study was to examine knee muscle function and knee flexion excursion as athletes naturally performed multi-direct...

  16. The influence of crystal anisotropy on the critical state stability and flux jump dynamics of a single crystal of La1.85Sr0.15CuO4

    International Nuclear Information System (INIS)

    Nabiałek, A; Wiśniewski, A; Chabanenko, V V; Vasiliev, S V; Tsvetkov, T V; Pérez-Rodríguez, F

    2012-01-01

    We studied the critical state stability of a large cubic sample of single-crystalline La 1.85 Sr 0.15 CuO 4 for different sample orientations with respect to the external magnetic field as well as the dynamics of the flux jumps. It is shown that thermomagnetic avalanches develop under dynamic conditions, which are characterized by the magnetic diffusivity being significantly lower than the thermal case. In this case, the critical state stability depends strongly on the cooling conditions. We compared predictions from the isothermal model and from the model for a weakly cooled sample with experimental results. In both models, the field of the first flux jump decreases with increase of the sweep rate of the external magnetic field. We also investigated the influence of the external magnetic field on the dynamics of the following stages of the thermomagnetic avalanche. It is shown that the dynamics of the flux jumps is correlated with the magnetic diffusivity, which is proportional to the flux flow resistivity. (paper)

  17. ANKLE TAPING DOES NOT IMPAIR PERFORMANCE IN JUMP OR BALANCE TESTS

    Directory of Open Access Journals (Sweden)

    Javier Abián-Vicén

    2008-09-01

    Full Text Available This study aimed to investigate the influence of prophylactic ankle taping on two balance tests (static and dynamic balance and one jump test, in the push off and the landing phase. Fifteen active young subjects (age: 21.0 ± 4.4 years without previous ankle injuries volunteered for the study. Each participant performed three tests in two different situations: with taping and without taping. The tests were a counter movement jump, static balance, and a dynamic posturography test. The tests and conditions were randomly performed. The path of the center of pressures was measured in the balance tests, and the vertical ground reaction forces were recorded during the push-off and landing phases of the counter movement jump. Ankle taping had no influence on balance performance or in the push off phase of the jump. However, the second peak vertical force value during the landing phase of the jump was 12% greater with ankle taping (0.66 BW, 95% CI -0.64 to 1.96. The use of prophylactic ankle taping had no influence on the balance or jump performance of healthy young subjects. In contrast, the taped ankle increased the second peak vertical force value, which could be related to a greater risk of injury produced by the accumulation of repeated impacts in sports where jumps are frequently performed

  18. Jump and pull-in dynamics of an electrically actuated bistable MEMS device

    KAUST Repository

    Ruzziconi, Laura

    2014-09-01

    This study analyzes a theoretical bistable MEMS device, which exhibits a considerable versatility of behavior. After exploring the coexistence of attractors, we focus on each rest position, and investigate the final outcome, when the electrodynamic voltage is suddenly applied. Our aim is to describe the parameter range where each attractor may practically be observed under realistic conditions, when an electric load is suddenly applied. Since disturbances are inevitably encountered in experiments and practice, a dynamical integrity analysis is performed in order to take them into account. We build the integrity charts, which examine the practical vulnerability of each attractor. A small integrity enhances the sensitivity of the system to disturbances, leading in practice either to jump or to dynamic pull-in. Accordingly, the parameter range where the device, subjected to a suddenly applied load, can operate in safe conditions with a certain attractor is smaller, and sometimes considerably smaller, than in the theoretical predictions. While we refer to a particular case-study, the approach is very general.

  19. Scaling of interfacial jump conditions; Escalamiento de condiciones de salto interfacial

    Energy Technology Data Exchange (ETDEWEB)

    Quezada G, S.; Vazquez R, A.; Espinosa P, G., E-mail: sequga@gmail.com [Universidad Autonoma Metropolitana, Unidad Iztapalapa, Area de Ingenieria en Recursos Energeticos, Apdo. Postal 55-535, 09340 Ciudad de Mexico (Mexico)

    2015-09-15

    To model the behavior of a nuclear reactor accurately is needed to have balance models that take into account the different phenomena occurring in the reactor. These balances have to be coupled together through boundary conditions. The boundary conditions have been studied and different treatments have been given to the interface. In this paper is a brief description of some of the interfacial jump conditions that have been proposed in recent years. Also, the scaling of an interfacial jump condition is proposed, for coupling the different materials that are in contact within a nuclear reactor. (Author)

  20. Ankle taping does not impair performance in jump or balance tests.

    Science.gov (United States)

    Abián-Vicén, Javier; Alegre, Luis M; Fernández-Rodríguez, J Manuel; Lara, Amador J; Meana, Marta; Aguado, Xavier

    2008-01-01

    This study aimed to investigate the influence of prophylactic ankle taping on two balance tests (static and dynamic balance) and one jump test, in the push off and the landing phase. Fifteen active young subjects (age: 21.0 ± 4.4 years) without previous ankle injuries volunteered for the study. Each participant performed three tests in two different situations: with taping and without taping. The tests were a counter movement jump, static balance, and a dynamic posturography test. The tests and conditions were randomly performed. The path of the center of pressures was measured in the balance tests, and the vertical ground reaction forces were recorded during the push-off and landing phases of the counter movement jump. Ankle taping had no influence on balance performance or in the push off phase of the jump. However, the second peak vertical force value during the landing phase of the jump was 12% greater with ankle taping (0.66 BW, 95% CI -0.64 to 1.96). The use of prophylactic ankle taping had no influence on the balance or jump performance of healthy young subjects. In contrast, the taped ankle increased the second peak vertical force value, which could be related to a greater risk of injury produced by the accumulation of repeated impacts in sports where jumps are frequently performed. Key pointsAnkle taping has no influence on balance performance.Ankle taping does not impair performance during the push-off phase of the jump.Ankle taping could increase the risk of injury during landings by increasing peak forces.

  1. Jump dynamics with structural breaks for crude oil prices

    International Nuclear Information System (INIS)

    Lee, Yen-Hsien; Hu, Hsu-Ning; Chiou, Jer-Shiou

    2010-01-01

    This study investigates the joint phenomena of permanent and transitory components in conditional variance and jump intensity along with verification of structural breaks for crude oil prices. We adopt a Component-ARJI model with structural break analysis, utilizing daily data on West Texas Intermediate crude oil spot and futures contracts. The analytical results verify the existence of permanent and transitory components in conditional variance, with the permanent component of conditional variance increasing with the occurrence of a sudden major event (such as the Iraqi Invasion of Kuwait, Operation Desert Storm and the war between the US and Iraq), and a relatively greater increase in the transitory component over the same period. Notably, jump intensity fluctuates with an increase in the transitory component of conditional variance in response to abnormal events. It is the transitory component which serves as the primary influential factor for jumps in returns; therefore, speculators are willing to take large risks, particularly with respect to anticipating future price movements, or gambling, in the hopes of rapidly making substantial gains; thus, speculators prefer the temporary volatility component and engage in trade activities. However, investors prefer the permanent volatility component, because they may well be better off relocating their assets into more stable portfolios to outperform the market portfolio over the long run. (author)

  2. Jump dynamics with structural breaks for crude oil prices

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yen-Hsien [Department of Finance, Chung Yuan Christian University (China); Hu, Hsu-Ning [Department of Money, Banking and Finance, TamKang University (China); Chiou, Jer-Shiou [Department of Finance and Banking, Shih Chien University, 70 Ta-Chih Street, Taipei 104 (China)

    2010-03-15

    This study investigates the joint phenomena of permanent and transitory components in conditional variance and jump intensity along with verification of structural breaks for crude oil prices. We adopt a Component-ARJI model with structural break analysis, utilizing daily data on West Texas Intermediate crude oil spot and futures contracts. The analytical results verify the existence of permanent and transitory components in conditional variance, with the permanent component of conditional variance increasing with the occurrence of a sudden major event (such as the Iraqi Invasion of Kuwait, Operation Desert Storm and the war between the US and Iraq), and a relatively greater increase in the transitory component over the same period. Notably, jump intensity fluctuates with an increase in the transitory component of conditional variance in response to abnormal events. It is the transitory component which serves as the primary influential factor for jumps in returns; therefore, speculators are willing to take large risks, particularly with respect to anticipating future price movements, or gambling, in the hopes of rapidly making substantial gains; thus, speculators prefer the temporary volatility component and engage in trade activities. However, investors prefer the permanent volatility component, because they may well be better off relocating their assets into more stable portfolios to outperform the market portfolio over the long run. (author)

  3. Sensitivity of vertical jumping performance to changes in muscle stimulation onset times: a simulation study

    NARCIS (Netherlands)

    Bobbert, M.F.; van Zandwijk, J.P.

    1999-01-01

    The effect of muscle stimulation dynamics on the sensitivity of jumping achievement to variations in timing of muscle stimulation onsets was investigated. Vertical squat jumps were simulated using a forward dynamic model of the human musculoskeletal system. The model calculates the motion of body

  4. Stochastic stability of mechanical systems under renewal jump process parametric excitation

    DEFF Research Database (Denmark)

    Iwankiewicz, R.; Nielsen, Søren R.K.; Larsen, Jesper Winther

    2005-01-01

    A dynamic system under parametric excitation in the form of a non-Erlang renewal jump process is considered. The excitation is a random train of nonoverlapping rectangular pulses with equal, deterministic heights. The time intervals between two consecutive jumps up (or down), are the sum of two...

  5. Dynamic study of adsorbers by a new gravimetric version of the Large Temperature Jump method

    International Nuclear Information System (INIS)

    Sapienza, Alessio; Santamaria, Salvatore; Frazzica, Andrea; Freni, Angelo; Aristov, Yuri I.

    2014-01-01

    Highlights: • We have carried out a dynamic study of adsorbers. • Activity performed by new gravimetric version of the Large Temperature Jump method. • The kinetics measurements have been carried out under real operating conditions. • Results can support the design of adsorbers for adsorption cooling systems. - Abstract: This paper presents a new experimental setup devoted to measure the ad-/desorption kinetics of an Ad-HEX (adsorbent + heat exchanger) under typical boundary conditions of an Adsorption Heat Transformer (AHT) as well as the results of the first test campaign carried out. The experimental apparatus can be considered as a gravimetric version of the known Large Temperature Jump method. In fact, the dynamic evolution of the uptake during the isobaric ad-/desorption stages is directly measured by a weighing system suitable to work in the range of 5–600 g of sample mass (adsorbent + HEX) with the accuracy ±0.1 g and the time response shorter than 0.1 s The experimental campaign was conducted on an Ad-HEX composed of granules of a commercial SAPO-34 adsorbent placed on a flat type aluminum HEX, under operating conditions reproducing two different thermodynamic cycles (T h = 90 °C, T e = 10 °C, T c = 30 and 35 °C), typical for adsorption air conditioning. The influence of the grain size (ranging from 0.350 to 2.5 mm) on the adsorption dynamics both in monolayer and multilayer configurations at variable and constant “heat transfer surface/adsorbent mass” ratios (S/m) was studied. The results showed that, for the Ad-HEX configurations tested, the adsorption dynamics can be properly described by a modified Linear Driving Force approach by the use of a single temperature-invariant characteristic time τ. The invariance of the specific cooling power was revealed when the S/m ratio was kept constant (S/m = 1.23 m 2 /kg). This ratio is found to be a useful parameter for both assessment of the dynamic perfection and optimization of various Ad

  6. Gender variability in electromyographic activity, in vivo behaviour of the human gastrocnemius and mechanical capacity during the take-off phase of a countermovement jump.

    Science.gov (United States)

    Rubio-Arias, Jacobo Ángel; Ramos-Campo, Domingo Jesús; Peña Amaro, José; Esteban, Paula; Mendizábal, Susana; Jiménez, José Fernando

    2017-11-01

    The purpose of this study was to analyse gender differences in neuromuscular behaviour of the gastrocnemius and vastus lateralis during the take-off phase of a countermovement jump (CMJ), using direct measures (ground reaction forces, muscle activity and dynamic ultrasound). Sixty-four young adults (aged 18-25 years) participated voluntarily in this study, 35 men and 29 women. The firing of the trigger allowed obtainment of data collection vertical ground reaction forces (GRF), surface electromyography activity (sEMG) and dynamic ultrasound gastrocnemius of both legs. Statistically significant gender differences were observed in the jump performance, which appear to be based on differences in muscle architecture and the electrical activation of the gastrocnemius muscles and vastus lateralis. So while men developed greater peak power, velocity take-offs and jump heights, jump kinetics compared to women, women also required a higher electrical activity to develop lower power values. Additionally, the men had higher values pennation angles and muscle thickness than women. Men show higher performance of the jump test than women, due to significant statistical differences in the values of muscle architecture (pennation angle and thickness muscle), lower Neural Efficiency Index and a higher amount of sEMG activity per second during the take-off phase of a CMJ. © 2016 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.

  7. [Effects of Reactive Jump Training in Handball Players Regarding Jump Height and Power Development in the Triceps Surae Muscle].

    Science.gov (United States)

    Rensing, N; Westermann, A; Möller, D; von Piekartz, H

    2015-12-01

    Studies have shown changes in the technical and physical demands in modern handball. The game has increased considerably in speed, power and dynamics. Jump training has, therefore, become ever more important in the training of the athletes. These developments contribute to the fact that handball is now one of the most injury-prone types of sport, with the lower extremities being most frequently affected. Reactive jump training is not only used in training by now, but also increasingly in injury prevention. The aim of this study was to investigate the effectiveness of reactive jump training with handball players. 21 regional league handball players were randomly divided into an intervention group (n = 12) and a control group (n = 9). The intervention group completed a six-week reactive jump training programme while the control group went through a non-specific training programme. Jump height (squat and counter movement jump), isokinetic and isometric maximum power as well as muscle activity served as measuring parameters. A comparison of the intervention and control groups revealed that the reactive jump training led to significant improvements in jump height. The isometric and isokinetic maximum power measurements and the electromyographic activities of the triceps surae muscle demonstrated an improvement in the values within the intervention group. However, this improvement was not significant compared with the control group. Likewise both jumps correlated with the muscle activity of the soleus muscle as shown by electromyography. A moderate correlation was noticed between the isokinetic maximum power measurement and the electromyographic activity of the soleus and gastrocnemius medialis muscles. Furthermore, the correlations of the isometric and isokinetic maximum power meas-urements resulted in a strong correlation coefficient. This study revealed a significant increase in jump height after reactive jump training. There was no significant difference in

  8. EFFECT OF DIFFERENT STRETCHING PROTOCOLS ON VERTICAL JUMP PERFORMANCE

    Directory of Open Access Journals (Sweden)

    Emre Serin

    2018-04-01

    Full Text Available This study aimed to examine the effect of different stretching exercises on vertical jump performance. A total of 14 national male athletes sporting in the elite level took part in the study. The age average of the participants was 20.25±1.03 year, the average height was 1.80±.08 m, the average body weight was 77.14±18.91 kg, average of sporting age was 9.87±3.31 year and the average number of participation in international games was 10.0±3.31. As stretching protocol: Method 1 (5 minutes of jogging and 2 minutes of active rest followed by Method 2 (static stretching for 4 different muscle groups 3 repetitions for 15 seconds of static stretching, rest for 10 seconds between groups and then consecutively, Method 3 (Dynamic stretching exercises with 3 repetitions for 15 seconds and 10 seconds rest between different muscle groups were applied in the study. The vertical jump performance before and after different stretching exercises of the participants was determined by means of the vertical jump test using the smart speed lite system. Before and after the training of all athletes, HR was recorded with a heart rate monitor (RS 800, Polar Vantage NV, Polar Electro Oy, Finland with 5 seconds intervals. Before the study, the chest band of the heartbeat monitor was placed on the chest of the athlete and the HR was recorded from the monitor. SPSS 15.0 statistical package program was used for evaluation and calculation of the data. In this study in addition to descriptive statistics (mean and standard deviation paired samples t-test was used to determine the difference between the vertical jump performance of the participants before and after different stretching exercises. As a result, this study showed that; applying the dynamic and static stretching exercises consecutively affected the vertical jump performance 4.5 cm positively (p<.05. It is suggested that different dynamic and static stretching exercises should be included in the vertical jump.

  9. Quantum jumps are more quantum than quantum diffusion

    International Nuclear Information System (INIS)

    Daryanoosh, Shakib; M Wiseman, Howard

    2014-01-01

    It was recently argued (Wiseman and Gambetta 2012 Phys. Rev. Lett. 108 220402) that the stochastic dynamics (jumps or diffusion) of an open quantum system are not inherent to the system, but rather depend on the existence and nature of a distant detector. The proposed experimental tests involved homodyne detection, giving rise to quantum diffusion, and required efficiencies η of well over 50%. Here we prove that this requirement (η>0.5) is universal for diffusive-type detection, even if the system is coupled to multiple baths. However, this no-go theorem does not apply to quantum jumps, and we propose a test involving a qubit with jump-type detectors, with a threshold efficiency of only 37%. That is, quantum jumps are ‘more quantum’, and open the way to practical experimental tests. Our scheme involves a novel sort of adaptive monitoring scheme on a system coupled to two baths. (paper)

  10. pH-jump induced α-helix folding of poly-L-glutamic acid

    International Nuclear Information System (INIS)

    Donten, Mateusz L.; Hamm, Peter

    2013-01-01

    Highlights: ► pH-jump as truly biomimetic tool to initiate non-equilibrium dynamics of biomolecules. ► Design criteria to widen the applicability of pH-jumps are developed. ► Folding of poly-L-Glu in dependence of starting pH, pH jump size and helix length. ► Length dependence provides strong evidence for a nucleation–propagation scenario. - Abstract: pH jumps are a truly biomimetic technique to initiate non-equilibrium dynamics of biomolecules. In this work, the pH jump induced α-helix folding of poly-L-glutamic acid is investigated upon proton release from o-nitrobenzaldehyde. The aim of this work is twofold: On the one hand, design criteria of pH jump experiments are discussed, on the other hand, the folding mechanism of poly-L-glutamic acid is clarified by probing the IR response of the amide I band. Its folding kinetics is studied in dependence of the starting pD, the size of the pD jump and the length of the helix. While no dependence on the first two parameters could be detected, the folding time varies from 0.6 μs to 1.8 μs for helix lengths of 20 residue to 440 residue, respectively. It converges to a long-length limit at about 50 residue, a result which is attributed to a nucleation–propagation mechanism

  11. Rate Theory for Correlated Processes: Double Jumps in Adatom Diffusion

    DEFF Research Database (Denmark)

    Jacobsen, J.; Jacobsen, Karsten Wedel; Sethna, J.

    1997-01-01

    We study the rate of activated motion over multiple barriers, in particular the correlated double jump of an adatom diffusing on a missing-row reconstructed platinum (110) surface. We develop a transition path theory, showing that the activation energy is given by the minimum-energy trajectory...... which succeeds in the double jump. We explicitly calculate this trajectory within an effective-medium molecular dynamics simulation. A cusp in the acceptance region leads to a root T prefactor for the activated rate of double jumps. Theory and numerical results agree....

  12. Effects of an 8-Week Body-Weight Neuromuscular Training on Dynamic Balance and Vertical Jump Performances in Elite Junior Skiing Athletes: A Randomized Controlled Trial.

    Science.gov (United States)

    Vitale, Jacopo A; La Torre, Antonio; Banfi, Giuseppe; Bonato, Matteo

    2018-04-01

    Vitale, JA, La Torre, A, Banfi, G, and Bonato, M. Effects of an 8-week body-weight neuromuscular training on dynamic balance and vertical jump performances in elite junior skiing athletes: a randomized controlled trial. J Strength Cond Res 32(4): 911-920, 2018-The aim of the present randomized controlled trial was to evaluate the effects of an 8-week neuromuscular training program focused on core stability, plyometric, and body-weight strengthening exercises on dynamic postural control and vertical jump performance in elite junior skiers. Twenty-four Italian elite junior male skiers were recruited and randomized to either an experimental group (EG), performing neuromuscular warm-up exercises, (EG; n = 12; age 18 ± 1 years; body mass 66 ± 21 kg; height 1.70 ± 0.1 m) or a control group (CG) involved in a standard warm-up (CG; n = 12; age 18 ± 1 years; body mass 62 ± 14 kg; height 1.73 ± 0.1 m). lower quarter Y-Balance Test (YBT), countermovement jump (CMJ), and drop jump (DJ) at baseline (PRE) and at the end (POST) of the experimental procedures were performed. No significant differences between EG and CG were observed at baseline. Results showed that EG achieved positive effects from PRE to POST measures in the anterior, posteromedial, posterolateral directions, and composite score of YBT for both lower limbs, whereas no significant differences were detected for CG. Furthermore, 2-way analysis of variance with Bonferroni's multiple comparisons test did not reveal any significant differences in CMJ and DJ for both EG and CG. The inclusion of an 8-week neuromuscular warm-up program led to positive effects in dynamic balance ability but not in vertical jump performance in elite junior skiers. Neuromuscular training may be an effective intervention to specifically increase lower limb joint awareness and postural control.

  13. Ankle Taping Does Not Impair Performance in Jump or Balance Tests

    OpenAIRE

    Abián-Vicén, Javier; Alegre, Luis M.; Fernández-Rodríguez, J. Manuel; Lara, Amador J.; Meana, Marta; Aguado, Xavier

    2008-01-01

    This study aimed to investigate the influence of prophylactic ankle taping on two balance tests (static and dynamic balance) and one jump test, in the push off and the landing phase. Fifteen active young subjects (age: 21.0 ± 4.4 years) without previous ankle injuries volunteered for the study. Each participant performed three tests in two different situations: with taping and without taping. The tests were a counter movement jump, static balance, and a dynamic posturography test. The tests a...

  14. Effects of short-term two weeks low intensity plyometrics combined with dynamic stretching training in improving vertical jump height and agility on trained basketball players.

    Science.gov (United States)

    Ramachandran, Selvam; Pradhan, Binita

    2014-01-01

    Sport specific training in basketball players should focus on vertical jump height and agility in consistent with demands of the sport. Since plyometrics training improves vertical jump height and agility, it can be useful training strategy to improve the performance of basketball players. A convenience sample of thirty professional basketball players were recruited. Following pre-intervention assessment, interventions using plyometrics training and dynamic stretching protocol was administered on the basketball players. The outcome measures were assessed before the intervention and at the end of first and second week. Statistically significant improvements in vertical jump height (31.68 ± 11.64 to 37.57 ± 16.74; P basketball players.

  15. Stochastic inequalities and applications to dynamics analysis of a novel SIVS epidemic model with jumps

    Directory of Open Access Journals (Sweden)

    Xiaona Leng

    2017-06-01

    Full Text Available Abstract This paper proposes a new nonlinear stochastic SIVS epidemic model with double epidemic hypothesis and Lévy jumps. The main purpose of this paper is to investigate the threshold dynamics of the stochastic SIVS epidemic model. By using the technique of a series of stochastic inequalities, we obtain sufficient conditions for the persistence in mean and extinction of the stochastic system and the threshold which governs the extinction and the spread of the epidemic diseases. Finally, this paper describes the results of numerical simulations investigating the dynamical effects of stochastic disturbance. Our results significantly improve and generalize the corresponding results in recent literatures. The developed theoretical methods and stochastic inequalities technique can be used to investigate the high-dimensional nonlinear stochastic differential systems.

  16. Drop Jumping as a Training Method for Jumping Ability

    NARCIS (Netherlands)

    Bobbert, Maarten F.

    1990-01-01

    Vertical jumping ability is of importance for good performance in sports such as basketball and volleyball. Coaches are in need of exercises that consume only little time and still help to improve their players’ jumping ability, without involving a high risk of injury. Drop jumping is assumed to

  17. Dynamic nuclear spin polarization

    Energy Technology Data Exchange (ETDEWEB)

    Stuhrmann, H B [GKSS-Forschungszentrum Geesthacht GmbH (Germany)

    1996-11-01

    Polarized neutron scattering from dynamic polarized targets has been applied to various hydrogenous materials at different laboratories. In situ structures of macromolecular components have been determined by nuclear spin contrast variation with an unprecedented precision. The experiments of selective nuclear spin depolarisation not only opened a new dimension to structural studies but also revealed phenomena related to propagation of nuclear spin polarization and the interplay of nuclear polarisation with the electronic spin system. The observation of electron spin label dependent nuclear spin polarisation domains by NMR and polarized neutron scattering opens a way to generalize the method of nuclear spin contrast variation and most importantly it avoids precontrasting by specific deuteration. It also likely might tell us more about the mechanism of dynamic nuclear spin polarisation. (author) 4 figs., refs.

  18. Simulation-Based Design for Wearable Robotic Systems: An Optimization Framework for Enhancing a Standing Long Jump.

    Science.gov (United States)

    Ong, Carmichael F; Hicks, Jennifer L; Delp, Scott L

    2016-05-01

    Technologies that augment human performance are the focus of intensive research and development, driven by advances in wearable robotic systems. Success has been limited by the challenge of understanding human-robot interaction. To address this challenge, we developed an optimization framework to synthesize a realistic human standing long jump and used the framework to explore how simulated wearable robotic devices might enhance jump performance. A planar, five-segment, seven-degree-of-freedom model with physiological torque actuators, which have variable torque capacity depending on joint position and velocity, was used to represent human musculoskeletal dynamics. An active augmentation device was modeled as a torque actuator that could apply a single pulse of up to 100 Nm of extension torque. A passive design was modeled as rotational springs about each lower limb joint. Dynamic optimization searched for physiological and device actuation patterns to maximize jump distance. Optimization of the nominal case yielded a 2.27 m jump that captured salient kinematic and kinetic features of human jumps. When the active device was added to the ankle, knee, or hip, jump distance increased to between 2.49 and 2.52 m. Active augmentation of all three joints increased the jump distance to 3.10 m. The passive design increased jump distance to 3.32 m by adding torques of 135, 365, and 297 Nm to the ankle, knee, and hip, respectively. Dynamic optimization can be used to simulate a standing long jump and investigate human-robot interaction. Simulation can aid in the design of performance-enhancing technologies.

  19. Mesopause Jumps: Observations and Explanation

    Science.gov (United States)

    Luebken, F. J.; Becker, E.; Höffner, J.; Viehl, T. P.; Latteck, R.

    2017-12-01

    Recent high resolution temperature measurements by resonance lidar at Davis (69°S) occasionally showed a sudden mesopause altitude increase by 5km and an associated mesopause temperature decrease by 10K. We present further observations which are closely related to this `mesopause jump', namely the increase of mean height of polar mesospheric summer echoes (PMSE) observed by a VHF radar, very strong westward winds in the upper mesosphere measured by an MF radar, and relatively large eastward winds in the stratosphere taken from reanalysis. We compare to similar observations in the Northern Hemisphere, namely at ALOMAR (69°N) where such mesopause jumps have never been observed. We present a detailed explanation of mesopause jumps. They occur only when stratospheric winds are moderately eastward and mesospheric winds are very large (westward). Under these conditions, gravity waves with comparatively large eastward phase speeds can pass the stratosphere and propagate to the lower thermosphere because their vertical wavelengths in the mesosphere are rather large which implies reduced dynamical stability. When finally breaking in the lower thermosphere, these waves drive an enhanced residual circulation that causes a cold and high-altitude mesopause. The conditions for a mesopause jump occur only in the Southern Hemisphere (SH) and are associated with the late breakdown of the polar vortex.Mesopause jumps are primarily, but not only, observed prior and close to solstice. We also show that during the onset of PMSE in the SH, stratospheric zonal winds are still eastward (up to 30m/s), and that the onset is not closely related to the transition of the stratospheric circulation.

  20. Jump locations of jump-diffusion processes with state-dependent rates

    International Nuclear Information System (INIS)

    Miles, Christopher E; Keener, James P

    2017-01-01

    We propose a general framework for studying statistics of jump-diffusion systems driven by both Brownian noise (diffusion) and a jump process with state-dependent intensity. Of particular natural interest in many physical systems are the jump locations: the system evaluated at the jump times. As an example, this could be the voltage at which a neuron fires, or the so-called ‘threshold voltage’. However, the state-dependence of the jump rate provides direct coupling between the diffusion and jump components, making it difficult to disentangle the two to study individually. In this work, we provide an iterative map formulation of the sequence of distributions of jump locations. The distributions computed by this map can be used to elucidate other interesting quantities about the process, including statistics of the interjump times. Ultimately, the limit of the map reveals that knowledge of the stationary distribution of the full process is sufficient to recover (but not necessarily equal to) the distribution of jump locations. We propose two biophysical examples to illustrate the use of this framework to provide insight about a system. We find that a sharp threshold voltage emerges robustly in a simple stochastic integrate-and-fire neuronal model. The interplay between the two sources of noise is also investigated in a stepping model of molecular motor in intracellular transport pulling a diffusive cargo. (paper)

  1. A Correction Equation for Jump Height Measured Using the Just Jump System.

    Science.gov (United States)

    McMahon, John J; Jones, Paul A; Comfort, Paul

    2016-05-01

    To determine the concurrent validity and reliability of the popular Just Jump system (JJS) for determining jump height and, if necessary, provide a correction equation for future reference. Eighteen male college athletes performed 3 bilateral countermovement jumps (CMJs) on 2 JJSs (alternative method) that were placed on top of a force platform (criterion method). Two JJSs were used to establish consistency between systems. Jump height was calculated from flight time obtained from the JJS and force platform. Intraclass correlation coefficients (ICCs) demonstrated excellent within-session reliability of the CMJ height measurement derived from both the JJS (ICC = .96, P jump height (0.46 ± 0.09 m vs 0.33 ± 0.08 m) than the force platform (P jump height = (0.8747 × alternative jump height) - 0.0666. The JJS provides a reliable but overestimated measure of jump height. It is suggested, therefore, that practitioners who use the JJS as part of future work apply the correction equation presented in this study to resultant jump-height values.

  2. Risk, Jumps, and Diversification

    DEFF Research Database (Denmark)

    Bollerslev, Tim; Law, Tzuo Hann; Tauchen, George

    We test for price discontinuities, or jumps, in a panel of high-frequency intraday returns for forty large-cap stocks and an equiweighted index from these same stocks. Jumps are naturally classified into two types: common and idiosyncratic. Common jumps affect all stocks, albeit to varying degrees......, while idiosyncratic jumps are stock-specific. Despite the fact that each of the stocks has a of about unity with respect to the index, common jumps are virtually never detected in the individual stocks. This is truly puzzling, as an index can jump only if one or more of its components jump. To resolve...... this puzzle, we propose a new test for cojumps. Using this new test we find strong evidence for many modest-sized common jumps that simply pass through the standard jump detection statistic, while they appear highly significant in the cross section based on the new cojump identification scheme. Our results...

  3. Non-Markovian nuclear dynamics

    International Nuclear Information System (INIS)

    Kolomietz, V.M.

    2011-01-01

    A prove of equations of motion for the nuclear shape variables which establish a direct connection of the memory effects with the dynamic distortion of the Fermi surface is suggested. The equations of motion for the nuclear Fermi liquid drop are derived from the collisional kinetic equation. In general, the corresponding equations are non-Markovian. The memory effects appear due to the Fermi surface distortions and depend on the relaxation time. The main purpose of the present work is to apply the non-Markovian dynamics to the description of the nuclear giant multipole resonances (GMR) and the large amplitude motion. We take also into consideration the random forces and concentrate on the formation of both the conservative and the friction forces to make more clear the memory effect on the nuclear dynamics. In this respect, the given approach represents an extension of the traditional liquid drop model (LDM) to the case of the nuclear Fermi liquid drop. In practical application, we pay close attention to the description of the descent of the nucleus from the fission barrier to the scission point.

  4. Kinematics and Kinetics of Squats, Drop Jumps and Imitation Jumps of Ski Jumpers

    Science.gov (United States)

    Pauli, Carole A.; Keller, Melanie; Ammann, Fabian; Hübner, Klaus; Lindorfer, Julia; Taylor, William R.

    2016-01-01

    Abstract Pauli, CA, Keller, M, Ammann, F, Hübner, K, Lindorfer, J, Taylor, WR, and Lorenzetti, S. Kinematics and kinetics of squats, drop jumps and imitation jumps of ski jumpers. J Strength Cond Res 30(3): 643–652, 2016—Squats, drop jumps, and imitation jumps are commonly used training exercises in ski jumping to enhance maximum force, explosive force, and sport-specific skills. The purpose of this study was to evaluate the kinetics and kinematics of training exercises in ski jumping and to find objective parameters in training exercises that most correlate with the competition performance of ski jumpers. To this end, barbell squats, drop jumps, and imitation jumps were measured in a laboratory environment for 10 elite ski jumpers. Force and motion data were captured, and the influence of maximum vertical force, force difference, vertical take-off velocity, knee moments, knee joint power, and a knee valgus/varus index was evaluated and correlated with their season jump performance. The results indicate that, especially for the imitation jumps, a good correlation exists between the vertical take-off velocity and the personal jump performance on the hill (R = 0.718). Importantly, however, the more the athletes tended toward a valgus knee alignment during the measured movements, the worse their performance (R = 0.729 imitation jumps; R = 0.685 squats). Although an evaluation of the athletes' lower limb alignment during competitive jumping on the hill is still required, these preliminary data suggest that performance training should additionally concentrate on improving knee alignment to increase ski jumping performance. PMID:26418370

  5. Cluster dynamics transcending chemical dynamics toward nuclear fusion.

    Science.gov (United States)

    Heidenreich, Andreas; Jortner, Joshua; Last, Isidore

    2006-07-11

    Ultrafast cluster dynamics encompasses femtosecond nuclear dynamics, attosecond electron dynamics, and electron-nuclear dynamics in ultraintense laser fields (peak intensities 10(15)-10(20) W.cm(-2)). Extreme cluster multielectron ionization produces highly charged cluster ions, e.g., (C(4+)(D(+))(4))(n) and (D(+)I(22+))(n) at I(M) = 10(18) W.cm(-2), that undergo Coulomb explosion (CE) with the production of high-energy (5 keV to 1 MeV) ions, which can trigger nuclear reactions in an assembly of exploding clusters. The laser intensity and the cluster size dependence of the dynamics and energetics of CE of (D(2))(n), (HT)(n), (CD(4))(n), (DI)(n), (CD(3)I)(n), and (CH(3)I)(n) clusters were explored by electrostatic models and molecular dynamics simulations, quantifying energetic driving effects, and kinematic run-over effects. The optimization of table-top dd nuclear fusion driven by CE of deuterium containing heteroclusters is realized for light-heavy heteroclusters of the largest size, which allows for the prevalence of cluster vertical ionization at the highest intensity of the laser field. We demonstrate a 7-orders-of-magnitude enhancement of the yield of dd nuclear fusion driven by CE of light-heavy heteroclusters as compared with (D(2))(n) clusters of the same size. Prospective applications for the attainment of table-top nucleosynthesis reactions, e.g., (12)C(P,gamma)(13)N driven by CE of (CH(3)I)(n) clusters, were explored.

  6. Asymptotic Behaviour and Extinction of Delay Lotka-Volterra Model with Jump-Diffusion

    Directory of Open Access Journals (Sweden)

    Dan Li

    2014-01-01

    Full Text Available This paper studies the effect of jump-diffusion random environmental perturbations on the asymptotic behaviour and extinction of Lotka-Volterra population dynamics with delays. The contributions of this paper lie in the following: (a to consider delay stochastic differential equation with jumps, we introduce a proper initial data space, in which the initial data may be discontinuous function with downward jumps; (b we show that the delay stochastic differential equation with jumps associated with our model has a unique global positive solution and give sufficient conditions that ensure stochastically ultimate boundedness, moment average boundedness in time, and asymptotic polynomial growth of our model; (c the sufficient conditions for the extinction of the system are obtained, which generalized the former results and showed that the sufficiently large random jump magnitudes and intensity (average rate of jump events arrival may lead to extinction of the population.

  7. Why is countermovement jump height greater than squat jump height?

    NARCIS (Netherlands)

    Bobbert, Maarten F.; Gerritsen, Karin G M; Litjens, Maria C A; Van Soest, Arthur J.

    1996-01-01

    In the literature, it is well established that subjects are able to jump higher in a countermovement jump (CMJ) than in a squat jump (SJ). The purpose of this study was to estimate the relative contribution of the time available for force development and the storage and reutilization of elastic

  8. Kinematics and Kinetics of Squats, Drop Jumps and Imitation Jumps of Ski Jumpers.

    Science.gov (United States)

    Pauli, Carole A; Keller, Melanie; Ammann, Fabian; Hübner, Klaus; Lindorfer, Julia; Taylor, William R; Lorenzetti, Silvio

    2016-03-01

    Squats, drop jumps, and imitation jumps are commonly used training exercises in ski jumping to enhance maximum force, explosive force, and sport-specific skills. The purpose of this study was to evaluate the kinetics and kinematics of training exercises in ski jumping and to find objective parameters in training exercises that most correlate with the competition performance of ski jumpers. To this end, barbell squats, drop jumps, and imitation jumps were measured in a laboratory environment for 10 elite ski jumpers. Force and motion data were captured, and the influence of maximum vertical force, force difference, vertical take-off velocity, knee moments, knee joint power, and a knee valgus/varus index was evaluated and correlated with their season jump performance. The results indicate that, especially for the imitation jumps, a good correlation exists between the vertical take-off velocity and the personal jump performance on the hill (R = 0.718). Importantly, however, the more the athletes tended toward a valgus knee alignment during the measured movements, the worse their performance (R = 0.729 imitation jumps; R = 0.685 squats). Although an evaluation of the athletes' lower limb alignment during competitive jumping on the hill is still required, these preliminary data suggest that performance training should additionally concentrate on improving knee alignment to increase ski jumping performance.

  9. Biomechanics of stair walking and jumping.

    Science.gov (United States)

    Loy, D J; Voloshin, A S

    1991-01-01

    Physical activities such as stair walking and jumping result in increased dynamic loading on the human musculoskeletal system. Use of light weight, externally attached accelerometers allows for in-vivo monitoring of the shock waves invading the human musculoskeletal system during those activities. Shock waves were measured in four subjects performing stair walking up and down, jumping in place and jumping off a fixed elevation. The results obtained show that walking down a staircase induced shock waves with amplitude of 130% of that observed in walking up stairs and 250% of the shock waves experienced in level gait. The jumping test revealed levels of the shock waves nearly eight times higher than that in level walking. It was also shown that the shock waves invading the human musculoskeletal system may be generated not only by the heel strike, but also by the metatarsal strike. To moderate the risk of degenerative joint disorders four types of viscoelastic insoles were utilized to reduce the impact generated shock waves. The insoles investigated were able to reduce the amplitude of the shock wave by between 9% and 41% depending on the insole type and particular physical activity. The insoles were more effective in the reduction of the heel strike impacts than in the reduction of the metatarsal strike impacts. In all instances, the shock attenuation capacities of the insoles tested were greater in the jumping trials than in the stair walking studies. The insoles were ranked in three groups on the basis of their shock absorbing capacity.

  10. EFFICIENT QUANTITATIVE RISK ASSESSMENT OF JUMP PROCESSES: IMPLICATIONS FOR FOOD SAFETY

    OpenAIRE

    Nganje, William E.

    1999-01-01

    This paper develops a dynamic framework for efficient quantitative risk assessment from the simplest general risk, combining three parameters (contamination, exposure, and dose response) in a Kataoka safety-first model and a Poisson probability representing the uncertainty effect or jump processes associated with food safety. Analysis indicates that incorporating jump processes in food safety risk assessment provides more efficient cost/risk tradeoffs. Nevertheless, increased margin of safety...

  11. Collective nuclear dynamics. Abstracts

    International Nuclear Information System (INIS)

    Abrosimov, V.I.; Kolomietz, V.M.

    1994-01-01

    The fourth International school on nuclear physics was help on 29 Aug - 7 Sep, 1994 in Ukraine. The specialists discussed following subjects: liquid drop and the shell correction method; nuclear deformation energy and fission; nuclear structure at high spins, superdeformed states, structure of excited and exotic nuclei; nuclear fluid dynamics and large scale collective motion; order and chaos as they relate to the collective motion; quantum and interference phenomena in nuclear collisions; quasi-fission and multinucleon fragmentation effects; shell effects in non-nuclear systems; new nuclear facilities

  12. Collective nuclear dynamics. Proceedings

    International Nuclear Information System (INIS)

    Ivanyuk, F.A.

    1994-01-01

    The Fourth International school on nuclear physics was help on 29 Aug - 7 Sep, 1994 in Ukraine. The specialists discussed following subjects:liquid drop and the shell correction method; nuclear deformation energy and fission; nuclear structure at high spins, superdeformed states, structure of excited and exotic nuclei; nuclear fluid dynamics and large scale collective motion; order and chaos as they relate to the collective motion; quantum and interference phenomena in nuclear collisions; quasi-fission and multinucleon fragmentation effects; shell effects in non-nuclear systems; new nuclear facilities

  13. Collective nuclear dynamics. Proceedings.

    Energy Technology Data Exchange (ETDEWEB)

    Ivanyuk, F A [eds.

    1994-12-31

    The Fourth International school on nuclear physics was help on 29 Aug - 7 Sep, 1994 in Ukraine. The specialists discussed following subjects:liquid drop and the shell correction method; nuclear deformation energy and fission; nuclear structure at high spins, superdeformed states, structure of excited and exotic nuclei; nuclear fluid dynamics and large scale collective motion; order and chaos as they relate to the collective motion; quantum and interference phenomena in nuclear collisions; quasi-fission and multinucleon fragmentation effects; shell effects in non-nuclear systems; new nuclear facilities.

  14. Psychophysiological response in parachute jumps, the effect of experience and type of jump.

    Science.gov (United States)

    Clemente-Suárez, Vicente Javier; Robles-Pérez, José Juan; Fernández-Lucas, Jesús

    2017-10-01

    We aimed to analyse the effect of experience and type of parachute jump on the psychophysiological responses of jumpers. We analysed blood oxygen saturation, heart rate, blood glucose, lactate and creatinkinase, leg strength, isometric hand strength, cortical arousal, specific fine motor skills, self-confidence and cognition, and somatic and state anxiety, before and after four different parachute jumps: a sport parachute jump, a manual tactical parachute jump, tandem pilots, and tandem passengers. Independently of the parachute jump, the psychophysiological responses of experienced paratroopers were not affected by the jumps, except for an increase in anaerobic metabolism. Novice parachute jumpers presented a higher psychophysiological stress response than the experienced jumpers, together with a large anticipatory anxiety response before the jump; however, this decreased after the jump, although the high physiological activation was maintained. This information could be used by civil and military paratroopers' instructors to improve their training programmes. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. The effect of assisted jumping on vertical jump height in high-performance volleyball players.

    Science.gov (United States)

    Sheppard, Jeremy M; Dingley, Andrew A; Janssen, Ina; Spratford, Wayne; Chapman, Dale W; Newton, Robert U

    2011-01-01

    Assisted jumping may be useful in training higher concentric movement speed in jumping, thereby potentially increasing the jumping abilities of athletes. The purpose of this study was to evaluate the effects of assisted jump training on counter-movement vertical jump (CMVJ) and spike jump (SPJ) ability in a group of elite male volleyball players. Seven junior national team volleyball players (18.0±1.0 yrs, 200.4±6.7 cm, and 84.0±7.2 kg) participated in this within-subjects cross-over counter-balanced training study. Assisted training involved 3 sessions per week of CMVJ training with 10 kg of assistance, applied through use of a bungee system, whilst normal jump training involved equated volume of unassisted counter-movement vertical jumps. Training periods were 5 weeks duration, with a 3-week wash-out separating them. Prior to and at the conclusion of each training period jump testing for CMVJ and SPJ height was conducted. Assisted jump training resulted in gains of 2.7±0.7 cm (pSports Medicine Australia. All rights reserved.

  16. Jumping in Arithmetic

    NARCIS (Netherlands)

    Visser, Albert

    In this paper we study a new relation between sentences: the jump relation. The idea of the jump relation is based on an analysis of Feferman's Theorem that the inconsistency of a theory U is interpretable over U. The jump relation is based on a converse of Feferman's Theorem: if a sentence is

  17. Jumping in Arithmetic

    NARCIS (Netherlands)

    Visser, Albert

    2014-01-01

    In this paper we study a new relation between sentences: the jump relation. The idea of the jump relation is based on an analysis of Feferman's Theorem that the inconsistency of a theory U is interpretable over U. The jump relation is based on a converse of Feferman's Theorem: if a sentence is

  18. Jumping-droplet electronics hot-spot cooling

    Science.gov (United States)

    Oh, Junho; Birbarah, Patrick; Foulkes, Thomas; Yin, Sabrina L.; Rentauskas, Michelle; Neely, Jason; Pilawa-Podgurski, Robert C. N.; Miljkovic, Nenad

    2017-03-01

    Demand for enhanced cooling technologies within various commercial and consumer applications has increased in recent decades due to electronic devices becoming more energy dense. This study demonstrates jumping-droplet based electric-field-enhanced (EFE) condensation as a potential method to achieve active hot spot cooling in electronic devices. To test the viability of EFE condensation, we developed an experimental setup to remove heat via droplet evaporation from single and multiple high power gallium nitride (GaN) transistors acting as local hot spots (4.6 mm × 2.6 mm). An externally powered circuit was developed to direct jumping droplets from a copper oxide (CuO) nanostructured superhydrophobic surface to the transistor hot spots by applying electric fields between the condensing surface and the transistor. Heat transfer measurements were performed in ambient air (22-25 °C air temperature, 20%-45% relative humidity) to determine the effect of gap spacing (2-4 mm), electric field (50-250 V/cm) and applied heat flux (demonstrated to 13 W/cm2). EFE condensation was shown to enhance the heat transfer from the local hot spot by ≈200% compared to cooling without jumping and by 20% compared to non-EFE jumping. Dynamic switching of the electric field for a two-GaN system reveals the potential for active cooling of mobile hot spots. The opportunity for further cooling enhancement by the removal of non-condensable gases promises hot spot heat dissipation rates approaching 120 W/cm2. This work provides a framework for the development of active jumping droplet based vapor chambers and heat pipes capable of spatial and temporal thermal dissipation control.

  19. Jumping-droplet electronics hot-spot cooling

    International Nuclear Information System (INIS)

    Oh, Junho; Birbarah, Patrick; Foulkes, Thomas; Yin, Sabrina L.; Rentauskas, Michelle

    2017-01-01

    Demand for enhanced cooling technologies within various commercial and consumer applications has increased in recent decades due to electronic devices becoming more energy dense. This study demonstrates jumping-droplet based electric-field-enhanced (EFE) condensation as a potential method to achieve active hot spot cooling in electronic devices. To test the viability of EFE condensation, we developed an experimental setup to remove heat via droplet evaporation from single and multiple high power gallium nitride (GaN) transistors acting as local hot spots (4.6 mm x 2.6 mm). An externally powered circuit was developed to direct jumping droplets from a copper oxide (CuO) nanostructured superhydrophobic surface to the transistor hot spots by applying electric fields between the condensing surface and the transistor. Heat transfer measurements were performed in ambient air (22-25°C air temperature, 20-45% relative humidity) to determine the effect of gap spacing (2-4 mm), electric field (50-250 V/cm), and heat flux (demonstrated to 13 W/cm"2). EFE condensation was shown to enhance the heat transfer from the local hot spot by ≈ 200% compared to cooling without jumping and by 20% compared to non-EFE jumping. Dynamic switching of the electric field for a two-GaN system reveals the potential for active cooling of mobile hot spots. The opportunity for further cooling enhancement by the removal of non-condensable gases promises hot spot heat dissipation rates approaching 120 W/cm"2. Finally, this work provides a framework for the development of active jumping droplet based vapor chambers and heat pipes capable of spatial and temporal thermal dissipation control.

  20. Perfection of coordination with the help of jump exercises on trampoline

    Directory of Open Access Journals (Sweden)

    V.N. Boloban

    2016-12-01

    Full Text Available Purpose: to work out methodic of sportsmen’s coordination perfection with the help of jumps on trampoline. Material: in the research 259 1st and 2nd year students (age 17-19 years participated. The students were representatives of game and cyclic kinds of sports, sport gymnastic and martial arts. Among them there were 99 sportsmen with sport degrees. Results: we gave the definition of the term - coordination training. The students’ sensor-motor coordination was confidently improved by means of the worked out methodic realization. The methodic included program of jump exercises on trampoline. We achieved positive dynamic of static-kinetic and static-dynamic balance as well as increased the quality of mastering of exercises with complex coordination. Conclusions: the methodic of sportsmen’s coordination training with the help of jump exercises on trampoline was worked out, considering specificity of kinds of sports and sportsmen’s qualification. This methodic improves sensor-motor coordination and is the basis of technical training and technical fitness.

  1. The reliability of vertical jump tests between the Vertec and My Jump phone application.

    Science.gov (United States)

    Yingling, Vanessa R; Castro, Dimitri A; Duong, Justin T; Malpartida, Fiorella J; Usher, Justin R; O, Jenny

    2018-01-01

    The vertical jump is used to estimate sports performance capabilities and physical fitness in children, elderly, non-athletic and injured individuals. Different jump techniques and measurement tools are available to assess vertical jump height and peak power; however, their use is limited by access to laboratory settings, excessive cost and/or time constraints thus making these tools oftentimes unsuitable for field assessment. A popular field test uses the Vertec and the Sargent vertical jump with countermovement; however, new low cost, easy to use tools are becoming available, including the My Jump iOS mobile application (app). The purpose of this study was to assess the reliability of the My Jump relative to values obtained by the Vertec for the Sargent stand and reach vertical jump (VJ) test. One hundred and thirty-five healthy participants aged 18-39 years (94 males, 41 females) completed three maximal Sargent VJ with countermovement that were simultaneously measured using the Vertec and the My Jump . Jump heights were quantified for each jump and peak power was calculated using the Sayers equation. Four separate ICC estimates and their 95% confidence intervals were used to assess reliability. Two analyses (with jump height and calculated peak power as the dependent variables, respectively) were based on a single rater, consistency, two-way mixed-effects model, while two others (with jump height and calculated peak power as the dependent variables, respectively) were based on a single rater, absolute agreement, two-way mixed-effects model. Moderate to excellent reliability relative to the degree of consistency between the Vertec and My Jump values was found for jump height (ICC = 0.813; 95% CI [0.747-0.863]) and calculated peak power (ICC = 0.926; 95% CI [0.897-0.947]). However, poor to good reliability relative to absolute agreement for VJ height (ICC = 0.665; 95% CI [0.050-0.859]) and poor to excellent reliability relative to absolute agreement for peak power

  2. Usefulness of the jump-and-reach test in assessment of vertical jump performance.

    Science.gov (United States)

    Menzel, Hans-Joachim; Chagas, Mauro H; Szmuchrowski, Leszek A; Araujo, Silvia R; Campos, Carlos E; Giannetti, Marcus R

    2010-02-01

    The objective was to estimate the reliability and criterion-related validity of the Jump-and-Reach Test for the assessment of squat, countermovement, and drop jump performance of 32 male Brazilian professional volleyball players. Performance of squat, countermovement, and drop jumps with different dropping heights was assessed on the Jump-and-Reach Test and the measurement of flight time, then compared across different jump trials. The very high reliability coefficients of both assessment methods and the lower correlation coefficients between scores on the assessments indicate a very high consistency of each method but only moderate covariation, which means that they measure partly different items. As a consequence, the Jump-and-Reach Test has good ecological validity in situations when reaching height during the flight phase is critical for performance (e.g., basketball and volleyball) but only limited accuracy for the assessment of vertical impulse production with different jump techniques and conditions.

  3. Dynamics of human flight on skis: improvements in safety and fairness in ski jumping.

    Science.gov (United States)

    Müller, W; Platzer, D; Schmölzer, B

    1996-08-01

    This study of ski jumping includes three areas of research: Wind tunnel measurements with world class athletes in various flight positions, field measurements during the World Championships in Ski Flying 1994 in Planica (Slovenia) and a highly reliable mapping of ski jumping to a computable simulation model. The results explain the effects of equipment, flight style changes, the reason for the enhanced tumbling risk and high gust sensitivity observed. Consequences can be drawn for changes to the FIS regulations, the design of jumping hills and training methods. The internationally induced anorexia of the athletes could be prohibited by a new ski length regulation. Women jumpers could become a real competitive threat.

  4. Measurements of K shell absorption jump factors and jump ratios using EDXRF technique

    Science.gov (United States)

    Kacal, Mustafa Recep; Han, İbrahim; Akman, Ferdi

    2015-04-01

    In the present work, the K-shell absorption jump factors and jump ratios for 30 elements between Ti ( Z = 22) and Er ( Z = 68) were measured by energy dispersive X-ray fluorescence (EDXRF) technique. The jump factors and jump ratios for these elements were determined by measuring the K shell fluorescence parameters such as the Kα X-ray production cross-sections, K shell fluorescence yields, Kβ-to- Kα X-rays intensity ratios, total atomic absorption cross sections and mass attenuation coefficients. The measurements were performed using an Am-241 radioactive point source and a Si (Li) detector in direct excitation and transmission experimental geometry. The results for jump factors and jump ratios were compared with theoretically calculated and the ones available in the literature.

  5. Strength Determinants of Jump Height in the Jump Throw Movement in Women Handball Players.

    Science.gov (United States)

    McGhie, David; Østerås, Sindre; Ettema, Gertjan; Paulsen, Gøran; Sandbakk, Øyvind

    2018-06-08

    McGhie, D, Østerås, S, Ettema, G, Paulsen, G, and Sandbakk, Ø. Strength determinants of jump height in the jump throw movement in women handball players. J Strength Cond Res XX(X): 000-000, 2018-The purpose of the study was to improve the understanding of the strength demands of a handball-specific jump through examining the associations between jump height in a jump throw jump (JTJ) and measures of lower-body maximum strength and impulse in handball players. For comparison, whether the associations between jump height and strength differed between the JTJ and the customarily used countermovement jump (CMJ) was also examined. Twenty women handball players from a Norwegian top division club participated in the study. Jump height was measured in the JTJ and in unilateral and bilateral CMJ. Lower-body strength (maximum isometric force, one-repetition maximum [1RM], impulse at ∼60% and ∼35% 1RM) was measured in seated leg press. The associations between jump height and strength were assessed with correlation analyses and t-tests of dependent r's were performed to determine if correlations differed between jump tests. Only impulse at ∼35% 1RM correlated significantly with JTJ height (p jump height and strength were significantly weaker in the JTJ than in both CMJ tests for all strength measures (p = 0.001-0.044) except one. Maximum strength and impulse at ∼60% 1RM did not seem to sufficiently capture the capabilities associated with JTJ height, highlighting the importance of employing tests targeting performance-relevant neuromuscular characteristics when assessing jump-related strength in handball players. Further, CMJ height seemed to represent a wider range of strength capabilities and care should be taken when using it as a proxy for handball-specific movements.

  6. Electromagnetic Transient Response Analysis of DFIG under Cascading Grid Faults Considering Phase Angel Jumps

    DEFF Research Database (Denmark)

    Wang, Yun; Wu, Qiuwei

    2014-01-01

    This paper analysis the electromagnetic transient response characteristics of DFIG under symmetrical and asymmetrical cascading grid fault conditions considering phaseangel jump of grid. On deriving the dynamic equations of the DFIG with considering multiple constraints on balanced and unbalanced...... conditions, phase angel jumps, interval of cascading fault, electromagnetic transient characteristics, the principle of the DFIG response under cascading voltage fault can be extract. The influence of grid angel jump on the transient characteristic of DFIG is analyzed and electromagnetic response...

  7. Coordination in vertical jumping

    NARCIS (Netherlands)

    Bobbert, Maarten F.; van Ingen Schenau, Gerrit Jan

    1988-01-01

    The present study was designed to investigate for vertical jumping the relationships between muscle actions, movement pattern and jumping achievement. Ten skilled jumpers performed jumps with preparatory countermovement. Ground reaction forces and cinematographic data were recorded. In addition,

  8. Giant flux jumps through a thin superconducting Nb film in a vortex free region

    International Nuclear Information System (INIS)

    Tsindlekht, M.I.; Genkin, V.M.; Felner, I.; Zeides, F.; Katz, N.; Gazi, Š.; Chromik, Š.

    2016-01-01

    Highlights: Giant magnetic flux jumps into thin-walled cylinder were measured using peak up coil method in a swept magnetic field. Magnetic moment jumps were observed in magnetic fields lower and above Hc1. - Abstract: We measure the dynamics of magnetic field penetration into thin-walled superconducting niobium cylinders. It is shown that magnetic field penetrates through the wall of a cylinder in a series of giant jumps with amplitude 1 - 2 mT and duration of less than a microsecond in a wide range of magnetic fields, including the vortex free region. Surprisingly, the jumps take place when the total current in the wall, not the current density, exceeds a critical value. In addition, there are small jumps and/or smooth penetration, but their contribution reaches only ≃ 20 % of the total penetrating flux. The number of jumps decreases with increased temperature. Thermomagnetic instabilities cannot explain the experimental observations.

  9. Giant flux jumps through a thin superconducting Nb film in a vortex free region

    Energy Technology Data Exchange (ETDEWEB)

    Tsindlekht, M.I., E-mail: mtsindl@vms.huji.ac.il [The Racah Institute of Physics, The Hebrew University of Jerusalem, Jerusalem 91904 (Israel); Genkin, V.M.; Felner, I.; Zeides, F.; Katz, N. [The Racah Institute of Physics, The Hebrew University of Jerusalem, Jerusalem 91904 (Israel); Gazi, Š.; Chromik, Š. [The Institute of Electrical Engineering SAS, Dúbravská cesta 9, 84104 Bratislava (Slovakia)

    2016-10-15

    Highlights: Giant magnetic flux jumps into thin-walled cylinder were measured using peak up coil method in a swept magnetic field. Magnetic moment jumps were observed in magnetic fields lower and above Hc1. - Abstract: We measure the dynamics of magnetic field penetration into thin-walled superconducting niobium cylinders. It is shown that magnetic field penetrates through the wall of a cylinder in a series of giant jumps with amplitude 1 - 2 mT and duration of less than a microsecond in a wide range of magnetic fields, including the vortex free region. Surprisingly, the jumps take place when the total current in the wall, not the current density, exceeds a critical value. In addition, there are small jumps and/or smooth penetration, but their contribution reaches only ≃ 20 % of the total penetrating flux. The number of jumps decreases with increased temperature. Thermomagnetic instabilities cannot explain the experimental observations.

  10. Theoretical prediction of experimental jump and pull-in dynamics in a MEMS sensor

    KAUST Repository

    Ruzziconi, Laura; Lenci, Stefano; Ramini, Abdallah; Younis, Mohammad I.

    2014-01-01

    The present research study deals with an electrically actuated MEMS device. An experimental investigation is performed, via frequency sweeps in a neighbourhood of the first natural frequency. Resonant behavior is explored, with special attention devoted to jump and pull-in dynamics. A theoretical single degree-of-freedom spring-mass model is derived. Classical numerical simulations are observed to properly predict the main nonlinear features. Nevertheless, some discrepancies arise, which are particularly visible in the resonant branch. They mainly concern the practical range of existence of each attractor and the final outcome after its disappearance. These differences are likely due to disturbances, which are unavoidable in practice, but have not been included in the model. To take disturbances into account, in addition to the classical local investigations, we consider the global dynamics and explore the robustness of the obtained results by performing a dynamical integrity analysis. Our aim is that of developing an applicable confident estimate of the system response. Integrity profiles and integrity charts are built to detect the parameter range where reliability is practically strong and where it becomes weak. Integrity curves exactly follow the experimental data. They inform about the practical range of actuality. We discuss the combined use of integrity charts in the engineering design. Although we refer to a particular case-study, the approach is very general.

  11. Theoretical prediction of experimental jump and pull-in dynamics in a MEMS sensor

    KAUST Repository

    Ruzziconi, Laura

    2014-09-15

    The present research study deals with an electrically actuated MEMS device. An experimental investigation is performed, via frequency sweeps in a neighbourhood of the first natural frequency. Resonant behavior is explored, with special attention devoted to jump and pull-in dynamics. A theoretical single degree-of-freedom spring-mass model is derived. Classical numerical simulations are observed to properly predict the main nonlinear features. Nevertheless, some discrepancies arise, which are particularly visible in the resonant branch. They mainly concern the practical range of existence of each attractor and the final outcome after its disappearance. These differences are likely due to disturbances, which are unavoidable in practice, but have not been included in the model. To take disturbances into account, in addition to the classical local investigations, we consider the global dynamics and explore the robustness of the obtained results by performing a dynamical integrity analysis. Our aim is that of developing an applicable confident estimate of the system response. Integrity profiles and integrity charts are built to detect the parameter range where reliability is practically strong and where it becomes weak. Integrity curves exactly follow the experimental data. They inform about the practical range of actuality. We discuss the combined use of integrity charts in the engineering design. Although we refer to a particular case-study, the approach is very general.

  12. Palo Verde nuclear dynamic analysis (PANDA)

    International Nuclear Information System (INIS)

    Girjashankar, P.V.; Secker, P.A. Jr.; LeClair, S.J.; Mendoza, J.; Webb, J.R.

    1988-01-01

    Arizona Nuclear Power Project (ANPP) has initiated the development of a large scale dynamic analysis computer program for the Palo Verde Nuclear Generating Station (PVNGS). This paper presents the decision processes and preliminary development activities that have been pursued related to the code development. The PANDA (Palo Verde Nuclear Dynamic Analysis) code will be used for a variety of applications as described in this paper

  13. Structural estimation of jump-diffusion processes in macroeconomics

    DEFF Research Database (Denmark)

    Posch, Olaf

    2009-01-01

    This paper shows how to solve and estimate a continuous-time dynamic stochastic general equilibrium (DSGE) model with jumps. It also shows that a continuous-time formulation can make it simpler (relative to its discrete-time version) to compute and estimate the deep parameters using the likelihoo...

  14. Adaptive spacetime method using Riemann jump conditions for coupled atomistic-continuum dynamics

    International Nuclear Information System (INIS)

    Kraczek, B.; Miller, S.T.; Haber, R.B.; Johnson, D.D.

    2010-01-01

    We combine the Spacetime Discontinuous Galerkin (SDG) method for elastodynamics with the mathematically consistent Atomistic Discontinuous Galerkin (ADG) method in a new scheme that concurrently couples continuum and atomistic models of dynamic response in solids. The formulation couples non-overlapping continuum and atomistic models across sharp interfaces by weakly enforcing jump conditions, for both momentum balance and kinematic compatibility, using Riemann values to preserve the characteristic structure of the underlying hyperbolic system. Momentum balances to within machine-precision accuracy over every element, on each atom, and over the coupled system, with small, controllable energy dissipation in the continuum region that ensures numerical stability. When implemented on suitable unstructured spacetime grids, the continuum SDG model offers linear computational complexity in the number of elements and powerful adaptive analysis capabilities that readily bridge between atomic and continuum scales in both space and time. A special trace operator for the atomic velocities and an associated atomistic traction field enter the jump conditions at the coupling interface. The trace operator depends on parameters that specify, at the scale of the atomic spacing, the position of the coupling interface relative to the atoms. In a key finding, we demonstrate that optimizing these parameters suppresses spurious reflections at the coupling interface without the use of non-physical damping or special boundary conditions. We formulate the implicit SDG-ADG coupling scheme in up to three spatial dimensions, and describe an efficient iterative solution scheme that outperforms common explicit schemes, such as the Velocity Verlet integrator. Numerical examples, in 1dxtime and employing both linear and nonlinear potentials, demonstrate the performance of the SDG-ADG method and show how adaptive spacetime meshing reconciles disparate time steps and resolves atomic-scale signals in

  15. Effect of a neuromuscular training program on the kinetics and kinematics of jumping tasks.

    Science.gov (United States)

    Chappell, Jonathan D; Limpisvasti, Orr

    2008-06-01

    Altered motor control strategies are a proposed cause of the female athlete's increased risk for noncontact anterior cruciate ligament injury. Injury prevention programs have shown promising results in decreasing the incidence of anterior cruciate ligament injury. To evaluate the effect of the Kerlan-Jobe Orthopaedic Clinic Modified Neuromuscular Training Program on the biomechanics of select jumping tasks in the female collegiate athlete. Controlled laboratory study. Thirty female National Collegiate Athletic Association Division I soccer and basketball players performed vertical jump, hopping tests, and 2 jumping tasks (drop jump and stop jump). All subjects completed a 6-week neuromuscular training program with core strengthening and plyometric training. Three-dimensional motion analysis and force plate data were used to compare the kinetics and kinematics of jumping tasks before and after training. Dynamic knee valgus moment during the stance phase of stop jump tasks decreased after completion of the neuromuscular training program (P = .04), but differences were not observed for the drop jump. Initial knee flexion (P = .003) and maximum knee flexion (P = .006) angles increased during the stance phase of drop jumps after training, but differences were not observed for the stop jump. The athletes showed improved performance in vertical jump (P training program improved select athletic performance measures and changed movement patterns during jumping tasks in the subject population. The use of this neuromuscular training program could potentially modify the collegiate athlete's motion strategies, improve performance, and lower the athlete's risk for injury.

  16. Hop, Step, Step and Jump : Towards Real-World Complexity @ Delft University of Technology

    NARCIS (Netherlands)

    Pruyt, E.; Slinger, J.H.; Van Daalen, C.; Yucel, G.; Thissen, W.A.H.

    2009-01-01

    This paper deals with System Dynamics education at Delft University of Technology, the Netherlands. It focuses more specifically on the quadruple jump approach towards dealing with real-world dynamic complexity. The paper starts with an overview of the System Dynamics courses, situated within the

  17. An Investigation Into the Relationship Between Maximum Isometric Strength and Vertical Jump Performance.

    Science.gov (United States)

    Thomas, Christopher; Jones, Paul A; Rothwell, James; Chiang, Chieh Y; Comfort, Paul

    2015-08-01

    Research has demonstrated a clear relationship between dynamic strength and vertical jump (VJ) performance; however, the relationship of isometric strength and VJ performance has been studied less extensively. The aim of this study was to determine the relationship between isometric strength and performance during the squat jump (SJ) and countermovement jump (CMJ). Twenty-two male collegiate athletes (mean ± SD; age = 21.3 ± 2.9 years; height = 175.63 ± 8.23 cm; body mass = 78.06 ± 10.77 kg) performed isometric midthigh pulls (IMTPs) to assess isometric peak force (IPF), maximum rate of force development, and impulse (IMP) (I100, I200, and I300). Force-time data, collected during the VJs, were used to calculate peak velocity, peak force (PF), peak power (PP), and jump height. Absolute IMTP measures of IMP showed the strongest correlations with VJ PF (r = 0.43-0.64; p ≤ 0.05) and VJ PP (r = 0.38-0.60; p ≤ 0.05). No statistical difference was observed in CMJ height (0.33 ± 0.05 m vs. 0.36 ± 0.05 m; p = 0.19; ES = -0.29) and SJ height performance (0.29 ± 0.06 m vs. 0.33 ± 0.05 m; p = 0.14; ES = -0.34) when comparing stronger to weaker athletes. The results of this study illustrate that absolute IPF and IMP are related to VJ PF and PP but not VJ height. Because stronger athletes did not jump higher than weaker athletes, dynamic strength tests may be more practical methods of assessing the relationships between relative strength levels and dynamic performance in collegiate athletes.

  18. Effects of jumping skill training on walking balance for children with mental retardation and Down's syndrome.

    Science.gov (United States)

    Wang, W Y; Chang, J J

    1997-08-01

    In the present study, we hypothesized that the enhancements obtained from the practice of jumping activity could be transferred to improve the walking balance in children with mental retardation (MR) and Down's syndrome (DS). Fourteen children with the diagnosis of MR or DS, aged 3 to 6 years, were recruited from a day care institution. They were ambulant but without jumping ability. Sixty-one non-handicapped children was used to serve as a normative comparison group. Before the training program, the performances of walking balance, jump skills and jumping distances were assessed individually by one physical therapist. The balance sub-test in the Bruininks Oseretsky Test of Motor Proficiency (BOTMP) was administered to assess the walking balance. Motor Skill Inventory (MSI) was used to assess the qualitative levels of jumping skills. A jumping skill training lesson that included horizontal jumps and vertical jumps was designed and integrated into the educational program. The recruited children received 3 sessions of training per-week for 6 weeks. A post-training test and a follow-up test were administered to the handicapped children. In BOTMP scores, statistical differences exited between the pre-training and post-training tests in the tested items of floor walk and beam walk. However, no significant difference was found in the items of floor stand, beam stand and floor heel-toe walk. MSI scales revealed there were significant differences between pre-training and post-training tests. There was no significant difference between the scores of post-training test and the follow-up test. The results implicated that the jumping activity might effectively evoke the automatic and dynamic postural control. Moreover, the significant improvements of the floor walk and beam walk performances might be due to the transferred effects via the practice of dynamic jumping activity. Furthermore, implications and suggestions are discussed.

  19. The effect of wind on jumping distance in ski jumping--fairness assessed.

    Science.gov (United States)

    Virmavirta, Mikko; Kivekäs, Juha

    2012-09-01

    The special wind compensation system recently adopted by Fédération Internationale de Ski (FIS; International Ski Federation) to consider the effects of changing wind conditions has caused some controversy. Here, the effect of wind on jumping distance in ski jumping was studied by means of computer simulation and compared with the wind compensation factors used by FIS during the World Cup season 2009/2010. The results showed clearly that the effect of increasing head/tail wind on jumping distance is not linear: +17.4 m/-29.1 m, respectively, for a wind speed of 3 m/s. The linear formula used in the trial period of the wind compensation system was found to be appropriate only for a limited range of jumping distances as the gradient of the landing slope slows down the rate of distance change in long jumps.

  20. Deriving appropriate boundary conditions, and accelerating position-jump simulations, of diffusion using non-local jumping

    International Nuclear Information System (INIS)

    Taylor, P R; Baker, R E; Yates, C A

    2015-01-01

    In this paper we explore lattice-based position-jump models of diffusion, and the implications of introducing non-local jumping; particles can jump to a range of nearby boxes rather than only to their nearest neighbours. We begin by deriving conditions for equivalence with traditional local jumping models in the continuum limit. We then generalize a previously postulated implementation of the Robin boundary condition for a non-local process of arbitrary maximum jump length, and present a novel implementation of flux boundary conditions, again generalized for a non-local process of arbitrary maximum jump length. In both these cases we validate our results using stochastic simulation. We then proceed to consider two variations on the basic diffusion model: a hybrid local/non-local scheme suitable for models involving sharp concentration gradients, and the implementation of biased jumping. In all cases we show that non-local jumping can deliver substantial time savings for stochastic simulations. (paper)

  1. Influence of Knee-to-Feet Jump Training on Vertical Jump and Hang Clean Performance.

    Science.gov (United States)

    Stark, Laura; Pickett, Karla; Bird, Michael; King, Adam C

    2016-11-01

    Stark, L, Pickett, K, Bird, M, and King, AC. Influence of knee-to-feet jump training on vertical jump and hang clean performance. J Strength Cond Res 30(11): 3084-3089, 2016-From a motor learning perspective, the practice/training environment can result in positive, negative, or neutral transfer to the testing conditions. The purpose of this study was to examine the training effect of a novel movement (knee-to-feet [K2F] jumps) and whether a 6-week training program induced a positive transfer effect to other power-related movements (vertical jump and hang clean [HC]). Twenty-six intercollegiate athletes from power-emphasized sports were paired and counter-balanced into a control (i.e., maintained their respective sport-specific lifting regimen) or an experimental group (i.e., completed a 6-week progressive training program of K2F jumps in addition to respective lifting regimen). A pre- and posttest design was used to investigate the effect of training on K2F jump height and transfer effect to vertical jump height (VJH) and 2-repetition maximum (RM) HC performance. A significant increase in K2F jump height was found for the experimental group. Vertical jump height significantly increased from pre- to posttest but no group or interaction (group × time) effect was found, and there were nonsignificant differences for HC. Posttest data showed significant correlations between all pairs of the selected exercises with the highest correlation between K2F jump height and VJ H (R = 0.40) followed by VJH and 2RM HC (R = 0.38) and 2RM HC and K2F jump height (R = 0.23). The results suggest that K2F jump training induced the desired learning effect but was specific to the movement in that no effect of transfer occurred to the other power-related movements. This finding is value for strength and condition professionals who design training programs to enhance athletic performance.

  2. From quantum mechanics to finance: Microfoundations for jumps, spikes and high volatility phases in diffusion price processes

    Science.gov (United States)

    Henkel, Christof

    2017-03-01

    We present an agent behavior based microscopic model that induces jumps, spikes and high volatility phases in the price process of a traded asset. We transfer dynamics of thermally activated jumps of an unexcited/excited two state system discussed in the context of quantum mechanics to agent socio-economic behavior and provide microfoundations. After we link the endogenous agent behavior to price dynamics we establish the circumstances under which the dynamics converge to an Itô-diffusion price processes in the large market limit.

  3. Comparison of acute countermovement jump responses after functional isometric and dynamic half squats.

    Science.gov (United States)

    Boyd, David A; Donald, Neil; Balshaw, Thomas G

    2014-12-01

    The purpose of this study was to compare acute countermovement jump (CMJ) responses after functional isometric (FI) and dynamic half (DH) squats. Ten strength-trained males (relative full back squat 1 repetition maximum [1RM]: 1.9 ± 0.2) participated in a randomized crossover design study. On 2 separate days, participants performed baseline CMJs followed by either FI or DH squats loaded with 150% of full back squat 1RM. Further CMJs were performed between 2 and 11 minutes after FI or DH squats. Kinematic and kinetic CMJ variables were measured. There were no differences observed between conditions when peak CMJ variables after FI or DH squats were compared with baseline values (p > 0.05). Countermovement jump time effects (p ≤ 0.05) were observed after squats. Increases in peak force (p ≤ 0.05; FI: 3.9%, range: -0.9 to 9.1%; DH: 4.2%, range: 0.0-11.5%) and decreases in peak power (p ≤ 0.05; FI: -0.4%, range: -5.1 to 4.0%; DH: -1.1%, range: -6.6 to 2.9%) occurred for combined condition data. Positive correlations between lower-body strength and the extent or timing of acute CMJ responses were not detected (p > 0.05). Because of the apparent lack of additive acute CMJ responses, the use of conventional DH squat protocols should be considered rather than FI squats in precompetition and training situations. Furthermore, the establishment of individual FI and DH squat protocols also seems to be necessary, rather than relying on relative lower-body strength to predict the nature of acute CMJ responses.

  4. Statistical Analysis of the First Passage Path Ensemble of Jump Processes

    Science.gov (United States)

    von Kleist, Max; Schütte, Christof; Zhang, Wei

    2018-02-01

    The transition mechanism of jump processes between two different subsets in state space reveals important dynamical information of the processes and therefore has attracted considerable attention in the past years. In this paper, we study the first passage path ensemble of both discrete-time and continuous-time jump processes on a finite state space. The main approach is to divide each first passage path into nonreactive and reactive segments and to study them separately. The analysis can be applied to jump processes which are non-ergodic, as well as continuous-time jump processes where the waiting time distributions are non-exponential. In the particular case that the jump processes are both Markovian and ergodic, our analysis elucidates the relations between the study of the first passage paths and the study of the transition paths in transition path theory. We provide algorithms to numerically compute statistics of the first passage path ensemble. The computational complexity of these algorithms scales with the complexity of solving a linear system, for which efficient methods are available. Several examples demonstrate the wide applicability of the derived results across research areas.

  5. Determinants of the abilities to jump higher and shorten the contact time in a running 1-legged vertical jump in basketball.

    Science.gov (United States)

    Miura, Ken; Yamamoto, Masayoshi; Tamaki, Hiroyuki; Zushi, Koji

    2010-01-01

    This study was conducted to obtain useful information for developing training techniques for the running 1-legged vertical jump in basketball (lay-up shot jump). The ability to perform the lay-up shot jump and various basic jumps was measured by testing 19 male basketball players. The basic jumps consisted of the 1-legged repeated rebound jump, the 2-legged repeated rebound jump, and the countermovement jump. Jumping height, contact time, and jumping index (jumping height/contact time) were measured and calculated using a contact mat/computer system that recorded the contact and air times. The jumping index indicates power. No significant correlation existed between the jumping height and contact time of the lay-up shot jump, the 2 components of the lay-up shot jump index. As a result, jumping height and contact time were found to be mutually independent abilities. The relationships in contact time between the lay-up shot jump to the 1-legged repeated rebound jump and the 2-legged repeated rebound jump were correlated on the same significance levels (p jumping height existed between the 1-legged repeated rebound jump and the lay-up shot jump (p jumping height between the lay-up shot jump and both the 2-legged repeated rebound jump and countermovement jump. The lay-up shot index correlated more strongly to the 1-legged repeated rebound jump index (p jump index (p jump is effective in improving both contact time and jumping height in the lay-up shot jump.

  6. Kinetic Compensations due to Chronic Ankle Instability during Landing and Jumping.

    Science.gov (United States)

    Kim, Hyunsoo; Son, S Jun; Seeley, Matthew K; Hopkins, J Ty

    2018-02-01

    Skeletal muscles absorb and transfer kinetic energy during landing and jumping, which are common requirements of various forms of physical activity. Chronic ankle instability (CAI) is associated with impaired neuromuscular control and dynamic stability of the lower extremity. Little is known regarding an intralimb, lower-extremity joint coordination of kinetics during landing and jumping for CAI patients. We investigated the effect of CAI on lower-extremity joint stiffness and kinetic and energetic patterns across the ground contact phase of landing and jumping. One hundred CAI patients and 100 matched able-bodied controls performed five trials of a landing and jumping task (a maximal vertical forward jump, landing on a force plate with the test leg only, and immediate lateral jump toward the contralateral side). Functional analyses of variance and independent t-tests were used to evaluate between-group differences for lower-extremity net internal joint moment, power, and stiffness throughout the entire ground contact phase of landing and jumping. Relative to the control group, the CAI group revealed (i) reduced plantarflexion and knee extension and increased hip extension moments; (ii) reduced ankle and knee eccentric and concentric power, and increased hip eccentric and concentric power, and (iii) reduced ankle and knee joint stiffness and increased hip joint stiffness during the task. CAI patients seemed to use a hip-dominant strategy by increasing the hip extension moment, stiffness, and eccentric and concentric power during landing and jumping. This apparent compensation may be due to decreased capabilities to produce sufficient joint moment, stiffness, and power at the ankle and knee. These differences might have injury risk and performance implications.

  7. The Effects of Aquatic Plyometric Training on Repeated Jumps, Drop Jumps and Muscle Damage.

    Science.gov (United States)

    Jurado-Lavanant, A; Alvero-Cruz, J R; Pareja-Blanco, F; Melero-Romero, C; Rodríguez-Rosell, D; Fernandez-Garcia, J C

    2015-09-22

    The purpose of this study was to compare the effects of land- vs. aquatic based plyometric training programs on the drop jump, repeated jump performance and muscle damage. Sixty-five male students were randomly assigned to one of 3 groups: aquatic plyometric training group (APT), plyometric training group (PT) and control group (CG). Both experimental groups trained twice a week for 10 weeks performing the same number of sets and total jumps. The following variables were measured prior to, halfway through and after the training programs: creatine kinase (CK) concentration, maximal height during a drop jump from the height of 30 (DJ30) and 50 cm (DJ50), and mean height during a repeated vertical jump test (RJ). The training program resulted in a significant increase (Pplyometric training, PT produced greater gains on reactive jumps performance than APT. © Georg Thieme Verlag KG Stuttgart · New York.

  8. Validity of Hip-worn Inertial Measurement Unit Compared to Jump Mat for Jump Height Measurement in Adolescents.

    Science.gov (United States)

    Rantalainen, T; Hesketh, K D; Rodda, C; Duckham, R L

    2018-06-16

    Jump tests assess lower body power production capacity, and can be used to evaluate athletic ability and development during growth. Wearable inertial measurement units (IMU) seem to offer a feasible alternative to laboratory-based equipment for jump height assessments. Concurrent validity of these devices for jump height assessments has only been established in adults. Therefore, the purpose of this study was to evaluate the concurrent validity of IMU-based jump height estimate compared to contact mat-based jump height estimate in adolescents. Ninety-five adolescents (10-13 years-of-age; girls N=41, height = 154 (SD 9) cm, weight = 44 (11) kg; boys N=54, height=156 (10) cm, weight = 46 (13) kg) completed three counter-movement jumps for maximal jump height on a contact mat. Inertial recordings (accelerations, rotations) were concurrently recorded with a hip-worn IMU (sampling at 256 Hz). Jump height was evaluated based on flight time. The mean IMU-derived jump height was 27.1 (SD 3.8) cm, and the corresponding mean jump-mat-derived value was 21.5 (3.4) cm. While a significant 26% mean difference was observed between the methods (5.5 [95% limits of agreement 2.2 to 8.9] cm, p = 0.006), the correspondence between methods was excellent (ICC = 0.89). The difference between methods was weakly positively associated with jump height (r = 0.28, P = 0.007). Take-off velocity derived jump height was also explored but produced only fair congruence. In conclusion, IMU-derived jump height exhibited excellent congruence to contact mat-based jump height and therefore presents a feasible alternative for jump height assessments in adolescents. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  9. Test-retest reliability of jump execution variables using mechanography: a comparison of jump protocols.

    Science.gov (United States)

    Fitzgerald, John S; Johnson, LuAnn; Tomkinson, Grant; Stein, Jesse; Roemmich, James N

    2018-05-01

    Mechanography during the vertical jump may enhance screening and determining mechanistic causes underlying physical performance changes. Utility of jump mechanography for evaluation is limited by scant test-retest reliability data on force-time variables. This study examined the test-retest reliability of eight jump execution variables assessed from mechanography. Thirty-two women (mean±SD: age 20.8 ± 1.3 yr) and 16 men (age 22.1 ± 1.9 yr) attended a familiarization session and two testing sessions, all one week apart. Participants performed two variations of the squat jump with squat depth self-selected and controlled using a goniometer to 80º knee flexion. Test-retest reliability was quantified as the systematic error (using effect size between jumps), random error (using coefficients of variation), and test-retest correlations (using intra-class correlation coefficients). Overall, jump execution variables demonstrated acceptable reliability, evidenced by small systematic errors (mean±95%CI: 0.2 ± 0.07), moderate random errors (mean±95%CI: 17.8 ± 3.7%), and very strong test-retest correlations (range: 0.73-0.97). Differences in random errors between controlled and self-selected protocols were negligible (mean±95%CI: 1.3 ± 2.3%). Jump execution variables demonstrated acceptable reliability, with no meaningful differences between the controlled and self-selected jump protocols. To simplify testing, a self-selected jump protocol can be used to assess force-time variables with negligible impact on measurement error.

  10. Delayed frost growth on jumping-drop superhydrophobic surfaces.

    Science.gov (United States)

    Boreyko, Jonathan B; Collier, C Patrick

    2013-02-26

    Self-propelled jumping drops are continuously removed from a condensing superhydrophobic surface to enable a micrometric steady-state drop size. Here, we report that subcooled condensate on a chilled superhydrophobic surface are able to repeatedly jump off the surface before heterogeneous ice nucleation occurs. Frost still forms on the superhydrophobic surface due to ice nucleation at neighboring edge defects, which eventually spreads over the entire surface via an interdrop frost wave. The growth of this interdrop frost front is shown to be up to 3 times slower on the superhydrophobic surface compared to a control hydrophobic surface, due to the jumping-drop effect dynamically minimizing the average drop size and surface coverage of the condensate. A simple scaling model is developed to relate the success and speed of interdrop ice bridging to the drop size distribution. While other reports of condensation frosting on superhydrophobic surfaces have focused exclusively on liquid-solid ice nucleation for isolated drops, these findings reveal that the growth of frost is an interdrop phenomenon that is strongly coupled to the wettability and drop size distribution of the surface. A jumping-drop superhydrophobic condenser minimized frost formation relative to a conventional dropwise condenser in two respects: preventing heterogeneous ice nucleation by continuously removing subcooled condensate, and delaying frost growth by limiting the success of interdrop ice bridge formation.

  11. Influence of sports flooring and shoes on impact forces and performance during jump tasks.

    Science.gov (United States)

    Malisoux, Laurent; Gette, Paul; Urhausen, Axel; Bomfim, Joao; Theisen, Daniel

    2017-01-01

    We aim to determine the influence of sports floorings and sports shoes on impact mechanics and performance during standardised jump tasks. Twenty-one male volunteers performed ankle jumps (four consecutive maximal bounds with very dynamic ankle movements) and multi-jumps (two consecutive maximal counter-movement jumps) on force plates using minimalist and cushioned shoes under 5 sports flooring (SF) conditions. The shock absorption properties of the SF, defined as the proportion of peak impact force absorbed by the tested flooring when compared with a concrete hard surface, were: SF0 = 0% (no flooring), SF1 = 19%, SF2 = 26%, SF3 = 37% and SF4 = 45%. Shoe and flooring effects were compared using 2x5 repeated-measures ANOVA with post-hoc Bonferroni-corrected comparisons. A significant interaction between SF and shoe conditions was found for VILR only (p = 0.003). In minimalist shoes, SF influenced Vertical Instantaneous Loading Rate (VILR) during ankle jumps (p = 0.006) and multi-jumps (pflooring. VILR is the variable that was the most affected.

  12. Do Bilateral Vertical Jumps With Reactive Jump Landings Achieve Osteogenic Thresholds With and Without Instruction in Premenopausal Women?

    Science.gov (United States)

    Clissold, Tracey L; Winwood, Paul W; Cronin, John B; De Souza, Mary Jane

    2018-04-01

    Jumps have been investigated as a stimulus for bone development; however, effects of instruction, jump type, and jump-landing techniques need investigation. This study sought to identify whether ground reaction forces (GRFs) for bilateral vertical jumps (countermovement jumps and drop jumps) with reactive jump-landings (ie, jumping immediately after initial jump-landing), with instruction and with instruction withdrawn, achieve magnitudes and rates of strain previously shown to improve bone mass among premenopausal women. Twenty-one women (Mean ± SD: 43.3 ± 5.9 y; 69.4 ± 9.6 kg; 167 ± 5.5 cm; 27.5 ± 8.7% body fat) performed a testing session 'with instruction' followed by a testing session performed 1 week later with 'instruction withdrawn.' The magnitudes (4.59 to 5.49 body weight [BW]) and rates of strain (263 to 359 BW·s -1 ) for the jump-landings, performed on an AMTI force plate, exceeded previously determined thresholds (>3 BWs and >43 BW·s -1 ). Interestingly, significantly larger peak resultant forces, (↑10%; P = .002) and peak rates of force development (↑20%; P jump-landing (postreactive jump). Small increases (ES = 0.22-0.42) in all landing forces were observed in the second jump-landing with 'instruction withdrawn.' These jumps represent a unique training stimulus for premenopausal women and achieve osteogenic thresholds thought prerequisite for bone growth.

  13. Stereofractographic investigation of static start and dynamic jump of a fatigue crack in pressure vessel steel

    International Nuclear Information System (INIS)

    Stepanenko, V.A.; Shtukaturova, A.S.; Yasnij, P.V.; AN Ukrainskoj SSR, Kiev. Inst. Problem Prochnosti)

    1983-01-01

    Results of investigaytion have been discussed ipto the effect of certain temperature-force factors on regularities in the formation of stretch zones during the crack initiation static and transition zones at crack jumps in the process of cyclic loading. The 15Kh2NMFA pressure vessel steel has been investigated. The steel fracture toughnesKub(Ic) has been determined testing s the specimens for excentric stretching or a bending through an angle. It has been shown that transition zones in a front of fatique cracks at the jump beginning and end are formed through the shift mechanism owing to the material separation along the maximum failure zone contour, i.e. along the plastic zone contour in a crack vertex. This is the mait difference of regularities in the formation of the transition zones during fatique crack jumps from stretching zones formed through the break-away mechanism of crack vertex bluntness during its static move. It is noted that a final conclusion on the mechanism of transition zone formation during fartique crack jumps allows one to perform systematic investigation into the plastic zone configuration in a fatique crack verteX and stereofractographic measurement of two identically conjugate jump surfaces on opposite fractures of the same samples

  14. A comparison of take-off dynamics during three different spikes, block and counter-movement jump in female volleyball players.

    Science.gov (United States)

    Kabacinski, Jaroslae; Dworak, Lecholslaw B; Murawa, Michal; Ostarello, John; Rzepnicka, Agata; Maczynski, Jacek

    2016-12-01

    The purpose of the study was to compare the take-off dynamics in counter-movement jump (CMJ), volleyball block and spikes. Twelve professional female players, representing the highest volleyball league in Poland, participated in the laboratory tests. A force platform was used to record ground reaction force (GRF) during take-off phase in CMJ test, block from a run-up and spikes: front row attack, slide attack, back row attack. Vertical (v) GRF (peak: Rmax and integral mean: ), impulse of vGRF (J) and mechanical power (peak: Pmax and integral mean: ) were analyzed. Significant differences (P, J, Pmax, and ) were found between CMJ, block from a run-up and three different technique spikes. The highest values were recorded during take-off in the back row attack: peak vGRF (2.93±0.05 BW), integral mean vGRF (1.90±0.08 BW), impulse of vGRF (354±40 Ns), peak power (5320±918 W) and integral mean power (3604±683 W). Peak power (2608±217 W) and integral mean power (1417±94 W) were determined in CMJ test to evaluate the force-velocity capabilities of the players. In terms of GRF and the mechanical power, high level of dynamics in take-off influences positively the jumping height and significantly increases the effectiveness of attacks during spike of the ball over the block of the opponent.

  15. Variation in free jumping technique within and among horses with little experience in show jumping

    NARCIS (Netherlands)

    Santamaria, S.; Bobbert, M.F.; Back, W.; Barneveld, A.; van Weeren, P.R.

    2004-01-01

    Objective - To quantify variation in the jumping technique within and among young horses with little jumping experience, establish relationships between kinetic and kinematic variables, and identify a limited set of variables characteristic for detecting differences in jumping performance among

  16. Validity of a Jump Mat for assessing Countermovement Jump Performance in Elite Rugby Players.

    Science.gov (United States)

    Dobbin, Nick; Hunwicks, Richard; Highton, Jamie; Twist, Craig

    2017-02-01

    This study determined the validity of the Just Jump System ® (JJS) for measuring flight time, jump height and peak power output (PPO) in elite rugby league players. 37 elite rugby league players performed 6 countermovement jumps (CMJ; 3 with and 3 without arms) on a jump mat and force platform. A sub-sample (n=28) was used to cross-validate the equations for flight time, jump height and PPO. The JJS systematically overestimated flight time and jump height compared to the force platform (Pjump height ( with R 2 =0.945; without R 2 =0.987). Our equations revealed no systematic difference between corrected and force platform scores and an improved the agreement for flight time (Ratio limits of agreement: with 1.00 vs. 1.36; without 1.00 vs. 1.16) and jump height ( with 1.01 vs. 1.34; without 1.01 vs. 1.15), meaning that our equations can be used to correct JJS scores for elite rugby players. While our equation improved the estimation of PPO ( with 1.02; without 1.01) compared to existing equations (Harman: 1.20; Sayers: 1.04), this only accounted for 64 and 69% of PPO. © Georg Thieme Verlag KG Stuttgart · New York.

  17. A Comprehensive Model of Electric-Field-Enhanced Jumping-Droplet Condensation on Superhydrophobic Surfaces.

    Science.gov (United States)

    Birbarah, Patrick; Li, Zhaoer; Pauls, Alexander; Miljkovic, Nenad

    2015-07-21

    Superhydrophobic micro/nanostructured surfaces for dropwise condensation have recently received significant attention due to their potential to enhance heat transfer performance by shedding positively charged water droplets via coalescence-induced droplet jumping at length scales below the capillary length and allowing the use of external electric fields to enhance droplet removal and heat transfer, in what has been termed electric-field-enhanced (EFE) jumping-droplet condensation. However, achieving optimal EFE conditions for enhanced heat transfer requires capturing the details of transport processes that is currently lacking. While a comprehensive model has been developed for condensation on micro/nanostructured surfaces, it cannot be applied for EFE condensation due to the dynamic droplet-vapor-electric field interactions. In this work, we developed a comprehensive physical model for EFE condensation on superhydrophobic surfaces by incorporating individual droplet motion, electrode geometry, jumping frequency, field strength, and condensate vapor-flow dynamics. As a first step toward our model, we simulated jumping droplet motion with no external electric field and validated our theoretical droplet trajectories to experimentally obtained trajectories, showing excellent temporal and spatial agreement. We then incorporated the external electric field into our model and considered the effects of jumping droplet size, electrode size and geometry, condensation heat flux, and droplet jumping direction. Our model suggests that smaller jumping droplet sizes and condensation heat fluxes require less work input to be removed by the external fields. Furthermore, the results suggest that EFE electrodes can be optimized such that the work input is minimized depending on the condensation heat flux. To analyze overall efficiency, we defined an incremental coefficient of performance and showed that it is very high (∼10(6)) for EFE condensation. We finally proposed mechanisms

  18. SARS – virus jumps species

    Indian Academy of Sciences (India)

    SARS – virus jumps species. Coronavirus reshuffles genes; Rotteir et al, Rotterdam showed the virus to jump from cats to mouse cells after single gene mutation ? Human disease due to virus jumping from wild or domestic animals; Present favourite animal - the cat; - edible or domestic.

  19. Increase in Jumping Height Associated with Maximal Effort Vertical Depth Jumps.

    Science.gov (United States)

    Bedi, John F.; And Others

    1987-01-01

    In order to assess if there existed a statistically significant increase in jumping performance when dropping from different heights, 32 males, aged 19 to 26, performed a series of maximal effort vertical jumps after dropping from eight heights onto a force plate. Results are analyzed. (Author/MT)

  20. What are quantum jumps?

    International Nuclear Information System (INIS)

    Cook, R.J.

    1988-01-01

    This paper answers the title question by giving an operational definition of quantum jumps based on measurement theory. This definition forms the basis of a theory of quantum jumps which leads to a number of testable predictions. Experiments are proposed to test the theory. The suggested experiments also test the quantum Zeno paradox, i.e., they test the proposition that frequent observation of a quantum system inhibits quantum jumps in that system. (orig.)

  1. Microscopic theory of nuclear collective dynamics

    International Nuclear Information System (INIS)

    Sakata, Fumihiko; Marumori, Toshio; Hashimoto, Yukio; Tsukuma, Hidehiko; Yamamoto, Yoshifumi; Iwasawa, Kazuo.

    1990-10-01

    A recent development of the INS-TSUKUBA joint research project on large-amplitude collective motion is summarized by putting special emphasis on an inter-relationship between quantum chaos and nuclear spectroscopy. Aiming at introducing various concepts used in this lecture, we start with recapitulating the semi-classical theory of nuclear collective dynamics formulated within the time-dependent Hartree-Fock (TDHF) theory. The central part of the semi-classical theory is provided by the self-consistent collective coordinate (SCC) method which has been developed to properly take account of the non-linear dynamics specific for the finite many-body quantum system. A decisive role of the level crossing dynamics on the order-to-chaos transition of collective motion is discussed in detail. Extending the basic idea of the semi-classical theory, we discuss a full quantum theory of nuclear collective dynamics which allows us to properly define a concept of the quantum integrability as well as the quantum chaoticity for each eigenfunction. The lecture is arranged so as to clearly show the similar structure between the semi-classical and quantum theories of nuclear collective dynamics. Using numerical calculations, we illustrate what the quantum chaos for each eigenfunction means and relate it to the usual definition of quantum chaos for nearest neighbor level spacing statistics based on the random matrix theory. (author)

  2. A fermionic molecular dynamics technique to model nuclear matter

    International Nuclear Information System (INIS)

    Vantournhout, K.; Jachowicz, N.; Ryckebusch, J.

    2009-01-01

    Full text: At sub-nuclear densities of about 10 14 g/cm 3 , nuclear matter arranges itself in a variety of complex shapes. This can be the case in the crust of neutron stars and in core-collapse supernovae. These slab like and rod like structures, designated as nuclear pasta, have been modelled with classical molecular dynamics techniques. We present a technique, based on fermionic molecular dynamics, to model nuclear matter at sub-nuclear densities in a semi classical framework. The dynamical evolution of an antisymmetric ground state is described making the assumption of periodic boundary conditions. Adding the concepts of antisymmetry, spin and probability distributions to classical molecular dynamics, brings the dynamical description of nuclear matter to a quantum mechanical level. Applications of this model vary from investigation of macroscopic observables and the equation of state to the study of fundamental interactions on the microscopic structure of the matter. (author)

  3. Thermal domains in inhomogeneous current-carrying superconductors. Current-voltage characteriscs and dynamics of domain formation after current jumps

    International Nuclear Information System (INIS)

    Bezuglyj, A.I.; Shklovskij, V.A.

    1984-01-01

    The static and dynamic behavior of thermal domains in inhomogeneous superconducting films, where the inhomogeneity behaves like a portion of the film with a reduced critical current, have been studied theoretically within the framework of the phenomenological approach, using the heat balance equation and the dependence of the superconductor critical current on temperature. Depending on the size of the inhomogeneity (local or extended) and on the relative values of parameters of the homogeneous and inhomogeneous regions, different types of current-voltage characteristics are obtained. The nonstationary problem of thermal domain formation near the inhomogeneity after a current jump has been solved, and the domain boundary (kink) dynamics at a distance from the inhomogeneity has been analyzed. A combination of the results allows one to describe the whole process of normal phase formation and its spread throughout the superconducting film

  4. Influence of sports flooring and shoes on impact forces and performance during jump tasks.

    Directory of Open Access Journals (Sweden)

    Laurent Malisoux

    Full Text Available We aim to determine the influence of sports floorings and sports shoes on impact mechanics and performance during standardised jump tasks. Twenty-one male volunteers performed ankle jumps (four consecutive maximal bounds with very dynamic ankle movements and multi-jumps (two consecutive maximal counter-movement jumps on force plates using minimalist and cushioned shoes under 5 sports flooring (SF conditions. The shock absorption properties of the SF, defined as the proportion of peak impact force absorbed by the tested flooring when compared with a concrete hard surface, were: SF0 = 0% (no flooring, SF1 = 19%, SF2 = 26%, SF3 = 37% and SF4 = 45%. Shoe and flooring effects were compared using 2x5 repeated-measures ANOVA with post-hoc Bonferroni-corrected comparisons. A significant interaction between SF and shoe conditions was found for VILR only (p = 0.003. In minimalist shoes, SF influenced Vertical Instantaneous Loading Rate (VILR during ankle jumps (p = 0.006 and multi-jumps (p<0.001, in accordance with shock absorption properties. However, in cushioned shoes, SF influenced VILR during ankle jumps only (p<0.001. Contact Time was the only additional variable affected by SF, but only during multi-jumps in minimalist shoes (p = 0.037. Cushioned shoes induced lower VILR (p<0.001 and lower Contact Time (p≤0.002 during ankle jumps and multi-jumps compared to minimalist shoes. During ankle jumps, cushioned shoes induced greater Peak Vertical Ground Reaction Force (PVGRF, p = 0.002, greater Vertical Average Loading Rate (p<0.001, and lower eccentric (p = 0.008 and concentric (p = 0.004 work. During multi-jumps, PVGRF was lower (p<0.001 and jump height was higher (p<0.001 in cushioned compared to minimalist shoes. In conclusion, cushioning influenced impact forces during standardised jump tasks, whether it was provided by the shoes or the sports flooring. VILR is the variable that was the most affected.

  5. CAPTURE OF TROJANS BY JUMPING JUPITER

    International Nuclear Information System (INIS)

    Nesvorný, David; Vokrouhlický, David; Morbidelli, Alessandro

    2013-01-01

    Jupiter Trojans are thought to be survivors of a much larger population of planetesimals that existed in the planetary region when planets formed. They can provide important constraints on the mass and properties of the planetesimal disk, and its dispersal during planet migration. Here, we tested a possibility that the Trojans were captured during the early dynamical instability among the outer planets (aka the Nice model), when the semimajor axis of Jupiter was changing as a result of scattering encounters with an ice giant. The capture occurs in this model when Jupiter's orbit and its Lagrange points become radially displaced in a scattering event and fall into a region populated by planetesimals (that previously evolved from their natal transplanetary disk to ∼5 AU during the instability). Our numerical simulations of the new capture model, hereafter jump capture, satisfactorily reproduce the orbital distribution of the Trojans and their total mass. The jump capture is potentially capable of explaining the observed asymmetry in the number of leading and trailing Trojans. We find that the capture probability is (6-8) × 10 –7 for each particle in the original transplanetary disk, implying that the disk contained (3-4) × 10 7 planetesimals with absolute magnitude H disk ∼ 14-28 M Earth , is consistent with the mass deduced from recent dynamical simulations of the planetary instability.

  6. Microwave-gated dynamic nuclear polarization

    DEFF Research Database (Denmark)

    Bornet, Aurélien; Pinon, Arthur; Jhajharia, Aditya

    2016-01-01

    Dissolution dynamic nuclear polarization (D-DNP) has become a method of choice to enhance signals in nuclear magnetic resonance (NMR). Recently, we have proposed to combine cross-polarization (CP) with D-DNP to provide high polarization P((13)C) in short build-up times. In this paper, we show...

  7. Realized Jump Risk and Equity Return in China

    Directory of Open Access Journals (Sweden)

    Guojin Chen

    2014-01-01

    Full Text Available We utilize the realized jump components to explore a new jump (including nonsystematic jump and systematic jump risk factor model. After estimating daily realized jumps from high-frequency transaction data of the Chinese A-share stocks, we calculate monthly jump size, monthly jump standard deviation, and monthly jump arrival rate and then use those monthly jump factors to explain the return of the following month. Our empirical results show that the jump tail risk can explain the equity return. For the large capital-size stocks, large cap stock portfolios, and index, one-month lagged jump risk factor significantly explains the asset return variation. Our results remain the same even when we add the size and value factors in the robustness tests.

  8. Theory of boiling-up jump

    International Nuclear Information System (INIS)

    Labuntsov, D.A.; Avdeev, A.A.

    1981-01-01

    Concept of boiling-up jump representing a zone of intense volume boiling-up separating overtaking flow of overheated metastable liquid from an area of equilibrium flow located below along the flow is introduced. It is shown that boiling-up jump is a shock wave of rarefaction. It is concluded that entropy increment occurs on the jump. Characteristics of adiabatic shock wave curve of boiling- up in ''pressure-specific volume'' coordinates have been found and its form has been investigated. Stability of boiling-up jump has been analyzed as well. On the basis of approach developed analysis is carried out on the shock adiobatic curve of condensation. Concept of boiling-up jump may be applied to the analysis of boiling-up processes when flowing liquid through packings during emergency pressure drop etc [ru

  9. Dynamics of the in-run in ski jumping: a simulation study.

    Science.gov (United States)

    Ettema, Gertjan J C; Bråten, Steinar; Bobbert, Maarten F

    2005-08-01

    A ski jumper tries to maintain an aerodynamic position in the in-run during changing environmental forces. The purpose of this study was to analyze the mechanical demands on a ski jumper taking the in-run in a static position. We simulated the in-run in ski jumping with a 4-segment forward dynamic model (foot, leg, thigh, and upper body). The curved path of the in-run was used as kinematic constraint, and drag, lift, and snow friction were incorporated. Drag and snow friction created a forward rotating moment that had to be counteracted by a plantar flexion moment and caused the line of action of the normal force to pass anteriorly to the center of mass continuously. The normal force increased from 0.88 G on the first straight to 1.65 G in the curve. The required knee joint moment increased more because of an altered center of pressure. During the transition from the straight to the curve there was a rapid forward shift of the center of pressure under the foot, reflecting a short but high angular acceleration. Because unrealistically high rates of change of moment are required, an athlete cannot do this without changing body configuration which reduces the required rate of moment changes.

  10. Nuclear dynamics in phase space

    International Nuclear Information System (INIS)

    Di Toro, M.

    1984-07-01

    We present a unified semiclassical picture of nuclear dynamics, from collective states to heavy ion physics, based on a study of the time evolution of the Wigner distribution function. We discuss in particular the mean field dynamics, in this ''quantal'' phase space, which is ruled by the nuclear Vlasov equation. Simple approximate solutions are worked out for rotational and vibrational collective motions. Giant resonances are shown to be quite well described as scaling modes, which are equivalent to a lowest multipole (up to 1sub(max)=2) distortions of the momentum distribution. Applications are shown to heavy ion physics to study giant resonances on high spin states and dynamical collective effects in subthreshold π-production. Several possible extensions and in particular the inclusion of two-body collision terms are finally discussed

  11. Jump resonant frequency islands in nonlinear feedback control systems

    Science.gov (United States)

    Koenigsberg, W. D.; Dunn, J. C.

    1975-01-01

    A new type of jump resonance is predicted and observed in certain nonlinear feedback control systems. The new jump resonance characteristic is described as a 'frequency island' due to the fact that a portion of the input-output transfer characteristic is disjoint from the main body. The presence of such frequency islands was predicted by using a sinusoidal describing function characterization of the dynamics of an inertial gyro employing nonlinear ternary rebalance logic. While the general conditions under which such islands are possible has not been examined, a numerical approach is presented which can aid in establishing their presence. The existence of the frequency islands predicted for the ternary rebalanced gyro was confirmed by simulating the nonlinear system and measuring the transfer function.

  12. Measurement of K-shell absorption jump factors and jump ratios in some lanthanide elements using EDXRF technique

    International Nuclear Information System (INIS)

    Polat, Recep; İçelli, Orhan; Yalçın, Zeynel; Pesen, Erhan; Orak, Salim

    2013-01-01

    Highlights: ► Mass attenuation coefficients, jump factor and jump ratio for lanthanide elements are obtained. ► The method used in this experiment is combined both transmission and scattering geometry. ► Secondary gamma rays energy is 59.5 keV. ► Experimental values of jump factor and jump ratio for K shell are new. ► The experimental values are in good agreement with those calculated theoretically. - Abstract: 59.5 keV gamma rays scattered by an aluminum foil have been used as a radiation source to measure the absorption jump factor and jump ratios for absorbers Ce, Pr, Nd, Sm, Eu and Tb. The theoretical and experimental values are compared with the corresponding ones in the literature

  13. BPS Jumping Loci are Automorphic

    Science.gov (United States)

    Kachru, Shamit; Tripathy, Arnav

    2018-06-01

    We show that BPS jumping loci-loci in the moduli space of string compactifications where the number of BPS states jumps in an upper semi-continuous manner—naturally appear as Fourier coefficients of (vector space-valued) automorphic forms. For the case of T 2 compactification, the jumping loci are governed by a modular form studied by Hirzebruch and Zagier, while the jumping loci in K3 compactification appear in a story developed by Oda and Kudla-Millson in arithmetic geometry. We also comment on some curious related automorphy in the physics of black hole attractors and flux vacua.

  14. Optimal Ski Jump

    Science.gov (United States)

    Rebilas, Krzysztof

    2013-01-01

    Consider a skier who goes down a takeoff ramp, attains a speed "V", and jumps, attempting to land as far as possible down the hill below (Fig. 1). At the moment of takeoff the angle between the skier's velocity and the horizontal is [alpha]. What is the optimal angle [alpha] that makes the jump the longest possible for the fixed magnitude of the…

  15. Dynamics of nuclear proliferation

    International Nuclear Information System (INIS)

    Meyer, S.M.

    1984-01-01

    This book looks beyond policy disputes to make a systematic examination of the assumptions and contending hypotheses that constitute contemporary thinking on nuclear proliferation. Rather than determine who is right or wrong, the intent is to develop a better picture by using the various schools of thought as analytic windows. A better understanding of how the process operates should offer better guidance for predicting future nuclear proliferation and, ultimately, for controlling it. Separate chapters deal with the contending views, the technological and motivational bases of nuclear proliferation, the presence of a technological imperative, testing the motivational hypothesis, the dynamics of the process, and forecasting. Four appendices present historical decisions, the technical model, cost-estimating procedures, and procedures for estimating nuclear propensities. 288 references, 17 figures, 26 tables

  16. Dynamic modelling of nuclear steam generators

    International Nuclear Information System (INIS)

    Kerlin, T.W.; Katz, E.M.; Freels, J.; Thakkar, J.

    1980-01-01

    Moving boundary, nodal models with dynamic energy balances, dynamic mass balances, quasi-static momentum balances, and an equivalent single channel approach have been developed for steam generators used in nuclear power plants. The model for the U-tube recirculation type steam generator is described and comparisons are made of responses from models of different complexity; non-linear versus linear, high-order versus low order, detailed modeling of the control system versus a simple control assumption. The results of dynamic tests on nuclear power systems show that when this steam generator model is included in a system simulation there is good agreement with actual plant performance. (author)

  17. Incomplete Financial Markets and Jumps in Asset Prices

    DEFF Research Database (Denmark)

    Crès, Hervé; Markeprand, Tobias Ejnar; Tvede, Mich

    A dynamic pure-exchange general equilibrium model with uncertainty is studied. Fundamentals are supposed to depend continuously on states of nature. It is shown that: 1. if financial markets are complete, then asset prices vary continuously with states of nature, and; 2. if financial markets...... are incomplete, jumps in asset prices may be unavoidable. Consequently incomplete financial markets may increase volatility in asset prices significantly....

  18. Ski jumping boots limit effective take-off in ski jumping.

    Science.gov (United States)

    Virmavirta, M; Komi, P V

    2001-12-01

    In this study, we measured the vertical and horizontal take-off forces, plantar pressures and activation patterns of four muscles (vastus lateralis, gluteus maximus, tibialis anterior, gastrocnemius) in 10 ski jumpers in simulated laboratory conditions when wearing either training shoes or ski jumping boots. We found significant differences in vertical (P boots condition resulted in a smaller displacement in the final position of the following joint angles: ankle angle (P knee angle (P boots condition, significantly more pressure was recorded under the heel (P knee and hip extensors when wearing jumping boots. We conclude that the stiffness of the structure of the jumping boots may result in a forward shift of pressure, thus limiting the effective vertical force. To avoid this pressure shift, the pattern of movement of simulated take-offs should be carefully controlled, particularly when wearing training shoes.

  19. Control and filtering for semi-Markovian jump systems

    CERN Document Server

    Li, Fanbiao; Wu, Ligang

    2017-01-01

    This book presents up-to-date research developments and novel methodologies on semi-Markovian jump systems (S-MJS). It presents solutions to a series of problems with new approaches for the control and filtering of S-MJS, including stability analysis, sliding mode control, dynamic output feedback control, robust filter design, and fault detection. A set of newly developed techniques such as piecewise analysis method, positively invariant set approach, event-triggered method, and cone complementary linearization approaches are presented. Control and Filtering for Semi-Markovian Jump Systems is a comprehensive reference for researcher and practitioners working in control engineering, system sciences and applied mathematics, and is also a useful source of information for senior undergraduates and graduates in these areas. The readers will benefit from some new concepts, new models and new methodologies with practical significance in control engineering and signal processing.

  20. Birth of a hydraulic jump

    Science.gov (United States)

    Duchesne, Alexis; Bohr, Tomas; Andersen, Anders

    2017-11-01

    The hydraulic jump, i.e., the sharp transition between a supercritical and a subcritical free-surface flow, has been extensively studied in the past centuries. However, ever since Leonardo da Vinci asked it for the first time, an important question has been left unanswered: How does a hydraulic jump form? We present an experimental and theoretical study of the formation of stationary hydraulic jumps in centimeter wide channels. Two starting situations are considered: The channel is, respectively, empty or filled with liquid, the liquid level being fixed by the wetting properties and the boundary conditions. We then change the flow-rate abruptly from zero to a constant value. In an empty channel, we observe the formation of a stationary hydraulic jump in a two-stage process: First, the channel fills by the advancing liquid front, which undergoes a transition from supercritical to subcritical at some position in the channel. Later the influence of the downstream boundary conditions makes the jump move slowly upstream to its final position. In the pre-filled channel, the hydraulic jump forms at the injector edge and then moves downstream to its final position.

  1. The role of human ankle plantar flexor muscle-tendon interaction and architecture in maximal vertical jumping examined in vivo.

    Science.gov (United States)

    Farris, Dominic James; Lichtwark, Glen A; Brown, Nicholas A T; Cresswell, Andrew G

    2016-02-01

    Humans utilise elastic tendons of lower limb muscles to store and return energy during walking, running and jumping. Anuran and insect species use skeletal structures and/or dynamics in conjunction with similarly compliant structures to amplify muscle power output during jumping. We sought to examine whether human jumpers use similar mechanisms to aid elastic energy usage in the plantar flexor muscles during maximal vertical jumping. Ten male athletes performed maximal vertical squat jumps. Three-dimensional motion capture and a musculoskeletal model were used to determine lower limb kinematics that were combined with ground reaction force data in an inverse dynamics analysis. B-mode ultrasound imaging of the lateral gastrocnemius (GAS) and soleus (SOL) muscles was used to measure muscle fascicle lengths and pennation angles during jumping. Our results highlighted that both GAS and SOL utilised stretch and recoil of their series elastic elements (SEEs) in a catapult-like fashion, which likely serves to maximise ankle joint power. The resistance of supporting of body weight allowed initial stretch of both GAS and SOL SEEs. A proximal-to-distal sequence of joint moments and decreasing effective mechanical advantage early in the extension phase of the jumping movement were observed. This facilitated a further stretch of the SEE of the biarticular GAS and delayed recoil of the SOL SEE. However, effective mechanical advantage did not increase late in the jump to aid recoil of elastic tissues. © 2016. Published by The Company of Biologists Ltd.

  2. Control strategy of maximum vertical jumps: The preferred countermovement depth may not be fully optimized for jump height

    Directory of Open Access Journals (Sweden)

    Mandic Radivoj

    2016-09-01

    Full Text Available The aim of the present study was to explore the control strategy of maximum countermovement jumps regarding the preferred countermovement depth preceding the concentric jump phase. Elite basketball players and physically active non-athletes were tested on the jumps performed with and without an arm swing, while the countermovement depth was varied within the interval of almost 30 cm around its preferred value. The results consistently revealed 5.1-11.2 cm smaller countermovement depth than the optimum one, but the same difference was more prominent in non-athletes. In addition, although the same differences revealed a marked effect on the recorded force and power output, they reduced jump height for only 0.1-1.2 cm. Therefore, the studied control strategy may not be based solely on the countermovement depth that maximizes jump height. In addition, the comparison of the two groups does not support the concept of a dual-task strategy based on the trade-off between maximizing jump height and minimizing the jumping quickness that should be more prominent in the athletes that routinely need to jump quickly. Further research could explore whether the observed phenomenon is based on other optimization principles, such as the minimization of effort and energy expenditure. Nevertheless, future routine testing procedures should take into account that the control strategy of maximum countermovement jumps is not fully based on maximizing the jump height, while the countermovement depth markedly confound the relationship between the jump height and the assessed force and power output of leg muscles.

  3. Control strategy of maximum vertical jumps: The preferred countermovement depth may not be fully optimized for jump height.

    Science.gov (United States)

    Mandic, Radivoj; Knezevic, Olivera M; Mirkov, Dragan M; Jaric, Slobodan

    2016-09-01

    The aim of the present study was to explore the control strategy of maximum countermovement jumps regarding the preferred countermovement depth preceding the concentric jump phase. Elite basketball players and physically active non-athletes were tested on the jumps performed with and without an arm swing, while the countermovement depth was varied within the interval of almost 30 cm around its preferred value. The results consistently revealed 5.1-11.2 cm smaller countermovement depth than the optimum one, but the same difference was more prominent in non-athletes. In addition, although the same differences revealed a marked effect on the recorded force and power output, they reduced jump height for only 0.1-1.2 cm. Therefore, the studied control strategy may not be based solely on the countermovement depth that maximizes jump height. In addition, the comparison of the two groups does not support the concept of a dual-task strategy based on the trade-off between maximizing jump height and minimizing the jumping quickness that should be more prominent in the athletes that routinely need to jump quickly. Further research could explore whether the observed phenomenon is based on other optimization principles, such as the minimization of effort and energy expenditure. Nevertheless, future routine testing procedures should take into account that the control strategy of maximum countermovement jumps is not fully based on maximizing the jump height, while the countermovement depth markedly confound the relationship between the jump height and the assessed force and power output of leg muscles.

  4. Jump conditions in transonic equilibria

    International Nuclear Information System (INIS)

    Guazzotto, L.; Betti, R.; Jardin, S. C.

    2013-01-01

    In the present paper, the numerical calculation of transonic equilibria, first introduced with the FLOW code in Guazzotto et al.[Phys. Plasmas 11, 604 (2004)], is critically reviewed. In particular, the necessity and effect of imposing explicit jump conditions at the transonic discontinuity are investigated. It is found that “standard” (low-β, large aspect ratio) transonic equilibria satisfy the correct jump condition with very good approximation even if the jump condition is not explicitly imposed. On the other hand, it is also found that high-β, low aspect ratio equilibria require the correct jump condition to be explicitly imposed. Various numerical approaches are described to modify FLOW to include the jump condition. It is proved that the new methods converge to the correct solution even in extreme cases of very large β, while they agree with the results obtained with the old implementation of FLOW in lower-β equilibria.

  5. Three lectures on macroscopic aspects of nuclear dynamics

    International Nuclear Information System (INIS)

    Swiatecki, W.J.

    1979-03-01

    These lectures concentrate on macroscopic aspects of nuclear dynamics, those aspects that come into prominence when the number of nucleons, A, is large, A >> 1. An attempt is made to set up a theory of the dynamics of nuclear shape changes, for small (sub-sonic) collective velocities. To set up the equations of motion one needs three forces: conservative, dissipative, and inertial. The first lecture deals with statics, i.e., it discusses methods of treating the Potential Energy Function of nuclear systems. From the Potential Energy the conservative forces that drive the time evolution of a nuclear configuration can be deduced. The division of the underlying potential energy into Local, Proximity, and Global terms is stressed. The second lecture deals with dynamical aspects, especially with the nuclear Dissipation Function, which describes how dissipative frictional forces oppose the conservative driving forces. The underlying physics is the approximate validity of the Independent-Particle model. This, combined with the Randomization Hypothesis, leads to simple formulas that suggest that dissipative forces may often overshadow the inertial forces. The third lecture outlines the kind of dynamics that results from the balance of these forces, and describes a number of applications to nuclear fission and heavy-ion collisions of this New Dynamics. Particularly simple equations of motion are set up, and some of the consequences are explored. 18 references, 31 figures, 3 tables

  6. Sex Differences in Countermovement Jump Phase Characteristics

    Directory of Open Access Journals (Sweden)

    John J. McMahon

    2017-01-01

    Full Text Available The countermovement jump (CMJ is commonly used to explore sex differences in neuromuscular function, but previous studies have only reported gross CMJ measures or have partly examined CMJ phase characteristics. The purpose of this study was to explore differences in CMJ phase characteristics between male and female athletes by comparing the force-, power-, velocity-, and displacement-time curves throughout the entire CMJ, in addition to gross measures. Fourteen men and fourteen women performed three CMJs on a force platform from which a range of kinetic and kinematic variables were calculated via forward dynamics. Jump height (JH, reactive strength index modified, relative peak concentric power, and eccentric and concentric displacement, velocity, and relative impulse were all greater for men (g = 0.58–1.79. Relative force-time curves were similar between sexes, but relative power-, velocity-, and displacement-time curves were greater for men at 90%–95% (immediately before and after peak power, 47%–54% (start of eccentric phase and 85%–100% (latter half of concentric phase, and 65%–87% (bottom of countermovement and initial concentric phase of normalized jump time, respectively. The CMJ distinguished between sexes, with men demonstrating greater JH through applying a larger concentric impulse and, thus, achieving greater velocity throughout most of the concentric phase, including take-off.

  7. Measurement of L3 subshell absorption jump ratios and jump factors for high Z elements using EDXRF technique

    International Nuclear Information System (INIS)

    Kaçal, M.R.

    2014-01-01

    Energy dispersive X-ray fluorescence technique (EDXRF) has been employed for measuring L 3 -subshell absorption jump ratios, r L 3 and jump factors, J L 3 for high Z elements. Jump factors and jump ratios for these elements have been determined by measuring L 3 subshell fluorescence parameters such as L 3 subshell X-ray production cross section σ L 3 , L 3 subshell fluorescence yield, ω L 3 , total L 3 subshell and higher subshells photoionization cross section σ L T . Measurements were performed using a Cd-109 radioactive point source and an Si(Li) detector in direct excitation experimental geometry. Measured values for jump factors and jump ratios have been compared with theoretically calculated and other experimental values. - Highlights: • This paper regards L 3 subshell absorption jump ratios and jump factors using the EDXRF method. • These parameters were measured using a new method. • This method is more useful than other methods which require much effort. • Results are in good agreement with theoretical and experimental values

  8. Experimental study of the hydraulic jump in a hydraulic jump in a ...

    African Journals Online (AJOL)

    The hydraulic jump in a sloped rectangular channel is theoretically and experimentally examined. The study aims to determine the effect of the channel's slope on the sequent depth ratio of the jump. A theoretical relation is proposed for the inflow Froude number as function of the sequent depth ratio and the channel slope.

  9. Risk-Sensitive Control of Pure Jump Process on Countable Space with Near Monotone Cost

    International Nuclear Information System (INIS)

    Suresh Kumar, K.; Pal, Chandan

    2013-01-01

    In this article, we study risk-sensitive control problem with controlled continuous time pure jump process on a countable space as state dynamics. We prove multiplicative dynamic programming principle, elliptic and parabolic Harnack’s inequalities. Using the multiplicative dynamic programing principle and the Harnack’s inequalities, we prove the existence and a characterization of optimal risk-sensitive control under the near monotone condition

  10. Mechanics of jumping on water

    Science.gov (United States)

    Kim, Ho-Young; Amauger, Juliette; Jeong, Han-Bi; Lee, Duck-Gyu; Yang, Eunjin; Jablonski, Piotr G.

    2017-10-01

    Some species of semiaquatic arthropods including water striders and springtails can jump from the water surface to avoid sudden dangers like predator attacks. It was reported recently that the jump of medium-sized water striders is a result of surface-tension-dominated interaction of thin cylindrical legs and water, with the leg movement speed nearly optimized to achieve the maximum takeoff velocity. Here we describe the mathematical theories to analyze this exquisite feat of nature by combining the review of existing models for floating and jumping and the introduction of the hitherto neglected capillary forces at the cylinder tips. The theoretically predicted dependence of body height on time is shown to match the observations of the jumps of the water striders and springtails regardless of the length of locomotory appendages. The theoretical framework can be used to understand the design principle of small jumping animals living on water and to develop biomimetic locomotion technology in semiaquatic environments.

  11. Ankle brace attenuates the medial-lateral ground reaction force during basketball rebound jump

    Directory of Open Access Journals (Sweden)

    Alex Castro

    Full Text Available ABSTRACT Introduction: The jump landing is the leading cause for ankle injuries in basketball. It has been shown that the use of ankle brace is effective to prevent these injuries by increasing the mechanical stability of the ankle at the initial contact of the foot with the ground. Objective: To investigate the effects of ankle brace on the ground reaction force (GRF during the simulation of a basketball rebound jump. Method: Eleven young male basketball players randomly carried out a simulated basketball rebound jump under two conditions, with and without ankle brace (lace-up. Dynamic parameters of vertical GRF (take-off and landing vertical peaks, time to take-off and landing vertical peaks, take-off impulse peak, impulse at 50 milliseconds of landing, and jump height and medial-lateral (take-off and landing medial-lateral peaks, and time to reach medial-lateral peaks at take-off and landing were recorded by force platform during rebound jumps in each tested condition. The comparisons between the tested conditions were performed by paired t test (P0.05. Conclusion: The use of ankle brace during basketball rebound jumps attenuates the magnitude of medial-lateral GRF on the landing phase, without changing the vertical GRF. This finding indicates that the use of brace increases the medial-lateral mechanical protection by decreasing the shear force exerted on the athlete’s body without change the application of propulsive forces in the take-off and the impact absorption quality in the landing during the basketball rebound jump.

  12. Toward the fundamental theory of nuclear matter physics: The microscopic theory of nuclear collective dynamics

    International Nuclear Information System (INIS)

    Sakata, F.; Marumori, T.; Hashimoto, Y.; Tsukuma, H.; Yamamoto, Y.; Terasaki, J.; Iwasawa, Y.; Itabashi, H.

    1992-01-01

    Since the research field of nuclear physics is expanding rapidly, it is becoming more imperative to develop the microscopie theory of nuclear matter physics which provides us with a unified understanding of diverse phenomena exhibited by nuclei. An estabishment of various stable mean-fields in nuclei allows us to develop the microscopie theory of nuclear collective dynamics within the mean-field approximation. The classical-level theory of nuclear collective dynamics is developed by exploiting the symplectic structure of the timedependent Hartree-Fock (TDHF)-manifold. The importance of exploring the single-particle dynamics, e.g. the level-crossing dynamics in connection with the classical order-to-chaos transition mechanism is pointed out. Since the classical-level theory os directly related to the full quantum mechanical boson expansion theory via the symplectic structure of the TDHF-manifold, the quantum theory of nuclear collective dynamics is developed at the dictation of what os developed on the classical-level theory. The quantum theory thus formulated enables us to introduce the quantum integrability and quantum chaoticity for individual eigenstates. The inter-relationship between the classical-level and quantum theories of nuclear collective dynamics might play a decisive role in developing the quantum theory of many-body problems. (orig.)

  13. Estimation of Joint Forces and Moments for the In-Run and Take-Off in Ski Jumping Based on Measurements with Wearable Inertial Sensors

    Directory of Open Access Journals (Sweden)

    Grega Logar

    2015-05-01

    Full Text Available This study uses inertial sensors to measure ski jumper kinematics and joint dynamics, which was until now only a part of simulation studies. For subsequent calculation of dynamics in the joints, a link-segment model was developed. The model relies on the recursive Newton–Euler inverse dynamics. This approach allowed the calculation of the ground reaction force at take-off. For the model validation, four ski jumpers from the National Nordic center performed a simulated jump in a laboratory environment on a force platform; in total, 20 jumps were recorded. The results fit well to the reference system, presenting small errors in the mean and standard deviation and small root-mean-square errors. The error is under 12% of the reference value. For field tests, six jumpers participated in the study; in total, 28 jumps were recorded. All of the measured forces and moments were within the range of prior simulated studies. The proposed system was able to indirectly provide the values of forces and moments in the joints of the ski-jumpers’ body segments, as well as the ground reaction force during the in-run and take-off phases in comparison to the force platform installed on the table. Kinematics assessment and estimation of dynamics parameters can be applied to jumps from any ski jumping hill.

  14. Estimation of joint forces and moments for the in-run and take-off in ski jumping based on measurements with wearable inertial sensors.

    Science.gov (United States)

    Logar, Grega; Munih, Marko

    2015-05-13

    This study uses inertial sensors to measure ski jumper kinematics and joint dynamics, which was until now only a part of simulation studies. For subsequent calculation of dynamics in the joints, a link-segment model was developed. The model relies on the recursive Newton-Euler inverse dynamics. This approach allowed the calculation of the ground reaction force at take-off. For the model validation, four ski jumpers from the National Nordic center performed a simulated jump in a laboratory environment on a force platform; in total, 20 jumps were recorded. The results fit well to the reference system, presenting small errors in the mean and standard deviation and small root-mean-square errors. The error is under 12% of the reference value. For field tests, six jumpers participated in the study; in total, 28 jumps were recorded. All of the measured forces and moments were within the range of prior simulated studies. The proposed system was able to indirectly provide the values of forces and moments in the joints of the ski-jumpers' body segments, as well as the ground reaction force during the in-run and take-off phases in comparison to the force platform installed on the table. Kinematics assessment and estimation of dynamics parameters can be applied to jumps from any ski jumping hill.

  15. Force generation and temperature-jump and length-jump tension transients in muscle fibers.

    Science.gov (United States)

    Davis, J S; Rodgers, M E

    1995-01-01

    Muscle tension rises with increasing temperature. The kinetics that govern the tension rise of maximally Ca(2+)-activated, skinned rabbit psoas fibers over a temperature range of 0-30 degrees C was characterized in laser temperature-jump experiments. The kinetic response is simple and can be readily interpreted in terms of a basic three-step mechanism of contraction, which includes a temperature-sensitive rapid preequilibrium(a) linked to a temperature-insensitive rate-limiting step and followed by a temperature-sensitive tension-generating step. These data and mechanism are compared and contrasted with the more complex length-jump Huxley-Simmons phases in which all states that generate tension or bear tension are perturbed. The rate of the Huxley-Simmons phase 4 is temperature sensitive at low temperatures but plateaus at high temperatures, indicating a change in rate-limiting step from a temperature-sensitive (phase 4a) to a temperature-insensitive reaction (phase 4b); the latter appears to correlate with the slow, temperature-insensitive temperature-jump relaxation. Phase 3 is absent in the temperature-jump, which excludes it from tension generation. We confirm that de novo tension generation occurs as an order-disorder transition during phase 2slow and the equivalent, temperature-sensitive temperature-jump relaxation. PMID:7612845

  16. The hydrogen dynamics of CsH5(PO4)2 studied by means of nuclear magnetic resonance

    International Nuclear Information System (INIS)

    Gradisek, A; Dimnik, B; Vrtnik, S; Dolinsek, J; Wencka, M; Zdanowska Fraczek, M; Lavrova, G V

    2011-01-01

    We have investigated the hydrogen dynamics of cesium pentahydrogen diphosphate, CsH 5 (PO 4 ) 2 , by means of nuclear magnetic resonance (NMR) spectroscopy, in order to address the question of why there is no superprotonic phase transition in this compound, in contrast to other structurally similar hydrogen-bonded ionic salts, where a superprotonic transition is frequently found to be present. The analysis of the NMR spectrum and the spin-lattice relaxation rate revealed that the temperature-dependent hydrogen dynamics of CsH 5 (PO 4 ) 2 involves motional processes (the intra-H-bond jumps and the inter-H-bond jumps at elevated temperatures, as a mechanism of the ionic conductivity) identical to those for the other H-bonded superprotonic salts. The considerably stronger H-bond network in CsH 5 (PO 4 ) 2 prompts the search for a higher superprotonic transition temperature. However, due to the relatively weak bonding between the {[H 2 PO 4 ]} ∞ planes in the [100] direction of the CsH 5 (PO 4 ) 2 structure by means of the ionic bonding via the cesium atoms and the small number of H bonds in that direction (where out of five H bonds in the unit cell, four are directed within the {[H 2 PO 4 ]} ∞ planes and only one is between the planes), the bonds between the planes become thermally broken and the crystal melts before the H-bond network rearranges via water release into an open structure typical of the superprotonic phase. Were the coupling between the {[H 2 PO 4 ]} ∞ planes in the CsH 5 (PO 4 ) 2 somewhat stronger, the superprotonic transition would occur in the same manner as it does in other structurally related hydrogen-bonded ionic salts.

  17. Biomechanics research in ski jumping, 1991-2006.

    Science.gov (United States)

    Schwameder, Hermann

    2008-01-01

    In this paper, I review biomechanics research in ski jumping with a specific focus on publications presented between 1991 and 2006 on performance enhancement, limiting factors of the take-off, specific training and conditioning, aerodynamics, and safety. The first section presents a brief description of ski jumping phases (in-run, take-off, early flight, stable flight, and landing) regarding the biomechanical and functional fundamentals. The most important and frequently used biomechanical methods in ski jumping (kinematics, ground reaction force analyses, muscle activation patterns, aerodynamics) are summarized in the second section. The third section focuses on ski jumping articles and research findings published after the establishment of the V-technique in 1991, as the introduction of this technique has had a major influence on performance enhancement, ski jumping regulations, and the construction of hill profiles. The final section proposes topics for future research in the biomechanics of ski jumping, including: take-off and early flight and the relative roles of vertical velocity and forward somersaulting angular momentum; optimal jumping patterns utilizing the capabilities of individual athletes; development of kinematic and kinetic feedback systems for hill jumps; comparisons of simulated and hill jumps; effect of equipment modifications on performance and safety enhancement.

  18. Preliminary analysis of beam trip and beam jump events in an ADS prototype

    International Nuclear Information System (INIS)

    D'Angelo, A.; Bianchini, G.; Carta, M.

    2001-01-01

    A core dynamics analysis relevant to some typical current transient events has been carried out on an 80 MW energy amplifier prototype (EAP) fuelled by mixed oxides and cooled by lead-bismuth. Fuel and coolant temperature trends relevant to recovered beam trip and beam jump events have been preliminary investigated. Beam trip results show that the drop in temperature of the core outlet coolant would be reduced a fair amount if the beam intensity could be recovered within few seconds. Due to the low power density in the EAP fuel, the beam jump from 50% of the nominal power transient evolves benignly. The worst thinkable current transient, beam jump with cold reactor, mainly depends on the coolant flow conditions. In the EAP design, the primary loop coolant flow is assured by natural convection and is enhanced by a particular system of cover gas injection into the bottom part of the riser. If this system of coolant flow enhancement is assumed in function, even the beam jump with cold reactor event evolves without severe consequences. (authors)

  19. Filtering and control of stochastic jump hybrid systems

    CERN Document Server

    Yao, Xiuming; Zheng, Wei Xing

    2016-01-01

    This book presents recent research work on stochastic jump hybrid systems. Specifically, the considered stochastic jump hybrid systems include Markovian jump Ito stochastic systems, Markovian jump linear-parameter-varying (LPV) systems, Markovian jump singular systems, Markovian jump two-dimensional (2-D) systems, and Markovian jump repeated scalar nonlinear systems. Some sufficient conditions are first established respectively for the stability and performances of those kinds of stochastic jump hybrid systems in terms of solution of linear matrix inequalities (LMIs). Based on the derived analysis conditions, the filtering and control problems are addressed. The book presents up-to-date research developments and novel methodologies on stochastic jump hybrid systems. The contents can be divided into two parts: the first part is focused on robust filter design problem, while the second part is put the emphasis on robust control problem. These methodologies provide a framework for stability and performance analy...

  20. Physical aging and structural recovery in a colloidal glass subjected to volume-fraction jump conditions

    Science.gov (United States)

    Peng, Xiaoguang; McKenna, Gregory B.

    2016-04-01

    Three important kinetic phenomena have been cataloged by Kovacs in the investigation of molecular glasses during structural recovery or physical aging. These are responses to temperature-jump histories referred to as intrinsic isotherms, asymmetry of approach, and memory effect. Here we use a thermosensitive polystyrene-poly (N -isopropylacrylamide)-poly (acrylic acid) core-shell particle-based dispersion as a colloidal model and by working at a constant number concentration of particles we use temperature changes to create volume-fraction changes. This imposes conditions similar to those defined by Kovacs on the colloidal system. We use creep experiments to probe the physical aging and structural recovery behavior of colloidal glasses in the Kovacs-type histories and compare the results with those seen in molecular glasses. We find that there are similarities in aging dynamics between molecular glasses and colloidal glasses, but differences also persist. For the intrinsic isotherms, the times teq needed for relaxing or evolving into the equilibrium (or stationary) state are relatively insensitive to the volume fraction and the values of teq are longer than the α -relaxation time τα at the same volume fraction. On the other hand, both of these times grow at least exponentially with decreasing temperature in molecular glasses. For the asymmetry of approach, similar nonlinear behavior is observed for both colloidal and molecular glasses. However, the equilibration time teq is the same for both volume-fraction up-jump and down-jump experiments, different from the finding in molecular glasses that it takes longer for the structure to evolve into equilibrium for the temperature up-jump condition than for the temperature down-jump condition. For the two-step volume-fraction jumps, a memory response is observed that is different from observations of structural recovery in two-step temperature histories in molecular glasses. The concentration dependence of the dynamics

  1. Electron-nuclear corellations for photoinduced dynamics in molecular dimers

    Science.gov (United States)

    Kilin, Dmitri S.; Pereversev, Yuryi V.; Prezhdo, Oleg V.

    2003-03-01

    Ultrafast photoinduced dynamics of electronic excitation in molecular dimers is drastically affected by dynamic reorganization of of inter- and intra- molecular nuclear configuration modelled by quantized nuclear degree of freedom [1]. The dynamics of the electronic population and nuclear coherence is analyzed with help of both numerical solution of the chain of coupled differential equations for mean coordinate, population inversion, electronic-vibrational correlation etc.[2] and by propagating the Gaussian wavepackets in relevant adiabatic potentials. Intriguing results were obtained in the approximation of small energy difference and small change of nuclear equilibrium configuration for excited electronic states. In the limiting case of resonance between electronic states energy difference and frequency of the nuclear mode these results have been justified by comparison to exactly solvable Jaynes-Cummings model. It has been found that the photoinduced processes in dimer are arranged according to their time scales:(i) fast scale of nuclear motion,(ii) intermediate scale of dynamical redistribution of electronic population between excited states as well as growth and dynamics of electronic -nuclear correlation,(iii) slow scale of electronic population approaching to the quasiequilibrium distribution, decay of electronic-nuclear correlation, and diminishing the amplitude of mean coordinate oscillations, accompanied by essential growth of the nuclear coordinate dispersion associated with the overall nuclear wavepacket width. Demonstrated quantum-relaxational features of photoinduced vibronic dinamical processess in molecular dimers are obtained by simple method, applicable to large biological systems with many degrees of freedom. [1] J. A. Cina, D. S. Kilin, T. S. Humble, J. Chem. Phys. (2003) in press. [2] O. V. Prezhdo, J. Chem. Phys. 117, 2995 (2002).

  2. Jump spillover between oil prices and exchange rates

    Science.gov (United States)

    Li, Xiao-Ping; Zhou, Chun-Yang; Wu, Chong-Feng

    2017-11-01

    In this paper, we investigate the jump spillover effects between oil prices and exchange rates. To identify the latent historical jumps for exchange rates and oil prices, we use a Bayesian MCMC approach to estimate the stochastic volatility model with correlated jumps in both returns and volatilities for each. We examine the simultaneous jump intensities and the conditional jump spillover probabilities between oil prices and exchange rates, finding strong evidence of jump spillover effects. Further analysis shows that the jump spillovers are mainly due to exogenous events such as financial crises and geopolitical events. Thus, the findings have important implications for financial risk management.

  3. New trends in nuclear collective dynamics

    International Nuclear Information System (INIS)

    Abe, Yasuhisa; Horiuchi, Hisashi; Matsuyanagi, Kenichi

    1992-01-01

    New Trends in Nuclear Collective Dynamics comprises reviews by well-known researchers from international centers of nuclear physics. This overview of recent advances concentrates on - order amd chaos in finite quantum systems - dissipation in heavy-ion collions - collective motion in warm nuclei - time-dependent mean-field theory with collision terms - nuclear fission and multi-dimensional tunneling - large scale collective motion see hints under the relevent topics. (orig.) With 90 figs

  4. Characteristics of Air Entrainment in Hydraulic Jump

    Science.gov (United States)

    Albarkani, M. S. S.; Tan, L. W.; Al-Gheethi, A.

    2018-04-01

    The characteristics of hydraulic jump, especially the air entrainment within jump is still not properly understood. Therefore, the current work aimed to determine the size and number of air entrainment formed in hydraulic jump at three different Froude numbers and to obtain the relationship between Froude number with the size and number of air entrainment in hydraulic jump. Experiments of hydraulic jump were conducted in a 10 m long and 0.3 m wide Armfield S6MKII glass-sided tilting flume. Hydraulic jumps were produced by flow under sluice gate with varying Froude number. The air entrainment of the hydraulic jump was captured with a Canon Power Shot SX40 HS digital camera in video format at 24 frames per second. Three discharges have been considered, i.e. 0.010 m3/s, 0.011 m3/s, and 0.013 m3/s. For hydraulic jump formed in each discharge, 32 frames were selected for the purpose of analysing the size and number of air entrainment in hydraulic jump. The results revealed that that there is a tendency to have greater range in sizes of air bubbles as Fr1 increases. Experiments with Fr1 = 7.547. 7.707, and 7.924 shown that the number of air bubbles increases exponentially with Fr1 at a relationship of N = 1.3814 e 0.9795Fr1.

  5. The validity and reliability of the my jump 2 app for measuring the reactive strength index and drop jump performance.

    Science.gov (United States)

    Haynes, Tom; Bishop, Chris; Antrobus, Mark; Brazier, Jon

    2018-03-27

    This is the first study to independently assess the concurrent validity and reliability of the My Jump 2 app for measuring drop jump performance. It is also the first to evaluate the app's ability to measure the reactive strength index (RSI). Fourteen male sport science students (age: 29.5 ± 9.9 years) performed three drop jumps from 20 cm and 40 cm (totalling 84 jumps), assessed via a force platform and the My Jump 2 app. Reported metrics included reactive strength index, jump height, ground contact time, and mean power. Measurements from both devices were compared using the intraclass correlation coefficient (ICC), Pearson product moment correlation coefficient (r), Cronbach's alpha (α), coefficient of variation (CV) and BlandAltman plots. Near perfect agreement was seen between devices at 20 cm for RSI (ICC = 0.95) and contact time (ICC = 0.99) and at 40 cm for RSI (ICC = 0.98), jump height (ICC = 0.96) and contact time (ICC = 0.92); with very strong agreement seen at 20 cm for jump height (ICC = 0.80). In comparison with the force plate the app showed good validity for RSI (20 cm: r = 0.94; 40 cm; r = 0.97), jump height (20 cm: r = 0.80; 40 cm; r = 0.96) and contact time (20 cm = 0.96; 40 cm; r = 0.98). The results of the present study show that the My Jump 2 app is a valid and reliable tool for assessing drop jump performance.

  6. Predicting vertical jump height from bar velocity.

    Science.gov (United States)

    García-Ramos, Amador; Štirn, Igor; Padial, Paulino; Argüelles-Cienfuegos, Javier; De la Fuente, Blanca; Strojnik, Vojko; Feriche, Belén

    2015-06-01

    The objective of the study was to assess the use of maximum (Vmax) and final propulsive phase (FPV) bar velocity to predict jump height in the weighted jump squat. FPV was defined as the velocity reached just before bar acceleration was lower than gravity (-9.81 m·s(-2)). Vertical jump height was calculated from the take-off velocity (Vtake-off) provided by a force platform. Thirty swimmers belonging to the National Slovenian swimming team performed a jump squat incremental loading test, lifting 25%, 50%, 75% and 100% of body weight in a Smith machine. Jump performance was simultaneously monitored using an AMTI portable force platform and a linear velocity transducer attached to the barbell. Simple linear regression was used to estimate jump height from the Vmax and FPV recorded by the linear velocity transducer. Vmax (y = 16.577x - 16.384) was able to explain 93% of jump height variance with a standard error of the estimate of 1.47 cm. FPV (y = 12.828x - 6.504) was able to explain 91% of jump height variance with a standard error of the estimate of 1.66 cm. Despite that both variables resulted to be good predictors, heteroscedasticity in the differences between FPV and Vtake-off was observed (r(2) = 0.307), while the differences between Vmax and Vtake-off were homogenously distributed (r(2) = 0.071). These results suggest that Vmax is a valid tool for estimating vertical jump height in a loaded jump squat test performed in a Smith machine. Key pointsVertical jump height in the loaded jump squat can be estimated with acceptable precision from the maximum bar velocity recorded by a linear velocity transducer.The relationship between the point at which bar acceleration is less than -9.81 m·s(-2) and the real take-off is affected by the velocity of movement.Mean propulsive velocity recorded by a linear velocity transducer does not appear to be optimal to monitor ballistic exercise performance.

  7. Change in Counter movement Jump Strategy by Varying Jump Height Based on Simplified Framework for Center of Mass Mechanics

    International Nuclear Information System (INIS)

    Kim, Seyoung

    2017-01-01

    In this study, we investigated how a jumping strategy changes with an increase in the vertical jump height for a resultant ground reaction force (GRF) vector. We expected that the resultant force vector between two sequential motion phases (i.e., countermovement and push-off) of the counter movement jump would significantly change with the vertical jump height to take advantage of the resulting supportive force (i.e., an initial push-off force larger than the body weight) through the counter movement phase. Nine healthy young subjects were instructed to jump straight up to five different height levels ranging from 191 cm to 221 cm, and the kinematic and kinetic data were obtained in regular trials. The results showed that a lower center of mass position and larger resultant force vector were clearly observed in a higher jump, implying that the counter movement strategy changed with the vertical jump height to prepare for sufficient joint deviation and obtain a force advantage for larger push-off work.

  8. Change in Counter movement Jump Strategy by Varying Jump Height Based on Simplified Framework for Center of Mass Mechanics

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seyoung [Korea Institute of Machinery and Materials(KIMM), Daejeon (Korea, Republic of)

    2017-04-15

    In this study, we investigated how a jumping strategy changes with an increase in the vertical jump height for a resultant ground reaction force (GRF) vector. We expected that the resultant force vector between two sequential motion phases (i.e., countermovement and push-off) of the counter movement jump would significantly change with the vertical jump height to take advantage of the resulting supportive force (i.e., an initial push-off force larger than the body weight) through the counter movement phase. Nine healthy young subjects were instructed to jump straight up to five different height levels ranging from 191 cm to 221 cm, and the kinematic and kinetic data were obtained in regular trials. The results showed that a lower center of mass position and larger resultant force vector were clearly observed in a higher jump, implying that the counter movement strategy changed with the vertical jump height to prepare for sufficient joint deviation and obtain a force advantage for larger push-off work.

  9. Determinant Factors of the Squat Jump in Sprinting and Jumping Athletes

    Directory of Open Access Journals (Sweden)

    González-Badillo Juan José

    2017-08-01

    Full Text Available The aim of this study was to assess the relationship between strength variables and maximum velocity (Vmax in the squat jump (SJ in sprinting and jumping athletes. Thirty-two sprinting and jumping athletes of national level (25.4 ± 4.5 years; 79.4 ± 6.9 kg and 180.4 ± 6.0 cm participated in the study. Vmax in the SJ showed significant relationships with peak force 1 (PF1 (r = 0.82, p ≤ 0.001, peak force 2 (PF2 (r = 0.68, p ≤ 0.001, PF2 by controlling for PF1 (r = 0.30, non-significant, the maximum rate of force development at peak force 1 (RFDmax1 (r = 0.62, p ≤ 0.001, mean RFD 1 (RFDmean1 (r = 0.48, p ≤ 0.01, mean RFD 2 (RFDmean2 (r = 0.70, p ≤ 0.001, force at RFDmax1 (r = 0.36, p ≤ 0.05, force at RFDmax2 (r = 0.83, p ≤ 0.001 and force at RFDmax2 by controlling for PF1 (r = 0.40, p ≤ 0.05. However, Vmax in the SJ was associated negatively with the ratio PF2/PF1 (r = -0.54, p ≤ 0.01, time at peak force 2 (Tp2 (r = -0.64, p ≤ 0.001 and maximum rate of force development at peak force 2 (RFDmax2 (r = -0.71, p ≤ 0.001. These findings indicate that the peak force achieved at the beginning of the movement (PF1 is the main predictor of performance in jumping, although the RFDmax values and the ratio PF2/PF1 are also variables to be taken into account when analyzing the determinant factors of vertical jumping.

  10. Drop jumping. II. The influence of dropping height on the biomechanics of drop jumping

    NARCIS (Netherlands)

    Bobbert, M F; Huijing, P A; van Ingen Schenau, G J

    In the literature, athletes preparing for explosive activities are recommended to include drop jumping in their training programs. For the execution of drop jumps, different techniques and different dropping heights can be used. This study was designed to investigate for the performance of bounce

  11. A Jump Diffusion Model for Volatility and Duration

    DEFF Research Database (Denmark)

    Wei, Wei; Pelletier, Denis

    by the market microstructure theory. Traditional measures of volatility do not utilize durations. I adopt a jump diffusion process to model the persistence of intraday volatility and conditional duration, and their interdependence. The jump component is disentangled from the continuous part of the price......, volatility and conditional duration process. I develop a MCMC algorithm for the inference of irregularly spaced multivariate process with jumps. The algorithm provides smoothed estimates of the latent variables such as spot volatility, jump times and jump sizes. I apply this model to IBM data and I find...... meaningful relationship between volatility and conditional duration. Also, jumps play an important role in the total variation, but the jump variation is smaller than traditional measures that use returns sampled at lower frequency....

  12. Studying dynamics of indicators of nuclear power stations exploitation (the case of US nuclear power stations)

    OpenAIRE

    Varshavsky, Leonid

    2013-01-01

    Analysis of external and internal factors influencing significant improvement of economic indicators of US nuclear power stations in the 1990s is carried out. Approaches to modeling dynamics of capacity factors of nuclear power stations are proposed. Comparative analysis of dynamics of capacity factors and occupational radiation exposure for various generations of US nuclear power plants is carried out. Dynamical characteristics of «learning by doing» effects for analyzed indicators are measu...

  13. Undular Hydraulic Jump

    Directory of Open Access Journals (Sweden)

    Oscar Castro-Orgaz

    2015-04-01

    Full Text Available The transition from subcritical to supercritical flow when the inflow Froude number Fo is close to unity appears in the form of steady state waves called undular hydraulic jump. The characterization of the undular hydraulic jump is complex due to the existence of a non-hydrostatic pressure distribution that invalidates the gradually-varied flow theory, and supercritical shock waves. The objective of this work is to present a mathematical model for the undular hydraulic jump obtained from an approximate integration of the Reynolds equations for turbulent flow assuming that the Reynolds number R is high. Simple analytical solutions are presented to reveal the physics of the theory, and a numerical model is used to integrate the complete equations. The limit of application of the theory is discussed using a wave breaking condition for the inception of a surface roller. The validity of the mathematical predictions is critically assessed using physical data, thereby revealing aspects on which more research is needed

  14. Comparison of the Hang High-Pull and Loaded Jump Squat for the Development of Vertical Jump and Isometric Force-Time Characteristics.

    Science.gov (United States)

    Oranchuk, Dustin J; Robinson, Tracey L; Switaj, Zachary J; Drinkwater, Eric J

    2017-04-15

    Weightlifting movements have high skill demands and require expert coaching. Loaded jumps have a comparably lower skill demand, but may be similarly effective for improving explosive performance. The purpose of this study was to compare vertical jump performance, isometric force, and rate of force development (RFD) following a ten-week intervention employing the hang high-pull (hang-pull) or trap-bar jump squat (jump-squat). Eighteen NCAA Division II swimmers (8 males, 10 females) with at least one year of resistance training experience volunteered to participate. Testing included the squat jump (SJ), countermovement jump (CMJ) and the isometric mid-thigh pull (IMTP). Vertical ground reaction forces were analyzed to obtain jump height and relative peak power. Relative peak force, peak RFD and relative force at five time bands were obtained from the IMTP. Subjects were randomly assigned to either a hang-pull (n = 9) or jump-squat (n = 9) training group and completed a ten-week, volume-equated, periodized training program. While there was a significant main effect of training for both groups, no statistically significant between-group differences were found (p ≥ 0.17) for any of the dependent variables. However, medium effect sizes in favor of the jump-squat training group were seen in SJ height (d = 0.56) and SJ peak power (d = 0.69). Loaded jumps seem equally effective as weightlifting derivatives for improving lower-body power in experienced athletes. Since loaded jumps require less skill and less coaching expertise than weightlifting, loaded jumps should be considered where coaching complex movements is difficult.

  15. Tests for nonrandomness in quantum jumps

    International Nuclear Information System (INIS)

    Berkeland, D.J.; Raymondson, D.A.; Tassin, V.M.

    2004-01-01

    In a fundamental test of quantum mechanics, we have observed 228 000 quantum jumps of a single trapped and laser cooled 88 Sr + ion. This represents a statistical increase of two orders of magnitude over previous similar analyses of quantum jumps. Compared to other searches for nonrandomness in quantum-mechanical processes, using quantum jumps simplifies the interpretation of data by eliminated multiparticle effects and providing near-unit detection efficiency of transitions. We measure the fractional reduction in the entropy of information to be -4 when the value of any interval between quantum jumps is known. We also find that the number of runs of successively increasing or decreasing interval times agrees with the theoretically expected values. Furthermore, we analyze 238 000 quantum jumps from two simultaneously confined ions and find that the number of apparently coincidental transitions is as expected. Finally, we observe 8400 spontaneous decays of two simultaneously trapped ions and find that the number of apparently coincidental decays from the metastable state agrees with the expected value. We find no evidence for short- or long-term correlations in the intervals of the quantum jumps or in the decay of the quantum states, in agreement with quantum theory

  16. Dynamics and Thermodynamics with Nuclear Degrees of Freedom

    CERN Document Server

    Chomaz, Philippe; Trautmann, Wolfgang; Yennello, Sherry J

    2006-01-01

    The study of nuclear reaction dynamics and thermodynamics with nuclear degrees of freedom has progressed dramatically in the past 20 years, from inclusive charge distributions to exclusive isotopically resolved fragment observables and from schematic phenomenological break-up models to sophisticated quantum many-body transport theories. A coherent and quantitative understanding of reaction mechanisms and of the underlying nuclear matter equation of state is emerging from the analysis of experimental data and from the theoretical modeling of heavy ion reactions. In addition, the accumulated evidence for phenomena related to the liquid-gas phase transition of nuclear matter has triggered interdisciplinary activities and the transfer of useful methods. In the near future, the availability of radioactive beam facilities is expected to provide unique opportunities for extending our knowledge of the dynamic properties and the nuclear phase diagram towards exotic nuclear systems with important astrophysical implicat...

  17. Biomechanical Analysis of the Jump Shot in Basketball

    Directory of Open Access Journals (Sweden)

    Struzik Artur

    2014-10-01

    Full Text Available Basketball players usually score points during the game using the jump shot. For this reason, the jump shot is considered to be the most important element of technique in basketball and requires a high level of performance. The aim of this study was to compare the biomechanical characteristics of the lower limbs during a jump shot without the ball and a countermovement jump without an arm swing. The differences between variables provide information about the potential that an athlete can utilise during a game when performing a jump shot. The study was conducted among 20 second-league basketball players by means of a Kistler force plate and the BTS SMART system for motion analysis. The variables measured included the take-off time, mean power, peak power, relative mean power, jump height, maximum landing force and calculated impact ratio. Surprisingly, more advantageous variables were found for the jump shot. This finding suggests a very high performance level in the jump shot in the studied group and a maximum utilisation of their motor abilities. Both types of jumps were characterised by high mean and peak power values and average heights. The high forces at landing, which result in considerable impact ratios, may have prompted the studied group to land softly. Use of the countermovement jump without an arm swing is recommended to assess and predict the progression of player’s jumping ability

  18. The Relationship between the Stochastic Maximum Principle and the Dynamic Programming in Singular Control of Jump Diffusions

    Directory of Open Access Journals (Sweden)

    Farid Chighoub

    2014-01-01

    the stochastic calculus of jump diffusions and some properties of singular controls. Then, we give, under smoothness conditions, a useful verification theorem and we show that the solution of the adjoint equation coincides with the spatial gradient of the value function, evaluated along the optimal trajectory of the state equation. Finally, using these theoretical results, we solve explicitly an example, on optimal harvesting strategy, for a geometric Brownian motion with jumps.

  19. Jump-Down Performance Alterations after Space Flight

    Science.gov (United States)

    Reschke, M. F.; Kofman, I. S.; Cerisano, J. M.; Fisher, E. A.; Peters, B. T.; Miller, C. A.; Harm, D. L.; Bloomberg, J. J.

    2011-01-01

    INTRODUCTION: Successful jump performance requires functional coordination of visual, vestibular, and somatosensory systems, which are affected by prolonged exposure to microgravity. Astronauts returning from space flight exhibit impaired ability to coordinate effective landing strategies when jumping from a platform to the ground. This study compares jump strategies used by astronauts before and after flight, changes to those strategies within a test session, and recoveries in jump-down performance parameters across several postflight test sessions. These data were obtained as part of an ongoing interdisciplinary study (Functional Task Test, FTT) designed to evaluate both astronaut postflight functional performance and related physiological changes. METHODS: Seven astronauts from short-duration (Shuttle) and three from long-duration (International Space Station) flights performed 3 two-footed jumps from a platform 30 cm high onto a force plate that measured the ground reaction forces and center-of-pressure displacement from the landings. Neuromuscular activation data were collected from the medial gastrocnemius and anterior tibialis of both legs using surface electromyography electrodes. Two load cells in the platform measured the load exerted by each foot during the takeoff phase of the jump. Data were collected in 2 preflight sessions, on landing day (Shuttle only), and 1, 6, and 30 days after flight. RESULTS: Postural settling time was significantly increased on the first postflight test session and many of the astronauts tested were unable to maintain balance on their first jump landing but recovered by the third jump, showing a learning progression in which performance improvements could be attributed to adjustments in takeoff or landing strategy. Jump strategy changes were evident in reduced air time (time between takeoff and landing) and also in increased asymmetry in foot latencies on takeoff. CONCLUSIONS: The test results revealed significant decrements

  20. High-Frequency Dynamic Nuclear Polarization in the Nuclear Rotating Frame

    DEFF Research Database (Denmark)

    Farrar, C. T.; Hall, D. A.; Gerfen, G. J.

    2000-01-01

    A proton dynamic nuclear polarization (DNP) NMR signal enhancement (ϵ) close to thermal equilibrium, ϵ = 0.89, has been obtained at high field (B0 = 5 T, νepr = 139.5 GHz) using 15 mM trityl radical in a 40:60 water/glycerol frozen solution at 11 K. The electron-nuclear polarization transfer...... is performed in the nuclear rotating frame with microwave irradiation during a nuclear spin-lock pulse. The growth of the signal enhancement is governed by the rotating frame nuclear spin–lattice relaxation time (T1ρ), which is four orders of magnitude shorter than the nuclear spin–lattice relaxation time (T1n......). Due to the rapid polarization transfer in the nuclear rotating frame the experiment can be recycled at a rate of 1/T1ρ and is not limited by the much slower lab frame nuclear spin–lattice relaxation rate (1/T1n). The increased repetition rate allowed in the nuclear rotating frame provides an effective...

  1. Bimodality in macroscopic dynamics of nuclear fission

    International Nuclear Information System (INIS)

    Bastrukov, S.I.; Salamatin, V.S.; Strteltsova, O.I.; Molodtsova, I.V.; Podgainy, D.V.; )

    2000-01-01

    The elastodynamic collective model of nuclear fission is outlined whose underlying idea is that the stiff structure of nuclear shells imparts to nucleus properties typical of a small piece of an elastic solid. Emphasis is placed on the macroscopic dynamics of nuclear deformations resulting in fission by two energetically different modes. The low-energy S-mode is the fission due to disruption of elongated quadrupole spheroidal shape. The characteristic features of the high-energy T-mode of division by means of torsional shear deformations is the compact scission configuration. Analytic and numerical estimates for the macroscopic fission-barrier heights are presented, followed by discussion of fingerprints of the above dynamical bimodality in the available data [ru

  2. A Q-switched Ho:YAG laser assisted nanosecond time-resolved T-jump transient mid-IR absorbance spectroscopy with high sensitivity

    Energy Technology Data Exchange (ETDEWEB)

    Li, Deyong; Li, Yunliang; Li, Hao; Weng, Yuxiang, E-mail: yxweng@iphy.ac.cn [Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Wu, Xianyou [Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei 230031 (China); Yu, Qingxu [School of Physics and Optoelectronic Technology, Dalian University of Technology, No. 2, Linggong Road, Dalian 116023 (China)

    2015-05-15

    Knowledge of dynamical structure of protein is an important clue to understand its biological function in vivo. Temperature-jump (T-jump) time-resolved transient mid-IR absorbance spectroscopy is a powerful tool in elucidating the protein dynamical structures and the folding/unfolding kinetics of proteins in solution. A home-built setup of T-jump time-resolved transient mid-IR absorbance spectroscopy with high sensitivity is developed, which is composed of a Q-switched Cr, Tm, Ho:YAG laser with an output wavelength at 2.09 μm as the T-jump heating source, and a continuous working CO laser tunable from 1580 to 1980 cm{sup −1} as the IR probe. The results demonstrate that this system has a sensitivity of 1 × 10{sup −4} ΔOD for a single wavelength detection, and 2 × 10{sup −4} ΔOD for spectral detection in amide I′ region, as well as a temporal resolution of 20 ns. Moreover, the data quality coming from the CO laser is comparable to the one using the commercial quantum cascade laser.

  3. Pressure Jumps during Drainage in Macroporous Soils

    DEFF Research Database (Denmark)

    Soto, Diego; Paradelo Pérez, Marcos; Corral, A

    2018-01-01

    Tensiometer readings obtained at high resolution during drainage of structured soil columns revealed pressure jumps with long range correlations and burst sequences with a hierarchical structure. The statistical properties of jumps are similar to Haines jumps described in invasion percolation...... processes at pore scale, but they are much larger in amplitude and duration. Pressure jumps can result from transient redistribution of water potential in internal regions of soil and can be triggered during drainage by capillary displacements at the scale of structural pores....

  4. Multiscale integration schemes for jump-diffusion systems

    Energy Technology Data Exchange (ETDEWEB)

    Givon, D.; Kevrekidis, I.G.

    2008-12-09

    We study a two-time-scale system of jump-diffusion stochastic differential equations. We analyze a class of multiscale integration methods for these systems, which, in the spirit of [1], consist of a hybridization between a standard solver for the slow components and short runs for the fast dynamics, which are used to estimate the effect that the fast components have on the slow ones. We obtain explicit bounds for the discrepancy between the results of the multiscale integration method and the slow components of the original system.

  5. Jump Squat is More Related to Sprinting and Jumping Abilities than Olympic Push Press.

    Science.gov (United States)

    Loturco, I; Kobal, R; Maldonado, T; Piazzi, A F; Bottino, A; Kitamura, K; Abad, C C C; Pereira, L A; Nakamura, F Y

    2017-07-01

    The aim of this study was to test the relationships between jump squat (JS) and Olympic push press (OPP) power outputs and performance in sprint, squat jump (SJ), countermovement jump (CMJ) and change of direction (COD) speed tests in elite soccer players. 27 athletes performed a maximum power load test to determine their bar mean propulsive power (MPP) and bar mean propulsive velocity (MPV) in the JS and OPP exercises. Magnitude-based inference was used to compare the exercises. The MPV was almost certainly higher in the OPP than in the JS. The MPP relative to body mass (MPP REL) was possibly higher in the OPP. Only the JS MPP REL presented very large correlations with linear speed ( r> 0.7, for speed in 5, 10, 20 and 30 m) and vertical jumping abilities ( r> 0.8, for SJ and CMJ), and moderate correlation with COD speed ( r= 0.45). Although significant (except for COD), the associations between OPP outcomes and field-based measurements (speed, SJ and CMJ) were all moderate, ranging from 0.40 to 0.48. In a group composed of elite soccer players, the JS exercise is more associated with jumping and sprinting abilities than the OPP. Longitudinal studies are needed to confirm if these strong relationships imply superior training effects in favor of the JS exercise. © Georg Thieme Verlag KG Stuttgart · New York.

  6. Quantum Nuclear Extension of Electron Nuclear Dynamics on Folded Effective-Potential Surfaces

    DEFF Research Database (Denmark)

    Hall, B.; Deumens, E.; Ohrn, Y.

    2014-01-01

    A perennial problem in quantum scattering calculations is accurate theoretical treatment of low energy collisions. We propose a method of extracting a folded, nonadiabatic, effective potential energy surface from electron nuclear dynamics (END) trajectories; we then perform nuclear wave packet...

  7. Symplectic dynamics of the nuclear mean-field

    International Nuclear Information System (INIS)

    Grigorescu, Marius

    1996-01-01

    Collective and microscopic pictures of the nuclear dynamics are related in the frame of time-dependent variational principle on symplectic trial manifolds. For symmetry braking systems such manifolds are constructed by cranking, and applied to study the nuclear isovector collective excitations. (author)

  8. Influence of inverse dynamics methods on the calculation of inter-segmental moments in vertical jumping and weightlifting

    Directory of Open Access Journals (Sweden)

    Cleather Daniel J

    2010-11-01

    Full Text Available Abstract Background A vast number of biomechanical studies have employed inverse dynamics methods to calculate inter-segmental moments during movement. Although all inverse dynamics methods are rooted in classical mechanics and thus theoretically the same, there exist a number of distinct computational methods. Recent research has demonstrated a key influence of the dynamics computation of the inverse dynamics method on the calculated moments, despite the theoretical equivalence of the methods. The purpose of this study was therefore to explore the influence of the choice of inverse dynamics on the calculation of inter-segmental moments. Methods An inverse dynamics analysis was performed to analyse vertical jumping and weightlifting movements using two distinct methods. The first method was the traditional inverse dynamics approach, in this study characterized as the 3 step method, where inter-segmental moments were calculated in the local coordinate system of each segment, thus requiring multiple coordinate system transformations. The second method (the 1 step method was the recently proposed approach based on wrench notation that allows all calculations to be performed in the global coordinate system. In order to best compare the effect of the inverse dynamics computation a number of the key assumptions and methods were harmonized, in particular unit quaternions were used to parameterize rotation in both methods in order to standardize the kinematics. Results Mean peak inter-segmental moments calculated by the two methods were found to agree to 2 decimal places in all cases and were not significantly different (p > 0.05. Equally the normalized dispersions of the two methods were small. Conclusions In contrast to previously documented research the difference between the two methods was found to be negligible. This study demonstrates that the 1 and 3 step method are computationally equivalent and can thus be used interchangeably in

  9. Hydraulic jumps in a channel

    DEFF Research Database (Denmark)

    Bonn, D.; Andersen, Anders Peter; Bohr, Tomas

    2009-01-01

    We present a study of hydraulic jumps with flow predominantly in one direction, created either by confining the flow to a narrow channel with parallel walls or by providing an inflow in the form of a narrow sheet. In the channel flow, we find a linear height profile upstream of the jump as expected......'s mixing-length theory with a mixing length that is proportional to the height of the fluid layer. Using averaged boundary-layer equations, taking into account the friction with the channel walls and the eddy viscosity, the flow both upstream and downstream of the jump can be understood. For the downstream...... subcritical flow, we assume that the critical height is attained close to the channel outlet. We use mass and momentum conservation to determine the position of the jump and obtain an estimate which is in rough agreement with our experiment. We show that the averaging method with a varying velocity profile...

  10. DESIGN OF A FAST CHROMATICITY JUMP IN RHIC

    International Nuclear Information System (INIS)

    MONTAG, C.; KEWISCH, J.; BRUNO, D.; GANETIS, G.; LOUIE, W.

    2003-01-01

    During transition crossing in the .Relativistic Heavy Ion Collider (RHIC), chromaticities have to change sign. This sign change is partially accomplished by the γ t quadrupole jump; however, the resulting chromaticity jump is only Δξ x = 2.1 in the horizontal and Δξ y = 2.4 in the vertical plane. To increase the jump height, a dedicated chromaticity jump scheme has been designed, consisting of fast power supplies connected to six sextupoles per ring, which is capable of providing a chromaticity jump of Δξ = 6

  11. An efficient interpolation technique for jump proposals in reversible-jump Markov chain Monte Carlo calculations

    Science.gov (United States)

    Farr, W. M.; Mandel, I.; Stevens, D.

    2015-01-01

    Selection among alternative theoretical models given an observed dataset is an important challenge in many areas of physics and astronomy. Reversible-jump Markov chain Monte Carlo (RJMCMC) is an extremely powerful technique for performing Bayesian model selection, but it suffers from a fundamental difficulty and it requires jumps between model parameter spaces, but cannot efficiently explore both parameter spaces at once. Thus, a naive jump between parameter spaces is unlikely to be accepted in the Markov chain Monte Carlo (MCMC) algorithm and convergence is correspondingly slow. Here, we demonstrate an interpolation technique that uses samples from single-model MCMCs to propose intermodel jumps from an approximation to the single-model posterior of the target parameter space. The interpolation technique, based on a kD-tree data structure, is adaptive and efficient in modest dimensionality. We show that our technique leads to improved convergence over naive jumps in an RJMCMC, and compare it to other proposals in the literature to improve the convergence of RJMCMCs. We also demonstrate the use of the same interpolation technique as a way to construct efficient ‘global’ proposal distributions for single-model MCMCs without prior knowledge of the structure of the posterior distribution, and discuss improvements that permit the method to be used in higher dimensional spaces efficiently. PMID:26543580

  12. Nuclear dynamical diffraction using synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Dennis Eugene [Stanford Univ., CA (United States)

    1993-05-01

    The scattering of synchrotron radiation by nuclei is extensively explored in this thesis. From the multipole electric field expansion resulting from time-dependent nonrelativistic perturbation theory, a dynamical scattering theory is constructed. This theory is shown, in the many particle limit, to be equivalent to the semi-classical approach where a quantum mechanical scattering amplitude is used in the Maxwell inhomogeneous wave equation. The Moessbauer specimen whose low-lying energy levels were probed is a ferromagnetic lattice of 57Fe embedded in a yttrium iron garnet (YIG) crystal matrix. The hyperfine fields in YIG thin films were studied at low and room temperature using time-resolved quantum beat spectroscopy. Nuclear hyperfine structure quantum beats were measured using a fast plastic scintillator coincidence photodetector and associated electronics having a time resolution of 2.5 nsec. The variation of the quantum beat patterns near the Bragg [0 0 2] diffraction peak gave a Lamb-Moessbauer factor of 8.2±0.4. Exploring characteristic dynamical features in the higher order YIG [0 0 10] reflection revealed that one of the YIG crystals had bifurcated into two different layers. The dynamics of nuclear superradiance was explored. This phenomenon includes the radiative speedup exhibited by a collective state of particles, and, in striking concurrence, resonance frequency shifts. A speedup of a factor of 4 in the total decay rate and a beat frequency shift of 11/2 natural resonance linewidths were observed. Nuclear resonance scattering was also found to be a useful way of performing angular interferometry experiments, and it was used to observe the phase shift of a rotated quantum state. On the whole, nuclear dynamical diffraction theory has superbly explained many of the fascinating features of resonant magnetic dipole radiation scattered by a lattice of nuclei.

  13. Nuclear dynamical diffraction using synchrotron radiation

    International Nuclear Information System (INIS)

    Brown, D.E.

    1993-05-01

    The scattering of synchrotron radiation by nuclei is extensively explored in this thesis. From the multipole electric field expansion resulting from time-dependent nonrelativistic perturbation theory, a dynamical scattering theory is constructed. This theory is shown, in the many particle limit, to be equivalent to the semi-classical approach where a quantum mechanical scattering amplitude is used in the Maxwell inhomogeneous wave equation. The Moessbauer specimen whose low-lying energy levels were probed is a ferromagnetic lattice of 57 Fe embedded in a yttrium iron garnet (YIG) crystal matrix. The hyperfine fields in YIG thin films were studied at low and room temperature using time-resolved quantum beat spectroscopy. Nuclear hyperfine structure quantum beats were measured using a fast plastic scintillator coincidence photodetector and associated electronics having a time resolution of 2.5 nsec. The variation of the quantum beat patterns near the Bragg [0 0 2] diffraction peak gave a Lamb-Moessbauer factor of 8.2±0.4. Exploring characteristic dynamical features in the higher order YIG [0 0 10] reflection revealed that one of the YIG crystals had bifurcated into two different layers. The dynamics of nuclear superradiance was explored. This phenomenon includes the radiative speedup exhibited by a collective state of particles, and, in striking concurrence, resonance frequency shifts. A speedup of a factor of 4 in the total decay rate and a beat frequency shift of 1 1/2 natural resonance linewidths were observed. Nuclear resonance scattering was also found to be a useful way of performing angular interferometry experiments, and it was used to observe the phase shift of a rotated quantum state. On the whole, nuclear dynamical diffraction theory has superbly explained many of the fascinating features of resonant magnetic dipole radiation scattered by a lattice of nuclei

  14. Self-Sustaining Dynamical Nuclear Polarization Oscillations in Quantum Dots

    DEFF Research Database (Denmark)

    Rudner, Mark Spencer; Levitov, Leonid

    2013-01-01

    Early experiments on spin-blockaded double quantum dots revealed robust, large-amplitude current oscillations in the presence of a static (dc) source-drain bias. Despite experimental evidence implicating dynamical nuclear polarization, the mechanism has remained a mystery. Here we introduce......) and nuclear spin diffusion, which governs dynamics of the spatial profile of nuclear polarization. The proposed framework naturally explains the differences in phenomenology between vertical and lateral quantum dot structures as well as the extremely long oscillation periods....

  15. How quick is a quantum jump?

    International Nuclear Information System (INIS)

    Schulman, L.S.

    1997-01-01

    Although the only time scale one ordinarily associates with a quantum transition is its lifetime, observations of ''quantum jumps'' in recent years show that the actual transition time is much shorter. I define a ''jump time'' as the time scale such that perturbations occurring at intervals of this duration affect the decay. In terms of the ''Zeno time'' (related to the second moment of the Hamiltonian) the jump time is τ J is identical to τ 2 Z /τ L . Corroboration is given. I also show that observing the ''jumping'' will not seriously affect the system lifetime, but will affect the linewidth. This is consistent with Bohr's ideas on measurement as well as with a heuristic time-energy uncertainty principle. (author)

  16. A review on the basketball jump shot.

    Science.gov (United States)

    Okazaki, Victor H A; Rodacki, André L F; Satern, Miriam N

    2015-06-01

    The ability to shoot an effective jump shot in the sport of basketball is critical to a player's success. In an attempt to better understand the aspects related to expert performance, researchers have investigated successful free throws and jump shots of various basketball players and identified movement variables that contribute to their success. The purpose of this study was to complete a systematic review of the scientific literature on the basketball free throw and jump shot for the purpose of revealing the critical components of shooting that coaches, teachers, and players should focus on when teaching, learning, practising, and performing a jump shot. The results of this review are presented in three sections: (a) variables that affect ball trajectory, (b) phases of the jump shot, and (c) additional variables that influence shooting.

  17. Determination of K shell absorption jump factors and jump ratios of 3d transition metals by measuring K shell fluorescence parameters.

    Science.gov (United States)

    Kaçal, Mustafa Recep; Han, İbrahim; Akman, Ferdi

    2015-01-01

    Energy dispersive X-ray fluorescence technique (EDXRF) has been employed for measuring K-shell absorption jump factors and jump ratios for Ti, Cr, Fe, Co, Ni and Cu elements. The jump factors and jump ratios for these elements were determined by measuring K shell fluorescence parameters such as the Kα X-ray production cross-sections, K shell fluorescence yields, Kβ-to-Kα X-rays intensity ratios, total atomic absorption cross sections and mass attenuation coefficients. The measurements were performed using a Cd-109 radioactive point source and an Si(Li) detector in direct excitation and transmission experimental geometry. The measured values for jump factors and jump ratios were compared with theoretically calculated and the ones available in the literature. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. A locust-inspired miniature jumping robot.

    Science.gov (United States)

    Zaitsev, Valentin; Gvirsman, Omer; Ben Hanan, Uri; Weiss, Avi; Ayali, Amir; Kosa, Gabor

    2015-11-25

    Unmanned ground vehicles are mostly wheeled, tracked, or legged. These locomotion mechanisms have a limited ability to traverse rough terrain and obstacles that are higher than the robot's center of mass. In order to improve the mobility of small robots it is necessary to expand the variety of their motion gaits. Jumping is one of nature's solutions to the challenge of mobility in difficult terrain. The desert locust is the model for the presented bio-inspired design of a jumping mechanism for a small mobile robot. The basic mechanism is similar to that of the semilunar process in the hind legs of the locust, and is based on the cocking of a torsional spring by wrapping a tendon-like wire around the shaft of a miniature motor. In this study we present the jumping mechanism design, and the manufacturing and performance analysis of two demonstrator prototypes. The most advanced jumping robot demonstrator is power autonomous, weighs 23 gr, and is capable of jumping to a height of 3.35 m, covering a distance of 1.37 m.

  19. TDHF and fluid dynamics of nuclear collective motions

    International Nuclear Information System (INIS)

    Di Nardo, M.; Di Toro, M.; Giansiracusa, G.; Lombardo, U.; Russo, G.

    1983-01-01

    The nuclear fluid dynamical equations are derived from a mean field description of the nuclear dynamics. Simple approximate solutions, corresponding to generalized scaling modes, are worked out for rotations and vibrations, with the evaluation of inertial parameters and flow patterns. Giant resonances are shown to be quite well described within an irrotational ansatz, which is equivalent to a lowest multipoles (up to lsub(max)=2) distortion of the momentum distribution. The physical meaning of a higher order truncation of the TDHF-Fluid-Dynamics chain is finally discussed with its implication on low lying states and on some description of the Landau damping. (author)

  20. Nonstandard Analysis and Shock Wave Jump Conditions in a One-Dimensional Compressible Gas

    Energy Technology Data Exchange (ETDEWEB)

    Roy S. Baty, F. Farassat, John A. Hargreaves

    2007-05-25

    Nonstandard analysis is a relatively new area of mathematics in which infinitesimal numbers can be defined and manipulated rigorously like real numbers. This report presents a fairly comprehensive tutorial on nonstandard analysis for physicists and engineers with many examples applicable to generalized functions. To demonstrate the power of the subject, the problem of shock wave jump conditions is studied for a one-dimensional compressible gas. It is assumed that the shock thickness occurs on an infinitesimal interval and the jump functions in the thermodynamic and fluid dynamic parameters occur smoothly across this interval. To use conservations laws, smooth pre-distributions of the Dirac delta measure are applied whose supports are contained within the shock thickness. Furthermore, smooth pre-distributions of the Heaviside function are applied which vary from zero to one across the shock wave. It is shown that if the equations of motion are expressed in nonconservative form then the relationships between the jump functions for the flow parameters may be found unambiguously. The analysis yields the classical Rankine-Hugoniot jump conditions for an inviscid shock wave. Moreover, non-monotonic entropy jump conditions are obtained for both inviscid and viscous flows. The report shows that products of generalized functions may be defined consistently using nonstandard analysis; however, physically meaningful products of generalized functions must be determined from the physics of the problem and not the mathematical form of the governing equations.

  1. Determination of K shell absorption jump factors and jump ratios of 3d transition metals by measuring K shell fluorescence parameters

    International Nuclear Information System (INIS)

    Kaçal, Mustafa Recep; Han, İbrahim; Akman, Ferdi

    2015-01-01

    Energy dispersive X-ray fluorescence technique (EDXRF) has been employed for measuring K-shell absorption jump factors and jump ratios for Ti, Cr, Fe, Co, Ni and Cu elements. The jump factors and jump ratios for these elements were determined by measuring K shell fluorescence parameters such as the Kα X-ray production cross-sections, K shell fluorescence yields, Kβ-to-Kα X-rays intensity ratios, total atomic absorption cross sections and mass attenuation coefficients. The measurements were performed using a Cd-109 radioactive point source and an Si(Li) detector in direct excitation and transmission experimental geometry. The measured values for jump factors and jump ratios were compared with theoretically calculated and the ones available in the literature. - Highlights: • This work regard the K shell absorption jump ratios and jump factors of Ti, Cr, Fe, Co, Ni and Cu. • This paper presents the first measurement of these parameters using the experimental K shell fluorescence parameters. • A good agreement was found between experimental and theoretical values. • The EDXRF technique was suitable, precise and reliable for the measurement of these atomic parameters

  2. Does trampoline or hard surface jumping influence lower extremity alignment?

    Science.gov (United States)

    Akasaka, Kiyokazu; Tamura, Akihiro; Katsuta, Aoi; Sagawa, Ayako; Otsudo, Takahiro; Okubo, Yu; Sawada, Yutaka; Hall, Toby

    2017-12-01

    [Purpose] To determine whether repetitive trampoline or hard surface jumping affects lower extremity alignment on jump landing. [Subjects and Methods] Twenty healthy females participated in this study. All subjects performed a drop vertical jump before and after repeated maximum effort trampoline or hard surface jumping. A three-dimensional motion analysis system and two force plates were used to record lower extremity angles, moments, and vertical ground reaction force during drop vertical jumps. [Results] Knee extensor moment after trampoline jumping was greater than that after hard surface jumping. There were no significant differences between trials in vertical ground reaction force and lower extremity joint angles following each form of exercise. Repeated jumping on a trampoline increased peak vertical ground reaction force, hip extensor, knee extensor moments, and hip adduction angle, while decreasing hip flexion angle during drop vertical jumps. In contrast, repeated jumping on a hard surface increased peak vertical ground reaction force, ankle dorsiflexion angle, and hip extensor moment during drop vertical jumps. [Conclusion] Repeated jumping on the trampoline compared to jumping on a hard surface has different effects on lower limb kinetics and kinematics. Knowledge of these effects may be useful in designing exercise programs for different clinical presentations.

  3. Sensitivity case study in dynamic reliability

    International Nuclear Information System (INIS)

    Kopustinskas, V.

    2001-01-01

    Recent trends in the risk assessments of the complex industrial plants show increased interest in dynamical models arising from the coupling of the probabilistic and deterministic approaches. Conventionally used static system models, represented by the fault/event trees can not reflect dynamic behaviour of the system and complex interaction between the process variables, components and human actions. The nature of the most complex industrial systems, like nuclear power plants (NPP) suggests that Markov type stochastic differential equations (SDEs) consisting of jump and drift components can be successfully used to represent and analyze the phenomena. This paper discuss possible applications of the SDEs in reliability problems. In particular, Accident Localization System (ALS) of the Ignalina NPP was analyzed as a benchmark for further investigations in this area. (author)

  4. Collectivity and chaoticity in nuclear dynamics

    International Nuclear Information System (INIS)

    Zelevinsky, V.G.

    1992-01-01

    Collective and chaotic features of nuclear dynamics are discussed using simple criteria of complexity of wave functions and their coherence with respect to specific operators. Various physical phenomena are considered in this connection: - coherent interaction of collective modes; - fragmentation and spreading widths; - mixing of compound states and dynamical enhancement; - mean field as a smooth component of complicated dynamics; - coupling through continuum and collectivization of widths; - structure of giant resonances; - statistical properties of unstable states as generalization of canonical random matrix ensembles. (orig.)

  5. Backward jump continuous-time random walk: An application to market trading

    Science.gov (United States)

    Gubiec, Tomasz; Kutner, Ryszard

    2010-10-01

    The backward jump modification of the continuous-time random walk model or the version of the model driven by the negative feedback was herein derived for spatiotemporal continuum in the context of a share price evolution on a stock exchange. In the frame of the model, we described stochastic evolution of a typical share price on a stock exchange with a moderate liquidity within a high-frequency time scale. The model was validated by satisfactory agreement of the theoretical velocity autocorrelation function with its empirical counterpart obtained for the continuous quotation. This agreement is mainly a result of a sharp backward correlation found and considered in this article. This correlation is a reminiscence of such a bid-ask bounce phenomenon where backward price jump has the same or almost the same length as preceding jump. We suggested that this correlation dominated the dynamics of the stock market with moderate liquidity. Although assumptions of the model were inspired by the market high-frequency empirical data, its potential applications extend beyond the financial market, for instance, to the field covered by the Le Chatelier-Braun principle of contrariness.

  6. Acute Improvement of Vertical Jump Performance After Isometric Squats Depends on Knee Angle and Vertical Jumping Ability.

    Science.gov (United States)

    Tsoukos, Athanasios; Bogdanis, Gregory C; Terzis, Gerasimos; Veligekas, Panagiotis

    2016-08-01

    Tsoukos, A, Bogdanis, GC, Terzis, G, and Veligekas, P. Acute improvement of vertical jump performance after isometric squats depends on knee angle and vertical jumping ability. J Strength Cond Res 30(8): 2250-2257, 2016-This study examined the acute effects of maximum isometric squats at 2 different knee angles (90 or 140°) on countermovement jump (CMJ) performance in power athletes. Fourteen national-level male track and field power athletes completed 3 main trials (2 experimental and 1 control) in a randomized and counterbalanced order 1 week apart. Countermovement jump performance was evaluated using a force-plate before and 15 seconds, 3, 6, 9, and 12 minutes after 3 sets of 3 seconds maximum isometric contractions with 1-minute rest in between, from a squat position with knee angle set at 90 or 140°. Countermovement jump performance was improved compared with baseline only in the 140° condition by 3.8 ± 1.2% on the 12th minute of recovery (p = 0.027), whereas there was no change in CMJ height in the 90° condition. In the control condition, there was a decrease in CMJ performance over time, reaching -3.6 ± 1.2% (p = 0.049) after 12 minutes of recovery. To determine the possible effects of baseline jump performance on subsequent CMJ performance, subjects were divided into 2 groups ("high jumpers" and "low jumpers"). The baseline CMJ values of "high jumpers" and "low jumpers" differed significantly (CMJ: 45.1 ± 2.2 vs. 37.1 ± 3.9 cm, respectively, p = 0.001). Countermovement jump was increased only in the "high jumpers" group by 5.4 ± 1.4% (p = 0.001) and 7.4 ± 1.2% (p = 0.001) at the knee angles of 90 and 140°, respectively. This improvement was larger at the 140° angle (p = 0.049). Knee angle during isometric squats and vertical jumping ability are important determinants of the acute CMJ performance increase observed after a conditioning activity.

  7. Hysteresis phenomenon in nuclear reactor dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Pirayesh, Behnam; Pazirandeh, Ali [Islamic Azad Univ., Tehran (Iran, Islamic Republic of). Dept. of Nuclear Engineering, Science and Research Branch; Akbari, Monireh [Shahid Rajaee Teacher Training Univ., Tehran (Iran, Islamic Republic of). Dept. of Mathematics

    2017-05-15

    This paper applies a nonlinear analysis method to show that hysteresis phenomenon, due to the Saddle-node bifurcation, may occur in the nuclear reactor. This phenomenon may have significant effects on nuclear reactor dynamics and can even be the beginning of a nuclear reactor accident. A system of four dimensional nonlinear ordinary differential equations was considered to study the hysteresis phenomenon in a typical nuclear reactor. It should be noted that the reactivity was considered as a nonlinear function of state variables. The condition for emerging hysteresis was investigated using Routh-Hurwitz criterion and Sotomayor's theorem for saddle node bifurcation. A numerical analysis is also provided to illustrate the analytical results.

  8. Predicting lower body power from vertical jump prediction equations for loaded jump squats at different intensities in men and women.

    Science.gov (United States)

    Wright, Glenn A; Pustina, Andrew A; Mikat, Richard P; Kernozek, Thomas W

    2012-03-01

    The purpose of this study was to determine the efficacy of estimating peak lower body power from a maximal jump squat using 3 different vertical jump prediction equations. Sixty physically active college students (30 men, 30 women) performed jump squats with a weighted bar's applied load of 20, 40, and 60% of body mass across the shoulders. Each jump squat was simultaneously monitored using a force plate and a contact mat. Peak power (PP) was calculated using vertical ground reaction force from the force plate data. Commonly used equations requiring body mass and vertical jump height to estimate PP were applied such that the system mass (mass of body + applied load) was substituted for body mass. Jump height was determined from flight time as measured with a contact mat during a maximal jump squat. Estimations of PP (PP(est)) for each load and for each prediction equation were compared with criterion PP values from a force plate (PP(FP)). The PP(est) values had high test-retest reliability and were strongly correlated to PP(FP) in both men and women at all relative loads. However, only the Harman equation accurately predicted PP(FP) at all relative loads. It can therefore be concluded that the Harman equation may be used to estimate PP of a loaded jump squat knowing the system mass and peak jump height when more precise (and expensive) measurement equipment is unavailable. Further, high reliability and correlation with criterion values suggest that serial assessment of power production across training periods could be used for relative assessment of change by either of the prediction equations used in this study.

  9. Hydrodynamics of vertical jumping in Archer fish

    Science.gov (United States)

    Techet, Alexandra H.; Mendelson, Leah

    2017-11-01

    Vertical jumping for aerial prey from an aquatic environment requires both propulsive power and precise aim to succeed. Rapid acceleration to a ballistic velocity sufficient for reaching the prey height occurs before the fish leaves the water completely and experiences a thousandfold drop in force-producing ability. In addition to speed, accuracy and stability are crucial for successful feeding by jumping. This talk examines the physics of jumping using the archer fish as a model. Better known for their spitting abilities, archer fish will jump multiple body lengths out of the water for prey capture, from a stationary position just below the free surface. Modulation of oscillatory body kinematics and use of multiple fins for force production are identified as methods through which the fish can meet requirements for both acceleration and stabilization in limited space. Quantitative 3D PIV wake measurements reveal how variations in tail kinematics relate to thrust production throughout the course of a jumping maneuver and over a range of jump heights. By performing measurements in 3D, the timing, interactions, and relative contributions to thrust and lateral forces from each fin can be evaluated, elucidating the complex hydrodynamics that enable archer fish water exit.

  10. A data-driven wavelet-based approach for generating jumping loads

    Science.gov (United States)

    Chen, Jun; Li, Guo; Racic, Vitomir

    2018-06-01

    This paper suggests an approach to generate human jumping loads using wavelet transform and a database of individual jumping force records. A total of 970 individual jumping force records of various frequencies were first collected by three experiments from 147 test subjects. For each record, every jumping pulse was extracted and decomposed into seven levels by wavelet transform. All the decomposition coefficients were stored in an information database. Probability distributions of jumping cycle period, contact ratio and energy of the jumping pulse were statistically analyzed. Inspired by the theory of DNA recombination, an approach was developed by interchanging the wavelet coefficients between different jumping pulses. To generate a jumping force time history with N pulses, wavelet coefficients were first selected randomly from the database at each level. They were then used to reconstruct N pulses by the inverse wavelet transform. Jumping cycle periods and contract ratios were then generated randomly based on their probabilistic functions. These parameters were assigned to each of the N pulses which were in turn scaled by the amplitude factors βi to account for energy relationship between successive pulses. The final jumping force time history was obtained by linking all the N cycles end to end. This simulation approach can preserve the non-stationary features of the jumping load force in time-frequency domain. Application indicates that this approach can be used to generate jumping force time history due to single people jumping and also can be extended further to stochastic jumping loads due to groups and crowds.

  11. Jump Shrug Height and Landing Forces Across Various Loads.

    Science.gov (United States)

    Suchomel, Timothy J; Taber, Christopher B; Wright, Glenn A

    2016-01-01

    The purpose of this study was to examine the effect that load has on the mechanics of the jump shrug. Fifteen track and field and club/intramural athletes (age 21.7 ± 1.3 y, height 180.9 ± 6.6 cm, body mass 84.7 ± 13.2 kg, 1-repetition-maximum (1RM) hang power clean 109.1 ± 17.2 kg) performed repetitions of the jump shrug at 30%, 45%, 65%, and 80% of their 1RM hang power clean. Jump height, peak landing force, and potential energy of the system at jump-shrug apex were compared between loads using a series of 1-way repeated-measures ANOVAs. Statistical differences in jump height (P .05). The greatest magnitudes of jump height, peak landing force, and potential energy of the system at the apex of the jump shrug occurred at 30% 1RM hang power clean and decreased as the external load increased from 45% to 80% 1RM hang power clean. Relationships between peak landing force and potential energy of the system at jump-shrug apex indicate that the landing forces produced during the jump shrug may be due to the landing strategy used by the athletes, especially at lighter loads. Practitioners may prescribe heavier loads during the jump-shrug exercise without viewing landing force as a potential limitation.

  12. Intra-Personal and Inter-Personal Kinetic Synergies During Jumping

    Directory of Open Access Journals (Sweden)

    Slomka Kajetan

    2015-12-01

    Full Text Available We explored synergies between two legs and two subjects during preparation for a long jump into a target. Synergies were expected during one-person jumping. No such synergies were expected between two persons jumping in parallel without additional contact, while synergies were expected to emerge with haptic contact and become stronger with strong mechanical contact. Subjects performed jumps either alone (each foot standing on a separate force platform or in dyads (parallel to each other, each person standing on a separate force platform without any contact, with haptic contact, and with strong coupling. Strong negative correlations between pairs of force variables (strong synergies were seen in the vertical force in one-person jumps and weaker synergies in two-person jumps with the strong contact. For other force variables, only weak synergies were present in one-person jumps and no negative correlations between pairs of force variable for two-person jumps. Pairs of moment variables from the two force platforms at steady state showed positive correlations, which were strong in one-person jumps and weaker, but still significant, in two-person jumps with the haptic and strong contact. Anticipatory synergy adjustments prior to action initiation were observed in oneperson trials only. We interpret the different results for the force and moment variables at steady state as reflections of postural sway.

  13. Effects of Isometric Scaling on Vertical Jumping Performance

    Science.gov (United States)

    Bobbert, Maarten F.

    2013-01-01

    Jump height, defined as vertical displacement in the airborne phase, depends on vertical takeoff velocity. For centuries, researchers have speculated on how jump height is affected by body size and many have adhered to what has come to be known as Borelli’s law, which states that jump height does not depend on body size per se. The underlying assumption is that the amount of work produced per kg body mass during the push-off is independent of size. However, if a big body is isometrically downscaled to a small body, the latter requires higher joint angular velocities to achieve a given takeoff velocity and work production will be more impaired by the force-velocity relationship of muscle. In the present study, the effects of pure isometric scaling on vertical jumping performance were investigated using a biologically realistic model of the human musculoskeletal system. The input of the model, muscle stimulation over time, was optimized using jump height as criterion. It was found that when the human model was miniaturized to the size of a mouse lemur, with a mass of about one-thousandth that of a human, jump height dropped from 40 cm to only 6 cm, mainly because of the force-velocity relationship. In reality, mouse lemurs achieve jump heights of about 33 cm. By implication, the unfavourable effects of the small body size of mouse lemurs on jumping performance must be counteracted by favourable effects of morphological and physiological adaptations. The same holds true for other small jumping animals. The simulations for the first time expose and explain the sheer magnitude of the isolated effects of isometric downscaling on jumping performance, to be counteracted by morphological and physiological adaptations. PMID:23936494

  14. Effects of isometric scaling on vertical jumping performance.

    Directory of Open Access Journals (Sweden)

    Maarten F Bobbert

    Full Text Available Jump height, defined as vertical displacement in the airborne phase, depends on vertical takeoff velocity. For centuries, researchers have speculated on how jump height is affected by body size and many have adhered to what has come to be known as Borelli's law, which states that jump height does not depend on body size per se. The underlying assumption is that the amount of work produced per kg body mass during the push-off is independent of size. However, if a big body is isometrically downscaled to a small body, the latter requires higher joint angular velocities to achieve a given takeoff velocity and work production will be more impaired by the force-velocity relationship of muscle. In the present study, the effects of pure isometric scaling on vertical jumping performance were investigated using a biologically realistic model of the human musculoskeletal system. The input of the model, muscle stimulation over time, was optimized using jump height as criterion. It was found that when the human model was miniaturized to the size of a mouse lemur, with a mass of about one-thousandth that of a human, jump height dropped from 40 cm to only 6 cm, mainly because of the force-velocity relationship. In reality, mouse lemurs achieve jump heights of about 33 cm. By implication, the unfavourable effects of the small body size of mouse lemurs on jumping performance must be counteracted by favourable effects of morphological and physiological adaptations. The same holds true for other small jumping animals. The simulations for the first time expose and explain the sheer magnitude of the isolated effects of isometric downscaling on jumping performance, to be counteracted by morphological and physiological adaptations.

  15. The AGS γt-jump system

    International Nuclear Information System (INIS)

    Syphers, M.J.; Ahrens, L.; van Asselt, W.; Brennan, J.M.

    1994-01-01

    In an attempt to generate a lossless crossing of an accelerator's transition energy, one procedure is to alter the transition energy of the accelerator quickly as the beam passes through this energy region by changing the optics of the lattice -- a so-called ''transition jump,'' or '' γt -jump'' scheme. Such a system was first implemented at CERN and later adopted at other accelerator laboratories. A scheme for the AGS was developed in 1986. A description of the AGS γt -jump system, and recent results from its commissioning are presented in this report

  16. Dynamical nuclear polarization using multi-colour control of color centers in diamond

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Pengcheng [Huazhong University of Science and Technology, School of Physics, Wuhan (China); Huazhong University of Science and Technology, Center for Quantum Optical Science, Wuhan (China); Plenio, Martin B. [Universitaet Ulm, Institut fuer Theoretische Physik, Ulm (Germany); Universitaet Ulm, Center for Integrated Quantum Science and Technology, Ulm (Germany); Cai, Jianming [Huazhong University of Science and Technology, School of Physics, Wuhan (China); Huazhong University of Science and Technology, Center for Quantum Optical Science, Wuhan (China); Universitaet Ulm, Institut fuer Theoretische Physik, Ulm (Germany); Universitaet Ulm, Center for Integrated Quantum Science and Technology, Ulm (Germany)

    2016-12-15

    Dynamical nuclear polarization (DNP) transfers the polarization of electron spins at cryogenic temperatures to achieve strong nuclear polarization for applications in nuclear magnetic resonance. Recently introduced approaches employ optical pumping of nitrogen-vacancy (NV) centers in diamond to achieve DNP even at ambient temperatures. In such schemes microwave radiation is used to establish a Hartmann-Hahn condition between the NV electron spin and proximal nuclear spins to facilitate polarization transfer. For a single monochromatic microwave driving field, the Hartmann-Hahn condition cannot be satisfied for an ensemble of NV centers due to inhomogeneous broadening and reduces significantly the overall efficiency of dynamical nuclear polarization using an ensemble of NV centers. Here, we adopt generalized Hartmann-Hahn type dynamical nuclear polarization schemes by applying microwave driving fields with (multiple) time-modulated frequencies. We show that it is possible to enhance the effective coupling between an ensemble of NV center spins with inhomogeneous broadening and nuclear spins, thereby improving significantly the overall efficiency of dynamical nuclear polarization. This approach can also be used to achieve dynamical nuclear polarization of an ensemble of nuclei with a distribution of Larmor frequencies, which would be helpful in magnetic resonance spectroscopy using a single NV spin sensor. (orig.)

  17. Nonstandard jump functions for radically symmetric shock waves

    International Nuclear Information System (INIS)

    Baty, Roy S.; Tucker, Don H.; Stanescu, Dan

    2008-01-01

    Nonstandard analysis is applied to derive generalized jump functions for radially symmetric, one-dimensional, magnetogasdynamic shock waves. It is assumed that the shock wave jumps occur on infinitesimal intervals and the jump functions for the physical parameters occur smoothly across these intervals. Locally integrable predistributions of the Heaviside function are used to model the flow variables across a shock wave. The equations of motion expressed in nonconservative form are then applied to derive unambiguous relationships between the jump functions for the physical parameters for two families of self-similar flows. It is shown that the microstructures for these families of radially symmetric, magnetogasdynamic shock waves coincide in a nonstandard sense for a specified density jump function.

  18. Design and jump phenomenon analysis of an eccentric ring energy harvester

    International Nuclear Information System (INIS)

    Wang, Yu-Jen; Chen, Chung-De

    2013-01-01

    This paper presents the development of a wheel-mounted eccentric ring energy harvester that is driven by centripetal and gravitational forces during wheel rotation. The natural frequency of the eccentric ring matches the wheel rotation frequency at any car speed because its character length is designed equal to the wheel radius. Consequently, the eccentric ring oscillates with a relatively large swing angle at the wheel speed to generate high levels of power. The nonlinear dynamic behavior of the eccentric ring is investigated to ensure that the proposed design produces steady swing angles, especially at high wheel speeds. Herein, the jump phenomenon of the dynamic motion of the eccentric ring is analyzed by using the Duffing equation and the linearization process. The discriminant value obtained from the analysis confirms that no jump phenomenon occurs at all wheel speeds if the eccentric ring is properly designed. In the experiment, the eccentric ring is integrated with magnets and a coil set to generate 318–442 μW at constant wheel speeds between 300 and 500 rpm. This shows that the proposed device is a potential power source for low-power wheel-mounted electronics, such as pressure sensors, accelerometers, and thermometers. (paper)

  19. Design and jump phenomenon analysis of an eccentric ring energy harvester

    Science.gov (United States)

    Wang, Yu-Jen; Chen, Chung-De

    2013-10-01

    This paper presents the development of a wheel-mounted eccentric ring energy harvester that is driven by centripetal and gravitational forces during wheel rotation. The natural frequency of the eccentric ring matches the wheel rotation frequency at any car speed because its character length is designed equal to the wheel radius. Consequently, the eccentric ring oscillates with a relatively large swing angle at the wheel speed to generate high levels of power. The nonlinear dynamic behavior of the eccentric ring is investigated to ensure that the proposed design produces steady swing angles, especially at high wheel speeds. Herein, the jump phenomenon of the dynamic motion of the eccentric ring is analyzed by using the Duffing equation and the linearization process. The discriminant value obtained from the analysis confirms that no jump phenomenon occurs at all wheel speeds if the eccentric ring is properly designed. In the experiment, the eccentric ring is integrated with magnets and a coil set to generate 318-442 μW at constant wheel speeds between 300 and 500 rpm. This shows that the proposed device is a potential power source for low-power wheel-mounted electronics, such as pressure sensors, accelerometers, and thermometers.

  20. Quark exchange and nuclear dynamics

    International Nuclear Information System (INIS)

    Moniz, E.J.

    1985-01-01

    This paper gives a qualitative understanding of hadronic phenomena in terms of quark degrees of freedom. The basic model which incorporates saturating confining interactions and the study of hadron-hadron scattering has been carried through in collaboration with F. Lenz, J.T. Londergan, R. Rosenfelder, M. Stingl and K. Yazaki. It is shown that minimal confining dynamics together with exchange symmetry indeed leads to a remarkable range of phenomena at both the nuclear and particle energy scales. Most observables are well described by an effective hadron theory, the quark momentum distribution being the major exception. These features emerge even in the simplest model, namely, U(1) color and hadrons composed of two quarks (anti qq or qq). The author concentrates here on this model. In the concluding section, he remarks on the SU(N) results, particularly on the extent to which the color-hidden dynamics are constrained by examining the systematics of nuclear and hadronic phenomena. (Auth.)

  1. K-shell jump ratios and jump factors for molybdenum and silver by using 2D-geometrical configuration and a weak gamma source

    International Nuclear Information System (INIS)

    Francis Maria Anand, L.; Gudennavar, S.B.; Bubbly, S.G.; Joseph, Daisy

    2013-01-01

    The article presents a simple method of measuring K-shell absorption jump ratios and jump factors for elements in the field of X-ray spectroscopy. The K-shell jump ratios and jump factors for Molybdenum and Silver are measured by adopting 2ŏ-geometrical configuration and a weak gamma source. The characteristic K X-ray photons are excited in the targets using 32.8 keV barium X-ray photons from a weak 137 Cs radioactive source that is produced due to the internal conversion of cesium nucleus (IC). The fluorescent K X-ray photons are detected using low energy Si(Li) detector coupled to a 8k multichannel analyser. The K X-ray intensity ratios from X-ray fluorescent spectrum are measured experimentally, the total atomic attenuation cross section and the total atomic scattering cross sections are calculated using WinXcom software. The K-shell jump factor and jump ratio are computed using the measured K X-ray intensity ratios and the calculated K a , X-ray production cross section. The computed values of K-shell jump factor and jump ratio for molybdenum and silver are compared with the theoretical values and others' experimental data and are presented. The amount of uncertainty in the experimental measurement of K X-ray intensity ratios is less than 5%. Thus the 2ŏ-geometrical configuration method with weak gamma source can be an alternative simple method to measure the jump factors and the jump ratios of pure elements in the field of X-ray spectroscopy. (author)

  2. More than a safety line: jump-stabilizing silk of salticids.

    Science.gov (United States)

    Chen, Yung-Kang; Liao, Chen-Pan; Tsai, Feng-Yueh; Chi, Kai-Jung

    2013-10-06

    Salticids are diurnal hunters known for acute vision, remarkable predatory strategies and jumping ability. Like other jumpers, they strive for stability and smooth landings. Instead of using inertia from swinging appendages or aerodynamic forces by flapping wings as in other organisms, we show that salticids use a different mechanism for in-air stability by using dragline silk, which was previously believed to function solely as a safety line. Analyses from high-speed images of jumps by the salticid Hasarius adansoni demonstrate that despite being subject to rearward pitch at take-off, spiders with dragline silk can change body orientation in the air. Instantaneous drag and silk forces calculated from kinematic data further suggest a comparable contribution to deceleration and energy dissipation, and reveal that adjustments by the spider to the silk force can reverse its body pitch for a predictable and optimal landing. Without silk, upright-landing spiders would slip or even tumble, deferring completion of landing. Thus, for salticids, dragline silk is critical for dynamic stability and prey-capture efficiency. The dynamic functioning of dragline silk revealed in this study can advance the understanding of silk's physiological control over material properties and its significance to spider ecology and evolution, and also provide inspiration for future manoeuvrable robot designs.

  3. Prospects of Using High-Intensity THz Pulses To Induce Ultrafast Temperature-Jumps in Liquid Water.

    Science.gov (United States)

    Mishra, Pankaj Kr; Bettaque, Vincent; Vendrell, Oriol; Santra, Robin; Welsch, Ralph

    2018-06-01

    Ultrashort, high-intensity terahertz (THz) pulses, e.g., generated at free-electron laser facilities, allow for direct investigation as well as the driving of intermolecular modes in liquids like water and thus will deepen our understanding of the hydrogen bonding network. In this work, the temperature-jump (T-jump) of water induced by THz radiation is simulated for ten different THz frequencies in the range from 3 to 30 THz and five different pulse intensities in the range from 1 × 10 11 to 5 × 10 12 W/cm 2 employing both ab initio molecular dynamics (AIMD) and force field molecular dynamics (FFMD) approaches. The most efficient T-jump can be achieved with 16 THz pulses. Three distinct T-jump mechanisms can be uncovered. For all cases, the T-jump mechanism proceeds within tens of femtoseconds (fs). For frequencies between 10 and 25 THz, most of the energy is initially transferred to the rotational degrees of freedom. Subsequently, the energy is redistributed to the translational and intramolecular vibrational degrees of freedom within a maximum of 500 fs. For the lowest frequencies considered (7 THz and below), translational and rotational degrees of freedom are heated within tens of fs as the THz pulse also couples to the intermolecular vibrations. Subsequently, the intramolecular vibrational modes are heated within a few hundred fs. At the highest frequencies considered (25 THz and above), vibrational and rotational degrees of freedom are heated within tens of fs, and energy redistribution to the translational degrees of freedom happens within several hundred fs. Both AIMD and FFMD simulations show a similar dependence of the T-jump on the frequency employed. However, the FFMD simulations overestimate the total energy transfer around the main peak and drop off too fast toward frequencies higher and lower than the main peak. These differences can be rationalized by missing elements, such as the polarizability, in the TIP4P/2005f force field employed. The

  4. THE ACUTE EFFECTS OF BACK SQUATS ON VERTICAL JUMP PERFORMANCE IN MEN AND WOMEN

    Directory of Open Access Journals (Sweden)

    Gavin L. Moir

    2010-06-01

    Full Text Available The aim of the present study was to investigate the acute effects of performing back squats on subsequent performance during a series of vertical jumps in men and women. Twelve men and 12 women were tested on three separate occasions, the first of which was used to determine their 1-repetition maximum (1-RM parallel back squat. Following this, subjects performed a potentiation and a control treatment in a counterbalanced order. The potentiation treatment culminated with subjects performing parallel back squats with a load equivalent to 70% 1- RM for three repetitions, following which they performed one countermovement vertical jump (CMJ for maximal height every three minutes for a total of 10 jumps. During the control treatment, subjects performed only the CMJs. Jump height (JH and vertical stiffness (VStiff were calculated for each jump from the vertical force signal recorded from a force platform. There were no significant changes in JH or VStiff following the treatments and no significant differences in the responses between men and women (p > 0.05. Correlations between normalized 1-RM back squat load and the absolute change in JH and VStiff were small to moderate for both men and women, with most correlations being negative. Large variations in response to the back squats were noted in both men and women. The use of resistance exercises performed prior to a series of vertical jumps can result in improvements in performance in certain individuals, although the gains tend to be small and dependent upon the mechanical variable measured. There does not seem to be any differences between men and women in the response to dynamic potentiation protocols

  5. Neuromuscular function during drop jumps in young and elderly males.

    Science.gov (United States)

    Piirainen, Jarmo M; Linnamo, Vesa; Sippola, Niina; Avela, Janne

    2012-12-01

    The Hoffman reflex (H-reflex), indicating alpha-motoneuron pool activity, has been shown to be task - and in resting conditions - age dependent. How aging affects H-reflex activity during explosive movements is not clear at present. The purpose of this study was to examine the effects of aging on H-reflexes during drop jumps, and its possible role in drop jump performance. Ten young (26.8 ± 2.7 years) and twenty elderly (64.2 ± 2.7 years) subjects participated in the study. Maximal drop jump performance and soleus H-reflex response (H/M jump) 20 ms after ground contact were measured in a sledge ergometer. Maximal H-reflex, maximal M-wave, Hmax/Mmax-ratio and H-reflex excitability curves were measured during standing rest. Although in young the H-reflex response (Hmax/Mmax) was 6.5% higher during relaxed standing and 19.7% higher during drop jumps (H jump/M jump) than in the elderly group, these differences were not statistically significant. In drop jumps, the elderly subjects had lower jumping height (30.4%, p push-off force (18.0%, p push-off time (31.0% p push-off force (r = 0.833, p push-off time (r = -0.857, p < 0.01) in young but not in the elderly. Correlations between H-reflex response and jumping parameters in young may indicate different jumping and activation strategies in drop jumps. However, it does not fully explain age related differences in jumping performance, since age related differences in H-reflex activity were non-significant. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Microscopic models of quantum-jump superoperators

    International Nuclear Information System (INIS)

    Dodonov, A.V.; Mizrahi, S.S.; Dodonov, V.V.

    2005-01-01

    We discuss the quantum-jump operation in an open system and show that jump superoperators related to a system under measurement can be derived from the interaction of that system with a quantum measurement apparatus. We give two examples for the interaction of a monochromatic electromagnetic field in a cavity (the system) with two-level atoms and with a harmonic oscillator (representing two different kinds of detectors). We show that the derived quantum-jump superoperators have a 'nonlinear' form Jρ=γ diag[F(n)aρa † F(n)], where the concrete form of the function F(n) depends on assumptions made about the interaction between the system and detector. Under certain conditions the asymptotical power-law dependence F(n)=(n+1) -β is obtained. A continuous transition to the standard Srinivas-Davies form of the quantum-jump superoperator (corresponding to β=0) is shown

  7. Electron-nuclear dynamics of molecular systems

    International Nuclear Information System (INIS)

    Diz, A.; Oehrn, Y.

    1994-01-01

    The content of an ab initio time-dependent theory of quantum molecular dynamics of electrons and atomic nuclei is presented. Employing the time-dependent variational principle and a family of approximate state vectors yields a set of dynamical equations approximating the time-dependent Schroedinger equation. These equations govern the time evolution of the relevant state vector parameters as molecular orbital coefficients, nuclear positions, and momenta. This approach does not impose the Born-Oppenheimer approximation, does not use potential energy surfaces, and takes into account electron-nuclear coupling. Basic conservation laws are fully obeyed. The simplest model of the theory employs a single determinantal state for the electrons and classical nuclei and is implemented in the computer code ENDyne. Results from this ab-initio theory are reported for ion-atom and ion-molecule collisions

  8. Thersites: a `jumping' Trojan?

    Science.gov (United States)

    Tsiganis, K.; Dvorak, R.; Pilat-Lohinger, E.

    2000-02-01

    In this paper, we examine the dynamical evolution of the asteroid (1868) Thersites, a member of the Trojan belt. Thersites is librating around the Lagrangian point L_4, following, however, a chaotic orbit. The equations of motion for Thersites as well as for a distribution of neighboring initial conditions are integrated numerically for 50 million years in the Outer Solar System model (OSS), which consists of the Sun and the four giant planets. Our results indicate that the probability that this asteroid will eventually escape from the Trojan swarm is rather high. In fact, 20% from our initial distribution escaped within the integration time. Many of the remaining ones also show characteristic `jumps' in the orbital elements, especially the inclination. Secular resonances involving the nodes of the outer planets are found to be responsible for this chaotic behavior. The width of libration and eccentricity values that lead to grossly unstable orbits are calculated and compared with previously known results on the stability of the Trojans. Finally, a very interesting behavior has been observed for one of the escaping asteroids as he `jumped' from L_4 to L_5 where he remained performing a highly inclined libration for ~ 2 Myrs before escaping from the Trojan swarm. According to Homer, Thersites was not only the ugliest of all Greeks that took part in the Trojan war, but also had the most intolerable personality. His nasty habit of making fun of everybody cost him his life, as the last person for whom he spoke ironically about was Achilles, the mightiest warrior of all Greeks, who killed Thersites with just one punch!

  9. Accelerating population balance-Monte Carlo simulation for coagulation dynamics from the Markov jump model, stochastic algorithm and GPU parallel computing

    International Nuclear Information System (INIS)

    Xu, Zuwei; Zhao, Haibo; Zheng, Chuguang

    2015-01-01

    This paper proposes a comprehensive framework for accelerating population balance-Monte Carlo (PBMC) simulation of particle coagulation dynamics. By combining Markov jump model, weighted majorant kernel and GPU (graphics processing unit) parallel computing, a significant gain in computational efficiency is achieved. The Markov jump model constructs a coagulation-rule matrix of differentially-weighted simulation particles, so as to capture the time evolution of particle size distribution with low statistical noise over the full size range and as far as possible to reduce the number of time loopings. Here three coagulation rules are highlighted and it is found that constructing appropriate coagulation rule provides a route to attain the compromise between accuracy and cost of PBMC methods. Further, in order to avoid double looping over all simulation particles when considering the two-particle events (typically, particle coagulation), the weighted majorant kernel is introduced to estimate the maximum coagulation rates being used for acceptance–rejection processes by single-looping over all particles, and meanwhile the mean time-step of coagulation event is estimated by summing the coagulation kernels of rejected and accepted particle pairs. The computational load of these fast differentially-weighted PBMC simulations (based on the Markov jump model) is reduced greatly to be proportional to the number of simulation particles in a zero-dimensional system (single cell). Finally, for a spatially inhomogeneous multi-dimensional (multi-cell) simulation, the proposed fast PBMC is performed in each cell, and multiple cells are parallel processed by multi-cores on a GPU that can implement the massively threaded data-parallel tasks to obtain remarkable speedup ratio (comparing with CPU computation, the speedup ratio of GPU parallel computing is as high as 200 in a case of 100 cells with 10 000 simulation particles per cell). These accelerating approaches of PBMC are

  10. Scaling the viscous circular hydraulic jump

    Science.gov (United States)

    Argentina, Mederic; Cerda, Enrique; Duchesne, Alexis; Limat, Laurent

    2017-11-01

    The formation mechanism of hydraulic jumps has been proposed by Belanger in 1828 and rationalised by Lord Rayleigh in 1914. As the Froude number becomes higher than one, the flow super criticality induces an instability which yields the emergence of a steep structure at the fluid surface. Strongly deformed liquid-air interface can be observed as a jet of viscous fluid impinges a flat boundary at high enough velocity. In this experimental setup, the location of the jump depends on the viscosity of the liquid, as shown by T. Bohr et al. in 1997. In 2014, A. Duchesne et al. have established the constancy of the Froude number at jump. Hence, it remains a contradiction, in which the radial hydraulic jump location might be explained through inviscid theory, but is also viscosity dependent. We present a model based on the 2011 Rojas et al. PRL, which solves this paradox. The agreement with experimental measurements is excellent not only for the prediction of the position of the hydraulic jump, but also for the determination of the fluid thickness profile. We predict theoretically the critical value of the Froude number, which matches perfectly to that measured by Duchesne et al. We acknowledge the support of the CNRS and the Universit Cte d'Azur, through the IDEX funding.

  11. Dynamical features of nuclear fission

    Indian Academy of Sciences (India)

    Wheeler underestimates several observables in heavy-ion-induced ... excitation energies, there may not be sufficient nuclei near the fission barrier after the .... Dissipation in nuclear dynamics in the mean-field regime accounts for the coupling of the .... barrier for different isotopes of Fr. The lines are drawn to guide the eye.

  12. Multiphase Flow Dynamics 5 Nuclear Thermal Hydraulics

    CERN Document Server

    Kolev, Nikolay Ivanov

    2012-01-01

    The present Volume 5 of the successful book package "Multiphase Flow Dynamics" is devoted to nuclear thermal hydraulics which is a substantial part of nuclear reactor safety. It provides knowledge and mathematical tools for adequate description of the process of transferring the fission heat released in materials due to nuclear reactions into its environment. It step by step introduces into the heat release inside the fuel, temperature fields in the fuels, the "simple" boiling flow in a pipe described using ideas of different complexity like equilibrium, non equilibrium, homogeneity, non homogeneity. Then the "simple" three-fluid boiling flow in a pipe is described by gradually involving the mechanisms like entrainment and deposition, dynamic fragmentation, collisions, coalescence, turbulence. All heat transfer mechanisms are introduced gradually discussing their uncertainty. Different techniques are introduced like boundary layer treatments or integral methods. Comparisons with experimental data at each step...

  13. Multiphase flow dynamics 5 nuclear thermal hydraulics

    CERN Document Server

    Kolev, Nikolay Ivanov

    2015-01-01

    This Volume 5 of the successful book package "Multiphase Flow Dynamics" is devoted to nuclear thermal hydraulics which is a substantial part of nuclear reactor safety. It provides knowledge and mathematical tools for adequate description of the process of transferring the fission heat released in materials due to nuclear reactions into its environment. It step by step introduces into the heat release inside the fuel, temperature fields in the fuels, the "simple" boiling flow in a pipe described using ideas of different complexity like equilibrium, non equilibrium, homogeneity, non homogeneity. Then the "simple" three-fluid boiling flow in a pipe is described by gradually involving the mechanisms like entrainment and deposition, dynamic fragmentation, collisions, coalescence, turbulence. All heat transfer mechanisms are introduced gradually discussing their uncertainty. Different techniques are introduced like boundary layer treatments or integral methods. Comparisons with experimental data at each step demons...

  14. Jump phenomena. [large amplitude responses of nonlinear systems

    Science.gov (United States)

    Reiss, E. L.

    1980-01-01

    The paper considers jump phenomena composed of large amplitude responses of nonlinear systems caused by small amplitude disturbances. Physical problems where large jumps in the solution amplitude are important features of the response are described, including snap buckling of elastic shells, chemical reactions leading to combustion and explosion, and long-term climatic changes of the earth's atmosphere. A new method of rational functions was then developed which consists of representing the solutions of the jump problems as rational functions of the small disturbance parameter; this method can solve jump problems explicitly.

  15. Jump Testing and the Speed of Market Adjustment

    DEFF Research Database (Denmark)

    Rasmussen, Torben B.

    Asymptotic properties of jump tests rely on the property that any jump occurs within a single time interval no matter what the observation frequency is. Market microstructure effects in relation to news-induced revaluation of the underlying variable is likely to make this an unrealistic assumption...... for high-frequency transaction data. To capture these microstructure effects, this paper suggests a model in which market prices adjust gradually to jumps in the underlying effcient price. A case study illustrates the empirical relevance of the model, and the performance of different jump tests...

  16. Adaptive resummation of Markovian quantum dynamics

    International Nuclear Information System (INIS)

    Lucas, Felix

    2014-01-01

    In this thesis we derive a highly convergent, nonperturbative expansion of Markovian open quantum dynamics. It is based on a splitting of the incoherent dynamics into periods of continuous evolution and abrupt jumps and attains its favorable convergence properties from an adaptive resummation of this so-called jump expansion. By means of the long-standing problems of spatial particle detection and Landau-Zener tunneling in the presence of dephasing, we show that this adaptive resummation technique facilitates new highly accurate analytic approximations of Markovian open systems. The open Landau-Zener model leads us to propose an efficient and robust incoherent control technique for the isomerization reaction of the visual pigment protein rhodopsin. Besides leading to approximate analytic descriptions of Markovian open quantum dynamics, the adaptive resummation of the jump expansion implies an efficient numerical simulation method. We spell out the corresponding numerical algorithm by means of Monte Carlo integration of the relevant terms in the jump expansion and demonstrate it in a set of paradigmatic open quantum systems.

  17. Wavelet representation of the nuclear dynamics

    International Nuclear Information System (INIS)

    Jouault, B.; Sebille, F.; Mota, V. de la.

    1997-01-01

    The study of transport phenomena in nuclear matter is addressed in a new approach named DYWAN, based on the projection methods of statistical physics and on the mathematical theory of wavelets. Strongly compressed representations of the nuclear systems are obtained with an accurate description of the wave functions and of their antisymmetrization. The results of the approach are illustrated for the ground state description as well as for the dissipative dynamics of nuclei at intermediate energies. (K.A.)

  18. Jumping together

    DEFF Research Database (Denmark)

    Lund, Ole; Ravn, Susanne; Christensen, Mette Krogh

    2014-01-01

    , in order to reach a deeper understanding of how practice facilitates learning. Results: We encircle the athletes’ interrelated learning processes by introducing the training environment of the national team and situations in which the athletes guide each other verbally or by jumping together. Discussion...

  19. Effect of drop jump technique on the reactive strength index.

    Science.gov (United States)

    Struzik, Artur; Juras, Grzegorz; Pietraszewski, Bogdan; Rokita, Andrzej

    2016-09-01

    The basic drill of plyometric training aimed at improving lower limb power and jump height is a drop jump. This exercise can be performed using different techniques, which substantially affects jump variables. Therefore, the aim of this study was to compare the values of the reactive strength index (RSI) for countermovement drop jumps (CDJs) and bounce drop jumps (BDJs). The study was carried out in a group of 8 male youth basketball players. The tests were conducted using the AMTI BP600900 force plate to measure ground reaction forces and the Noraxon MyoMotion system to record kinematic data. Each player performed two CDJs and two BDJs from the height of 15, 30, 45 and 60 cm. The RSI was calculated as a ratio of jump height and contact time. Moreover, the RSI was determined for the amortization and take-off phases separately. Significant differences (p jumps from 30, 45 and 60 cm. Differences in RSI values for jumps from 15 cm were not significant. Furthermore, CDJ height values were significantly higher (p jump technique that is commonly performed by basketball players.

  20. Dynamic screening in solar and stellar nuclear reactions

    Energy Technology Data Exchange (ETDEWEB)

    Daeppen, W. [Department of Physics and Astronomy, University of Southern California, Los Angeles, CA (United States); Mussack, K. [Los Alamos National Laboratory, XTD-2, Los Alamos, NM (United States)

    2012-02-15

    In the hot, dense plasma of solar and stellar interiors, Coulomb potentials are screened, resulting in increased nuclear reaction rates. Although Salpeter's approximation for static screening is widely accepted and used in stellar modeling, the question of screening in nuclear reactions was revisited in the 1990s. In particular the issue of dynamic effects was raised by Shaviv and Shaviv, who applied the techniques of molecular dynamics to the conditions in the Sun's core in order to numerically determine the effect of screening. By directly calculating the motion of ions and electrons due to Coulomb interactions, the simulations are used to compute the effect of screening without the mean-field assumption inherent in Salpeter's approximation. In the last few years, the USC group has first reproduced Shaviv and Shaviv's numerical analysis of the screening energy, showing an effect of dynamic screening. When the consequence for the reaction-rate was computed, a rather surprising resulted, which is contrary to that from static screening theory. Our calculations showed that dynamic screening does not significantly change the reaction rate from that of the bare Coulomb potential. If this can be independently confirmed, then the effects of dynamic screening are highly relevant and should be included in stellar nuclear reaction rates (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  1. Nuclear spin relaxation by translational diffusion in solids

    International Nuclear Information System (INIS)

    Barton, W.A.; Sholl, C.A.

    1978-01-01

    The theory of nuclear spin relaxation by translational diffusion in solids developed in previous papers is applied to two-spin systems and third-nearest-neighbour jump models in FCC crystals. The two-spin systems describe the dipole-dipole interactions between stationary host spins and spins migrating amongst either the tetrahedral or the octahedral interstitial sites. The tetrahedral sites in a FCC crystal form a SC lattice and two models, the symmetric and asymmetric jump models, are considered for third-nearest-neighbour jumps on this lattice. Numerical results for the correlation function relevant for single crystals and polycrystals are presented over the entire temperature range. It is found that the simpler, but unphysical, symmetric jump model is a good approximation to the more complicated asymmetric jump model. (author)

  2. Vertical jumping tests in volleyball: reliability, validity, and playing-position specifics.

    Science.gov (United States)

    Sattler, Tine; Sekulic, Damir; Hadzic, Vedran; Uljevic, Ognjen; Dervisevic, Edvin

    2012-06-01

    Vertical jumping is known to be important in volleyball, and jumping performance tests are frequently studied for their reliability and validity. However, most studies concerning jumping in volleyball have dealt with standard rather than sport-specific jumping procedures and tests. The aims of this study, therefore, were (a) to determine the reliability and factorial validity of 2 volleyball-specific jumping tests, the block jump (BJ) test and the attack jump (AJ) test, relative to 2 frequently used and systematically validated jumping tests, the countermovement jump test and the squat jump test and (b) to establish volleyball position-specific differences in the jumping tests and simple anthropometric indices (body height [BH], body weight, and body mass index [BMI]). The BJ was performed from a defensive volleyball position, with the hands positioned in front of the chest. During an AJ, the players used a 2- to 3-step approach and performed a drop jump with an arm swing followed by a quick vertical jump. A total of 95 high-level volleyball players (all men) participated in this study. The reliability of the jumping tests ranged from 0.97 to 0.99 for Cronbach's alpha coefficients, from 0.93 to 0.97 for interitem correlation coefficients and from 2.1 to 2.8 for coefficients of variation. The highest reliability was found for the specific jumping tests. The factor analysis extracted one significant component, and all of the tests were highly intercorrelated. The analysis of variance with post hoc analysis showed significant differences between 5 playing positions in some of the jumping tests. In general, receivers had a greater jumping capacity, followed by libero players. The differences in jumping capacities should be emphasized vis-a-vis differences in the anthropometric measures of players, where middle hitters had higher BH and body weight, followed by opposite hitters and receivers, with no differences in the BMI between positions.

  3. Generating highly polarized nuclear spins in solution using dynamic nuclear polarization

    DEFF Research Database (Denmark)

    Wolber, J.; Ellner, F.; Fridlund, B.

    2004-01-01

    A method to generate strongly polarized nuclear spins in solution has been developed, using Dynamic Nuclear Polarization (DNP) at a temperature of 1.2K, and at a field of 3.354T, corresponding to an electron spin resonance frequency of 94GHz. Trityl radicals are used to directly polarize 13C...... and other low-γ nuclei. Subsequent to the DNP process, the solid sample is dissolved rapidly with a warm solvent to create a solution of molecules with highly polarized nuclear spins. Two main applications are proposed: high-resolution liquid state NMR with enhanced sensitivity, and the use...

  4. Order, chaos and nuclear dynamics: An introduction

    International Nuclear Information System (INIS)

    Swiatecki, W.J.

    1990-08-01

    This is an introductory lecture illustrating by simple examples the anticipated effect on collective nuclear dynamics of a transition from order to chaos in the motions of nucleons inside an idealized nucleus. The destruction of order is paralleled by a transition from a rubber-like to a honey-like behaviour of the independent-particle nuclear model. 10 refs., 6 figs

  5. Nuclear dynamics in heavy ion induced fusion-fission reactions

    International Nuclear Information System (INIS)

    Kapoor, S.S.

    1992-01-01

    Heavy ion induced fission and fission-like reactions evolve through a complex nuclear dynamics encountered in the medium energy nucleus-nucleus collisions. In the recent years, measurements of the fragment-neutron and fragment-charged particle angular correlations in heavy ion induced fusion-fission reactions, have provided new information on the dynamical times of nuclear deformations of the initial dinuclear complex to the fission saddle point and the scission point. From the studies of fragment angular distributions in heavy ion induced fission it has been possible to infer the relaxation times of the dinuclear complex in the K-degree of freedom and our recent measurements on the entrance channel dependence of fragment anisotropies have provided an experimental signature of the presence of fissions before K-equilibration. This paper reviews recent experimental and theoretical status of the above studies with particular regard to the questions relating to dynamical times, nuclear dissipation and the effect of nuclear dissipation on the K-distributions at the fission saddle in completely equilibrated compound nucleus. (author). 19 refs., 9 figs

  6. Impact of wave phase jumps on stochastic heating

    International Nuclear Information System (INIS)

    Zasenko, V.I.; Zagorodny, A.G.; Cherniak, O.M.

    2016-01-01

    Interaction of charged particles with fields of random waves brings about known effects of stochastic acceleration and heating. Jumps of wave phases can increase the intensity of these processes substantially. Numerical simulation of particle heating and acceleration by waves with regular phases, waves with jumping phase and stochastic electric field impulses is performed. Comparison of the results shows that to some extent an impact of phase jumps is similar to the action of separate field impulses. Jumps of phase not only increase the intensity of resonant particle heating but involves in this process non-resonant particles from a wide range of initial velocities

  7. Wavelet representation of the nuclear dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Jouault, B.; Sebille, F.; Mota, V. de la

    1997-12-31

    The study of transport phenomena in nuclear matter is addressed in a new approach named DYWAN, based on the projection methods of statistical physics and on the mathematical theory of wavelets. Strongly compressed representations of the nuclear systems are obtained with an accurate description of the wave functions and of their antisymmetrization. The results of the approach are illustrated for the ground state description as well as for the dissipative dynamics of nuclei at intermediate energies. (K.A.). 52 refs.

  8. Prescription-induced jump distributions in multiplicative Poisson processes.

    Science.gov (United States)

    Suweis, Samir; Porporato, Amilcare; Rinaldo, Andrea; Maritan, Amos

    2011-06-01

    Generalized Langevin equations (GLE) with multiplicative white Poisson noise pose the usual prescription dilemma leading to different evolution equations (master equations) for the probability distribution. Contrary to the case of multiplicative Gaussian white noise, the Stratonovich prescription does not correspond to the well-known midpoint (or any other intermediate) prescription. By introducing an inertial term in the GLE, we show that the Itô and Stratonovich prescriptions naturally arise depending on two time scales, one induced by the inertial term and the other determined by the jump event. We also show that, when the multiplicative noise is linear in the random variable, one prescription can be made equivalent to the other by a suitable transformation in the jump probability distribution. We apply these results to a recently proposed stochastic model describing the dynamics of primary soil salinization, in which the salt mass balance within the soil root zone requires the analysis of different prescriptions arising from the resulting stochastic differential equation forced by multiplicative white Poisson noise, the features of which are tailored to the characters of the daily precipitation. A method is finally suggested to infer the most appropriate prescription from the data.

  9. Prescription-induced jump distributions in multiplicative Poisson processes

    Science.gov (United States)

    Suweis, Samir; Porporato, Amilcare; Rinaldo, Andrea; Maritan, Amos

    2011-06-01

    Generalized Langevin equations (GLE) with multiplicative white Poisson noise pose the usual prescription dilemma leading to different evolution equations (master equations) for the probability distribution. Contrary to the case of multiplicative Gaussian white noise, the Stratonovich prescription does not correspond to the well-known midpoint (or any other intermediate) prescription. By introducing an inertial term in the GLE, we show that the Itô and Stratonovich prescriptions naturally arise depending on two time scales, one induced by the inertial term and the other determined by the jump event. We also show that, when the multiplicative noise is linear in the random variable, one prescription can be made equivalent to the other by a suitable transformation in the jump probability distribution. We apply these results to a recently proposed stochastic model describing the dynamics of primary soil salinization, in which the salt mass balance within the soil root zone requires the analysis of different prescriptions arising from the resulting stochastic differential equation forced by multiplicative white Poisson noise, the features of which are tailored to the characters of the daily precipitation. A method is finally suggested to infer the most appropriate prescription from the data.

  10. Automated Storm Tracking and the Lightning Jump Algorithm Using GOES-R Geostationary Lightning Mapper (GLM) Proxy Data

    Science.gov (United States)

    Schultz, Elise; Schultz, Christopher Joseph; Carey, Lawrence D.; Cecil, Daniel J.; Bateman, Monte

    2016-01-01

    This study develops a fully automated lightning jump system encompassing objective storm tracking, Geostationary Lightning Mapper proxy data, and the lightning jump algorithm (LJA), which are important elements in the transition of the LJA concept from a research to an operational based algorithm. Storm cluster tracking is based on a product created from the combination of a radar parameter (vertically integrated liquid, VIL), and lightning information (flash rate density). Evaluations showed that the spatial scale of tracked features or storm clusters had a large impact on the lightning jump system performance, where increasing spatial scale size resulted in decreased dynamic range of the system's performance. This framework will also serve as a means to refine the LJA itself to enhance its operational applicability. Parameters within the system are isolated and the system's performance is evaluated with adjustments to parameter sensitivity. The system's performance is evaluated using the probability of detection (POD) and false alarm ratio (FAR) statistics. Of the algorithm parameters tested, sigma-level (metric of lightning jump strength) and flash rate threshold influenced the system's performance the most. Finally, verification methodologies are investigated. It is discovered that minor changes in verification methodology can dramatically impact the evaluation of the lightning jump system.

  11. Quantum jumps on Anderson attractors

    Science.gov (United States)

    Yusipov, I. I.; Laptyeva, T. V.; Ivanchenko, M. V.

    2018-01-01

    In a closed single-particle quantum system, spatial disorder induces Anderson localization of eigenstates and halts wave propagation. The phenomenon is vulnerable to interaction with environment and decoherence that is believed to restore normal diffusion. We demonstrate that for a class of experimentally feasible non-Hermitian dissipators, which admit signatures of localization in asymptotic states, quantum particle opts between diffusive and ballistic regimes, depending on the phase parameter of dissipators, with sticking about localization centers. In a diffusive regime, statistics of quantum jumps is non-Poissonian and has a power-law interval, a footprint of intermittent locking in Anderson modes. Ballistic propagation reflects dispersion of an ordered lattice and introduces the second timescale for jumps, resulting in non-nonmonotonous probability distribution. Hermitian dephasing dissipation makes localization features vanish, and Poissonian jump statistics along with normal diffusion are recovered.

  12. Human Long Jump — A Deductive Approach

    Directory of Open Access Journals (Sweden)

    Miloš Jovanović

    2012-10-01

    Full Text Available This paper presents a useful application of a generalized approach to the modelling of human and humanoid motion using the deductive approach. It starts with formulating a completely general problem and deriving different real situations as special cases. The concept and the software realization are verified by comparing the results with the ones obtained using “classical” software for one well-known particular problem – biped walking. New applicability and potentials of the proposed method are demonstrated by simulation of a selected example – the long jump. The simulated motion included jumping and landing on the feet (after a jump. Additional analysis is done in the paper regarding the joint torque and joint angle during the jumping. Separate stages of the simulation are defined and explained.

  13. Macroscopic treatment of nuclear dynamics

    International Nuclear Information System (INIS)

    Swiatecki, W.J.

    1984-05-01

    A qualitative classification of nucleus-nucleus reactions into four types is described, a consequence of the existence of up to three milestone configurations that a fusing system may be faced with. These considerations lead to phenomenological formulae for fusion and compound-nucleus cross-sections that may be compared with experiments by the use of rectilinear cross section plots. Examples of more specific model calculations of nuclear reactions employing the Chaotic Regime Dynamics are described. Some misunderstandings regarding the Wall and Wall-and-Window formulae, underlying this type of dynamics, are discussed in the appendix. 23 references

  14. Microscopic study of nuclear 'pasta' by quantum molecular dynamics

    International Nuclear Information System (INIS)

    Watanabe, Gentaro; Sato, Katsuhiko; Yasuoka, Kenji; Ebisuzaki, Toshikazu

    2002-01-01

    Structure of cold dense matter at subnuclear densities is investigated by quantum molecular dynamics (QMD) simulations. We succeeded in showing that the phases with slab-like and rod-like nuclei etc. and be formed dynamically from hot uniform nuclear matter without any assumptions on nuclear shape. We also observe intermediate phases, which has complicated nuclear shapes. Geometrical structures of matter are analyzed with Minkowski functionals, and it is found out that intermediate phases can be characterized as ones with negative Euler characteristic. Our result suggests the existence of these kinds of phases in addition to the simple 'pasta' phases in neutron star crusts. (author)

  15. Parvovirus induced alterations in nuclear architecture and dynamics.

    Directory of Open Access Journals (Sweden)

    Teemu O Ihalainen

    2009-06-01

    Full Text Available The nucleus of interphase eukaryotic cell is a highly compartmentalized structure containing the three-dimensional network of chromatin and numerous proteinaceous subcompartments. DNA viruses induce profound changes in the intranuclear structures of their host cells. We are applying a combination of confocal imaging including photobleaching microscopy and computational methods to analyze the modifications of nuclear architecture and dynamics in parvovirus infected cells. Upon canine parvovirus infection, expansion of the viral replication compartment is accompanied by chromatin marginalization to the vicinity of the nuclear membrane. Dextran microinjection and fluorescence recovery after photobleaching (FRAP studies revealed the homogeneity of this compartment. Markedly, in spite of increase in viral DNA content of the nucleus, a significant increase in the protein mobility was observed in infected compared to non-infected cells. Moreover, analysis of the dynamics of photoactivable capsid protein demonstrated rapid intranuclear dynamics of viral capsids. Finally, quantitative FRAP and cellular modelling were used to determine the duration of viral genome replication. Altogether, our findings indicate that parvoviruses modify the nuclear structure and dynamics extensively. Intranuclear crowding of viral components leads to enlargement of the interchromosomal domain and to chromatin marginalization via depletion attraction. In conclusion, parvoviruses provide a useful model system for understanding the mechanisms of virus-induced intranuclear modifications.

  16. The hydraulic jump and ripples in liquid helium

    International Nuclear Information System (INIS)

    Rolley, E.; Guthmann, C.; Pettersen, M.S.

    2007-01-01

    We have studied the characteristics of the circular hydraulic jump using liquid helium. Surprisingly, the radius of the jump does not change at the superfluid transition. We think that the flow is still dissipative below the lambda point because the velocity exceeds the critical one. The jump radius R j is compared with various models. In our parameter range, we find that the jump can be treated as a shock, and that capillary effects are important. Below the superfluid transition, we observed a standing capillary wave between the impact of the jet and the jump. Assuming that the superfluid flow can be described with an effective viscosity, we calculate the wave vector and thus obtain the value of the liquid thickness, which is in reasonable agreement with predictions. However, the spatial variation of the wave amplitude depends much more strongly on temperature than we calculate

  17. A lattice Boltzmann simulation of coalescence-induced droplet jumping on superhydrophobic surfaces with randomly distributed structures

    Science.gov (United States)

    Zhang, Li-Zhi; Yuan, Wu-Zhi

    2018-04-01

    The motion of coalescence-induced condensate droplets on superhydrophobic surface (SHS) has attracted increasing attention in energy-related applications. Previous researches were focused on regularly rough surfaces. Here a new approach, a mesoscale lattice Boltzmann method (LBM), is proposed and used to model the dynamic behavior of coalescence-induced droplet jumping on SHS with randomly distributed rough structures. A Fast Fourier Transformation (FFT) method is used to generate non-Gaussian randomly distributed rough surfaces with the skewness (Sk), kurtosis (K) and root mean square (Rq) obtained from real surfaces. Three typical spreading states of coalesced droplets are observed through LBM modeling on various rough surfaces, which are found to significantly influence the jumping ability of coalesced droplet. The coalesced droplets spreading in Cassie state or in composite state will jump off the rough surfaces, while the ones spreading in Wenzel state would eventually remain on the rough surfaces. It is demonstrated that the rough surfaces with smaller Sks, larger Rqs and a K at 3.0 are beneficial to coalescence-induced droplet jumping. The new approach gives more detailed insights into the design of SHS.

  18. Numerical simulations of katabatic jumps in coats land, Antartica

    Science.gov (United States)

    Yu, Ye; Cai, Xiaoming; King, John C.; Renfrew, Ian A.

    A non-hydrostatic numerical model, the Regional Atmospheric Modeling System (RAMS), has been used to investigate the development of katabatic jumps in Coats Land, Antarctica. In the control run with a 5 m s-1downslope directed initial wind, a katabatic jump develops near the foot of the idealized slope. The jump is manifested as a rapid deceleration of the downslope flow and a change from supercritical to subcritical flow, in a hydraulic sense, i.e., the Froude number (Fr) of the flow changes from Fr > 1 to Fr> 1. Results from sensitivity experiments show that an increase in the upstream flow rate strengthens the jump, while an increase in the downstream inversion-layer depth results in a retreat of the jump. Hydraulic theory and Bernoulli''s theorem have been used to explain the surface pressure change across the jump. It is found that hydraulic theory always underestimates the surface pressure change, while Bernoulli''s theorem provides a satisfactory estimation. An analysis of the downs balance for the katabatic jump indicates that the important forces are those related to the pressure gradient, advection and, to a lesser extent, the turbulent momentum divergence. The development of katabatic jumps can be divided into two phases. In phase I, the t gradient force is nearly balanced by advection, while in phase II, the pressure gradient force is counterbalanced by turbulent momentum divergence. The upslope pressure gradient force associated with a pool of cold air over the ice shelf facilitates the formation of the katabatic jump.

  19. Development of a Minimally Actuated Jumping-Rolling Robot

    Directory of Open Access Journals (Sweden)

    Thanhtam Ho

    2015-04-01

    Full Text Available This paper presents development of a hybrid mobile robot in order to take advantage of both rolling and jumping locomotion on the ground. According to the unique design of the mechanism, the robot is able to execute both jumping and rolling skilfully by using only one DC motor. Changing the centre of gravity enables rolling of the robot and storage of energy is utilized for jumping. Mechanism design and control logic are validated by computer simulation. Simulation results show that the robot can jump nearly 1.3 times its diameter and roll at the speed of 3.3 times its diameter per second.

  20. Jump dynamics and volatility: Oil and the stock markets

    International Nuclear Information System (INIS)

    Chiou, Jer-Shiou; Lee, Yen-Hsien

    2009-01-01

    Our study distinguishes itself from the prior studies within the oil and financial literature by not only examining the asymmetric effects of oil prices on stock returns, but also exploring the importance of structure changes in this dependency relationship. We retrieve daily data on S and P 500 and West Texas Intermediate (WTI) oil transactions covering the period from 1 January 1992 to 7 November 2006, and then transform the available data into daily returns. In contrast to the extant literature, in this study, consideration of expected, unexpected and negative unexpected oil price fluctuations is incorporated into the model of stock returns; we also focus on the ways in which oil price volatility, as opposed to general macroeconomic variables, can influence the stock market. We go on to implement the ARJI (Autoregressive Conditional Jump Intensity) model with structure changes, from which we conclude that high fluctuations in oil prices have asymmetric unexpected impacts on S and P 500 returns. (author)

  1. Mixed random walks with a trap in scale-free networks including nearest-neighbor and next-nearest-neighbor jumps

    Science.gov (United States)

    Zhang, Zhongzhi; Dong, Yuze; Sheng, Yibin

    2015-10-01

    Random walks including non-nearest-neighbor jumps appear in many real situations such as the diffusion of adatoms and have found numerous applications including PageRank search algorithm; however, related theoretical results are much less for this dynamical process. In this paper, we present a study of mixed random walks in a family of fractal scale-free networks, where both nearest-neighbor and next-nearest-neighbor jumps are included. We focus on trapping problem in the network family, which is a particular case of random walks with a perfect trap fixed at the central high-degree node. We derive analytical expressions for the average trapping time (ATT), a quantitative indicator measuring the efficiency of the trapping process, by using two different methods, the results of which are consistent with each other. Furthermore, we analytically determine all the eigenvalues and their multiplicities for the fundamental matrix characterizing the dynamical process. Our results show that although next-nearest-neighbor jumps have no effect on the leading scaling of the trapping efficiency, they can strongly affect the prefactor of ATT, providing insight into better understanding of random-walk process in complex systems.

  2. Software for the nuclear reactor dynamics study using time series processing

    International Nuclear Information System (INIS)

    Valero, Esbel T.; Montesino, Maria E.

    1997-01-01

    The parametric monitoring in Nuclear Power Plant (NPP) permits the operational surveillance of nuclear reactor. The methods employed in order to process this information such as FFT, autoregressive models and other, have some limitations when those regimens in which appear strongly non-linear behaviors are analyzed. In last years the chaos theory has offered new ways in order to explain complex dynamic behaviors. This paper describes a software (ECASET) that allow, by time series processing from NPP's acquisition system, to characterize the nuclear reactor dynamic as a complex dynamical system. Here we show using ECASET's results the possibility of classifying the different regimens appearing in nuclear reactors. The results of several temporal series processing from real systems are introduced. This type of analysis complements the results obtained with traditional methods and can constitute a new tool for monitoring nuclear reactors. (author). 13 refs., 3 figs

  3. Jumping to (fatal) conclusions? An analysis of video film on a social networking web site of recreational jumping from height into water.

    Science.gov (United States)

    Moran, Kevin

    2014-01-01

    In high-income countries, death as a consequence of recreational jumping into water from height has not been well investigated partly because it traditionally has been a covert activity within youth culture. An observational study of video recordings posted on the YouTube web site was used to gather data on the nature of jumping activity in New Zealand and Australia. An analytical framework was developed to identify site- participant- social characteristics (10 variables) and online feedback (4 variables). Of the 389 videos recorded in New Zealand (n = 210) and Australia (n = 179), 929 jumpers were observed, and rivers were the most frequently reported site of jumping activity (New Zealand 47%; Australia 35%). One fifth (20%) of the jumps in New Zealand and one third (33%) in Australia were from heights estimated to be more than 12 m. The YouTube website portraying jumps from height were visited almost half a million times (495,686 hits). Ways of reducing recreational jumping risk via targeted education interventions may be best directed at young male adults. Use of social network sites to foster safe behaviours may be an effective way to educate young people of the inherent risks of jumping from height into water.

  4. Non-Poissonian quantum jumps of a fluxonium qubit due to quasiparticle excitations.

    Science.gov (United States)

    Vool, U; Pop, I M; Sliwa, K; Abdo, B; Wang, C; Brecht, T; Gao, Y Y; Shankar, S; Hatridge, M; Catelani, G; Mirrahimi, M; Frunzio, L; Schoelkopf, R J; Glazman, L I; Devoret, M H

    2014-12-12

    As the energy relaxation time of superconducting qubits steadily improves, nonequilibrium quasiparticle excitations above the superconducting gap emerge as an increasingly relevant limit for qubit coherence. We measure fluctuations in the number of quasiparticle excitations by continuously monitoring the spontaneous quantum jumps between the states of a fluxonium qubit, in conditions where relaxation is dominated by quasiparticle loss. Resolution on the scale of a single quasiparticle is obtained by performing quantum nondemolition projective measurements within a time interval much shorter than T₁, using a quantum-limited amplifier (Josephson parametric converter). The quantum jump statistics switches between the expected Poisson distribution and a non-Poissonian one, indicating large relative fluctuations in the quasiparticle population, on time scales varying from seconds to hours. This dynamics can be modified controllably by injecting quasiparticles or by seeding quasiparticle-trapping vortices by cooling down in a magnetic field.

  5. Sub-Poissonian statistics of quantum jumps in single molecule or atomic ion

    International Nuclear Information System (INIS)

    Osad'ko, I.S.; Gus'kov, D.N.

    2007-01-01

    A theory for statistics of quantum jumps in single molecule or ion driven by continues wave laser field is developed. These quantum jumps can relate to nonradiative singlet-triplet transitions in a molecule or to on → off jumps in a single ion with shelving processes. Distribution function w N (T) of quantum jumps in time interval T is found. Computer simulation of quantum jumps is realized. Statistical treatment of simulated jumps reveals sub-Poissonian statistics of quantum jumps. The theoretical distribution function w N (T) fits well the distribution of jumps found from simulated data. Experimental data on quantum jumps found in experiments with single Hg + ion are described by the function w N (T) well

  6. Jumping robots: a biomimetic solution to locomotion across rough terrain.

    Science.gov (United States)

    Armour, Rhodri; Paskins, Keith; Bowyer, Adrian; Vincent, Julian; Megill, William; Bomphrey, Richard

    2007-09-01

    This paper introduces jumping robots as a means to traverse rough terrain; such terrain can pose problems for traditional wheeled, tracked and legged designs. The diversity of jumping mechanisms found in nature is explored to support the theory that jumping is a desirable ability for a robot locomotion system to incorporate, and then the size-related constraints are determined from first principles. A series of existing jumping robots are presented and their performance summarized. The authors present two new biologically inspired jumping robots, Jollbot and Glumper, both of which incorporate additional locomotion techniques of rolling and gliding respectively. Jollbot consists of metal hoop springs forming a 300 mm diameter sphere, and when jumping it raises its centre of gravity by 0.22 m and clears a height of 0.18 m. Glumper is of octahedral shape, with four 'legs' that each comprise two 500 mm lengths of CFRP tube articulating around torsion spring 'knees'. It is able to raise its centre of gravity by 1.60 m and clears a height of 1.17 m. The jumping performance of the jumping robot designs presented is discussed and compared against some specialized jumping animals. Specific power output is thought to be the performance-limiting factor for a jumping robot, which requires the maximization of the amount of energy that can be stored together with a minimization of mass. It is demonstrated that this can be achieved through optimization and careful materials selection.

  7. Optimal Ski Jump

    Science.gov (United States)

    Rebilas, Krzysztof

    2013-02-01

    Consider a skier who goes down a takeoff ramp, attains a speed V, and jumps, attempting to land as far as possible down the hill below (Fig. 1). At the moment of takeoff the angle between the skier's velocity and the horizontal is α. What is the optimal angle α that makes the jump the longest possible for the fixed magnitude of the velocity V? Of course, in practice, this is a very sophisticated problem; the skier's range depends on a variety of complex factors in addition to V and α. However, if we ignore these and assume the jumper is in free fall between the takeoff ramp and the landing point below, the problem becomes an exercise in kinematics that is suitable for introductory-level students. The solution is presented here.

  8. Dynamic Simulation and Optimization of Nuclear Hydrogen Production Systems

    Energy Technology Data Exchange (ETDEWEB)

    Paul I. Barton; Mujid S. Kaximi; Georgios Bollas; Patricio Ramirez Munoz

    2009-07-31

    This project is part of a research effort to design a hydrogen plant and its interface with a nuclear reactor. This project developed a dynamic modeling, simulation and optimization environment for nuclear hydrogen production systems. A hybrid discrete/continuous model captures both the continuous dynamics of the nuclear plant, the hydrogen plant, and their interface, along with discrete events such as major upsets. This hybrid model makes us of accurate thermodynamic sub-models for the description of phase and reaction equilibria in the thermochemical reactor. Use of the detailed thermodynamic models will allow researchers to examine the process in detail and have confidence in the accurary of the property package they use.

  9. Anthropic prediction for a large multi-jump landscape

    International Nuclear Information System (INIS)

    Schwartz-Perlov, Delia

    2008-01-01

    The assumption of a flat prior distribution plays a critical role in the anthropic prediction of the cosmological constant. In a previous paper we analytically calculated the distribution for the cosmological constant, including the prior and anthropic selection effects, in a large toy 'single-jump' landscape model. We showed that it is possible for the fractal prior distribution that we found to behave as an effectively flat distribution in a wide class of landscapes, but only if the single-jump size is large enough. We extend this work here by investigating a large (N∼10 500 ) toy 'multi-jump' landscape model. The jump sizes range over three orders of magnitude and an overall free parameter c determines the absolute size of the jumps. We will show that for 'large' c the distribution of probabilities of vacua in the anthropic range is effectively flat, and thus the successful anthropic prediction is validated. However, we argue that for small c, the distribution may not be smooth

  10. Scaling and jumping: Gravity loses grip on small jumpers

    NARCIS (Netherlands)

    Scholz, M.N.; Bobbert, M.F.; van Soest, A.J.

    2006-01-01

    There are several ways to quantify jumping performance, a common definition being the height gained by the body's centre of mass (CM) in the airborne phase. Under this definition, jump height is determined by take-off velocity. According to the existing literature on jumping and scaling, take-off

  11. Dynamic cost control information system for nuclear power plant construction

    International Nuclear Information System (INIS)

    Wang Yongqing; Liu Wei

    1998-01-01

    The authors first introduce the cost control functions of some overseas popular project management software at present and the specific ways of cost control of nuclear power plant construction in China. Then the authors stress the necessity of cost and schedule control integration and present the concept of dynamic cost control, the design scheme of dynamic cost control information system and the data structure modeling. Based on the above, the authors can develop the system which has the functions of dynamic estimate, cash flow management and cost optimization for nuclear engineering

  12. Nuclear Arms Race and Environment

    OpenAIRE

    Li, Anpeng

    2012-01-01

    This paper introduces a new factor, environment, into nuclear arms race model. In this model, nuclear weapons produce larger defense power compared with conventional arms, but hurt the environment meanwhile. In the global welfare maximum level, both conventional and nuclear weapons budget are zero. However, the competitive equilibrium may not achieve the optimum. I give the condition to jump out of the prisoner's dilemma.

  13. Many-body kinetics of dynamic nuclear polarization by the cross effect

    Science.gov (United States)

    Karabanov, A.; Wiśniewski, D.; Raimondi, F.; Lesanovsky, I.; Köckenberger, W.

    2018-03-01

    Dynamic nuclear polarization (DNP) is an out-of-equilibrium method for generating nonthermal spin polarization which provides large signal enhancements in modern diagnostic methods based on nuclear magnetic resonance. A particular instance is cross-effect DNP, which involves the interaction of two coupled electrons with the nuclear spin ensemble. Here we develop a theory for this important DNP mechanism and show that the nonequilibrium nuclear polarization buildup is effectively driven by three-body incoherent Markovian dissipative processes involving simultaneous state changes of two electrons and one nucleus. We identify different parameter regimes for effective polarization transfer and discuss under which conditions the polarization dynamics can be simulated by classical kinetic Monte Carlo methods. Our theoretical approach allows simulations of the polarization dynamics on an individual spin level for ensembles consisting of hundreds of nuclear spins. The insight obtained by these simulations can be used to find optimal experimental conditions for cross-effect DNP and to design tailored radical systems that provide optimal DNP efficiency.

  14. Comparison of lower limb kinetics during vertical jumps in turnout and neutral foot positions by classical ballet dancers.

    Science.gov (United States)

    Imura, Akiko; Iino, Yoichi

    2017-03-01

    The purpose of this study was to investigate the effect of hip external rotation (turnout) on lower limb kinetics during vertical jumps by classical ballet dancers. Vertical jumps in a turnout (TJ) and a neutral hip position (NJ) performed by 12 classical female ballet dancers were analysed through motion capture, recording of the ground reaction forces, and inverse dynamics analysis. At push-off, the lower trunk leaned forward 18.2° and 20.1° in the TJ and NJ, respectively. The dancers jumped lower in the TJ than in the NJ. The knee extensor and hip abductor torques were smaller, whereas the hip external rotator torque was larger in the TJ than in the NJ. The work done by the hip joint moments in the sagittal plane was 0.28 J/(Body mass*Height) and 0.33 J/(Body mass*Height) in the TJ and NJ, respectively. The joint work done by the lower limbs were not different between the two jumps. These differences resulted from different planes in which the lower limb flexion-extension occurred, i.e. in the sagittal or frontal plane. This would prevent the forward lean of the trunk by decreasing the hip joint work in the sagittal plane and reduce the knee extensor torque in the jump.

  15. STABILITY OF LINEAR SYSTEMS WITH MARKOVIAN JUMPS

    Directory of Open Access Journals (Sweden)

    Jorge Enrique Mayta Guillermo

    2016-12-01

    Full Text Available In this work we will analyze the stability of linear systems governed by a Markov chain, this family is known in the specialized literature as linear systems with Markov jumps or by its acronyms in English MJLS as it is denoted in [1]. Linear systems governed by a Markov chain are dynamic systems with abrupt changes. We give some denitions of stability for the MJLS system, where these types of stability are equivalent as long as the state space of the Markov chain is nite. Finally we present a theorem that characterizes the stochastic stability by means of an equation of the Lyapunov type. The result is a generalization of a theorem in classical theory.

  16. Variability of Plyometric and Ballistic Exercise Technique Maintains Jump Performance.

    Science.gov (United States)

    Chandler, Phillip T; Greig, Matthew; Comfort, Paul; McMahon, John J

    2018-06-01

    Chandler, PT, Greig, M, Comfort, P, and McMahon, JJ. Variability of plyometric and ballistic exercise technique maintains jump performance. J Strength Cond Res 32(6): 1571-1582, 2018-The aim of this study was to investigate changes in vertical jump technique over the course of a training session. Twelve plyometric and ballistic exercise-trained male athletes (age = 23.4 ± 4.6 years, body mass = 78.7 ± 18.8 kg, height = 177.1 ± 9.0 cm) performed 3 sets of 10 repetitions of drop jump (DJ), rebound jump (RJ) and squat jump (SJ). Each exercise was analyzed from touchdown to peak joint flexion and peak joint flexion to take-off. Squat jump was analyzed from peak joint flexion to take-off only. Jump height, flexion and extension time and range of motion, and instantaneous angles of the ankle, knee, and hip joints were measured. Separate 1-way repeated analyses of variance compared vertical jump technique across exercise sets and repetitions. Exercise set analysis found that SJ had lower results than DJ and RJ for the angle at peak joint flexion for the hip, knee, and ankle joints and take-off angle of the hip joint. Exercise repetition analysis found that the ankle joint had variable differences for the angle at take-off, flexion, and extension time for RJ. The knee joint had variable differences for flexion time for DJ and angle at take-off and touchdown for RJ. There was no difference in jump height. Variation in measured parameters across repetitions highlights variable technique across plyometric and ballistic exercises. This did not affect jump performance, but likely maintained jump performance by overcoming constraints (e.g., level of rate coding).

  17. Dynamic Simulator for Nuclear Power Plants (DSNP)

    International Nuclear Information System (INIS)

    Saphier, D.

    1976-01-01

    A new simulation language DSNP (Dynamic Simulator for Nuclear Power Plants) is being developed. It is a simple block oriented simulation language with an extensive library of component and auxiliary modules. Each module is a self-contained unit of a part of a physical component to be found in nuclear power plants. Each module will be available in four levels of sophistication, the fourth being a user supplied model. A module can be included in the simulation by a single statement. The precompiler translates DSNP statements into FORTRAN statements, takes care of the module parameters and the intermodular communication blocks, prepares proper data files and I/0 statements and searches the various libraries for the appropriate component modules. The documentation is computerized and all the necessary information for a particular module can be retrieved by a special document generator. The DSNP will be a flexible tool which will allow dynamic simulations to be performed on a large variety of nuclear power plants or specific components of these plants

  18. Exponential stability of delayed recurrent neural networks with Markovian jumping parameters

    International Nuclear Information System (INIS)

    Wang Zidong; Liu Yurong; Yu Li; Liu Xiaohui

    2006-01-01

    In this Letter, the global exponential stability analysis problem is considered for a class of recurrent neural networks (RNNs) with time delays and Markovian jumping parameters. The jumping parameters considered here are generated from a continuous-time discrete-state homogeneous Markov process, which are governed by a Markov process with discrete and finite state space. The purpose of the problem addressed is to derive some easy-to-test conditions such that the dynamics of the neural network is stochastically exponentially stable in the mean square, independent of the time delay. By employing a new Lyapunov-Krasovskii functional, a linear matrix inequality (LMI) approach is developed to establish the desired sufficient conditions, and therefore the global exponential stability in the mean square for the delayed RNNs can be easily checked by utilizing the numerically efficient Matlab LMI toolbox, and no tuning of parameters is required. A numerical example is exploited to show the usefulness of the derived LMI-based stability conditions

  19. Influence of magnetic history on flux jump fields

    International Nuclear Information System (INIS)

    Sosnowski, J.

    1986-01-01

    A formalism describing the fields at which flux jumps occur in hard superconductors has been confirmed by the description of an experimentally observed shift of flux jump fields in the second hysteresis loop of a Nb 3 Al superconducting sample. By fitting the theoretical model to experimental data, values of the proportionality parameter between the stability limit and the flux jump field, the first stability limit, and the first penetration field have been estimated

  20. Timeless Approach to Quantum Jumps

    Directory of Open Access Journals (Sweden)

    Ignazio Licata

    2015-10-01

    Full Text Available According to the usual quantum description, the time evolution of the quantum state is continuous and deterministic except when a discontinuous and indeterministic collapse of state vector occurs. The collapse has been a central topic since the origin of the theory, although there are remarkable theoretical proposals to understand its nature, such as the Ghirardi–Rimini–Weber. Another possibility could be the assimilation of collapse with the now experimentally well established phenomenon of quantum jump, postulated by Bohr already in 1913. The challenge of nonlocality offers an opportunity to reconsider the quantum jump as a fundamental element of the logic of the physical world, rather than a subsidiary accident. We propose here a simple preliminary model that considers quantum jumps as processes of entry to and exit from the usual temporal domain to a timeless vacuum, without contradicting the quantum relativistic formalism, and we present some potential connections with particle physics. Quanta 2015; 4: 10–26.

  1. A COMPARISON OF PAIRS FIGURE SKATERS IN REPEATED JUMPS

    Directory of Open Access Journals (Sweden)

    William A. Sands

    2012-03-01

    Full Text Available Trends in pairs figure skating have shown that increasingly difficult jumps have become an essential aspect of high-level performance, especially in the latter part of a competitive program. We compared a repeated jump power index in a 60 s repeated jump test to determine the relationship of repeated jump test to competitive rank and to measure 2D hip, knee, and ankle angles and angular velocities at 0, 20, 40, and 60 s. Eighteen National Team Pairs Figure Skaters performed a 60 s repeated jump test on a large switch-mat with timing of flight and ground durations and digital video recording. Each 60-s period was divided into 6, 10-s intervals, with power indexes (W/kg calculated for each 10-s interval. Power index by 10-s interval repeated measures ANOVAs (RMANOVA showed that males exceeded females at all intervals, and the highest power index interval was during 10 to 20 s for both sexes. RMANOVAs of angles and angular velocities showed main effects for time only. Power index and jumping techniques among figure skaters showed rapid and steady declines over the test duration. Power index can predict approximately 50% of competitive rank variance, and sex differences in jumping technique were rare

  2. Probing electron correlation and nuclear dynamics in Momentum Space

    International Nuclear Information System (INIS)

    Deleuze, M S; Hajgato, B; Morini, F; Knippenberg, S

    2010-01-01

    Orbital imaging experiments employing Electron Momentum Spectroscopy are subject to many complications, such as distorted wave effects, conformational mobility in the electronic ground state, ultra-fast nuclear dynamics in the final state, or a dispersion of the ionization intensity over electronically excited (shake-up) configurations of the cation. The purpose of the present contribution is to illustrate how a proper treatment of these complications enables us to probe in momentum space the consequences of electron correlation and nuclear dynamics in neutral and cationic states.

  3. Dissipative - free jumps for the magnetoacoustic branch of cold plasma motions

    International Nuclear Information System (INIS)

    Bakholdin, I.B.

    2000-01-01

    Dissipative-free jumps were studied in hydrodynamic model of cold plasma moving with the rate close to magnetoacoustic one. The jumps for the generalized Korteweg-de Vries equation with similar nonlinear and dispersion properties were studied. Among them there were jumps with emission and solution type jumps. Furthermore, the numerical investigation into the initial break decomposition in cold plasma confirmed the validity of assumption that in the given type of jumps as in case of the generalized Korteweg-de Vries equation. Paper describes the analytical method enabling to forecast the structure nature of such jumps in the general case [ru

  4. Jump Tails, Extreme Dependencies, and the Distribution of Stock Returns

    DEFF Research Database (Denmark)

    Bollerslev, Tim; Todorov, Viktor

    We provide a new framework for estimating the systematic and idiosyncratic jump tail risks in financial asset prices. The theory underlying our estimates are based on in-fill asymptotic arguments for directly identifying the systematic and idiosyncratic jumps, together with conventional long...... market portfolio, we find that the distributions of the systematic and idiosyncratic jumps are both generally heavy-tailed and not necessarily symmetric. Our estimates also point to the existence of strong dependencies between the market-wide jumps and the corresponding systematic jump tails for all...... of the stocks in the sample. We also show how the jump tail dependencies deduced from the high-frequency data together with the day-to-day temporal variation in the volatility are able to explain the “extreme” dependencies vis-a-vis the market portfolio....

  5. Numerical study of laminar, standing hydraulic jumps in a planar geometry.

    Science.gov (United States)

    Dasgupta, Ratul; Tomar, Gaurav; Govindarajan, Rama

    2015-05-01

    We solve the two-dimensional, planar Navier-Stokes equations to simulate a laminar, standing hydraulic jump using a Volume-of-Fluid method. The geometry downstream of the jump has been designed to be similar to experimental conditions by including a pit at the edge of the platform over which liquid film flows. We obtain jumps with and without separation. Increasing the inlet Froude number pushes the jump downstream and makes the slope of the jump weaker, consistent with experimental observations of circular jumps, and decreasing the Reynolds number brings the jump upstream while making it steeper. We study the effect of the length of the domain and that of a downstream obstacle on the structure and location of the jump. The transient flow which leads to a final steady jump is described for the first time to our knowledge. In the moderate Reynolds number regime, we obtain steady undular jumps with a separated bubble underneath the first few undulations. Interestingly, surface tension leads to shortening of wavelength of these undulations. We show that the undulations can be explained using the inviscid theory of Benjamin and Lighthill (Proc. R. Soc. London, Ser. A, 1954). We hope this new finding will motivate experimental verification.

  6. Measurement of K-shell jump ratios and jump factors for some elements in 76≤Z≤92 using EDXRF spectrometer

    International Nuclear Information System (INIS)

    Kaya, N.; Apaydin, G.; Tirasoglu, E.

    2011-01-01

    This article presents experimental values of the K-shell jump factor and jump ratio (ratio of the K-shell photoionization cross section to the photoionization cross section of the rest of the atom at the K edge) for some elements in 76≤Z≤92 using an energy dispersive X-ray fluorescence (EDXRF) spectrometer and compares those values with the theoretical ones giving reasonable agreement. The experimental values have been determined using the fluorescence parameters: K α production cross sections, K β /K α X-rays intensity ratios, total atomic attenuation cross sections, etc. To the best of our knowledge, K-shell jump ratios and jump factors have been measured without having any data on K edge for the first time in these elements. The results have been plotted versus atomic number.

  7. Theory of coherent dynamic nuclear polarization in quantum dots

    DEFF Research Database (Denmark)

    Neder, Izhar; Rudner, Mark Spencer; Halperin, Bertrand

    2014-01-01

    We consider the production of dynamic nuclear spin polarization (DNP) in a two-electron double quantum dot, in which the electronic levels are repeatedly swept through a singlet-triplet avoided crossing. Our analysis helps to elucidate the intriguing interplay between electron-nuclear hyperfine...

  8. Temperature jump boundary conditions in radiation diffusion

    International Nuclear Information System (INIS)

    Alonso, C.T.

    1976-12-01

    The radiation diffusion approximation greatly simplifies radiation transport problems. Yet the application of this method has often been unnecessarily restricted to optically thick regions, or has been extended through the use of such ad hoc devices as flux limiters. The purpose of this paper is to review and draw attention to the use of the more physically appropriate temperature jump boundary conditions for extending the range of validity of the diffusion approximation. Pioneering work has shown that temperature jump boundary conditions remove the singularity in flux that occurs in ordinary diffusion at small optical thicknesses. In this review paper Deissler's equations for frequency-dependent jump boundary conditions are presented and specific geometric examples are calculated analytically for steady state radiation transfer. When jump boundary conditions are applied to radiation diffusion, they yield exact solutions which are naturally flux- limited and geometry-corrected. We believe that the presence of temperature jumps on source boundaries is probably responsible in some cases for the past need for imposing ad hoc flux-limiting constraints on pure diffusion solutions. The solution for transfer between plane slabs, which is exact to all orders of optical thickness, also provides a useful tool for studying the accuracy of computer codes

  9. Quantum wavepacket ab initio molecular dynamics: an approach for computing dynamically averaged vibrational spectra including critical nuclear quantum effects.

    Science.gov (United States)

    Sumner, Isaiah; Iyengar, Srinivasan S

    2007-10-18

    We have introduced a computational methodology to study vibrational spectroscopy in clusters inclusive of critical nuclear quantum effects. This approach is based on the recently developed quantum wavepacket ab initio molecular dynamics method that combines quantum wavepacket dynamics with ab initio molecular dynamics. The computational efficiency of the dynamical procedure is drastically improved (by several orders of magnitude) through the utilization of wavelet-based techniques combined with the previously introduced time-dependent deterministic sampling procedure measure to achieve stable, picosecond length, quantum-classical dynamics of electrons and nuclei in clusters. The dynamical information is employed to construct a novel cumulative flux/velocity correlation function, where the wavepacket flux from the quantized particle is combined with classical nuclear velocities to obtain the vibrational density of states. The approach is demonstrated by computing the vibrational density of states of [Cl-H-Cl]-, inclusive of critical quantum nuclear effects, and our results are in good agreement with experiment. A general hierarchical procedure is also provided, based on electronic structure harmonic frequencies, classical ab initio molecular dynamics, computation of nuclear quantum-mechanical eigenstates, and employing quantum wavepacket ab initio dynamics to understand vibrational spectroscopy in hydrogen-bonded clusters that display large degrees of anharmonicities.

  10. Optimizing the Distribution of Leg Muscles for Vertical Jumping.

    Directory of Open Access Journals (Sweden)

    Jeremy D Wong

    Full Text Available A goal of biomechanics and motor control is to understand the design of the human musculoskeletal system. Here we investigated human functional morphology by making predictions about the muscle volume distribution that is optimal for a specific motor task. We examined a well-studied and relatively simple human movement, vertical jumping. We investigated how high a human could jump if muscle volume were optimized for jumping, and determined how the optimal parameters improve performance. We used a four-link inverted pendulum model of human vertical jumping actuated by Hill-type muscles, that well-approximates skilled human performance. We optimized muscle volume by allowing the cross-sectional area and muscle fiber optimum length to be changed for each muscle, while maintaining constant total muscle volume. We observed, perhaps surprisingly, that the reference model, based on human anthropometric data, is relatively good for vertical jumping; it achieves 90% of the jump height predicted by a model with muscles designed specifically for jumping. Alteration of cross-sectional areas-which determine the maximum force deliverable by the muscles-constitutes the majority of improvement to jump height. The optimal distribution results in large vastus, gastrocnemius and hamstrings muscles that deliver more work, while producing a kinematic pattern essentially identical to the reference model. Work output is increased by removing muscle from rectus femoris, which cannot do work on the skeleton given its moment arm at the hip and the joint excursions during push-off. The gluteus composes a disproportionate amount of muscle volume and jump height is improved by moving it to other muscles. This approach represents a way to test hypotheses about optimal human functional morphology. Future studies may extend this approach to address other morphological questions in ethological tasks such as locomotion, and feature other sets of parameters such as properties of

  11. Optimizing the Distribution of Leg Muscles for Vertical Jumping

    Science.gov (United States)

    Wong, Jeremy D.; Bobbert, Maarten F.; van Soest, Arthur J.; Gribble, Paul L.; Kistemaker, Dinant A.

    2016-01-01

    A goal of biomechanics and motor control is to understand the design of the human musculoskeletal system. Here we investigated human functional morphology by making predictions about the muscle volume distribution that is optimal for a specific motor task. We examined a well-studied and relatively simple human movement, vertical jumping. We investigated how high a human could jump if muscle volume were optimized for jumping, and determined how the optimal parameters improve performance. We used a four-link inverted pendulum model of human vertical jumping actuated by Hill-type muscles, that well-approximates skilled human performance. We optimized muscle volume by allowing the cross-sectional area and muscle fiber optimum length to be changed for each muscle, while maintaining constant total muscle volume. We observed, perhaps surprisingly, that the reference model, based on human anthropometric data, is relatively good for vertical jumping; it achieves 90% of the jump height predicted by a model with muscles designed specifically for jumping. Alteration of cross-sectional areas—which determine the maximum force deliverable by the muscles—constitutes the majority of improvement to jump height. The optimal distribution results in large vastus, gastrocnemius and hamstrings muscles that deliver more work, while producing a kinematic pattern essentially identical to the reference model. Work output is increased by removing muscle from rectus femoris, which cannot do work on the skeleton given its moment arm at the hip and the joint excursions during push-off. The gluteus composes a disproportionate amount of muscle volume and jump height is improved by moving it to other muscles. This approach represents a way to test hypotheses about optimal human functional morphology. Future studies may extend this approach to address other morphological questions in ethological tasks such as locomotion, and feature other sets of parameters such as properties of the skeletal

  12. Nuclear magnetic resonance in pulse radiolysis. Chemically induced dynamic nuclear polarization

    International Nuclear Information System (INIS)

    Trifunac, A.D.; Johnson, K.W.; Lowers, R.H.

    1976-01-01

    Nuclear magnetic resonance and chemically induced dynamic nuclear polarization (CIDNP) were applied to the study of pulse radiolysis. Samples were irradiated with a 3-MeV electron beam from the Argonne Van de Graaff accelerator in an EPR magnet (approximately 4000 G) which had axial holes for beam access. A fast flow system transferred the irradiated solution to the rotating 5-mm NMR sample tube. The NMR spectra of mixtures of sodium acetate and methanol were presented to demonstrate the features of the CIDNP in pulse radiolysis

  13. Why do oil prices jump (or fall)?

    International Nuclear Information System (INIS)

    Wirl, Franz

    2008-01-01

    This paper discusses theories that can explain the zig-zags of oil prices in general and in particular the recent jump. More precisely, the following explanations are discussed: Homo oeconomicus (pure profit maximization if demand is dynamic and convex), price reaction function (price increases and respectively declines depend on capacity utilization), cartelization contingent on output or revenues of which the latter can lead to backward bending supply segments and multiple equilibria, statistical descriptions (mean reversion), homo politicus, i.e., arguments for price hikes that are rational (Public Choice) despite the (long-run) economic loss. Finally two approaches are presented that emphasize demand uncertainty: one extending the above-mentioned dynamic demand framework and the other considers a dynamic game of non-competitive suppliers with lumpy investments. Summing up, a demand shock seems to be the most suitable explanation of today's high prices (indeed a shock given that International Energy Agency (IEA) and Department of Energy (DoE) were promising just a couple of years ago that we are going to have lots of oil at low prices), while others and in particular politics have surprisingly little or no explanatory power. (author)

  14. Nuclear Research Center IRT reactor dynamics calculation

    International Nuclear Information System (INIS)

    Aleman Fernandez, J.R.

    1990-01-01

    The main features of the code DIRT, for dynamical calculations are described in the paper. With the results obtained by the program, an analysis of the dynamic behaviour of the Research Reactor IRT of the Nuclear Research Center (CIN) is performed. Different transitories were considered such as variation of the system reactivity, coolant inlet temperature variation and also variations of the coolant velocity through the reactor core. 3 refs

  15. Dynamic functional studies in nuclear medicine in developing countries

    International Nuclear Information System (INIS)

    1989-01-01

    The Proceedings document some of the trials and tribulations involved in setting up nuclear medicine facilities in general and specifically as regards nuclear medicine applications for the diagnosis of the diseases prevalent in the less developed countries. Most of the 51 papers deal with various clinical applications of dynamic functional studies. However, there was also a session on quality control of the equipment used, and a panel discussion critically looked at the problems and potential of dynamic studies in developing countries. This book will be of interest and use not only to those practising nuclear medicine in the developing countries, but it may also bring home to users in developed countries how ''more can be done with less''. Refs, figs and tabs

  16. Effect of drop jump technique on the reactive strength index

    Directory of Open Access Journals (Sweden)

    Struzik Artur

    2016-09-01

    Full Text Available The basic drill of plyometric training aimed at improving lower limb power and jump height is a drop jump. This exercise can be performed using different techniques, which substantially affects jump variables. Therefore, the aim of this study was to compare the values of the reactive strength index (RSI for countermovement drop jumps (CDJs and bounce drop jumps (BDJs. The study was carried out in a group of 8 male youth basketball players. The tests were conducted using the AMTI BP600900 force plate to measure ground reaction forces and the Noraxon MyoMotion system to record kinematic data. Each player performed two CDJs and two BDJs from the height of 15, 30, 45 and 60 cm. The RSI was calculated as a ratio of jump height and contact time. Moreover, the RSI was determined for the amortization and take-off phases separately. Significant differences (p < 0.05 between RSI values for CDJs and BDJs were recorded for jumps from 30, 45 and 60 cm. Differences in RSI values for jumps from 15 cm were not significant. Furthermore, CDJ height values were significantly higher (p < 0.05 than the values recorded for BDJs. Times of contact, amortization and take-off during BDJs were significantly shorter (p < 0.05 than the respective values obtained for CDJs. Therefore, the use of the RSI to monitor plyometric training should be based on the drop jump technique that is commonly performed by basketball players.

  17. Immediate Effects of Different Trunk Exercise Programs on Jump Performance.

    Science.gov (United States)

    Imai, A; Kaneoka, K; Okubo, Y; Shiraki, H

    2016-03-01

    The aim of this study was to investigate the immediate effects of trunk stabilization exercise (SE) and conventional trunk exercise (CE) programs on jump performance. 13 adolescent male soccer players performed 2 kinds of jump testing before and immediate after 3 experimental conditions: SE, CE, and non-exercise (NE). The SE program consisted of the elbow-toe, hand-knee, and back bridge, and the CE program consisted of the sit-up, sit-up with trunk rotation and back extension. Testing of a countermovement jump (CMJ) and rebound jump (RJ) were performed to assess jump performance. Jump height of the CMJ and RJ-index, contact time, and jump height of the RJ were analyzed. The RJ index was improved significantly only after SE (p=0.017). However, contact time and jump height did not improve significantly in the SE condition. Moreover, no significant interaction or main effects of time or group were observed in the CMJ. Consequently, this study showed the different immediate effect on the RJ between the SE and CE, and suggested the possibility that the SE used in this study is useful as a warm-up program to improve the explosive movements. © Georg Thieme Verlag KG Stuttgart · New York.

  18. A New Dynamic Model for Nuclear Fuel Cycle System Analysis

    International Nuclear Information System (INIS)

    Choi, Sungyeol; Ko, Won Il

    2014-01-01

    The evaluation of mass flow is a complex process where numerous parameters and their complex interaction are involved. Given that many nuclear power countries have light and heavy water reactors and associated fuel cycle technologies, the mass flow analysis has to consider a dynamic transition from the open fuel cycle to other cycles over decades or a century. Although an equilibrium analysis provides insight concerning the end-states of fuel cycle transitions, it cannot answer when we need specific management options, whether the current plan can deliver these options when needed, and how fast the equilibrium can be achieved. As a pilot application, the government brought several experts together to conduct preliminary evaluations for nuclear fuel cycle options in 2010. According to Table 1, they concluded that the closed nuclear fuel cycle has long-term advantages over the open fuel cycle. However, it is still necessary to assess these options in depth and to optimize transition paths of these long-term options with advanced dynamic fuel cycle models. A dynamic simulation model for nuclear fuel cycle systems was developed and its dynamic mass flow analysis capability was validated against the results of existing models. This model can reflects a complex combination of various fuel cycle processes and reactor types, from once-through to multiple recycling, within a single nuclear fuel cycle system. For the open fuel cycle, the results of the developed model are well matched with the results of other models

  19. Dissipation-Free Jumps for the Magnetosonic Branch of Cold Plasma Motion

    International Nuclear Information System (INIS)

    Bakholdin, I.B.

    2000-01-01

    Dissipation-free jumps are studied in a hydrodynamic model of a cold plasma moving at about magnetosonic speed. The jumps described by the generalized Korteweg-de Vries equation, which possesses similar nonlinear and dispersion properties, are considered. In particular, jumps with emission and solitonlike jumps are considered. The assumption that our model possesses jumps of the same type as those for the generalized Korteweg-de Vries equation is justified by numerically investigating the problem of the decay of an initial discontinuity in a cold plasma. An analytic method is described that makes it possible to predict the structure of such jumps in the general case

  20. Dynamics and instabilities in nuclear fragmentation

    International Nuclear Information System (INIS)

    Colonna, M.; Guarnera, A.; Di Toro, M.; Latora, V.; Smerzi, A.; Catania Univ.

    1993-01-01

    A general procedure to identify instability regions which lead to multifragmentation events is presented. The method covers all possible sources of dynamical instabilities. Informations on the instability point, like the time when the nuclear system enters the critical region, the most unstable modes and the time constant of the exponential growing of the relative variances, are deduced without any numerical bias. Important memory effects in the fragmentation pattern are revealed. Some hints towards a fully dynamical picture of fragmentation processes are finally suggested. (author) 7 refs., 3 figs

  1. Macroscopic dynamics of thermal nuclear excitations

    International Nuclear Information System (INIS)

    Bastrukov, S.I.; Deak, F.; Kiss, A.; Seres, Z.

    1989-11-01

    The concept of kinetic temperature as a local dynamical variable of thermal nuclear collective motion is formulated using long-mean-free-path approach based on the Landau-Vlasov kinetic equation. In the Fermi drop model the thermal fluid dynamics of the spherical nucleus is analyzed. It is shown that in a compressible Fermi liquid the temperature pulses propagate in the form of spherical wave in phase with the acoustic wave. The thermal and compressional excitations are caused by the isotropic harmonic oscillations of the Fermi sphere in momentum space. (author) 25 refs.; 2 figs

  2. Intertime jump statistics of state-dependent Poisson processes.

    Science.gov (United States)

    Daly, Edoardo; Porporato, Amilcare

    2007-01-01

    A method to obtain the probability distribution of the interarrival times of jump occurrences in systems driven by state-dependent Poisson noise is proposed. Such a method uses the survivor function obtained by a modified version of the master equation associated to the stochastic process under analysis. A model for the timing of human activities shows the capability of state-dependent Poisson noise to generate power-law distributions. The application of the method to a model for neuron dynamics and to a hydrological model accounting for land-atmosphere interaction elucidates the origin of characteristic recurrence intervals and possible persistence in state-dependent Poisson models.

  3. Biomechanical analysis of drop and countermovement jumps

    NARCIS (Netherlands)

    Bobbert, M. F.; Mackay, M.T.; Schinkelshoek, D.; Huijing, P. A.; van Ingen Schenau, G. J.

    For 13 subjects the performance of drop jumps from a height of 40 cm (DJ) and of countermovement jumps (CMJ) was analysed and compared. From force plate and cine data biomechanical variables including forces, moments, power output and amount of work done were calculated for hip, knee and ankle

  4. Jump Detection in the Danish Stock Market

    DEFF Research Database (Denmark)

    Høg, Esben

    2002-01-01

    It is well known in financial economics that stock market return data are often modelled by a diffusion process with some regular drift function. Occasionally, however, sudden changes or jumps occur in the return data. Wavelet scaling methods are used to detect jumps and cusps in stock market...

  5. You Say Jump, I Say How High?

    DEFF Research Database (Denmark)

    Fasterhold, Martin; Pichlmair, Martin; Holmgård, Christoffer

    This paper explores the design of jumping in 2D platform games. Through creating a method for measuring existing games, applying this method to a selection of different platformer games, and analysing the results, the paper arrives at a comprehensive data model for jumping. The model supports the...

  6. Perceiver as polar planimeter: Direct perception of jumping, reaching, and jump-reaching affordances for the self and others.

    Science.gov (United States)

    Thomas, Brandon J; Hawkins, Matthew M; Nalepka, Patrick

    2017-03-30

    Runeson (Scandanavian Journal of Psychology 18:172-179, 1977) suggested that the polar planimeter might serve as an informative model system of perceptual mechanism. The key aspect of the polar planimeter is that it registers a higher order property of the environment without computational mediation on the basis of lower order properties, detecting task-specific information only. This aspect was posited as a hypothesis for the perception of jumping and reaching affordances for the self and another person. The findings supported this hypothesis. The perception of reaching while jumping significantly differed from an additive combination of jump-without-reaching and reach-without-jumping perception. The results are consistent with Gibson's (The senses considered as perceptual systems, Houghton Mifflin, Boston, MA; Gibson, The senses considered as perceptual systems, Houghton Mifflin, Boston, MA, 1966; The ecological approach to visual perception, Houghton Mifflin, Boston, MA; Gibson, The ecological approach to visual perception, Houghton Mifflin, Boston, MA, 1979) theory of information-that aspects of the environment are specified by patterns in energetic media.

  7. Lower Extremity Kinematics Differed Between a Controlled Drop-Jump and Volleyball-Takeoffs.

    Science.gov (United States)

    Beardt, Bradley S; McCollum, Myranda R; Hinshaw, Taylour J; Layer, Jacob S; Wilson, Margaret A; Zhu, Qin; Dai, Boyi

    2018-04-03

    Previous studies utilizing jump-landing biomechanics to predict anterior cruciate ligament injuries have shown inconsistent findings. The purpose of this study was to quantify the differences and correlations in jump-landing kinematics between a drop-jump, a controlled volleyball-takeoff, and a simulated-game volleyball-takeoff. Seventeen female volleyball players performed these three tasks on a volleyball court while three-dimensional kinematic data were collected by three calibrated camcorders. Participants demonstrated significantly increased jump height, shorter stance time, increased time differences in initial contact between two feet, increased knee and hip flexion at initial contact and decreased peak knee and hip flexion for both left and right legs, and decreased knee-ankle distance ratio at the lowest height of mid-hip for the two volleyball-takeoffs compared with the drop-jump (p jump and two volleyball-takeoffs. Controlled drop-jump kinematics may not represent jump-landing kinematics exhibited during volleyball competition. Jump-landing mechanics during sports-specific tasks may better represent those exhibited during sports competition and their associated risk of ACL injury compared with the drop-jump.

  8. Increased resistance during jump exercise does not enhance cortical bone formation.

    Science.gov (United States)

    Boudreaux, Ramon D; Swift, Joshua M; Gasier, Heath G; Wiggs, Michael P; Hogan, Harry A; Fluckey, James D; Bloomfield, Susan A

    2014-01-01

    This study sought to elucidate the effects of a low- and high-load jump resistance exercise (RE) training protocol on cortical bone of the tibia and femur mid-diaphyses. Sprague-Dawley rats (male, 6 months old) were randomly assigned to high-load RE (HRE; n = 16), low-load RE (LRE; n = 15), or cage control (CC; n = 11) groups. Animals in the HRE and LRE groups performed 15 sessions of jump RE for 5 wk. Load in the HRE group was progressively increased from 80 g added to a weighted vest (50 repetitions) to 410 g (16 repetitions). The LRE rats completed the same protocol as the HRE group (same number of repetitions), with only a 30-g vest applied. Low- and high-load jump RE resulted in 6%-11% higher cortical bone mineral content and cortical bone area compared with controls, as determined by in vivo peripheral quantitative computed tomography measurements. In the femur, however, only LRE demonstrated improvements in cortical volumetric bone mineral density (+11%) and cross-sectional moment of inertia (+20%) versus the CC group. The three-point bending to failure revealed a marked increase in tibial maximum force (25%-29%), stiffness (19%-22%), and energy to maximum force (35%-55%) and a reduction in elastic modulus (-11% to 14%) in both LRE and HRE compared with controls. Dynamic histomorphometry assessed at the tibia mid-diaphysis determined that both LRE and HRE resulted in 20%-30% higher periosteal mineralizing surface versus the CC group. Mineral apposition rate and bone formation rate were significantly greater in animals in the LRE group (27%, 39%) than those in the HRE group. These data demonstrate that jump training with minimal loading is equally, and sometimes more, effective at augmenting cortical bone integrity compared with overload training in skeletally mature rats.

  9. On the fly quantum dynamics of electronic and nuclear wave packets

    Science.gov (United States)

    Komarova, Ksenia G.; Remacle, F.; Levine, R. D.

    2018-05-01

    Multielectronic states quantum dynamics on a grid is described in a manner motivated by on the fly classical trajectory computations. Non stationary electronic states are prepared by a few cycle laser pulse. The nuclei respond and begin moving. We solve the time dependent Schrödinger equation for the electronic and nuclear dynamics for excitation from the ground electronic state. A satisfactory accuracy is possible using a localized description on a discrete grid. This enables computing on the fly for both the nuclear and electronic dynamics including non-adiabatic couplings. Attosecond dynamics in LiH is used as an example.

  10. Differences In Male Collegiate And Recreationally Trained Soccer Players On Balance, Agility, And Vertical Jump Performance

    Directory of Open Access Journals (Sweden)

    Nicole M. Sauls

    2017-10-01

    Full Text Available Objective: The purpose of this investigation was to determine the differences in collegiate and recreationally trained soccer players in sprint, vertical jump, and balance performance. Methods: Twenty-one soccer players, twelve Division II collegiate and nine recreationally trained volunteered to participate. Session one acted as a familiarization day, where the participants were familiarized with testing day protocols. During testing day, participants performed a dynamic warm-up, followed by balance measurements, three countermovement vertical jumps, and pro-agility shuttle test. Results: There were no significant (p>0.05 differences between groups in the all balance variables. Collegiate soccer players had a significantly (p0.05 differences in groups in all other variables. Conclusion: These results indicate that collegiate, Division II, soccer players had greater vertical jumping and sprinting velocities when compared to recreationally trained soccer players. These results may have been impacted by the lack of resistance training background in either of the two groups. With the addition of more time on a collegiate resistance training program, it is very likely the Division II athletes will see a significant increase in all balance, sprint, and vertical jump performance measures compared to recreationally trained players who receive little to no specialized resistance training.

  11. The Perpetual American Put Option for Jump-Diffusions

    OpenAIRE

    Aase, Knut K.

    2010-01-01

    -This is the author's version of the article"The Perpetual American Put Option for Jump-Diffusions" Energy Systems pp 493-507. We solve a specific optimal stopping problem with an infinite time horizon, when the state variable follows a jump-diffusion. The novelty of the paper is related to the inclusion of a jump component in this stochastic process. Under certain conditions, our solution can be interpreted as the price of an American perpetual put option. We characterize the continuation...

  12. Temperature Jump Pyrolysis Studies of RP 2 Fuel

    Science.gov (United States)

    2017-01-09

    Briefing Charts 3. DATES COVERED (From - To) 15 December 2016 – 11 January 2017 4. TITLE AND SUBTITLE Temperature Jump Pyrolysis Studies of RP-2 Fuel...Rev. 8- 98) Prescribed by ANSI Std. 239.18 1 TEMPERATURE JUMP PYROLYSIS STUDIES OF RP-2 FUEL Owen Pryor1, Steven D. Chambreau2, Ghanshyam L...17026 7 Temperature Jump Pyrolysis at AFRL Edwards Rapid heating of a metal filament at a rate of 600 – 800 K/s, and the set temperature is held for

  13. Diarylethene microcrystals make directional jumps upon ultraviolet irradiation

    International Nuclear Information System (INIS)

    Colombier, I.; Spagnoli, S.; Corval, A.; Baldeck, P. L.; Giraud, M.; Leaustic, A.; Yu, P.; Irie, M.

    2007-01-01

    Microcrystals of a diarylethene {1,2-bis[5 ' -methyl-2 ' -(2 '' -pyridyl)thiazolyl]perfluorocyclo-pentene } undergo jumps upon photoirradiation. These photochromic crystals present molecular structural changes upon irradiation with ultraviolet light because of reversible photocyclization reactions. When the energy absorbed by crystals reaches about 10 μJ, the uniaxial stress induced in the crystal lattice relaxes through directional jumps. If one prevents crystals from jumping, then parallel, equidistant cracks appear on crystal surfaces. These photomechanical effects could result from a Grinfeld surface instability

  14. Jump as Far as You Can [Problem Solvers: Problem

    Science.gov (United States)

    Bofferding, Laura; Yigit, Melike

    2013-01-01

    The standing long jump was an Olympic event until 1912. In 1904, Ray Ewry set the world record for the longest standing long jump, which was about 11.5 feet, or 138 inches. Although the standing long jump is no longer an Olympic event, the Norwegians still include it in their National Competition, and Arne Tvervaag set a new world record at about…

  15. Thomson's Jumping Ring over a Long Coil

    Science.gov (United States)

    Jeffery, Rondo N.; Amiri, Farhang

    2018-01-01

    The classic jumping ring apparatus consists of a coil with an iron core that extends out of the coil. A copper or aluminum ring placed over the iron core jumps upward when AC power is applied to the coil. In this paper we will examine a modified design of the jumping ring apparatus, called the "long-coil design." It allows the ring to…

  16. Isokinetic Extension Strength Is Associated With Single-Leg Vertical Jump Height.

    Science.gov (United States)

    Fischer, Felix; Blank, Cornelia; Dünnwald, Tobias; Gföller, Peter; Herbst, Elmar; Hoser, Christian; Fink, Christian

    2017-11-01

    Isokinetic strength testing is an important tool in the evaluation of the physical capacities of athletes as well as for decision making regarding return to sports after anterior cruciate ligament (ACL) reconstruction in both athletes and the lay population. However, isokinetic testing is time consuming and requires special testing equipment. A single-jump test, regardless of leg dominance, may provide information regarding knee extension strength through the use of correlation analysis of jump height and peak torque of isokinetic muscle strength. Cross-sectional study; Level of evidence, 3. A total of 169 patients who underwent ACL reconstruction were included in this study. Isokinetic testing was performed on the injured and noninjured legs. Additionally, a single-leg countermovement jump was performed to assess jump height using a jump accelerometer sensor. Extension strength values were used to assess the association between isokinetic muscle strength and jump height. The sample consisted of 60 female (mean age, 20.8 ± 8.3 years; mean weight, 61.7 ± 6.5 kg; mean height, 167.7 ± 5.3 cm) and 109 male (mean age, 23.2 ± 7.7 years; mean weight, 74.6 ± 10.2 kg; mean height, 179.9 ± 6.9 cm) patients. Bivariate correlation analysis showed an association ( r = 0.56, P jump height and isokinetic extension strength on the noninvolved side as well as an association ( r = 0.52, P jump height (beta = 0.49, P jump height having the strongest impact (beta = 0.49, P jump height. The study population encompassed various backgrounds, skill levels, and activity profiles, which might have affected the outcome. Even after controlling for age and sex, isokinetic strength was still moderately associated with jump height. Therefore, the jump technique and type of sport should be considered in future research.

  17. Jump Variation Estimation with Noisy High Frequency Financial Data via Wavelets

    Directory of Open Access Journals (Sweden)

    Xin Zhang

    2016-08-01

    Full Text Available This paper develops a method to improve the estimation of jump variation using high frequency data with the existence of market microstructure noises. Accurate estimation of jump variation is in high demand, as it is an important component of volatility in finance for portfolio allocation, derivative pricing and risk management. The method has a two-step procedure with detection and estimation. In Step 1, we detect the jump locations by performing wavelet transformation on the observed noisy price processes. Since wavelet coefficients are significantly larger at the jump locations than the others, we calibrate the wavelet coefficients through a threshold and declare jump points if the absolute wavelet coefficients exceed the threshold. In Step 2 we estimate the jump variation by averaging noisy price processes at each side of a declared jump point and then taking the difference between the two averages of the jump point. Specifically, for each jump location detected in Step 1, we get two averages from the observed noisy price processes, one before the detected jump location and one after it, and then take their difference to estimate the jump variation. Theoretically, we show that the two-step procedure based on average realized volatility processes can achieve a convergence rate close to O P ( n − 4 / 9 , which is better than the convergence rate O P ( n − 1 / 4 for the procedure based on the original noisy process, where n is the sample size. Numerically, the method based on average realized volatility processes indeed performs better than that based on the price processes. Empirically, we study the distribution of jump variation using Dow Jones Industrial Average stocks and compare the results using the original price process and the average realized volatility processes.

  18. Nuclear chiral dynamics and thermodynamics

    Science.gov (United States)

    Holt, Jeremy W.; Kaiser, Norbert; Weise, Wolfram

    2013-11-01

    This presentation reviews an approach to nuclear many-body systems based on the spontaneously broken chiral symmetry of low-energy QCD. In the low-energy limit, for energies and momenta small compared to a characteristic symmetry breaking scale of order 1 GeV, QCD is realized as an effective field theory of Goldstone bosons (pions) coupled to heavy fermionic sources (nucleons). Nuclear forces at long and intermediate distance scales result from a systematic hierarchy of one- and two-pion exchange processes in combination with Pauli blocking effects in the nuclear medium. Short distance dynamics, not resolved at the wavelengths corresponding to typical nuclear Fermi momenta, are introduced as contact interactions between nucleons. Apart from a set of low-energy constants associated with these contact terms, the parameters of this theory are entirely determined by pion properties and low-energy pion-nucleon scattering observables. This framework (in-medium chiral perturbation theory) can provide a realistic description of both isospin-symmetric nuclear matter and neutron matter, with emphasis on the isospin-dependence determined by the underlying chiral NN interaction. The importance of three-body forces is emphasized, and the role of explicit Δ(1232)-isobar degrees of freedom is investigated in detail. Nuclear chiral thermodynamics is developed and a calculation of the nuclear phase diagram is performed. This includes a successful description of the first-order phase transition from a nuclear Fermi liquid to an interacting Fermi gas and the coexistence of these phases below a critical temperature Tc. Density functional methods for finite nuclei based on this approach are also discussed. Effective interactions, their density dependence and connections to Landau Fermi liquid theory are outlined. Finally, the density and temperature dependences of the chiral (quark) condensate are investigated.

  19. The acute effects of back squats on vertical jump performance in men and women.

    Science.gov (United States)

    Witmer, Chad A; Davis, Shala E; Moir, Gavin L

    2010-01-01

    The aim of the present study was to investigate the acute effects of performing back squats on subsequent performance during a series of vertical jumps in men and women. Twelve men and 12 women were tested on three separate occasions, the first of which was used to determine their 1-repetition maximum (1-RM) parallel back squat. Following this, subjects performed a potentiation and a control treatment in a counterbalanced order. The potentiation treatment culminated with subjects performing parallel back squats with a load equivalent to 70% 1- RM for three repetitions, following which they performed one countermovement vertical jump (CMJ) for maximal height every three minutes for a total of 10 jumps. During the control treatment, subjects performed only the CMJs. Jump height (JH) and vertical stiffness (VStiff) were calculated for each jump from the vertical force signal recorded from a force platform. There were no significant changes in JH or VStiff following the treatments and no significant differences in the responses between men and women (p > 0.05). Correlations between normalized 1-RM back squat load and the absolute change in JH and VStiff were small to moderate for both men and women, with most correlations being negative. Large variations in response to the back squats were noted in both men and women. The use of resistance exercises performed prior to a series of vertical jumps can result in improvements in performance in certain individuals, although the gains tend to be small and dependent upon the mechanical variable measured. There does not seem to be any differences between men and women in the response to dynamic potentiation protocols. Key pointsSubstantial individual responses were noted in both men and women in response to the PAP protocol used in the present study.The choice of dependent variable influences the ef-ficacy of the PAP protocol, with JH and VStiff demonstrating disparate responses in individual sub-jects.Such individual responses

  20. Effect of early training on the jumping technique of horses

    NARCIS (Netherlands)

    Santamaría, Susana; Bobbert, Maarten F.; Back, Willem; Barneveld, Ab; van Weeren, P. Rene

    Objective - To investigate the effects of early training for jumping by comparing the jumping technique of horses that had received early training with that of horses raised conventionally. Animals - 40 Dutch Warmblood horses. Procedure - The horses were analyzed kinematically during free jumping at

  1. Separation and pattern formation in hydraulic jumps

    DEFF Research Database (Denmark)

    Bohr, Tomas; Ellegaard, C.; Hansen, A. Espe

    1998-01-01

    We present theory and experiments on the circular hydraulic jump in the stationary regime. The theory can handle the situation in which the fluid flows over an edge far away from the jump. In the experiments the external height is controlled, and a series of transitions in the flow structure appe...

  2. Supersonic Jump

    Science.gov (United States)

    Muller, Andreas

    2013-01-01

    On October 14,2012, Felix Baumgartner, an Austrian sky-diver, set some new world records for his discipline. Jumping from a height of about 39 km, he reached a top speed of 1342 km/h, becoming the first human being to break the sound barrier in free fall. In order to understand some essential physics aspects of this remarkable feat, we wonder why…

  3. Entangled trajectories Hamiltonian dynamics for treating quantum nuclear effects

    Science.gov (United States)

    Smith, Brendan; Akimov, Alexey V.

    2018-04-01

    A simple and robust methodology, dubbed Entangled Trajectories Hamiltonian Dynamics (ETHD), is developed to capture quantum nuclear effects such as tunneling and zero-point energy through the coupling of multiple classical trajectories. The approach reformulates the classically mapped second-order Quantized Hamiltonian Dynamics (QHD-2) in terms of coupled classical trajectories. The method partially enforces the uncertainty principle and facilitates tunneling. The applicability of the method is demonstrated by studying the dynamics in symmetric double well and cubic metastable state potentials. The methodology is validated using exact quantum simulations and is compared to QHD-2. We illustrate its relationship to the rigorous Bohmian quantum potential approach, from which ETHD can be derived. Our simulations show a remarkable agreement of the ETHD calculation with the quantum results, suggesting that ETHD may be a simple and inexpensive way of including quantum nuclear effects in molecular dynamics simulations.

  4. Extinction and persistence of a stochastic nonlinear SIS epidemic model with jumps

    Science.gov (United States)

    Ge, Qing; Ji, Guilin; Xu, Jiabo; Fan, Xiaolin

    2016-11-01

    In this paper, Brownian motion and L e ´ vy jumps are introduced to a SIS type epidemic model with nonlinear incidence rate. The dynamical behavior of the considered model is investigated. In order to reveal the extinction and permanence of the disease, two threshold values R˜0 ,R¯0 are showed. We find that if R˜0 1, the disease may be persistent. Finally, the numerical simulations are presented to illustrate our mathematical results.

  5. Ballistic Jumping Drops on Superhydrophobic Surfaces via Electrostatic Manipulation.

    Science.gov (United States)

    Li, Ning; Wu, Lei; Yu, Cunlong; Dai, Haoyu; Wang, Ting; Dong, Zhichao; Jiang, Lei

    2018-02-01

    The ballistic ejection of liquid drops by electrostatic manipulating has both fundamental and practical implications, from raindrops in thunderclouds to self-cleaning, anti-icing, condensation, and heat transfer enhancements. In this paper, the ballistic jumping behavior of liquid drops from a superhydrophobic surface is investigated. Powered by the repulsion of the same kind of charges, water drops can jump from the surface. The electrostatic acting time for the jumping of a microliter supercooled drop only takes several milliseconds, even shorter than the time for icing. In addition, one can control the ballistic jumping direction precisely by the relative position above the electrostatic field. The approach offers a facile method that can be used to manipulate the ballistic drop jumping via an electrostatic field, opening the possibility of energy efficient drop detaching techniques in various applications. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Improvement of Long-Jump Performance During Competition Using a Plyometric Exercise.

    Science.gov (United States)

    Bogdanis, Gregory C; Tsoukos, Athanasios; Veligekas, Panagiotis

    2017-02-01

    To examine the acute effects of a conditioning plyometric exercise on long-jump performance during a simulated long-jump competition. Eight national-level track and field decathletes performed 6 long-jump attempts with a full approach run separated by 10-min recoveries. In the experimental condition subjects performed 3 rebound vertical jumps with maximal effort 3 min before the last 5 attempts, while the 1st attempt served as baseline. In the control condition the participants performed 6 long jumps without executing the conditioning exercise. Compared with baseline, long-jump performance progressively increased only in the experimental condition, from 3.0%, or 17.5 cm, in the 3rd attempt (P = .046, d = 0.56), to 4.8%, or 28.2 cm, in the 6th attempt (P = .0001, d = 0.84). The improvement in long-jump performance was due to a gradual increase in vertical takeoff velocity from the 3rd (by 8.7%, P = .0001, d = 1.82) to the 6th jump (by 17.7%, P = .0001, d = 4.38). Horizontal-approach velocity, takeoff duration, and horizontal velocity at takeoff were similar at all long-jump attempts in both conditions (P = .80, P = .36, and P = .15, respectively). Long-jump performance progressively improved during a simulated competition when a plyometric conditioning exercise was executed 3 min before each attempt. This improvement was due to a progressive increase in vertical velocity of takeoff, while there was no effect on the horizontal velocity.

  7. Dynamic Systems Analysis Report for Nuclear Fuel Recycle

    Energy Technology Data Exchange (ETDEWEB)

    Brent Dixon; Sonny Kim; David Shropshire; Steven Piet; Gretchen Matthern; Bill Halsey

    2008-12-01

    This report examines the time-dependent dynamics of transitioning from the current United States (U.S.) nuclear fuel cycle where used nuclear fuel is disposed in a repository to a closed fuel cycle where the used fuel is recycled and only fission products and waste are disposed. The report is intended to help inform policy developers, decision makers, and program managers of system-level options and constraints as they guide the formulation and implementation of advanced fuel cycle development and demonstration efforts and move toward deployment of nuclear fuel recycling infrastructure.

  8. Qualitative methods in nuclear reactor dynamics. Issue 23

    International Nuclear Information System (INIS)

    Goryachenko, V.D.

    1983-01-01

    Applicability of qualitative methods of the theory of nonlinear oscillations including the bifurcation theory to the problems of nuclear reactor nonlinear dynamics is investigated. Basic statements of the dynamic system qualitative theory on a phase plane and the bifurcation theory of multidimensional dynamic systems are briefly outlined. The model of reactor dynamics with two reactivity temperature coefficients neglecting delayed neutrons, the model of slow process dynamics in a reactor with two reactivity temperature coefficients, the simplified model of reactor dynamics as an object with delay and the model of a reactor with linear feedback are considered. A conclusion is drawn that the usage of the above models allows one to reveal qualitative peculiarities of reactor dynamics creating conditions for more purposeful utilization of more complicated models

  9. Jumps in binomial AR(1) processes

    OpenAIRE

    Weiß , Christian H.

    2009-01-01

    Abstract We consider the binomial AR(1) model for serially dependent processes of binomial counts. After a review of its definition and known properties, we investigate marginal and serial properties of jumps in such processes. Based on these results, we propose the jumps control chart for monitoring a binomial AR(1) process. We show how to evaluate the performance of this control chart and give design recommendations. correspondance: Tel.: +49 931 31 84968; ...

  10. Recent Advancements in Lightning Jump Algorithm Work

    Science.gov (United States)

    Schultz, Christopher J.; Petersen, Walter A.; Carey, Lawrence D.

    2010-01-01

    In the past year, the primary objectives were to show the usefulness of total lightning as compared to traditional cloud-to-ground (CG) networks, test the lightning jump algorithm configurations in other regions of the country, increase the number of thunderstorms within our thunderstorm database, and to pinpoint environments that could prove difficult for any lightning jump configuration. A total of 561 thunderstorms have been examined in the past year (409 non-severe, 152 severe) from four regions of the country (North Alabama, Washington D.C., High Plains of CO/KS, and Oklahoma). Results continue to indicate that the 2 lightning jump algorithm configuration holds the most promise in terms of prospective operational lightning jump algorithms, with a probability of detection (POD) at 81%, a false alarm rate (FAR) of 45%, a critical success index (CSI) of 49% and a Heidke Skill Score (HSS) of 0.66. The second best performing algorithm configuration was the Threshold 4 algorithm, which had a POD of 72%, FAR of 51%, a CSI of 41% and an HSS of 0.58. Because a more complex algorithm configuration shows the most promise in terms of prospective operational lightning jump algorithms, accurate thunderstorm cell tracking work must be undertaken to track lightning trends on an individual thunderstorm basis over time. While these numbers for the 2 configuration are impressive, the algorithm does have its weaknesses. Specifically, low-topped and tropical cyclone thunderstorm environments are present issues for the 2 lightning jump algorithm, because of the suppressed vertical depth impact on overall flash counts (i.e., a relative dearth in lightning). For example, in a sample of 120 thunderstorms from northern Alabama that contained 72 missed events by the 2 algorithm 36% of the misses were associated with these two environments (17 storms).

  11. Vertical jump fatigue does not affect intersegmental coordination and segmental contribution

    Directory of Open Access Journals (Sweden)

    Gleber Pereira

    2014-09-01

    Full Text Available The aim of this study was to describe the intersegmental coordination and segmental contribution during intermittent vertical jumps performed until fatigue. Seven male visited the laboratory on two occasions: 1 the maximum vertical jump height was determined followed by vertical jumps habituation; 2 participants performed intermittent countermovement jumps until fatigue. Kinematic and kinetic variables were recorded. The overall reduction in vertical jump height was 5,5%, while the movement duration increased 10% during the test. The thigh segment angle at movement reversal significantly increased as the exercise progressed. Non-significant effect of fatigue on movement synergy was found for the intersegmental coordination pattern. More than 90% of the intersegmental coordination was explained by one coordination pattern. Thigh rotation contributed the most to the intersegmental coordination pattern, with the trunk second and the shank the least. Therefore, one intersegmental coordination pattern is followed throughout the vertical jumps until fatigue and thigh rotation contributes the most to jump height.

  12. Application of a tri-axial accelerometer to estimate jump frequency in volleyball.

    Science.gov (United States)

    Jarning, Jon M; Mok, Kam-Ming; Hansen, Bjørge H; Bahr, Roald

    2015-03-01

    Patellar tendinopathy is prevalent among athletes, and most likely associated with a high jumping load. If methods for estimating jump frequency were available, this could potentially assist in understanding and preventing this condition. The objective of this study was to explore the possibility of using peak vertical acceleration (PVA) or peak resultant acceleration (PRA) measured by an accelerometer to estimate jump frequency. Twelve male elite volleyball players (22.5 ± 1.6 yrs) performed a training protocol consisting of seven typical motion patterns, including jumping and non-jumping movements. Accelerometer data from the trial were obtained using a tri-axial accelerometer. In addition, we collected video data from the trial. Jump-float serving and spike jumping could not be distinguished from non-jumping movements using differences in PVA or PRA. Furthermore, there were substantial inter-participant differences in both the PVA and the PRA within and across movement types (p volleyball. A method for acquiring real-time estimates of jump frequency remains to be verified. However, there are several alternative approaches, and further investigations are needed.

  13. Who jumps the highest? Anthropometric and physiological correlations of vertical jump in youth elite female volleyball players.

    Science.gov (United States)

    Nikolaidis, Pantelis T; Gkoudas, Konstantinos; Afonso, José; Clemente-Suarez, Vicente J; Knechtle, Beat; Kasabalis, Stavros; Kasabalis, Athanasios; Douda, Helen; Tokmakidis, Savvas; Torres-Luque, Gema

    2017-06-01

    The aim of the present study was to examine the relationship of vertical jump (Abalakov jump [AJ]) with anthropometric and physiological parameters in youth elite female volleyball players. Seventy-two selected volleyball players from the region of Athens (age 13.3±0.7 years, body mass 62.0±7.2 kg, height 171.5±5.7 cm, body fat 21.2±4.5%), classified into quartiles according to AJ performance (group A, 21.4-26.5 cm; group B, 26.8-29.9 cm; group C, 30.5-33.7 cm; group D, 33.8-45.9 cm), performed a series of physical fitness tests. AJ was correlated with anthropometric (age at peak height velocity [APHV]: r=0.38, Pvolleyball players that jumped the highest were those who matured later than others.

  14. The relativistic mean-field description of nuclei and nuclear dynamics

    International Nuclear Information System (INIS)

    Reinhard, P.G.

    1989-01-01

    The relativistic mean-field model of the nucleus is reviewed. It describes the nucleus as a system of Dirac-Nucleons which interact in a relativistic covariant manner via meson fields. The meson fields are treated as mean fields, i.e. as non quantal c-number fields. The effects of the Dirac sea of the nucleons is neglected. The model is interpreted as a phenomenological ansatz providing a selfconsistent relativistic description of nuclei and nuclear dynamics. It is viewed, so to say, as the relativistic generalisation of the Skyrme-Hartree-Fock ansatz. The capability and the limitations of the model to describe nuclear properties are discussed. Recent applications to spherical and deformed nuclei and to nuclear dynamics are presented. (orig.)

  15. Vorticity determination in a hydraulic jump by application of method ...

    African Journals Online (AJOL)

    The method of characteristics for solving systems of partial differential equations coupled with jump conditions is used in analysing flow downstream of a hydraulic jump instead of the normal analytical approach adopted in Hornung [1]. It is shown that the method of characteristics together with the jump conditions can ...

  16. Dynamical response of the nuclear 'pasta' in neutron star crusts

    International Nuclear Information System (INIS)

    Horowitz, C.J.; Perez-Garcia, M.A.; Berry, D.K.; Piekarewicz, J.

    2005-01-01

    The nuclear pasta - a novel state of matter having nucleons arranged in a variety of complex shapes - is expected to be found in the crust of neutron stars and in core-collapse supernovae at subnuclear densities of about 10 14 g/cm 3 . Owing to frustration, a phenomenon that emerges from the competition between short-range nuclear attraction and long-range Coulomb repulsion, the nuclear pasta displays a preponderance of unique low-energy excitations. These excitations could have a strong impact on many transport properties, such as neutrino propagation through stellar environments. The excitation spectrum of the nuclear pasta is computed via a molecular-dynamics simulation involving up to 100,000 nucleons. The dynamic response of the pasta displays a classical plasma oscillation in the 1- to 2-MeV region. In addition, substantial strength is found at low energies. Yet this low-energy strength is missing from a simple ion model containing a single-representative heavy nucleus. The low-energy strength observed in the dynamic response of the pasta is likely to be a density wave involving the internal degrees of freedom of the clusters

  17. Kinetic asymmetries between forward and drop jump landing tasks

    Directory of Open Access Journals (Sweden)

    Morgana Alves de Britto

    2015-12-01

    Full Text Available DOI: http://dx.doi.org/10.5007/1980-0037.2015v17n6p661   Landing asymmetry is a risk factor for knee anterior cruciate ligament injury. The aim of this study was to identify kinetic asymmetries in healthy recreational athletes performing different jump-landing techniques. Twelve recreational athletes engaged in regular training underwent kinetic evaluation using two 3D force plates and were analyzed for: (a three-dimensional peak forces, (b time to peak vertical force, and (c initial phase asymmetries. All data were collected during performance of unilateral and bilateral trials of forward and drop jump tasks. Forward jump-landing tasks elicited greater kinetic asymmetry than drop-landing tasks. Regardless of jump-landing technique, the preferred leg experienced higher forces than the non-preferred leg. The initial landing phase showed more kinetic asymmetries than the later phase when peak vertical forces occur. It was concluded that when screening athletes for kinetic asymmetries that may predispose them to injury, forward jump-landing tasks and the early landing phase might show more kinetic asymmetries than drop jump-landing tasks and the late landing phase, respectively.

  18. Serious ski jumping injuries in Norway.

    Science.gov (United States)

    Wester, K

    1985-01-01

    Injuries caused by ski jumping have been poorly investigated. Among approximately 2,200 licensed jumpers in Norway, there occurred at least 12 injuries with a permanent medical disability of greater than or equal to 10%. The risk of being seriously injured is approximately 5% in a 5 year period (1977 to 1981); it is higher in the age group 15 to 17 years. Seven injuries were very serious [four central nervous system (CNS) lesions, two leg amputations, and one blindness of one eye], and five were less serious (sequelae to fractures of the lower extremities). The first jump of the day is particularly dangerous, and so is the beginning and end of the season. It seems dangerous to use more than one standard heel block. Poor preparation of the jump may have contributed to the accidents. Based on the findings, several prophylactic measures are suggested.

  19. Quantum dynamics of nuclear spins and spin relaxation in organic semiconductors

    Science.gov (United States)

    Mkhitaryan, V. V.; Dobrovitski, V. V.

    2017-06-01

    We investigate the role of the nuclear-spin quantum dynamics in hyperfine-induced spin relaxation of hopping carriers in organic semiconductors. The fast-hopping regime, when the carrier spin does not rotate much between subsequent hops, is typical for organic semiconductors possessing long spin coherence times. We consider this regime and focus on a carrier random-walk diffusion in one dimension, where the effect of the nuclear-spin dynamics is expected to be the strongest. Exact numerical simulations of spin systems with up to 25 nuclear spins are performed using the Suzuki-Trotter decomposition of the evolution operator. Larger nuclear-spin systems are modeled utilizing the spin-coherent state P -representation approach developed earlier. We find that the nuclear-spin dynamics strongly influences the carrier spin relaxation at long times. If the random walk is restricted to a small area, it leads to the quenching of carrier spin polarization at a nonzero value at long times. If the random walk is unrestricted, the carrier spin polarization acquires a long-time tail, decaying as 1 /√{t } . Based on the numerical results, we devise a simple formula describing the effect quantitatively.

  20. Trichobothrial mediation of an aquatic escape response: Directional jumps by the fishing spider, Dolomedes triton, foil frog attacks

    Directory of Open Access Journals (Sweden)

    Robert B. Suter

    2003-07-01

    Full Text Available Fishing spiders (Pisauridae frequent the surfaces of ponds and streams and thereby expose themselves to predation by a variety of aquatic and semi-aquatic vertebrates. To assess the possibility that the impressive jumps of fishing spiders from the water surface function in evading attacks by frogs, attacks by bullfrogs (Rana catesbiana and green frogs (R. clamitans on Dolomedes triton were studied. Both the attack dynamics of the frogs and the evasive behaviors of the spiders were recorded at 250 frames per second. A freeze-dried bullfrog, propelled toward spiders with acceleration, posture, and position that approximated the natural attack posture and dynamics, was used to assess the spiders' behavior. Qualitatively, the spiders responded to these mock-attacks just as they had to attacks by live frogs: jumping (N=29 jumps, 56.9% of instances, rearing the legs nearest the attacking frog (N=15, 29.4%, or showing no visible response (N=7, 13.7%. Spiders that jumped always did so away (in the vertical plane from the attack (mean =137° vs. vertical at 90° or horizontally toward the frog at 0°. The involvement of the trichobothria (leg hairs sensitive to air movements, and the eyes as sensory mediators of the evasion response was assessed. Spiders with deactivated trichobothria were significantly impaired relative to intact and sham-deactivated spiders, and relative to spiders in total darkness. Thus, functional trichobothria, unlike the eyes, are both necessary and sufficient mediators of the evasion response. Measurements of air flow during frog attacks suggest that an exponential rise in flow velocity is the airborne signature of an attack.

  1. The Global Nuclear Futures Model: A Dynamic Simulation Tool for Energy Strategies

    International Nuclear Information System (INIS)

    Bixler, N.E.

    2002-01-01

    The Global Nuclear Futures Model (GNFM) is a dynamic simulation tool that provides an integrated framework to model key aspects of nuclear energy, nuclear materials storage and disposition, global nuclear materials management, and nuclear proliferation risk. It links nuclear energy and other energy shares dynamically to greenhouse gas emissions and twelve other measures of environmental impact. It presents historical data from 1990 to 2000 and extrapolates energy demand through the year 2050. More specifically, it contains separate modules for energy, the nuclear fuel cycle front end, the nuclear fuel cycle back end, defense nuclear materials, environmental impacts, and measures of the potential for nuclear proliferation. It is globally integrated but also breaks out five regions of the world so that environmental impacts and nuclear proliferation concerns can be evaluated on a regional basis. The five regions are the United States of America (USA), The Peoples Republic of China (China), the former Soviet Union (FSU), the OECD nations excluding the USA, and the rest of the world (ROW). (author)

  2. Nuclear dynamics of radiation-induced foci in euchromatin and heterochromatin

    International Nuclear Information System (INIS)

    Chiolo, Irene; Tang, Jonathan; Georgescu, Walter; Costes, Sylvain V.

    2013-01-01

    Repair of double strand breaks (DSBs) is essential for cell survival and genome integrity. While much is known about the molecular mechanisms involved in DSB repair and checkpoint activation, the roles of nuclear dynamics of radiation-induced foci (RIF) in DNA repair are just beginning to emerge. Here, we summarize results from recent studies that point to distinct features of these dynamics in two different chromatin environments: heterochromatin and euchromatin. We also discuss how nuclear architecture and chromatin components might control these dynamics, and the need of novel quantification methods for a better description and interpretation of these phenomena. These studies are expected to provide new biomarkers for radiation risk and new strategies for cancer detection and treatment

  3. Nuclear dynamics of radiation-induced foci in euchromatin and heterochromatin

    Energy Technology Data Exchange (ETDEWEB)

    Chiolo, Irene; Tang, Jonathan; Georgescu, Walter; Costes, Sylvain V.

    2013-10-01

    Repair of double strand breaks (DSBs) is essential for cell survival and genome integrity. While much is known about the molecular mechanisms involved in DSB repair and checkpoint activation, the roles of nuclear dynamics of radiation-induced foci (RIF) in DNA repair are just beginning to emerge. Here, we summarize results from recent studies that point to distinct features of these dynamics in two different chromatin environments: heterochromatin and euchromatin. We also discuss how nuclear architecture and chromatin components might control these dynamics, and the need of novel quantification methods for a better description and interpretation of these phenomena. These studies are expected to provide new biomarkers for radiation risk and new strategies for cancer detection and treatment.

  4. RELATIONSHIP BETWEEN ISOKINETIC KNEE STRENGTH AND JUMP CHARACTERISTICS FOLLOWING ANTERIOR CRUCIATE LIGAMENT RECONSTRUCTION.

    Science.gov (United States)

    Laudner, Kevin; Evans, Daniel; Wong, Regan; Allen, Aaron; Kirsch, Tom; Long, Brian; Meister, Keith

    2015-06-01

    Clinicians are often challenged when making return-to-play decisions following anterior cruciate ligament reconstruction (ACL-R). Isokinetic strength and jump performance testing are common tools used to make this decision. Unfortunately, vertical jump performance standards have not been clearly established and many clinicians do not have access to isokinetic testing equipment. To establish normative jump and strength characteristics in ACL-R patients cleared by an orthopedic physician to return-to-play and to determine if relationships exist between knee isokinetic strength measurements and jump characteristics described using an electronic jump map system. Descriptive laboratory study. Thirty-three ACL-R patients who had been cleared to return to athletic competition participated in this study. Twenty-six of these ACL-R participants were also matched to 26 asymptomatic athletes based on sex, limb, height, and mass to determine isokinetic strength and jump characteristic differences between groups. Jump tests consisted of single leg vertical, double leg vertical, and a 4-jump single leg vertical jump assessed using an electronic jump mat system. Independent t-tests were used to determine differences between groups and multiple regression analyses were used to identify any relationships between jump performance and knee strength (pjump capabilities and some bilateral knee strength deficiencies compared to the matched control group. The ACL-R group also showed several moderate-to-strong positive relationships for both knee extension and flexion strength with several jump performance characteristics, such as single and double leg vertical jump height. The current results indicate that ACL-R patients present with several knee strength and vertical jump differences compared to a matched control group at the time of return-to-play. Also, ACL-R patient's performance on an electronic jump mat system is strongly related to isokinetic knee strength measures. 2b.

  5. the Modeling of Hydraulic Jump Generated Partially on Sloping Apron

    Directory of Open Access Journals (Sweden)

    Shaker Abdulatif Jalil

    2017-12-01

    Full Text Available Modeling aims to characterize system behavior and achieve simulation close as possible of the reality. The rapid energy exchange in supercritical flow to generate quiet or subcritical flow in hydraulic jump phenomenon is important in design of hydraulic structures. Experimental and numerical modeling is done on type B hydraulic jump which starts first on sloping bed and its end on horizontal bed.  Four different apron slopes are used, for each one of these slopes the jump is generated on different locations by controlling the tail water depth.  Modelling validation is based on 120 experimental runs which they show that there is reliability. The air volume fraction which creates in through hydraulic jump varied between 0.18 and 0.28. While the energy exchanges process take place within 6.6, 6.1, 5.8, 5.5 of the average relative jump height for apron slopes of 0.18, 0.14, 0.10, 0.07 respectively. Within the limitations of this study, mathematical prediction model for relative hydraulic jump height is suggested.The model having an acceptable coefficient of determination.

  6. Simulation and study on reactivity disturbs dynamic character of HTR-10 nuclear power system

    International Nuclear Information System (INIS)

    Huang Xiaojin; Feng Yuankun

    2002-01-01

    In order to not only know 10 MW High Temperature Gas Cooled Reactor (HTR-10) nuclear power system's dynamic character more deeply but also to satisfy requirements of control system's design and analysis, the dynamic model of HTR-10 nuclear power system is established on the basis of dynamic model of HTR-10 nuclear system, which supplies turbine and generate electricity system model. Using this model, system's main variables' dynamic processes are simulated when control rod takes step reactivity disturb. The concussive progresses which is caused by reactivity disturb are analyzed. The results indicate that fuel temperature changing more slowly than nuclear power makes reactivity negative feedback not to restrain power changing, and then power concussive progress comes to being

  7. Take-off analysis of the Olympic ski jumping competition (HS-106m).

    Science.gov (United States)

    Virmavirta, Mikko; Isolehto, Juha; Komi, Paavo; Schwameder, Hermann; Pigozzi, Fabio; Massazza, Giuseppe

    2009-05-29

    The take-off phase (approximately 6m) of the jumps of all athletes participating in the individual HS-106m hill ski jumping competition at the Torino Olympics was filmed with two high-speed cameras. The high altitude of the Pragelato ski jumping venue (1600m) and slight tail wind in the final jumping round were expected to affect the results of this competition. The most significant correlation with the length of the jump was found in the in-run velocity (r=0.628, pski jumping, and suggests that good jumpers simply had smaller friction between their skis and the in-run tracks and/or the aerodynamic quality of their in-run position was better. Angular velocity of the hip joint of the best jumpers was also correlated with jumping distance (r=0.651, pjumped approximately the same distance. This certainly improves the interests in ski jumping among athletes and spectators. The comparison between the take-off techniques of the best jumpers showed that even though the more marked upper body movement creates higher air resistance, it does not necessarily result in shorter jumping distance if the exposure time to high air resistance is not too long. A comparison between the first and second round jumps of the same jumpers showed that the final results in this competition were at least partly affected by the wind conditions.

  8. Validity Study of a Jump Mat Compared to the Reference Standard Force Plate.

    Science.gov (United States)

    Rogan, Slavko; Radlinger, Lorenz; Imhasly, Caroline; Kneubuehler, Andrea; Hilfiker, Roger

    2015-12-01

    In the field of vertical jump diagnostics, force plates (FP) are the reference standard. Recently, despite a lack of evidence, jump mats have been used increasingly. Important factors in favor of jumping mats are their low cost and portability. This validity study compared the Haynl-Elektronik jump mat (HE jump mat) with the reference standard force plate. Ten healthy volunteers participated and each participant completed three series of five drop jumps (DJ). The parameters ground contact time (GCT) and vertical jump height (VJH) from the HE jump mat and the FP were used to evaluate the concurrent validity. The following statistical calculations were performed: Pearson's correlation (r), Bland-Altman plots (standard and for adjusted trend), and regression equations. The Bland-Altman plots suggest that the HE jump mat measures shorter contact times and higher jump heights than the FP. The trend-adjusted Bland-Altman plot shows higher mean differences and wider wing-spreads of confidence limits during longer GCT. During the VJH the mean differences and the wing-spreads of the confidence limits throughout the range present as relatively constant. The following regression equations were created, as close as possible to the true value: GCT = 5.920385 + 1.072293 × [value HE jump mat] and VJH = -1.73777 + 1.011156 × [value HE jump mat]. The HE jump mat can be recommended in relation to the validity of constraints. In this study, only a part of the quality criteria were examined. For the final recommendation it is advised to examine the HE jump mat on the other quality criteria (test-retest reliability, sensitivity change).

  9. A simple dynamic rising nuclear cloud based model of ground radioactive fallout for atmospheric nuclear explosion

    International Nuclear Information System (INIS)

    Zheng Yi

    2008-01-01

    A simple dynamic rising nuclear cloud based model for atmospheric nuclear explosion radioactive prediction was presented. The deposition of particles and initial cloud radius changing with time before the cloud stabilization was considered. Large-scale relative diffusion theory was used after cloud stabilization. The model was considered reasonable and dependable in comparison with four U.S. nuclear test cases and DELFIC model results. (authors)

  10. Development of Dynamic Spent Nuclear Fuel Environmental Effect Analysis Model

    International Nuclear Information System (INIS)

    Jeong, Chang Joon; Ko, Won Il; Lee, Ho Hee; Cho, Dong Keun; Park, Chang Je

    2010-07-01

    The dynamic environmental effect evaluation model for spent nuclear fuel has been developed and incorporated into the system dynamic DANESS code. First, the spent nuclear fuel isotope decay model was modeled. Then, the environmental effects were modeled through short-term decay heat model, short-term radioactivity model, and long-term heat load model. By using the developed model, the Korean once-through nuclear fuel cycles was analyzed. The once-through fuel cycle analysis was modeled based on the Korean 'National Energy Basic Plan' up to 2030 and a postulated nuclear demand growth rate until 2150. From the once-through results, it is shown that the nuclear power demand would be ∼70 GWe and the total amount of the spent fuel accumulated by 2150 would be ∼168000 t. If the disposal starts from 2060, the short-term decay heat of Cs-137 and Sr-90 isotopes are W and 1.8x10 6 W in 2100. Also, the total long-term heat load in 2100 will be 4415 MW-y. From the calculation results, it was found that the developed model is very convenient and simple for evaluation of the environmental effect of the spent nuclear fuel

  11. Postactivation Potentiation of the Plantar Flexors Does Not Directly Translate to Jump Performance in Female Elite Young Soccer Players.

    Science.gov (United States)

    Prieske, Olaf; Maffiuletti, Nicola A; Granacher, Urs

    2018-01-01

    High-intensity muscle actions have the potential to temporarily improve muscle contractile properties (i.e., postactivation potentiation, PAP) thereby inducing acute performance enhancements. There is evidence that balance training can improve performance during strength exercises. Taking these findings together, the purpose of this study was to examine the acute effects of a combined balance and strength (B+S) exercise vs. a strength only (S) exercise on twitch contractile properties, maximum voluntary strength, and jump performance in young athletes. Female elite young soccer players ( N = 12) aged 14-15 years conducted three experimental conditions in randomized order: S included 3 sets of 8-10 dynamic leg extensions at 80% of the 1-repetition maximum, B+S consisted of 3 sets of 40 s double-leg stances on a balance board prior to leg extensions (same as S), and a resting control period. Before and 7 min after exercise, participants were tested for their electrically-evoked isometric twitches (i.e., twitch peak torque, twitch rate of torque development) and maximal voluntary contraction (MVC) torque of the plantar flexor muscles. Additionally, countermovement (CMJ) and drop jump (DJ) performances (i.e., CMJ/DJ height, DJ ground contact time) were assessed. Significant effects of condition on twitch contractile properties ( p jump performance outputs ( p jump performance. It is concluded that PAP effects in the plantar flexors may not directly translate to improved jump performance in female elite young soccer players. Therefore, the observed gains in jump performance following B+S are most likely related to neuromuscular changes (e.g., intramuscular coordination) rather than improved contractile properties.

  12. Study of brittle crack jump rate using acoustic emission method

    International Nuclear Information System (INIS)

    Yasnij, P.V.; Pokrovskij, V.V.; Strizhalo, V.A.; Dobrovol'skij, Yu.V.

    1987-01-01

    A new peocedure is elaborated to detect brittle jumps of small length (0.1...5mm) occuring both inside the specimen and along the crack front under static and cyclic loading using the phenomena of acoustic emission (AE). Recording of the crack start and stop moments with an AE sensor as well as evaluation of the brittle crack jump length by the after-failure specimen fracture make it possible to find the mean crack propagation rate. Experimental dependences are obtained for the crack propagation rate with a brittle crack jump in steel 15Kh2MFA (σ B =1157 MPa, σ 0.2 =100 MPa) at 293 K and under cyclic loading as a function of the jump length and also as a function of the critical stress intensity factor K jc i corresponding to the crack jump

  13. A quasi-static treatment of multiple phase jumps

    International Nuclear Information System (INIS)

    Englman, R; Vertesi, T

    2005-01-01

    A quasi-static, WKB-type treatment accounts well for the surprising phase jumps that are odd multiples of π (1 + 2n)π, found as a molecular system journeys adiabatically in a configuration coordinate plane that contains several points of degeneracies. We show that the number n in the phase jump is an integer close to |n'| that appears in the expression for the complex wavefunction amplitude valid (approximately) for times close to when the phase jump occurs: -δT + 2πθ+πn'sinδT -i[1-πn'cosδT](δT is a shifted and rescaled trajectory-time parameter and θ is a numerical fraction (<1) which depends on the adiabaticity of the motion.) The central quantity n' is local, i.e., depends on the values of the parameters in the Hamiltonian only at the beginning of the trajectory and at the instant of the phase jump

  14. Full scale dynamic testing of Paks nuclear power plant structures

    International Nuclear Information System (INIS)

    Da Rin, E.M.

    1995-01-01

    This report refers to the full-scale dynamic structural testing activities that have been performed in December 1994 at the Paks (H) Nuclear Power Plant, within the framework of: the IAEA Coordinated research Programme 'Benchmark Study for the Seismic Analysis and Testing of WWER-type Nuclear Power Plants, and the nuclear research activities of ENEL-WR/YDN, the Italian National Electricity Board in Rome. The specific objective of the conducted investigation was to obtain valid data on the dynamic behaviour of the plant's major constructions, under normal operating conditions, for enabling an assessment of their actual seismic safety to be made. As described in more detail hereafter, the Paks NPP site has been subjected to low level earthquake like ground shaking, through appropriately devised underground explosions, and the dynamic response of the plant's 1 st reactor unit important structures was appropriately measured and digitally recorded. In-situ free field response was measured concurrently and, moreover, site-specific geophysical and seismological data were simultaneously acquired too. The above-said experimental data is to provide basic information on the geophysical and seismological characteristics of the Paks NPP site, together with useful reference information on the true dynamic characteristics of its main structures and give some indications on the actual dynamic soil-structure interaction effects for the case of low level excitation

  15. On pitch jumps between chest and falsetto registers in voice : Data from living and excised human larynges

    NARCIS (Netherlands)

    Svec, JG; Schutte, HK; Miller, DG

    The paper offers a new concept of studying abrupt chest-falsetto register transitions Clumps) based on the theory of nonlinear dynamics. The jumps were studied in an excised human larynx and in three living subjects tone female and two male). Data from the excised larynx revealed that a small and

  16. Influence of Plyometrics on Jump Capabilities in Technical and Aesthetical Sports

    Directory of Open Access Journals (Sweden)

    Mlsnová Gabriela

    2017-05-01

    Full Text Available The aim of the study was to examine the effect of plyometric exercises on explosive strength of lower extremities in girls performing of technical and aesthetical sports. Experiment was carried out on three groups; artistic gymnasts (VG, n = 15; age = 12.4 ± 0.7 years, fitness girls (VF, n = 15; age = 13.8 ± 1.9 years and dancers (VD, n = 15; age = 13.8 ± 2 years. To check, the control group of general population was involved in the study (VK, n = 15; age = 13.9 ± 1.5 years. Following tests on jump ergometer Fitro Jumper were carried out at the beginning and at the end of experimental period: countermovement jump without and with arms swing and 10- second series of repeated vertical jumps. Plyometric program consisted of two plyometric units a week during thirty weeks. The results show that higher improvement in all evaluated tests achieved the group of fitness. In the countermovement jump without arm swing was observed improvement height of the jump 3.4 ± 1.4 cm (p ˂ 0.00001, in the countermovement jump with arm swing 5.7 ± 1.5 cm (p ˂ 0.00001, in difference of height of the jump between countermovement jump with and without arms swing 2.3 ± 1 cm (p ˂ 0.00001, in ten second series of repeated vertical jumps without arms swing in the height of jump 4.2 ± 1.6 cm (p ˂ 0.00001 and in power in active take off phase 8.8 ± 2.2 W.kg-1 (p ˂ 0.00001. Based on finding the study and in coherence with data from literature, we can conclude the effect of plyometric exercises was effective in combination with specific-strength training. Jumping ability is limiting factor of sport performance in technical and aesthetical sports and implementation of plyometric exercises to the training is highly recommend. The high level of jump capabilities can improve the quality and technique of performance complex acrobatic elements and dance leaps thereby increasing overall evaluation of performance in selected sports.

  17. Energy expended during horizontal jumping: investigating the effects of surface compliance

    Directory of Open Access Journals (Sweden)

    Samuel R. L. Coward

    2014-08-01

    Full Text Available We present the first data on the metabolic costs of horizontal jumping in humans, using this tractable model to explore variations in energy expenditure with substrate properties, and consider these findings in light of kinematic data. Twenty-four participants jumped consistently at the rate of 1 jump per 5 s between opposing springboards separated by either a short (1.2 m or long (1.8 m gap. Springboards were either ‘firm’ or ‘compliant’. Respiratory gas exchange was measured using a back-mounted portable respiratory gas analyser to represent rate of energy expenditure, which was converted to energy expenditure per metre jumped. Video data were recorded to interpret kinematic information. Horizontal jumping was found to be between around 10 and 20 times the energy cost of cursorial locomotion per unit distance moved. There is considerable evidence from the data that jumping 1.8 m from a compliant springboard (134.9 mL O2 m−1 is less costly energetically than jumping that distance from a firm springboard (141.6 mL O2 m−1, albeit the effect size is quite small within the range of compliances tested in this study. However, there was no evidence of an effect of springboard type for jumps of 1.2 m. The kinematic analyses indicate possible explanations for these findings. Firstly, the calf muscle is likely used more, and the thigh muscles less, to take-off from a firm springboard during 1.8 m jumps, which may result in the power required to take-off being produced less efficiently. Secondly, the angle of take-off from the compliant surface during 1.8 m jumps is closer to the optimal for energetic efficiency (45°, possible due to the impulse provided by the surface as it returns stored energy during the final stages of the take-off. The theoretical effect on energy costs due to a different take-off angle for jumps of only 1.2 m is close to negligible.

  18. Evaluation of the Most Reliable Procedure of Determining Jump Height During the Loaded Countermovement Jump Exercise: Take-Off Velocity vs. Flight Time.

    Science.gov (United States)

    Pérez-Castilla, Alejandro; García-Ramos, Amador

    2018-07-01

    Pérez-Castilla, A and García-Ramos, A. Evaluation of the most reliable procedure of determining jump height during the loaded countermovement jump exercise: Take-off velocity vs. flight time. J Strength Cond Res 32(7): 2025-2030, 2018-This study aimed to compare the reliability of jump height between the 2 standard procedures of analyzing force-time data (take-off velocity [TOV] and flight time [FT]) during the loaded countermovement (CMJ) exercise performed with a free-weight barbell and in a Smith machine. The jump height of 17 men (age: 22.2 ± 2.2 years, body mass: 75.2 ± 7.1 kg, and height: 177.0 ± 6.0 cm) was tested in 4 sessions (twice for each CMJ type) against external loads of 17, 30, 45, 60, and 75 kg. Jump height reliability was comparable between the TOV (coefficient of variation [CV]: 6.42 ± 2.41%) and FT (CV: 6.53 ± 2.17%) during the free-weight CMJ, but it was higher for the FT when the CMJ was performed in a Smith machine (CV: 11.34 ± 3.73% for TOV and 5.95 ± 1.12% for FT). Bland-Altman plots revealed trivial differences (≤0.27 cm) and no heteroscedasticity of the errors (R ≤ 0.09) for the jump height obtained by the TOV and FT procedures, whereas the random error between both procedures was higher for the CMJ performed in the Smith machine (2.02 cm) compared with the free-weight barbell (1.26 cm). Based on these results, we recommend the FT procedure to determine jump height during the loaded CMJ performed in a Smith machine, whereas the TOV and FT procedures provide similar reliability during the free-weight CMJ.

  19. Validation of an inertial measurement unit for the measurement of jump count and height.

    Science.gov (United States)

    MacDonald, Kerry; Bahr, Roald; Baltich, Jennifer; Whittaker, Jackie L; Meeuwisse, Willem H

    2017-05-01

    To validate the use of an inertial measurement unit (IMU) for the collection of total jump count and assess the validity of an IMU for the measurement of jump height against 3-D motion analysis. Cross sectional validation study. 3D motion-capture laboratory and field based settings. Thirteen elite adolescent volleyball players. Participants performed structured drills, played a 4 set volleyball match and performed twelve counter movement jumps. Jump counts from structured drills and match play were validated against visual count from recorded video. Jump height during the counter movement jumps was validated against concurrent 3-D motion-capture data. The IMU device captured more total jumps (1032) than visual inspection (977) during match play. During structured practice, device jump count sensitivity was strong (96.8%) while specificity was perfect (100%). The IMU underestimated jump height compared to 3D motion-capture with mean differences for maximal and submaximal jumps of 2.5 cm (95%CI: 1.3 to 3.8) and 4.1 cm (3.1-5.1), respectively. The IMU offers a valid measuring tool for jump count. Although the IMU underestimates maximal and submaximal jump height, our findings demonstrate its practical utility for field-based measurement of jump load. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Jump Training in Youth Soccer Players: Effects of Haltere Type Handheld Loading.

    Science.gov (United States)

    Rosas, F; Ramirez-Campillo, R; Diaz, D; Abad-Colil, F; Martinez-Salazar, C; Caniuqueo, A; Cañas-Jamet, R; Loturco, I; Nakamura, F Y; McKenzie, C; Gonzalez-Rivera, J; Sanchez-Sanchez, J; Izquierdo, M

    2016-12-01

    The aim of this study was to compare the effects of a jump training program, with or without haltere type handheld loading, on maximal intensity exercise performance. Youth soccer players (12.1±2.2 y) were assigned to either a jump training group (JG, n=21), a jump training group plus haltere type handheld loading (LJG, n=21), or a control group following only soccer training (CG, n=21). Athletes were evaluated for maximal-intensity performance measures before and after 6 weeks of training, during an in-season training period. The CG achieved a significant change in maximal kicking velocity only (ES=0.11-0.20). Both jump training groups improved in right leg (ES=0.28-0.45) and left leg horizontal countermovement jump with arms (ES=0.32-0.47), horizontal countermovement jump with arms (ES=0.28-0.37), vertical countermovement jump with arms (ES=0.26), 20-cm drop jump reactive strength index (ES=0.20-0.37), and maximal kicking velocity (ES=0.27-0.34). Nevertheless, compared to the CG, only the LJG exhibited greater improvements in all performance tests. Therefore, haltere type handheld loading further enhances performance adaptations during jump training in youth soccer players. © Georg Thieme Verlag KG Stuttgart · New York.

  1. Egg Bungee Jump!

    Science.gov (United States)

    Fitzgerald, Mike; Brand, Lance

    2004-01-01

    In this article, the authors present an egg bungee jumping activity. This activity introduces students to ways that engineers might apply calculations of failure to meet a challenge. Students are required to use common, everyday materials such as rubber bands, string, plastic bags, and eggs. They will apply technological problem solving, material…

  2. The world price of jump and volatility risk

    NARCIS (Netherlands)

    Driessen, J.; Maenhout, P.

    2006-01-01

    Jump and volatility risk are important for understanding equity returns, option pricing and asset allocation. This paper is the first to study international integration of markets for jump and volatility risk, using data on index options for each of the three main global markets: US S&P 500 index

  3. Vertical and Horizontal Jump Capacity in International Cerebral Palsy Football Players.

    Science.gov (United States)

    Reina, Raúl; Iturricastillo, Aitor; Sabido, Rafael; Campayo-Piernas, Maria; Yanci, Javier

    2018-05-01

    To evaluate the reliability and validity of vertical and horizontal jump tests in football players with cerebral palsy (FPCP) and to analyze the jump performance differences between current International Federation for Cerebral Palsy Football functional classes (ie, FT5-FT8). A total of 132 international parafootballers (25.8 [6.7] y; 70.0 [9.1] kg; 175.7 [7.3] cm; 22.8 [2.8] kg·m -2 ; and 10.7 [7.5] y training experience) participated in the study. The participants were classified according to the International Federation for Cerebral Palsy Football classification rules, and a group of 39 players without cerebral palsy was included in the study as a control group. Football players' vertical and horizontal jump performance was assessed. All the tests showed good to excellent relative intrasession reliability scores, both in FPCP and in the control group (intraclass correlation = .78-.97, SEM jump, standing broad jump, 4 bounds for distance, and triple hop for distance dominant leg and nondominant leg. The control group performed higher/farther jumps with regard to all the FPCP classes, obtaining significant differences and moderate to large effect sizes (ESs) (.85 jump tests than players in the lower classes (ES = moderate to large, P jump tests performed in this study could be applied to the classification procedures and protocols for FPCP.

  4. Dynamic Response of AP1000 Nuclear Island Due to Safe Shutdown Earthquake Loading

    Directory of Open Access Journals (Sweden)

    Gan Buntara S.

    2017-01-01

    Full Text Available AP1000 is a standard nuclear power plant developed by Westinghouse and its partners by using an advanced passive safety feature. Among the five principle building structures, namely the nuclear island, turbine building, annex building, diesel generator building and radwaste building, the safety of the nuclear island building is the most concerned. This paper investigates the dynamic response of the nuclear island building of the AP1000 plant subjected to safe shutdown earthquake loadings. A finite element model for the building, which is assumed to be built in a hard-rock base, is developed and its dynamic response is computed with the aid of the commercial finite element package ANSYS. The dynamic characteristics, including the natural frequencies, the vibration modes, and the time histories for displacements, velocities, and accelerations of the building are obtained for two typical safe shutdown earthquakes, El Centro and Kobe earthquakes. The dynamic behavior of the building due to the earthquakes and its safety is examined and highlighted.

  5. The exit-time problem for a Markov jump process

    Science.gov (United States)

    Burch, N.; D'Elia, M.; Lehoucq, R. B.

    2014-12-01

    The purpose of this paper is to consider the exit-time problem for a finite-range Markov jump process, i.e, the distance the particle can jump is bounded independent of its location. Such jump diffusions are expedient models for anomalous transport exhibiting super-diffusion or nonstandard normal diffusion. We refer to the associated deterministic equation as a volume-constrained nonlocal diffusion equation. The volume constraint is the nonlocal analogue of a boundary condition necessary to demonstrate that the nonlocal diffusion equation is well-posed and is consistent with the jump process. A critical aspect of the analysis is a variational formulation and a recently developed nonlocal vector calculus. This calculus allows us to pose nonlocal backward and forward Kolmogorov equations, the former equation granting the various moments of the exit-time distribution.

  6. Dynamics of nuclear reactor operational cycles

    International Nuclear Information System (INIS)

    Chapman, L.D.; Wayland, J.R.

    With this system dynamics computer model, one can explore the long term effects of a nuclear reactor program. Given an input demand for reactors, the consequences on each sector and the interactions among sectors can be simulated to provide a better understanding of the time development of a nuclear reactor program. The model permits the determination of various levels of activity as a function of time for plant enrichment, fuel fabrication, fuel reprocessing and storage of waste products. In addition, the rates of construction of reactors, spent fuel transit, disposal of waste, mining, shipping, recycling and enrichment can be investigated for optimal planning purposes. The model has been written in a very general manner so that it can be used to simulate any nuclear reactor program. It is an easy task to relate the amount of accidental or operational release of radioactive contaminants into our environment to the activity levels of each of the above sectors. (U.S.)

  7. Role of the hamstrings in human vertical jumping

    NARCIS (Netherlands)

    Bobbert, Maarten F.

    1996-01-01

    In some human subjects performing maximum-height squat jumps, the EMG-pattern of semitendinosus is bi-phasic and that of biceps femoris is mono-phasic. The purpose of this study was to investigate the roles of biceps femoris and semitendinosus in squat jumping, and to explain why they are different.

  8. Universal Earthquake-Occurrence Jumps, Correlations with Time, and Anomalous Diffusion

    International Nuclear Information System (INIS)

    Corral, Alvaro

    2006-01-01

    Spatiotemporal properties of seismicity are investigated for a worldwide (WW) catalog and for southern California in the stationary case (SC), showing a nearly universal scaling behavior. Distributions of distances between consecutive earthquakes (jumps) are magnitude independent and show two power-law regimes, separated by jump values about 200 (WW) and 15 km (SC). Distributions of waiting times conditioned to the value of jumps show that both variables are correlated, in general, but turn out to be independent when only short or long jumps are considered. Finally, diffusion profiles are found to be independent on the magnitude, contrary to what the waiting-time distributions suggest

  9. Optically induced dynamic nuclear spin polarisation in diamond

    International Nuclear Information System (INIS)

    Scheuer, Jochen; Naydenov, Boris; Jelezko, Fedor; Schwartz, Ilai; Chen, Qiong; Plenio, Martin B; Schulze-Sünninghausen, David; Luy, Burkhard; Carl, Patrick; Höfer, Peter; Retzker, Alexander; Sumiya, Hitoshi; Isoya, Junichi

    2016-01-01

    The sensitivity of magnetic resonance imaging (MRI) depends strongly on nuclear spin polarisation and, motivated by this observation, dynamical nuclear spin polarisation has recently been applied to enhance MRI protocols (Kurhanewicz et al 2011 Neoplasia 13 81). Nuclear spins associated with the 13 C carbon isotope (nuclear spin I = 1/2) in diamond possess uniquely long spin lattice relaxation times (Reynhardt and High 2011 Prog. Nucl. Magn. Reson. Spectrosc. 38 37). If they are present in diamond nanocrystals, especially when strongly polarised, they form a promising contrast agent for MRI. Current schemes for achieving nuclear polarisation, however, require cryogenic temperatures. Here we demonstrate an efficient scheme that realises optically induced 13 C nuclear spin hyperpolarisation in diamond at room temperature and low ambient magnetic field. Optical pumping of a nitrogen-vacancy centre creates a continuously renewable electron spin polarisation which can be transferred to surrounding 13 C nuclear spins. Importantly for future applications we also realise polarisation protocols that are robust against an unknown misalignment between magnetic field and crystal axis. (paper)

  10. Jump into Action

    Science.gov (United States)

    Ball, Stephen; Cohen, Ann; Meyer, Margaret

    2012-01-01

    Jump Into Action (JIA) is a school-based team-taught program to help fifth-grade students make healthy food choices and be more active. The JIA team (physical education teacher, classroom teacher, school nurse, and parent) work together to provide a supportive environment as students set goals to improve food choices and increase activity.…

  11. Filtering of a Markov Jump Process with Counting Observations

    International Nuclear Information System (INIS)

    Ceci, C.; Gerardi, A.

    2000-01-01

    This paper concerns the filtering of an R d -valued Markov pure jump process when only the total number of jumps are observed. Strong and weak uniqueness for the solutions of the filtering equations are discussed

  12. An algorithm to remove fringe jumps and its application to microwave reflectometry

    International Nuclear Information System (INIS)

    Ejiri, A.; Kawahata, K.; Shinohara, K.

    1997-01-01

    In some plasma discharges, the phase measured by microwave reflectometry has many fringe (2π radians) jumps. A new algorithm to detect and remove fringe jumps has been developed, and applied to the data in the JIPP TII-U tokamak. Using this algorithm, quantitative properties of fringe jumps, and their effects on the analysis of phase fluctuations are investigated. It was found that the occurrence of fringe jumps obeys a Poisson process, and the time scale of jumps is distributed over a wide range. Fringe jumps affect mainly the low-frequency components of phase fluctuations. Comparison of the phase corrected by the algorithm and the phase calculated from the time smoothed signals indicates that time smoothing (or frequency filtering) is an effective way to obtain information concerning the macroscopic density profile. Fringe jump and phase runaway can be phenomenologically explained by the distribution of the complex amplitude of the reflected wave. (author)

  13. Dynamic performance of concrete undercut anchors for Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Mahrenholtz, Christoph, E-mail: christoph@mahrenholtz.net; Eligehausen, Rolf

    2013-12-15

    Graphical abstract: - Highlights: • Behavior of undercut anchors under dynamic actions simulating earthquakes. • First high frequency load and crack cycling tests on installed concrete anchors ever. • Comprehensive review of anchor qualification for Nuclear Power Plants. - Abstract: Post-installed anchors are widely used for structural and nonstructural connections to concrete. In many countries, concrete anchors used for Nuclear Power Plants have to be qualified to ensure reliable behavior even under extreme conditions. The tests required for qualification of concrete anchors are carried out at quasi-static loading rates well below the rates to be expected for dynamic actions deriving from earthquakes, airplane impacts or explosions. To investigate potentially beneficial effects of high loading rates and cycling frequencies, performance tests on installed undercut anchors were conducted. After introductory notes on anchor technology and a comprehensive literature review, this paper discusses the qualification of anchors for Nuclear Power Plants and the testing carried out to quantify experimentally the effects of dynamic actions on the load–displacement behavior of undercut anchors.

  14. Jump point detection for real estate investment success

    Science.gov (United States)

    Hui, Eddie C. M.; Yu, Carisa K. W.; Ip, Wai-Cheung

    2010-03-01

    In the literature, studies on real estate market were mainly concentrating on the relation between property price and some key factors. The trend of the real estate market is a major concern. It is believed that changes in trend are signified by some jump points in the property price series. Identifying such jump points reveals important findings that enable policy-makers to look forward. However, not all jump points are observable from the plot of the series. This paper looks into the trend and introduces a new approach to the framework for real estate investment success. The main purpose of this paper is to detect jump points in the time series of some housing price indices and stock price index in Hong Kong by applying the wavelet analysis. The detected jump points reflect to some significant political issues and economic collapse. Moreover, the relations among properties of different classes and between stocks and properties are examined. It can be shown from the empirical result that a lead-lag effect happened between the prices of large-size property and those of small/medium-size property. However, there is no apparent relation or consistent lead in terms of change point measure between property price and stock price. This may be due to the fact that globalization effect has more impact on the stock price than the property price.

  15. Portfolio Selection with Jumps under Regime Switching

    Directory of Open Access Journals (Sweden)

    Lin Zhao

    2010-01-01

    Full Text Available We investigate a continuous-time version of the mean-variance portfolio selection model with jumps under regime switching. The portfolio selection is proposed and analyzed for a market consisting of one bank account and multiple stocks. The random regime switching is assumed to be independent of the underlying Brownian motion and jump processes. A Markov chain modulated diffusion formulation is employed to model the problem.

  16. Salticid predation as one potential driving force of ant mimicry in jumping spiders

    Science.gov (United States)

    Huang, Jin-Nan; Cheng, Ren-Chung; Li, Daiqin; Tso, I-Min

    2011-01-01

    Many spiders possess myrmecomorphy, and species of the jumping spider genus Myrmarachne exhibit nearly perfect ant mimicry. Most salticids are diurnal predators with unusually high visual acuity that prey on various arthropods, including conspecifics. In this study, we tested whether predation pressure from large jumping spiders is one possible driving force of perfect ant mimicry in jumping spiders. The results showed that small non-ant-mimicking jumping spiders were readily treated as prey by large ones (no matter whether heterospecific or conspecific) and suffered high attack and mortality rates. The size difference between small and large jumping spiders significantly affected the outcomes of predatory interactions between them: the smaller the juvenile jumping spiders, the higher the predation risk from large ones. The attack and mortality rates of ant-mimicking jumping spiders were significantly lower than those of non-ant-mimicking jumping spiders, indicating that a resemblance to ants could provide protection against salticid predation. However, results of multivariate behavioural analyses showed that the responses of large jumping spiders to ants and ant-mimicking salticids differed significantly. Results of this study indicate that predation pressure from large jumping spiders might be one selection force driving the evolution of nearly perfect myrmecomorphy in spiders and other arthropods. PMID:20961898

  17. Forces exerted by jumping children: A pilot study

    NARCIS (Netherlands)

    Moes, C.C.M.; Bakker, H.E.

    1998-01-01

    This article reports on a pilot study of the loads exerted vertically by children when jumping. The subjects of the study were 17 children, aged from two to twelve years. Measurements were made using video recordings and a force-plate. The influence of the stiffness of the base and of jumping with

  18. Direct Observation of Insulin Association Dynamics with Time-Resolved X-ray Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Rimmerman, Dolev [Department; Leshchev, Denis [Department; Hsu, Darren J. [Department; Hong, Jiyun [Department; Kosheleva, Irina [Center; Chen, Lin X. [Department; Chemical

    2017-09-05

    Biological functions frequently require protein-protein interactions that involve secondary and tertiary structural perturbation. Here we study protein-protein dissociation and reassociation dynamics in insulin, a model system for protein oligomerization. Insulin dimer dissociation into monomers was induced by a nanosecond temperature-jump (T-jump) of ~8 °C in aqueous solution, and the resulting protein and solvent dynamics were tracked by time-resolved X-ray solution scattering (TRXSS) on time scales of 10 ns to 100 ms. The protein scattering signals revealed the formation of five distinguishable transient species during the association process that deviate from simple two state kinetics. Our results show that the combination of T-jump pump coupled to TRXSS probe allows for direct tracking of structural dynamics in nonphotoactive proteins.

  19. Nordic ski jumping fatalities in the United States: a 50-year summary.

    Science.gov (United States)

    Wright, J R

    1988-06-01

    Nordic ski-jumping fatalities are rare events. Six jumping fatalities have occurred in the United States during the past 50 years. The fatality rate for nordic ski jumping, estimated to be roughly 12 fatalities/100,000 participants annually, appears to be within the range of fatality rates for other "risky" outdoor sports. Cervical fractures appear to be the most frequent fatal ski-jumping injury.

  20. Structural dynamics of supercooled water from quasielastic neutron scattering and molecular simulations.

    Science.gov (United States)

    Qvist, Johan; Schober, Helmut; Halle, Bertil

    2011-04-14

    One of the outstanding challenges presented by liquid water is to understand how molecules can move on a picosecond time scale despite being incorporated in a three-dimensional network of relatively strong H-bonds. This challenge is exacerbated in the supercooled state, where the dramatic slowing down of structural dynamics is reminiscent of the, equally poorly understood, generic behavior of liquids near the glass transition temperature. By probing single-molecule dynamics on a wide range of time and length scales, quasielastic neutron scattering (QENS) can potentially reveal the mechanistic details of water's structural dynamics, but because of interpretational ambiguities this potential has not been fully realized. To resolve these issues, we present here an extensive set of high-quality QENS data from water in the range 253-293 K and a corresponding set of molecular dynamics (MD) simulations to facilitate and validate the interpretation. Using a model-free approach, we analyze the QENS data in terms of two motional components. Based on the dynamical clustering observed in MD trajectories, we identify these components with two distinct types of structural dynamics: picosecond local (L) structural fluctuations within dynamical basins and slower interbasin jumps (J). The Q-dependence of the dominant QENS component, associated with J dynamics, can be quantitatively rationalized with a continuous-time random walk (CTRW) model with an apparent jump length that depends on low-order moments of the jump length and waiting time distributions. Using a simple coarse-graining algorithm to quantitatively identify dynamical basins, we map the newtonian MD trajectory on a CTRW trajectory, from which the jump length and waiting time distributions are computed. The jump length distribution is gaussian and the rms jump length increases from 1.5 to 1.9 Å as the temperature increases from 253 to 293 K. The rms basin radius increases from 0.71 to 0.75 Å over the same range. The

  1. Report on research in progress in the nuclear structure, dynamics area

    International Nuclear Information System (INIS)

    Kodama, T.

    1982-01-01

    The experimental and theoretical studies related to the nuclear dynamics, actually done by the nuclear physical groups in Brazil, are reported. A qualitative division of the several aspects concerning to this subject is shown. (L.C.) [pt

  2. Improved Maximum Strength, Vertical Jump and Sprint Performance after 8 Weeks of Jump Squat Training with Individualized Loads

    Science.gov (United States)

    Marián, Vanderka; Katarína, Longová; Dávid, Olasz; Matúš, Krčmár; Simon, Walker

    2016-01-01

    The purpose of the study was to determine the effects of 8 weeks of jump squat training on isometric half squat maximal force production (Fmax) and rate of force development over 100ms (RFD100), countermovement jump (CMJ) and squat jump (SJ) height, and 50 m sprint time in moderately trained men. Sixty eight subjects (~21 years, ~180 cm, ~75 kg) were divided into experimental (EXP; n = 36) and control (CON, n = 32) groups. Tests were completed pre-, mid- and post-training. EXP performed jump squat training 3 times per week using loads that allowed all repetitions to be performed with ≥90% of maximum average power output (13 sessions with 4 sets of 8 repetitions and 13 sessions with 8 sets of 4 repetitions). Subjects were given real-time feedback for every repetition during the training sessions. Significant improvements in Fmax from pre- to mid- (Δ ~14%, psquats with loads that allow repetitions to be performed ≥90% of maximum average power output can simultaneously improve several different athletic performance tasks in the short-term. Key points Jump squat exercise is one of many exercises to develop explosive strength that has been the focus of several researches, while the load used during the training seem to be an important factor that affects training outcomes. Experimental group improved performance in all assessed parameters, such as Fmax, RFD100, CMJ, SJ and 50 m sprint time. However, improvements in CMJ and SJ were recorded after the entire power training period and thereafter plateau occurred. The portable FitroDyne could serve as a valuable device to individualize the load that maximizes mean power output and visual feedback can be provided to athletes during the training. PMID:27803628

  3. Modeling and forecasting electricity price jumps in the Nord Pool power market

    DEFF Research Database (Denmark)

    Knapik, Oskar

    extreme prices and forecasting of the price jumps is crucial for risk management and market design. In this paper, we consider the problem of the impact of fundamental price drivers on forecasting of price jumps in NordPool intraday market. We develop categorical time series models which take into account......For risk management traders in the electricity market are mainly interested in the risk of negative (drops) or of positive (spikes) price jumps, i.e. the sellers face the risk of negative price jumps while the buyers face the risk of positive price jumps. Understanding the mechanism that drive...

  4. Self-jumping Mechanism of Melting Frost on Superhydrophobic Surfaces.

    Science.gov (United States)

    Liu, Xiaolin; Chen, Huawei; Zhao, Zehui; Wang, Yamei; Liu, Hong; Zhang, Deyuan

    2017-11-07

    Frost accretion on surfaces may cause severe problems and the high-efficiency defrosting methods are still urgently needed in many application fields like heat transfer, optical and electric power system, etc. In this study, a nano-needle superhydrophobic surface is prepared and the frosting/defrosting experiments are conducted on it. Three steps are found in the defrosting process: melting frost shrinking and splitting, instantaneous self-triggered deforming followed by deformation-induced movements (namely, in-situ shaking, rotating, rolling, and self-jumping). The self-jumping performance of the melting frost is extremely fascinating and worth studying due to its capability of evidently shortening the defrosting process and reducing (even avoiding) residual droplets after defrosting. The study on the melting frost self-jumping phenomena demonstrates that the kinetic energy transformed from instantaneous superficial area change in self-triggered deforming step is the intrinsic reason for various melting frost self-propelled movements, and when the transformed energy reaches a certain amount, the self-jumping phenomena occur. And some facilitating conditions for melting frost self-jumping phenomena are also discussed. This work will provide an efficient way for defrosting or an inspiration for further research on defrosting.

  5. Relative Intensity Influences the Degree of Correspondence of Jump Squats and Push Jerks to Countermovement Jumps.

    Science.gov (United States)

    Cushion, Emily J; Goodwin, Jon E; Cleather, Daniel J

    2016-05-01

    The aim of this study was to determine the mechanical similarity between push jerk (PJ) and jump squat (JS) to countermovement jump (CMJ) and further understand the effect increasing external load may have on this relationship. Eight physically trained men (age 22 ± 3; height 176 ± 7 kg; weight 83 ± 8 kg) performed an unloaded CMJ followed by JS under a range of loads (10, 25, 35, and 50% 1RM back squat) and PJ (30, 50, 65, and 75% 1RM push jerk). A portable force platform and high-speed camera both collecting at 250 Hz were used to establish joint moments and impulse during the propulsive phase of the movements. A standard inverse dynamics model was used to determine joint moment and impulse at the hip, knee, and ankle. Significant correlations (p ≤ 0.05) were shown between CMJ knee joint moment and JS knee joint moment at 25% load and PJ knee joint moment at 30 and 50% load. Significant correlations were also observed between CMJ knee joint impulse and JS knee joint impulse at 10% load and PJ knee joint moment at 30 and 65% load. Significant correlation was also observed between CMJ hip joint impulse and PJ hip joint impulse at 30% load. No significant joint × load interaction was shown as load increased for either PJ or JS. Results from the study suggest partial correspondence between PJ and JS to CMJ, where a greater mechanical similarity was observed between the PJ and CMJ. This interaction is load and joint dependent where lower relative loads showed greatest mechanical similarity. Therefore using lower relative loads when programming may provide a greater transfer of training effect.

  6. Approaching stationarity: competition between long jumps and long waiting times

    International Nuclear Information System (INIS)

    Dybiec, Bartłomiej

    2010-01-01

    Within the continuous-time random walk (CTRW) scenarios, properties of the overall motion are determined by the waiting time and the jump length distributions. In the decoupled case, with power-law distributed waiting times and jump lengths, the CTRW scenario is asymptotically described by the double (space and time) fractional Fokker–Planck equation. Properties of a system described by such an equation are determined by the subdiffusion parameter and the jump length exponent. Nevertheless, the stationary state is determined solely by the jump length distribution and the potential. The waiting time distribution determines only the rate of convergence to the stationary state. Here, we inspect the competition between long waiting times and long jumps and how this competition is reflected in the way in which a stationary state is reached. In particular, we show that the distance between a time-dependent and a stationary solution changes in time as a double power law

  7. Teaching Jump Rope to Children with Visual Impairments

    Science.gov (United States)

    Lieberman, Lauren J.; Schedlin, Haley; Pierce, Tristan

    2009-01-01

    This article presents strategies for jumping rope for children with visual impairments. Giving choices related to the types of rope and the use of mats is important. In addition, using appropriate instructional strategies and modifications will make jumping rope a skill that the children will enjoy and will lead to their involvement in other…

  8. Nuclear Regulator Knowledge Management in a Dynamic Nuclear Industry Environment

    International Nuclear Information System (INIS)

    Turner, J.

    2016-01-01

    Full text: The paper outlines the experiences to date in developing mature knowledge management within the UK’s nuclear regulatory body The Office for Nuclear Regulation (ONR). In 2010 concerns over the loss of knowledge due to the age profile within the organization instigated a review of knowledge management and the development of a knowledge management initiative. Initially activities focused on knowledge capture but in order to move to through life knowledge transfer, knowledge management was then aligned with organizational resilience initiatives. A review of progress highlighted the need to better engage the whole organization to achieve the desired level of maturity for knowledge management. Knowledge management activities now cover organizational culture and environment and all aspects of organizational resilience. Benefits to date include clear understanding of core knowledge requirements, better specifications for recruitment and training and the ability to deploy new regulatory approaches. During the period of implementing the knowledge management programme ONR undertook several organizational changes in moving to become a separate statutory body. The UK nuclear industry was in a period of increased activity including the planning of new nuclear reactors. This dynamic environment caused challenges for embedding knowledge management within ONR which are discussed in the paper. (author

  9. Fatigue influences lower extremity angular velocities during a single-leg drop vertical jump

    OpenAIRE

    Tamura, Akihiro; Akasaka, Kiyokazu; Otsudo, Takahiro; Shiozawa, Junya; Toda, Yuka; Yamada, Kaori

    2017-01-01

    [Purpose] Fatigue alters lower extremity landing strategies and decreases the ability to attenuate impact during landing. The purpose of this study was to reveal the influence of fatigue on dynamic alignment and joint angular velocities in the lower extremities during a single leg landing. [Subjects and Methods] The 34 female college students were randomly assigned to either the fatigue or control group. The fatigue group performed single-leg drop vertical jumps before, and after, the fatigue...

  10. Knee movement patterns of injured and uninjured adolescent basketball players when landing from a jump: a case-control study.

    Science.gov (United States)

    Louw, Quinette; Grimmer, Karen; Vaughan, Christopher

    2006-03-07

    A common knee injury mechanism sustained during basketball is landing badly from a jump. Landing is a complex task and requires good coordination, dynamic muscle control and flexibility. For adolescents whose coordination and motor control has not fully matured, landing badly from a jump can present a significant risk for injury. There is currently limited biomechanical information regarding the lower limb kinetics of adolescents when jumping, specifically regarding jump kinematics comparing injured with uninjured adolescents. This study reports on an investigation of biomechanical differences in landing patterns of uninjured and injured adolescent basketball players. A matched case-control study design was employed. Twenty-two basketball players aged 14-16 years participated in the study: eleven previously knee-injured and eleven uninjured players matched with cases for age, gender, weight, height and years of play, and playing for the same club. Six high-speed, three-dimensional Vicon 370 cameras (120 Hz), Vicon biomechanical software and SAS Version 8 software were employed to analyse landing patterns when subjects performed a "jump shot". Linear correlations determined functional relationships between the biomechanical performance of lower limb joints, and paired t-tests determined differences between the normalised peak biomechanical parameters. The average peak vertical ground reaction forces between the cases and controls were similar. The average peak ground reaction forces between the cases and controls were moderately correlated (r = -0.47). The control (uninjured) players had significantly greater hip and knee flexion angles and significantly greater eccentric activity on landing than the uninjured cases (p jump, at different ages and physical developmental stages, would assist clinicians and coaches to identify players with inappropriate knee performance comparable to their age or developmental stage.

  11. Validation of Infinite Impulse Response Multilayer Perceptron for Modelling Nuclear Dynamics

    Directory of Open Access Journals (Sweden)

    F. Cadini

    2008-01-01

    Full Text Available Artificial neural networks are powerful algorithms for constructing nonlinear empirical models from operational data. Their use is becoming increasingly popular in the complex modeling tasks required by diagnostic, safety, and control applications in complex technologies such as those employed in the nuclear industry. In this paper, the nonlinear modeling capabilities of an infinite impulse response multilayer perceptron (IIR-MLP for nuclear dynamics are considered in comparison to static modeling by a finite impulse response multilayer perceptron (FIR-MLP and a conventional static MLP. The comparison is made with respect to the nonlinear dynamics of a nuclear reactor as investigated by IIR-MLP in a previous paper. The superior performance of the locally recurrent scheme is demonstrated.

  12. Gender bias in jumping kinetics in National Collegiate Athletic Association Division I basketball players.

    Science.gov (United States)

    Walsh, Mark S; Waters, Jeff A; Böhm, Harald; Potteiger, Jeff A

    2007-08-01

    The purposes of this study are to examine gender differences in the contribution of the arm swing to jump height in men and women basketball players and to examine the role of upper-body strength in the contribution of arm swing to jump height. National Collegiate Athletic Association Division I basketball players (men n = 13, women n = 12) performed 4 jumping movements: squat jumps with hands on hips (SNA) and with arm swings (SA) and countermovement jumps with hands on hips and with arm swings (CMA). Differences were found between the jump heights of men and women. Use of the arms increased the jump height of men more than women. Compared with the SNA, the SA allowed an increase of 7 cm (23%) for men and 4 cm (17%) for women. The CMA allowed for an increase of 10 cm (30%) for men and 6 cm (24%) for women. General upper-body strength measures did not correlate strongly with the effect of arms on jumping, but peak power did. As in previous studies, peak power had a high correlation with jumping performance. These results show that the arm swing contributes significantly to jump performance in both men and women basketball players and that strength training for jumping should focus on power production and lifting exercises that are jump specific.

  13. Detection of Dew-Point by substantial Raman Band Frequency Jumps (A new Method)

    DEFF Research Database (Denmark)

    Hansen, Susanne Brunsgaard; Berg, Rolf W.; Stenby, Erling Halfdan

    Detection of Dew-Point by substantial Raman Band Frequency Jumps (A new Method). See poster at http://www.kemi.dtu.dk/~ajo/rolf/jumps.pdf......Detection of Dew-Point by substantial Raman Band Frequency Jumps (A new Method). See poster at http://www.kemi.dtu.dk/~ajo/rolf/jumps.pdf...

  14. Hydraulic jumps in ''viscous'' accretion disks

    International Nuclear Information System (INIS)

    Michel, F.C.

    1984-01-01

    We propose that the dissipative process necessary for rapid accretion disk evolution is driven by hydraulic jump waves on the surface of the disk. These waves are excited by the asymmetric nature of the central rotator (e.g., neutron star magnetosphere) and spiral out into the disk to form a pattern corotating with the central object. Disk matter in turn is slowed slightly at each encounter with the jump and spirals inward. In this process, the disk is heated by true turbulence produced in the jumps. Additional effects, such as a systematic misalignment of the magnetic moment of the neutron star until it is nearly orthogonal, and systematic distortion of the magnetosphere in such a way as to form an even more asymmetric central ''paddle wheel'' may enhance the interaction with inflowing matter. The application to X-ray sources corresponds to the ''slow'' solutions of Ghosh and Lamb, and therefore to rms magnetic fields of about 4 x 10 10 gauss. Analogous phenomena have been proposed to act in the formation of galactic spiral structure

  15. Robust L2-L∞ Filtering of Time-Delay Jump Systems with Respect to the Finite-Time Interval

    Directory of Open Access Journals (Sweden)

    Shuping He

    2011-01-01

    Full Text Available This paper studied the problem of stochastic finite-time boundedness and disturbance attenuation for a class of linear time-delayed systems with Markov jumping parameters. Sufficient conditions are provided to solve this problem. The L2-L∞ filters are, respectively, designed for time-delayed Markov jump linear systems with/without uncertain parameters such that the resulting filtering error dynamic system is stochastically finite-time bounded and has the finite-time interval disturbance attenuation γ for all admissible uncertainties, time delays, and unknown disturbances. By using stochastic Lyapunov-Krasovskii functional approach, it is shown that the filter designing problem is in terms of the solutions of a set of coupled linear matrix inequalities. Simulation examples are included to demonstrate the potential of the proposed results.

  16. New results from dissipative diabatic dynamics and nuclear elastoplasticity

    International Nuclear Information System (INIS)

    Noerenberg, W.; Technische Hochschule Darmstadt

    1986-10-01

    I present new results about dissipative diabatic dynamics and nuclear elastoplasticity, in particular on a self-consistent diabatic formulation, on first numerical calculations of dissipative diabatic dynamics in two collective degrees of freedom, on quasi-elastic recoil in central nucleus-nucleus collisions, on the diabatic hindrance of fusion reactions and on the diabatic emission of nucleons in central nucleus-nucleus collisions. (orig./HSI)

  17. Relationship between relative net vertical impulse and jump height in jump squats performed to various squat depths and with various loads.

    Science.gov (United States)

    McBride, Jeffrey M; Kirby, Tyler J; Haines, Tracie L; Skinner, Jared

    2010-12-01

    The purpose of the current investigation was to determine the relationship between relative net vertical impulse (net vertical impulse (VI)) and jump height in the jump squat (JS) going to different squat depths and utilizing various loads. Ten males with two years of jumping experience participated in this investigation (Age: 21.8 ± 1.9 y; Height: 176.9 ± 5.2 cm; Body Mass: 79.0 ± 7.1 kg, 1RM: 131.8 ± 29.5 kg, 1RM/BM: 1.66 ± 0.27). Subjects performed a series of static jumps (SJS) and countermovement jumps (CMJJS) with various loads (Body Mass, 20% of 1RM, 40% of 1RM) in a randomized fashion to a depth of 0.15, 0.30, 0.45, 0.60, and 0.75 m and a self-selected depth. During the concentric phase of each JS, peak force (PF), peak power (PP), jump height (JH) and relative VI were recorded and analyzed. Increasing squat depth corresponded to a decrease in PF and an increase in JH, relative VI for both SJS and CMJJS during all loads. Across all squat depths and loading conditions relative VI was statistically significantly correlated to JH in the SJS (r = .8956, P squat depths and loading conditions PF was statistically nonsignificantly correlated to JH in the SJS (r = -0.1010, P = .2095, power = 0.2401) and CMJJS (r = -0.0594, P = .4527, power = 0.1131). Across all squat depths and loading conditions peak power (PP) was significantly correlated with JH during both the SJS (r = .6605, P squat depths. Results indicate that relative VI and PP can be used to predict JS performance, regardless of squat depth and loading condition. However, relative VI may be the best predictor of JS performance with PF being the worst predictor of JS performance.

  18. The effect of increasing strength and approach velocity on triple jump performance.

    Science.gov (United States)

    Allen, Sam J; Yeadon, M R Fred; King, Mark A

    2016-12-08

    The triple jump is an athletic event comprising three phases in which the optimal phase ratio (the proportion of each phase to the total distance jumped) is unknown. This study used a planar whole body torque-driven computer simulation model of the ground contact parts of all three phases of the triple jump to investigate the effect of strength and approach velocity on optimal performance. The strength and approach velocity of the simulation model were each increased by up to 30% in 10% increments from baseline data collected from a national standard triple jumper. Increasing strength always resulted in an increased overall jump distance. Increasing approach velocity also typically resulted in an increased overall jump distance but there was a point past which increasing approach velocity without increasing strength did not lead to an increase in overall jump distance. Increasing both strength and approach velocity by 10%, 20%, and 30% led to roughly equivalent increases in overall jump distances. Distances ranged from 14.05m with baseline strength and approach velocity, up to 18.49m with 30% increases in both. Optimal phase ratios were either hop-dominated or balanced, and typically became more balanced when the strength of the model was increased by a greater percentage than its approach velocity. The range of triple jump distances that resulted from the optimisation process suggests that strength and approach velocity are of great importance for triple jump performance. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Path-integral isomorphic Hamiltonian for including nuclear quantum effects in non-adiabatic dynamics

    Science.gov (United States)

    Tao, Xuecheng; Shushkov, Philip; Miller, Thomas F.

    2018-03-01

    We describe a path-integral approach for including nuclear quantum effects in non-adiabatic chemical dynamics simulations. For a general physical system with multiple electronic energy levels, a corresponding isomorphic Hamiltonian is introduced such that Boltzmann sampling of the isomorphic Hamiltonian with classical nuclear degrees of freedom yields the exact quantum Boltzmann distribution for the original physical system. In the limit of a single electronic energy level, the isomorphic Hamiltonian reduces to the familiar cases of either ring polymer molecular dynamics (RPMD) or centroid molecular dynamics Hamiltonians, depending on the implementation. An advantage of the isomorphic Hamiltonian is that it can easily be combined with existing mixed quantum-classical dynamics methods, such as surface hopping or Ehrenfest dynamics, to enable the simulation of electronically non-adiabatic processes with nuclear quantum effects. We present numerical applications of the isomorphic Hamiltonian to model two- and three-level systems, with encouraging results that include improvement upon a previously reported combination of RPMD with surface hopping in the deep-tunneling regime.

  20. Neuromuscular adaptations to 4 weeks of intensive drop jump training in well-trained athletes

    DEFF Research Database (Denmark)

    Alkjær, Tine; Meyland, Jacob; Raffalt, Peter C

    2013-01-01

    This study examined the effects of 4 weeks of intensive drop jump training in well-trained athletes on jumping performance and underlying changes in biomechanics and neuromuscular adaptations. Nine well-trained athletes at high national competition level within sprinting and jumping disciplines...... participated in the study. The training was supervised and augmented feedback on performance was used to ensure maximal training intensity. The drop jumps were performed with minimal contact time and maximal jumping height. Assessment of performance during training showed effects of motor learning. Before...... and after the training intervention maximal isometric muscle strength, the biomechanics, muscle activity pattern of the lower extremities and the soleus H-reflex and V-wave during drop jumping were measured. Maximal jump height and performance index (PI) defined as jumping height divided by contact time...

  1. Optimising stochastic trajectories in exact quantum jump approaches of interacting systems

    International Nuclear Information System (INIS)

    Lacroix, D.

    2004-11-01

    The standard methods used to substitute the quantum dynamics of two interacting systems by a quantum jump approach based on the Stochastic Schroedinger Equation (SSE) are described. It turns out that for a given situation, there exists an infinite number of SSE reformulation. This fact is used to propose general strategies to optimise the stochastic paths in order to reduce the statistical fluctuations. In this procedure, called the 'adaptative noise method', a specific SSE is obtained for which the noise depends explicitly on both the initial state and on the properties of the interaction Hamiltonian. It is also shown that this method can be further improved by the introduction of a mean-field dynamics. The different optimisation procedures are illustrated quantitatively in the case of interacting spins. A significant reduction of the statistical fluctuations is obtained. Consequently, a much smaller number of trajectories is needed to accurately reproduce the exact dynamics as compared to the standard SSE method. (author)

  2. THE EFFECTS OF SINGLE VERSUS REPEATED PLYOMETRICS ON LANDING BIOMECHANICS AND JUMPING PERFORMANCE IN MEN

    Directory of Open Access Journals (Sweden)

    H. Makaruk

    2014-07-01

    Full Text Available The aim of this study was to examine the chronic effects of single and repeated jumps training on vertical landing force (VGRF and jump height in untrained men. The VGRF and jump height were compared after a six-week plyometric training programme containing single and repeated jumps, together with two additional parameters: landing time (LT and range of the knee flexion during landing (KF. Thirty-six untrained physical education students with a plyometric training background were randomly assigned to a single jump group (SJG, n =12, repeated jumps group (RJG, n =12, and control group (CON, n =12. The SJG performed only single jumps, the RJG executed repeated (consecutive jumps, whereas the CON did not perform any exercises at all. A countermovement jump (CMJ, repeated countermovement jumps (RCMJ, and a drop jump (DJ were tested before and after the training. Only the RJG showed a significantly reduced VGRF (p<0.05 in all tests. Both plyometric groups significantly improved (p<0.05 their jump height in all tests. The LT was significantly greater in the RJG, compared to the SJG, in all tests. The KF was also significantly (p<0.05 greater in the RJG than in the SJG for CMJ and RCMJ. The results suggest that repeated jumps are beneficial for simultaneous landing force reduction and jumping performance enhancement.

  3. A Jump-Diffusion Model with Stochastic Volatility and Durations

    DEFF Research Database (Denmark)

    Wei, Wei; Pelletier, Denis

    jumps in two ways: as exogenous sampling intervals, and through the interaction with volatility. We adopt a bivariate Ornstein-Ulenbeck process to model intraday volatility and conditional duration. We develop a MCMC algorithm for the inference on irregularly spaced multivariate processes with jumps...

  4. METRIC TESTS CHARACTERISTIC FOR ESTIMATING JUMPING FOR VOLLEYBALL PLAYERS

    Directory of Open Access Journals (Sweden)

    Toplica Stojanović

    2008-08-01

    Full Text Available With goal to establish metric tests characteristics for estimating jumping for volleyball players, it was organized a pilot research on pattern of 23 volleyball players from cadet team and 23 students from high-school. For needs of this research four tests are valid for estimation, jump in block with left and right leg and jump in spike with left and right leg. Each test has been taken three times, so that we could with test-re test method determine their reliability, and with factor analysis their validity. Data were processed by multivariate analysis (item analysis, factor analysis from statistical package „Statistica 6.0 for windows“. On the results of research and discussion we can say that the tests had high coefficient of reliability, as well as factor validity, and these tests can be used to estimate jumping for volleyball players.

  5. Aerial Rotation Effects on Vertical Jump Performance Among Highly Skilled Collegiate Soccer Players.

    Science.gov (United States)

    Barker, Leland A; Harry, John R; Dufek, Janet S; Mercer, John A

    2017-04-01

    Barker, LA, Harry, JR, Dufek, JS, and Mercer, JA. Aerial rotation effects on vertical jump performance among highly skilled collegiate soccer players. J Strength Cond Res 31(4): 932-938, 2017-In soccer matches, jumps involving rotations occur when attempting to head the ball for a shot or pass from set pieces, such as corner kicks, goal kicks, and lob passes. However, the 3-dimensional ground reaction forces used to perform rotational jumping tasks are currently unknown. Therefore, the purpose of this study was to compare bilateral, 3-dimensional, and ground reaction forces of a standard countermovement jump (CMJ0) with those of a countermovement jump with a 180° rotation (CMJ180) among Division-1 soccer players. Twenty-four participants from the soccer team of the University of Nevada performed 3 trials of CMJ0 and CMJ180. Dependent variables included jump height, downward and upward phase times, vertical (Fz) peak force and net impulse relative to mass, and medial-lateral and anterior-posterior force couple values. Statistical significance was set a priori at α = 0.05. CMJ180 reduced jump height, increased the anterior-posterior force couple in the downward and upward phases, and increased upward peak Fz (p ≤ 0.05). All other variables were not significantly different between groups (p > 0.05). However, we did recognize that downward peak Fz trended lower in the CMJ0 condition (p = 0.059), and upward net impulse trended higher in the CMJ0 condition (p = 0.071). It was concluded that jump height was reduced during the rotational jumping task, and rotation occurred primarily via AP ground reaction forces through the entire countermovement jump. Coaches and athletes may consider additional rotational jumping in their training programs to mediate performance decrements during rotational jump tasks.

  6. GENDER DIFFERENCES AND BIOMECHANICS IN THE 3000M STEEPLECHASE WATER JUMP

    Directory of Open Access Journals (Sweden)

    Kassi R. Andersen

    2008-06-01

    Full Text Available Since 1996, women have been competing in the 3000m steeplechase race internationally. Whenever women and men both compete in similar events with different equipment (the barriers are lower for women consideration should be given as to how techniques should be coached differently. This study investigated the differences in water-jump technique between men and women after accounting for differences in running speed and which techniques led to maintenance of race pace through the water-jump. Eighteen men and 18 women were filmed at two major track and field meets during the 2004 season. Peak Motus 8.2 was used to digitize all seven jumps from each athlete. Various characteristics of water-jump technique were measured or calculated and compared using two multiple linear regressions (one for men and one for women to determine which characteristics led to maintaining race pace speeds through the water jump obstacle. Repeated measures ANOVA was used to determine any differences between men and women in the measured characteristics of technique.Velocity through the jump divided by race pace was predicted very well by approach velocity and landing distance for men and women. Other characteristics of the movement were non-significant. Differences between genders were found in: approach velocity, take-off distance, landing distance, push-off angle, velocity through jump, and exit velocity. Men and women steeplechasers must focus on approach velocity and landing distance to complete the water-jump close to their race pace. Coaches need to consider many characteristics of technique that differ between men and women

  7. Dynamic nuclear polarization of irradiated target materials

    International Nuclear Information System (INIS)

    Seely, M.L.

    1982-01-01

    Polarized nucleon targets used in high energy physics experiments usually employ the method of dynamic nuclear polarization (DNP) to polarize the protons or deuterons in an alcohol. DNP requires the presence of paramagnetic centers, which are customarily provided by a chemical dopant. These chemically doped targets have a relatively low polarizable nucleon content and suffer from loss of polarization when subjected to high doses of ionizing radiation. If the paramagnetic centers formed when the target is irradiated can be used in the DNP process, it becomes possible to produce targets using materials which have a relatively high polarizable nucleon content, but which are not easily doped by chemical means. Furthermore, the polarization of such targets may be much more radiation resistant. Dynamic nuclear polarization in ammonia, deuterated ammonia, ammonium hydroxide, methylamine, borane ammonia, butonal, ethane and lithium borohydride has been studied. These studies were conducted at the Stanford Linear Accelerator Center using the Yale-SLAC polarized target system. Results indicate that the use of ammonia and deuterated ammonia as polarized target materials would make significant increases in polarized target performance possible

  8. Measurement of the K X-ray absorption jump factors and jump ratios of Gd, Dy, Ho and Er by attenuation of a Compton peak

    International Nuclear Information System (INIS)

    Budak, G.; Polat, R.

    2004-01-01

    The X-ray absorption jump factor and jump ratio of Gd, Dy, Ho and Er were measured with a Si(Li) detector by attenuation, with Gd, Dy, Ho and Er foil, a Compton peak produced by the scattering of the 59.5 keV Am-241 Gamma rays. Al was chosen as secondary exciter. The experimental absorption jump factors and jump ratios are compared with the theoretical estimates of WinXcom (Radiat. Phys. Chem. 60 (2001) 23), McMaster (Compilation of X-ray cross sections UCRL-50174, 1969; Sec. II. Rev. I), Broll (X-ray Spectrom 15 (1986) 271), Hubbel and Seltzer (NISTIR (1995) 5632) and Budak (Radiat. Meas. accepted for publication). The present results constitute the first measurement for this combination of energy and elements, and good agreement is obtained between experiment and theory

  9. Instability in nuclear dynamics: loss of collectivity and multifragmentation

    International Nuclear Information System (INIS)

    Colonna, M.; Di Toro, M.; Guarnera, A.; Latora, V.; Smerzi, A.

    1995-01-01

    Two limiting cases of nuclear dynamics are analysed: the disappearing of giant collective motions in hot nuclei and the nuclear disassembly in violent heavy ion collisions. For collective vibration build on excited states we get a dramatic increase of the widths of hot Giant Dipole Resonances (GDR). As a consequence of the competition with particle evaporation we get a sharp quenching of giant photon emission. Pre-equilibrium effects on the GDR formation are also accounted for. At high temperature and low density the collective motions can become unstable leading to multifragmentation events in heavy ion collisions. We present a general procedure to identify instability regions and to get informations on the instability point. Some hints towards fully dynamical picture of multi-fragmentation processes are finally suggested. (author)

  10. Pion scattering and nuclear dynamics

    International Nuclear Information System (INIS)

    Johnson, M.B.

    1988-01-01

    A phenomenological optical-model analysis of pion elastic scattering and single- and double-charge-exchange scattering to isobaric-analog states is reviewed. Interpretation of the optical-model parameters is briefly discussed, and several applications and extensions are considered. The applications include the study of various nuclear properties, including neutron deformation and surface-fluctuation contributions to the density. One promising extension for the near future would be to develop a microscopic approach based on powerful momentum-space methods brought to existence over the last decade. In this, the lowest-order optical potential as well as specific higher-order pieces would be worked out in terms of microscopic pion-nucleon and delta-nucleon interactions that can be determined within modern meson-theoretical frameworks. A second extension, of a more phenomenological nature, would use coupled-channel methods and shell-model wave functions to study dynamical nuclear correlations in pion double charge exchange. 35 refs., 11 figs., 1 tab

  11. Keeping Your Eye on the Rail: Gaze Behaviour of Horse Riders Approaching a Jump

    Science.gov (United States)

    Hall, Carol; Varley, Ian; Kay, Rachel; Crundall, David

    2014-01-01

    The gaze behaviour of riders during their approach to a jump was investigated using a mobile eye tracking device (ASL Mobile Eye). The timing, frequency and duration of fixations on the jump and the percentage of time when their point of gaze (POG) was located elsewhere were assessed. Fixations were identified when the POG remained on the jump for 100 ms or longer. The jumping skill of experienced but non-elite riders (n = 10) was assessed by means of a questionnaire. Their gaze behaviour was recorded as they completed a course of three identical jumps five times. The speed and timing of the approach was calculated. Gaze behaviour throughout the overall approach and during the last five strides before take-off was assessed following frame-by-frame analyses. Differences in relation to both round and jump number were found. Significantly longer was spent fixated on the jump during round 2, both during the overall approach and during the last five strides (pJump 1 was fixated on significantly earlier and more frequently than jump 2 or 3 (pjump 3 than with jump 1 (p = 0.01) but there was no difference in errors made between rounds. Although no significant correlations between gaze behaviour and skill scores were found, the riders who scored higher for jumping skill tended to fixate on the jump earlier (p = 0.07), when the horse was further from the jump (p = 0.09) and their first fixation on the jump was of a longer duration (p = 0.06). Trials with elite riders are now needed to further identify sport-specific visual skills and their relationship with performance. Visual training should be included in preparation for equestrian sports participation, the positive impact of which has been clearly demonstrated in other sports. PMID:24846055

  12. A multiplicity jump trigger using silicon planes

    International Nuclear Information System (INIS)

    Alexopoulos, T.; Erwin, A.R.

    1993-01-01

    Since silicon tracking planes are already present in a B decay experiment, it is an attractive idea to use these as part of a multiplicity jump detector. Two average B decays would produce a multiplicity jump of around 10 in the final state. Such a trigger has been tried for a fixed target Charm experiment with disappointing success. The failure was attributed to the difficulty in adequately controlling the gains of a large number of microstrip amplifies

  13. Semiclassical approaches to nuclear dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Magner, A. G., E-mail: magner@kinr.kiev.ua; Gorpinchenko, D. V. [Institute for Nuclear Research NASU (Ukraine); Bartel, J. [Université de Strasbourg, Institut Pluridisciplinaire Hubert Curien, CNRS/IN2P3 (France)

    2017-01-15

    The extended Gutzwiller trajectory approach is presented for the semiclassical description of nuclear collective dynamics, in line with the main topics of the fruitful activity of V.G. Solovjov. Within the Fermi-liquid droplet model, the leptodermous effective surface approximation was applied to calculations of energies, sum rules, and transition densities for the neutron–proton asymmetry of the isovector giant-dipole resonance and found to be in good agreement with the experimental data. By using the Strutinsky shell correction method, the semiclassical collective transport coefficients, such as nuclear inertia, friction, stiffness, and moments of inertia, can be derived beyond the quantum perturbation approximation of the response function theory and the cranking model. The averaged particle-number dependences of the low-lying collective vibrational states are described in good agreement with the basic experimental data, mainly due to the enhancement of the collective inertia as compared to its irrotational flow value. Shell components of the moment of inertia are derived in terms of the periodic-orbit free-energy shell corrections. A good agreement between the semiclassical extended Thomas–Fermi moments of inertia with shell corrections and the quantum results is obtained for different nuclear deformations and particle numbers. Shell effects are shown to be exponentially dampted out with increasing temperature in all the transport coefficients.

  14. Semiclassical approaches to nuclear dynamics

    International Nuclear Information System (INIS)

    Magner, A. G.; Gorpinchenko, D. V.; Bartel, J.

    2017-01-01

    The extended Gutzwiller trajectory approach is presented for the semiclassical description of nuclear collective dynamics, in line with the main topics of the fruitful activity of V.G. Solovjov. Within the Fermi-liquid droplet model, the leptodermous effective surface approximation was applied to calculations of energies, sum rules, and transition densities for the neutron–proton asymmetry of the isovector giant-dipole resonance and found to be in good agreement with the experimental data. By using the Strutinsky shell correction method, the semiclassical collective transport coefficients, such as nuclear inertia, friction, stiffness, and moments of inertia, can be derived beyond the quantum perturbation approximation of the response function theory and the cranking model. The averaged particle-number dependences of the low-lying collective vibrational states are described in good agreement with the basic experimental data, mainly due to the enhancement of the collective inertia as compared to its irrotational flow value. Shell components of the moment of inertia are derived in terms of the periodic-orbit free-energy shell corrections. A good agreement between the semiclassical extended Thomas–Fermi moments of inertia with shell corrections and the quantum results is obtained for different nuclear deformations and particle numbers. Shell effects are shown to be exponentially dampted out with increasing temperature in all the transport coefficients.

  15. PERBANDINGAN JUMP SHOOT DENGAN AWALAN DAN TANPA AWALAN TERHADAP PENINGKATAN KETEPATAN SHOOTING DALAM PERMAINAN BOLABASKET

    OpenAIRE

    I Gusti Ngurah Agung Cahya Prananta; N. Adiputra; I P G Adiatmika

    2015-01-01

    The effectiveness of  jump-shoot technique step jump shoot and still jump shoot in a game is still questionable,  because many different assumptions arise. One opinion stated that step jump shoot was more effective and the other stated that and still jump shoot was more efective. Therefore it is necessary to do research on the analysis of the results of step jump shoot and and still jump shoot to improve the accuracy of shooting in a basketball. The experimental research had been conducted on...

  16. Asymptotic inference for jump diffusions with state-dependent intensity

    NARCIS (Netherlands)

    Becheri, Gaia; Drost, Feico; Werker, Bas

    2016-01-01

    We establish the local asymptotic normality property for a class of ergodic parametric jump-diffusion processes with state-dependent intensity and known volatility function sampled at high frequency. We prove that the inference problem about the drift and jump parameters is adaptive with respect to

  17. Variability of Jump Kinetics Related to Training Load in Elite Female Basketball

    OpenAIRE

    Jan Legg; David B. Pyne; Stuart Semple; Nick Ball

    2017-01-01

    The purpose of this study was to quantify changes in jump performance and variability in elite female basketballers. Junior and senior female representative basketball players (n = 10) aged 18 ± 2 years participated in this study. Countermovement jump (CMJ) data was collected with a Gymaware™ optical encoder at pre-, mid-, and post-season time points across 10 weeks. Jump performance was maintained across the course of the full season (from pre to post). Concentric peak velocity, jump height,...

  18. Transition-energy crossing with a γt-jump

    International Nuclear Information System (INIS)

    Wei, Jie; Peggs, S.

    1994-01-01

    Expressions for the minimum size and speed of a transition-energy (γ t -) jump needed to diminish the chromatic non-linear effect, the self-field mismatch, and the microwave instabilities in the Relativistic Heavy Ion Collider (RHIC) are obtained. A γ t -jump of 0.8 units is needed to be performed within 60 ms in order to achieve a ''clean'' transition crossing

  19. CONNECTION OF FUNCTIONAL ABILITIES WITH JUMPING AND THROWING ATHLETIC DISCIPLINES

    Directory of Open Access Journals (Sweden)

    Igor Stanojević

    2014-06-01

    Full Text Available The aim of this study was to determine the connection between functional abilities with results of jumping and throwing athletic disciplines with athletes. The sample was taken from a population of elementary school students from Prokuplje region, 13 and 14 old, included in regular physical education classes. The sample consisted of 200 male athletes involved in the training process in sports clubs at least three times a week in addition to physical education classes. For assessment of functional abilities six functional tests were used: resting heart rate, Cooper test, heart rate in the first minute after Cooper test, heart rate in the second minute after Cooper test, systolic arterial blood pressure, diastolic arterial blood pressure. For assessment of jumping and throwing athletic disciplines four tests were used: long jump, high jump, shot put and javelin. Data analysis was performed with canonical correlation and regression analysis. The results showed a statistically significant correlation between functional abilities with all of tests in jumping and throwing athletic disciplines.

  20. Non-cooperative stochastic differential game theory of generalized Markov jump linear systems

    CERN Document Server

    Zhang, Cheng-ke; Zhou, Hai-ying; Bin, Ning

    2017-01-01

    This book systematically studies the stochastic non-cooperative differential game theory of generalized linear Markov jump systems and its application in the field of finance and insurance. The book is an in-depth research book of the continuous time and discrete time linear quadratic stochastic differential game, in order to establish a relatively complete framework of dynamic non-cooperative differential game theory. It uses the method of dynamic programming principle and Riccati equation, and derives it into all kinds of existence conditions and calculating method of the equilibrium strategies of dynamic non-cooperative differential game. Based on the game theory method, this book studies the corresponding robust control problem, especially the existence condition and design method of the optimal robust control strategy. The book discusses the theoretical results and its applications in the risk control, option pricing, and the optimal investment problem in the field of finance and insurance, enriching the...

  1. Long multiplication by instruction sequences with backward jump instructions

    NARCIS (Netherlands)

    Bergstra, J.A.; Middelburg, C.A.

    2013-01-01

    For each function on bit strings, its restriction to bit strings of any given length can be computed by a finite instruction sequence that contains only instructions to set and get the content of Boolean registers, forward jump instructions, and a termination instruction. Backward jump instructions

  2. Kinematic structure at the early flight position in ski jumping.

    Science.gov (United States)

    Vodičar, Janez; Coh, Milan; Jošt, Bojan

    2012-12-01

    The purpose of our research was to establish the variability of correlation between the length of the jumps and selected multi-item kinematic variables (n=9) in the early flight phase technique of ski jumping. This study was conducted on a sample of elite Slovenian ski jumpers (N=29) who participated in the experiment on a jumping hill in Hinterzarten, Germany (HS95m) on the 20(th) of August, 2008. The highest and most significant correlations (p=0.01) with the length of the ski jump were found in the multi-item variable height of flying, which was also expressed with the highest level of stability of the explained total variance (TV) on the first factor (TV=69.13%). The most important characteristic of the aerodynamic aspect of early flight was the variable angle between the body chord and the horizontal axis with significantly high correlations (pjump. Only two more variables, the angle between the upper body and the horizontal plane (TV=53.69%), and the angle between left ski and left leg (TV=50.13%), had an explained common variance on the first factor greater than 50% of total variance. The results indicated that some kinematic parameters of ski jumping early flight technique were more important for success considering the length of the jump.

  3. Discharge regimes and density jumps in a helicon plasma source

    International Nuclear Information System (INIS)

    Shinohara, S.; Yonekura, K.

    1999-01-01

    A high density plasma source using a helicon wave is becoming very attractive in plasma processing and confinement devices. In the previous work, the characteristics of this wave and plasma performance with diameters of 5 and 45 cm have been studied, and the helicon wave was only observed after the density jump. Recently, density jumps from the low to high electron densities with a level of 10 13 cm -3 were investigated by changing the antenna wavenumber spectrum, and the obtained results were compared with the inductively coupled plasma (ICP). However, the mechanisms of density jumps and plasma production are still open questions to be answered. Here, the authors try to investigate the discharge regimes and density jumps in a helicon plasma source, by changing the antenna wavenumber spectrum. For he case of the parallel current directions in the antenna, where the low wavenumber spectrum part is large, the density jump was observed with the low RF input power of P in < 300 W regardless of the magnetic field. On the other hand, for the case of the opposite directions, where the low wavenumber spectrum part is small, the threshold power to obtain the jump became high with the increase in the magnetic field. This can be understood from the dispersion relation of the helicon wave. The wave structures and the dispersion relations in the discharge modes will be also shown

  4. Generating Human-Like Velocity-Adapted Jumping Gait from sEMG Signals for Bionic Leg’s Control

    Directory of Open Access Journals (Sweden)

    Weiwei Yu

    2017-01-01

    Full Text Available In the case of dynamic motion such as jumping, an important fact in sEMG (surface Electromyogram signal based control on exoskeletons, myoelectric prostheses, and rehabilitation gait is that multichannel sEMG signals contain mass data and vary greatly with time, which makes it difficult to generate compliant gait. Inspired by the fact that muscle synergies leading to dimensionality reduction may simplify motor control and learning, this paper proposes a new approach to generate flexible gait based on muscle synergies extracted from sEMG signal. Two questions were discussed and solved, the first one concerning whether the same set of muscle synergies can explain the different phases of hopping movement with various velocities. The second one is about how to generate self-adapted gait with muscle synergies while alleviating model sensitivity to sEMG transient changes. From the experimental results, the proposed method shows good performance both in accuracy and in robustness for producing velocity-adapted vertical jumping gait. The method discussed in this paper provides a valuable reference for the sEMG-based control of bionic robot leg to generate human-like dynamic gait.

  5. H2-control and the separation principle for discrete-time jump systems with the Markov chain in a general state space

    Science.gov (United States)

    Figueiredo, Danilo Zucolli; Costa, Oswaldo Luiz do Valle

    2017-10-01

    This paper deals with the H2 optimal control problem of discrete-time Markov jump linear systems (MJLS) considering the case in which the Markov chain takes values in a general Borel space ?. It is assumed that the controller has access only to an output variable and to the jump parameter. The goal, in this case, is to design a dynamic Markov jump controller such that the H2-norm of the closed-loop system is minimised. It is shown that the H2-norm can be written as the sum of two H2-norms, such that one of them does not depend on the control, and the other one is obtained from the optimal filter for an infinite-horizon filtering problem. This result can be seen as a separation principle for MJLS with Markov chain in a Borel space ? considering the infinite time horizon case.

  6. Quantum-capacity-approaching codes for the detected-jump channel

    International Nuclear Information System (INIS)

    Grassl, Markus; Wei Zhaohui; Ji Zhengfeng; Zeng Bei

    2010-01-01

    The quantum-channel capacity gives the ultimate limit for the rate at which quantum data can be reliably transmitted through a noisy quantum channel. Degradable quantum channels are among the few channels whose quantum capacities are known. Given the quantum capacity of a degradable channel, it remains challenging to find a practical coding scheme which approaches capacity. Here we discuss code designs for the detected-jump channel, a degradable channel with practical relevance describing the physics of spontaneous decay of atoms with detected photon emission. We show that this channel can be used to simulate a binary classical channel with both erasures and bit flips. The capacity of the simulated classical channel gives a lower bound on the quantum capacity of the detected-jump channel. When the jump probability is small, it almost equals the quantum capacity. Hence using a classical capacity-approaching code for the simulated classical channel yields a quantum code which approaches the quantum capacity of the detected-jump channel.

  7. Jump diffusion models and the evolution of financial prices

    International Nuclear Information System (INIS)

    Figueiredo, Annibal; Castro, Marcio T. de; Silva, Sergio da; Gleria, Iram

    2011-01-01

    We analyze a stochastic model to describe the evolution of financial prices. We consider the stochastic term as a sum of the Wiener noise and a jump process. We point to the effects of the jumps on the return time evolution, a central concern of the econophysics literature. The presence of jumps suggests that the process can be described by an infinitely divisible characteristic function belonging to the De Finetti class. We then extend the De Finetti functions to a generalized nonlinear model and show the model to be capable of explaining return behavior. -- Highlights: → We analyze a stochastic model to describe the evolution of financial prices. → The stochastic term is considered as a sum of the Wiener noise and a jump process. → The process can be described by an infinitely divisible characteristic function belonging to the De Finetti class. → We extend the De Finetti functions to a generalized nonlinear model.

  8. Investigating the Relationship between Sprint and Jump Performances with Velocity and Power Parameters during Propulsive Phase of the Loaded-Squat Jump Exercise

    Science.gov (United States)

    Can, Ibrahim

    2018-01-01

    The purpose of this study was to investigate the relationship between sprint and jump performance with velocity parameters in the loaded-squat jump exercise (SQ[subscript Loaded]). In accordance with this purpose, a total of 13 athletes competing in martial sports have participated in this study voluntarily. In this study, sprint tests, vertical…

  9. The effects of dance music jump rope exercise on pulmonary function and body mass index after music jump rope exercise in overweight adults in 20's.

    Science.gov (United States)

    Seo, KyoChul

    2017-08-01

    [Purpose] The purpose of this study was to examine the effect of a dance music jump rope exercise on changes Pulmonary Function and body mass index in female overweight subjects in their 20's. [Subjects and Methods] The subjects were randomly assigned to the dance music jump rope exercise group and the stationary cycle exercise group. All subjects have conducted the exercises three times a week for four weeks. Pulmonary function was evaluated using a spirometer, and body mass index was evaluated using an InBody 3.0. [Results] The findings of this study showed significant improvements in the voluntary capacity and body mass index of the experimental groups. Vital capacity was higher in the music jump rope exercise group than the stationary cycle exercise group, and body mass index was lower in the music jump rope exercise group than the stationary cycle exercise group. [Conclusion] This study showed that the dance music jump rope exercise can be used to improve vital capacity and body mass index.

  10. Dynamic assessment for life extension of nuclear power plants (NPPs) using system dynamics (SD) method

    International Nuclear Information System (INIS)

    Woo, Tae Ho

    2012-01-01

    It has been proposed to extend the life of nuclear power plants (NPPs) for the economic purpose. Especially, the primary systems in reactor are considered in the thermohydraulic and neutronic aspect, which is related to the safety system. The electric power and the lifespan of components are expressed as economic situation. In addition, political considerations are given by the presidential change and the nuclear non-proliferation characteristics. The dynamical investigation using system dynamics (SD) shows the effective time for the life extension of the NPPs by Monte-Carlo simulations. This non-linear algorithm is incorporated with the feedback loop of the event sequences. The expected event is related to the past event, which affects to the dynamical simulations of lifetime in the NPPs. In the conclusions, the safety guarantee as well as the economic profit in the re-use of long term operated power plants is presented, which is mentioned as the transient time between 2019 and 2021 in this paper. (orig.)

  11. Dynamic assessment for life extension of nuclear power plants (NPPs) using system dynamics (SD) method

    Energy Technology Data Exchange (ETDEWEB)

    Woo, Tae Ho [Seoul National Univ. (Korea, Republic of). Dept. of Nuclear Engineering

    2012-12-15

    It has been proposed to extend the life of nuclear power plants (NPPs) for the economic purpose. Especially, the primary systems in reactor are considered in the thermohydraulic and neutronic aspect, which is related to the safety system. The electric power and the lifespan of components are expressed as economic situation. In addition, political considerations are given by the presidential change and the nuclear non-proliferation characteristics. The dynamical investigation using system dynamics (SD) shows the effective time for the life extension of the NPPs by Monte-Carlo simulations. This non-linear algorithm is incorporated with the feedback loop of the event sequences. The expected event is related to the past event, which affects to the dynamical simulations of lifetime in the NPPs. In the conclusions, the safety guarantee as well as the economic profit in the re-use of long term operated power plants is presented, which is mentioned as the transient time between 2019 and 2021 in this paper. (orig.)

  12. Recent developments in the theory of nuclear dynamics

    International Nuclear Information System (INIS)

    Randrup, J.

    1977-01-01

    A brief account is given of the dynamical properties of nuclei, with particular emphasis on the mechanism of nuclear dissipation in the extreme one-body limit. The approach is based on the application of linear response techniques to the independent particle model of the nucleus

  13. The acute effects of stretching with vibration on dynamic flexibility in young female gymnasts.

    Science.gov (United States)

    Johnson, Aaron W; Warcup, Caisa N; Seeley, Matthew K; Eggett, Dennis; Feland, Jeffery B

    2018-01-10

    While stretching with vibration has been shown to improve static flexibility; the effect of stretching with vibration on dynamic flexibility is not well known. The purpose of this study was to examine the effectiveness of stretching with vibration on acute dynamic flexibility and jump height in novice and advanced competitive female gymnasts during a split jump. Female gymnast (n=27, age: 11.5 ± 1.7 years, Junior Olympic levels 5-10) participated in this cross-over study. Dynamic flexibility during gymnastic split jumps were video recorded and analyzed with Dartfish software. All participants completed both randomized stretching protocols with either the vibration platform turned on (VIB) (frequency of 30 Hz and 2 mm amplitude) or off (NoVIB) separated by 48 h. Participants performed 4 sets of three stretches on the vibration platform. Each stretch was held for 30 s with 5 s rest for a total of 7 min of stretch. Split jump flexibility decreased significantly from pre to post measurement in both VIB (-5.8°±5.9°) (p<0.001) and NoVIB (-2.6°±6.1°) (p=0.041) conditions (adjusted for gymnast level). This effect was greatest in lower skill level gymnasts (p=0.003), while the highest skill level gymnasts showed no significant decrease in the split jump (p=0.105). Jump height was not significantly different between conditions (p=0.892) or within groups (p=0.880). An acute session of static stretching with or without vibration immediately before performance does not alter jump height. Stretching with vibration immediately prior to gymnastics competition decreases split jump flexibility in lower level gymnasts more than upper level gymnasts.

  14. CLIMATIC JUMP IN THE POLAR REGION (I)

    OpenAIRE

    ヤマモト, リョウザブロウ; イワシマ, タツヤ; ホシアイ, マコト; Ryozaburo, YAMAMOTO; Tatsuya, IWASHIMA; Makoto, HOSHIAI

    1987-01-01

    From the analysis of the climatic elements over Japan, we can detect the "climatic jumps" around the years 1920 and 1950,which is a new concept in the climatic diagnosis proposed by the present authors (R. YAMAMOTO et al. : J. Meteorol. Soc. Jpn., 63,1157,1985,64,273,1986). Taking account of several results which show the simultaneous occurrence of the climatic jumps of the surface air temperature, precipitation, etc., in the other regions by the other investigators, we may infer the "climati...

  15. Potentiation: Effect of Ballistic and Heavy Exercise on Vertical Jump Performance.

    Science.gov (United States)

    Hester, Garrett M; Pope, Zachary K; Sellers, John H; Thiele, Ryan M; DeFreitas, Jason M

    2017-03-01

    Hester, GM, Pope, ZK, Sellers, JH, Thiele, RM, and DeFreitas, JM. Potentiation: Effect of ballistic and heavy exercise on vertical jump performance. J Strength Cond Res 31(3): 660-666, 2017-The purpose of this study was to compare the acute effects of heavy and ballistic conditioning protocols on vertical jump performance in resistance-trained men. Fourteen resistance-trained men (mean ± SD: age = 22 ± 2.1 years, body mass = 86.29 ± 9.95 kg, and height = 175.39 ± 9.34 cm) with an average relative full squat of 2.02 ± 0.28 times their body mass participated in this study. In randomized, counterbalanced order, subjects performed two countermovement vertical jumps before and 1, 3, 5, and 10 minutes after either performing 10 rapid jump squats or 5 heavy back squats. The back squat protocol consisted of 5 repetitions at 80% one repetition maximum (1RM), whereas the jump squat protocol consisted of 10 repetitions at 20% 1RM. Peak jump height (in centimeters) using a jump mat, along with power output (in Watts) and velocity (in meters per second) through a linear transducer, was recorded for each time interval. There was no significant condition × time interaction for any of the dependent variables (p = 0.066-0.127). In addition, there was no main effect for condition for any of the dependent variables (p = 0.457-0.899). Neither the ballistic nor heavy protocol used in this study enhanced vertical jump performance at any recovery interval. The use of these protocols in resistance-trained men to produce postactivation potentiation is not recommended.

  16. Acute effects of heavy-load squats on consecutive squat jump performance.

    Science.gov (United States)

    Weber, Kurt R; Brown, Lee E; Coburn, Jared W; Zinder, Steven M

    2008-05-01

    Postactivation potentiation (PAP) and complex training have generated interest within the strength and conditioning community in recent years, but much of the research to date has produced confounding results. The purpose of this study was to observe the acute effects of a heavy-load back squat [85% 1 repetition maximum (1RM)] condition on consecutive squat jump performance. Twelve in-season Division I male track-and-field athletes participated in two randomized testing conditions: a five-repetition back squat at 85% 1RM (BS) and a five-repetition squat jump (SJ). The BS condition consisted of seven consecutive squat jumps (BS-PRE), followed by five repetitions of the BS at 85% 1RM, followed by another set of seven consecutive squat jumps (BS-POST). The SJ condition was exactly the same as the BS condition except that five consecutive SJs replaced the five BSs, with 3 minutes' rest between each set. BS-PRE, BS-POST, SJ-PRE, and SJ-POST were analyzed and compared for mean and peak jump height, as well as mean and peak ground reaction force (GRF). The BS condition's mean and peak jump height and peak GRF increased 5.8% +/- 4.8%, 4.7% +/- 4.8%, and 4.6% +/- 7.4%, respectively, whereas the SJ condition's mean and peak jump height and peak GRF decreased 2.7% +/- 5.0%, 4.0% +/- 4.9%, and 1.3% +/- 7.5%, respectively. The results indicate that performing a heavy-load back squat before a set of consecutive SJs may enhance acute performance in average and peak jump height, as well as peak GRF.

  17. Jump frequency may contribute to risk of jumper's knee: a study of interindividual and sex differences in a total of 11,943 jumps video recorded during training and matches in young elite volleyball players.

    Science.gov (United States)

    Bahr, Martin A; Bahr, Roald

    2014-09-01

    Male sex, total training volume (number of hours per week) and match exposure (number of sets played per week) are risk factors for jumper's knee among young elite volleyball players. However, it is not known whether jump frequency differs among players on the same squad. To examine interindividual and sex differences in jump frequency during training and matches in young elite volleyball players. Observational study. Norwegian elite volleyball boarding school training programme. Student-athletes (26 boys and 18 girls, 16-18 years). Individual jump counts were recorded based on visual analysis of video recordings obtained from 1 week of volleyball training (9 training sessions for boys and 10 for girls, 14.1 h and 17.8 h of training, respectively) and 10 matches (5.9 h for boys (16 sets) and 7.7 h for girls (21 sets). A total of 11,943 jumps were recorded, 4138 during matches and 7805 during training. As training attendance and jump frequency varied substantially between players, the total exposure in training ranged from 50 to 666 jumps/week among boys and from 11 to 251 jumps/week among girls. On average, this corresponded to 35.7 jumps/h for boys and 13.7 jumps/h for girls (Student t test, p=0.002). Total jump exposure during matches ranged between 1 and 339 jumps among boys and between 0 and 379 jumps among girls, corresponding to an average jump frequency of 62.2 jumps/h for boys and 41.9 jumps/h for girls (Student t test, pvolleyball players. Total jump volume may represent a more important risk factor for jumper's knee than total training volume, warranting further research attention. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  18. THE EFFECTS OF SIXWEEKS PROGRAM OF PLYOMETRIC TRENING ON VOLLEYBALL JUMPING

    Directory of Open Access Journals (Sweden)

    Vladan Milić

    2008-08-01

    Full Text Available With goal to examine effects of plyometric training program on development of jumping strength for volleyball players, it was organized an experimental research on pattern of 23 volleyball players from cadet team and 23 students from high-school. Guided by general principles for plyometric training, individual plans for training were made. For estimating the effects of sports training on development of jumping, eight variables were used. For needs of this research four tests are valid for estimation, jump in block with left and right leg and jump in spike with left and right leg. Experiment has been realized in the second part on conditional preparations, and lasted for six weeks with two or three trainings per week. Control group had physical education lessons at their schools twice a week. Data were processed by in variant, multivariate analysis and analysis of covariance. On the results of research and discussion we can say that the model of training we used for development of jumping as a basic factor in experimental group brought statistically bigger difference in improving jumping that it brought in control group.

  19. Validation of the VERT wearable jump monitor device in elite youth volleyball players

    Science.gov (United States)

    Borges, Thiago O.; Moreira, Alexandre; Bacchi, Renato; Finotti1, Ronaldo L.; Ramos, Mayara; Lopes, Charles R.

    2017-01-01

    This technical report aims to determine the validity and the accuracy of the VERT Wearable Jump Monitor. The participants of this study were all experienced volleyball players from the U18 category from the Brazilian National team. To assess jump performance, the VERT scores were compared to the VERTEC (jump and reach device). Each athlete performed 3 attack and 3 block jumps in a random, counterbalanced order, and the average score was registered. In the attack jumps, the VERTEC and VERT mean ± SD scores were 70.9±8.2 and 76.3±7.5 cm, respectively, and the typical error of the estimate (TEE) as a coefficient of variation (CV) was 7.8% (90% CL 7.0 to 8.9%). VERTEC and VERT devices presented a very large Pearson’s correlation for attack jumps (r=0.75; 90% CL 0.68 to 0.81). In addition, the mean±SD block jumps were 53.7±6.1 and 58.5±5.7 cm for the VERTEC and VERT, respectively and the TEE as a CV was 7.9% (90% CL 7.1 to 8.9%). Pearson’s correlation coefficient was very large for block jumps (r=0.75; 90% CL 0.67 to 0.81). The VERT device was found to be a very practical tool to quantify jump performance in volleyball players. PMID:29158616

  20. Improved Maximum Strength, Vertical Jump and Sprint Performance after 8 Weeks of Jump Squat Training with Individualized Loads

    Directory of Open Access Journals (Sweden)

    Vanderka Marián, Longová Katarína, Olasz Dávid, Krčmár Matúš, Walker Simon

    2016-09-01

    Full Text Available The purpose of the study was to determine the effects of 8 weeks of jump squat training on isometric half squat maximal force production (Fmax and rate of force development over 100ms (RFD100, countermovement jump (CMJ and squat jump (SJ height, and 50 m sprint time in moderately trained men. Sixty eight subjects (~21 years, ~180 cm, ~75 kg were divided into experimental (EXP; n = 36 and control (CON, n = 32 groups. Tests were completed pre-, mid- and post-training. EXP performed jump squat training 3 times per week using loads that allowed all repetitions to be performed with ≥90% of maximum average power output (13 sessions with 4 sets of 8 repetitions and 13 sessions with 8 sets of 4 repetitions. Subjects were given real-time feedback for every repetition during the training sessions. Significant improvements in Fmax from pre- to mid- (Δ ~14%, p<0.001, and from mid- to post-training (Δ ~4%, p < 0.001 in EXP were observed. In CON significantly enhanced Fmax from pre- to mid-training (Δ ~3.5%, p < 0.05 was recorded, but no other significant changes were observed in any other test. In RFD100 significant improvements from pre- to mid-training (Δ ~27%, p < 0.001, as well as from mid- to post-training (Δ ~17%, p < 0.01 were observed. CMJ and SJ height were significantly enhanced from pre- to mid-training (Δ ~10%, ~15%, respectively, p < 0.001 but no further changes occurred from mid- to post-training. Significant improvements in 50 m sprint time from pre- to mid-training (Δ -1%, p < 0.05, and from mid- to post-training (Δ -1.9%, p < 0.001 in EXP were observed. Furthermore, percent changes in EXP were greater than changes in CON during training. It appears that using jump squats with loads that allow repetitions to be performed ≥90% of maximum average power output can simultaneously improve several different athletic performance tasks in the short-term.

  1. A valid and reliable method to measure jump-specific training and competition load in elite volleyball players.

    Science.gov (United States)

    Skazalski, C; Whiteley, R; Hansen, C; Bahr, R

    2018-05-01

    Use of a commercially available wearable device to monitor jump load with elite volleyball players has become common practice. The purpose of this study was to evaluate the validity and reliability of this device, the Vert, to count jumps and measure jump height with professional volleyball players. Jump count accuracy was determined by comparing jumps recorded by the device to jumps observed through systematic video analysis of three practice sessions and two league matches performed by a men's professional volleyball team. Jumps performed by 14 players were each coded for time and jump type and individually matched to device recorded jumps. Jump height validity of the device was examined against reference standards as participants performed countermovement jumps on a force plate and volleyball-specific jumps with a Vertec. The Vert device accurately counted 99.3% of the 3637 jumps performed during practice and match play. The device showed excellent jump height interdevice reliability for two devices placed in the same pouch during volleyball jumps (r = .99, 95% CI 0.98-0.99). The device had a minimum detectable change (MDC) of 9.7 cm and overestimated jump height by an average of 5.5 cm (95% CI 4.5-6.5) across all volleyball jumps. The Vert device demonstrates excellent accuracy counting volleyball-specific jumps during training and competition. While the device is not recommended to measure maximal jumping ability when precision is needed, it provides an acceptable measure of on-court jump height that can be used to monitor athlete jump load. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. Detected-jump-error-correcting quantum codes, quantum error designs, and quantum computation

    International Nuclear Information System (INIS)

    Alber, G.; Mussinger, M.; Beth, Th.; Charnes, Ch.; Delgado, A.; Grassl, M.

    2003-01-01

    The recently introduced detected-jump-correcting quantum codes are capable of stabilizing qubit systems against spontaneous decay processes arising from couplings to statistically independent reservoirs. These embedded quantum codes exploit classical information about which qubit has emitted spontaneously and correspond to an active error-correcting code embedded in a passive error-correcting code. The construction of a family of one-detected-jump-error-correcting quantum codes is shown and the optimal redundancy, encoding, and recovery as well as general properties of detected-jump-error-correcting quantum codes are discussed. By the use of design theory, multiple-jump-error-correcting quantum codes can be constructed. The performance of one-jump-error-correcting quantum codes under nonideal conditions is studied numerically by simulating a quantum memory and Grover's algorithm

  3. Nuclear magnetic resonance and electrical conductivity measurements of diffusion and disorder in LiBr

    International Nuclear Information System (INIS)

    Hamann, H.; Reininghaus, J.; Richtering, H.

    1980-01-01

    Electrical conductivity and nuclear magnetic relaxation rates were measured with pure and doped LiBr between 400 K and the melting point (824 K). Prevalent intrinsic disorder was observed down to 470 K. The degree of thermal disorder is 5 X 10 -7 at 470 K and 5 X 10 -3 at the melting point. From the relaxation rates of 7 Li, which are caused by Li-diffusion and nuclear dipole interaction, mean jump frequencies of the cations are derived. Conductivities calculated from these frequencies for a jump process via neighbouring cation vacancies are in perfect agreement with directly measured conductivities. From relaxation rates of 81 Br with MgBr 2 -doped crystals jump frequencies of vacancies were obtained which are again in good agreement with those derived from the conductivity data. From motional narrowing of the 81 Br absorption line the jump frequency of the anions is obtained, which is much smaller than for the cations. Since this motional narrowing is not influenced by any doping, it is concluded that anion transport mainly occurs via pairs of cation and anion vacancies. (Auth.)

  4. Developing an Enhanced Lightning Jump Algorithm for Operational Use

    Science.gov (United States)

    Schultz, Christopher J.; Petersen, Walter A.; Carey, Lawrence D.

    2009-01-01

    Overall Goals: 1. Build on the lightning jump framework set through previous studies. 2. Understand what typically occurs in nonsevere convection with respect to increases in lightning. 3. Ultimately develop a lightning jump algorithm for use on the Geostationary Lightning Mapper (GLM). 4 Lightning jump algorithm configurations were developed (2(sigma), 3(sigma), Threshold 10 and Threshold 8). 5 algorithms were tested on a population of 47 nonsevere and 38 severe thunderstorms. Results indicate that the 2(sigma) algorithm performed best over the entire thunderstorm sample set with a POD of 87%, a far of 35%, a CSI of 59% and a HSS of 75%.

  5. Dynamics of nuclear fuel assemblies in vertical flow channels

    International Nuclear Information System (INIS)

    Mason, V.A.

    1988-01-01

    DYNMOD is a computer program designed to predict the dynamic behaviour of nuclear fuel assemblies in axial flow. The calculations performed by DYNMOD and the input data required by the program are described in this report. Examples of DYNMOD usage and a brief assessment of the accuracy of the dynamic model are also presented. It is intended that the report will be used as a reference manual by users of DYNMOD

  6. Exponential Synchronization for Stochastic Neural Networks with Mixed Time Delays and Markovian Jump Parameters via Sampled Data

    Directory of Open Access Journals (Sweden)

    Yingwei Li

    2014-01-01

    Full Text Available The exponential synchronization issue for stochastic neural networks (SNNs with mixed time delays and Markovian jump parameters using sampled-data controller is investigated. Based on a novel Lyapunov-Krasovskii functional, stochastic analysis theory, and linear matrix inequality (LMI approach, we derived some novel sufficient conditions that guarantee that the master systems exponentially synchronize with the slave systems. The design method of the desired sampled-data controller is also proposed. To reflect the most dynamical behaviors of the system, both Markovian jump parameters and stochastic disturbance are considered, where stochastic disturbances are given in the form of a Brownian motion. The results obtained in this paper are a little conservative comparing the previous results in the literature. Finally, two numerical examples are given to illustrate the effectiveness of the proposed methods.

  7. Optimisation of phase ratio in the triple jump using computer simulation.

    Science.gov (United States)

    Allen, Sam J; King, Mark A; Yeadon, M R Fred

    2016-04-01

    The triple jump is an athletic event comprising three phases in which the optimal proportion of each phase to the total distance jumped, termed the phase ratio, is unknown. This study used a whole-body torque-driven computer simulation model of all three phases of the triple jump to investigate optimal technique. The technique of the simulation model was optimised by varying torque generator activation parameters using a Genetic Algorithm in order to maximise total jump distance, resulting in a hop-dominated technique (35.7%:30.8%:33.6%) and a distance of 14.05m. Optimisations were then run with penalties forcing the model to adopt hop and jump phases of 33%, 34%, 35%, 36%, and 37% of the optimised distance, resulting in total distances of: 13.79m, 13.87m, 13.95m, 14.05m, and 14.02m; and 14.01m, 14.02m, 13.97m, 13.84m, and 13.67m respectively. These results indicate that in this subject-specific case there is a plateau in optimum technique encompassing balanced and hop-dominated techniques, but that a jump-dominated technique is associated with a decrease in performance. Hop-dominated techniques are associated with higher forces than jump-dominated techniques; therefore optimal phase ratio may be related to a combination of strength and approach velocity. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Mean-field theory of nuclear structure and dynamics

    International Nuclear Information System (INIS)

    Negele, J.W.

    1982-01-01

    The physical and theoretical foundations are presented for the mean-field theory of nuclear structure and dynamics. Salient features of the many-body theory of stationary states are reviewed to motivate the time-dependent mean-field approximation. The time-dependent Hartree-Fock approximation and its limitations are discussed and general theoretical formulations are presented which yield time-dependent mean-field equations in lowest approximation and provide suitable frameworks for overcoming various conceptual and practical limitations of the mean-field theory. Particular emphasis is placed on recent developments utilizing functional integral techniques to obtain a quantum mean-field theory applicable to quantized eigenstates, spontaneous fission, the nuclear partition function, and scattering problems. Applications to a number of simple, idealized systems are presented to verify the approximations for solvable problems and to elucidate the essential features of mean-field dynamics. Finally, calculations utilizing moderately realistic geometries and interactions are reviewed which address heavy-ion collisions, fusion, strongly damped collisions, and fission

  9. Impact of the focus of attention on vertical jump performance of junior basketball players

    Directory of Open Access Journals (Sweden)

    Manojlović Vladimir

    2013-01-01

    Full Text Available The aim of the research was to determine the impact of the focus of attention on vertical jump performance expressed through a jump height. Thirteen basketball players (body mass = 73,4 kg, height = 186,58 cm, age = 15.12 ± 0.61 y volunteered as participants. All the subject represented a club which participated in the Croatian cadets 1. league in season 2008/09, and were tested during the season. The subjects performed two experiments. In both experiments, they performed 15 repetitions of countermovement jump, whereas in one of the experiments, during the performance of the jumps they were listening to an audio record of spectators. For both type of jumps, the subjects were instructed to stay in the air as long as possible during a single jump (external focus of attention. To determine the differences between jumps, a paired-sample t-test was used with a level of statistical significance set to p ≤ 0.05. Comparison for jump height between both type of jumps revealed no statistically significant difference, although the presented difference should not be denied considering a real match conditions.

  10. Bayesian inference for Markov jump processes with informative observations.

    Science.gov (United States)

    Golightly, Andrew; Wilkinson, Darren J

    2015-04-01

    In this paper we consider the problem of parameter inference for Markov jump process (MJP) representations of stochastic kinetic models. Since transition probabilities are intractable for most processes of interest yet forward simulation is straightforward, Bayesian inference typically proceeds through computationally intensive methods such as (particle) MCMC. Such methods ostensibly require the ability to simulate trajectories from the conditioned jump process. When observations are highly informative, use of the forward simulator is likely to be inefficient and may even preclude an exact (simulation based) analysis. We therefore propose three methods for improving the efficiency of simulating conditioned jump processes. A conditioned hazard is derived based on an approximation to the jump process, and used to generate end-point conditioned trajectories for use inside an importance sampling algorithm. We also adapt a recently proposed sequential Monte Carlo scheme to our problem. Essentially, trajectories are reweighted at a set of intermediate time points, with more weight assigned to trajectories that are consistent with the next observation. We consider two implementations of this approach, based on two continuous approximations of the MJP. We compare these constructs for a simple tractable jump process before using them to perform inference for a Lotka-Volterra system. The best performing construct is used to infer the parameters governing a simple model of motility regulation in Bacillus subtilis.

  11. Specific Adaptations in Performance and Muscle Architecture After Weighted Jump-Squat vs. Body Mass Squat Jump Training in Recreational Soccer Players.

    Science.gov (United States)

    Coratella, Giuseppe; Beato, Marco; Milanese, Chiara; Longo, Stefano; Limonta, Eloisa; Rampichini, Susanna; Cè, Emiliano; Bisconti, Angela V; Schena, Federico; Esposito, Fabio

    2018-04-01

    Coratella, G, Beato, M, Milanese, C, Longo, S, Limonta, E, Rampichini, S, Cè, E, Bisconti, AV, Schena, F, and Esposito, F. Specific adaptations in performance and muscle architecture after weighted jump-squat vs. body mass squat jump training in recreational soccer players. J Strength Cond Res 32(4): 921-929, 2018-The aim of the present study was to compare the effects of weighted jump-squat training (WJST) vs. body mass squat jump training (BMSJT) on quadriceps' muscle architecture, lower-limb lean-mass (LM) and muscle strength, performance in change of direction (COD), and sprint and jump in recreational soccer players. Forty-eight healthy soccer players participated in an offseason randomized controlled trial. Before and after an 8-week training intervention, vastus lateralis pennation angle, fascicle length, muscle thickness, LM, squat 1RM, quadriceps and hamstrings isokinetic peak torque, agility T-test, 10-and 30-m sprints, and squat-jump (SJ) were measured. Although similar increases were observed in muscle thickness, fascicle length increased more in WJST (Effect size [ES] = 1.18, 0.82-1.54) than in BMSJT (ES = 0.54, 0.40-0.68), and pennation angle increased only in BMSJT (ES = 1.03, 0.78-1.29). Greater increases in LM were observed in WJST (ES = 0.44, 0.29-0.59) than in BMSJT (ES = 0.21, 0.07-0.37). The agility T-test (ES = 2.95, 2.72-3.18), 10-m (ES = 0.52, 0.22-0.82), and 30-m sprints (ES = 0.52, 0.23-0.81) improved only in WJST, whereas SJ improved in BMSJT (ES = 0.89, 0.43-1.35) more than in WJST (ES = 0.30, 0.03-0.58). Similar increases in squat 1RM and peak torque occurred in both groups. The greater inertia accumulated within the landing phase in WJST vs. BMSJT has increased the eccentric workload, leading to specific eccentric-like adaptations in muscle architecture. The selective improvements in COD in WJST may be related to the increased braking ability generated by the enhanced eccentric workload.

  12. The effects of temperature and body mass on jump performance of the locust Locusta migratoria.

    Directory of Open Access Journals (Sweden)

    Edward P Snelling

    Full Text Available Locusts jump by rapidly releasing energy from cuticular springs built into the hind femur that deform when the femur muscle contracts. This study is the first to examine the effect of temperature on jump energy at each life stage of any orthopteran. Ballistics and high-speed cinematography were used to quantify the energy, distance, and take-off angle of the jump at 15, 25, and 35°C in the locust Locusta migratoria. Allometric analysis across the five juvenile stages at 35°C reveals that jump distance (D; m scales with body mass (M; g according to the power equation D = 0.35M (0.17±0.08 (95% CI, jump take-off angle (A; degrees scales as A = 52.5M (0.00±0.06, and jump energy (E; mJ per jump scales as E = 1.91M (1.14±0.09. Temperature has no significant effect on the exponent of these relationships, and only a modest effect on the elevation, with an overall Q10 of 1.08 for jump distance and 1.09 for jump energy. On average, adults jump 87% farther and with 74% more energy than predicted based on juvenile scaling data. The positive allometric scaling of jump distance and jump energy across the juvenile life stages is likely facilitated by the concomitant relative increase in the total length (L f+t; mm of the femur and tibia of the hind leg, L f+t = 34.9M (0.37±0.02. The weak temperature-dependence of jump performance can be traced to the maximum tension of the hind femur muscle and the energy storage capacity of the femur's cuticular springs. The disproportionately greater jump energy and jump distance of adults is associated with relatively longer (12% legs and a relatively larger (11% femur muscle cross-sectional area, which could allow more strain loading into the femur's cuticular springs. Augmented jump performance in volant adult locusts achieves the take-off velocity required to initiate flight.

  13. Jump in current at the gap voltage in a superconducting junction

    International Nuclear Information System (INIS)

    Coombes, J.M.; Carbotte, J.P.

    1986-01-01

    For many materials not previously considered, we have calculated the jump, at the gap voltage, in the quasiparticle current of a tunnel junction. An empirical relationship between the jump and the effective electron-phonon coupling λ-μ/sup */ previously established is confirmed. Further, a new and equally as accurate correlation is found with the strong coupling index T/sub c//ω/sub ln/, where T/sub c/ is the critical temperature and ω/sub ln/ a specific characteristic phonon energy. A simple formula for the jump which includes a strong-coupling correction is derived and found to fit the observed correlation well. Finally, we study the effect on the jump of unusual values of Coulomb pseudopotential μ/sup */. Also a δ-function electron-phonon spectral density α 2 F(ω) is used to help in the understanding of the range of values that is possible for the jump when α 2 F(ω) is not restricted to realistic shapes

  14. Study of density jump in helicon-wave induced H2 plasma

    International Nuclear Information System (INIS)

    Jiang Fan; Cheng Xinlu; Xiong Zhenwei; Wu Weidong; Wang Yuying; Gao Yingxue; Dai Yang

    2012-01-01

    Hydrogen plasmas electron density and electron energy distribution function EEDF were studied with Langmuir probe. Two jumps were observed in the variation of the electron density with the radio frequency power. The relative intensity ratio of hydrogen plasmas spectrum line H α , H β and H γ validated this phenomenon. Two density jumps illuminated the transition of discharge mode,which labeled as capacitive, inductive and helicon-wave mode. In this work, the density jumps are explained from two sides, one is the interaction between electrons and hydrogen molecules, the other is Nagoya type III (N-type) antenna-plasma coupling. With the increase of radiofrequency power, the interaction between electron and hydrogen molecule has been enhanced which causes the electron density jumps. The antenna couples well to plasmas when transverse field E y is maximum, and the wave vector of k z locates at π/l a or 3π/l a , corresponding to the first and second density jump. (authors)

  15. Biomechanical aspects of new techniques in alpine skiing and ski-jumping.

    Science.gov (United States)

    Müller, Erich; Schwameder, Hermann

    2003-09-01

    There have been considerable changes in equipment design and movement patterns in the past few years both in alpine skiing and ski-jumping. These developments have been matched by methods of analysing movements in field conditions. They have yielded new insights into the skills of these specific winter sports. Analytical techniques have included electromyography, kinetic and kinematic methods and computer simulations. Our aim here is to review biomechanical research in alpine skiing and ski-jumping. We present in detail the techniques currently used in alpine skiing (carving technique) and ski-jumping (V-technique), primarily using data from the authors' own research. Finally, we present a summary of the most important results in biomechanical research both in alpine skiing and ski-jumping. This includes an analysis of specific conditions in alpine skiing (type of turn, terrain, snow, speed, etc.) and the effects of equipment, materials and individual-specific abilities on performance, safety and joint loading in ski-jumping.

  16. Factors that influence ground reaction force profiles during counter movement jumping.

    Science.gov (United States)

    Eagles, Alexander N; Sayers, Mark G; Lovell, Dale I

    2017-05-01

    The purpose of this study was to examine how hip, knee and ankle kinetics and kinematics influence effective impulse production during countermovement jumps. Eighteen semi-professional soccer players (22.8±2.2 years) volunteered to participate in the study. Participants completed three maximal countermovement jumps on two force platforms (1000 Hz) that were linked to a nine camera infrared motion capture system (500 Hz). Kinetic and kinematic data revealed jumpers who fail to achieve uniform ground reaction force curves that result in optimal impulse production during their jump always display hip adduction and or hip internal rotation during the concentric phase of the countermovement jump. The variation of hip adduction and or internal rotation likely represents failed joint transition during the concentric phase of the countermovement jump and appears to account for a non-uniform force trace seen in these jumpers. The findings suggest rehabilitation and conditioning exercises for injury prevention and performance may benefit from targeting frontal and transverse plane movement.

  17. Inference for the jump part of quadratic variation of Itô semimartingales

    DEFF Research Database (Denmark)

    Veraart, Almut

    Recent research has focused on modelling asset prices by Itô semimartingales. In such a modelling framework, the quadratic variation consists of a continuous and a jump component. This paper is about inference on the jump part of the quadratic variation, which can be estimated by the difference...... of realised variance and realised multipower variation. The main contribution of this paper is twofold. First, it provides a bivariate asymptotic limit theory for realised variance and realised multipower variation in the presence of jumps. Second, this paper presents new, consistent estimators for the jump...

  18. Inference for the jump part of quadratic variation of Itô semimartingales

    DEFF Research Database (Denmark)

    Veraart, Almut

    2010-01-01

    Recent research has focused on modeling asset prices by Itô semimartingales. In such a modeling framework, the quadratic variation consists of a continuous and a jump component. This paper is about inference on the jump part of the quadratic variation, which can be estimated by the difference...... of realized variance and realized multipower variation. The main contribution of this paper is twofold. First, it provides a bivariate asymptotic limit theory for realized variance and realized multipower variation in the presence of jumps. Second, this paper presents new, consistent estimators for the jump...

  19. Impact of Androstenone on Leash Pulling and Jumping Up in Dogs

    Directory of Open Access Journals (Sweden)

    Glenna Pirner

    2016-05-01

    Full Text Available Dogs are relinquished to shelters due to behavioral problems, such as leash pulling and jumping up. Interomones are chemical cues produced by one species that elicit a response in a different species. We reported earlier that androstenone, a swine sex pheromone, acts as an interomone to reduce barking in dogs. Here we report two models using 10 dogs/study: a dog jumping and a dog walking model. For the leash-pulling model, each time the dog pulled on the leash the walker either did nothing (NOT, or sprayed the dog with water (H2O, androstenone + water (ANH, androstenone 0.1 µg/mL (AND1, or androstenone 1.0 µg/mL (AND2. The number of pulls during each walk was counted. For the jumping up model, each time the dog jumped the researcher did nothing (NOT, or sprayed the dog with H2O, ANH, AND1, or AND2. The number of jumps and the time between jumps were recorded. In Study 1, ANH, AND1, and AND2 each reduced leash pulling more than NOT and H2O (p< 0.01. In Study 2, all treatments were effective in reducing jumping up behavior. Androstenone reduced jumping up, but not beyond that elicited by a spray of water alone. We conclude that androstenone in multiple delivery vehicles reduced leash pulling. The burst of air intended as a disruptive stimulus in the correction sprays may be too harsh for more sensitive dogs, and as such use of these sprays is cautioned in these animals. For other dogs, this interomone can be used to stop some behavior immediately or as a part of a training program to reduce undesirable behavior.

  20. The kinematics of swimming and relocation jumps in copepod nauplii

    DEFF Research Database (Denmark)

    Borg, Marc Andersen; Bruno, Eleonora; Kiørboe, Thomas

    2012-01-01

    Copepod nauplii move in a world dominated by viscosity. Their swimming-by-jumping propulsion mode, with alternating power and recovery strokes of three pairs of cephalic appendages, is fundamentally different from the way other microplankters move. Protozoans move using cilia or flagella, and cop......Copepod nauplii move in a world dominated by viscosity. Their swimming-by-jumping propulsion mode, with alternating power and recovery strokes of three pairs of cephalic appendages, is fundamentally different from the way other microplankters move. Protozoans move using cilia or flagella...... of pelagic copepods: Temora longicornis, Oithona davisae and Acartia tonsa. The kinematics of jumping is similar between the three species. Jumps result in a very erratic translation with no phase of passive coasting and the nauplii move backwards during recovery strokes. This is due to poorly synchronized...... recovery strokes and a low beat frequency relative to the coasting time scale. For the same reason, the propulsion efficiency of the nauplii is low. Given the universality of the nauplius body plan, it is surprising that they seem to be inefficient when jumping, which is different from the very efficient...