WorldWideScience

Sample records for jug bay wetlands

  1. Changes in Landscape Pattern of Wetland around Hangzhou Bay

    Science.gov (United States)

    Lin, Wenpeng; Li, Yuan; Xu, Dan; Zeng, Ying

    2018-04-01

    Hangzhou Bay is an important estuarial coastal wetland, which offers a large number of land and ecological resources. It plays a significant role in the sustainable development of resources, environment and economy. In this paper, based on the remote sensing images in 1996, 2005 and 2013, we extracted the coastal wetland data and analyzed the wetland landscape pattern of the Hangzhou Bay in the past 20 years. The results show that: (1) the area of coastal wetland is heading downwards in the recent decades. Paddy field and the coastal wetland diminish greatly. (2) the single dynamic degree of wetland of the Hangzhou Bay displays that paddy fields and coastal wetlands are shrinking, but lakes, reservoirs and ponds are constantly expanding. (3) the wetland landscape pattern index shows that total patch area of the coastal wetland and paddy fields have gradually diminished. The Shannon diversity index, the Shannon evenness index as well as the landscape separation index of the coastal wetlands in the Hangzhou Bay increase steadily. The landscape pattern in the study area has shown a trend of high fragmentation, dominance decreases, but some dominant landscape still exist in this region. (4) Urbanization and natural factors lead to the reduction of wetland area. Besides the pressure of population is a major threat to the wetland. The study will provide scientific basis for long-term planning for this region.

  2. Microbial diversity in restored wetlands of San Francisco Bay

    Energy Technology Data Exchange (ETDEWEB)

    Theroux, Susanna [Lawrence Berkeley National Lab. (LBNL), Walnut Creek, CA (United States). Dept. of Energy Joint Genome Inst.; Hartman, Wyatt [Lawrence Berkeley National Lab. (LBNL), Walnut Creek, CA (United States). Dept. of Energy Joint Genome Inst.; He, Shaomei [Lawrence Berkeley National Lab. (LBNL), Walnut Creek, CA (United States). Dept. of Energy Joint Genome Inst.; Univ. of Wisconsin, Madison, WI (United States); Tringe, Susannah [Lawrence Berkeley National Lab. (LBNL), Walnut Creek, CA (United States). Dept. of Energy Joint Genome Inst.

    2013-12-09

    Wetland ecosystems may serve as either a source or a sink for atmospheric carbon and greenhouse gases. This delicate carbon balance is influenced by the activity of belowground microbial communities that return carbon dioxide and methane to the atmosphere. Wetland restoration efforts in the San Francisco Bay-Delta region may help to reverse land subsidence and possibly increase carbon storage in soils. However, the effects of wetland restoration on microbial communities, which mediate soil metabolic activity and carbon cycling, are poorly studied. In an effort to better understand the underlying factors which shape the balance of carbon flux in wetland soils, we targeted the microbial communities in a suite of restored and historic wetlands in the San Francisco Bay-Delta region. Using DNA and RNA sequencing, coupled with greenhouse gas monitoring, we profiled the diversity and metabolic potential of the wetland soil microbial communities along biogeochemical and wetland age gradients. Our results show relationships among geochemical gradients, availability of electron acceptors, and microbial community composition. Our study provides the first genomic glimpse into microbial populations in natural and restored wetlands of the San Francisco Bay-Delta region and provides a valuable benchmark for future studies.

  3. Resilience of coastal wetlands to extreme hydrologicevents in Apalachicola Bay

    Science.gov (United States)

    Medeiros, S. C.; Singh, A.; Tahsin, S.

    2017-12-01

    Extreme hydrologic events such as hurricanes and droughts continuously threaten wetlands which provide key ecosystem services in coastal areas. The recovery time for vegetation after impact fromthese extreme events can be highly variable depending on the hazard type and intensity. Apalachicola Bay in Florida is home to a rich variety of saltwater and freshwater wetlands and is subject to a wide rangeof hydrologic hazards. Using spatiotemporal changes in Landsat-based empirical vegetation indices, we investigate the impact of hurricane and drought on both freshwater and saltwater wetlands from year 2000to 2015 in Apalachicola Bay. Our results indicate that saltwater wetlands are more resilient than freshwater wetlands and suggest that in response to hurricanes, the coastal wetlands took almost a year to recover,while recovery following a drought period was observed after only a month.

  4. Microbial diversity and carbon cycling in San Francisco Bay wetlands

    Energy Technology Data Exchange (ETDEWEB)

    Theroux, Susanna [Lawrence Berkeley National Lab. (LBNL), Walnut Creek, CA (United States). Dept. of Energy Joint Genome Inst.; Hartman, Wyatt [Lawrence Berkeley National Lab. (LBNL), Walnut Creek, CA (United States). Dept. of Energy Joint Genome Inst.; He, Shaomei [Lawrence Berkeley National Lab. (LBNL), Walnut Creek, CA (United States). Dept. of Energy Joint Genome Inst.; Univ. of Wisconsin, Madison, WI (United States); Tringe, Susannah [Lawrence Berkeley National Lab. (LBNL), Walnut Creek, CA (United States). Dept. of Energy Joint Genome Inst.

    2014-03-21

    Wetland restoration efforts in San Francisco Bay aim to rebuild habitat for endangered species and provide an effective carbon storage solution, reversing land subsidence caused by a century of industrial and agricultural development. However, the benefits of carbon sequestration may be negated by increased methane production in newly constructed wetlands, making these wetlands net greenhouse gas (GHG) sources to the atmosphere. We investigated the effects of wetland restoration on below-ground microbial communities responsible for GHG cycling in a suite of historic and restored wetlands in SF Bay. Using DNA and RNA sequencing, coupled with real-time GHG monitoring, we profiled the diversity and metabolic potential of wetland soil microbial communities. The wetland soils harbor diverse communities of bacteria and archaea whose membership varies with sampling location, proximity to plant roots and sampling depth. Our results also highlight the dramatic differences in GHG production between historic and restored wetlands and allow us to link microbial community composition and GHG cycling with key environmental variables including salinity, soil carbon and plant species.

  5. Gulf of Mexico Integrated Science - Tampa Bay Study - Characterization of Tidal Wetlands

    Science.gov (United States)

    McIvor, Carole

    2005-01-01

    Tidal wetlands in Tampa Bay, Florida, consist of mangrove forests and salt marshes. Wetlands buffer storm surges, provide fish and wildlife habitat, and enhance water quality through the removal of water-borne nutrients and contaminants. Substantial areas of both mangroves and salt marshes have been lost to agricultural, residential, and industrial development in this urban estuary. Wetlands researchers are characterizing the biological components of tidal wetlands and examining the physical factors such as salinity, tidal flushing, and sediment deposition that control the composition of tidal wetland habitats. Wetlands restoration is a priority of resource managers in Tampa Bay. Baseline studies such as these are needed for successful restoration planning and evaluation.

  6. Bat response to carolina bays and wetland restoration in the southeastern U.S. Coastal Plain.

    Energy Technology Data Exchange (ETDEWEB)

    Menzel, Jennifer M.; Michael A. Menzel; John C. Kilgo; W. Mark Ford; ; John W. Edwards.

    2005-09-01

    Abstract: Bat activity in the southeastern United States is concentrated over riparian areas and wetland habitats. The restoration and creation of wetlands for mitigation purposes is becoming common in the Southeast. Understanding the effects of these restoration efforts on wetland flora and fauna is thus becoming increasingly important. Because bats (Order: Chiroptera) consist of many species that are of conservation concern and are commonly associated with wetland and riparian habitats in the Southeast (making them a good general indicator for the condition of wetland habitats), we monitored bat activity over restored and reference Carolina bays surrounded by pine savanna (Pinus spp.) or mixed pine-hardwood habitat types at the Savannah River Site in South Carolina. In order to determine how wetland restoration efforts affected the bat community, we monitored bat activity above drained Carolina bays pre- and post-restoration. Our results indicate that bat activity was greater over reference (i.e., undrained) than drained bays prior to the restorative efforts. One year following combined hydrologic and vegetation treatment, however, bat activity was generally greater over restored than reference bays. Bat activity was also greater over both reference and restored bays than in random, forested interior locations. We found significantly more bat activity after restoration than prior to restoration for all but one species in the treatment bays, suggesting that Carolina bay restoration can have almost immediate positive impacts on bat activity.

  7. South Bay Salt Pond Tidal Wetland Restoration Phase II Planning

    Science.gov (United States)

    Information about the SFBWQP South Bay Salt Pond Tidal Wetland Restoration Phase II Planning project, part of an EPA competitive grant program to improve SF Bay water quality focused on restoring impaired waters and enhancing aquatic re

  8. Characterization of wetland, forest, and agricultural ecosystems in Belize with airborne radar (AIRSAR)

    Science.gov (United States)

    Pope, Kevin O.; Rey-Benayas, Jose Maria; Paris, Jack F.

    1992-01-01

    The Shuttle Imaging Radar-C/X-SAR (Synthetic Aperture Radar) Experiment includes the study of wetland dynamics in the seasonal tropics. In preparation for these wetland studies, airborne P, L, and C band radar (AIRSAR) data of Belize, Guatemala, and Mexico acquired by NASA and JPL in March 1990 were analyzed. The first phase of our study focuses on AIRSAR data from the Gallon Jug test site in northwestern Belize, for which ground data were also collected during the three days prior to the overflight. One of the main objectives of the Gallon Jug study is to develop a method for characterizing wetland vegetation types and their flooding status with multifrequency polarimetric radar data.

  9. The landscape pattern characteristics of coastal wetlands in Jiaozhou Bay under the impact of human activities.

    Science.gov (United States)

    Gu, Dongqi; Zhang, Yuanzhi; Fu, Jun; Zhang, Xuliang

    2007-01-01

    In this study, we interpreted coastal wetland types from an ASTER satellite image in 2002, and then compared the results with the land-use status of coastal wetlands in 1952 to determine the wetland loss and degradation around Jiaozhou Bay. Seven types of wetland landscape were classified, namely: shallow open water, inter-tidal flats, estuarine water, brackish marshes, salt ponds, fishery ponds and ports. Several landscape pattern indices were analysed: the results indicate that the coastal wetlands have been seriously degraded. More and more natural wetlands have been transformed into artificial wetlands, which covered about 33.7% of the total wetlands in 2002. In addition, we used a defined model to assess the impacts of human activities on coastal wetlands. The results obtained show that the coastal wetlands of Jiaozhou Bay have suffered severe human disturbance. Effective coastal management and control is therefore needed to solve the issues of the coastal wetland loss and degradation existing in this area.

  10. Flora characteristics of Chenier Wetland in Bohai Bay and biogeographic relations with adjacent wetlands

    Science.gov (United States)

    Zhao, Yanyun; Lu, Zhaohua; Liu, Jingtao; Hu, Shugang

    2017-12-01

    A key step towards the restoration of heavily disturbed fragile coastal wetland ecosystems is determining the composition and characteristics of the plant communities involved. This study determined and characterized the community of higher plants in the Chenier wetland of Bohai Bay using a combination of field surveys, quadrat approaches, and multivariate statistical analyses. This community was then compared to other adjacent wetlands (Tianjin, Qinhuangdao, Laizhouwan, Jiaozhouwan, and Yellow River Delta wetland) located near the Huanghai and Bohai Seas using principal coordinate analysis (PCoA). Results showed a total of 56 higher plant species belonging to 52 genera from 20 families in Chenier wetland, the majority of which were dicotyledons. Single-species families were predominant, while larger families, including Gramineae, Compositae, Leguminosae, and Chenopodiaceae contained a higher number of species (each⩾6 species). Cosmopolitan species were also dominant with apparent intrazonality. Abundance (number of species) of temperate species was twice that of tropical taxa. Species number of perennial herbs, such as Gramineae and Compositae, was generally higher. Plant diversity in the Chenier wetland, based on the Shannon-Wiener index, was observed to be between the Qinhuangdao and Laizhouwan indices, while no significant difference was found in other wetlands using the Simpson index. Despite these slight differences in diversity, PCoA based on species abundance and composition of the wetland flora suggest that the Bohai Chenier community was highly similar to the coastal wetlands in Tianjin and Laizhouwan, further suggesting that these two wetlands could be important breeding grounds and resources for the restoration of the plant ecosystem in the Chenier wetland.

  11. Modeling the climatic and subsurface stratigraphy controls on the hydrology of a Carolina bay wetland in South Carolina, USA

    Science.gov (United States)

    Ge Sun; Timothy J. Callahan; Jennifer E. Pyzoha; Carl C. Trettin

    2006-01-01

    Restoring depressional wetlands or geographically isolated wetlands such as cypress swamps and Carolina bays on the Atlantic Coastal Plains requires a clear understanding of the hydrologic processes and water balances. The objectives of this paper are to (1) test a distributed forest hydrology model, FLATWOODS, for a Carolina bay wetland system using seven years of...

  12. Modeling the climatic and subsurface stratigraphy controls on the hydrology of a Carolina Bay wetland in South Carolina, USA

    Science.gov (United States)

    Ge Sun; Timothy J. Callahan; Jennifer E. Pyzoha; Carl C. Trettin

    2006-01-01

    Restoring depressional wetlands or geographically isolated wetlands such as cypress swamps and Carolina bays on the Atlantic Coastal Plains requires a clear understanding of the hydrologic processes and water balances. The objectives of this paper are to (1) test a distributed forest hydrology model, FLATWOODS, for a Carolina bay wetland system using seven years of...

  13. Comparison of Qinzhou bay wetland landscape information extraction by three methods

    Directory of Open Access Journals (Sweden)

    X. Chang

    2014-04-01

    and OO is 219 km2, 193.70 km2, 217.40 km2 respectively. The result indicates that SC is in the f irst place, followed by OO approach, and the third DT method when used to extract Qingzhou Bay coastal wetland.

  14. What Role do Nor'Easters have on the Jamaica Bay Wetlands Sediment Budget?

    Science.gov (United States)

    Clarke, R. C.; Bentley, S. J.; Wang, H.; Smith, J.

    2017-12-01

    The wetlands of Jamaica Bay, located on the outskirts of Queens, New York, have lost over half their surface area in the last 50 years due both anthropogenic and natural causes, including channel dredging, urban drainage construction, and greater tidal amplitudes partially due to rising local sea levels. Superstorm Sandy made landfall in 2014 as a powerful coastal geomorphic agent, highlighting the vulnerability of that region to large cyclonic storms that are more commonly encountered along coastal reaches of southeastern North America. After this event, research aimed at quantifying the geomorphic impact of Superstorm Sandy and to evaluate the record of past documented major winter storms on Jamaica Bay's wetlands. 12 sediment cores were collected from the surface of remaining wetlands in August 2014 by the USGS Wetland and Aquatic Research Center; the cores have been analyzed for Pb-210/Cs-137 geochronology, organic content, and water content to establish chronology of mineral sediment supply to the wetlands over the past 120 years. Most cores were found to be organic-rich, marked with periodic cm-scale beds with increased mineral content. Historic storm data, dating as far back as the late 1800's, were used to identify hurricanes and major winter storms determined by the National Weather Service passing within 100 km of the study area. Likely storm-event deposits in each core were identified as layers with mineral content higher than the core mean plus one standard deviation, and were matched to historic events via radioisotope geochronology, incorporating age-model uncertainty. Overall, 22 out of the 35 defined storm layers match the timing of historic strong storms (within uncertainty ranging from 2 to 5 years) from 1894 to Superstorm Sandy in 2014. Our findings show that over multidecadal timescales, nor'easters and winter storms play a role in the vertical accretion of sediment in the Jamaica Bay wetlands, but are substantially less important than sediment

  15. Organic Carbon and Trace Element Cycling in a River-Dominated Tidal Coastal Wetland System (Tampa Bay, FL, USA)

    Science.gov (United States)

    Moyer, R. P.; Smoak, J. M.; Engelhart, S. E.; Powell, C. E.; Chappel, A. R.; Gerlach, M. J.; Kemp, A.; Breithaupt, J. L.

    2016-02-01

    Tampa Bay is the largest open water, river-fed estuary in Florida (USA), and is characterized by the presence of both mangrove and salt marsh ecosystems. Both coastal wetland systems, and small rivers such as the ones draining into Tampa Bay have historically been underestimated in terms of their role in the global carbon and elemental cycles. Climate change and sea-level rise (SLR) are major threats in Tampa Bay and stand to disrupt hydrologic cycles, compromising sediment accumulation and the rate of organic carbon (OC) burial. This study evaluates organic carbon content, sediment accumulation, and carbon burial rates in salt marsh and mangrove ecosystems, along with measurements of fluxes of dissolved OC (DOC) and trace elements in the water column of the Little Manatee River (LMR) in Tampa Bay. The characterization of OC and trace elements in tidal rivers and estuaries is critical for quantitatively constraining these systems in local-to-regional scale biogeochemical budgets, and provide insight into biogeochemical processes occurring with the estuary and adjacent tidal wetlands. Material fluxes of DOC and trace elements were tied to discharge irrespective of season, and the estuarine habitats removed 15-65% of DOC prior to export to Tampa Bay and the Gulf of Mexico. Thus, material is available for cycling and burial within marsh and mangrove peats, however, LMR mangrove peats have higher OC content and burial rates than adjacent salt marsh peats. Sedimentary accretion rates in LMR marshes are not currently keeping pace with SLR, thus furthering the rapid marsh-to-mangrove conversions that have been seen in Tampa Bay over the past half-century. Additionally, wetlands in Tampa Bay tend to have a lower rate of carbon burial than other Florida tidal wetlands, demonstrating their high sensitivity to climate change and SLR.

  16. System for sampling liquids in small jugs obturated by screwed taps

    International Nuclear Information System (INIS)

    Besnier, J.

    1995-01-01

    This invention describes a machine which samples automatically liquids in small jugs obturated by screwed taps. This device can be situated in an isolated room in order to work with radioactive liquids. The machine can be divided in three main parts: a module to catch the jug, in order to take and fix it, a module to open and to close it, and a module to sample. The later takes the liquid thanks to a suction device and puts it in a container, in order to analyse the sample. (TEC)

  17. Assessment of the content, structure, and source of soil dissolved organic matter in the coastal wetlands of Jiaozhou Bay, China

    Science.gov (United States)

    Xi, Min; Zi, Yuanyuan; Wang, Qinggai; Wang, Sen; Cui, Guolu; Kong, Fanlong

    2018-02-01

    The contents and the spectral analysis of dissolved organic matter (DOM) in four typical wetlands, such as naked tidal, suaeda salsa, reed and spartina, were conducted to investigate the content, structure, and source of DOM in coastal wetland soil. The soil samples were obtained from Jiaozhou Bay in January, April, July, and October of 2014. Results showed that the DOM contents in soil of four typical wetland were in order of spartina wetland > naked tidal > suaeda salsa wetland > reed wetland in horizontal direction, and decreased with the increase of soil depth on vertical section. In addition, the DOM contents changed with the seasons, in order of spring > summer > autumn > winter. The structural characteristics of DOM in Jiaozhou Bay wetland, such as aromaticity, hydrophobicity, molecular weight, polymerization degree of benzene ring carbon frame structure and so on were in order of spartina wetland > naked tidal > suaeda salsa wetland > reed wetland in the horizontal direction. On the vertical direction, they showed a decreasing trend with the increase of soil depth. The results of three dimensional fluorescence spectra and fluorescence spectrum parameters (FI, HIX, and BIX) indicated that the DOM in Jiaozhou Bay was mainly derived from the biological activities. The contents and structure of DOM had certain relevance, but the contents and source as well as the structure and source of DOM had no significant correlation. The external pollution including domestic sewage, industrial wastewater, and aquaculture sewage affected the correlation among the content, structure and source of DOM by influencing the percentage of non-fluorescent substance in DOM and disturbing the determination of protein-like fluorescence.

  18. Changes of hydrological environment and their influences on coastal wetlands in the southern Laizhou Bay, China.

    Science.gov (United States)

    Zhang, Xuliang; Zhang, Yuanzhi; Sun, Hongxia; Xia, Dongxing

    2006-08-01

    The structure and function of the coastal wetland ecosystem in the southern Laizhou Bay have been changed greatly and influenced by regional hydrological changes. The coastal wetlands have degraded significantly during the latest 30 years due to successive drought, decreasing of runoff, pollution, underground saline water intrusion, and aggravating marine disasters such as storm tides and sea level rising. Most archaic lakes have vanished, while artificial wetlands have been extending since natural coastal wetlands replaced by salt areas and ponds of shrimps and crabs. The pollution of sediments in inter-tidal wetlands and the pollution of water quality in sub-tidal wetlands are getting worse and therefore "red tides" happen more often than before. The biodiversity in the study area has been decreased. Further studies are still needed to protect the degraded coastal wetlands in the area.

  19. Dynamics of sediment carbon stocks across intertidal wetland habitats of Moreton Bay, Australia.

    Science.gov (United States)

    Hayes, Matthew A; Jesse, Amber; Hawke, Bruce; Baldock, Jeff; Tabet, Basam; Lockington, David; Lovelock, Catherine E

    2017-10-01

    Coastal wetlands are known for high carbon storage within their sediments, but our understanding of the variation in carbon storage among intertidal habitats, particularly over geomorphological settings and along elevation gradients, is limited. Here, we collected 352 cores from 18 sites across Moreton Bay, Australia. We assessed variation in sediment organic carbon (OC) stocks among different geomorphological settings (wetlands within riverine settings along with those with reduced riverine influence located on tide-dominated sand islands), across elevation gradients, with distance from shore and among habitat and vegetation types. We used mid-infrared (MIR) spectroscopy combined with analytical data and partial least squares regression to quantify the carbon content of ~2500 sediment samples and provide fine-scale spatial coverage of sediment OC stocks to 150 cm depth. We found sites in river deltas had larger OC stocks (175-504 Mg/ha) than those in nonriverine settings (44-271 Mg/ha). Variation in OC stocks among nonriverine sites was high in comparison with riverine and mixed geomorphic settings, with sites closer to riverine outflow from the east and south of Moreton Bay having higher stocks than those located on the sand islands in the northwest of the bay. Sediment OC stocks increased with elevation within nonriverine settings, but not in riverine geomorphic settings. Sediment OC stocks did not differ between mangrove and saltmarsh habitats. OC stocks did, however, differ between dominant species across the research area and within geomorphic settings. At the landscape scale, the coastal wetlands of the South East Queensland catchments (17,792 ha) are comprised of approximately 4,100,000-5,200,000 Mg of sediment OC. Comparatively high variation in OC storage between riverine and nonriverine geomorphic settings indicates that the availability of mineral sediments and terrestrial derived OC may exert a strong influence over OC storage potential across

  20. Study of Circulation in the Tillamook Bay and the Surrounding Wetland Applying Triple-Nested Models Downscaling from Global Ocean to Estuary

    Science.gov (United States)

    To study the circulation and water quality in the Tillamook Bay, Oregon, a high-resolution estuarine model that covers the shallow bay and the surrounding wetland has been developed. The estuarine circulation at Tillamook Bay is mainly driven by the tides and the river flows and ...

  1. Soil Microbial Community Structure Evolution along Halophyte Succession in Bohai Bay Wetland

    Directory of Open Access Journals (Sweden)

    Mingyang Cong

    2014-01-01

    Full Text Available It is urgent to recover Bohai Bay costal wetland ecosystem because of covering a large area of severe saline-alkali soil. To explore the relationship between halophyte herbaceous succession and microbial community structure, we chose four local communities which played an important role in improving soil microenvironment. We performed phospholipid fatty acid analysis, measured soil parameters, and evaluated shifts of microbial community structure. Results showed that microbial community structure changed significantly along succession and bacteria community was dominant. Total phospholipid fatty acid content increased in different successional stages but decreased with depth, with similar variations in bacterial and fungal biomass. Soil organic carbon and especially total nitrogen were positively correlated with microbial biomass. Colonization of pioneering salt-tolerant plants Suaeda glauca in saline-alkali bare land changed total soil microorganism content and composition. These results showed that belowground processes were strongly related with aboveground halophyte succession. Fungal/bacterial ratio, Gram-negative/Gram-positive bacteria ratio, total microbial biomass, and fungi and bacteria content could indicate the degree of succession stages in Bohai Bay wetland ecosystem. And also these findings demonstrated that microbial community biomass and composition evolved along with vegetation succession environmental variables.

  2. Part I, Introduction: Ecology and Regional Context of Tidal Wetlands in the San Francisco Bay National Estuarine Research Reserve

    Directory of Open Access Journals (Sweden)

    Matthew C. Ferner

    2011-12-01

    Full Text Available This two-part special issue reviews the basic ecology of tidal wetlands in the San Francisco Estuary. Several articles highlight the well-preserved tracts of historic tidal marsh found at China Camp State Park and Rush Ranch Open Space Preserve. These two protected areas serve as important reference sites for wetland restoration and conservation and also comprise San Francisco Bay National Estuarine Research Reserve (SF Bay NERR. SF Bay NERR is part of the National Oceanic and Atmospheric Administration’s nationwide network of 28 estuarine research reserves (http://www.nerrs.noaa.gov that all share common goals: (1 conducting standardized long-term monitoring, (2 supporting applied environmental research, (3 providing stewardship of estuarine natural resources, and (4 linking science with decision making in pursuit of effective solutions to coastal management problems.

  3. A conceptual hydrologic model for a forested Carolina bay depressional wetland on the Coastal Plain of South Carolina, USA

    Science.gov (United States)

    Jennifer E. Pyzoha; Timothy J. Callahan; Ge Sun; Carl C. Trettin; Masato Miwa

    2008-01-01

    This paper describes how climate influences the hydrology of an ephemeral depressional wetland. Surface water and groundwater elevation data were collected for 7 years in a Coastal Plain watershed in South Carolina USA containing depressional wetlands, known as Carolina bays. Rainfall and temperature data were compared with water-table well and piezometer data in and...

  4. Trends in Accretion Rates of Riverine Sediments in a Distal Bay and Wetlands Using 7-Beryllium as a Tracer: Fourleague Bay, Louisiana.

    Science.gov (United States)

    Restreppo, G. A.; Bentley, S. J.; Wang, J.; Xu, K.

    2017-12-01

    To combat land loss along the Mississippi River Delta, Louisiana has launched a historic campaign to sustain and regrow coastal lands using, in part, sediment diversions. Previous research has focused primarily on sand sized sediment load, which is usually deposited proximal to a river's delta or a diversion's outlet. Fine sediments constitute the majority of sediment load in the Mississippi, but are under-studied with respect to dispersal processes, particularly in terms of sediment supply to distal deltaic bays and wetlands. The Atchafalaya River and associated wetlands serve as prime study areas for this purpose. Bimonthly time-series push cores were collected from May 2015 to May 2016 along ten sites within Fourleague Bay, Louisiana. Fourleague Bay has remained stable against the deteriorative effects of relative sea level rise, standing out along Louisiana's declining coastline. Of the ten field sites, five are located across a longitudinal transect in the middle bay, while the other five are located in adjacent marshes. All sites fall within 10 to 30 km of the Atchafalaya Delta, extending south towards the Gulf of Mexico. Cores were extruded in 2 cm intervals, dried, ground, and analyzed via gamma spectrometry for the presence of 7Be. Inventories of 7Be were then calculated and used to determine daily mass accretion rate (MAR) over twelve months. Average MAR values for the bay and the marshes are compared with Atchafalaya River discharge, wind data, and atmospheric pressure through the year of sampling. Peak marsh MAR, 0.88 ± 0.20 kg m-2 d-1, occurs just after historically high river discharge. Peak bay MAR, 1.2 ± 0.67 kg m-2 d-1, occurs during seasonal low river discharge and calm winds. Average bay and marsh MARs have a moderate to strong, negative correlation when compared. Results indicate sediment bypass of the bay floor during periods of moderate to high river discharge, entering the marshes directly when inundation occurs and enhanced by the passage

  5. Solving the Water Jugs Problem by an Integer Sequence Approach

    Science.gov (United States)

    Man, Yiu-Kwong

    2012-01-01

    In this article, we present an integer sequence approach to solve the classic water jugs problem. The solution steps can be obtained easily by additions and subtractions only, which is suitable for manual calculation or programming by computer. This approach can be introduced to secondary and undergraduate students, and also to teachers and…

  6. The coupling of bay hydrodynamics with sediment supply and micro-tidal wetland stability under high rates of relative sea level rise

    Science.gov (United States)

    Wang, J.; Xu, K.; Restreppo, G. A.; Bentley, S. J.; Meng, X.; Zhang, X.

    2017-12-01

    Due to global sea level rise, local subsidence and sediment deficit, the Mississippi River (MR) deltaic plain has lost a total of 25% of coastal Louisiana's wetlands during the last century, leading to huge losses of ecological services, economic and social crises. Ecosystem-based restoration strategies which rely on coastal system processes and feedbacks are urgently needed. Understanding linkages between estuarine and coastal systems and the adjacent marshlands will help the designing strategies. To investigate bay hydrodynamics and its impacts on the adjacent micro-tidal wetland stability, hourly measurements of wave, tidal current, and benthic sediment concentration in summer, winter, and spring of 2015-2016 were conducted in Fourleague Bay, Louisiana, USA. The bay-marsh system has been stable for almost 80 years under high relative sea level rising rate, which is 11 km southeast of the Atchafalaya River mouth, with a water depth of 1-3 m. High-temporal resolution data indicate that benthic sediment resuspension is mainly caused by wind-driven waves with a dominant periodicity of 4.8 d. The sediment flux reaches 28 g·m-1·s-1 per unit depth in cm during the events. Net sediment transport is northwestward in summer, and southeastward in winter and spring. Sediment flux available for surrounding marsh varies from 0-500 g·m-1·s-1. An optimal inundation depth of 50 cm is estimated by the equilibrium wetland elevation change model under high relative sea level rising rate of 1.57 cm·yr-1. Seasonal variations of river discharge and wind direction (particularly speeds >3 m·s-1) greatly impact potential sediment contribution from bay to the surrounding wetlands. Three sediment transport regimes are concluded based on the seasonal variations of river discharge and wind direction: the `bypassing' season, the resuspension-accumulation season, and the combined `bypassing' and resuspension-accumulation season. The bay hydrodynamic processes and their impacts on the

  7. [Periodic characteristics of soil CO2 flux in mangrove wetland of Quanzhou Bay, China].

    Science.gov (United States)

    Wang, Zong-Lin; Wu, Yan-You; Xing, De-Ke; Liu, Rong-Cheng; Zhou Gui-Yao; Zhao, Kuan

    2014-09-01

    Mangrove wetland ecosystem in Quanzhou Bay in Fujian Province is newly restored with a regular semidiurnal tide. Soil CO2 concentration in the mangrove soil was determined by Li-840 portable gas analyzer, and periodic characteristics of soil CO2 emission was investigated. The soil CO2 flux in the wetland soil was relatively small because the mangrove was young. The change trends of soil CO2 concentration and flux with time were consistent in Kandelia obovate and Aegiceras corniculatum communities in the intertidal periods. The CO2 concentration and flux in the wetland soil were 557.08-2211.50 μmol · mol(-1) and -0.21-0.40 μmol · m(-2) · s(-1), respectively. The average CO2 flux in the wetland soil was 0.26 μmol · mol(-1) · s(-1) in the intertidal of morning and evening tides (early intertidal) and -0.01 μmol · m(-2) · s(-1) in the intertidal of evening and morning tides (late intertidal), respectively. At the same time after the tide, the concentration and flux of CO2 in the mangrove soil in early intertidal was higher than that in late intertidal. In early intertidal, the relationship between the flux and instantaneous concentration of CO2 in the wetland soil was expressed as a bell-shaped curve, and CO2 flux increased first and then decreased with the increasing CO2 concentration, which was in conformity with Gaussian distribution.

  8. Interaction between continental and estuarine waters in the wetlands of the northern coastal plain of Samborombón Bay, Argentina

    International Nuclear Information System (INIS)

    Carol, Eleonora; Mas-Pla, Josep; Kruse, Eduardo

    2013-01-01

    Highlights: • Inland and estuarine water flows define wetland hydrology on the Samborombón Bay. • Hydrochemistry in shell-ridges and tidal plains is due to water–rock interaction. • Mixing, evaporation and halite dissolution determine salinity in marshes. • Water flow from the shell-ridges control the overall wetland water quality. • These wetlands are complex hydrological systems with vulnerable water resources. - Abstract: On the Samborombón Bay coastline, located in the Río de la Plata estuary in Buenos Aires province (Argentina), a complex hydrological system has developed at the interface between continental and estuarine water, where significant wetlands develop. The main hydrogeological units, namely the shell ridges, the tidal plain and the marsh areas, have been identified using geomorphological criteria. Water table, hydrochemical and isotopic data have been used to determine their hydrological features, as well as those of the streams and canals. Evaporation processes, in particular, have been considered when depicting chemical and isotopic changes in surface waters in streams and marsh areas. The shell ridges represent a hydrogeological unit in which rainwater is stored, constituting a lens-shaped freshwater aquifer. In this unit, just as in the tidal plain, carbonate dissolution and ion exchange are the main processes regulating water chemistry. On the other hand, in the marsh and surface waters, processes such as mixing with estuarine water and evaporation predominate. These processes control water fluxes and the salinity of the wetland areas and, consequently, their ability to preserve the existing biodiversity. This study shows the importance of knowledge of hydrochemical processes in any proposal concerning the management and preservation of this type of wetland

  9. Accumulation of Trace Metals in Anadara granosa and Anadara inaequivalvis from Pattani Bay and the Setiu Wetlands.

    Science.gov (United States)

    Pradit, Siriporn; Shazili, Noor Azhar Mohamed; Towatana, Prawit; Saengmanee, Wuttipong

    2016-04-01

    This study was undertaken to assess the levels of trace metals (As, Cd, Cu, Pb, and Zn) in two common species of cockles (Anadara granosa and Anadara inaequivalvis) from two coastal areas in Thailand (Pattani Bay) and Malaysia (the Setiu Wetlands). A total of 350 cockles were collected in February and September 2014. Trace metals were determined by Inductively Coupled Plasma Mass Spectrometry. We observed that cockles in both areas had a higher accumulation of metals in September. Notably, the biota-sediment accumulation (BSAF) of Cd was highest in both areas. A strong positive correlation of Cd with the length of the cockles at Pattani Bay (r(2) = 0.597) and the Setiu Wetlands (r(2) = 0.675) was noted. It was suggested that As could be a limiting element (BSAF Malaysia Food Regulations, mean values of As, Cd, Cu, Pb, and Zn were within acceptable limits, but the maximum values of Cd and Pb exceeded the limits for both areas. Regular monitoring of trace metals in cockles from both areas is suggested for more definitive contamination determination.

  10. Seawater-groundwater exchange and nutrients carried by submarine groundwater discharge in different types of wetlands at Jiaozhou Bay, China

    Science.gov (United States)

    Qu, Wenjing; Li, Hailong; Huang, Hao; Zheng, Chunmiao; Wang, Chaoyue; Wang, Xuejing; Zhang, Yan

    2017-12-01

    In Jiaozhou Bay, there are four wetland types, including sandy beaches, mud flats, tidal marshes, and estuarine intertidal zones. Four typical transects representing each of the wetland types were selected to investigate the flow dynamics, seawater-groundwater exchange and nutrients carried by submarine groundwater discharge (SGD). Based on field measurements of groundwater heads and salinity along each transect, the SGD averaged over the observation period was estimated using generalized Darcy's law. The SGD along the four transects ranges from 3.6 × 10-3 to 7.6 cm/d with the maximum occurring at the sandy beach. The SGD rate has a good correlation with the hydraulic conductivities of the wetland sediments. There is a positive correlation between the ratio of NO3-N/DIN and SGD rates. The SGD-associated nutrient output rate ranges from 3.3 × 10-2 to 9.5 mmol/m2/d for DIN (dissolved inorganic nitrogen), and from 6.2 × 10-5 to 1.8 × 10-2 mmol/m2/d for DIP (dissolved inorganic phosphorus). Compared to the nutrients delivered by the river, nutrients carried by SGD provide a more important source for the phosphate-limited environment to plankton in Jiaozhou Bay.

  11. [Seasonal changes of fish species composition and diversity in mudflat wetlands of Hangzhou Bay].

    Science.gov (United States)

    Jia, Xing-huan; Zhang, Heng; Jiang, Ke-yi; Wu, Ming

    2010-12-01

    In order to understand the spatiotemporal variation of fish species composition and biodiversity in the mudflat wetlands of Hangzhou Bay, thirty six surveys were conducted in the mudflat area, inning area, and aquaculture area in the south bank of the Bay in. March (early spring), May (spring), July (summer), and October (autumn), 2009. A total of 41 species belonging to 9 orders and 16 families were observed, among which, Cyprinid had the largest species number (14 species, 33.3% of the total), followed by Gobiidae (8 species, 19.1%). According to the lifestyle of fish, these 41 species could be divided into five ecological types, i.e., freshwater type (21 species), brackish-water type (16 species), inshore type (2 species), anadromous type (Coilia ectenes), and catadromios type (Anguilla japonica). The fish abundance was the highest (54. 5 fish per net) in summer, followed by in spring and autumn, and the lowest (17.7 fish per net) in early spring. In the three habitats, mudflat area and inning area had the similar seasonal change of fish abundance, i.e., the lowest in early spring, the highest in summer, and then decreased in autumn. Only two or three species were the dominant species in different seasons. In mudflat area, the dominant species were Mugil cephalus and Liza carinatus; while in inning and aquaculture areas, the dominant species were Carassius auratus, Hemiculter leucisculus, and Pseudorasbora parva. The values of Margalef's richness index (D), Pielou's evenness index (J), and Shannon index (H) were lower in March than in other months, but had no significant differences among May, July, and October (P > 0.05). The H value ranged in 0. 27-2. 13, being the lowest in March and higher in May and October (1.66 and 1.63, respectively). Overall, the fish abundance and biodiversity in the mudflat wetlands of Hangzhou Bay had apparent seasonal changes.

  12. Using Remote Sensing to Evaluate Wetland Recovery in the Northern Tampa Bay Area Following Reduction in Groundwater Withdrawals

    Science.gov (United States)

    Elder, Amor

    In the past, the Northern Tampa Bay Area (NTBA) wetlands saw severe declines in hydrologic conditions due to excessive groundwater withdrawal rates. Eventually these rates were reduced to allow the wetlands to recover. To monitor this recovery, the Southwest Florida Water Management district (SWFWMD) set up a fieldwork based scoring methodology, called the Wetlands Assessment Procedure (WAP). WAP has been used in many studies of the area since groundwater withdrawal reductions; with many of those studies finding the recovery to be mixed at best. However, these studies were very limited in the number of wetlands they could assess due to the limitations of fieldwork. Therefore, it was proposed that remotely sensed variables associated with water consumption and stress be used to assess the recovery of the NTBA wetlands, as remote sensing allows for efficient assessments of targets over large area. Utilizing ASTER imagery scenes from 2005 and 2014, 211 wetlands' remotely sensed responses of NDVI, Land Surface Temperature (LST), and Evapotranspiration (ET) were mapped and statistically examined for trends indicating improvement or decline. Furthermore, a subset of WAP scores for the two years were examined and compared to the remotely sensed values. The results were contradictory, with remotely sensed responses showing an improvement over the time period, WAP scores indicating a decline in hydrologic conditions, and the two methods showing little to no fit when modeled against each other. As such, it is believed at this time that the remotely sensed method is not suitable for measuring the indicators of wetland recovery used in the WAP methodology.

  13. Factors affecting spatial and temporal variability in material exchange between the Southern Everglades wetlands and Florida Bay (USA)

    Science.gov (United States)

    Sutula, Martha A.; Perez, Brian C.; Reyes, Enrique; Childers, Daniel L.; Davis, Steve; Day, John W.; Rudnick, David; Sklar, Fred

    2003-08-01

    Physical and biological processes controlling spatial and temporal variations in material concentration and exchange between the Southern Everglades wetlands and Florida Bay were studied for 2.5 years in three of the five major creek systems draining the watershed. Daily total nitrogen (TN), and total phosphorus (TP) fluxes were measured for 2 years in Taylor River, and ten 10-day intensive studies were conducted in this creek to estimate the seasonal flux of dissolved inorganic nitrogen (N), phosphorus (P), total organic carbon (TOC), and suspended matter. Four 10-day studies were conducted simultaneously in Taylor, McCormick, and Trout Creeks to study the spatial variation in concentration and flux. The annual fluxes of TOC, TN, and TP from the Southern Everglades were estimated from regression equations. The Southern Everglades watershed, a 460-km 2 area that includes Taylor Slough and the area south of the C-111 canal, exported 7.1 g C m -2, 0.46 g N m -2, and 0.007 g P m -2, annually. Everglades P flux is three to four orders of magnitude lower than published flux estimates from wetlands influenced by terrigenous sedimentary inputs. These low P flux values reflect both the inherently low P content of Everglades surface water and the efficiency of Everglades carbonate sediments and biota in conserving and recycling this limiting nutrient. The seasonal variation of freshwater input to the watershed was responsible for major temporal variations in N, P, and C export to Florida Bay; approximately 99% of the export occurred during the rainy season. Wind-driven forcing was most important during the later stages of the dry season when low freshwater head coincided with southerly winds, resulting in a net import of water and materials into the wetlands. We also observed an east to west decrease in TN:TP ratio from 212:1 to 127:1. Major spatial gradients in N:P ratios and nutrient concentration and flux among the creek were consistent with the westward decrease in

  14. Geographic Information System (GIS) representation of historical seagrass coverage in Perdido Bay from United States Geological Survey/National Wetlands Research Center (USGS/NWRC), 1979 (NODC Accession 0000605)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Historical seagrass coverage in Perdido Bay 1979 from United States Geological Survey/National Wetlands Research Center (USGS/NWRC).

  15. Tidal wetland vegetation and ecotone profiles: The Rush Ranch Open Space Preserve

    Science.gov (United States)

    The Rush Ranch Open Space Preserve (Rush Ranch) is a component site of the San Francisco Bay National Estuarine Research Reserve (SF Bay NERR) that includes one of the largest undiked tidal wetlands in the San Francisco Estuary. The brackish tidal wetlands grade into transitional vegetation and unde...

  16. Geographic Information System (GIS) characterization of historical seagrass coverage in Perdido Bay from United States Geological Survey/National Wetlands Research Center (USGS/NWRC), 1987 (NODC Accession 0000606)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Graphical representation of historical seagrass coverage in Perdido Bay in 1987 from United States Geological Survey/National Wetlands Research Center (USGS/NWRC).

  17. Lost lake - restoration of a Carolina bay

    Energy Technology Data Exchange (ETDEWEB)

    Hanlin, H.G.; McLendon, J.P. [Univ. of South Carolina, Aiken, SC (United States). Dept. of Biology and Geology; Wike, L.D. [Univ. of South Carolina, Aiken, SC (United States). Dept. of Biology and Geology]|[Westinghouse Savannah River Co., Aiken, SC (United States). Savannah River Technology Center; Dietsch, B.M. [Univ. of South Carolina, Aiken, SC (United States). Dept. of Biology and Geology]|[Univ. of Georgia, Aiken, SC (United States)

    1994-09-01

    Carolina bays are shallow wetland depressions found only on the Atlantic Coastal Plain. Although these isolated interstream wetlands support many types of communities, they share the common features of having a sandy margin, a fluctuating water level, an elliptical shape, and a northwest to southeast orientation. Lost Lake, an 11.3 hectare Carolina bay, was ditched and drained for agricultural production before establishment of the Savannah River Site in 1950. Later it received overflow from a seepage basin containing a variety of chemicals, primarily solvents and some heavy metals. In 1990 a plan was developed for the restoration of Lost Lake, and restoration activities were complete by mid-1991. Lost Lake is the first known project designed for the restoration and recovery of a Carolina bay. The bay was divided into eight soil treatment zones, allowing four treatments in duplicate. Each of the eight zones was planted with eight species of native wetland plants. Recolonization of the bay by amphibians and reptiles is being evaluated by using drift fences with pitfall traps and coverboard arrays in each of the treatment zones. Additional drift fences in five upland habitats were also established. Hoop turtle traps, funnel minnow traps, and dip nets were utilized for aquatic sampling. The presence of 43 species common to the region has been documented at Lost Lake. More than one-third of these species show evidence of breeding populations being established. Three species found prior to the restoration activity and a number of species common to undisturbed Carolina bays were not encountered. Colonization by additional species is anticipated as the wetland undergoes further succession.

  18. San Francisco Bay Water Quality Improvement Fund

    Science.gov (United States)

    EPAs grant program to protect and restore San Francisco Bay. The San Francisco Bay Water Quality Improvement Fund (SFBWQIF) has invested in 58 projects along with 70 partners contributing to restore wetlands, water quality, and reduce polluted runoff.,

  19. Assessing wetland loss impacts on watershed hydrology using an improved modeling approach

    Science.gov (United States)

    Despite the importance of wetland impacts on water cycling, the Chesapeake Bay Watershed (CBW) has experienced significant wetland losses. The resultant environmental degradation has not been fully characterized. Our aim is to assess wetland loss impacts on watershed hydrology for an agricultural wa...

  20. The Carolina Bay Restoration Project - Final Report 2000-2006.

    Energy Technology Data Exchange (ETDEWEB)

    Barton, Christopher

    2007-12-15

    A Wetlands Mitigation Bank was established at SRS in 1997 as a compensatory alternative for unavoidable wetland losses. Prior to restoration activities, 16 sites included in the project were surveyed for the SRS Site Use system to serve as a protective covenant. Pre-restoration monitoring ended in Fall 2000, and post restoration monitoring began in the Winter/Spring of 2001. The total interior harvest in the 16 bays after harvesting the trees was 19.6 ha. The margins in the opencanopy, pine savanna margin treatments were thinned. Margins containing areas with immature forested stands (bay 5184 and portions of bay 5011) were thinned using a mechanical shredder in November 2001. Over 126 hectares were included in the study areas (interior + margin). Planting of two tree species and the transplanting of wetland grass species was successful. From field surveys, it was estimated that approximately 2700 Nyssa sylvatica and 1900 Taxodium distichum seedlings were planted in the eight forested bays resulting in an average planting density of ≈ 490 stems ha-1. One hundred seedlings of each species per bay (where available) were marked to evaluate survivability and growth. Wetland grass species were transplanted from donor sites on SRS to plots that ranged in size from 100 – 300 m2, depending on wetland size. On 0.75 and 0.6 meter centers, respectively, 2198 plugs of Panicum hemitomon and 3021 plugs Leersia hexandra were transplanted. New shoots originating from the stumps were treated with a foliar herbicide (Garlon® 4) during the summer of 2001 using backpack sprayers. Preliminary information from 2000-2004 regarding the hydrologic, vegetation and faunal response to restoration is presented in this status report.

  1. Simplified zygomatic arch radiographic technique to overcome the drawback of jug handle view

    Directory of Open Access Journals (Sweden)

    Siddana Gouda Siddana

    2014-01-01

    Full Text Available Introduction: The imaging of the zygomatic arch is very important in the diagnosis and management of zygomatic arch fractures. It is accomplished by jug handle radiography (a variation of the submentovertex view and sometimes with modifications like the tangential or tea cup projection. For these techniques, the patient has to be positioned in a way which makes it non-applicable in cases having cervical injuries or suspected cervical injuries. Aims and Objectives: To devise a new approach with which the image of the zygomatic arch can be obtained with normal head position, in either sitting or supine position, using a dental X-ray machine and an occlusal film, which can even be used in patients with cervical injuries or suspected cervical injuries, without any complications. Materials and Methods: The present approach requires a dental X-ray machine and an occlusal X-ray film thereby eliminating the need for additional equipment like a general X-ray machine and extraoral film cassette. This approach can be carried out in a conventional dental setup to rule out zygomatic arch fractures. Conclusion: This technique can be applied in patients having cervical injuries or suspected cervical injuries, thus overcoming the drawback of the jug handle view, and is easy to master. This technique can be used in a conventional dental setup and holds good with the ALARA (as low as reasonably achievable principle of radiation protection and safety.

  2. Using Internet search behavior to assess public awareness of protected wetlands.

    Science.gov (United States)

    Do, Yuno; Kim, Ji Yoon; Lineman, Maurice; Kim, Dong-Kyun; Joo, Gea-Jae

    2015-02-01

    Improving public awareness of protected wetlands facilitates sustainable wetland management, which depends on public participation. One way of gauging public interest is by tracking Internet search behavior (ISB). We assessed public awareness of issues related to protected wetland areas (PWAs) in South Korea by examining the frequencies of specific queries (PWAs, Ramsar, Upo wetland, Sunchon Bay, etc.) using relative search volumes (RSVs) obtained from an Internet search engine. RSV shows how many times a search term is used relative to a second search term during a specific period. Public awareness of PWAs changed from 2007 to 2013. Initially the majority of Internet searches were related to the most well-known tidal and inland wetlands Sunchon Bay and Upo wetlands, which are the largest existing wetlands in Korea with the greatest historical exposure. Public awareness, as reflected in RSVs, of wetlands increased significantly following PWA designation for the wetlands in 2008, which followed the Ramsar 10th Conference of Contracting Parties to the Convention on Wetlands (COP10) meeting. Public interest was strongly correlated to the number of news articles in the popular media, as evidenced by the increase in Internet searches for specific wetlands and words associated with specific wetlands. Correspondingly, the number of visitors to specific wetlands increased. To increase public interest in wetlands, wetland aspects that enhance wetland conservation should be promoted by the government and enhanced via public education. Our approach can be used to gauge public awareness and participation in a wide range of conservation efforts. © 2014 Society for Conservation Biology.

  3. Coastal wetland adaptation to sea level rise: Quantifying potential for landward migration and coastal squeeze

    Science.gov (United States)

    Borchert, Sinéad M.; Osland, Michael J.; Enwright, Nicholas M.; Griffith, Kereen

    2018-01-01

    Coastal wetland ecosystems are expected to migrate landwards in response to rising seas. However, due to differences in topography and coastal urbanization, estuaries vary in their ability to accommodate migration. Low‐lying urban areas can constrain migration and lead to wetland loss (i.e. coastal squeeze), especially where existing wetlands cannot keep pace with rising seas via vertical adjustments. In many estuaries, there is a pressing need to identify landward migration corridors and better quantify the potential for landward migration and coastal squeeze.We quantified and compared the area available for landward migration of tidal saline wetlands and the area where urban development is expected to prevent migration for 39 estuaries along the wetland‐rich USA Gulf of Mexico coast. We did so under three sea level rise scenarios (0.5, 1.0, and 1.5 m by 2100).Within the region, the potential for wetland migration is highest within certain estuaries in Louisiana and southern Florida (e.g. Atchafalaya/Vermilion Bays, Mermentau River, Barataria Bay, and the North and South Ten Thousand Islands estuaries).The potential for coastal squeeze is highest in estuaries containing major metropolitan areas that extend into low‐lying lands. The Charlotte Harbor, Tampa Bay, and Crystal‐Pithlachascotee estuaries (Florida) have the highest amounts of urban land expected to constrain wetland migration. Urban barriers to migration are also high in the Galveston Bay (Texas) and Atchafalaya/Vermilion Bays (Louisiana) estuaries.Synthesis and applications. Coastal wetlands provide many ecosystem services that benefit human health and well‐being, including shoreline protection and fish and wildlife habitat. As the rate of sea level rise accelerates in response to climate change, coastal wetland resources could be lost in areas that lack space for landward migration. Migration corridors are particularly important in highly urbanized estuaries where, due to low‐lying coastal

  4. Pre-Construction Biogeochemical Analysis of Mercury in Wetlands Bordering the Hamilton Army Airfield (HAAF) Wetlands Restoration Site. Part 2

    National Research Council Canada - National Science Library

    Best, Elly P; Fredrickson, Herbert L; Hintelmann, Holger; Clarisse, Olivier; Dimock, Brian; Lutz, Charles H; Lotufo, Gui R; Millward, Rod N; Bednar, Anthony J; Furey, John S

    2007-01-01

    ...) is working with the San Francisco Basin Regional Water Board, California State Coastal Conservancy, and San Francisco Bay Conservation and Development Commission to reconstruct wetlands at the former...

  5. The Carolina Bay Restoration Project - Status Report II 2000-2004.

    Energy Technology Data Exchange (ETDEWEB)

    Barton, Christopher

    2006-07-13

    A Wetlands Mitigation Bank was established at SRS in 1997 as a compensatory alternative for unavoidable wetland losses. Prior to restoration activities, 16 sites included in the project were surveyed for the SRS Site Use system to serve as a protective covenant. Pre-restoration monitoring ended in Fall 2000, and post restoration monitoring began in the Winter/Spring of 2001. The total interior harvest in the 16 bays after harvesting the trees was 19.6 ha. The margins in the opencanopy, pine savanna margin treatments were thinned. Margins containing areas with immature forested stands (bay 5184 and portions of bay 5011) were thinned using a mechanical shredder in November 2001. Over 126 hectares were included in the study areas (interior + margin). Planting of two tree species and the transplanting of wetland grass species was successful. From field surveys, it was estimated that approximately 2700 Nyssa sylvatica and 1900 Taxodium distichum seedlings were planted in the eight forested bays resulting in an average planting density of ≈ 490 stems ha-1. One hundred seedlings of each species per bay (where available) were marked to evaluate survivability and growth. Wetland grass species were transplanted from donor sites on SRS to plots that ranged in size from 100 – 300 m2, depending on wetland size. On 0.75 and 0.6 meter centers, respectively, 2198 plugs of Panicum hemitomon and 3021 plugs Leersia hexandra were transplanted. New shoots originating from the stumps were treated with a foliar herbicide (Garlon® 4) during the summer of 2001 using backpack sprayers. Preliminary information from 2000-2004 regarding the hydrologic, vegetation and faunal response to restoration is presented in this status report. Post restoration monitoring will continue through 2005. A final report to the Mitigation Bank Review Team will be submitted in mid-2006.

  6. DDT Analysis of Wetland Sediments in Upper Escambia Bay, Florida

    Science.gov (United States)

    Hopko, M. N.; Wright, J.; Liebens, J.; Vaughan, P.

    2017-12-01

    Dichlorodiphenyltrichloroethane (DDT) was a commonly used pesticide from World War II through the 1960's. DDT is generally used to control mosquito populations and as an agricultural insecticide. The pesticide and its degradation products (DDD and DDE) can bioaccumulate within ecosystems having negative implications for animal and human health. Consequently, DDT usage was banned in the United States in 1973. In a contaminant study performed in Escambia Bay, Florida, in 2009, DDT was present in 25% of study sites, most of which were located in the upper bay wetlands. Concentrations were well above the Florida Department of Environmental Protection's (FDEP) Probable Effect Level (PEL) and ratios of DDT and its metabolites indicated a recent introduction to the system. A follow-up study performed in 2016 found no DDT, but did show DDE at several sites. The current study repeated sampling in May 2017 at sites from the 2009 and 2016 studies. Sediment samples were collected in triplicate using a ponar sampler and DDT, DDD and DDE were extracted using EPA methods 3540c and 3620c. Extracts were analyzed using a gas chromatograph with electron capture detection (GC-ECD) as per EPA method 8081c. Sediment was also analyzed for organic carbon and particle size using an elemental NC analyzer and a laser diffraction particle sizer. Results show the presence of breakdown products DDE and DDD at multiple sites, but no detectable levels of DDT at any site. Sampling sites with high levels of DDT contamination in 2009 show only breakdown products in both 2016 and 2017. Particle size has little influence on DDD or DDE concentrations but OC is a controlling factor as indicated for contaminated sites by Pearson correlations between OC and DDE and DDD of 0.82 and 0.92, respectively. The presence of only DDD and/or DDE in the 2016 and 2017 studies indicates that the parent, DDT, has not been re-introduced into the watershed since 2009 but is degrading in the environment.

  7. San Francisco Bay Water Quality Improvement Fund Points, SF Bay CA, 2015, US EPA Region 9

    Data.gov (United States)

    U.S. Environmental Protection Agency — The San Francisco Bay Water Quality Improvement Fund is a competitive grant program that is helping implement TMDLs to improve water quality, protect wetlands, and...

  8. Modeling the Hydrologic Processes of a Depressional Forested Wetland in South Carolina, U.S.A.

    Science.gov (United States)

    Ge Sun; Timothy Callahan; Jennifer E. Pyzoha; Carl C. Trettin; Devendra M. Amatya

    2004-01-01

    Depressional forested wetlands or geographically isolated wetlands such as cypress swamps and Carolina bays are common land features in the Atlantic Coastal Plain of the southeastern US. Those wetlands play important roles in providing wildlife habitats, water quality improvement, and carbon sequestration. Great stresses have been imposed on those important ecosystems...

  9. An approach for evaluating the repeatability of rapid wetland assessment methods: The effects of training and experience

    Science.gov (United States)

    We sampled 92 wetlands from four different basins in the United States to quantify observer repeatability in rapid wetland condition assessment using the Delaware Rapid Assessment Protocol (DERAP). In the Inland Bays basin of Delaware, 58 wetland sites were sampled by multiple ob...

  10. How a clogged canal impacts ecological health in a tropical urban wetland ecosystem

    Science.gov (United States)

    The coastal city of San Juan, Puerto Rico is a tropical urban ecosystem interwoven among a series of interconnected bays, lagoons, canals, and mangrove wetlands. As the city has expanded, infilling and urban encroachment on what was previously mangrove wetland and open estuarine ...

  11. Gradient Analysis and Classification of Carolina Bay Vegetation: A Framework for Bay Wetlands Conservation and Restoration

    Energy Technology Data Exchange (ETDEWEB)

    Diane De Steven,Ph.D.; Maureen Tone,PhD.

    1997-10-01

    This report address four project objectives: (1) Gradient model of Carolina bay vegetation on the SRS--The authors use ordination analyses to identify environmental and landscape factors that are correlated with vegetation composition. Significant factors can provide a framework for site-based conservation of existing diversity, and they may also be useful site predictors for potential vegetation in bay restorations. (2) Regional analysis of Carolina bay vegetation diversity--They expand the ordination analyses to assess the degree to which SRS bays encompass the range of vegetation diversity found in the regional landscape of South Carolina's western Upper Coastal Plain. Such comparisons can indicate floristic status relative to regional potentials and identify missing species or community elements that might be re-introduced or restored. (3) Classification of vegetation communities in Upper Coastal Plain bays--They use cluster analysis to identify plant community-types at the regional scale, and explore how this classification may be functional with respect to significant environmental and landscape factors. An environmentally-based classification at the whole-bay level can provide a system of templates for managing bays as individual units and for restoring bays to desired plant communities. (4) Qualitative model for bay vegetation dynamics--They analyze present-day vegetation in relation to historic land uses and disturbances. The distinctive history of SRS bays provides the possibility of assessing pathways of post-disturbance succession. They attempt to develop a coarse-scale model of vegetation shifts in response to changing site factors; such qualitative models can provide a basis for suggesting management interventions that may be needed to maintain desired vegetation in protected or restored bays.

  12. Chesapeake Bay baseline data acquisition, toxics in the Chesapeake Bay. Final preliminary report, 1946-78

    International Nuclear Information System (INIS)

    1978-07-01

    This report identifies researchers, research activities, and data files applicable to the Chesapeake Bay estuarine system. The identified data were generated after 1973 on the following: submerged aquatic vegetation, shellfish bed closures, eutrophication, toxics accumulation in the food chain, dredging and spoil disposal, hydrologic modifications, modification of fisheries, shoreline erosion, wetlands alterations, and the effects of boating and shipping on water quality. Major past and current program monitoring in the Bay and its tributaries are summarized according to frequency

  13. Potential risk to wood storks (Mycteria americana) from mercury in Carolina Bay fish

    International Nuclear Information System (INIS)

    Brant, H.A.; Jagoe, C.H.; Snodgrass, J.W.; Bryan, A.L.; Gariboldi, J.C.

    2002-01-01

    Fish mercury levels from some Carolina bays pose risk to wood stork. - Carolina bays are freshwater wetlands that serve as important feeding habitats for the endangered wood stork (Mycteria americana). Water levels in these bays fluctuate greatly and tend to be acidic and rich in dissolved organic carbon (DOC), factors that favor mercury (Hg) methylation and bioaccumulation in fish. To assess potential risks to wood storks consuming mercury contaminated fish in bays, we sampled fish from 10 bays on the Savannah River Site (SRS), South Carolina, an area with documented use by wood storks. Whole body mercury concentrations in 258 fishes of three species (Erimyzon sucetta, Acantharchus pomotis and Esox americanus) commonly consumed by wood storks were determined. Risk factors for nestlings and free-ranging adults were calculated using published no and lowest observable adverse effect concentration (NOAEC and LOAEC) values for birds. Fish from higher trophic levels and those from wetlands with relatively shallow maximum depths and fluctuating water levels were more likely to exceed NOAEC and LOAEC values. Calculation of exposure rates of nestling wood storks indicated they are at highest risk during the first 10 days of the nestling period. These calculations suggest that there is potential concern for wood storks foraging in relatively shallow bays with fluctuating water levels, even though there is no obvious local source of mercury to these wetlands

  14. Anthropogenic protection alters the microbiome in intertidal mangrove wetlands in Hainan Island.

    Science.gov (United States)

    Yun, Juanli; Deng, Yongcui; Zhang, Hongxun

    2017-08-01

    Intertidal mangrove wetlands are of great economic and ecological importance. The regular influence of tides has led to the microbial communities in these wetlands differing significantly from those in other habitats. In this study, we investigated the microbiomes of the two largest mangrove wetlands in Hainan Island, China, which have different levels of anthropogenic protection. Soil samples were collected from the root zone of 13 mangrove species. The microbial composition, including key functional groups, was assessed using Illumina sequencing. Bioinformatics analysis showed that there was a significant difference in the microbiomes between the protected Bamen Bay and the unprotected Dongzhai Bay. The overall microbiome was assigned into 78 phyla and Proteobacteria was the most abundant phylum at both sites. In the protected wetland, there were fewer marine-related microbial communities, such as sulfate-reducing bacteria, and more terrestrial-related communities, such as Verrucomicrobia methanotrophs. We also observed distinct microbial compositions among the different mangrove species at the protected site. Our data suggest that the different microbiomes of the two mangrove wetlands are the result of a complex interaction of the different environmental variables at the two sites.

  15. Mapping elevations of tidal wetland restoration sites in San Francisco Bay: Comparing accuracy of aerial lidar with a singlebeam echosounder

    Science.gov (United States)

    Athearn, N.D.; Takekawa, John Y.; Jaffe, B.; Hattenbach, B.J.; Foxgrover, A.C.

    2010-01-01

    The southern edge of San Francisco Bay is surrounded by former salt evaporation ponds, where tidal flow has been restricted since the mid to late 1890s. These ponds are now the focus of a large wetland restoration project, and accurate measurement of current pond bathymetry and adjacent mud flats has been critical to restoration planning. Aerial light detection and ranging (lidar) has become a tool for mapping surface elevations, but its accuracy had rarely been assessed for wetland habitats. We used a singlebeam echosounder system we developed for surveying shallow wetlands to map submerged pond bathymetry in January of 2004 and compared those results with aerial lidar surveys in two ponds that were dry in May of 2004. From those data sets, we compared elevations for 5164 (Pond E9, 154 ha) and 2628 (Pond E14, 69 ha) echosounder and lidar points within a 0.375-m radius of each other (0.750-m diameter lidar spot size). We found that mean elevations of the lidar points were lower than the echosounder results by 5 ?? 0.1 cm in Pond E9 and 2 ?? 0.2 cm in Pond E14. Only a few points (5% in Pond E9, 2% in Pond E14) differed by more than 20 cm, and some of these values may be explained by residual water in the ponds during the lidar survey or elevation changes that occurred between surveys. Our results suggest that aerial lidar may be a very accurate and rapid way to assess terrain elevations for wetland restoration projects. ?? 2010 Coastal Education and Research Foundation.

  16. The role of surface and subsurface processes in keeping pace with sea level rise in intertidal wetlands of Moreton Bay, Queensland, Australia

    Science.gov (United States)

    Lovelock, Catherine E.; Bennion, Vicki; Grinham, Alistair; Cahoon, Donald R.

    2011-01-01

    Increases in the elevation of the soil surfaces of mangroves and salt marshes are key to the maintenance of these habitats with accelerating sea level rise. Understanding the processes that give rise to increases in soil surface elevation provides science for management of landscapes for sustainable coastal wetlands. Here, we tested whether the soil surface elevation of mangroves and salt marshes in Moreton Bay is keeping up with local rates of sea level rise (2.358 mm y-1) and whether accretion on the soil surface was the most important process for keeping up with sea level rise. We found variability in surface elevation gains, with sandy areas in the eastern bay having the highest surface elevation gains in both mangrove and salt marsh (5.9 and 1.9 mm y-1) whereas in the muddier western bay rates of surface elevation gain were lower (1.4 and -0.3 mm y-1 in mangrove and salt marsh, respectively). Both sides of the bay had similar rates of surface accretion (~7–9 mm y-1 in the mangrove and 1–3 mm y-1 in the salt marsh), but mangrove soils in the western bay were subsiding at a rate of approximately 8 mm y-1, possibly due to compaction of organic sediments. Over the study surface elevation increments were sensitive to position in the intertidal zone (higher when lower in the intertidal) and also to variation in mean sea level (higher at high sea level). Although surface accretion was the most important process for keeping up with sea level rise in the eastern bay, subsidence largely negated gains made through surface accretion in the western bay indicating a high vulnerability to sea level rise in these forests.

  17. Single-beam bathymetry data collected in 2015 from Grand Bay, Alabama-Mississippi

    Science.gov (United States)

    DeWitt, Nancy T.; Stalk, Chelsea A.; Smith, Christopher G.; Locker, Stanley D.; Fredericks, Jake J.; McCloskey, Terrence A.; Wheaton, Cathryn J.

    2017-12-01

    As part of the Sea-level and Storm Impacts on Estuarine Environments and Shorelines (SSIEES) project, scientists from the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center conducted a single-beam bathymetry survey within the estuarine, open-bay, and tidal creek environments of Grand Bay, Alabama-Mississippi, from May to June 2015. The goal of the SSIEES project is to assess the physical controls of sediment and material exchange between wetlands and estuarine environments along the northern Gulf of Mexico, specifically Grand Bay, Alabama-Mississippi; Vermilion Bay, Louisiana; and, along the east coast, within Chincoteague Bay, Virginia-Maryland. The data described in this report provide baseline bathymetric information for future research investigating wetland-marsh evolution, sediment transport, erosion, recent and long-term geomorphic change, and can also support the modeling of changes in response to restoration and storm impacts. The survey area encompasses more than 40 square kilometers of Grand Bay’s waters.

  18. Thresholds of sea-level rise rate and sea-level rise acceleration rate in a vulnerable coastal wetland.

    Science.gov (United States)

    Wu, Wei; Biber, Patrick; Bethel, Matthew

    2017-12-01

    Feedbacks among inundation, sediment trapping, and vegetation productivity help maintain coastal wetlands facing sea-level rise (SLR). However, when the SLR rate exceeds a threshold, coastal wetlands can collapse. Understanding the threshold helps address key challenges in ecology-nonlinear response of ecosystems to environmental change, promotes communication between ecologists and resource managers, and facilitates decision-making in climate change policies. We studied the threshold of SLR rate and developed a new threshold of SLR acceleration rate on sustainability of coastal wetlands as SLR is likely to accelerate due to enhanced anthropogenic forces. Deriving these two thresholds depends on the temporal scale, the interaction of SLR with other environmental factors, and landscape metrics, which have not been fully accounted for before this study. We chose a representative marine-dominated estuary in the northern Gulf of Mexico, Grand Bay in Mississippi, to test the concept of SLR thresholds. We developed a mechanistic model to simulate wetland change and then derived the SLR thresholds for Grand Bay. The model results show that the threshold of SLR rate in Grand Bay is 11.9 mm/year for 2050, and it drops to 8.4 mm/year for 2100 using total wetland area as a landscape metric. The corresponding SLR acceleration rate thresholds are 3.02 × 10 -4  m/year 2 and 9.62 × 10 -5  m/year 2 for 2050 and 2100, respectively. The newly developed SLR acceleration rate threshold can help quantify the temporal lag before the rapid decline in wetland area becomes evident after the SLR rate threshold is exceeded, and cumulative SLR a wetland can adapt to under the SLR acceleration scenarios. Based on the thresholds, SLR that will adversely impact the coastal wetlands in Grand Bay by 2100 will fall within the likely range of SLR under a high warming scenario (RCP8.5), highlighting the need to avoid RCP8.5 to preserve these marshes.

  19. Metal pollution across the upper delta plain wetlands and its adjacent shallow sea wetland, northeast of China: implications for the filtration functions of wetlands.

    Science.gov (United States)

    Liu, Jin; Ye, Siyuan; Yuan, Hongming; Ding, Xigui; Zhao, Guangming; Yang, Shixiong; He, Lei; Wang, Jin; Pei, Shaofeng; Huang, Xiaoyu

    2018-02-01

    Grain size and concentrations of organic carbon (Corg) and particulate metals (PMs) As, Cd, Cr, Cu, Hg, Pb, Zn, Al, Fe, and Mn of 373 surface sediment samples, salinities in 67 surface water samples, were analyzed in various environments, including the upper delta plain wetlands (UDPW), its adjacent shallow sea wetland (SSW) in the Liaodong Bay, and river channels that are running through the Liaohe Delta, to evaluate the spatial distribution, transportation environmental dynamics of metals, and the provenance of metal pollution and assess the filtration functions of wetlands. The concentrations of PMs for UDPW were generally higher by a factor of ~ 10-22% compared with its analogues in SSW, suggesting the accumulation of PMs within the UDPW indicates that the UDPW systems are efficiently physical and chemical traps for PMs of anthropogenic sources by retaining and storing pollutants flowing into the sea. However, there was sever sewage irrigation-induced Cd pollution with a geo-accumulation index of 0.62-3.11 in an area of ~ 86 km 2 of the adjacent shallow sea wetland, where large amount wetlands were historically moved for agriculture in the UDPW. Remarkably, the distributions of PMs were controlled by salinity-induced desorption and re-adsorption mechanisms and significantly dispersed the contamination coverage by the three-dimensional hydrodynamic and sedimentation processes that dominated by inputs of freshwater and ocean dynamics including NE-SW tidal currents and NE-E longshore drifts in the SSW of the Liaodong Bay. A high agreement between the UDPW and the SSW datasets in principal component analysis essentially reflects that the characteristics of PM sources in the SSW were actually inherited from that in the UDPW, with a much closer relationship among metals, organic matter, and fine particulates in SSW than that of UDPW, which was judged by their correlation coefficient range of 0.406-0.919 in SSW against those of 0.042-0.654 in UDPW.

  20. Status, trends, and changes in freshwater inflows to bay systems in the Corpus Christi Bay National Estuary Program study area

    Science.gov (United States)

    Asquith, W.H.; Mosier, J. G.; Bush, P.W.

    1997-01-01

    This report presents the results of a study to quantify current (1983–93) mean freshwater inflows to the six bay systems (open water and wetlands) in the Corpus Christi Bay National Estuary Program study area, to test for historical temporal trends in inflows, and to quantify historical and projected changes in inflows. The report also addresses the adequacy of existing data to estimate freshwater inflows.

  1. How a clogged canal effects ecological and human health in a tropical urban wetland ecosystem

    Science.gov (United States)

    The coastal city of San Juan, Puerto Rico is a tropical urban ecosystem interwoven among a series of interconnected bays, lagoons, canals, and mangrove wetlands. As the city has expanded, infilling and urban encroachment on what was previously mangrove wetland and open estuarine ...

  2. Magnitude and Seasonality of Wetland Methane Emissions from the Hudson Bay Lowlands (Canada)

    Science.gov (United States)

    Pickett-Heaps, C. A.; Jacob, D. J.; Wecht, K. J.; Kort, E. A.; Wofsy, S. C.; Diskin, G. S.; Worthy, D. E. J.; Kaplan, J. O.; Bey, I.; Drevet, J.

    2011-01-01

    The Hudson Bay Lowlands (HBL) is the second largest boreal wetland ecosystem in the world and an important natural source of global atmospheric methane. We quantify the HBL methane emissions by using the GEOS-Chem chemical transport model to simulate aircraft measurements over the HBL from the ARCTAS and pre-HIPPO campaigns in May-July 2008, together with continuous 2004-2008 surface observations at Fraserdale (southern edge of HBL) and Alert (Arctic background). The difference in methane concentrations between Fraserdale and Alert is shown to be a good indicator of HBL emissions, and implies a sharp seasonal onset of emissions in late May (consistent with the aircraft data), a peak in July-August, and a seasonal shut-off in September. The model, in which seasonal variation of emission is mainly driven by surface temperature, reproduces well the observations in summer but its seasonal shoulders are too broad. We suggest that this reflects the suppression of emissions by snow cover and greatly improve the model simulation by accounting for this effect. Our resulting best estimate for HBL methane emissions is 2.3 Tg/a, several-fold higher than previous estimates (Roulet et al., 1994; Worthy et al., 2000).

  3. Water quality in South San Francisco Bay, California: current condition and potential issues for the South Bay Salt Pond Restoration Project.

    Science.gov (United States)

    Grenier, J Letitia; Davis, Jay A

    2010-01-01

    The SBSPRP is an extensive tidal wetland restoration project that is underway at the margin of South San Francisco Bay, California. The Project, which aims to restore former salt ponds to tidal marsh and manage other ponds for water bird support, is taking place in the context of a highly urbanized watershed and an Estuary already impacted by chemical contaminants. There is an intimate relationship between water quality in the watershed, the Bay, and the transitional wetland areas where the Project is located. The Project seeks to restore habitat for endangered and endemic species and to provide recreational opportunities for people. Therefore, water quality and bioaccumulation of contaminants in fish and wildlife is an important concern for the success of the Project. Mercury, PCBs, and PBDEs are the persistent contaminants of greatest concern in the region. All of these contaminants are present at elevated concentrations both in the abiotic environment and in wildlife. Dioxins, pyrethroids, PAHs, and selenium are also problematic. Organochlorine insecticides have historically impacted the Bay, and they remain above thresholds for concern in a small proportion of samples. Emerging contaminants, such as PFCs and non-PBDE flame retardants, are also an important water quality issue. Beyond chemical pollutants, other concerns for water quality in South San Francisco Bay exist, and include biological constituents, especially invasive species, and chemical attributes, such as dissolved oxygen and salinity. Future changes, both from within the Project and from the Bay and watershed, are likely to influence water quality in the region. Project actions to restore wetlands could worsen, improve, or not affect the already impaired water quality in South Bay. Accelerated erosion of buried sediment as a consequence of Project restoration actions is a potentially serious regional threat to South Bay water and sediment quality. Furthermore, the planned restoration of salt ponds

  4. Magnitude and seasonality of wetland methane emissions from the Hudson Bay Lowlands (Canada

    Directory of Open Access Journals (Sweden)

    C. A. Pickett-Heaps

    2011-04-01

    Full Text Available The Hudson Bay Lowlands (HBL is the second largest boreal wetland ecosystem in the world and an important natural source of global atmospheric methane. We quantify the HBL methane emissions by using the GEOS-Chem chemical transport model to simulate aircraft measurements over the HBL from the ARCTAS and pre-HIPPO campaigns in May–July 2008, together with continuous 2004–2008 surface observations at Fraserdale (southern edge of HBL and Alert (Arctic background. The difference in methane concentrations between Fraserdale and Alert is shown to be a good indicator of HBL emissions, and implies a sharp seasonal onset of emissions in late May (consistent with the aircraft data, a peak in July–August, and a seasonal shut-off in September. The model, in which seasonal variation of emission is mainly driven by surface temperature, reproduces well the observations in summer but its seasonal shoulders are too broad. We suggest that this reflects the suppression of emissions by snow cover and greatly improve the model simulation by accounting for this effect. Our resulting best estimate for HBL methane emissions is 2.3 Tg a−1, several-fold higher than previous estimates (Roulet et al., 1994; Worthy et al., 2000.

  5. Integrated landscape-based approach of remote sensing, GIS, and physical modelling to study the hydrological connectivity of wetlands to the downstream water: progress and challenge

    Science.gov (United States)

    Yeo, I. Y.

    2015-12-01

    We report the recent progress on our effort to improve the mapping of wetland dynamics and the modelling of its functioning and hydrological connection to the downstream waters. Our study focused on the Coastal Plain of the Chesapeake Bay Watershed (CBW), the Delmarva Peninsula, where the most of wetlands in CBW are densely distributed. The wetland ecosystem plays crucial roles in improving water quality and ecological integrity for the downstream waters and the Chesapeake Bay, and headwater wetlands in the region, such as Delmarva Bay, are now subject to the legal protection under the Clean Water Rules. We developed new wetland maps using time series Landsat images and a highly accurate LiDAR map over last 30 years. These maps show the changes in surface water fraction at a 30-m grid cell at annual time scale. Using GIS, we analyse these maps to characterize changing dynamics of wetland inundation due to the physical environmental factors (e.g., weather variability, tide) and assessed the hydrological connection of wetlands to the downstream water at the watershed scale. Focusing on the two adjacent watersheds in the upper region of the Choptank River Basin, we study how wetland inundation dynamics and the hydrologic linkage of wetlands to downstream water would vary by the local hydrogeological setting and attempt to identify the key landscape factors affecting the wetland ecosystems and functioning. We then discuss the potential of using remote sensing products to improve the physical modelling of wetlands from our experience with SWAT (Soil and Water Assessment Tool).

  6. Hurricane-induced Sediment Transport and Morphological Change in Jamaica Bay, New York

    Science.gov (United States)

    Hu, K.; Chen, Q. J.

    2016-02-01

    Jamaica Bay is located in Brooklyn and Queens, New York on the western end of the south shore of the Long Island land mass. It experienced a conversion of more than 60% of the vegetated salt-marsh islands to intertidal and subtidal mudflats. Hurricanes and nor'easters are among the important driving forces that reshape coastal landscape quickly and affect wetland sustainability. Wetland protection and restoration need a better understanding of hydrodynamics and sediment transport in this area, especially under extreme weather conditions. Hurricane Sandy, which made landfall along east coast on October 30, 2012, provides a critical opportunity for studying the impacts of hurricanes on sedimentation, erosion and morphological changes in Jamaica Bay and salt marsh islands. The Delft3D model suit was applied to model hydrodynamics and sediment transport in Jamaica Bay and salt marsh islands. Three domains were set up for nesting computation. The local domain covering the bay and salt marshes has a resolution of 10 m. The wave module was online coupled with the flow module. Vegetation effects were considered as a large number of rigid cylinders by a sub-module in Delft3D. Parameters in sediment transport and morphological change were carefully chosen and calibrated. Prior- and post-Sandy Surface Elevation Table (SET)/accretion data including mark horizon (short-term) and 137Cs and 210Pb (long-term) at salt marsh islands in Jamaica Bay were used for model validation. Model results indicate that waves played an important role in hurricane-induced morphological change in Jamaica Bay and wetlands. In addition, numerical experiments were carried out to investigate the impacts of hypothetic hurricanes. This study has been supported by the U.S. Geological Survey Hurricane Sandy Disaster Recovery Act Funds.

  7. Variation in tidal wetland plant diversity and composition within and among coastal estuaries: assessing the relative importance of environmental gradients

    Science.gov (United States)

    Question: Does wetland plant composition vary more by estuarine type (differentiated by the degree of riverine versus oceanic influence) or habitat type within estuaries (defined by US National Wetlands Inventory [NWI] marsh classes)? Location: Oregon estuaries: Netarts Bay, ...

  8. Local and regional scale exchanges of dissolved organic carbon (DOC) between tidal wetlands and their adjacent coastal waters

    Science.gov (United States)

    Osburn, C. L.; Joshi, I.; Lebrasse, M. C.; Oviedo-Vargas, D.; Bianchi, T. S.; Bohnenstiehl, D. R.; D'Sa, E. J.; He, R.; Ko, D.; Arellano, A.; Ward, N. D.

    2017-12-01

    The contribution of blue carbon from tidal wetlands to the coastal ocean in the form of dissolved organic carbon (DOC) represents a terrestrial-aquatic linkage of increasing importance. DOC flux results will be presented from local (tidal creek) and regional (bays) scale studies in which various combinations of field observations, ocean-color satellite observations, and the outputs of high-resolution hydrodynamic models were used to estimate DOC export. The first project was located in Bald Head Creek, a tributary to the Cape Fear River estuary in eastern North Carolina (NC). DOC fluxes were computed using a bathymetric data collected via unmanned surface vehicle (USV) and a numerical hydrodynamic model (SCHISM) based on the relationships between colored dissolved organic matter (CDOM) absorption, DOC concentration, and salinity taken from field observations. Model predictions estimated an annual net export of DOC at 54 g C m-2 yr-1 from the tidal creek to the adjacent estuary. Carbon stable isotope (δ13C) values were used to estimate the contribution of wetland carbon to this export. In the second project, DOC fluxes from the Apalachicola Bay, FL, Barataria Bay, LA, were based on the development of algorithms between DOC and CDOM absorption derived from the VIIRS ocean color sensor. The Navy Coastal Ocean Model (NCOM) was used to compute salt flux estimates from each bay to the Louisiana-Texas shelf. The relationship between salinity and CDOM was used to estimate net annual DOC exports of 8.35 x 106 g C m-2 y-1 (Apalachicola Bay) and 7.14 x 106 g C m-2 yr-1 (Barataria Bay). These values approximate 13% and 9% of the annual loads of DOC from the Mississippi River to the Gulf of Mexico, respectively. CDOM and lignin were used in a mixing model to estimate wetland-derived DOC were 2% for Apalachicola Bay and 13% for Barataria Bay, the latter having one of the highest rates of relative sea level rise in North America. Results from our project demonstrated the utility

  9. Responses of upland herpetofauna to the restoration of Carolina Bays and thinning of forested Bay Margins.

    Energy Technology Data Exchange (ETDEWEB)

    Ledvina, Joseph A.

    2008-05-01

    Research on the effects of wetland restoration on reptiles and amphibians is becoming more common, but almost all of these studies have observed the colonization of recently disturbed habitats that were completely dry at the time of restoration. In a similar manner, investigations herpetofaunal responses to forest management have focused on clearcuts, and less intensive stand manipulations are not as well studied. To evaluate community and population responses of reptiles and amphibians to hydrology restoration and canopy removal in the interior of previously degraded Carolina bays, I monitored herpetofauna in the uplands adjacent to six historically degraded Carolina bays at the Savannah River Site (SRS) in South Carolina for four years after restoration. To evaluate the effects of forest thinning on upland herpetofauna, forests were thinned in the margins of three of these bays. I used repeated measures ANOVA to compare species richness and diversity and the abundance of selected species and guilds between these bays and with those at three reference bays that were not historically drained and three control bays that remained degraded. I also used Non-metric Multidimensional Scaling (NMDS) to look for community-level patterns based treatments.

  10. HYDROGEOMORPHIC INFLUENCES ON MACROPHYTES AS HABITAT IN GREAT LAKES WETLANDS

    Science.gov (United States)

    We used rapid survey techniques to map saubmergerd, floating and emergent vegetation in 10 coastal wetlands of Lake Superior. Density and structure of plant beds in "bay," "main channel," and "side channel" areas was evaluated from cover indices and presence/dominance by growth f...

  11. Bat Response To Carolina Bays and Wetland Restoration in the Southeastern U.S. Coastal Plain

    Science.gov (United States)

    Jennifer M. Menzel; Michael A. Menzel; John C. Kilgo; W. Mark Ford; John W. Edwards

    2005-01-01

    Bat activity in the southeastern United States is concentrated over riparian areas and wetland habitats. The restoration and creation of wetlands for mitigation purposes is becoming common in the Southeast. Understanding the effects of these restoration efforts on wetland flora and fauna is thus becoming increasingly important. Because bats (Order: Chiroptera) consist...

  12. Ecological characterization of the lower Everglades, Florida Bay, and the Florida Keys

    Energy Technology Data Exchange (ETDEWEB)

    Schomer, N.S.; Drew, R.D.

    1982-09-01

    A conceptual model of the study area identifies four major ecological zones: (1) terrestrial and freshwater wetlands, (2) estuarine and saltwater wetlands, (3) Florida Bay and mangrove islands, and (4) the Florida Keys. These zones are delineated by differences in basic physical-chemical background factors which in turn promote characteristic ecological communities. The terrestrial and freshwater wetlands support pinelands, sawgrass marshes, wet prairies, sloughs and occasional tree islands. The estuarine and saltwater wetlands support mangrove forests, salt marshes and oscillating salinity systems. Florida Bay exhibits oscillating meso- to hypersaline waters over grassbeds on marine lime mud sediments surrounding deeper lake areas. The exposed tips of the mud banks frequently support mangrove or salt prairie vegetation. The Florida Keys support almost all of the above communities to some small degree but are characterized by extensive offshore coral reefs. The productivity of these communities with regard to fish and wildlife reflects (1) the diversity and type of habitats available to species that are potentially capable of exploiting them, (2) the degree of alteration of these habitats by man and natural forces, and (3) historical, biogeographic and random factors that restrict organisms to specific environments or prohibit them from exploiting a potential habitat.

  13. Exploring drivers of wetland hydrologic fluxes across parameters and space

    Science.gov (United States)

    Jones, C. N.; Cheng, F. Y.; Mclaughlin, D. L.; Basu, N. B.; Lang, M.; Alexander, L. C.

    2017-12-01

    Depressional wetlands provide diverse ecosystem services, ranging from critical habitat to the regulation of landscape hydrology. The latter is of particular interest, because while hydrologic connectivity between depressional wetlands and downstream waters has been a focus of both scientific research and policy, it remains difficult to quantify the mode, magnitude, and timing of this connectivity at varying spatial and temporary scales. To do so requires robust empirical and modeling tools that accurately represent surface and subsurface flowpaths between depressional wetlands and other landscape elements. Here, we utilize a parsimonious wetland hydrology model to explore drivers of wetland water fluxes in different archetypal wetland-rich landscapes. We validated the model using instrumented sites from regions that span North America: Prairie Pothole Region (south-central Canada), Delmarva Peninsula (Mid-Atlantic Coastal Plain), and Big Cypress Swamp (southern Florida). Then, using several national scale datasets (e.g., National Wetlands Inventory, USFWS; National Hydrography Dataset, USGS; Soil Survey Geographic Database, NRCS), we conducted a global sensitivity analysis to elucidate dominant drivers of simulated fluxes. Finally, we simulated and compared wetland hydrology in five contrasting landscapes dominated by depressional wetlands: prairie potholes, Carolina and Delmarva bays, pocosins, western vernal pools, and Texas coastal prairie wetlands. Results highlight specific drivers that vary across these regions. Largely, hydroclimatic variables (e.g., PET/P ratios) controlled the timing and magnitude of wetland connectivity, whereas both wetland morphology (e.g., storage capacity and watershed size) and soil characteristics (e.g., ksat and confining layer depth) controlled the duration and mode (surface vs. subsurface) of wetland connectivity. Improved understanding of the drivers of wetland hydrologic connectivity supports enhanced, region

  14. Biomass energetics potential of wetlands at Saare county

    International Nuclear Information System (INIS)

    Kask, U.; Kask, L.

    2002-01-01

    Most of the fuels that are being used to produce the thermal and electrical power are nonrenewable. Transferring them into energy pollutes the environment with CO 2 and surplus heat. Biomass is the most suitable energy resource in Estonian natural circumstances. Hitherto, one kind of biomass - plants of wetland - has almost not been used. There are plenty of wetlands in Saaremaa that have reasonably high productivity of biomass. Exertion of technologies of processing and using the biomass helps to create new jobs in agriculture as well in other sector of economy and evolve the regional development. The local currency circulation will improve and there are also possibilities in increase of capital expenditures and export potential. The biomass productivity of wetland plants accounting to dry matter can reach up to 4-5 kg/m 2 in a year. One advantage to use the plants of wetland (reed, cattail) in energy production is the fact that these plants will disengage from water in the end of their growth period and will need no extra drying. There are over 12000 ha of wetlands in Saaremaa, half of them could be used to get energetical biomass. The other half is either under (nature)protection or it would be economically inefficient to cut reed there. The major wetlands are in the surroundings of Mullatu bay and the Koigi swamp, also in Tornimae. There could be significant reduce in the emission of solid particles into the atmosphere, if the biomass of wetlands would be used to produce thermal and electrical power in Kuressaare. (author)

  15. Magnitude and Distribution of Flows into Northeastern Florida Bay

    Science.gov (United States)

    Patino, Eduardo; Hittle, Clinton D.

    2000-01-01

    Changes in water-management practices have been made to accommodate a large and rapidly growing urban population along the Atlantic Coast and to meet the demand for intensive agricultural activities. These changes have resulted in a highly managed hydrologic system consisting of numerous canals, levees, control structures, and pumping stations that have altered the hydrology of the Everglades and Florida Bay ecosystems. Over the past decade, Florida Bay has experienced sea-grass die-off and algal blooms, which are indicators of ecological change attributed primarily to the increase in salinity and nutrient content of bay waters. Because plans are to restore sheetflow in the Everglades wetlands to its natural state, water managers anticipate a change in the magnitude and timing of freshwater exiting the mainland through the creeks that cut through the embankment or as sheetflow into Florida Bay.

  16. Assessing the cumulative impacts of geographically isolated wetlands on watershed hydrology using the SWAT model coupled with improved wetland modules.

    Science.gov (United States)

    Lee, S; Yeo, I-Y; Lang, M W; Sadeghi, A M; McCarty, G W; Moglen, G E; Evenson, G R

    2018-06-07

    Despite recognizing the importance of wetlands in the Coastal Plain of the Chesapeake Bay Watershed (CBW) in terms of ecosystem services, our understanding of wetland functions has mostly been limited to individual wetlands and overall catchment-scale wetland functions have rarely been investigated. This study is aimed at assessing the cumulative impacts of wetlands on watershed hydrology for an agricultural watershed within the Coastal Plain of the CBW using the Soil and Water Assessment Tool (SWAT). We employed two improved wetland modules for enhanced representation of physical processes and spatial distribution of riparian wetlands (RWs) and geographically isolated wetlands (GIWs). This study focused on GIWs as their hydrological impacts on watershed hydrology are poorly understood and GIWs are poorly protected. Multiple wetland scenarios were prepared by removing all or portions of the baseline GIW condition indicated by the U.S. Fish and Wildlife Service National Wetlands Inventory geospatial dataset. We further compared the impacts of GIWs and RWs on downstream flow (i.e., streamflow at the watershed outlet). Our simulation results showed that GIWs strongly influenced downstream flow by altering water transport mechanisms in upstream areas. Loss of all GIWs reduced both water routed to GIWs and water infiltrated into the soil through the bottom of GIWs, leading to an increase in surface runoff of 9% and a decrease in groundwater flow of 7% in upstream areas. These changes resulted in increased variability of downstream flow in response to extreme flow conditions. GIW loss also induced an increase in month to month variability of downstream flow and a decrease in the baseflow contribution to streamflow. Loss of all GIWs was shown to cause a greater fluctuation of downstream flow than loss of all RWs for this study site, due to a greater total water storage capacity of GIWs. Our findings indicate that GIWs play a significant role in controlling hydrological

  17. The use of color infrared aerial photography in determining salt marsh vegetation and delimiting man-made structures of Lynnhaven Bay, Virginia. M.S. Thesis

    Science.gov (United States)

    Holman, R. E., III

    1974-01-01

    Color infrared aerial photography was found to be superior to color aerial photography in an ecological study of Lynnhaven Bay, Virginia. The research was divided into three phases: (1) Determination of the feasibility of correlating color infrared aerial photography with saline wetland species composition and zonation patterns, (2) determination of the accuracy of the aerial interpretation and problems related to the aerial method used; and (3) comparison of developed with undeveloped areas along Lynnhaven Bay's shoreline. Wetland species composition and plant community zonation bands were compared with aerial infrared photography and resulted in a high degree of correlation. Problems existed with changing physical conditions; time of day, aircraft angle and sun angle, making it necessary to use several different characteristics in wetland species identification. The main characteristics used were known zonation patterns, textural signatures and color tones. Lynnhaven Bay's shoreline was 61.5 percent developed.

  18. Evaluation of wetland creation and waterfowl use in conjunction with abandoned mine lands in northeast Wyoming

    Energy Technology Data Exchange (ETDEWEB)

    McKistry, M C; Anderson, S H [University of Wyoming, Laramie, WY (United States)

    1994-12-01

    During 1991 and 1992, we studied 92 wetlands, including open water (ponds) and emergent communities, created as a result of Wyoming Abandoned Mine Lands` (AML) reclamation efforts in northeast Wyoming. Through these activities, over 300 wetlands were filled, reclaimed, created, or otherwise modified. For mitigation purposes wetlands to be filled or modified were first evaluated using a Wetland Habitat Value (WHV) Model. Using the model, wetland losses were mitigated by increasing the WHV of some wetlands or by creating new wetlands elsewhere. We evaluated model performance in offsetting wetland loss and how well the model predicted waterfowl use. We also compared post-reclamation wetland sizes to those predicted by engineering plans and submitted for Section 404 permit approval. In our study, predicted WHVs were overestimated at 100% of the wetlands for which pre-reclamation WHVs were available (n8). The most commonly overestimated variables were size, fraction of emergent cover, adjacent upland cover, and the number of bays and peninsulas. We obtained preconstruction size estimates for 64 of the original 80 wetlands. Fifty five of 64 wetlands were smaller than pre-reclamation engineering goals. The WHV Model accurately predicted use of wetlands by migrating and breeding canada geese (Branta canadensis), migrating dabbling ducks, and migrating diving ducks.

  19. Geographic Information System (GIS) characterization of Perdido Bay historical seagrass coverage, 1940 (NODC Accession 0000604)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — GIS representations of 1940 Historical seagrass coverage in Perdido Bay from United States Geological Survey/National Wetlands Research Center (USGS/NWRC).

  20. Linking seasonal surface water dynamics with methane emissions and export from small, forested wetlands

    Science.gov (United States)

    Hondula, K. L.; Palmer, M.

    2017-12-01

    One of the biggest uncertainties about global methane sources and sinks is attributed to uncertainties regarding wetland area and its dynamics. This is exacerbated by confusion over the role of small, shallow water bodies like Delmarva bay wetlands that could be categorized as both wetlands and ponds. These small inland water bodies are often poorly quantified due to their size, closed forest canopies, and inter- and intra-annual variability in surface water extent. We are studying wetland-rich areas on the Delmarva Peninsula in the U.S. mid-Atlantic to address this uncertainty at the scale of individual wetland ecosystems ( 1m depth). We estimated the size and temporal variability of the methane emissions source area by combining these measurements with daily estimates of the extent of surface water inundation derived from water level monitoring and a high-resolution digital elevation model. This knowledge is critical for informing land use decisions (e.g. restoring wetlands specifically for climate mitigation), the jurisdiction of environmental policies in the US, and for resolving major outstanding discrepancies in our understanding of the global methane budget.

  1. Studies on breeding shorebirds at Medusa Bay, Taimyr, in summer 2001

    NARCIS (Netherlands)

    Tulp, I.; Schekkerman, H.

    2001-01-01

    In the Summer of 2001 a combined Dutch-Russian expedition took place to the Willem Barentz field station at Medusa Bay near Dikson in north-western Taimyr. The expedition was organized by Alterra, the Working Group for International Waterbird and Wetland Research (WIWO) and the Agricultural

  2. Ecosystem development after mangrove wetland creation: plant-soil change across a 20-year chronosequence

    Science.gov (United States)

    Osland, Michael J.; Spivak, Amanda C.; Nestlerode, Janet A.; Lessmann, Jeannine M.; Almario, Alejandro E.; Heitmuller, Paul T.; Russell, Marc J.; Krauss, Ken W.; Alvarez, Federico; Dantin, Darrin D.; Harvey, James E.; From, Andrew S.; Cormier, Nicole; Stagg, Camille L.

    2012-01-01

    Mangrove wetland restoration and creation efforts are increasingly proposed as mechanisms to compensate for mangrove wetland losses. However, ecosystem development and functional equivalence in restored and created mangrove wetlands are poorly understood. We compared a 20-year chronosequence of created tidal wetland sites in Tampa Bay, Florida (USA) to natural reference mangrove wetlands. Across the chronosequence, our sites represent the succession from salt marsh to mangrove forest communities. Our results identify important soil and plant structural differences between the created and natural reference wetland sites; however, they also depict a positive developmental trajectory for the created wetland sites that reflects tightly coupled plant-soil development. Because upland soils and/or dredge spoils were used to create the new mangrove habitats, the soils at younger created sites and at lower depths (10-30 cm) had higher bulk densities, higher sand content, lower soil organic matter (SOM), lower total carbon (TC), and lower total nitrogen (TN) than did natural reference wetland soils. However, in the upper soil layer (0-10 cm), SOM, TC, and TN increased with created wetland site age simultaneously with mangrove forest growth. The rate of created wetland soil C accumulation was comparable to literature values for natural mangrove wetlands. Notably, the time to equivalence for the upper soil layer of created mangrove wetlands appears to be faster than for many other wetland ecosystem types. Collectively, our findings characterize the rate and trajectory of above- and below-ground changes associated with ecosystem development in created mangrove wetlands; this is valuable information for environmental managers planning to sustain existing mangrove wetlands or mitigate for mangrove wetland losses.

  3. Improved coastal wetland mapping using very-high 2-meter spatial resolution imagery

    Science.gov (United States)

    McCarthy, Matthew J.; Merton, Elizabeth J.; Muller-Karger, Frank E.

    2015-08-01

    Accurate wetland maps are a fundamental requirement for land use management and for wetland restoration planning. Several wetland map products are available today; most of them based on remote sensing images, but their different data sources and mapping methods lead to substantially different estimations of wetland location and extent. We used two very high-resolution (2 m) WorldView-2 satellite images and one (30 m) Landsat 8 Operational Land Imager (OLI) image to assess wetland coverage in two coastal areas of Tampa Bay (Florida): Fort De Soto State Park and Weedon Island Preserve. An initial unsupervised classification derived from WorldView-2 was more accurate at identifying wetlands based on ground truth data collected in the field than the classification derived from Landsat 8 OLI (82% vs. 46% accuracy). The WorldView-2 data was then used to define the parameters of a simple and efficient decision tree with four nodes for a more exacting classification. The criteria for the decision tree were derived by extracting radiance spectra at 1500 separate pixels from the WorldView-2 data within field-validated regions. Results for both study areas showed high accuracy in both wetland (82% at Fort De Soto State Park, and 94% at Weedon Island Preserve) and non-wetland vegetation classes (90% and 83%, respectively). Historical, published land-use maps overestimate wetland surface cover by factors of 2-10 in the study areas. The proposed methods improve speed and efficiency of wetland map production, allow semi-annual monitoring through repeat satellite passes, and improve the accuracy and precision with which wetlands are identified.

  4. ZEBRA MUSSEL COLONIZATION OF RUSTY CRAYFISH IN GREEN BAY, LAKE MICHIGAN

    Science.gov (United States)

    In August, 1995 six rusty crayfish colonized with zebra mussels were captured in small-meshed fyke-nets sets set apart as of a fish sampling effort at Peter's Marsh and Long-Tail Point Wetland in lower Green Bay. Mussels colonized virtually all areas of the crayfish bodies, but ...

  5. Physiological ecology of SRS Carolina bay phytoplankton communities: Effects of nutrient changes and CO2 sources

    International Nuclear Information System (INIS)

    Williams, J.B.

    1992-11-01

    Impacts of land-use activities on wetland ecosystems are important issues for environmental planners, conservation groups, and government agencies. The progress report of this project at DOE's Savannah River Site focused on two specific objectives: determination of the effects of nutrient enrichment (fertilizing during wetlands restoration) on phytoplankton communities and comparison of phytoplankton community dynamics during the current extended hydroperiod for Carolina Bays with patterns in previous drier years

  6. An Introduction to the San Francisco Estuary Tidal Wetlands Restoration Series

    Directory of Open Access Journals (Sweden)

    Larry R. Brown

    2003-10-01

    Full Text Available Restoration of tidal wetlands may provide an important tool for improving ecological health and water management for beneficial uses of the San Francisco Estuary (hereafter “Estuary”. Given the large losses of tidal wetlands from San Francisco Bay and the Sacramento-San Joaquin Delta in the last 150 years, it seems logical to assume that restoring tidal wetlands will have benefits for a variety of aquatic and terrestrial native species that have declined during the same time period. However, many other changes have also occurred in the Estuary concurrent with the declines of native species. Other factors that might be important in species declines include the effects of construction of upstream dams, large and small water diversions within the Sacramento-San Joaquin Delta, agricultural pesticides, trace elements from industrial and agricultural activities, and invasions of alien species. Discussions among researchers, managers, and stakeholders have identified a number of uncertainties regarding the potential benefits of tidal wetland restoration. The articles of the Tidal Wetlands Restoration Series address four major issues of concern. Stated as questions, these are: 1. Will tidal wetland restoration enhance populations of native fishes? 2. Will wetland restoration increase rates of methylation of mercury? 3. Will primary production and other ecological processes in restored tidal wetlands result in net export of organic carbon to adjacent habitats, resulting in enhancement of the food web? Will the carbon produced contribute to the formation of disinfection byproducts when disinfected for use as drinking water? 4. Will restored tidal wetlands provide long-term ecosystem benefits that can be sustained in response to ongoing physical processes, including sedimentation and hydrodynamics? Reducing the uncertainty surrounding these issues is of critical importance because tidal wetland restoration is assumed to be a critical tool for

  7. Sediment diatom species and community response to nitrogen addition in Oregon (USA) estuarine tidal wetlands

    Science.gov (United States)

    Sediment microalgae play an important role in nutrient cycling and are important primary producers in the food web in Pacific Northwest estuaries. This study examines the effects of nitrogen addition to benthic microalgae in tidal wetlands of Yaquina Bay estuary on the Oregon c...

  8. Thresholds of sea-level rise rate and sea-level acceleration rate in a vulnerable coastal wetland

    Science.gov (United States)

    Wu, W.; Biber, P.; Bethel, M.

    2017-12-01

    Feedback among inundation, sediment trapping, and vegetation productivity help maintain coastal wetlands facing sea-level rise (SLR). However, when the SLR rate exceeds a threshold, coastal wetlands can collapse. Understanding the threshold help address the key challenge in ecology - nonlinear response of ecosystems to environmental change, and promote communication between ecologists and policy makers. We studied the threshold of SLR rate and developed a new threshold of SLR acceleration rate on sustainability of coastal wetlands as SLR is likely to accelerate due to the enhanced anthropogenic forces. We developed a mechanistic model to simulate wetland change and derived the SLR thresholds for Grand Bay, MS, a micro-tidal estuary with limited upland freshwater and sediment input in the northern Gulf of Mexico. The new SLR acceleration rate threshold complements the threshold of SLR rate and can help explain the temporal lag before the rapid decline of wetland area becomes evident after the SLR rate threshold is exceeded. Deriving these two thresholds depends on the temporal scale, the interaction of SLR with other environmental factors, and landscape metrics, which have not been fully accounted for before this study. The derived SLR rate thresholds range from 7.3 mm/yr to 11.9 mm/yr. The thresholds of SLR acceleration rate are 3.02×10-4 m/yr2 and 9.62×10-5 m/yr2 for 2050 and 2100 respectively. Based on the thresholds developed, predicted SLR that will adversely impact the coastal wetlands in Grand Bay by 2100 will fall within the likely range of SLR under a high warming scenario (RCP8.5), and beyond the very likely range under a low warming scenario (RCP2.6 or 3), highlighting the need to avoid the high warming scenario in the future if these marshes are to be preserved.

  9. San Francisco Bay Water Quality Improvement Fund Map Service, San Francisco CA, 2012, US EPA Region 9

    Data.gov (United States)

    U.S. Environmental Protection Agency — The San Francisco Bay Water Quality Improvement Fund is a competitive grant program that is helping implement TMDLs to improve water quality, protect wetlands, and...

  10. San Francisco Bay Water Quality Improvement Fund Project Locations, San Francisco CA, 2017, US EPA Region 9

    Data.gov (United States)

    U.S. Environmental Protection Agency — The San Francisco Bay Water Quality Improvement Fund is a competitive grant program that is helping implement TMDLs to improve water quality, protect wetlands, and...

  11. Biomonitoring of Heavy metals using the bivalve molluscs in sunderban mangrove wetland, Northeast Coast of Bay of bengal (india): possible risks to Human health

    Energy Technology Data Exchange (ETDEWEB)

    Cabral, Henrique; Cardoso, Ines [Departamento de Biologia Animal/Instituto de Oceanografia, Campo Grande, Lisboa (Portugal); Chatterjee, Mousumi; Kumar Bhattacharya, Asok; Aftab Alam, Mohammad [Department of Marine Science, University of Calcutta, Calcutta (India); Kanta Satpathy, Kamala [Indira Gandhi Centre for Atomic Research, Environmental and Industrial Safety Section, Safety Group, Kalpakkam, Tamil Nadu (India); Kumar Sarkar, Santosh

    2008-02-15

    The suitability of using four bivalve molluscs (Sanguinolaria acuminata, Anadara granosa, Meretrix meretrix, and Pelecyora trigona) in biomonitoring of heavy metals (Cu, Pb, Cd, Zn, and Hg) collected from intertidal regions of the Sunderban mangrove wetland, northeastern part of the Bay of Bengal, were evaluated. Both speciesdependent variability and temporal variations were pronounced. A high degree of organ specificity was evident in the bivalves where gill and mantle exhibited higher metal accumulation due to ion exchange property of the mucous layer covering these organs while shells represent very poor accumulation. Elevated values of Zn and Cu reflect high potential for biomagnification through marine food chain. Metal concentrations in different body size groups of the bivalves do not follow uniform trend. Correlation coefficient between different metal couplings as tested statistically revealed significant coupling for Pb-Zn, Pb-Cu, Zn-Cu, and Hg-Cu. Concentrations of all the metals in specific organs (visceral mass, mantle and gill) of the bivalves exceeded the safe levels according to the international standards for metals compiled by Food and Agricultural Organization of the United Nations and would be of great risk for human consumption. It is concluded that the mussel and clam are suitable biomonitors to employ in programs designed to assess changes in metal pollution in the Sunderban mangrove wetland. (Abstract Copyright [2008], Wiley Periodicals, Inc.)

  12. Short Term Sediment Exchange Between Marshes and Bays Using Beryllium-7 as a Tracer, Fourleague Bay, Louisiana.

    Science.gov (United States)

    Restreppo, G. A.; Bentley, S. J.; Xu, K.; Wang, J.

    2016-12-01

    Modern delta models focus on the availability and exchange of coarse sediment as one of the major factors of deltaic growth or decay. Fine-grained sediment exchange within a river's delta is relatively poorly understood, as is the impact that this exchange has on land building and land loss. To better understand the dynamics of fine grain sediment exchange between river mouth, adjacent bays, and marshland, sediment cores from Fourleague Bay, LA, were collected and analyzed for 7Be, a naturally occurring radioisotope that serves as a marker for recently deposited sediment. Time-series push cores were collected every two months at ten sites, five located across a longitudinal transect in the middle bay and five located along adjacent marshes, from May 2015 to May 2016. All sites fall within 11 to 28 km of the Atchafalaya Delta, along a gradient extending towards the open ocean. Cores were extruded in 2 cm intervals, dried, ground, and analyzed via gamma spectrometry for the presence of 7Be. Inventories of 7Be were then calculated and used to determine bimonthly sedimentation rates over the course twelve months. Sediment deposition on the bay floor and marsh surface were then compared to Atchafalaya River discharge, wind speed and direction, and wave action. Preliminary results indicate patterns of initial fluvial sediment transfer from river to bay floor, then bay floor to marsh surface, with decreasing fluvial influence towards the open ocean. Sediment transport from bay to marsh appears to be coupled with meteorological forcing that induces bay-floor sediment resuspension and the flooding of marsh surfaces. This indirect mechanism of fluvial sediment supply to wetland surfaces may extend the region of influence for sediment delivery from man-made river-sediment diversions.

  13. Geographic Information System (GIS) characterization of historical seagrass coverage in St. Andrew Bay, Florida, 1953 (NODC Accession 0000608)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Graphical representation of historical seagrass coverage in St. Andrew Bay from United States Geological Survey/National Wetlands Research Center (USGS/NWRC) in...

  14. Treatment Wetlands

    OpenAIRE

    Dotro, Gabriela; Langergraber, Günter; Molle, Pascal; Nivala, Jaime; Puigagut, Jaume; Stein, Otto; Von Sperling, Marcos

    2017-01-01

    Overview of Treatment Wetlands; Fundamentals of Treatment Wetlands; Horizontal Flow Wetlands; Vertical Flow Wetlands; French Vertical Flow Wetlands; Intensified and Modified Wetlands; Free Water Surface Wetlands; Other Applications; Additional Aspects.

  15. Evaluating the potential effects of hurricanes on long-term sediment accumulation in two micro-tidal sub-estuaries: Barnegat Bay and Little Egg Harbor, New Jersey, U.S.A.

    Science.gov (United States)

    Marot, Marci E.; Smith, Christopher G.; Ellis, Alisha M.; Wheaton, Cathryn J.

    2016-06-23

    Barnegat Bay, located along the eastern shore of New Jersey, was significantly impacted by Hurricane Sandy in October 2012. Scientists from the U.S. Geological Survey (USGS) developed a multidisciplinary study of sediment transport and hydrodynamics to understand the mechanisms that govern estuarine and wetland responses to storm forcing. This report details the physical and chemical characteristics of surficial and downcore sediments from two areas within the bay. Eleven sites were sampled in both the central portion of the bay near Barnegat Inlet and in the southern portion of the bay in Little Egg Harbor. Laboratory analyses include Be-7, Pb-210, bulk density, porosity, x-radiographs, and grain-size distribution. These data will serve as a critical baseline dataset for understanding the current sedimentological regime and can be applied to future storms for understanding estuarine and wetland evolution.

  16. The areal extent of brown shrimp habitat suitability in Mobile Bay, Alabama, USA: Targeting vegetated habitat restoration

    Science.gov (United States)

    Smith, L.M.; Nestlerode, J.A.; Harwell, L.C.; Bourgeois, P.

    2010-01-01

    The availability of wetlands and shallow water habitats significantly influences Gulf of Mexico (GOM) penaeid shrimp fishery productivity. However, the GOM region has the highest rate of wetland loss in the USA. Protection and management of these vital GOM habitats are critical to sustainable shrimp fisheries. Brown shrimp (Farfantepenaeus aztecus) are a major component of GOM fisheries. We present an approach for estimating the areal extent of suitable habitat for post-larval and juvenile brown shrimp in Mobile Bay, Alabama, using an existing habitat suitability index model for the northern GOM calculated from probabilistic survey of water quality and sediment data, land cover data, and submerged aquatic vegetation coverages. This estuarine scale approach is intended to support targeted protection and restoration of these habitats. These analyses indicate that approximately 60% of the area of Mobile Bay is categorized as suitable to near optimal for post-larval and juvenile shrimp and 38% of the area is marginally to minimally suitable. We identify potential units within Mobile Bay for targeted restoration to improve habitat suitability. ?? 2010 Springer Science+Business Media B.V.

  17. Use of Geographic Information Systems to examine cumulative impacts of development on Mobile Bay, AL and Galveston Bay, TX

    International Nuclear Information System (INIS)

    Rosigno, P.F.; McNiff, M.E.; Watzin, M.C.; Ji, W.

    1993-01-01

    Databases from Mobile Bay, Alabama and Galveston Bay, Texas were compiled using ARC/INFO Geographic Information Systems (GIS) to examine the cumulative impacts from urbanization and industrialization on these two Gulf of Mexico estuaries. The databases included information on wetland habitats, pollution sources, metal contamination, bird-nesting sites, and oyster reefs, among others. A series of maps were used to represent the impacts within and between each ecosystem. These two estuaries share many similarities in the types of developmental pressures that each experience. However, difference in the magnitude of industrial activity, pollution loading, and urban growth coupled with distinct hydrodynamic and geochemical differences in sediment mineralogy, freshwater inflows and salinity regimens results in differing responses. With growing human population and extensive oil and gas development, the demands on Galveston Bay are quite different than those placed on Mobile Bay which has lower growth and less extensive oil and gas infrastructure. Mobile Bay tends to retain whatever contamination enters into the system because of the high levels of clay and organic carbon found in its sediment. Some of these chemicals bioaccumulate, posing an extra risk to natural resources. Geographic Information Systems provide natural resource managers with the technology to manage complex databases. The analytical and mapping capabilities of GIS can be used to consider cumulative effects in a regional context and to develop plans to protect ecologically sensitive areas

  18. Hydrogeomorphic (HGM) Approach to Assessing Wetland Functions: Guidelines for Developing Guidebooks (Version 2)

    Science.gov (United States)

    2013-06-01

    time, travel time, field data collection, and analysis (Whigham et al. 2007, Kleindl et al. 2010, Berkowitz et al. 2011). Several different...they occur. Prairie potholes, playa lakes, vernal pools, Carolina Bays, and cypress domes are common examples of depression wetlands. Tidal Fringe...Large playas Flat (organic soil) Precipitation Vertical Peat bogs; portions of Everglades Peatlands over permafrost Riverine Overbank flow from

  19. Restoring coastal wetlands that were ditched for mosquito control: a preliminary assessment of hydro-leveling as a restoration technique

    Science.gov (United States)

    Smith, Thomas J.; Tiling, Ginger; Leasure, Pamela S.

    2007-01-01

    The wetlands surrounding Tampa Bay, Florida were extensively ditched for mosquito control in the 1950s. Spoil from ditch construction was placed adjacent to the wetlands ditches creating mound-like features (spoil-mounds). These mounds represent a loss of 14% of the wetland area in Tampa Bay. Spoil mounds interfere with tidal flow and are locations for non-native plants to colonize (e.g., Schinus terebinthifolius). Removal of the spoil mounds to eliminate exotic plants, restore native vegetation, and re-establish natural hydrology is a restoration priority for environmental managers. Hydro-leveling, a new technique, was tested in a mangrove forest restoration project in 2004. Hydro-leveling uses a high pressure stream of water to wash sediment from the spoil mound into the adjacent wetland and ditch. To assess the effectiveness of this technique, we conducted vegetation surveys in areas that were hydro-leveled and in non-hydro-leveled areas 3 years post-project. Adult Schinus were reduced but not eliminated from hydro-leveled mounds. Schinus seedlings however were absent from hydro-leveled sites. Colonization by native species was sparse. Mangrove seedlings were essentially absent (≈2 m−2) from the centers of hydro-leveled mounds and were in low density on their edges (17 m−2) in comparison to surrounding mangrove forests (105 m−2). Hydro-leveling resulted in mortality of mangroves adjacent to the mounds being leveled. This was probably caused by burial of pneumatophores during the hydro-leveling process. For hydro-leveling to be a useful and successful restoration technique several requirements must be met. Spoil mounds must be lowered to the level of the surrounding wetlands. Spoil must be distributed further into the adjacent wetland to prevent burial of nearby native vegetation. Finally, native species may need to be planted on hydro-leveled areas to speed up the re-vegetation process.

  20. Development of the reed bed in Matsalu wetland, Estonia: responses to neotectonic land uplift, sea level changes and human influences

    Directory of Open Access Journals (Sweden)

    Mats Meriste

    2015-05-01

    Full Text Available We studied reed bed development in Matsalu wetland and the Kasari River delta, Estonia, since the late 18th century using historical schemes, topographical maps and aerial photographs. Our aim was to understand the mechanisms controlling reed distribution in Matsalu wetland, the largest coastal wetland of the eastern Baltic Sea occupying an area of about 25 km2. Natural development of the reed bed in Matsalu Bay and the Kasari delta is mainly controlled by shoreline displacement due to post-glacial neotectonic land uplift. The dredging of the Kasari delta in the 1920s–1930s caused a rapid seaward migration of reed bed communities due to the dispersal of fragmented rhizomes on the shallow sea bottom and along the canal banks reaching Matsalu Bay, while the landward parts of the former wetland were occupied by meadow communities. The expansion of the reed bed started in between the 1951s and 1970s and a maximum extent of 27 km2 was gained by the late 1970s at the peak of eutrophication. In the last decades the reed bed development has been influenced by sea level rise and increased intensity of cyclonic activity in the Baltic Sea, which has caused the deterioration of the reed bed that was weakened by eutrophication due to nutrient inflow from agricultural landscapes mainly in the 1960s–1980s.

  1. Wonderful Wetlands: An Environmental Education Curriculum Guide for Wetlands.

    Science.gov (United States)

    King County Parks Div., Redmond, WA.

    This curriculum guide was designed to give teachers, students, and society a better understanding of wetlands in the hope that they learn why wetlands should be valued and preserved. It explores what is meant by wetlands, functions and values of wetlands, wetland activities, and wetland offerings which benefit animal and plant life, recreation,…

  2. Tidal wetland fluxes of dissolved organic carbon and sediment at Browns Island, California: initial evaluation

    Science.gov (United States)

    Ganju, N.K.; Bergamaschi, B.; Schoellhamer, D.H.

    2003-01-01

    Carbon and sediment fluxes from tidal wetlands are of increasing concern in the Sacramento-San Joaquin River Delta (Delta), because of drinking water issues and habitat restoration efforts. Certain forms of dissolved organic carbon (DOC) react with disinfecting chemicals used to treat drinking water, to form disinfection byproducts (DBPs), some of which are potential carcinogens. The contribution of DBP precursors by tidal wetlands is unknown. Sediment transport to and from tidal wetlands determines the potential for marsh accretion, thereby affecting habitat formation.Water, carbon, and sediment flux were measured in the main channel of Browns Island, a tidal wetland located at the confluence of Suisun Bay and the Delta. In-situ instrumentation were deployed between May 3 and May 21, 2002. Water flux was measured using acoustic Doppler current profilers and the index-velocity method. DOC concentrations were measured using calibrated ultraviolet absorbance and fluorescence instruments. Suspended-sediment concentrations were measured using a calibrated nephelometric turbidity sensor. Tidally averaged water flux through the channel was dependent on water surface elevations in Suisun Bay. Strong westerly winds resulted in higher water surface elevations in the area east of Browns Island, causing seaward flow, while subsiding winds reversed this effect. Peak ebb flow transported 36% more water than peak flood flow, indicating an ebb-dominant system. DOC concentrations were affected strongly by porewater drainage from the banks of the channel. Peak DOC concentrations were observed during slack after ebb, when the most porewater drained into the channel. Suspended-sediment concentrations were controlled by tidal currents that mobilized sediment from the channel bed, and stronger tides mobilized more sediment than the weaker tides. Sediment was transported mainly to the island during the 2-week monitoring period, though short periods of export occurred during the spring

  3. Evaluation of wetland implementation strategies on phosphorus reduction at a watershed scale

    Science.gov (United States)

    Abouali, Mohammad; Nejadhashemi, A. Pouyan; Daneshvar, Fariborz; Adhikari, Umesh; Herman, Matthew R.; Calappi, Timothy J.; Rohn, Bridget G.

    2017-09-01

    Excessive nutrient use in agricultural practices is a major cause of water quality degradation around the world, which results in eutrophication of the freshwater systems. Among the nutrients, phosphorus enrichment has recently drawn considerable attention due to major environmental issues such as Lake Erie and Chesapeake Bay eutrophication. One approach for mitigating the impacts of excessive nutrients on water resources is the implementation of wetlands. However, proper site selection for wetland implementation is the key for effective water quality management at the watershed scale, which is the goal of this study. In this regard, three conventional and two pseudo-random targeting methods were considered. A watershed model called the Soil and Water Assessment Tool (SWAT) was coupled with another model called System for Urban Stormwater Treatment and Analysis IntegratioN (SUSTAIN) to simulate the impacts of wetland implementation scenarios in the Saginaw River watershed, located in Michigan. The inter-group similarities of the targeting strategies were investigated and it was shown that the level of similarity increases as the target area increases (0.54-0.86). In general, the conventional targeting method based on phosphorus load generated per unit area at the subwatershed scale had the highest average reduction among all the scenarios (44.46 t/year). However, when considering the total area of implemented wetlands, the conventional method based on long-term impacts of wetland implementation showed the highest amount of phosphorus reduction (36.44 t/year).

  4. Wetlands and Sustainability

    Directory of Open Access Journals (Sweden)

    Richard Smardon

    2014-11-01

    Full Text Available This editorial provides an overview of the special issue “Wetlands and Sustainability”. In particular, the special issue contains a review of Paul Keddy’s book “Wetland Ecology” with specific reference to wetland sustainability. It also includes papers addressing wetland data acquisition via radar and remote sensing to better understand wetland system dynamics, hydrologic processes linked to wetland stress and restoration, coastal wetlands land use conflict/management, and wetland utilization for water quality treatment.

  5. Trophic structure and avian communities across a salinity gradient in evaporation ponds of the San Francisco Bay estuary

    Science.gov (United States)

    Takekawa, John Y.; Miles, A.K.; Schoellhamer, D.H.; Athearn, N.D.; Saiki, M.K.; Duffy, W.D.; Kleinschmidt, S.; Shellenbarger, G.G.; Jannusch, C.A.

    2006-01-01

    Commercial salt evaporation ponds comprise a large proportion of baylands adjacent to the San Francisco Bay, a highly urbanized estuary. In the past two centuries, more than 79% of the historic tidal wetlands in this estuary have been lost. Resource management agencies have acquired more than 10 000 ha of commercial salt ponds with plans to undertake one of the largest wetland restoration projects in North America. However, these plans have created debate about the ecological importance of salt ponds for migratory bird communities in western North America. Salt ponds are unique mesohaline (5–18 g l−1) to hyperhaline (> 40 g l−1) wetlands, but little is known of their ecological structure or value. Thus, we studied decommissioned salt ponds in the North Bay of the San Francisco Bay estuary from January 1999 through November 2001. We measured water quality parameters (salinity, DO, pH, temperature), nutrient concentrations, primary productivity, zooplankton, macroinvertebrates, fish, and birds across a range of salinities from 24 to 264 g l−1. Our studies documented how unique limnological characteristics of salt ponds were related to nutrient levels, primary productivity rates, invertebrate biomass and taxa richness, prey fish, and avian predator numbers. Salt ponds were shown to have unique trophic and physical attributes that supported large numbers of migratory birds. Therefore, managers should carefully weigh the benefits of increasing habitat for native tidal marsh species with the costs of losing these unique hypersaline systems.

  6. Ohio Uses Wetlands Program Development Grants to Protect Wetlands

    Science.gov (United States)

    The wetland water quality standards require the use of ORAM score to determine wetland quality. OEPA has also used these tools to evaluate wetland mitigation projects, develop performance standards for wetland mitigation banks and In Lieu Fee programs an.

  7. Late Holocene Environmental History of the Los Osos Watershed, Morro Bay, CA

    Science.gov (United States)

    Broadman, E.; Reidy, L. M.; Wahl, D.

    2014-12-01

    A comprehensive understanding of past changes in wetland ecosystems is integral for creating policies for modern land use practices. The Morro Bay salt marsh is home to a large wetland that has experienced significant environmental impacts in the last few centuries. In this study, sediment cores from the Morro Bay salt marsh were analyzed to discern changes in environment since the time of European contact, which occurred in 1772. The marsh is fed by two creeks (Chorro and Los Osos) and their associated watersheds. Sediment cores taken from a portion of the marsh fed by Los Osos creek were analyzed and the results compared to those from previous studies on cores taken from the Chorro and Los Osos portions of the marsh. Magnetic susceptibility, loss on ignition, pollen, radiocarbon, and X-ray fluorescence (XRF) analyses were conducted. An age-depth model was established for the Los Osos cores using two radiocarbon dates, as well as Erodium cicutarium as a chronological marker. Preliminary pollen analysis from Chorro marsh cores indicates vegetation shifts at the time of contact, when the salt marsh formed. Magnetic susceptibility and XRF data indicate dramatically increased rates of erosion from the time of contact consistently until the present. Influx of non-carbonate inorganic material also indicates a rapid increase in sedimentation in the marsh starting at the time of contact. Comparison of sedimentation rates between the two creeks suggests that differences in watershed geomorphology and land use practices have had pronounced impacts on erosional processes. Over the last decade, the Morro Bay National Estuary Program (MBNEP) has taken more measures to reduce erosion and sedimentation rates in the Chorro watershed, as is reflected by reduced sedimentation rates in MBNEP data collected within the last few years. Our study helps to elucidate the impacts of anthropogenic land use change on wetland systems, and provides much needed data to policy makers seeking to

  8. Sources of atmospheric methane from coastal marine wetlands

    International Nuclear Information System (INIS)

    Harriss, R.C.; Sebacher, D.I.; Bartlett, K.B.; Bartlett, D.S.

    1982-01-01

    Biological methanogenesis in wetlands is believed to be one of the major sources of global tropospheric methane. The present paper reports measurements of methane distribution in the soils, sediments, water and vegetation of coastal marine wetlands. Measurements, carried out in the salt marshes Bay Tree Creek in Virginia and Panacea in northwest Florida, reveal methane concentrations in soils and sediments to vary with depth below the surface and with soil temperature. The fluxes of methane from marsh soils to the atmosphere at the soil-air interface are estimated to range from -0.00067 g CH 4 /sq m per day (methane sink) to 0.024 g CH 4 /sq m per day, with an average value of 0.0066 g CH 4 /sq m per day. Data also demonstrate the important role of tidal waters percolating through marsh soils in removing methane from the soils and releasing it to the atmosphere. The information obtained, together with previous studies, provides a framework for the design of a program based on in situ and remote sensing measurements to study the global methane cycle

  9. Export of Dissolved Lignin from Coastal Wetlands to the Louisiana Shelf

    Science.gov (United States)

    Bianchi, T. S.; Dimarco, S. F.; Smith, R. W.; Schreiner, K. M.

    2008-12-01

    Here we report on spatial and temporal changes in the concentration and composition of dissolved lignin- phenols in surface and bottom waters off the Louisiana coast (USA). Samples were collected at 7 stations on 2 cruises (April, and July, 2008) along a transect that spanned from inside Terrebonne Bay, Louisiana (12 m water depth) to the outer-most station on the inner Louisiana shelf (21 m water depth). The highest average concentration of dissolved organic carbon (DOC) and dissolved lignin, during both cruises, occurred at the interface between Terrebonne Bay and the inner shelf. Average DOC and dissolved lignin concentrations were significantly higher in April than in July across most stations. Based on hydrologic data, these higher concentrations clearly reflect a combined mixing of DOM from plume waters to the west and local marsh inputs. The cinnamyl/vanillyl (C/V) and syringyl/vanillyl (S/V) ratios indicated that the predominant source of lignin was from non-woody angiosperms - likely the dominant species of wetland plants Spartina alterniflora and S. patens (Spartina spp.) that border the entire bay. The high vanillic acid to vanillin (Ad/Al)v ratios for all stations were typical of that found near estuarine boundaries, where biologically- and photochemically-mediated lignin decay processes are important. This preliminary data indicates that wetlands provide another source of dissolved organic matter (DOM) to the Louisiana shelf that likely contributes to microbial food resources and hence hypoxia, especially in the context of the instability and extensive erosion of these marshes over the past ca. 50 years. This has important implications for the current management plan to reduce hypoxia in the GOM, particularly in those regions that extend west of the nutrient-rich highly productive near-field zones of Atchafalaya-Mississippi river plumes.

  10. Relationships between precipitation and surface water chemistry in three Carolina bays

    International Nuclear Information System (INIS)

    Monegue, R.L.; Jagoe, C.H.

    1995-01-01

    Carolina Bays are shallow freshwater wetlands, the only naturally occurring lentic systems on the southeastern coastal plain. Bays are breeding sites for many amphibian species, but data on precipitation/surface water relationships and long-term chemical trends are lacking. Such data are essential to interpret major fluctuations in amphibian populations. Surface water and bulk precipitation were sampled bi-weekly for over two years at three bays along a 25 km transect on the Savannah River Site in South Carolina. Precipitation chemistry was similar at all sites; average pH was 4.56, and the major ions were H + (30.8 % of total), and SO 4 (50.3% of total). H + was positively correlated with SO 4 , suggesting the importance of anthropogenic acids to precipitation chemistry. All three bays, Rainbow Bay (RB), Thunder Bay (TB), and Ellenton Bay (EB), contained soft (specific conductivity 5--90 microS/cm), acidic water (pH 4.0--5.9) with DOM from 4--40 mg/L. The major cation for RB, TB, and EB, respectively, was: Mg (30.8 % of total); Na (27% of total); and Ca (34.2% of total). DOM was the major anion for all bays, and SO 4 represented 13 to 28 % of total anions. H + was not correlated to DOM or SO, in RB; H + was positively correlated to DOM and SO 4 in TB, and negatively correlated to DOM and SO 4 in EB. Different biogeochemical processes probably control pH and other chemical variables in each bay. While surface water H + was not directly correlated with precipitation H + , NO 3 , or SO 4 , precipitation and shallow groundwater are dominant water sources for these bays. Atmospheric inputs of anthropogenic acids and other chemicals are important factors influencing bay chemistry

  11. Efficiencies of freshwater and estuarine constructed wetlands for phenolic endocrine disruptor removal in Taiwan.

    Science.gov (United States)

    Hsieh, Chi-Ying; Yang, Lei; Kuo, Wen-Chien; Zen, Yi-Peng

    2013-10-01

    We examined the distribution and removal efficiencies of phenolic endocrine disruptors (EDs), namely nonylphenol diethoxylates (NP2EO), nonylphenol monoethoxylates (NP1EO), nonylphenol (NP), and octylphenol (OP), in wastewater treated by estuarine and freshwater constructed wetland systems in Dapeng Bay National Scenic Area (DBNSA) and along the Dahan River in Taiwan. Water samples were taken bimonthly at 30 sites in three estuarine constructed wetlands (Datan, Pengcun and Linbian right bank (A and B)) in DBNSA, for eight sampling campaigns. The average removal efficiencies were in the range of 3.13-97.3% for wetlands in DBNSA. The highest average removal occurred in the east inlet to the outlet of the Tatan wetland. The most frequently detected compound was OP (57.7%), whose concentration was up to 1458.7 ng/L in DBNSA. NP was seen in only 20.5% of the samples. The temporal variation of EDs showed a decrease across seasons, where summer>spring>winter>autumn in these constructed wetlands. The removal efficiencies of EDs by estuarine wetlands, in decreasing order, were Datan>Pengcun>Linbian right bank in DBNSA. Water samples collected at 18 sites in three freshwater constructed wetlands (Daniaopi, Hsin-Hai I, and Hsin-Hai II) along the riparian area of Dahan River. NP2EO was the most abundant compound, with a concentration of up to 11,200 ng/L. Removal efficiencies ranged from 55% to 91% for NP1EO, NP2EO, and NP in Hsin-Hai I. The average removal potential of EDs in freshwater constructed wetlands, in decreasing order, was Hsin-Hai II>Daniaopi>Hsin-Hai I constructed wetlands. The lowest concentrations of the selected compounds were observed in the winter. The highest removal efficiency of the selected phenolic endocrine disruptors was achieved by Hsin-Hai I wetland. The calculated risk quotients used to evaluate the ecological risk were up to 30 times higher in the freshwater wetlands along Dahan River than in the estuarine (DBNSA) constructed wetlands, indicating

  12. Modeling natural wetlands: A new global framework built on wetland observations

    Science.gov (United States)

    Matthews, E.; Romanski, J.; Olefeldt, D.

    2015-12-01

    Natural wetlands are the world's largest methane (CH4) source, and their distribution and CH4 fluxes are sensitive to interannual and longer-term climate variations. Wetland distributions used in wetland-CH4 models diverge widely, and these geographic differences contribute substantially to large variations in magnitude, seasonality and distribution of modeled methane fluxes. Modeling wetland type and distribution—closely tied to simulating CH4 emissions—is a high priority, particularly for studies of wetlands and CH4 dynamics under past and future climates. Methane-wetland models either prescribe or simulate methane-producing areas (aka wetlands) and both approaches result in predictable over- and under-estimates. 1) Monthly satellite-derived inundation data include flooded areas that are not wetlands (e.g., lakes, reservoirs, and rivers), and do not identify non-flooded wetlands. 2) Models simulating methane-producing areas overwhelmingly rely on modeled soil moisture, systematically over-estimating total global area, with regional over- and under-estimates, while schemes to model soil-moisture typically cannot account for positive water tables (i.e., flooding). Interestingly, while these distinct hydrological approaches to identify wetlands are complementary, merging them does not provide critical data needed to model wetlands for methane studies. We present a new integrated framework for modeling wetlands, and ultimately their methane emissions, that exploits the extensive body of data and information on wetlands. The foundation of the approach is an existing global gridded data set comprising all and only wetlands, including vegetation information. This data set is augmented with data inter alia on climate, inundation dynamics, soil type and soil carbon, permafrost, active-layer depth, growth form, and species composition. We investigate this enhanced wetland data set to identify which variables best explain occurrence and characteristics of observed

  13. Connecting carbon and nitrogen storage in rural wetland soil to groundwater abstraction for urban water supply.

    Science.gov (United States)

    Lewis, David Bruce; Feit, Sharon J

    2015-04-01

    We investigated whether groundwater abstraction for urban water supply diminishes the storage of carbon (C), nitrogen (N), and organic matter in the soil of rural wetlands. Wetland soil organic matter (SOM) benefits air and water quality by sequestering large masses of C and N. Yet, the accumulation of wetland SOM depends on soil inundation, so we hypothesized that groundwater abstraction would diminish stocks of SOM, C, and N in wetland soils. Predictions of this hypothesis were tested in two types of subtropical, depressional-basin wetland: forested swamps and herbaceous-vegetation marshes. In west-central Florida, >650 ML groundwater day(-1) are abstracted for use primarily in the Tampa Bay metropolis. At higher abstraction volumes, water tables were lower and wetlands had shorter hydroperiods (less time inundated). In turn, wetlands with shorter hydroperiods had 50-60% less SOM, C, and N per kg soil. In swamps, SOM loss caused soil bulk density to double, so areal soil C and N storage per m(2) through 30.5 cm depth was diminished by 25-30% in short-hydroperiod swamps. In herbaceous-vegetation marshes, short hydroperiods caused a sharper decline in N than in C. Soil organic matter, C, and N pools were not correlated with soil texture or with wetland draining-reflooding frequency. Many years of shortened hydroperiod were probably required to diminish soil organic matter, C, and N pools by the magnitudes we observed. This diminution might have occurred decades ago, but could be maintained contemporarily by the failure each year of chronically drained soils to retain new organic matter inputs. In sum, our study attributes the contraction of hydroperiod and loss of soil organic matter, C, and N from rural wetlands to groundwater abstraction performed largely for urban water supply, revealing teleconnections between rural ecosystem change and urban resource demand. © 2014 John Wiley & Sons Ltd.

  14. Modeling the potential impacts of climate change on the water table level of selected forested wetlands in the southeastern United States

    Science.gov (United States)

    Zhu, Jie; Sun, Ge; Li, Wenhong; Zhang, Yu; Miao, Guofang; Noormets, Asko; McNulty, Steve G.; King, John S.; Kumar, Mukesh; Wang, Xuan

    2017-12-01

    The southeastern United States hosts extensive forested wetlands, providing ecosystem services including carbon sequestration, water quality improvement, groundwater recharge, and wildlife habitat. However, these wetland ecosystems are dependent on local climate and hydrology, and are therefore at risk due to climate and land use change. This study develops site-specific empirical hydrologic models for five forested wetlands with different characteristics by analyzing long-term observed meteorological and hydrological data. These wetlands represent typical cypress ponds/swamps, Carolina bays, pine flatwoods, drained pocosins, and natural bottomland hardwood ecosystems. The validated empirical models are then applied at each wetland to predict future water table changes using climate projections from 20 general circulation models (GCMs) participating in Coupled Model Inter-comparison Project 5 (CMIP5) under the Representative Concentration Pathways (RCPs) 4.5 and 8.5 scenarios. We show that combined future changes in precipitation and potential evapotranspiration would significantly alter wetland hydrology including groundwater dynamics by the end of the 21st century. Compared to the historical period, all five wetlands are predicted to become drier over time. The mean water table depth is predicted to drop by 4 to 22 cm in response to the decrease in water availability (i.e., precipitation minus potential evapotranspiration) by the year 2100. Among the five examined wetlands, the depressional wetland in hot and humid Florida appears to be most vulnerable to future climate change. This study provides quantitative information on the potential magnitude of wetland hydrological response to future climate change in typical forested wetlands in the southeastern US.

  15. Modeling the potential impacts of climate change on the water table level of selected forested wetlands in the southeastern United States

    Directory of Open Access Journals (Sweden)

    J. Zhu

    2017-12-01

    Full Text Available The southeastern United States hosts extensive forested wetlands, providing ecosystem services including carbon sequestration, water quality improvement, groundwater recharge, and wildlife habitat. However, these wetland ecosystems are dependent on local climate and hydrology, and are therefore at risk due to climate and land use change. This study develops site-specific empirical hydrologic models for five forested wetlands with different characteristics by analyzing long-term observed meteorological and hydrological data. These wetlands represent typical cypress ponds/swamps, Carolina bays, pine flatwoods, drained pocosins, and natural bottomland hardwood ecosystems. The validated empirical models are then applied at each wetland to predict future water table changes using climate projections from 20 general circulation models (GCMs participating in Coupled Model Inter-comparison Project 5 (CMIP5 under the Representative Concentration Pathways (RCPs 4.5 and 8.5 scenarios. We show that combined future changes in precipitation and potential evapotranspiration would significantly alter wetland hydrology including groundwater dynamics by the end of the 21st century. Compared to the historical period, all five wetlands are predicted to become drier over time. The mean water table depth is predicted to drop by 4 to 22 cm in response to the decrease in water availability (i.e., precipitation minus potential evapotranspiration by the year 2100. Among the five examined wetlands, the depressional wetland in hot and humid Florida appears to be most vulnerable to future climate change. This study provides quantitative information on the potential magnitude of wetland hydrological response to future climate change in typical forested wetlands in the southeastern US.

  16. 77 FR 63326 - Huron Wetland Management District, Madison Wetland Management District, and Sand Lake Wetland...

    Science.gov (United States)

    2012-10-16

    ..., consistent with sound principles of fish and wildlife management, conservation, legal mandates, and our... FXRS1265066CCP0] Huron Wetland Management District, Madison Wetland Management District, and Sand Lake Wetland Management District, SD; Final Comprehensive Conservation Plan and Finding of No Significant Impact for...

  17. Sediment transport in the San Francisco Bay Coastal System: An overview

    Science.gov (United States)

    Barnard, Patrick L.; Schoellhamer, David H.; Jaffe, Bruce E.; Lester J. McKee,

    2013-01-01

    The papers in this special issue feature state-of-the-art approaches to understanding the physical processes related to sediment transport and geomorphology of complex coastal-estuarine systems. Here we focus on the San Francisco Bay Coastal System, extending from the lower San Joaquin-Sacramento Delta, through the Bay, and along the adjacent outer Pacific Coast. San Francisco Bay is an urbanized estuary that is impacted by numerous anthropogenic activities common to many large estuaries, including a mining legacy, channel dredging, aggregate mining, reservoirs, freshwater diversion, watershed modifications, urban run-off, ship traffic, exotic species introductions, land reclamation, and wetland restoration. The Golden Gate strait is the sole inlet connecting the Bay to the Pacific Ocean, and serves as the conduit for a tidal flow of ~ 8 x 109 m3/day, in addition to the transport of mud, sand, biogenic material, nutrients, and pollutants. Despite this physical, biological and chemical connection, resource management and prior research have often treated the Delta, Bay and adjacent ocean as separate entities, compartmentalized by artificial geographic or political boundaries. The body of work herein presents a comprehensive analysis of system-wide behavior, extending a rich heritage of sediment transport research that dates back to the groundbreaking hydraulic mining-impact research of G.K. Gilbert in the early 20th century.

  18. East African wetland-catchment data base for sustainable wetland management

    Science.gov (United States)

    Leemhuis, Constanze; Amler, Esther; Diekkrüger, Bernd; Gabiri, Geofrey; Näschen, Kristian

    2016-10-01

    Wetlands cover an area of approx. 18 Mio ha in the East African countries of Kenya, Rwanda, Uganda and Tanzania, with still a relative small share being used for food production. Current upland agricultural use intensification in these countries due to demographic growth, climate change and globalization effects are leading to an over-exploitation of the resource base, followed by an intensification of agricultural wetland use. We aim on translating, transferring and upscaling knowledge on experimental test-site wetland properties, small-scale hydrological processes, and water related ecosystem services under different types of management from local to national scale. This information gained at the experimental wetland/catchment scale will be embedded as reference data within an East African wetland-catchment data base including catchment physical properties and a regional wetland inventory serving as a base for policy advice and the development of sustainable wetland management strategies.

  19. East African wetland-catchment data base for sustainable wetland management

    Directory of Open Access Journals (Sweden)

    C. Leemhuis

    2016-10-01

    Full Text Available Wetlands cover an area of approx. 18 Mio ha in the East African countries of Kenya, Rwanda, Uganda and Tanzania, with still a relative small share being used for food production. Current upland agricultural use intensification in these countries due to demographic growth, climate change and globalization effects are leading to an over-exploitation of the resource base, followed by an intensification of agricultural wetland use. We aim on translating, transferring and upscaling knowledge on experimental test-site wetland properties, small-scale hydrological processes, and water related ecosystem services under different types of management from local to national scale. This information gained at the experimental wetland/catchment scale will be embedded as reference data within an East African wetland-catchment data base including catchment physical properties and a regional wetland inventory serving as a base for policy advice and the development of sustainable wetland management strategies.

  20. Numerical modeling of the effects of Hurricane Sandy and potential future hurricanes on spatial patterns of salt marsh morphology in Jamaica Bay, New York City

    Science.gov (United States)

    Wang, Hongqing; Chen, Qin; Hu, Kelin; Snedden, Gregg A.; Hartig, Ellen K.; Couvillion, Brady R.; Johnson, Cody L.; Orton, Philip M.

    2017-03-29

    The salt marshes of Jamaica Bay, managed by the New York City Department of Parks & Recreation and the Gateway National Recreation Area of the National Park Service, serve as a recreational outlet for New York City residents, mitigate flooding, and provide habitat for critical wildlife species. Hurricanes and extra-tropical storms have been recognized as one of the critical drivers of coastal wetland morphology due to their effects on hydrodynamics and sediment transport, deposition, and erosion processes. However, the magnitude and mechanisms of hurricane effects on sediment dynamics and associated coastal wetland morphology in the northeastern United States are poorly understood. In this study, the depth-averaged version of the Delft3D modeling suite, integrated with field measurements, was utilized to examine the effects of Hurricane Sandy and future potential hurricanes on salt marsh morphology in Jamaica Bay, New York City. Hurricane Sandy-induced wind, waves, storm surge, water circulation, sediment transport, deposition, and erosion were simulated by using the modeling system in which vegetation effects on flow resistance, surge reduction, wave attenuation, and sedimentation were also incorporated. Observed marsh elevation change and accretion from a rod surface elevation table and feldspar marker horizons and cesium-137- and lead-210-derived long-term accretion rates were used to calibrate and validate the wind-waves-surge-sediment transport-morphology coupled model.The model results (storm surge, waves, and marsh deposition and erosion) agreed well with field measurements. The validated modeling system was then used to detect salt marsh morphological change due to Hurricane Sandy across the entire Jamaica Bay over the short-term (for example, 4 days and 1 year) and long-term (for example, 5 and 10 years). Because Hurricanes Sandy (2012) and Irene (2011) were two large and destructive tropical cyclones which hit the northeast coast, the validated coupled

  1. Bridging the conservation design and delivery gap for wetland bird habitat maintenance and restoration in the Midwestern United States

    Science.gov (United States)

    Thogmartin, W.E.; Potter, B.; Soulliere, G.

    2011-01-01

    The U.S. Fish and Wildlife Service's adoption of Strategic Habitat Conservation is intended to increase the effectiveness and efficiency of conservation delivery by targeting effort in areas where biological benefits are greatest. Conservation funding has not often been allocated in accordance with explicit biological endpoints, and the gap between conservation design (the identification of conservation priority areas) and delivery needs to be bridged to better meet conservation goals for multiple species and landscapes. We introduce a regional prioritization scheme for North American Wetlands Conservation Act funding which explicitly addresses Midwest regional goals for wetland-dependent birds. We developed decision-support maps to guide conservation of breeding and non-breeding wetland bird habitat. This exercise suggested ~55% of the Midwest consists of potential wetland bird habitat, and areas suited for maintenance (protection) were distinguished from those most suited to restoration. Areas with greater maintenance focus were identified for central Minnesota, southeastern Wisconsin, the Upper Mississippi and Illinois rivers, and the shore of western Lake Erie and Saginaw Bay. The shores of Lakes Michigan and Superior accommodated fewer waterbird species overall, but were also important for wetland bird habitat maintenance. Abundant areas suited for wetland restoration occurred in agricultural regions of central Illinois, western Iowa, and northern Indiana and Ohio. Use of this prioritization scheme can increase effectiveness, efficiency, transparency, and credibility to land and water conservation efforts for wetland birds in the Midwestern United States.

  2. Estimating environmental conditions affecting protozoal pathogen removal in surface water wetland systems using a multi-scale, model-based approach.

    Science.gov (United States)

    Daniels, Miles E; Hogan, Jennifer; Smith, Woutrina A; Oates, Stori C; Miller, Melissa A; Hardin, Dane; Shapiro, Karen; Los Huertos, Marc; Conrad, Patricia A; Dominik, Clare; Watson, Fred G R

    2014-09-15

    Cryptosporidium parvum, Giardia lamblia, and Toxoplasma gondii are waterborne protozoal pathogens distributed worldwide and empirical evidence suggests that wetlands reduce the concentrations of these pathogens under certain environmental conditions. The goal of this study was to evaluate how protozoal removal in surface water is affected by the water temperature, turbidity, salinity, and vegetation cover of wetlands in the Monterey Bay region of California. To examine how protozoal removal was affected by these environmental factors, we conducted observational experiments at three primary spatial scales: settling columns, recirculating wetland mesocosm tanks, and an experimental research wetland (Molera Wetland). Simultaneously, we developed a protozoal transport model for surface water to simulate the settling columns, the mesocosm tanks, and the Molera Wetland. With a high degree of uncertainty expected in the model predictions and field observations, we developed the model within a Bayesian statistical framework. We found protozoal removal increased when water flowed through vegetation, and with higher levels of turbidity, salinity, and temperature. Protozoal removal in surface water was maximized (~0.1 hour(-1)) when flowing through emergent vegetation at 2% cover, and with a vegetation contact time of ~30 minutes compared to the effects of temperature, salinity, and turbidity. Our studies revealed that an increase in vegetated wetland area, with water moving through vegetation, would likely improve regional water quality through the reduction of fecal protozoal pathogen loads. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. User-Friendly Predictive Modeling of Greenhouse Gas (GHG) Fluxes and Carbon Storage in Tidal Wetlands

    Science.gov (United States)

    Ishtiaq, K. S.; Abdul-Aziz, O. I.

    2015-12-01

    We developed user-friendly empirical models to predict instantaneous fluxes of CO2 and CH4 from coastal wetlands based on a small set of dominant hydro-climatic and environmental drivers (e.g., photosynthetically active radiation, soil temperature, water depth, and soil salinity). The dominant predictor variables were systematically identified by applying a robust data-analytics framework on a wide range of possible environmental variables driving wetland greenhouse gas (GHG) fluxes. The method comprised of a multi-layered data-analytics framework, including Pearson correlation analysis, explanatory principal component and factor analyses, and partial least squares regression modeling. The identified dominant predictors were finally utilized to develop power-law based non-linear regression models to predict CO2 and CH4 fluxes under different climatic, land use (nitrogen gradient), tidal hydrology and salinity conditions. Four different tidal wetlands of Waquoit Bay, MA were considered as the case study sites to identify the dominant drivers and evaluate model performance. The study sites were dominated by native Spartina Alterniflora and characterized by frequent flooding and high saline conditions. The model estimated the potential net ecosystem carbon balance (NECB) both in gC/m2 and metric tonC/hectare by up-scaling the instantaneous predicted fluxes to the growing season and accounting for the lateral C flux exchanges between the wetlands and estuary. The entire model was presented in a single Excel spreadsheet as a user-friendly ecological engineering tool. The model can aid the development of appropriate GHG offset protocols for setting monitoring plans for tidal wetland restoration and maintenance projects. The model can also be used to estimate wetland GHG fluxes and potential carbon storage under various IPCC climate change and sea level rise scenarios; facilitating an appropriate management of carbon stocks in tidal wetlands and their incorporation into a

  4. Using Tradtional Ecological Knowledge to Protect Wetlands: the Swinomish Tribe's Wetland Cultural Assessment Project

    Science.gov (United States)

    Mitchell, T.

    2017-12-01

    "Traditional" wetland physical assessment modules do not adequately identify Tribal cultural values of wetlands and thus wetlands may not be adequately protected for cultural uses. This Swinomish Wetlands Cultural Assessment Project has developed a cultural resource scoring module that can be incorporated into wetland assessments to better inform wetland protections. Local native knowledge was gathered about the traditional uses of 99 native wetland plant species. A cultural scoring matrix was developed based on the presence of traditionally used plants in several use categories including: construction, ceremonial, subsistence, medicinal, common use, plant rarity, and place of value for each wetland. The combined score of the cultural and physcial modules provides an overall wetland score that relates to proscribed buffer protection widths. With this local native knowledge incorporated into wetland assessments, we are protecting and preserving Swinomish Reservation wetlands for both cultural uses and ecological functionality through the Tribe's wetland protection law.

  5. Dengue fever in the San Juan Bay Estuary: Evaluating the Role of Wetland Ecosystem Services

    Science.gov (United States)

    Dengue is transmitted by Aedes aegypti, a species that thrives in cities. Here we ask which elements within the urban environment could be managed to reduce the potential for Dengue occurrence. In particular, we study the potential of wetlands in the SJBE to buffer from vector pr...

  6. A Mechanistically Informed User-Friendly Model to Predict Greenhouse Gas (GHG) Fluxes and Carbon Storage from Coastal Wetlands

    Science.gov (United States)

    Abdul-Aziz, O. I.; Ishtiaq, K. S.

    2015-12-01

    We present a user-friendly modeling tool on MS Excel to predict the greenhouse gas (GHG) fluxes and estimate potential carbon sequestration from the coastal wetlands. The dominant controls of wetland GHG fluxes and their relative mechanistic linkages with various hydro-climatic, sea level, biogeochemical and ecological drivers were first determined by employing a systematic data-analytics method, including Pearson correlation matrix, principal component and factor analyses, and exploratory partial least squares regressions. The mechanistic knowledge and understanding was then utilized to develop parsimonious non-linear (power-law) models to predict wetland carbon dioxide (CO2) and methane (CH4) fluxes based on a sub-set of climatic, hydrologic and environmental drivers such as the photosynthetically active radiation, soil temperature, water depth, and soil salinity. The models were tested with field data for multiple sites and seasons (2012-13) collected from the Waquoit Bay, MA. The model estimated the annual wetland carbon storage by up-scaling the instantaneous predicted fluxes to an extended growing season (e.g., May-October) and by accounting for the net annual lateral carbon fluxes between the wetlands and estuary. The Excel Spreadsheet model is a simple ecological engineering tool for coastal carbon management and their incorporation into a potential carbon market under a changing climate, sea level and environment. Specifically, the model can help to determine appropriate GHG offset protocols and monitoring plans for projects that focus on tidal wetland restoration and maintenance.

  7. Nitrate fate and transport through current and former depressional wetlands in an agricultural landscape, Choptank Watershed, Maryland, United States

    Science.gov (United States)

    Denver, J.M.; Ator, S.W.; Lang, M.W.; Fisher, T.R.; Gustafson, A.B.; Fox, R.; Clune, J.W.; McCarty, G.W.

    2014-01-01

    Understanding local groundwater hydrology and geochemistry is critical for evaluating the effectiveness of wetlands at mitigating agricultural impacts on surface waters. The effectiveness of depressional wetlands at mitigating nitrate (NO3) transport from fertilized row crops, through groundwater, to local streams was examined in the watershed of the upper Choptank River, a tributary of Chesapeake Bay on the Atlantic Coastal Plain. Hydrologic, geochemical, and water quality data were collected from January of 2008 through December of 2009 from surface waters and networks of piezometers installed in and around current or former depressional wetlands of three major types along a gradient of anthropogenic alteration: (1) natural wetlands with native vegetation (i.e., forested); (2) prior-converted croplands, which are former wetlands located in cultivated fields; and (3) hydrologically restored wetlands, including one wetland restoration and one shallow water management area. These data were collected to estimate the orientation of groundwater flow paths and likely interactions of groundwater containing NO3 from agricultural sources with reducing conditions associated with wetlands of different types. Natural wetlands were found to have longer periods of soil saturation and reducing conditions conducive to denitrification compared to the other wetland types studied. Because natural wetlands are typically located in groundwater recharge areas along watershed divides, nitrogen (N) from nearby agriculture was not intercepted. However, these wetlands likely improve water quality in adjacent streams via dilution. Soil and geochemical conditions conducive to denitrification were also present in restored wetlands and prior-converted croplands, and substantial losses of agricultural NO3 were observed in groundwater flowing through these wetland sediments. However, delivery of NO3 from agricultural areas through groundwater to these wetlands resulting in opportunities for

  8. Introduction to the Wetland Book 1: Wetland structure and function, management, and nethods

    Science.gov (United States)

    Davidson, Nick C.; Middleton, Beth A.; McInnes, Robert J.; Everard, Mark; Irvine, Kenneth; Van Dam, Anne A.; Finlayson, C. Max; Finlayson, C. Max; Everard, Mark; Irvine, Kenneth; McInnes, Robert J.; Middleton, Beth A.; Van Dam, Anne A.; Davidson, Nick C.

    2016-01-01

    The Wetland Book 1 is designed as a ‘first port-of-call’ reference work for information on the structure and functions of wetlands, current approaches to wetland management, and methods for researching and understanding wetlands. Contributions by experts summarize key concepts, orient the reader to the major issues, and support further research on such issues by individuals and multidisciplinary teams. The Wetland Book 1 is organized in three parts - Wetland structure and function; Wetland management; and Wetland methods - each of which is divided into a number of thematic Sections. Each Section starts with one or more overview chapters, supported by chapters providing further information and case studies on different aspects of the theme.

  9. Humboldt Bay Wetlands Review and Baylands Analysis. Volume I. Summary and Findings.

    Science.gov (United States)

    1980-08-01

    the best and most compatible economic, environmental, and social uses of the Humboldt Bay area. Such data includes inven- tories of uses and conditions... personal communication). Since 1973, 22 general permits have been granted by the Harbor District; of these, there were 3 for submarine pipeline/cable...other water charateristics determine the type and abundance. Distribution Water habitats are distributed throughout the study area. Deep and shallow

  10. Modelling Holocene carbon accumulation and methane emissions of boreal wetlands – an Earth system model approach

    Directory of Open Access Journals (Sweden)

    R. J. Schuldt

    2013-03-01

    Full Text Available Since the Last Glacial Maximum, boreal wetlands have accumulated substantial amounts of peat, estimated at 180–621 Pg of carbon. Wetlands have significantly affected the atmospheric greenhouse gas composition in the past and will play a significant role in future changes of atmospheric CO2 and CH4 concentrations. In order to investigate those changes with an Earth system model, biogeochemical processes in boreal wetlands need to be accounted for. Thus, a model of peat accumulation and decay was developed and included in the land surface model JSBACH of the Max Planck Institute Earth System Model (MPI-ESM. Here we present the evaluation of model results from 6000 yr BP to the pre-industrial period. Over this period of time, 240 Pg of peat carbon accumulated in the model in the areas north of 40° N. Simulated peat accumulation rates agree well with those reported for boreal wetlands. The model simulates CH4 emissions of 49.3 Tg CH4 yr−1 for 6000 yr BP and 51.5 Tg CH4 yr−1 for pre-industrial times. This is within the range of estimates in the literature, which range from 32 to 112 Tg CH4 yr−1 for boreal wetlands. The modelled methane emission for the West Siberian Lowlands and Hudson Bay Lowlands agree well with observations. The rising trend of methane emissions over the last 6000 yr is in agreement with measurements of Antarctic and Greenland ice cores.

  11. Producing a satellite-derived map and modelling Spartina alterniflora expansion for Willapa Bay in Washington State

    Science.gov (United States)

    Berlin, Cynthia Jane

    1998-12-01

    This research addresses the identification of the areal extent of the intertidal wetlands of Willapa Bay, Washington, and the evaluation of the potential for exotic Spartina alterniflora (smooth cordgrass) expansion in the bay using a spatial geographic approach. It is hoped that the results will address not only the management needs of the study area but provide a research design that may be applied to studies of other coastal wetlands. Four satellite images, three Landsat Multi-Spectral (MSS) and one Thematic Mapper (TM), are used to derive a map showing areas of water, low, middle and high intertidal, and upland. Two multi-date remote sensing mapping techniques are assessed: a supervised classification using density-slicing and an unsupervised classification using an ISODATA algorithm. Statistical comparisons are made between the resultant derived maps and the U.S.G.S. topographic maps for the Willapa Bay area. The potential for Spartina expansion in the bay is assessed using a sigmoidal (logistic) growth model and a spatial modelling procedure for four possible growth scenarios: without management controls (Business-as-Usual), with moderate management controls (e.g. harvesting to eliminate seed setting), under a hypothetical increase in the growth rate that may reflect favorable environmental changes, and under a hypothetical decrease in the growth rate that may reflect aggressive management controls. Comparisons for the statistics of the two mapping techniques suggest that although the unsupervised classification method performed satisfactorily, the supervised classification (density-slicing) method provided more satisfactory results. Results from the modelling of potential Spartina expansion suggest that Spartina expansion will proceed rapidly for the Business-as-Usual and hypothetical increase in the growth rate scenario, and at a slower rate for the elimination of seed setting and hypothetical decrease in the growth rate scenarios, until all potential

  12. Reduction of neonicotinoid insecticide residues in Prairie wetlands by common wetland plants.

    Science.gov (United States)

    Main, Anson R; Fehr, Jessica; Liber, Karsten; Headley, John V; Peru, Kerry M; Morrissey, Christy A

    2017-02-01

    Neonicotinoid insecticides are frequently detected in wetlands during the early to mid-growing period of the Canadian Prairie cropping season. These detections also overlap with the growth of macrophytes that commonly surround agricultural wetlands which we hypothesized may reduce neonicotinoid transport and retention in wetlands. We sampled 20 agricultural wetlands and 11 macrophyte species in central Saskatchewan, Canada, over eight weeks to investigate whether macrophytes were capable of reducing movement of neonicotinoids from cultivated fields and/or reducing concentrations in surface water by accumulating insecticide residues into their tissues. Study wetlands were surrounded by clothianidin-treated canola and selected based on the presence (n=10) or absence (n=10) of a zonal plant community. Neonicotinoids were positively detected in 43% of wetland plants, and quantified in 8% of all plant tissues sampled. Three plant species showed high rates of detection: 78% Equisetum arvense (clothianidin, range: wetlands had higher detection frequency and water concentrations of clothianidin (β±S.E.: -0.77±0.26, P=0.003) and thiamethoxam (β±S.E.: -0.69±0.35, P=0.049) than vegetated wetlands. We assessed the importance of wetland characteristics (e.g. vegetative zone width, emergent plant height, water depth) on neonicotinoid concentrations in Prairie wetlands over time using linear mixed-effects models. Clothianidin concentrations were significantly lower in wetlands surrounded by taller plants (β±S.E.: -0.57±0.12, P≤0.001). The results of this study suggest that macrophytes can play an important role in mitigating water contamination by accumulating neonicotinoids and possibly slowing transport to wetlands during the growing season. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Constructed Wetlands

    Science.gov (United States)

    these systems can improve water quality, engineers and scientists construct systems that replicate the functions of natural wetlands. Constructed wetlands are treatment systems that use natural processes

  14. "Wetlands: Water Living Filters?",

    OpenAIRE

    Dordio, Ana; Palace, A. J.; Pinto, Ana Paula

    2008-01-01

    Human societies have indirectly used natural wetlands as wastewater discharge sites for many centuries. Observations of the wastewater depuration capacity of natural wetlands have led to a greater understanding of the potential of these ecosystems for pollutant assimilation and have stimulated the development of artificial wetlands systems for treatment of wastewaters from a variety of sources. Constructed wetlands, in contrast to natural wetlands, are human-made systems that are designed, bu...

  15. Managing for No Net Loss of Ecological Services: An Approach for Quantifying Loss of Coastal Wetlands due to Sea Level Rise.

    Science.gov (United States)

    Kassakian, Jennifer; Jones, Ann; Martinich, Jeremy; Hudgens, Daniel

    2017-05-01

    Sea level rise has the potential to substantially alter the extent and nature of coastal wetlands and the critical ecological services they provide. In making choices about how to respond to rising sea level, planners are challenged with weighing easily quantified risks (e.g., loss of property value due to inundation) against those that are more difficult to quantify (e.g., loss of primary production or carbon sequestration services provided by wetlands due to inundation). Our goal was to develop a cost-effective, appropriately-scaled, model-based approach that allows planners to predict, under various sea level rise and response scenarios, the economic cost of wetland loss-with the estimates proxied by the costs of future restoration required to maintain the existing level of wetland habitat services. Our approach applies the Sea Level Affecting Marshes Model to predict changes in wetland habitats over the next century, and then applies Habitat Equivalency Analysis to predict the cost of restoration projects required to maintain ecological services at their present, pre-sea level rise level. We demonstrate the application of this approach in the Delaware Bay estuary and in the Indian River Lagoon (Florida), and discuss how this approach can support future coastal decision-making.

  16. Metro Multnomah Wetlands - Multnomah Channel Wetland Restoration Monitoring Project

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Multnomah Channel Wetland Restoration Monitoring Project characterizes wetlands use by juvenile salmonids and other fishes in the Multnomah Channel Marsh Natural...

  17. Wetlands: The changing regulatory landscape

    International Nuclear Information System (INIS)

    Glick, R.M.

    1993-01-01

    Protection of wetlands became a national issue in 1988 when President George Bush pledged no net loss of wetlands in the US under his open-quotes environmental presidency.close quotes As wetlands became a national issue, the job of protecting them became an obligation for many groups, including hydro-power developers. Now, when a site selected for development includes an area that may be classified as a wetland, the developer quickly discovers the importance of recognizing and protecting these natural habitats. Federal legislation severely limits development of wetland, and most states increase the restrictions with their own wetlands regulations. The difficulty of defining wetlands complicates federal and state enforcement. Land that appears to be dry may in fact be classified as a wetland. So, even if a site appears dry, potential hydro developers must confirm whether or not any jurisdictional wetlands are present. Regulated lands include much more than marshes and swamps. Further complicating the definition of wetlands, a recent court decision found that even artificially created wetlands, such as man-made ponds, may be subject to regulation. Hydro developers must be aware of current regulatory requirements before they consider development of any site that may contain wetlands. To be certain that a site is open-quotes buildableclose quotes from the standpoint of wetlands regulation, a developer must verify (with the help of state agencies) that the property does not contain any jurisdictional wetlands. If it does, the regulatory process before development becomes much more complicated. For the short term, uncertainty abounds and extreme caution is in order. Because the regulatory process has become so complex and an agreeable definition of wetlands so elusive, the trend among the Corps and collaborating agencies is to constrict nationwide permits in favor of narrowing the jurisdictional definition of wetlands

  18. Holocene depocenter migration and sediment accumulation in Delaware Bay: A submerging marginal marine sedimentary basin

    Science.gov (United States)

    Fletcher, C. H.; Knebel, H.J.; Kraft, J.C.

    1992-01-01

    The Holocene transgression of the Delaware Bay estuary and adjacent Atlantic coast results from the combined effect of regional crustal subsidence and eustasy. Together, the estuary and ocean coast constitute a small sedimentary basin whose principal depocenter has migrated with the transgression. A millenial time series of isopach and paleogeographic reconstructions for the migrating depocenter outlines the basin-wide pattern of sediment distribution and accumulation. Upland sediments entering the basin through the estuarine turbidity maximum accumulate in tidal wetland or open water sedimentary environments. Wind-wave activity at the edge of the tidal wetlands erodes the aggraded Holocene section and builds migrating washover barriers. Along the Atlantic and estuary coasts of Delaware, the area of the upland environment decreases from 2.0 billion m2 to 730 million m2 during the transgression. The area of the tidal wetland environment increases from 140 million to 270 million m2, and due to the widening of the estuary the area of open water increases from 190 million to 1.21 billion m2. Gross uncorrected rates of sediment accumulation for the tidal wetlands decrease from 0.64 mm/yr at 6 ka to 0.48 mm/yr at 1 ka. In the open water environments uncorrected rates decrease from 0.50 mm/yr to 0.04 mm/yr over the same period. We also present data on total sediment volumes within the tidal wetland and open water environments at specific intervals during the Holocene. 

  19. Spatial patterning of water quality in Biscayne Bay, Florida as a function of land use and water management.

    Science.gov (United States)

    Caccia, Valentina G; Boyer, Joseph N

    2005-11-01

    An objective classification analysis was performed on a water quality data set from 25 sites collected monthly during 1994-2003. The water quality parameters measured included: TN, TON, DIN, NH4+, NO3-, NO2-, TP, SRP, TN:TP ratio, TOC, DO, CHL A, turbidity, salinity and temperature. Based on this spatial analysis, Biscayne Bay was divided into five zones having similar water quality characteristics. A robust nutrient gradient, driven mostly by dissolved inorganic nitrogen, from alongshore to offshore in the main Bay, was a large determinant in the spatial clustering. Two of these zones (Alongshore and Inshore) were heavily influenced by freshwater input from four canals which drain the South Dade agricultural area, Black Point Landfill, and sewage treatment plant. The North Bay zone, with high turbidity, phytoplankton biomass, total phosphorus, and low DO, was affected by runoff from five canals, the Munisport Landfill, and the urban landscape. The South Bay zone, an embayment surrounded by mangrove wetlands with little urban development, was high in dissolved organic constituents but low in inorganic nutrients. The Main Bay was the area most influenced by water exchange with the Atlantic Ocean and showed the lowest nutrient concentrations. The water quality in Biscayne Bay is therefore highly dependent of the land use and influence from the watershed.

  20. Forested wetland habitat

    Science.gov (United States)

    Duberstein, Jamie A.; Krauss, Ken W.; Kennish, Michael J.

    2015-01-01

    A forested wetland (swamp) is a forest where soils are saturated or flooded for at least a portion of the growing season, and vegetation, dominated by trees, is adapted to tolerate flooded conditions. A tidal freshwater forested wetland is a forested wetland that experiences frequent but short-term surface flooding via tidal action, with average salinity of soil porewater less than 0.5 g/l. It is known locally as tidal várzea in the Amazon delta, Brazil. A tidal saltwater forested wetland (mangrove forest) is a forested wetland that experiences frequent but short-term surface flooding via tidal action, with average salinity often exceeding 3 g/l and reaching levels that can exceed seawater. Mangrove ecosystems are composed of facultative halophytes that generally experience better growth at moderate salinity concentrations.

  1. National Wetlands Inventory Lines

    Data.gov (United States)

    Minnesota Department of Natural Resources — Linear wetland features (including selected streams, ditches, and narrow wetland bodies) mapped as part of the National Wetlands Inventory (NWI). The National...

  2. Freshwater Wetlands: A Citizen's Primer.

    Science.gov (United States)

    Catskill Center for Conservation and Development, Inc., Hobart, NY.

    The purpose of this "primer" for the general public is to describe the general characteristics of wetlands and how wetland alteration adversely affects the well-being of humans. Particular emphasis is placed on wetlands in New York State and the northeast. Topics discussed include wetland values, destruction of wetlands, the costs of…

  3. Wise use of wetlands: current state of protection and utilization of Chinese wetlands and recommendations for improvement.

    Science.gov (United States)

    Wang, Yanxia; Yao, Yong; Ju, Meiting

    2008-06-01

    Wetland protection and utilization sometimes appear to be in conflict, but promoting the wise use of wetlands can solve this problem. All countries face the challenge of sustainable development of wetlands to a greater or lesser extent, but the problem is especially urgent in developing countries, such as China, that want to accelerate their economic development without excessive environmental cost. Chinese wetlands contribute greatly to economic development, but improper use of these natural resources has endangered their existence. It is thus necessary to provide scientific guidance to managers and users of wetlands. In this paper, we analyze the present status of Chinese wetland protection and utilization, and discuss problems in six categories: a lack of public awareness of the need for wetland protection; insufficient funding for wetland protection and management; an imperfect legal system to protect wetlands; insufficient wetland research; lack of coordination among agencies and unclear responsibilities; and undeveloped technologies related to wetland use and protection. The wise use of Chinese wetlands will require improvements in four main areas: increased wetland utilization research, scientific management of wetland utilization, improved laws and regulations to protect wetlands, and wider dissemination of wetland knowledge. Based on these categories, we propose a framework for the optimization of wetland use by industry to provide guidance for China and other countries that cannot sacrifice economic benefits to protect their wetlands.

  4. Pipeline corridors through wetlands

    International Nuclear Information System (INIS)

    Zimmerman, R.E.; Wilkey, P.L.; Isaacson, H.R.

    1992-01-01

    This paper presents preliminary findings from six vegetational surveys of gas pipeline rights-of-way (ROW) through wetlands and quantifies the impacts of a 20-year-old pipeline ROW through a boreal forest wetland. Six sites of various ages were surveyed in ecosystems ranging from coastal marsh to forested wetland. At all sites except one, both the number and the percentage of wetland species on the Row approximated or exceeded those in the adjacent natural area. The boreal forest study showed that (1) adjacent natural wetland areas were not altered in type; (2) water sheet flow restriction had been reversed by nature; (3) no nonnative plant species invaded the natural area; (4) three-quarters of the ROW area was a wetland, and (5) the ROW increased diversity

  5. The spatial distribution of soil organic carbon in tidal wetland soils of the continental United States.

    Science.gov (United States)

    Hinson, Audra L; Feagin, Rusty A; Eriksson, Marian; Najjar, Raymond G; Herrmann, Maria; Bianchi, Thomas S; Kemp, Michael; Hutchings, Jack A; Crooks, Steve; Boutton, Thomas

    2017-12-01

    Tidal wetlands contain large reservoirs of carbon in their soils and can sequester carbon dioxide (CO 2 ) at a greater rate per unit area than nearly any other ecosystem. The spatial distribution of this carbon influences climate and wetland policy. To assist with international accords such as the Paris Climate Agreement, national-level assessments such as the United States (U.S.) National Greenhouse Gas Inventory, and regional, state, local, and project-level evaluation of CO 2 sequestration credits, we developed a geodatabase (CoBluCarb) and high-resolution maps of soil organic carbon (SOC) distribution by linking National Wetlands Inventory data with the U.S. Soil Survey Geographic Database. For over 600,000 wetlands, the total carbon stock and organic carbon density was calculated at 5-cm vertical resolution from 0 to 300 cm of depth. Across the continental United States, there are 1,153-1,359 Tg of SOC in the upper 0-100 cm of soils across a total of 24 945.9 km 2 of tidal wetland area, twice as much carbon as the most recent national estimate. Approximately 75% of this carbon was found in estuarine emergent wetlands with freshwater tidal wetlands holding about 19%. The greatest pool of SOC was found within the Atchafalaya/Vermilion Bay complex in Louisiana, containing about 10% of the U.S. total. The average density across all tidal wetlands was 0.071 g cm -3 across 0-15 cm, 0.055 g cm -3 across 0-100 cm, and 0.040 g cm -3 at the 100 cm depth. There is inherent variability between and within individual wetlands; however, we conclude that it is possible to use standardized values at a range of 0-100 cm of the soil profile, to provide first-order quantification and to evaluate future changes in carbon stocks in response to environmental perturbations. This Tier 2-oriented carbon stock assessment provides a scientific method that can be copied by other nations in support of international requirements. © 2017 John Wiley & Sons Ltd.

  6. National Wetlands Inventory Polygons

    Data.gov (United States)

    Minnesota Department of Natural Resources — Wetland area features mapped as part of the National Wetlands Inventory (NWI). The National Wetlands Inventory is a national program sponsored by the US Fish and...

  7. Hydrological functions of a mine-impacted and natural peatland-dominated watershed, James Bay Lowland

    OpenAIRE

    Leclair, Melissa; Whittington, Pete; Price, Jonathan

    2015-01-01

    Study region: This study was conducted in Northern Ontario, Canada, in the middle of the Hudson-James Bay. Lowland: one of the world’s largest wetland complexes. Study focus: Northern latitudes are expected to be the most impacted by climate change in the next century and adding to this stressor are increased mineral exploration activities, such as the De Beers Victor Mine, a large open-pit diamond mine. Because of the extremely low relief and presence of marine sediments, horizontal runof...

  8. Characteristic community structure of Florida's subtropical wetlands: the Florida wetland condition index

    Science.gov (United States)

    Depending upon the classification scheme applied, there are between 10 and 45 different wetland types in Florida. Land use and land cover change has a marked effect on wetland condition, and different wetland types are affected differentially depending on many abiotic and biotic ...

  9. Determination of the health of Lunyangwa wetland using Wetland Classification and Risk Assessment Index

    Science.gov (United States)

    Wanda, Elijah M. M.; Mamba, Bhekie B.; Msagati, Titus A. M.; Msilimba, Golden

    2016-04-01

    Wetlands are major sources of various ecological goods and services including storage and distribution of water in space and time which help in ensuring the availability of surface and groundwater throughout the year. However, there still remains a poor understanding of the range of values of water quality parameters that occur in wetlands either in its impacted state or under natural conditions. It was thus imperative to determine the health of Lunyangwa wetland in Mzuzu City in Malawi in order to classify and determine its state. This study used the Escom's Wetland Classification and Risk Assessment Index Field Guide to determine the overall characteristics of Lunyangwa wetland and to calculate its combined Wetland Index Score. Data on site information, field measurements (i.e. EC, pH, temperature and DO) and physical characteristics of Lunyangwa wetland were collected from March, 2013 to February, 2014. Results indicate that Lunyangwa wetland is a largely open water zone which is dominated by free-floating plants on the water surface, beneath surface and emergent in substrate. Furthermore, the wetland can be classified as of a C ecological category (score = 60-80%), which has been moderately modified with moderate risks of the losses and changes occurring in the natural habitat and biota in the wetland. It was observed that the moderate modification and risk were largely because of industrial, agricultural, urban/social catchment stressors on the wetland. This study recommends an integrated and sustainable management approach coupled with continuous monitoring and evaluation of the health of the wetland for all stakeholders in Mzuzu City. This would help to maintain the health of Lunyangwa wetland which is currently at risk of being further modified due to the identified catchment stressors.

  10. Wetland Hydrology

    Science.gov (United States)

    This chapter discusses the state of the science in wetland hydrology by touching upon the major hydraulic and hydrologic processes in these complex ecosystems, their measurement/estimation techniques, and modeling methods. It starts with the definition of wetlands, their benefit...

  11. Constructed wetlands : the Canadian context

    Energy Technology Data Exchange (ETDEWEB)

    Speer, S.; Champagne, P. [Queen' s Univ., Kingston, ON (Canada). Dept. of Civil Engineering

    2006-07-01

    Large volumes of wastewater from livestock and production facilities must be treated to minimize the contamination of waterways in agricultural areas. This paper investigated the use of constructed wetlands as a lower-cost and efficient method of treating agricultural wastewaters. The study found that while constructed wetlands required limited maintenance, temperature dependency of the constructed wetlands systems is a limiting factor in their widespread implementation. Lower operating temperatures are only overcome by constructing larger wetlands systems, which require a substantial amount of land. The Canadian climate poses significant challenges to the implementation of constructed wetlands, which become inoperative during winter months. Plants and bacteria normally become dormant or die during winter months, which can create a lag in wetland treatment during the initial months of operation in the Spring. Snowmelt and added rainfall in the Spring can also create a high flow within the wetland cells, as many constructed wetlands rely on runoff as a feed source. Washout of bacteria can occur. Wastewater storage systems or further engineering of the wetlands may be required. It was concluded that insulating wetland cells will maintain a warmer operating temperature, while the addition of an aeration system will increase the treatment efficiency of the wetland during winter months. 17 refs., 5 tabs., 2 figs.

  12. National Wetlands Inventory Points

    Data.gov (United States)

    Minnesota Department of Natural Resources — Wetland point features (typically wetlands that are too small to be as area features at the data scale) mapped as part of the National Wetlands Inventory (NWI). The...

  13. Tidal Marshes across a Chesapeake Bay Subestuary Are Not Keeping up with Sea-Level Rise.

    Science.gov (United States)

    Beckett, Leah H; Baldwin, Andrew H; Kearney, Michael S

    2016-01-01

    Sea-level rise is a major factor in wetland loss worldwide, and in much of Chesapeake Bay (USA) the rate of sea-level rise is higher than the current global rate of 3.2 mm yr-1 due to regional subsidence. Marshes along estuarine salinity gradients differ in vegetation composition, productivity, decomposition pathways, and sediment dynamics, and may exhibit different responses to sea-level rise. Coastal marshes persist by building vertically at rates at or exceeding regional sea-level rise. In one of the first studies to examine elevation dynamics across an estuarine salinity gradient, we installed 15 surface elevation tables (SET) and accretion marker-horizon plots (MH) in tidal freshwater, oligohaline, and brackish marshes across a Chesapeake Bay subestuary. Over the course of four years, wetlands across the subestuary decreased 1.8 ± 2.7 mm yr-1 in elevation on average, at least 5 mm yr-1 below that needed to keep pace with global sea-level rise. Elevation change rates did not significantly differ among the marshes studied, and ranged from -9.8 ± 6.9 to 4.5 ± 4.3 mm yr-1. Surface accretion of deposited mineral and organic matter was uniformly high across the estuary (~9-15 mm yr-1), indicating that elevation loss was not due to lack of accretionary input. Position in the estuary and associated salinity regime were not related to elevation change or surface matter accretion. Previous studies have focused on surface elevation change in marshes of uniform salinity (e.g., salt marshes); however, our findings highlight the need for elevation studies in marshes of all salinity regimes and different geomorphic positions, and warn that brackish, oligohaline, and freshwater tidal wetlands may be at similarly high risk of submergence in some estuaries.

  14. Fringe wetlands

    International Nuclear Information System (INIS)

    Lugo, A.E.

    1990-01-01

    Fringe wetlands are characterized by the dominance of few species, a clear species zonation, synchrony of ecological processes with episodic events, and simplicity in the structure of vegetation. The structure and ecosystem dynamics of fringe forested wetlands are presented with emphasis on saltwater wetlands because they have been studied more than freshwater ones. The study areas were Caribbean and Florida mangroves. Fringe wetlands are found on the water edge of oceans, inland estuaries, and lakes. Water motion in the fringe is bi-directional and perpendicular to the forest and due mostly to tidal energy in oceanic and estuarine fringes. in lakes, water moves in and out of the fringe under the influence of wind, waves, or seiches. some fringe forests are occasionally flushed by terrestrial runoff or aquifer discharge. In contrast, fringe forests located on small offshore islands or steep coastal shroes are isolated from terrestrial runoff or aquifer discharge, and their hydroperiod is controlled by tides and waves only. Literature reviews suggest that ecosystem parameters such as vegetation structure, tree growth, primary productivity, and organic matter in sediments respond proportionally to hydrologic energy. Human activity that impacts on fringe forested wetlands include harvesting of trees, oil pollution and eutrophication. 72 refs., 12 figs., 9 tabs

  15. Macroinvertebrate abundance, water chemistry, and wetland characteristics affect use of wetlands by avian species in Maine

    Science.gov (United States)

    Longcore, J.R.; McAuley, D.G.; Pendelton, G.W.; Bennatti, C.R.; Mingo, T.M.; Stromborg, K.L.

    2006-01-01

    Our objective was to determine use by avian species (e.g., piscivores, marsh birds, waterfowl, selected passerines) of 29 wetlands in areas with low (chemistry, basin characteristics, and avian use of different wetland types. Shallow, beaver (Castor canadensis)-created wetlands with the highest phosphorus levels and abundant and varied macrophyte assemblages supported greater densities of macroinvertebrates and numbers of duck broods (88.3% of all broods) in contrast to deep, glacial type wetlands with sparse vegetation and lower invertebrate densities that supported fewer broods (11.7%). Low pH may have affected some acid-intolerant invertebrate taxa (i.e., Ephemeroptera), but high mean numbers of Insecta per wetland were recorded from wetlands with a pH of 5.51. Other Classes and Orders of invertebrates were more abundant on wetlands with pH > 5.51. All years combined use of wetlands by broods was greater on wetlands with pH ≤ 5.51 (77.4%) in contract to wetlands with pH > 5.51 that supported 21.8% of the broods. High mean brood density was associated with mean number of Insecta per wetland. For lentic wetlands created by beaver, those habitats contained vegetative structure and nutrients necessary to provide cover to support invertebrate populations that are prey of omnivore and insectivore species. The fishless status of a few wetlands may have affected use by some waterfowl species and obligate piscivores.

  16. Wetlands & Deepwater Habitats - MO 2012 East West Gateway Wetlands (SHP)

    Data.gov (United States)

    NSGIC State | GIS Inventory — Cowardin’s Classification of Wetlands and Deep Water Habitats of the United States (http://www.npwrc.usgs.gov/resource/wetlands/classwet/index.htm), together with...

  17. Avian communities in baylands and artificial salt evaporation ponds of the San Francisco Bay estuary

    Science.gov (United States)

    Takekawa, John Y.; Lu, C.T.; Pratt, R.T.

    2001-01-01

    San Francisco Bay wetlands, seasonal and tidal marshes between the historic low and high tide lines, are now highly fragmented because of development during the past 150 years. Artificial salt pond systems in the Bay are hypersaline and typically support simple assemblages of algae and invertebrates. In order to establish the value of salt ponds for migratory waterbirds, we used datasets to conduct a meta-analysis of avian communities in the baylands and salt ponds of San Pablo Bay. Fifty-three species of waterbirds in the salt ponds represented six foraging guilds: surface feeders, shallow probers, deep probers, dabblers, diving benthivores and piscivores. The total number of species and the Shannon-Weiner diversity index was higher in baylands than in salt ponds during all four seasons. However, overall bird density (number/ha) was higher in salt ponds compared with baylands in the winter and spring, primarily because of large concentrations of benthivores. Cessation of salt production in 1993 and subsequent reduction in water depth resulted in a decline of some diving duck populations that used the salt ponds.

  18. Wetlands Research Program. Wetland Evaluation Technique (WET). Volume 2. Methodology.

    Science.gov (United States)

    1987-10-01

    to waves taller than I ft? • " Guidelines: 1 "Sufficient" is defined as the height of vegetation or relief multiplied * by length of vegetation or...Sci., Interim Rep. No. 3, Gloucester Point, VA. 52 pp. 203 VI. 4 WET 2.0 Simmons, E. G. 1957. An ecological survey of the Upper Laguna Madre of Texas...A wetland class characterized by vegetation that is 6 m or taller . Fringe Wetland - Fringe wetlands along a channel (i.e.. river, stream, etc.)are

  19. Restoration of Lost Lake, recovery of an impacted Carolina Bay

    International Nuclear Information System (INIS)

    Wike, L.D.; Gladden, J.B.; Mackey, H.E. Jr.; Rogers, V.A.

    1995-01-01

    Lost Lake is one of approximately 200 Carolina bays found on the Savannah River Site (SRS). Until 1984 Lost Lake was contaminated by heavy metals and solvents overflowing from a nearby settling basin. Up to 12 inches of surface soil and all vegetation was removed from the bay as part of a RCRA removal action. A plan for restoration was initiated in 1989 and implemented in 1990 and 1991. Extensive planning led to defined objectives, strategies, treatments, and monitoring programs allowing successful restoration of Lost Lake. The primary goal of the project was to restore the wetland ecosystem after a hazardous waste clean up operation. An additional goal was to study the progress of the project and the success of the restoration activity. Several strategy considerations were necessary in the restoration plan. The removal of existing organic soils had to have compensation, a treatment scheme for planting and the extent of manipulation of the substrate had to be considered, monitoring decisions had to be made, and the decision whether or not to actively control the hydrology of the restored system

  20. Multi-temporal Land Use Mapping of Coastal Wetlands Area using Machine Learning in Google Earth Engine

    Science.gov (United States)

    Farda, N. M.

    2017-12-01

    Coastal wetlands provide ecosystem services essential to people and the environment. Changes in coastal wetlands, especially on land use, are important to monitor by utilizing multi-temporal imagery. The Google Earth Engine (GEE) provides many machine learning algorithms (10 algorithms) that are very useful for extracting land use from imagery. The research objective is to explore machine learning in Google Earth Engine and its accuracy for multi-temporal land use mapping of coastal wetland area. Landsat 3 MSS (1978), Landsat 5 TM (1991), Landsat 7 ETM+ (2001), and Landsat 8 OLI (2014) images located in Segara Anakan lagoon are selected to represent multi temporal images. The input for machine learning are visible and near infrared bands, PCA band, invers PCA bands, bare soil index, vegetation index, wetness index, elevation from ASTER GDEM, and GLCM (Harralick) texture, and also polygon samples in 140 locations. There are 10 machine learning algorithms applied to extract coastal wetlands land use from Landsat imagery. The algorithms are Fast Naive Bayes, CART (Classification and Regression Tree), Random Forests, GMO Max Entropy, Perceptron (Multi Class Perceptron), Winnow, Voting SVM, Margin SVM, Pegasos (Primal Estimated sub-GrAdient SOlver for Svm), IKPamir (Intersection Kernel Passive Aggressive Method for Information Retrieval, SVM). Machine learning in Google Earth Engine are very helpful in multi-temporal land use mapping, the highest accuracy for land use mapping of coastal wetland is CART with 96.98 % Overall Accuracy using K-Fold Cross Validation (K = 10). GEE is particularly useful for multi-temporal land use mapping with ready used image and classification algorithms, and also very challenging for other applications.

  1. Kansas Playa Wetlands

    Data.gov (United States)

    Kansas Data Access and Support Center — This digital dataset provides information about the distribution, areal extent, and morphometry of playa wetlands throughout western Kansas. Playa wetlands were...

  2. [Research progress on wetland ecotourism].

    Science.gov (United States)

    Wang, Li-Long; Lu, Lin

    2009-06-01

    Wetland is rich in biodiversity and cultural diversity, possessing higher tourism value and environmental education and community participation functions. Wetland ecotourism reflects the sustainable development of tourism economy and wetland protection, having received great concern from governments and scholars at home and abroad. This paper summarized the related theories and practices, discussed the research advances in wetland ecotourism from the aspects of significance, progress, contents, methods and results, and pointed out the important research fields in the future, aimed to accelerate the development of wetland ecotourism research and to provide reference about the resources exploitation, environment protection, and scientific administration of wetland and related scenic areas.

  3. Biotic development comparisons of a wetland constructed to treat mine water drainage with a natural wetland system

    International Nuclear Information System (INIS)

    Webster, H.J.; Hummer, J.W.; Lacki, M.J.

    1994-01-01

    Using 5-yr of baseline data from a constructed wetland, the authors compared the biotic changes in this wetland to conditions in a natural wetland to determine if biotic development patterns were similar. The constructed wetland was built in 1985 to treat a coal mine discharge and was planted with broadleaf cattail (Typha latifolia) within the three-cell, 0.26 ha wetland. Species richness in permanent quadrants of the constructed wetland declined over the study period, while cattail coverage increased. Plant species composition diversified at the edges, with several species becoming established. The constructed wetland deepened and expanded slightly in area coverage during the study period. The constructed wetland supported herptofaunal communities that appeared more stable through time than those of the natural wetland and sustained a rudimentary food chain dependent upon autotrophic algal populations. Despite fundamental differences in substrate base, morphology, and water flow patterns, biotic trends for the constructed wetland coincided with succession-like patterns at the natural wetland. They suggest that further shifts in the biotic composition of the constructed wetland are likely, but the system should continue to persist if primary production meets or exceeds the microbial metabolic requirements necessary to treat mine drainage

  4. Vegetation survey of Four Mile Creek wetlands. [Savannah River Plant

    Energy Technology Data Exchange (ETDEWEB)

    Loehle, C.

    1990-11-01

    A survey of forested wetlands along upper Four Mile Creek was conducted. The region from Road 3 to the creek headwaters was sampled to evaluate the composition of woody and herbaceons plant communities. All sites were found to fall into either the Nyssa sylvatica (Black Gum) -- Persea borbonia (Red Bay) or Nyssa sylvatica -- Acer rubrum (Red Maple) types. These community types are generally species-rich and diverse. Previous studies (Greenwood et al., 1990; Mackey, 1988) demonstrated contaminant stress in areas downslope from the F- and H-Area seepage basins. In the present study there were some indications of contaminant stress. In the wetland near H-Area, shrub basal area, ground cover stratum species richness, and diversity were low. In the area surrounding the F-Area tree kill zone, ground cover stratum cover and shrub basal area were low and ground cover stratum species richness was low. The moderately stressed site at F-Area also showed reduced overstory richness and diversity and reduced ground cover stratum richness. These results could, however, be due to the very high basal area of overstory trees in both stressed F-Area sites that would reduce light availability to understory plants. No threatened or endangered plant species were found in the areas sampled. 40 refs., 4 figs., 8 tabs.

  5. Wetland Hydrology | Science Inventory | US EPA

    Science.gov (United States)

    This chapter discusses the state of the science in wetland hydrology by touching upon the major hydraulic and hydrologic processes in these complex ecosystems, their measurement/estimation techniques, and modeling methods. It starts with the definition of wetlands, their benefits and types, and explains the role and importance of hydrology on wetland functioning. The chapter continues with the description of wetland hydrologic terms and related estimation and modeling techniques. The chapter provides a quick but valuable information regarding hydraulics of surface and subsurface flow, groundwater seepage/discharge, and modeling groundwater/surface water interactions in wetlands. Because of the aggregated effects of the wetlands at larger scales and their ecosystem services, wetland hydrology at the watershed scale is also discussed in which we elaborate on the proficiencies of some of the well-known watershed models in modeling wetland hydrology. This chapter can serve as a useful reference for eco-hydrologists, wetland researchers and decision makers as well as watershed hydrology modelers. In this chapter, the importance of hydrology for wetlands and their functional role are discussed. Wetland hydrologic terms and the major components of water budget in wetlands and how they can be estimated/modeled are also presented. Although this chapter does not provide a comprehensive coverage of wetland hydrology, it provides a quick understanding of the basic co

  6. Climate Variability Structures Plant Community Dynamics in Mediterranean Restored and Reference Tidal Wetlands

    Directory of Open Access Journals (Sweden)

    Dylan E. Chapple

    2017-03-01

    Full Text Available In Mediterranean regions and other areas with variable climates, interannual weather variability may impact ecosystem dynamics, and by extension ecological restoration projects. Conditions at reference sites, which are often used to evaluate restoration projects, may also be influenced by weather variability, confounding interpretations of restoration outcomes. To better understand the influence of weather variability on plant community dynamics, we explore change in a vegetation dataset collected between 1990 and 2005 at a historic tidal wetland reference site and a nearby tidal wetland restoration project initiated in 1976 in California’s San Francisco (SF Bay. To determine the factors influencing reference and restoration trajectories, we examine changes in plant community identity in relation to annual salinity levels in the SF Bay, annual rainfall, and tidal channel structure. Over the entire study period, both sites experienced significant directional change away from the 1990 community. Community change was accelerated following low salinity conditions that resulted from strong El Niño events in 1994–1995 and 1997–1998. Overall rates of change were greater at the restoration site and driven by a combination of dominant and sub-dominant species, whereas change at the reference site was driven by sub-dominant species. Sub-dominant species first appeared at the restoration site in 1996 and incrementally increased during each subsequent year, whereas sub-dominant species cover at the reference site peaked in 1999 and subsequently declined. Our results show that frequent, long-term monitoring is needed to adequately capture plant community dynamics in variable Mediterranean ecosystems and demonstrate the need for expanding restoration monitoring and timing restoration actions to match weather conditions.

  7. Percent Wetland Cover

    Data.gov (United States)

    U.S. Environmental Protection Agency — Wetlands act as filters, removing or diminishing the amount of pollutants that enter surface water. Higher values for percent of wetland cover (WETLNDSPCT) may be...

  8. Enhanced land subsidence in Galveston Bay, Texas: Interaction between sediment accumulation rates and relative sea level rise

    Science.gov (United States)

    Al Mukaimi, Mohammad E.; Dellapenna, Timothy M.; Williams, Joshua R.

    2018-07-01

    Galveston Bay is the second largest estuary along the northern Gulf of Mexico coast, with a watershed containing one of largest concentrations of petroleum and chemical industries globally, as well as Houston, the fifth largest metropolitan area in the USA. Throughout the last century, extensive groundwater extraction to support these industries and an expanding population has resulted in significantly enhanced land subsidence (0.6-3.0 cm yr-1). The highest subsidence rates observed in the bay are within the lower 15 km of the San Jacinto River/Houston Ship Channel region (SJR/HSC), with distal areas in East and West Galveston Bays having subsidence rates on the order of 0.2 cm yr-1. In order to investigate the impacts of subsidence on sedimentation, a series of 22 vibracores were collected throughout the bay, and 210Pb and 137Cs radioisotope geochronologies and grain size distributions were determined. Sediment accumulation rates are highest (1.9 ± 0.5 cm yr-1) in the SJR/HSC, and decrease (sedimentation rates are significantly (p sedimentation rates are lower (as much as 50%) than estimated RSLR, indicating a sediment accretionary deficit. In areas (e.g., Scott Bay) within the SJR/HSC, the bay has deepened by more than 1.5 m, suggesting that sediment accumulation cannot keep pace with RSLR. Ultimately, this has resulted in a loss of coastal wetlands and a conversion of marine habitats from relatively shallow to deeper water settings.

  9. Carbon dynamics in wetland restoration

    Energy Technology Data Exchange (ETDEWEB)

    Kovalenko, K.; Ciborowski, J.; Gardner-Costa, J.; Slama, C. [Windsor Univ., ON (Canada); Daly, C.; Hornung, J. [Suncor Energy, Calgary, AB (Canada); Dixon, G.; Farwell, A. [Waterloo Univ., ON (Canada); Foote, L.; Frederick, K.; Roy, M. [Alberta Univ., Edmonton, AB (Canada); Liber, K. [Saskatchewan Univ., Saskatoon, SK (Canada); Smits, J. [Calgary Univ., AB (Canada); Wytrykush, C. [Syncrude Canada Ltd., Edmonton, AB (Canada)

    2010-07-01

    This study focused on the reclamation of wetland ecosystems impacted by oil sands development in the boreal wetlands. Although these wetlands play an important role in global carbon balance, their ecosystem function is compromised by direct and regional anthropogenic disturbance and climate change. Large oil sand mining areas that require reclamation generate substantial quantities of extraction process-affected materials. In order to determine if the reclaimed wetlands were restored to equivalent ecosystem function, this study evaluated carbon flows and food web structure in oil sands-affected wetlands. The purpose was to determine whether a prescribed reclamation strategy or topsoil amendment accelerates reclaimed wetland development to produce self-sustaining peatlands. In addition to determining carbon fluxes, this study measured compartment standing stocks for residual hydrocarbons, organic substrate, bacterioplankton, phytoplankton, biofilm, macrophytes, detritus, zoobenthos and aquatic-terrestrial exports. Most biotic 28 compartments differed between oil-sands-affected and reference wetlands, but the difference lessened with age. Macroinvertebrate trophic diversity was lower in oil sands-affected wetlands. Peat amendment seemed to speed convergence for some compartments but not others. These results were discussed in the context of restoration of ecosystem function and optimization of reclamation strategies.

  10. Morphology of a Wetland Stream

    Science.gov (United States)

    Jurmu; Andrle

    1997-11-01

    / Little attention has been paid to wetland stream morphology in the geomorphological and environmental literature, and in the recently expanding wetland reconstruction field, stream design has been based primarily on stream morphologies typical of nonwetland alluvial environments. Field investigation of a wetland reach of Roaring Brook, Stafford, Connecticut, USA, revealed several significant differences between the morphology of this stream and the typical morphology of nonwetland alluvial streams. Six morphological features of the study reach were examined: bankfull flow, meanders, pools and riffles, thalweg location, straight reaches, and cross-sectional shape. It was found that bankfull flow definitions originating from streams in nonwetland environments did not apply. Unusual features observed in the wetland reach include tight bends and a large axial wavelength to width ratio. A lengthy straight reach exists that exceeds what is typically found in nonwetland alluvial streams. The lack of convex bank point bars in the bends, a greater channel width at riffle locations, an unusual thalweg location, and small form ratios (a deep and narrow channel) were also differences identified. Further study is needed on wetland streams of various regions to determine if differences in morphology between alluvial and wetland environments can be applied in order to improve future designs of wetland channels.KEY WORDS: Stream morphology; Wetland restoration; Wetland creation; Bankfull; Pools and riffles; Meanders; Thalweg

  11. Michigan Wetlands: Yours To Protect. A Citizen's Guide to Local Involvement in Wetland Protection. Second Edition.

    Science.gov (United States)

    Cwikiel, Wilfred

    This guidebook is designed to assist concerned Michigan citizens, local governments, conservation organizations, landowners, and others in their efforts to initiate wetlands protection activities. Chapter 1 focuses on wetland functions, values, losses, and the urgent need to protect wetland resources. Chapter 2 discusses wetland identification and…

  12. 40 CFR 258.12 - Wetlands.

    Science.gov (United States)

    2010-07-01

    ... degraded wetlands or creation of man-made wetlands); and (5) Sufficient information is available to make a... expansions shall not be located in wetlands, unless the owner or operator can make the following...

  13. Evaluation of a market in wetland credits: entrepreneurial wetland banking in Chicago.

    Science.gov (United States)

    Robertson, Morgan; Hayden, Nicholas

    2008-06-01

    With the rise of market-led approaches to environmental policy, compensation for permitted discharge of dredge or fill material into wetlands under Section 404 of the U.S. Clean Water Act has been purchased increasingly from entrepreneurial third-party providers. The growth of this practice (i.e., entrepreneurial wetland banking) has resolved many challenges associated with wetland compensation. But it has also produced (1) quantifiable temporal loss of wetland ecological functions, (2) spatial redistribution of wetland area, and (3) a degree of regulatory instability that may pose a threat to entrepreneurial compensation as a sustainable component of wetland-compensation policy. We used achieved compensation ratios, lapse between bank credit sale and the attainment of performance standards, distance between impact and bank site, and changes in bank market area to examine these 3 factors. We analyzed data from a census of all such transactions in the Chicago District of the U.S. Army Corps of Engineers, compiled from site visits, Corps databases, and contacts with consultants and Section 404 permittees. Entrepreneurial banking provided compensation at a lower overall ratio than nonbank forms of compensation. Approximately 60% of bank credits were sold after site-protection standards were met but before ecological performance standards were met at the bank site. The average distance between bank and impact site was approximately 26 km. The area of markets within which established banks can sell wetland credits has fluctuated considerably over the study period. Comparing these data with similar data for other compensation mechanisms will assist in evaluating banking as an element of conservation policy. Data characterizing the performance of entrepreneurial wetland banks in actual regulatory environments are scarce, even though it is the most established of similar markets that have become instrumental to federal policy in administering several major environmental

  14. Placing prairie pothole wetlands along spatial and temporal continua to improve integration of wetland function in ecological investigations

    Science.gov (United States)

    Euliss, Ned H.; Mushet, David M.; Newton, Wesley E.; Otto, Clint R.V.; Nelson, Richard D.; LaBaugh, James W.; Scherff, Eric J.; Rosenberry, Donald O.

    2014-01-01

    We evaluated the efficacy of using chemical characteristics to rank wetland relation to surface and groundwater along a hydrologic continuum ranging from groundwater recharge to groundwater discharge. We used 27 years (1974–2002) of water chemistry data from 15 prairie pothole wetlands and known hydrologic connections of these wetlands to groundwater to evaluate spatial and temporal patterns in chemical characteristics that correspond to the unique ecosystem functions each wetland performed. Due to the mineral content and the low permeability rate of glacial till and soils, salinity of wetland waters increased along a continuum of wetland relation to groundwater recharge, flow-through or discharge. Mean inter-annual specific conductance (a proxy for salinity) increased along this continuum from wetlands that recharge groundwater being fresh to wetlands that receive groundwater discharge being the most saline, and wetlands that both recharge and discharge to groundwater (i.e., groundwater flow-through wetlands) being of intermediate salinity. The primary axis from a principal component analysis revealed that specific conductance (and major ions affecting conductance) explained 71% of the variation in wetland chemistry over the 27 years of this investigation. We found that long-term averages from this axis were useful to identify a wetland’s long-term relation to surface and groundwater. Yearly or seasonal measurements of specific conductance can be less definitive because of highly dynamic inter- and intra-annual climate cycles that affect water volumes and the interaction of groundwater and geologic materials, and thereby influence the chemical composition of wetland waters. The influence of wetland relation to surface and groundwater on water chemistry has application in many scientific disciplines and is especially needed to improve ecological understanding in wetland investigations. We suggest ways that monitoring in situ wetland conditions could be linked

  15. Mine-associated wetlands as avian habitat

    International Nuclear Information System (INIS)

    Horstman, A.J.; Nawrot, J.R.; Woolf, A.

    1998-01-01

    Surveys for interior wetland birds at mine-associated emergent wetlands on coal surface mines in southern Illinois detected one state threatened and two state endangered species. Breeding by least bittern (Ixobrychus exilis) and common moorhen (Gallinula chloropus) was confirmed. Regional assessment of potential wetland bird habitat south of Illinois Interstate 64 identified a total of 8,109 ha of emergent stable water wetlands; 10% were associated with mining. Mine-associated wetlands with persistent hydrology and large expanses of emergent vegetation provide habitat that could potentially compensate for loss of natural wetlands in Illinois

  16. Development of a "Hydrologic Equivalent Wetland" Concept for Modeling Cumulative Effects of Wetlands on Watershed Hydrology

    Science.gov (United States)

    Wang, X.; Liu, T.; Li, R.; Yang, X.; Duan, L.; Luo, Y.

    2012-12-01

    Wetlands are one of the most important watershed microtopographic features that affect, in combination rather than individually, hydrologic processes (e.g., routing) and the fate and transport of constituents (e.g., sediment and nutrients). Efforts to conserve existing wetlands and/or to restore lost wetlands require that watershed-level effects of wetlands on water quantity and water quality be quantified. Because monitoring approaches are usually cost or logistics prohibitive at watershed scale, distributed watershed models, such as the Soil and Water Assessment Tool (SWAT), can be a best resort if wetlands can be appropriately represented in the models. However, the exact method that should be used to incorporate wetlands into hydrologic models is the subject of much disagreement in the literature. In addition, there is a serious lack of information about how to model wetland conservation-restoration effects using such kind of integrated modeling approach. The objectives of this study were to: 1) develop a "hydrologic equivalent wetland" (HEW) concept; and 2) demonstrate how to use the HEW concept in SWAT to assess effects of wetland restoration within the Broughton's Creek watershed located in southwestern Manitoba of Canada, and of wetland conservation within the upper portion of the Otter Tail River watershed located in northwestern Minnesota of the United States. The HEWs were defined in terms of six calibrated parameters: the fraction of the subbasin area that drains into wetlands (WET_FR), the volume of water stored in the wetlands when filled to their normal water level (WET_NVOL), the volume of water stored in the wetlands when filled to their maximum water level (WET_MXVOL), the longest tributary channel length in the subbasin (CH_L1), Manning's n value for the tributary channels (CH_N1), and Manning's n value for the main channel (CH_N2). The results indicated that the HEW concept allows the nonlinear functional relations between watershed processes

  17. Waterbird egg mercury concentrations in response to wetland restoration in south San Francisco Bay, California

    Science.gov (United States)

    Ackerman, Joshua T.; Herzog, Mark P.; Hartman, Christopher A.; Watts, Trevor C.; Barr, Jarred R.

    2014-01-01

    The conversion of 50–90 percent of 15,100 acres of former salt evaporation ponds to tidal marsh habitat in the south San Francisco Bay, California, is planned as part of the South Bay Salt Pond Restoration Project. This large-scale habitat restoration may change the bioavailability of methylmercury. The South Bay already is known to have high methylmercury concentrations, with methylmercury concentrations in several waterbirds species more than known toxicity thresholds where avian reproduction is impaired. In this 2013 study, we continued monitoring bird egg mercury concentrations in response to the restoration of the Pond A8/A7/A5 Complex to a potential tidal marsh in the future. The restoration of the Pond A8/A7/A5 Complex began in autumn 2010, and the Pond A8 Notch was opened 5 feet (one of eight gates) to muted tidal action on June 1, 2011, and then closed in the winter. In autumn 2010, internal levees between Ponds A8, A7, and A5 were breached and water depths were substantially increased by flooding the Pond A8/A7/A5 Complex in February 2011. In June 2012, 15 feet (three of eight gates) of the Pond A8 Notch was opened, and then closed in December 2012. In June 2013, 15 feet of the Pond A8 Notch again was opened, and the Pond A8/A7/A5 Complex was a relatively deep and large pond with muted tidal action in the summer. This report synthesizes waterbird data from the 2013 breeding season, and combines it with our prior study’s data from 2010 and 2011.

  18. Wetland Management - A Success Story In Transition - Restoration of Bhoj Wetland, India

    Science.gov (United States)

    Mudgal, M. K.; Tech, B. M.; Miwwa

    Wetlands are beautiful, biologically diverse, hydrologically disperse and ecological vibrant landscape world wide, embracing soils, water, plants, animals and human be- ing. The population growth in the catchment of wetlands led to multifarious human interventions for deriving maximum benefit from the wetlands and their catchments neglecting and disrespecting the principles of sustainability. This act of destruction has been pronounced in developing countries which are under the grip of poverty, illiteracy and lack of environmental education. SBhoj WetlandS is a Lake situated ´ in Central India, Earthen Dam across the river KOLANS in 1061 AD by then ruler king BHOJ. Till 1950 this Wetland was served as a principal source of water supply, even not requiring filtration. As the city grew and the wetland started getting encir- cled by habitation and urban development, the anthropogenic pressures on the lake increased, thus accelerating the process of eutrophication, making the water unfit for human consumption without due treatment due to deterioration of quality of water. For the conservation and management of Bhoj Wetland (Lake Bhopal) a project is under- taken in the financial assistance from Japan Bank for International Cooperation (JBIC, Japan). The project envisages tackle various issues of conservation and management ofn the wetlands under a multi prongs strategies and manner. Although these issues are deeply interrelated and interlinked but for operational and management ease, these issues have been divided into various sub projects which are being tackled indepen- dently, albeit with undercurrent knowledge and understanding of the related issues and interconnectivity with each other. The Project itself is an apt example of the spectrum of varied problems and issues that come to light when attempts are made for sustain- able conservation and management of a wetland. The Project as envisaged intends to conserve and manage through 14 sub projects as under:- Sub

  19. Atrazine remediation in wetland microcosms.

    Science.gov (United States)

    Runes, H B; Bottomley, P J; Lerch, R N; Jenkins, J J

    2001-05-01

    Laboratory wetland microcosms were used to study treatment of atrazine in irrigation runoff by a field-scale-constructed wetland under controlled conditions. Three experiments, in which 1 ppm atrazine was added to the water column of three wetland, one soil control, and one water control microcosm, were conducted. Atrazine dissipation from the water column and degradate formation (deethylatrazine [DEA]; deisopropylatrazine [DIA]; and hydroxyatrazine [HA]) were monitored. Atrazine dissipation from the water column of wetland microcosms was biphasic. Less than 12% of the atrazine applied to wetland microcosms remained in the water column on day 56. Atrazine degradates were observed in water and sediment, with HA the predominant degradate. Analysis of day 56 sediment samples indicated that a significant portion of the initial application was detected as the parent compound and HA. Most probable number (MPN) assays demonstrated that atrazine degrader populations were small in wetland sediment. Wetland microcosms were able to reduce atrazine concentration in the water column via sorption and degradation. Based on results from this study, it is hypothesized that plant uptake contributed to atrazine dissipation from the water column.

  20. Remotely sensed MODIS wetland components for assessing the variability of methane emissions in Indian tropical/subtropical wetlands

    Science.gov (United States)

    Bansal, Sangeeta; Katyal, Deeksha; Saluja, Ridhi; Chakraborty, Monojit; Garg, J. K.

    2018-02-01

    Temperature and area fluctuations in wetlands greatly influence its various physico-chemical characteristics, nutrients dynamic, rates of biomass generation and decomposition, floral and faunal composition which in turn influence methane (CH4) emission rates. In view of this, the present study attempts to up-scale point CH4 flux from the wetlands of Uttar Pradesh (UP) by modifying two-factor empirical process based CH4 emission model for tropical wetlands by incorporating MODIS derived wetland components viz. wetland areal extent and corresponding temperature factors (Ft). This study further focuses on the utility of remotely sensed temperature response of CH4 emission in terms of Ft. Ft is generated using MODIS land surface temperature products and provides an important semi-empirical input for up-scaling CH4 emissions in wetlands. Results reveal that annual mean Ft values for UP wetlands vary from 0.69 (2010-2011) to 0.71(2011-2012). The total estimated area-wise CH4 emissions from the wetlands of UP varies from 66.47 Gg yr-1with wetland areal extent and Ft value of 2564.04 km2 and 0.69 respectively in 2010-2011 to 88.39 Gg yr-1with wetland areal extent and Ft value of 2720.16 km2 and 0.71 respectively in 2011-2012. Temporal analysis of estimated CH4 emissions showed that in monsoon season estimated CH4 emissions are more sensitive to wetland areal extent while in summer season sensitivity of estimated CH4 emissions is chiefly controlled by augmented methanogenic activities at high wetland surface temperatures.

  1. Human wetland dependency and socio-economic evaluation of wetland functions through participatory approach in rural India

    Directory of Open Access Journals (Sweden)

    Malabika Biswas

    2010-12-01

    Full Text Available Wetlands are an important source of natural resources upon which rural economies depend. They have increasingly been valuable for their goods and services, and the intrinsic ecological value they provide to local populations, as well as people living outside the periphery of the wetlands. Stakeholders' participation is essential to the protection and preservation of wetlands because it plays a very important role economically as well as ecologically in the wetland system. The objective of this study was to determine whether gender, educational status, mouzas (which are constituents of a block according to the land reform of the West Bengal Government in India, and wetland functions have any influence on the annual income of the local community. Considering a floodplain wetland in rural India, the focus was extended to recognize the pattern of wetland functions according to the nature of people's involvement through cluster analysis of the male and female populations. Using the statistical software R-2.8.1, an ANOVA (analysis of variance table was constructed. Since the p value (significance level was lower than 0.05 for each case, it can be concluded that gender, educational status, mouzas, and wetland functions have a significant influence on annual income. However, S-PLUS-2000 was applied to obtain a complete scenario of the pattern of wetland functions, in terms of involvement of males and females, through cluster analysis. The main conclusion is that gender, educational status, mouzas, and wetland functions have significant impacts on annual income, while the pattern of occupation of the local community based on wetland functions is completely different for the male and female populations.

  2. Climate Change and Intertidal Wetlands

    Directory of Open Access Journals (Sweden)

    Pauline M. Ross

    2013-03-01

    Full Text Available Intertidal wetlands are recognised for the provision of a range of valued ecosystem services. The two major categories of intertidal wetlands discussed in this contribution are saltmarshes and mangrove forests. Intertidal wetlands are under threat from a range of anthropogenic causes, some site-specific, others acting globally. Globally acting factors include climate change and its driving cause—the increasing atmospheric concentrations of greenhouse gases. One direct consequence of climate change will be global sea level rise due to thermal expansion of the oceans, and, in the longer term, the melting of ice caps and glaciers. The relative sea level rise experienced at any one locality will be affected by a range of factors, as will the response of intertidal wetlands to the change in sea level. If relative sea level is rising and sedimentation within intertidal wetlands does not keep pace, then there will be loss of intertidal wetlands from the seaward edge, with survival of the ecosystems only possible if they can retreat inland. When retreat is not possible, the wetland area will decline in response to the “squeeze” experienced. Any changes to intertidal wetland vegetation, as a consequence of climate change, will have flow on effects to biota, while changes to biota will affect intertidal vegetation. Wetland biota may respond to climate change by shifting in distribution and abundance landward, evolving or becoming extinct. In addition, impacts from ocean acidification and warming are predicted to affect the fertilisation, larval development, growth and survival of intertidal wetland biota including macroinvertebrates, such as molluscs and crabs, and vertebrates such as fish and potentially birds. The capacity of organisms to move and adapt will depend on their life history characteristics, phenotypic plasticity, genetic variability, inheritability of adaptive characteristics, and the predicted rates of environmental change.

  3. Climate change and intertidal wetlands.

    Science.gov (United States)

    Ross, Pauline M; Adam, Paul

    2013-03-19

    Intertidal wetlands are recognised for the provision of a range of valued ecosystem services. The two major categories of intertidal wetlands discussed in this contribution are saltmarshes and mangrove forests. Intertidal wetlands are under threat from a range of anthropogenic causes, some site-specific, others acting globally. Globally acting factors include climate change and its driving cause-the increasing atmospheric concentrations of greenhouse gases. One direct consequence of climate change will be global sea level rise due to thermal expansion of the oceans, and, in the longer term, the melting of ice caps and glaciers. The relative sea level rise experienced at any one locality will be affected by a range of factors, as will the response of intertidal wetlands to the change in sea level. If relative sea level is rising and sedimentation within intertidal wetlands does not keep pace, then there will be loss of intertidal wetlands from the seaward edge, with survival of the ecosystems only possible if they can retreat inland. When retreat is not possible, the wetland area will decline in response to the "squeeze" experienced. Any changes to intertidal wetland vegetation, as a consequence of climate change, will have flow on effects to biota, while changes to biota will affect intertidal vegetation. Wetland biota may respond to climate change by shifting in distribution and abundance landward, evolving or becoming extinct. In addition, impacts from ocean acidification and warming are predicted to affect the fertilisation, larval development, growth and survival of intertidal wetland biota including macroinvertebrates, such as molluscs and crabs, and vertebrates such as fish and potentially birds. The capacity of organisms to move and adapt will depend on their life history characteristics, phenotypic plasticity, genetic variability, inheritability of adaptive characteristics, and the predicted rates of environmental change.

  4. SLOSS or Not? Factoring Wetland Size Into Decisions for Wetland Conservation, Enhancement, Restoration, and Creation

    Science.gov (United States)

    Mitigation or replacement of several small impacted wetlands or sites with fewer large wetlands can occur deliberately through the application of functional assessment methods (e.g., Adamus 1997) or coincidentally as the result of market-based mechanisms for wetland mitigation ba...

  5. Working group report on wetlands and wildlife

    International Nuclear Information System (INIS)

    Teels, B.

    1991-01-01

    The results and conclusions of a working group held to discuss the state of knowledge and knowledge gaps concerning climatic change impacts on wetlands and wildlife are presented. Prairie pothole wetlands are extremely productive and produce ca 50% of all ducks in North America. The most productive, and most vulnerable to climate change, are small potholes, often less than one acre in area. Changes in water regimes and land use will have more impact on wildlife than changes in temperature. There are gaps in knowledge relating to: boreal wetlands and their wildlife, and response to climate; wetland inventories that include the smallest wetlands; coordinated schemes for monitoring status and trends of wetlands and wildlife; and understanding of ecological relationships within wetlands and their wildlife communities. Recommendations include: coordinate and enhance existing databases to provide an integrated monitoring system; establish research programs to increase understanding of ecological relationships within wetland ecosystems; evaluate programs and policies that affect wetlands; and promote heightened public awareness of general values of wetlands

  6. Remote sensing of wetlands applications and advances

    CERN Document Server

    Tiner, Ralph W; Klemas, Victor V

    2015-01-01

    Effectively Manage Wetland Resources Using the Best Available Remote Sensing Techniques Utilizing top scientists in the wetland classification and mapping field, Remote Sensing of Wetlands: Applications and Advances covers the rapidly changing landscape of wetlands and describes the latest advances in remote sensing that have taken place over the past 30 years for use in mapping wetlands. Factoring in the impact of climate change, as well as a growing demand on wetlands for agriculture, aquaculture, forestry, and development, this text considers the challenges that wetlands pose for remote sensing and provides a thorough introduction on the use of remotely sensed data for wetland detection. Taking advantage of the experiences of more than 50 contributing authors, the book describes a variety of techniques for mapping and classifying wetlands in a multitude of environments ranging from tropical to arctic wetlands including coral reefs and submerged aquatic vegetation. The authors discuss the advantages and di...

  7. Concentration of polybrominated diphenyl ethers (PBDEs) in sediment cores of Sundarban mangrove wetland, northeastern part of Bay of Bengal (India)

    Energy Technology Data Exchange (ETDEWEB)

    Binelli, Andrea [Department of Biology, University of Milan, Via Celoria 26, 20133 Milan (Italy)]. E-mail: andrea.binelli@unimi.it; Sarkar, Santosh Kumar [Department of Marine Science, University of Calcutta, 35 Ballygunge Circular Road, Calcutta 700 019 (India); Chatterjee, Mousumi [Department of Marine Science, University of Calcutta, 35 Ballygunge Circular Road, Calcutta 700 019 (India); Riva, Consuelo [Department of Biology, University of Milan, Via Celoria 26, 20133 Milan (Italy); Parolini, Marco [Department of Biology, University of Milan, Via Celoria 26, 20133 Milan (Italy); Bhattacharya, Bhaskar deb [Department of Marine Science, University of Calcutta, 35 Ballygunge Circular Road, Calcutta 700 019 (India); Bhattacharya, Asok Kumar [Department of Marine Science, University of Calcutta, 35 Ballygunge Circular Road, Calcutta 700 019 (India); Satpathy, Kamala Kanta [Indira Gandhi Center for Atomic Research, Environmental and Industrial Safety Section, Safety Group, Kalpakkam 603 102, Tamil Nadu (India)

    2007-08-15

    The paper presents the first comprehensive survey of congener profiles (12 congeners) of polybrominated diphenyl ethers (PBDEs) in core sediment samples (<63 {mu}m) covering seven sites in Sundarban mangrove wetland (India). Gas-chromatographic analyses were carried out in GC-Ms/Ms for tri- to hepta- brominated congeners. Results pointed out a non-homogenous contamination of the wetland with {sigma}{sub 12} PBDE values ranging from 0.08 to 29.03 ng g{sup -1}, reflecting moderate to low contamination closely in conformity to other Asian aquatic environments. The general order of decreasing congener contribution to the total load was: BDE 47 > 99 > 100 > 154, similar to the distribution pattern worldwide. Although tetrabromodiphenyl ether BDE 47 was found in all samples followed by hexabromodiphenyl ether BDE-154, they were not necessarily the dominant congeners. No uniform temporal trend on PBDE levels was recorded probably due to particular hydrological characteristics of the wetland and/on non-homologous inputs from point sources (untreated municipal wastewater and local industries, electronic wastes from the dump sites, etc.) of these compounds. Because of the propensity of PBDEs to accumulate in various compartments of wildlife and human food webs, evaluation of biological tissues should be undertaken as a high priority.

  8. Engineered wetlands : an innovative environmental solution

    International Nuclear Information System (INIS)

    Wallace, S.; Davis, B.M.

    2008-01-01

    Engineered wetlands are now considered as an emerging technology for the in situ remediation of hydrocarbon-contaminated soil and waters. Engineered wetlands incorporate a horizontal subsurface flow gravel bed reactor lined with impermeable liners, and are equipped with forced bed aeration systems in order to enhance oxygen delivery to the wetland's aerobic micro-organisms. The wetlands typically emphasize specific characteristics of wetland ecosystems to improve treatment capacities. This article discussed an engineered wetlands installed at a set of pipeline terminals as well as at a former British Petroleum (BP) refinery. The pipeline terminal generated contact wastewater containing BTEX and ammonia, and a subsurface engineered wetland was built in 1998. To date, the 16,000 2 foot wetland has treated a flow-equalized input of approximately 1.5 m 3 per day of contaminants. At the refinery, a wetland treatment system was designed to treat 6000 m 3 of benzene, toluene, ethylbenzene and xylene (BTEX) and volatile organic compounds (VOCs). The treatment site consists of a golf course, river front trails, and a white water kayak course. A cascade aeration system was used for iron oxidation and air-stripping. A soil matrix biofilter was used for passive gas phase benzene removal, as well as for the removal of ferric hydroxide precipitates. It was concluded that engineered wetlands can offer long-term solutions to site remediation challenges. 1 fig

  9. The nitrogen abatement cost in wetlands

    International Nuclear Information System (INIS)

    Bystroem, Olof

    1998-01-01

    The costs of abating agricultural nitrogen pollution in wetlands are estimated. By linking costs for construction of wetlands to the denitrification capacity of wetlands, an abatement cost function can be formed. A construction-cost function and a denitrification function for wetlands is estimated empirically. This paper establishes a link between abatement costs and the nitrogen load on wetlands. Since abatement costs fluctuate with nitrogen load, ignoring this link results in incorrect estimates of abatement costs. The results demonstrate that wetlands have the capacity to provide low cost abatement of nitrogen compounds in runoff. For the Kattegatt region in Sweden, marginal abatement costs for wetlands are shown to be lower than costs of land use changing measures, such as extended land under fallow or cultivation of fuel woods, but higher than the marginal costs of reducing nitrogen fertilizer

  10. 40 CFR 257.9 - Wetlands.

    Science.gov (United States)

    2010-07-01

    ... not locate such units in wetlands, unless the owner or operator can make the following demonstrations... actions (e.g., restoration of existing degraded wetlands or creation of man-made wetlands); and (5) Sufficient information is available to make a reasonable determination with respect to these demonstrations...

  11. Arbovirus circulation, temporal distribution, and abundance of mosquito species in two Carolina bay habitats.

    Science.gov (United States)

    Ortiz, D I; Wozniak, A; Tolson, M W; Turner, P E

    2005-01-01

    Carolina bays, a type of geomorphic feature, may be important in the ecology of mosquito vectors in South Carolina. Their hydrology varies from wetland habitats with marked flooding/drying regimes to permanently flooded spring-fed lakes. Moreover, they possess characteristics that contribute to the support of a particularly abundant and diverse invertebrate fauna. Although it has been estimated that 2,700+ bays exist in South Carolina, approximately 97% have been altered; Heritage Preserve (SBHP) and Woods Bay State Park (WBSP), from June 1997 to July 1998 to determine mosquito temporal distribution, species composition, and the occurrence of arbovirus activity. The largest mosquito collection was obtained at WBSP (n = 31,172) representing 25 species followed by SBHP (n = 3,940) with 24 species. Anopheles crucians complex were the most common species encountered in both bays. Two virus isolates were obtained from SBHP in 1997: Keystone (KEY) virus from Ochlerotatus atlanticus-tormentor and Cache Valley (CV) virus from Oc. canadensis canadensis. Twenty-nine (29) arbovirus-positive pools were obtained from WBSP: 28 in 1997 and one in 1998. KEY virus was isolated from three pools of Oc. atlanticus-tormentor and Tensaw (TEN) virus was isolated from two pools of An. crucians complex; 10 isolates could not be identified with the sera available. Additionally, 14 pools of An. crucians complex tested positive for Eastern equine encephalitis (EEE) virus antigen. These represent the first record of KEY and CV viruses in South Carolina. Our data indicate the presence of high mosquito density and diversity in both Carolina bay habitats, which may be influenced, in part, by seasonal changes in their hydroperiods. The study of mosquito and arbovirus ecology in Carolina Bay habitats could provide more information on the transmission dynamics of arboviruses and its impact on human and animal arboviral disease occurrence in South Carolina.

  12. Conservation of Mexican wetlands: role of the North American Wetlands Conservation Act

    Science.gov (United States)

    Wilson, M.H.; Ryan, D.A.

    1997-01-01

    Mexico's wetlands support a tremendous biological diversity and provide significant natural resource benefits to local communities. Because they are also critical stopover and wintering grounds for much of North America's waterfowl and other migratory birds, Mexico has become an important participant in continental efforts to conserve these resources through the North American Wetlands Conservation Act. Funding from the Act has supported partnerships in a number of Mexico's priority wetlands to conduct data analyses and dissemination, mapping, environmental education, wetland restoration, development of sustainable economic alternatives for local people, and reserve planning and management. These partnerships, with the close involvement of Mexico's Federal Government authority, the Instituto Nacional de Ecologia, have advanced conservation in a uniquely Mexican model that differs from that employed in the United States and Canada.

  13. Sediment dynamics in the restored reach of the Kissimmee River Basin, Florida: A vast subtropical riparian wetland

    Science.gov (United States)

    Schenk, E.R.; Hupp, C.R.; Gellis, A.

    2012-01-01

    Historically, the Kissimmee River Basin consisted of a broad nearly annually inundated riparian wetland similar in character to tropical Southern Hemisphere large rivers. The river was channelized in the 1960s and 1970s, draining the wetland. The river is currently being restored with over 10 000 hectares of wetlands being reconnected to 70 river km of naturalized channel. We monitored riparian wetland sediment dynamics between 2007 and 2010 at 87 sites in the restored reach and 14 sites in an unrestored reference reach. Discharge and sediment transport were measured at the downstream end of the restored reach. There were three flooding events during the study, two as annual flood events and a third as a greater than a 5-year flood event. Restoration has returned periodic flood flow to the riparian wetland and provides a mean sedimentation rate of 11.3 mm per year over the study period in the restored reach compared with 1.7 mm per year in an unrestored channelized reach. Sedimentation from the two annual floods was within the normal range for alluvial Coastal Plain rivers. Sediment deposits consisted of over 20% organics, similar to eastern blackwater rivers. The Kissimmee River is unique in North America for its hybrid alluvial/blackwater nature. Fluvial suspended-sediment measurements for the three flood events indicate that a majority of the sediment (70%) was sand, which is important for natural levee construction. Of the total suspended sediment load for the three flood events, 3%–16% was organic and important in floodplain deposition. Sediment yield is similar to low-gradient rivers draining to the Chesapeake Bay and alluvial rivers of the southeastern USA. Continued monitoring should determine whether observed sediment transport and floodplain deposition rates are normal for this river and determine the relationship between historic vegetation community restoration, hydroperiod restoration, and sedimentation.

  14. Design-a-wetland: a tool for generating and assessing constructed wetland designs for wastewater treatment

    International Nuclear Information System (INIS)

    Casaril, Carolina J.

    2007-01-01

    Full text: Full text: The hydrological cycle is a key cycle affected by current and predicted climate change. Wetlands are one of the key ecosystems within the hydrological cycle and could contribute significantly in facing the challenges of climate change, such as water shortage. The impact of wetlands on greenhouse gas emissions is much debated and, conversely, the impact of climate change on wetlands also raises many questions. There have been many attempts to harness and integrate the natural capacities of wetlands into constructed systems. These systems are especially designed for multiple purposes. They can be used for wastewater treatment and reuse, and have the potential to increase sustainability by changing land and water use practices. This project generates a 'Design-A-Wetland' prototype model, designed to facilitate decision-making in the creation of constructed wetlands. Constructed wetlands are specifically tailored to their end use; water treatment fish and fowl habitat, flood buffer zones, or sequestration of greenhouse gases. This project attempts to answer the following questions: Can a single integrated decision model be created for the design and assessment of artificial wetlands, provided either entry or exit standards are known and specified?; Can the elements of a system of interfacing the model with public consultation be specified?; The project identifies model schematics and lays the groundwork for modelling suited to the wide variety of inputs required for decision making

  15. Stochastic modeling of wetland-groundwater systems

    Science.gov (United States)

    Bertassello, Leonardo Enrico; Rao, P. Suresh C.; Park, Jeryang; Jawitz, James W.; Botter, Gianluca

    2018-02-01

    Modeling and data analyses were used in this study to examine the temporal hydrological variability in geographically isolated wetlands (GIWs), as influenced by hydrologic connectivity to shallow groundwater, wetland bathymetry, and subject to stochastic hydro-climatic forcing. We examined the general case of GIWs coupled to shallow groundwater through exfiltration or infiltration across wetland bottom. We also examined limiting case with the wetland stage as the local expression of the shallow groundwater. We derive analytical expressions for the steady-state probability density functions (pdfs) for wetland water storage and stage using few, scaled, physically-based parameters. In addition, we analyze the hydrologic crossing time properties of wetland stage, and the dependence of the mean hydroperiod on climatic and wetland morphologic attributes. Our analyses show that it is crucial to account for shallow groundwater connectivity to fully understand the hydrologic dynamics in wetlands. The application of the model to two different case studies in Florida, jointly with a detailed sensitivity analysis, allowed us to identify the main drivers of hydrologic dynamics in GIWs under different climate and morphologic conditions.

  16. Engineered wetlands : an innovative environmental solution

    Energy Technology Data Exchange (ETDEWEB)

    Wallace, S.; Davis, B.M. [Jacques Whitford NAWE, White Bear Lake, MN (United States)

    2008-03-15

    Engineered wetlands are now considered as an emerging technology for the in situ remediation of hydrocarbon-contaminated soil and waters. Engineered wetlands incorporate a horizontal subsurface flow gravel bed reactor lined with impermeable liners, and are equipped with forced bed aeration systems in order to enhance oxygen delivery to the wetland's aerobic micro-organisms. The wetlands typically emphasize specific characteristics of wetland ecosystems to improve treatment capacities. This article discussed an engineered wetlands installed at a set of pipeline terminals as well as at a former British Petroleum (BP) refinery. The pipeline terminal generated contact wastewater containing BTEX and ammonia, and a subsurface engineered wetland was built in 1998. To date, the 16,000{sup 2} foot wetland has treated a flow-equalized input of approximately 1.5 m{sup 3} per day of contaminants. At the refinery, a wetland treatment system was designed to treat 6000 m{sup 3} of benzene, toluene, ethylbenzene and xylene (BTEX) and volatile organic compounds (VOCs). The treatment site consists of a golf course, river front trails, and a white water kayak course. A cascade aeration system was used for iron oxidation and air-stripping. A soil matrix biofilter was used for passive gas phase benzene removal, as well as for the removal of ferric hydroxide precipitates. It was concluded that engineered wetlands can offer long-term solutions to site remediation challenges. 1 fig.

  17. Wetlands and infectious diseases

    Directory of Open Access Journals (Sweden)

    Robert H. Zimmerman

    2001-01-01

    Full Text Available There is a historical association between wetlands and infectious disease that has led to the modification of wetlands to prevent disease. At the same time there has been the development of water resources projects that increase the risk of disease. The demand for more water development projects and the increased pressure to make natural wetlands economically beneficial creates the need for an ecological approach to wetland management and health assessment. The environmental and health interactions are many. There is a need to take into account the landscape, spatial boundaries, and cross-boundary interactions in water development projects as well as alternative methods to provide water for human needs. The research challenges that need to be addressed are discussed.

  18. North American Wetlands and Mosquito Control

    Science.gov (United States)

    Rey, Jorge R.; Walton, William E.; Wolfe, Roger J.; Connelly, Roxanne; O’Connell, Sheila M.; Berg, Joe; Sakolsky-Hoopes, Gabrielle E.; Laderman, Aimlee D.

    2012-01-01

    Wetlands are valuable habitats that provide important social, economic, and ecological services such as flood control, water quality improvement, carbon sequestration, pollutant removal, and primary/secondary production export to terrestrial and aquatic food chains. There is disagreement about the need for mosquito control in wetlands and about the techniques utilized for mosquito abatement and their impacts upon wetlands ecosystems. Mosquito control in wetlands is a complex issue influenced by numerous factors, including many hard to quantify elements such as human perceptions, cultural predispositions, and political climate. In spite of considerable progress during the last decades, habitat protection and environmentally sound habitat management still remain inextricably tied to politics and economics. Furthermore, the connections are often complex, and occur at several levels, ranging from local businesses and politicians, to national governments and multinational institutions. Education is the key to lasting wetlands conservation. Integrated mosquito abatement strategies incorporate many approaches and practicable options, as described herein, and need to be well-defined, effective, and ecologically and economically sound for the wetland type and for the mosquito species of concern. The approach will certainly differ in response to disease outbreaks caused by mosquito-vectored pathogens versus quality of life issues caused by nuisance-biting mosquitoes. In this contribution, we provide an overview of the ecological setting and context for mosquito control in wetlands, present pertinent information on wetlands mosquitoes, review the mosquito abatement options available for current wetlands managers and mosquito control professionals, and outline some necessary considerations when devising mosquito control strategies. Although the emphasis is on North American wetlands, most of the material is applicable to wetlands everywhere. PMID:23222252

  19. Methane emissions from global wetlands: An assessment of the uncertainty associated with various wetland extent data sets

    Science.gov (United States)

    Zhang, Bowen; Tian, Hanqin; Lu, Chaoqun; Chen, Guangsheng; Pan, Shufen; Anderson, Christopher; Poulter, Benjamin

    2017-09-01

    A wide range of estimates on global wetland methane (CH4) fluxes has been reported during the recent two decades. This gives rise to urgent needs to clarify and identify the uncertainty sources, and conclude a reconciled estimate for global CH4 fluxes from wetlands. Most estimates by using bottom-up approach rely on wetland data sets, but these data sets show largely inconsistent in terms of both wetland extent and spatiotemporal distribution. A quantitative assessment of uncertainties associated with these discrepancies among wetland data sets has not been well investigated yet. By comparing the five widely used global wetland data sets (GISS, GLWD, Kaplan, GIEMS and SWAMPS-GLWD), it this study, we found large differences in the wetland extent, ranging from 5.3 to 10.2 million km2, as well as their spatial and temporal distributions among the five data sets. These discrepancies in wetland data sets resulted in large bias in model-estimated global wetland CH4 emissions as simulated by using the Dynamic Land Ecosystem Model (DLEM). The model simulations indicated that the mean global wetland CH4 emissions during 2000-2007 were 177.2 ± 49.7 Tg CH4 yr-1, based on the five different data sets. The tropical regions contributed the largest portion of estimated CH4 emissions from global wetlands, but also had the largest discrepancy. Among six continents, the largest uncertainty was found in South America. Thus, the improved estimates of wetland extent and CH4 emissions in the tropical regions and South America would be a critical step toward an accurate estimate of global CH4 emissions. This uncertainty analysis also reveals an important need for our scientific community to generate a global scale wetland data set with higher spatial resolution and shorter time interval, by integrating multiple sources of field and satellite data with modeling approaches, for cross-scale extrapolation.

  20. Goddard DEVELOP Students: Using NASA Remote Sensing Technology to Study the Chesapeake Bay Watershed

    Science.gov (United States)

    Moore, Rachel

    2011-01-01

    The DEVELOP National Program is an Earth Science research internship, operating under NASA s Applied Sciences Program. Each spring, summer, and fall, DEVELOP interns form teams to investigate Earth Science related issues. Since the Fall of 2003, Goddard Space Flight Center (GSFC) has been home to one of 10 national DEVELOP teams. In past terms, students completed a variety of projects related to the Applied Sciences Applications of National Priority, such as Public Health, Natural Disasters, Water Resources, and Ecological Forecasting. These projects have focused on areas all over the world, including the United States, Africa, and Asia. Recently, Goddard DEVELOP students have turned their attention to a local environment, the Chesapeake Bay Watershed. The Chesapeake Bay Watershed is a complex and diverse ecosystem, spanning approximately 64,000 square miles. The watershed encompasses parts of six states: Delaware, Maryland, New York, Pennsylvania, Virginia, and West Virginia, as well as the District of Columbia. The Bay itself is the biggest estuary in the United States, with over 100,000 tributaries feeding into it. The ratio of fresh water to salt water varies throughout the Bay, allowing for a variety of habitats. The Bay s wetlands, marshes, forests, reefs, and rivers support more than 3,600 plant and animal species, including birds, mammals, reptiles, amphibians, fish, and crabs. The Bay is also commercially significant. It is ranked third in the nation in fishery catch, and supplies approximately 500 million pounds of seafood annually. In addition to its abundant flora and fauna, the Chesapeake Bay watershed is home to approximately 16.6 million people, who live and work throughout the watershed, and who use its diverse resources for recreational purposes. Over the past several decades, the population throughout the watershed has increased rapidly, resulting in land use changes, and ultimately decreasing the health of the Chesapeake Bay Watershed. Over the

  1. Percent Wetland Cover (Future)

    Data.gov (United States)

    U.S. Environmental Protection Agency — Wetlands act as filters, removing or diminishing the amount of pollutants that enter surface water. Higher values for percent of wetland cover (WETLNDSPCT) may be...

  2. VSWI Wetlands Advisory Layer

    Data.gov (United States)

    Vermont Center for Geographic Information — This dataset represents the DEC Wetlands Program's Advisory layer. This layer makes the most up-to-date, non-jurisdictional, wetlands mapping avaiable to the public...

  3. Lake Superior Coastal Wetland Fish Assemblages and ...

    Science.gov (United States)

    The role of the coastal margin and the watershed context in defining the ecology of even very large lakes is increasingly being recognized and examined. Coastal wetlands are both important contributors to the biodiversity and productivity of large lakes and important mediators of the lake-basin connection. We explored wetland-watershed connections and their relationship to wetland function and condition using data collected from 37 Lake Superior wetlands spanning a substantial geographic and geomorphic gradient. While none of these wetlands are particularly disturbed, there were nevertheless clear relationships between watershed landuse and wetland habitat and biota, and these varied consistently across wetland type categories that reflected the strength of connection to the watershed. For example, water clarity and vegetation structure complexity declined with decreasing percent natural land cover, and these effects were strongest in riverine wetlands (having generally large watersheds and tributary-dominated hydrology) and weakest in lagoon wetlands (having generally small watersheds and lake-dominate hydrology). Fish abundance and species richness both increased with decreasing percent natural land cover while species diversity decreased, and again the effect was strongest in riverine wetlands. Lagoonal wetlands, which lack any substantial tributary, consistently harbored the fewest species of fish and a composition different from the more watershed-lin

  4. Diverse characteristics of wetlands restored under the Wetlands Reserve Program in the Southeastern United States

    Science.gov (United States)

    Diane De Steven; Joel M. Gramling

    2012-01-01

    The Wetlands Reserve Program (WRP) restores converted or degraded wetlands on private working lands; however, the nature and outcomes of such efforts are undocumented in the Southeastern U.S. Identification of wetland types is needed to assess the program's conservation benefits, because ecological functions differ with hydrogeomorphic (HGM) type. We reviewed...

  5. The emergence of treatment wetlands

    International Nuclear Information System (INIS)

    Cole, S.

    1998-01-01

    Judging by the growing number of wetlands built for wastewater treatment around the world, this natural technology seems to have firmly established roots. After almost 30 years of use in wastewater treatment, constructed treatment wetlands now number over 500 in Europe and 600 in North America. Marsh-type surface flow systems are most common in North America, but subsurface flow wetlands, where wastewater flows beneath the surface of a gravel-rock bed, predominate in Europe. The inexpensive, low maintenance technology is in high demand in Central America, Eastern Europe, and Asia. New applications, from nitrate-contaminated ground water to effluent from high-intensity livestock operations, are also increasing. But in the United States, treatment-wetland technology has not yet gained national regulatory acceptance. Some states and EPA regions are eager to endorse them, but others are wary of this nontraditional method of treating wastewater. In part, this reluctance exists because the technology is not yet completely understood. Treatment wetlands also pose a potential threat to wildlife attracted to this new habitat -an ecosystem exposed to toxic compounds. New efforts are under way, however, to place the technology onto firmer scientific and regulatory ground. Long-term demonstration and monitoring field studies are currently probing the inner workings of wetlands and their water quality capabilities to provide better data on how to design more effective systems. A recent study of US policy and regulatory issues surrounding treatment wetlands has recommended that the federal government actively promote the technology and clear the regulatory roadblocks to enable wider use. Proponents argue that the net environmental benefits of constructed wetlands, such as restoring habitat and increasing wetlands inventory, should be considered. 8 refs., 6 photos

  6. Multiple factors influence the vegetation composition of Southeast U.S. wetlands restored in the Wetlands Reserve Program

    Science.gov (United States)

    Diane De Steven; Joel M. Gramling

    2013-01-01

    Degradation of wetlands on agricultural lands contributes to the loss of local or regional vegetation diversity. The U.S. Department of Agriculture’s Wetlands Reserve Program (WRP) funds the restoration of degraded wetlands on private ‘working lands’, but these WRP projects have not been studied in the Southeast United States. Wetland hydrogeomorphic type influences...

  7. Industry and forest wetlands: Cooperative research initiatives

    International Nuclear Information System (INIS)

    Shepard, J.P.; Lucier, A.A.; Haines, L.W.

    1993-01-01

    In 1989 the forest products industry responded to a challenge of the National Wetlands Policy Forum to initiate a cooperative research program on forest wetlands management organized through the National Council of the Paper Industry for Air and Stream Improvement (NCASI). The objective is to determine how forest landowners can manage wetlands for timber production while protecting other wetland functions such as flood storage, water purification, and food chain/wildlife habitat support. Studies supported by the NCASI in 9 states are summarized. Technical support on wetland regulatory issues to member companies is part of the research program. Since guidelines for recognizing wetlands for regulatory proposed have changed frequently, the NCASI has recommend an explicit link between wetland delineation and a classification system that considers difference among wetland types in vegetation, soils, hydrology, appearance, landscape position, and other factors. 16 refs

  8. Applications of remote sensing and GIS technologies to wetland assessment and monitoring at a DOE facility

    International Nuclear Information System (INIS)

    Mackey, H.E.

    1993-01-01

    The Savannah River Site (SRS), a 777-km 2 site, located in the Upper Coastal Plain of South Carolina, was established in the early 1950s for the production of nuclear materials to support the defense needs of the United States. The SRS was closed to the public and shortly after its formation, much of the uplands and previous farmlands were planted to managed pine plantations for the US Department of Energy by the US Forest Service. More than 7500 hectares of wetlands, ranging from a large, 3000-hectare swamp, to extensive bottomland hardwood forests, to isolated upland Carolina bays, were present on the SRS at the time of its formation. During the subsequent 40-yr operation of the site, five stream systems and portions of the Savannah River swamp on the SRS were influenced by discharges of once-through cooling water from site operations. In addition, two large cooling lakes were constructed, Par Pond in 1958 and L Lake in 1985, to support reactor operations. Thus, the wetlands of the SRS have had a variety of influences, ranging from the protection afforded by the exclusion of the public from the site, past construction of major facilities, and discharges from site operations. Evaluation, assessment, and monitoring long-term changes to the extensive and varied wetlands of the SRS are formidable tasks. Archived remote sensing data of a variety of types, along with the advances in computer technologies that allow the integration of land-use/land-cover geographic information system (GIS) data layer and related GIS data bases, are providing the necessary tools and information to integrate wetlands protection and management into an effective operational environment

  9. Global warming and prairie wetlands

    International Nuclear Information System (INIS)

    Poiani, K.A.; Johnson, W.C.

    1991-01-01

    In this article, the authors discuss current understanding and projections of global warming; review wetland vegetation dynamics to establish the strong relationship among climate, wetland hydrology, vegetation patterns and waterfowl habitat; discuss the potential effects of a greenhouse warming on these relationships; and illustrate the potential effects of climate change on wetland habitat by using a simulation model

  10. Wetland soils, hydrology and geomorphology

    Science.gov (United States)

    C. Rhett Jackson; James A. Thompson; Randall K. Kolka

    2014-01-01

    The hydrology, soils, and watershed processes of a wetland all interact with vegetation and animals over time to create the dynamic physical template upon which a wetland's ecosystem is based (Fig. 2.1). With respect to many ecosystem processes, the physical factors defining a wetland environment at any particular time are often treated as independent variables,...

  11. Ecosystem function in oil sands wetlands : rates of detrital decomposition, moss growth, and microbial respiration in oilsands wetlands

    Energy Technology Data Exchange (ETDEWEB)

    Wytrykush, C. [Windsor Univ., ON (Canada); Hornung, J. [Petro-Canada, Calgary, AB (Canada)

    2007-07-01

    A study was conducted in which leaf litter breakdown and biomass accrual in 31 reference and oilsands affected (OSPM) wetlands in Northeastern Alberta was examined. The purpose was to determine how the decomposition of dead plant matter controls the primary productivity in wetlands. The data collected from this study will provide information about carbon flow and dynamics in oilsands affected wetlands. The study involved the investigation of wetlands that contrasted in water origin (OSPM vs. reference), sediment origin (OSPM vs. natural), sediment organic content and age. Mesh bags containing 5 g of dried Typha (cattail) or 20 g of damp moss were placed into 31 wetlands in order to monitor the rate at which biomass was lost to decomposition, as measured by changes in dry mass. After 1 year, moss growth was found to be greatest in younger wetlands with natural sediments. Cattail decomposition was found to be slower in wetlands containing OSPM water than that in reference wetlands. Preliminary analysis of respiration rates of biota associated with decomposing cattail indicate that the amount of oxygen consumed is not affected by wetland water source, sediment source, level of initial sediment organic content, or age.

  12. 33 CFR 100.124 - Maggie Fischer Memorial Great South Bay Cross Bay Swim, Great South Bay, New York.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Maggie Fischer Memorial Great South Bay Cross Bay Swim, Great South Bay, New York. 100.124 Section 100.124 Navigation and Navigable... NAVIGABLE WATERS § 100.124 Maggie Fischer Memorial Great South Bay Cross Bay Swim, Great South Bay, New York...

  13. GlobWetland Africa: Implementing Sustainable Earth Observation Based Wetland Monitoring Capacity in Africa and Beyond

    DEFF Research Database (Denmark)

    Tottrup, Christian; Riffler, Michael; Wang, Tiejun

    and decision support, [iii] receive a freely available, open, flexible and modifiable framework for easy establishment of new wetland observatories, for easy integration in existing observatory infrastructures and for easy adaptation to new requirements, e.g. changes in management processes.......Lack of data, appropriate information and challenges in human and institutional capacity put a serious constraint on effective monitoring and management of wetlands in Africa. Conventional data are often lacking in time or space, of poor quality or available at locations that are not necessarily...... for the conservation, wiseuse and effective management of wetlands in Africa and to provide African stakeholders with the necessary EO methods and tools to better fulfil their commitments and obligations towards the Ramsar Convention on Wetlands. The main objective of GlobWetland Africa (GW-A) is to provide the major...

  14. Waves and tides responsible for the intermittent closure of the entrance of a small, sheltered tidal wetland at San Francisco, CA

    Science.gov (United States)

    Hanes, D.M.; Ward, K.; Erikson, L.H.

    2011-01-01

    Crissy Field Marsh (CFM; http://www.nps.gov/prsf/planyourvisit/crissy-field-marsh-and-beach.htm) is a small, restored tidal wetland located in the entrance to San Francisco Bay just east of the Golden Gate. The marsh is small but otherwise fairly typical of many such restored wetlands worldwide. The marsh is hydraulically connected to the bay and the adjacent Pacific Ocean by a narrow sandy channel. The channel often migrates and sometimes closes completely, which effectively blocks the tidal connection to the ocean and disrupts the hydraulics and ecology of the marsh. Field measurements of waves and tides have been examined in order to evaluate the conditions responsible for the intermittent closure of the marsh entrance. The most important factor found to bring about the entrance channel closure is the occurrence of large ocean waves. However, there were also a few closure events during times with relatively small offshore waves. Examination of the deep-water directional wave spectra during these times indicates the presence of a small secondary peak corresponding to long period swell from the southern hemisphere, indicating that CFM and San Francisco Bay in general may be more susceptible to long period ocean swell emanating from the south or southwest than the more common ocean waves coming from the northwest. The tidal records during closure events show no strong relationship between closures and tides, other than that closures tend to occur during multi-day periods with successively increasing high tides. It can be inferred from these findings that the most important process to the intermittent closure of the entrance to CFM is littoral sediment transport driven by the influence of ocean swell waves breaking along the CFM shoreline at oblique angles. During periods of large, oblique waves the littoral transport of sand likely overwhelms the scour potential of the tidal flow in the entrance channel. ?? 2011.

  15. National Wetland Condition Assessment 2011: A Collaborative Survey of the Nation's Wetlands

    Science.gov (United States)

    The National Wetland Condition Assessment 2011: A Collaborative Survey presents the results of an unprecedented assessment of the nation’s wetlands. This report is part of the National Aquatic Resource Surveys, a series of statistically based surveys designed to provide the publi...

  16. Applicability Assessment of Uavsar Data in Wetland Monitoring: a Case Study of Louisiana Wetland

    Science.gov (United States)

    Zhao, J.; Niu, Y.; Lu, Z.; Yang, J.; Li, P.; Liu, W.

    2018-04-01

    Wetlands are highly productive and support a wide variety of ecosystem goods and services. Monitoring wetland is essential and potential. Because of the repeat-pass nature of satellite orbit and airborne, time-series of remote sensing data can be obtained to monitor wetland. UAVSAR is a NASA L-band synthetic aperture radar (SAR) sensor compact pod-mounted polarimetric instrument for interferometric repeat-track observations. Moreover, UAVSAR images can accurately map crustal deformations associated with natural hazards, such as volcanoes and earthquakes. And its polarization agility facilitates terrain and land-use classification and change detection. In this paper, the multi-temporal UAVSAR data are applied for monitoring the wetland change. Using the multi-temporal polarimetric SAR (PolSAR) data, the change detection maps are obtained by unsupervised and supervised method. And the coherence is extracted from the interfometric SAR (InSAR) data to verify the accuracy of change detection map. The experimental results show that the multi-temporal UAVSAR data is fit for wetland monitor.

  17. Wetland Mitigation Monitoring at the Fernald Preserve - 13200

    Energy Technology Data Exchange (ETDEWEB)

    Powell, Jane [Fernald Preserve Site Manager, DOE Office of Legacy Management, Harrison, Ohio (United States); Bien, Stephanie; Decker, Ashlee; Homer, John [Environmental Scientist, S.M. Stoller Corporation, Harrison, Ohio (United States); Wulker, Brian [Intern, S.M. Stoller Corporation, Harrison, Ohio (United States)

    2013-07-01

    The U.S. Department of Energy is responsible for 7.2 hectares (17.8 acres) of mitigation wetland at the Fernald Preserve, Ohio. Remedial activities affected the wetlands, and mitigation plans were incorporated into site-wide ecological restoration planning. In 2008, the Fernald Natural Resource Trustees developed a comprehensive wetland mitigation monitoring approach to evaluate whether compensatory mitigation requirements have been met. The Fernald Preserve Wetland Mitigation Monitoring Plan provided a guideline for wetland evaluations. The Ohio Environmental Protection Agency (Ohio EPA) wetland mitigation monitoring protocols were adopted as the means for compensatory wetland evaluation. Design, hydrologic regime, vegetation, wildlife, and biogeochemistry were evaluated from 2009 to 2011. Evaluations showed mixed results when compared to the Ohio EPA performance standards. Results of vegetation monitoring varied, with the best results occurring in wetlands adjacent to forested areas. Amphibians, particularly ambystomatid salamanders, were observed in two areas adjacent to forested areas. Not all wetlands met vegetation performance standards and amphibian biodiversity metrics. However, Fernald mitigation wetlands showed substantially higher ratings compared to other mitigated wetlands in Ohio. Also, soil sampling results remain consistent with other Ohio mitigated wetlands. The performance standards are not intended to be 'pass/fail' criteria; rather, they are reference points for use in making decisions regarding future monitoring and maintenance. The Trustees approved the Fernald Preserve Wetland Mitigation Monitoring Report with the provision that long-term monitoring of the wetlands continues at the Fernald Preserve. (authors)

  18. Wetland Mitigation Monitoring at the Fernald Preserve - 13200

    International Nuclear Information System (INIS)

    Powell, Jane; Bien, Stephanie; Decker, Ashlee; Homer, John; Wulker, Brian

    2013-01-01

    The U.S. Department of Energy is responsible for 7.2 hectares (17.8 acres) of mitigation wetland at the Fernald Preserve, Ohio. Remedial activities affected the wetlands, and mitigation plans were incorporated into site-wide ecological restoration planning. In 2008, the Fernald Natural Resource Trustees developed a comprehensive wetland mitigation monitoring approach to evaluate whether compensatory mitigation requirements have been met. The Fernald Preserve Wetland Mitigation Monitoring Plan provided a guideline for wetland evaluations. The Ohio Environmental Protection Agency (Ohio EPA) wetland mitigation monitoring protocols were adopted as the means for compensatory wetland evaluation. Design, hydrologic regime, vegetation, wildlife, and biogeochemistry were evaluated from 2009 to 2011. Evaluations showed mixed results when compared to the Ohio EPA performance standards. Results of vegetation monitoring varied, with the best results occurring in wetlands adjacent to forested areas. Amphibians, particularly ambystomatid salamanders, were observed in two areas adjacent to forested areas. Not all wetlands met vegetation performance standards and amphibian biodiversity metrics. However, Fernald mitigation wetlands showed substantially higher ratings compared to other mitigated wetlands in Ohio. Also, soil sampling results remain consistent with other Ohio mitigated wetlands. The performance standards are not intended to be 'pass/fail' criteria; rather, they are reference points for use in making decisions regarding future monitoring and maintenance. The Trustees approved the Fernald Preserve Wetland Mitigation Monitoring Report with the provision that long-term monitoring of the wetlands continues at the Fernald Preserve. (authors)

  19. Why are wetlands important?

    Science.gov (United States)

    Wetlands are among the most productive ecosystems in the world, comparable to rain forests and coral reefs. An immense variety of species of microbes, plants, insects, amphibians, reptiles, birds, fish, and mammals can be part of a wetland ecosystem.

  20. Sustainable development in the Hudson Bay/James Bay bioregion

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    An overview is presented of projects planned for the James Bay/Hudson Bay region, and the expected environmental impacts of these projects. The watershed of James Bay and Hudson Bay covers well over one third of Canada, from southern Alberta to central Ontario to Baffin Island, as well as parts of north Dakota and Minnesota in the U.S.A. Hydroelectric power developments that change the timing and rate of flow of fresh water may cause changes in the nature and duration of ice cover, habitats of marine mammals, fish and migratory birds, currents into and out of Hudson Bay/James Bay, seasonal and annual loads of sediments and nutrients to marine ecosystems, and anadromous fish populations. Hydroelectric projects are proposed for the region by Quebec, Ontario and Manitoba. In January 1992, the Canadian Arctic Resources Committee (CARC), the Environmental Committee of Sanikuluaq, and the Rawson Academy of Arctic Science will launch the Hudson Bay/James Bay Bioregion Program, an independent initiative to apply an ecosystem approach to the region. Two main objectives are to provide a comprehensive assessment of the cumulative impacts of human activities on the marine and freshwater ecosystems of the Hudson Bay/James Bay bioregion, and to foster sustainable development by examining and proposing cooperative processes for decision making among governments, developers, aboriginal peoples and other stakeholders. 1 fig

  1. Molecular characterization of dissolved organic matter in freshwater wetlands of the Florida Everglades.

    Science.gov (United States)

    Lu, X Q; Maie, N; Hanna, J V; Childers, D L; Jaffé, R

    2003-06-01

    In this study, the molecular composition of dissolved organic matter (DOM), collected from wetlands of the Southern Everglades, was examined using a variety of analytical techniques in order to characterize its sources and transformation in the environment. The methods applied for the characterization of DOM included fluorescence spectroscopy, solid state 13C CPMAS NMR spectroscopy, and pyrolysis-GC/MS. The relative abundance of protein-like components and carbohydrates increased from the canal site to more remote freshwater marsh sites suggesting that significant amounts of non-humic DOM are autochthonously produced within the freshwater marshes, and are not exclusively introduced through canal inputs. Such in situ DOM production is important when considering how DOM from canals is processed and transported to downstream estuaries of Florida Bay.

  2. Are isolated wetlands groundwater recharge hotspots?

    Science.gov (United States)

    Webb, A.; Wicks, C. M.; Brantley, S. T.; Golladay, S. W.

    2017-12-01

    Geographically isolated wetlands (GIWs) are a common landscape feature in the mantled karst terrain of the Dougherty Plain physiographic district in Southwestern Georgia. These wetlands support a high diversity of obligate/facultative wetland flora and fauna, including several endangered species. While the ecological value of these wetlands is well documented, the hydrologic effects of GIWs on larger watershed processes, such as water storage and aquifer recharge, are less clear. Our project seeks to understand the spatial and temporal variation in recharge across GIWs on this mantled karst landscape. In particular, our first step is to understand the role of isolated wetlands (presumed sinkholes) in delivering water into the underlying aquifer. Our hypothesis is that many GIWs are actually water-filled sinkholes and are locations of focused recharge feeding either the underlying upper Floridan aquifer or the nearby creeks. If we are correct, then these sinkholes should exhibit "drains", i.e., conduits into the limestone bedrock. Thus, the purposes of our initial study are to image the soil-limestone contact (the buried epikarstic surface) and determine if possible subsurface drains exist. Our field work was conducted at the Joseph W Jones Ecological Research Center. During the dry season, we conducted ground penetrating radar (GPR) surveys as grids and lines across a large wetland and across a field with no surface expression of a wetland or sinkhole. We used GPR (200 MHz antenna) with 1-m spacing between antenna and a ping rate of 1 ping per 40 centimeters. Our results show that the epikarstic surface exhibits a drain underneath the wetland (sinkhole) and that no similar feature was seen under the field, even though the survey grid and spacing were similar. As our project progresses, we will survey additional wetlands occurring across varying soil types to determine the spatial distribution between surface wetlands and subsurface drains.

  3. Description of the Wetlands Research Programme

    CSIR Research Space (South Africa)

    Walmsley, RD

    1988-01-01

    Full Text Available This report presents a rationale to the development of a multidisciplinary South African Wetland Research Programme. A definition of what is meant by the term wetland is given along with a general description of what types of wetland occur in South...

  4. Urban wetlands: restoration or designed rehabilitation?

    Directory of Open Access Journals (Sweden)

    Beth Ravit

    2017-05-01

    Full Text Available The continuing loss of urban wetlands due to an expanding human population and urban development pressures makes restoration or creation of urban wetlands a high priority. However, urban wetland restorations are particularly challenging due to altered hydrologic patterns, a high proportion of impervious surface and stormwater runoff, degraded urban soils, historic contamination, and competitive pressure from non-native species. Urban wetland projects must also consider human-desired socio-economic benefits. We argue that using current wetland restoration approaches and existing regulatory “success” criteria, such as meeting restoration targets for vegetation structure based on reference sites in non-urban locations, will result in “failed” urban restorations. Using three wetland Case Studies in highly urbanized locations, we describe geophysical tools, stormwater management methods, and design approaches useful in addressing urban challenges and in supporting “successful” urban rehabilitation outcomes. We suggest that in human-dominated landscapes, the current paradigm of “restoration” to a previous state must shift to a paradigm of “rehabilitation”, which prioritizes wetland functions and values rather than vegetation structure in order to provide increased ecological benefits and much needed urban open space amenities.

  5. The study of Phosphorus distribution at Putrajaya Wetland

    Science.gov (United States)

    Mubin Zahari, Nazirul; Malek, Nur Farzana Fasiha Abdul; Fai, Chow Ming; Humaira Haron, Siti; Hafiz Zawawi, Mohd; Nazmi Ismail, Iszmir; Mohamad, Daud; Syamsir, Agusril; Sidek, Lariyah Mohd; Zakwan Ramli, Mohd; Ismail, Norfariza; Zubir Sapian, Ahmad; Noordin, Normaliza; Rahaman, Nurliyana Abdul; Muhamad, Yahzam; Mat Saman, Jarina

    2018-04-01

    This study is concerning phosphorus distribution in Putrajaya Wetland. Phosphorus is one of the important component in nutrients for living things be it aquatic or non – aquatic organisms. Total phosphorus (TP) results will give some information on the trophic status of surface water in water bodies. The focus of this study is to determine the total phosphorus concentration in Putrajaya Wetland which is in the inlet of the wetland then outlet of the wetland (Central Wetland Lake). The water sample is taken from Putrajaya Wetland and the test was conducted in the laboratory. The result from this study shows the results for total phosphorus according to month, sampling station and cells. Lowest total phosphate at the Central Wetland compare with all the wetland arms cells.

  6. Development of an indicator to monitor mediterranean wetlands.

    Science.gov (United States)

    Sanchez, Antonio; Abdul Malak, Dania; Guelmami, Anis; Perennou, Christian

    2015-01-01

    Wetlands are sensitive ecosystems that are increasingly subjected to threats from anthropogenic factors. In the last decades, coastal Mediterranean wetlands have been suffering considerable pressures from land use change, intensification of urban growth, increasing tourism infrastructure and intensification of agricultural practices. Remote sensing (RS) and Geographic Information Systems (GIS) techniques are efficient tools that can support monitoring Mediterranean coastal wetlands on large scales and over long periods of time. The study aims at developing a wetland indicator to support monitoring Mediterranean coastal wetlands using these techniques. The indicator makes use of multi-temporal Landsat images, land use reference layers, a 50m numerical model of the territory (NMT) and Corine Land Cover (CLC) for the identification and mapping of wetlands. The approach combines supervised image classification techniques making use of vegetation indices and decision tree analysis to identify the surface covered by wetlands at a given date. A validation process is put in place to compare outcomes with existing local wetland inventories to check the results reliability. The indicator´s results demonstrate an improvement in the level of precision of change detection methods achieved by traditional tools providing reliability up to 95% in main wetland areas. The results confirm that the use of RS techniques improves the precision of wetland detection compared to the use of CLC for wetland monitoring and stress the strong relation between the level of wetland detection and the nature of the wetland areas and the monitoring scale considered.

  7. Recreating wetland ecosystems in an oil sands disturbed landscape : Suncor consolidated-tailings demonstration wetlands

    Energy Technology Data Exchange (ETDEWEB)

    Daly, C. [Suncor Energy, Fort McMurray, AB (Canada). Aquatic Reclamation Research; Tedder, W.; Marlowe, P. [Golder Associates Ltd., Calgary, AB (Canada). Oil Sands Div.

    2009-10-01

    Open pit oil sands mining involves the disturbance of thin overburden covers of Boreal forest lands that must be returned to equivalent land capability after mining activities have ceased. Before mining starts, any wetlands are drained, timber is harvested, and peat, topsoils and subsoils are stockpiled for later use. This article discussed wetland reclamation activities conducted by Suncor Energy at its open pit mining operations. Research facilities were constructed in order to determine if wetlands constructed with consolidated tailings (CT) and pond effluent water (PEW) were able to support a sustainable vegetation community. Thirty-three cat-tail plots were established at the facility as well as unplanted plots in order to determine how quickly natural establishment occurred. Shoreline plug transplants and transplants from a natural saline lake were also introduced. Within 5 years, over 23 plant species had naturally colonized the CT wetlands. However, diversity was lower in CT and PEW-constructed wetlands. It was concluded that the application of a native peat-mineral mix soil may help to increase plant diversity. 20 refs., 5 figs.

  8. Wetlands in changed landscapes: the influence of habitat transformation on the physico-chemistry of temporary depression wetlands.

    Science.gov (United States)

    Bird, Matthew S; Day, Jenny A

    2014-01-01

    Temporary wetlands dominate the wet season landscape of temperate, semi-arid and arid regions, yet, other than their direct loss to development and agriculture, little information exists on how remaining wetlands have been altered by anthropogenic conversion of surrounding landscapes. This study investigates relationships between the extent and type of habitat transformation around temporary wetlands and their water column physico-chemical characteristics. A set of 90 isolated depression wetlands (seasonally inundated) occurring on coastal plains of the south-western Cape mediterranean-climate region of South Africa was sampled during the winter/spring wet season of 2007. Wetlands were sampled across habitat transformation gradients according to the areal cover of agriculture, urban development and alien invasive vegetation within 100 and 500 m radii of each wetland edge. We hypothesized that the principal drivers of physico-chemical conditions in these wetlands (e.g. soil properties, basin morphology) are altered by habitat transformation. Multivariate multiple regression analyses (distance-based Redundancy Analysis) indicated significant associations between wetland physico-chemistry and habitat transformation (overall transformation within 100 and 500 m, alien vegetation cover within 100 and 500 m, urban cover within 100 m); although for significant regressions the amount of variation explained was very low (range: ∼2 to ∼5.5%), relative to that explained by purely spatio-temporal factors (range: ∼35.5 to ∼43%). The nature of the relationships between each type of transformation in the landscape and individual physico-chemical variables in wetlands were further explored with univariate multiple regressions. Results suggest that conservation of relatively narrow (∼100 m) buffer strips around temporary wetlands is likely to be effective in the maintenance of natural conditions in terms of physico-chemical water quality.

  9. Wetlands in changed landscapes: the influence of habitat transformation on the physico-chemistry of temporary depression wetlands.

    Directory of Open Access Journals (Sweden)

    Matthew S Bird

    Full Text Available Temporary wetlands dominate the wet season landscape of temperate, semi-arid and arid regions, yet, other than their direct loss to development and agriculture, little information exists on how remaining wetlands have been altered by anthropogenic conversion of surrounding landscapes. This study investigates relationships between the extent and type of habitat transformation around temporary wetlands and their water column physico-chemical characteristics. A set of 90 isolated depression wetlands (seasonally inundated occurring on coastal plains of the south-western Cape mediterranean-climate region of South Africa was sampled during the winter/spring wet season of 2007. Wetlands were sampled across habitat transformation gradients according to the areal cover of agriculture, urban development and alien invasive vegetation within 100 and 500 m radii of each wetland edge. We hypothesized that the principal drivers of physico-chemical conditions in these wetlands (e.g. soil properties, basin morphology are altered by habitat transformation. Multivariate multiple regression analyses (distance-based Redundancy Analysis indicated significant associations between wetland physico-chemistry and habitat transformation (overall transformation within 100 and 500 m, alien vegetation cover within 100 and 500 m, urban cover within 100 m; although for significant regressions the amount of variation explained was very low (range: ∼2 to ∼5.5%, relative to that explained by purely spatio-temporal factors (range: ∼35.5 to ∼43%. The nature of the relationships between each type of transformation in the landscape and individual physico-chemical variables in wetlands were further explored with univariate multiple regressions. Results suggest that conservation of relatively narrow (∼100 m buffer strips around temporary wetlands is likely to be effective in the maintenance of natural conditions in terms of physico-chemical water quality.

  10. Wetlands - an underestimated economic resource?

    International Nuclear Information System (INIS)

    Gren, I.M.; Soederqvist, T.

    1996-01-01

    Wetlands are producing several valuable resources like fish, potential for recreation, water cleaning etc. These resources, and methods for assigning an economic value to them, are discussed in this article. Swedish and foreign empirical studies of the economic value of wetlands are reviewed. This review shows that socioeconomic estimates of the value of wetlands risk to be misleading if the direct and indirect values are not properly accounted for. 37 refs

  11. Distribution and behavior of major and trace elements in Tokyo Bay, Mutsu Bay and Funka Bay marine sediments

    International Nuclear Information System (INIS)

    Honda, Teruyuki; Kimura, Ken-ichiro

    2003-01-01

    Fourteen major and trace elements in marine sediment core samples collected from the coasts along eastern Japan, i.e. Tokyo Bay (II) (the recess), Tokyo Bay (IV) (the mouth), Mutsu Bay and Funka Bay and the Northwest Pacific basin as a comparative subject were determined by the instrumental neutron activation analysis (INAA). The sedimentation rates and sedimentary ages were calculated for the coastal sediment cores by the 210 Pb method. The results obtained in this study are summarized as follows: (1) Lanthanoid abundance patterns suggested that the major origin of the sediments was terrigenous material. La*/Lu* and Ce*/La* ratios revealed that the sediments from Tokyo Bay (II) and Mutsu Bay more directly reflected the contribution from river than those of other regions. In addition, the Th/Sc ratio indicated that the coastal sediments mainly originated in the materials from the volcanic island-arcs, Japanese islands, whereas those from the Northwest Pacific mainly from the continent. (2) The correlation between the Ce/U and Th/U ratios with high correlation coefficients of 0.920 to 0.991 indicated that all the sediments from Tokyo Bay (II) and Funka Bay were in reducing conditions while at least the upper sediments from Tokyo Bay (IV) and Mutsu Bay were in oxidizing conditions. (3) It became quite obvious that the sedimentation mechanism and the sedimentation environment at Tokyo Bay (II) was different from those at Tokyo Bay (IV), since the sedimentation rate at Tokyo Bay (II) was approximately twice as large as that at Tokyo Bay (IV). The sedimentary age of the 5th layer (8∼10 cm in depth) from Funka Bay was calculated at approximately 1940∼50, which agreed with the time, 1943∼45 when Showa-shinzan was formed by the eruption of the Usu volcano. (author)

  12. Feasibility of using geothermal effluents for waterfowl wetlands

    Energy Technology Data Exchange (ETDEWEB)

    None

    1981-09-01

    This project was conducted to evaluate the feasibility of using geothermal effluents for developing and maintaining waterfowl wetlands. Information in the document pertains to a seven State area the West where geothermal resources have development potential. Information is included on physiochemical characteristics of geothermal effluents; known effects of constituents in the water on a wetland ecosystem and water quality criteria for maintaining a viable wetland; potential of sites for wetland development and disposal of effluent water from geothermal facilities; methods of disposal of effluents, including advantages of each method and associated costs; legal and institutional constraints which could affect geothermal wetland development; potential problems associated with depletion of geothermal resources and subsidence of wetland areas; potential interference (adverse and beneficial) of wetlands with ground water; special considerations for wetlands requirements including size, flows, and potential water usage; and final conclusions and recommendations for suitable sites for developing demonstration wetlands.

  13. 7 CFR 1410.10 - Restoration of wetlands.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 10 2010-01-01 2010-01-01 false Restoration of wetlands. 1410.10 Section 1410.10... Restoration of wetlands. (a) An owner or operator who entered into a CRP contract on land that is suitable for restoration to wetlands or that was restored to wetlands while under such contract, may, if approved by CCC...

  14. Wetland restoration, flood pulsing, and disturbance dynamics

    Science.gov (United States)

    Middleton, Beth A.

    1999-01-01

    While it is generally accepted that flood pulsing and disturbance dynamics are critical to wetland viability, there is as yet no consensus among those responsible for wetland restoration about how best to plan for those phenomena or even whether it is really necessary to do so at all. In this groundbreaking book, Dr. Beth Middleton draws upon the latest research from around the world to build a strong case for making flood pulsing and disturbance dynamics integral to the wetland restoration planning process.While the initial chapters of the book are devoted to laying the conceptual foundations, most of the coverage is concerned with demonstrating the practical implications for wetland restoration and management of the latest ecological theory and research. It includes a fascinating case history section in which Dr. Middleton explores the restoration models used in five major North American, European, Australian, African, and Asian wetland projects, and analyzes their relative success from the perspective of flood pulsing and disturbance dynamics planning.Wetland Restoration also features a wealth of practical information useful to all those involved in wetland restoration and management, including: * A compendium of water level tolerances, seed germination, seedling recruitment, adult survival rates, and other key traits of wetland plant species * A bibliography of 1,200 articles and monographs covering all aspects of wetland restoration * A comprehensive directory of wetland restoration ftp sites worldwide * An extensive glossary of essential terms

  15. 78 FR 68719 - Floodplain Management and Protection of Wetlands

    Science.gov (United States)

    2013-11-15

    ... of wetlands in Sec. 55.2(b)(11) to cover manmade wetlands in order to ensure that wetlands built for...] RIN 2501-AD51 Floodplain Management and Protection of Wetlands AGENCY: Office of the Secretary, HUD... wetlands and floodplains. With respect to wetlands, the rule codifies existing procedures for Executive...

  16. Functional roles of wetlands: a case study of the coastal wetlands of ...

    African Journals Online (AJOL)

    The Coastal Wetland of the study area is used extensively for a large number of activities. It is also threatened because of their vulnerability and attractiveness for development. These therefore prompted a study of the Wetlands for a period of 18 months (July 1997 – December 1998) to identify the functional roles that ...

  17. Matsalu wetland area biomass as a bio fuel

    International Nuclear Information System (INIS)

    Lausmaa, Toenu

    2000-01-01

    To preserve Matsalu as an especially interesting and specific wetland area even on the international scale, the Matsalu Nature Reserve was founded in 1957. The most natural and characteristic bio topes at Matsalu are undoubtedly the reed stands, covering almost 3000 ha. The reed is rather thin and mixed with common hay plants near the land but towards the bay it becomes increasingly abundant and thick. The characterise features of several bio topes at the Nature Reserve (water-meadows, coastal pastures and meadows etc.) can be preserved only by human activity. Without human activity the landscape encompassing coastal pastures and meadows would go through changes and these areas would be soon covered with junipers. The reed harvesting in Matsalu goes back in the Middle Ages and even before that. The reed was harvested mainly in winter and only seldom in summer. The main goal of the reed harvesting was to obtain material for hatched roofs. The reed cutting is economically justified and environmentally benign activity even now, but only less than 1% of the total area of reed stands is cut nowadays. In spite of the fact that reed harvesting is now economical undertaking (export to Germany and Denmark), it could be much more escalated if were possible to use better technical equipment to that end and get low interest loans. Unfortunately, not all the reed in the wetland of Matsalu Nature Reserve is suitable for hatched roofs. Therefore, it is needed to find some other practical usage for reed as well. The most perspective of these new choices is, indeed, to use the reed biomass as a bio fuel for space heating in the local area of Matsalu. According to Matsalu wetland protection regulation, the constant human care of reed stands and meadows is one of the priorities in nature protection for this area. One possible field of use for the cut down biomass is to use it as a bio fuel. It is not only a good chance to run Matsalu Nature Reserve in sustainable way in terms of

  18. Structural and functional loss in restored wetland ecosystems.

    Directory of Open Access Journals (Sweden)

    David Moreno-Mateos

    2012-01-01

    Full Text Available Wetlands are among the most productive and economically valuable ecosystems in the world. However, because of human activities, over half of the wetland ecosystems existing in North America, Europe, Australia, and China in the early 20th century have been lost. Ecological restoration to recover critical ecosystem services has been widely attempted, but the degree of actual recovery of ecosystem functioning and structure from these efforts remains uncertain. Our results from a meta-analysis of 621 wetland sites from throughout the world show that even a century after restoration efforts, biological structure (driven mostly by plant assemblages, and biogeochemical functioning (driven primarily by the storage of carbon in wetland soils, remained on average 26% and 23% lower, respectively, than in reference sites. Either recovery has been very slow, or postdisturbance systems have moved towards alternative states that differ from reference conditions. We also found significant effects of environmental settings on the rate and degree of recovery. Large wetland areas (>100 ha and wetlands restored in warm (temperate and tropical climates recovered more rapidly than smaller wetlands and wetlands restored in cold climates. Also, wetlands experiencing more (riverine and tidal hydrologic exchange recovered more rapidly than depressional wetlands. Restoration performance is limited: current restoration practice fails to recover original levels of wetland ecosystem functions, even after many decades. If restoration as currently practiced is used to justify further degradation, global loss of wetland ecosystem function and structure will spread.

  19. Engineered wetlands for on-site groundwater remediation

    International Nuclear Information System (INIS)

    Wallace, S.; Davis, B.M.

    2008-01-01

    Engineered wetlands have been touted as an emerging technology for the in situ remediation of hydrocarbon-contaminated soil and water. They incorporate a horizontal subsurface flow gravel bed reactor lined with impermeable liners, and are equipped with forced bed aeration systems that enhance oxygen delivery to the wetland's aerobic micro-organisms. Engineered wetlands generally emphasize specific characteristics of wetland ecosystems to improve treatment capacities. Design parameters include biodegradation rate coefficients, flowrate, hydraulic residence time plus influent and required effluent concentrations. This paper described the installation of an engineered wetland system at a former British Petroleum (BP) refinery in Wyoming where a pipeline terminal generated contact wastewater containing benzene, toluene, ethylbenzene and xylene (BTEX) and ammonia. The wetland treatment system was designed to treat 6000 m 3 of contaminated ground water per day and has been in operation since May 2003. It was concluded that engineered wetlands can offer long-term solutions to site remediation challenges. 16 refs., 3 tabs., 6 figs

  20. Foraminiferal record of Holocene paleo-earthquakes on the subsiding south-western Poverty Bay coastline, New Zealand

    International Nuclear Information System (INIS)

    Hayward, B.W.; Sabaa, A.T.; Grenfell, H.R.; Cochran, U.A.; Clark, K.J.; Litchfield, N.J.; Wallace, L.M.; Marden, M.; Palmer, A.S.

    2015-01-01

    Foraminiferal faunas in 29 short cores (maximum depth 7 m) of estuarine and coastal wetland sediment were used to reconstruct the middle-late Holocene (last 7 ka) elevational history on the southern shores of Poverty Bay, North Island, New Zealand. This coast is on the southwest side of a rapidly subsiding area beneath western Poverty Bay. Modern Analogue Technique paleo-elevation estimates based on fossil foraminiferal faunas indicate that the four study areas have gradual late Holocene (<3.5 ka) subsidence rates that increase from the southwest (mean c. 0.5 m ka - - 1 ) to northeast (mean c. 1.0 m ka -1 ). Only two rapid, possibly co-seismic, vertical displacement events are recognised: (1) c. 1.2 m of subsidence at 5.7 ± 0.4 ka (cal yr BP), which may have been generated by a subduction interface earthquake centred offshore and recorded in other published studies in northern Hawkes Bay, c. 35 km to the south; and (2) c. 1 m of uplift (relative sea-level fall) at c. 4.5 ± 0.3 ka, which might have been generated by rupture on an offshore upper plate fault that also uplifted coastal terraces at Pakarae and Mahia, 40 km to the north and south of the study area, or by rupture on the subduction interface penetrating beneath Poverty Bay. No sudden displacement events are recognised during the last 4 ka although subsidence, possibly aseismic, has continued. (author).

  1. Wetland Restoration and Sediment Removal

    Data.gov (United States)

    Department of the Interior — In 2008, Minnesota’s Private Lands Program and Wetland Management Districts began to compare different methods of restoring prairie pothole wetlands to see if there...

  2. Geographically isolated wetlands: Rethinking a misnomer

    Science.gov (United States)

    Mushet, David M.; Calhoun, Aram J.K.; Alexander, Laurie C.; Cohen, Matthew J.; DeKeyser, Edward S.; Fowler, Laurie G.; Lane, Charles R.; Lang, Megan W.; Rains, Mark C.; Walls, Susan

    2015-01-01

    We explore the category “geographically isolated wetlands” (GIWs; i.e., wetlands completely surrounded by uplands at the local scale) as used in the wetland sciences. As currently used, the GIW category (1) hampers scientific efforts by obscuring important hydrological and ecological differences among multiple wetland functional types, (2) aggregates wetlands in a manner not reflective of regulatory and management information needs, (3) implies wetlands so described are in some way “isolated,” an often incorrect implication, (4) is inconsistent with more broadly used and accepted concepts of “geographic isolation,” and (5) has injected unnecessary confusion into scientific investigations and discussions. Instead, we suggest other wetland classification systems offer more informative alternatives. For example, hydrogeomorphic (HGM) classes based on well-established scientific definitions account for wetland functional diversity thereby facilitating explorations into questions of connectivity without an a priori designation of “isolation.” Additionally, an HGM-type approach could be used in combination with terms reflective of current regulatory or policymaking needs. For those rare cases in which the condition of being surrounded by uplands is the relevant distinguishing characteristic, use of terminology that does not unnecessarily imply isolation (e.g., “upland embedded wetlands”) would help alleviate much confusion caused by the “geographically isolated wetlands” misnomer.

  3. Suspended particulate matter flocculation in a natural tidal wetland located in the San Francisco Estuary

    Science.gov (United States)

    Saraceno, J.; Bergamaschi, B. A.; Wright, S. A.; Boss, E.; Downing, B. D.; Fleck, J.; Ganju, N. K.

    2011-12-01

    flocculation. Additionally, the timing of flocculation was coincident with periods of elevated dissolved organic matter, suggesting organic matter played a role in the formation of large aggregates. Measurements of SPM organic content in ebb water revealed that SPM was enriched in organic matter by up to 50% following interaction with the wetland. Newly formed aggregates were carried out to the estuary with the ebb tide. These results indicate that the Browns Island wetland (and presumably other similar wetlands throughout the San Francisco Bay-Delta) plays an important role in estuarine biogeochemistry and particle cycling because flocculated particles have higher settling velocities and optical properties than their component particles and will behave differently. The implications of these findings are relevant to several tidal wetland management concerns such as the maintenance of marsh elevation, the cycling and transport of contaminants, and water clarity.

  4. 40 CFR 230.41 - Wetlands.

    Science.gov (United States)

    2010-07-01

    ... through secondary impacts. Discharging fill material in wetlands as part of municipal, industrial or recreational development may modify the capacity of wetlands to retain and store floodwaters and to serve as a...

  5. On leadership and success in professional wetland science

    Science.gov (United States)

    The Society of Wetland Scientists and the wetland profession are fortunate to have an abundance of leaders. These leaders respond to the needs of the Society for guidance and direction. They also consistently advance wetland science and improve the quality of wetland management...

  6. Wetland Program Development Grants (WPDGs)

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Wetland Grant Database (WGD) houses grant data for Wetland Program Development Grants (created by EPA in 1990 under the Clean Water Act Section 104(b)(3)...

  7. Humic Substances from Manila Bay and Bolinao Bay Sediments

    Directory of Open Access Journals (Sweden)

    Elma Llaguno

    1997-12-01

    Full Text Available The C,H,N composition of sedimentary humic acids (HA extracted from three sites in Manila Bay and six sites in Bolinao Bay yielded H/C atomic ratios of 1.1-1.4 and N/C atomic ratios of 0.09 - 0.16. The Manila Bay HA's had lower H/C and N/C ratios compared to those from Bolinao Bay. The IR spectra showed prominent aliphatic C-H and amide I and II bands. Manila Bay HA's also had less diverse molecular composition based on the GC-MS analysis of the CuO and alkaline permanganate oxidation products of the humic acids.

  8. Bay of Fundy

    Science.gov (United States)

    2006-01-01

    The highest tides on Earth occur in the Minas Basin, the eastern extremity of the Bay of Fundy, Nova Scotia, Canada, where the tide range can reach 16 meters when the various factors affecting the tides are in phase. The primary cause of the immense tides of Fundy is a resonance of the Bay of Fundy-Gulf of Maine system. The system is effectively bounded at this outer end by the edge of the continental shelf with its approximately 40:1 increase in depth. The system has a natural period of approximately 13 hours, which is close to the 12h25m period of the dominant lunar tide of the Atlantic Ocean. Like a father pushing his daughter on a swing, the gentle Atlantic tidal pulse pushes the waters of the Bay of Fundy-Gulf of Maine basin at nearly the optimum frequency to cause a large to-and-fro oscillation. The greatest slosh occurs at the head (northeast end) of the system. The high tide image (top) was acquired April 20, 2001, and the low tide image (bottom) was acquired September 30, 2002. The images cover an area of 16.5 by 21 km, and are centered near 64 degrees west longitude and 45.5 degrees north latitude. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER images Earth to map and monitor the changing surface of our planet. ASTER is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. The broad spectral coverage and high spectral resolution of ASTER provides scientists in numerous disciplines with critical information for surface mapping, and monitoring of dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying

  9. 7 CFR 12.30 - NRCS responsibilities regarding wetlands.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 1 2010-01-01 2010-01-01 false NRCS responsibilities regarding wetlands. 12.30 Section 12.30 Agriculture Office of the Secretary of Agriculture HIGHLY ERODIBLE LAND AND WETLAND CONSERVATION Wetland Conservation § 12.30 NRCS responsibilities regarding wetlands. (a) Technical and...

  10. Working group report on wetlands, wildlife and fisheries

    International Nuclear Information System (INIS)

    Maltby, L.

    1990-01-01

    A workshop was held to discuss the impacts of climatic change on wetlands, wildlife and fisheries. Impacts that could occur as a result of climatic change include: sea level rise affecting coastal wetlands by inundation, erosion and saltwater intrusion; temperature rise/moisture balance changes on other wetlands; lake level changes affecting shoreline wetlands; vegetation species/community modification of biological systems; and changes in values derived from wetlands impacting socio-economic systems. The Great Lakes shoreline is considered to be at high risk, and it is predicted that there will be profound effects on the ecological and socio-economic value of the Great Lakes wetlands. Presentations were given on wildlife as biological indicators, modelling the effects of climate warming on the stream habitats of brook trout, and the effects of an altered water regime on Great Lakes coastal wetlands. It was concluded that a fundamental research program of an interdisciplinary nature be established to determine current linkages of climatic variables to the function, distribution and productivity of wetlands and associated fish and wildlife resources. A national wetlands monitoring network should be established to trace the influence of climatic variables on wetlands and fish, to identify environmental indicators for reporting and to complement other monitoring programs

  11. Land-Use and Land-Cover Change around Mobile Bay, Alabama from 1974-2008

    Science.gov (United States)

    Ellis, Jean; Spruce, Joseph P.; Swann, Roberta; Smooth, James C.

    2009-01-01

    ), which is critical nursing ground for many Gulf fish species. A survey of Mobile Bay SAV showed widespread decreases since the 1940s. Prior to our project, coastal environmental managers in Baldwin and Mobile counties needed more understanding of the historical LULC for properly assessing the impacts of urbanization. In particular, more information on the location and extent of changing urbanization LULC patterns was needed to aid LULC planning and to assess predictions of future LULC patterns. Our products will assist the coastal environmental managers and land-use planners in making better community growth planning decisions. Our project also will help to establish a historical baseline of LULC distributions, which is a fundamental need in any stewardship plan. The primary research objective of our project was to produce historic and current geospatial LULC change products across a 34-year time frame. A multi-decadal coastal LULC change product was the major project deliverable. The geographic extent and nature of change was quantified and assessed for the upland herbaceous, barren, open water, urban, upland forest, woody wetland, and non-woody wetlanddominated land cover types. We focused on regional analyses of decadal-scale urban expansion and watershed-scaled analyses of LULC change for multiple areas of concern to the Mobile Bay NEP (Figure A). We used the following dates to derive LULC classification products from Landsat data: 1974, 1979, 1984, 1988, 1991, 1996, 2001, 2005, and 2008. We assessed the accuracy of our products using randomly sampled locations and digital geospatial reference data including field survey data, high resolution orthorectified aerial photography, high resolution multispectral and panchromatic satellite data displays (from QuickBird and Corona sensors), digital elevation model data, and National Wetlands Inventory wetland cover type data. NOAA s Coastal Change Assessment Program s (C-CAP) and National Land Cover Database (NLCD) procts

  12. Integration of bed characteristics, geochemical tracers, current measurements, and numerical modeling for assessing the provenance of beach sand in the San Francisco Bay Coastal System

    Science.gov (United States)

    Barnard, Patrick L.; Foxgrover, Amy C.; Elias, Edwin P.L.; Erikson, Li H.; Hein, James R.; McGann, Mary; Mizell, Kira; Rosenbauer, Robert J.; Swarzenski, Peter W.; Takesue, Renee K.; Wong, Florence L.; Woodrow, Donald L.; Barnard, P.L.; Jaffee, B.E.; Schoellhamer, D.H.

    2013-01-01

    Over 150 million m3 of sand-sized sediment has disappeared from the central region of the San Francisco Bay Coastal System during the last half century. This enormous loss may reflect numerous anthropogenic influences, such as watershed damming, bay-fill development, aggregate mining, and dredging. The reduction in Bay sediment also appears to be linked to a reduction in sediment supply and recent widespread erosion of adjacent beaches, wetlands, and submarine environments. A unique, multi-faceted provenance study was performed to definitively establish the primary sources, sinks, and transport pathways of beach-sized sand in the region, thereby identifying the activities and processes that directly limit supply to the outer coast. This integrative program is based on comprehensive surficial sediment sampling of the San Francisco Bay Coastal System, including the seabed, Bay floor, area beaches, adjacent rock units, and major drainages. Analyses of sample morphometrics and biological composition (e.g., Foraminifera) were then integrated with a suite of tracers including 87Sr/86Sr and 143Nd/144Nd isotopes, rare earth elements, semi-quantitative X-ray diffraction mineralogy, and heavy minerals, and with process-based numerical modeling, in situ current measurements, and bedform asymmetry to robustly determine the provenance of beach-sized sand in the region.

  13. Summary of oceanographic and water-quality measurements in Barnegat Bay, New Jersey, 2014–15

    Science.gov (United States)

    Suttles, Steven E.; Ganju, Neil K.; Montgomery, Ellyn T.; Dickhudt, Patrick J.; Borden, Jonathan; Brosnahan, Sandra M.; Martini, Marinna A.

    2016-09-26

    Scientists and technical support staff from the U.S. Geological Survey measured suspended-sediment concentrations, currents, pressure, and water temperature in two tidal creeks, Reedy Creek and Dinner Creek, in Barnegat Bay, New Jersey, from August 11, 2014, to July 10, 2015 as part of the Estuarine Physical Response to Storms project (GS2–2D). The oceanographic and water-quality data quantify suspended-sediment transport in Reedy Creek and Dinner Creek, which are part of a tidal marsh wetland complex in the Edwin B. Forsythe National Wildlife Refuge. All deployed instruments were removed between January 7, 2015, and April 14, 2015, to avoid damage by ice.

  14. Mapping long-term wetland response to climate

    Science.gov (United States)

    Zhou, Q.; Gallant, A.; Rover, J.

    2016-12-01

    Wetlands provide unique feeding and breeding habitat for numerous waterfowl species. The distribution of wetlands has been considerably changed due to agricultural land conversion and hydrologic modification. Climate change may further impact wetlands through altered moisture regimes. This study characterized long-term variation in wetland conditions by using dense time series from all available Landsat data from 1985 to 2014. We extracted harmonic frequencies from 30 years to two years to delineate the long-term variation in all seven Landsat bands. A cluster analysis and unsupervised classification then enabled us to map different classes of wetland response. We demonstrated the method in the Prairie Pothole Region in North Dakota.

  15. Pipeline corridors through wetlands - summary of seventeen plant-community studies at ten wetland crossings. Topical report, February 1990--August 1994

    Energy Technology Data Exchange (ETDEWEB)

    Van Dyke, G.D. [Argonne National Lab., IL (United States)]|[Trinity Christian College, Palos Heights, IL (United States); Shem, L.M.; Wilkey, P.L.; Zimmerman, R.E.; Alsum, S.K. [Argonne National Lab., IL (United States)

    1994-12-01

    As part of the Gas Research Institute Wetland Corridors Program, Argonne National Laboratory conducted field studies on 10 wetland crossings located in six states to document impacts of natural gas pipeline rights-of-way (ROWS) on 15 wetland plant communities. This study is unique in the number, range, ages, and variety of wetland crossings surveyed and compared. Vegetation data and recorded observations were analyzed to reveal patterns associated with age, installation technology, maintenance practices, and wetland type. This report summarizes the findings of this study. Results revealed that ROWs of pipelines installed according to recent wetland regulations rapidly revegetated with dense and diverse plant communities. The ROW plant communities were similar to those in the adjacent natural areas in species richness, wetland indicator values, and percentages of native species. The ROW plant communities developed from naturally available propagules without fertilization, liming, or artificial seeding. ROWs contributed to increased habitat and plant species diversity in the wetland. There was little evidence that they degrade the wetland by providing avenues for the spread of invasive and normative plant species. Most impacts are temporal in nature, decreasing rapidly during the first several years and more slowly thereafter to the extent permitted by maintenance and other ROW activities.

  16. Carbon stocks in mangroves, salt marshes, and salt barrens in Tampa Bay, Florida, USA: Vegetative and soil characteristics.

    Science.gov (United States)

    Moyer, R. P.; Radabaugh, K.; Chappel, A. R.; Powell, C.; Bociu, I.; Smoak, J. M.

    2017-12-01

    When compared to other terrestrial environments, coastal "blue carbon" habitats such as salt marshes and mangrove forests sequester disproportionately large amounts of carbon as standing plant biomass and sedimentary peat deposits. This study quantified total carbon stocks in vegetation and soil of 17 salt marshes, salt barrens, and mangrove forests in Tampa Bay, Florida, USA. The sites included natural, restored, and created wetlands of varying ages and degrees of anthropogenic impacts. The average vegetative carbon stock in mangrove forests was 60.1 ± 2.7 Mg ha-1. Mangrove forests frequently consisted of a few large Avicennia germinans trees with smaller, abundant Rhizophora mangle and/or Laguncularia racemosa trees. The average vegetative carbon stock was 11.8 ± 3.7 Mg ha-1 for salt marshes and 2.0 ± 1.2 Mg ha-1 for salt barrens. Vegetative carbon did not significantly differ between natural and newly created salt marsh habitats, indicating that mature restored wetlands can be included with natural wetlands for the calculation of vegetative carbon in coastal blue carbon assessments. Peat deposits were generally less than 50 cm thick and organic content rapidly decreased with depth in all habitats. Soil in this study was analyzed in 1 cm intervals; the accuracy of subsampling or binning soil into depth intervals of 2-5 cm was also assessed. In most cases, carbon stock values obtained from these larger sampling intervals were not statistically different from values obtained from sampling at 1 cm intervals. In the first 15 cm, soil in mangrove forests contained an average of 15.1% organic carbon by weight, salt marshes contained 6.5%, and salt barrens contained 0.8%. Total carbon stock in mangroves was 187.1±17.3 Mg ha-1, with 68% of that carbon stored in soil. Salt marshes contained an average of 65.2±25.3 Mg ha-1 (82% soil carbon) and salt barrens had carbon stocks of 21.4±7.4 Mg ha-1 (89% soil carbon). These values were much lower than global averages for

  17. 44 CFR 10.14 - Flood plains and wetlands.

    Science.gov (United States)

    2010-10-01

    ... 44 Emergency Management and Assistance 1 2010-10-01 2010-10-01 false Flood plains and wetlands. 10... Flood plains and wetlands. For any action taken by FEMA in a flood plain or wetland, the provisions of... Executive Order 11988, Flood Plain Management, and Executive Order 11990, Protection of Wetlands (44 CFR...

  18. Is wetland mitigation successful in Southern California?

    Science.gov (United States)

    Cummings, D. L.; Rademacher, L. K.

    2004-12-01

    Wetlands perform many vital functions within their landscape position; they provide unique habitats for a variety of flora and fauna and they act as treatment systems for upstream natural and anthropogenic waste. California has lost an estimated 91% of its wetlands. Despite the 1989 "No Net Loss" policy and mitigation requirements by the regulatory agencies, the implemented mitigation may not be offsetting wetlands losses. The "No Net Loss" policy is likely failing for numerous reasons related to processes in the wetlands themselves and the policies governing their recovery. Of particular interest is whether these mitigation sites are performing essential wetlands functions. Specific questions include: 1) Are hydric soil conditions forming in mitigation sites; and, 2) are the water quality-related chemical transformations that occur in natural wetlands observed in mitigation sites. This study focuses on success (or lack of success) in wetlands mitigation sites in Southern California. Soil and water quality investigations were conducted in wetland mitigation sites deemed to be successful by vegetation standards. Observations of the Standard National Resource Conservation Service field indicators of reducing conditions were made to determine whether hydric soil conditions have developed in the five or more years since the implementation of mitigation plans. In addition, water quality measurements were performed at the inlet and outlet of these mitigation sites to determine whether these sites perform similar water quality transformations to natural wetlands within the same ecosystem. Water quality measurements included nutrient, trace metal, and carbon species measurements. A wetland location with minimal anthropogenic changes and similar hydrologic and vegetative features was used as a control site. All sites selected for study are within a similar ecosystem, in the interior San Diego and western Riverside Counties, in Southern California.

  19. Tropical Wetlands as Carbon Sinks

    Science.gov (United States)

    Jones, M. B.; Saunders, M.

    2007-12-01

    This presentation focuses on the tropical wetlands of sub-Saharan Africa. These are an understudied ecosystem in which large emergent grasses and sedges normally dominate and which have the potential to sequester significant amounts of carbon. Measurements of Net Primary Production of these wetlands show that they are some of the highest values recorded for any ecosystem. We have used eddy covariance to measure Net Ecosystem Exchange of pristine and disturbed wetlands and show that pristine systems can have sink strengths as strong as tropical forests while disturbed systems that have been reclaimed for agricultural purposes have a very much reduced carbon sink activity and may be net carbon sources. The management issues surrounding the use of these wetlands illustrate a direct conflict between the production of food crops for the local population and the maintenance of carbon sequestration as an ecosystem service.

  20. Wetlands Restoration Definitions and Distinctions

    Science.gov (United States)

    Ecological restoration is a valuable endeavor that has proven very difficult to define. The term indicates that degraded and destroyed natural wetland systems will be reestablished to sites where they once existed. But, what wetland ecosystems are we talki

  1. The Legal Structure of Taiwan’s Wetland Conservation Act

    Directory of Open Access Journals (Sweden)

    Yi-Yuan Su

    2014-12-01

    Full Text Available In July of 2013, Taiwan passed its Wetland Conservation Act and will begin the implementation of the Act on 2 February 2015. With this Act, Taiwan has become the second Asian country to have specific legislation on wetland conservation and protection. This new law enables the society to achieve sustainable utilization on wetland ecological services. The core concepts of the Wetland Conversation Act include biological diversity conservation and wise use of wetland resources. Special political circumstances prevent Taiwan from registering its wetlands as a conservation priority under the Ramsar Convention. This new law allows the government to evaluate and assign a specific area as a “Wetland of Importance.” Under this status, any development activities within the designated area shall be prohibited unless the developer prepares a usage plan for review. The usage plan and the original usage of the natural resources within the wetland area shall also follow the “wise use” principle to protect the wetland and biological service system. However, this new law does not provide clear separation between the two different “wise use” standards. If the development is deemed necessary, new law provides compensation mitigation measures to extend the surface of the wetland and provides additional habitats for various species. Wetland conservation and management rely heavily on systematic research and fundamental data regarding Taiwan’s wetlands. Determining how to adopt these scientific methodologies and transfer them into enforceable mechanisms is a sizeable challenge for both biologists and lawyers as the Wetland Conservation Act creates many legal norms without clarifying definitions. This article will review the current wetland regulations from the legal perspective and provide suggestions for enforcement in the future.

  2. Effect of wetland management: are lentic wetlands refuges of plant-species diversity in the Andean–Orinoco Piedmont of Colombia?

    Directory of Open Access Journals (Sweden)

    Johanna I. Murillo-Pacheco

    2016-08-01

    Full Text Available Accelerated degradation of the wetlands and fragmentation of surrounding vegetation in the Andean–Orinoco Piedmont are the main threats to diversity and ecological integrity of these ecosystems; however, information on this topic is of limited availability. In this region, we evaluated the value of 37 lentic wetlands as reservoirs of woody and aquatic plants and analyzed diversity and changes in species composition within and among groups defined according to management given by: (1 type (swamps, heronries, rice fields, semi-natural lakes, constructed lakes and fish farms and (2 origins (natural, mixed and artificial. A total of 506 plant species were recorded: 80% woody and 20% aquatic. Of these, 411 species (81% were considered species typical of the area (Meta Piedmont distribution. Diversity patterns seem to be driven by high landscape heterogeneity and wetland management. The fish farms presented the highest diversity of woody plants, while swamps ranked highest for aquatic plant diversity. Regarding wetland origin, the artificial systems were the most diverse, but natural wetlands presented the highest diversity of typical species and can therefore be considered representative ecosystems at the regional scale. Our results suggest that lentic wetlands act as refuges for native vegetation of Meta Piedmont forest, hosting 55% of the woody of Piedmont species and 29% of the aquatic species of Orinoco basin. The wetlands showed a high species turnover and the results indicated that small wetlands (mean ± SD: size = 11 ± 18.7 ha, with a small area of surrounding forest (10 ± 8.6 ha supported high local and regional plant diversity. To ensure long-term conservation of lentic wetlands, it is necessary to develop management and conservation strategies that take both natural and created wetlands into account.

  3. Value Assessment of Artificial Wetland Derived from Mining Subsided Lake: A Case Study of Jiuli Lake Wetland in Xuzhou

    Directory of Open Access Journals (Sweden)

    Laijian Wang

    2017-10-01

    Full Text Available Mining subsided lakes are major obstacles for ecological restoration and resource reuse in mining regions. Transforming mining subsided lakes into artificial wetlands is an ecological restoration approach that has been attempted in China in recent years, but a value assessment of the approach still needs systematic research. This paper considers Jiuli Lake wetland, an artificial wetland derived from restoration of a mining subsided lake in plain area, as a case study. A value assessment model for the artificial wetland was established based on cost–benefit analysis by means of field monitoring, social surveys, GIS geostatistics, raster calculation methods, etc. Empirical analysis and calculations were performed on the case study region. The following conclusions were drawn: (1 after ecological restoration, ecosystem services of Jiuli Lake wetland which has become a national level wetland park yield positive values; (2 the improved environment of the Jiuli Lake wetland has a spillover effect on the price of surrounding land, resulting in land price appreciation; (3 using GIS geostatistics and raster calculation methods, the impact range, strength, and value of the spillover effect can be explicitly measured; (4 through the establishment of a value assessment model of the artificial wetland, incomes of the ecological restoration was found to be sufficient to cover the implementation costs, which provides a research foundation for economic feasibility of ecological restoration of mining subsided lakes.

  4. Winter Tourism and mountain wetland management and restoration

    Science.gov (United States)

    Gaucherand, S.; Mauz, I.

    2012-04-01

    The degradation and loss of wetlands is more rapid than that of other ecosystems (MEA 2005). In mountains area, wetlands are small and scattered and particularly sensitive to global change. The development of ski resorts can lead to the destruction or the deterioration of mountain wetlands because of hydrologic interferences, fill in, soil compression and erosion, etc. Since 2008, we have studied a high altitude wetland complex in the ski resort of Val Thorens. The aim of our study was to identify the impacts of mountain tourism development (winter and summer tourism) on wetland functioning and to produce an action plan designed to protect, rehabilitate and value the wetlands. We chose an approach based on multi-stakeholder participatory process at every stage, from information gathering to technical choices and monitoring. In this presentation, we show how such an approach can efficiently improve the consideration of wetlands in the development of a ski resort, but also the bottlenecks that need to be overcome. We will also discuss some of the ecological engineering techniques used to rehabilitate or restore high altitude degraded wetlands. Finally, this work has contributed to the creation in 2012 of a mountain wetland observatory coordinated by the conservatory of Haute-Savoie. The objective of this observatory is to estimate ecosystem services furnished by mountain wetlands and to find restoration strategies adapted to the local socio-economical context (mountain agriculture and mountain tourism).

  5. Projecting the Hydrologic Impacts of Climate Change on Montane Wetlands

    Science.gov (United States)

    Hamlet, Alan F.; Palen, Wendy J.; Lawler, Joshua J.; Halabisky, Meghan

    2015-01-01

    Wetlands are globally important ecosystems that provide critical services for natural communities and human society. Montane wetland ecosystems are expected to be among the most sensitive to changing climate, as their persistence depends on factors directly influenced by climate (e.g. precipitation, snowpack, evaporation). Despite their importance and climate sensitivity, wetlands tend to be understudied due to a lack of tools and data relative to what is available for other ecosystem types. Here, we develop and demonstrate a new method for projecting climate-induced hydrologic changes in montane wetlands. Using observed wetland water levels and soil moisture simulated by the physically based Variable Infiltration Capacity (VIC) hydrologic model, we developed site-specific regression models relating soil moisture to observed wetland water levels to simulate the hydrologic behavior of four types of montane wetlands (ephemeral, intermediate, perennial, permanent wetlands) in the U. S. Pacific Northwest. The hybrid models captured observed wetland dynamics in many cases, though were less robust in others. We then used these models to a) hindcast historical wetland behavior in response to observed climate variability (1916–2010 or later) and classify wetland types, and b) project the impacts of climate change on montane wetlands using global climate model scenarios for the 2040s and 2080s (A1B emissions scenario). These future projections show that climate-induced changes to key driving variables (reduced snowpack, higher evapotranspiration, extended summer drought) will result in earlier and faster drawdown in Pacific Northwest montane wetlands, leading to systematic reductions in water levels, shortened wetland hydroperiods, and increased probability of drying. Intermediate hydroperiod wetlands are projected to experience the greatest changes. For the 2080s scenario, widespread conversion of intermediate wetlands to fast-drying ephemeral wetlands will likely reduce

  6. Projecting the Hydrologic Impacts of Climate Change on Montane Wetlands.

    Science.gov (United States)

    Lee, Se-Yeun; Ryan, Maureen E; Hamlet, Alan F; Palen, Wendy J; Lawler, Joshua J; Halabisky, Meghan

    2015-01-01

    Wetlands are globally important ecosystems that provide critical services for natural communities and human society. Montane wetland ecosystems are expected to be among the most sensitive to changing climate, as their persistence depends on factors directly influenced by climate (e.g. precipitation, snowpack, evaporation). Despite their importance and climate sensitivity, wetlands tend to be understudied due to a lack of tools and data relative to what is available for other ecosystem types. Here, we develop and demonstrate a new method for projecting climate-induced hydrologic changes in montane wetlands. Using observed wetland water levels and soil moisture simulated by the physically based Variable Infiltration Capacity (VIC) hydrologic model, we developed site-specific regression models relating soil moisture to observed wetland water levels to simulate the hydrologic behavior of four types of montane wetlands (ephemeral, intermediate, perennial, permanent wetlands) in the U. S. Pacific Northwest. The hybrid models captured observed wetland dynamics in many cases, though were less robust in others. We then used these models to a) hindcast historical wetland behavior in response to observed climate variability (1916-2010 or later) and classify wetland types, and b) project the impacts of climate change on montane wetlands using global climate model scenarios for the 2040s and 2080s (A1B emissions scenario). These future projections show that climate-induced changes to key driving variables (reduced snowpack, higher evapotranspiration, extended summer drought) will result in earlier and faster drawdown in Pacific Northwest montane wetlands, leading to systematic reductions in water levels, shortened wetland hydroperiods, and increased probability of drying. Intermediate hydroperiod wetlands are projected to experience the greatest changes. For the 2080s scenario, widespread conversion of intermediate wetlands to fast-drying ephemeral wetlands will likely reduce

  7. Review of Constructed Subsurface Flow vs. Surface Flow Wetlands

    International Nuclear Information System (INIS)

    HALVERSON, NANCY

    2004-01-01

    The purpose of this document is to use existing documentation to review the effectiveness of subsurface flow and surface flow constructed wetlands in treating wastewater and to demonstrate the viability of treating effluent from Savannah River Site outfalls H-02 and H-04 with a subsurface flow constructed wetland to lower copper, lead and zinc concentrations to within National Pollutant Discharge Elimination System (NPDES) Permit limits. Constructed treatment wetlands are engineered systems that have been designed and constructed to use the natural functions of wetlands for wastewater treatment. Constructed wetlands have significantly lower total lifetime costs and often lower capital costs than conventional treatment systems. The two main types of constructed wetlands are surface flow and subsurface flow. In surface flow constructed wetlands, water flows above ground. Subsurface flow constructed wetlands are designed to keep the water level below the top of the rock or gravel media, thus minimizing human and ecological exposure. Subsurface flow wetlands demonstrate higher rates of contaminant removal per unit of land than surface flow (free water surface) wetlands, therefore subsurface flow wetlands can be smaller while achieving the same level of contaminant removal. Wetlands remove metals using a variety of processes including filtration of solids, sorption onto organic matter, oxidation and hydrolysis, formation of carbonates, formation of insoluble sulfides, binding to iron and manganese oxides, reduction to immobile forms by bacterial activity, and uptake by plants and bacteria. Metal removal rates in both subsurface flow and surface flow wetlands can be high, but can vary greatly depending upon the influent concentrations and the mass loading rate. Removal rates of greater than 90 per cent for copper, lead and zinc have been demonstrated in operating surface flow and subsurface flow wetlands. The constituents that exceed NPDES limits at outfalls H-02 a nd H

  8. Using dual classifications in the development of avian wetland indices of biological integrity for wetlands in West Virginia, USA.

    Science.gov (United States)

    Veselka, Walter; Anderson, James T; Kordek, Walter S

    2010-05-01

    Considerable resources are being used to develop and implement bioassessment methods for wetlands to ensure that "biological integrity" is maintained under the United States Clean Water Act. Previous research has demonstrated that avian composition is susceptible to human impairments at multiple spatial scales. Using a site-specific disturbance gradient, we built avian wetland indices of biological integrity (AW-IBI) specific to two wetland classification schemes, one based on vegetative structure and the other based on the wetland's position in the landscape and sources of water. The resulting class-specific AW-IBI was comprised of one to four metrics that varied in their sensitivity to the disturbance gradient. Some of these metrics were specific to only one of the classification schemes, whereas others could discriminate varying levels of disturbance regardless of classification scheme. Overall, all of the derived biological indices specific to the vegetative structure-based classes of wetlands had a significant relation with the disturbance gradient; however, the biological index derived for floodplain wetlands exhibited a more consistent response to a local disturbance gradient. We suspect that the consistency of this response is due to the inherent nature of the connectivity of available habitat in floodplain wetlands.

  9. North Dakota Wetlands Discovery Guide. Photocopy Booklet.

    Science.gov (United States)

    Dietz, Nancy J., Ed.; And Others

    This booklet contains games and activities that can be photocopied for classroom use. Activities include Wetland Terminology, Putting on the Map, Erosional Forces, Water in...Water out, Who Lives Here?, Wetlands in Disguise, Dichotomous Plant Game, Algae Survey, Conducting an Algal Survey, Water Quality Indicators Guide, Farming Wetlands, Wetlands…

  10. 7 CFR 1410.11 - Farmable Wetlands Program.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 10 2010-01-01 2010-01-01 false Farmable Wetlands Program. 1410.11 Section 1410.11... Wetlands Program. (a) In addition to other allowable enrollments, land may be enrolled in this program through the Farmable Wetlands Program (FWP) within the overall Conservation Reserve Program provided for...

  11. Effects of human disturbance on waterbird nesting and reproductive success at restoration pond SF2, south San Francisco Bay, California

    Science.gov (United States)

    Ackerman, Joshua T.; Herzog, Mark P.; Hartman, Christopher A.

    2014-01-01

    To offset for the loss of managed pond habitat during restoration of wetlands to tidal marsh, the South Bay Salt Pond (SBSP) Restoration Project is enhancing some of the remaining ponds by constructing islands for roosting and nesting waterbirds. Among these wetland habitats, the SBSP Restoration Project also is installing walking trails and viewing platforms in an effort to bring the public closer to nature. In winter of 2010–11, the SBSP Restoration Project constructed 30 islands in Pond SF2 and walking trails and viewing platforms around the edge of the pond. The restoration project partners acknowledged that human disturbance could detrimentally affect nesting and roosting waterbirds. Although optimal buffer distances and potential for human disturbance were unknown, islands in Pond SF2, nevertheless, were designed with built-in buffers of greater than 300 feet (91 meters) from a trail and 600 feet (182 meters) from a viewing platform in order to minimize potential human disturbances.

  12. Education and training of future wetland scientists and managers

    Science.gov (United States)

    Wilcox, D.A.

    2008-01-01

    Wetland science emerged as a distinct discipline in the 1980s. In response, courses addressing various aspects of wetland science and management were developed by universities, government agencies, and private firms. Professional certification of wetland scientists began in the mid-1990s to provide confirmation of the quality of education and experience of persons involved in regulatory, management, restoration/construction, and research involving wetland resources. The education requirements for certification and the need for persons with specific wetland training to fill an increasing number of wetland-related positions identified a critical need to develop curriculum guidelines for an undergraduate wetland science and management major for potential accreditation by the Society of Wetland Scientists. That proposed major contains options directed toward either wetland science or management. Both options include required basic courses to meet the general education requirements of many universities, required upper-level specialized courses that address critical aspects of physical and biological sciences applicable to wetlands, and a minimum of four additional upper-level specialized courses that can be used to tailor a degree to students' interests. The program would be administered by an independent review board that would develop guidelines and evaluate university applications for accreditation. Students that complete the required coursework will fulfill the education requirements for professional wetland scientist certification and possess qualifications that make them attractive candidates for graduate school or entry-level positions in wetland science or management. Universities that offer this degree program could gain an advantage in recruiting highly qualified students with an interest in natural resources. Alternative means of educating established wetland scientists are likewise important, especially to provide specialized knowledge and experience or

  13. EnviroAtlas - Potential Wetland Areas - Contiguous United States

    Data.gov (United States)

    U.S. Environmental Protection Agency — The EnviroAtlas Potential Wetland Areas (PWA) dataset shows potential wetland areas at 30-meter resolution. Beginning two centuries ago, many wetlands were turned...

  14. Albino mutation rates in red mangroves (Rhizophora mangle L.) as a bioassay of contamination history in Tampa Bay, Florida, USA

    Science.gov (United States)

    Proffitt, C.E.; Travis, S.E.

    2005-01-01

    We assessed the sensitivity of a viviparous estuarine tree species, Rhizophora mangle, to historic sublethal mutagenic stress across a fine spatial scale by comparing the frequency of trees producing albino propagules in historically contaminated (n=4) and uncontaminated (n=11) forests in Tampa Bay, Florida, USA. Data from uncontaminated forests were used to provide estimates of background mutation rates. We also determined whether other fitness parameters were negatively correlated with mutagenic stress (e.g., degree of outcrossing and numbers of reproducing trees km-1). Contaminated sites in Tampa Bay had significantly higher frequencies of trees that were heterozygous for albinism per 1000 total reproducing trees (FHT) than uncontaminated forests (mean ?? SE: 11.4 ?? 4.3 vs 4.3 ?? 0.73, P 25 yrs of subsequent recruitment and tree replacement may have allowed an initial elevation in the FHT to decay. Patterns of FHT were not explained by distance from the bay mouth or the degree of urbanization. However, there was a significant positive relationship between tree size and FHT (r=0.83, Pbioassay for the effects of mutagens will facilitate future monitoring of contamination events and comparisons of bay-wide recovery in future decades. Development of a database of FHT values for a range of subtropical and tropical estuaries is underway that will provide a baseline against which to compare mutational consequences of global change. ?? 2005, The Society of Wetland Scientists.

  15. Ground-Truthing of Airborne LiDAR Using RTK-GPS Surveyed Data in Coastal Louisiana's Wetlands

    Science.gov (United States)

    Lauve, R. M.; Alizad, K.; Hagen, S. C.

    2017-12-01

    Airborne LiDAR (Light Detection and Ranging) data are used by engineers and scientists to create bare earth digital elevation models (DEM), which are essential to modeling complex coastal, ecological, and hydrological systems. However, acquiring accurate bare earth elevations in coastal wetlands is difficult due to the density of marsh grasses that prevent the sensors reflection off the true ground surface. Previous work by Medeiros et al. [2015] developed a technique to assess LiDAR error and adjust elevations according to marsh vegetation density and index. The aim of this study is the collection of ground truth points and the investigation on the range of potential errors found in existing LiDAR datasets within coastal Louisiana's wetlands. Survey grids were mapped out in an area dominated by Spartina alterniflora and a survey-grade Trimble Real Time Kinematic (RTK) GPS device was employed to measure bare earth ground elevations in the marsh system adjacent to Terrebonne Bay, LA. Elevations were obtained for 20 meter-spaced surveyed grid points and were used to generate a DEM. The comparison between LiDAR derived and surveyed data DEMs yield an average difference of 23 cm with a maximum difference of 68 cm. Considering the local tidal range of 45 cm, these differences can introduce substantial error when the DEM is used for ecological modeling [Alizad et al., 2016]. Results from this study will be further analyzed and implemented in order to adjust LiDAR-derived DEMs closer to their true elevation across Louisiana's coastal wetlands. ReferencesAlizad, K., S. C. Hagen, J. T. Morris, S. C. Medeiros, M. V. Bilskie, and J. F. Weishampel (2016), Coastal wetland response to sea-level rise in a fluvial estuarine system, Earth's Future, 4(11), 483-497, 10.1002/2016EF000385. Medeiros, S., S. Hagen, J. Weishampel, and J. Angelo (2015), Adjusting Lidar-Derived Digital Terrain Models in Coastal Marshes Based on Estimated Aboveground Biomass Density, Remote Sensing, 7

  16. Roofvogels in de Nederlandse wetlands

    NARCIS (Netherlands)

    Dijkstra, Cornelis; Beemster, Nicolaas; Zijlstra, Menno; van Eerden, M; Daan, Serge

    1995-01-01

    Roofvogels in de Nederlandse wetlands (1995). C. Dijkstra, N. Beemster, M. Zijlstra, M. van Eerden, S. Daan RWS, RDIJ, Flevobericht nr. 381. ISBN 90-369-1147-8. Dit Flevobericht vormt de eindrapportage van het onderzoeksproject " De betekenis van grootschalige wetlands voor roofvogels". De verwerkte

  17. Carbon Storage in US Wetlands.

    Science.gov (United States)

    Background/Question/Methods Wetland soils contain some of the highest stores of soil carbon in the biosphere. However, there is little understanding of the quantity and distribution of carbon stored in US wetlands or of the potential effects of human disturbance on these stocks. ...

  18. Development of soil properties and nitrogen cycling in created wetlands

    Science.gov (United States)

    Wolf, K.L.; Ahn, C.; Noe, G.B.

    2011-01-01

    Mitigation wetlands are expected to compensate for the loss of structure and function of natural wetlands within 5–10 years of creation; however, the age-based trajectory of development in wetlands is unclear. This study investigates the development of coupled structural (soil properties) and functional (nitrogen cycling) attributes of created non-tidal freshwater wetlands of varying ages and natural reference wetlands to determine if created wetlands attain the water quality ecosystem service of nitrogen (N) cycling over time. Soil condition component and its constituents, gravimetric soil moisture, total organic carbon, and total N, generally increased and bulk density decreased with age of the created wetland. Nitrogen flux rates demonstrated age-related patterns, with younger created wetlands having lower rates of ammonification, nitrification, nitrogen mineralization, and denitrification potential than older created wetlands and natural reference wetlands. Results show a clear age-related trajectory in coupled soil condition and N cycle development, which is essential for water quality improvement. These findings can be used to enhance N processing in created wetlands and inform the regulatory evaluation of mitigation wetlands by identifying structural indicators of N processing performance.

  19. Hurricane-induced failure of low salinity wetlands

    Science.gov (United States)

    Howes, Nick C.; FitzGerald, Duncan M.; Hughes, Zoe J.; Georgiou, Ioannis Y.; Kulp, Mark A.; Miner, Michael D.; Smith, Jane M.; Barras, John A.

    2010-01-01

    During the 2005 hurricane season, the storm surge and wave field associated with Hurricanes Katrina and Rita eroded 527 km2 of wetlands within the Louisiana coastal plain. Low salinity wetlands were preferentially eroded, while higher salinity wetlands remained robust and largely unchanged. Here we highlight geotechnical differences between the soil profiles of high and low salinity regimes, which are controlled by vegetation and result in differential erosion. In low salinity wetlands, a weak zone (shear strength 500–1450 Pa) was observed ∼30 cm below the marsh surface, coinciding with the base of rooting. High salinity wetlands had no such zone (shear strengths > 4500 Pa) and contained deeper rooting. Storm waves during Hurricane Katrina produced shear stresses between 425–3600 Pa, sufficient to cause widespread erosion of the low salinity wetlands. Vegetation in low salinity marshes is subject to shallower rooting and is susceptible to erosion during large magnitude storms; these conditions may be exacerbated by low inorganic sediment content and high nutrient inputs. The dramatic difference in resiliency of fresh versus more saline marshes suggests that the introduction of freshwater to marshes as part of restoration efforts may therefore weaken existing wetlands rendering them vulnerable to hurricanes. PMID:20660777

  20. 32 CFR 644.319 - Protection of wetlands.

    Science.gov (United States)

    2010-07-01

    ... 32 National Defense 4 2010-07-01 2010-07-01 true Protection of wetlands. 644.319 Section 644.319... ESTATE HANDBOOK Disposal § 644.319 Protection of wetlands. The requirements of Executive Order 11990, Protection of Wetlands, 42 FR 26961, (24 May 1977) are applicable to the disposal of Federal lands and...

  1. Land-use and Land-cover Change from 1974 to 2008 around Mobile Bay

    Science.gov (United States)

    Ellis, Jean; Spruce, Joseph; Smoot, James; Hilbert, Kent; Swann, Roberta

    2008-01-01

    This project is a Gulf of Mexico Application Pilot in which NASA Stennis Space Center (SSC) is working within a regional collaboration network of the Gulf of Mexico Alliance. NASA researchers, with support from the NASA SSC Applied Science Program Steering Committee, employed multi-temporal Landsat data to assess land-use and land-cover (LULC) changes in the coastal counties of Mobile and Baldwin, AL, between 1974 and 2008. A multi-decadal time-series, coastal LULC product unique to NASA SSC was produced. The geographic extent and nature of change was quantified for the open water, barren, upland herbaceous, non-woody wetland, upland forest, woody wetland, and urban landscapes. The National Oceanic and Atmospheric Administration (NOAA) National Coastal Development Data Center (NCDDC) will assist with the transition of the final product to the operational end user, which primarily is the Mobile Bay National Estuary Program (MBNEP). We found substantial LULC change over the 34-year study period, much more than is evident when the change occurring in the last years. Between 1974 and 2008, the upland forest landscape lost almost 6% of the total acreage, while urban land cover increased by slightly more than 3%. With exception to open water, upland forest is the dominant landscape, accounting for about 25-30% of the total area.

  2. The cost of wetland creation and restoration. Final report

    Energy Technology Data Exchange (ETDEWEB)

    King, D.; Bohlen, C.

    1995-08-01

    This report examines the economics of wetland creation, restoration, and enhancement projects, especially as they are used within the context of mitigation for unavoidable wetland losses. Complete engineering-cost-accounting profiles of over 90 wetland projects were developed in collaboration with leading wetland restoration and creation practitioners around the country to develop a primary source database. Data on the costs of over 1,000 wetland projects were gathered from published sources and other available databases to develop a secondary source database. Cases in both databases were carefully analyzed and a set of baseline cost per acre estimates were developed for wetland creation, restoration, and enhancement. Observations of costs varied widely, ranging from $5 per acre to $1.5 million per acre. Differences in cost were related to the target wetland type, and to site-specific and project-specific factors that affected the preconstruction, construction, and post-construction tasks necessary to carry out each particular project. Project-specific and site-specific factors had a much larger effect on project costs than wetland type for non-agricultural projects. Costs of wetland creation and restoration were also shown to differ by region, but not by as much as expected, and in response to the regulatory context. The costs of wetland creation, restoration, and enhancement were also analyzed in a broader economic context through examination of the market for wetland mitigation services, and through the development of a framework for estimating compensation ratios-the number of acres of created, restored, or enhanced wetland required to compensate for an acre of lost natural wetland. The combination of per acre creation, restoration, and enhancement costs and the compensation ratio determine the overall mitigation costs associated with alternative mitigation strategies.

  3. Floodplain and Wetland Assessment for the Mortandad Wetland Enhancement and the DP Dissipater Projects at Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Hathcock, Charles Dean [Los Alamos National Laboratory

    2017-03-31

    This floodplain and wetland assessment was prepared in accordance with 10 Code of Federal Regulations (CFR) 1022 Compliance with Floodplain and Wetland Environmental Review Requirements, which was promulgated to implement the U.S. Department of Energy (DOE) requirements under Executive Order 11988 Floodplain Management and Executive Order 11990 Wetlands Protection. According to 10 CFR 1022, a 100-year floodplain is defined as “the lowlands adjoining inland and coastal waters and relatively flat areas and flood prone areas of offshore islands” and a wetland is defined as “an area that is inundated or saturated by surface or groundwater at a frequency and duration sufficient to support, and that under normal circumstances does support, a prevalence of vegetation typically adapted for life in saturated soil conditions, including swamps, marshes, bogs, and similar areas.” In this action, DOE is proposing two projects to improve wetland and floodplain function at Los Alamos National Laboratory (LANL). The proposed work will comply with corrective action requirements under the Settlement Agreement and Stipulated Final Compliance Order (Settlement Agreement)1 Number HWB-14-20. The first project is located in Technical Areas (TA)-03 in upper Mortandad Canyon. The upper Mortandad wetlands have existing stormwater controls that need to be rehabilitated. Head-cut formation is occurring at the downstream portion of the wetland. This project will repair damages to the wetland and reduce the future erosion potential. The second project is located in TA-21 in Delta Prime (DP) Canyon. The intent of the DP Dissipater Project in DP Canyon is to install stormwater control structures in DP Canyon to retain low channel flows and reduce downstream sediment transport as well as peak flows during low and moderate storm events. Due to increased erosion, the stream bank in this area has unstable vertical walls within the stream channel. The DOE prepared this floodplain and wetland

  4. 2011 Summary: Coastal wetland restoration research

    Science.gov (United States)

    Kowalski, Kurt P.; Wiley, Michael J.; Wilcox, Douglas A.; Carlson Mazur, Martha L.; Czayka, Alex; Dominguez, Andrea; Doty, Susan; Eggleston, Mike; Green, Sean; Sweetman, Amanda

    2014-01-01

    The Great Lakes Restoration Initiative (GLRI) projects currently taking place in Great Lakes coastal wetlands provide a unique opportunity to study ecosystem response to management actions as practitioners strive to improve wetland function and increase ecosystem services. Through a partnership between the U.S. Geological Survey – Great Lakes Science Center (GLSC), U.S. Fish and Wildlife Service (USFWS), and Ducks Unlimited, a GLRI-funded project has reestablished the hydrologic connection between an intensively managed impounded wetland (Pool 2B) and Crane Creek, a small Lake Erie tributary, by building a water-control structure that was opened in the spring of 2011. The study site is located within the USFWS Ottawa National Wildlife Refuge (ONWR) and lies within the boundaries of the U.S. Environmental Protection Agency (EPA)-designated Maumee River Area of Concern. The broad objective of the project is to evaluate how hydrologically reconnecting a previously diked wetland impacts fish, mollusks, and other biota and affects nutrient transport, nutrient cycling, water quality, flood storage, and many other abiotic conditions. The results from this project suggest large system-wide benefits from sustainable reestablishment of lake-driven hydrology in this and other similar systems. We comprehensively sampled water chemistry, fish, birds, plants, and invertebrates in Crane Creek coastal wetlands, Pool 2A (a reference diked wetland), and Pool 2B (the reconnected wetland) in 2010 and 2011 to: 1) Characterize spatial and seasonal patterns for these parameters. 2) Examine ecosystem response to the opening of a water-control structure that allows fish passage Our sampling efforts have yielded data that reveal striking changes in water quality, hydrology, and fish assemblages in our experimental unit (2B). Prior to the reconnection, the water chemistry in pools 2A and 2B were very similar. Afterwards, we found that the water chemistry in reconnected Pool 2B was more

  5. Gas Research Institute wetland research program

    International Nuclear Information System (INIS)

    Wilkey, P.L.; Zimmerman, R.E.; Isaacson, H.R.

    1992-01-01

    As part of three ongoing research projects, the Gas Research Institute (GRI) is studying the natural gas industry's impacts on wetlands and how to manage operations so that impacts can be minimized or eliminated. The objective of the first project is to gain a better understanding of the causes and processes of wetland loss in the Louisiana deltaic plain and what role gas pipeline canals play in wetland loss. On the basis of information gathered from the first projects, management and mitigation implications for pipeline construction and maintenance will be evaluated. The objective of the second project is to assess the floral and faunal communities on existing rights-of-way (ROWs) that pass through numerous types of wetlands across the United States. The emphasis of the project is on pipelines that were installed within the past five years. The objective of the third project is to evaluate the administrative, jurisdictional, technical, and economic issues of wetland mitigation banking. This paper discusses these projects, their backgrounds, some of the results to date, and the deliverables

  6. Broken connections of wetland cultural knowledge

    Science.gov (United States)

    Middleton, Beth A.

    2016-01-01

    As global agriculture intensifies, cultural knowledge of wetland utilization has eroded as natural resources become more stressed, and marginal farmers move away from the land. The excellent paper by Fawzi et al. (2016) documents a particularly poignant case of traditional knowledge loss among the Marsh Arab women of Iraq. Through interviews, the authors document the breakdown of skill transfer from the older to younger generation of women. The authors link the loss of their cultural knowledge with the loss of wetlands in the region. Women no longer can help provide for their families using wetland products, and along with that, their ancient knowledge of plant usage is lost. These ancient skills included medicinal uses, and reed harvesting for weaving and water buffalo fodder. As, the majority of the Mesopotamian Marshes have dried, this way of life is being forgotten (Fawzi et al. 2015). The global tragedy is that while the careful alliance of wetlands and people have sustained human cultures for millennia, degraded wetlands lose their ability to provide these services (Maltby 1980).

  7. Object-Based Image Analysis in Wetland Research: A Review

    Directory of Open Access Journals (Sweden)

    Iryna Dronova

    2015-05-01

    Full Text Available The applications of object-based image analysis (OBIA in remote sensing studies of wetlands have been growing over recent decades, addressing tasks from detection and delineation of wetland bodies to comprehensive analyses of within-wetland cover types and their change. Compared to pixel-based approaches, OBIA offers several important benefits to wetland analyses related to smoothing of the local noise, incorporating meaningful non-spectral features for class separation and accounting for landscape hierarchy of wetland ecosystem organization and structure. However, there has been little discussion on whether unique challenges of wetland environments can be uniformly addressed by OBIA across different types of data, spatial scales and research objectives, and to what extent technical and conceptual aspects of this framework may themselves present challenges in a complex wetland setting. This review presents a synthesis of 73 studies that applied OBIA to different types of remote sensing data, spatial scale and research objectives. It summarizes the progress and scope of OBIA uses in wetlands, key benefits of this approach, factors related to accuracy and uncertainty in its applications and the main research needs and directions to expand the OBIA capacity in the future wetland studies. Growing demands for higher-accuracy wetland characterization at both regional and local scales together with advances in very high resolution remote sensing and novel tasks in wetland restoration monitoring will likely continue active exploration of the OBIA potential in these diverse and complex environments.

  8. VEGETATION MAPPING IN WETLANDS

    Directory of Open Access Journals (Sweden)

    F. PEDROTTI

    2004-01-01

    Full Text Available The current work examines the main aspects of wetland vegetation mapping, which can be summarized as analysis of the ecological-vegetational (ecotone gradients; vegetation complexes; relationships between vegetation distribution and geomorphology; vegetation of the hydrographic basin lo which the wetland in question belongs; vegetation monitoring with help of four vegetation maps: phytosociological map of the real and potential vegetation, map of vegetation dynamical tendencies, map of vegetation series.

  9. ASTER Images San Francisco Bay Area

    Science.gov (United States)

    2000-01-01

    These images of the San Francisco Bay region were acquired on March 3, 2000 by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite. Each covers an area 60 kilometers (37 miles) wide and 75 kilometers (47 miles) long. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER will image the Earth for the next 6 years to map and monitor the changing surface of our planet.Upper Left: The color infrared composite uses bands in the visible and reflected infrared. Vegetation is red, urban areas are gray; sediment in the bays shows up as lighter shades of blue. Thanks to the 15 meter (50-foot) spatial resolution, shadows of the towers along the Bay Bridge can be seen.Upper right: A composite of bands in the short wave infrared displays differences in soils and rocks in the mountainous areas. Even though these regions appear entirely vegetated in the visible, enough surface shows through openings in the vegetation to allow the ground to be imaged.Lower left: This composite of multispectral thermal bands shows differences in urban materials in varying colors. Separation of materials is due to differences in thermal emission properties, analogous to colors in the visible.Lower right: This is a color coded temperature image of water temperature, derived from the thermal bands. Warm waters are in white and yellow, colder waters are blue. Suisun Bay in the upper right is fed directly from the cold Sacramento River. As the water flows through San Pablo and San Francisco Bays on the way to the Pacific, the waters warm up.Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of International Trade and Industry. A joint U.S./Japan science team is responsible for

  10. 76 FR 79145 - Floodplain Management and Protection of Wetlands

    Science.gov (United States)

    2011-12-21

    ...] RIN 2501-AD51 Floodplain Management and Protection of Wetlands Correction In proposed rule document... Type of proposed action Type of proposed action (new Wetlands or 100- Non-wetlands area reviewable... construction in wetlands locations. \\2\\ Or those paragraphs of Sec. 55.20 that are applicable to an action...

  11. Wetlands in a changing climate: Science, policy and management

    Science.gov (United States)

    Moomaw, William R.; Chmura, G.L.; Davies, Gillian T.; Finlayson, Max; Middleton, Beth A.; Natali, Sue M.; Perry, James; Roulet, Nigel; Sutton-Grier, Ariana

    2018-01-01

    Part 1 of this review synthesizes recent research on status and climate vulnerability of freshwater and saltwater wetlands, and their contribution to addressing climate change (carbon cycle, adaptation, resilience). Peatlands and vegetated coastal wetlands are among the most carbon rich sinks on the planet sequestering approximately as much carbon as do global forest ecosystems. Estimates of the consequences of rising temperature on current wetland carbon storage and future carbon sequestration potential are summarized. We also demonstrate the need to prevent drying of wetlands and thawing of permafrost by disturbances and rising temperatures to protect wetland carbon stores and climate adaptation/resiliency ecosystem services. Preventing further wetland loss is found to be important in limiting future emissions to meet climate goals, but is seldom considered. In Part 2, the paper explores the policy and management realm from international to national, subnational and local levels to identify strategies and policies reflecting an integrated understanding of both wetland and climate change science. Specific recommendations are made to capture synergies between wetlands and carbon cycle management, adaptation and resiliency to further enable researchers, policy makers and practitioners to protect wetland carbon and climate adaptation/resiliency ecosystem services.

  12. Effects of sediment removal on vegetation communities in Rainwater Basin playa wetlands.

    Science.gov (United States)

    Beas, Benjamin J; Smith, Loren M; LaGrange, Theodore G; Stutheit, Randy

    2013-10-15

    Sedimentation from cultivated agricultural land use has altered the natural hydrologic regimes of depressional wetlands in the Great Plains. These alterations can negatively affect native wetland plant communities. Our objective was to determine if restored wetlands are developing plant communities similar to reference wetland conditions following hydrologic restoration. For this study, hydrology was restored via sediment removal. Thirty-four playa wetlands in reference, restored, and agricultural condition within the Rainwater Basin Region of Nebraska were sampled in 2008 and 2009. In 2008, reference and restored wetlands had higher species richness and more native, annual, and perennial species than agricultural wetlands. Restored wetlands had similar exotic species richness compared to reference and agricultural wetlands; however, reference wetlands contained more than agricultural wetlands. Restored wetlands proportion of exotics was 3.5 and 2 times less than agricultural wetlands and reference wetlands respectively. In 2009, reference and restored wetlands had higher species richness, more perennial species, and more native species than agricultural wetlands. Restored wetlands contained a greater number and proportion of annuals than reference and agricultural wetlands. Canonical Correspondence Analysis showed that reference, restored, and agricultural wetlands are dominated by different plant species and guilds. Restored wetland plant communities do not appear to be acting as intermediates between reference and agricultural wetland conditions or on a trajectory to reach reference conditions. This may be attributed to differing seed bank communities between reference and restored wetlands, dispersal limitations of perennial plant guilds associated with reference wetland conditions, and/or management activities may be preventing restored wetlands from reaching reference status. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Hydrology and Ecology of Freshwater Wetlands in Central Florida - A Primer

    Science.gov (United States)

    Haag, Kim H.; Lee, Terrie M.

    2010-01-01

    Freshwater wetlands are an integral part of central Florida, where thousands are distributed across the landscape. However, their relatively small size and vast numbers challenge efforts to characterize them collectively as a statewide water resource. Wetlands are a dominant landscape feature in Florida; in 1996, an estimated 11.4 million acres of wetlands occupied 29 percent of the area of the State. Wetlands represent a greater percentage of the land surface in Florida than in any other state in the conterminous United States. Statewide, 90 percent of the total wetland area is freshwater wetlands and 10 percent is coastal wetlands. About 55 percent of the freshwater wetlands in Florida are forested, 25 percent are marshes and emergent wetlands, 18 percent are scrub-shrub wetlands, and the remaining 2 percent are freshwater ponds. Freshwater wetlands are distributed differently in central Florida than in other parts of the State. In the panhandle and in northern Florida, there are fewer isolated wetlands than in the central and southern parts of the State, and few of those wetlands are affected by activities such as groundwater withdrawals. In southern Florida, the vast wetlands of the Everglades and the Big Cypress Swamp blanket the landscape and form contiguous shallow expanses of water, which often exhibit slow but continuous flow toward the southwestern coast. In contrast, the wetlands of central Florida are relatively small, numerous, mostly isolated, and widely distributed. In many places, wetlands are flanked by uplands, generating a mosaic of contrasting environments-unique wildlife habitat often adjacent to dense human development. As the population of central Florida increases, the number of residents living near wetlands also increases. Living in close proximity to wetlands provides many Floridians with an increased awareness of nature and an opportunity to examine the relationship between people and wetlands. Specifically, these residents can observe

  14. Inclusion of Riparian Wetland Module (RWM) into the SWAT model for assessment of wetland hydrological benefit

    Science.gov (United States)

    Wetlands are an integral part of many agricultural watersheds. They provide multiple ecosystem functions, such as improving water quality, mitigating flooding, and serving as natural habitats. Those functions are highly depended on wetland hydrological characteristics and their connectivity to the d...

  15. The significant surface-water connectivity of "geographically isolated wetlands"

    Science.gov (United States)

    Calhoun, Aram J.K.; Mushet, David M.; Alexander, Laurie C.; DeKeyser, Edward S.; Fowler, Laurie; Lane, Charles R.; Lang, Megan W.; Rains, Mark C.; Richter, Stephen; Walls, Susan

    2017-01-01

    We evaluated the current literature, coupled with our collective research expertise, on surface-water connectivity of wetlands considered to be “geographically isolated” (sensu Tiner Wetlands 23:494–516, 2003a) to critically assess the scientific foundation of grouping wetlands based on the singular condition of being surrounded by uplands. The most recent research on wetlands considered to be “geographically isolated” shows the difficulties in grouping an ecological resource that does not reliably indicate lack of surface water connectivity in order to meet legal, regulatory, or scientific needs. Additionally, the practice of identifying “geographically isolated wetlands” based on distance from a stream can result in gross overestimates of the number of wetlands lacking ecologically important surface-water connections. Our findings do not support use of the overly simplistic label of “geographically isolated wetlands”. Wetlands surrounded by uplands vary in function and surface-water connections based on wetland landscape setting, context, climate, and geographic region and should be evaluated as such. We found that the “geographically isolated” grouping does not reflect our understanding of the hydrologic variability of these wetlands and hence does not benefit conservation of the Nation’s diverse wetland resources. Therefore, we strongly discourage use of categorizations that provide overly simplistic views of surface-water connectivity of wetlands fully embedded in upland landscapes.

  16. China's natural wetlands: past problems, current status, and future challenges

    Science.gov (United States)

    Shuqing An; Harbin Li; Baohua Guan; Changfang Zhou; Zhongsheng Wang; Zifa Deng; Yingbiao Zhi; Yuhong Liu; Chi Xu; Shubo Fang; Jinhui Jiang; Hongli Li

    2007-01-01

    Natural wetlands, occupying 3.8% of China's land and providing 54.9% of ecosystem services, are unevenly distributed among eight wetland regions. Natural wetlands in China suffered great loss and degradation (e.g., 23.0% freshwater swamps, 51.2% coastal wetlands) because of the wetland reclamation during China's long history of civilization, and the...

  17. 33 CFR 100.919 - International Bay City River Roar, Bay City, MI.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false International Bay City River Roar, Bay City, MI. 100.919 Section 100.919 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF... Bay City River Roar, Bay City, MI. (a) Regulated Area. A regulated area is established to include all...

  18. Use of created cattail ( Typha) wetlands in mitigation strategies

    Science.gov (United States)

    Dobberteen, Ross A.; Nickerson, Norton H.

    1991-11-01

    In order to balance pressures for land-use development with protection of wetland resources, artificial wetlands have been constructed in an effort to replace lost ecosystems. Despite its regulatory appeal and prominent role in current mitigation strategies, it is unclear whether or not created systems actually compensate for lost wetland resources. Mitigation predictions that rely on artificial wetlands must be analyzed critically in terms of their efficacy. Destruction of wetlands due to burial by coal fly ash at a municipal landfill in Danvers, Massachusetts, USA, provided an opportunity to compare resulting growth of created cattail ( Typha) marshes with natural wetland areas. Once the appropriate cattail species was identified for growth under disturbed landfill conditions, two types of artificial wetlands were constructed. The two systems differed in their hydrologic attributes: while one had a surface water flow characteristic of most cattail wetlands, the second system mimicked soil and water conditions found in naturally occurring floating cattail marshes. Comparison of plant growth measurements for two years from the artificial systems with published values for natural cattail marshes revealed similar structure and growth patterns. Experiments are now in progress to investigate the ability of created cattail marshes to remove and accumulate heavy metals from polluted landfill leachate. Research of the type reported here must be pursued aggressively in order to document the performance of artificial wetlands in terms of plant structure and wetland functions. Such research should allow us to start to evaluate whether artificial systems actually compensate for lost wetlands by performing similar functions and providing the concomitant public benefits.

  19. Scientific Guidance for Rehabilitation of the Chesapeake Bay Ecosystem under the Changing Climate.

    Science.gov (United States)

    Boesch, D. F.; Johnson, Z. P.; Li, M.

    2017-12-01

    While the Chesapeake Bay is an estuary and not a marginal sea on the scale of the Baltic Sea or the Gulf of Mexico, it has a complex set of environmental issues and multiple political jurisdictions such that it can serve as a test bed for science-informed management in larger marine systems. In particular, the Chesapeake Bay possesses a relatively advanced effort to ameliorate eutrophication, reduce toxic stresses, rehabilitate critical habitats, and sustainably utilized resources. Furthermore, both scientists and managers are addressing these challenges while now beginning to incorporate the effects of changes in temperature, precipitation and runoff, sea level, ocean boundary conditions, and pH. Increases in temperature and sea level are already apparent and future conditions can be estimated from global model projections, although sea level and ocean exchanges are also affected by variations in Gulf Stream flows and mesoscale climate. Changes in the volume, seasonality and variability in freshwater delivery from the multiple rivers discharging to the bay are harder to project with confidence, but may have pervasive consequences for circulation, reducing nutrient loads to ameliorate eutrophication, biogeochemical processes, and biotic distributions and dynamics. Science is now challenged to inform multiple adaptation strategies, including minimizing the vulnerability of humans and infrastructure, sustaining important tidal wetlands, managing sediment resources, sustaining living resources, redefining achievable ecosystem rehabilitation goals, and achieving shifting goals for nutrient load reductions. At the same time, science will also have to identify effective means to meet these challenges while also reducing greenhouse gas emissions.

  20. Study of Wetland Ecosystem Vegetation Using Satellite Data

    Science.gov (United States)

    Dyukarev, E. A.; Alekseeva, M. N.; Golovatskaya, E. A.

    2017-12-01

    The normalized difference vegetation index (NDVI) is used to estimate the aboveground net production (ANP) of wetland ecosystems for the key area at the South Taiga zone of West Siberia. The vegetation index and aboveground production are related by linear dependence and are specific for each wetland ecosystem. The NDVI grows with an increase in the ANP at wooded oligotrophic ecosystems. Open oligotrophic bogs and eutrophic wetlands are characterized by an opposite relation. Maps of aboveground production for wetland ecosystems are constructed for each study year and for the whole period of studies. The average aboveground production for all wetland ecosystems of the key area, which was estimated with consideration for the area they occupy and using the data of satellite measurements of the vegetation index, is 305 g C/m2/yr. The total annual carbon accumulation in aboveground wetland vegetation in the key area is 794600 t.

  1. Integrating geographically isolated wetlands into land management decisions

    Science.gov (United States)

    Golden, Heather E.; Creed, Irena F.; Ali, Genevieve; Basu, Nandita; Neff, Brian; Rains, Mark C.; McLaughlin, Daniel L.; Alexander, Laurie C.; Ameli, Ali A.; Christensen, Jay R.; Evenson, Grey R.; Jones, Charles N.; Lane, Charles R.; Lang, Megan

    2017-01-01

    Wetlands across the globe provide extensive ecosystem services. However, many wetlands – especially those surrounded by uplands, often referred to as geographically isolated wetlands (GIWs) – remain poorly protected. Protection and restoration of wetlands frequently requires information on their hydrologic connectivity to other surface waters, and their cumulative watershed‐scale effects. The integration of measurements and models can supply this information. However, the types of measurements and models that should be integrated are dependent on management questions and information compatibility. We summarize the importance of GIWs in watersheds and discuss what wetland connectivity means in both science and management contexts. We then describe the latest tools available to quantify GIW connectivity and explore crucial next steps to enhancing and integrating such tools. These advancements will ensure that appropriate tools are used in GIW decision making and maintaining the important ecosystem services that these wetlands support.

  2. Sand quarry wetlands provide high-quality habitat for native amphibians

    Directory of Open Access Journals (Sweden)

    M. Sievers

    2017-05-01

    Full Text Available Anthropogenic disturbances to habitats influence the fitness of individual animals, the abundance of their populations, and the composition of their communities. Wetlands in particular are frequently degraded and destroyed, impacting the animals that inhabit these important ecosystems. The creation of wetlands during and following sand extraction processes is inevitable, and thus, sand quarries have the potential to support aquatic animals. To determine how amphibians utilise these wetlands, I conducted nocturnal call surveys at wetlands within the Kables Sands quarry, New South Wales, Australia, and within surrounding reference wetlands, and quantified levels of developmental instability (DI as a proxy for fitness. Whilst quarry and reference wetlands were largely similar in terms of environmental characteristics, quarry wetlands consistently harboured more amphibian species and individuals. Using unsigned asymmetry as a measure of DI, frogs from the quarry sites exhibited significantly lower levels of DI compared to reference wetlands, indicating that quarry wetlands may be comparatively higher quality. Levels of DI within quarry wetlands also compared favourably to data from healthy frog populations extracted from the literature. Further enhancing the suitability of quarry wetlands would require minimal effort, with potentially significant increases in local and regional biodiversity. Documenting species presence and quantifying individual fitness by measuring limb lengths is an economically and logistically feasible method to assess the health of quarry wetlands. Overall, the methods outlined here provide a powerful, yet simple, tool to assess the overall health and suitability of quarry wetlands that could be easily adopted at quarries throughout the world.

  3. Natural wetland in China | Pan | African Journal of Environmental ...

    African Journals Online (AJOL)

    As it is known to all, wetland is one of the most crucial ecosystems in the world, with large varieties in China. How to protect wetland in China has become a more serious problem and five typical wetlands were selected in the article to illustrate the condition. Through the comparison between the past and present of wetland, ...

  4. Relating groundwater to seasonal wetlands in southeastern Wisconsin, USA

    Science.gov (United States)

    Skalbeck, J.D.; Reed, D.M.; Hunt, R.J.; Lambert, J.D.

    2009-01-01

    Historically, drier types of wetlands have been difficult to characterize and are not well researched. Nonetheless, they are considered to reflect the precipitation history with little, if any, regard for possible relation to groundwater. Two seasonal coastal wetland types (wet prairie, sedge meadow) were investigated during three growing seasons at three sites in the Lake Michigan Basin, Wisconsin, USA. The six seasonal wetlands were characterized using standard soil and vegetation techniques and groundwater measurements from the shallow and deep systems. They all met wetland hydrology criteria (e.g., water within 30 cm of land surface for 5% of the growing season) during the early portion of the growing season despite the lack of appreciable regional groundwater discharge into the wetland root zones. Although root-zone duration analyses did not fit a lognormal distribution previously noted in groundwater-dominated wetlands, they were able to discriminate between the plant communities and showed that wet prairie communities had shorter durations of continuous soil saturation than sedge meadow communities. These results demonstrate that the relative rates of groundwater outflows can be important for wetland hydrology and resulting wetland type. Thus, regional stresses to the shallow groundwater system such as pumping or low Great Lake levels can be expected to affect even drier wetland types. ?? Springer-Verlag 2008.

  5. Nevada Test Site Wetlands Assessment

    Energy Technology Data Exchange (ETDEWEB)

    D. J. Hansen

    1997-05-01

    This report identifies 16 Nevada Test Site (NTS) natural water sources that may be classified by the U.S. Army Corps of Engineers (USACE) as jurisdictional wetlands and identifies eight water sources that may be classified as waters of the United States. These water sources are rare, localized habitats on the NTS that are important to regional wildlife and to isolated populations of water tolerant plants and aquatic organisms. No field investigations on the NTS have been conducted in the past to identify those natural water sources which would be protected as rare habitats and which may fall under regulatory authority of the Clean Water Act (CWA) of 1997. This report identifies and summarizes previous studies of NTS natural water sources, and identifies the current DOE management practices related to the protection of NTS wetlands. This report also presents management goals specific for NTS wetlands that incorporate the intent of existing wetlands legislation, the principles of ecosystem management, and the interests of regional land managers and other stakeholders.

  6. Do geographically isolated wetlands influence landscape functions?

    OpenAIRE

    Cohen, Matthew J.; Creed, Irena F.; Alexander, Laurie; Basu, Nandita B.; Calhoun, Aram J. K.; Craft, Christopher; D’Amico, Ellen; DeKeyser, Edward; Fowler, Laurie; Golden, Heather E.; Jawitz, James W.; Kalla, Peter; Kirkman, L. Katherine; Lane, Charles R.; Lang, Megan

    2016-01-01

    Geographically isolated wetlands (GIWs), those surrounded by uplands, exchange materials, energy, and organisms with other elements in hydrological and habitat networks, contributing to landscape functions, such as flow generation, nutrient and sediment retention, and biodiversity support. GIWs constitute most of the wetlands in many North American landscapes, provide a disproportionately large fraction of wetland edges where many functions are enhanced, and form complexes with other water bo...

  7. Tidal wetlands of the Yaquina and Alsea River estuaries, Oregon: Geographic Information Systems layer development and recommendations for National Wetlands Inventory revisions

    Science.gov (United States)

    Brophy, Laura S.; Reusser, Deborah A.; Janousek, Christopher N.

    2013-01-01

    Geographic Information Systems (GIS) layers of current, and likely former, tidal wetlands in two Oregon estuaries were generated by enhancing the 2010 National Wetlands Inventory (NWI) data with expert local field knowledge, Light Detection and Ranging-derived elevations, and 2009 aerial orthophotographs. Data were generated for two purposes: First, to enhance the NWI by recommending revised Cowardin classifications for certain NWI wetlands within the study area; and second, to generate GIS data for the 1999 Yaquina and Alsea River Basins Estuarine Wetland Site Prioritization study. Two sets of GIS products were generated: (1) enhanced NWI shapefiles; and (2) shapefiles of prioritization sites. The enhanced NWI shapefiles contain recommended changes to the Cowardin classification (system, subsystem, class, and/or modifiers) for 286 NWI polygons in the Yaquina estuary (1,133 acres) and 83 NWI polygons in the Alsea estuary (322 acres). These enhanced NWI shapefiles also identify likely former tidal wetlands that are classified as upland in the current NWI (64 NWI polygons totaling 441 acres in the Yaquina estuary; 16 NWI polygons totaling 51 acres in the Alsea estuary). The former tidal wetlands were identified to assist strategic planning for tidal wetland restoration. Cowardin classifications for the former tidal wetlands were not provided, because their current hydrology is complex owing to dikes, tide gates, and drainage ditches. The scope of this project did not include the field evaluation that would be needed to determine whether the former tidal wetlands are currently wetlands, and if so, determine their correct Cowardin classification. The prioritization site shapefiles contain 49 prioritization sites totaling 2,177 acres in the Yaquina estuary, and 39 prioritization sites totaling 1,045 acres in the Alsea estuary. The prioritization sites include current and former (for example, diked) tidal wetlands, and provide landscape units appropriate for basin

  8. Icelandic Inland Wetlands: Characteristics and Extent of Draining

    OpenAIRE

    Gudmundsson, Jon; Brink, Sigmundur H.; Arnalds, Olafur; Gisladottir, Fanney O.; Oskarsson, Hlynur

    2016-01-01

    Iceland has inland wetland areas with soils exhibiting both Andosol and Histosol properties which are uncommon elsewhere on Earth. They are generally fertile, with higher bird-nest densities than in similar wetlands in the neighboring countries, with nutrients released by rapid weathering of aeolian materials of basaltic nature. Icelandic inland wetlands cover about 9000 km2 constituting 19.4 % of the vegetated surfaces of the island. The wetland soils are often 1–3 m thick and store 33 to >1...

  9. Socio-Economic Determinants of Wetland Cultivation in Kemise ...

    African Journals Online (AJOL)

    A study of wetland use in Kemise, central Illubabor, southwestern Ethiopia, shows food shortage as the main factor behind wetland cultivation in the locality. However, discriminant analysis results indicate that it is the wealthier farmers who tend to cultivate wetlands rather than the economically less fortunate ones.

  10. HANDBOOK FOR CONSTRUCTED WETLANDS RECEIVING ACID MINE DRAINAGE

    Science.gov (United States)

    In the summer of 1987, a pilot constructed wetland was built at the Big Five Tunnel in Idaho Springs, Colorado. This report details the theory, design and construction of wetlands receiving acid mine drainages, based on the second and third year of operation of this wetland, whic...

  11. Observations On Some Upper Amazonian Wetlands of Southeastern Peru

    Science.gov (United States)

    Householder, J. E.; Muttiah, R.; Khanal, S.

    2007-05-01

    Upper Amazonian wetlands represent little studied, poorly understood, and grossly under protected systems. Scientific investigation of Amazonian wetlands is in its infancy; nor is there much known about their ecological services. Regionally, wetlands form a ubiquitous and significant component of floodplain habitat fed by perennial springs as well as overland runoff. Locally, wetland vegetation forms bewilderingly complex vegetation mosaics that seem to be governed by local topography and hydrology. Drawing upon intensive field campaigns and remotely sensed imagery, we summarize the results and experiences gathered in wetlands of southeastern Peru.

  12. A Regional Guidebook for Applying the Hydrogeomorphic Approach to Assessing Wetland Functions of Flats Wetlands in the Everglades

    National Research Council Canada - National Science Library

    Noble, Chris

    2002-01-01

    .... However, a variety of other potential uses have been identified, including the determination of minimal effects under the Food Security Act, design of wetland restoration projects, and management of wetlands...

  13. Wetlands Assessment for site characterization, Advanced Neutron Source (ANS)

    International Nuclear Information System (INIS)

    Wade, M.C.; Socolof, M.L.

    1994-10-01

    This Wetlands Assessment has been prepared in accordance with the Department of Energy's (DOE) Code of Federal Regulations (CFR) 10 CFR 1022, Compliance with Floodplain/Wetlands Environmental Review Requirements, which established the policy and procedure for implementing Executive Order 11990, Protection of Wetlands. The proposed action is to conduct characterization activities in or near wetlands at the ANS site. The proposed action will covered under a Categorical Exclusion, therefore this assessment is being prepared as a separate document [10 CFR 1022.12(c)]. The purpose of this Wetlands Assessment is to fulfill the requirements of 10 CFR 1022.12(a) by describing the project, discussing the effects of the proposed action upon the wetlands, and considering alternatives to the proposed action

  14. Using Stable Isotopes to Link Nutrient Sources in the Everglades and Biological Sinks in Florida Bay: A Biogeochemical Approach to Evaluate Ecosystem Response to Changing Nutrient Regimes

    Science.gov (United States)

    Hoare, A. M.; Hollander, D. J.; Heil, C.; Glibert, P.; Murasko, S.; Revilla, M.; Alexander, J.

    2005-05-01

    Anthropogenic influences in South Florida have led to deterioration of its two major ecosystems, the Everglades wetlands and the Florida Bay estuary. Consequently, the Comprehensive Everglades Restoration Plan has been proposed to restore the Everglades ecosystem; however, restoration efforts will likely exert new ecological changes in the Everglades and ultimately Florida Bay. The success of the Florida Everglades restoration depends on our understanding and ability to predict how regional changes in the distribution and composition of dissolved organic and inorganic nutrients will direct the downstream biogeochemical dynamics of Florida Bay. While the transport of freshwater and nutrients to Florida Bay have been studied, much work remains to directly link nutrient dynamics in Florida Bay to nutrient sources in the Everglades. Our study uses stable C and N isotopic measurements of chemical and biological materials from the Everglades and Florida Bay as part of a multi-proxy approach to link nutrient sources in the Everglades to biological sinks in Florida Bay. Isotopic analyses of dissolved and particulate species of water, aquatic vegetation and sedimentary organic matter show that the watersheds within the Everglades are chemically distinct and that these signatures are also reflected in the bay. A large east-west gradient in both carbon and nitrogen (as much as 10‰ for δ15N POM) reflect differing nutrient sources for each region of Florida Bay and is strongly correlated with upstream sources in the Everglades. Isotopic signatures also reflect seasonal relationships associated with wet and dry periods. High C and N measurements of DOM and POM measurements suggest significant influence from waste water in Canal C-111 in eastern Florida Bay, particularly during the dry season. These observations show that nutrients from the Everglades watersheds enter Florida Bay and are important in controlling biogeochemical processes in the bay. This study proves that

  15. Accumulation and bioaccessibility of trace elements in wetland ...

    African Journals Online (AJOL)

    Accumulation of trace metals in sediment can cause severe ecological impacts. In this study, determination of elemental concentrations in water and sediment was done. Shadegan wetland is one of the most important wetlands in southwest of Iran and is among the Ramsar-listed wetlands. Wastewaters from industries ...

  16. Observation of Wetland Dynamics with Global Navigation Satellite Signals Reflectometry

    Science.gov (United States)

    Zuffada, C.; Shah, R.; Nghiem, S. V.; Cardellach, E.; Chew, C. C.

    2015-12-01

    Wetland dynamics is crucial to changes in both atmospheric methane and terrestrial water storage. The Intergovernmental Panel on Climate Change's Fifth Assessment Report (IPCC AR5) highlights the role of wetlands as a key driver of methane (CH4) emission, which is more than one order of magnitude stronger than carbon dioxide as a greenhouse gas in the centennial time scale. Among the multitude of methane emission sources (hydrates, livestock, rice cultivation, freshwaters, landfills and waste, fossil fuels, biomass burning, termites, geological sources, and soil oxidation), wetlands constitute the largest contributor with the widest uncertainty range of 177-284 Tg(CH4) yr-1 according to the IPCC estimate. Wetlands are highly susceptible to climate change that might lead to wetland collapse. Such wetland destruction would decrease the terrestrial water storage capacity and thus contribute to sea level rise, consequently exacerbating coastal flooding problems. For both methane change and water storage change, wetland dynamics is a crucial factor with the largest uncertainty. Nevertheless, a complete and consistent map of global wetlands still needs to be obtained as the Ramsar Convention calls for a wetlands inventory and impact assessment. We develop a new method for observations of wetland change using Global Navigation Satellite Signals Reflectometry (GNSS-R) signatures for global wetland mapping in synergy with the existing capability, not only as a static inventory but also as a temporal dataset, to advance the capability for monitoring the dynamics of wetland extent relevant to addressing the science issues of CH4 emission change and terrestrial water storage change. We will demonstrate the capability of the new GNSS-R method over a rice field in the Ebro Delta wetland in Spain.

  17. 77 FR 2972 - Thunder Bay Power Company, Thunder Bay Power, LLC, et al.

    Science.gov (United States)

    2012-01-20

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Thunder Bay Power Company, Thunder Bay Power, LLC, et al.; Notice of Application for Transfer of Licenses, and Soliciting Comments and Motions To Intervene Thunder Bay Power Company Project No. 2404-095 Thunder Bay Power, LLC Midwest Hydro, Inc...

  18. Sustainable wetland management and support of ecosystem services

    Science.gov (United States)

    Smith, Loren M.; Euliss, Ned H.; Wilcox, Douglas A.; Brinson, Mark M.

    2009-01-01

    This article is a follow-up on a previous piece in the National Wetlands Newsletter in which we outlined problems associated with a static, local approach to wetland management versus an alternative that proposes a temporal and geomorphic approach (Euliss et al. 2009). We extend that concept by drawing on companion papers recently published in the journal Wetlands (Euliss et al. 2008, Smith et al. 2008). Here we highlight reasons for the failure of many managed wetlands to provide a suite of ecosystem services (e.g., carbon storage, diodiversity, ground-water recharge, contaminant filtering, floodwater storage). Our principal theme is that wetland management is best approached by giving consideration to the hydrogeomorphic processes that maintain productive ecosystems and by removing physical and social impediments to those processes. Traditional management actions are often oriented toward maintaining static conditions in wetlands without considering the temporal cycles that wetlands need to undergo or achieve productivity for specific groups of wildlife, such as waterfowl. Possibly more often, a manager's ability to influence hydrogeomorphic processes is restricted by activities in surrounding watersheds. These could be dams, for example, which do not allow management of flood-pulse processes essential to productivity of riparian systems. In most cases, sediments and nutrients associated with land use in contributing watersheds complicate management of wetlands for a suite of services, including wildlife. Economic or policy forces far-removed from a wetland often interact to prevent occurrence of basic ecosystem processes. Our message is consistent with recommendation of supply-side sustainability of Allen et al. (2002) in which ecosystems are managed "for the system that produces outputs rather than the outputs themselves."

  19. Remote sensing of wetlands at the Savannah River Plant

    International Nuclear Information System (INIS)

    Christensen, E.J.; Jensen, J.R.; Sharitz, R.R.

    1985-01-01

    The Savannah River Plant (SRP) occupies about 300 sq mi along a 10-mile stretch of the Savannah River. Large areas of wetlands cover the site, especially along tributary stream floodplains and the Savannah River. Some of these areas have been altered by cooling water discharges from nuclear production reactors onsite. To assess the effects of current and future plant operations on SRP and regional wetlands, an accurate quantitative survey was needed. Several studies were initiated to provide wetland acreage and distribution information: regional wetland inventories were provided from an analysis of LANDSAT multispectral scanner (MSS) satellite data. Wetlands were mapped throughout the entire Savannah River watershed and in the Savannah River floodplain. SRP wetlands were identified using a combination of LANDSAT MSS and Thematic Mapper satellite data and aerial photography. Wetlands in the SRP Savannah River swamp and thermally affected areas were mapped using high resolution MSS data collected from a low-flying aircraft. Vegetation communities in areas receiving cooling water discharges were then compared to surface temperatures measured from the airborne scanner at the same time to evaluate plant temperature tolerance. Historic changes to SRP wetlands from cooling water discharges were tabulated using aerial photography

  20. A Regional Guidebook for Applying the Hydrogeomorphic Approach to Assessing Wetland Functions of Depression Wetlands in the Upper Des Plaines River Basin

    Science.gov (United States)

    2006-05-01

    Wetlands and Coastal Ecology Branch; Dr. David J. Tazik, Chief, Eco- system Evaluation and Engineering Division; and Dr. Edwin A. Theriot, Direc- tor, EL...wetlands (Euliss and Mushet 1996, Azous and Horner 2001, Bhaduri et al. 1997) and nutrient loading into those wetlands. The overall LU score is...Euliss, N. H., and Mushet , D. M. (1996). “Water-level fluctuation in wetlands as a function of landscape condition in the prairie pothole region

  1. The road to higher permanence and biodiversity in exurban wetlands.

    Science.gov (United States)

    Urban, Mark C; Roehm, Robert

    2018-01-01

    Exurban areas are expanding throughout the world, yet their effects on local biodiversity remain poorly understood. Wetlands, in particular, face ongoing and substantial threats from exurban development. We predicted that exurbanization would reduce the diversity of wetland amphibian and invertebrate communities and that more spatially aggregated residential development would leave more undisturbed natural land, thereby promoting greater local diversity. Using structural equation models, we tested a series of predictions about the direct and indirect pathways by which exurbanization extent, spatial pattern, and wetland characteristics might affect diversity patterns in 38 wetlands recorded during a growing season. We used redundancy, indicator species, and nested community analyses to evaluate how exurbanization affected species composition. In contrast to expectations, we found higher diversity in exurban wetlands. We also found that housing aggregation did not significantly affect diversity. Exurbanization affected biodiversity indirectly by increasing roads and development, which promoted permanent wetlands with less canopy cover and more aquatic vegetation. These pond characteristics supported greater diversity. However, exurbanization was associated with fewer temporary wetlands and fewer of the species that depend on these habitats. Moreover, the best indicator species for an exurban wetland was the ram's head snail, a common disease vector in disturbed ponds. Overall, results suggest that exurbanization is homogenizing wetlands into more permanent water bodies. These more permanent, exurban ponds support higher overall animal diversity, but exclude temporary wetland specialists. Conserving the full assemblage of wetland species in expanding exurban regions throughout the world will require protecting and creating temporary wetlands.

  2. Coastal wetlands: an integrated ecosystem approach

    Science.gov (United States)

    Perillo, G. M. E.; Wolanski, E.; Cahoon, D.R.; Brinson, M.M.

    2009-01-01

    Coastal wetlands are under a great deal of pressure from the dual forces of rising sea level and the intervention of human populations both along the estuary and in the river catchment. Direct impacts include the destruction or degradation of wetlands from land reclamation and infrastructures. Indirect impacts derive from the discharge of pollutants, changes in river flows and sediment supplies, land clearing, and dam operations. As sea level rises, coastal wetlands in most areas of the world migrate landward to occupy former uplands. The competition of these lands from human development is intensifying, making the landward migration impossible in many cases. This book provides an understanding of the functioning of coastal ecosystems and the ecological services that they provide, and suggestions for their management. In this book a CD is included containing color figures of wetlands and estuaries in different parts of the world.

  3. Assessment of nutrient retention by Natete wetland Kampala, Uganda

    Science.gov (United States)

    Kanyiginya, V.; Kansiime, F.; Kimwaga, R.; Mashauri, D. A.

    Natete wetland which is located in a suburb of Kampala city in Uganda is dominated by C yperus papyrus and covers an area of approximately 1 km 2. The wetland receives wastewater and runoff from Natete town which do not have a wastewater treatment facility. The main objective of this study was to assess nutrient retention of Natete wetland and specifically to: determine the wastewater flow patterns in the wetland; estimate the nutrient loads into and out of the wetland; determine the nutrient retention by soil, plants and water column in the wetland; and assess the above and belowground biomass density of the dominant vegetation. Soil, water and plant samples were taken at 50 m intervals along two transects cut through the wetland; soil and water samples were taken at 10 cm just below the surface. Physico-chemical parameters namely pH, electrical conductivity and temperature were measured in situ. Water samples were analyzed in the laboratory for ammonium-nitrogen, nitrate-nitrogen, total nitrogen, orthophosphate and total phosphorus. Electrical conductivity ranged between 113 μS/cm and 530 μS/cm and the wastewater flow was concentrated on the eastern side of the wetland. pH varied between 6 and 7, temperature ranged from 19 °C to 24 °C. NH 4-N, NO 3-N, and TN concentrations were retained by 21%, 98%, and 35% respectively. Phosphorus concentration was higher at the outlet of the wetland possibly due to release from sediments and leaching. Nutrient loads were higher at the inlet (12,614 ± 394 kgN/day and 778 ± 159 kgP/day) than the outlet (2368 ± 425 kgN/day and 216 ± 56 kgP/day) indicating retention by the wetland. Plants stored most nutrients compared to soil and water. The belowground biomass of papyrus vegetation in the wetland was higher (1288.4 ± 8.3 gDW/m 2) than the aboveground biomass (1019.7 ± 13.8 gDW/m 2). Plant uptake is one of the important routes of nutrient retention in Natete wetland. It is recommended that harvesting papyrus can be an

  4. A novel algorithm for delineating wetland depressions and ...

    Science.gov (United States)

    In traditional watershed delineation and topographic modeling, surface depressions are generally treated as spurious features and simply removed from a digital elevation model (DEM) to enforce flow continuity of water across the topographic surface to the watershed outlets. In reality, however, many depressions in the DEM are actual wetland landscape features that are seldom fully filled with water. For instance, wetland depressions in the Prairie Pothole Region (PPR) are seasonally to permanently flooded wetlands characterized by nested hierarchical structures with dynamic filling- spilling-merging surface-water hydrological processes. The objectives of this study were to delineate hierarchical wetland catchments and model their hydrologic connectivity using high-resolution LiDAR data and aerial imagery. We proposed a novel algorithm delineate the hierarchical wetland catchments and characterize their geometric and topological properties. Potential hydrologic connectivity between wetlands and streams were simulated using the least-cost path algorithm. The resulting flow network delineated putative temporary or seasonal flow paths connecting wetland depressions to each other or to the river network at scales finer than available through the National Hydrography Dataset. The results demonstrated that our proposed framework is promising for improving overland flow modeling and hydrologic connectivity analysis. Presentation at AWRA Spring Specialty Conference in Sn

  5. Estimating restorable wetland water storage at landscape scales

    Science.gov (United States)

    Jones, Charles Nathan; Evenson, Grey R.; McLaughlin, Daniel L.; Vanderhoof, Melanie; Lang, Megan W.; McCarty, Greg W.; Golden, Heather E.; Lane, Charles R.; Alexander, Laurie C.

    2018-01-01

    Globally, hydrologic modifications such as ditching and subsurface drainage have significantly reduced wetland water storage capacity (i.e., volume of surface water a wetland can retain) and consequent wetland functions. While wetland area has been well documented across many landscapes and used to guide restoration efforts, few studies have directly quantified the associated wetland storage capacity. Here, we present a novel raster-based approach to quantify both contemporary and potential (i.e., restorable) storage capacities of individual depressional basins across landscapes. We demonstrate the utility of this method by applying it to the Delmarva Peninsula, a region punctuated by both depressional wetlands and drainage ditches. Across the entire peninsula, we estimated that restoration (i.e., plugging ditches) could increase storage capacity by 80%. Focusing on an individual watershed, we found that over 59% of restorable storage capacity occurs within 20 m of the drainage network, and that 93% occurs within 1 m elevation of the drainage network. Our demonstration highlights widespread ditching in this landscape, spatial patterns of both contemporary and potential storage capacities, and clear opportunities for hydrologic restoration. In Delmarva and more broadly, our novel approach can inform targeted landscape-scale conservation and restoration efforts to optimize hydrologically mediated wetland functions.

  6. Book review: Southern Forested Wetlands: Ecology and Management

    Science.gov (United States)

    Carl C. Trettin

    2000-01-01

    The southern region has the largest proportion of wetlands in the conterminous US. The majority of that wetland resource is forested by diverse vegetation communities reflecting differences in soil, hydrology, geomorphology, climatic conditions and past management. Wetland resources in the southern US are very important to the economy providing both commodity and non-...

  7. Diversity patterns of temporary wetland macroinvertebrate ...

    African Journals Online (AJOL)

    Although macroinvertebrates are potentially useful for assessing the condition of temporary wetlands, little is yet known about them. Macroinvertebrate assemblages were assessed in 138 temporary wetlands in the south-western Cape, recording 126 taxa. However, predicted richness estimates were all higher than the ...

  8. Rapid changes in small fish mercury concentrations in estuarine wetlands: Implications for wildlife risk and monitoring programs

    Science.gov (United States)

    Eagles-Smith, Collin A.; Ackerman, Joshua T.

    2009-01-01

    Small fish are commonly used to assess mercury (Hg) risk to wildlife and monitor Hg in wetlands. However, limited research has evaluated short-term Hg variability in small fish, which can have important implications for monitoring programs and risk assessment. We conducted a time-series study of Hg concentrations in two small fish species representing benthic (longjaw mudsuckers [Gillichthys mirabilis]) and pelagic (threespine sticklebacks [Gasterosteus aculeatus]) food-webs within three wetland habitats in San Francisco Bay Estuary. We simultaneously monitored prey deliveries, nest initiation, and chick hatching dates of breeding Forster's terns (Sterna forsteri), the most abundant nesting piscivore in the region. Mudsuckers and sticklebacks were the predominant prey fish, comprising 36% and 25% of tern diet, and Hg concentrations averaged (geometric mean ?? SE, ??g/g dw) 0.44 ?? 0.01 and 0.68 ?? 0.03, respectively. Fish Hg concentrations varied substantially over time following a quadratic form in both species, increasing 40% between March and May then decreasing 40% between May and July. Importantly, Forster's terns initiated 68% of nests and 31% of chicks hatched during the period of peak Hg concentrations in prey fish. These results illustrate the importance of short-term temporal variation in small fish Hg concentrations for both Hg monitoring programs and assessing wildlife risk.

  9. Greenhouse gas flux dynamics in wetlands

    Energy Technology Data Exchange (ETDEWEB)

    Silvola, J; Alm, J; Saarnio, S [Joensuu Univ. (Finland). Dept. of Biology; Martikainen, P J [National Public Health Inst., Kuopio (Finland). Dept. of Environmental Microbiology

    1997-12-31

    Two important greenhouse gases, CO{sub 2} and CH{sub 4}, are closely connected to the carbon cycling of wetlands. Although virgin wetlands are mostly carbon accumulating ecosystems, major proportion of the CO{sub 2} bound annually in photosynthesis is released back to the atmosphere. Main portion of the carbon cycling in wetlands is quite fast while a small proportion of carbon diffusing from soil is released from organic matter, which may be ten thousand years old. Methane is formed in the anaerobic layers of wetlands, from where it is released gradually to the atmosphere. The decomposition in anaerobic conditions is very slow, which means that usually only a few percent of the annual carbon cycling takes place as methane. Research on CO{sub 2} fluxes of different virgin and managed peatlands was the main topic of this project during the first phase of SILMU. The measurements were made during two seasons in varying conditions in c. 30 study sites. In the second phase of SILMU the research topics were the spatial and temporal variation of CO{sub 2} and CH{sub 4} fluxes, the relationships between vegetation and gas fluxes as well as carbon balance studies in wetlands at some intensive sites

  10. Greenhouse gas flux dynamics in wetlands

    Energy Technology Data Exchange (ETDEWEB)

    Silvola, J.; Alm, J.; Saarnio, S. [Joensuu Univ. (Finland). Dept. of Biology; Martikainen, P.J. [National Public Health Inst., Kuopio (Finland). Dept. of Environmental Microbiology

    1996-12-31

    Two important greenhouse gases, CO{sub 2} and CH{sub 4}, are closely connected to the carbon cycling of wetlands. Although virgin wetlands are mostly carbon accumulating ecosystems, major proportion of the CO{sub 2} bound annually in photosynthesis is released back to the atmosphere. Main portion of the carbon cycling in wetlands is quite fast while a small proportion of carbon diffusing from soil is released from organic matter, which may be ten thousand years old. Methane is formed in the anaerobic layers of wetlands, from where it is released gradually to the atmosphere. The decomposition in anaerobic conditions is very slow, which means that usually only a few percent of the annual carbon cycling takes place as methane. Research on CO{sub 2} fluxes of different virgin and managed peatlands was the main topic of this project during the first phase of SILMU. The measurements were made during two seasons in varying conditions in c. 30 study sites. In the second phase of SILMU the research topics were the spatial and temporal variation of CO{sub 2} and CH{sub 4} fluxes, the relationships between vegetation and gas fluxes as well as carbon balance studies in wetlands at some intensive sites

  11. Hydrological science and wetland restoration: some case studies from Europe

    Directory of Open Access Journals (Sweden)

    2007-01-01

    Full Text Available Throughout the world, wetlands are increasingly being recognised as important elements of the landscape because of their high biodiversity and goods and services they provide to mankind. After many decades of wetland destruction and conversion, large areas of wetlands are now protected under the International Convention on Wetlands (Ramsar and regional or national legislation such as the European Union Habitats Directive. In many cases, there is a need to restore the ecological character of the wetland through appropriate water management. This paper provides examples of scientific knowledge of wetland hydrology that can guide such restoration. It focuses on the need for sound hydrological science on a range of issues including water level control, topography, flood storage, wetland connections with rivers and sustainability of water supply under climate change.

  12. Advancing Wetlands Mapping and Monitoring with GNSS Reflectometry

    Science.gov (United States)

    Zuffada, Cinzia; Chew, Clara; Nghiem, Son V.; Shah, Rashmi; Podest, Erika; Bloom, A. Anthony; Koning, Alexandra; Small, Eric; Schimel, David; Reager, J. T.; Mannucci, Anthony; Williamson, Walton; Cardellach, Estel

    2016-08-01

    Wetland dynamics is crucial to address changes in both atmospheric methane (CH4) and terrestrial water storage. Yet, both spatial distribution and temporal variability of wetlands remain highly unconstrained despite the existence of remote sensing products from past and present satellite sensors. An innovative approach to mapping wetlands is offered by the Global Navigation Satellite System Reflectometry (GNSS-R), which is a bistatic radar concept that takes advantage of the ever increasing number of GNSS transmitting satellites to yield many randomly distributed measurements with broad-area global coverage and rapid revisit time. Hence, this communication presents the science motivation for mapping of wetlands and monitoring of their dynamics, and shows the relevance of the GNSS-R technique in this context, relative to and in synergy with other existing measurement systems. Additionally, the communication discusses results of our data analysis on wetlands in the Amazon, specifically from the initial analysis of satellite data acquired by the TechDemoSat-1 mission launched in 2014. Finally, recommendations are provided for the design of a GNSS-R mission specifically to address wetlands science issues.

  13. Possible use of wetlands in ecological restoration of surface mined lands

    International Nuclear Information System (INIS)

    Atkinson, R.B.; Cairns, J. Jr.

    1994-01-01

    Surface mining for coal has dramatically altered millions of hectares throughout the Appalachian region of eastern North America. Flat benches and vertical high walls have replaced well-drained slopes, and wetlands have developed 'accidentally' on abandoned benches. Surface mining is continuing in this region, but new regulations do not include specifications for wetland construction in the reclamation process. Recent research has suggested that many ecosystem services appropriate for the Appalachian landscape could be performed by constructed wetlands. Inclusion of wetland construction in a reclamation plan could lead to a net increase in wetland acreage locally, as well as offset the loss of natural and/or accidental wetlands that are constructed to enhance nontreatment goals in reclamation. Study sites included 14 emergent wetlands in Wise County, Virginia. Sampling in June and August detected a total of 94 species in 36 vascular plant facilities. Obligate wetlands species, species that occur in wetlands over 99% of the time, were found in all 14 sites and included 26 species. The presence of so many wetland species without intentional management efforts suggests that wetland establishment could become a common component of mine reclamation. 18 refs., 2 tabs

  14. Values of natural and human-made wetlands: A meta-analysis

    NARCIS (Netherlands)

    Ghermandi, A.; van den Bergh, J.C.J.M.; Brander, L.M.; de Groot, H.L.F.; Nunes, P.A.L.D.

    2010-01-01

    The values of goods and services provided by wetland ecosystems are examined through a meta-analysis of an expanded database of wetland value estimates and with a focus on human-made wetlands. This study extends and improves upon previous meta-analyses of the wetland valuation literature in terms of

  15. Forested wetland area and distribution: A forest and paper industry policy

    International Nuclear Information System (INIS)

    Dubensky, M.M.; Berg, R.S.; Berry, W.S.

    1993-01-01

    The policy statement from the 1988 National Wetlands Policy Forum included the amorphous and ambiguous phase no overall net loss of the nation's remaining wetlands base. To industry and thousands of non-industrial landowners, timber production represents a major function of wetlands. The authors cover historical aspects of wetlands protection, the controversial and politicized issue of wetlands delineation, proposed revisions to the wetlands criteria, regulatory issues related to the US Corp of Engineers and EPA, and compensatory mitigation. A package of economic incentives, education, and favorable tax treatment to encourage landowners to maintain their forested wetlands is suggested. 5 refs

  16. Potential for Increased Mercury Accumulation in the Estuary Food Web

    Directory of Open Access Journals (Sweden)

    Jay A Davis

    2003-10-01

    Full Text Available Present concentrations of mercury in large portions of San Francisco Bay (Bay, the Sacramento-San Joaquin Delta (Delta, and the Sacramento and San Joaquin rivers are high enough to warrant concern for the health of humans and wildlife. Large scale tidal wetland restoration is currently under consideration as a means of increasing populations of fish species of concern. Tidal wetland restoration activities may lead to increased concentrations of mercury in the estuarine food web and exacerbate the existing mercury problem. This paper evaluates our present ability to predict the local and regional effects of restoration actions on mercury accumulation in aquatic food webs. A sport fish consumption advisory is in place for the Bay, and an advisory is under consideration for the Delta and lower Sacramento and San Joaquin rivers. Mercury concentrations in eggs of several water bird species from the Bay have exceeded the lowest observed effect level. A variety of mercury sources, largely related to historic mercury and gold mining, is present in the watershed and has created a spatially heterogeneous distribution of mercury in the Bay-Delta Estuary. Mercury exists in the environment in a variety of forms and has a complex biogeochemical cycle. The most hazardous form, methylmercury, is produced at a relatively high rate in wetlands and newly flooded aquatic habitats. It is likely that distinct spatial variation on multiple spatial scales exists in net methylmercury production in Bay-Delta tidal wetlands, including variation within each tidal wetland, among tidal wetlands in the same region, and among tidal wetlands in different regions. Understanding this spatial variation and its underlying causes will allow environmental managers to minimize the negative effects of mercury bioaccumulation as a result of restoration activities. Actions needed to reduce the uncertainty associated with this issue include a long term, multifaceted research effort, long

  17. Value Assessment of Artificial Wetland Derived from Mining Subsided Lake: A Case Study of Jiuli Lake Wetland in Xuzhou

    OpenAIRE

    Laijian Wang; Lachun Wang; Pengcheng Yin; Haiyang Cui; Longwu Liang; Zhenbo Wang

    2017-01-01

    Mining subsided lakes are major obstacles for ecological restoration and resource reuse in mining regions. Transforming mining subsided lakes into artificial wetlands is an ecological restoration approach that has been attempted in China in recent years, but a value assessment of the approach still needs systematic research. This paper considers Jiuli Lake wetland, an artificial wetland derived from restoration of a mining subsided lake in plain area, as a case study. A value assessment model...

  18. Analysis of wetland change in the Songhua River Basin from 1995 to 2008

    International Nuclear Information System (INIS)

    Yuan, L H; Jiang, W G; Liu, Y H; Luo, Z L; He, X H

    2014-01-01

    Wetlands in the Songhua River Basin in both 1995 and 2008 were mapped from land use/land cover maps generated from Landsat Thematic Mapper imagery. These maps were then divided into two categories, i.e. artificial wetland and natural wetland. From 1995 to 2008, the total area of wetland in the Songhua River Basin increased from 93 072.3 km 2 to 99 179.6 km 2 a net increase of 6107.3 km 2 . The area of natural wetland decreased by 4043.7 km 2 while the area of artificial wetland increased by 10 166.2 km 2 . Swamp wetland and paddy field wetland became the dominant wetlands and the swamp wetland in the east of the Heilong River system and the north of the Wusuli River system disappeared, being transformed into paddy field wetland. The diversity of wetland landscape is worsening and the distribution of wetland landscape is becoming more unbalanced; the fragmentation of natural wetland has intensified whereas the patch connectivity of artificial wetland has increased. Changes in natural wetlands were primarily caused by climate and socio-economic changes, while changes in artificial wetland were mainly caused by the growth of population and gross domestic product

  19. A review of the ecohydrology of the Sakumo wetland in Ghana.

    Science.gov (United States)

    Nonterah, Cynthia; Xu, Yongxin; Osae, Shiloh; Akiti, Thomas T; Dampare, Samuel B

    2015-11-01

    The Sakumo wetland is an internationally recognized Ramsar site located in a largely urban area and provides essential ecological and social services to wetland community dwellers. Despite its importance, the wetland has over the years been subjected to human interference resulting in considerable risks of deteriorating water quality, biodiversity loss, and drying up of most parts of the wetland. The conversion of land for residential and agricultural uses has significantly altered the hydrological characteristics of the land surface and modified pathways and flow of water into the wetland. Other drivers identified included drainage (mainly as runoff from agricultural farms), anthropogenic pressure (waste discharge) due to infrastructure development associated with urbanization, chemical contamination as a result of industrial and household pollution, and unsustainable fishing practices (overfishing). The purpose of the study was to review some of the physical and chemical properties of the Sakumo wetland on the changing wetland resources with emphasis on water quality. Rapid urbanization, industrialization, and overexploitation of wetland resources were identified as key causative factors affecting the wetland functions. Their effects on the wetland among others include increased nutrient and toxic chemical load which has resulted in reduced wetland surface water quality and decrease in species diversity. pH of the wetland waters was generally alkaline which is characteristic of water bodies influenced by seawater under oxygenated conditions. The increasing trends of electrical conductivity, phosphates, ammonia, nitrate, and nitrite, though small, point to deteriorating water quality in the wetland. The lagoon water was observed to be heavily polluted with nutrients particularly phosphate. The sequence of nutrient in the wetland was found to be in the order of PO4-P>NH3-N>NO3-N>NO2-N. These, if not checked, will result in further deterioration of the wetland

  20. Carbon Storage in US Wetlands. | Science Inventory | US EPA

    Science.gov (United States)

    Background/Question/Methods Wetland soils contain some of the highest stores of soil carbon in the biosphere. However, there is little understanding of the quantity and distribution of carbon stored in US wetlands or of the potential effects of human disturbance on these stocks. We provide unbiased estimates of soil carbon stocks for wetlands at regional and national scales and describe how soil carbon stocks vary by anthropogenic disturbance to the wetland. To estimate the quantity and distribution of carbon stocks in wetlands of the conterminous US, we used data gathered in the field as part of the 2011 National Wetland Condition Assessment (NWCA) conducted by USEPA. During the growing season, field crews collected soil samples by horizon from 120-cm deep soil pits at 967 randomly selected wetland sites. Soil samples were analyzed for bulk density and organic carbon. We applied site carbon stock averages by soil depth back to the national population of wetlands and to several subpopulations, including five geographic areas and anthropogenic disturbance level. Disturbance levels were categorized by the NWCA as least, intermediately, or most disturbed using a priori defined physical, chemical, and biological indicators that were observable at the time of the site visit.Results/Conclusions We find that wetlands in the conterminous US store a total of 11.52 PgC – roughly equivalent to four years of annual carbon emissions by the US, with the greatest soil ca

  1. 33 CFR 162.125 - Sturgeon Bay and the Sturgeon Bay Ship Canal, Wisc.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Sturgeon Bay and the Sturgeon Bay Ship Canal, Wisc. 162.125 Section 162.125 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PORTS AND WATERWAYS SAFETY INLAND WATERWAYS NAVIGATION REGULATIONS § 162.125 Sturgeon Bay and the Sturgeon Bay Ship...

  2. Conceptual hierarchical modeling to describe wetland plant community organization

    Science.gov (United States)

    Little, A.M.; Guntenspergen, G.R.; Allen, T.F.H.

    2010-01-01

    Using multivariate analysis, we created a hierarchical modeling process that describes how differently-scaled environmental factors interact to affect wetland-scale plant community organization in a system of small, isolated wetlands on Mount Desert Island, Maine. We followed the procedure: 1) delineate wetland groups using cluster analysis, 2) identify differently scaled environmental gradients using non-metric multidimensional scaling, 3) order gradient hierarchical levels according to spatiotem-poral scale of fluctuation, and 4) assemble hierarchical model using group relationships with ordination axes and post-hoc tests of environmental differences. Using this process, we determined 1) large wetland size and poor surface water chemistry led to the development of shrub fen wetland vegetation, 2) Sphagnum and water chemistry differences affected fen vs. marsh / sedge meadows status within small wetlands, and 3) small-scale hydrologic differences explained transitions between forested vs. non-forested and marsh vs. sedge meadow vegetation. This hierarchical modeling process can help explain how upper level contextual processes constrain biotic community response to lower-level environmental changes. It creates models with more nuanced spatiotemporal complexity than classification and regression tree procedures. Using this process, wetland scientists will be able to generate more generalizable theories of plant community organization, and useful management models. ?? Society of Wetland Scientists 2009.

  3. Pesticide mitigation capacities of constructed wetlands

    Science.gov (United States)

    Matthew T. Moore; Charles M. Cooper; Sammie Smith; John H. Rodgers

    2000-01-01

    This research focused on using constructed wetlands along field perimeters to buffer receiving water against potential effects of pesticides associated with storm runoff. The current study incorporated wetland mesocosm sampling following simulated runoff events using chlorpyrifos, atrazine, and metolachlor. Through this data collection and simple model analysis,...

  4. Identification and characterization of wetlands in the Bear Creek watershed

    International Nuclear Information System (INIS)

    Rosensteel, B.A.; Trettin, C.C.

    1993-10-01

    The primary objective of this study was to identify, characterize, and map the wetlands in the Bear Creek watershed. A preliminary wetland categorization system based on the Cowardin classification system (Cowardin et al. 1979) with additional site-specific topographic, vegetation, and disturbance characteristic modifiers was developed to characterize the type of wetlands that exist in the Bear Creek watershed. An additional objective was to detect possible relationships among site soils, hydrology, and the occurrence of wetlands in the watershed through a comparison of existing data with the field survey. Research needs are discussed in the context of wetland functions and values and regulatory requirements for wetland impact assessment and compensatory mitigation

  5. Treatment of wastewater with the constructed wetland

    International Nuclear Information System (INIS)

    Fernandez, R.; Olivares, S.

    2003-01-01

    Constructed wetland is an environmental sound, actual and economic solution for the treatment of wastewater. The use of these constructed wetlands increased in the last few years, principally in developed countries. However there is not much information about the performance of these biological systems in tropical and subtropical climates. In these review the state of art of these technology is given, and also the advantage of the use of the constructed wetland for the wastewater treatment in our country

  6. Bird surveys at McKinley Bay and Hutchison Bay, Northwest Territories, in 1991

    Energy Technology Data Exchange (ETDEWEB)

    Cornish, B J; Dickson, D L; Dickson, H L

    1992-03-01

    McKinley Bay is a shallow protected bay along the eastern Beaufort Sea coast which provides an important habitat for diving ducks. Since 1979, the bay has been the site of a winter harbor and support base for oil and gas exploraton in the Beaufort Sea. Aerial surveys for bird abundance and distribution were conducted in August 1991 as a continuation of long-term monitoring of birds in McKinley Bay and Hutchison Bay, a nearby area used as a control. The main objectives of the 1991 surveys were to expand the set of baseline data on natural annual fluctuations in diving duck numbers, and to determine if numbers of diving ducks had changed since the initial 1981-85 surveys. On the day with the best survey conditions, the population of diving ducks at McKinley bay was estimated at ca 32,000, significantly more than 1981-85. At Hutchison Bay, there were an estimated 11,000 ducks. As in previous years, large numbers of diving ducks were observed off Atkinson Point at the northwest corner of McKinley Bay, at the south end of the bay, and in the northeast corner near a long spit. Most divers in Hutchison Bay were at the west side. Diving ducks, primarily Oldsquaw and scoter, were the most abundant bird group in the study area. Observed distribution patterns of birds are discussed with reference to habitat preferences. 16 refs., 7 figs., 30 tabs.

  7. [Wetland landscape pattern change based on GIS and RS: a review].

    Science.gov (United States)

    Kong, Fan-Ting; Xi, Min; Li, Yue; Kong, Fan-Long; Chen, Wan

    2013-04-01

    Wetland is an ecological landscape with most biodiversity in nature, which has unique ecological structure and function, and contains abundant natural resources to provide material guarantee for human's living and development. Wetland landscape pattern is the comprehensive result of various ecological processes, and has become a hot issue in wetland ecological study. At present, the combination of geographic information system (GIS) and remote sensing (RS) technologies is an important way to study the wetland landscape pattern change. This paper reviewed the research progress in the wetland landscape change based on GIS and RS from the aspects of the research methods of wetland landscape pattern, index of wetland landscape pattern, and driving forces of wetland landscape pattern evolution, and discussed the applications of the combination of GIS and RS in monitoring the wetland landscape pattern change, the index selection of wetland landscape pattern, and the driving mechanisms of the combined action of human and nature. Some deficiencies in the current studies were put forward, and the directions of the future-studies were prospected.

  8. Pb’s high sedimentation inside the bay mouth of Jiaozhou Bay

    Science.gov (United States)

    Yang, Dongfang; Miao, Zhenqing; Huang, Xinmin; Wei, Linzhen; Feng, Ming

    2017-12-01

    Sedimentation is one of the key environmental behaviors of pollutants in the ocean. This paper analyzed the seasonal and temporal variations of Pb’s sedimentation process in Jiaozhou Bay in 1987. Results showed that Pb contents in bottom waters in Jiaozhou Bay in May, July and November 1987 were 1.87-2.60 μg L-1, 15.11-19.68 μg L-1 and 11.08-15.18 μg L-1, and the pollution levels of Pb in May, July and November 1987 were slight, heavy and heavy, respectively. In May 1987, there was low sedimentation process in waters in the outside of the bay mouth, yet were high sedimentation process in waters in the middle and inside of the bay mouth. In July and November 1987, there was low sedimentation process in waters in the outside of the bay mouth, yet were high sedimentation process in waters in the inside of the bay mouth. The seasonal-temporal variation of sedimentation processes of Pb were determined by the variations of sources input and the vertical water’s effect.

  9. Responses of Isolated Wetland Herpetofauna to Upland Forest Management

    International Nuclear Information System (INIS)

    Russell, K.R.; Hanlin, H.G.; Wigley, T.B.; Guynn, D.C. Jr.

    2002-01-01

    Measurement of responses of herpetofauna at isolated wetlands in the Coastal Plain of South Carolina to disturbance of adjacent loblolly pine forest. Many species of isolated wetland herpetofauna in the Southeastern Coastal Plain may tolerate some disturbance in adjacent upland stands. Responses of isolated wetland herpetofauna to upland silviculture and the need for adjacent forested buffers likely depend on the specific landscape context in which the wetlands occur and composition of the resident herpetofaunal community

  10. Replacing natural wetlands with stormwater management facilities: Biophysical and perceived social values.

    Science.gov (United States)

    Rooney, R C; Foote, L; Krogman, N; Pattison, J K; Wilson, M J; Bayley, S E

    2015-04-15

    Urban expansion replaces wetlands of natural origin with artificial stormwater management facilities. The literature suggests that efforts to mimic natural wetlands in the design of stormwater facilities can expand the provision of ecosystem services. Policy developments seek to capitalize on these improvements, encouraging developers to build stormwater wetlands in place of stormwater ponds; however, few have compared the biophysical values and social perceptions of these created wetlands to those of the natural wetlands they are replacing. We compared four types of wetlands: natural references sites, natural wetlands impacted by agriculture, created stormwater wetlands, and created stormwater ponds. We anticipated that they would exhibit a gradient in biodiversity, ecological integrity, chemical and hydrologic stress. We further anticipated that perceived values would mirror measured biophysical values. We found higher biophysical values associated with wetlands of natural origin (both reference and agriculturally impacted). The biophysical values of stormwater wetlands and stormwater ponds were lower and indistinguishable from one another. The perceived wetland values assessed by the public differed from the observed biophysical values. This has important policy implications, as the public are not likely to perceive the loss of values associated with the replacement of natural wetlands with created stormwater management facilities. We conclude that 1) agriculturally impacted wetlands provide biophysical values equivalent to those of natural wetlands, meaning that land use alone is not a great predictor of wetland value; 2) stormwater wetlands are not a substantive improvement over stormwater ponds, relative to wetlands of natural origin; 3) stormwater wetlands are poor mimics of natural wetlands, likely due to fundamental distinctions in terms of basin morphology, temporal variation in hydrology, ground water connectivity, and landscape position; 4) these

  11. Predictive modelling of wetland occurrence in KwaZulu-Natal, South Africa

    Directory of Open Access Journals (Sweden)

    Jens Hiestermann

    2015-07-01

    Full Text Available The global trend of transformation and loss of wetlands through conversion to other land uses has deleterious effects on surrounding ecosystems, and there is a resultant increasing need for the conservation and preservation of wetlands. Improved mapping of wetland locations is critical to achieving objective regional conservation goals, which depends on accurate spatial knowledge. Current approaches to mapping wetlands through the classification of satellite imagery typically under-represents actual wetland area; the importance of ancillary data in improving accuracy in mapping wetlands is therefore recognised. In this study, we compared two approaches Bayesian networks and logistic regression to predict the likelihood of wetland occurrence in KwaZulu-Natal, South Africa. Both approaches were developed using the same data set of environmental surrogate predictors. We compared and verified model outputs using an independent test data set, with analyses including receiver operating characteristic curves and area under the curve (AUC. Both models performed similarly (AUC>0.84, indicating the suitability of a likelihood approach for ancillary data for wetland mapping. Results indicated that high wetland probability areas in the final model outputs correlated well with known wetland systems and wetland-rich areas in KwaZulu-Natal. We conclude that predictive models have the potential to improve the accuracy of wetland mapping in South Africa by serving as valuable ancillary data.

  12. Salt Marsh Monitoring in Jamaica Bay, New York from 2003 to 2013: A Decade of Change from Restoration to Hurricane Sandy

    Directory of Open Access Journals (Sweden)

    Anthony Campbell

    2017-02-01

    Full Text Available This study used Quickbird-2 and Worldview-2, high resolution satellite imagery, in a multi-temporal salt marsh mapping and change analysis of Jamaica Bay, New York. An object-based image analysis methodology was employed. The study seeks to understand both natural and anthropogenic changes caused by Hurricane Sandy and salt marsh restoration, respectively. The objectives of this study were to: (1 document salt marsh change in Jamaica Bay from 2003 to 2013; (2 determine the impact of Hurricane Sandy on salt marshes within Jamaica Bay; (3 evaluate this long term monitoring methodology; and (4 evaluate the use of multiple sensor derived classifications to conduct change analysis. The study determined changes from 2003 to 2008, 2008 to 2012 and 2012 to 2013 to better understand the impact of restoration and natural disturbances. The study found that 21 ha of salt marsh vegetation was lost from 2003 to 2013. From 2012 to 2013, restoration efforts resulted in an increase of 10.6 ha of salt marsh. Hurricane Sandy breached West Pond, a freshwater environment, causing 3.1 ha of freshwater wetland loss. The natural salt marsh showed a decreasing trend in loss. Larger salt marshes in 2012 tended to add vegetation in 2012–2013 (F4,6 = 13.93, p = 0.0357 and R2 = 0.90. The study provides important information for the resource management of Jamaica Bay.

  13. Floodwater utilisation values of wetland services - a case study in Northeastern China

    Science.gov (United States)

    Lü, S. B.; Xu, S. G.; Feng, F.

    2012-02-01

    Water plays a significant role in wetlands. Floodwater utilisation in wetlands brings a wide range of wetland services, from goods production and water regulation to animal protection and aesthetics related to water supply in wetlands. In this study, the floodwater utilisation values of wetland services were estimated within the Momoge wetland and Xianghai wetland in western Jilin province of northeastern China. From 2003 to 2008, the floodwater diverted from the Nenjiang and Tao'er River is 381 million m3, which translates into a monetary value of approximately 1.35 billion RMB in 2008 (RMB: Chinese Currency, RMB 6.80 = US 1), and the ratio of economic value, eco-environmental value, and social value is 1:12:2. Besides the monetary value of the water itself, excessive floodwater utilisation may bring losses to wetlands; the threshold floodwater utilisation volumes in wetlands are discussed. Floodwater utilisation can alleviate water shortages in wetlands, and the evaluation of floodwater utilisation in wetland services in monetary terms is a guide for the effective use of the floodwater resources and for the conservation of wetlands.

  14. Geographically Isolated Wetlands: Why We Should Keep the Term

    Science.gov (United States)

    Use of the term "isolated wetlands" in the U.S. Supreme Court’s SWANCC decision created confusion, since it could imply functional isolation. In response, the term "geographically isolated wetlands" (GIWs) - wetlands surrounded by uplands - was introduced in 2003. A recent arti...

  15. Fish utilisation of wetland nurseries with complex hydrological connectivity.

    Directory of Open Access Journals (Sweden)

    Ben Davis

    Full Text Available The physical and faunal characteristics of coastal wetlands are driven by dynamics of hydrological connectivity to adjacent habitats. Wetlands on estuary floodplains are particularly dynamic, driven by a complex interplay of tidal marine connections and seasonal freshwater flooding, often with unknown consequences for fish using these habitats. To understand the patterns and subsequent processes driving fish assemblage structure in such wetlands, we examined the nature and diversity of temporal utilisation patterns at a species or genus level over three annual cycles in a tropical Australian estuarine wetland system. Four general patterns of utilisation were apparent based on CPUE and size-structure dynamics: (i classic nursery utlisation (use by recently settled recruits for their first year (ii interrupted peristence (iii delayed recruitment (iv facultative wetland residence. Despite the small self-recruiting 'facultative wetland resident' group, wetland occupancy seems largely driven by connectivity to the subtidal estuary channel. Variable connection regimes (i.e. frequency and timing of connections within and between different wetland units (e.g. individual pools, lagoons, swamps will therefore interact with the diversity of species recruitment schedules to generate variable wetland assemblages in time and space. In addition, the assemblage structure is heavily modified by freshwater flow, through simultaneously curtailing persistence of the 'interrupted persistence' group, establishing connectivity for freshwater spawned members of both the 'facultative wetland resident' and 'delayed recruitment group', and apparently mediating use of intermediate nursery habitats for marine-spawned members of the 'delayed recruitment' group. The diversity of utilisation pattern and the complexity of associated drivers means assemblage compositions, and therefore ecosystem functioning, is likely to vary among years depending on variations in hydrological

  16. Fish community responses to submerged aquatic vegetation in Maumee Bay, Western Lake Erie

    Science.gov (United States)

    Miller, Jacob; Kocovsky, Patrick; Wiegmann, Daniel; Miner, Jeffery G.

    2018-01-01

    Submerged aquatic vegetation (SAV) in clearwater systems simultaneously provides habitat for invertebrate prey and acts as refugia for small fishes. Many fishes in Lake Erie rely on shallow, heavily vegetated bays as spawning grounds and the loss or absence of which is known to reduce recruitment in other systems. The Maumee River and Maumee Bay, which once had abundant macrophyte beds, have experienced a decline of SAV and an increase in suspended solids (turbidity) over the last century due to numerous causes. To compare fish communities in open‐water (turbid) and in SAV (clearer water) habitats in this region, which is designated by the U.S. Environmental Protection Agency as an Area of Concern, and to indicate community changes that could occur with expansion of SAV habitat, we sampled a 300‐ha sector of northern Maumee Bay that contained both habitats. Using towed neuston nets through patches of each habitat, we determined that areas of SAV contained more species and a different species complex (based on the Jaccard index and the wetland fish index), than did the open‐water habitat (averaging 8.6 versus 5 species per net trawl). The SAV habitat was dominated by centrarchids, namely Largemouth Bass Micropterus salmoides, Bluegill Lepomis macrochirus, and Black Crappie Pomoxis nigromaculatus. Open‐water habitat was dominated by Spottail Shiner Notropis hudsonius, Gizzard Shad Dorosoma cepedianum, and White Perch Morone americana, an invasive species. These results indicate that restoration efforts aimed at decreasing turbidity and increasing the distribution of SAV could cause substantive shifts in the fish community and address important metrics for assessing the beneficial use impairments in this Area of Concern.

  17. Structure and dynamics of basin forested wetlands in North America

    International Nuclear Information System (INIS)

    Brown, S.

    1990-01-01

    Freshwater basin wetlands are found in depressions of various depths, generally in areas where precipitation exceeds evapotranspiration or where the depression intersects the water table creating groundwater seeps or springs. Forested basins are those that contain woody vegetation with the potential for reaching tree stature; they do not include woody shrub wetlands. In North America these areas are mainly in the central and eastern region. Pertinent information and reviews on the distribution, floristic composition, structure and dynamics of basin forested wetlands are summarized. The major emphasis is on freshwater wetlands, but data for saltwater wetlands mainly from Florida and tropical America are included. The external factors affecting basin wetlands or the important components of a wetlands energy signature are described as well as the distribution and floristic composition of representative basin wetlands. Sections on structural characteristics, organic matter dynamics, and nutrient cycling comprise the bulk of quantitative information. The effects of disturbances, both natural and human induced, with varying degrees of impact depending upon the intensity and on the part of the ecosystem to which the stressor is applied are evaluated. Examples of stressors in basin wetlands include water impoundment, water diversion, thermal stress from hot water, sedimentation, addition of toxic substances, addition of wastewater, oil spills, and harvesting. 86 refs., 5 figs., 11 tabs

  18. Hydrocarbon removal with constructed wetlands

    OpenAIRE

    Eke, Paul Emeka

    2008-01-01

    Wetlands have long played a significant role as natural purification systems, and have been effectively used to treat domestic, agricultural and industrial wastewater. However, very little is known about the biochemical processes involved, and the use of constructed treatment wetlands in the removal of petroleum aromatic hydrocarbons from produced and/or processed water. Wastewaters from the oil industry contain aromatic hydrocarbons such as benzene, toluene, ethylbenzene and x...

  19. Impacts of Intensified Agriculture Developments on Marsh Wetlands

    Directory of Open Access Journals (Sweden)

    Zhaoqing Luan

    2013-01-01

    Full Text Available A spatiotemporal analysis on the changes in the marsh landscape in the Honghe National Nature Reserve, a Ramsar reserve, and the surrounding farms in the core area of the Sanjiang Plain during the past 30 years was conducted by integrating field survey work with remote sensing techniques. The results indicated that intensified agricultural development had transformed a unique natural marsh landscape into an agricultural landscape during the past 30 years. Ninety percent of the natural marsh wetlands have been lost, and the areas of the other natural landscapes have decreased very rapidly. Most dry farmland had been replaced by paddy fields during the progressive change of the natural landscape to a farm landscape. Attempts of current Chinese institutions in preserving natural wetlands have achieved limited success. Few marsh wetlands have remained healthy, even after the establishment of the nature reserve. Their ecological qualities have been declining in response to the increasing threats to the remaining wetland habitats. Irrigation projects play a key role in such threats. Therefore, the sustainability of the natural wetland ecosystems is being threatened by increased regional agricultural development which reduced the number of wetland ecotypes and damaged the ecological quality.

  20. Designated Wetlands and Setback Distances in Iowa

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — This GIS layer depicts wetlands designated for protection in the state of Iowa. Designated wetland is defined in Iowa Code subsection 459.102(21) as follows: 21....

  1. The importance of hydrology in restoration of bottomland hardwood wetland functions

    Science.gov (United States)

    Hunter, R.G.; Faulkner, S.P.; Gibson, K.A.

    2008-01-01

    Bottomland hardwood (BLH) forests have important biogeochemical functions and it is well known that certain structural components, including pulsed hydrology, hydric soils, and hydrophytic vegetation, enhance these functions. It is unclear, however, how functions of restored BLH wetlands compare to mature, undisturbed wetlands. We measured a suite of structural and functional attributes in replicated natural BLH wetlands (NAT), restored BLH wetlands with hydrology re-established (RWH), and restored BLH wetlands without hydrology re-established (RWOH) in this study. Trees were replanted in all restored wetlands at least four years prior to the study and those wetlands with hydrology re-established had flashboard risers placed in drainage ditches to allow seasonal surface flooding. Vegetation, soils, and selected biogeochemical functions were characterized at each site. There was a marked difference in woody vegetation among the wetlands that was due primarily to site age. There was also a difference in herbaceous vegetation among the restored sites that may have been related to differences in age or hydrology. Water table fluctuations of the RWH wetlands were comparable to those of the NAT wetlands. Thus, placing flashboard risers in existing drainage ditches, along with proper management, can produce a hydroperiod that is similar to that of a relatively undisturbed BLH. Average length of saturation within the upper 15 cm of soils was 37, 104, and 97 days for RWOH, RWH, and NAT, respectively. Soil moisture, denitrification potential, and soluble organic carbon concentrations differed among wetland sites, but soil carbon and nitrogen concentrations, heterotrophic microbial activity, and readily mineralizable carbon concentrations did not. Significant linear relationships were also found between soil moisture and heterotrophic microbial activity, readily mineralizable carbon, and soluble organic carbon. In addition, sedimentation rates were higher in NAT and RWH

  2. Wetland forest statistics for the South Atlantic States

    Science.gov (United States)

    Mark J. Brown; Greg M. Smith; Joseph McCollum

    2001-01-01

    Twenty-one percent, or 17.6 million acres, of the timberland in the South Atlantic States was classified as wetland timberland. Sixty percent of the region’s wetland timberland was under nonindustrial private forest ownership. Forty-eight percent of the region’s wetland timberland was classified as sawtimber-sized stands. Lowland hardwood types made up 62 percent of...

  3. Managing Wetlands for Improved Food Security in Uganda | CRDI ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Researchers will determine the food security status of households adjacent to wetlands and the part that wetlands resources contribute to it. They will analyze the tradeoffs in using wetlands for crop production. And, they will test, adapt and promote agricultural technologies that enhance productivity while minimizing ...

  4. Bioaccumulation of metals in constructed wetlands used to treat acid drainage

    International Nuclear Information System (INIS)

    Edwards, G.S.; Mays, P.A.

    1994-01-01

    Constructed wetlands are being used extensively as a potential mitigation for acid drainage. However, removal of metals to meet compliance requirements has varied among wetlands, ranging from partial to total success. In addition, wetlands are sinks for contaminants found in acid drainage, and bioaccumulation of these contaminants to levels that would adversely affect the food web is of growing concern. The primary objective of this project was to determine whether bioaccumulation of metals occurs in wetlands constructed for treatment of acid drainage. Water, sediment, plant and benthos samples were collected from two wetlands constructed by the Tennessee Valley Authority and a natural wetland in the spring and fall of 1992, and metal concentrations were determined. One of the constructed wetlands, Impoundment 1, has generally been in compliance for NPDES; the other, Widow's Creek, has never been in compliance. Preliminary results indicate similarities in sediment and plant metal concentrations between Impoundment 1 and the natural wetland and greater metal concentrations in the sediment and plants at Widow's Creek. Data also indicate that Mn, Zn, Cu, Ni, and Cr are being accumulated in the plants at each wetland. However, accumulation of metals by these plants probably accounts for only a small percentage of the removal of the annual metal load supplied to each wetland. Bioaccumulation of metals in the benthic organisms at each wetland is currently being investigated

  5. Water quality during storm events from two constructed wetlands receiving mine drainage

    International Nuclear Information System (INIS)

    Stark, L.R.; Brooks, R.P.; Williams, F.M.; Stevens, S.E. Jr.; Davis, L.K.

    1994-01-01

    Flow rates, pH, iron concentration, and manganese concentration were measured during several storm event at two constructed wetlands receiving mine water. During a substantial rain event, flow rates at both the wetland outlets surpassed flow rates at the wetland inlets, reflecting incident rainfall and differences in wetland area at the two sites. A significant positive correlation existed between local rainfall and outflow rates at the larger wetland, but not between rainfall and inflow rates. During storm events, outlet pH, relative to inlet pH, was slightly elevated at the larger wetland, and depressed at the smaller wetland. However, over the course of one year, rainfall was uncorrelated to outlet pH in the larger wetland. A substantial rain event at the smaller wetland resulted in a temporary elevation in outlet iron concentrations, with treatment efficiency reduced to near zero. However, in the larger wetland, outlet iron concentrations were not significantly affected by storm events. 14 refs., 7 figs., 4 tabs

  6. 7 CFR 623.13 - Wetlands reserve plan of operations.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Wetlands reserve plan of operations. 623.13 Section... CONSERVATION SERVICE, DEPARTMENT OF AGRICULTURE WATER RESOURCES EMERGENCY WETLANDS RESERVE PROGRAM § 623.13 Wetlands reserve plan of operations. (a) After NRCS has accepted the applicant for enrollment in the...

  7. The Impacts of wetland restoration on Fish Productivity in Nigeria

    Science.gov (United States)

    Ayorinde, O. A.; Okunade, K. M.; Agboola, D. M.; Adesokan, Z. A.

    2016-02-01

    Wetland is one of the resources of high value which has been exposed to indiscriminate use. It is an important ecosystem to fish and loss or degradation of wetland will have a direct consequence on sustainable fisheries. This paper reviewed the term "wetland", its functions and values, importance to fish production in Nigeria and threats to its sustainability. The term "wetland" has been defined by various researchers especially based on their profession and their needs but up till today there is no single definition accepted by all users. In Nigeria, the most commonly adopted is that of RAMSAR convention. Wetland has both marketed and non-marketed functions and values. They provide essential link in the life cycle of 75 percent of the fish and shell fish commercially harvested in the world and are vital to fish health. Despite the importance, there have been exceptional losses of wetlands. Lagos state alone has witnessed more than 96 percent loss. Major threats to wetlands are: agriculture, development, pollution and climate change. Therefore proper management of the wetland ecosystem is important in other to ensure continuous fish production.

  8. Methane emissions from different coastal wetlands in New England, US

    Science.gov (United States)

    Wang, F.; Tang, J.; Kroeger, K. D.; Gonneea, M. E.

    2017-12-01

    According to the IPCC, methane have 25 times warming effect than CO2, and natural wetlands contribute 20-39 % to the global emission of methane. Although most of these methane was from inland wetlands, there was still large uncertain in the methane emissions in coastal wetlands. In the past three years, we have investigated methane emissions in coastal wetlands in MA, USA. Contrary to previous assumptions, we have observed relative larger methane flux in some salt marshes than freshwater wetlands. We further detect the methane source, and found that plant activities played an important role in methane flux, for example, the growth of S. aterniflora, the dominate plants in salt marsh, could enhance methane emission, while in an fresh water wetland that was dominated by cattail, plant activity oxided methane and reduced total flux. Phragmite, an invasive plant at brackish marsh, have the highest methane flux among all coastal wetland investigated. This study indicated that coastal wetland could still emit relatively high amount of methane even under high water salinity condiations, and plant activity played an important role in methane flux, and this role was highly species-specific.

  9. Disturbance metrics predict a wetland Vegetation Index of Biotic Integrity

    Science.gov (United States)

    Stapanian, Martin A.; Mack, John; Adams, Jean V.; Gara, Brian; Micacchion, Mick

    2013-01-01

    Indices of biological integrity of wetlands based on vascular plants (VIBIs) have been developed in many areas in the USA. Knowledge of the best predictors of VIBIs would enable management agencies to make better decisions regarding mitigation site selection and performance monitoring criteria. We use a novel statistical technique to develop predictive models for an established index of wetland vegetation integrity (Ohio VIBI), using as independent variables 20 indices and metrics of habitat quality, wetland disturbance, and buffer area land use from 149 wetlands in Ohio, USA. For emergent and forest wetlands, predictive models explained 61% and 54% of the variability, respectively, in Ohio VIBI scores. In both cases the most important predictor of Ohio VIBI score was a metric that assessed habitat alteration and development in the wetland. Of secondary importance as a predictor was a metric that assessed microtopography, interspersion, and quality of vegetation communities in the wetland. Metrics and indices assessing disturbance and land use of the buffer area were generally poor predictors of Ohio VIBI scores. Our results suggest that vegetation integrity of emergent and forest wetlands could be most directly enhanced by minimizing substrate and habitat disturbance within the wetland. Such efforts could include reducing or eliminating any practices that disturb the soil profile, such as nutrient enrichment from adjacent farm land, mowing, grazing, or cutting or removing woody plants.

  10. The onset of deglaciation of Cumberland Bay and Stromness Bay, South Georgia

    NARCIS (Netherlands)

    Van Der Putten, N.; Verbruggen, C.

    Carbon dating of basal peat deposits in Cumberland Bay and Stromness Bay and sediments from a lake in Stromness Bay, South Georgia indicates deglaciation at the very beginning of the Holocene before c. 9500 14C yr BP. This post-dates the deglaciation of one local lake which has been ice-free since

  11. Economic Governance to Expand Commercial Wetlands: Within- and Cross-Scale Challenges

    NARCIS (Netherlands)

    Blaeij, de A.T.; Polman, N.B.P.; Reinhard, A.J.

    2011-01-01

    Commercial wetlands are defined as wetlands directed by an entrepreneur with the intention of making a profit. The combination of ecosystem services that commercial wetlands can provide seems to be an attractive societal perspective. Nevertheless, these wetlands are not developed on a large scale in

  12. Tritium as tracer of flow in constructed wetlands

    International Nuclear Information System (INIS)

    Wachniew, P.; Czuprynski, P.; Maloszewski, P.

    2005-01-01

    Constructed wetlands technology is a cost-effective and environmentally friendly method used world-wide to treat waste waters of different origins. The soluble pollutants are transformed and removed mainly through the processes that occur at surfaces of plants, plant debris or filtering media. The efficiency of soluble pollutants removal is thus primarily related to the extent of contact between waste waters and the reactive surfaces. Residence time distributions function (RTD)is basic characteristic of wetland hydraulic properties and can be obtained by combined use of tracer technique and mathematical modelling. Tritium was used as to obtain RTD's of three parallel cells of a sub-surface flow constructed wetland overgrown with Pharagmites australis in Nowa Slupia. Tritium as a part of water molecule, is an ideal tracer of flow in the highly reactive environment of constructed wetlands. Results of the tracer test interpreted by the assumed model (Multi Flow Dispersion Model) of conservative solute transport revealed a complex structure of flow through the wetland. (author)

  13. Restored agricultural wetlands in Central Iowa: habitat quality and amphibian response

    Science.gov (United States)

    Reeves, Rebecca A.; Pierce, Clay; Smalling, Kelly L.; Klaver, Robert W.; Vandever, Mark W.; Battaglin, William A.; Muths, Erin L.

    2016-01-01

    Amphibians are declining throughout the United States and worldwide due, partly, to habitat loss. Conservation practices on the landscape restore wetlands to denitrify tile drainage effluent and restore ecosystem services. Understanding how water quality, hydroperiod, predation, and disease affect amphibians in restored wetlands is central to maintaining healthy amphibian populations in the region. We examined the quality of amphibian habitat in restored wetlands relative to reference wetlands by comparing species richness, developmental stress, and adult leopard frog (Lithobates pipiens) survival probabilities to a suite of environmental metrics. Although measured habitat variables differed between restored and reference wetlands, differences appeared to have sub-lethal rather than lethal effects on resident amphibian populations. There were few differences in amphibian species richness and no difference in estimated survival probabilities between wetland types. Restored wetlands had more nitrate and alkaline pH, longer hydroperiods, and were deeper, whereas reference wetlands had more amphibian chytrid fungus zoospores in water samples and resident amphibians exhibited increased developmental stress. Restored and reference wetlands are both important components of the landscape in central Iowa and maintaining a complex of fish-free wetlands with a variety of hydroperiods will likely contribute to the persistence of amphibians in this landscape.

  14. Use of seasonal freshwater wetlands by fishes in a temperate river floodplain

    Science.gov (United States)

    Henning, Julie A.; Gresswell, Robert E.; Fleming, Ian A.

    2007-01-01

    This study examined the use of freshwater wetland restoration and enhancement projects (i.e. non-estuarine wetlands subject to seasonal drying) by fish populations. To quantify fish use of freshwater emergent wetlands and assess the effect of wetland enhancement (i.e. addition of water control structures), two enhanced and two unenhanced emergent wetlands were compared, as well as two oxbow habitats within the Chehalis River floodplain. Eighteen fish species were captured using fyke nets and emigrant traps from January to the beginning of June, with the most abundant being three-spined stickleback Gasterosteus aculeatus and Olympic mudminnow Novumbra hubbsi. Coho salmon Oncorhynchus kisutch was the dominant salmonid at all sites. Enhanced wetlands, with their extended hydroperiods, had significantly higher abundances of yearling coho salmon than unenhanced wetlands. Both enhanced and unenhanced emergent wetlands yielded higher abundances of non-game native fishes than oxbow habitats. Oxbow habitats, however, were dominated by coho salmon. Fish survival in the wetland habitats was dependent on emigration to the river before dissolved oxygen concentrations decreased and wetlands became isolated and stranding occurred. This study suggests that wetland enhancement projects with an outlet to the river channel appear to provide fishes with important temporary habitats if they have the opportunity to leave the wetland as dissolved oxygen levels deteriorate.

  15. Model parameters for representative wetland plant functional groups

    Science.gov (United States)

    Williams, Amber S.; Kiniry, James R.; Mushet, David M.; Smith, Loren M.; McMurry, Scott T.; Attebury, Kelly; Lang, Megan; McCarty, Gregory W.; Shaffer, Jill A.; Effland, William R.; Johnson, Mari-Vaughn V.

    2017-01-01

    Wetlands provide a wide variety of ecosystem services including water quality remediation, biodiversity refugia, groundwater recharge, and floodwater storage. Realistic estimation of ecosystem service benefits associated with wetlands requires reasonable simulation of the hydrology of each site and realistic simulation of the upland and wetland plant growth cycles. Objectives of this study were to quantify leaf area index (LAI), light extinction coefficient (k), and plant nitrogen (N), phosphorus (P), and potassium (K) concentrations in natural stands of representative plant species for some major plant functional groups in the United States. Functional groups in this study were based on these parameters and plant growth types to enable process-based modeling. We collected data at four locations representing some of the main wetland regions of the United States. At each site, we collected on-the-ground measurements of fraction of light intercepted, LAI, and dry matter within the 2013–2015 growing seasons. Maximum LAI and k variables showed noticeable variations among sites and years, while overall averages and functional group averages give useful estimates for multisite simulation modeling. Variation within each species gives an indication of what can be expected in such natural ecosystems. For P and K, the concentrations from highest to lowest were spikerush (Eleocharis macrostachya), reed canary grass (Phalaris arundinacea), smartweed (Polygonum spp.), cattail (Typha spp.), and hardstem bulrush (Schoenoplectus acutus). Spikerush had the highest N concentration, followed by smartweed, bulrush, reed canary grass, and then cattail. These parameters will be useful for the actual wetland species measured and for the wetland plant functional groups they represent. These parameters and the associated process-based models offer promise as valuable tools for evaluating environmental benefits of wetlands and for evaluating impacts of various agronomic practices in

  16. Drivers of wetland conversion: a global meta-analysis.

    Science.gov (United States)

    van Asselen, Sanneke; Verburg, Peter H; Vermaat, Jan E; Janse, Jan H

    2013-01-01

    Meta-analysis of case studies has become an important tool for synthesizing case study findings in land change. Meta-analyses of deforestation, urbanization, desertification and change in shifting cultivation systems have been published. This present study adds to this literature, with an analysis of the proximate causes and underlying forces of wetland conversion at a global scale using two complementary approaches of systematic review. Firstly, a meta-analysis of 105 case-study papers describing wetland conversion was performed, showing that different combinations of multiple-factor proximate causes, and underlying forces, drive wetland conversion. Agricultural development has been the main proximate cause of wetland conversion, and economic growth and population density are the most frequently identified underlying forces. Secondly, to add a more quantitative component to the study, a logistic meta-regression analysis was performed to estimate the likelihood of wetland conversion worldwide, using globally-consistent biophysical and socioeconomic location factor maps. Significant factors explaining wetland conversion, in order of importance, are market influence, total wetland area (lower conversion probability), mean annual temperature and cropland or built-up area. The regression analyses results support the outcomes of the meta-analysis of the processes of conversion mentioned in the individual case studies. In other meta-analyses of land change, similar factors (e.g., agricultural development, population growth, market/economic factors) are also identified as important causes of various types of land change (e.g., deforestation, desertification). Meta-analysis helps to identify commonalities across the various local case studies and identify which variables may lead to individual cases to behave differently. The meta-regression provides maps indicating the likelihood of wetland conversion worldwide based on the location factors that have determined historic

  17. Prerequisites for understanding climate-change impacts on northern prairie wetlands

    Science.gov (United States)

    Anteau, Michael J.; Wiltermuth, Mark T.; Post van der Burg, Max; Pearse, Aaron T.

    2016-01-01

    The Prairie Pothole Region (PPR) contains ecosystems that are typified by an extensive matrix of grasslands and depressional wetlands, which provide numerous ecosystem services. Over the past 150 years the PPR has experienced numerous landscape modifications resulting in agricultural conversion of 75–99 % of native prairie uplands and drainage of 50–90 % of wetlands. There is concern over how and where conservation dollars should be spent within the PPR to protect and restore wetland basins to support waterbird populations that will be robust to a changing climate. However, while hydrological impacts of landscape modifications appear substantial, they are still poorly understood. Previous modeling efforts addressing impacts of climate change on PPR wetlands have yet to fully incorporate interacting or potentially overshadowing impacts of landscape modification. We outlined several information needs for building more informative models to predict climate change effects on PPR wetlands. We reviewed how landscape modification influences wetland hydrology and present a conceptual model to describe how modified wetlands might respond to climate variability. We note that current climate projections do not incorporate cyclical variability in climate between wet and dry periods even though such dynamics have shaped the hydrology and ecology of PPR wetlands. We conclude that there are at least three prerequisite steps to making meaningful predictions about effects of climate change on PPR wetlands. Those evident to us are: 1) an understanding of how physical and watershed characteristics of wetland basins of similar hydroperiods vary across temperature and moisture gradients; 2) a mechanistic understanding of how wetlands respond to climate across a gradient of anthropogenic modifications; and 3) improved climate projections for the PPR that can meaningfully represent potential changes in climate variability including intensity and duration of wet and dry periods. Once

  18. Mitigating Losses of Wetland Ecosystems: A Context for Evaluation.

    Science.gov (United States)

    Mattingly, Rosanna L.

    1994-01-01

    Preservation of our wetlands has been an issue for many years. Today, despite current laws and those adopted 200 years ago, the wetlands remain insufficiently protected and developed. A holistic guide and suggestions for the classroom are provided to aid in efforts directed at wetland education, research and management. (ZWH)

  19. Mine-drainage treatment wetland as habitat for herptofaunal wildlife

    Science.gov (United States)

    Lacki, Michael J.; Hummer, Joseph W.; Webster, Harold J.

    1992-07-01

    Land reclamation techniques that incorporate habitat features for herptofaunal wildlife have received little attention. We assessed the suitability of a wetland, constructed for the treatment of mine-water drainage, for supporting herptofaunal wildlife from 1988 through 1990 using diurnal and nocturnal surveys. Natural wetlands within the surrounding watershed were also monitored for comparison. The treatment wetland supported the greatest abundance and species richness of herptofauna among the sites surveyed. Abundance was a function of the frog density, particularly green frogs ( Rana clamitans) and pickerel frogs ( R. palustris), while species richness was due to the number of snake species found. The rich mix of snake species present at the treatment wetland was believed due to a combination of an abundant frog prey base and an amply supply of den sites in rock debris left behind from earlier surface-mining activities. Nocturnal surveys of breeding male frogs demonstrated highest breeding activity at the treatment wetland, particularly for spring peepers ( Hyla crucifer). Whole-body assays of green frog and bullfrog ( R. catesbeiana) tissues showed no differences among sites in uptake of iron, aluminum, and zinc; managanese levels in samples from the treatment wetland were significantly lower than those from natural wetlands. These results suggest that wetlands established for water quality improvement can provide habitat for reptiles and amphibians, with the species composition dependent on the construction design, the proximity to source populations, and the degree of acidity and heavy-metal concentrations in drainage waters.

  20. Evaluating the significance of wetland restoration scenarios on phosphorus removal.

    Science.gov (United States)

    Daneshvar, Fariborz; Nejadhashemi, A Pouyan; Adhikari, Umesh; Elahi, Behin; Abouali, Mohammad; Herman, Matthew R; Martinez-Martinez, Edwin; Calappi, Timothy J; Rohn, Bridget G

    2017-05-01

    Freshwater resources are vital for human and natural systems. However, anthropogenic activities, such as agricultural practices, have led to the degradation of the quality of these limited resources through pollutant loading. Agricultural Best Management Practices (BMPs), such as wetlands, are recommended as a valuable solution for pollutant removal. However, evaluation of their long-term impacts is difficult and requires modeling since performing in-situ monitoring is expensive and not feasible at the watershed scale. In this study, the impact of natural wetland implementation on total phosphorus reduction was evaluated both at the subwatershed and watershed levels. The study area is the Saginaw River Watershed, which is largest watershed in Michigan. The phosphorus reduction performances of four different wetland sizes (2, 4, 6, and 8 ha) were evaluated within this study area by implementing one wetland at a time in areas identified to have the highest potential for wetland restoration. The subwatershed level phosphorus loads were obtained from a calibrated Soil and Water Assessment Tool (SWAT) model. These loads were then incorporated into a wetland model (System for Urban Stormwater Treatment and Analysis IntegratioN-SUSTAIN) to evaluate phosphorus reduction at the subwatershed level and then the SWAT model was again used to route phosphorus transport to the watershed outlet. Statistical analyses were performed to evaluate the spatial impact of wetland size and placement on phosphorus reduction. Overall, the performance of 2 ha wetlands in total phosphorus reduction was significantly lower than the larger sizes at both the subwatershed and watershed levels. Regarding wetland implementation sites, wetlands located in headwaters and downstream had significantly higher phosphorus reduction than the ones located in the middle of the watershed. More specifically, wetlands implemented at distances ranging from 200 to 250 km and 50-100 km from the outlet had the

  1. Detecting wetland changes in Shanghai, China using FORMOSAT and Landsat TM imagery

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Bo; Zhou, Yun-xuan; Thom, Ronald M.; Diefenderfer, Heida L.; Yuan, Qing

    2015-07-14

    Understanding the state of wetland ecosystems and their changes at the national and local levels is critical for wetland conservation, management, decision-making, and policy development practices. This study analyzed the wetlands in Shanghai, a province-level city, using remote sensing, image processing, and geographic information systems (GIS) techniques based on the Chinese national wetland inventory procedure and standards. FORMOSAT imagery acquired in 2012 and Navy nautical charts of the Yangtze estuarine area were used in conjunction with object-oriented segmentation, expert interpretation, and field validation to determine wetland status. Landsat imagery from 1985, 1995, 2000, 2003 and 2013 as well as social-economic data collected from 1985 to 2013 were used to further assess wetland changes. In 2013, Shanghai contained 376,970.6 ha of wetlands, and 78.8% of all wetlands were in marine or estuarine systems. Estuarine waters comprised the single largest wetland category. Between the first national wetland inventory in 2003 and the second national wetland inventory in 2013, Shanghai lost 50,519.13 ha of wetlands, amounting to a mean annual loss rate of 1.2% or an 11.8% loss over the decade. Declines were proportionately higher in marine and estuarine wetlands, with an annual loss of 1.8%, while there was a sharp increase of 1882.6% in constructed water storage areas for human uses. Diking, filling, impoundment and reclamation, which are all attributable to the economic development and urbanization associated with population increases, were the major factors that explained the gain and loss of wetlands. Additional factors affecting wetland losses and gains include sediment trapping by the hydropower system, which reduces supply to the estuary and erodes wetlands, and sediment trapping by the jetties, spur dikes, and diversion bulwark associated with a navigation channel deepening project, which has the converse effect, increasing saltmarsh wetland area at

  2. Skylab/EREP application to ecological, geological, and oceanographic investigations of Delaware Bay

    Science.gov (United States)

    Klemas, V.; Bartlett, D. S.; Philpot, W. D.; Rogers, R. H.; Reed, L. E.

    1978-01-01

    Skylab/EREP S190A and S190B film products were optically enhanced and visually interpreted to extract data suitable for; (1) mapping coastal land use; (2) inventorying wetlands vegetation; (3) monitoring tidal conditions; (4) observing suspended sediment patterns; (5) charting surface currents; (6) locating coastal fronts and water mass boundaries; (7) monitoring industrial and municipal waste dumps in the ocean; (8) determining the size and flow direction of river, bay and man-made discharge plumes; and (9) observing ship traffic. Film products were visually analyzed to identify and map ten land-use and vegetation categories at a scale of 1:125,000. Digital tapes from the multispectral scanner were used to prepare thematic maps of land use. Classification accuracies obtained by comparison of derived thematic maps of land-use with USGS-CARETS land-use maps in southern Delaware ranged from 44 percent to 100 percent.

  3. Carbon Cycling in Wetland Forest Soils

    Science.gov (United States)

    Carl C. Trettin; Martin F. Jurgensen

    2003-01-01

    Wetlands comprise a small proportion (i.e., 2 to 3%) of earth's terrestrial surface, yet they contain a significant proportion of the terrestrial carbon (C) pool. Soils comprise the largest terrestrial C pool (ca. 1550 Pg C in upper 100 cm; Eswaran et al., 1993; Batjes, 1996), and wetlands contain the single largest component, with estimates ranging between 18...

  4. The significance of ultra-refracted surface gravity waves on sheltered coasts, with application to San Francisco Bay

    Science.gov (United States)

    Hanes, D.M.; Erikson, L.H.

    2013-01-01

    Ocean surface gravity waves propagating over shallow bathymetry undergo spatial modification of propagation direction and energy density, commonly due to refraction and shoaling. If the bathymetric variations are significant the waves can undergo changes in their direction of propagation (relative to deepwater) greater than 90° over relatively short spatial scales. We refer to this phenomenon as ultra-refraction. Ultra-refracted swell waves can have a powerful influence on coastal areas that otherwise appear to be sheltered from ocean waves. Through a numerical modeling investigation it is shown that San Francisco Bay, one of the earth's largest and most protected natural harbors, is vulnerable to ultra-refracted ocean waves, particularly southwest incident swell. The flux of wave energy into San Francisco Bay results from wave transformation due to the bathymetry and orientation of the large ebb tidal delta, and deep, narrow channel through the Golden Gate. For example, ultra-refracted swell waves play a critical role in the intermittent closure of the entrance to Crissy Field Marsh, a small restored tidal wetland located on the sheltered north-facing coast approximately 1.5 km east of the Golden Gate Bridge.

  5. Factors Influencing Farmers’ Willingness to Participate in Wetland Restoration: Evidence from China

    Directory of Open Access Journals (Sweden)

    Honggen Zhu

    2016-12-01

    Full Text Available The Poyang Lake wetland has been at the center of discussion in China’s wetland restoration initiative because of the extent of its ecosystem degradation. The purpose of this paper is to model farmers’ willingness to participate in wetland restoration and analyze factors that will affect farmers’ participation decisions. A household survey was conducted among 300 randomly selected farm-households in the Poyang Lake area, Jiangxi Province. A binary probit regression model is applied to investigate the impacts of farmer demographics, farm characteristics, and farmers’ perceptions of wetland and wetland restoration policies on willingness to participate in wetland restoration. Results show that farmers’ education level, household migrant members, number of dependents, household net income, farm type, and distance to urban areas have significant effects on farmers’ participation in wetland restoration. Farmers’ perceptions about the ecological values and benefits of wetlands and their knowledge about wetland restoration policies do not appear to significantly influence farmers’ willingness to participate. A gap is identified between awareness of the importance of wetland restoration and willingness to take actions to restore wetlands. Farm-households tend to weigh personal needs and economic conditions when making participation decisions.

  6. Albino mutation rates in red mangroves (Rhizophora mangle L.) as a bioassay of contamination history in Tampa Bay, Florida, USA

    Science.gov (United States)

    Proffitt, C.E.; Travis, S.E.

    2005-01-01

    We assessed the sensitivity of a viviparous estuarine tree species, Rhizophora mangle, to historic sublethal mutagenic stress across a fine spatial scale by comparing the frequency of trees producing albino propagules in historically contaminated (n=4) and uncontaminated (n=11) forests in Tampa Bay, Florida, USA. Data from uncontaminated forests were used to provide estimates of background mutation rates. We also determined whether other fitness parameters were negatively correlated with mutagenic stress (e.g., degree of outcrossing and numbers of reproducing trees km-1). Contaminated sites in Tampa Bay had significantly higher frequencies of trees that were heterozygous for albinism per 1000 total reproducing trees (FHT) than uncontaminated forests (mean ?? SE: 11.4 ?? 4.3 vs 4.3 ?? 0.73, P 25 yrs of subsequent recruitment and tree replacement may have allowed an initial elevation in the FHT to decay. Patterns of FHT were not explained by distance from the bay mouth or the degree of urbanization. However, there was a significant positive relationship between tree size and FHT (r=0.83, P<0.018), which suggests that forests with older or larger trees provide a more lasting record of cumulative mutagenic stress. No other fitness parameters correlated with FHT. There was a difference in FHT between two latitudes, as determined by comparing Tampa Bay with literature values for Puerto Rico. The sensitivity of this bioassay for the effects of mutagens will facilitate future monitoring of contamination events and comparisons of bay-wide recovery in future decades. Development of a database of FHT values for a range of subtropical and tropical estuaries is underway that will provide a baseline against which to compare mutational consequences of global change. ?? 2005, The Society of Wetland Scientists.

  7. Will Tidal Wetland Restoration Enhance Populations of Native Fishes?

    Directory of Open Access Journals (Sweden)

    Larry R. Brown

    2003-10-01

    Full Text Available Restoration of tidal wetlands might enhance populations of native fishes in the San Francisco Estuary of California. The purpose of this paper is to: (1 review the currently available information regarding the importance of tidal wetlands to native fishes in the San Francisco Estuary, (2 construct conceptual models on the basis of available information, (3 identify key areas of scientific uncertainty, and (4 identify methods to improve conceptual models and reduce uncertainty. There are few quantitative data to suggest that restoration of tidal wetlands will substantially increase populations of native fishes. On a qualitative basis, there is some support for the idea that tidal wetland restoration will increase populations of some native fishes; however, the species deriving the most benefit from restoration might not be of great management concern at present. Invasion of the San Francisco Estuary by alien plants and animals appears to be a major factor in obscuring the expected link between tidal wetlands and native fishes. Large-scale adaptive management experiments (>100 hectares appear to be the best available option for determining whether tidal wetlands will provide significant benefit to native fishes. Even if these experiments are unsuccessful at increasing native fish populations, the restored wetlands should benefit native birds, plants, and other organisms.

  8. Wetland and waterbody restoration and creation associated with mining

    International Nuclear Information System (INIS)

    Brooks, R.P.

    1990-01-01

    Published and unpublished reports are reviewed and the strategies and techniques used to facilitate the establishment of wetlands and waterbodies during mine reclamation are summarized. Although the emphasis is on coal, phosphate, and sand and gravel operations, the methods are relevant to other types of mining and mitigation activities. The following key points should receive attention during planning and mitigation processes: (1) development of site-specific objectives that are related to regional wetland trends; (2) integration of wetland mitigation plans with mining operations and reclamation at the beginning of any project; (3) wetland designs that mimic natural systems and provide flexibility for unforeseen events; (4) assurance that basin morphometry and control of the hydrologic regime are properly addressed before considering other aspects of a project; and (5) identification of mandatory monitoring as a known cost. Well-designed studies that use comparative approaches are needed to increase the database on wetland restoration technology. Meanwhile, regional success criteria for different classes of wetlands need to be developed by consensus agreement among professionals. The rationale for a particular mitigation strategy must have a sound, scientific basis if the needs of mining industries are to be balanced against the necessity of wetland operation. 93 refs., 3 figs

  9. Bacterial carbon utilization in vertical subsurface flow constructed wetlands.

    Science.gov (United States)

    Tietz, Alexandra; Langergraber, Günter; Watzinger, Andrea; Haberl, Raimund; Kirschner, Alexander K T

    2008-03-01

    Subsurface vertical flow constructed wetlands with intermittent loading are considered as state of the art and can comply with stringent effluent requirements. It is usually assumed that microbial activity in the filter body of constructed wetlands, responsible for the removal of carbon and nitrogen, relies mainly on bacterially mediated transformations. However, little quantitative information is available on the distribution of bacterial biomass and production in the "black-box" constructed wetland. The spatial distribution of bacterial carbon utilization, based on bacterial (14)C-leucine incorporation measurements, was investigated for the filter body of planted and unplanted indoor pilot-scale constructed wetlands, as well as for a planted outdoor constructed wetland. A simple mass-balance approach was applied to explain the bacterially catalysed organic matter degradation in this system by comparing estimated bacterial carbon utilization rates with simultaneously measured carbon reduction values. The pilot-scale constructed wetlands proved to be a suitable model system for investigating microbial carbon utilization in constructed wetlands. Under an ideal operating mode, the bulk of bacterial productivity occurred within the first 10cm of the filter body. Plants seemed to have no significant influence on productivity and biomass of bacteria, as well as on wastewater total organic carbon removal.

  10. Water organic pollution and eutrophication influence soil microbial processes, increasing soil respiration of estuarine wetlands: site study in jiuduansha wetland.

    Science.gov (United States)

    Zhang, Yue; Wang, Lei; Hu, Yu; Xi, Xuefei; Tang, Yushu; Chen, Jinhai; Fu, Xiaohua; Sun, Ying

    2015-01-01

    Undisturbed natural wetlands are important carbon sinks due to their low soil respiration. When compared with inland alpine wetlands, estuarine wetlands in densely populated areas are subjected to great pressure associated with environmental pollution. However, the effects of water pollution and eutrophication on soil respiration of estuarine and their mechanism have still not been thoroughly investigated. In this study, two representative zones of a tidal wetland located in the upstream and downstream were investigated to determine the effects of water organic pollution and eutrophication on soil respiration of estuarine wetlands and its mechanism. The results showed that eutrophication, which is a result of there being an excess of nutrients including nitrogen and phosphorus, and organic pollutants in the water near Shang shoal located upstream were higher than in downstream Xia shoal. Due to the absorption and interception function of shoals, there to be more nitrogen, phosphorus and organic matter in Shang shoal soil than in Xia shoal. Abundant nitrogen, phosphorus and organic carbon input to soil of Shang shoal promoted reproduction and growth of some highly heterotrophic metabolic microorganisms such as β-Proteobacteria, γ-Proteobacteria and Acidobacteria which is not conducive to carbon sequestration. These results imply that the performance of pollutant interception and purification function of estuarine wetlands may weaken their carbon sequestration function to some extent.

  11. Evapotranspiration from drained wetlands: drivers, modeling, storage functions, and restoration implications

    Science.gov (United States)

    Shukla, S.; Wu, C. L.; Shrestha, N.

    2017-12-01

    Abstract Evapotranspiration (ET) is a major component of wetland and watershed water budgets. The effect of wetland drainage on ET is not well understood. We tested whether the current understanding of insignificant effect of drainage on ET in the temperate region wetlands applies to those in the sub-tropics. Eddy covariance (EC) based ET measurements were made for two years at two previously drained and geographically close wetlands in the Everglades region of Florida. One wetland was significantly drained with 97% of its storage capacity lost. The other was a more functional wetland with 42% of storage capacity lost. Annual average ET at the significantly drained wetland was 836 mm, 34% less than the function wetland (1271 mm) and the difference was statistically significant (p = 0.001). Such differences in wetland ET in the same climatic region have not been observed. The difference in ET was mainly due to drainage driven differences in inundation and associated effects on net radiation (Rn) and local relative humidity. Two daily ET models, a regression (r2 = 0.80) and a Relevance Vector Machine (RVM) model (r2 = 0.84), were developed with the latter being more robust. These models, when used in conjunction with hydrologic models, improved ET predictions for drained wetlands. Predictions from an integrated model showed that more intensely drained wetlands at higher elevation should be targeted for restoration of downstream flows (flooding) because they have the ability to loose higher water volume through ET which increases available water storage capacity of wetlands. Daily ET models can predict changes in ET for improved evaluation of basin-scale effects of restoration programs and climate change scenarios.

  12. An assessment of the performance of municipal constructed wetlands in Ireland.

    Science.gov (United States)

    Hickey, Anthony; Arnscheidt, Joerg; Joyce, Eadaoin; O'Toole, James; Galvin, Gerry; O' Callaghan, Mark; Conroy, Ken; Killian, Darran; Shryane, Tommy; Hughes, Francis; Walsh, Katherine; Kavanagh, Emily

    2018-03-15

    While performance assessments of constructed wetlands sites around the world have appraised their capacity for effective removal of organics, a large variance remains in these sites' reported ability to retain nutrients, which appears to depend on differences in design, operation and climate factors. Nutrient retention is a very important objective for constructed wetlands, to avoid eutrophication of aquatic environments receiving their effluents. This study assessed the performance of constructed wetlands in terms of nutrient retention and associated parameters under the humid conditions of Ireland's temperate maritime climate. A review of the performance of 52 constructed wetland sites from 17 local authorities aimed to identify the best performing types of constructed wetlands and the treatment factors determining successful compliance with environmental standards. Data analysis compared effluent results from constructed wetlands with secondary free surface flow or tertiary horizontal subsurface flow, hybrid systems and integrated constructed wetlands with those from small-scale mechanical wastewater treatment plants of the same size class. Nutrient concentrations in effluents of constructed wetlands were negatively correlated (p treatment performance of constructed wetlands significantly (p wastewater treatment plants, secondary free surface water and tertiary horizontal subsurface flow wetlands showed a very large variance in effluent concentrations for organic and nutrient parameters. E. coli numbers in effluents were lowest for integrated constructed wetlands with an arithmetic mean of 89 MPN/100 ml. Despite Ireland's humid climate, some constructed wetland sites achieved long or frequent periods of zero effluent discharge and thus did not transfer any waterborne pollution to their receptors during these periods. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. A Place to Call Home: Amphibian Use of Created and Restored Wetlands

    Directory of Open Access Journals (Sweden)

    Donald J. Brown

    2012-01-01

    Full Text Available Loss and degradation of wetland habitats are major contributing factors to the global decline of amphibians. Creation and restoration of wetlands could be a valuable tool for increasing local amphibian species richness and abundance. We synthesized the peer-reviewed literature addressing amphibian use of created and restored wetlands, focusing on aquatic habitat, upland habitat, and wetland connectivity and configuration. Amphibian species richness or abundance at created and restored wetlands was either similar to or greater than reference wetlands in 89% of studies. Use of created and restored wetlands by individual species was driven by aquatic and terrestrial habitat preferences, as well as ability to disperse from source wetlands. We conclude that creating and restoring wetlands can be valuable tools for amphibian conservation. However, the ecological needs and preferences of target species must be considered to maximize the potential for successful colonization and long-term persistence.

  14. Wetland Polygons, California, 2016, California Aquatic Resources Inventory

    Data.gov (United States)

    U.S. Environmental Protection Agency — This feature class contains polgon features depicting wetlands that are standardized to a common wetland classification system (CARI) and provide additional source...

  15. Macroinvertebrate variation in endorheic depression wetlands in ...

    African Journals Online (AJOL)

    Aquatic macroinvertebrates are rarely used in wetland assessments due to their variation. However, in terms of biodiversity, these invertebrates form an important component of wetland fauna. Spatial and temporal variation of macroinvertebrate assemblages in endorheic depressions (locally referred to as 'pans') in ...

  16. Enteric and indicator virus removal by surface flow wetlands.

    Science.gov (United States)

    Rachmadi, Andri T; Kitajima, Masaaki; Pepper, Ian L; Gerba, Charles P

    2016-01-15

    We investigated the occurrence and attenuation of several human enteric viruses (i.e., norovirus, adenovirus, Aichi virus 1, polyomaviruses, and enterovirus) as well as a plant virus, pepper mild mottle virus (PMMoV), at two surface flow wetlands in Arizona. The retention time in one of the wetlands was seven days, whereas in the other wetland it could not be defined. Water samples were collected at the inlet and outlet from the wetlands over nine months, and concentration of viral genomes was determined by quantitative polymerase chain reaction (qPCR). Of the human enteric viruses tested, adenovirus and Aichi virus 1 were found in the greatest prevalence in treated wastewater (i.e., inlet of the wetlands). Reduction efficiencies of enteric viruses by the wetlands ranged from 1 to 3 log10. Polyomaviruses were generally removed to below detection limit, indicating at least 2 to 4 log10 removal. PMMoV was detected in a greater concentration in the inlet of both wetlands for all the viruses tested (10(4) to 10(7) genome copies/L), but exhibited little or no removal (1 log10 or less). To determine the factors associated with virus genome attenuation (as determined by qPCR), the persistence of PMMoV and poliovirus type 1 (an enterovirus) was studied in autoclaved and natural wetland water, and deionized water incubated under three different temperatures for 21 days. A combination of elevated water temperature and biological activities reduced poliovirus by 1 to 4 log10, while PMMoV was not significantly reduced during this time period. Overall, PMMoV showed much greater persistence than human viruses in the wetland treatment. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. The importance of water quality to wetland establishment

    Energy Technology Data Exchange (ETDEWEB)

    Trites, M.; Bayley, S. [Alberta Univ., Edmonton, AB (Canada). Dept. of Biological Sciences

    2010-07-01

    Extracting oil from sands produces huge volumes of saline tailings. This presentation demonstrated that the ability to recreate boreal peatland communities after oil sands mining will be constrained by water quality. Typical boreal wetlands can be described along a bog to poor fen to rich fen gradient that correlates to increasing water pH and calcium concentration. There are major differences in vegetation communities along this gradient. Bogs and poor fens are characterized by slowly decomposing Sphagnum moss, while brown moss and productive herbaceous communities characterize rich fens. Post-mining wetlands generally have sodium concentrations above the tolerance limits of most freshwater peatland species. This study involved a survey of 25 boreal wetlands across a natural salinity gradient to determine a suite of potential native vegetation species to use for oils sand reclamation. Sixteen herbaceous vegetation communities that could be incorporated into oil sands wetlands were identified, but the diversity of communities decreased as salinity increased. Some of these wetlands had thick organic matter accumulations, despite having salinity equal to or higher than oil sands wetlands. Organic matter accumulation rates were also measured. If salinity is moderate and nutrient levels adequate, highly productive species like Carex aquatilis and Typha latifolia can accumulate organic matter quickly. Triglochin maritima can accumulate organic matter over the long term, even if salinity is high and nutrient levels are low. Although there is potential for peat to accumulate in future oil sands wetlands, the rates of peat accumulation will probably be slower than in undisturbed freshwater bogs and fens because of the elevated salinity. tabs., figs.

  18. The importance of water quality to wetland establishment

    International Nuclear Information System (INIS)

    Trites, M.; Bayley, S.

    2010-01-01

    Extracting oil from sands produces huge volumes of saline tailings. This presentation demonstrated that the ability to recreate boreal peatland communities after oil sands mining will be constrained by water quality. Typical boreal wetlands can be described along a bog to poor fen to rich fen gradient that correlates to increasing water pH and calcium concentration. There are major differences in vegetation communities along this gradient. Bogs and poor fens are characterized by slowly decomposing Sphagnum moss, while brown moss and productive herbaceous communities characterize rich fens. Post-mining wetlands generally have sodium concentrations above the tolerance limits of most freshwater peatland species. This study involved a survey of 25 boreal wetlands across a natural salinity gradient to determine a suite of potential native vegetation species to use for oils sand reclamation. Sixteen herbaceous vegetation communities that could be incorporated into oil sands wetlands were identified, but the diversity of communities decreased as salinity increased. Some of these wetlands had thick organic matter accumulations, despite having salinity equal to or higher than oil sands wetlands. Organic matter accumulation rates were also measured. If salinity is moderate and nutrient levels adequate, highly productive species like Carex aquatilis and Typha latifolia can accumulate organic matter quickly. Triglochin maritima can accumulate organic matter over the long term, even if salinity is high and nutrient levels are low. Although there is potential for peat to accumulate in future oil sands wetlands, the rates of peat accumulation will probably be slower than in undisturbed freshwater bogs and fens because of the elevated salinity. tabs., figs.

  19. Climate and land-use change in wetlands: A dedication

    Science.gov (United States)

    Middleton, Beth A.

    2017-01-01

    Future climate and land-use change may wreak havoc on wetlands, with the potential to erode their values as harbors for biota and providers of human services. Wetlands are important to protect, particularly because these provide a variety of ecosystem services including wildlife habitat, water purification, flood storage, and storm protection (Mitsch, Bernal, and Hernandez 2015). Without healthy wetlands, future generations may become increasingly less in harmony with the sustainability of the Earth. To this end, the thematic feature on climate and land-use change in wetlands explores the critical role of wetlands in the overall health and well-being of humans and our planet. Our special feature contributes to the understanding of the idea that the health of natural ecosystems and humans are linked and potentially stressed by climate change and land-use change (Horton and Lo 2015; McDonald 2015). In particular, this special issue considers the important role of wetlands in the environment, and how land-use and environmental change might affect them in the future.

  20. The protected areas system in Brazil as a baseline condition for wetlands management and fish conservancy: the example of the Pantanal National Park

    Directory of Open Access Journals (Sweden)

    Carla N. M. Polaz

    2017-09-01

    Full Text Available ABSTRACT Considering the need for the Brazilian government to develop tools for environmental monitoring for biodiversity conservancy purposes in the national protected areas system, this paper focuses on determining reference site metrics (or baselines for adapting the Index of Biotic Integrity (IBI based on the fish assemblages in the Pantanal National Park (PNP. The habitats in the PNP were grouped into four categories: main rivers, corixos (channels connecting the floodplain, permanent bays, and temporary bays. Fish samplings were performed at 12 points during the dry season (Oct-Nov 2010 and 2011. 146 fish species were identified from the total 18,954 individuals collected with standardized fishing gear. There was no association between the structure of the fish assemblage and categories, suggesting a theory on homogeneity of habitats. The final IBIPNP consists of nine metrics, most of them were framed in excellent class, some in fair, and none in poor. There was no significant difference in IBIPNP scores between the two sampled years. This approach provides a direct application for wetland management purposes.

  1. Negative effects of excessive soil phosphorus on floristic quality in Ohio wetlands.

    Science.gov (United States)

    Stapanian, Martin A; Schumacher, William; Gara, Brian; Monteith, Steven E

    2016-05-01

    Excessive soil nutrients, often from agricultural runoff, have been shown to negatively impact some aspects of wetland plant communities. We measured plant-available phosphorus (Mehlich-3: MeP) in soil samples, and assessed the vascular plant community and habitat degradation at 27 emergent and 13 forested wetlands in Ohio, USA. We tested two hypotheses: (1) that an index of vegetation biological integrity based on floristic quality was lower in wetlands with higher concentrations of MeP in the soil, and (2) that higher concentrations of MeP occurred in wetlands with more habitat degradation (i.e., lower quality), as estimated by a rapid assessment method. Hypothesis (1) was supported for emergent, but not for forested wetlands. Hypothesis (2) was marginally supported (P=0.09) for emergent, but not supported for forested wetlands. The results indicate that the effect of concentration of phosphorus in wetland soils and the quality of plant species assemblages in wetlands is more complex than shown in site-specific studies and may depend in part on degree of disturbance in the surrounding watershed and dominant wetland vegetation type. Woody plants in forested wetlands are typically longer lived than herbaceous species in the understory and emergent wetlands, and may persist despite high inputs of phosphorus. Further, the forested wetlands were typically surrounded by a wide band of forest vegetation, which may provide a barrier against sedimentation and the associated phosphorus inputs to the wetland interior. Our results indicate that inferences about soil nutrient conditions made from rapid assessment methods for assessing wetland habitat condition may not be reliable. Copyright © 2016. Published by Elsevier B.V.

  2. Do geographically isolated wetlands influence landscape functions?

    Science.gov (United States)

    Cohen, Matthew J.; Creed, Irena F.; Alexander, Laurie C.; Basu, Nandita; Calhoun, Aram J.K.; Craft, Christopher; D’Amico, Ellen; DeKeyser, Edward S.; Fowler, Laurie; Golden, Heather E.; Jawitz, James W.; Kalla, Peter; Kirkman, L. Katherine; Lane, Charles R.; Lang, Megan; Leibowitz, Scott G.; Lewis, David Bruce; Marton, John; McLaughlin, Daniel L.; Mushet, David M.; Raanan-Kiperwas, Hadas; Rains, Mark C.; Smith, Lora; Walls, Susan C.

    2015-01-01

    Geographically isolated wetlands (GIWs), those surrounded by uplands, exchange materials, energy, and organisms with other elements in hydrological and habitat networks, contributing to landscape functions, such as flow generation, nutrient and sediment retention, and biodiversity support. GIWs constitute most of the wetlands in many North American landscapes, provide a disproportionately large fraction of wetland edges where many functions are enhanced, and form complexes with other water bodies to create spatial and temporal heterogeneity in the timing, flow paths, and magnitude of network connectivity. These attributes signal a critical role for GIWs in sustaining a portfolio of landscape functions, but legal protections remain weak despite preferential loss from many landscapes. GIWs lack persistent surface water connections, but this condition does not imply the absence of hydrological, biogeochemical, and biological exchanges with nearby and downstream waters. Although hydrological and biogeochemical connectivity is often episodic or slow (e.g., via groundwater), hydrologic continuity and limited evaporative solute enrichment suggest both flow generation and solute and sediment retention. Similarly, whereas biological connectivity usually requires overland dispersal, numerous organisms, including many rare or threatened species, use both GIWs and downstream waters at different times or life stages, suggesting that GIWs are critical elements of landscape habitat mosaics. Indeed, weaker hydrologic connectivity with downstream waters and constrained biological connectivity with other landscape elements are precisely what enhances some GIW functions and enables others. Based on analysis of wetland geography and synthesis of wetland functions, we argue that sustaining landscape functions requires conserving the entire continuum of wetland connectivity, including GIWs.

  3. Landscape hydrology. The hydrological legacy of deforestation on global wetlands.

    Science.gov (United States)

    Woodward, C; Shulmeister, J; Larsen, J; Jacobsen, G E; Zawadzki, A

    2014-11-14

    Increased catchment erosion and nutrient loading are commonly recognized impacts of deforestation on global wetlands. In contrast, an increase in water availability in deforested catchments is well known in modern studies but is rarely considered when evaluating past human impacts. We used a Budyko water balance approach, a meta-analysis of global wetland response to deforestation, and paleoecological studies from Australasia to explore this issue. After complete deforestation, we demonstrated that water available to wetlands increases by up to 15% of annual precipitation. This can convert ephemeral swamps to permanent lakes or even create new wetlands. This effect is globally significant, with 9 to 12% of wetlands affected, including 20 to 40% of Ramsar wetlands, but is widely unrecognized because human impact studies rarely test for it. Copyright © 2014, American Association for the Advancement of Science.

  4. Patterns and drivers for wetland connections in the Prairie Pothole Region, United States

    Science.gov (United States)

    Vanderhoof, Melanie; Christensen, Jay R.; Alexander, Laurie C.

    2017-01-01

    Ecosystem function in rivers, lakes and coastal waters depends on the functioning of upstream aquatic ecosystems, necessitating an improved understanding of watershed-scale interactions including variable surface-water flows between wetlands and streams. As surface water in the Prairie Pothole Region expands in wet years, surface-water connections occur between many depressional wetlands and streams. Minimal research has explored the spatial patterns and drivers for the abundance of these connections, despite their potential to inform resource management and regulatory programs including the U.S. Clean Water Act. In this study, wetlands were identified that did not intersect the stream network, but were shown with Landsat images (1990–2011) to become merged with the stream network as surface water expanded. Wetlands were found to spill into or consolidate with other wetlands within both small (2–10 wetlands) and large (>100 wetlands) wetland clusters, eventually intersecting a stream channel, most often via a riparian wetland. These surface-water connections occurred over a wide range of wetland distances from streams (averaging 90–1400 m in different ecoregions). Differences in the spatial abundance of wetlands that show a variable surface-water connection to a stream were best explained by smaller wetland-to-wetland distances, greater wetland abundance, and maximum surface-water extent. This analysis demonstrated that wetland arrangement and surface water expansion are important mechanisms for depressional wetlands to connect to streams and provides a first step to understanding the frequency and abundance of these surface-water connections across the Prairie Pothole Region.

  5. Wetland Groundwater Processes

    National Research Council Canada - National Science Library

    Williams, Greg

    1993-01-01

    This technical note summarizes hydrologic and hydraulic (H AND H) processes and the related terminology that will likely be encountered during an evaluation of the effect of ground-water processes on wetland function...

  6. Spatial and stress-related variation in benthic microbial gas flux in northeastern Alberta wetlands

    International Nuclear Information System (INIS)

    Ciborowski, J.; Gardner Costa, J.

    2010-01-01

    This study investigated the effects of oil sands process material (OSPM) on the sediment microbial respiration in newly constructed wetlands located in northeastern Alberta. The sediment gas flux in 10 wetlands with various sediment characteristics and ages was studied. Analyses of variance (ANOVA) were used to contrast the mean wetland production of methane (CH 4 ) and carbon dioxide (CO 2 ) with season, wetland status, wetland age, and wetland zones. The study showed that CH 4 was significantly higher in reference wetlands than in OSPM-impacted wetlands. A significant relationship between the status and zone of the wetland was observed for CH 4 fluxes in reference wetlands. CH 4 fluxes were higher in the non-vegetated zones of reference wetlands than in the vegetated zones of reference wetlands. CO 2 fluxes were low and not significantly different in any of the studied sites. Results indicated that the wetlands contributed little atmospheric carbon.

  7. Wetland biogeochemical processes and simulation modeling

    Science.gov (United States)

    Bai, Junhong; Huang, Laibin; Gao, Haifeng; Jia, Jia; Wang, Xin

    2018-02-01

    As the important landscape with rich biodiversity and high productivity, wetlands can provide numerous ecological services including playing an important role in regulating global biogeochemical cycles, filteringpollutants from terrestrial runoff and atmospheric deposition, protecting and improving water quality, providing living habitats for plants and animals, controlling floodwaters, and retaining surface water flow during dry periods (Reddy and DeLaune, 2008; Qin and Mitsch, 2009; Zhao et al., 2016). However, more than 50% of the world's wetlands had been altered, degraded or lost through a wide range of human activities in the past 150 years, and only a small percentage of the original wetlands remained around the world after over two centuries of intensive development and urbanization (O'connell, 2003; Zhao et al., 2016).

  8. Limnology of Jagatpur wetland, Bhagalpur (Bihar), India.

    Science.gov (United States)

    Kumar, Brajnandan

    2011-10-01

    The water quality in Jagatpur wetland was assessed in terms of physico - chemical characteristics for two years, between August 2003-July 2005. The variations in different physico-chemical parameters have been discussed in this paper in relation to fluctuating climatic condition. The wetland is experiencing racing eutrophication as evidenced by pH was acidic to alkaline, total hardness was considerably high, bicarbonate was in moderate amount, phosphate-phosphorus content was in a range of medium to high and higher values of COD. The present status of the quality of water of Jagatpur wetland is delineated in this paper.

  9. Impacts of human-induced environmental change in wetlands on aquatic animals.

    Science.gov (United States)

    Sievers, Michael; Hale, Robin; Parris, Kirsten M; Swearer, Stephen E

    2018-02-01

    Many wetlands harbour highly diverse biological communities and provide extensive ecosystem services; however, these important ecological features are being altered, degraded and destroyed around the world. Despite a wealth of research on how animals respond to anthropogenic changes to natural wetlands and how they use created wetlands, we lack a broad synthesis of these data. While some altered wetlands may provide vital habitat, others could pose a considerable risk to wildlife. This risk will be heightened if such wetlands are ecological traps - preferred habitats that confer lower fitness than another available habitat. Wetlands functioning as ecological traps could decrease both local and regional population persistence, and ultimately lead to extinctions. Most studies have examined how animals respond to changes in environmental conditions by measuring responses at the community and population levels, but studying ecological traps requires information on fitness and habitat preferences. Our current lack of knowledge of individual-level responses may therefore limit our capacity to manage wetland ecosystems effectively since ecological traps require different management practices to mitigate potential consequences. We conducted a global meta-analysis to characterise how animals respond to four key drivers of wetland alteration: agriculture, mining, restoration and urbanisation. Our overarching goal was to evaluate the ecological impacts of human alterations to wetland ecosystems, as well as identify current knowledge gaps that limit both the current understanding of these responses and effective wetland management. We extracted 1799 taxon-specific response ratios from 271 studies across 29 countries. Community- (e.g. richness) and population-level (e.g. density) measures within altered wetlands were largely comparable to those within reference wetlands. By contrast, individual fitness measures (e.g. survival) were often lower, highlighting the potential

  10. 75 FR 8297 - Tongass National Forest, Thorne Bay Ranger District, Thorne Bay, AK

    Science.gov (United States)

    2010-02-24

    ..., Thorne Bay, AK AGENCY: Forest Service, USDA. ACTION: Cancellation of Notice of intent to prepare an... Roberts, Zone Planner, Thorne Bay Ranger District, Tongass National Forest, P.O. Box 19001, Thorne Bay, AK 99919, telephone: 907-828-3250. SUPPLEMENTARY INFORMATION: The 47,007-acre Kosciusko Project Area is...

  11. 77 FR 44140 - Drawbridge Operation Regulation; Sturgeon Bay Ship Canal, Sturgeon Bay, WI

    Science.gov (United States)

    2012-07-27

    ... Maple-Oregon Bridges so vehicular traffic congestion would not develop on downtown Sturgeon Bay streets... movement of vehicular traffic in Sturgeon Bay. The Sturgeon Bay Ship Canal is approximately 8.6 miles long... significant increase in vehicular and vessel traffic during the peak tourist and navigation season between...

  12. Microcrustaceans (Branchipoda and Copepoda) of Wetland Impoundments on the Savannah River Site, Aiken, South Carolina

    Energy Technology Data Exchange (ETDEWEB)

    DeBiase, Adrienne E; Taylor, Barbara E

    2005-09-21

    The United States Department of Energy’s Savannah River Site (SRS) in Aiken, Allendale, and Barnwell Counties, South Carolina, contains an abundance of freshwater wetlands and impoundments. Four large impoundments, as well as several small, abandoned farm and mill ponds, and about 400 Carolina bays and other small, isolated depression wetland ponds are located within the 893 km2 area of the SRS. Crustaceans of the orders Branchiopoda and Copepoda are nearly ubiquitous in these water bodies. Although small in size, these organisms are often very abundant. They consequently play an important trophic role in freshwater food webs supporting fish, larval salamanders, larval insects, and numerous other animals, aquatic and terrestrial. This report provides an introduction to the free-living microcrustaceans of lentic water bodies on the SRS and a comprehensive list of species known to occur there. Occurrence patterns are summarized from three extensive survey studies, supplemented with other published and unpublished records. In lieu of a key, we provide a guide to taxonomic resources and notes on undescribed species. Taxa covered include the orders Cladocera, Anostraca, Laevicaudata, and Spinicaudata of the Subclass Branchiopoda and the Superorders Calanoida and Cyclopoida of Subclass Copepoda. Microcrustaceans of the Superorder Harpacticoida of the Subclass Copepoda and Subclass Ostracoda are also often present in lentic water bodies. They are excluded from this report because they have not received much study at the species level on the SRS.

  13. Transport and transformation of nitrate in a riparian wetland

    DEFF Research Database (Denmark)

    Petersen, Rasmus Jes; Prinds, Christian; Iversen, Bo Vangsø

    Even though riparian wetlands have been intensively studied during the past 30 years these areas still function as a “black box” with regards to removal of nitrogen input from surrounding areas. To comply with regulations of the European Water Framework Directive, Danish agriculture is to reduce....... Depending on the saturation state of the wetland soils and the amount of water entering during precipitation events, a part of the water infiltrates into the wetland sediments and travels towards the stream. Some of the infiltrated water may be caught by drains within the wetland soils and transported...... directly to the stream. The remaining water can be either evapotranspired or transported directly to the stream via overland flow. Preliminary results show an efficient denitrification of nitrate infiltrating into the studied wetland soils. The nitrogen removal efficiency at different drain outlets seems...

  14. Physical processes in a coupled bay-estuary coastal system: Whitsand Bay and Plymouth Sound

    Science.gov (United States)

    Uncles, R. J.; Stephens, J. A.; Harris, C.

    2015-09-01

    Whitsand Bay and Plymouth Sound are located in the southwest of England. The Bay and Sound are separated by the ∼2-3 km-wide Rame Peninsula and connected by ∼10-20 m-deep English Channel waters. Results are presented from measurements of waves and currents, drogue tracking, surveys of salinity, temperature and turbidity during stratified and unstratified conditions, and bed sediment surveys. 2D and 3D hydrodynamic models are used to explore the generation of tidally- and wind-driven residual currents, flow separation and the formation of the Rame eddy, and the coupling between the Bay and the Sound. Tidal currents flow around the Rame Peninsula from the Sound to the Bay between approximately 3 h before to 2 h after low water and form a transport path between them that conveys lower salinity, higher turbidity waters from the Sound to the Bay. These waters are then transported into the Bay as part of the Bay-mouth limb of the Rame eddy and subsequently conveyed to the near-shore, east-going limb and re-circulated back towards Rame Head. The Simpson-Hunter stratification parameter indicates that much of the Sound and Bay are likely to stratify thermally during summer months. Temperature stratification in both is pronounced during summer and is largely determined by coastal, deeper-water stratification offshore. Small tidal stresses in the Bay are unable to move bed sediment of the observed sizes. However, the Bay and Sound are subjected to large waves that are capable of driving a substantial bed-load sediment transport. Measurements show relatively low levels of turbidity, but these respond rapidly to, and have a strong correlation with, wave height.

  15. The geomorphology of wetlands in drylands: Resilience, nonresilience, or …?

    Science.gov (United States)

    Tooth, Stephen

    2018-03-01

    Over the last decade, much attention has focused on wetland resilience to disturbances such as extreme weather events, longer climate change, and human activities. In geomorphology and cognate disciplines, resilience is defined in various ways and has physical and socioeconomic dimensions but commonly is taken to mean the ability of a system to (A) withstand disturbance, (B) recover from disturbance, or (C) adapt and evolve in response to disturbance to a more desirable (e.g., stable) configuration. Most studies of wetland resilience have tended to focus on the more-or-less permanently saturated humid region wetlands, but whether the findings can be readily transferred to wetlands in drylands remains unclear. Given the natural climatic variability and overall strong moisture deficit characteristic of drylands, are such wetlands likely to be more resilient or less resilient? Focusing on wetlands in the South African drylands, this paper uses existing geomorphological, sedimentological, and geochronological data sets to provide the spatial (up to 50 km2) and temporal (late Quaternary) framework for an assessment of geomorphological resilience. Some wetlands have been highly resilient to environmental (especially climate) change, but others have been nonresilient with marked transformations in channel-floodplain structure and process connectivity having been driven by natural factors (e.g., local base-level fall, drought) or human activities (e.g., channel excavation, floodplain drainage). Key issues related to the assessment of wetland resilience include channel-floodplain dynamics in relation to geomorphological thresholds, wetland geomorphological 'life cycles', and the relative roles of natural and human activities. These issues raise challenges for the involvement of geomorphologists in the practical application of the resilience concept in wetland management. A key consideration is how geomorphological resilience interfaces with other dimensions of resilience

  16. Adaptation Tipping Points of a Wetland under a Drying Climate

    Directory of Open Access Journals (Sweden)

    Amar Nanda

    2018-02-01

    Full Text Available Wetlands experience considerable alteration to their hydrology, which typically contributes to a decline in their overall ecological integrity. Wetland management strategies aim to repair wetland hydrology and attenuate wetland loss that is associated with climate change. However, decision makers often lack the data needed to support complex social environmental systems models, making it difficult to assess the effectiveness of current or past practices. Adaptation Tipping Points (ATPs is a policy-oriented method that can be useful in these situations. Here, a modified ATP framework is presented to assess the suitability of ecosystem management when rigorous ecological data are lacking. We define the effectiveness of the wetland management strategy by its ability to maintain sustainable minimum water levels that are required to support ecological processes. These minimum water requirements are defined in water management and environmental policy of the wetland. Here, we trial the method on Forrestdale Lake, a wetland in a region experiencing a markedly drying climate. ATPs were defined by linking key ecological objectives identified by policy documents to threshold values for water depth. We then used long-term hydrologic data (1978–2012 to assess if and when thresholds were breached. We found that from the mid-1990s, declining wetland water depth breached ATPs for the majority of the wetland objectives. We conclude that the wetland management strategy has been ineffective from the mid-1990s, when the region’s climate dried markedly. The extent of legislation, policies, and management authorities across different scales and levels of governance need to be understood to adapt ecosystem management strategies. Empirical verification of the ATP assessment is required to validate the suitability of the method. However, in general we consider ATPs to be a useful desktop method to assess the suitability of management when rigorous ecological data

  17. Iron removal from acid mine drainage by wetlands

    Energy Technology Data Exchange (ETDEWEB)

    Sexstone, A.J.; Skousen, J.G.; Calabrese, J.; Bhumbla, D.K.; Cliff, J.; Sencindiver, J.C.; Bissonnette, G.K.

    1999-07-01

    Neutralization of acid mine drainage (AMD) in man-made cattail (Typha) wetlands was investigated over a four-year period utilizing experimental models constructed in a greenhouse. A naturally occurring AMD (430 mg/L Fe, 5 mg/L Mn, 2,900 mg/L sulfate, pH 2.75) was collected in the field and added to the greenhouse wetlands at 60.5 L/day. Monthly water samples from four depths (10, 20, 30, and 40 cm) were obtained from the influent, midpoint, and effluent locations of the wetland. During the first year of AMD treatment, near neutral pH (6.5) and anoxic conditions ({minus}300 mV) were observed in subsurface sediments of wetlands. The wetlands retained an estimated 65% of the total applied iron in the first year, primarily in the exchangeable, organically bound, and oxide form. During later years, 20 to 30% of the influent iron was retained predominantly as precipitated oxides. Iron sulfides resulting form sulfate reduction accounted for less than 5% of the iron retained, and were recovered primarily as monosulfides during the first year and as disulfides in the fourth year. Improvement in effluent pH was primarily attributed to limestone dissolution in the anaerobic subsurface sediments, which decreased with time. Constructed wetlands exhibit finite lives for effective AMD treatment and provisions should be made for their periodic rejuvenation or replacement.

  18. Accommodating state shifts within the conceptual framework of the wetland continuum

    Science.gov (United States)

    Mushet, David M.; McKenna, Owen; LaBaugh, James W.; Euliss, Ned H.; Rosenberry, Donald O.

    2018-01-01

    The Wetland Continuum is a conceptual framework that facilitates the interpretation of biological studies of wetland ecosystems. Recently summarized evidence documenting how a multi-decadal wet period has influenced aspects of wetland, lake and stream systems in the southern prairie-pothole region of North America has revealed the potential for wetlands to shift among alternate states. We propose that incorporation of state shifts into the Wetland Continuum, as originally proposed or as modified by Hayashi et al., is a relatively simple matter if one allows for shifts of wetlands along the horizontal, groundwater axis of the framework under conditions of extreme and sustained wet or dry conditions. We suggest that the ease by which state shifts can be accommodated within both the original and modified frameworks of the Wetland Continuum is a testament to the robustness of the concept when it is related to the alternative-stable-state concept.

  19. Geothermal wetlands: an annotated bibliography of pertinent literature

    Energy Technology Data Exchange (ETDEWEB)

    Stanley, N.E.; Thurow, T.L.; Russell, B.F.; Sullivan, J.F.

    1980-05-01

    This annotated bibliography covers the following topics: algae, wetland ecosystems; institutional aspects; macrophytes - general, production rates, and mineral absorption; trace metal absorption; wetland soils; water quality; and other aspects of marsh ecosystems. (MHR)

  20. Local institutions for sustaining wetland resources and community ...

    African Journals Online (AJOL)

    Administrator

    Data collection methods. Qualitative ..... Sondu-Miriu wetland some traditional fishing methods, for example, the ... ted processing, cooking and trading activities in the three wetlands. .... water access was making the water dirty after collection.

  1. Testing the basic assumption of the hydrogeomorphic approach to assessing wetland functions.

    Science.gov (United States)

    Hruby, T

    2001-05-01

    The hydrogeomorphic (HGM) approach for developing "rapid" wetland function assessment methods stipulates that the variables used are to be scaled based on data collected at sites judged to be the best at performing the wetland functions (reference standard sites). A critical step in the process is to choose the least altered wetlands in a hydrogeomorphic subclass to use as a reference standard against which other wetlands are compared. The basic assumption made in this approach is that wetlands judged to have had the least human impact have the highest level of sustainable performance for all functions. The levels at which functions are performed in these least altered wetlands are assumed to be "characteristic" for the subclass and "sustainable." Results from data collected in wetlands in the lowlands of western Washington suggest that the assumption may not be appropriate for this region. Teams developing methods for assessing wetland functions did not find that the least altered wetlands in a subclass had a range of performance levels that could be identified as "characteristic" or "sustainable." Forty-four wetlands in four hydrogeomorphic subclasses (two depressional subclasses and two riverine subclasses) were rated by teams of experts on the severity of their human alterations and on the level of performance of 15 wetland functions. An ordinal scale of 1-5 was used to quantify alterations in water regime, soils, vegetation, buffers, and contributing basin. Performance of functions was judged on an ordinal scale of 1-7. Relatively unaltered wetlands were judged to perform individual functions at levels that spanned all of the seven possible ratings in all four subclasses. The basic assumption of the HGM approach, that the least altered wetlands represent "characteristic" and "sustainable" levels of functioning that are different from those found in altered wetlands, was not confirmed. Although the intent of the HGM approach is to use level of functioning as a

  2. Understanding the Hydrodynamics of a Coastal Wetland with an Integrated Distributed Model

    Science.gov (United States)

    Zhang, Y.; Li, W.; Sun, G.

    2017-12-01

    Coastal wetlands linking ocean and terrestrial landscape provide important ecosystem services including flood mitigation, fresh water supply, erosion control, carbon sequestration, and wildlife habitats. Wetland hydrology is the major driving force for wetland formation, structure, function, and ecosystem services. The dynamics of wetland hydrology and energy budget are strongly affected by frequent inundation and drying of wetland soil and vegetation due to tide, sea level rise (SLR) and climatic variability (change). However, the quantitative representation of how the energy budget and groundwater variation of coastal wetlands respond to frequent water level fluctuation is limited, especially at regional scales. This study developed a physically based distributed wetland hydrological model by integrating coastal processes and considering the inundation influence on energy budget and ET. Analysis using in situ measurements and satellite data for a coastal wetland in North Carolina confirm that the model sufficiently captures the wetland hydrologic behaviors. The validated model was then applied to examine the wetland hydrodynamics under a 30-year historical climate forcing (1985-2014) for the wetland region. The simulation reveals that 43% of the study area has inundation events, 63% of which has a frequency higher than 50% each year. The canopy evaporation and transpiration decline dramatically when the inundation level exceeds the canopy height. Additionally, inundation causes about 10% increase of the net shortwave radiation. This study also demonstrates that the critical wetland zones highly influenced by the coastal processes spans 300-800 m from the coastline. The model developed in the study offers a new tool for understanding the complex wetland hydrodynamics in response to natural and human-induced disturbances at landscape to regional scales.

  3. Classifying and mapping wetlands and peat resources using digital cartography

    Science.gov (United States)

    Cameron, Cornelia C.; Emery, David A.

    1992-01-01

    Digital cartography allows the portrayal of spatial associations among diverse data types and is ideally suited for land use and resource analysis. We have developed methodology that uses digital cartography for the classification of wetlands and their associated peat resources and applied it to a 1:24 000 scale map area in New Hampshire. Classifying and mapping wetlands involves integrating the spatial distribution of wetlands types with depth variations in associated peat quality and character. A hierarchically structured classification that integrates the spatial distribution of variations in (1) vegetation, (2) soil type, (3) hydrology, (4) geologic aspects, and (5) peat characteristics has been developed and can be used to build digital cartographic files for resource and land use analysis. The first three parameters are the bases used by the National Wetlands Inventory to classify wetlands and deepwater habitats of the United States. The fourth parameter, geological aspects, includes slope, relief, depth of wetland (from surface to underlying rock or substrate), wetland stratigraphy, and the type and structure of solid and unconsolidated rock surrounding and underlying the wetland. The fifth parameter, peat characteristics, includes the subsurface variation in ash, acidity, moisture, heating value (Btu), sulfur content, and other chemical properties as shown in specimens obtained from core holes. These parameters can be shown as a series of map data overlays with tables that can be integrated for resource or land use analysis.

  4. Land Use in Korean Tidal Wetlands: Impacts and Management Strategies

    Science.gov (United States)

    Hong, Sun-Kee; Koh, Chul-Hwan; Harris, Richard R.; Kim, Jae-Eun; Lee, Jeom-Sook; Ihm, Byung-Sun

    2010-05-01

    The coastal landscapes in southwestern Korea include a diverse array of tidal wetlands and salt marshes. These coastal zones link the ecological functions of marine tidal wetlands and freshwater ecosystems with terrestrial ecosystems. They are rich in biological diversity and play important roles in sustaining ecological health and processing environmental pollutants. Korean tidal wetlands are particularly important as nurseries for economically important fishes and habitats for migratory birds. Diking, draining, tourism, and conversion to agricultural and urban uses have adversely affected Korean tidal wetlands. Recent large development projects have contributed to further losses. Environmental impact assessments conducted for projects affecting tidal wetlands and their surrounding landscapes should be customized for application to these special settings. Adequate environmental impact assessments will include classification of hydrogeomorphic units and consideration of their responses to biological and environmental stressors. As is true worldwide, Korean laws and regulations are changing to be more favorable to the conservation and protection of tidal wetlands. More public education needs to be done at the local level to build support for tidal wetland conservation. Some key public education points include the role of tidal wetlands in maintaining healthy fish populations and reducing impacts of nonpoint source pollution. There is also a need to develop procedures for integrating economic and environmental objectives within the overall context of sustainable management and land uses.

  5. Transfers and transformations of zinc in flow-through wetland microcosms.

    Science.gov (United States)

    Gillespie, W B; Hawkins, W B; Rodgers, J H; Cano, M L; Dorn, P B

    1999-06-01

    Two microcosm-scale wetlands (570-liter containers) were integratively designed and constructed to investigate transfers and transformations of zinc associated with an aqueous matrix, and to provide future design parameters for pilot-scale constructed wetlands. The fundamental design of these wetland microcosms was based on biogeochemical principles regulating fate and transformations of zinc (pH, redox, etc.). Each wetland consisted of a 45-cm hydrosoil depth inundated with 25 cm of water, and planted with Scirpus californicus. Zinc ( approximately 2 mg/liter) as ZnCl2 was amended to each wetland for 62 days. Individual wetland hydraulic retention times (HRT) were approximately 24 h. Total recoverable zinc was measured daily in microcosm inflow and outflows, and zinc concentrations in hydrosoil and S. californicus tissue were measured pre- and post-treatment. Ceriodaphnia dubia and Pimephales promelas7-day aqueous toxicity tests were performed on wetland inflows and outflows, and Hyalella azteca whole sediment toxicity tests (10-day) were performed pre- and post-treatment. Approximately 75% of total recoverable zinc was transferred from the water column. Toxicity decreased from inflow to outflow based on 7-day C. dubia tests, and survival of H. azteca in hydrosoil was >80%. Data illustrate the ability of integratively designed wetlands to transfer and sequester zinc from the water column while concomitantly decreasing associated toxicity. Copyright 1999 Academic Press.

  6. Climate change: Potential impacts and interactions in wetlands of the United States

    Science.gov (United States)

    Burkett, Virginia; Kusler, Jon

    2000-01-01

    Wetlands exist in a transition zone between aquatic and terrestrial environments which can be altered by subtle changes in hydrology. Twentieth century climate records show that the United States is generally experiencing a trend towards a wetter, warmer climate; some climate models suggest that his trend will continue and possibly intensify over the next 100 years. Wetlands that are most likely to be affected by these and other potential changes (e.g., sea-level rise) associated with atmospheric carbon enrichment include permafrost wetlands, coastal and estuarine wetlands, peatlands, alpine wetlands, and prairie pothote wetlands. Potential impacts range from changes in community structure to changes in ecological function, and from extirpation to enhancement. Wetlands (particularly boreal peatlands) play an important role in the global carbon cycle, generally sequestering carbon in the form of biomass, methane, dissolved organic material and organic sediment. Wetlands that are drained or partially dried can become a net source of methane and carbon dioxide to the atmosphere, serving as a positive biotic feedback to global warming. Policy options for minimizing the adverse impacts of climate change on wetland ecosystems include the reduction of current anthropogenic stresses, allowing for inland migration of coastal wetlands as sea-level rises, active management to preserve wetland hydrology, and a wide range of other management and restoration options.

  7. Assessing ecosystem carbon stocks of Indonesia's threatened wetland forests

    Science.gov (United States)

    Warren, M.; Kauffman, B.; Murdiyarso, D.; Kurnianto, S.

    2011-12-01

    Over millennia, atmospheric carbon dioxide has been sequestered and stored in Indonesia's tropical wetland forests. Waterlogged conditions impede decomposition, allowing the formation of deep organic soils. These globally significant C pools are highly vulnerable to deforestation, degradation and climate change which can potentially switch their function as C sinks to long term sources of greenhouse gas (GHG) emissions. Also at risk are critical ecosystem services which sustain millions of people and the conservation of unique biological communities. The multiple benefits derived from wetland forest conservation makes them attractive for international C offset programs such as the proposed Reduced Emissions from Deforestation and Degradation (REDD+) mechanism. Yet, ecosystem C pools and fluxes in wetland forests remain poorly quantified. Significant knowledge gaps exist regarding how land use changes impact C dynamics in tropical wetlands, and very few studies have simultaneously assessed above- and belowground ecosystem C pools in Indonesia's freshwater peat swamps and mangroves. In addition, most of what is known about Indonesia's tropical wetland forests is derived from few geographic locations where long-standing research has focused, despite their broad spatial distribution. Here we present results from an extensive survey of ecosystem C stocks across several Indonesian wetland forests. Ecosystem C stocks were measured in freshwater peat swamp forests in West Papua, Central Kalimantan, West Kalimantan, and Sumatra. Carbon storage was also measured for mangrove forests in W. Papua, W. Kalimantan, and Sumatra. One overarching goal of this research is to support the development of REDD+ for tropical wetlands by informing technical issues related to carbon measuring, monitoring, and verification (MRV) and providing baseline data about the variation of ecosystem C storage across and within several Indonesian wetland forests.

  8. A meta-analysis of coastal wetland ecosystem services in Liaoning Province, China

    Science.gov (United States)

    Sun, Baodi; Cui, Lijuan; Li, Wei; Kang, Xiaoming; Pan, Xu; Lei, Yinru

    2018-01-01

    Wetlands are impacted by economic and political initiatives, and their ecosystem services are attracting increasing public attention. It is crucial that management decisions for wetland ecosystem services quantify the economic value of the ecosystem services. In this paper, we aimed to estimate a monetary value for coastal wetland ecosystem services in Liaoning Province, China. We selected 433 observations from 85 previous coastal wetland economic evaluations (mostly in China) including detailed spatial and economic characteristics in each wetland, then used a meta-analysis scale transfer method to calculate the total value of coastal wetland ecosystem services in Liaoning Province. Our results demonstrated that, on average, the ecosystem services provided by seven different coastal wetland types were worth US40,648 per ha per year, and the total value was 28,990,439,041 in 2013. Shallow marine waters accounted for the largest proportion (83.97%). Variables with a significant positive effect on the ecosystem service values included GDP per capita, population density, distance from the wetland to the city center and the year of evaluation, while wetland size and latitude had negative relationships.

  9. Coastal Wetlands Protection Act: Case of Apalachicola-Chattahoochee-Flint (ACF River

    Directory of Open Access Journals (Sweden)

    Latif Gürkan KAYA

    2007-01-01

    Full Text Available Coastal wetlands, being important components of estuarine and coastal systems, stand for all publicly owned lands subject to the ebb and flow of the tide. They are below the watermark of ordinary high tide. The coastal wetlands contain a vital natural resource system. The coastal wetlands resource system, unless impossible, to reconstruct or rehabilitate once adversely affected by human. In the USA, the Apalachicola-Chattahoochee-Flint (ACF river states (i.e. Georgia, Alabama and Florida have variation in the structure and the function of their wetland program affecting the ACF river basins' wetlands. Although some states have no special wetlands program, they have permits and water quality certification for these areas. Some state programs affect state agencies while local government implements other programs.

  10. A Place to Call Home: Amphibian Use of Created and Restored Wetlands

    OpenAIRE

    Brown, Donald J.; Street, Garrett M.; Nairn, Robert W.; Forstner, Michael R. J.

    2012-01-01

    Loss and degradation of wetland habitats are major contributing factors to the global decline of amphibians. Creation and restoration of wetlands could be a valuable tool for increasing local amphibian species richness and abundance. We synthesized the peer-reviewed literature addressing amphibian use of created and restored wetlands, focusing on aquatic habitat, upland habitat, and wetland connectivity and configuration. Amphibian species richness or abundance at created and restored wetland...

  11. 78 FR 46813 - Safety Zone; Evening on the Bay Fireworks; Sturgeon Bay, WI

    Science.gov (United States)

    2013-08-02

    ...-AA00 Safety Zone; Evening on the Bay Fireworks; Sturgeon Bay, WI AGENCY: Coast Guard, DHS. ACTION.... This temporary safety zone will restrict vessels from a portion of Sturgeon Bay due to a fireworks... hazards associated with the fireworks display. DATES: This rule is effective from 8 p.m. until 10 p.m. on...

  12. Wetland shoreline recession in the Mississippi River Delta from petroleum oiling and cyclonic storms

    Science.gov (United States)

    Rangoonwala, Amina; Jones, Cathleen E.; Ramsey, Elijah W.

    2016-01-01

    We evaluate the relative impact of petroleum spill and storm surge on near-shore wetland loss by quantifying the lateral movement of coastal shores in upper Barataria Bay, Louisiana (USA), between June 2009 and October 2012, a study period that extends from the year prior to the Deepwater Horizon spill to 2.5 years following the spill. We document a distinctly different pattern of shoreline loss in the 2 years following the spill, both from that observed in the year prior to the spill, during which there was no major cyclonic storm, and from change related to Hurricane Isaac, which made landfall in August 2012. Shoreline erosion following oiling was far more spatially extensive and included loss in areas protected from wave-induced erosion. We conclude that petroleum exposure can substantially increase shoreline recession particularly in areas protected from storm-induced degradation and disproportionally alters small oil-exposed barrier islands relative to natural erosion.

  13. Seasonally-managed wetland footprint delineation using Landsat ETM+ satellite imagery

    Energy Technology Data Exchange (ETDEWEB)

    Quinn, Nigel W. T. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Epshtein, Olga [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Arizona State Univ., Tempe, AZ (United States). School of Sustainable Engineering and the Built Environment

    2014-01-09

    One major challenge in water resource management is the estimation of evapotranspiration losses from seasonally managed wetlands. Quantifying these losses is complicated by the dynamic nature of the wetlands' areal footprint during the periods of flood-up and drawdown. In this paper, we present a data-lean solution to this problem using an example application in the San Joaquin Basin, California. Through analysis of high-resolution Landsat Enhanced Thematic Mapper Plus (ETM+) satellite imagery, we develop a metric to better capture the extent of total flooded wetland area. The procedure is validated using year-long, continuously-logged field datasets for two wetlands within the study area. The proposed classification which uses a Landsat ETM + Band 5 (mid-IR wavelength) to Band 2 (visible green wavelength) ratio improves estimates by 30–50% relative to previous wetland delineation studies. Finally, requiring modest ancillary data, the study results provide a practical and efficient option for wetland management in data-sparse regions or un-gauged watersheds.

  14. 77 FR 38488 - Safety Zone; Alexandria Bay Chamber of Commerce, St. Lawrence River, Alexandria Bay, NY

    Science.gov (United States)

    2012-06-28

    ... 1625-AA00 Safety Zone; Alexandria Bay Chamber of Commerce, St. Lawrence River, Alexandria Bay, NY... restrict vessels from a portion of the St. Lawrence River during the Alexandria Bay Chamber of Commerce... of proposed rulemaking (NPRM) entitled Safety Zone; Alexandria Bay Chamber of Commerce, St. Lawrence...

  15. 398 ASSESSMENT OF WETLAND VALUATION PROCESSES FOR ...

    African Journals Online (AJOL)

    Osondu

    This study therefore examined the processes involved in the valuation of wetland resources for ... of the subsistence uses of wetland resources are also not ... hydrological cycle, playing a key role in the provision ..... Management Strategies at the River Basin Scale. A ... Using. GIS: A Thesis Submitted to the Graduate Faculty.

  16. Hydrology of prairie wetlands: Understanding the integrated surface-water and groundwater processes

    Science.gov (United States)

    Hayashi, Masaki; van der Kamp, Garth; Rosenberry, Donald O.

    2016-01-01

    Wetland managers and policy makers need to make decisions based on a sound scientific understanding of hydrological and ecological functions of wetlands. This article presents an overview of the hydrology of prairie wetlands intended for managers, policy makers, and researchers new to this field (e.g., graduate students), and a quantitative conceptual framework for understanding the hydrological functions of prairie wetlands and their responses to changes in climate and land use. The existence of prairie wetlands in the semi-arid environment of the Prairie-Pothole Region (PPR) depends on the lateral inputs of runoff water from their catchments because mean annual potential evaporation exceeds precipitation in the PPR. Therefore, it is critically important to consider wetlands and catchments as highly integrated hydrological units. The water balance of individual wetlands is strongly influenced by runoff from the catchment and the exchange of groundwater between the central pond and its moist margin. Land-use practices in the catchment have a sensitive effect on runoff and hence the water balance. Surface and subsurface storage and connectivity among individual wetlands controls the diversity of pond permanence within a wetland complex, resulting in a variety of eco-hydrological functionalities necessary for maintaining the integrity of prairie-wetland ecosystems.

  17. Mapping of Geographically Isolated Wetlands of Western Siberia Using High Resolution Space Images

    Science.gov (United States)

    Dyukarev, E.; Pologova, N.; Dyukarev, A.; Lane, C.; Autrey, B. C.

    2014-12-01

    Using the remote sensing data for integrated study of natural objects is actual for investigation of difficult to access areas of West Siberia. The research of this study focuses on determining the extent and spectral signatures of isolated wetlands within Ob-Tom Interfluve area using Landsat and Quickbird space images. High-resolution space images were carefully examined and wetlands were manually delineated. Wetlands have clear visible signs at the high resolution space images. 567 wetlands were recognized as isolated wetlands with the area about 10 000 ha (of 2.5% of the study area). Isolated wetlands with area less 2 ha are the most frequent. Half of the total amount of wetlands has area less than 6.4 ha. The largest isolated wetland occupies 797 ha, and only 5% have area more than 50 ha. The Landsat 7 ETM+ data were used for analysis of vegetation structure and spectral characteristics of wetlands. The masked isolated wetlands image was classified into 12 land cover classes using ISODATA unsupervised classification. The attribution of unsupervised classification results allowed us to clearly recognize 7 types of wetlands: tall, low and sparse ryams (Pine-Shrub-Sphagnum community), open wetlands with shrub, moss or sedge cover, and open water objects. Analysis of spectral profiles for all classes has shown that Landsat spectral bands 4 and 5 have higher variability. These bands allow to separate wetland classed definitely. Accuracy assessment of isolated wetland map shows a good agreement with expert field data. The work was supported by grants ISTC № 4079.

  18. Addressing the Multiple Drivers of Wetland Ecosystems Degradation in Lagos, Nigeria

    Science.gov (United States)

    Agboola, J.; Ndimele, P. E.; Odunuga, S.; Akanni, A.; Kosemani, B.; Ahove, M.

    2015-12-01

    Several body of knowledge have noted the importance of wetland ecosystems in climate moderation, resource supply and flood risk reduction amongst others. Relevant as it may, rapidly increasing population and uncontrolled urban development poses a challenge in some regions and require understanding of the ecosystem components and drivers of change over a long period of time. Thus, the main thrust of this paper is to analyse multiple drivers of wetland ecosystems degradation in the last 30 years in the Lagos megacity using field study, desktop review, satellite data and laboratory analysis. Key drivers identified includes: conversion of wetlands to settlements and waste sink, land use planning that neglects wetland conservation and restoration, ineffective legal status for wetlands, over exploitation leading to degradation and fragmentation of wetland ecosystems governance. In stemming further loss of this vital ecosystem, this study adopted and proposed respectively, the Drivers, Pressure, State, Impact and Response (DPSIR) and Integrated Planning Approach (IPA) frameworks in analysing policy and governance issues in wetland development. These analyses figured out amongst others, strict conservation and sustainable use of wetland resources, habitat restoration, climate adaptation measures, legal protection and wetland management institution as major responses to current multiple pressures facing wetland ecosystems in Lagos. For these frameworks to be made meaningful, weak coordination among government agencies and institutional capacity in implementation and law enforcement, unsustainable resource extraction by private/business organization and issues on alternative sources of income on the part of the local communities amongst others needs to be addressed.

  19. Methylmercury in water, sediment, and invertebrates in created wetlands of Rouge Park, Toronto, Canada

    International Nuclear Information System (INIS)

    Sinclair, Kathleen A.; Xie Qun; Mitchell, Carl P.J.

    2012-01-01

    Thousands of hectares of wetlands are created annually because wetlands provide beneficial ecosystem services. Wetlands are also key sites for production of the bioaccumulative neurotoxin methylmercury (MeHg), but little is known about MeHg production in created systems. Here, we studied methylmercury in sediment, water, and invertebrates in created wetlands of various ages. Sediment MeHg reached 8 ng g −1 in the newest wetland, which was significantly greater than in natural, control wetlands. This trend was mirrored in several invertebrate taxa, whose concentrations reached as high as 1.6 μg g −1 in the newest wetland, above levels thought to affect reproduction in birds. The MeHg concentrations in created wetland invertebrate taxa generally decreased with increasing wetland age, possibly due to a combination of deeper anoxia and less organic matter accumulation in younger wetlands. A short-term management intervention and/or improved engineering design may be necessary to reduce the mercury-associated risk in newly created wetlands. - Highlights: ► Investigated methylmercury accumulation in created wetland ecosystems. ► Concentrations and bioaccumulation significantly elevated in new created wetlands. ► Short-term effect may be due to deeper anoxia, less organic matter in new wetlands. ► Intervention or improved design required to reduce short-term ecological risk. - Sediment methylmercury concentrations and bioaccumulation in many invertebrate taxa are significantly elevated in newly created wetlands.

  20. Alfred pilot wetland to treat municipal lagoon effluent - case study

    International Nuclear Information System (INIS)

    Crolla, A.; Kinsley, C.

    2002-01-01

    A constructed wetland demonstration system has been built to polish the municipal lagoon effluent from the village of Alfred. The treatment lagoons have an annual discharge in the spring and have currently reached maximum capacity; inhibiting further population growth or expansion of the local agri-food industries. The demonstration wetland system is designed to treat 15% of the municipal lagoon influent, that is, 155 m 3 /day or 23,250 m 3 /year. A three year monitoring program (2000-2002) was put in place to evaluate the wetland as a cost effective means to treat municipal lagoon wastewater for the village of Alfred. The 2000 and 2001 monitoring seasons have been completed, and the 2002 monitoring season will operate between June and October 2002. At the completion of the three year monitoring program the Alfred wetland system will be evaluated for its ability to polish the municipal lagoon effluent to meet the Spring/Summer/Fall discharge criteria, set by the Ontario Ministry of the Environment (MOE), for the receiving water body (Azatica Brook). As phosphorus is the most difficult element to remove down to MOE guidelines, the Alfred research wetland includes slag phosphorus adsorption filters and a vegetated filter as phosphorus polishing systems. Once the wetland system is approved by the MOE, the village of Alfred will be able to increase its capacity for municipal wastewater treatment. Constructed wetlands are still considered innovative systems in Ontario and government ministries (MOE, OMAFRA) are insisting upon 3-4 years of monitoring data for each constructed wetland system established. There is a clear need for monitoring data to be gathered on established systems, and for this data to be evaluated with the goal of developing reliable design guidelines. Ultimately this should result in having constructed wetlands recognised as viable wastewater treatment options in Ontario. With fewer grant programs for rural municipalities, cost effective systems such

  1. Improved Mapping of Riparian Wetlands Using Reach Topography

    Science.gov (United States)

    Riparian wetlands provide a suite of ecosystems services including floodwater retention, biogeochemical processing, and habitat provisioning. However in one mid-Atlantic watershed the National Wetlands Inventory was shown to underrepresent these systems by greater than 50%. These...

  2. Tree establishment in response to hydrology at IDOT wetland mitigation sites.

    Science.gov (United States)

    2015-02-01

    The Illinois Department of Transportation (IDOT) has compensated for unavoidable impacts to wetlands in transportation : project corridors by restoring and creating wetlands throughout Illinois. As part of the IDOT Wetlands Program, monitoring : of p...

  3. Vegetation of natural and artificial shorelines in Upper Klamath Basin’s fringe wetlands

    Science.gov (United States)

    Ray, Andrew M.; Irvine, Kathryn M.; Hamilton, Andy S.

    2013-01-01

    The Upper Klamath Basin (UKB) in northern California and southern Oregon supports large hypereutrophic lakes surrounded by natural and artificial shorelines. Lake shorelines contain fringe wetlands that provide key ecological services to the people of this region. These wetlands also provide a context for drawing inferences about how differing wetland types and wave exposure contribute to the vegetative assemblages in lake-fringe wetlands. Here, we summarize how elevation profiles and vegetation richness vary as a function of wave exposure and wetland type. Our results show that levee wetland shorelines are 4X steeper and support fewer species than other wetland types. We also summarize the occurrence probability of the five common wetland plant species that represent the overwhelming majority of the diversity of these wetlands. In brief, the occurrence probability of the culturally significant Nuphar lutea spp. polysepala and the invasive Phalaris arundinacea in wave exposed and sheltered sites varies based on wetland type. The occurrence probability for P. arundinacea was greatest in exposed portions of deltaic shorelines, but these trends were reversed on levees where the occurrence probability was greater in sheltered sites. The widespread Schoenoplectus acutus var. acutus occurred throughout all wetland and exposure type combinations but had a higher probability of occurrence in wave exposed sites. Results from this work will add to our current understanding of how wetland shoreline profiles interact with wave exposure to influence the occurrence probability of the dominant vegetative species in UKB’s shoreline wetlands.

  4. Management practices and controls on methane emissions from sub-tropical wetlands

    Science.gov (United States)

    DeLucia, Nicholas; Casa-Nova Gomez, Nuri; Bernacchi, Carl

    2015-04-01

    It is well documented that green house gas concentrations have risen at unequivocal rates since the industrial revolution but the disparity between anthropogenic sources and natural sources is uncertain. Wetlands are one example of a natural ecosystem that can be a substantial source or sink for methane (CH4) depending on any combination of climate conditions, natural and anthropogenic disturbances, or ecosystem perturbations. Due to strict anaerobic conditions required for CH4-generating microorganisms, natural wetlands are the main source for biogenic CH4. Although wetlands occupy less than 5% of total land surface area, they contribute approximately 20% of total CH4 emissions to the atmosphere. CH4 is one of the most damaging green house gases with current emission estimates ranging from 55 to 231 Tg CH4 yr-1. The processes regulating CH4 emissions are sensitive to land use and management practices of areas surrounding wetlands. Variation in adjacent vegetation or grazing intensity by livestock can, for example, alter CH4 fluxes from wetland soils by altering nutrient balance, carbon inputs and hydrology. Therefore, understanding how these changes will affect wetland source strength is essential to understand the impact of wetland management practices on the global climate system. In this study we quantify wetland methane fluxes from subtropical wetlands on a working cattle ranch in central Florida near Okeechobee Lake (27o10'52.04"N, 81o21'8.56"W). To determine differences in CH4 fluxes associated with land use and management, a replicated (n = 4) full factorial experiment was designed for wetlands where the surrounding vegetation was (1) grazed or un-grazed and (2) composed of native vegetation or improved pasture. Net exchange of CH4 and CO2 between the land surface and the atmosphere were sampled with a LICOR Li-7700 open path CH4 analyzer and Li-7500A open path CO2/H20 analyzer mounted in a 1-m3 static gas-exchange chamber. Our results showed and verified

  5. Quantification and Controls of Wetland Greenhouse Gas Emissions

    Energy Technology Data Exchange (ETDEWEB)

    McNicol, Gavin [Univ. of California, Berkeley, CA (United States)

    2016-05-10

    Wetlands cover only a small fraction of the Earth’s land surface, but have a disproportionately large influence on global climate. Low oxygen conditions in wetland soils slows down decomposition, leading to net carbon dioxide sequestration over long timescales, while also favoring the production of redox sensitive gases such as nitrous oxide and methane. Freshwater marshes in particular sustain large exchanges of greenhouse gases under temperate or tropical climates and favorable nutrient regimes, yet have rarely been studied, leading to poor constraints on the magnitude of marsh gas sources, and the biogeochemical drivers of flux variability. The Sacramento-San Joaquin Delta in California was once a great expanse of tidal and freshwater marshes but underwent drainage for agriculture during the last two centuries. The resulting landscape is unsustainable with extreme rates of land subsidence and oxidation of peat soils lowering the surface elevation of much of the Delta below sea level. Wetland restoration has been proposed as a means to slow further subsidence and rebuild peat however the balance of greenhouse gas exchange in these novel ecosystems is still poorly described. In this dissertation I first explore oxygen availability as a control on the composition and magnitude of greenhouse gas emissions from drained wetland soils. In two separate experiments I quantify both the temporal dynamics of greenhouse gas emission and the kinetic sensitivity of gas production to a wide range of oxygen concentrations. This work demonstrated the very high sensitivity of carbon dioxide, methane, and nitrous oxide production to oxygen availability, in carbon rich wetland soils. I also found the temporal dynamics of gas production to follow a sequence predicted by thermodynamics and observed spatially in other soil or sediment systems. In the latter part of my dissertation I conduct two field studies to quantify greenhouse gas exchange and understand the carbon sources for

  6. Soil color indicates carbon and wetlands: developing a color-proxy for soil organic carbon and wetland boundaries on sandy coastal plains in South Africa.

    Science.gov (United States)

    Pretorius, M L; Van Huyssteen, C W; Brown, L R

    2017-10-13

    A relationship between soil organic carbon and soil color is acknowledged-albeit not a direct one. Since heightened carbon contents can be an indicator of wetlands, a quantifiable relationship between color and carbon might assist in determining wetland boundaries by rapid, field-based appraisal. The overarching aim of this initial study was to determine the potential of top soil color to indicate soil organic carbon, and by extension wetland boundaries, on a sandy coastal plain in South Africa. Data were collected from four wetland types in northern KwaZulu-Natal in South Africa. Soil samples were taken to a depth of 300 mm in three transects in each wetland type and analyzed for soil organic carbon. The matrix color was described using a Munsell soil color chart. Various color indices were correlated with soil organic carbon. The relationship between color and carbon were further elucidated using segmented quantile regression. This showed that potentially maximal carbon contents will occur at values of low color indices, and predictably minimal carbon contents will occur at values of low or high color indices. Threshold values can thus be used to make deductions such as "when the sum of dry and wet Value and Chroma values is 9 or more, carbon content will be 4.79% and less." These threshold values can then be used to differentiate between wetland and non-wetland sites with a 70 to 100% certainty. This study successfully developed a quantifiable correlation between color and carbon and showed that wetland boundaries can be determined based thereon.

  7. A Regional Guidebook for Applying the Hydrogeomorphic Approach to Assessing Wetland Functions of Low-Gradient, Blackwater Riverine Wetlands in Peninsular Florida

    National Research Council Canada - National Science Library

    Uranowski, Christina

    2003-01-01

    The Hydrogeomorphic (HGM) Approach is a collection of concepts and methods for developing functional indices and subsequently using them to assess the capacity of a wetland to perform functions relative to similar wetlands in a region...

  8. The ecological value of constructed wetlands for treating urban runoff.

    Science.gov (United States)

    Pankratz, S; Young, T; Cuevas-Arellano-, H; Kumar, R; Ambrose, R F; Suffet, I H

    2007-01-01

    The Sweetwater Authority's urban runoff diversion system (URDS) comprises constructed wetlands on a hillside between the town of Spring Valley and the Sweetwater Reservoir, California, USA. The URDS were designed to divert dry-weather and first-flush urban runoff flows from the Sweetwater reservoir. However, these constructed wetlands have developed into ecologically valuable habitat. This paper evaluates the following ecological questions related to the URDS: (1) the natural development of the species present and their growth pattern; (2) the biodiversity and pollutant stress on the plants and invertebrates; and (3) the question of habitat provided for endangered species. The URDS wetlands are comprised primarily of rush (Scirpus spp.) and cattails (Typha spp.). This vegetative cover ranged from 39-78% of the area of the individual wetland ponds. Current analyses of plant tissues and wetland sediment indicates the importance of sediment sorption for metals and plant uptake of nutrients. Analyses of URDS water following runoff events show the URDS wetlands do reduce the amount of nutrients and metals in the water column. Invertebrate surveys of the wetland ponds revealed lower habitat quality and environmental stress compared to unpolluted natural habitat. The value of the wetlands as wildlife habitat is constrained by low plant biodiversity and pollution stress from the runoff. Since the primary Sweetwater Authority goal is to maintain good water quality for drinking, any secondary utilization of URDS habitat by species (endangered or otherwise) is deemed an added benefit.

  9. Spatial variability of coastal wetland resilience to sea-level rise using Bayesian inference

    Science.gov (United States)

    Hardy, T.; Wu, W.

    2017-12-01

    The coastal wetlands in the Northern Gulf of Mexico (NGOM) account for 40% of coastal wetland area in the United States and provide various ecosystem services to the region and broader areas. Increasing rates of relative sea-level rise (RSLR), and reduced sediment input have increased coastal wetland loss in the NGOM, accounting for 80% of coastal wetland loss in the nation. Traditional models for predicting the impact of RSLR on coastal wetlands in the NGOM have focused on coastal erosion driven by geophysical variables only, and/or at small spatial extents. Here we developed a model in Bayesian inference to make probabilistic prediction of wetland loss in the entire NGOM as a function of vegetation productivity and geophysical attributes. We also studied how restoration efforts help maintain the area of coastal wetlands. Vegetation productivity contributes organic matter to wetland sedimentation and was approximated using the remotely sensed normalized difference moisture index (NDMI). The geophysical variables include RSLR, tidal range, river discharge, coastal slope, and wave height. We found a significantly positive relation between wetland loss and RSLR, which varied significantly at different river discharge regimes. There also existed a significantly negative relation between wetland loss and NDMI, indicating that in-situ vegetation productivity contributed to wetland resilience to RSLR. This relation did not vary significantly between river discharge regimes. The spatial relation revealed three areas of high RSLR but relatively low wetland loss; these areas were associated with wetland restoration projects in coastal Louisiana. Two projects were breakwater projects, where hard materials were placed off-shore to reduce wave action and promote sedimentation. And one project was a vegetation planting project used to promote sedimentation and wetland stabilization. We further developed an interactive web tool that allows stakeholders to develop similar wetland

  10. [Impact on nitrogen and phosphorous export of wetlands in Tianmu Lake watershed].

    Science.gov (United States)

    Li, Zhao-Fu; Liu, Hong-Yu; Li, Heng-Peng

    2012-11-01

    Focused on understanding the function of wetland in improving water quality, Pingqiao watershed and Zhongtian watershed in Tianmu Lake drinking water sources area were selected as the research region. We integrated remote sensing, GIS techniques with field investigation and chemical analysis to analyze the relationship between wetland and water quality in watershed scale. Results show: (1) There are many wetland patches in Pingqiao and Zhongtian watershed, wetlands patch densities were respectively 7.5 km(-2) and 7.1 km(-2). Wetlands widely distributed in the Pingqiao watershed with mostly located away from the river of 500 m, whereas wetlands relatively concentrated in the lower reach within 500 meters of riverside in Zhongtian watershed. (2) Nitrogen and phosphorus nutrient retention of wetland in watershed scale was significant. The annual mean TN and DTN concentration had a strong relationship with percent area of wetlands in Zhongtian watershed while the weakest relationship was found with TP and DTP concentrations, especially, the mean TN and DTN concentrations in spring and winter had the significantly negative relationship with wetland areas of watershed. The negative relationship was existed for nitrogen in autumn of Pingqiao watershed, which suggested that watersheds varying in area of wetlands have the different nutrient reducing efficiency in seasonal periods. (3) A certain number and area of wetland will improve river water quality in watershed scale, which can instruct water environment treatment. However, considering the complexity of nutrient transport processes in watershed, wetland-related factors such as area, location, density, ecosystem structure and watershed-related factors such as temporal interval, spatial scales, slope and land use will impact on the transport processes, and related theoretical and practical problems need further research.

  11. A network model framework for prioritizing wetland conservation in the Great Plains

    Science.gov (United States)

    Albanese, Gene; Haukos, David A.

    2017-01-01

    ContextPlaya wetlands are the primary habitat for numerous wetland-dependent species in the Southern Great Plains of North America. Plant and wildlife populations that inhabit these wetlands are reciprocally linked through the dispersal of individuals, propagules and ultimately genes among local populations.ObjectiveTo develop and implement a framework using network models for conceptualizing, representing and analyzing potential biological flows among 48,981 spatially discrete playa wetlands in the Southern Great Plains.MethodsWe examined changes in connectivity patterns and assessed the relative importance of wetlands to maintaining these patterns by targeting wetlands for removal based on network centrality metrics weighted by estimates of habitat quality and probability of inundation.ResultsWe identified several distinct, broad-scale sub networks and phase transitions among playa wetlands in the Southern Plains. In particular, for organisms that can disperse >2 km a dense and expansive wetland sub network emerges in the Southern High Plains. This network was characterized by localized, densely connected wetland clusters at link distances (h) >2 km but <5 km and was most sensitive to changes in wetland availability (p) and configuration when h = 4 km, and p = 0.2–0.4. It transitioned to a single, large connected wetland system at broader spatial scales even when the proportion of inundated wetland was relatively low (p = 0.2).ConclusionsOur findings suggest that redundancy in the potential for broad and fine-scale movements insulates this system from damage and facilitates system-wide connectivity among populations with different dispersal capacities.

  12. Description of floodplains and wetlands, Deaf Smith County site, Texas

    International Nuclear Information System (INIS)

    1986-11-01

    Floodplains and wetlands are important features of the Texas Panhandle landscape, and are found on the Deaf Smith County site and in its vicinity. Use or disturbance of floodplains and wetlands in relation to the Civilian Radioactive Waste Management Program is subject to environmental review requirements implementing two Executive Orders. This report provides general information on playa wetlands in the Texas Panhandle, and describes and maps floodplains and wetlands on the Deaf Smith site and in its vicinity. The report is based on the published literature, with information from limited field reconnaissance included

  13. China's coastal wetlands: conservation history, implementation efforts, existing issues and strategies for future improvement.

    Science.gov (United States)

    Sun, Zhigao; Sun, Wenguang; Tong, Chuan; Zeng, Congsheng; Yu, Xiang; Mou, Xiaojie

    2015-06-01

    China has approximately 5.80×10(6)ha coastal wetlands by 2014, accounting for 10.82% of the total area of natural wetlands. Healthy coastal wetland ecosystems play an important role in guaranteeing the territory ecological security and the sustainable development of coastal zone in China. In this paper, the natural geography and the past and present status of China's coastal wetlands were introduced and the five stages (1950s-1970s, 1980s-1991, 1992-2002, 2003-2010 and 2011-present) of China's coastal wetlands conservation from the foundation of the People's Republic in 1949 to present were distinguished and reviewed. Over the past decades, China has made great efforts in coastal wetland conservation, as signified by the implementation of coastal wetland restoration projects, the construction of coastal wetland nature reserves, the practice of routine ecological monitoring and two national wetland surveys, the promulgation of local wetland conservation statutes and specific regulations, the coordination mechanism to enhance management capacity, the wide development of coastal wetland research and public participation, and the extensive communication to strengthen international cooperation. Nonetheless, six major issues recently emerged in China's coastal wetland conservation are evidently existed, including the increasing threats of pollution and human activities, the increasing adverse effects of threaten factors on ecosystem function, the increasing threats of coastal erosion and sea-level rising, the insufficient funding for coastal wetlands conservation, the imperfect legal and management system for coastal wetlands, and the insufficient education, research and international cooperation. Although the threats and pressures on coastal wetlands conservation are still apparent, the future of China's coastal wetlands looks promising since the Chinese government understands that the sustainable development in coastal zone requires new attitudes, sound policies and

  14. Federal wetlands law: the cases and the problems

    Energy Technology Data Exchange (ETDEWEB)

    Want, W.L.

    1984-01-01

    Like environmental statutes generally, wetlands laws have engendered much litigation, accompanied by the judicial establishment of general legal doctrine. The Supreme Court has ruled on questions of taking and private rights of action. Lower courts have decided issues of strict liability, estoppel, ripeness, injunction requirements, and hearing rights. This article surveys federal wetlands cases, presenting the issues litigated and the principles established. The author concludes with the hope that the administration's and environmentalists' disagreement on whether wetlands regulation is excessive will not end in a sacrifice of this important resource. 487 references.

  15. Hydrological disturbance diminishes predator control in wetlands.

    Science.gov (United States)

    Dorn, Nathan J; Cook, Mark I

    2015-11-01

    Effects of predators on prey populations can be especially strong in aquatic ecosystems, but disturbances may mediate the strength of predator limitation and even allow outbreaks of some prey populations. In a two-year study we investigated the numerical responses of crayfish (Procambarus fallax) and small fishes (Poeciliidae and Fundulidae) to a brief hydrological disturbance in replicated freshwater wetlands with an experimental drying and large predatory fish reduction. The experiment and an in situ predation assay tested the component of the consumer stress model positing that disturbances release prey from predator limitation. In the disturbed wetlands, abundances of large predatory fish were seasonally reduced, similar to dynamics in the Everglades (southern Florida). Densities of small fish were unaffected by the disturbance, but crayfish densities, which were similar across all wetlands before drying, increased almost threefold in the year after the disturbance. Upon re-flooding, juvenile crayfish survival was inversely related to the abundance of large fish across wetlands, but we found no evidence for enhanced algal food quality. At a larger landscape scale (500 km2 of the Everglades), crayfish densities over eight years were positively correlated with the severity of local dry disturbances (up to 99 days dry) during the preceding dry season. In contrast, densities of small-bodied fishes in the same wetlands were seasonally depressed by dry disturbances. The results from our experimental wetland drought and the observations of crayfish densities in the Everglades represent a large-scale example of prey population release following a hydrological disturbance in a freshwater ecosystem. The conditions producing crayfish pulses in the Everglades appear consistent with the mechanics of the consumer stress model, and we suggest crayfish pulses may influence the number of nesting wading birds in the Everglades.

  16. Microbiology of wetlands

    NARCIS (Netherlands)

    Bodelier, P.L.E.; Dedysh, S.N.

    2013-01-01

    Watersaturated soil and sediment ecosystems (i.e. wetlands) are ecologically as well as economically important systems due to their high productivity, their nutrient (re)cycling capacities and their prominent contribution to global greenhouse gas emissions. Being on the transition between

  17. Balancing carbon sequestration and GHG emissions in a constructed wetland

    NARCIS (Netherlands)

    Klein, de J.J.M.; Werf, van der A.K.

    2014-01-01

    In many countries wetlands are constructed or restored for removing nutrients from surface water. At the same time vegetated wetlands can act as carbon sinks when CO2 is sequestered in biomass. However, it is well known that wetlands also produce substantial amounts of greenhouse gasses CH4 and N2O.

  18. SWS European Chapter Meeting on wetland restoration-Challenges and opportunities

    DEFF Research Database (Denmark)

    Hoffmann, Carl Christian; Brix, Hans; Kronvang, Brian B.

    2014-01-01

    1. Introduction Wetland loss and degradation in Europe have been extreme andare still ongoing. By way of example, at least two-thirds of all shal-low lakes, bogs and wet meadows have been lost in Denmark since1784. The challenge for wetland scientists in Europe is to reversethe loss of wetlands a...

  19. Biogeochemical Hotspots: Small Geographically Isolated Wetlands and their Impacts at the Landscape Scale

    Science.gov (United States)

    Basu, N. B.

    2017-12-01

    Wetlands provide a wide variety of ecosystem services, including retention of sediment and nutrients, and subsequent improvements in downstream water quality. In fact, a recent review suggests that 64% of reactive nitrogen (N) retention in US freshwater systems occurs in wetlands, while 28% occurs in lakes and reservoirs, and only 8% occurs in streams and rivers. Although the processes controlling nutrient retention in wetlands are well known, there is a lack of quantitative understanding of the relative nutrient filtering abilities of wetlands of various sizes, and in various landscape positions. Our inability to recognize the value of wetlands has led to their dramatic loss in the last few decades. Specifically, there has been an increased loss of geographically isolated wetlands, small upland wetlands that receive fewer legal protections due to their apparent isolation from jurisdictional waters. In this study, we use a meta-analyses approach to quantify the role of small wetlands in landscape scale nutrient processing. We synthesized data from 600 lentic systems around the world to gain insight into the relationship between hydrologic and biogeochemical controls on nutrient retention. Our results indicate that the first-order reaction rate constant k(T-1), is inversely proportional to the residence time, across 6 orders of magnitude in residence time for total N, total P, nitrate, and phosphate. We used a sediment-water model to show how nutrient removal processes are impacted by system size. Finally, the k-residence time relationships were upscaled to the landscape scale using a wetland size-frequency distribution. Results suggest that small wetlands play a disproportionately large role in landscape-scale nutrient processing—50% of nitrogen removal occurs in wetlands smaller than 10^2.5 m2 in our example. Thus, given the same loss in wetland area, the nutrient retention potential lost is greater when smaller wetlands are preferentially lost from the

  20. Wetlands and ski resorts in the French Alps: main issues and innovative ideas for the preservation of wetlands in ski areas

    Science.gov (United States)

    Gaucherand, S.; Evette, A.; François, H.; Paccard, P.; Perretier, C.; Wlerick, L.

    2009-04-01

    This presentation is a synthesis of a symposium held last October in Cemagref, Grenoble with contributions from scientists as well as lift operators, NGO's, and administrations. In the context of global change, ski resorts must rethink their development models. The diversification of the touristic offer is encouraged and the specificity of the mountain territory is at the heart of a sustainable development. In this context, the preservation of interesting and fragile habitats such as wetlands is topical. Wetlands have many recognized functions: flooding reduction, water remediation, fertilization, biodiversity conservation… In mountain areas, wetlands are small and scattered. They are of special interest in particular for their role in biodiversity conservation and for their cultural and recreational benefits. However, in ski areas, wetlands can interact with the ski activity. Indeed, wetlands can speed up snow melting in spring and they often occupy ledges, which are strategic positions for the establishment of ski resort's facilities. The development of ski resorts can lead to the destruction or the deterioration of wetlands because of hydrologic interferences, fill in, pollution, etc. However, a few judicious steps can be taken to reduce or suppress these negative effects. In the Alps, geographical and administrative tools have been developed to help the decisions of ski-resort's administrators. Meetings between lift-operators, administrators of protected areas scientists and NGO's have also proved efficient when done at an early stage of a project, as shown by the example of the ski-resort "Les Saisies".

  1. Wetland Surface Water Processes

    National Research Council Canada - National Science Library

    1993-01-01

    .... Temporary storage includes channel, overbank, basin, and groundwater storage. Water is removed from the wetland through evaporation, plant transpiration, channel, overland and tidal flow, and groundwater recharge...

  2. Driving forces behind the construction of an eco-compensation mechanism for wetlands in China

    Science.gov (United States)

    Wang, Changhai

    2016-09-01

    This research revealed important driving forces behind the construction of an eco-compensation mechanism for wetlands (DFEMW) in China. Using China's provincial panel data from 1978 to 2008, a fixed-effects model was used to analyze the impacts of agricultural production systems on wetlands. We identified three DFEMW as follows: the change of wetland resources and protection measures in China; declaration and implementation of the provincial Wetland Protection Ordinance; and wetland degradation by agricultural production systems, which necessitated the establishment of a wetland eco-compensation mechanism. In addition to the DFEMW, a significant positive correlation between wetland area and both rural population and gross agricultural production was identified, in addition to a negative correlation with chemical fertilizer usage, reservoir storage capacity, and irrigation area. The underlying reasons for the serious degradation and inadequate protection of wetlands were market failure and government failure; these were the driving forces behind the need to establish a wetland eco-compensation mechanism. From a governmental perspective, it has been difficult to rectify market failures in resource distribution and thus to prevent wetland degradation. Factors include conflicts of interest, lack of investment, effective special laws, a simple means to protect wetlands, and a multidisciplinary management system. Therefore, the key factor is the coordination of interest relationships between those who utilize wetlands and those who seek to minimize wetland degradation and effectively protect wetlands.

  3. Balancing Methane Emissions and Carbon Sequestration in Tropical/Subtropical Coastal Wetlands: A Review

    Science.gov (United States)

    Mitsch, W. J.; Schafer, K. V.; Cabezas, A.; Bernal, B.

    2016-02-01

    Wetlands are estimated to emit about 20 to 25 percent of current global CH4 emissions, or about 120 to 180 Tg-CH4 yr-1. Thus, in climate change discussions concerning wetlands, these "natural emissions" often receive the most attention, often overshadowing the more important ecosystem services that wetlands provide, including carbon sequestration. While methane emissions from coastal wetlands have generally been described as small due to competing biogeochemical cycles, disturbance of coastal wetlands, e.g., the introduction of excessive freshwater fluxes or substrate disturbance, can lead to much higher methane emission rates. Carbon sequestration is a more positive carbon story about wetlands and coastal wetlands in particular. The rates of carbon sequestration in tropical/subtropical coastal wetlands, mainly mangroves, are in the range of 100 to 200 g-C m-2 yr-1, two to ten times higher rates than in the more frequently studied northern peatlands. This function of coastal wetlands has significant international support now for mangrove conservation and it is referred to in the literature and popular press as blue carbon. This presentation will summarize what we know about methane emissions and carbon sequestration in tropical/subtropical coastal wetlands, how these rates compare with those in non-tropical and/or inland wetlands, and a demonstration of two or three models that compare methane fluxes with carbon dioxide sequestration to determine if wetlands are net sinks of radiative forcing. The presentation will also present a global model of carbon with an emphasis on wetlands.

  4. Groundwater connectivity of upland-embedded wetlands in the Prairie Pothole Region

    Science.gov (United States)

    Neff, Brian; Rosenberry, Donald O.

    2018-01-01

    Groundwater connections from upland-embedded wetlands to downstream waterbodies remain poorly understood. In principle, water from upland-embedded wetlands situated high in a landscape should flow via groundwater to waterbodies situated lower in the landscape. However, the degree of groundwater connectivity varies across systems due to factors such as geologic setting, hydrologic conditions, and topography. We use numerical models to evaluate the conditions suitable for groundwater connectivity between upland-embedded wetlands and downstream waterbodies in the prairie pothole region of North Dakota (USA). Results show groundwater connectivity between upland-embedded wetlands and other waterbodies is restricted when these wetlands are surrounded by a mounding water table. However, connectivity exists among adjacent upland-embedded wetlands where water–table mounds do not form. In addition, the presence of sand layers greatly facilitates groundwater connectivity of upland-embedded wetlands. Anisotropy can facilitate connectivity via groundwater flow, but only if it becomes unrealistically large. These findings help consolidate previously divergent views on the significance of local and regional groundwater flow in the prairie pothole region.

  5. Mitigation of two pyrethroid insecticides in a Mississippi Delta constructed wetland

    Energy Technology Data Exchange (ETDEWEB)

    Moore, M.T. [USDA Agricultural Research Service National Sedimentation Laboratory, Water Quality and Ecology Research Unit, PO Box 1157, 598 McElroy Drive, Oxford, MS 38655 (United States)], E-mail: matt.moore@ars.usda.gov; Cooper, C.M.; Smith, S.; Cullum, R.F.; Knight, S.S.; Locke, M.A.; Bennett, E.R. [USDA Agricultural Research Service National Sedimentation Laboratory, Water Quality and Ecology Research Unit, PO Box 1157, 598 McElroy Drive, Oxford, MS 38655 (United States)

    2009-01-15

    Constructed wetlands are a suggested best management practice to help mitigate agricultural runoff before entering receiving aquatic ecosystems. A constructed wetland system (180 m x 30 m), comprising a sediment retention basin and two treatment cells, was used to determine the fate and transport of simulated runoff containing the pyrethroid insecticides lambda-cyhalothrin and cyfluthrin, as well as suspended sediment. Wetland water, sediment, and plant samples were collected spatially and temporally over 55 d. Results showed 49 and 76% of the study's measured lambda-cyhalothrin and cyfluthrin masses were associated with vegetation, respectively. Based on conservative effects concentrations for invertebrates and regression analyses of maximum observed wetland aqueous concentrations, a wetland length of 215 m x 30 m width would be required to adequately mitigate 1% pesticide runoff from a 14 ha contributing area. Results of this experiment can be used to model future design specifications for constructed wetland mitigation of pyrethroid insecticides. - A wetland length of 215 m x 30 m mitigated pyrethroid runoff from a 14 ha field.

  6. Mitigation of two pyrethroid insecticides in a Mississippi Delta constructed wetland

    International Nuclear Information System (INIS)

    Moore, M.T.; Cooper, C.M.; Smith, S.; Cullum, R.F.; Knight, S.S.; Locke, M.A.; Bennett, E.R.

    2009-01-01

    Constructed wetlands are a suggested best management practice to help mitigate agricultural runoff before entering receiving aquatic ecosystems. A constructed wetland system (180 m x 30 m), comprising a sediment retention basin and two treatment cells, was used to determine the fate and transport of simulated runoff containing the pyrethroid insecticides lambda-cyhalothrin and cyfluthrin, as well as suspended sediment. Wetland water, sediment, and plant samples were collected spatially and temporally over 55 d. Results showed 49 and 76% of the study's measured lambda-cyhalothrin and cyfluthrin masses were associated with vegetation, respectively. Based on conservative effects concentrations for invertebrates and regression analyses of maximum observed wetland aqueous concentrations, a wetland length of 215 m x 30 m width would be required to adequately mitigate 1% pesticide runoff from a 14 ha contributing area. Results of this experiment can be used to model future design specifications for constructed wetland mitigation of pyrethroid insecticides. - A wetland length of 215 m x 30 m mitigated pyrethroid runoff from a 14 ha field

  7. Hurricane storm surge and amphibian communities in coastal wetlands of northwestern Florida

    Science.gov (United States)

    Gunzburger, M.S.; Hughes, W.B.; Barichivich, W.J.; Staiger, J.S.

    2010-01-01

    Isolated wetlands in the Southeastern United States are dynamic habitats subject to fluctuating environmental conditions. Wetlands located near marine environments are subject to alterations in water chemistry due to storm surge during hurricanes. The objective of our study was to evaluate the effect of storm surge overwash on wetland amphibian communities. Thirty-two wetlands in northwestern Florida were sampled over a 45-month period to assess amphibian species richness and water chemistry. During this study, seven wetlands were overwashed by storm surge from Hurricane Dennis which made landfall 10 July 2005 in the Florida panhandle. This event allowed us to evaluate the effect of storm surge overwash on water chemistry and amphibian communities of the wetlands. Specific conductance across all wetlands was low pre-storm (marine habitats are resistant to the effects of storm surge overwash. ?? 2010 Springer Science+Business Media B.V.

  8. National Wetland Mitigation Banking Study Wetland Migitation Banking.

    Science.gov (United States)

    1994-02-01

    habitat (i.e. number of snags, extent of exposed steep shoreline, etc.) rather than selecting species themselves as function indicators [ WWF 1992...etc.) that are converted to portray hydrologic, water quality, and habitat functions as well as wetland loss on watershed scales [ WWF 1992]. The...Natural Areas - include the Stewardship Program, a partnership program between the private and public sectors for conservation land acquisitions

  9. WETLAND CHANGE DETECTION IN PROTECTED AND UNPROTECTED INDUS COASTAL AND INLAND DELTA

    Directory of Open Access Journals (Sweden)

    M. H. Ali Baig

    2017-09-01

    Full Text Available Worth of wetland sites lies in their ecological importance. They enhance ecosystem via provision of ecological services like improving water quality, groundwater infiltration, flood risk reduction and biodiversity regulation. Like other parts of the world Pakistan is also facing wetlands degradation. Ecological and economic significance of wetlands was recognized officially in 1971 as Pakistan became signatory of Ramsar wetland convention. Wetlands provide habitat to species of ecological and economic importance. Despite being recognized for international importance, Ramsar figures state that almost half of Pakistan’s wetlands are at moderate or prominent level threat. Wetlands ecosystems are deteriorating at a rapid rate, if uncontrolled this trend may lead to substantial losses. Therefore, management of these resources demands regular monitoring. Present study is dedicated to assessing levels of change overtime in three distinct types of wetlands in Pakistan i.e. Indus delta a coastal wetland, Uchhali complex an inland wetland which are both protected sites while another site Nurri Lagoon which is not sheltered under any category of protected areas. Remotely sensed data has remarkable applications in change detection. Multitemporal Landsat images were used to map changes occurring from 2006 to 2016. Results reveal that wetland area has considerably decreased for all types. Both protected sites have experienced degradation though impact is comparatively lesser than unprotected Nurri lagoon. Significance of protection strategies cannot be denied, it is recommended that mere declaration of a site protected area is not sufficient. It is equally important to control non-point pollutants and ensuring the compliance of conservation strategy.

  10. Wetland Change Detection in Protected and Unprotected Indus Coastal and Inland Delta

    Science.gov (United States)

    Baig, M. H. Ali; Sultan, M.; Riaz Khan, M.; Zhang, L.; Kozlova, M.; Malik, N. Abbas; Wang, S.

    2017-09-01

    Worth of wetland sites lies in their ecological importance. They enhance ecosystem via provision of ecological services like improving water quality, groundwater infiltration, flood risk reduction and biodiversity regulation. Like other parts of the world Pakistan is also facing wetlands degradation. Ecological and economic significance of wetlands was recognized officially in 1971 as Pakistan became signatory of Ramsar wetland convention. Wetlands provide habitat to species of ecological and economic importance. Despite being recognized for international importance, Ramsar figures state that almost half of Pakistan's wetlands are at moderate or prominent level threat. Wetlands ecosystems are deteriorating at a rapid rate, if uncontrolled this trend may lead to substantial losses. Therefore, management of these resources demands regular monitoring. Present study is dedicated to assessing levels of change overtime in three distinct types of wetlands in Pakistan i.e. Indus delta a coastal wetland, Uchhali complex an inland wetland which are both protected sites while another site Nurri Lagoon which is not sheltered under any category of protected areas. Remotely sensed data has remarkable applications in change detection. Multitemporal Landsat images were used to map changes occurring from 2006 to 2016. Results reveal that wetland area has considerably decreased for all types. Both protected sites have experienced degradation though impact is comparatively lesser than unprotected Nurri lagoon. Significance of protection strategies cannot be denied, it is recommended that mere declaration of a site protected area is not sufficient. It is equally important to control non-point pollutants and ensuring the compliance of conservation strategy.

  11. Biodiversity studies in three Coastal Wetlands in Ghana, West Africa ...

    African Journals Online (AJOL)

    Plant biodiversity studies of three coastal wetlands in Ghana were made. The wetlands are the Sakumo, Muni-Pomadze and Densu Delta Ramsar sites. Each wetland is made up of a flood plain which consists of salt marsh (about 20%), mangrove swamps (between 15 and 30%), fresh water swamp (about 40 - 45%), and in ...

  12. Quantifying greenhouse gas sources and sinks in managed wetland systems

    Science.gov (United States)

    Stephen M Ogle; Patrick Hunt; Carl Trettin

    2014-01-01

    This chapter provides methodologies and guidance for reporting greenhouse gas (GHG) emissions and sinks at the entity scale for managed wetland systems. More specifically, it focuses on methods for managed palustrine wetlands.1 Section 4.1 provides an overview of wetland systems and resulting GHG emissions, system boundaries and temporal scale, a summary of the...

  13. Impact of chloride on denitrification potential in roadside wetlands

    International Nuclear Information System (INIS)

    Lancaster, Nakita A.; Bushey, Joseph T.; Tobias, Craig R.; Song, Bongkeun; Vadas, Timothy M.

    2016-01-01

    Developed landscapes are exposed to changes in hydrology and water chemistry that limit their ability to mitigate detrimental impacts to coastal water bodies, particularly those that result from stormwater runoff. The elevated level of impervious cover increases not only runoff but also contaminant loading of nutrients, metals, and road salt used for deicing to water bodies. Here we investigate the impact that road salt has on denitrification in roadside environments. Sediments were collected from a series of forested and roadside wetlands and acclimated with a range of Cl − concentrations from 0 to 5000 mg L −1 for 96 h. Denitrification rates were measured by the isotope pairing technique using 15 N–NO 3 − , while denitrifying community structures were compared using terminal restriction fragment length polymorphism (T-RFLP) of nitrous oxide reductase genes (nosZ). Chloride significantly (p < 0.05) inhibited denitrification in forested wetlands at a Cl − dosage of 2500 or 5000 mg L −1 , but the decrease in denitrification rates was less and not significant for the roadside wetlands historically exposed to elevated concentrations of Cl − . The difference could not be attributed to other significant changes in conditions, such as DOC concentrations, N species concentrations, or pH levels. Denitrifying communities, as measured by T-RFs of the nosZ gene, in the roadside wetlands with elevated concentration of Cl − were distinctly different and more diverse compared to forested wetlands, and also different in roadside wetlands after 96 h exposures to Cl − . The shifts in denitrifying communities seem to minimize the decrease in denitrification rates in the wetlands previously exposed to Cl. As development results in more Cl − use and exposure to a broad range of natural or manmade wetland structures, an understanding of the seasonal effect of Cl on denitrification processes in these systems would aid in design or mitigation of the effects on

  14. Characterization of Inundated Wetlands with Microwave Remote Sensing: Cross-Product Comparison for Uncertainty Assessment in Tropical Wetlands

    Science.gov (United States)

    McDonald, K. C.; Jensen, K.; Alvarez, J.; Azarderakhsh, M.; Schroeder, R.; Podest, E.; Chapman, B. D.; Zimmermann, R.

    2015-12-01

    We have been assembling a global-scale Earth System Data Record (ESDR) of natural Inundated Wetlands to facilitate investigations on their role in climate, biogeochemistry, hydrology, and biodiversity. The ESDR comprises (1) Fine-resolution (100 meter) maps, delineating wetland extent, vegetation type, and seasonal inundation dynamics for regional to continental-scale areas, and (2) global coarse-resolution (~25 km), multi-temporal mappings of inundated area fraction (Fw) across multiple years. During March 2013, the NASA/JPL L-band polarimetric airborne imaging radar, UAVSAR, conducted airborne studies over regions of South America including portions of the western Amazon basin. We collected UAVSAR datasets over regions of the Amazon basin during that time to support systematic analyses of error sources related to the Inundated Wetlands ESDR. UAVSAR datasets were collected over Pacaya Samiria, Peru, Madre de Dios, Peru, and the Napo River in Ecuador. We derive landcover classifications from the UAVSAR datasets emphasizing wetlands regions, identifying regions of open water and inundated vegetation. We compare the UAVSAR-based datasets with those comprising the ESDR to assess uncertainty associated with the high resolution and the coarse resolution ESDR components. Our goal is to create an enhanced ESDR of inundated wetlands with statistically robust uncertainty estimates. The ESDR documentation will include a detailed breakdown of error sources and associated uncertainties within the data record. This work was carried out in part within the framework of the ALOS Kyoto & Carbon Initiative. PALSAR data were provided by JAXA/EORC and the Alaska Satellite Facility. Portions of this work were conducted at the Jet Propulsion Laboratory, California Institute of Technology under contract to the National Aeronautics and Space Administration.

  15. Recent land cover history and nutrient retention in riparian wetlands

    Science.gov (United States)

    Hogan, D.M.; Walbridge, M.R.

    2009-01-01

    Wetland ecosystems are profoundly affected by altered nutrient and sediment loads received from anthropogenic activity in their surrounding watersheds. Our objective was to compare a gradient of agricultural and urban land cover history during the period from 1949 to 1997, with plant and soil nutrient concentrations in, and sediment deposition to, riparian wetlands in a rapidly urbanizing landscape. We observed that recent agricultural land cover was associated with increases in Nitrogen (N) and Phosphorus (P) concentrations in a native wetland plant species. Conversely, recent urban land cover appeared to alter receiving wetland environmental conditions by increasing the relative availability of P versus N, as reflected in an invasive, but not a native, plant species. In addition, increases in surface soil Fe content suggests recent inputs of terrestrial sediments associated specifically with increasing urban land cover. The observed correlation between urban land cover and riparian wetland plant tissue and surface soil nutrient concentrations and sediment deposition, suggest that urbanization specifically enhances the suitability of riparian wetland habitats for the invasive species Japanese stiltgrass [Microstegium vimenium (Trinius) A. Camus]. ?? 2009 Springer Science+Business Media, LLC.

  16. Artificial wetland for wastewater treatment

    International Nuclear Information System (INIS)

    Arias I, Carlos A; Brix, Hans

    2003-01-01

    The development of constructed wetland technology for wastewater treatment has gone a long way and from an experimental and unknown empirical method, which was capable of handling wastewater a sound technology was developed. Thanks to research, and the work of many public and private companies that have gather valuable operation information, constructed wetland technology has evolved to be a relievable, versatile and effective way to treat wastewater, run off, handle sludge and even improve environmental quality and provide recreation sites, while maintaining low operation and maintenance costs, and at the same time, producing water of quality that can meet stringent regulations, while being and environmental friendly solution to treat waste-waters. Constructed wetlands can be established in many different ways and its characteristics can differ greatly, according to the user needs, the geographic site and even the climatic conditions of the area. The following article deals with the general characteristics of the technology and the physical and chemical phenomena that govern the pollution reduction with in the different available systems

  17. Advancing the use of minirhizotrons in wetlands

    Science.gov (United States)

    C. M. Iversen; M. T. Murphy; M. F. Allen; J. Childs; D. M. Eissenstat; E.A. Lilleskov; T. M. Sarjala; V. L. Sloan; P. F. Sullivan

    2012-01-01

    Background. Wetlands store a substantial amount of carbon (C) in deep soil organic matter deposits, and play an important role in global fluxes of carbon dioxide and methane. Fine roots (i.e., ephemeral roots that are active in water and nutrient uptake) are recognized as important components of biogeochemical cycles in nutrient-limited wetland ecosystems. However,...

  18. A Regional Guidebook for Applying the Hydrogeomorphic Approach to Assessing Wetland Functions of Depression Wetlands in the Upper Des Plaines River Basin

    National Research Council Canada - National Science Library

    Lin, Jeff P

    2006-01-01

    .... The HGM approach is a collection of concepts and methods used to develop functional indices to assess the capacity of a particular wetland to perform functions relative to similar wetlands in a region...

  19. Tidal Wetlands of the Yaquina and Alsea River Estuaries in Oregon: GIS layer development and recommendations for National Wetlands Inventory revisions

    Science.gov (United States)

    Geographic Information Systems (GIS) layers of current and likely former tidal wetlands in two Oregon estuaries were generated by enhancing the 2010 National Wetlands Inventory (NWI) data with expert local field knowledge, LiDAR-derived elevations, and 2009 aerial orthophotos. Th...

  20. Project of revitalization of the special nature reserve Koviljski rit (Kovilj wetland)

    International Nuclear Information System (INIS)

    Matavulj, M.

    2002-01-01

    Together with Petrovaradin wetland positioned on the opposite banks of the river Danube, named in Serbian 'Koviljsko-Petrovaradinski rit' (Kovilj-Petrovaradin wetland), this area has been proposed for the registration of wetland areas of international significance according to the Ramsar Convention. The Kovilj-Petrovaradin wetland is being registered as the Natural treasure of special significance and is being classified into I category of protection as the Special Nature Reserve. The protection and conservation of this wetland area is in agreement with Action Plan of protection of rivers and accompanied wetlands in the frame of Paneuropean Strategy for the protection of biological and landscape diversity, accepted at the Strasburg Conference (1995). Being of such importance, this project should contribute to the raising of awareness of this special wetland value as well as to the importance of protection, conservation and improvement of this kind of ecosystems in general. Also, the objectives and results should contribute to the achieving of the wise use of this special wetland and of natural resources as a whole. (author)

  1. Agricultural wetlands as potential hotspots for mercury bioaccumulation: Experimental evidence using caged fish

    Science.gov (United States)

    Ackerman, Joshua T.; Eagles-Smith, Collin A.

    2010-01-01

    Wetlands provide numerous ecosystem services, but also can be sources of methylmercury (MeHg) production and export. Rice agricultural wetlands in particular may be important sites for MeHg bioaccumulation due to their worldwide ubiquity, periodic flooding schedules, and high use by wildlife. We assessed MeHg bioaccumulation within agricultural and perennial wetlands common to California's Central Valley during summer, when the majority of wetland habitats are shallowly flooded rice fields. We introduced caged western mosquitofish (Gambusia affinis) within white rice (Oryza sativa), wild rice (Zizania palustris), and permanent wetlands at water inlets, centers, and outlets. Total mercury (THg) concentrations and body burdens in caged mosquitofish increased rapidly, exceeding baseline values at introduction by 135% to 1197% and 29% to 1566% among sites, respectively, after only 60 days. Mercury bioaccumulation in caged mosquitofish was greater in rice fields than in permanent wetlands, with THg concentrations at wetland outlets increasing by 12.1, 5.8, and 2.9 times over initial concentrations in white rice, wild rice, and permanent wetlands, respectively. In fact, mosquitofish caged at white rice outlets accumulated 721 ng Hg/fish in just 60 days. Mercury in wild mosquito fish and Mississippi silversides (Menidia audens) concurrently sampled at wetland outlets also were greater in white rice and wild rice than permanent wetlands. Within wetlands, THg concentrations and body burdens of both caged and wild fish increased from water inlets to outlets in white rice fields, and tended to not vary among sites in permanent wetlands. Fish THg concentrations in agricultural wetlands were high, exceeding 0.2 ??g/g ww in 82% of caged fish and 59% of wild fish. Our results indicate that shallowly flooded rice fields are potential hotspots for MeHg bioaccumulation and, due to their global prevalence, suggest that agricultural wetlands may be important contributors to Me

  2. ('fingerponds\\') in the wetlands of Lake Victoria, Kenya

    African Journals Online (AJOL)

    The potential effect on ecosystem integrity of the use of natural wetlands for seasonal wetland fishponds ('fingerponds\\'), integrated with vegetable production for livelihood demands, was evaluated using experimental sites at Lake Victoria, Kenya. Soluble reactive phosphorous and total phosphorus, ammonium, nitrate and ...

  3. Gas Transport and Exchange through Wetland Plant Aerenchyma

    DEFF Research Database (Denmark)

    Sorrell, Brian Keith; Brix, Hans

    2013-01-01

    Aerenchyma, the large airspaces in aquatic plants, is a rapid gas transport pathway between atmosphere and soil in wetlands. Oxygen transport aerates belowground tissue and oxidizes rhizosphere soil, an important process in wetland biogeochemistry. Most plant O2 transport occurs by diffusion...

  4. Wetland restoration in Central Europe : aims and methods

    NARCIS (Netherlands)

    Pfadenhauer, Joerg; Grootjans, Ab

    . Wetlands have always been of particular significance for mankind. While originally attractive as hunting grounds, they were later cultivated and modified from sinks into sources. Today, great efforts are being made to restore disturbed or destroyed wetland areas. Different models and goals for

  5. National-Level Wetland Policy Specificity and Goals Vary According to Political and Economic Indicators

    Science.gov (United States)

    Peimer, Alex W.; Krzywicka, Adrianna E.; Cohen, Dora B.; Van den Bosch, Kyle; Buxton, Valerie L.; Stevenson, Natalie A.; Matthews, Jeffrey W.

    2017-01-01

    Growing recognition of the importance of wetlands to human and ecosystem well-being has led countries worldwide to implement wetland protection policies. Different countries have taken different approaches to wetland protection by implementing various policies, including territorial exclusion, market-based offsetting, and incentive programs for land users. Our objective was to describe the relationship between components of national-level wetland protection policies and national characteristics, including natural resource, economic, social, and political factors. We compiled data on the wetland policies of all 193 countries recognized by the U.N. and described the relationships among wetland policy goals and wetland protection mechanisms using non-metric multidimensional scaling. The first non-metric multidimensional scaling axis strongly correlated with whether a country had a wetland-specific environmental policy in place. Adoption of a comprehensive, wetland-specific policy was positively associated with degree of democracy and a commitment to establishing protected areas. The second non-metric multidimensional scaling axis defined a continuum of policy goals and mechanisms by which wetlands are protected, with goals to protect wetland ecosystem services on one end of the spectrum and goals to protect biodiversity on the other. Goals for protecting ecosystem services were frequently cited in policy documents of countries with agriculture-based economies, whereas goals associated with wetland biodiversity tended to be associated with tourism-based economies. We argue that the components of a country's wetland policies reflect national-level resource and economic characteristics. Understanding the relationship between the type of wetland policy countries adopt and national-level characteristics is critical for international efforts to protect wetlands.

  6. Water quality and fish dynamics in forested wetlands associated with an oxbow lake

    Science.gov (United States)

    Andrews, Caroline S.; Miranda, Leandro E.; Kroger, Robert

    2015-01-01

    Forested wetlands represent some of the most distinct environments in the Lower Mississippi Alluvial Valley. Depending on season, water in forested wetlands can be warm, stagnant, and oxygen-depleted, yet may support high fish diversity. Fish assemblages in forested wetlands are not well studied because of difficulties in sampling heavily structured environments. During the April–July period, we surveyed and compared the water quality and assemblages of small fish in a margin wetland (forested fringe along a lake shore), contiguous wetland (forested wetland adjacent to a lake), and the open water of an oxbow lake. Dissolved-oxygen levels measured hourly 0.5 m below the surface were higher in the open water than in either of the forested wetlands. Despite reduced water quality, fish-species richness and catch rates estimated with light traps were greater in the forested wetlands than in the open water. The forested wetlands supported large numbers of fish and unique fish assemblages that included some rare species, likely because of their structural complexity. Programs developed to refine agricultural practices, preserve riparian zones, and restore lakes should include guidance to protect and reestablish forested wetlands.

  7. Climatic Alterations of Wetlands: Conservation and Adaptation Practices in Bangladesh

    Science.gov (United States)

    Siddiquee, S. A.

    2016-02-01

    Unique geographic location and geo-morphological conditions of Bangladesh have made the wetlands of this country one of the most vulnerable to climate change. Wetland plays a crucial role in maintaining the ecological balance of ecosystems and cultural figures and which occupy around 50% of the area. Drought, excessive temperature, mountain snowfields and glaciers melting, riverbank erosion, salinity intrusion, flashflood, storm surges, higher water temperatures, precipitation anomalies, coastal cyclones, seasonal anomalies and extremes are main threats to the wetland ecosystem. Enhanced UV-B radiation and increased summer precipitation will significantly increase dissolved organic carbon concentrations altering major biogeochemical cycles and also will result into the expansion of range for many invasive aquatic weeds. Generally, rising temperature will lower water quality through a fall in oxygen concentrations, release of phosphorus from sediments, increased thermal stability, and altered mixing patterns. As a result biodiversity is getting degraded, many species of flora and fauna are getting threatened, and wetland-based ecosystem is getting degenerated. At the same time, the living conditions of local people are deteriorating as livelihoods, socioeconomic institutions, and extensive cultural values as well. For conserving and managing wetlands technology, legislation, educational knowledge, action plan strategy and restoration practices are required. In order to address the human needs in the changing climate community-based adaptation approaches and wetland restoration, practices had been taken in almost every type of wetlands in Bangladesh. Therefore, Bangladesh now needs a comprehensive strategy and integrated system combining political, economic, social, technological approaches and institutional supports to address sustainable wetland restoration, conservation and the newly added crisis, climate change.

  8. Using WEED to simulate the global wetland distribution in a ESM

    Science.gov (United States)

    Stacke, Tobias; Hagemann, Stefan

    2016-04-01

    Lakes and wetlands are an important land surface feature. In terms of hydrology, they regulate river discharge, mitigate flood events and constitute a significant surface water storage. Considering physical processes, they link the surface water and energy balances by altering the separation of incoming energy into sensible and latent heat fluxes. Finally, they impact biogeochemical processes and may act as carbon sinks or sources. Most global hydrology and climate models regard wetland extent and properties as constant in time. However, to study interactions between wetlands and different states of climate, it is necessary to implement surface water bodies (thereafter referred to as wetlands) with dynamical behavior into these models. Besides an improved representation of geophysical feedbacks between wetlands, land surface and atmosphere, a dynamical wetland scheme could also provide estimates of soil wetness as input for biogeochemical models, which are used to compute methane production in wetlands. Recently, a model for the representation of wetland extent dynamics (WEED) was developed as part of the hydrology model (MPI-HM) of the Max-Planck-Institute for Meteorology (MPI-M). The WEED scheme computes wetland extent in agreement with the range of observations for the high northern latitudes. It simulates a realistic seasonal cycle which shows sensitivity to northern snow-melt as well as rainy seasons in the tropics. Furthermore, flood peaks in river discharge are mitigated. However, the WEED scheme overestimates wetland extent in the Tropics which might be related to the MPI-HM's simplified potential evapotranspiration computation. In order to overcome this limitation, the WEED scheme is implemented into the MPI-M's land surface model JSBACH. Thus, not only its effect on water fluxes can be investigated but also its impact on the energy cycle, which is not included in the MPI-HM. Furthermore, it will be possible to analyze the physical effects of wetlands in a

  9. Eten's Coastal Wetland, its geomorphology, water quality and biodiversity

    Science.gov (United States)

    Rojas Carbajal, T. V.; Bartl, K.; Loayza Muro, R.; Abad, J. D.

    2017-12-01

    The Eten's wetland is located in the lower part of the Chancay-Lambayeque River basin at the Peruvian coast. This wetland contains salt and fresh marshes, swamps, lagoons and an estuary which is the result of Reque River's morphodynamics. It provides a great source of totora (Schoenoplectus californicus), a native plant that is used for knitting hats which are an ancient cultural expression in Lambayeque. UNESCO recognized this wetland as one of the ecosystems with the greatest biodiversity along the South Pacific Coast, providing a unique habitat for migratory birds, such as the Peruvian Tern (Sternula lorata). This bird has been classified as endangered in 2005, by the International Union for Conservation of Nature (IUCN). When the area of a wetland is reduced, the resting point function is affected leading to loss in biodiversity due to the habitat conditions are not the same. In 2005, Lambayeque's government established an area of 1377 Ha in order to preserve wetland's ecosystem and Eten's archeological value but wet areas were reduced to 200 Ha. This reduction was promoted by agriculture, urbanization and an inadequate urban waste disposal. The scope of the study is to assess the environmental impacts that affect Eten's wetland. Preliminary results of an assessment with remote sensing indicate that: 1) the Reque River's geomorphic activity was reduced by urbanization, thus, the connection between surface water bodies has been lost, leading the drying out of ponds, 2) the conversion of wet areas to agricultural land, and 3) the natural interaction between the Reque River and the Pacific Ocean was modified due to water control upstream, resulting in a dryer wetland during the last years. Furthermore, the aquatic biodiversity of the wetland was assessed through a biomonitoring method in order to study the impact of water contamination. Four benthic macroinvertebrate Families (Hydrophilidae, Baetidae, Planorbidae and Palaemonidae) were found. The quality of the

  10. Fertilizer legacies meet saltwater incursion: challenges and constraints for coastal plain wetland restoration

    Directory of Open Access Journals (Sweden)

    Marcelo Ardón

    2017-07-01

    Full Text Available Coastal wetland restoration is an important tool for climate change adaptation and excess nutrient runoff mitigation. However, the capacity of restored coastal wetlands to provide multiple ecosystem services is limited by stressors, such as excess nutrients from upstream agricultural fields, high nutrient legacies on-site, and rising salinities downstream. The effects of these stressors are exacerbated by an accelerating hydrologic cycle, expected to cause longer droughts punctuated by more severe storms. We used seven years of surface water and six years of soil solution water chemistry from a large (440 ha restored wetland to examine how fertilizer legacy, changes in hydrology, and drought-induced salinization affect dissolved nutrient and carbon concentrations. To better understand the recovery trajectory of the restored wetland, we also sampled an active agricultural field and two mature forested wetlands. Our results show that nitrogen (N and phosphorus (P concentrations in soil solution were 2–10 times higher in the restored wetland compared to two mature forested wetlands, presumably due to legacy fertilizer mobilized by reflooding. Despite elevated nutrient concentrations relative to reference wetlands, the restored wetland consistently attenuated N and P pulses delivered from an upstream farm. Even with continued loading, N and P concentrations in surface water throughout the restored wetland have decreased since the initial flooding. Our results suggest that high nutrient concentrations and export from wetlands restored on agricultural lands may be a severe but temporary problem. If field to wetland conversion is to become a more widespread method for ameliorating nutrient runoff and adapting coastal plain ecosystems to climate change, we should adopt new methods for minimizing the initial export phase of wetland restoration efforts.

  11. Constructed wetlands for wastewater treatment in cold climate - A review.

    Science.gov (United States)

    Wang, Mo; Zhang, Dong Qing; Dong, Jian Wen; Tan, Soon Keat

    2017-07-01

    Constructed wetlands (CWs) have been successfully used for treating various wastewaters for decades and have been identified as a sustainable wastewater management option worldwide. However, the application of CW for wastewater treatment in frigid climate presents special challenges. Wetland treatment of wastewater relies largely on biological processes, and reliable treatment is often a function of climate conditions. To date, the rate of adoption of wetland technology for wastewater treatment in cold regions has been slow and there are relatively few published reports on CW applications in cold climate. This paper therefore highlights the practice and applications of treatment wetlands in cold climate. A comprehensive review of the effectiveness of contaminant removal in different wetland systems including: (1) free water surface (FWS) CWs; (2) subsurface flow (SSF) CWs; and (3) hybrid wetland systems, is presented. The emphasis of this review is also placed on the influence of cold weather conditions on the removal efficacies of different contaminants. The strategies of wetland design and operation for performance intensification, such as the presence of plant, operational mode, effluent recirculation, artificial aeration and in-series design, which are crucial to achieve the sustainable treatment performance in cold climate, are also discussed. This study is conducive to further research for the understanding of CW design and treatment performance in cold climate. Copyright © 2017. Published by Elsevier B.V.

  12. Coastal Wetland Restoration Bibliography

    National Research Council Canada - National Science Library

    Yozzo, David

    1997-01-01

    This bibliography was compiled to provide biologists, engineers, and planners at Corps Districts and other agencies/ institutions with a guide to the diverse body of literature on coastal wetland restoration...

  13. BUFFER ZONE METHOD, LAND USE PLANNING AND CONSERVATION STRATEGIES ABOUT WETLANDS UNDER URBANIZATION PRESSURE IN TURKEY

    OpenAIRE

    Ergen, Baris

    2010-01-01

    Wetlands are special areas that they offer habitat for terrestrial and water life. Wetlands are nest sides also for amphibian, for this reason wetlands offer wide range diversity for species. Wetlands are also reproduction regions for birds. Wetlands have special importance for ecosystem because they obstruct erosion. Wetlands absorb contaminants from water therefore wetlands contribute to clean water and they offer more potable water. Wetlands obstruct waterflood. In that case wetlands must ...

  14. Landowner preferences for wetlands conservation programs in two Southern Ontario watersheds.

    Science.gov (United States)

    Trenholm, Ryan; Haider, Wolfgang; Lantz, Van; Knowler, Duncan; Haegeli, Pascal

    2017-09-15

    Wetlands in the region of Southern Ontario, Canada have declined substantially from their historic area. Existing regulations and programs have not abated this decline. However, reversing this trend by protecting or restoring wetlands will increase the supply of important ecosystem services. In particular, these actions will contribute to moderating the impacts of extreme weather predicted to result from climate change as well as reducing phosphorous loads in Lake Erie and ensuing eutrophication. Since the majority of land in the region is privately owned, landowners can play an important role. Thus, we assessed landowner preferences for voluntary incentive-based wetlands conservation programs using separate choice experiments mailed to farm and non-farm landowners in the Grand River and Upper Thames River watersheds. Latent class models were separately estimated for the two data sets. Marginal willingness to accept, compensating surplus, and participation rates were estimated from the resulting models to gain insight into the financial compensation required by landowners and their potential participation. Many of the participating landowners appear willing to participate in wetlands conservation at reasonable cost, with more willing groups notably marked by past participation in incentive-based conservation programs. They generally favor wetlands conservation programs that divert smaller areas of land to wetlands conservation, target marginal agricultural land, use treed buffers to protect wetlands, offer technical help, and pay financial incentives. However, landowners appear reluctant to receive public recognition of their wetland conservation actions. Our results are of interest to natural resource managers designing or refining wetlands conservation programs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Renovation of food-processing wastewater by a Riparian wetland

    Science.gov (United States)

    Baillie, Priscilla W.

    1995-01-01

    Treated wastewater from a food-processing plant, together with intermittent outflow from a hypereutrophic pond, were discharged over a 20-year period to a cattail-dominated wetland and hence to a small stream. Organics and nutriet levels in the effluent were comparable to levels in domestic wastewater. Fifteen variables were monitored upstream and downstream from the plant over 18 months. Means for most variables were slightly higher downstream, but differences between stations were not statistically significant. Wetland processing of nitrogen was markedly affected by a change from drought to flood conditions. After accounting for dilution, the overall effect of the wetland on the effluent was to reduce biological oxygen demand 43.7%, ammonia N 46.3%, nitrate/nitrite N 17.4%, and conductivity 15.6%. However, total suspended solids were increased 41.4%, total organic nitrogen 28.8%, and total phosphorus 24.7%. It was concluded that the wetland effectively renovated the effluent but the removal efficiency would be improved if the effluent were pretreated to reduce phosphorus and dispersed to increase residence time in the wetland.

  16. Spatially Resolved Isotopic Source Signatures of Wetland Methane Emissions

    Science.gov (United States)

    Ganesan, A. L.; Stell, A. C.; Gedney, N.; Comyn-Platt, E.; Hayman, G.; Rigby, M.; Poulter, B.; Hornibrook, E. R. C.

    2018-04-01

    We present the first spatially resolved wetland δ13C(CH4) source signature map based on data characterizing wetland ecosystems and demonstrate good agreement with wetland signatures derived from atmospheric observations. The source signature map resolves a latitudinal difference of 10‰ between northern high-latitude (mean -67.8‰) and tropical (mean -56.7‰) wetlands and shows significant regional variations on top of the latitudinal gradient. We assess the errors in inverse modeling studies aiming to separate CH4 sources and sinks by comparing atmospheric δ13C(CH4) derived using our spatially resolved map against the common assumption of globally uniform wetland δ13C(CH4) signature. We find a larger interhemispheric gradient, a larger high-latitude seasonal cycle, and smaller trend over the period 2000-2012. The implication is that erroneous CH4 fluxes would be derived to compensate for the biases imposed by not utilizing spatially resolved signatures for the largest source of CH4 emissions. These biases are significant when compared to the size of observed signals.

  17. Discharge, water-quality characteristics, and nutrient loads from McKay Bay, Delaney Creek, and East Bay, Tampa, Florida, 1991-1993

    Science.gov (United States)

    Stoker, Y.E.; Levesque, V.A.; Fritz, E.M.

    1996-01-01

    Nutrient enrichment in Tampa Bay has caused a decline in water quality in the estuary. Efforts to reduce the nutrient loading to Tampa Bay have resulted in improvement in water quality from 1981 to 1991. However, Tampa Bay still is onsidered enriched with nutrients. Water quality in East Bay (located at the northeastern part of Hillsborough Bay, which is an embayment in Tampa Bay) is not improving at the same rate as the rest of the bay. East Bay is the center of shipping activity in Tampa Bay and the seventh largest port in the United States. One of the primary cargoes is phosphate ore and related products such as fertilizer. The potential for nutrient loading to East Bay from shipping activities is high and has not previously been measured. Nitrogen and phosphorus loads from East Bay to Hillsborough Bay were measured during selected time periods during June 1992 through May 1993; these data were used to estimate seasonal and annual loads. These loads were evaluated to determine whether the loss of fertilizer products from shipping activities resulted in increased nutrient loading to Hillsborough Bay. Discharge was measured, and water-quality samples were collected at the head of East Bay (exiting McKay Bay), and at the mouth of East Bay. Discharge and nitrogen and phosphorus concentrations for the period June 1992 through May 1993 were used to compute loads. Discharges from McKay Bay, Delaney Creek, and East Bay are highly variable because of the effect of tide. Flow patterns during discharge measurements generally were unidirectional in McKay Bay and Delaney Creek, but more complex, bidirectional patterns were observed at the mouth of East Bay. Tidally affected discharge data were digitally filtered with the Godin filter to remove the effects of tide so that residual, or net, discharge could be determined. Daily mean discharge from McKay Bay ranged from -1,900 to 2,420 cubic feet per second; from Delaney Creek, -3.8 to 162 cubic feet per second; and from East

  18. 46 CFR 7.20 - Nantucket Sound, Vineyard Sound, Buzzards Bay, Narragansett Bay, MA, Block Island Sound and...

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Nantucket Sound, Vineyard Sound, Buzzards Bay, Narragansett Bay, MA, Block Island Sound and easterly entrance to Long Island Sound, NY. 7.20 Section 7.20... Atlantic Coast § 7.20 Nantucket Sound, Vineyard Sound, Buzzards Bay, Narragansett Bay, MA, Block Island...

  19. Restoration of ailing wetlands.

    Directory of Open Access Journals (Sweden)

    Oswald J Schmitz

    2012-01-01

    Full Text Available It is widely held that humankind's destructive tendencies when exploiting natural resources leads to irreparable harm to the environment. Yet, this thinking runs counter to evidence that many ecological systems damaged by severe natural environmental disturbances (e.g., hurricanes can restore themselves via processes of natural recovery. The emerging field of restoration ecology is capitalizing on the natural restorative tendencies of ecological systems to build a science of repairing the harm inflicted by humans on natural environment. Evidence for this, for example, comes from a new meta-analysis of 124 studies that synthesizes recovery of impacted wetlands worldwide. While it may take up to two human generations to see full recovery, there is promise, given human will, to restore many damaged wetlands worldwide.

  20. The carbon balance of North American wetlands

    Science.gov (United States)

    Scott D. Bridgham; J. Patrick Megonigal; Jason K. Keller; Norman b. Bliss; Carl Trettin

    2006-01-01

    We examine the carbon balance of North American wetlands by reviewing and synthesizing the published literature and soil databases. North American wetlands contain about 220 Pg C, most of which is in peat. They are a small to moderate carbon sink of about 49 Tg C yr-l, although the uncertainty around this estimate is greater than 100%, with the...