WorldWideScience

Sample records for jt8d-100 turbofan engine

  1. Separated core turbofan engine; Core bunrigata turbofan engine

    Energy Technology Data Exchange (ETDEWEB)

    Saito, Y; Endo, M; Matsuda, Y; Sugiyama, N; Sugahara, N; Yamamoto, K [National Aerospace Laboratory, Tokyo (Japan)

    1996-04-01

    This report outlines the separated core turbofan engine. This engine is featured by parallel separated arrangement of a fan and core engine which are integrated into one unit in the conventional turbofan engine. In general, cruising efficiency improvement and noise reduction are achieved by low fan pressure ratio and low exhaust speed due to high bypass ratio, however, it causes various problems such as large fan and nacelle weight due to large air flow rate of a fan, and shift of an operating point affected by flight speed. The parallel separated arrangement is thus adopted. The stable operation of a fan and core engine is easily retained by independently operating air inlet unaffected by fan. The large degree of freedom of combustion control is also obtained by independent combustor. Fast response, simple structure and optimum aerodynamic design are easily achieved. This arrangement is also featured by flexibility of development and easy maintenance, and by various merits superior to conventional turbofan engines. It has no technological problems difficult to be overcome, and is also suitable for high-speed VTOL transport aircraft. 4 refs., 5 figs.

  2. Advanced Control of Turbofan Engines

    CERN Document Server

    Richter, Hanz

    2012-01-01

    Advanced Control of Turbofan Engines describes the operational performance requirements of turbofan (commercial)engines from a controls systems perspective, covering industry-standard methods and research-edge advances. This book allows the reader to design controllers and produce realistic simulations using public-domain software like CMAPSS: Commercial Modular Aero-Propulsion System Simulation, whose versions are released to the public by NASA. The scope of the book is centered on the design of thrust controllers for both steady flight and transient maneuvers. Classical control theory is not dwelled on, but instead an introduction to general undergraduate control techniques is provided. This book also: Develops a thorough understanding of the challenges associated with engine operability from a control systems perspective, describing performance demands and operational constraints into the framework and language of modern control theory Presents solid theoretical support for classical and advanced engine co...

  3. 78 FR 5710 - Airworthiness Directives; Engine Alliance Turbofan Engines

    Science.gov (United States)

    2013-01-28

    ... Airworthiness Directives; Engine Alliance Turbofan Engines AGENCY: Federal Aviation Administration (FAA), DOT... all Engine Alliance GP7270 and GP7277 turbofan engines. This AD requires initial and repetitive...) Applicability This AD applies to all Engine Alliance GP7270 and GP7277 turbofan engines with a high-pressure...

  4. Online Normalization Algorithm for Engine Turbofan Monitoring

    Science.gov (United States)

    2014-10-02

    Online Normalization Algorithm for Engine Turbofan Monitoring Jérôme Lacaille 1 , Anastasios Bellas 2 1 Snecma, 77550 Moissy-Cramayel, France...understand the behavior of a turbofan engine, one first needs to deal with the variety of data acquisition contexts. Each time a set of measurements is...it auto-adapts itself with piecewise linear models. 1. INTRODUCTION Turbofan engine abnormality diagnosis uses three steps: reduction of

  5. 78 FR 35747 - Airworthiness Directives; Engine Alliance Turbofan Engines

    Science.gov (United States)

    2013-06-14

    ... Airworthiness Directives; Engine Alliance Turbofan Engines AGENCY: Federal Aviation Administration (FAA), DOT... Alliance GP7270 and GP7277 turbofan engines. This AD was prompted by damage to the high-pressure compressor... Alliance GP7270 and GP7277 turbofan engines with a high-pressure compressor (HPC) stage 6 disk, part number...

  6. 78 FR 9003 - Airworthiness Directives; Engine Alliance Turbofan Engines

    Science.gov (United States)

    2013-02-07

    ... Turbofan Engines AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of proposed rulemaking... GP7270 and GP7277 turbofan engines. This proposed AD was prompted by damage to the high-pressure... GP7277 turbofan engines with a high-pressure compressor (HPC) stage 6 disk, part number (P/N) 382-100-505...

  7. 76 FR 77108 - Airworthiness Directives; International Aero Engines Turbofan Engines

    Science.gov (United States)

    2011-12-12

    ... Airworthiness Directives; International Aero Engines Turbofan Engines AGENCY: Federal Aviation Administration...-D5, V2530-A5, and V2533-A5 turbofan engines. This AD was prompted by three reports of high- pressure..., V2524-A5, V2525-D5, V2527-A5, V2527E-A5, V2527M-A5, V2528- D5, V2530-A5, and V2533-A5 turbofan engines...

  8. Windmilling of turbofan engine; calculation of performance characteristics of a turbofan engine under windmilling

    NARCIS (Netherlands)

    Ramanathan, A.

    2014-01-01

    The turbofan is a type of air breathing jet engine that finds wide use in aircraft propulsion. During the normal operation of a turbofan engine installed in aircraft, the combustor is supplied with fuel, flow to the combustor is cut off and the engine runs under so called Windmilling conditions

  9. 77 FR 51695 - Airworthiness Directives; Honeywell International Inc. Turbofan Engines

    Science.gov (United States)

    2012-08-27

    ... Airworthiness Directives; Honeywell International Inc. Turbofan Engines AGENCY: Federal Aviation Administration... Honeywell International Inc. TFE731-20R, -20AR, -20BR, -40, -40AR, - 40R, -50R, and -60 turbofan engines... Inc. TFE731-20R, -20AR, -20BR, -40, -40AR, -40R, -50R, and -60 turbofan engines: (i) With an engine...

  10. 77 FR 23637 - Airworthiness Directives; Pratt & Whitney Division Turbofan Engines

    Science.gov (United States)

    2012-04-20

    ... Airworthiness Directives; Pratt & Whitney Division Turbofan Engines AGENCY: Federal Aviation Administration (FAA... directive (AD) for certain Pratt & Whitney Division PW4000-94'' and PW4000-100'' turbofan engines having a...-flight engine shutdowns, in certain PW4000-94'' and PW4000-100'' turbofan engines. Pratt & Whitney's...

  11. 78 FR 44899 - Airworthiness Directives; General Electric Company Turbofan Engines

    Science.gov (United States)

    2013-07-25

    ... Company Turbofan Engines AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of proposed... Electric Company (GE) GE90-110B1 and -115B turbofan engines. This proposed AD was prompted by multiple...) 2165M22P01, installed on GE90-110B1 and -115B turbofan engines. One of the leaks led to an under cowl engine...

  12. 77 FR 1043 - Airworthiness Directives; Honeywell International Inc. Turbofan Engines

    Science.gov (United States)

    2012-01-09

    ... International Inc. Turbofan Engines AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of... Honeywell International Inc. TFE731-20R, -20AR, -20BR, -40, -40AR, -40R, -50R, and -60 turbofan engines. (i...

  13. 78 FR 16620 - Airworthiness Directives; Pratt & Whitney Division Turbofan Engines

    Science.gov (United States)

    2013-03-18

    ... Division Turbofan Engines AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of proposed... Division (PW) turbofan engine models PW4074, PW4074D, PW4077, PW4077D, PW4084D, PW4090, and PW4090-3 with a... proposed AD. Discussion We propose to adopt a new AD for all PW turbofan engine models PW4074, PW4074D...

  14. 77 FR 67763 - Airworthiness Directives; Pratt & Whitney Division Turbofan Engines

    Science.gov (United States)

    2012-11-14

    ... Airworthiness Directives; Pratt & Whitney Division Turbofan Engines AGENCY: Federal Aviation Administration (FAA..., PW4156A, PW4158, PW4160, PW4460, PW4462, and PW4650 turbofan engines, including models with any dash... PW4650 turbofan engines, including models with any dash number suffix, with 3rd stage low-pressure...

  15. 77 FR 4650 - Airworthiness Directives; General Electric Company Turbofan Engines

    Science.gov (United States)

    2012-01-31

    ... Airworthiness Directives; General Electric Company Turbofan Engines AGENCY: Federal Aviation Administration (FAA... General Electric Company (GE) CF6-45 and CF6-50 series turbofan engines with certain low-pressure turbine... Compliance We estimate that this AD will affect 387 CF6-45 and CF6-50 series turbofan engines installed on...

  16. 77 FR 16139 - Airworthiness Directives; Pratt & Whitney (PW) Turbofan Engines

    Science.gov (United States)

    2012-03-20

    ... Airworthiness Directives; Pratt & Whitney (PW) Turbofan Engines AGENCY: Federal Aviation Administration (FAA... & Whitney (PW) PW2037, PW2037(M), and PW2040 turbofan engines with certain fan blades with a cutback leading..., PW2040, PW2240, PW2337 Turbofan Engine Manual, Part No. 1A6231, Chapter/Section 72-31-12, Repair-14 and...

  17. 77 FR 12448 - Airworthiness Directives; Pratt & Whitney Division Turbofan Engines

    Science.gov (United States)

    2012-03-01

    ... Airworthiness Directives; Pratt & Whitney Division Turbofan Engines AGENCY: Federal Aviation Administration (FAA..., PW4160, PW4460, PW4462, and PW4650 turbofan engines, including models with any dash number suffix. This..., PW4062, PW4062A, PW4152, PW4156, PW4156A, PW4158, PW4160, PW4460, PW4462, and PW4650 turbofan engines...

  18. 77 FR 16967 - Airworthiness Directives; Pratt & Whitney Division Turbofan Engines

    Science.gov (United States)

    2012-03-23

    ... Division Turbofan Engines AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of proposed..., PW4164C, PW4164C/B, PW4168, and PW4168A turbofan engines with certain high- pressure turbine (HPT) stage 1...) Applicability This AD applies to the following Pratt & Whitney Division turbofan engines: (1) PW4052, PW4152...

  19. 78 FR 72567 - Airworthiness Directives; General Electric Company Turbofan Engines

    Science.gov (United States)

    2013-12-03

    ... Airworthiness Directives; General Electric Company Turbofan Engines AGENCY: Federal Aviation Administration (FAA... General Electric Company (GE) GE90-110B1 and -115B turbofan engines. This AD was prompted by multiple... turbofan engines with variable bypass valve (VBV) actuator fuel supply tube, part number (P/N) 2165M22P01...

  20. 77 FR 15939 - Airworthiness Directives; Pratt & Whitney Turbofan Engines

    Science.gov (United States)

    2012-03-19

    ... Airworthiness Directives; Pratt & Whitney Turbofan Engines AGENCY: Federal Aviation Administration (FAA), DOT... & Whitney (PW) JT9D series turbofan engines. That AD currently requires revisions to the Airworthiness..., -7R4E, - 7R4E1, -7R4E4, -7R4G2, and -7R4H1 series turbofan engines. (d) Unsafe Condition This AD results...

  1. 77 FR 74125 - Airworthiness Directives; General Electric Company Turbofan Engines

    Science.gov (United States)

    2012-12-13

    ... Company Turbofan Engines AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of proposed... Company (GE) CF34-8C and CF34-8E turbofan engines with certain part numbers (P/N) of operability bleed... received reports of three failure events of OBV ring lock fuel fittings on GE CF34-8C turbofan engines. Two...

  2. 78 FR 19983 - Airworthiness Directives; General Electric Company Turbofan Engines

    Science.gov (United States)

    2013-04-03

    ... Airworthiness Directives; General Electric Company Turbofan Engines AGENCY: Federal Aviation Administration (FAA... Electric Company (GE) CF34-8C and CF34-8E turbofan engines with certain part numbers (P/N) of operability...-8E6, and CF34-8E6A1 turbofan engines, with an operability bleed valve (OBV) part number (P/N...

  3. 78 FR 72552 - Airworthiness Directives; General Electric Company Turbofan Engines

    Science.gov (United States)

    2013-12-03

    ... Airworthiness Directives; General Electric Company Turbofan Engines AGENCY: Federal Aviation Administration (FAA... General Electric Company model GEnx-2B67 and GEnx-2B67B turbofan engines. This AD was prompted by the... certain serial number General Electric Company (GE) model GEnx-2B67 and GEnx-2B67B turbofan engines. The...

  4. 77 FR 54791 - Airworthiness Directives; Pratt & Whitney Division Turbofan Engines

    Science.gov (United States)

    2012-09-06

    ... Airworthiness Directives; Pratt & Whitney Division Turbofan Engines AGENCY: Federal Aviation Administration (FAA... & Whitney Division PW4000-94'' and PW4000-100'' turbofan engines having a 1st stage high-pressure turbine... AD will affect 446 P&W PW4000-94'' and PW4000-100'' turbofan engines installed on airplanes of U.S...

  5. 76 FR 64844 - Airworthiness Directives; General Electric Company Turbofan Engines

    Science.gov (United States)

    2011-10-19

    ... Company Turbofan Engines AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of proposed... General Electric Company (GE) CF6-45 and CF6-50 series turbofan engines with certain low-pressure turbine... series turbofan engines with certain LPT rotor stage 3 disks installed. That AD requires initial and...

  6. 76 FR 73489 - Airworthiness Directives; Honeywell International Inc. Turbofan Engines

    Science.gov (United States)

    2011-11-29

    ... Airworthiness Directives; Honeywell International Inc. Turbofan Engines AGENCY: Federal Aviation Administration...-1F, and LF507-IH turbofan engines. This AD requires removing from service certain second stage high... International Inc. ALF502L-2C, ALF502R-3, ALF502R-3A, ALF502R-5, LF507-1F, and LF507-IH turbofan engines, with...

  7. 78 FR 64419 - Airworthiness Directives; Pratt & Whitney Turbofan Engines

    Science.gov (United States)

    2013-10-29

    ... Turbofan Engines AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of proposed rulemaking... turbofan engines. This proposed AD was prompted by a rupture of the diffuser-to-high-pressure turbine (HPT... turbofan engines. (d) Unsafe Condition This AD was prompted by a rupture of the diffuser-to-high- pressure...

  8. 77 FR 57007 - Airworthiness Directives; Pratt & Whitney Division Turbofan Engines

    Science.gov (United States)

    2012-09-17

    ... Airworthiness Directives; Pratt & Whitney Division Turbofan Engines AGENCY: Federal Aviation Administration (FAA... turbofan engines. That AD currently requires initial and repetitive fluorescent penetrant inspections (FPI... applies to the following Pratt & Whitney Division (Pratt & Whitney) turbofan engines: (1) PW4000-94...

  9. 78 FR 49111 - Airworthiness Directives; Pratt & Whitney Division Turbofan Engines

    Science.gov (United States)

    2013-08-13

    ... Airworthiness Directives; Pratt & Whitney Division Turbofan Engines AGENCY: Federal Aviation Administration (FAA... & Whitney Division (PW) turbofan engine model PW4074, PW4074D, PW4077, PW4077D, PW4084D, PW4090, and PW4090...) Applicability This AD applies to all Pratt & Whitney Division (PW) turbofan engine models PW4074, PW4074D...

  10. 77 FR 51892 - Airworthiness Directives; Honeywell International Inc. Turbofan Engines

    Science.gov (United States)

    2012-08-28

    ... Airworthiness Directives; Honeywell International Inc. Turbofan Engines AGENCY: Federal Aviation Administration... Honeywell International Inc. models TFE731-4, -4R, -5, -5R, -5AR, and - 5BR series turbofan engines. This AD... International Inc.: (1) Model TFE731-5 series turbofan engines, with a first stage low-pressure turbine (LPT1...

  11. 78 FR 76045 - Airworthiness Directives; General Electric Company Turbofan Engines

    Science.gov (United States)

    2013-12-16

    ... Airworthiness Directives; General Electric Company Turbofan Engines AGENCY: Federal Aviation Administration (FAA... (AD) for General Electric Company (GE) GE90-110B1 and GE90-115B turbofan engines with certain high... turbofan engines with high pressure compressor (HPC) rotor stage 2-5 spools, part numbers (P/Ns) 351-103...

  12. 78 FR 38195 - Airworthiness Directives; General Electric Company Turbofan Engines

    Science.gov (United States)

    2013-06-26

    ... Directives; General Electric Company Turbofan Engines AGENCY: Federal Aviation Administration (FAA), DOT... all General Electric Company (GE) GE90-110B1 and GE90-115B turbofan engines. This emergency AD was.... owners and operators of these GE90-110B1 and GE90-115B turbofan engines. This action was prompted by...

  13. 77 FR 9868 - Airworthiness Directives; Honeywell International Inc. Turbofan Engines

    Science.gov (United States)

    2012-02-21

    ... Airworthiness Directives; Honeywell International Inc. Turbofan Engines AGENCY: Federal Aviation Administration... -5BR series turbofan engines. This proposed AD was prompted by a report of a rim/web separation of a..., -4R, -5AR, -5BR, and -5R series turbofan engines, with an LPT1 rotor assembly, P/N 3074748-4, 3074748...

  14. 78 FR 19628 - Airworthiness Directives; General Electric Company Turbofan Engines

    Science.gov (United States)

    2013-04-02

    ... Company Turbofan Engines AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of proposed... Electric Company (GE) GE90-76B, -85B, -90B, -94B, - 110B1, and -115B turbofan engines. This proposed AD was... of stage 1 HPT stator shroud distress resulting in engine removals on airplanes with GE90 turbofan...

  15. 77 FR 16921 - Airworthiness Directives; Pratt & Whitney Division Turbofan Engines

    Science.gov (United States)

    2012-03-23

    ... Airworthiness Directives; Pratt & Whitney Division Turbofan Engines AGENCY: Federal Aviation Administration (FAA..., PW4160, PW4460, PW4462, and PW4650 turbofan engines, including models with any dash number suffix. This... Compliance We estimate that this AD will affect 44 turbofan engines installed on airplanes of U.S. registry...

  16. 77 FR 30926 - Airworthiness Directives; Pratt & Whitney Division Turbofan Engines

    Science.gov (United States)

    2012-05-24

    ... Division Turbofan Engines AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of proposed... turbofan engines. The existing AD currently requires initial and repetitive fluorescent penetrant... turbofan engines. That AD requires initial and repetitive FPI for cracks in the blade locking and loading...

  17. 77 FR 58471 - Airworthiness Directives; General Electric Company Turbofan Engines

    Science.gov (United States)

    2012-09-21

    ... Airworthiness Directives; General Electric Company Turbofan Engines AGENCY: Federal Aviation Administration (FAA.../P1, GEnx-1B75/P1, GEnx- 2B67, and GEnx-2B67B turbofan engines. This AD requires initial and... this AD will affect 11 GE GEnx turbofan engines installed on airplanes of U.S. registry. We also...

  18. 78 FR 50320 - Airworthiness Directives; General Electric Company Turbofan Engines

    Science.gov (United States)

    2013-08-19

    ... Airworthiness Directives; General Electric Company Turbofan Engines AGENCY: Federal Aviation Administration (FAA... Electric Company (GE) model GEnx-2B67B turbofan engines with booster anti-ice (BAI) air duct, part number...-2B67 turbofan engine be removed from the Applicability section of this AD. The commenters noted that...

  19. 76 FR 72353 - Airworthiness Directives; Pratt & Whitney Turbofan Engines

    Science.gov (United States)

    2011-11-23

    ... Turbofan Engines AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of proposed rulemaking...), PW4156A, PW4158, PW4158(-3), PW4460, PW4460(-3), PW4462, and PW4462(-3) turbofan engines. This proposed AD... PW4462(-3) turbofan engines installed on airplanes of U.S. registry. We also estimate that it would take...

  20. 77 FR 3088 - Airworthiness Directives; General Electric Company Turbofan Engines

    Science.gov (United States)

    2012-01-23

    ... Airworthiness Directives; General Electric Company Turbofan Engines AGENCY: Federal Aviation Administration (FAA... Electric Company (GE) CF34-10E series turbofan engines. This AD was prompted by a report of heavy wear... turbofan engines installed on airplanes of U.S. registry. We also estimate that it will take about 8 work...

  1. 77 FR 51459 - Airworthiness Directives; Pratt & Whitney Division Turbofan Engines

    Science.gov (United States)

    2012-08-24

    ... Airworthiness Directives; Pratt & Whitney Division Turbofan Engines AGENCY: Federal Aviation Administration (FAA..., PW4460, PW4462, PW4164, PW4164C, PW4164C/B, PW4168, and PW4168A turbofan engines with certain high... ADs None. (c) Applicability This AD applies to the following Pratt & Whitney Division turbofan engines...

  2. Windmilling of turbofan engine; calculation of performance characteristics of a turbofan engine under windmilling

    OpenAIRE

    Ramanathan, A.

    2014-01-01

    The turbofan is a type of air breathing jet engine that finds wide use in aircraft propulsion. During the normal operation of a turbofan engine installed in aircraft, the combustor is supplied with fuel, flow to the combustor is cut off and the engine runs under so called Windmilling conditions being driven only by the ram pressure ratio by producing drag. In-depth analysis is done to study the performance characteristics at this state.

  3. 77 FR 48110 - Airworthiness Directives; General Electric Company Turbofan Engines

    Science.gov (United States)

    2012-08-13

    ... Company Turbofan Engines AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of proposed... certain General Electric Company (GE) CF6-80C2 series turbofan engines. The existing AD requires... 2000-04-14, Amendment 39-11597 (65 FR 10698, February 29, 2000), for all GE CF6-80C2 series turbofan...

  4. 77 FR 40822 - Airworthiness Directives; Pratt & Whitney Division Turbofan Engines

    Science.gov (United States)

    2012-07-11

    ... Division Turbofan Engines AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of proposed..., PW4160, PW4460, PW4462, and PW4650 turbofan engines, including models with any dash number suffix. This..., PW4060C, PW4062, PW4062A, PW4152, PW4156, PW4156A, PW4158, PW4160, PW4460, PW4462, and PW4650 turbofan...

  5. 78 FR 56594 - Airworthiness Directives; General Electric Company Turbofan Engines

    Science.gov (United States)

    2013-09-13

    ... Airworthiness Directives; General Electric Company Turbofan Engines AGENCY: Federal Aviation Administration (FAA... General Electric Company (GE) GE90-76B, -85B, -90B, -94B, -110B1, and - 115B turbofan engines. This AD was...) Applicability This AD applies to General Electric Company (GE): (1) GE90-76B, -85B, -90B, and -94B turbofan...

  6. 77 FR 42424 - Airworthiness Directives; Pratt & Whitney Turbofan Engines

    Science.gov (United States)

    2012-07-19

    ... Airworthiness Directives; Pratt & Whitney Turbofan Engines AGENCY: Federal Aviation Administration (FAA), DOT... & Whitney Division PW4074 and PW4077 turbofan engines. That AD currently requires removing the 15th stage..., August 4, 2011). (c) Applicability This AD applies to Pratt & Whitney Division PW4074 and PW4077 turbofan...

  7. 77 FR 76977 - Airworthiness Directives; General Electric Company Turbofan Engines

    Science.gov (United States)

    2012-12-31

    ... Company Turbofan Engines AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Supplemental notice... proposed airworthiness directive (AD) for certain General Electric Company (GE) CF6-80C2 series turbofan... part 39 to include an AD that would apply to certain GE CF6-80C2 series turbofan engines. That NPRM...

  8. 76 FR 72348 - Airworthiness Directives; Pratt & Whitney Turbofan Engines

    Science.gov (United States)

    2011-11-23

    ... Turbofan Engines AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of proposed rulemaking..., -7R4D1, -7R4E, -7R4E1, -7R4G2, -7R4H1, and - 7R4E4 turbofan engines. This proposed AD would establish a... turbofan engines installed on airplanes of U.S. registry. We also estimate that it would take about 28.8...

  9. A methodology for noise prediction of turbofan engines.

    OpenAIRE

    Gustavo Di Fiore dos Santos

    2006-01-01

    A computional model is developed for prediction of noise emission from na existing or new turbofan engine. This model allows the simulation of noise generation from high bypass ratio turbofan engines, appropriate for use with computational programs for gas turbine performance developed at ITA. Analytical and empirical methods are used for spectrum shape, spectrum level, overall noise and free-field directivity noise. The most significant noise sources in turbofan engines are modeled: fan, com...

  10. 78 FR 47534 - Airworthiness Directives; General Electric Company Turbofan Engines

    Science.gov (United States)

    2013-08-06

    ... Airworthiness Directives; General Electric Company Turbofan Engines AGENCY: Federal Aviation Administration (FAA... directive (AD) 2013-14-51 for General Electric Company (GE) GE90-110B1 and GE90-115B turbofan engines with... all known U.S. owners and operators of GE90-110B1 and GE90-115B turbofan engines. AD 2013-14-51...

  11. 78 FR 24671 - Airworthiness Directives; General Electric Company Turbofan Engines

    Science.gov (United States)

    2013-04-26

    ... Airworthiness Directives; General Electric Company Turbofan Engines AGENCY: Federal Aviation Administration (FAA... certain General Electric Company (GE) CF6-80C2 series turbofan engines. That AD currently requires.../B1F/B2F/B4F/B6F/B7F/D1F turbofan engines with any of the following installed: (1) Fuel tube, part...

  12. 78 FR 21578 - Airworthiness Directives; General Electric Company Turbofan Engines

    Science.gov (United States)

    2013-04-11

    ... Company Turbofan Engines AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of proposed... Company (GE) model GEnx-2B67 and GEnx-2B67B turbofan engines with booster anti-ice (BAI) air duct, part... GE model GEnx-2B67 and GEnx- 2B67B turbofan engines with BAI air duct, P/N 2469M32G01, and support...

  13. 77 FR 71085 - Airworthiness Directives; Rolls-Royce Deutschland Ltd & Co KG Turbofan Engines

    Science.gov (United States)

    2012-11-29

    ... Airworthiness Directives; Rolls-Royce Deutschland Ltd & Co KG Turbofan Engines AGENCY: Federal Aviation... turbofan engines. This AD requires initial and repetitive general inspections and ultrasonic inspections...

  14. Advanced Control Considerations for Turbofan Engine Design

    Science.gov (United States)

    Connolly, Joseph W.; Csank, Jeffrey T.; Chicatelli, Amy

    2016-01-01

    This paper covers the application of a model-based engine control (MBEC) methodology featuring a self tuning on-board model for an aircraft turbofan engine simulation. The nonlinear engine model is capable of modeling realistic engine performance, allowing for a verification of the advanced control methodology over a wide range of operating points and life cycle conditions. The on-board model is a piece-wise linear model derived from the nonlinear engine model and updated using an optimal tuner Kalman Filter estimation routine, which enables the on-board model to self-tune to account for engine performance variations. MBEC is used here to show how advanced control architectures can improve efficiency during the design phase of a turbofan engine by reducing conservative operability margins. The operability margins that can be reduced, such as stall margin, can expand the engine design space and offer potential for efficiency improvements. Application of MBEC architecture to a nonlinear engine simulation is shown to reduce the thrust specific fuel consumption by approximately 1% over the baseline design, while maintaining safe operation of the engine across the flight envelope.

  15. 77 FR 14312 - Airworthiness Directives; Honeywell International, Inc. Turbofan Engines

    Science.gov (United States)

    2012-03-09

    ... International, Inc. Turbofan Engines AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of... Honeywell International, Inc. ALF502L-2C; ALF502R-3; ALF502R-3A; ALF502R-5; LF507-1F; and LF507-1H turbofan...; ALF502R-3A; ALF502R-5; LF507-1F; and LF507-1H turbofan engines, installed on airplanes of U.S. registry...

  16. 77 FR 32009 - Airworthiness Directives; Honeywell International, Inc. Turbofan Engines

    Science.gov (United States)

    2012-05-31

    ... Airworthiness Directives; Honeywell International, Inc. Turbofan Engines AGENCY: Federal Aviation Administration... Honeywell International, Inc. ALF502L-2C; ALF502R-3; ALF502R-3A; ALF502R-5; LF507-1F; and LF507-1H turbofan...; ALF502R-3A; ALF502R-5; LF507-1F; and LF507- 1H turbofan engines, installed on airplanes of U.S. registry...

  17. 78 FR 22168 - Airworthiness Directives; International Aero Engines AG Turbofan Engines

    Science.gov (United States)

    2013-04-15

    ... Airworthiness Directives; International Aero Engines AG Turbofan Engines AGENCY: Federal Aviation Administration... International Aero Engines AG (IAE), V2525-D5 and V2528-D5 turbofan engines, with a certain No. 4 bearing... turbofan engines, serial numbers V20001 through V20285, with No. 4 bearing internal scavenge tube, part...

  18. 78 FR 1776 - Airworthiness Directives; International Aero Engines AG Turbofan Engines

    Science.gov (United States)

    2013-01-09

    ... Engines AG Turbofan Engines AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of proposed... Aero Engines AG (IAE), V2525-D5 and V2528-D5 turbofan engines, with a certain number (No.) 4 bearing... proposed AD. Discussion We received a report of a fire warning on an IAE V2525 turbofan engine shortly...

  19. Research and development of turbofan engine for supersonic aircraft. Choonsokukiyo turbofan engine no kenkyu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Yashima, S [Ishikawajima-Harima Heavy Industries Co. Ltd., Tokyo (Japan)

    1992-01-01

    This paper described the researched results of the demonstrator of a turbofan engine for supersonic aircraft (IHI-17). A turbofan engine with an afterburner was experimentally fabricated and various engine tests have been carried out since 1988. Although the engine size is small, the fighter engine specifications were applied to its design and the prior or simultaneous research on each component was carried out. As a result, the system integration technique by which an engine was assembled by integrating each component could be established. New materials and new manufacturing techniques such as turbine blades of single crystal, turbine disks of powder metallurgy and deep chemical milling for a duct were developed to use for the long term engine test and the prospect to commercialization could be obtained. The following techniques have been established and the results satisfying target specifications could be achieved: the three dimensional aerodynamic design of compressor and turbine, the adoption of air blast fuel atomizer to suppress the smoke generation, an afterburner of spray bar system and the mounting type FADEC (full authority digital electronic control) to control the engine with the afterburner. 4 refs., 15 figs., 4 tabs.

  20. 76 FR 68634 - Airworthiness Directives; General Electric Company (GE) CF6 Turbofan Engines

    Science.gov (United States)

    2011-11-07

    ... Airworthiness Directives; General Electric Company (GE) CF6 Turbofan Engines AGENCY: Federal Aviation... ``(c) This AD applies to * * * and CF6-80A3 turbofan engines with left-hand links * * *.'' to ``(c) This AD applies to * * * and CF6-80A3 turbofan engines, including engines marked on the engine data...

  1. 76 FR 82202 - Airworthiness Directives; International Aero Engines AG Turbofan Engines

    Science.gov (United States)

    2011-12-30

    ... Engines AG Turbofan Engines AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of proposed... International Aero Engines AG (IAE) V2500-A1, V2525-D5 and V2528-D5 turbofan engines, and certain serial numbers (S/Ns) of IAE V2522-A5, V2524-A5, V2527-A5, V2527E-A5, V2527M-A5, V2530-A5, and V2533-A5 turbofan...

  2. Propulsion Controls Modeling for a Small Turbofan Engine

    Science.gov (United States)

    Connolly, Joseph W.; Csank, Jeffrey T.; Chicatelli, Amy; Franco, Kevin

    2017-01-01

    A nonlinear dynamic model and propulsion controller are developed for a small-scale turbofan engine. The small-scale turbofan engine is based on the Price Induction company's DGEN 380, one of the few turbofan engines targeted for the personal light jet category. Comparisons of the nonlinear dynamic turbofan engine model to actual DGEN 380 engine test data and a Price Induction simulation are provided. During engine transients, the nonlinear model typically agrees within 10 percent error, even though the nonlinear model was developed from limited available engine data. A gain scheduled proportional integral low speed shaft controller with limiter safety logic is created to replicate the baseline DGEN 380 controller. The new controller provides desired gain and phase margins and is verified to meet Federal Aviation Administration transient propulsion system requirements. In understanding benefits, there is a need to move beyond simulation for the demonstration of advanced control architectures and technologies by using real-time systems and hardware. The small-scale DGEN 380 provides a cost effective means to accomplish advanced controls testing on a relevant turbofan engine platform.

  3. 77 FR 73268 - Airworthiness Directives; Rolls-Royce plc Turbofan Engines

    Science.gov (United States)

    2012-12-10

    ... Airworthiness Directives; Rolls-Royce plc Turbofan Engines AGENCY: Federal Aviation Administration (FAA), DOT... certain Rolls-Royce plc (RR) RB211-Trent 900 series turbofan engines. This AD requires inspection of the... turbofan engines, all serial numbers. (d) Reason This AD was prompted by a Trent 900 engine experiencing a...

  4. 78 FR 79295 - Airworthiness Directives; CFM International S.A. Turbofan Engines

    Science.gov (United States)

    2013-12-30

    ... Airworthiness Directives; CFM International S.A. Turbofan Engines AGENCY: Federal Aviation Administration (FAA... International (CFM) S.A. CFM56-3 and CFM56-7B series turbofan engines with certain accessory gearboxes (AGBs... of total loss of engine oil from CFM56 series turbofan engines while in flight. This AD requires an...

  5. 75 FR 14375 - Airworthiness Directives; Pratt & Whitney (PW) PW4000 Series Turbofan Engines

    Science.gov (United States)

    2010-03-25

    ...) PW4000 Series Turbofan Engines AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of..., PW4156, PW4156A, PW4158, PW4164, PW4168, PW4168A, PW4460, and PW4462 turbofan engines. This proposed AD..., PW4156, PW4156A, PW4158, PW4164, PW4168, PW4168A, PW4460, and PW4462 turbofan engines. These engines are...

  6. 78 FR 6206 - Airworthiness Directives; Rolls-Royce plc Turbofan Engines

    Science.gov (United States)

    2013-01-30

    ... Airworthiness Directives; Rolls-Royce plc Turbofan Engines AGENCY: Federal Aviation Administration (FAA), DOT..., RB211-Trent 977-84, RB211-Trent 977B-84 and RB211-Trent 980-84 turbofan engines. This AD requires on...

  7. 77 FR 20987 - Airworthiness Directives; Rolls-Royce plc Turbofan Engines

    Science.gov (United States)

    2012-04-09

    ... Directives; Rolls-Royce plc Turbofan Engines AGENCY: Federal Aviation Administration (FAA), DOT. ACTION... the Federal Register. That AD applies to RB211-Trent 800 series turbofan engines. The last comment...

  8. Software Development for EECU Platform of Turbofan Engine

    Science.gov (United States)

    Kim, Bo Gyoung; Kwak, Dohyup; Kim, Byunghyun; Choi, Hee ju; Kong, Changduk

    2017-04-01

    The turbofan engine operation consists of a number of hardware and software. The engine is controlled by Electronic Engine Control Unit (EECU). In order to control the engine, EECU communicates with an aircraft system, Actuator Drive Unit (ADU), Engine Power Unit (EPU) and sensors on the engine. This paper tried to investigate the process form starting to taking-off and aims to design the EECU software mode and defined communication data format. The software is implemented according to the designed software mode.

  9. 77 FR 32007 - Airworthiness Directives; Rolls-Royce plc Turbofan Engines

    Science.gov (United States)

    2012-05-31

    ... Airworthiness Directives; Rolls-Royce plc Turbofan Engines AGENCY: Federal Aviation Administration (FAA), DOT... all Rolls-Royce plc (RR) RB211-Trent 800 series turbofan engines. This AD requires removal from...-17, 877- 17, 884-17, 884B-17, 892-17, 892B-17, and 895-17 turbofan engines. (d) Reason This AD was...

  10. 78 FR 17297 - Airworthiness Directives; Rolls-Royce plc Turbofan Engines

    Science.gov (United States)

    2013-03-21

    ... Airworthiness Directives; Rolls-Royce plc Turbofan Engines AGENCY: Federal Aviation Administration (FAA), DOT... (AD) for all Rolls-Royce plc (RR) RB211 Trent 500 series turbofan engines. That AD currently requires... 9, 2012), for all RR RB211 Trent 500 series turbofan engines. That AD requires a one-time inspection...

  11. 78 FR 20509 - Airworthiness Directives; Rolls-Royce plc Turbofan Engines

    Science.gov (United States)

    2013-04-05

    ... Turbofan Engines AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of proposed rulemaking...) RB211-535E4-B-37 series turbofan engines. This proposed AD was prompted by recalculating the life of.... (c) Applicability This AD applies to Rolls-Royce plc (RR) RB211-535E4-B-37 series turbofan engines...

  12. 75 FR 55459 - Airworthiness Directives; Pratt & Whitney (PW) PW4000 Series Turbofan Engines

    Science.gov (United States)

    2010-09-13

    ... Airworthiness Directives; Pratt & Whitney (PW) PW4000 Series Turbofan Engines AGENCY: Federal Aviation..., PW4152, PW4156A, PW4158, PW4164, PW4168, PW4168A, PW4460, and PW4462 turbofan engines. This AD requires... series turbofan engines. We published the proposed AD in the Federal Register on March 25, 2010 (75 FR...

  13. 78 FR 70487 - Airworthiness Directives; Rolls-Royce plc Turbofan Engines

    Science.gov (United States)

    2013-11-26

    ... Airworthiness Directives; Rolls-Royce plc Turbofan Engines AGENCY: Federal Aviation Administration (FAA), DOT... turbofan engines. This AD requires removal of certain high-pressure (HP) and intermediate-pressure (IP..., RB211 Trent 768-60, 772-60, and 772B-60 turbofan engines with turbine disc part numbers (P/Ns) and...

  14. 77 FR 39157 - Airworthiness Directives; Rolls-Royce plc Turbofan Engines

    Science.gov (United States)

    2012-07-02

    ... Airworthiness Directives; Rolls-Royce plc Turbofan Engines AGENCY: Federal Aviation Administration (FAA), DOT...-84, and 980-84 turbofan engines. That AD currently requires inspecting the intermediate-pressure (IP... RR model RB211-Trent 970-84, 970B-84, 972-84, 972B-84, 977-84, 977B-84, and 980-84 turbofan engines...

  15. 78 FR 6749 - Airworthiness Directives; Rolls-Royce plc Turbofan Engines

    Science.gov (United States)

    2013-01-31

    ... Airworthiness Directives; Rolls-Royce plc Turbofan Engines AGENCY: Federal Aviation Administration (FAA), DOT... (AD) for all Rolls-Royce plc (RR) models RB211 Trent 768-60, 772-60, and 772B-60 turbofan engines... 772B-60 turbofan engines. (d) Reason This AD was prompted by low-pressure (LP) compressor blade partial...

  16. 78 FR 17300 - Airworthiness Directives; Rolls-Royce plc Turbofan Engines

    Science.gov (United States)

    2013-03-21

    ... Turbofan Engines AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of proposed rulemaking..., 772-60, 772B-60, 875-17, 877-17, 884-17, 884B-17, 892-17, 892B-17, and 895-17 turbofan engines. The..., 892-17, 892B-17, and 895-17 turbofan engines. That AD requires continuing initial inspections, adding...

  17. 78 FR 5 - Airworthiness Directives; Rolls-Royce plc Turbofan Engines

    Science.gov (United States)

    2013-01-02

    ... Airworthiness Directives; Rolls-Royce plc Turbofan Engines AGENCY: Federal Aviation Administration (FAA), DOT...-535E4-C-37 turbofan engines. This AD was prompted by an investigation by RR concluding that certain...- 535E4-B-37; RB211-535E4-B-75; and RB211-535E4-C-37 turbofan engines with intermediate-pressure (IP...

  18. 78 FR 37703 - Airworthiness Directives; Rolls-Royce plc Turbofan Engines

    Science.gov (United States)

    2013-06-24

    ... Airworthiness Directives; Rolls-Royce plc Turbofan Engines AGENCY: Federal Aviation Administration (FAA), DOT... (RR) model RB211 Trent 768-60, 772-60, and 772B-60 turbofan engines. This AD was prompted by low...) model RB211 Trent 768-60, 772-60, and 772B-60 turbofan engines. (d) Reason This AD was prompted by low...

  19. 77 FR 40820 - Airworthiness Directives; Rolls-Royce plc Turbofan Engines

    Science.gov (United States)

    2012-07-11

    ... Turbofan Engines AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of proposed rulemaking... turbofan engines. This proposed AD was prompted by an investigation by RR concluding that certain...; RB211-535E4-B-75; and RB211-535E4-C-37 turbofan engines. (d) Reason This AD was prompted by an...

  20. 78 FR 70489 - Airworthiness Directives; Rolls-Royce plc Turbofan Engines

    Science.gov (United States)

    2013-11-26

    ... Airworthiness Directives; Rolls-Royce plc Turbofan Engines AGENCY: Federal Aviation Administration (FAA), DOT..., and 560A2-61 turbofan engines. This AD requires replacement or repair of the low-pressure (LP...-61, 556B2-61, 560-61, and 560A2-61 turbofan engines. (d) Reason This AD was prompted by reports of...

  1. 78 FR 22180 - Airworthiness Directives; Rolls-Royce plc Turbofan Engines

    Science.gov (United States)

    2013-04-15

    ... Airworthiness Directives; Rolls-Royce plc Turbofan Engines AGENCY: Federal Aviation Administration (FAA), DOT... 972B-84, RB211-Trent 977-84, RB211-Trent 977B-84, and RB211-Trent 980-84 turbofan engines. This AD... 977B-84, and RB211-Trent 980-84 turbofan engines that incorporate RR production Modification 72-G585 or...

  2. 77 FR 26216 - Airworthiness Directives; Rolls-Royce plc Turbofan Engines

    Science.gov (United States)

    2012-05-03

    ... Turbofan Engines AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of proposed rulemaking..., RB211- Trent 892-17, RB211-Trent 892B-17, and RB211-Trent 895-17 turbofan engines. The existing AD...-Trent 895-17 turbofan engines. That AD requires initial and repetitive UIs of certain LP compressor...

  3. 77 FR 20508 - Airworthiness Directives; Rolls-Royce plc Turbofan Engines

    Science.gov (United States)

    2012-04-05

    ... Airworthiness Directives; Rolls-Royce plc Turbofan Engines AGENCY: Federal Aviation Administration (FAA), DOT...-Trent 884B-17, RB211-Trent 892-17, RB211- Trent 892B-17, and RB211-Trent 895-17 turbofan engines. That...-17, RB211- Trent 892B-17, and RB211-Trent 895-17 turbofan engines. On September 9, 2011, we also...

  4. 77 FR 58762 - Airworthiness Directives; Rolls-Royce plc Turbofan Engines

    Science.gov (United States)

    2012-09-24

    ... Airworthiness Directives; Rolls-Royce plc Turbofan Engines AGENCY: Federal Aviation Administration (FAA), DOT...-Trent 892-17, RB211- Trent 892B-17, and RB211-Trent 895-17 turbofan engines. That AD currently requires...-17, RB211-Trent 892B-17, and RB211-Trent 895-17 turbofan engines. (d) Unsafe Condition This AD was...

  5. 78 FR 17079 - Airworthiness Directives; Rolls-Royce Deutschland Ltd & Co KG Turbofan Engines

    Science.gov (United States)

    2013-03-20

    ... Airworthiness Directives; Rolls-Royce Deutschland Ltd & Co KG Turbofan Engines AGENCY: Federal Aviation... certain Rolls-Royce Deutschland Ltd & Co KG (RRD) models Tay 620-15 and Tay 650-15 turbofan engines. This... Tay 620-15 and Tay 650-15 turbofan engines with a low-pressure compressor (LPC) rotor disc assembly...

  6. 76 FR 68660 - Airworthiness Directives; Pratt & Whitney Division (PW) PW4000 Series Turbofan Engines

    Science.gov (United States)

    2011-11-07

    ... Airworthiness Directives; Pratt & Whitney Division (PW) PW4000 Series Turbofan Engines AGENCY: Federal Aviation... airworthiness directive (AD) for PW4000 series turbofan engines. This proposed AD would require replacing the..., PW4152, PW4156, PW4156A, PW4158, PW4160, PW4460, PW4462, and PW4650 turbofan engines, including models...

  7. 78 FR 17075 - Airworthiness Directives; Rolls-Royce Deutschland Ltd & Co KG Turbofan Engines

    Science.gov (United States)

    2013-03-20

    ... Airworthiness Directives; Rolls-Royce Deutschland Ltd & Co KG Turbofan Engines AGENCY: Federal Aviation... certain Rolls-Royce Deutschland Ltd & Co KG (RRD) Tay 611-8 turbofan engines. This AD requires inspection... (RRD) Tay 611-8 turbofan engines, serial numbers 16245, 16256, 16417, 16418, 16584, 16585, 16639, 16640...

  8. 77 FR 6668 - Airworthiness Directives; Rolls-Royce plc Turbofan Engines

    Science.gov (United States)

    2012-02-09

    ... Airworthiness Directives; Rolls-Royce plc Turbofan Engines AGENCY: Federal Aviation Administration (FAA), DOT... all Rolls-Royce plc RB211-Trent 500 series turbofan engines. This AD requires a one-time inspection of... RB211- Trent 560A2-61 turbofan engines that have not complied with Rolls- Royce plc Service Bulletin No...

  9. 77 FR 56760 - Airworthiness Directives; Rolls-Royce plc Turbofan Engines

    Science.gov (United States)

    2012-09-14

    ... Airworthiness Directives; Rolls-Royce plc Turbofan Engines AGENCY: Federal Aviation Administration (FAA), DOT... all Rolls-Royce plc (RR) RB211-Trent 800 series turbofan engines. This AD requires removing from...-17, 892-17, 892B-17, and 895-17 turbofan engines that have an intermediate pressure (IP) turbine disc...

  10. 78 FR 28161 - Airworthiness Directives; Rolls-Royce plc Turbofan Engines

    Science.gov (United States)

    2013-05-14

    ... Turbofan Engines AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of proposed rulemaking... turbofan engines that have a high-pressure (HP) compressor stage 1 to 4 rotor disc installed, with a..., -524H-T-36, and -524H2-T-19 turbofan engines that have a HP compressor stage 1 to 4 rotor disc installed...

  11. 78 FR 68360 - Airworthiness Directives; Rolls-Royce plc Turbofan Engines

    Science.gov (United States)

    2013-11-14

    ... Airworthiness Directives; Rolls-Royce plc Turbofan Engines AGENCY: Federal Aviation Administration (FAA), DOT... turbofan engines. The AD number is incorrect in the Regulatory text. This document corrects that error. In... turbofan engines. As published, the AD number 2013-19-17 under Sec. 39.13 [Amended], is incorrect. No other...

  12. 78 FR 61171 - Airworthiness Directives; Rolls-Royce plc Turbofan Engines

    Science.gov (United States)

    2013-10-03

    ... Airworthiness Directives; Rolls-Royce plc Turbofan Engines AGENCY: Federal Aviation Administration (FAA), DOT... (RR) RB211-535E4-B-37 series turbofan engines. This AD requires removal of affected parts using a...-B-37 series turbofan engines. (d) Unsafe Condition This AD was prompted by recalculating the lives...

  13. 77 FR 13485 - Airworthiness Directives; Rolls-Royce plc Turbofan Engines

    Science.gov (United States)

    2012-03-07

    ... Airworthiness Directives; Rolls-Royce plc Turbofan Engines AGENCY: Federal Aviation Administration (FAA), DOT... series turbofan engines. This AD requires inspecting the front combustion liner head section for cracking.... (c) Applicability This AD applies to Rolls-Royce plc (RR) RB211-Trent 800 turbofan engines, all...

  14. 78 FR 5126 - Airworthiness Directives; Rolls-Royce plc Turbofan Engines

    Science.gov (United States)

    2013-01-24

    ... Airworthiness Directives; Rolls-Royce plc Turbofan Engines AGENCY: Federal Aviation Administration (FAA), DOT... turbofan engines. This AD requires replacement of the fuel oil heat exchanger (FOHE). This AD was prompted...-84 turbofan engines with a fuel oil heat exchanger (FOHE), part number 47111-1241, installed. (d...

  15. 78 FR 35574 - Airworthiness Directives; Rolls-Royce Deutschland Ltd & Co KG Turbofan Engines

    Science.gov (United States)

    2013-06-13

    ... Airworthiness Directives; Rolls-Royce Deutschland Ltd & Co KG Turbofan Engines AGENCY: Federal Aviation... airworthiness directive (AD) for all Rolls-Royce Deutschland Ltd & Co KG (RRD) model Tay 650-15 turbofan engines... Compliance We estimate that this proposed AD affects 52 Tay turbofan engines installed on airplanes of U.S...

  16. 78 FR 17080 - Airworthiness Directives; Rolls-Royce Deutschland Ltd & Co KG Turbofan Engines

    Science.gov (United States)

    2013-03-20

    ... Airworthiness Directives; Rolls-Royce Deutschland Ltd & Co KG Turbofan Engines AGENCY: Federal Aviation... certain Rolls-Royce Deutschland Ltd & Co KG (RRD) BR700-710 series turbofan engines. This AD requires... applies to Rolls-Royce Deutschland Ltd & Co KG (RRD) BR700-710A1-10 and BR700-710A2-20 turbofan engines...

  17. 14 CFR 23.934 - Turbojet and turbofan engine thrust reverser systems tests.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Turbojet and turbofan engine thrust... CATEGORY AIRPLANES Powerplant General § 23.934 Turbojet and turbofan engine thrust reverser systems tests. Thrust reverser systems of turbojet or turbofan engines must meet the requirements of § 33.97 of this...

  18. 78 FR 11976 - Airworthiness Directives; Rolls-Royce plc Turbofan Engines

    Science.gov (United States)

    2013-02-21

    ... Airworthiness Directives; Rolls-Royce plc Turbofan Engines AGENCY: Federal Aviation Administration (FAA), DOT... (AD) for all Rolls-Royce plc (RR) RB211-524 series turbofan engines. That AD currently requires...-16724 (76 FR 40217, July 8, 2011), for all RR plc RB211-524 series turbofan engines. That AD required...

  19. 78 FR 71532 - Airworthiness Directives; Rolls-Royce Deutschland Ltd & Co KG Turbofan Engines

    Science.gov (United States)

    2013-11-29

    ... Deutschland Ltd & Co KG Turbofan Engines AGENCY: Federal Aviation Administration (FAA), DOT. [[Page 71533... (AD) 2007-03- 02 for all Rolls-Royce Deutschland (RRD) Tay 620-15, Tay 650-15, and Tay 651-54 turbofan..., January 29, 2007) (``AD 2007-03-02'') for certain RRD Tay 611-8 and Tay 620-15 turbofan engines with LP...

  20. Simulating the Use of Alternative Fuels in a Turbofan Engine

    Science.gov (United States)

    Litt, Jonathan S.; Chin, Jeffrey Chevoor; Liu, Yuan

    2013-01-01

    The interest in alternative fuels for aviation has created a need to evaluate their effect on engine performance. The use of dynamic turbofan engine simulations enables the comparative modeling of the performance of these fuels on a realistic test bed in terms of dynamic response and control compared to traditional fuels. The analysis of overall engine performance and response characteristics can lead to a determination of the practicality of using specific alternative fuels in commercial aircraft. This paper describes a procedure to model the use of alternative fuels in a large commercial turbofan engine, and quantifies their effects on engine and vehicle performance. In addition, the modeling effort notionally demonstrates that engine performance may be maintained by modifying engine control system software parameters to account for the alternative fuel.

  1. Hierarchy of simulation models for a turbofan gas engine

    Science.gov (United States)

    Longenbaker, W. E.; Leake, R. J.

    1977-01-01

    Steady-state and transient performance of an F-100-like turbofan gas engine are modeled by a computer program, DYNGEN, developed by NASA. The model employs block data maps and includes about 25 states. Low-order nonlinear analytical and linear techniques are described in terms of their application to the model. Experimental comparisons illustrating the accuracy of each model are presented.

  2. 78 FR 47235 - Airworthiness Directives; General Electric Company Turbofan Engines

    Science.gov (United States)

    2013-08-05

    ... cycle counts of those LLPs to account for the additional low cycle fatigue (LCF) life consumed during... Boeing 747-8 flight tests had consumed more cyclic life than they would have in revenue flight cycles... Company Turbofan Engines AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of proposed...

  3. Effects of Reynold's number on flight performance of turbofan engine

    Energy Technology Data Exchange (ETDEWEB)

    Kozu, Masao; Yajima, Satoshi [Defense Agency Tokyo (Japan); Ishikawajima-Harima Heavy Industries Co. Ltd., Tokyo (Japan))

    1988-12-10

    Concerning the performance of the F3-30 turbofan engine which is carried on the intermediate trainer XT-4 of the Air Self Defense Force, tests simulating its flight conditions were conducted at the Altitude Test Facility (ATF) of the Arnold Engineering Development Center (AEDC), U.S. Air Force in order to adjust the effect of Reynold's number corresponding to the flight condition. This report summarizes the results of the above tests. As the results of the tests, it was revealed that in order to calculate with precision the flight performance of the F3-30 turbofan engine, it was required to adjust Reynold's number against the following figures, namely the fan air flow, compressor air flow, compressor adiabatic efficiency, low pressure turbine gas flow and low pressure turbine adiabatic efficiency. The engine performance calculated by using the above adjustments agreed well with the measured values of the ATF tests. 7 refs., 17 figs., 1 tab.

  4. System Noise Prediction of the DGEN 380 Turbofan Engine

    Science.gov (United States)

    Berton, Jeffrey J.

    2015-01-01

    The DGEN 380 is a small, separate-flow, geared turbofan. Its manufacturer, Price Induction, is promoting it for a small twinjet application in the emerging personal light jet market. Smaller, and producing less thrust than other entries in the industry, Price Induction is seeking to apply the engine to a 4- to 5-place twinjet designed to compete in an area currently dominated by propeller-driven airplanes. NASA is considering purchasing a DGEN 380 turbofan to test new propulsion noise reduction technologies in a relevant engine environment. To explore this possibility, NASA and Price Induction have signed a Space Act Agreement and have agreed to cooperate on engine acoustic testing. Static acoustic measurements of the engine were made by NASA researchers during July, 2014 at the Glenn Research Center. In the event that a DGEN turbofan becomes a NASA noise technology research testbed, it is in the interest of NASA to develop procedures to evaluate engine system noise metrics. This report documents the procedures used to project the DGEN static noise measurements to flight conditions and the prediction of system noise of a notional airplane powered by twin DGEN engines.

  5. 78 FR 20507 - Airworthiness Directives; Rolls-Royce plc Turbofan Engines

    Science.gov (United States)

    2013-04-05

    ... Turbofan Engines AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of proposed rulemaking...) RB211-535E4-37, RB211-535E4-B-37, RB211-535E4-C- 37, and RB211-535E4-B-75 turbofan engines. This...-535E4-C-37, and RB211-535E4-B-75 turbofan engines. (d) Reason This AD was prompted by RR updating the...

  6. 78 FR 54152 - Airworthiness Directives; Rolls-Royce plc Turbofan Engines

    Science.gov (United States)

    2013-09-03

    ... Airworthiness Directives; Rolls-Royce plc Turbofan Engines AGENCY: Federal Aviation Administration (FAA), DOT...; -535C-37; -535E4-37; - 535E4-B-37, and -535E4-B-75 turbofan engines, and all RB211-524G2-19; - 524G3-19; -524H2-19; and -524H-36 turbofan engines. This AD requires a one-time inspection of the front combustion...

  7. 78 FR 20505 - Airworthiness Directives; Rolls-Royce plc Turbofan Engines

    Science.gov (United States)

    2013-04-05

    ... Turbofan Engines AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of proposed rulemaking...; - 535E4-37; -535E4-B-37, and -535E4-B-75 turbofan engines, and all RB211- 524G2-19; -524G3-19; -524H2-19; and -524H-36 turbofan engines. This proposed AD was prompted by the discovery of a cracked and...

  8. 78 FR 61168 - Airworthiness Directives; Rolls-Royce plc Turbofan Engines

    Science.gov (United States)

    2013-10-03

    ... Airworthiness Directives; Rolls-Royce plc Turbofan Engines AGENCY: Federal Aviation Administration (FAA), DOT... (RR) RB211-535E4-37, RB211-535E4-B-37, RB211-535E4-C- 37, and RB211-535E4-B-75 turbofan engines. This...-37, RB211-535E4-B-37, RB211-535E4-C-37, and RB211-535E4-B-75 turbofan engines. (d) Unsafe Condition...

  9. 77 FR 16916 - Airworthiness Directives; Pratt & Whitney (PW)Turbofan Engines

    Science.gov (United States)

    2012-03-23

    ... Airworthiness Directives; Pratt & Whitney (PW)Turbofan Engines AGENCY: Federal Aviation Administration (FAA... and -7R4H1 turbofan engines. This AD was prompted by the determination that a new lower life limit for... PW JT9D-7R4G2 and -7R4H1 turbofan engine models. We agree. In addition to the JT9D-7R4G2 and -7R4H1...

  10. 76 FR 67591 - Airworthiness Directives; Rolls-Royce Corporation Turbofan Engines

    Science.gov (United States)

    2011-11-02

    ... Airworthiness Directives; Rolls-Royce Corporation Turbofan Engines AGENCY: Federal Aviation Administration (FAA... 3007A1P, and AE 3007A3 turbofan engines. This AD requires initial and repetitive eddy current inspections... 3007A, AE 3007A1/1, AE 3007A1, AE 3007A1/3, AE 3007A1E, AE 3007A1P, and AE 3007A3 turbofan engines...

  11. 78 FR 77382 - Airworthiness Directives; Rolls-Royce Deutschland Ltd & Co KG Turbofan Engines

    Science.gov (United States)

    2013-12-23

    ... Deutschland Ltd & Co KG Turbofan Engines AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of...-Royce Deutschland Ltd & Co KG (RRD) BR700-715A1-30, BR700-715B1- 30, and BR700-715C1-30 turbofan engines... turbofan engines installed on aircraft of U.S. registry. We also estimate that it would take about 24 hours...

  12. The Design and Testing of a Miniature Turbofan Engine

    Science.gov (United States)

    Cosentino, Gary B.; Murray, James E.

    2009-01-01

    Off-the-shelf jet propulsion in the 50 - 500 lb thrust class sparse. A true twin-spool turbofan in this range does not exist. Adapting an off-the-shelf turboshaft engine is feasible. However the approx.10 Hp SPT5 can t quite make 50 lbs. of thrust. Packaging and integration is challenging, especially the exhaust. Building on our engine using a 25 Hp turboshaft seems promising if the engine becomes available. Test techniques used, though low cost, adequate for the purpose.

  13. 77 FR 75831 - Airworthiness Directives; Rolls-Royce plc Turbofan Engines

    Science.gov (United States)

    2012-12-26

    ... Airworthiness Directives; Rolls-Royce plc Turbofan Engines AGENCY: Federal Aviation Administration (FAA), DOT... certain serial numbers (S/Ns) of Rolls-Royce plc (RR) RB211-Trent 768-60, 772- 60, and 772B-60 turbofan... use any of the RB211-Trent 768-60, 772-60, and 772B-60 turbofan engines listed by S/N in this AD...

  14. 78 FR 60658 - Airworthiness Directives; Rolls-Royce plc Turbofan Engines

    Science.gov (United States)

    2013-10-02

    ... Airworthiness Directives; Rolls-Royce plc Turbofan Engines AGENCY: Federal Aviation Administration (FAA), DOT..., 892-17, 892B-17, and 895-17; and RB211-524G2-T-19, -524G3-T- 19, -524H-T-36, and -524H2-T-19 turbofan... (RR) model turbofan engines that have a high-pressure (HP) compressor stage 1 to 4 rotor disc...

  15. Enhanced Fan Noise Modeling for Turbofan Engines

    Science.gov (United States)

    Krejsa, Eugene A.; Stone, James R.

    2014-01-01

    This report describes work by consultants to Diversitech Inc. for the NASA Glenn Research Center (GRC) to revise the fan noise prediction procedure based on fan noise data obtained in the 9- by 15 Foot Low-Speed Wind Tunnel at GRC. The purpose of this task is to begin development of an enhanced, analytical, more physics-based, fan noise prediction method applicable to commercial turbofan propulsion systems. The method is to be suitable for programming into a computational model for eventual incorporation into NASA's current aircraft system noise prediction computer codes. The scope of this task is in alignment with the mission of the Propulsion 21 research effort conducted by the coalition of NASA, state government, industry, and academia to develop aeropropulsion technologies. A model for fan noise prediction was developed based on measured noise levels for the R4 rotor with several outlet guide vane variations and three fan exhaust areas. The model predicts the complete fan noise spectrum, including broadband noise, tones, and for supersonic tip speeds, combination tones. Both spectra and directivity are predicted. Good agreement with data was achieved for all fan geometries. Comparisons with data from a second fan, the ADP fan, also showed good agreement.

  16. Turbofan gas turbine engine with variable fan outlet guide vanes

    Science.gov (United States)

    Wood, Peter John (Inventor); LaChapelle, Donald George (Inventor); Grant, Carl (Inventor); Zenon, Ruby Lasandra (Inventor); Mielke, Mark Joseph (Inventor)

    2010-01-01

    A turbofan gas turbine engine includes a forward fan section with a row of fan rotor blades, a core engine, and a fan bypass duct downstream of the forward fan section and radially outwardly of the core engine. The forward fan section has only a single stage of variable fan guide vanes which are variable fan outlet guide vanes downstream of the forward fan rotor blades. An exemplary embodiment of the engine includes an afterburner downstream of the fan bypass duct between the core engine and an exhaust nozzle. The variable fan outlet guide vanes are operable to pivot from a nominal OGV position at take-off to an open OGV position at a high flight Mach Number which may be in a range of between about 2.5-4+. Struts extend radially across a radially inwardly curved portion of a flowpath of the engine between the forward fan section and the core engine.

  17. Effect of temperature change at inlet of engine on the corrected performance of turbofan engine

    Energy Technology Data Exchange (ETDEWEB)

    Kozu, Masao; Yajima, Satoshi [Defence Agency, Tokyo, JapanIshikawajima-Harima Heavy Industries Co. Ltd., Tokyo (Japan)

    1989-06-10

    Theoretical consideration on the effect of inlet temperature change of engine on the engine performance was conducted, and soundness of the result was appreciated by applying it to the experimental result of turbofan engine. As the theoretical consideration, premises of Buckingham's fundamental theorem was corrected by Reynolds Number and by the consideration on the effect of inlet temperature on gas constant and specific heat ratio. By using the result, correction factors were calculated from the experimental result of an actual turbo-fan engine. The correction factors were applied to the other engine test result and confirmed satisfactory soundness. 4 refs., 11 figs.

  18. Control Design for an Advanced Geared Turbofan Engine

    Science.gov (United States)

    Chapman, Jeffryes W.; Litt, Jonathan S.

    2017-01-01

    This paper describes the design process for the control system of an advanced geared turbofan engine. This process is applied to a simulation that is representative of a 30,000 lbf thrust class concept engine with two main spools, ultra-high bypass ratio, and a variable area fan nozzle. Control system requirements constrain the non-linear engine model as it operates throughout its flight envelope of sea level to 40,000 ft and from 0 to 0.8 Mach. The control architecture selected for this project was developed from literature and reflects a configuration that utilizes a proportional integral controller integrated with sets of limiters that enable the engine to operate safely throughout its flight envelope. Simulation results show the overall system meets performance requirements without exceeding system operational limits.

  19. Modeling Techniques for a Computational Efficient Dynamic Turbofan Engine Model

    Directory of Open Access Journals (Sweden)

    Rory A. Roberts

    2014-01-01

    Full Text Available A transient two-stream engine model has been developed. Individual component models developed exclusively in MATLAB/Simulink including the fan, high pressure compressor, combustor, high pressure turbine, low pressure turbine, plenum volumes, and exit nozzle have been combined to investigate the behavior of a turbofan two-stream engine. Special attention has been paid to the development of transient capabilities throughout the model, increasing physics model, eliminating algebraic constraints, and reducing simulation time through enabling the use of advanced numerical solvers. The lessening of computation time is paramount for conducting future aircraft system-level design trade studies and optimization. The new engine model is simulated for a fuel perturbation and a specified mission while tracking critical parameters. These results, as well as the simulation times, are presented. The new approach significantly reduces the simulation time.

  20. Exergetic optimization of turbofan engine with genetic algorithm method

    Energy Technology Data Exchange (ETDEWEB)

    Turan, Onder [Anadolu University, School of Civil Aviation (Turkey)], e-mail: onderturan@anadolu.edu.tr

    2011-07-01

    With the growth of passenger numbers, emissions from the aeronautics sector are increasing and the industry is now working on improving engine efficiency to reduce fuel consumption. The aim of this study is to present the use of genetic algorithms, an optimization method based on biological principles, to optimize the exergetic performance of turbofan engines. The optimization was carried out using exergy efficiency, overall efficiency and specific thrust of the engine as evaluation criteria and playing on pressure and bypass ratio, turbine inlet temperature and flight altitude. Results showed exergy efficiency can be maximized with higher altitudes, fan pressure ratio and turbine inlet temperature; the turbine inlet temperature is the most important parameter for increased exergy efficiency. This study demonstrated that genetic algorithms are effective in optimizing complex systems in a short time.

  1. Modeling Commercial Turbofan Engine Icing Risk With Ice Crystal Ingestion

    Science.gov (United States)

    Jorgenson, Philip C. E.; Veres, Joseph P.

    2013-01-01

    The occurrence of ice accretion within commercial high bypass aircraft turbine engines has been reported under certain atmospheric conditions. Engine anomalies have taken place at high altitudes that have been attributed to ice crystal ingestion, partially melting, and ice accretion on the compression system components. The result was degraded engine performance, and one or more of the following: loss of thrust control (roll back), compressor surge or stall, and flameout of the combustor. As ice crystals are ingested into the fan and low pressure compression system, the increase in air temperature causes a portion of the ice crystals to melt. It is hypothesized that this allows the ice-water mixture to cover the metal surfaces of the compressor stationary components which leads to ice accretion through evaporative cooling. Ice accretion causes a blockage which subsequently results in the deterioration in performance of the compressor and engine. The focus of this research is to apply an engine icing computational tool to simulate the flow through a turbofan engine and assess the risk of ice accretion. The tool is comprised of an engine system thermodynamic cycle code, a compressor flow analysis code, and an ice particle melt code that has the capability of determining the rate of sublimation, melting, and evaporation through the compressor flow path, without modeling the actual ice accretion. A commercial turbofan engine which has previously experienced icing events during operation in a high altitude ice crystal environment has been tested in the Propulsion Systems Laboratory (PSL) altitude test facility at NASA Glenn Research Center. The PSL has the capability to produce a continuous ice cloud which are ingested by the engine during operation over a range of altitude conditions. The PSL test results confirmed that there was ice accretion in the engine due to ice crystal ingestion, at the same simulated altitude operating conditions as experienced previously in

  2. Enhanced Core Noise Modeling for Turbofan Engines

    Science.gov (United States)

    Stone, James R.; Krejsa, Eugene A.; Clark, Bruce J.

    2011-01-01

    This report describes work performed by MTC Technologies (MTCT) for NASA Glenn Research Center (GRC) under Contract NAS3-00178, Task Order No. 15. MTCT previously developed a first-generation empirical model that correlates the core/combustion noise of four GE engines, the CF6, CF34, CFM56, and GE90 for General Electric (GE) under Contract No. 200-1X-14W53048, in support of GRC Contract NAS3-01135. MTCT has demonstrated in earlier noise modeling efforts that the improvement of predictive modeling is greatly enhanced by an iterative approach, so in support of NASA's Quiet Aircraft Technology Project, GRC sponsored this effort to improve the model. Since the noise data available for correlation are total engine noise spectra, it is total engine noise that must be predicted. Since the scope of this effort was not sufficient to explore fan and turbine noise, the most meaningful comparisons must be restricted to frequencies below the blade passage frequency. Below the blade passage frequency and at relatively high power settings jet noise is expected to be the dominant source, and comparisons are shown that demonstrate the accuracy of the jet noise model recently developed by MTCT for NASA under Contract NAS3-00178, Task Order No. 10. At lower power settings the core noise became most apparent, and these data corrected for the contribution of jet noise were then used to establish the characteristics of core noise. There is clearly more than one spectral range where core noise is evident, so the spectral approach developed by von Glahn and Krejsa in 1982 wherein four spectral regions overlap, was used in the GE effort. Further analysis indicates that the two higher frequency components, which are often somewhat masked by turbomachinery noise, can be treated as one component, and it is on that basis that the current model is formulated. The frequency scaling relationships are improved and are now based on combustor and core nozzle geometries. In conjunction with the Task

  3. Turbofan engine mathematic model for its static and dynamic characteristics research

    Directory of Open Access Journals (Sweden)

    О.Є. Карпов

    2004-01-01

    Full Text Available  Demands to mathematical model of the turbofan engine are determined in the article. The mathematical model is used for calculations static and dynamic parameters, which are required for estimation of engine technical state in operation. There are the mathematical model of the turbofan engine AИ-25 and the results of calculations static and dynamic parameters at initial condition in the article.

  4. A Method to Predict Compressor Stall in the TF34-100 Turbofan Engine Utilizing Real-Time Performance Data

    Science.gov (United States)

    2015-06-01

    A METHOD TO PREDICT COMPRESSOR STALL IN THE TF34-100 TURBOFAN ENGINE UTILIZING REAL-TIME PERFORMANCE...THE TF34-100 TURBOFAN ENGINE UTILIZING REAL-TIME PERFORMANCE DATA THESIS Presented to the Faculty Department of Systems Engineering and...036 A METHOD TO PREDICT COMPRESSOR STALL IN THE TF34-100 TURBOFAN ENGINE UTILIZING REAL-TIME PERFORMANCE DATA Shuxiang ‘Albert’ Li, BS

  5. Study of turbofan engines designed for low energy consumption

    Science.gov (United States)

    Gray, D. E.

    1976-01-01

    The near-term technology improvements which can reduce the fuel consumed in the JT9D, JT8D, and JT3D turbofans in commercial fleet operation through the 1980's are identified. Projected technology advances are identified and evaluated for new turbofans to be developed after 1985. Programs are recommended for developing the necessary technology.

  6. Energy Efficient Engine program advanced turbofan nacelle definition study

    Science.gov (United States)

    Howe, David C.; Wynosky, T. A.

    1985-01-01

    Advanced, low drag, nacelle configurations were defined for some of the more promising propulsion systems identified in the earlier Benefit/Cost Study, to assess the benefits associated with these advanced technology nacelles and formulate programs for developing these nacelles and low volume thrust reversers/spoilers to a state of technology readiness in the early 1990's. The study results established the design feasibility of advanced technology, slim line nacelles applicable to advanced technology, high bypass ratio turbofan engines. Design feasibility was also established for two low volume thrust reverse/spoiler concepts that meet or exceed the required effectiveness for these engines. These nacelle and thrust reverse/spoiler designs were shown to be applicable in engines with takeoff thrust sizes ranging from 24,000 to 60,000 pounds. The reduced weight, drag, and cost of the advanced technology nacelle installations relative to current technology nacelles offer a mission fuel burn savings ranging from 3.0 to 4.5 percent and direct operating cost plus interest improvements from 1.6 to 2.2 percent.

  7. F3 turbofan engine. Overview of research and development

    Energy Technology Data Exchange (ETDEWEB)

    Kozu, Masao

    1986-12-10

    The development of XF3-30 Turbofan Engine (static propulsion 1670 kgf), to be equipped in the next exercise plane (XT-4) of the Air Self-Defense Force, was launched in FY 1975 and completed in FY 1985 in terms of certificate testing. This engine is the second national product after the first J3 in Japan. During the development work, technical gaps are avoided as far as possible while also noting cost control in mass production. Important items, felt during the development work for smoothly proceeding with the plan and early achieving the target, include optimum decision of low-fuel consumption rate, complete testing, careful study on the interface, long-term test run for detecting problems, frank attitude to accept facts, incentive of persons in charge and cooperation of related people. This report describes an outline of the plan from research to development, except for technical details that will be reported separately. (20 refs, 4 figs, 6 tabs, 5 photos)

  8. Kalman Filter Constraint Tuning for Turbofan Engine Health Estimation

    Science.gov (United States)

    Simon, Dan; Simon, Donald L.

    2005-01-01

    Kalman filters are often used to estimate the state variables of a dynamic system. However, in the application of Kalman filters some known signal information is often either ignored or dealt with heuristically. For instance, state variable constraints are often neglected because they do not fit easily into the structure of the Kalman filter. Recently published work has shown a new method for incorporating state variable inequality constraints in the Kalman filter, which has been shown to generally improve the filter s estimation accuracy. However, the incorporation of inequality constraints poses some risk to the estimation accuracy as the Kalman filter is theoretically optimal. This paper proposes a way to tune the filter constraints so that the state estimates follow the unconstrained (theoretically optimal) filter when the confidence in the unconstrained filter is high. When confidence in the unconstrained filter is not so high, then we use our heuristic knowledge to constrain the state estimates. The confidence measure is based on the agreement of measurement residuals with their theoretical values. The algorithm is demonstrated on a linearized simulation of a turbofan engine to estimate engine health.

  9. 75 FR 27973 - Airworthiness Directives; Rolls-Royce plc RB211-524C2 Series Turbofan Engines

    Science.gov (United States)

    2010-05-19

    ... RB211-524C2 Series Turbofan Engines AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice... Rolls-Royce plc (RR) model RB211-524C2-19 and RB211-524C2-B-19 turbofan engines. These engines are...

  10. CLASSIFICATION OF NEURAL NETWORK FOR TECHNICAL CONDITION OF TURBOFAN ENGINES BASED ON HYBRID ALGORITHM

    Directory of Open Access Journals (Sweden)

    Valentin Potapov

    2016-12-01

    Full Text Available Purpose: This work presents a method of diagnosing the technical condition of turbofan engines using hybrid neural network algorithm based on software developed for the analysis of data obtained in the aircraft life. Methods: allows the engine diagnostics with deep recognition to the structural assembly in the presence of single structural damage components of the engine running and the multifaceted damage. Results: of the optimization of neural network structure to solve the problems of evaluating technical state of the bypass turbofan engine, when used with genetic algorithms.

  11. Turbulent measurements in the lobe mixer of a turbofan engine. Turbofan engine lobe mixer nagare no ranryu keisoku

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Makoto; Ogawa, Yuji; Arakawa, Chuichi; Tagori, Tetsuo [Ishikawajima-Harima Heavy Industries, Co., Ltd., Tokyo, (Japan) Nippon Steel Corp., Tokyo, (Japan) The Univ. of Tokyo, Tokyo, (Japan). Faculty of Engineering The Univ. of Tsukuba, Tsukuba, (Japan)

    1990-01-25

    In order to examine the flow generated by the lobe mixer of a turbofan engine precisely, after measuring a three dimensional turbulent flow by a hot-wire anemometer, the mixing process of a bypass flow and a core flow with cross-sectional vortexes, and factors generating the vortex were clarified experimentally using the scale model of an exhaust duct with the lobe mixer. As a result, the mixing process was strongly affected by a lobe tip figure and a lobe figure near a center-body, and affected by the minimum gap between the lobe and center-body. The subsequent mixing process was scarcely affected by the ratio of a core flow velocity to a bypass flow one, although strongly affected by flow conditions on a lobe surface. Since the lobe mixer promoted the mixing around a center axis shifting a fast core flow outwards, it was unfavorable to mixing, however, it was expected to be useful for reducing engine jet noise. 3 refs., 7 figs.

  12. System Would Detect Foreign-Object Damage in Turbofan Engine

    Science.gov (United States)

    Torso, James A.; Litt, Jonathan S.

    2006-01-01

    A proposed data-fusion system, to be implemented mostly in software, would further process the digitized and preprocessed outputs of sensors in a turbofan engine to detect foreign-object damage (FOD) [more precisely, damage caused by impingement of such foreign objects as birds, pieces of ice, and runway debris]. The proposed system could help a flight crew to decide what, if any, response is necessary to complete a flight safely, and could aid mechanics in deciding what post-flight maintenance action might be needed. The sensory information to be utilized by the proposed system would consist of (1) the output of an accelerometer in an engine-vibration-monitoring subsystem and (2) features extracted from a gas path analysis. ["Gas path analysis" (GPA) is a term of art that denotes comprehensive analysis of engine performance derived from readings of fuel-flow meters, shaft-speed sensors, temperature sensors, and the like.] The acceleration signal would first be processed by a wavelet-transform-based algorithm, using a wavelet created for the specific purpose of finding abrupt FOD-induced changes in noisy accelerometer signals. Two additional features extracted would be the amplitude of vibration (determined via a single- frequency Fourier transform calculated at the rotational speed of the engine), and the rate of change in amplitude due to an FOD-induced rotor imbalance. This system would utilize two GPA features: the fan efficiency and the rate of change of fan efficiency with time. The selected GPA and vibrational features would be assessed by two fuzzy-logic inference engines, denoted the "Gas Path Expert" and the "Vibration Expert," respectively (see Figure 1). Each of these inference engines would generate a "possibility" distribution for occurrence of an FOD event: Each inference engine would assign, to its input information, degrees of membership, which would subsequently be transformed into basic probability assignments for the gas path and vibration

  13. Performance Estimation and Fault Diagnosis Based on Levenberg–Marquardt Algorithm for a Turbofan Engine

    Directory of Open Access Journals (Sweden)

    Junjie Lu

    2018-01-01

    Full Text Available Establishing the schemes of accurate and computationally efficient performance estimation and fault diagnosis for turbofan engines has become a new research focus and challenges. It is able to increase reliability and stability of turbofan engine and reduce the life cycle costs. Accurate estimation of turbofan engine performance counts on thoroughly understanding the components’ performance, which is described by component characteristic maps and the fault of each component can be regarded as the change of characteristic maps. In this paper, a novel method based on a Levenberg–Marquardt (LM algorithm is proposed to enhance the fidelity of the performance estimation and the credibility of the fault diagnosis for the turbofan engine. The presented method utilizes the LM algorithm to figure out the operating point in the characteristic maps, preparing for performance estimation and fault diagnosis. The accuracy of the proposed method is evaluated for estimating performance parameters in the transient case with Rayleigh process noise and Gaussian measurement noise. The comparison among the extended Kalman filter (EKF method, the particle filter (PF method and the proposed method is implemented in the abrupt fault case and the gradual degeneration case and it has been shown that the proposed method has the capability to lead to more accurate result for performance estimation and fault diagnosis of turbofan engine than current popular EKF and PF diagnosis methods.

  14. Research on Turbofan Engine Model above Idle State Based on NARX Modeling Approach

    Science.gov (United States)

    Yu, Bing; Shu, Wenjun

    2017-03-01

    The nonlinear model for turbofan engine above idle state based on NARX is studied. Above all, the data sets for the JT9D engine from existing model are obtained via simulation. Then, a nonlinear modeling scheme based on NARX is proposed and several models with different parameters are built according to the former data sets. Finally, the simulations have been taken to verify the precise and dynamic performance the models, the results show that the NARX model can well reflect the dynamics characteristic of the turbofan engine with high accuracy.

  15. 76 FR 78805 - Airworthiness Directives; Rolls-Royce plc (RR) RB211-Trent 800 Series Turbofan Engines

    Science.gov (United States)

    2011-12-20

    ... Airworthiness Directives; Rolls-Royce plc (RR) RB211-Trent 800 Series Turbofan Engines AGENCY: Federal Aviation... all Rolls-Royce plc (RR) RB211-Trent 800 Series Turbofan Engines. This AD results from mandatory... inspection of the FOHE mounts. We did not change the AD based on this comment. Request To Add Requirement To...

  16. 75 FR 15321 - Airworthiness Directives; Rolls-Royce plc RB211-Trent 800 Series Turbofan Engines

    Science.gov (United States)

    2010-03-29

    ... Directives; Rolls-Royce plc RB211-Trent 800 Series Turbofan Engines AGENCY: Federal Aviation Administration... Based on the service information, we estimate that this AD will affect about 138 RB211 Trent 800 series... will cost about $2,000 per engine. Based on these figures, we estimate the cost of the AD on U.S...

  17. 78 FR 54149 - Airworthiness Directives; Rolls-Royce plc (RR) Turbofan Engines

    Science.gov (United States)

    2013-09-03

    ... Airworthiness Directives; Rolls-Royce plc (RR) Turbofan Engines AGENCY: Federal Aviation Administration (FAA... service information identified in this AD, contact Rolls-Royce plc, Corporate Communications, P.O. Box 31... per hour. Replacement parts are estimated to cost about $2,271 per engine. Based on these figures, we...

  18. Off-wing fleet maintenance study of a CFM56-3B turbofan engine ...

    African Journals Online (AJOL)

    An off wing fleet maintenance study of the CFM56-3B Turbofan engine that propels the Boeing 737-300 aircraft is presented. The engine performance and deteriorating behavior was modeled with a view to estimate the creep life consumption and operating severity. The predicted severity factor of each degradation was ...

  19. Passive Techniques for Fan Noise Reduction in New Turbofan Engines: Review

    Directory of Open Access Journals (Sweden)

    M.Gorj-Bandpy

    2013-03-01

    Full Text Available Among the various environmental concerns, the aircraft noise item has been constantly growing in importance over the past years. Measures for its reduction at the source as well its mitigation around airports must take into account aspects of medicine and technical design as well as legal and land use planning aspects. Fan noise is one of the principal noise sources in turbofan aero-engines. In this paper a review of the main technologies employed for the reduction of fan noise turbofan engines is presented.

  20. 75 FR 801 - Airworthiness Directives; Rolls-Royce plc RB211-Trent 500, 700, and 800 Series Turbofan Engines

    Science.gov (United States)

    2010-01-06

    ...The FAA proposes to supersede an existing airworthiness directive (AD) for Rolls-Royce plc RB211-Trent 800 series turbofan engines. That AD currently requires replacing the fuel-to-oil heat exchanger (FOHE). This proposed AD would require replacing the FOHE on the RB211-Trent 500 and RB211-Trent 700 series turbofan engines in addition to the RB211-Trent 800 series turbofan engines. This proposed AD results from mandatory continuing airworthiness information (MCAI) issued by an aviation authority of another country to identify and correct an unsafe condition on an aviation product, and results from the risk of engine FOHE blockage. The MCAI describes the unsafe condition as:

  1. FJ44 Turbofan Engine Test at NASA Glenn Research Center's Aero-Acoustic Propulsion Laboratory

    Science.gov (United States)

    Lauer, Joel T.; McAllister, Joseph; Loew, Raymond A.; Sutliff, Daniel L.; Harley, Thomas C.

    2009-01-01

    A Williams International FJ44-3A 3000-lb thrust class turbofan engine was tested in the NASA Glenn Research Center s Aero-Acoustic Propulsion Laboratory. This report presents the test set-up and documents the test conditions. Farfield directivity, in-duct unsteady pressures, duct mode data, and phased-array data were taken and are reported separately.

  2. 75 FR 61114 - Airworthiness Directives; Rolls-Royce plc RB211-Trent 800 Series Turbofan Engines

    Science.gov (United States)

    2010-10-04

    ... Airworthiness Directives; Rolls-Royce plc RB211-Trent 800 Series Turbofan Engines AGENCY: Federal Aviation.... Fax: (202) 493-2251. Contact Rolls-Royce plc, P.O. Box 31, Derby, England, DE248BJ; telephone: 011-44... AD. We will consider all comments received by the closing date and may amend this proposed AD based...

  3. 76 FR 2605 - Airworthiness Directives; Rolls-Royce plc RB211-Trent 800 Series Turbofan Engines

    Science.gov (United States)

    2011-01-14

    ... Airworthiness Directives; Rolls-Royce plc RB211-Trent 800 Series Turbofan Engines AGENCY: Federal Aviation... holidays. Fax: (202) 493-2251. Contact Rolls-Royce plc, P.O. Box 31, DERBY, DE24 8BJ, UK; telephone 44 (0... AD. We will consider all comments received by the closing date and may amend this proposed AD based...

  4. 76 FR 24796 - Airworthiness Directives; Rolls-Royce plc RB211-Trent 800 Series Turbofan Engines

    Science.gov (United States)

    2011-05-03

    ... Airworthiness Directives; Rolls-Royce plc RB211-Trent 800 Series Turbofan Engines AGENCY: Federal Aviation.... Request To Revise the Compliance Times Four commenters, American Airlines, Delta Airlines, Rolls-Royce plc... SNPRM were developed to minimize the risk of uncontained disc failure, based on the age of the parts in...

  5. 76 FR 65136 - Airworthiness Directives; Rolls-Royce plc (RR) Turbofan Engines

    Science.gov (United States)

    2011-10-20

    ... Airworthiness Directives; Rolls-Royce plc (RR) Turbofan Engines AGENCY: Federal Aviation Administration (FAA... information identified in this AD, contact Rolls-Royce plc, Corporate Communications, P.O. Box 31, Derby... 8, 2011, to perform the inspection. Costs of Compliance Based on the service information, we...

  6. Effect of reference environment on the turbofan engine with the aid of specific-exergy based methods

    Energy Technology Data Exchange (ETDEWEB)

    Turan, Onder [Anadolu University, School of Civil Aviation (Turkey)], e-mail: onderturan@anadolu.edu.tr

    2011-07-01

    Research is being carried out in the aeronautics sector on improving engine efficiency, and thereby increasing engine power, while reducing fuel consumption. The aim of this study was to determine the performance and efficiency of a turbofan engine and assess the impact of altitude on its performance. An exergetic analysis was carried out at different altitudes on a simple turbofan engine composed of inlet, fan, high pressure compressor and turbine, fan nozzle, compression chamber and exhaust. Exergy analysis allows the loss locations to be assessed and efficiencies evaluated in a meaningful way. Results showed that the turbofan engine has an efficiency of 25.68% to 28.11% and an exergy efficiency of 48.91% to 50.34%. It was found, moreover, that the combustion chamber was where the greatest efficiency losses occurred. This study permitted the exergy performance of a turbofan engine to be determined and identified the components where the greater losses occurred.

  7. The completion of the mathematical model by parameter identification for simulating a turbofan engine

    Directory of Open Access Journals (Sweden)

    Irina Carmen ANDREI

    2015-09-01

    Full Text Available The purpose of this paper is to set up a method to determine the missing engine design parameters (turbine inlet temperature T3T, airflow rate which significantly influence the jet engines thrust. The authors have introduced a new non-linear equation connecting the fan specific work with the temperature T3T, customized for turbofan. The method of chords, since it converges unconditionally, has been used for solving the non-linear equation of variable temperature T3T. An alternate method, based for the same relation between fan specific work and T3T, has been presented in purpose to determine airflow rate and fan pressure ratio. Two mixed flows turbofans have been considered as study cases. For case #1 it was determined a value comparable to the Turbomeca Larzac turbofan series 04-C6 and 04-C20 which power the AlphaJet machines (series A - Luftwaffe, series E - Dassault Dornier. For the F100-PW229 turbofan, as case #2, being given T3T, then have been determined the airflow rate, fan pressure ratio and fan specific work. After completing the mathematical model with the missing parameters, the performances of the engines at off-design regimes and the operational envelopes revealing i.e. the variations of thrust, specific thrust and fuel specific consumption with altitude and Mach number have been calculated.

  8. Simulating Effects of High Angle of Attack on Turbofan Engine Performance

    Science.gov (United States)

    Liu, Yuan; Claus, Russell W.; Litt, Jonathan S.; Guo, Ten-Huei

    2013-01-01

    A method of investigating the effects of high angle of attack (AOA) flight on turbofan engine performance is presented. The methodology involves combining a suite of diverse simulation tools. Three-dimensional, steady-state computational fluid dynamics (CFD) software is used to model the change in performance of a commercial aircraft-type inlet and fan geometry due to various levels of AOA. Parallel compressor theory is then applied to assimilate the CFD data with a zero-dimensional, nonlinear, dynamic turbofan engine model. The combined model shows that high AOA operation degrades fan performance and, thus, negatively impacts compressor stability margins and engine thrust. In addition, the engine response to high AOA conditions is shown to be highly dependent upon the type of control system employed.

  9. Preliminary Study on Acoustic Detection of Faults Experienced by a High-Bypass Turbofan Engine

    Science.gov (United States)

    Boyle, Devin K.

    2014-01-01

    The vehicle integrated propulsion research (VIPR) effort conducted by NASA and several partners provided an unparalleled opportunity to test a relatively low TRL concept regarding the use of far field acoustics to identify faults occurring in a high bypass turbofan engine. Though VIPR Phase II ground based aircraft installed engine testing wherein a multitude of research sensors and methods were evaluated, an array of acoustic microphones was used to determine the viability of such an array to detect failures occurring in a commercially representative high bypass turbofan engine. The failures introduced during VIPR testing included commanding the engine's low pressure compressor (LPC) exit and high pressure compressor (HPC) 14th stage bleed values abruptly to their failsafe positions during steady state

  10. Comparative performance analysis of combined-cycle pulse detonation turbofan engines (PDTEs

    Directory of Open Access Journals (Sweden)

    Sudip Bhattrai

    2013-09-01

    Full Text Available Combined-cycle pulse detonation engines are promising contenders for hypersonic propulsion systems. In the present study, design and propulsive performance analysis of combined-cycle pulse detonation turbofan engines (PDTEs is presented. Analysis is done with respect to Mach number at two consecutive modes of operation: (1 Combined-cycle PDTE using a pulse detonation afterburner mode (PDA-mode and (2 combined-cycle PDTE in pulse detonation ramjet engine mode (PDRE-mode. The performance of combined-cycle PDTEs is compared with baseline afterburning turbofan and ramjet engines. The comparison of afterburning modes is done for Mach numbers from 0 to 3 at 15.24 km altitude conditions, while that of pulse detonation ramjet engine (PDRE is done for Mach 1.5 to Mach 6 at 18.3 km altitude conditions. The analysis shows that the propulsive performance of a turbine engine can be greatly improved by replacing the conventional afterburner with a pulse detonation afterburner (PDA. The PDRE also outperforms its ramjet counterpart at all flight conditions considered herein. The gains obtained are outstanding for both the combined-cycle PDTE modes compared to baseline turbofan and ramjet engines.

  11. The trigeneration cycle as a way to create multipurpose stationary power plants based on conversion of aeroderivative turbofan engines

    Science.gov (United States)

    Varaksin, A. Yu.; Arbekov, A. N.; Inozemtsev, A. A.

    2014-10-01

    A schematic cycle is considered, and thermodynamic analysis is performed to substantiate the possibility of creating multipurpose industrial power plants, operating on a trigeneration cycle, based on production-type turbofan engines.

  12. Sustainability assessment of turbofan engine with mixed exhaust through exergetic approach

    Science.gov (United States)

    Saadon, S.; Redzuan, M. S. Mohd

    2017-12-01

    In this study, the theory, methods and example application are described for a CF6 high-bypass turbofan engine with mixed exhaust flow based on exergo-sustainable point of view. To determine exergetic sustainability index, the turbofan engine has to undergo detailed exergy analysis. The sustainability indicators reviewed here are the overall exergy efficiency of the system, waste exergy ratio, exergy destruction factor, environmental effect factor and the exergetic sustainability index. The results obtained for these parameters are 26.9%, 73.1%, 38.6%, 2.72 and 0.37, respectively, for the maximum take-off condition of the engine. These results would be useful to better understand the connection between the propulsion system parameters and their impact to the environment in order to make it more sustainable for future development.

  13. Development trend of high bypass ratio turbofan engines. Ko baipasu hi tabo fan engine no kaihatsu doko

    Energy Technology Data Exchange (ETDEWEB)

    Tonomura, Y [Mitsubishi Heavy Industries Ltd., Tokyo (Japan)

    1994-03-10

    The turbofan engines for private aircrafts have come to have a high bypass ratio because a performance improvement is always requested. Because a turbofan engine is always required for a thrust reinforcement to correspond the stretch and weight increase of a fuselage after acquiring a type approval, making them a series to cover a certain thrust range becomes necessary. The concrete methods to reinforce a thrust are being achieved by an increase of fan diameter, a partial modification of high pressure compressor, a temperature rise of high pressure turbine inlet, a stage number increase of low pressure turbine, and a combination of these items just mentioned above. The PW 4000 series, CF6 series and RB211 series currently under production are being reinforced in a thrust by these methods. In this paper, as the representatives of some turbofan engines incorporating the most advanced technologies, as for 3 kinds of the large scale turbofan engine presently under development for the B777, namely GE90, PW4084, and TRENT800, their distinctive futures are summarized. 25 figs., 1 tab.

  14. An Assessment of Gas Foil Bearing Scalability and the Potential Benefits to Civilian Turbofan Engines

    Science.gov (United States)

    Bruckner, Robert J.

    2010-01-01

    Over the past several years the term oil-free turbomachinery has been used to describe a rotor support system for high speed turbomachinery that does not require oil for lubrication, damping, or cooling. The foundation technology for oil-free turbomachinery is the compliant foil bearing. This technology can replace the conventional rolling element bearings found in current engines. Two major benefits are realized with this technology. The primary benefit is the elimination of the oil lubrication system, accessory gearbox, tower shaft, and one turbine frame. These components account for 8 to 13 percent of the turbofan engine weight. The second benefit that compliant foil bearings offer to turbofan engines is the capability to operate at higher rotational speeds and shaft diameters. While traditional rolling element bearings have diminished life, reliability, and load capacity with increasing speeds, the foil bearing has a load capacity proportional to speed. The traditional applications for foil bearings have been in small, lightweight machines. However, recent advancements in the design and manufacturing of foil bearings have increased their potential size. An analysis, grounded in experimentally proven operation, is performed to assess the scalability of the modern foil bearing. This analysis was coupled to the requirements of civilian turbofan engines. The application of the foil bearing to larger, high bypass ratio engines nominally at the 120 kN (approx.25000 lb) thrust class has been examined. The application of this advanced technology to this system was found to reduce mission fuel burn by 3.05 percent.

  15. Investigation of a Verification and Validation Tool with a Turbofan Aircraft Engine Application

    Science.gov (United States)

    Uth, Peter; Narang-Siddarth, Anshu; Wong, Edmond

    2018-01-01

    The development of more advanced control architectures for turbofan aircraft engines can yield gains in performance and efficiency over the lifetime of an engine. However, the implementation of these increasingly complex controllers is contingent on their ability to provide safe, reliable engine operation. Therefore, having the means to verify the safety of new control algorithms is crucial. As a step towards this goal, CoCoSim, a publicly available verification tool for Simulink, is used to analyze C-MAPSS40k, a 40,000 lbf class turbo-fan engine model developed at NASA for testing new control algorithms. Due to current limitations of the verification software, several modifications are made to C-MAPSS40k to achieve compatibility with CoCoSim. Some of these modifications sacrifice fidelity to the original model. Several safety and performance requirements typical for turbofan engines are identified and constructed into a verification framework. Preliminary results using an industry standard baseline controller for these requirements are presented. While verification capabilities are demonstrated, a truly comprehensive analysis will require further development of the verification tool.

  16. Takagi-Sugeno fuzzy model identification for turbofan aero-engines with guaranteed stability

    Directory of Open Access Journals (Sweden)

    Ruichao LI

    2018-06-01

    Full Text Available This paper is concerned with identifying a Takagi-Sugeno (TS fuzzy model for turbofan aero-engines working under the maximum power status (non-afterburning. To establish the fuzzy system, theoretical contributions are made as follows. First, by fixing antecedent parameters, the estimation of consequent parameters in state-space representations is formulated as minimizing a quadratic cost function. Second, to avoid obtaining unstable identified models, a new theorem is proposed to transform the prior-knowledge of stability into constraints. Then based on the aforementioned work, the identification problem is synthesized as a constrained quadratic optimization. By solving the constrained optimization, a TS fuzzy system is identified with guaranteed stability. Finally, the proposed method is applied to the turbofan aero-engine using simulation data generated from an aerothermodynamics component-level model. Results show the identified fuzzy model achieves a high fitting accuracy while stabilities of the overall fuzzy system and all its local models are also guaranteed. Keywords: Constrained optimization, Fuzzy system, Stability, System identification, Turbofan engine

  17. Real-time simulation of an F110/STOVL turbofan engine

    Science.gov (United States)

    Drummond, Colin K.; Ouzts, Peter J.

    1989-01-01

    A traditional F110-type turbofan engine model was extended to include a ventral nozzle and two thrust-augmenting ejectors for Short Take-Off Vertical Landing (STOVL) aircraft applications. Development of the real-time F110/STOVL simulation required special attention to the modeling approach to component performance maps, the low pressure turbine exit mixing region, and the tailpipe dynamic approximation. Simulation validation derives by comparing output from the ADSIM simulation with the output for a validated F110/STOVL General Electric Aircraft Engines FORTRAN deck. General Electric substantiated basic engine component characteristics through factory testing and full scale ejector data.

  18. 76 FR 20229 - Airworthiness Directives; Rolls-Royce plc (RR) RB211-Trent 768-60 and Trent 772-60 Turbofan Engines

    Science.gov (United States)

    2011-04-12

    ... inspections of the MCD. We are issuing this AD to prevent in-flight engine shutdowns caused by step aside... Airworthiness Directives; Rolls-Royce plc (RR) RB211-Trent 768-60 and Trent 772-60 Turbofan Engines AGENCY... superseding an existing airworthiness directive (AD) for RR RB211-Trent 700 series turbofan engines. That AD...

  19. Fuselage boundary-layer refraction of fan tones radiated from an installed turbofan aero-engine.

    Science.gov (United States)

    Gaffney, James; McAlpine, Alan; Kingan, Michael J

    2017-03-01

    A distributed source model to predict fan tone noise levels of an installed turbofan aero-engine is extended to include the refraction effects caused by the fuselage boundary layer. The model is a simple representation of an installed turbofan, where fan tones are represented in terms of spinning modes radiated from a semi-infinite circular duct, and the aircraft's fuselage is represented by an infinitely long, rigid cylinder. The distributed source is a disk, formed by integrating infinitesimal volume sources located on the intake duct termination. The cylinder is located adjacent to the disk. There is uniform axial flow, aligned with the axis of the cylinder, everywhere except close to the cylinder where there is a constant thickness boundary layer. The aim is to predict the near-field acoustic pressure, and in particular, to predict the pressure on the cylindrical fuselage which is relevant to assess cabin noise. Thus no far-field approximations are included in the modelling. The effect of the boundary layer is quantified by calculating the area-averaged mean square pressure over the cylinder's surface with and without the boundary layer included in the prediction model. The sound propagation through the boundary layer is calculated by solving the Pridmore-Brown equation. Results from the theoretical method show that the boundary layer has a significant effect on the predicted sound pressure levels on the cylindrical fuselage, owing to sound radiation of fan tones from an installed turbofan aero-engine.

  20. Design and evaluation of an integrated Quiet, Clean General Aviation Turbofan (QCGAT) engine and aircraft propulsion system

    Science.gov (United States)

    German, J.; Fogel, P.; Wilson, C.

    1980-01-01

    The design was based on the LTS-101 engine family for the core engine. A high bypass fan design (BPR=9.4) was incorporated to provide reduced fuel consumption for the design mission. All acoustic and pollutant emissions goals were achieved. A discussion of the preliminary design of a business jet suitable for the developed propulsion system is included. It is concluded that large engine technology can be successfully applied to small turbofans, and noise or pollutant levels need not be constraints for the design of future small general aviation turbofan engines.

  1. Exergy analysis of a turbofan engine for an unmanned aerial vehicle during a surveillance mission

    International Nuclear Information System (INIS)

    Şöhret, Yasin; Dinç, Ali; Karakoç, T. Hikmet

    2015-01-01

    In this study, an exergy analysis of a turbofan engine, being the main power unit of an UAV (unmanned aerial vehicle) over the course of a surveillance mission flight, is presented. In this framework, an engine model is firstly developed, based upon engine design parameters and conditions using a genuine code. Next, the exergy analysis is performed according to thermodynamic laws. At the end of the study, the combustion chamber is identified as the most irreversible component of the engine, while the high pressure turbine and compressor are identified as the most efficient components throughout the flight. The minimum exergy efficiency is 58.24% for the combustion chamber at the end of the ingress flight phase, while the maximum exergy efficiency is found to be 99.09% for the high pressure turbine at the start of the ingress flight phase and landing loiter. The highest exergy destruction within the engine occurs at landing loiter, take-off and start of climb, with rates of 16998.768 kW, 16820.317 kW and 16564.378 kW respectively. - Highlights: • This study reveals the exergy parameters of a turbofan engine for an UAV. • Exergy analysis is conducted for a complete surveillance mission flight. • Variation of exergy parameters of engine components during the flight is presented. • The impact of the environment conditions on exergy parameters is proven.

  2. Eulerian method for ice crystal icing in turbofan engines

    NARCIS (Netherlands)

    Norde, Ellen

    2017-01-01

    The newer generations of high-bypass-ratio engines are susceptible to the ingestion of small ice crystals which may cause engine power loss or damage. The research presented in this thesis focusses on the development of a computational method for in-engine ice crystal accretion. The work has been

  3. Stimulation of a turbofan engine for evaluation of multivariable optimal control concepts. [(computerized simulation)

    Science.gov (United States)

    Seldner, K.

    1976-01-01

    The development of control systems for jet engines requires a real-time computer simulation. The simulation provides an effective tool for evaluating control concepts and problem areas prior to actual engine testing. The development and use of a real-time simulation of the Pratt and Whitney F100-PW100 turbofan engine is described. The simulation was used in a multi-variable optimal controls research program using linear quadratic regulator theory. The simulation is used to generate linear engine models at selected operating points and evaluate the control algorithm. To reduce the complexity of the design, it is desirable to reduce the order of the linear model. A technique to reduce the order of the model; is discussed. Selected results between high and low order models are compared. The LQR control algorithms can be programmed on digital computer. This computer will control the engine simulation over the desired flight envelope.

  4. Preliminary study of optimum ductburning turbofan engine cycle design parameters for supersonic cruising

    Science.gov (United States)

    Fishbach, L. H.

    1978-01-01

    The effect of turbofan engine overall pressure ratio, fan pressure ratio, and ductburner temperature rise on the engine weight and cruise fuel consumption for a mach 2.4 supersonic transport was investigated. Design point engines, optimized purely for the supersonic cruising portion of the flight where the bulk of the fuel is consumed, are considered. Based on constant thrust requirements at cruise, fuel consumption considerations would favor medium by pass ratio engines (1.5 to 1.8) of overall pressure ratio of about 16. Engine weight considerations favor low bypass ratio (0.6 or less) and low wverall pressure ratio (8). Combination of both effects results in bypass ratios of 0.6 to 0.8 and overall pressure ratio of 12 being the overall optimum.

  5. 77 FR 10355 - Airworthiness Directives; Rolls-Royce plc (RR) RB211-Trent 800 Series Turbofan Engines

    Science.gov (United States)

    2012-02-22

    ... Airworthiness Directives; Rolls-Royce plc (RR) RB211-Trent 800 Series Turbofan Engines AGENCY: Federal Aviation... service of certain critical engine parts based on reduced life limits. This new AD reduces the life limits... effective March 28, 2012. ADDRESSES: For service information identified in this AD, contact Rolls-Royce plc...

  6. Development trend of low bypass ratio turbofan engines. Tei baipasu hi tabo fan engine no kaihatsu doko

    Energy Technology Data Exchange (ETDEWEB)

    Yashima, S [Ishikawajima-Harima Heavy Industries Co. Ltd., Tokyo (Japan)

    1994-03-10

    As a turbojet engine gets a thrust by blowing out the exhaust of a gas generator, for decreasing the fuel consumption ratio is more advantageous when a bypass air quantity is made as much as possible. Therefore in the subsonic speed passenger aircrafts putting an economy in the first place, the high bypass ratio turbofan engines are used. Even in case of the subsonic speed aircrafts, in addition, for the trainer airplanes and fighters, a type to be built in the engines in the fuselages, the low bypass ratio engines with small front areas are used. When a turbofan engine with a low bypass ratio is picked up, therefore recently, it is general that a military engine with a bypass ratio under 1 (about 0.5 is frequent) is pointed, as for a development trend also from a viewpoint of the performance improvement as a military engine, an improvement of the thrust-weight ratio and specific thrust are attached importance to. In this paper, these performance parameters, a trend to make them lighter weight, and the elementary technologies peculiar to a low bypass ratio engine are described, and moreover the study and development state in Europe, America and Japan are put in order. 8 refs., 14 figs., 2 tabs.

  7. Demonstration of a Packaged Capacitive Pressure Sensor System Suitable for Jet Turbofan Engine Health Monitoring

    Science.gov (United States)

    Scardelletti, Maximilian C.; Jordan, Jennifer L.; Meredith, Roger D.; Harsh, Kevin; Pilant, Evan; Usrey, Michael W.; Beheim, Glenn M.; Hunter, Gary W.; Zorman, Christian A.

    2016-01-01

    In this paper, the development and characterization of a packaged pressure sensor system suitable for jet engine health monitoring is demonstrated. The sensing system operates from 97 to 117 MHz over a pressure range from 0 to 350 psi and a temperature range from 25 to 500 deg. The sensing system consists of a Clapp-type oscillator that is fabricated on an alumina substrate and is comprised of a Cree SiC MESFET, MIM capacitors, a wire-wound inductor, chip resistors and a SiCN capacitive pressure sensor. The pressure sensor is located in the LC tank circuit of the oscillator so that a change in pressure causes a change in capacitance, thus changing the resonant frequency of the sensing system. The chip resistors, wire-wound inductors and MIM capacitors have all been characterized at temperature and operational frequency, and perform with less than 5% variance in electrical performance. The measured capacitive pressure sensing system agrees very well with simulated results. The packaged pressure sensing system is specifically designed to measure the pressure on a jet turbofan engine. The packaged system can be installed by way of borescope plug adaptor fitted to a borescope port exposed to the gas path of a turbofan engine.

  8. A Foreign Object Damage Event Detector Data Fusion System for Turbofan Engines

    Science.gov (United States)

    Turso, James A.; Litt, Jonathan S.

    2004-01-01

    A Data Fusion System designed to provide a reliable assessment of the occurrence of Foreign Object Damage (FOD) in a turbofan engine is presented. The FOD-event feature level fusion scheme combines knowledge of shifts in engine gas path performance obtained using a Kalman filter, with bearing accelerometer signal features extracted via wavelet analysis, to positively identify a FOD event. A fuzzy inference system provides basic probability assignments (bpa) based on features extracted from the gas path analysis and bearing accelerometers to a fusion algorithm based on the Dempster-Shafer-Yager Theory of Evidence. Details are provided on the wavelet transforms used to extract the foreign object strike features from the noisy data and on the Kalman filter-based gas path analysis. The system is demonstrated using a turbofan engine combined-effects model (CEM), providing both gas path and rotor dynamic structural response, and is suitable for rapid-prototyping of control and diagnostic systems. The fusion of the disparate data can provide significantly more reliable detection of a FOD event than the use of either method alone. The use of fuzzy inference techniques combined with Dempster-Shafer-Yager Theory of Evidence provides a theoretical justification for drawing conclusions based on imprecise or incomplete data.

  9. A Comparison of Hybrid Approaches for Turbofan Engine Gas Path Fault Diagnosis

    Science.gov (United States)

    Lu, Feng; Wang, Yafan; Huang, Jinquan; Wang, Qihang

    2016-09-01

    A hybrid diagnostic method utilizing Extended Kalman Filter (EKF) and Adaptive Genetic Algorithm (AGA) is presented for performance degradation estimation and sensor anomaly detection of turbofan engine. The EKF is used to estimate engine component performance degradation for gas path fault diagnosis. The AGA is introduced in the integrated architecture and applied for sensor bias detection. The contributions of this work are the comparisons of Kalman Filters (KF)-AGA algorithms and Neural Networks (NN)-AGA algorithms with a unified framework for gas path fault diagnosis. The NN needs to be trained off-line with a large number of prior fault mode data. When new fault mode occurs, estimation accuracy by the NN evidently decreases. However, the application of the Linearized Kalman Filter (LKF) and EKF will not be restricted in such case. The crossover factor and the mutation factor are adapted to the fitness function at each generation in the AGA, and it consumes less time to search for the optimal sensor bias value compared to the Genetic Algorithm (GA). In a word, we conclude that the hybrid EKF-AGA algorithm is the best choice for gas path fault diagnosis of turbofan engine among the algorithms discussed.

  10. Load Sharing Behavior of Star Gearing Reducer for Geared Turbofan Engine

    Science.gov (United States)

    Mo, Shuai; Zhang, Yidu; Wu, Qiong; Wang, Feiming; Matsumura, Shigeki; Houjoh, Haruo

    2017-07-01

    Load sharing behavior is very important for power-split gearing system, star gearing reducer as a new type and special transmission system can be used in many industry fields. However, there is few literature regarding the key multiple-split load sharing issue in main gearbox used in new type geared turbofan engine. Further mechanism analysis are made on load sharing behavior among star gears of star gearing reducer for geared turbofan engine. Comprehensive meshing error analysis are conducted on eccentricity error, gear thickness error, base pitch error, assembly error, and bearing error of star gearing reducer respectively. Floating meshing error resulting from meshing clearance variation caused by the simultaneous floating of sun gear and annular gear are taken into account. A refined mathematical model for load sharing coefficient calculation is established in consideration of different meshing stiffness and supporting stiffness for components. The regular curves of load sharing coefficient under the influence of interactions, single action and single variation of various component errors are obtained. The accurate sensitivity of load sharing coefficient toward different errors is mastered. The load sharing coefficient of star gearing reducer is 1.033 and the maximum meshing force in gear tooth is about 3010 N. This paper provides scientific theory evidences for optimal parameter design and proper tolerance distribution in advanced development and manufacturing process, so as to achieve optimal effects in economy and technology.

  11. Turbofan Engine Core Compartment Vent Aerodynamic Configuration Development Methodology

    Science.gov (United States)

    Hebert, Leonard J.

    2006-01-01

    This paper presents an overview of the design methodology used in the development of the aerodynamic configuration of the nacelle core compartment vent for a typical Boeing commercial airplane together with design challenges for future design efforts. Core compartment vents exhaust engine subsystem flows from the space contained between the engine case and the nacelle of an airplane propulsion system. These subsystem flows typically consist of precooler, oil cooler, turbine case cooling, compartment cooling and nacelle leakage air. The design of core compartment vents is challenging due to stringent design requirements, mass flow sensitivity of the system to small changes in vent exit pressure ratio, and the need to maximize overall exhaust system performance at cruise conditions.

  12. Impact of alternative fuels on the operational and environmental performance of a small turbofan engine

    International Nuclear Information System (INIS)

    Gaspar, R.M.P.; Sousa, J.M.M.

    2016-01-01

    Highlights: • A wide range of alternative fuels is studied in a small two-spool turbofan engine. • Impact of fuel properties on flame temperature and droplet evaporation considered. • Performance and pollutant emissions at different operating conditions are analyzed. • Use of alternative fuels generally leads to an improved performance of the engine. • Mostly reductions in soot emissions, but also cuts in NO_x and CO, are obtained. - Abstract: A wide range of alternative jet fuels is studied in this work for use in a small two-spool turbofan engine. These embrace the five production pathways currently approved by the American Society for Testing and Materials. Both neat products and blends (within certified limits) have been considered. The present analysis is based on a 0-D thermodynamic modeling of the aero-engine for off-design and transient simulations. In addition, the selected approach incorporates fuel effects on combustion and the impact of fuel properties on the flame temperature, as well as on the droplet evaporation rate. Predicted performance and pollutant emission outputs for the alternative fuels are presented at different operating conditions, namely: take-off, top of climb, cruise, low power and ground idle. The results are discussed and comprehensively compared with data available in the literature. It was concluded that the combustion of alternative fuels generally leads to enhancements in engine performance with respect to the use of conventional kerosene. Reductions in pollutant emissions occur mostly in soot, but also in nitrogen oxides and carbon monoxide, depending on the fuel and operating conditions. In contrast, increased emissions of unburned hydrocarbons are generally observed. Concerns about the aero-engine dynamic response are raised only in very few cases, involving the use of neat products.

  13. Modeling of Commercial Turbofan Engine With Ice Crystal Ingestion: Follow-On

    Science.gov (United States)

    Jorgenson, Philip C. E.; Veres, Joseph P.; Coennen, Ryan

    2014-01-01

    The occurrence of ice accretion within commercial high bypass aircraft turbine engines has been reported under certain atmospheric conditions. Engine anomalies have taken place at high altitudes that have been attributed to ice crystal ingestion, partially melting, and ice accretion on the compression system components. The result was degraded engine performance, and one or more of the following: loss of thrust control (roll back), compressor surge or stall, and flameout of the combustor. As ice crystals are ingested into the fan and low pressure compression system, the increase in air temperature causes a portion of the ice crystals to melt. It is hypothesized that this allows the ice-water mixture to cover the metal surfaces of the compressor stationary components which leads to ice accretion through evaporative cooling. Ice accretion causes a blockage which subsequently results in the deterioration in performance of the compressor and engine. The focus of this research is to apply an engine icing computational tool to simulate the flow through a turbofan engine and assess the risk of ice accretion. The tool is comprised of an engine system thermodynamic cycle code, a compressor flow analysis code, and an ice particle melt code that has the capability of determining the rate of sublimation, melting, and evaporation through the compressor flow path, without modeling the actual ice accretion. A commercial turbofan engine which has previously experienced icing events during operation in a high altitude ice crystal environment has been tested in the Propulsion Systems Laboratory (PSL) altitude test facility at NASA Glenn Research Center. The PSL has the capability to produce a continuous ice cloud which is ingested by the engine during operation over a range of altitude conditions. The PSL test results confirmed that there was ice accretion in the engine due to ice crystal ingestion, at the same simulated altitude operating conditions as experienced previously in

  14. Modeling of Commercial Turbofan Engine with Ice Crystal Ingestion; Follow-On

    Science.gov (United States)

    Jorgenson, Philip C. E.; Veres, Joseph P.; Coennen, Ryan

    2014-01-01

    The occurrence of ice accretion within commercial high bypass aircraft turbine engines has been reported under certain atmospheric conditions. Engine anomalies have taken place at high altitudes that have been attributed to ice crystal ingestion, partially melting, and ice accretion on the compression system components. The result was degraded engine performance, and one or more of the following: loss of thrust control (roll back), compressor surge or stall, and flameout of the combustor. As ice crystals are ingested into the fan and low pressure compression system, the increase in air temperature causes a portion of the ice crystals to melt. It is hypothesized that this allows the ice-water mixture to cover the metal surfaces of the compressor stationary components which leads to ice accretion through evaporative cooling. Ice accretion causes a blockage which subsequently results in the deterioration in performance of the compressor and engine. The focus of this research is to apply an engine icing computational tool to simulate the flow through a turbofan engine and assess the risk of ice accretion. The tool is comprised of an engine system thermodynamic cycle code, a compressor flow analysis code, and an ice particle melt code that has the capability of determining the rate of sublimation, melting, and evaporation through the compressor flow path, without modeling the actual ice accretion. A commercial turbofan engine which has previously experienced icing events during operation in a high altitude ice crystal environment has been tested in the Propulsion Systems Laboratory (PSL) altitude test facility at NASA Glenn Research Center. The PSL has the capability to produce a continuous ice cloud which is ingested by the engine during operation over a range of altitude conditions. The PSL test results confirmed that there was ice accretion in the engine due to ice crystal ingestion, at the same simulated altitude operating conditions as experienced previously in

  15. 75 FR 58290 - Airworthiness Directives; Rolls-Royce plc RB211 Trent 700 and Trent 800 Series Turbofan Engines

    Science.gov (United States)

    2010-09-24

    ... Airworthiness Directives; Rolls-Royce plc RB211 Trent 700 and Trent 800 Series Turbofan Engines AGENCY: Federal... or increase the scope of the AD. Costs of Compliance Based on the service information, we estimate.... Required parts would cost about $15,000 per product. Based on these figures, we estimate the cost of the AD...

  16. 75 FR 50877 - Airworthiness Directives; Rolls-Royce plc RB211-524C2 Series Turbofan Engines

    Science.gov (United States)

    2010-08-18

    ... Airworthiness Directives; Rolls-Royce plc RB211-524C2 Series Turbofan Engines AGENCY: Federal Aviation... require adopting the AD as proposed. Costs of Compliance Based on the service information, we estimate.... Required parts will cost about $25,000 per product. Based on these figures, we estimate the cost of the AD...

  17. 77 FR 4648 - Airworthiness Directives; Rolls-Royce plc (RR) RB211-535 Series Turbofan Engine

    Science.gov (United States)

    2012-01-31

    ... Airworthiness Directives; Rolls-Royce plc (RR) RB211-535 Series Turbofan Engine AGENCY: Federal Aviation... identified in this AD, contact Rolls-Royce plc, P.O. Box 31, Derby, DE24 8BJ, United Kingdom; phone: 011 44... parts are required. Based on these figures, we estimate the cost of this AD on U.S. operators to be $1...

  18. 77 FR 1009 - Airworthiness Directives; Rolls-Royce plc (RR) RB211-524 Series Turbofan Engines

    Science.gov (United States)

    2012-01-09

    ... Airworthiness Directives; Rolls-Royce plc (RR) RB211-524 Series Turbofan Engines AGENCY: Federal Aviation... 5, 2005). ADDRESSES: For service information identified in this AD, contact Rolls-Royce plc, P.O...,000. Based on these figures, we estimate the total cost of the AD to U.S. operators to be $4,206,960...

  19. Preliminary Evaluation of a Turbine/Rotary Combustion Compound Engine for a Subsonic Transport. [fuel consumption and engine tests of turbofan engines

    Science.gov (United States)

    Civinskas, K. C.; Kraft, G. A.

    1976-01-01

    The fuel consumption of a modern compound engine with that of an advanced high pressure ratio turbofan was compared. The compound engine was derived from a turbofan engine by replacing the combustor with a rotary combustion (RC) engine. A number of boost pressure ratios and compression ratios were examined. Cooling of the RC engine was accomplished by heat exchanging to the fan duct. Performance was estimated with an Otto-cycle for two levels of energy lost to cooling. The effects of added complexity on cost and maintainability were not examined and the comparison was solely in terms of cruise performance and weight. Assuming a 25 percent Otto-cycle cooling loss (representative of current experience), the best compound engine gave a 1.2 percent improvement in cruise. Engine weight increased by 23 percent. For a 10 percent Otto-cycle cooling loss (representing advanced insulation/high temperature materials technology), a compound engine with a boost PR of 10 and a compression ratio of 10 gave an 8.1 percent lower cruise than the reference turbofan.

  20. Gas Path Health Monitoring for a Turbofan Engine Based on a Nonlinear Filtering Approach

    Directory of Open Access Journals (Sweden)

    Yiqiu Lv

    2013-01-01

    Full Text Available Different approaches for gas path performance estimation of dynamic systems are commonly used, the most common being the variants of the Kalman filter. The extended Kalman filter (EKF method is a popular approach for nonlinear systems which combines the traditional Kalman filtering and linearization techniques to effectively deal with weakly nonlinear and non-Gaussian problems. Its mathematical formulation is based on the assumption that the probability density function (PDF of the state vector can be approximated to be Gaussian. Recent investigations have focused on the particle filter (PF based on Monte Carlo sampling algorithms for tackling strong nonlinear and non-Gaussian models. Considering the aircraft engine is a complicated machine, operating under a harsh environment, and polluted by complex noises, the PF might be an available way to monitor gas path health for aircraft engines. Up to this point in time a number of Kalman filtering approaches have been used for aircraft turbofan engine gas path health estimation, but the particle filters have not been used for this purpose and a systematic comparison has not been published. This paper presents gas path health monitoring based on the PF and the constrained extend Kalman particle filter (cEKPF, and then compares the estimation accuracy and computational effort of these filters to the EKF for aircraft engine performance estimation under rapid faults and general deterioration. Finally, the effects of the constraint mechanism and particle number on the cEKPF are discussed. We show in this paper that the cEKPF outperforms the EKF, PF and EKPF, and conclude that the cEKPF is the best choice for turbofan engine health monitoring.

  1. Active Control of Inlet Noise on the JT15D Turbofan Engine

    Science.gov (United States)

    Smith, Jerome P.; Hutcheson, Florence V.; Burdisso, Ricardo A.; Fuller, Chris R.

    1999-01-01

    This report presents the key results obtained by the Vibration and Acoustics Laboratories at Virginia Tech over the year from November 1997 to December 1998 on the Active Noise Control of Turbofan Engines research project funded by NASA Langley Research Center. The concept of implementing active noise control techniques with fuselage-mounted error sensors is investigated both analytically and experimentally. The analytical part of the project involves the continued development of an advanced modeling technique to provide prediction and design guidelines for application of active noise control techniques to large, realistic high bypass engines of the type on which active control methods are expected to be applied. Results from the advanced analytical model are presented that show the effectiveness of the control strategies, and the analytical results presented for fuselage error sensors show good agreement with the experimentally observed results and provide additional insight into the control phenomena. Additional analytical results are presented for active noise control used in conjunction with a wavenumber sensing technique. The experimental work is carried out on a running JT15D turbofan jet engine in a test stand at Virginia Tech. The control strategy used in these tests was the feedforward Filtered-X LMS algorithm. The control inputs were supplied by single and multiple circumferential arrays of acoustic sources equipped with neodymium iron cobalt magnets mounted upstream of the fan. The reference signal was obtained from an inlet mounted eddy current probe. The error signals were obtained from a number of pressure transducers flush-mounted in a simulated fuselage section mounted in the engine test cell. The active control methods are investigated when implemented with the control sources embedded within the acoustically absorptive material on a passively-lined inlet. The experimental results show that the combination of active control techniques with fuselage

  2. Theoretical aspects of an electrostatic aerosol filter for civilian turbofan engines

    Directory of Open Access Journals (Sweden)

    Valeriu DRAGAN

    2012-03-01

    Full Text Available The paper addresses the problem of aerosol filtration in turbofan engines. The current problem of very fine aerosol admission is the impossibility for mechanical filtration; another aspect of the problem is the high mass flow of air to be filtered. Non-attended, the aerosol admission can -and usually does- lead to clogging of turbine cooling passages and can damage the engine completely. The approach is theoretical and relies on the principles of electrostatic dust collectors known in other industries. An estimative equation is deduced in order to quantify the electrical charge required to obtain the desired filtration. Although the device still needs more theoretical and experimental work, it could one day be used as a means of increasing the safety of airplanes passing trough an aerosol laden mass of air.

  3. Model-based Acceleration Control of Turbofan Engines with a Hammerstein-Wiener Representation

    Science.gov (United States)

    Wang, Jiqiang; Ye, Zhifeng; Hu, Zhongzhi; Wu, Xin; Dimirovsky, Georgi; Yue, Hong

    2017-05-01

    Acceleration control of turbofan engines is conventionally designed through either schedule-based or acceleration-based approach. With the widespread acceptance of model-based design in aviation industry, it becomes necessary to investigate the issues associated with model-based design for acceleration control. In this paper, the challenges for implementing model-based acceleration control are explained; a novel Hammerstein-Wiener representation of engine models is introduced; based on the Hammerstein-Wiener model, a nonlinear generalized minimum variance type of optimal control law is derived; the feature of the proposed approach is that it does not require the inversion operation that usually upsets those nonlinear control techniques. The effectiveness of the proposed control design method is validated through a detailed numerical study.

  4. Certain Type Turbofan Engine Whole Vibration Model with Support Looseness Fault and Casing Response Characteristics

    Directory of Open Access Journals (Sweden)

    H. F. Wang

    2014-01-01

    Full Text Available Support looseness fault is a type of common fault in aeroengine. Serious looseness fault would emerge under larger unbalanced force, which would cause excessive vibration and even lead to rubbing fault, so it is important to analyze and recognize looseness fault effectively. In this paper, based on certain type turbofan engine structural features, a rotor-support-casing whole model for certain type turbofan aeroengine is established. The rotor and casing systems are modeled by means of the finite element beam method; the support systems are modeled by lumped-mass model; the support looseness fault model is also introduced. The coupled system response is obtained by numerical integral method. In this paper, based on the casing acceleration signals, the impact characteristics of symmetrical stiffness and asymmetric stiffness models are analyzed, finding that the looseness fault would lead to the longitudinal asymmetrical characteristics of acceleration time domain wave and the multiple frequency characteristics, which is consistent with the real trial running vibration signals. Asymmetric stiffness looseness model is verified to be fit for aeroengine looseness fault model.

  5. Dynamic Analysis for a Geared Turbofan Engine with Variable Area Fan Nozzle

    Science.gov (United States)

    Csank, Jeffrey T.; Thomas, George L.

    2017-01-01

    Aggressive design goals have been set for future aero-propulsion systems with regards to fuel economy, noise, and emissions. To meet these challenging goals, advanced propulsion concepts are being explored and current operating margins are being re-evaluated to find additional concessions that can be made. One advanced propulsion concept being evaluated is a geared turbofan with a variable area fan nozzle (VAFN), developed by NASA. This engine features a small core, a fan driven by the low pressure turbine through a reduction gearbox, and a shape memory alloy (SMA)-actuated VAFN. The VAFN is designed to allow both a small exit area for efficient operation at cruise, while being able to open wider at high power conditions to reduce backpressure on the fan and ensure a safe level of stall margin is maintained. The VAFN is actuated via a SMA-based system instead of a conventional system to decrease overall weight of the system, however, SMA-based actuators respond relatively slowly, which introduces dynamic issues that are investigated in this work. This paper describes both a control system designed specifically for issues associated with SMAs, and dynamic analysis of the geared turbofan VAFN with the SMA actuators. Also, some future recommendations are provided for this type of propulsion system.

  6. On-Board Real-Time Optimization Control for Turbo-Fan Engine Life Extending

    Science.gov (United States)

    Zheng, Qiangang; Zhang, Haibo; Miao, Lizhen; Sun, Fengyong

    2017-11-01

    A real-time optimization control method is proposed to extend turbo-fan engine service life. This real-time optimization control is based on an on-board engine mode, which is devised by a MRR-LSSVR (multi-input multi-output recursive reduced least squares support vector regression method). To solve the optimization problem, a FSQP (feasible sequential quadratic programming) algorithm is utilized. The thermal mechanical fatigue is taken into account during the optimization process. Furthermore, to describe the engine life decaying, a thermal mechanical fatigue model of engine acceleration process is established. The optimization objective function not only contains the sub-item which can get fast response of the engine, but also concludes the sub-item of the total mechanical strain range which has positive relationship to engine fatigue life. Finally, the simulations of the conventional optimization control which just consider engine acceleration performance or the proposed optimization method have been conducted. The simulations demonstrate that the time of the two control methods from idle to 99.5 % of the maximum power are equal. However, the engine life using the proposed optimization method could be surprisingly increased by 36.17 % compared with that using conventional optimization control.

  7. Possible Mechanisms for Turbofan Engine Ice Crystal Icing at High Altitude

    Science.gov (United States)

    Tsao, Jen-Ching; Struk, Peter M.; Oliver, Michael J.

    2016-01-01

    A thermodynamic model is presented to describe possible mechanisms of ice formation on unheated surfaces inside a turbofan engine compression system from fully glaciated ice crystal clouds often formed at high altitude near deep convective weather systems. It is shown from the analysis that generally there could be two distinct types of ice formation: (1) when the "surface freezing fraction" is in the range of 0 to 1, dominated by the freezing of water melt from fully or partially melted ice crystals, the ice structure is formed from accretion with strong adhesion to the surface, and (2) when the "surface melting fraction" is the range of 0 to 1, dominated by the further melting of ice crystals, the ice structure is formed from accumulation of un-melted ice crystals with relatively weak bonding to the surface. The model captures important qualitative trends of the fundamental ice-crystal icing phenomenon reported earlier (Refs. 1 and 2) from the research collaboration work by NASA and the National Research Council (NRC) of Canada. Further, preliminary analysis of test data from the 2013 full scale turbofan engine ice crystal icing test (Ref. 3) conducted in the NASA Glenn Propulsion Systems Laboratory (PSL) has also suggested that (1) both types of ice formation occurred during the test, and (2) the model has captured some important qualitative trend of turning on (or off) the ice crystal ice formation process in the tested engine low pressure compressor (LPC) targeted area under different icing conditions that ultimately would lead to (or suppress) an engine core roll back (RB) event.

  8. Analytical investigation of adaptive control of radiated inlet noise from turbofan engines

    Science.gov (United States)

    Risi, John D.; Burdisso, Ricardo A.

    1994-01-01

    An analytical model has been developed to predict the resulting far field radiation from a turbofan engine inlet. A feedforward control algorithm was simulated to predict the controlled far field radiation from the destructive combination of fan noise and secondary control sources. Numerical results were developed for two system configurations, with the resulting controlled far field radiation patterns showing varying degrees of attenuation and spillover. With one axial station of twelve control sources and error sensors with equal relative angular positions, nearly global attenuation is achieved. Shifting the angular position of one error sensor resulted in an increase of spillover to the extreme sidelines. The complex control inputs for each configuration was investigated to identify the structure of the wave pattern created by the control sources, giving an indication of performance of the system configuration. It is deduced that the locations of the error sensors and the control source configuration are equally critical to the operation of the active noise control system.

  9. Investigation of HP Turbine Blade Failure in a Military Turbofan Engine

    Science.gov (United States)

    Mishra, R. K.; Thomas, Johny; Srinivasan, K.; Nandi, Vaishakhi; Bhatt, R. Raghavendra

    2017-04-01

    Failure of a high pressure (HP) turbine blade in a military turbofan engine is investigated to determine the root cause of failure. Forensic and metallurgical investigations are carried out on the affected blades. The loss of coating and the presence of heavily oxidized intergranular fracture features including substrate material aging and airfoil curling in the trailing edge of a representative blade indicate that the coating is not providing adequate oxidation protection and the blade material substrate is not suitable for the application at hand. Coating spallation followed by substrate oxidation and aging leading to intergranular cracking and localized trailing edge curling is the root cause of the blade failure. The remaining portion of the blade fracture surface showed ductile overload features in the final failure. The damage observed in downstream components is due to secondary effects.

  10. Application of laminar flow control to high-bypass-ratio turbofan engine nacelles

    Science.gov (United States)

    Wie, Y. S.; Collier, F. S., Jr.; Wagner, R. D.

    1991-01-01

    Recently, the concept of the application of hybrid laminar flow to modern commercial transport aircraft was successfully flight tested on a Boeing 757 aircraft. In this limited demonstration, in which only part of the upper surface of the swept wing was designed for the attainment of laminar flow, significant local drag reduction was measured. This paper addresses the potential application of this technology to laminarize the external surface of large, modern turbofan engine nacelles which may comprise as much as 5-10 percent of the total wetted area of future commercial transports. A hybrid-laminar-flow-control (HLFC) pressure distribution is specified and the corresponding nacelle geometry is computed utilizing a predictor/corrector design method. Linear stability calculations are conducted to provide predictions of the extent of the laminar boundary layer. Performance studies are presented to determine potential benefits in terms of reduced fuel consumption.

  11. A kernel principal component analysis–based degradation model and remaining useful life estimation for the turbofan engine

    Directory of Open Access Journals (Sweden)

    Delong Feng

    2016-05-01

    Full Text Available Remaining useful life estimation of the prognostics and health management technique is a complicated and difficult research question for maintenance. In this article, we consider the problem of prognostics modeling and estimation of the turbofan engine under complicated circumstances and propose a kernel principal component analysis–based degradation model and remaining useful life estimation method for such aircraft engine. We first analyze the output data created by the turbofan engine thermodynamic simulation that is based on the kernel principal component analysis method and then distinguish the qualitative and quantitative relationships between the key factors. Next, we build a degradation model for the engine fault based on the following assumptions: the engine has only had constant failure (i.e. no sudden failure is included, and the engine has a Wiener process, which is a covariate stand for the engine system drift. To predict the remaining useful life of the turbofan engine, we built a health index based on the degradation model and used the method of maximum likelihood and the data from the thermodynamic simulation model to estimate the parameters of this degradation model. Through the data analysis, we obtained a trend model of the regression curve line that fits with the actual statistical data. Based on the predicted health index model and the data trend model, we estimate the remaining useful life of the aircraft engine as the index reaches zero. At last, a case study involving engine simulation data demonstrates the precision and performance advantages of this prediction method that we propose. At last, a case study involving engine simulation data demonstrates the precision and performance advantages of this proposed method, the precision of the method can reach to 98.9% and the average precision is 95.8%.

  12. Improvement on Main/backup Controller Switching Device of the Nozzle Throat Area Control System for a Turbofan Aero Engine

    Science.gov (United States)

    Li, Jie; Duan, Minghu; Yan, Maode; Li, Gang; Li, Xiaohui

    2014-06-01

    A full authority digital electronic controller (FADEC) equipped with a full authority hydro-mechanical backup controller (FAHMBC) is adopted as the nozzle throat area control system (NTACS) of a turbofan aero engine. In order to ensure the switching reliability of the main/backup controller, the nozzle throat area control switching valve was improved from three-way convex desktop slide valve to six-way convex desktop slide valve. Simulation results show that, if malfunctions of FAEDC occur and abnormal signals are outputted from FADEC, NTACS will be seriously influenced by the main/backup controller switching in several working states, while NTACS will not be influenced by using the improved nozzle throat area control switching valve, thus the controller switching process will become safer and smoother and the working reliability of this turbofan aero engine is improved by the controller switching device improvement.

  13. Full-Scale Turbofan Engine Noise-Source Separation Using a Four-Signal Method

    Science.gov (United States)

    Hultgren, Lennart S.; Arechiga, Rene O.

    2016-01-01

    Contributions from the combustor to the overall propulsion noise of civilian transport aircraft are starting to become important due to turbofan design trends and expected advances in mitigation of other noise sources. During on-ground, static-engine acoustic tests, combustor noise is generally sub-dominant to other engine noise sources because of the absence of in-flight effects. Consequently, noise-source separation techniques are needed to extract combustor-noise information from the total noise signature in order to further progress. A novel four-signal source-separation method is applied to data from a static, full-scale engine test and compared to previous methods. The new method is, in a sense, a combination of two- and three-signal techniques and represents an attempt to alleviate some of the weaknesses of each of those approaches. This work is supported by the NASA Advanced Air Vehicles Program, Advanced Air Transport Technology Project, Aircraft Noise Reduction Subproject and the NASA Glenn Faculty Fellowship Program.

  14. Estimation of Signal Coherence Threshold and Concealed Spectral Lines Applied to Detection of Turbofan Engine Combustion Noise

    Science.gov (United States)

    Miles, Jeffrey Hilton

    2010-01-01

    Combustion noise from turbofan engines has become important, as the noise from sources like the fan and jet are reduced. An aligned and un-aligned coherence technique has been developed to determine a threshold level for the coherence and thereby help to separate the coherent combustion noise source from other noise sources measured with far-field microphones. This method is compared with a statistics based coherence threshold estimation method. In addition, the un-aligned coherence procedure at the same time also reveals periodicities, spectral lines, and undamped sinusoids hidden by broadband turbofan engine noise. In calculating the coherence threshold using a statistical method, one may use either the number of independent records or a larger number corresponding to the number of overlapped records used to create the average. Using data from a turbofan engine and a simulation this paper shows that applying the Fisher z-transform to the un-aligned coherence can aid in making the proper selection of samples and produce a reasonable statistics based coherence threshold. Examples are presented showing that the underlying tonal and coherent broad band structure which is buried under random broadband noise and jet noise can be determined. The method also shows the possible presence of indirect combustion noise. Copyright 2011 Acoustical Society of America. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the Acoustical Society of America.

  15. Application of the Systematic Sensor Selection Strategy for Turbofan Engine Diagnostics

    Science.gov (United States)

    Sowers, T. Shane; Kopasakis, George; Simon, Donald L.

    2008-01-01

    The data acquired from available system sensors forms the foundation upon which any health management system is based, and the available sensor suite directly impacts the overall diagnostic performance that can be achieved. While additional sensors may provide improved fault diagnostic performance, there are other factors that also need to be considered such as instrumentation cost, weight, and reliability. A systematic sensor selection approach is desired to perform sensor selection from a holistic system-level perspective as opposed to performing decisions in an ad hoc or heuristic fashion. The Systematic Sensor Selection Strategy is a methodology that optimally selects a sensor suite from a pool of sensors based on the system fault diagnostic approach, with the ability of taking cost, weight, and reliability into consideration. This procedure was applied to a large commercial turbofan engine simulation. In this initial study, sensor suites tailored for improved diagnostic performance are constructed from a prescribed collection of candidate sensors. The diagnostic performance of the best performing sensor suites in terms of fault detection and identification are demonstrated, with a discussion of the results and implications for future research.

  16. Core Noise Diagnostics of Turbofan Engine Noise Using Correlation and Coherence Functions

    Science.gov (United States)

    Miles, Jeffrey H.

    2009-01-01

    Cross-correlation and coherence functions are used to look for periodic acoustic components in turbofan engine combustor time histories, to investigate direct and indirect combustion noise source separation based on signal propagation time delays, and to provide information on combustor acoustics. Using the cross-correlation function, time delays were identified in all cases, clearly indicating the combustor is the source of the noise. In addition, unfiltered and low-pass filtered at 400 Hz signals had a cross-correlation time delay near 90 ms, while the low-pass filtered at less than 400 Hz signals had a cross-correlation time delay longer than 90 ms. Low-pass filtering at frequencies less than 400 Hz partially removes the direct combustion noise signals. The remainder includes the indirect combustion noise signal, which travels more slowly because of the dependence on the entropy convection velocity in the combustor. Source separation of direct and indirect combustion noise is demonstrated by proper use of low-pass filters with the cross-correlation function for a range of operating conditions. The results may lead to a better idea about the acoustics in the combustor and may help develop and validate improved reduced-order physics-based methods for predicting direct and indirect combustion noise.

  17. Spatial Correlation in the Ambient Core Noise Field of a Turbofan Engine

    Science.gov (United States)

    Miles, Jeffrey Hilton

    2012-01-01

    An acoustic transfer function relating combustion noise and turbine exit noise in the presence of enclosed ambient core noise is investigated using a dynamic system model and an acoustic system model for the particular turbofan engine studied and for a range of operating conditions. Measurements of cross-spectra magnitude and phase between the combustor and turbine exit and auto-spectra at the turbine exit and combustor are used to show the presence of indirect and direct combustion noise over the frequency range of 0 400 Hz. The procedure used evaluates the ratio of direct to indirect combustion noise. The procedure used also evaluates the post-combustion residence time in the combustor which is a factor in the formation of thermal NOx and soot in this region. These measurements are masked by the ambient core noise sound field in this frequency range which is observable since the transducers are situated within an acoustic wavelength of one another. An ambient core noise field model based on one and two dimensional spatial correlation functions is used to replicate the spatially correlated response of the pair of transducers. The spatial correlation function increases measured attenuation due to destructive interference and masks the true attenuation of the turbine.

  18. Attenuation of FJ44 Turbofan Engine Noise with a Foam-Metal Liner Installed Over-the-Rotor

    Science.gov (United States)

    Sutliff, Daniel L.; Elliott, Dave M.; Jones, Michael G.; Hartley, Thomas C.

    2009-01-01

    A Williams International FJ44-3A 3000-lb thrust class turbofan engine was used as a demonstrator for a Foam-Metal Liner (FML) installed in close proximity to the fan. Two FML designs were tested and compared to the hardwall baseline. Traditional single degree-of-freedom liner designs were also evaluated to provide a comparison. Farfield acoustic levels and limited engine performance results are presented in this paper. The results show that the FML achieved up to 5 dB Acoustic Power Level (PWL) overall attenuation in the forward quadrant, equivalent to the traditional liner design. An earlier report presented the test set-up and conditions.

  19. Modeling of a Turbofan Engine with Ice Crystal Ingestion in the NASA Propulsion System Laboratory

    Science.gov (United States)

    Veres, Joseph P.; Jorgenson, Philip C. E.; Jones, Scott M.; Nili, Samaun

    2017-01-01

    The main focus of this study is to apply a computational tool for the flow analysis of the turbine engine that has been tested with ice crystal ingestion in the Propulsion Systems Laboratory (PSL) at NASA Glenn Research Center. The PSL has been used to test a highly instrumented Honeywell ALF502R-5A (LF11) turbofan engine at simulated altitude operating conditions. Test data analysis with an engine cycle code and a compressor flow code was conducted to determine the values of key icing parameters, that can indicate the risk of ice accretion, which can lead to engine rollback (un-commanded loss of engine thrust). The full engine aerothermodynamic performance was modeled with the Honeywell Customer Deck specifically created for the ALF502R-5A engine. The mean-line compressor flow analysis code, which includes a code that models the state of the ice crystal, was used to model the air flow through the fan-core and low pressure compressor. The results of the compressor flow analyses included calculations of the ice-water flow rate to air flow rate ratio (IWAR), the local static wet bulb temperature, and the particle melt ratio throughout the flow field. It was found that the assumed particle size had a large effect on the particle melt ratio, and on the local wet bulb temperature. In this study the particle size was varied parametrically to produce a non-zero calculated melt ratio in the exit guide vane (EGV) region of the low pressure compressor (LPC) for the data points that experienced a growth of blockage there, and a subsequent engine called rollback (CRB). At data points where the engine experienced a CRB having the lowest wet bulb temperature of 492 degrees Rankine at the EGV trailing edge, the smallest particle size that produced a non-zero melt ratio (between 3 percent - 4 percent) was on the order of 1 micron. This value of melt ratio was utilized as the target for all other subsequent data points analyzed, while the particle size was varied from 1 micron - 9

  20. Robust fault detection of turbofan engines subject to adaptive controllers via a Total Measurable Fault Information Residual (ToMFIR) technique.

    Science.gov (United States)

    Chen, Wen; Chowdhury, Fahmida N; Djuric, Ana; Yeh, Chih-Ping

    2014-09-01

    This paper provides a new design of robust fault detection for turbofan engines with adaptive controllers. The critical issue is that the adaptive controllers can depress the faulty effects such that the actual system outputs remain the pre-specified values, making it difficult to detect faults/failures. To solve this problem, a Total Measurable Fault Information Residual (ToMFIR) technique with the aid of system transformation is adopted to detect faults in turbofan engines with adaptive controllers. This design is a ToMFIR-redundancy-based robust fault detection. The ToMFIR is first introduced and existing results are also summarized. The Detailed design process of the ToMFIRs is presented and a turbofan engine model is simulated to verify the effectiveness of the proposed ToMFIR-based fault-detection strategy. Copyright © 2013 ISA. Published by Elsevier Ltd. All rights reserved.

  1. Potential disturbance interactions with a single IGV in an F109 turbofan engine

    Science.gov (United States)

    Kirk, Joel F.

    A common cause of aircraft engine failure is the high cycle fatigue of engine blades and stators. One of the primary causes of these failures is due to blade row interactions, which cause an aerodynamic excitation to be resonant with a mechanical natural frequency. Traditionally, the primary source of such aerodynamic excitations has been practically limited to viscous wakes from upstream components. However, more advanced designs require that blade rows be very highly loaded and closely spaced. This results in aerodynamic excitation from potential fields of down stream engine components, in addition to the known wake excitations. An experimental investigation of the potential field from the fan of a Honeywell F109 turbofan engine has been completed. The investigation included velocity measurements upstream of the fan, addition of an airfoil shaped probe upstream of the fan on which surface pressure measurements were acquired, and measurement of the velocity in the interaction region between the probe and the fan. This investigation sought to characterize the response on the upstream probe due to the fan potential field and the interaction between a viscous wake and the potential field; as such, all test conditions were for subsonic fan speeds. The results from the collected data show that fan-induced potential disturbances propagate upstream at acoustic velocities, to produce vane surface-pressure amplitudes as high as 40 percent Joel F. Kirk of the inlet, mean total pressure. Further, these fan-induced pressure amplitudes display large variations between the two vane surfaces. An argument is made that the structure of the pressure response is consistent with the presence of two distinct sources of unsteady forcing disturbances. The disturbances on the incoming-rotation-facing surface of the IGV propagated upstream at a different speed than those on the outgoing-rotation-facing surface, indicating that one originated from a rotating source and the other from a

  2. Broadband Fan Noise Prediction System for Turbofan Engines. Volume 3; Validation and Test Cases

    Science.gov (United States)

    Morin, Bruce L.

    2010-01-01

    Pratt & Whitney has developed a Broadband Fan Noise Prediction System (BFaNS) for turbofan engines. This system computes the noise generated by turbulence impinging on the leading edges of the fan and fan exit guide vane, and noise generated by boundary-layer turbulence passing over the fan trailing edge. BFaNS has been validated on three fan rigs that were tested during the NASA Advanced Subsonic Technology Program (AST). The predicted noise spectra agreed well with measured data. The predicted effects of fan speed, vane count, and vane sweep also agreed well with measurements. The noise prediction system consists of two computer programs: Setup_BFaNS and BFaNS. Setup_BFaNS converts user-specified geometry and flow-field information into a BFaNS input file. From this input file, BFaNS computes the inlet and aft broadband sound power spectra generated by the fan and FEGV. The output file from BFaNS contains the inlet, aft and total sound power spectra from each noise source. This report is the third volume of a three-volume set documenting the Broadband Fan Noise Prediction System: Volume 1: Setup_BFaNS User s Manual and Developer s Guide; Volume 2: BFaNS User s Manual and Developer s Guide; and Volume 3: Validation and Test Cases. The present volume begins with an overview of the Broadband Fan Noise Prediction System, followed by validation studies that were done on three fan rigs. It concludes with recommended improvements and additional studies for BFaNS.

  3. Acoustic Database for Turbofan Engine Core-Noise Sources. I; Volume

    Science.gov (United States)

    Gordon, Grant

    2015-01-01

    In this program, a database of dynamic temperature and dynamic pressure measurements were acquired inside the core of a TECH977 turbofan engine to support investigations of indirect combustion noise. Dynamic temperature and pressure measurements were recorded for engine gas dynamics up to temperatures of 3100 degrees Fahrenheit and transient responses as high as 1000 hertz. These measurements were made at the entrance of the high pressure turbine (HPT) and at the entrance and exit of the low pressure turbine (LPT). Measurements were made at two circumferential clocking positions. In the combustor and inter-turbine duct (ITD), measurements were made at two axial locations to enable the exploration of time delays. The dynamic temperature measurements were made using dual thin-wire thermocouple probes. The dynamic pressure measurements were made using semi-infinite probes. Prior to the engine test, a series of bench, oven, and combustor rig tests were conducted to characterize the performance of the dual wire temperature probes and to define and characterize the data acquisition systems. A measurement solution for acquiring dynamic temperature and pressure data on the engine was defined. A suite of hardware modifications were designed to incorporate the dynamic temperature and pressure instrumentation into the TECH977 engine. In particular, a probe actuation system was developed to protect the delicate temperature probes during engine startup and transients in order to maximize sensor life. A set of temperature probes was procured and the TECH977 engine was assembled with the suite of new and modified hardware. The engine was tested at four steady state operating speeds, with repeats. Dynamic pressure and temperature data were acquired at each condition for at least one minute. At the two highest power settings, temperature data could not be obtained at the forward probe locations since the mean temperatures exceeded the capability of the probes. The temperature data

  4. 75 FR 51654 - Airworthiness Directives; Rolls-Royce plc (RR) RB211-22B and RB211-524 Series Turbofan Engines

    Science.gov (United States)

    2010-08-23

    ... Airworthiness Directives; Rolls-Royce plc (RR) RB211-22B and RB211-524 Series Turbofan Engines AGENCY: Federal... that air safety and the public interest require adopting the AD as proposed. Costs of Compliance Based... labor rate is $85 per work-hour. Required parts will cost about $15,000 per product. Based on these...

  5. An analytical study on the performance of the organic Rankine cycle for turbofan engine exhaust heat recovery

    Science.gov (United States)

    Saadon, S.; Abu Talib, A. R.

    2016-10-01

    Due to energy shortage and global warming, issues of energy saving have become more important. To increase the energy efficiency and reduce the fuel consumption, waste heat recovery is a significant method for energy saving. The organic Rankine cycle (ORC) has great potential to recover the waste heat from the core jet exhaust of a turbofan engine and use it to produce power. Preliminary study of the design concept and thermodynamic performance of this ORC system would assist researchers to predict the benefits of using the ORC system to extract the exhaust heat engine. In addition, a mathematical model of the heat transfer of this ORC system is studied and developed. The results show that with the increment of exhaust heat temperature, the mass flow rate of the working fluid, net power output and the system thermal efficiency will also increase. Consequently, total consumption of jet fuel could be significantly saved as well.

  6. High-fidelity simulation of turbofan engine. ; Verification and improvement of model's dynamical characteristics in linear operating range. Turbofan engine no koseito simulation. ; Senkei sado han'i ni okeru model dotokusei no kensho to seido kojo ni tsuite

    Energy Technology Data Exchange (ETDEWEB)

    Yamane, H; Kagiyama, S [Defence Agency, Tokyo (Japan)

    1993-09-25

    This paper describes providing pulse inputs to a fuel supply in trial operation of a turbofan engine, measurement of its response, and calculation of the frequency characteristics and time constants to acquire dynamic characteristics of the engine on the ground. The resultant engine characteristics were compared with the model characteristics of numerically analyzing a mathematical simulation model, and corrected to develop a high-accuracy simulation model. An element model and a dynamics model were prepared in detail on the main engine components, such as fans, a compressor, a combustor, and a turbine, along a flow diagram from the air intake opening to the exhaust nozzle. The pulses were inputted into the fuel supply by opening and closing an electromagnetic valve. Closing of the illustrated electromagnetic valve for about 0.7 second caused a difference (of phase and trend) in both characteristics of high and low frequencies as a result of pulse-like change in the flow rate. To correct the model characteristics, the combustion delay tie was set to 0.02 second upon considering the combustion delay time relative to the heat capacity of the combustor. Improvement in the model was verified as the phase characteristics was approximated to the engine characteristics. 13 refs., 17 figs., 2 tabs.

  7. 77 FR 6666 - Airworthiness Directives; CFM International, S.A. Turbofan Engines

    Science.gov (United States)

    2012-02-09

    ... Adler, Aerospace Engineer, Engine Certification Office, FAA, Engine & Propeller Directorate, 12 New....adler@faa.gov . SUPPLEMENTARY INFORMATION: Discussion We issued a notice of proposed rulemaking (NPRM... this AD, contact Martin Adler, Aerospace Engineer, Engine Certification Office, FAA, Engine & Propeller...

  8. Modeling of Highly Instrumented Honeywell Turbofan Engine Tested with Ice Crystal Ingestion in the NASA Propulsion System Laboratory

    Science.gov (United States)

    Veres, Joseph P.; Jorgenson, Philip C. E.; Jones, Scott M.

    2016-01-01

    The Propulsion Systems Laboratory (PSL), an altitude test facility at NASA Glenn Research Center, has been used to test a highly instrumented turbine engine at simulated altitude operating conditions. This is a continuation of the PSL testing that successfully duplicated the icing events that were experienced in a previous engine (serial LF01) during flight through ice crystal clouds, which was the first turbofan engine tested in PSL. This second model of the ALF502R-5A serial number LF11 is a highly instrumented version of the previous engine. The PSL facility provides a continuous cloud of ice crystals with controlled characteristics of size and concentration, which are ingested by the engine during operation at simulated altitudes. Several of the previous operating points tested in the LF01 engine were duplicated to confirm repeatability in LF11. The instrumentation included video cameras to visually illustrate the accretion of ice in the low pressure compressor (LPC) exit guide vane region in order to confirm the ice accretion, which was suspected during the testing of the LF01. Traditional instrumentation included static pressure taps in the low pressure compressor inner and outer flow path walls, as well as total pressure and temperature rakes in the low pressure compressor region. The test data was utilized to determine the losses and blockages due to accretion in the exit guide vane region of the LPC. Multiple data points were analyzed with the Honeywell Customer Deck. A full engine roll back point was modeled with the Numerical Propulsion System Simulation (NPSS) code. The mean line compressor flow analysis code with ice crystal modeling was utilized to estimate the parameters that indicate the risk of accretion, as well as to estimate the degree of blockage and losses caused by accretion during a full engine roll back point. The analysis provided additional validation of the icing risk parameters within the LPC, as well as the creation of models for

  9. Numerical modeling of turbulent evaporating gas-droplet two-phase flows in an afterburner diffusor of turbo-fan jet engines

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Lixing; Zhang, Jian [Qinghua Univ., Beijing (China)

    1990-11-01

    Two-dimensional turbulent evaporating gas-droplet two-phase flows in an afterburner diffusor of turbofan jet engines are simulated here by a k-epsilon turbulence model and a particle trajectory model. Comparison of predicted gas velocity and temperature distributions with experimental results for the cases without liquid spray shows good agreement. Gas-droplet two-phase flow predictions give plausible droplet trajectories, fuel-vapor concentration distribution, gas-phase velocity and temperature field in the presence of liquid droplets. One run of computation with this method is made for a particular afterburner. The results indicate that the location of the atomizers is not favorable to flame stabilization and combustion efficiency. The proposed numerical modeling can also be adopted for optimization design and performance evaluation of afterburner combustors of turbofan jet engines. 7 refs.

  10. Design and analysis of annular combustion chamber of a low bypass turbofan engine in a jet trainer aircraft

    Directory of Open Access Journals (Sweden)

    C. Priyant Mark

    2016-06-01

    Full Text Available The design of an annular combustion chamber in a gas turbine engine is the backbone of this paper. It is specifically designed for a low bypass turbofan engine in a jet trainer aircraft. The combustion chamber is positioned in between the compressor and turbine. It has to be designed based on the constant pressure, enthalpy addition process. The present methodology deals with the computation of the initial design parameters from benchmarking of real-time industry standards and arriving at optimized values. It is then studied for feasibility and finalized. Then the various dimensions of the combustor are calculated based on different empirical formulas. The air mass flow is then distributed across the zones of the combustor. The cooling requirement is met using the cooling holes. Finally the variations of parameters at different points are calculated. The whole combustion chamber is modeled using Siemens NX 8.0, a modeling software and presented. The model is then analyzed using various parameters at various stages and levels to determine the optimized design. The aerodynamic flow characteristics is simulated numerically by means of ANSYS 14.5 software suite. The air-fuel mixture, combustion-turbulence, thermal and cooling analysis is carried out. The analysis is performed at various scenarios and compared. The results are then presented in image outputs and graphs.

  11. A New Robust Tracking Control Design for Turbofan Engines: H∞/Leitmann Approach

    Directory of Open Access Journals (Sweden)

    Muxuan Pan

    2017-04-01

    Full Text Available In this paper, a H ∞ /Leitmann approach to the robust tracking control design is presented for an uncertain dynamic system. This new method is developed in the following two steps. Firstly, a tracking dynamic system with simultaneous consideration of parameter uncertainty and noise is modeled based on a linear system and a reference model. Accordingly, a “nominal system” from the tracking system is defined and controlled by a H ∞ control to obtain the asymptotical stability and noise resistance. Secondly, by making use of a Lyapunov function and the norm boundedness, a new robust control with the “Leitmann approach” is designed to cope with the uncertainty. The two controls collaborate with each other to achieve “uniform tracking boundedness” and “uniform ultimate tracking boundedness”. The new approach is then applied to an aircraft turbofan control design, and the numerical simulation results show the prescribed performances of the closed-loop system and the advantage of the developed approach.

  12. Numerical Investigation of the Influence of the Input Air Irregularity on the Performance of Turbofan Jet Engine

    Science.gov (United States)

    Novikova, Y.; Zubanov, V.

    2018-01-01

    The article describes the numerical investigation of the input air irregularity influence of turbofan engine on its characteristics. The investigated fan has a wide-blade, an inlet diameter about 2 meters, a pressure ratio about 1.6 and the bypass ratio about 4.8. The flow irregularity was simulated by the flap input in the fan inlet channel. Input of flap was carried out by an amount of 10 to 22,5% of the input channel diameter with increments of 2,5%. A nonlinear harmonic analysis (NLH-analysis) of NUMECA Fine/Turbo software was used to study the flow irregularity. The behavior of the calculated LPC characteristics repeats the experiment behavior, but there is a quantitative difference: the calculated efficiency and pressure ratio of booster consistent with the experimental data within 3% and 2% respectively, the calculated efficiency and pressure ratio of fan duct - within 4% and 2.5% respectively. An increasing the level of air irregularity in the input stage of the fan reduces the calculated mass flow, maximum pressure ratio and efficiency. With the value of flap input 12.5%, reducing the maximum air flow is 1.44%, lowering the maximum pressure ratio is 2.6%, efficiency decreasing is 3.1%.

  13. 77 FR 10950 - Airworthiness Directives; General Electric Company (GE) Turbofan Engines

    Science.gov (United States)

    2012-02-24

    ...- commanded engine IFSD of one or more engines, leading to an emergency or forced landing of the airplane... perform a removal and replacement of the ECU, and that the average labor rate is $85 per work-hour. A... or more engines, leading to an emergency or forced landing of the airplane. (f) Compliance Comply...

  14. 76 FR 64291 - Airworthiness Directives; General Electric Company (GE) Turbofan Engines

    Science.gov (United States)

    2011-10-18

    ... shop visit, but not later than 5,500 cycles-in-service (CIS) since the last engine shop visit where the... next engine shop visit, but not later than 5,500 cycles-in- service (CIS) since the last engine shop... than a ``CORRECT FLOW'' packing using paragraph 3.A.(1).(b) of the Accomplishment Instructions of SB No...

  15. Digital integrated control of a Mach 2.5 mixed-compression supersonic inlet and an augmented mixed-flow turbofan engine

    Science.gov (United States)

    Batterton, P. G.; Arpasi, D. J.; Baumbick, R. J.

    1974-01-01

    A digitally implemented integrated inlet-engine control system was designed and tested on a mixed-compression, axisymmetric, Mach 2.5, supersonic inlet with 45 percent internal supersonic area contraction and a TF30-P-3 augmented turbofan engine. The control matched engine airflow to available inlet airflow. By monitoring inlet terminal shock position and over-board bypass door command, the control adjusted engine speed so that in steady state, the shock would be at the desired location and the overboard bypass doors would be closed. During engine-induced transients, such as augmentor light-off and cutoff, the inlet operating point was momentarily changed to a more supercritical point to minimize unstarts. The digital control also provided automatic inlet restart. A variable inlet throat bleed control, based on throat Mach number, provided additional inlet stability margin.

  16. 76 FR 72130 - Airworthiness Directives; Pratt & Whitney JT9D Series Turbofan Engines

    Science.gov (United States)

    2011-11-22

    ... FURTHER INFORMATION CONTACT: Stephen Sheely, Aerospace Engineer, Engine & Propeller Directorate, FAA, 12...: stephen[email protected] . SUPPLEMENTARY INFORMATION: Comments Invited We invite you to send any written....'' (g) Except as provided in paragraph (h) of this AD, and notwithstanding contrary provisions in...

  17. Broadband Fan Noise Prediction System for Turbofan Engines. Volume 1; Setup_BFaNS User's Manual and Developer's Guide

    Science.gov (United States)

    Morin, Bruce L.

    2010-01-01

    Pratt & Whitney has developed a Broadband Fan Noise Prediction System (BFaNS) for turbofan engines. This system computes the noise generated by turbulence impinging on the leading edges of the fan and fan exit guide vane, and noise generated by boundary-layer turbulence passing over the fan trailing edge. BFaNS has been validated on three fan rigs that were tested during the NASA Advanced Subsonic Technology Program (AST). The predicted noise spectra agreed well with measured data. The predicted effects of fan speed, vane count, and vane sweep also agreed well with measurements. The noise prediction system consists of two computer programs: Setup_BFaNS and BFaNS. Setup_BFaNS converts user-specified geometry and flow-field information into a BFaNS input file. From this input file, BFaNS computes the inlet and aft broadband sound power spectra generated by the fan and FEGV. The output file from BFaNS contains the inlet, aft and total sound power spectra from each noise source. This report is the first volume of a three-volume set documenting the Broadband Fan Noise Prediction System: Volume 1: Setup_BFaNS User s Manual and Developer s Guide; Volume 2: BFaNS User's Manual and Developer s Guide; and Volume 3: Validation and Test Cases. The present volume begins with an overview of the Broadband Fan Noise Prediction System, followed by step-by-step instructions for installing and running Setup_BFaNS. It concludes with technical documentation of the Setup_BFaNS computer program.

  18. Broadband Fan Noise Prediction System for Turbofan Engines. Volume 2; BFaNS User's Manual and Developer's Guide

    Science.gov (United States)

    Morin, Bruce L.

    2010-01-01

    Pratt & Whitney has developed a Broadband Fan Noise Prediction System (BFaNS) for turbofan engines. This system computes the noise generated by turbulence impinging on the leading edges of the fan and fan exit guide vane, and noise generated by boundary-layer turbulence passing over the fan trailing edge. BFaNS has been validated on three fan rigs that were tested during the NASA Advanced Subsonic Technology Program (AST). The predicted noise spectra agreed well with measured data. The predicted effects of fan speed, vane count, and vane sweep also agreed well with measurements. The noise prediction system consists of two computer programs: Setup_BFaNS and BFaNS. Setup_BFaNS converts user-specified geometry and flow-field information into a BFaNS input file. From this input file, BFaNS computes the inlet and aft broadband sound power spectra generated by the fan and FEGV. The output file from BFaNS contains the inlet, aft and total sound power spectra from each noise source. This report is the second volume of a three-volume set documenting the Broadband Fan Noise Prediction System: Volume 1: Setup_BFaNS User s Manual and Developer s Guide; Volume 2: BFaNS User s Manual and Developer s Guide; and Volume 3: Validation and Test Cases. The present volume begins with an overview of the Broadband Fan Noise Prediction System, followed by step-by-step instructions for installing and running BFaNS. It concludes with technical documentation of the BFaNS computer program.

  19. Analysis of Uncertainties in Infrared Camera Measurements of a Turbofan Engine in an Altitude Test Cell

    National Research Council Canada - National Science Library

    Morris, Thomas

    2004-01-01

    ... from the facility structure, hot exhaust gases, and the measurement equipment itself. The atmosphere and a protective ZnSe window that shields the camera from the hot engine exhaust also introduce measurement uncertainty due to attenuation...

  20. Continuous-Scan Phased Array Measurement Methods for Turbofan Engine Acoustic Testing, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — ATA Engineering, Inc., (ATA) proposes an SBIR project to advance the technology readiness level (TRL) of a method for measuring phased array acoustic data for...

  1. Continuous-Scan Phased Array Measurement Methods for Turbofan Engine Acoustic Testing, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — To allow aviation growth to continue in the face of increasingly stringent noise pollution standards, new aircraft engines must be designed with noise performance as...

  2. Parallel Hybrid Gas-Electric Geared Turbofan Engine Conceptual Design and Benefits Analysis

    Science.gov (United States)

    Lents, Charles; Hardin, Larry; Rheaume, Jonathan; Kohlman, Lee

    2016-01-01

    The conceptual design of a parallel gas-electric hybrid propulsion system for a conventional single aisle twin engine tube and wing vehicle has been developed. The study baseline vehicle and engine technology are discussed, followed by results of the hybrid propulsion system sizing and performance analysis. The weights analysis for the electric energy storage & conversion system and thermal management system is described. Finally, the potential system benefits are assessed.

  3. Full-Scale Turbofan-Engine Turbine-Transfer Function Determination Using Three Internal Sensors

    Science.gov (United States)

    Hultgren, Lennart S.

    2012-01-01

    Noise-source separation techniques, using three engine-internal sensors, are applied to existing static-engine test data to determine the turbine transfer function for the currently subdominant combustion noise. The results are used to assess the combustion-noise prediction capability of the Aircraft Noise Prediction Program (ANOPP) and an improvement to the combustion-noise module GECOR is suggested. The work was carried out in response to the NASA Fundamental Aeronautics Subsonic Fixed Wing Program s Reduced-Perceived-Noise Technical Challenge.

  4. 75 FR 31330 - Airworthiness Directives; Pratt & Whitney PW4000 Series Turbofan Engines

    Science.gov (United States)

    2010-06-03

    ... bearing oil pressure tubes found cracked that led to unscheduled engine removals, and one report of a test... Web site, anyone can find and read the comments in any of our dockets, including, if provided, the... bearing oil pressure tube, and that the tube was previously weld- repaired. That fire led to failure of...

  5. A comparison of optimum JP and LH2 turbofan engines designed for two subsonic transport missions

    Science.gov (United States)

    Civinskas, K. C.

    1974-01-01

    The use of liquid hydrogen fuel instead of JP fuel for two subsonic commercial transports was examined. The following determinations which are important to meeting noise reduction requirements were calculated: (1) take off gross weight, (2) energy consumption, and (3) direct operating costs. The optimum engine cycles were found to be the same for both fuels.

  6. 78 FR 2195 - Airworthiness Directives; Rolls-Royce Deutschland Ltd & Co KG Turbofan Engines

    Science.gov (United States)

    2013-01-10

    ... of silver chloride-induced stress corrosion cracking of the HP compressor stages 1 to 6 rotor disc...: Silver chloride-induced stress corrosion cracking was identified during overhaul of a BR700-715 engine... send any written relevant data, views, or arguments about this AD. Send your comments to an address...

  7. 77 FR 2932 - Airworthiness Directives; Rolls-Royce plc (RR) Turbofan Engines

    Science.gov (United States)

    2012-01-20

    ...-pressure (IP) compressor rotor shaft rear balance land for cracks, which could lead to engine failure. This...; fax: 011-44-1332-245418 or email from http://www.rolls-royce.com/contact/civil_team.jsp . You may..., 12 New England Executive Park, Burlington, MA; phone: (781) 238-7143; fax: (781) 238-7199; email...

  8. Assessment of engine noise shielding by the wings of current turbofan aircraft

    NARCIS (Netherlands)

    Alves Vieira, A.E.; Snellen, M.; Simons, D.G.; Gibbs, B.

    2017-01-01

    The shielding of engine noise by the aircraft wings and fuselage can lead to a significant reduction on perceived noise on ground. Most research on noise shielding is focused on BlendedWing Body (BWB) configurations because of the large dimension of the fuselage. However, noise shielding is also

  9. Thrust Performance Evaluation of a Turbofan Engine Based on Exergetic Approach and Thrust Management in Aircraft

    Science.gov (United States)

    Yalcin, Enver

    2017-05-01

    The environmental parameters such as temperature and air pressure which are changing depending on altitudes are effective on thrust and fuel consumption of aircraft engines. In flights with long routes, thrust management function in airplane information system has a structure that ensures altitude and performance management. This study focused on thrust changes throughout all flight were examined by taking into consideration their energy and exergy performances for fuel consumption of an aircraft engine used in flight with long route were taken as reference. The energetic and exergetic performance evaluations were made under the various altitude conditions. The thrust changes for different altitude conditions were obtained to be at 86.53 % in descending direction and at 142.58 % in ascending direction while the energy and exergy efficiency changes for the referenced engine were found to be at 80.77 % and 84.45 %, respectively. The results revealed here can be helpful to manage thrust and reduce fuel consumption, but engine performance will be in accordance with operation requirements.

  10. Particle Trajectory and Icing Analysis of the E(sup 3) Turbofan Engine Using LEWICE3D Version 3

    Science.gov (United States)

    Bidwell, Colin S.

    2011-01-01

    Particle trajectory and ice shape calculations were made for the Energy Efficient Engine (E(sup 3)) using the LEWICE3D Version 3 software. The particle trajectory and icing computations were performed using the new "block-to-block" collection efficiency method which has been incorporated into the LEWICE3D Version 3 software. The E(sup 3) was developed by NASA and GE in the early 1980 s as a technology demonstrator and is representative of a modern high bypass turbofan engine. The E(sup 3) flow field was calculated using the NASA Glenn ADPAC turbomachinery flow solver. Computations were performed for the low pressure compressor of the E(sup 3) for a Mach 0.8 cruise condition at 11,887 m assuming a standard warm day for three drop sizes and two drop distributions typically used in aircraft design and certification. Particle trajectory computations were made for water drop sizes of 5, 20, and 100 microns. Particle trajectory and ice shape predictions were made for a 20 micron Langmuir-D distribution and for a 92 mm Super-cooled Large Droplet (SLD) distribution with and without splashing effects for a Liquid Water Content (LWC) of 0.3 g/cu m and an icing time of 30 min. The E3 fan and spinner combination proved to be an effective ice removal mechanism as they removed greater than 36 percent of the mass entering the inlet for the icing cases. The maximum free stream catch fraction for the fan and spinner combination was 0.60 while that on the elements downstream of the fan was 0.03. The non-splashing trajectory and collection efficiency results showed that as drop size increased impingement rates increased on the spinner and fan leaving less mass to impinge on downstream components. The SLD splashing case yielded more mass downstream of the fan than the SLD non-splashing case due to mass being splashed from the upstream inlet lip, spinner and fan components. The ice shapes generated downstream of the fan were either small or nonexistent due to the small available mass

  11. Review of Turbofan-Engine Combustion and Jet-Noise Research and Related Topics.

    Science.gov (United States)

    1980-01-01

    Induction-Motor Research Vehicle at DOT’s High-Speed Ground Test Center m44r Pueblo, Colorado; the other was the Bertin Aerotrain developed by the French...noise level at probable microphone locations and because the maximum vehicle speed was significantly less than desired. The Aerotrain was not considered...an ideal facility because (1) the test hardware would have to be sized for the nozzle of the J-85 engine used to propel the Aerotrain along the track

  12. Validation of an Integrated Airframe and Turbofan Engine Simulation for Evaluation of Propulsion Control Modes

    Science.gov (United States)

    Litt, Jonathan S.; Sowers, T Shane; Liu, Yuan; Owen, A. Karl; Guo, Ten-Huei

    2015-01-01

    The National Aeronautics and Space Administration (NASA) has developed independent airframe and engine models that have been integrated into a single real-time aircraft simulation for piloted evaluation of propulsion control algorithms. In order to have confidence in the results of these evaluations, the integrated simulation must be validated to demonstrate that its behavior is realistic and that it meets the appropriate Federal Aviation Administration (FAA) certification requirements for aircraft. The paper describes the test procedures and results, demonstrating that the integrated simulation generally meets the FAA requirements and is thus a valid testbed for evaluation of propulsion control modes.

  13. Health Parameter Estimation with Second-Order Sliding Mode Observer for a Turbofan Engine

    Directory of Open Access Journals (Sweden)

    Xiaodong Chang

    2017-07-01

    Full Text Available In this paper the problem of health parameter estimation in an aero-engine is investigated by using an unknown input observer-based methodology, implemented by a second-order sliding mode observer (SOSMO. Unlike the conventional state estimator-based schemes, such as Kalman filters (KF and sliding mode observers (SMO, the proposed scheme uses a “reconstruction signal” to estimate health parameters modeled as artificial inputs, and is not only applicable to long-time health degradation, but reacts much quicker in handling abrupt fault cases. In view of the inevitable uncertainties in engine dynamics and modeling, a weighting matrix is created to minimize such effect on estimation by using the linear matrix inequalities (LMI. A big step toward uncertainty modeling is taken compared with our previous SMO-based work, in that uncertainties are considered in a more practical form. Moreover, to avoid chattering in sliding modes, the super-twisting algorithm (STA is employed in observer design. Various simulations are carried out, based on the comparisons between the KF-based scheme, the SMO-based scheme in our earlier research, and the proposed method. The results consistently demonstrate the capabilities and advantages of the proposed approach in health parameter estimation.

  14. Extending the Operational Envelope of a Turbofan Engine Simulation into the Sub-Idle Region

    Science.gov (United States)

    Chapman, Jeffryes Walter; Hamley, Andrew J.; Guo, Ten-Huei; Litt, Jonathan S.

    2016-01-01

    In many non-linear gas turbine simulations, operation in the sub-idle region can lead to model instability. This paper lays out a method for extending the operational envelope of a map based gas turbine simulation to include the sub-idle region. This method develops a multi-simulation solution where the baseline component maps are extrapolated below the idle level and an alternate model is developed to serve as a safety net when the baseline model becomes unstable or unreliable. Sub-idle model development takes place in two distinct operational areas, windmilling/shutdown and purge/cranking/startup. These models are based on derived steady state operating points with transient values extrapolated between initial (known) and final (assumed) states. Model transitioning logic is developed to predict baseline model sub-idle instability, and transition smoothly and stably to the backup sub-idle model. Results from the simulation show a realistic approximation of sub-idle behavior as compared to generic sub-idle engine performance that allows the engine to operate continuously and stably from shutdown to full power.

  15. Turbofan engine diagnostics neuron network size optimization method which takes into account overlaerning effect

    Directory of Open Access Journals (Sweden)

    О.С. Якушенко

    2010-01-01

    Full Text Available  The article is devoted to the problem of gas turbine engine (GTE technical state class automatic recognition with operation parameters by neuron networks. The one of main problems for creation the neuron networks is determination of their optimal structures size (amount of layers in network and count of neurons in each layer.The method of neuron network size optimization intended for classification of GTE technical state is considered in the article. Optimization is cared out with taking into account of overlearning effect possibility when a learning network loses property of generalization and begins strictly describing educational data set. To determinate a moment when overlearning effect is appeared in learning neuron network the method  of three data sets is used. The method is based on the comparison of recognition quality parameters changes which were calculated during recognition of educational and control data sets. As the moment when network overlearning effect is appeared the moment when control data set recognition quality begins deteriorating but educational data set recognition quality continues still improving is used. To determinate this moment learning process periodically is terminated and simulation of network with education and control data sets is fulfilled. The optimization of two-, three- and four-layer networks is conducted and some results of optimization are shown. Also the extended educational set is created and shown. The set describes 16 GTE technical state classes and each class is represented with 200 points (200 possible technical state class realizations instead of 20 points using in the former articles. It was done to increase representativeness of data set.In the article the algorithm of optimization is considered and some results which were obtained with it are shown. The results of experiments were analyzed to determinate most optimal neuron network structure. This structure provides most high-quality GTE

  16. Development of a Twin-Spool Turbofan Engine Simulation Using the Toolbox for the Modeling and Analysis of Thermodynamic Systems (T-MATS)

    Science.gov (United States)

    Zinnecker, Alicia M.; Chapman, Jeffryes W.; Lavelle, Thomas M.; Litt, Jonathan S.

    2014-01-01

    The Toolbox for the Modeling and Analysis of Thermodynamic Systems (T-MATS) is a tool that has been developed to allow a user to build custom models of systems governed by thermodynamic principles using a template to model each basic process. Validation of this tool in an engine model application was performed through reconstruction of the Commercial Modular Aero-Propulsion System Simulation (C-MAPSS) (v2) using the building blocks from the T-MATS (v1) library. In order to match the two engine models, it was necessary to address differences in several assumptions made in the two modeling approaches. After these modifications were made, validation of the engine model continued by integrating both a steady-state and dynamic iterative solver with the engine plant and comparing results from steady-state and transient simulation of the T-MATS and C-MAPSS models. The results show that the T-MATS engine model was accurate within 3% of the C-MAPSS model, with inaccuracy attributed to the increased dimension of the iterative solver solution space required by the engine model constructed using the T-MATS library. This demonstrates that, given an understanding of the modeling assumptions made in T-MATS and a baseline model, the T-MATS tool provides a viable option for constructing a computational model of a twin-spool turbofan engine that may be used in simulation studies.

  17. Development of a Twin-spool Turbofan Engine Simulation Using the Toolbox for Modeling and Analysis of Thermodynamic Systems (T-MATS)

    Science.gov (United States)

    Zinnecker, Alicia M.; Chapman, Jeffryes W.; Lavelle, Thomas M.; Litt, Johathan S.

    2014-01-01

    The Toolbox for Modeling and Analysis of Thermodynamic Systems (T-MATS) is a tool that has been developed to allow a user to build custom models of systems governed by thermodynamic principles using a template to model each basic process. Validation of this tool in an engine model application was performed through reconstruction of the Commercial Modular Aero-Propulsion System Simulation (C-MAPSS) (v2) using the building blocks from the T-MATS (v1) library. In order to match the two engine models, it was necessary to address differences in several assumptions made in the two modeling approaches. After these modifications were made, validation of the engine model continued by integrating both a steady-state and dynamic iterative solver with the engine plant and comparing results from steady-state and transient simulation of the T-MATS and C-MAPSS models. The results show that the T-MATS engine model was accurate within 3 of the C-MAPSS model, with inaccuracy attributed to the increased dimension of the iterative solver solution space required by the engine model constructed using the T-MATS library. This demonstrates that, given an understanding of the modeling assumptions made in T-MATS and a baseline model, the T-MATS tool provides a viable option for constructing a computational model of a twin-spool turbofan engine that may be used in simulation studies.

  18. Separating Direct and Indirect Turbofan Engine Combustion Noise While Estimating Post-Combustion (Post-Flame) Residence Time Using the Correlation Function

    Science.gov (United States)

    Miles, Jeffrey Hilton

    2011-01-01

    A previous investigation on the presence of direct and indirect combustion noise for a full-scale turbofan engine using a far-field microphone at 130 is extended by also examining signals obtained at two additional downstream directions using far-field microphones at 110 deg and 160 deg. A generalized cross-correlation function technique is used to study the change in propagation time to the far field of the combined direct and indirect combustion noise signal as a sequence of low-pass filters are applied. The filtering procedure used produces no phase distortion. As the low-pass filter frequency is decreased, the travel time increases because the relative amount of direct combustion noise is reduced. The indirect combustion noise signal travels more slowly because in the combustor entropy fluctuations move with the flow velocity, which is slow compared to the local speed of sound. The indirect combustion noise signal travels at acoustic velocities after reaching the turbine and being converted into an acoustic signal. The direct combustion noise is always propagating at acoustic velocities. The results show that the estimated indirect combustion noise time delay values (post-combustion residence times) measured at each angle are fairly consistent with one another for a relevant range of operating conditions and demonstrate source separation of a mixture of direct and indirect combustion noise. The results may lead to a better idea about the acoustics in the combustor and may help develop and validate improved reduced-order physics-based methods for predicting turbofan engine core noise.

  19. Development in Geared Turbofan Aeroengine

    Science.gov (United States)

    Mohd Tobi, A. L.; Ismail, A. E.

    2016-05-01

    This paper looks into the implementation of epicyclic gear system to the aeroengine in order to increase the efficiency of the engine. The improvement made is in the direction of improving fuel consumption, reduction in pollutant gasses and perceived noise. Introduction of epicyclic gear system is capable to achieve bypass ratio of up to 15:1 with the benefits of weight and noise reduction. Radical new aircraft designs and engine installation are being studied to overcome some of the challenges associated with the future geared turbofan and open-rotor engine.

  20. Canadian Forces Experience with Turbofan HCF - Case Study

    National Research Council Canada - National Science Library

    Kinart, Corey; Theriault, Pierre

    2005-01-01

    High Cycle Fatigue (HCF) cracking of a Canadian Forces (CF) turbofan engine fuel tube resulted in a six year, multinational effort to identify the root cause and to ultimately develop and implement a solution...

  1. Ice Particle Transport Analysis With Phase Change for the E(sup 3) Turbofan Engine Using LEWICE3D Version 3.2

    Science.gov (United States)

    Bidwell, Colin, S.

    2012-01-01

    Ice Particle trajectory calculations with phase change were made for the Energy Efficient Engine (E(sup 3)) using the LEWICE3D Version 3.2 software. The particle trajectory computations were performed using the new Glenn Ice Particle Phase Change Model which has been incorporated into the LEWICE3D Version 3.2 software. The E(sup 3) was developed by NASA and GE in the early 1980 s as a technology demonstrator and is representative of a modern high bypass turbofan engine. The E(sup 3) flow field was calculated using the NASA Glenn ADPAC turbomachinery flow solver. Computations were performed for the low pressure compressor of the E(sup 3) for a Mach 0.8 cruise condition at 11,887 m assuming a standard warm day for ice particle sizes of 5, 20, and 100 microns and a free stream particle concentration of 0.3 g/cu m. The impingement efficiency results showed that as particle size increased average impingement efficiencies and scoop factors increased for the various components. The particle analysis also showed that the amount of mass entering the inner core decreased with increased particle size because the larger particles were less able to negotiate the turn into the inner core due to particle inertia. The particle phase change analysis results showed that the larger particles warmed less as they were transported through the low pressure compressor. Only the smallest 5 micron particles were warmed enough to produce melting and the amount of melting was relatively small with a maximum average melting fraction of 0.836. The results also showed an appreciable amount of particle sublimation and evaporation for the 5 micron particles entering the engine core (22 percent).

  2. Development of FJR710 turbofan engine and its operation with STOL research aircraft ASUKA''. FJR710 turbofan engine no kaihatsu to STOL jikkenki asuka ni yoru un prime yo

    Energy Technology Data Exchange (ETDEWEB)

    Nose, H; Morita, M; Sasaki, M [National Aerospace Lab., Tokyo (Japan)

    1990-07-05

    Flight experiment of ASUKA, STOL experimental m/c ended in March, 1990. In order to successively meet the future airplane development, operations have been operated to collect the technical results obtained from the development of experimental machines, flight experiment and related ground tests to form a data base. This report outlines the process of development of the FJR engines, and outlined the aerial engine test, the status of engine operation and the result of developing the reliability enhancement which has been conducted also after the end of the operations. It was demonstrated by the flight experiment of the experimental machine that such methods as the engine matching adopted in the engine mounting, nacelle design and engine mounting design were appropriate. The results of the technical development for the reliability improvement which had been in parallel were applied to the mounted engine and controlled to the safe and efficient flight experiments. 11 refs., 17 figs., 3 tabs.

  3. 76 FR 77107 - Airworthiness Directives; Pratt & Whitney Corp. (PW) JT9D-7R4H1 Turbofan Engines

    Science.gov (United States)

    2011-12-12

    .... FOR FURTHER INFORMATION CONTACT: Stephen K. Sheely, Aerospace Engineer, Engine Certification Office...; email: stephen[email protected] . SUPPLEMENTARY INFORMATION: Discussion We issued a notice of proposed... AD, remove the HPC shaft from service before exceeding 5,000 CSN. (h) Engines With an HPC Shaft, P/N...

  4. 76 FR 8620 - Airworthiness Directives; Pratt & Whitney JT8D-209, -217, -217A, -217C, and -219 Turbofan Engines

    Science.gov (United States)

    2011-02-15

    ... inspection AD 97-17-04R1, and to allow automatic eddy current inspection per engine manual Section 72-33-31.... That AD currently requires revisions to the engine manufacturer's time limits section (TLS) to include... modifies the TLS of the manufacturer's engine manual and an air carrier's approved continuous airworthiness...

  5. A new approach to the design of the large turbofan power plant

    Energy Technology Data Exchange (ETDEWEB)

    Wilde, G L [Economobile Projects Ltd., Belper (United Kingdom)

    1995-06-01

    The lower direct operating costs of the Big Twin subsonic transports encourage the building of ever larger turbofan engines installed on the wings. The steadily improving reliability of the turbofan and the good safety statistics of twin-engined aircraft over many years encourages this trend. Fuel economy is still the dominant factor in determining the design layout of turbofan engines. It requires the combination of the highest possible thermal efficiency of the gas generator core of the engine with optimum propulsion efficiency of the power plant as a whole in cruise flight, allowing for engine nacelle drag and nacelle to wing interference drag. The paper presents two possible turbofan design layouts intended to overcome the limitation of current turbofan power plant designs. The aim is to design a power plant with the highest thrust per unit frontal area combined with the highest air miles per gallon in cruise flight. (author)

  6. 76 FR 30529 - Airworthiness Directives; Rolls-Royce plc (RR) RB211-535 Series Turbofan Engines

    Science.gov (United States)

    2011-05-26

    ... Compliance One commenter, American Airlines, asked us to change the Costs of Compliance Section of the... engine shop visit.'' Request To Clarify the Compliance Time One commenter, American Airlines, asked us to... installed engines were on U.S. registered airplanes. We changed the Costs of Compliance Section from ``90...

  7. Modeling the Effects of Ice Accretion on the Low Pressure Compressor and the Overall Turbofan Engine System Performance

    Science.gov (United States)

    Veres, Joseph P.; Jorgenson, Philip C. E.; Wright, William B.

    2011-01-01

    The focus of this study is on utilizing a mean line compressor flow analysis code coupled to an engine system thermodynamic code, to estimate the effects of ice accretion on the low pressure compressor, and quantifying its effects on the engine system throughout a notional flight trajectory. In this paper a temperature range in which engine icing would occur was assumed. This provided a mechanism to locate potential component icing sites and allow the computational tools to add blockages due to ice accretion in a parametric fashion. Ultimately the location and level of blockage due to icing would be provided by an ice accretion code. To proceed, an engine system modeling code and a mean line compressor flow analysis code were utilized to calculate the flow conditions in the fan-core and low pressure compressor and to identify potential locations within the compressor where ice may accrete. In this study, an "additional blockage" due to the accretion of ice on the metal surfaces, has been added to the baseline aerodynamic blockage due to boundary layer, as well as the blade metal blockage. Once the potential locations of ice accretion are identified, the levels of additional blockage due to accretion were parametrically varied to estimate the effects on the low pressure compressor blade row performance operating within the engine system environment. This study includes detailed analysis of compressor and engine performance during cruise and descent operating conditions at several altitudes within the notional flight trajectory. The purpose of this effort is to develop the computer codes to provide a predictive capability to forecast the onset of engine icing events, such that they could ultimately help in the avoidance of these events.

  8. Noise-Source Separation Using Internal and Far-Field Sensors for a Full-Scale Turbofan Engine

    Science.gov (United States)

    Hultgren, Lennart S.; Miles, Jeffrey H.

    2009-01-01

    Noise-source separation techniques for the extraction of the sub-dominant combustion noise from the total noise signatures obtained in static-engine tests are described. Three methods are applied to data from a static, full-scale engine test. Both 1/3-octave and narrow-band results are discussed. The results are used to assess the combustion-noise prediction capability of the Aircraft Noise Prediction Program (ANOPP). A new additional phase-angle-based discriminator for the three-signal method is also introduced.

  9. A Parametric Study of Actuator Requirements for Active Turbine Tip Clearance Control of a Modern High Bypass Turbofan Engine

    Science.gov (United States)

    Kratz, Jonathan L.; Chapman, Jeffryes W.; Guo, Ten-Huei

    2017-01-01

    The efficiency of aircraft gas turbine engines is sensitive to the distance between the tips of its turbine blades and its shroud, which serves as its containment structure. Maintaining tighter clearance between these components has been shown to increase turbine efficiency, increase fuel efficiency, and reduce the turbine inlet temperature, and this correlates to a longer time-on-wing for the engine. Therefore, there is a desire to maintain a tight clearance in the turbine, which requires fast response active clearance control. Fast response active tip clearance control will require an actuator to modify the physical or effective tip clearance in the turbine. This paper evaluates the requirements of a generic active turbine tip clearance actuator for a modern commercial aircraft engine using the Commercial Modular Aero-Propulsion System Simulation 40k (C-MAPSS40k) software that has previously been integrated with a dynamic tip clearance model. A parametric study was performed in an attempt to evaluate requirements for control actuators in terms of bandwidth, rate limits, saturation limits, and deadband. Constraints on the weight of the actuation system and some considerations as to the force which the actuator must be capable of exerting and maintaining are also investigated. From the results, the relevant range of the evaluated actuator parameters can be extracted. Some additional discussion is provided on the challenges posed by the tip clearance control problem and the implications for future small core aircraft engines.

  10. 75 FR 45560 - Airworthiness Directives; Rolls-Royce plc (RR) RB211-Trent 800 Series Turbofan Engines

    Science.gov (United States)

    2010-08-03

    ...-0755; Directorate Identifier 2010-NE-12-AD] RIN 2120-AA64 Airworthiness Directives; Rolls-Royce plc (RR... based on engine thrust rating but now based on operating shaft speeds) introduced by Rolls- Royce. The...-Royce plc, P.O. Box 31, Derby, DE24 8BJ, United Kingdom: Telephone 44 (0) 1332 242424; fax 44 (0) 1332...

  11. 75 FR 15326 - Airworthiness Directives; Rolls-Royce plc RB211-Trent 500, 700, and 800 Series Turbofan Engines

    Science.gov (United States)

    2010-03-29

    ... ambient conditions, ice can accumulate on the walls of the fuel pipes within the aircraft fuel system... aircraft in combination with Rolls-Royce engines that feature similar fuel systems to the RB211-Trent 800... the aircraft fuel system, which can then be released downstream when fuel flow demand is increased...

  12. Acoustic Detection of Faults and Degradation in a High-Bypass Turbofan Engine during VIPR Phase III Testing

    Science.gov (United States)

    Boyle, Devin K.

    2017-01-01

    The Vehicle Integrated Propulsion Research (VIPR) Phase III project was executed at Edwards Air Force Base, California, by the National Aeronautics and Space Administration and several industry, academic, and government partners in the summer of 2015. One of the research objectives was to use external radial acoustic microphone arrays to detect changes in the noise characteristics produced by the research engine during volcanic ash ingestion and seeded fault insertion scenarios involving bleed air valves. Preliminary results indicate the successful acoustic detection of suspected degradation as a result of cumulative exposure to volcanic ash. This detection is shown through progressive changes, particularly in the high-frequency content, as a function of exposure to greater cumulative quantities of ash. Additionally, detection of the simulated failure of the 14th stage stability bleed valve and, to a lesser extent, the station 2.5 stability bleed valve, to their fully-open fail-safe positions was achieved by means of spectral comparisons between nominal (normal valve operation) and seeded fault scenarios.

  13. Computational Method for Ice Crystal Trajectories in a Turbofan Compressor

    NARCIS (Netherlands)

    Grift, E.J.; Norde, Ellen; van der Weide, Edwin Theodorus Antonius; Hoeijmakers, Hendrik Willem Marie

    2015-01-01

    In this study the characteristics of ice crystals on their trajectory in a single stage of a turbofan engine compressor are determined. The particle trajectories are calculated with a Lagrangian method employing a classical fourth-order Runge-Kutta time integration scheme. The air flow field is

  14. FUEL CONSUMPTION EFFECT OF COMMERCIAL TURBOFANS ON GLOBAL WARMING

    Energy Technology Data Exchange (ETDEWEB)

    Onder Turan; T. Hikmet Karakoc [School of Civil Aviation, Anadolu University, Eskisehir (Turkey)

    2008-09-30

    The main objective pursued in this study is to parametrically investigate the fuel consumption effect of commercial turbofans on global warming. In this regard, Of the important parameters, specific fuel consumption of a commercial turbofans is taken into consideration. In order to minimize the effect of fuel consumption on global warming, the values of engine design parameters are optimized for maintaining minimum specific fuel consumption of high bypass turbofan engine under different flight conditions and design criteria. The backbones of optimization approach consisted of elitism-based genetic algorithm coupled with real parametric cycle analysis of a turbofan engine. For solving optimization problem a new software program is developed in MATLAB, while objective function is determined for minimizing the specific fuel consumption by considering the following parameters such as the fan pressure ratio ({pi}{sub f}), bypass ratio ({alpha}) and the fuel heating value [h{sub PR}-(kJ/kg)]. Accordingly, it may be concluded that the software program developed can successfully solve optimization problems at 1.2{le}{pi}{sub f}{le}2, 2{le}{alpha}{le}10 and 23000{le}h{sub PR}{le}120000 with aircraft flight Mach number {le}0.8. Fuel types used in preliminary engine cycle analysis were JP-4, JP-5, JP-8 and hydrogen in this paper.

  15. Parameterization of a Conventional and Regenerated UHB Turbofan

    Science.gov (United States)

    Oliveira, Fábio; Brójo, Francisco

    2015-09-01

    The attempt to improve aircraft engines efficiency resulted in the evolution from turbojets to the first generation low bypass ratio turbofans. Today, high bypass ratio turbofans are the most traditional type of engine in commercial aviation. Following many years of technological developments and improvements, this type of engine has proved to be the most reliable facing the commercial aviation requirements. In search of more efficiency, the engine manufacturers tend to increase the bypass ratio leading to ultra-high bypass ratio (UHB) engines. Increased bypass ratio has clear benefits in terms of propulsion system like reducing the specific fuel consumption. This study is aimed at a parametric analysis of a UHB turbofan engine focused on short haul flights. Two cycle configurations (conventional and regenerated) were studied, and estimated values of their specific fuel consumption (TSFC) and specific thrust (Fs) were determined. Results demonstrate that the regenerated cycle may contribute towards a more economic and friendly aero engines in a higher range of bypass ratio.

  16. Turbofan compressor dynamics during afterburner transients

    Science.gov (United States)

    Kurkov, A. P.

    1976-01-01

    The effects of afterburner light-off and shut-down transients on the compressor stability are investigated. The reported experimental results are based on detailed high response pressure and temperature measurements on the TF30-P-3 turbofan engine. The tests were performed in an altitude test chamber simulating high altitude engine operation. It is shown that during both types of transients, flow breaks down in the forward part of the fan bypass duct. At a sufficiently low engine inlet pressure this resulted in a compressor stall. Complete flow breakdown within the compressor was preceded by a rotating stall. At some locations in the compressor, rotating stall cells initially extended only through part of the blade span. For the shutdown transient the time between first and last detected occurrence of rotating stall is related to the flow Reynolds number. An attempt was made to deduce the number and speed of propagation of rotating stall cells.

  17. A Model to Assess the Risk of Ice Accretion Due to Ice Crystal Ingestion in a Turbofan Engine and its Effects on Performance

    Science.gov (United States)

    Jorgenson, Philip C. E.; Veres, Joseph P.; Wright, William B.; Struk, Peter M.

    2013-01-01

    The occurrence of ice accretion within commercial high bypass aircraft turbine engines has been reported under certain atmospheric conditions. Engine anomalies have taken place at high altitudes that were attributed to ice crystal ingestion, partially melting, and ice accretion on the compression system components. The result was one or more of the following anomalies: degraded engine performance, engine roll back, compressor surge and stall, and flameout of the combustor. The main focus of this research is the development of a computational tool that can estimate whether there is a risk of ice accretion by tracking key parameters through the compression system blade rows at all engine operating points within the flight trajectory. The tool has an engine system thermodynamic cycle code, coupled with a compressor flow analysis code, and an ice particle melt code that has the capability of determining the rate of sublimation, melting, and evaporation through the compressor blade rows. Assumptions are made to predict the complex physics involved in engine icing. Specifically, the code does not directly estimate ice accretion and does not have models for particle breakup or erosion. Two key parameters have been suggested as conditions that must be met at the same location for ice accretion to occur: the local wet-bulb temperature to be near freezing or below and the local melt ratio must be above 10%. These parameters were deduced from analyzing laboratory icing test data and are the criteria used to predict the possibility of ice accretion within an engine including the specific blade row where it could occur. Once the possibility of accretion is determined from these parameters, the degree of blockage due to ice accretion on the local stator vane can be estimated from an empirical model of ice growth rate and time spent at that operating point in the flight trajectory. The computational tool can be used to assess specific turbine engines to their susceptibility to

  18. 75 FR 27972 - Airworthiness Directives; Pratt & Whitney JT8D-9, -9A, -11, -15, -17, and -17R Turbofan Engines

    Science.gov (United States)

    2010-05-19

    ..., MAN- JT8D-2-06 and the Engine Manual Chapter/Section 72-33-21, Inspection 00. Definitions (i) For the... the technical contents of PW JT8D Maintenance Advisory Notice MAN-JT8D-2-06, dated November 20, 2006... Advisory Notice, MAN-JT8D-2-06 and the Engine Manual Chapter/Section 72-33-21, Inspection 00. (g) For...

  19. OPTIMIZATION OF SPECIFIC FUEL CONSUMPTION OF HYDROGEN IN COMMERCIAL TURBOFANS FOR REDUCING GLOBAL WARMING EFFECTS

    Energy Technology Data Exchange (ETDEWEB)

    T. Hikmet Karakoc; Onder Turan [School of Civil Aviation, Anadolu University, Eskisehir (Turkey)

    2008-09-30

    The main objective of the present study is to perform minimizing specific fuel consumption of a non afterburning high bypass turbofan engine with separate exhaust streams and unmixed flow for reducing global effect. The values of engine design parameters are optimized for maintaining minimum specific fuel consumption of high bypass turbofan engine under different flight conditions, different fuel types and design criteria. The backbones of optimization approach consisted of elitism-based genetic algorithm coupled with real parametric cycle analysis of a turbofan engine. For solving optimization problem a new software program is developed in MATLAB programming language, while objective function is determined for minimizing the specific fuel consumption. The input variables included the compressor pressure ratio ({pi}{sub c}), bypass ratio ({alpha}) and the fuel heating value [h{sub PR}-(kJ/kg)]. Hydrogen was selected as fuel type in real parametric cycle analysis of commercial turbofans. It may be concluded that the software program developed can successfully solve optimization problems at 10{le}{pi}{sub c}{le}20, 2{le}{alpha}{le}10 and h{sub PR} 120,000 with aircraft flight Mach number {le}0.8.

  20. A study to estimate and compare the total particulate matter emission indices (EIN) between traditional jet fuel and two blends of Jet A/Camelina biofuel used in a high by-pass turbofan engine: A case study of Honeywell TFE-109 engine

    Science.gov (United States)

    Shila, Jacob Joshua Howard

    and JT15D engines' families as representatives of other engines with rated thrust of 6000 pounds or below. The results of this study may be used to add to the knowledge of PM emission data that has been collected in other research studies. This study was quantitative in nature. Three factors were designated which were the types of fuels studied. The TFE-109 turbofan engine was the experimental subject. The independent variable was the engine thrust setting while the response variable was the emission index. Four engine runs were conducted for each fuel. In each engine run, four engine thrust settings were observed. The four engine thrust levels were 10%, 30%, 85%, and 100% rated thrusts levels. Therefore, for each engine thrust settings, there four replicates. The experiments were conducted using a TFE-109 engine test cell located in the Niswonger Aviation Technology building at the Purdue University Airport. The testing facility has the capability to conduct the aircraft PM emissions tests. Due to the equipment limitations, the study was limited to observe total PM emissions instead of specifically measuring the non-volatile PM emissions. The results indicate that the emissions indices of the blended biofuels were not statistically significantly lower compared to the emissions of the traditional jet fuel at rated thrust levels of 100% and 85% of TFE-109 turbofan engine. However, the emission indices for the 50%Jet A - 50%Camelina biofuel blend were statistically significantly lower compared to the emission indices of the 100% Jet A fuel at 10% and 30% engine rated thrusts levels of TFE-109 engine. The emission indices of the 50%-50% biofuel blend were lower by reductions of 15% and 17% at engine rated thrusts of 10% and 30% respectively compared to the emissions indices of the traditional jet fuel at the same engine thrust levels. Experimental modifications in future studies may provide estimates of the emissions indices range for this particular engine these

  1. Quiet engine program flight engine design study

    Science.gov (United States)

    Klapproth, J. F.; Neitzel, R. E.; Seeley, C. T.

    1974-01-01

    The results are presented of a preliminary flight engine design study based on the Quiet Engine Program high-bypass, low-noise turbofan engines. Engine configurations, weight, noise characteristics, and performance over a range of flight conditions typical of a subsonic transport aircraft were considered. High and low tip speed engines in various acoustically treated nacelle configurations were included.

  2. Turbofan Noise Studied in Unique Model Research Program in NASA Glenn's 9- by 15-Foot Low-Speed Wind Tunnel

    Science.gov (United States)

    Hughes, Christopher E.

    2001-01-01

    A comprehensive aeroacoustic research program called the Source Diagnostic Test was recently concluded in NASA Glenn Research Center's 9- by 15-Foot Low Speed Wind Tunnel. The testing involved representatives from Glenn, NASA Langley Research Center, GE Aircraft Engines, and the Boeing Company. The technical objectives of this research were to identify the different source mechanisms of noise in a modern, high-bypass turbofan aircraft engine through scale-model testing and to make detailed acoustic and aerodynamic measurements to more fully understand the physics of how turbofan noise is generated.

  3. Turbofan engine degradation simulation data set

    Data.gov (United States)

    National Aeronautics and Space Administration — PHM08 Challenge Dataset is now publicly available at the NASA Prognostics Respository + Download An online evaluation utility is also provided to let users evaluate...

  4. Analysis of Turbofan Design Options for an Advanced Single-Aisle Transport Aircraft

    Science.gov (United States)

    Guynn, Mark D.; Berton, Jeffrey J.; Fisher, Kenneth L.; Haller, William J.; Tong, Michael T.; Thurman, Douglas R.

    2009-01-01

    The desire for higher engine efficiency has resulted in the evolution of aircraft gas turbine engines from turbojets, to low bypass ratio, first generation turbofans, to today's high bypass ratio turbofans. It is possible that future designs will continue this trend, leading to very-high or ultra-high bypass ratio (UHB) engines. Although increased bypass ratio has clear benefits in terms of propulsion system metrics such as specific fuel consumption, these benefits may not translate into aircraft system level benefits due to integration penalties. In this study, the design trade space for advanced turbofan engines applied to a single-aisle transport (737/A320 class aircraft) is explored. The benefits of increased bypass ratio and associated enabling technologies such as geared fan drive are found to depend on the primary metrics of interest. For example, bypass ratios at which fuel consumption is minimized may not require geared fan technology. However, geared fan drive does enable higher bypass ratio designs which result in lower noise. Regardless of the engine architecture chosen, the results of this study indicate the potential for the advanced aircraft to realize substantial improvements in fuel efficiency, emissions, and noise compared to the current vehicles in this size class.

  5. Nonlinearly stacked low noise turbofan stator

    Science.gov (United States)

    Schuster, William B. (Inventor); Nolcheff, Nick A. (Inventor); Gunaraj, John A. (Inventor); Kontos, Karen B. (Inventor); Weir, Donald S. (Inventor)

    2009-01-01

    A nonlinearly stacked low noise turbofan stator vane having a characteristic curve that is characterized by a nonlinear sweep and a nonlinear lean is provided. The stator is in an axial fan or compressor turbomachinery stage that is comprised of a collection of vanes whose highly three-dimensional shape is selected to reduce rotor-stator and rotor-strut interaction noise while maintaining the aerodynamic and mechanical performance of the vane. The nonlinearly stacked low noise turbofan stator vane reduces noise associated with the fan stage of turbomachinery to improve environmental compatibility.

  6. Thermal state of a turbofan rotor

    Energy Technology Data Exchange (ETDEWEB)

    Bileka, B D; Diachenko, A M; Orinichev, I S

    1988-01-01

    Results of an experimental study of the thermal state of a combined turbofan rotor consisting of a peripheral turbine stage and a central fan stage are reported. In particular, attention is given to the effect of gas temperature, air flow rate, and rotation speed on temperature distributions at characteristic points of the rotor. The relative dimensionless temperatures of the turbofan rotor are shown to be constant under all the regimes investigated. An approximate method is proposed for calculating the temperature of the rotor elements, and the results of calculations are compared with experimental data.

  7. Acoustic control study of turbofan nozzles with triangular chevrons

    Directory of Open Access Journals (Sweden)

    Grigore CICAN

    2014-03-01

    Full Text Available This paper has a small part dealing with the notion of chevron and the process that helps reducing the noise pollution. Based on the gas dynamics and the geometrical parameters of the turbofan jet engine a model of CFD data processing is created. In this process the influence of chevrons on acoustic wave intensity produced by the jet is observed by analyzing this process. A series of tests have been made on 10 si 20 lobed chevrons. The combination between them and the 7 resulting cases have been studied, namely the triangular chevrons in order to settle the influence of the geometrical parameters on the flow and on the jet acoustics. Finally the contribution of the chevrons in noise pollution reduction has been highlighted.

  8. Výhody a nevýhody motoru koncepce "Geared Turbofan"

    OpenAIRE

    Marko, Libor

    2012-01-01

    Práca popisuje historický vývoj turbodúchadlových motorov, ktorý súvisí zo zvyšovaním hodnoty obtokového pomeru. Obsahuje základné charakteristiky turbodúchadlových motorov a princíp práce komponentov motora. Súčasťou práce je popis výhod a nevýhod motora koncepcie Geared Turbofan v porovnaní s konvenčnými turbodúchadlovými motormi rovnakej triedy ťahu. The thesis describes the historical development of turbofan engines, which relates to the increase in amount of bypass ratio. It contains ...

  9. Preliminary study of advanced turbofans for low energy consumption

    Science.gov (United States)

    Knip, G.

    1975-01-01

    This analysis determines the effect of higher overall engine pressure ratios (OPR's), bypass ratios (BPR's), and turbine rotor-inlet temperature on a Mach-0.85 transport having a range of 5556 km (3000 nmi) and carrying a payload of 18144 kg (40,000 lbs-200 passengers). Sideline noises (jet plus fan) of between 91 and 106 EPNdB (FAR36) are considered. Takeoff gross weight (TOGW), fuel consumption (kg/pass. km) and direct operating cost (DOC) are used at the figures of merit. Based on predicted 1985 levels of engine technology and a noise goal of 96 EPNdB, the higher-OPR engine results in an airplane that is 18 percent lighter in terms of TOGW, uses 22.3 percent less fuel, and has a 14.7 percent lower DOC than a comparable airplane powered by a current turbofan. Cooling the compressor bleed air and lowering the cruise Mach number appear attractive in terms of further improving the figures of merit.

  10. Multi-Objective Optimization of a Turbofan for an Advanced, Single-Aisle Transport

    Science.gov (United States)

    Berton, Jeffrey J.; Guynn, Mark D.

    2012-01-01

    Considerable interest surrounds the design of the next generation of single-aisle commercial transports in the Boeing 737 and Airbus A320 class. Aircraft designers will depend on advanced, next-generation turbofan engines to power these airplanes. The focus of this study is to apply single- and multi-objective optimization algorithms to the conceptual design of ultrahigh bypass turbofan engines for this class of aircraft, using NASA s Subsonic Fixed Wing Project metrics as multidisciplinary objectives for optimization. The independent design variables investigated include three continuous variables: sea level static thrust, wing reference area, and aerodynamic design point fan pressure ratio, and four discrete variables: overall pressure ratio, fan drive system architecture (i.e., direct- or gear-driven), bypass nozzle architecture (i.e., fixed- or variable geometry), and the high- and low-pressure compressor work split. Ramp weight, fuel burn, noise, and emissions are the parameters treated as dependent objective functions. These optimized solutions provide insight to the ultrahigh bypass engine design process and provide information to NASA program management to help guide its technology development efforts.

  11. Deployable Engine Air Brake

    Science.gov (United States)

    2014-01-01

    On approach, next-generation aircraft are likely to have airframe noise levels that are comparable to or in excess of engine noise. ATA Engineering, Inc. (ATA) is developing a novel quiet engine air brake (EAB), a device that generates "equivalent drag" within the engine through stream thrust reduction by creating a swirling outflow in the turbofan exhaust nozzle. Two Phase II projects were conducted to mature this technology: (1) a concept development program (CDP) and (2) a system development program (SDP).

  12. Rate-Based Model Predictive Control of Turbofan Engine Clearance

    Science.gov (United States)

    DeCastro, Jonathan A.

    2006-01-01

    An innovative model predictive control strategy is developed for control of nonlinear aircraft propulsion systems and sub-systems. At the heart of the controller is a rate-based linear parameter-varying model that propagates the state derivatives across the prediction horizon, extending prediction fidelity to transient regimes where conventional models begin to lose validity. The new control law is applied to a demanding active clearance control application, where the objectives are to tightly regulate blade tip clearances and also anticipate and avoid detrimental blade-shroud rub occurrences by optimally maintaining a predefined minimum clearance. Simulation results verify that the rate-based controller is capable of satisfying the objectives during realistic flight scenarios where both a conventional Jacobian-based model predictive control law and an unconstrained linear-quadratic optimal controller are incapable of doing so. The controller is evaluated using a variety of different actuators, illustrating the efficacy and versatility of the control approach. It is concluded that the new strategy has promise for this and other nonlinear aerospace applications that place high importance on the attainment of control objectives during transient regimes.

  13. The Fisher Information Matrix as a Relevant Tool for Sensor Selection in Engine Health Monitoring

    Directory of Open Access Journals (Sweden)

    S. Borguet

    2008-01-01

    the essential elements of the sensor selection problem is defined from the Fisher information matrix. An example application consisting in a commercial turbofan engine illustrates the enhancement that can be expected from a wise selection of the sensor set.

  14. Refined Exploration of Turbofan Design Options for an Advanced Single-Aisle Transport

    Science.gov (United States)

    Guynn, Mark D.; Berton, Jeffrey J.; Fisher, Kenneth L.; Haller, William J.; Tong, Michael T.; Thurman, Douglas R.

    2011-01-01

    A comprehensive exploration of the turbofan engine design space for an advanced technology single-aisle transport (737/A320 class aircraft) was conducted previously by the authors and is documented in a prior report. Through the course of that study and in a subsequent evaluation of the approach and results, a number of enhancements to the engine design ground rules and assumptions were identified. A follow-on effort was initiated to investigate the impacts of these changes on the original study results. The fundamental conclusions of the prior study were found to still be valid with the revised engine designs. The most significant impact of the design changes was a reduction in the aircraft weight and block fuel penalties incurred with low fan pressure ratio, ultra-high bypass ratio designs. This enables lower noise levels to be pursued (through lower fan pressure ratio) with minor negative impacts on aircraft weight and fuel efficiency. Regardless of the engine design selected, the results of this study indicate the potential for the advanced aircraft to realize substantial improvements in fuel efficiency, emissions, and noise compared to the current vehicles in this size class.

  15. The Effect of Bypass Nozzle Exit Area on Fan Aerodynamic Performance and Noise in a Model Turbofan Simulator

    Science.gov (United States)

    Hughes, Christopher E.; Podboy, Gary, G.; Woodward, Richard P.; Jeracki, Robert, J.

    2013-01-01

    The design of effective new technologies to reduce aircraft propulsion noise is dependent on identifying and understanding the noise sources and noise generation mechanisms in the modern turbofan engine, as well as determining their contribution to the overall aircraft noise signature. Therefore, a comprehensive aeroacoustic wind tunnel test program was conducted called the Fan Broadband Source Diagnostic Test as part of the NASA Quiet Aircraft Technology program. The test was performed in the anechoic NASA Glenn 9- by 15-Foot Low Speed Wind Tunnel using a 1/5 scale model turbofan simulator which represented a current generation, medium pressure ratio, high bypass turbofan aircraft engine. The investigation focused on simulating in model scale only the bypass section of the turbofan engine. The test objectives were to: identify the noise sources within the model and determine their noise level; investigate several component design technologies by determining their impact on the aerodynamic and acoustic performance of the fan stage; and conduct detailed flow diagnostics within the fan flow field to characterize the physics of the noise generation mechanisms in a turbofan model. This report discusses results obtained for one aspect of the Source Diagnostic Test that investigated the effect of the bypass or fan nozzle exit area on the bypass stage aerodynamic performance, specifically the fan and outlet guide vanes or stators, as well as the farfield acoustic noise level. The aerodynamic performance, farfield acoustics, and Laser Doppler Velocimeter flow diagnostic results are presented for the fan and four different fixed-area bypass nozzle configurations. The nozzles simulated fixed engine operating lines and encompassed the fan stage operating envelope from near stall to cruise. One nozzle was selected as a baseline reference, representing the nozzle area which would achieve the design point operating conditions and fan stage performance. The total area change from

  16. Trend of supersonic aircraft engine. Choonsokukiyo engine no doko

    Energy Technology Data Exchange (ETDEWEB)

    Yashima, S [Ishikawajima-Harima Heavy Industries, Co. Ltd., Tokyo (Japan)

    1994-05-01

    The present paper explained the R and D trend of supersonic aircraft engine in Europe, USA and Japan. Taking the high speed flight resistance into consideration, the engine must be characterized by its high exhaust gas speed and high specific thrust (ratio of thrust to the airflow rate) to secure strong thrust by a low airflow rate. Therefore, the turbojet is appropriate. However to reduce the fuel consumption during the cruising flight, the turbofan is normally used with a low by-pass ratio of 0.2 to 0.9. The thrust-to-weight ratio (thrust per unit weight) of low by-pass ratio turbofan engine equipped with afterburner is 7 to 8 in case of stronger thrust than 70kN. Its target value of development is 10. The specific thrust which is a performance parameter of engine exceeds 120s for the fighter engine and is about 30s for the passenger plane engine. The turbine inlet temperature is 2073K at the stage of element research. The overall pressure ratio ranges from 25 to 30. The reheating turbofan engine experimentally built for the research in Japan is 34kN in thrust and 7 in thrust-to-weight ratio. 8 refs., 9 figs.

  17. Engineering excellence at Rolls-Royce; a taste of English culture

    NARCIS (Netherlands)

    Schnelders, J.

    2013-01-01

    Rolls-Royce is one of the most well-known brands in the world and synonymous with the highest engineering quality. Amongst Aerospace Engineers, Rolls-Royce is directly associated with the Trent turbofan aircraft engines. The engines power the world’s newest passenger aircraft, including the Boeing

  18. UV Absorption Measurements of Nitric Oxide Compared to Probe Sampling Data for Measurements in a Turbine Engine Exhaust at Simulated Altitude Conditions

    National Research Council Canada - National Science Library

    Howard, R

    1997-01-01

    Nitric oxide measurements were conducted in the exhaust of a turbofan engine at simulated altitude conditions in a ground-level test cell using both optical nonintrusive and conventional gas sampling techniques...

  19. Study of quiet turbofan STOL aircraft for short haul transportation

    Science.gov (United States)

    Higgins, T. P.; Stout, E. G.; Sweet, H. S.

    1973-01-01

    Conceptual designs of Quiet Turbofan STOL Short-Haul Transport Aircraft for the mid-1980 time period are developed and analyzed to determine their technical, operational, and economic feasibility. A matrix of aircraft using various high-lift systems and design parameters are considered. Variations in aircraft characteristics, airport geometry and location, and operational techniques are analyzed systematically to determine their effects on the market, operating economics, and community acceptance. In these studies, the total systems approach is considered to be critically important in analyzing the potential of STOL aircraft to reduce noise pollution and alleviate the increasing air corridor and airport congestion.

  20. Performance assessment of a multi-fuel hybrid engine for future aircraft

    NARCIS (Netherlands)

    Yin, F.; Gangoli Rao, A.; Bhat, Abhishek; Chen, Min

    2018-01-01

    This paper presents the performance assessment of a novel turbofan engine using two energy sources: Liquid Natural Gas (LNG) and kerosene, called Multi-Fuel Hybrid Engine (MFHE). The MFHE is a new engine concept consisting of several novel features, such as a contra-rotating fan to sustain

  1. Pollution reduction technology program for small jet aircraft engines: Class T1

    Science.gov (United States)

    Bruce, T. W.; Davis, F. G.; Mongia, H. C.

    1977-01-01

    Small jet aircraft engines (EPA class T1, turbojet and turbofan engines of less than 35.6 kN thrust) were evaluated with the objective of attaining emissions reduction consistent with performance constraints. Configurations employing the technological advances were screened and developed through full scale rig testing. The most promising approaches in full-scale engine testing were evaluated.

  2. Acoustic Performance of an Advanced Model Turbofan in Three Aeroacoustic Test Facilities

    Science.gov (United States)

    Woodward, Richard P.; Hughes, Christopher E.

    2012-01-01

    A model advanced turbofan was acoustically tested in the NASA Glenn 9- by 15-Foot-Low-Speed Wind Tunnel (LSWT), and in two other aeroacoustic facilities. The Universal Propulsion Simulator (UPS) fan was designed and manufactured by the General Electric Aircraft Engines (GEAE) Company, and featured active core, as well as bypass, flow paths. The reference test configurations were with the metal, M4, rotor with hardwall and treated bypass flow ducts. The UPS fan was tested within an airflow at a Mach number of 0.20 (limited flow data were also acquired at a Mach number of 0.25) which is representative of aircraft takeoff and approach conditions. Comparisons were made between data acquired within the airflow (9x15 LSWT and German-Dutch Wind Tunnel (DNW)) and outside of a free jet (Boeing Low Speed Aero acoustic Facility (LSAF) and DNW). Sideline data were acquired on an 89-in. (nominal 4 fan diameters) sideline using the same microphone assembly and holder in the 9x15 LSWT and DNW facilities. These data showed good agreement for similar UPS operating conditions and configurations. Distortion of fan spectra tonal content through a free jet shear layer was documented, suggesting that in-flow acoustic measurements are required for comprehensive fan noise diagnostics. However, there was good agreement for overall sound power level (PWL) fan noise measurements made both within and outside of the test facility airflow.

  3. Dispersion, dissipation and refraction of shock waves in acoustically treated turbofan inlets

    Science.gov (United States)

    Prasad, Dilip; Li, Ding; A. Topol, David

    2015-09-01

    This paper describes a numerical investigation of the effects of the inlet duct liner on the acoustics of a high-bypass ratio turbofan rotor operating at supersonic tip relative flow conditions. The near field of the blade row is then composed of periodic shocks that evolve spatially both because of the varying mean flow and because of the presence of acoustic treatment. The evolution of this shock system is studied using a Computational Fluid Dynamics-based method incorporating a wall impedance boundary condition. The configuration examined is representative of a fan operating near the takeoff condition. The behavior of the acoustic power and the associated waveforms reveal that significant dispersion occurs to the extent that there are no shocks in the perturbation field leaving the entrance plane of the duct. The effect of wave refraction due to the high degree of shear in the mean flow near the entrance plane of the inlet is examined, and numerical experiments are conducted to show that the incorporation of liners in this region can be highly beneficial. The implications of these results for the design of aircraft engine acoustic liners are discussed.

  4. Simulation and material testing of jet engines

    International Nuclear Information System (INIS)

    Tariq, M.M.

    2006-01-01

    The NASA software engine simulator version U 1.7a beta has been used for simulation and material testing of jet engines. Specifications of Modem Jet Engines are stated, and then engine simulator is applied on these specifications. This simulator can simulate turbojet, afterburner, turbofan and ram jet. The material of many components of engine may be varied. Conventional and advanced materials for jet engines can be simulated and tested. These materials can be actively cooled to increase the operating temperature limit. As soon as temperature of any engine component exceeds the temperature limit of material, a warning message flashes across screen. Temperature Limits Exceeded. This flashing message remainst here until necessaryc hangesa re carried out in engine operationp rocedure. Selection Criteria of Engines is stated for piston prop, turboprop, turbofan, turbojet, and turbojet with afterburner and Ramjet. Several standard engines are modeled in Engine Simulator. These engines can. be compared by several engineering specifications. The design, modeling, simulation and testing of engines helps to better understand different types of materials used in jet engines. (author)

  5. Trends in aircraft engines. Trends in aircraft gas turbines and subsonic engines

    Energy Technology Data Exchange (ETDEWEB)

    Murashima, Kanji

    1988-06-10

    While the emphasis of commercial, large aircraft engines is placed on low fuel consumption at high subsonic flight and the turbofan engines with high bypass ratio are dominating, high speed turboprop (ATP) of Mach 0.85 class with low fuel consumption are emerging. UHB with bypass ratio of 15 - 20 are planned with expection for application to intermediate size commercial planes. The pressure ratio is continuously rizing for improved cycle efficiency, reaching 35 - 40 in highest cases. Trends in design technique include: Use of computational aerodynamics and application of two-dimensional structural analysis and the digital simulation of engine characteristics. In the field of large, high bypass turbofan, serious competition is seen between GE and PNA at the thrust level of 5 - 60,000 pounds. Several engines for fighting planes have been approved in the type test and accepted as candidates for next generation of fighting planes including Japan. (15 figs, 36 refs)

  6. Mode-matching strategies in slowly varying engine ducts

    NARCIS (Netherlands)

    Ovenden, N.C.; Rienstra, S.W.

    2004-01-01

    A matching method is proposed to connect the computational fluid dynamics (CFD) source region to the computational aeroacoustics propagation region of rotor–stator interaction sound produced in a turbofan engine. The method is based on a modal decomposition across three neighbouring axial interfaces

  7. Mode-matching strategies in slowly varying engine ducts

    NARCIS (Netherlands)

    Ovenden, N.C.; Rienstra, S.W.

    2003-01-01

    A matching method is proposed to connect the CFD source region to the CAA propagation region of rotorstator interaction sound produced in a turbofan engine. The method is based on a modal decomposition across three neighbouring axial interfaces adjacent to the matching interface. The modal

  8. Study on afterburner of aircraft engine

    Energy Technology Data Exchange (ETDEWEB)

    Kashiwagi, T [Ishikawajima-Harima Heavy Industries Co. Ltd., Tokyo (Japan)

    1991-07-01

    Study on the afterburner for aircraft engines was reported which is used as an optimum means to produce the supersonic capability of military aircrafts. The basic principle and types of the afterburner were outlined, and as the major problem concerning turbofan afterburners, a combustion capacity at low temperature in fan air flow was discussed, in particular, flame stabilization and combustion efficiency. Basic studies were conducted by fuel spray test, combustion stability test, sector model combustion test and numerical analysis of afterburner internal flow. As a result, a mixing spray fuel injection system with injection of a small amount of fuel into flameholder wake resulted in broadening of a combustible region, and an original flameholder combined with a scoop and double gutters caused a high combustion efficiency. The prototype afterburner was developed for F3 turbofan engines in association with Japan Defence Agency, and a combustion efficiency of 74% was obtained in on-engine running test. 4 refs., 14 figs.

  9. 77 FR 30371 - Airworthiness Directives; International Aero Engines AG Turbofan Engines

    Science.gov (United States)

    2012-05-23

    .... Request To Allow Special Flight Permits United Airlines and TAM Airlines requested that we allow Special... change the AD. Request To Delay USI Start Time and Repeat Inspection Time TAM Airlines requested that we....C. 106(g), 40113, 44701. Sec. 39.13 [Amended] 0 2. The FAA amends Sec. 39.13 by removing...

  10. Turbofan Volume Dynamics Model for Investigations of Aero-Propulso-Servo-Elastic Effects in a Supersonic Commercial Transport

    Science.gov (United States)

    Connolly, Joseph W.; Kopasakis, George; Lemon, Kimberly A.

    2010-01-01

    A turbofan simulation has been developed for use in aero-propulso-servo-elastic coupling studies, on supersonic vehicles. A one-dimensional lumped volume approach is used whereby each component (fan, high-pressure compressor, combustor, etc.) is represented as a single volume using characteristic performance maps and conservation equations for continuity, momentum and energy. The simulation is developed in the MATLAB/SIMULINK (The MathWorks, Inc.) environment in order to facilitate controls development, and ease of integration with a future aero-servo-elastic vehicle model being developed at NASA Langley. The complete simulation demonstrated steady state results that closely match a proposed engine suitable for a supersonic business jet at the cruise condition. Preliminary investigation of the transient simulation revealed expected trends for fuel flow disturbances as well as upstream pressure disturbances. A framework for system identification enables development of linear models for controller design. Utilizing this framework, a transfer function modeling an upstream pressure disturbance s impacts on the engine speed is developed as an illustrative case of the system identification. This work will eventually enable an overall vehicle aero-propulso-servo-elastic model

  11. Hybrid Wing Body Shielding Studies Using an Ultrasonic Configurable Fan Artificial Noise Source Generating Typical Turbofan Modes

    Science.gov (United States)

    Sutliff, Daniel L.; Brown, Cliff; Walker, Bruce E.

    2014-01-01

    An Ultrasonic Configurable Fan Artificial Noise Source (UCFANS) was designed, built, and tested in support of the NASA Langley Research Center's 14x22 wind tunnel test of the Hybrid Wing Body (HWB) full 3-D 5.8% scale model. The UCFANS is a 5.8% rapid prototype scale model of a high-bypass turbofan engine that can generate the tonal signature of proposed engines using artificial sources (no flow). The purpose of the test was to provide an estimate of the acoustic shielding benefits possible from mounting the engine on the upper surface of an HWB aircraft using the projected signature of the engine currently proposed for the HWB. The modal structures at the rating points were generated from inlet and exhaust nacelle configurations - a flat plate model was used as the shielding surface and vertical control surfaces with correct plan form shapes were also tested to determine their additional impact on shielding. Radiated acoustic data were acquired from a traversing linear array of 13 microphones, spanning 36 inches. Two planes perpendicular, and two planes parallel, to the axis of the nacelle were acquired from the array sweep. In each plane the linear array traversed 4 sweeps, for a total span of 168 inches acquired. The resolution of the sweep is variable, so that points closer to the model are taken at a higher resolution. Contour plots of Sound Pressure Levels, and integrated Power Levels, from nacelle alone and shielded configurations are presented in this paper; as well as the in-duct mode power levels.

  12. Hybrid Wing Body Shielding Studies Using an Ultrasonic Configurable Fan Artificial Noise Source Generating Typical Turbofan Modes

    Science.gov (United States)

    Sutliff, Daniel l.; Brown, Clifford A.; Walker, Bruce E.

    2014-01-01

    An Ultrasonic Configurable Fan Artificial Noise Source (UCFANS) was designed, built, and tested in support of the NASA Langley Research Center's 14- by 22-ft wind tunnel test of the Hybrid Wing Body (HWB) full 3-D 5.8 percent scale model. The UCFANS is a 5.8 percent rapid prototype scale model of a high-bypass turbofan engine that can generate the tonal signature of proposed engines using artificial sources (no flow). The purpose of the test was to provide an estimate of the acoustic shielding benefits possible from mounting the engine on the upper surface of an HWB aircraft using the projected signature of the engine currently proposed for the HWB. The modal structures at the rating points were generated from inlet and exhaust nacelle configurations--a flat plate model was used as the shielding surface and vertical control surfaces with correct plan form shapes were also tested to determine their additional impact on shielding. Radiated acoustic data were acquired from a traversing linear array of 13 microphones, spanning 36 in. Two planes perpendicular, and two planes parallel, to the axis of the nacelle were acquired from the array sweep. In each plane the linear array traversed four sweeps, for a total span of 168 in. acquired. The resolution of the sweep is variable, so that points closer to the model are taken at a higher resolution. Contour plots of Sound Pressure Levels, and integrated Power Levels, from nacelle alone and shielded configurations are presented in this paper; as well as the in-duct mode power levels

  13. Aircraft engines. IV

    Energy Technology Data Exchange (ETDEWEB)

    Ruffles, P C

    1989-01-01

    Configurational design and thermodynamic performance gain trends are projected into the next 50 years, in view of the growing interest of aircraft manufacturers in both larger and more efficient high-bypass turbofan engines for subsonic flight and variable cycle engines for supersonic flight. Ceramic- and metal-matrix composites are envisioned as the key to achievement of turbine inlet temperatures 300 C higher than the 1400 C which is characteristic of the state-of-the-art, with the requisite high stiffness, strength, and low density. Such fiber-reinforced materials can be readily tailored to furnish greatest strength in a specific direction of loading. Large, low-density engines are critical elements of future 1000-seat aircraft.

  14. Identification of secondary aerosol precursors emitted by an aircraft turbofan

    Science.gov (United States)

    Kılıç, Doğuşhan; El Haddad, Imad; Brem, Benjamin T.; Bruns, Emily; Bozetti, Carlo; Corbin, Joel; Durdina, Lukas; Huang, Ru-Jin; Jiang, Jianhui; Klein, Felix; Lavi, Avi; Pieber, Simone M.; Rindlisbacher, Theo; Rudich, Yinon; Slowik, Jay G.; Wang, Jing; Baltensperger, Urs; Prévôt, Andre S. H.

    2018-05-01

    Oxidative processing of aircraft turbine-engine exhausts was studied using a potential aerosol mass (PAM) chamber at different engine loads corresponding to typical flight operations. Measurements were conducted at an engine test cell. Organic gases (OGs) and particle emissions pre- and post-PAM were measured. A suite of instruments, including a proton-transfer-reaction mass spectrometer (PTR-MS) for OGs, a multigas analyzer for CO, CO2, NOx, and an aerosol mass spectrometer (AMS) for nonrefractory particulate matter (NR-PM1) were used. Total aerosol mass was dominated by secondary aerosol formation, which was approximately 2 orders of magnitude higher than the primary aerosol. The chemical composition of both gaseous and particle emissions were also monitored at different engine loads and were thrust-dependent. At idling load (thrust 2.5-7 %), more than 90 % of the secondary particle mass was organic and could mostly be explained by the oxidation of gaseous aromatic species, e.g., benzene; toluene; xylenes; tri-, tetra-, and pentamethyl-benzene; and naphthalene. The oxygenated-aromatics, e.g., phenol, furans, were also included in this aromatic fraction and their oxidation could alone explain up to 25 % of the secondary organic particle mass at idling loads. The organic fraction decreased with thrust level, while the inorganic fraction increased. At an approximated cruise load sulfates comprised 85 % of the total secondary particle mass.

  15. Identification of secondary aerosol precursors emitted by an aircraft turbofan

    Directory of Open Access Journals (Sweden)

    D. Kılıç

    2018-05-01

    Full Text Available Oxidative processing of aircraft turbine-engine exhausts was studied using a potential aerosol mass (PAM chamber at different engine loads corresponding to typical flight operations. Measurements were conducted at an engine test cell. Organic gases (OGs and particle emissions pre- and post-PAM were measured. A suite of instruments, including a proton-transfer-reaction mass spectrometer (PTR-MS for OGs, a multigas analyzer for CO, CO2, NOx, and an aerosol mass spectrometer (AMS for nonrefractory particulate matter (NR-PM1 were used. Total aerosol mass was dominated by secondary aerosol formation, which was approximately 2 orders of magnitude higher than the primary aerosol. The chemical composition of both gaseous and particle emissions were also monitored at different engine loads and were thrust-dependent. At idling load (thrust 2.5–7 %, more than 90 % of the secondary particle mass was organic and could mostly be explained by the oxidation of gaseous aromatic species, e.g., benzene; toluene; xylenes; tri-, tetra-, and pentamethyl-benzene; and naphthalene. The oxygenated-aromatics, e.g., phenol, furans, were also included in this aromatic fraction and their oxidation could alone explain up to 25 % of the secondary organic particle mass at idling loads. The organic fraction decreased with thrust level, while the inorganic fraction increased. At an approximated cruise load sulfates comprised 85 % of the total secondary particle mass.

  16. Testing and Performance Verification of a High Bypass Ratio Turbofan Rotor in an Internal Flow Component Test Facility

    Science.gov (United States)

    VanZante, Dale E.; Podboy, Gary G.; Miller, Christopher J.; Thorp, Scott A.

    2009-01-01

    A 1/5 scale model rotor representative of a current technology, high bypass ratio, turbofan engine was installed and tested in the W8 single-stage, high-speed, compressor test facility at NASA Glenn Research Center (GRC). The same fan rotor was tested previously in the GRC 9x15 Low Speed Wind Tunnel as a fan module consisting of the rotor and outlet guide vanes mounted in a flight-like nacelle. The W8 test verified that the aerodynamic performance and detailed flow field of the rotor as installed in W8 were representative of the wind tunnel fan module installation. Modifications to W8 were necessary to ensure that this internal flow facility would have a flow field at the test package that is representative of flow conditions in the wind tunnel installation. Inlet flow conditioning was designed and installed in W8 to lower the fan face turbulence intensity to less than 1.0 percent in order to better match the wind tunnel operating environment. Also, inlet bleed was added to thin the casing boundary layer to be more representative of a flight nacelle boundary layer. On the 100 percent speed operating line the fan pressure rise and mass flow rate agreed with the wind tunnel data to within 1 percent. Detailed hot film surveys of the inlet flow, inlet boundary layer and fan exit flow were compared to results from the wind tunnel. The effect of inlet casing boundary layer thickness on fan performance was quantified. Challenges and lessons learned from testing this high flow, low static pressure rise fan in an internal flow facility are discussed.

  17. 77 FR 56756 - Airworthiness Directives; Rolls-Royce Deutschland Ltd & Co KG Turbofan Engines

    Science.gov (United States)

    2012-09-14

    ... booster rotors and rework or replacement of them as terminating action to the repetitive inspections. We... persons on the ground. To address this condition, RRD has developed an inspection program and a rework for... and if any crack is found, replacement with a serviceable part. This AD also requires rework of all...

  18. 75 FR 71351 - Airworthiness Directives; Pratt & Whitney PW4000 Series Turbofan Engines

    Science.gov (United States)

    2010-11-23

    ... removals, and one report of a test cell event from a repaired tube that cracked. We are issuing this AD to... regulatory evaluation, any comments received, and other information. The address for the Docket Office (phone..., considered the comments received, and determined that air safety and the public interest require adopting the...

  19. 78 FR 48339 - Airworthiness Directives; Rolls-Royce Corporation Turbofan Engines

    Science.gov (United States)

    2013-08-08

    ... We invite you to send any written relevant data, views, or arguments about this proposed AD. Send... maintain their existing approved life limits. (d) Unsafe Condition This AD was prompted by stress and...

  20. 77 FR 60288 - Airworthiness Directives; Pratt & Whitney (P&W) Division Turbofan Engines

    Science.gov (United States)

    2012-10-03

    ... Guidance Service Information Pratt & Whitney and United Parcel Service Co. (UPS) requested that we add the... service information. Request To Duplicate the Strip and Recoat Requirements United Airlines requested that... in the AD. We did not add that Special Instruction reference to the AD. Request To Add Service...

  1. 77 FR 16917 - Airworthiness Directives; Rolls-Royce Deutschland Ltd & Co KG Turbofan Engines

    Science.gov (United States)

    2012-03-23

    ... heat treated after application of silver plating. We are issuing this AD to prevent failure of the HP... treatment after application of silver plating. This condition, if not corrected, could result in a stage 2... directive (AD): 2012-06-17 Rolls-Royce Deutschland Ltd & Co KG (Formerly Rolls-Royce plc, Derby, England...

  2. 78 FR 59291 - Airworthiness Directives; Rolls-Royce Deutschland Ltd & Co. KG Turbofan Engines

    Science.gov (United States)

    2013-09-26

    ... received by the closing date and may amend this proposed AD based on those comments. We will post all.... Based on these figures, we estimate the cost of the proposed AD on U.S. operators to be $598,520... Deutschland GmbH, formerly Rolls-Royce plc): Docket No. FAA-2013- 0342; Directorate Identifier 2013-NE-14-AD...

  3. 75 FR 264 - Airworthiness Directives; Rolls-Royce plc RB211-Trent 800 Series Turbofan Engines

    Science.gov (United States)

    2010-01-05

    ...-1004; Directorate Identifier 2009-NE-36-AD] RIN 2120-AA64 Airworthiness Directives; Rolls-Royce plc.... Contact Rolls-Royce plc, P.O. Box 31, Derby, England; telephone: 011-44-1332-249428; fax: 011-44-1332... AD. We will consider all comments received by the closing date and may amend this proposed AD based...

  4. 76 FR 52288 - Airworthiness Directives; Rolls-Royce plc (RR) Trent 800 Series Turbofan Engines

    Science.gov (United States)

    2011-08-22

    ...-0836; Directorate Identifier 2010-NE-38-AD] RIN 2120-AA64 Airworthiness Directives; Rolls-Royce plc (RR... plc, P.O. Box 31, Derby, DE24 8BJ, United Kingdom: telephone 44 (0) 1332 242424; fax 44 (0) 1332... based on those comments. We will post all comments we receive, without change, to http://www.regulations...

  5. 78 FR 45842 - Airworthiness Directives; CFM International, S. A. Turbofan Engines

    Science.gov (United States)

    2013-07-30

    ... Friday, except Federal holidays. The AD docket contains this AD, the regulatory evaluation, any comments... Virgin America Airlines requested that use of earlier revisions of the SBs be allowed. Earlier revisions...

  6. 77 FR 12444 - Airworthiness Directives; General Electric Company (GE) Turbofan Engines

    Science.gov (United States)

    2012-03-01

    ... not agree with unconditional deferral to the next shop visit as unacceptable cooling flow could affect... acceptable flows determined during an optional borescope inspection. Request To Revise Criteria for Shop... bore cooling flow for a specified number of cycles. We are issuing this AD to prevent an uncontained...

  7. 76 FR 47056 - Airworthiness Directives; Pratt & Whitney (PW) Models PW4074 and PW4077 Turbofan Engines

    Science.gov (United States)

    2011-08-04

    ...) of the rim for cracks. This AD was prompted by multiple shop findings of cracked 15th stage HPC disks... Management Facility between 9 a.m. and 5 p.m., Monday through Friday, except Federal holidays. The AD docket... the Docket Office (phone: 800-647-5527) is Document Management Facility, U.S. Department of...

  8. 77 FR 11017 - Airworthiness Directives; Pratt & Whitney (PW) Models PW4074 and PW4077 Turbofan Engines

    Science.gov (United States)

    2012-02-24

    ... (BSI) or eddy current inspection (ECI) of the disk outer rim front rail for cracks prior to... person at the Docket Management Facility between 9 a.m. and 5 p.m., Monday through Friday, except Federal... this AD, using a drawdown plan that includes a BSI or ECI of the disk outer rim front rail for cracks...

  9. 75 FR 67253 - Airworthiness Directives; Pratt & Whitney (PW) Models PW4074 and PW4077 Turbofan Engines

    Science.gov (United States)

    2010-11-02

    ... inspection (BSI) or eddy current inspection (ECI) of the rim for cracks. This proposed AD results from... electronically. Mail: Docket Management Facility, U.S. Department of Transportation, 1200 New Jersey Avenue, SE..., that describes procedures for performing a BSI or ECI for cracks in the front rail of the outer rim of...

  10. 75 FR 77570 - Airworthiness Directives; General Electric Company CF6 Series Turbofan Engines

    Science.gov (United States)

    2010-12-13

    ...Rulemaking Portal: Go to http://www.regulations.gov and follow the instructions for sending your comments... attaching the side link to the fan frame--front high-pressure compressor case or the bolt attaching the side... haven't received any reports of cracks in the new P/N links. However, due to the similarity in design...

  11. Computational modelling of an Organic Rankine Cycle (ORC waste heat recovery system for an aircraft engine

    Directory of Open Access Journals (Sweden)

    Saadon S.

    2018-01-01

    Full Text Available Escalating fuel prices and carbon dioxide emission are causing new interest in methods to increase the thrust force of an aircraft engine with limitation of fuel consumption. One viable means is the conversion of exhaust engine waste heat to a more useful form of energy or to be used in the aircraft environmental system. A one-dimensional analysis method has been proposed for the organic Rankine cycle (ORC waste heat recovery system for turbofan engine in this paper. The paper contains two main parts: validation of the numerical model and a performance prediction of turbofan engine integrated to an ORC system. The cycle is compared with industrial waste heat recovery system from Hangzhou Chinen Steam Turbine Power CO., Ltd. The results show that thrust specific fuel consumption (TSFC of the turbofan engine reach lowest value at 0.91 lbm/lbf.h for 7000 lbf of thrust force. When the system installation weight is applied, the system results in a 2.0% reduction in fuel burn. Hence implementation of ORC system for waste heat recovery to an aircraft engine can bring a great potential to the aviation industry.

  12. Análisis fluidodinámico de un turbofan civil

    OpenAIRE

    Yuste Valero, Borja

    2008-01-01

    Este Trabajo Final de Carrera se centra en un estudio fluidodinámico de un motor a reacción, en este caso un turbofan, de un avión comercial en concreto. El objetivo principal es proponer una mezcla de flujo primario y secundario en un motor que originalmente no los une. Para ello hemos creado una pieza con la que conseguimos esa mezcla. A partir de ahí, y mediante un software de CFD (Computacional Fluid Dynamics), obtener valores de velocidad, presión, temperatura y flujo para hallar el E...

  13. Aircraft Wing for Over-The-Wing Mounting of Engine Nacelle

    Science.gov (United States)

    Hahn, Andrew S. (Inventor); Kinney, David J. (Inventor)

    2011-01-01

    An aircraft wing has an inboard section and an outboard section. The inboard section is attached (i) on one side thereof to the aircraft's fuselage, and (ii) on an opposing side thereof to an inboard side of a turbofan engine nacelle in an over-the-wing mounting position. The outboard section's leading edge has a sweep of at least 20 degrees. The inboard section's leading edge has a sweep between -15 and +15 degrees, and extends from the fuselage to an attachment position on the nacelle that is forward of an index position defined as an imaginary intersection between the sweep of the outboard section's leading edge and the inboard side of the nacelle. In an alternate embodiment, the turbofan engine nacelle is replaced with an open rotor engine nacelle.

  14. Computational Fluid Dynamics Modeling of a Supersonic Nozzle and Integration into a Variable Cycle Engine Model

    Science.gov (United States)

    Connolly, Joseph W.; Friedlander, David; Kopasakis, George

    2015-01-01

    This paper covers the development of an integrated nonlinear dynamic simulation for a variable cycle turbofan engine and nozzle that can be integrated with an overall vehicle Aero-Propulso-Servo-Elastic (APSE) model. A previously developed variable cycle turbofan engine model is used for this study and is enhanced here to include variable guide vanes allowing for operation across the supersonic flight regime. The primary focus of this study is to improve the fidelity of the model's thrust response by replacing the simple choked flow equation convergent-divergent nozzle model with a MacCormack method based quasi-1D model. The dynamic response of the nozzle model using the MacCormack method is verified by comparing it against a model of the nozzle using the conservation element/solution element method. A methodology is also presented for the integration of the MacCormack nozzle model with the variable cycle engine.

  15. Full Scale Technology Demonstration of a Modern Counterrotating Unducted Fan Engine Concept. Design Report

    Science.gov (United States)

    1987-01-01

    The Unducted Fan engine (UDF trademark) concept is based on an ungeared, counterrotating, unducted, ultra-high-bypass turbofan configuration. This engine is being developed to provide a high thrust-to-weight ratio power plant with exceptional fuel efficiency for subsonic aircraft application. This report covers the design methodology and details for the major components of this engine. The design intent of the engine is to efficiently produce 25,000 pounds of static thrust while meeting life and stress requirements. The engine is required to operate at Mach numbers of 0.8 or above.

  16. Exoskeletal Engine Concept: Feasibility Studies for Medium and Small Thrust Engines

    Science.gov (United States)

    Halliwell, Ian

    2001-01-01

    The exoskeletal engine concept is one in which the shafts and disks are eliminated and are replaced by rotating casings that support the blades in spanwise compression. Omission of the shafts and disks leads to an open channel at the engine centerline. This has immense potential for reduced jet noise and for the accomodation of an alternative form of thruster for use in a combined cycle. The use of ceramic composite materials has the potential for significantly reduced weight as well as higher working temperatures without cooling air. The exoskeletal configuration is also a natural stepping-stone to complete counter-rotating turbomachinery. Ultimately this will lead to reductions in weight, length, parts count and improved efficiency. The feasibility studies are in three parts. Part I-Systems and Component Requirements addressed the mechanical aspects of components from a functionality perspective. This effort laid the groundwork for preliminary design studies. Although important, it is not felt to be particularly original, and has therefore not been included in the current overview. Part 2-Preliminary Design Studies turned to some of the cycle and performance issues inherent in an exoskeletal configuration and some initial attempts at preliminary design of turbomachinery were described. Twin-spoon and single-spool 25.800-lbf-thrust turbofans were used as reference vehicles in a mid-size commercial subsonic category in addition to a single-spool 5,000-lbf-thrust turbofan that represented a general aviation application. The exoskeletal engine, with its open centerline, has tremendous potential for noise suppression and some preliminary analysis was done which began to quantify the benefits. Part 3-Additional Preliminary Design Studies revisited the design of single-spool 25,800-lbf-thrust turbofan configurations, but in addition to the original FPR = 1.6 and BPR = 5.1 reference engine, two additional configurations used FPR = 2.4 and BPR = 3.0 and FPR = 3.2 and BPR

  17. Conceptual study of advanced VTOL transport aircraft engine; Kosoku VTOL kiyo engine no gainen kento

    Energy Technology Data Exchange (ETDEWEB)

    Saito, Y; Endo, M; Matsuda, Y; Sugiyama, N; Watanabe, M; Sugahara, N; Yamamoto, K [National Aerospace Laboratory, Tokyo (Japan)

    1996-04-01

    This report proposes the concept of an ultra-low noise engine for advanced high subsonic VTOL transport aircraft, and discusses its technological feasibility. As one of the applications of the previously reported `separated core turbofan engine,` the conceptual engine is composed of 3 core engines, 2 cruise fan engines for high subsonic cruising and 6 lift fan engines producing thrust of 98kN (10000kgf)/engine. The core turbojet engine bleeds a large amount of air at the outlet of a compressor to supply driving high-pressure air for fans to other engines. The lift fan engine is composed of a lift fan, driving combustor, turbine and speed reduction gear, and is featured by not only high operation stability and thin fan engine like a separated core engine but also ultra-low noise operation. The cruise fan engine adopts the same configuration as the lift fan engine. Since this engine configuration has no technological problems difficult to be overcome, its high technological feasibility is expected. 6 refs., 7 figs., 5 tabs.

  18. Application of finite element techniques in predicting the acoustic properties of turbofan inlets

    Science.gov (United States)

    Majjigi, R. K.; Sigman, R. K.; Zinn, B. T.

    1978-01-01

    An analytical technique was developed for predicting the acoustic performance of turbofan inlets carrying a subsonic axisymmetric steady flow. The finite element method combined with the method of weighted residuals is used in predicting the acoustic properties of variable area, annular ducts with or without acoustic treatments along their walls. An approximate solution for the steady inviscid flow field is obtained using an integral method for calculating the incompressible potential flow field in the inlet with a correction to account for compressibility effects. The accuracy of the finite element technique was assessed by comparison with available analytical solutions for the problems of plane and spinning wave propagation through a hard walled annular cylinder with a constant mean flow.

  19. Trends in air-breathing engines for super high speed aircraft engine system and its task

    Energy Technology Data Exchange (ETDEWEB)

    Nose, Hiroyuki

    1988-06-10

    The second generation of space plane is under active development as the world only space plane, the Space Shuttle of U.S. will not be able to satisfy the demands in 2000 even if its flight is resumed. Conceptual study was completed in the NASP project of U.S. and the test flight of experimental plane X-30 is scheduled in mid-90's. A variety of proposals have been made by U.K, West Germany and France and the European Space Agency (ESA) is adjusting them. The mini-shuttle is under planning in Japan, which will employ H-2 rocket. Typical air-breathing engines for space planes are: Super-sonic variable cycle turbofan engine, turbo-ram jet engine, and scram jet engine, which reduces the static temperature by making the flow velocity in combustion chamber to be supersonic to fire fuels. (29 figs, 3 tabs, 9 refs)

  20. Engine-integrated solid oxide fuel cells for efficient electrical power generation on aircraft

    Science.gov (United States)

    Waters, Daniel F.; Cadou, Christopher P.

    2015-06-01

    This work investigates the use of engine-integrated catalytic partial oxidation (CPOx) reactors and solid oxide fuel cells (SOFCs) to reduce fuel burn in vehicles with large electrical loads like sensor-laden unmanned air vehicles. Thermodynamic models of SOFCs, CPOx reactors, and three gas turbine (GT) engine types (turbojet, combined exhaust turbofan, separate exhaust turbofan) are developed and checked against relevant data and source material. Fuel efficiency is increased by 4% and 8% in the 50 kW and 90 kW separate exhaust turbofan systems respectively at only modest cost in specific power (8% and 13% reductions respectively). Similar results are achieved in other engine types. An additional benefit of hybridization is the ability to provide more electric power (factors of 3 or more in some cases) than generator-based systems before encountering turbine inlet temperature limits. A sensitivity analysis shows that the most important parameters affecting the system's performance are operating voltage, percent fuel oxidation, and SOFC assembly air flows. Taken together, this study shows that it is possible to create a GT-SOFC hybrid where the GT mitigates balance of plant losses and the SOFC raises overall system efficiency. The result is a synergistic system with better overall performance than stand-alone components.

  1. Quiet Clean Short-haul Experimental Engine (QCSEE): The aerodynamic and mechanical design of the QCSEE under-the-wing fan

    Science.gov (United States)

    1977-01-01

    The design, fabrication, and testing of two experimental high bypass geared turbofan engines and propulsion systems for short haul passenger aircraft are described. The aerodynamic and mechanical design of a variable pitch 1.34 pressure ratio fan for the under the wing (UTW) engine are included. The UTW fan was designed to permit rotation of the 18 composite fan blades into the reverse thrust mode of operation through both flat pitch and stall pitch directions.

  2. Pollution Reduction Technology Program for Small Jet Aircraft Engines, Phase 2

    Science.gov (United States)

    Bruce, T. W.; Davis, F. G.; Kuhn, T. E.; Mongia, H. C.

    1978-01-01

    A series of iterative combustor pressure rig tests were conducted on two combustor concepts applied to the AiResearch TFE731-2 turbofan engine combustion system for the purpose of optimizing combustor performance and operating characteristics consistant with low emissions. The two concepts were an axial air-assisted airblast fuel injection configuration with variable-geometry air swirlers and a staged premix/prevaporization configuration. The iterative rig testing and modification sequence on both concepts was intended to provide operational compatibility with the engine and determine one concept for further evaluation in a TFE731-2 engine.

  3. Effects of chemical equilibrium on turbine engine performance for various fuels and combustor temperatures

    Science.gov (United States)

    Tran, Donald H.; Snyder, Christopher A.

    1992-01-01

    A study was performed to quantify the differences in turbine engine performance with and without the chemical dissociation effects for various fuel types over a range of combustor temperatures. Both turbojet and turbofan engines were studied with hydrocarbon fuels and cryogenic, nonhydrocarbon fuels. Results of the study indicate that accuracy of engine performance decreases when nonhydrocarbon fuels are used, especially at high temperatures where chemical dissociation becomes more significant. For instance, the deviation in net thrust for liquid hydrogen fuel can become as high as 20 percent at 4160 R. This study reveals that computer central processing unit (CPU) time increases significantly when dissociation effects are included in the cycle analysis.

  4. Design of a microprocessor-based Control, Interface and Monitoring (CIM unit for turbine engine controls research

    Science.gov (United States)

    Delaat, J. C.; Soeder, J. F.

    1983-01-01

    High speed minicomputers were used in the past to implement advanced digital control algorithms for turbine engines. These minicomputers are typically large and expensive. It is desirable for a number of reasons to use microprocessor-based systems for future controls research. They are relatively compact, inexpensive, and are representative of the hardware that would be used for actual engine-mounted controls. The Control, Interface, and Monitoring Unit (CIM) contains a microprocessor-based controls computer, necessary interface hardware and a system to monitor while it is running an engine. It is presently being used to evaluate an advanced turbofan engine control algorithm.

  5. Jet engine R and D and I; Watashi to jet engine kenkyu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Murashima, K. [Ishikawajima-Harima Heavy Industries Co. Ltd., Tokyo (Japan)

    1998-06-10

    My efforts towards at the development of aeroengines since the end of the war are described. The J3-7 engine propelled the T1 trainer plane, and was installed as booster aboard the P2J antisubmarine patrol aircraft. It was the first jet engine that Japan produced after the end of the war, and had been in use until quite recently. I took part in the construction of a prototype of the JR100 series designed to serve as VTOL (vertical take-off and landing) aircraft lift engines, and in the test thereof. As the shift from turbojet to turbofan proceeded, I participated in the development of the FJR710 engine under the guidance of National Aerospace Laboratory, and the product was installed aboard an experimental STOL (short take-off and landing) aircraft Asuka. I next joined a Defense Agency initiative for a reheat turbofan to replace the J3 aboard trainer plane, and the result was the low bypass ratio/high output F3 engine. In 1989, Ministry of International Trade and Industry decided for a large-scale project of developing an engine for a next-generation supersonic transport, and the HYPR (Super/Hypersonic Transport Propulsion System) project was started. The project was participated in by manufacturers from overseas, which were GE, P and W, RR, and SNECMA. The foreign corporations worked on an equal footing with the Japanese parties, and collaboration between the participants was smooth, with each party endeavoring in the field they were good at. The project will be concluded as scheduled in fiscal 1998. (NEDO)

  6. Turbofan forced mixer lobe flow modeling. 1: Experimental and analytical assessment

    Science.gov (United States)

    Barber, T.; Paterson, R. W.; Skebe, S. A.

    1988-01-01

    A joint analytical and experimental investigation of three-dimensional flowfield development within the lobe region of turbofan forced mixer nozzles is described. The objective was to develop a method for predicting the lobe exit flowfield. In the analytical approach, a linearized inviscid aerodynamical theory was used for representing the axial and secondary flows within the three-dimensional convoluted mixer lobes and three-dimensional boundary layer analysis was applied thereafter to account for viscous effects. The experimental phase of the program employed three planar mixer lobe models having different waveform shapes and lobe heights for which detailed measurements were made of the three-dimensional velocity field and total pressure field at the lobe exit plane. Velocity data was obtained using Laser Doppler Velocimetry (LDV) and total pressure probing and hot wire anemometry were employed to define exit plane total pressure and boundary layer development. Comparison of data and analysis was performed to assess analytical model prediction accuracy. As a result of this study a planar mixed geometry analysis was developed. A principal conclusion is that the global mixer lobe flowfield is inviscid and can be predicted from an inviscid analysis and Kutta condition.

  7. Comparison of gaseous exhaust indices of the F109 turbofan using three different blends of petroleum-based Jet-A and camelina-based Jet-A

    Science.gov (United States)

    Kozak, Brian John

    This research project focused on the collection and comparison of gaseous exhaust emissions of the F109 turbofan engine using petroleum-based Jet-A and two different blends of camelina-based Jet-A. Simulated landing and takeoff cycles were used to collect gaseous exhaust emissions. Unburned hydrocarbon (HC), nitrogen oxide (NOx), and carbon moNOxide (CO) exhaust indices (EIm) were calculated using ICAO Annex 16 Volume II formulae. Statistical analyses were performed on the Elm data. There was no significant difference in HC EIm and CO EI m among the three fuels at takeoff thrust. There were significant differences among the fuels for NOx EIm. 50% Jet-A 50% camelina produced the highest NOx EIm, then 75% Jet-A 25% camelina and finally Jet-A. At climb thrust, both blends of camelina fuel produced higher NOx EIm but no difference in CO EIm and HC EIm as Jet-A. At approach thrust, both blends of camelina fuel produced higher NOx EIm, lower CO EIm, and no difference in HC EIm as Jet-A. At idle thrust, there was no significant difference among the fuels for NOx EIm. There were significant differences among the fuels for HC EIm. Jet-A and 50% Jet-A 50% both produced higher HC EIm as 75% Jet-A 25% camelina. There were significant differences among the fuels for CO EI m. Jet-A produced the highest CO EIm, then 75% Jet-A 25% camelina and finally 50% Jet-A 50% camelina.

  8. Control Design for a Generic Commercial Aircraft Engine

    Science.gov (United States)

    Csank, Jeffrey; May, Ryan D.

    2010-01-01

    This paper describes the control algorithms and control design process for a generic commercial aircraft engine simulation of a 40,000 lb thrust class, two spool, high bypass ratio turbofan engine. The aircraft engine is a complex nonlinear system designed to operate over an extreme range of environmental conditions, at temperatures from approximately -60 to 120+ F, and at altitudes from below sea level to 40,000 ft, posing multiple control design constraints. The objective of this paper is to provide the reader an overview of the control design process, design considerations, and justifications as to why the particular architecture and limits have been chosen. The controller architecture contains a gain-scheduled Proportional Integral controller along with logic to protect the aircraft engine from exceeding any limits. Simulation results illustrate that the closed loop system meets the Federal Aviation Administration s thrust response requirements

  9. Assessment of community noise for a medium-range airplane with open-rotor engines

    Science.gov (United States)

    Kopiev, V. F.; Shur, M. L.; Travin, A. K.; Belyaev, I. V.; Zamtfort, B. S.; Medvedev, Yu. V.

    2017-11-01

    Community noise of a hypothetical medium-range airplane equipped with open-rotor engines is assessed by numerical modeling of the aeroacoustic characteristics of an isolated open rotor with the simplest blade geometry. Various open-rotor configurations are considered at constant thrust, and the lowest-noise configuration is selected. A two-engine medium-range airplane at known thrust of bypass turbofan engines at different segments of the takeoff-landing trajectory is considered, after the replacement of those engines by the open-rotor engines. It is established that a medium-range airplane with two open-rotor engines meets the requirements of Chapter 4 of the ICAO standard with a significant margin. It is shown that airframe noise makes a significant contribution to the total noise of an airplane with open-rotor engines at landing.

  10. A 3-D discontinuous Galerkin Method for jet engine buzz-saw noise propagation

    International Nuclear Information System (INIS)

    Remaki, M.; Habashi, W.G.; Ait-Ali-Yahia, D.; Jay, A.

    2002-01-01

    This paper presents a 3-D methodology for solving jet engine aero-acoustics problems in the presence of strong shocks and rarefactions. For example, turbofan engines suffer from Multiple Pure Tone noise, also called Buzz-saw noise, generated by the fan when the blade rotational tip speed is supersonic. These waves are composed of a series of shocks and rarefactions produced by a coalescence of shocks due to non-uniformities in the blade spacing and in the blade stagger angles, arising from manufacturing tolerances

  11. Features of FJR 710 engine

    Energy Technology Data Exchange (ETDEWEB)

    Miyatake, Hirokazu; Kobayashi, Hideo [Ishikawajima-Harima Heavy Industries Co., Ltd., Tokyo (Japan)

    1989-03-01

    The FJR 710/600 high by-pass ratio turbofan engine was outlined, which was developed under the National Research and Development Program of Agency of Industrial Science and Technology, MITI dated from 1971. Results of developmental tests and flying tests of the engine were reported, which were performed to install the engine on the quiet STOL research aircraft under development by the National Aerospace Laboratory (NAL), the Science and Technology Agency, and the STOL aircraft was also outlined. Developmental tests of FJR 710 (design specification : thrust of 50kN, specific fuel consumption of 37.4g/N.h, turbine inlet temperature of 1.250{degree}C) were performed for 4,800 hours to verify airworthiness, and from those test results, the results of such environmental resistance tests as a foreign object strike test, icing test, inlet distortion test, cross wind test, and noise and exhaust measurement were reported in detail. 20 flying tests by a flying test bed (FTB) aircraft and flight tests by the STOL aircraft were also outlined. 10 refs., 5 figs., 2 tabs.

  12. RANS Analyses of Turbofan Nozzles with Internal Wedge Deflectors for Noise Reduction

    Science.gov (United States)

    DeBonis, James R.

    2009-01-01

    Computational fluid dynamics (CFD) was used to evaluate the flow field and thrust performance of a promising concept for reducing the noise at take-off of dual-stream turbofan nozzles. The concept, offset stream technology, reduces the jet noise observed on the ground by diverting (offsetting) a portion of the fan flow below the core flow, thickening and lengthening this layer between the high-velocity core flow and the ground observers. In this study a wedge placed in the internal fan stream is used as the diverter. Wind, a Reynolds averaged Navier-Stokes (RANS) code, was used to analyze the flow field of the exhaust plume and to calculate nozzle performance. Results showed that the wedge diverts all of the fan flow to the lower side of the nozzle, and the turbulent kinetic energy on the observer side of the nozzle is reduced. This reduction in turbulent kinetic energy should correspond to a reduction in noise. However, because all of the fan flow is diverted, the upper portion of the core flow is exposed to the freestream, and the turbulent kinetic energy on the upper side of the nozzle is increased, creating an unintended noise source. The blockage due to the wedge reduces the fan mass flow proportional to its blockage, and the overall thrust is consequently reduced. The CFD predictions are in very good agreement with experimental flow field data, demonstrating that RANS CFD can accurately predict the velocity and turbulent kinetic energy fields. While this initial design of a large scale wedge nozzle did not meet noise reduction or thrust goals, this study identified areas for improvement and demonstrated that RANS CFD can be used to improve the concept.

  13. Balancing Energy Processes in Turbine Engines

    Directory of Open Access Journals (Sweden)

    Balicki Włodzimierz

    2015-01-01

    Full Text Available The article discusses the issue of balancing energy processes in turbine engines in operation in aeronautic and marine propulsion systems with the aim to analyse and evaluate basic operating parameters. The first part presents the problem of enormous amounts of energy needed for driving fans and compressors of the largest contemporary turbofan engines commonly used in long-distance aviation. The amounts of the transmitted power and the effect of flow parameters and constructional properties of the engines on their performance and real efficiency are evaluated. The second part of the article, devoted to marine applications of turbine engines, presents the energy balance of the kinetic system of torque transmission from main engine turbines to screw propellers in the combined system of COGAG type. The physical model of energy conversion processes executed in this system is presented, along with the physical model of gasodynamic processes taking place in a separate driving turbine of a reversing engine. These models have made the basis for formulating balance equations, which then were used for analysing static and dynamic properties of the analysed type of propulsion, in particular in the aspect of mechanical loss evaluation in its kinematic system.

  14. Assessment of an Anomaly Detector for Jet Engine Health Monitoring

    Directory of Open Access Journals (Sweden)

    Sebastien Borguet

    2011-01-01

    Full Text Available The goal of module performance analysis is to reliably assess the health of the main components of an aircraft engine. A predictive maintenance strategy can leverage this information to increase operability and safety as well as to reduce costs. Degradation undergone by an engine can be divided into gradual deterioration and accidental events. Kalman filters have proven very efficient at tracking progressive deterioration but are poor performers in the face of abrupt events. Adaptive estimation is considered as an appropriate solution to this deficiency. This paper reports the evaluation of the detection capability of an adaptive diagnosis tool on the basis of simulated scenarios that may be encountered during the operation of a commercial turbofan engine. The diagnosis tool combines a Kalman filter and a secondary system that monitors the residuals. This auxiliary component implements a generalised likelihood ratio test in order to detect abrupt events.

  15. Manufacturing technology for advanced jet engines; Jisedai jetto engine no seizo gijutsu

    Energy Technology Data Exchange (ETDEWEB)

    Hirakawa, H [Kawasaki Heavy Industries Ltd., Kobe (Japan)

    1997-04-05

    A part of the latest production technologies for aircraft jet engines is introduced. Outline of the turbofan engine, turbo-prop engine, and turbo-shaft engine are given. Every one of them employs a gas turbine engine comprising a compressor, combustor, and a turbine as the output generator. Increase in the turbine inlet temperature is effective for making the gas turbine engine more efficient. The development tread of heat resisting materials for realizing higher temperature is shown. The current status and future aspect of the manufacturing technology is discussed for each main component of the engine. Technological development for decreasing weight is important because the weight of the fan member increases when the fan diameter is increased to increase the bypass ratio. FRP is adopted for the blades and casing to decrease the weight of the compressor, and studies have been made on fiber reinforced materials to reduce the weight of the disks. The outlines of the latest manufacturing technologies for the combustor and turbine are introduced. 2 refs., 9 figs.

  16. 76 FR 40217 - Airworthiness Directives; Rolls-Royce plc (RR) RB211-524 Series Turbofan Engines

    Science.gov (United States)

    2011-07-08

    ...;Prices of new books are listed in the first FEDERAL REGISTER issue of each #0;week. #0; #0; #0; #0;#0... by August 8, 2011. The Director of the Federal Register approved the incorporation by reference of a... regulatory, economic, environmental, and energy aspects of this AD. We will consider all comments received by...

  17. 76 FR 70382 - Airworthiness Directives; General Electric Company (GE) CF6-80C2B Series Turbofan Engines

    Science.gov (United States)

    2011-11-14

    ... to an emergency or forced landing of the airplane. DATES: We must receive comments on this proposed... an emergency or forced landing of the airplane. FAA's Determination We are proposing this AD because... labor rate is $85 per work-hour. A replacement ECU costs about $4,600. Based on these figures, we...

  18. A new approximation of the dispersion relations occurring in the sound-attenuation problem of turbofan aircraft engines

    Directory of Open Access Journals (Sweden)

    Robert SZABO

    2011-12-01

    Full Text Available The dispersion relations, appearing in the analysis of the stability of a gas flow in a straight acoustically-lined duct with respect to perturbations produced by a time harmonic source, beside the wave number and complex frequency contain the solution of a boundary value problem of the Pridmore-Brown equation depending on the wave number and frequency. For this reason, in practice the dispersion relations are rarely simple enough for carried out the zeros. The determination of zeros of these dispersion relations is crucial for the prediction of the perturbation attenuation or amplification. In this paper an approximation of the dispersion relations is given. Our approach preserves the general character of the mean flow, the general Pridmore-Brown equation and it’s only in the shear flow that we replace the exact solution of the boundary value problem with its Taylor polynomial approximate. In this way new approximate dispersion relations are obtained which zero’s can be found by computer.

  19. 75 FR 61361 - Airworthiness Directives; Rolls-Royce plc (RR) RB211-535 Series Turbofan Engines

    Science.gov (United States)

    2010-10-05

    ...-0994; Directorate Identifier 2009-NE-39-AD] RIN 2120-AA64 Airworthiness Directives; Rolls-Royce plc (RR...-Royce plc., P.O. Box 31, Derby, DE24 8BJ, United Kingdom; Telephone: 011 44 1332 242424, Fax: 011 44... based on those comments. We will post all comments we receive, without change, to http://www.regulations...

  20. 76 FR 65997 - Airworthiness Directives; Rolls-Royce plc (RR) RB211-535 Series Turbofan Engines

    Science.gov (United States)

    2011-10-25

    ...-0994; Directorate Identifier 2009-NE-39-AD] RIN 2120-AA64 Airworthiness Directives; Rolls-Royce plc (RR... Friday, except Federal holidays. For service information identified in this AD, contact Rolls-Royce plc.... Based on these figures, we estimate the cost of this proposed AD on U.S. operators to be $1,499,400. FAA...

  1. 75 FR 63727 - Airworthiness Directives; Rolls-Royce plc (RR) RB211-524 Series Turbofan Engines

    Science.gov (United States)

    2010-10-18

    ...-0162; Directorate Identifier 2004-NE-19-AD] RIN 2120-AA64 Airworthiness Directives; Rolls-Royce plc (RR...-2251. Contact Rolls-Royce plc, P.O. Box 31, Derby, DE24 8BJ, United Kingdom; telephone: 011-44-1332... would cost $0. Based on these figures, we estimate the total cost of the AD to U.S. operators would be...

  2. 76 FR 68663 - Airworthiness Directives; Rolls-Royce plc (RR) RB211-Trent 800 Series Turbofan Engines

    Science.gov (United States)

    2011-11-07

    ...-0755; Directorate Identifier 2010-NE-12-AD] RIN 2120-AA64 Airworthiness Directives; Rolls-Royce plc (RR... Rolls-Royce plc, Corporate Communications, P.O. Box 31, Derby, England, DE248BJ; phone: 011-44-1332... date and may amend this proposed AD based on those comments. We will post all comments we receive...

  3. 75 FR 17630 - Airworthiness Directives; Rolls-Royce plc RB211 Trent 700 and Trent 800 Series Turbofan Engines

    Science.gov (United States)

    2010-04-07

    ...-0364; Directorate Identifier 2009-NE-27-AD] RIN 2120-AA64 Airworthiness Directives; Rolls-Royce plc... based on those comments. We will post all comments we receive, without change, to http://www.regulations... Service Information Rolls-Royce plc has issued Alert Service Bulletin RB.211-72-AG086, dated December 4...

  4. 76 FR 72650 - Airworthiness Directives; Rolls-Royce plc (RR) RB211 Trent 800 Series Turbofan Engines

    Science.gov (United States)

    2011-11-25

    ...-0959; Directorate Identifier 2011-NE-25-AD] RIN 2120-AA64 Airworthiness Directives; Rolls-Royce plc (RR... holidays. Fax: (202) 493-2251. Contact Rolls-Royce plc, P.O. Box 31, Derby, DE24 8BJ, United Kingdom; phone... AD. We will consider all comments received by the closing date and may amend this proposed AD based...

  5. A Nonlinear Model for Designing Herschel-Quincke Waveguide Arrays to Attenuate Shock Waves from Transonic Turbofan Engines, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Techsburg is teaming with the Vibration and Acoustics Laboratory of Virginia Tech to propose a non-linear analytical tool for designing Herschel-Quincke (HQ)...

  6. 75 FR 14377 - Airworthiness Directives; Pratt & Whitney (PW) Model PW2037, PW2037(M), and PW2040 Turbofan Engines

    Science.gov (United States)

    2010-03-25

    ... removing erosion damage on fan blades with cutback leading edges and restoring the leading edge contour. This proposed AD results from reports from PW that fan blade leading edge erosion can result in a fan... comments electronically. Mail: Docket Management Facility, U.S. Department of Transportation, 1200 New...

  7. 76 FR 14797 - Airworthiness Directives; Rolls-Royce plc (RR) RB211-Trent 900 Series Turbofan Engines

    Science.gov (United States)

    2011-03-18

    ... initiated a sequence of events leading to rupture of the drive arm of the IP Turbine (IPT) disc and...., West Building Ground Floor, Room W12-140, Washington, DC 20590-0001. Hand Delivery: Deliver to Mail...: Discussion The European Aviation Safety Agency (EASA), which is the Technical Agent for the Member States of...

  8. 75 FR 32649 - Airworthiness Directives; General Electric Company CF6-45 and CF6-50 Series Turbofan Engines

    Science.gov (United States)

    2010-06-09

    ... of LPT rotor stage 3 disks and eight reports of cracked LPT rotor stage 3 disks found during shop... a corresponding shift in the trending of fuel flow or fan speed/core speed relationship. You can...

  9. Study of an advanced General Aviation Turbine Engine (GATE)

    Science.gov (United States)

    Gill, J. C.; Short, F. R.; Staton, D. V.; Zolezzi, B. A.; Curry, C. E.; Orelup, M. J.; Vaught, J. M.; Humphrey, J. M.

    1979-01-01

    The best technology program for a small, economically viable gas turbine engine applicable to the general aviation helicopter and aircraft market for 1985-1990 was studied. Turboshaft and turboprop engines in the 112 to 746 kW (150 to 1000 hp) range and turbofan engines up to 6672 N (1500 lbf) thrust were considered. A good market for new turbine engines was predicted for 1988 providing aircraft are designed to capitalize on the advantages of the turbine engine. Parametric engine families were defined in terms of design and off-design performance, mass, and cost. These were evaluated in aircraft design missions selected to represent important market segments for fixed and rotary-wing applications. Payoff parameters influenced by engine cycle and configuration changes were aircraft gross mass, acquisition cost, total cost of ownership, and cash flow. Significant advantage over a current technology, small gas turbine engines was found especially in cost of ownership and fuel economy for airframes incorporating an air-cooled high-pressure ratio engine. A power class of 373 kW (500 hp) was recommended as the next frontier for technology advance where large improvements in fuel economy and engine mass appear possible through component research and development.

  10. Numerical methods for engine-airframe integration

    International Nuclear Information System (INIS)

    Murthy, S.N.B.; Paynter, G.C.

    1986-01-01

    Various papers on numerical methods for engine-airframe integration are presented. The individual topics considered include: scientific computing environment for the 1980s, overview of prediction of complex turbulent flows, numerical solutions of the compressible Navier-Stokes equations, elements of computational engine/airframe integrations, computational requirements for efficient engine installation, application of CAE and CFD techniques to complete tactical missile design, CFD applications to engine/airframe integration, and application of a second-generation low-order panel methods to powerplant installation studies. Also addressed are: three-dimensional flow analysis of turboprop inlet and nacelle configurations, application of computational methods to the design of large turbofan engine nacelles, comparison of full potential and Euler solution algorithms for aeropropulsive flow field computations, subsonic/transonic, supersonic nozzle flows and nozzle integration, subsonic/transonic prediction capabilities for nozzle/afterbody configurations, three-dimensional viscous design methodology of supersonic inlet systems for advanced technology aircraft, and a user's technology assessment

  11. A Modular Aero-Propulsion System Simulation of a Large Commercial Aircraft Engine

    Science.gov (United States)

    DeCastro, Jonathan A.; Litt, Jonathan S.; Frederick, Dean K.

    2008-01-01

    A simulation of a commercial engine has been developed in a graphical environment to meet the increasing need across the controls and health management community for a common research and development platform. This paper describes the Commercial Modular Aero Propulsion System Simulation (C-MAPSS), which is representative of a 90,000-lb thrust class two spool, high bypass ratio commercial turbofan engine. A control law resembling the state-of-the-art on board modern aircraft engines is included, consisting of a fan-speed control loop supplemented by relevant engine limit protection regulator loops. The objective of this paper is to provide a top-down overview of the complete engine simulation package.

  12. Acoustic Performance of Novel Fan Noise Reduction Technologies for a High Bypass Model Turbofan at Simulated Flights Conditions

    Science.gov (United States)

    Elliott, David M.; Woodward, Richard P.; Podboy, Gary G.

    2010-01-01

    Two novel fan noise reduction technologies, over the rotor acoustic treatment and soft stator vane technologies, were tested in an ultra-high bypass ratio turbofan model in the NASA Glenn Research Center s 9- by 15-Foot Low-Speed Wind Tunnel. The performance of these technologies was compared to that of the baseline fan configuration, which did not have these technologies. Sideline acoustic data and hot film flow data were acquired and are used to determine the effectiveness of the various treatments. The material used for the over the rotor treatment was foam metal and two different types were used. The soft stator vanes had several internal cavities tuned to target certain frequencies. In order to accommodate the cavities it was necessary to use a cut-on stator to demonstrate the soft vane concept.

  13. Physical characterization of the fine particle emissions from commercial aircraft engines during the Aircraft Particle Emissions eXperiment (APEX) 1-3

    Science.gov (United States)

    Kinsey, John S.; Dong, Yuanji; Williams, D. Craig; Logan, Russell

    2010-06-01

    The fine particulate matter (PM) emissions from nine commercial aircraft engine models were determined by plume sampling during the three field campaigns of the Aircraft Particle Emissions Experiment (APEX). Ground-based measurements were made primarily at 30 m behind the engine for PM mass and number concentration, particle size distribution, and total volatile matter using both time-integrated and continuous sampling techniques. The experimental results showed a PM mass emission index (EI) ranging from 10 to 550 mg kg -1 fuel depending on engine type and test parameters as well as a characteristic U-shaped curve of the mass EI with increasing fuel flow for the turbofan engines tested. Also, the Teflon filter sampling indicated that ˜40-80% of the total PM mass on a test-average basis was comprised of volatile matter (sulfur and organics) for most engines sampled. The number EIs, on the other hand, varied from ˜10 15 to 10 17 particles kg -1 fuel with the turbofan engines exhibiting a logarithmic decay with increasing fuel flow. Finally, the particle size distributions of the emissions exhibited a single primary mode that were lognormally distributed with a minor accumulation mode also observed at higher powers for all engines tested. The geometric (number) mean particle diameter ranged from 9.4 to 37 nm and the geometric standard deviation ranged from 1.3 to 2.3 depending on engine type, fuel flow, and test conditions.

  14. 76 FR 75735 - Certification of Part 23 Turbofan- and Turbojet-Powered Airplanes and Miscellaneous Amendments

    Science.gov (United States)

    2011-12-02

    ...''--as well as turbopropeller-driven and reciprocating-engine airplanes, to reflect the current needs of... the Final Rule A. 14 CFR Part 1: Clarifying Power and Engine Definitions B. Expanding Commuter... certification of part 23 turbojets. The ARC did not want to impose commuter category takeoff speeds for...

  15. The NASA Pollution-Reduction Technology Program for small jet aircraft engines - A status report

    Science.gov (United States)

    Fear, J. S.

    1976-01-01

    A three-phase experimental program is described which has the objective of enabling EPA Class T1 jet engines to meet the 1979 EPA emissions standards. In Phase I, three advanced combustor concepts, designed for the AiResearch TFE 731-2 turbofan engine, were evaluated in screening tests. Goals for carbon monoxide and unburned hydrocarbons were met or closely approached with two of the concepts with relatively modest departures from conventional combustor design practices. A more advanced premixing/prevaporizing combustor, while appearing to have the potential for meeting the oxides of nitrogen goal as well, will require extensive development to make it a practical combustion system. Smoke numbers for the two combustor concepts which will be carried forward into Phase II of the program were well within the EPA smoke standard. Phase II, Combustor-Engine Compatibility Testing, which is in its early stages, and planned Phase III, Combustor-Engine Demonstration Testing, are also described.

  16. Pollution reduction technology program for class T4(JT8D) engines

    Science.gov (United States)

    Roberts, R.; Fiorentino, A. J.; Diehl, L. A.

    1977-01-01

    The technology required to develop commercial gas turbine engines with reduced exhaust emissions was demonstrated. Can-annular combustor systems for the JT8D engine family (EPA class T4) were investigated. The JT8D turbofan engine is an axial-flow, dual-spool, moderate-bypass-ratio design. It has a two-stage fan, a four-stage low-pressure compressor driven by a three-stage low-pressure turbine, and a seven-stage high-pressure compressor driven by a single-stage high-pressure turbine. A cross section of the JT8D-17 showing the mechanical configuration is given. Key specifications for this engine are listed.

  17. Active control of aircraft engine inlet noise using compact sound sources and distributed error sensors

    Science.gov (United States)

    Burdisso, Ricardo (Inventor); Fuller, Chris R. (Inventor); O'Brien, Walter F. (Inventor); Thomas, Russell H. (Inventor); Dungan, Mary E. (Inventor)

    1996-01-01

    An active noise control system using a compact sound source is effective to reduce aircraft engine duct noise. The fan noise from a turbofan engine is controlled using an adaptive filtered-x LMS algorithm. Single multi channel control systems are used to control the fan blade passage frequency (BPF) tone and the BPF tone and the first harmonic of the BPF tone for a plane wave excitation. A multi channel control system is used to control any spinning mode. The multi channel control system to control both fan tones and a high pressure compressor BPF tone simultaneously. In order to make active control of turbofan inlet noise a viable technology, a compact sound source is employed to generate the control field. This control field sound source consists of an array of identical thin, cylindrically curved panels with an inner radius of curvature corresponding to that of the engine inlet. These panels are flush mounted inside the inlet duct and sealed on all edges to prevent leakage around the panel and to minimize the aerodynamic losses created by the addition of the panels. Each panel is driven by one or more piezoelectric force transducers mounted on the surface of the panel. The response of the panel to excitation is maximized when it is driven at its resonance; therefore, the panel is designed such that its fundamental frequency is near the tone to be canceled, typically 2000-4000 Hz.

  18. Engineering Encounters: Engineering Adaptations

    Science.gov (United States)

    Gatling, Anne; Vaughn, Meredith Houle

    2015-01-01

    Engineering is not a subject that has historically been taught in elementary schools, but with the emphasis on engineering in the "Next Generation Science Standards," curricula are being developed to explicitly teach engineering content and design. However, many of the scientific investigations already conducted with students have…

  19. Joint National Symposium on the Influence of Aviation on Engineering and the Future of Aeronautics in Australia, Melbourne, Australia, August 8, 9, 1985, Preprints and Supplementary Papers

    Energy Technology Data Exchange (ETDEWEB)

    1985-01-01

    The present conference considers computer-integrated manufacturing, the manufacture of bonded composite assemblies for aircraft, advancements in the condition monitoring of gears and rolling element bearings, condition monitoring of large commercial turbofan engines, novel gas turbine materials, and advanced fiber-reinforced composites for airframe applications. Also discussed are the future of air power in the defense of Australia, future procurement and operations of rotary wing aircraft in the Royal Australia Navy, the future balance between Australian aerospace-related education, research and industry, and the educational requirements for the Royal Melbourne Institute of Technology aeronautical engineering degree.

  20. Optimal design and installation of ultra high bypass ratio turbofan nacelle

    Science.gov (United States)

    Savelyev, Andrey; Zlenko, Nikolay; Matyash, Evgeniy; Mikhaylov, Sergey; Shenkin, Andrey

    2016-10-01

    The paper is devoted to the problem of designing and optimizing the nacelle of turbojet bypass engine with high bypass ratio and high thrust. An optimization algorithm EGO based on development of surrogate models and the method for maximizing the probability of improving the objective function has been used. The designing methodology has been based on the numerical solution of the Reynolds equations system. Spalart-Allmaras turbulence model has been chosen for RANS closure. The effective thrust losses has been uses as an objective function in optimizing the engine nacelle. As a result of optimization, effective thrust has been increased by 1.5 %. The Blended wing body aircraft configuration has been studied as a possible application. Two variants of the engine layout arrangement have been considered. It has been shown that the power plant changes the pressure distribution on the aircraft surface. It results in essential diminishing the configuration lift-drag ratio.

  1. Development of GE90 engine with largest thrust. GE90 engine no kaihatsu jokyo

    Energy Technology Data Exchange (ETDEWEB)

    Aono, H [Ishikawajima-Harima Heavy Industries, Co. Ltd., Tokyo (Japan)

    1994-05-01

    The present paper explained the turbofan engine GE90 which is being developed by General Electric Co., USA. That engine is to meet the thrust (takeoff thrust) of 300 to 530kN as required for the new-generation wide-fuselage civil transport plane which is being designed for its planned operation in the 1990's. In April, 1991, the world's strongest thrust of 480kN was achieved with engine elements also confirmed through element test. Thereafter, the engine underwent a flying test on board of Boeing 747 to materialize the planned operation in 1995. Made to be 9 in by-pass ratio and about 40 in overall pressure ratio, the GE90 was given the concept that advantage could be secured in both propulsive efficiency and thermal efficiency. That concept could be materialized by the development of composite fan blade technology and energy-efficient technology which were both demonstrated with an unducted fan. In spite of its pressure ratio of 22, the GE90's high pressure compressor demonstrates its polytropic efficiency which is equal to that of the low pressure ratio compressor. 3 refs., 19 figs., 1 tab.

  2. The Aerodynamic Performance of an Over-the-Rotor Liner With Circumferential Grooves on a High Bypass Ratio Turbofan Rotor

    Science.gov (United States)

    Bozak, Richard F.; Hughes, Christopher E.; Buckley, James

    2013-01-01

    While liners have been utilized throughout turbofan ducts to attenuate fan noise, additional attenuation is obtainable by placing an acoustic liner over-the-rotor. Previous experiments have shown significant fan performance losses when acoustic liners are installed over-the-rotor. The fan blades induce an oscillating flow in the acoustic liners which results in a performance loss near the blade tip. An over-the-rotor liner was designed with circumferential grooves between the fan blade tips and the acoustic liner to reduce the oscillating flow in the acoustic liner. An experiment was conducted in the W-8 Single-Stage Axial Compressor Facility at NASA Glenn Research Center on a 1.5 pressure ratio fan to evaluate the impact of this over-the-rotor treatment design on fan aerodynamic performance. The addition of a circumferentially grooved over-the-rotor design between the fan blades and the acoustic liner reduced the performance loss, in terms of fan adiabatic efficiency, to less than 1 percent which is within the repeatability of this experiment.

  3. Remaining Useful Life Prediction of Gas Turbine Engine using Autoregressive Model

    Directory of Open Access Journals (Sweden)

    Ahsan Shazaib

    2017-01-01

    Full Text Available Gas turbine (GT engines are known for their high availability and reliability and are extensively used for power generation, marine and aero-applications. Maintenance of such complex machines should be done proactively to reduce cost and sustain high availability of the GT. The aim of this paper is to explore the use of autoregressive (AR models to predict remaining useful life (RUL of a GT engine. The Turbofan Engine data from NASA benchmark data repository is used as case study. The parametric investigation is performed to check on any effect of changing model parameter on modelling accuracy. Results shows that a single sensory data cannot accurately predict RUL of GT and further research need to be carried out by incorporating multi-sensory data. Furthermore, the predictions made using AR model seems to give highly pessimistic values for RUL of GT.

  4. The NASA pollution-reduction technology program for small jet aircraft engines

    Science.gov (United States)

    Fear, J. S.

    1976-01-01

    Three advanced combustor concepts, designed for the AiResearch TFE 731-2 turbofan engine, were evaluated in screening tests. Goals for carbon monoxide and unburned hydrocarbons were met or closely approached with two of the concepts with relatively modest departures from conventional combustor design practices. A more advanced premixing/prevaporizing combustor, while appearing to have the potential for meeting the oxides of nitrogen goal as well, will require extensive development to make it a practical combustion system. Smoke numbers for the two combustor concepts were well within the EPA smoke standard. Phase 2, Combustor-Engine Compatibility Testing, which is in its early stages, and planned Phase 3, Combustor-Engine Demonstration Testing, are also described.

  5. A Hybrid Neural Network-Genetic Algorithm Technique for Aircraft Engine Performance Diagnostics

    Science.gov (United States)

    Kobayashi, Takahisa; Simon, Donald L.

    2001-01-01

    In this paper, a model-based diagnostic method, which utilizes Neural Networks and Genetic Algorithms, is investigated. Neural networks are applied to estimate the engine internal health, and Genetic Algorithms are applied for sensor bias detection and estimation. This hybrid approach takes advantage of the nonlinear estimation capability provided by neural networks while improving the robustness to measurement uncertainty through the application of Genetic Algorithms. The hybrid diagnostic technique also has the ability to rank multiple potential solutions for a given set of anomalous sensor measurements in order to reduce false alarms and missed detections. The performance of the hybrid diagnostic technique is evaluated through some case studies derived from a turbofan engine simulation. The results show this approach is promising for reliable diagnostics of aircraft engines.

  6. Engineering Encounters: Reverse Engineering

    Science.gov (United States)

    McGowan, Veronica Cassone; Ventura, Marcia; Bell, Philip

    2017-01-01

    This column presents ideas and techniques to enhance your science teaching. This month's issue shares information on how students' everyday experiences can support science learning through engineering design. In this article, the authors outline a reverse-engineering model of instruction and describe one example of how it looked in our fifth-grade…

  7. Cascade Optimization for Aircraft Engines With Regression and Neural Network Analysis - Approximators

    Science.gov (United States)

    Patnaik, Surya N.; Guptill, James D.; Hopkins, Dale A.; Lavelle, Thomas M.

    2000-01-01

    The NASA Engine Performance Program (NEPP) can configure and analyze almost any type of gas turbine engine that can be generated through the interconnection of a set of standard physical components. In addition, the code can optimize engine performance by changing adjustable variables under a set of constraints. However, for engine cycle problems at certain operating points, the NEPP code can encounter difficulties: nonconvergence in the currently implemented Powell's optimization algorithm and deficiencies in the Newton-Raphson solver during engine balancing. A project was undertaken to correct these deficiencies. Nonconvergence was avoided through a cascade optimization strategy, and deficiencies associated with engine balancing were eliminated through neural network and linear regression methods. An approximation-interspersed cascade strategy was used to optimize the engine's operation over its flight envelope. Replacement of Powell's algorithm by the cascade strategy improved the optimization segment of the NEPP code. The performance of the linear regression and neural network methods as alternative engine analyzers was found to be satisfactory. This report considers two examples-a supersonic mixed-flow turbofan engine and a subsonic waverotor-topped engine-to illustrate the results, and it discusses insights gained from the improved version of the NEPP code.

  8. Phased Array Noise Source Localization Measurements Made on a Williams International FJ44 Engine

    Science.gov (United States)

    Podboy, Gary G.; Horvath, Csaba

    2010-01-01

    A 48-microphone planar phased array system was used to acquire noise source localization data on a full-scale Williams International FJ44 turbofan engine. Data were acquired with the array at three different locations relative to the engine, two on the side and one in front of the engine. At the two side locations the planar microphone array was parallel to the engine centerline; at the front location the array was perpendicular to the engine centerline. At each of the three locations, data were acquired at eleven different engine operating conditions ranging from engine idle to maximum (take off) speed. Data obtained with the array off to the side of the engine were spatially filtered to separate the inlet and nozzle noise. Tones occurring in the inlet and nozzle spectra were traced to the low and high speed spools within the engine. The phased array data indicate that the Inflow Control Device (ICD) used during this test was not acoustically transparent; instead, some of the noise emanating from the inlet reflected off of the inlet lip of the ICD. This reflection is a source of error for far field noise measurements made during the test. The data also indicate that a total temperature rake in the inlet of the engine is a source of fan noise.

  9. Vibration modelling and verifications for whole aero-engine

    Science.gov (United States)

    Chen, G.

    2015-08-01

    In this study, a new rotor-ball-bearing-casing coupling dynamic model for a practical aero-engine is established. In the coupling system, the rotor and casing systems are modelled using the finite element method, support systems are modelled as lumped parameter models, nonlinear factors of ball bearings and faults are included, and four types of supports and connection models are defined to model the complex rotor-support-casing coupling system of the aero-engine. A new numerical integral method that combines the Newmark-β method and the improved Newmark-β method (Zhai method) is used to obtain the system responses. Finally, the new model is verified in three ways: (1) modal experiment based on rotor-ball bearing rig, (2) modal experiment based on rotor-ball-bearing-casing rig, and (3) fault simulations for a certain type of missile turbofan aero-engine vibration. The results show that the proposed model can not only simulate the natural vibration characteristics of the whole aero-engine but also effectively perform nonlinear dynamic simulations of a whole aero-engine with faults.

  10. Modular Engine Noise Component Prediction System (MCP) Program Users' Guide

    Science.gov (United States)

    Golub, Robert A. (Technical Monitor); Herkes, William H.; Reed, David H.

    2004-01-01

    This is a user's manual for Modular Engine Noise Component Prediction System (MCP). This computer code allows the user to predict turbofan engine noise estimates. The program is based on an empirical procedure that has evolved over many years at The Boeing Company. The data used to develop the procedure include both full-scale engine data and small-scale model data, and include testing done by Boeing, by the engine manufacturers, and by NASA. In order to generate a noise estimate, the user specifies the appropriate engine properties (including both geometry and performance parameters), the microphone locations, the atmospheric conditions, and certain data processing options. The version of the program described here allows the user to predict three components: inlet-radiated fan noise, aft-radiated fan noise, and jet noise. MCP predicts one-third octave band noise levels over the frequency range of 50 to 10,000 Hertz. It also calculates overall sound pressure levels and certain subjective noise metrics (e.g., perceived noise levels).

  11. A Dynamic Model for the Evaluation of Aircraft Engine Icing Detection and Control-Based Mitigation Strategies

    Science.gov (United States)

    Simon, Donald L.; Rinehart, Aidan W.; Jones, Scott M.

    2017-01-01

    Aircraft flying in regions of high ice crystal concentrations are susceptible to the buildup of ice within the compression system of their gas turbine engines. This ice buildup can restrict engine airflow and cause an uncommanded loss of thrust, also known as engine rollback, which poses a potential safety hazard. The aviation community is conducting research to understand this phenomena, and to identify avoidance and mitigation strategies to address the concern. To support this research, a dynamic turbofan engine model has been created to enable the development and evaluation of engine icing detection and control-based mitigation strategies. This model captures the dynamic engine response due to high ice water ingestion and the buildup of ice blockage in the engines low pressure compressor. It includes a fuel control system allowing engine closed-loop control effects during engine icing events to be emulated. The model also includes bleed air valve and horsepower extraction actuators that, when modulated, change overall engine operating performance. This system-level model has been developed and compared against test data acquired from an aircraft turbofan engine undergoing engine icing studies in an altitude test facility and also against outputs from the manufacturers customer deck. This paper will describe the model and show results of its dynamic response under open-loop and closed-loop control operating scenarios in the presence of ice blockage buildup compared against engine test cell data. Planned follow-on use of the model for the development and evaluation of icing detection and control-based mitigation strategies will also be discussed. The intent is to combine the model and control mitigation logic with an engine icing risk calculation tool capable of predicting the risk of engine icing based on current operating conditions. Upon detection of an operating region of risk for engine icing events, the control mitigation logic will seek to change the

  12. Engineer Ethics

    International Nuclear Information System (INIS)

    Lee, Dae Sik; Kim, Yeong Pil; Kim, Yeong Jin

    2003-03-01

    This book tells of engineer ethics such as basic understanding of engineer ethics with history of engineering as a occupation, definition of engineering and specialized job and engineering, engineer ethics as professional ethics, general principles of ethics and its limitation, ethical theory and application, technique to solve the ethical problems, responsibility, safety and danger, information engineer ethics, biotechnological ethics like artificial insemination, life reproduction, gene therapy and environmental ethics.

  13. Combining effect of optimized axial compressor variable guide vanes and bleed air on the thermodynamic performance of aircraft engine system

    International Nuclear Information System (INIS)

    Kim, Sangjo; Son, Changmin; Kim, Kuisoon

    2017-01-01

    Aim of this work is to provide evidence of the effectiveness of combined use of the variable guide vanes (VGVs) and bleed air on the thermodynamic performance of aircraft engine system. This paper performed the comparative study to evaluate the overall thermal performance of an aircraft engine with optimized VGVs and bleed air, separately or simultaneously. The low-bypass ratio turbofan engine has been modeled with a 0D/1D modeling approach. The genetic algorithm is employed to find the optimum schedule of VGVs and bleed air. There are four types of design variables: (1) the inlet guide vane (IGV) angle, (2) the IGV and 1st stator vane (SV) angles, (3) bleed air mass flow rate at the exit of the axial compressor, and (4) both type 2 and type 3. The optimization is conducted with surge margin constraints of more than 10% and 15% in the axial compressor. The results show that the additional use of the bleed air increases the efficiency of the compressors. Overall, the percentage reductions of the total fuel consumption for the engine with the IGV, 1st SV and bleed air schedule is 1.63% for 15% surge margin constraints when compared with the engine with the IGV schedule. - Highlights: • The effect of combined use of variable guide vanes and bleed air is evaluated. • The genetic algorithm is employed to find the optimum setting angle and bleed air. • A low bypass ratio mixed turbofan engine is analyzed for optimization. • Additional use of the bleed air shows improved overall performance of the engine.

  14. NASA Lewis Helps Company With New Single-Engine Business Turbojet

    Science.gov (United States)

    1998-01-01

    Century Aerospace Corporation, a small company in Albuquerque, New Mexico, is developing a six-seat aircraft powered by a single turbofan engine for general aviation. The company had completed a preliminary design of the jet but needed analyses and testing to proceed with detailed design and subsequent fabrication of a prototype aircraft. NASA Lewis Research Center used computational fluid dynamics (CFD) analyses to ferret out areas of excessive curvature in the inlet where separation might occur. A preliminary look at the results indicated very good inlet performance; and additional calculations, performed with vortex generators installed in the inlet, led to even better results. When it was initially determined that the airflow distortion pattern at the compressor face fell outside of the limits set by the engine manufacturer, the Lewis team studied possible solutions, selected the best, and provided recommendations. CFD results for the inlet system were so good that wind tunnel tests were unnecessary.

  15. The Promise and Challenges of Ultra High Bypass Ratio Engine Technology and Integration

    Science.gov (United States)

    Hughes, Chris

    2011-01-01

    In this presentation, an overview of the research being conducted by the ERA Project in Ultra High Bypass aircraft propulsion and in partnership with Pratt & Whitney with their Geared TurboFan (GTF) is given. The ERA goals are shown followed by a discussion of what areas need to be addressed on the engine to achieve the goals and how the GTF is uniquely qualified to meet the goals through a discussion of what benefits the cycle provides. The first generation GTF architecture is then shown highlighting the areas of collaboration with NASA, and the fuel burn, noise and emissions reductions possible based on initial static ground test and flight test data of the first GTF engine. Finally, a 5 year technology roadmap is presented focusing on Ultra High Bypass propulsion technology research areas that are being pursued and being planned by ERA and P&W under their GTF program.

  16. Pollution reduction technology program for small jet aircraft engines, phase 1

    Science.gov (United States)

    Bruce, T. W.; Davis, F. G.; Kuhn, T. E.; Mongia, H. C.

    1977-01-01

    A series of combustor pressure rig screening tests was conducted on three combustor concepts applied to the TFE731-2 turbofan engine combustion system for the purpose of evaluating their relative emissions reduction potential consistent with prescribed performance, durability, and envelope contraints. The three concepts and their modifications represented increasing potential for reducing emission levels with the penalty of increased hardware complexity and operational risk. Concept 1 entailed advanced modifications to the present production TFE731-2 combustion system. Concept 2 was based on the incorporation of an axial air-assisted airblast fuel injection system. Concept 3 was a staged premix/prevaporizing combustion system. Significant emissions reductions were achieved in all three concepts, consistent with acceptable combustion system performance. Concepts 2 and 3 were identified as having the greatest achievable emissions reduction potential, and were selected to undergo refinement to prepare for ultimate incorporation within an engine.

  17. Model Engine Performance Measurement From Force Balance Instrumentation

    Science.gov (United States)

    Jeracki, Robert J.

    1998-01-01

    A large scale model representative of a low-noise, high bypass ratio turbofan engine was tested for acoustics and performance in the NASA Lewis 9- by 15-Foot Low-Speed Wind Tunnel. This test was part of NASA's continuing Advanced Subsonic Technology Noise Reduction Program. The low tip speed fan, nacelle, and an un-powered core passage (with core inlet guide vanes) were simulated. The fan blades and hub are mounted on a rotating thrust and torque balance. The nacelle, bypass duct stators, and core passage are attached to a six component force balance. The two balance forces, when corrected for internal pressure tares, measure the total thrust-minus-drag of the engine simulator. Corrected for scaling and other effects, it is basically the same force that the engine supports would feel, operating at similar conditions. A control volume is shown and discussed, identifying the various force components of the engine simulator thrust and definitions of net thrust. Several wind tunnel runs with nearly the same hardware installed are compared, to identify the repeatability of the measured thrust-minus-drag. Other wind tunnel runs, with hardware changes that affected fan performance, are compared to the baseline configuration, and the thrust and torque effects are shown. Finally, a thrust comparison between the force balance and nozzle gross thrust methods is shown, and both yield very similar results.

  18. Model-Based Control of an Aircraft Engine using an Optimal Tuner Approach

    Science.gov (United States)

    Connolly, Joseph W.; Chicatelli, Amy; Garg, Sanjay

    2012-01-01

    This paper covers the development of a model-based engine control (MBEC) method- ology applied to an aircraft turbofan engine. Here, a linear model extracted from the Commercial Modular Aero-Propulsion System Simulation 40,000 (CMAPSS40k) at a cruise operating point serves as the engine and the on-board model. The on-board model is up- dated using an optimal tuner Kalman Filter (OTKF) estimation routine, which enables the on-board model to self-tune to account for engine performance variations. The focus here is on developing a methodology for MBEC with direct control of estimated parameters of interest such as thrust and stall margins. MBEC provides the ability for a tighter control bound of thrust over the entire life cycle of the engine that is not achievable using traditional control feedback, which uses engine pressure ratio or fan speed. CMAPSS40k is capable of modeling realistic engine performance, allowing for a verification of the MBEC tighter thrust control. In addition, investigations of using the MBEC to provide a surge limit for the controller limit logic are presented that could provide benefits over a simple acceleration schedule that is currently used in engine control architectures.

  19. Engineering opportunities in nuclear engineering

    International Nuclear Information System (INIS)

    Walton, D.G.

    1980-01-01

    The pattern of education and training of Nuclear Engineers in the UK is outlined under the headings; degree courses for professional engineers, postgraduate courses, education of technician engineers. Universities which offer specific courses are stated and useful addresses listed. (UK)

  20. Engineering Institute

    Science.gov (United States)

    Projects Past Projects Publications NSEC » Engineering Institute Engineering Institute Multidisciplinary engineering research that integrates advanced modeling and simulations, novel sensing systems and new home of Engineering Institute Contact Institute Director Charles Farrar (505) 665-0860 Email UCSD EI

  1. Recent developments in turbomachinery component materials and manufacturing challenges for aero engine applications

    Science.gov (United States)

    Srinivas, G.; Raghunandana, K.; Satish Shenoy, B.

    2018-02-01

    In the recent years the development of turbomachinery materials performance enhancement plays a vital role especially in aircraft air breathing engines like turbojet engine, turboprop engine, turboshaft engine and turbofan engines. Especially the transonic flow engines required highly sophisticated materials where it can sustain the entire thrust which can create by the engine. The main objective of this paper is to give an overview of the present cost-effective and technological capabilities process for turbomachinery component materials. Especially the main focus is given to study the Electro physical, Photonic additive removal process and Electro chemical process for turbomachinery parts manufacture. The aeronautical propulsion based technologies are reviewed thoroughly where in surface reliability, geometrical precession, and material removal and highly strengthened composite material deposition rates usually difficult to cut dedicated steels, Titanium and Nickel based alloys. In this paper the past aeronautical and propulsion mechanical based manufacturing technologies, current sophisticated technologies and also future challenging material processing techniques are covered. The paper also focuses on the brief description of turbomachinery components of shaping process and coating in aeromechanical applications.

  2. Adaptation Method for Overall and Local Performances of Gas Turbine Engine Model

    Science.gov (United States)

    Kim, Sangjo; Kim, Kuisoon; Son, Changmin

    2018-04-01

    An adaptation method was proposed to improve the modeling accuracy of overall and local performances of gas turbine engine. The adaptation method was divided into two steps. First, the overall performance parameters such as engine thrust, thermal efficiency, and pressure ratio were adapted by calibrating compressor maps, and second, the local performance parameters such as temperature of component intersection and shaft speed were adjusted by additional adaptation factors. An optimization technique was used to find the correlation equation of adaptation factors for compressor performance maps. The multi-island genetic algorithm (MIGA) was employed in the present optimization. The correlations of local adaptation factors were generated based on the difference between the first adapted engine model and performance test data. The proposed adaptation method applied to a low-bypass ratio turbofan engine of 12,000 lb thrust. The gas turbine engine model was generated and validated based on the performance test data in the sea-level static condition. In flight condition at 20,000 ft and 0.9 Mach number, the result of adapted engine model showed improved prediction in engine thrust (overall performance parameter) by reducing the difference from 14.5 to 3.3%. Moreover, there was further improvement in the comparison of low-pressure turbine exit temperature (local performance parameter) as the difference is reduced from 3.2 to 0.4%.

  3. Dynamic Performance of High Bypass Ratio Turbine Engines With Water Ingestion

    Science.gov (United States)

    Murthy, S. N. B.

    1996-01-01

    The research on dynamic performance of high bypass turbofan engines includes studies on inlets, turbomachinery and the total engine system operating with air-water mixture; the water may be in vapor, droplet, or film form, and their combinations. Prediction codes (WISGS, WINCOF, WINCOF-1, WINCLR, and Transient Engine Performance Code) for performance changes, as well as changes in blade-casing clearance, have been established and demonstrated in application to actual, generic engines. In view of the continuous changes in water distribution in turbomachinery, the performance of both components and the total engine system must be determined in a time-dependent mode; hence, the determination of clearance changes also requires a time-dependent approach. In general, the performance and clearances changes cannot be scaled either with respect to operating or ingestion conditions. Removal of water prior to phase change is the most effective means of avoiding ingestion effects. Sufficient background has been established to perform definitive, full scale tests on a set of components and a complete engine to establish engine control and operability with various air-water vapor-water mixtures.

  4. Mechanical engineering

    CERN Document Server

    Darbyshire, Alan

    2010-01-01

    Alan Darbyshire's best-selling text book provides five-star high quality content to a potential audience of 13,000 engineering students. It explains the most popular specialist units of the Mechanical Engineering, Manufacturing Engineering and Operations & Maintenance Engineering pathways of the new 2010 BTEC National Engineering syllabus. This challenging textbook also features contributions from specialist lecturers, ensuring that no stone is left unturned.

  5. Constructing an Efficient Self-Tuning Aircraft Engine Model for Control and Health Management Applications

    Science.gov (United States)

    Armstrong, Jeffrey B.; Simon, Donald L.

    2012-01-01

    Self-tuning aircraft engine models can be applied for control and health management applications. The self-tuning feature of these models minimizes the mismatch between any given engine and the underlying engineering model describing an engine family. This paper provides details of the construction of a self-tuning engine model centered on a piecewise linear Kalman filter design. Starting from a nonlinear transient aerothermal model, a piecewise linear representation is first extracted. The linearization procedure creates a database of trim vectors and state-space matrices that are subsequently scheduled for interpolation based on engine operating point. A series of steady-state Kalman gains can next be constructed from a reduced-order form of the piecewise linear model. Reduction of the piecewise linear model to an observable dimension with respect to available sensed engine measurements can be achieved using either a subset or an optimal linear combination of "health" parameters, which describe engine performance. The resulting piecewise linear Kalman filter is then implemented for faster-than-real-time processing of sensed engine measurements, generating outputs appropriate for trending engine performance, estimating both measured and unmeasured parameters for control purposes, and performing on-board gas-path fault diagnostics. Computational efficiency is achieved by designing multidimensional interpolation algorithms that exploit the shared scheduling of multiple trim vectors and system matrices. An example application illustrates the accuracy of a self-tuning piecewise linear Kalman filter model when applied to a nonlinear turbofan engine simulation. Additional discussions focus on the issue of transient response accuracy and the advantages of a piecewise linear Kalman filter in the context of validation and verification. The techniques described provide a framework for constructing efficient self-tuning aircraft engine models from complex nonlinear

  6. Engineering Cartilage

    Science.gov (United States)

    ... Research Matters NIH Research Matters March 3, 2014 Engineering Cartilage Artistic rendering of human stem cells on ... situations has been a major goal in tissue engineering. Cartilage contains water, collagen, proteoglycans, and chondrocytes. Collagens ...

  7. Governing Engineering

    DEFF Research Database (Denmark)

    Buch, Anders

    2012-01-01

    Most people agree that our world face daunting problems and, correctly or not, technological solutions are seen as an integral part of an overall solution. But what exactly are the problems and how does the engineering ‘mind set’ frame these problems? This chapter sets out to unravel dominant...... perspectives in challenge per-ception in engineering in the US and Denmark. Challenge perception and response strategies are closely linked through discursive practices. Challenge perceptions within the engineering community and the surrounding society are thus critical for the shaping of engineering education...... and the engineering profession. Through an analysis of influential reports and position papers on engineering and engineering education the chapter sets out to identify how engineering is problematized and eventually governed. Drawing on insights from governmentality studies the chapter strives to elicit the bodies...

  8. Industrial Engineering

    DEFF Research Database (Denmark)

    Karlsson, Christer

    2015-01-01

    Industrial engineering is a discipline that is concerned with increasing the effectiveness of (primarily) manufacturing and (occasionally).......Industrial engineering is a discipline that is concerned with increasing the effectiveness of (primarily) manufacturing and (occasionally)....

  9. Governing Engineering

    DEFF Research Database (Denmark)

    Buch, Anders

    2011-01-01

    Abstract: Most people agree that our world faces daunting problems and, correctly or not, technological solutions are seen as an integral part of an overall solution. But what exactly are the problems and how does the engineering ‘mind set’ frame these problems? This chapter sets out to unravel...... dominant perspectives in challenge perception in engineering in the US and Denmark. Challenge perception and response strategies are closely linked through discursive practices. Challenge perceptions within the engineering community and the surrounding society are thus critical for the shaping...... of engineering education and the engineering profession. Through an analysis of influential reports and position papers on engineering and engineering education the chapter sets out to identify how engineering is problematized and eventually governed. Drawing on insights from governmentality studies the chapter...

  10. Computer Engineers.

    Science.gov (United States)

    Moncarz, Roger

    2000-01-01

    Looks at computer engineers and describes their job, employment outlook, earnings, and training and qualifications. Provides a list of resources related to computer engineering careers and the computer industry. (JOW)

  11. Engineering _ litteraturliste

    DEFF Research Database (Denmark)

    Sillasen, Martin Krabbe; Daugbjerg, Peer; Nielsen, Keld

    2017-01-01

    Litteraturliste udarbejdet som grundlag for artiklen ”Engineering – svaret på naturfagenes udfordringer?”......Litteraturliste udarbejdet som grundlag for artiklen ”Engineering – svaret på naturfagenes udfordringer?”...

  12. Low cycle fatigue numerical estimation of a high pressure turbine disc for the AL-31F jet engine

    Directory of Open Access Journals (Sweden)

    Spodniak Miroslav

    2017-01-01

    Full Text Available This article deals with the description of an approximate numerical estimation approach of a low cycle fatigue of a high pressure turbine disc for the AL-31F turbofan jet engine. The numerical estimation is based on the finite element method carried out in the SolidWorks software. The low cycle fatigue assessment of a high pressure turbine disc was carried out on the basis of dimensional, shape and material disc characteristics, which are available for the particular high pressure engine turbine. The method described here enables relatively fast setting of economically feasible low cycle fatigue of the assessed high pressure turbine disc using a commercially available software. The numerical estimation of accuracy of a low cycle fatigue depends on the accuracy of required input data for the particular investigated object.

  13. Analysis of the Vortex Street Generated at the Core-Bypass Lip of a Jet-Engine Nozzle

    Science.gov (United States)

    Nogueira, José; Legrand, Mathieu; Nauri, Sara; Rodríguez, Pedro A.; Lecuona, Antonio

    The reduction of the noise generated by jet-engine aircrafts is of growing concern in the present society. A better understanding of the aircraft noise production and the development of predictive tools is of great interest. Within this framework, the CoJeN (Coaxial Jet Noise) European Project includes the measurement of the flow field and the noise generated by typical turbofan jet-engine nozzles. One of the many aspects of interest is the occasional presence of acoustic tones of a defined frequency, symptomatic of the presence of quasiperiodic coherent structures within the flow. This chapter analyzes the characteristics of a vortex street in the core-bypass lip of one of the nozzles under study. The measurements were made by means of advanced PIV techniques within the above-mentioned project.

  14. コア分離型ターボファン・エンジン

    OpenAIRE

    Saito, Yoshio; Endo, Masanori; Matsuda, Yukio; Sugiyama, Nanahisa; Sugahara, Noboru; Yamamoto, Kazuomi; 齊藤 喜夫; 遠藤 征紀; 松田 幸雄; 杉山 七契; 菅原 昇; 山本 一臣

    1996-01-01

    A new concept for a turbofan engine called the separated core turbofan engine is proposed and studied under the research program of the ultrahigh bypass turbofan engine for the next generation high-subsonic transport aircraft. The concept engine consists of two subunits, a core engine and a fan engine which are separated from each other. The results of the conceptual study show that this engine has many potential advantages over the current turbofan engines in many respects, including stabili...

  15. Computational engineering

    CERN Document Server

    2014-01-01

    The book presents state-of-the-art works in computational engineering. Focus is on mathematical modeling, numerical simulation, experimental validation and visualization in engineering sciences. In particular, the following topics are presented: constitutive models and their implementation into finite element codes, numerical models in nonlinear elasto-dynamics including seismic excitations, multiphase models in structural engineering and multiscale models of materials systems, sensitivity and reliability analysis of engineering structures, the application of scientific computing in urban water management and hydraulic engineering, and the application of genetic algorithms for the registration of laser scanner point clouds.

  16. 75 FR 62319 - Airworthiness Directives; Pratt & Whitney JT8D-9, -9A, -11, -15, -17, and -17R Turbofan Engines

    Science.gov (United States)

    2010-10-08

    ... overhauling fan blade leading edges at the first shop visit after 4,000 cycles-in-service (CIS) since the last... proposed to require overhauling fan blade leading edges at the first shop visit after 4,000 CIS since the... Visit Delta Airlines, Inc. requests clarification of the shop visit definition in paragraph (i) of the...

  17. 75 FR 27964 - Airworthiness Directives; Rolls-Royce plc (RR) RB211-22B and RB211-524 Series Turbofan Engines

    Science.gov (United States)

    2010-05-19

    ...-1157; Directorate Identifier 2009-NE-26-AD] RIN 2120-AA64 Airworthiness Directives; Rolls-Royce plc (RR... p.m., Monday through Friday, except Federal holidays. Fax: (202) 493-2251. Contact Rolls-Royce plc... received by the closing date and may amend this proposed AD based on those comments. We will post all...

  18. Validation Ice Crystal Icing Engine Test in the Propulsion Systems Laboratory at NASA Glenn Research Center

    Science.gov (United States)

    Oliver, Michael J.

    2014-01-01

    The Propulsion Systems Laboratory (PSL) is an existing altitude simulation jet engine test facility located at NASA Glenn Research Center in Cleveland, OH. It was modified in 2012 with the integration of an ice crystal cloud generation system. This paper documents the inaugural ice crystal cloud test in PSL--the first ever full scale, high altitude ice crystal cloud turbofan engine test to be conducted in a ground based facility. The test article was a Lycoming ALF502-R5 high bypass turbofan engine, serial number LF01. The objectives of the test were to validate the PSL ice crystal cloud calibration and engine testing methodologies by demonstrating the capability to calibrate and duplicate known flight test events that occurred on the same LF01 engine and to generate engine data to support fundamental and computational research to investigate and better understand the physics of ice crystal icing in a turbofan engine environment while duplicating known revenue service events and conducting test points while varying facility and engine parameters. During PSL calibration testing it was discovered than heated probes installed through tunnel sidewalls experienced ice buildup aft of their location due to ice crystals impinging upon them, melting and running back. Filtered city water was used in the cloud generation nozzle system to provide ice crystal nucleation sites. This resulted in mineralization forming on flow path hardware that led to a chronic degradation of performance during the month long test. Lacking internal flow path cameras, the response of thermocouples along the flow path was interpreted as ice building up. Using this interpretation, a strong correlation between total water content (TWC) and a weaker correlation between median volumetric diameter (MVD) of the ice crystal cloud and the rate of ice buildup along the instrumented flow path was identified. For this test article the engine anti-ice system was required to be turned on before ice crystal

  19. Architectural Engineers

    DEFF Research Database (Denmark)

    Petersen, Rikke Premer

    engineering is addresses from two perspectives – as an educational response and an occupational constellation. Architecture and engineering are two of the traditional design professions and they frequently meet in the occupational setting, but at educational institutions they remain largely estranged....... The paper builds on a multi-sited study of an architectural engineering program at the Technical University of Denmark and an architectural engineering team within an international engineering consultancy based on Denmark. They are both responding to new tendencies within the building industry where...... the role of engineers and architects increasingly overlap during the design process, but their approaches reflect different perceptions of the consequences. The paper discusses some of the challenges that design education, not only within engineering, is facing today: young designers must be equipped...

  20. Tissue engineering

    CERN Document Server

    Fisher, John P; Bronzino, Joseph D

    2007-01-01

    Increasingly viewed as the future of medicine, the field of tissue engineering is still in its infancy. As evidenced in both the scientific and popular press, there exists considerable excitement surrounding the strategy of regenerative medicine. To achieve its highest potential, a series of technological advances must be made. Putting the numerous breakthroughs made in this field into a broad context, Tissue Engineering disseminates current thinking on the development of engineered tissues. Divided into three sections, the book covers the fundamentals of tissue engineering, enabling technologies, and tissue engineering applications. It examines the properties of stem cells, primary cells, growth factors, and extracellular matrix as well as their impact on the development of tissue engineered devices. Contributions focus on those strategies typically incorporated into tissue engineered devices or utilized in their development, including scaffolds, nanocomposites, bioreactors, drug delivery systems, and gene t...

  1. Packaged Capacitive Pressure Sensor System for Aircraft Engine Health Monitoring

    Science.gov (United States)

    Scardelletti, Maximilian C.; Zorman, Christian A.

    2016-01-01

    This paper describes the development of a packaged silicon carbide (SiC) based MEMS pressure sensor system designed specifically for a conventional turbofan engine. The electronic circuit is based on a Clapp-type oscillator that incorporates a 6H-SiC MESFET, a SiCN MEMS capacitive pressure sensor, titanate MIM capacitors, wirewound inductors, and thick film resistors. The pressure sensor serves as the capacitor in the LC tank circuit, thereby linking pressure to the resonant frequency of the oscillator. The oscillator and DC bias circuitry were fabricated on an alumina substrate and secured inside a metal housing. The packaged sensing system reliably operates at 0 to 350 psi and 25 to 540C. The system has a pressure sensitivity of 6.8 x 10E-2 MHzpsi. The packaged system shows negligible difference in frequency response between 25 and 400C. The fully packaged sensor passed standard benchtop acceptance tests and was evaluated on a flight-worthy engine.

  2. Application and Evaluation of Control Modes for Risk-Based Engine Performance Enhancements

    Science.gov (United States)

    Liu, Yuan; Litt, Jonathan S.; Sowers, T. Shane; Owen, A. Karl; Guo, Ten-Huei

    2015-01-01

    The engine control system for civil transport aircraft imposes operational limits on the propulsion system to ensure compliance with safety standards. However, during certain emergency situations, aircraft survivability may benefit from engine performance beyond its normal limits despite the increased risk of failure. Accordingly, control modes were developed to improve the maximum thrust output and responsiveness of a generic high-bypass turbofan engine. The algorithms were designed such that the enhanced performance would always constitute an elevation in failure risk to a consistent predefined likelihood. This paper presents an application of these risk-based control modes to a combined engine/aircraft model. Through computer and piloted simulation tests, the aim is to present a notional implementation of these modes, evaluate their effects on a generic airframe, and demonstrate their usefulness during emergency flight situations. Results show that minimal control effort is required to compensate for the changes in flight dynamics due to control mode activation. The benefits gained from enhanced engine performance for various runway incursion scenarios are investigated. Finally, the control modes are shown to protect against potential instabilities during propulsion-only flight where all aircraft control surfaces are inoperable.

  3. Recent technologies for reduction of aircraft propulsion noise. Kokuki engine soon teigenka no saikin no gijutsu shinpo ni tsuite

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, H [National Aerospace Lab., Chofu, Tokyo (Japan)

    1994-03-10

    Inside the jet engine, the propulsion engine for an aircraft, a high speed air current is flowing, and the rotors such as the fan, compress or, turbine and so forth are rotating with a high speed in its flowing current. The flow itself in which a high speed exhaust jet is discharged in the air from engine exhaust port, and the aerodynamic noise generated by an interaction of the flow with the material bodies are the main noise sources of the aircraft engine. Because the supersonic planes are necessary to fly with mach number 2 - 3 during cruising, the turbojet engine with a large jet exhaust speed or the low bypass ratio turbofan engine is selected. Since a noise reduction by reducing the jet exhaust speed, which was an effective measure for the high subsonic speed passenger plane, can not be applied, a reduction of the supersonic jet noise, which is hard to be reduced, becomes a necessity. In addition, in recent years, a research and development of the advanced turbo prop (ATP) aircraft with a further higher thrust efficiency are advanced as well. The aerodynamical noise reduction technologies of these engines for supersonic airplanes are summarized. 14 refs., 11 figs., 1 tab.

  4. Engineering mechanics

    CERN Document Server

    Gross, Dietmar; Schröder, Jörg; Wall, Wolfgang A; Rajapakse, Nimal

    Statics is the first volume of a three-volume textbook on Engineering Mechanics. The authors, using a time-honoured straightforward and flexible approach, present the basic concepts and principles of mechanics in the clearest and simplest form possible to advanced undergraduate engineering students of various disciplines and different educational backgrounds. An important objective of this book is to develop problem solving skills in a systematic manner. Another aim of this volume is to provide engineering students as well as practising engineers with a solid foundation to help them bridge the gap between undergraduate studies on the one hand and advanced courses on mechanics and/or practical engineering problems on the other. The book contains numerous examples, along with their complete solutions. Emphasis is placed upon student participation in problem solving. The contents of the book correspond to the topics normally covered in courses on basic engineering mechanics at universities and colleges. Now in i...

  5. Invisible Engineers

    Science.gov (United States)

    Ohashi, Hideo

    Questionnaire to ask “mention three names of scientists you know” and “three names of engineers you know” was conducted and the answers from 140 adults were analyzed. The results indicated that the image of scientists is represented by Nobel laureates and that of engineers by great inventors like Thomas Edison and industry founders like Soichiro Honda. In order to reveal the image of engineers among young generation, questionnaire was conducted for pupils in middle and high schools. Answers from 1,230 pupils were analyzed and 226 names mentioned as engineers were classified. White votes reached 60%. Engineers who are neither big inventors nor company founders collected less than 1% of named votes. Engineers are astonishingly invisible from young generation. Countermeasures are proposed.

  6. Global engineering

    International Nuclear Information System (INIS)

    Plass, L.

    2001-01-01

    This article considers the challenges posed by the declining orders in the plant engineering and contracting business in Germany, the need to remain competitive, and essential preconditions for mastering the challenge. The change in engineering approach is illustrated by the building of a methanol plant in Argentina by Lurgi with the basic engineering completed in Frankfurt with involvement of key personnel from Poland, completely engineered subsystems from a Brazilian subsupplier, and detailed engineering work in Frankfurt. The production of methanol from natural gas using the LurgiMega/Methanol process is used as a typical example of the industrial plant construction sector. The prerequisites for successful global engineering are listed, and error costs in plant construction, possible savings, and process intensification are discussed

  7. Human engineering

    International Nuclear Information System (INIS)

    Yang, Seong Hwan; Park, Bum; Gang, Yeong Sik; Gal, Won Mo; Baek, Seung Ryeol; Choe, Jeong Hwa; Kim, Dae Sung

    2006-07-01

    This book mentions human engineering, which deals with introduction of human engineering, Man-Machine system like system design, and analysis and evaluation of Man-Machine system, data processing and data input, display, system control of man, human mistake and reliability, human measurement and design of working place, human working, hand tool and manual material handling, condition of working circumstance, working management, working analysis, motion analysis working measurement, and working improvement and design in human engineering.

  8. Engineering Electromagnetics

    International Nuclear Information System (INIS)

    Kim, Se Yun

    2009-01-01

    This book deals with engineering electromagnetics. It contains seven chapters, which treats understanding of engineering electromagnetics such as magnet and electron spin, current and a magnetic field and an electromagnetic wave, Essential tool for engineering electromagnetics on rector and scalar, rectangular coordinate system and curl vector, electrostatic field with coulomb rule and method of electric images, Biot-Savart law, Ampere law and magnetic force, Maxwell equation and an electromagnetic wave and reflection and penetration of electromagnetic plane wave.

  9. Information engineering

    Energy Technology Data Exchange (ETDEWEB)

    Hunt, D.N.

    1997-02-01

    The Information Engineering thrust area develops information technology to support the programmatic needs of Lawrence Livermore National Laboratory`s Engineering Directorate. Progress in five programmatic areas are described in separate reports contained herein. These are entitled Three-dimensional Object Creation, Manipulation, and Transport, Zephyr:A Secure Internet-Based Process to Streamline Engineering Procurements, Subcarrier Multiplexing: Optical Network Demonstrations, Parallel Optical Interconnect Technology Demonstration, and Intelligent Automation Architecture.

  10. Software engineering

    CERN Document Server

    Sommerville, Ian

    2010-01-01

    The ninth edition of Software Engineering presents a broad perspective of software engineering, focusing on the processes and techniques fundamental to the creation of reliable, software systems. Increased coverage of agile methods and software reuse, along with coverage of 'traditional' plan-driven software engineering, gives readers the most up-to-date view of the field currently available. Practical case studies, a full set of easy-to-access supplements, and extensive web resources make teaching the course easier than ever.

  11. Mechanical Engineering | Classification | College of Engineering & Applied

    Science.gov (United States)

    Engineering Concentration on Ergonomics M.S. Program in Computer Science Interdisciplinary Concentration on Energy Doctoral Programs in Engineering Non-Degree Candidate Departments Biomedical Engineering Biomedical Engineering Industry Advisory Council Civil & Environmental Engineering Civil &

  12. Biomedical Engineering | Classification | College of Engineering & Applied

    Science.gov (United States)

    Engineering Concentration on Ergonomics M.S. Program in Computer Science Interdisciplinary Concentration on Energy Doctoral Programs in Engineering Non-Degree Candidate Departments Biomedical Engineering Biomedical Engineering Industry Advisory Council Civil & Environmental Engineering Civil &

  13. Materials Science & Engineering | Classification | College of Engineering &

    Science.gov (United States)

    Biomedical Engineering Concentration on Ergonomics M.S. Program in Computer Science Interdisciplinary Concentration on Energy Doctoral Programs in Engineering Non-Degree Candidate Departments Biomedical Engineering Biomedical Engineering Industry Advisory Council Civil & Environmental Engineering Civil &

  14. Electrical Engineering | Classification | College of Engineering & Applied

    Science.gov (United States)

    Engineering Concentration on Ergonomics M.S. Program in Computer Science Interdisciplinary Concentration on Energy Doctoral Programs in Engineering Non-Degree Candidate Departments Biomedical Engineering Biomedical Engineering Industry Advisory Council Civil & Environmental Engineering Civil &

  15. Engineering tribology

    CERN Document Server

    Stachowiak, Gwidon; Batchelor, A W; Batchelor, Andrew W

    2005-01-01

    As with the previous edition, the third edition of Engineering Tribology provides a thorough understanding of friction and wear using technologies such as lubrication and special materials. Tribology is a complex topic with its own terminology and specialized concepts, yet is vitally important throughout all engineering disciplines, including mechanical design, aerodynamics, fluid dynamics and biomedical engineering. This edition includes updated material on the hydrodynamic aspects of tribology as well as new advances in the field of biotribology, with a focus throughout on the engineering ap

  16. Food Engineering

    NARCIS (Netherlands)

    Boom, R.M.; Janssen, A.E.M.

    2014-01-01

    Food engineering is a rapidly changing discipline. Traditionally, the main focus was on food preservation and stabilization, whereas trends now are on diversity, health, taste, and sustainable production. Next to a general introduction of the definition of food engineering, this article gives a

  17. Fluids engineering

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    Fluids engineering has played an important role in many applications, from ancient flood control to the design of high-speed compact turbomachinery. New applications of fluids engineering, such as in high-technology materials processing, biotechnology, and advanced combustion systems, have kept up unwaining interest in the subject. More accurate and sophisticated computational and measurement techniques are also constantly being developed and refined. On a more fundamental level, nonlinear dynamics and chaotic behavior of fluid flow are no longer an intellectual curiosity and fluid engineers are increasingly interested in finding practical applications for these emerging sciences. Applications of fluid technology to new areas, as well as the need to improve the design and to enhance the flexibility and reliability of flow-related machines and devices will continue to spur interest in fluids engineering. The objectives of the present seminar were: to exchange current information on arts, science, and technology of fluids engineering; to promote scientific cooperation between the fluids engineering communities of both nations, and to provide an opportunity for the participants and their colleagues to explore possible joint research programs in topics of high priority and mutual interest to both countries. The Seminar provided an excellent forum for reviewing the current state and future needs of fluids engineering for the two nations. With the Seminar ear-marking the first formal scientific exchange between Korea and the United States in the area of fluids engineering, the scope was deliberately left broad and general

  18. Biomedical Engineering

    CERN Document Server

    Suh, Sang C; Tanik, Murat M

    2011-01-01

    Biomedical Engineering: Health Care Systems, Technology and Techniques is an edited volume with contributions from world experts. It provides readers with unique contributions related to current research and future healthcare systems. Practitioners and researchers focused on computer science, bioinformatics, engineering and medicine will find this book a valuable reference.

  19. Genetic Engineering

    Science.gov (United States)

    Phillips, John

    1973-01-01

    Presents a review of genetic engineering, in which the genotypes of plants and animals (including human genotypes) may be manipulated for the benefit of the human species. Discusses associated problems and solutions and provides an extensive bibliography of literature relating to genetic engineering. (JR)

  20. Corrosion Engineering.

    Science.gov (United States)

    White, Charles V.

    A description is provided for a Corrosion and Corrosion Control course offered in the Continuing Engineering Education Program at the General Motors Institute (GMI). GMI is a small cooperative engineering school of approximately 2,000 students who alternate between six-week periods of academic study and six weeks of related work experience in…

  1. Engineering surveying

    CERN Document Server

    Schofield, W

    2001-01-01

    The aim of Engineering Surveying has always been to impart and develop a clear understanding of the basic topics of the subject. The author has fully revised the book to make it the most up-to-date and relevant textbook available on the subject.The book also contains the latest information on trigonometric levelling, total stations and one-person measuring systems. A new chapter on satellites ensures a firm grasp of this vitally important topic.The text covers engineering surveying modules for civil engineering students on degree courses and forms a reference for the engineering surveying module in land surveying courses. It will also prove to be a valuable reference for practitioners.* Simple clear introduction to surveying for engineers* Explains key techniques and methods* Details reading systems and satellite position fixing

  2. Emotional engineering

    CERN Document Server

    In an age of increasing complexity, diversification and change, customers expect services that cater to their needs and to their tastes. Emotional Engineering vol 2. describes how their expectations can be satisfied and managed throughout the product life cycle, if producers focus their attention more on emotion. Emotional engineering provides the means to integrate products to create a new social framework and develops services beyond product realization to create of value across a full lifetime.  14 chapters cover a wide range of topics that can be applied to product, process and industry development, with special attention paid to the increasing importance of sensing in the age of extensive and frequent changes, including: • Multisensory stimulation and user experience  • Physiological measurement • Tactile sensation • Emotional quality management • Mental model • Kansei engineering.   Emotional Engineering vol 2 builds on Dr Fukuda’s previous book, Emotional Engineering, and provides read...

  3. Model-Based Control of a Nonlinear Aircraft Engine Simulation using an Optimal Tuner Kalman Filter Approach

    Science.gov (United States)

    Connolly, Joseph W.; Csank, Jeffrey Thomas; Chicatelli, Amy; Kilver, Jacob

    2013-01-01

    This paper covers the development of a model-based engine control (MBEC) methodology featuring a self tuning on-board model applied to an aircraft turbofan engine simulation. Here, the Commercial Modular Aero-Propulsion System Simulation 40,000 (CMAPSS40k) serves as the MBEC application engine. CMAPSS40k is capable of modeling realistic engine performance, allowing for a verification of the MBEC over a wide range of operating points. The on-board model is a piece-wise linear model derived from CMAPSS40k and updated using an optimal tuner Kalman Filter (OTKF) estimation routine, which enables the on-board model to self-tune to account for engine performance variations. The focus here is on developing a methodology for MBEC with direct control of estimated parameters of interest such as thrust and stall margins. Investigations using the MBEC to provide a stall margin limit for the controller protection logic are presented that could provide benefits over a simple acceleration schedule that is currently used in traditional engine control architectures.

  4. Recent progress in fan and compressor for aeroengine. Koku engine yo fan asshukuki no saikin no gijutsu shinpo

    Energy Technology Data Exchange (ETDEWEB)

    Saito, Y [National Aerospace Lab., Chofu, Tokyo (Japan)

    1994-03-10

    As the main components of the aeroengine, the fan and compressor reach to extremely high level stage technologically. Also at present when about 50 years passed after the jet engine was applied in practice, however, an effort for a modification is being continued, and furthermore even in the 1990s, the engines that adopted the new technologies are in succession being put in practical application. New engines in the 1990s are being applied in practice by adopting the study results on fan and compressor from the 1970s to the 1980s. Because, which way the future fan and compressor of the aircraft will go to has a relation with an aircraft trend from now on, and even in the 2000s the high subsonic speed aircrafts will be a center of the private air planes. The engine of high subsonic speed aircraft in the next generation will become an ultrahigh bypass ratio engine, the thrust efficiency is raised and noise is lowered, by lowering a fan pressure ratio and by increasing an air flow quantity compared with the current high bypass ratio turbofan engine. 16 figs.

  5. Numerical simulations on increasing turbojet engines exhaust mixture ratio using fluidic chevrons

    Directory of Open Access Journals (Sweden)

    Adrian GRUZEA

    2017-06-01

    Full Text Available This paper refers to some aspects regarding the terms “chevron” and “fluidic chevron” and to the process of increasing the jet engines exhaust mixing rate towards achieving noise reduction. One of the noise reduction methods consists in covering the high velocity main flow with a secondary one, having a much lower velocity, similar to the turbofan engines. The fluidic chevrons try to accomplish these requirements, being used just in particular moments of the flight. This study will be based on numerical simulations carried using the commercial software ANSYS. The geometry used will the based on the micro jet engine JetCat P80, equipping the turbines laboratory from the Faculty of Aerospace Engineering. A research based on the measured geometric, gasodynamic and cinematic parameters will be carried varying the mass flow and keeping the immersion angle constant. As a result of these simulations we’ll observe the influence of the mentioned parameters on the jet’s flow field.

  6. Glycosylation Engineering

    DEFF Research Database (Denmark)

    Clausen, Henrik; Wandall, Hans H.; Steentoft, Catharina

    2017-01-01

    Knowledge of the cellular pathways of glycosylation across phylogeny provides opportunities for designing glycans via genetic engineering in a wide variety of cell types including bacteria, fungi, plant cells, and mammalian cells. The commercial demand for glycosylation engineering is broad......, including production of biological therapeutics with defined glycosylation (Chapter 57). This chapter describes how knowledge of glycan structures and their metabolism (Parts I–III of this book) has led to the current state of glycosylation engineering in different cell types. Perspectives for rapid...

  7. Engineering mathematics

    CERN Document Server

    Bird, John

    2014-01-01

    A practical introduction to the core mathematics required for engineering study and practiceNow in its seventh edition, Engineering Mathematics is an established textbook that has helped thousands of students to succeed in their exams.John Bird's approach is based on worked examples and interactive problems. This makes it ideal for students from a wide range of academic backgrounds as the student can work through the material at their own pace. Mathematical theories are explained in a straightforward manner, being supported by practical engineering examples and applications in order to ensure

  8. Engineering mathematics

    CERN Document Server

    Stroud, K A

    2013-01-01

    A groundbreaking and comprehensive reference that's been a bestseller since it first debuted in 1970, the new seventh edition of Engineering Mathematics has been thoroughly revised and expanded. Providing a broad mathematical survey, this innovative volume covers a full range of topics from the very basic to the advanced. Whether you're an engineer looking for a useful on-the-job reference or want to improve your mathematical skills, or you are a student who needs an in-depth self-study guide, Engineering Mathematics is sure to come in handy time and time again.

  9. Software engineering

    CERN Document Server

    Sommerville, Ian

    2016-01-01

    For courses in computer science and software engineering The Fundamental Practice of Software Engineering Software Engineering introduces readers to the overwhelmingly important subject of software programming and development. In the past few years, computer systems have come to dominate not just our technological growth, but the foundations of our world's major industries. This text seeks to lay out the fundamental concepts of this huge and continually growing subject area in a clear and comprehensive manner. The Tenth Edition contains new information that highlights various technological updates of recent years, providing readers with highly relevant and current information. Sommerville's experience in system dependability and systems engineering guides the text through a traditional plan-based approach that incorporates some novel agile methods. The text strives to teach the innovators of tomorrow how to create software that will make our world a better, safer, and more advanced place to live.

  10. Harmonic engine

    Science.gov (United States)

    Bennett, Charles L [Livermore, CA

    2009-10-20

    A high efficiency harmonic engine based on a resonantly reciprocating piston expander that extracts work from heat and pressurizes working fluid in a reciprocating piston compressor. The engine preferably includes harmonic oscillator valves capable of oscillating at a resonant frequency for controlling the flow of working fluid into and out of the expander, and also preferably includes a shunt line connecting an expansion chamber of the expander to a buffer chamber of the expander for minimizing pressure variations in the fluidic circuit of the engine. The engine is especially designed to operate with very high temperature input to the expander and very low temperature input to the compressor, to produce very high thermal conversion efficiency.

  11. Engineering personnel

    International Nuclear Information System (INIS)

    Paskievici, W.

    The expansion of nuclear power is taxing human, material, and capital resources in developed and developing countries. This paper explores the human resources as represented by employment, graduation statistics, and educational curricula for nuclear engineers. (E.C.B.)

  12. Green Engineering

    Science.gov (United States)

    Green Engineering is the design, commercialization and use of processes and products that are feasible and economical while reducing the generation of pollution at the source and minimizing the risk to human health and the environment.

  13. Coastal Engineering

    NARCIS (Netherlands)

    Van der Velden, E.T.J.M.

    1989-01-01

    Introduction, waves, sediment transport, littoral transport, lonshore sediment transport, onshore-offshore sediment transport, coastal changes, dune erosion and storm surges, sedimentation in channels and trenches, coastal engineering in practice.

  14. Geoenvironmental engineering

    International Nuclear Information System (INIS)

    Shin, Eun Cheol; Park, Jeong Jun

    2009-08-01

    This book deals with definition of soil and scope of clean-up of soil, trend of geoenvironmental engineering at home and foreign countries, main concern of geoenvironmental engineering in domestic and abroad, design and building of landfills such as summary, trend of landfill policy in Korea, post management of landfill facilities, stabilizing and stability of landfill, research method and soil pollution source, restoration technology of soil pollution like restoration technique of oil pollution with thermal processing.

  15. Microwave engineering

    CERN Document Server

    Pozar, David M

    2012-01-01

    The 4th edition of this classic text provides a thorough coverage of RF and microwave engineering concepts, starting from fundamental principles of electrical engineering, with applications to microwave circuits and devices of practical importance.  Coverage includes microwave network analysis, impedance matching, directional couplers and hybrids, microwave filters, ferrite devices, noise, nonlinear effects, and the design of microwave oscillators, amplifiers, and mixers. Material on microwave and RF systems includes wireless communications, radar, radiometry, and radiation hazards. A large

  16. Reliability Engineering

    International Nuclear Information System (INIS)

    Lee, Sang Yong

    1992-07-01

    This book is about reliability engineering, which describes definition and importance of reliability, development of reliability engineering, failure rate and failure probability density function about types of it, CFR and index distribution, IFR and normal distribution and Weibull distribution, maintainability and movability, reliability test and reliability assumption in index distribution type, normal distribution type and Weibull distribution type, reliability sampling test, reliability of system, design of reliability and functionality failure analysis by FTA.

  17. Systems Engineering

    OpenAIRE

    Vaughan, William W.

    2016-01-01

    The term “systems engineering” when entered into the Google search page, produces a significant number of results, evidence that systems engineering is recognized as being important for the success of essentially all products. Since most readers of this item will be rather well versed in documents concerning systems engineering, I have elected to share some of the points made on this subject in a document developed by the European Cooperation for Space Standardization (ECSS), a component of t...

  18. Analysis of gas turbine engines using water and oxygen injection to achieve high Mach numbers and high thrust

    Science.gov (United States)

    Henneberry, Hugh M.; Snyder, Christopher A.

    1993-01-01

    An analysis of gas turbine engines using water and oxygen injection to enhance performance by increasing Mach number capability and by increasing thrust is described. The liquids are injected, either separately or together, into the subsonic diffuser ahead of the engine compressor. A turbojet engine and a mixed-flow turbofan engine (MFTF) are examined, and in pursuit of maximum thrust, both engines are fitted with afterburners. The results indicate that water injection alone can extend the performance envelope of both engine types by one and one-half Mach numbers at which point water-air ratios reach 17 or 18 percent and liquid specific impulse is reduced to some 390 to 470 seconds, a level about equal to the impulse of a high energy rocket engine. The envelope can be further extended, but only with increasing sacrifices in liquid specific impulse. Oxygen-airflow ratios as high as 15 percent were investigated for increasing thrust. Using 15 percent oxygen in combination with water injection at high supersonic Mach numbers resulted in thrust augmentation as high as 76 percent without any significant decrease in liquid specific impulse. The stoichiometric afterburner exit temperature increased with increasing oxygen flow, reaching 4822 deg R in the turbojet engine at a Mach number of 3.5. At the transonic Mach number of 0.95 where no water injection is needed, an oxygen-air ratio of 15 percent increased thrust by some 55 percent in both engines, along with a decrease in liquid specific impulse of 62 percent. Afterburner temperature was approximately 4700 deg R at this high thrust condition. Water and/or oxygen injection are simple and straightforward strategies to improve engine performance and they will add little to engine weight. However, if large Mach number and thrust increases are required, liquid flows become significant, so that operation at these conditions will necessarily be of short duration.

  19. Hire a Milwaukee Engineer | College of Engineering & Applied Science

    Science.gov (United States)

    Electrical Engineering Instructional Laboratories Student Resources Industrial & Manufacturing Engineering Industrial & Manufacturing Engineering Academic Programs Industrial & Manufacturing Engineering Major Industrial & Manufacturing Engineering Minor Industrial & Manufacturing Engineering

  20. Engineering physics

    CERN Document Server

    Mukherji, Uma

    2015-01-01

    ENGINEERING PHYSICS is designed as a textbook for first year engineering students of a two semester course in Applied Physics according to new revised syllabus. However the scope of this book is not only limited to undergraduate engineering students and science students, it can also serve as a reference book for practicing scientists.Advanced technological topics like LCD, Squid, Maglev system, Electron microscopes, MRI, Photonics - Photonic fibre, Nano-particles, CNT, Quantum computing etc., are explained with basic underlying principles of Physics.This text explained following topics with numerous solved, unsolved problems and questions from different angles. Part-I contains crystal structure, Liquid crystal, Thermo-electric effect, Thermionic emission, Ultrasonic, Acoustics, semiconductor and magnetic materials. Whereas Part-2 contains Optics, X-rays, Electron optics, Dielectric materials, Quantum Physics and Schrodinger wave equation, Laser, Fibre-optics and Holography, Radio-activity, Super-conductivity,...

  1. Music engineering

    CERN Document Server

    Brice, Richard

    2001-01-01

    Music Engineering is a hands-on guide to the practical aspects of electric and electronic music. It is both a compelling read and an essential reference guide for anyone using, choosing, designing or studying the technology of modern music. The technology and underpinning science are introduced through the real life demands of playing and recording, and illustrated with references to well known classic recordings to show how a particular effect is obtained thanks to the ingenuity of the engineer as well as the musician. In addition, an accompanying companion website containing over 50 specially chosen tracks for download, provides practical demonstrations of the effects and techniques described in the book. Written by a music enthusiast and electronic engineer, this book covers the electronics and physics of the subject as well as the more subjective aspects. The second edition includes an updated Digital section including MPEG3 and fact sheets at the end of each chapter to summarise the key electronics and s...

  2. Engineering surveying

    CERN Document Server

    Schofield, W

    2007-01-01

    Engineering surveying involves determining the position of natural and man-made features on or beneath the Earth's surface and utilizing these features in the planning, design and construction of works. It is a critical part of any engineering project. Without an accurate understanding of the size, shape and nature of the site the project risks expensive and time-consuming errors or even catastrophic failure.Engineering Surveying 6th edition covers all the basic principles and practice of this complex subject and the authors bring expertise and clarity. Previous editions of this classic text have given readers a clear understanding of fundamentals such as vertical control, distance, angles and position right through to the most modern technologies, and this fully updated edition continues that tradition.This sixth edition includes:* An introduction to geodesy to facilitate greater understanding of satellite systems* A fully updated chapter on GPS, GLONASS and GALILEO for satellite positioning in surveying* Al...

  3. Engineering Optics

    CERN Document Server

    Iizuka, Keigo

    2008-01-01

    Engineering Optics is a book for students who want to apply their knowledge of optics to engineering problems, as well as for engineering students who want to acquire the basic principles of optics. It covers such important topics as optical signal processing, holography, tomography, holographic radars, fiber optical communication, electro- and acousto-optic devices, and integrated optics (including optical bistability). As a basis for understanding these topics, the first few chapters give easy-to-follow explanations of diffraction theory, Fourier transforms, and geometrical optics. Practical examples, such as the video disk, the Fresnel zone plate, and many more, appear throughout the text, together with numerous solved exercises. There is an entirely new section in this updated edition on 3-D imaging.

  4. Biochemistry engineering

    International Nuclear Information System (INIS)

    Jang, Ho Nam

    1993-01-01

    This deals with biochemistry engineering with nine chapters. It explains bionics on development and prospect, basics of life science on classification and structure, enzyme and metabolism, fundamentals of chemical engineering on viscosity, shear rate, PFR, CSTR, mixing, dispersion, measurement and response, Enzyme kinetics, competitive inhibition, pH profile, temperature profile, stoichiometry and fermentation kinetics, bio-reactor on Enzyme-reactor and microorganism-reactor, measurement and processing on data acquisition and data processing, separation and purification, waste water treatment and economics of bionics process.

  5. Micro Engineering

    DEFF Research Database (Denmark)

    Alting, Leo; Kimura, F.; Hansen, Hans Nørgaard

    2003-01-01

    The paper addresses the questions of how micro products are designed and how they are manufactured. Definitions of micro products and micro engineering are discussed and the presentation is aimed at describing typical issues, possibilities and tools regarding design of micro products. The implica......The paper addresses the questions of how micro products are designed and how they are manufactured. Definitions of micro products and micro engineering are discussed and the presentation is aimed at describing typical issues, possibilities and tools regarding design of micro products...

  6. Engineering tribology

    CERN Document Server

    Stachowiak, Gwidon

    2014-01-01

    Engineering Tribology, 4th Edition is an established introductory reference focusing on the key concepts and engineering implications of tribology. Taking an interdisciplinary view, the book brings together the relevant knowledge from different fields needed to achieve effective analysis and control of friction and wear. Updated to cover recent advances in tribology, this new edition includes new sections on ionic and mesogenic lubricants, surface texturing, and multiscale characterization of 3D surfaces and coatings. Current trends in nanotribology are discussed, such as those relating to

  7. Software engineering

    CERN Document Server

    Thorin, Marc

    1985-01-01

    Software Engineering describes the conceptual bases as well as the main methods and rules on computer programming. This book presents software engineering as a coherent and logically built synthesis and makes it possible to properly carry out an application of small or medium difficulty that can later be developed and adapted to more complex cases. This text is comprised of six chapters and begins by introducing the reader to the fundamental notions of entities, actions, and programming. The next two chapters elaborate on the concepts of information and consistency domains and show that a proc

  8. Corrosion engineering

    Energy Technology Data Exchange (ETDEWEB)

    Fontana, M.G.

    1986-01-01

    This book emphasizes the engineering approach to handling corrosion. It presents corrosion data by corrosives or environments rather than by materials. It discusses the corrosion engineering of noble metals, ''exotic'' metals, non-metallics, coatings, mechanical properties, and corrosion testing, as well as modern concepts. New sections have been added on fracture mechanics, laser alloying, nuclear waste isolation, solar energy, geothermal energy, and the Statue of Liberty. Special isocorrosion charts, developed by the author, are introduced as a quick way to look at candidates for a particular corrosive.

  9. Engineering Obsolescence

    DEFF Research Database (Denmark)

    Cohn, Marisa

    2014-01-01

    Editor's Note: In this contribution to the series on Hackers, Makers, and Engineers, she tells us about her research on relationships to technological change in a long-lived NASA-ESA software infrastructure project. Her research considers how people live alongside technological change, inhabit...

  10. Combustion engineering

    CERN Document Server

    Ragland, Kenneth W

    2011-01-01

    Introduction to Combustion Engineering The Nature of Combustion Combustion Emissions Global Climate Change Sustainability World Energy Production Structure of the Book   Section I: Basic Concepts Fuels Gaseous Fuels Liquid Fuels Solid Fuels Problems Thermodynamics of Combustion Review of First Law Concepts Properties of Mixtures Combustion StoichiometryChemical EnergyChemical EquilibriumAdiabatic Flame TemperatureChemical Kinetics of CombustionElementary ReactionsChain ReactionsGlobal ReactionsNitric Oxide KineticsReactions at a Solid SurfaceProblemsReferences  Section II: Combustion of Gaseous and Vaporized FuelsFlamesLaminar Premixed FlamesLaminar Flame TheoryTurbulent Premixed FlamesExplosion LimitsDiffusion FlamesGas-Fired Furnaces and BoilersEnergy Balance and EfficiencyFuel SubstitutionResidential Gas BurnersIndustrial Gas BurnersUtility Gas BurnersLow Swirl Gas BurnersPremixed-Charge Engine CombustionIntroduction to the Spark Ignition EngineEngine EfficiencyOne-Zone Model of Combustion in a Piston-...

  11. Biocommodity Engineering.

    Science.gov (United States)

    Lynd; Wyman; Gerngross

    1999-10-01

    The application of biotechnology to the production of commodity products (fuels, chemicals, and materials) offering benefits in terms of sustainable resource supply and environmental quality is an emergent area of intellectual endeavor and industrial practice with great promise. Such "biocommodity engineering" is distinct from biotechnology motivated by health care at multiple levels, including economic driving forces, the importance of feedstocks and cost-motivated process engineering, and the scale of application. Plant biomass represents both the dominant foreseeable source of feedstocks for biotechnological processes as well as the only foreseeable sustainable source of organic fuels, chemicals, and materials. A variety of forms of biomass, notably many cellulosic feedstocks, are potentially available at a large scale and are cost-competitive with low-cost petroleum whether considered on a mass or energy basis, and in terms of price defined on a purchase or net basis for both current and projected mature technology, and on a transfer basis for mature technology. Thus the central, and we believe surmountable, impediment to more widespread application of biocommodity engineering is the general absence of low-cost processing technology. Technological and research challenges associated with converting plant biomass into commodity products are considered relative to overcoming the recalcitrance of cellulosic biomass (converting cellulosic biomass into reactive intermediates) and product diversification (converting reactive intermediates into useful products). Advances are needed in pretreatment technology to make cellulosic materials accessible to enzymatic hydrolysis, with increased attention to the fundamental chemistry operative in pretreatment processes likely to accelerate progress. Important biotechnological challenges related to the utilization of cellulosic biomass include developing cellulase enzymes and microorganisms to produce them, fermentation of

  12. Engineering Review Information System

    Science.gov (United States)

    Grems, III, Edward G. (Inventor); Henze, James E. (Inventor); Bixby, Jonathan A. (Inventor); Roberts, Mark (Inventor); Mann, Thomas (Inventor)

    2015-01-01

    A disciplinal engineering review computer information system and method by defining a database of disciplinal engineering review process entities for an enterprise engineering program, opening a computer supported engineering item based upon the defined disciplinal engineering review process entities, managing a review of the opened engineering item according to the defined disciplinal engineering review process entities, and closing the opened engineering item according to the opened engineering item review.

  13. Phase-Based Adaptive Estimation of Magnitude-Squared Coherence Between Turbofan Internal Sensors and Far-Field Microphone Signals

    Science.gov (United States)

    Miles, Jeffrey Hilton

    2015-01-01

    A cross-power spectrum phase based adaptive technique is discussed which iteratively determines the time delay between two digitized signals that are coherent. The adaptive delay algorithm belongs to a class of algorithms that identifies a minimum of a pattern matching function. The algorithm uses a gradient technique to find the value of the adaptive delay that minimizes a cost function based in part on the slope of a linear function that fits the measured cross power spectrum phase and in part on the standard error of the curve fit. This procedure is applied to data from a Honeywell TECH977 static-engine test. Data was obtained using a combustor probe, two turbine exit probes, and far-field microphones. Signals from this instrumentation are used estimate the post-combustion residence time in the combustor. Comparison with previous studies of the post-combustion residence time validates this approach. In addition, the procedure removes the bias due to misalignment of signals in the calculation of coherence which is a first step in applying array processing methods to the magnitude squared coherence data. The procedure also provides an estimate of the cross-spectrum phase-offset.

  14. Robot engineering

    International Nuclear Information System (INIS)

    Jung, Seul

    2006-02-01

    This book deals with robot engineering, giving descriptions of robot's history, current tendency of robot field, work and characteristic of industrial robot, essential merit and vector, application of matrix, analysis of basic vector, expression of Denavit-Hartenberg, robot kinematics such as forward kinematics, inverse kinematics, cases of MATLAB program, and motion kinematics, robot kinetics like moment of inertia, centrifugal force and coriolis power, and Euler-Lagrangian equation course plan, SIMULINK position control of robots.

  15. Robot engineering

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Seul

    2006-02-15

    This book deals with robot engineering, giving descriptions of robot's history, current tendency of robot field, work and characteristic of industrial robot, essential merit and vector, application of matrix, analysis of basic vector, expression of Denavit-Hartenberg, robot kinematics such as forward kinematics, inverse kinematics, cases of MATLAB program, and motion kinematics, robot kinetics like moment of inertia, centrifugal force and coriolis power, and Euler-Lagrangian equation course plan, SIMULINK position control of robots.

  16. Planetary engineering

    Science.gov (United States)

    Pollack, James B.; Sagan, Carl

    1991-01-01

    Assuming commercial fusion power, heavy lift vehicles and major advances in genetic engineering, the authors survey possible late-21st century methods of working major transformations in planetary environments. Much more Earthlike climates may be produced on Mars by generating low freezing point greenhouse gases from indigenous materials; on Venus by biological conversion of CO2 to graphite, by canceling the greenhouse effect with high-altitude absorbing fine particles, or by a sunshield at the first Lagrangian point; and on Titan by greenhouses and/or fusion warming. However, in our present state of ignorance we cannot guarantee a stable endstate or exclude unanticipated climatic feedbacks or other unintended consequences. Moreover, as the authors illustrate by several examples, many conceivable modes of planetary engineering are so wasteful of scarce solar system resources and so destructive of important scientific information as to raise profound ethical issues, even if they were economically feasible, which they are not. Global warming on Earth may lead to calls for mitigation by planetary engineering, e.g., emplacement and replenishment of anti-greenhouse layers at high altitudes, or sunshields in space. But here especially we must be concerned about precision, stability, and inadvertent side-effects. The safest and most cost-effective means of countering global warming - beyond, e.g., improved energy efficiency, CFC bans and alternative energy sources - is the continuing reforestation of approximately 2 times 107 sq km of the Earth's surface. This can be accomplished with present technology and probably at the least cost.

  17. Planetary engineering

    Science.gov (United States)

    Pollack, James B.; Sagan, Carl

    Assuming commercial fusion power, heavy lift vehicles and major advances in genetic engineering, the authors survey possible late-21st century methods of working major transformations in planetary environments. Much more Earthlike climates may be produced on Mars by generating low freezing point greenhouse gases from indigenous materials; on Venus by biological conversion of CO2 to graphite, by canceling the greenhouse effect with high-altitude absorbing fine particles, or by a sunshield at the first Lagrangian point; and on Titan by greenhouses and/or fusion warming. However, in our present state of ignorance we cannot guarantee a stable endstate or exclude unanticipated climatic feedbacks or other unintended consequences. Moreover, as the authors illustrate by several examples, many conceivable modes of planetary engineering are so wasteful of scarce solar system resources and so destructive of important scientific information as to raise profound ethical issues, even if they were economically feasible, which they are not. Global warming on Earth may lead to calls for mitigation by planetary engineering, e.g., emplacement and replenishment of anti-greenhouse layers at high altitudes, or sunshields in space. But here especially we must be concerned about precision, stability, and inadvertent side-effects. The safest and most cost-effective means of countering global warming - beyond, e.g., improved energy efficiency, CFC bans and alternative energy sources - is the continuing reforestation of approximately 2 times 107 sq km of the Earth's surface. This can be accomplished with present technology and probably at the least cost.

  18. Web Engineering

    Energy Technology Data Exchange (ETDEWEB)

    White, Bebo

    2003-06-23

    Web Engineering is the application of systematic, disciplined and quantifiable approaches to development, operation, and maintenance of Web-based applications. It is both a pro-active approach and a growing collection of theoretical and empirical research in Web application development. This paper gives an overview of Web Engineering by addressing the questions: (a) why is it needed? (b) what is its domain of operation? (c) how does it help and what should it do to improve Web application development? and (d) how should it be incorporated in education and training? The paper discusses the significant differences that exist between Web applications and conventional software, the taxonomy of Web applications, the progress made so far and the research issues and experience of creating a specialization at the master's level. The paper reaches a conclusion that Web Engineering at this stage is a moving target since Web technologies are constantly evolving, making new types of applications possible, which in turn may require innovations in how they are built, deployed and maintained.

  19. Materials Science and Engineering |

    Science.gov (United States)

    Engineering? What Is Materials Science and Engineering? MSE combines engineering, physics and chemistry to solve problems in nanotechnology, biotechnology, information technology, energy, manufacturing, and more ,' which could replace steel. Materials Science and Mechanical Engineering Professors work together to

  20. Engineering justice transforming engineering education and practice

    CERN Document Server

    Leydens, Jon A

    2018-01-01

    Using social justice as a catalyst for curricular transformation, Engineering Justice presents an examination of how politics, culture, and other social issues are inherent in the practice of engineering. It aims to align engineering curricula with socially just outcomes, increase enrollment among underrepresented groups, and lessen lingering gender, class, and ethnicity gaps by showing how the power of engineering knowledge can be explicitly harnessed to serve the underserved and address social inequalities. This book is meant to transform the way educators think about engineering curricula through creating or transforming existing courses to attract, retain, and motivate engineering students to become professionals who enact engineering for social justice. Engineering Justice offers thought-provoking chapters on: why social justice is inherent yet often invisible in engineering education and practice; engineering design for social justice; social justice in the engineering sciences; social justice in human...

  1. Coupled 2-dimensional cascade theory for noise and unsteady aerodynamics of blade row interaction in turbofans. Volume 1: Theory development and parametric studies

    Science.gov (United States)

    Hanson, Donald B.

    1994-01-01

    Typical analytical models for interaction between rotor and stator in a turbofan analyze the effect of wakes from the rotor impinging on the stator, producing unsteady loading, and thereby generating noise. Reflection/transmission characteristics of the rotor are sometimes added in a separate calculation. In those models, there is a one-to-one relationship between wake harmonics and noise harmonics; that is, the BPF (blade passing frequency) wake harmonic causes only the BPF noise harmonic, etc. This report presents a more complete model in which flow tangency boundary conditions are satisfied on two cascades in relative motion for several harmonics simultaneously. By an extension of S.N. Smith's code for two dimensional flat plate cascades, the noise generation/frequency scattering/blade row reflection problem is solved in a single matrix inversion. It is found that the BPF harmonic excitation of the stator scatters considerable energy in the higher BPF harmonics due to relative motion between the blade rows. Furthermore, when swirl between the rotor and stator is modeled, a 'mode trapping' effect occurs which explains observations on fans operating at rotational speeds below BFP cuton: the BPF mode amplifies between blade rows by multiple reflections but cannot escape to the inlet and exit ducts. However, energy scattered into higher harmonics does propagate and dominates the spectrum at two and three times BPF. This report presents the complete derivation of the theory, comparison with a previous (more limited) coupled rotor/stator interaction theory due to Kaji and Okazaki, exploration of the mode trapping phenomenon, and parametric studies showing the effects of vane/blade ratio and rotor/stator interaction. For generality, the analysis applies to stages where the rotor is either upstream or downstream of the stator and to counter rotation stages. The theory has been coded in a FORTRAN program called CUP2D, documented in Volume 2 of this report. It is

  2. Microprocessor engineering

    CERN Document Server

    Holdsworth, B

    2013-01-01

    Microprocessor Engineering provides an insight in the structures and operating techniques of a small computer. The book is comprised of 10 chapters that deal with the various aspects of computing. The first two chapters tackle the basic arithmetic and logic processes. The third chapter covers the various memory devices, both ROM and RWM. Next, the book deals with the general architecture of microprocessor. The succeeding three chapters discuss the software aspects of machine operation, while the last remaining three chapters talk about the relationship of the microprocessor with the outside wo

  3. Internet Search Engines

    OpenAIRE

    Fatmaa El Zahraa Mohamed Abdou

    2004-01-01

    A general study about the internet search engines, the study deals main 7 points; the differance between search engines and search directories, components of search engines, the percentage of sites covered by search engines, cataloging of sites, the needed time for sites appearance in search engines, search capabilities, and types of search engines.

  4. A supersonic fan equipped variable cycle engine for a Mach 2.7 supersonic transport

    Science.gov (United States)

    Tavares, T. S.

    1985-01-01

    The concept of a variable cycle turbofan engine with an axially supersonic fan stage as powerplant for a Mach 2.7 supersonic transport was evaluated. Quantitative cycle analysis was used to assess the effects of the fan inlet and blading efficiencies on engine performance. Thrust levels predicted by cycle analysis are shown to match the thrust requirements of a representative aircraft. Fan inlet geometry is discussed and it is shown that a fixed geometry conical spike will provide sufficient airflow throughout the operating regime. The supersonic fan considered consists of a single stage comprising a rotor and stator. The concept is similar in principle to a supersonic compressor, but differs by having a stator which removes swirl from the flow without producing a net rise in static pressure. Operating conditions peculiar to the axially supersonic fan are discussed. Geometry of rotor and stator cascades are presented which utilize a supersonic vortex flow distribution. Results of a 2-D CFD flow analysis of these cascades are presented. A simple estimate of passage losses was made using empirical methods.

  5. Dynamic behavior of aero-engine rotor with fusing design suffering blade off

    Directory of Open Access Journals (Sweden)

    Cun WANG

    2017-06-01

    Full Text Available Fan blade off (FBO from a running turbofan rotor will introduce sudden unbalance into the dynamical system, which will lead to the rub-impact, the asymmetry of rotor and a series of interesting dynamic behavior. The paper first presents a theoretical study on the response excited by sudden unbalance. The results reveal that the reaction force of the bearing located near the fan could always reach a very high value which may lead to the crush of ball, journal sticking, high stress on the other components and some other failures to endanger the safety of engine in FBO event. Therefore, the dynamic influence of a safety design named “fusing” is investigated by mechanism analysis. Meantime, an explicit FBO model is established to simulate the FBO event, and evaluate the effectiveness and potential dynamic influence of fusing design. The results show that the fusing design could reduce the vibration amplitude of rotor, the reaction force on most bearings and loads on mounts, but the sudden change of support stiffness induced by fusing could produce an impact effect which will couple with the influence of sudden unbalance. Therefore, the implementation of the design should be considered carefully with optimized parameters in actual aero-engine.

  6. An improved particle filtering algorithm for aircraft engine gas-path fault diagnosis

    Directory of Open Access Journals (Sweden)

    Qihang Wang

    2016-07-01

    Full Text Available In this article, an improved particle filter with electromagnetism-like mechanism algorithm is proposed for aircraft engine gas-path component abrupt fault diagnosis. In order to avoid the particle degeneracy and sample impoverishment of normal particle filter, the electromagnetism-like mechanism optimization algorithm is introduced into resampling procedure, which adjusts the position of the particles through simulating attraction–repulsion mechanism between charged particles of the electromagnetism theory. The improved particle filter can solve the particle degradation problem and ensure the diversity of the particle set. Meanwhile, it enhances the ability of tracking abrupt fault due to considering the latest measurement information. Comparison of the proposed method with three different filter algorithms is carried out on a univariate nonstationary growth model. Simulations on a turbofan engine model indicate that compared to the normal particle filter, the improved particle filter can ensure the completion of the fault diagnosis within less sampling period and the root mean square error of parameters estimation is reduced.

  7. A Novel Data Hierarchical Fusion Method for Gas Turbine Engine Performance Fault Diagnosis

    Directory of Open Access Journals (Sweden)

    Feng Lu

    2016-10-01

    Full Text Available Gas path fault diagnosis involves the effective utilization of condition-based sensor signals along engine gas path to accurately identify engine performance failure. The rapid development of information processing technology has led to the use of multiple-source information fusion for fault diagnostics. Numerous efforts have been paid to develop data-based fusion methods, such as neural networks fusion, while little research has focused on fusion architecture or the fusion of different method kinds. In this paper, a data hierarchical fusion using improved weighted Dempster–Shaffer evidence theory (WDS is proposed, and the integration of data-based and model-based methods is presented for engine gas-path fault diagnosis. For the purpose of simplifying learning machine typology, a recursive reduced kernel based extreme learning machine (RR-KELM is developed to produce the fault probability, which is considered as the data-based evidence. Meanwhile, the model-based evidence is achieved using particle filter-fuzzy logic algorithm (PF-FL by engine health estimation and component fault location in feature level. The outputs of two evidences are integrated using WDS evidence theory in decision level to reach a final recognition decision of gas-path fault pattern. The characteristics and advantages of two evidences are analyzed and used as guidelines for data hierarchical fusion framework. Our goal is that the proposed methodology provides much better performance of gas-path fault diagnosis compared to solely relying on data-based or model-based method. The hierarchical fusion framework is evaluated in terms to fault diagnosis accuracy and robustness through a case study involving fault mode dataset of a turbofan engine that is generated by the general gas turbine simulation. These applications confirm the effectiveness and usefulness of the proposed approach.

  8. Engineering Encounters: Teaching Educators about Engineering

    Science.gov (United States)

    Tank, Kristina M.; Raman, D. Raj; Lamm, Monica H.; Sundararajan, Sriram; Estapa, Anne

    2017-01-01

    This column presents ideas and techniques to enhance science teaching. This month's issue describes preservice elementary teachers learning engineering principles from engineers. Few elementary teachers have experience with implementing engineering into the classroom. While engineering professional development opportunities for inservice teachers…

  9. An engineering context for software engineering

    OpenAIRE

    Riehle, Richard D.

    2008-01-01

    New engineering disciplines are emerging in the late Twentieth and early Twenty-first Century. One such emerging discipline is software engineering. The engineering community at large has long harbored a sense of skepticism about the validity of the term software engineering. During most of the fifty-plus years of software practice, that skepticism was probably justified. Professional education of software developers often fell short of the standard expected for conventional engineers; so...

  10. Mechanical engineering

    International Nuclear Information System (INIS)

    1988-01-01

    The Mechanical Engineering Division provides the other NAC divisions with design and construction services. Items of special mechanical significance are discussed here. The projects which received major design attention during the past year were: a coupling capacitor for SPC2; a bending magnet and solenoid for ECR ion source; a scanner for outer orbits of the SSC; a scattering chamber for an experimental beamline; a beam swinger; a rotary target magazine for isotope production; a robot arm for isotope production; an isotope transport system and a target cooling system for isotope production. The major projects that were under construction are: a magnetic spectrometer; a second injector cyclotron (SPC2) and extensions to the high-energy beamlines. 4 figs

  11. Engineering viscoelasticity

    CERN Document Server

    Gutierrez-Lemini, Danton

    2014-01-01

    Engineering Viscoelasticity covers all aspects of the thermo- mechanical response of viscoelastic substances that a practitioner in the field of viscoelasticity would need to design experiments, interpret test data, develop stress-strain models, perform stress analyses, design structural components, and carry out research work. The material in each chapter is developed from the elementary to the advanced, providing the background in mathematics and mechanics that are central to understanding the subject matter being presented. The book examines how viscoelastic materials respond to the application of loads, and provides practical guidelines to use them in the design of commercial, military and industrial applications. This book also: ·         Facilitates conceptual understanding by progressing in each chapter from elementary to challenging material ·         Examines in detail both differential and integral constitutive equations, devoting full chapters to each type and using both forms in ...

  12. Engineering electromagnetics

    CERN Document Server

    Thomas, David T; Hartnett, James P; Hughes, William F

    1973-01-01

    The applications involving electromagnetic fields are so pervasive that it is difficult to estimate their contribution to the industrial output: generation of electricity, power transmission lines, electric motors, actuators, relays, radio, TV and microwave transmission and reception, magnetic storage, and even the mundane little magnet used to hold a paper note on the refrigerator are all electromagnetic in nature. One would be hard pressed to find a device that works without relaying on any electromagnetic principle or effect. This text provides a good theoretical understanding of the electromagnetic field equations but also treats a large number of applications. In fact, no topic is presented unless it is directly applicable to engineering design or unless it is needed for the understanding of another topic. In electrostatics, for example, the text includes discussions of photocopying, ink-jet printing, electrostatic separation and deposition, sandpaper production, paint spraying, and powder coating. In ma...

  13. Regenerative engineering

    CERN Document Server

    Laurencin, Cato T

    2013-01-01

    Regenerative Engineering: The Future of Medicine Saadiq F. El-Amin III , MD , PhD; Joylene W.L. Thomas, MD ; Ugonna N. Ihekweazu, MD ; Mia D. Woods, MS; and Ashim Gupta, MSCell Biology Gloria Gronowicz, PhD and Karen Sagomonyants, DMDStem Cells and Tissue Regeneration Kristen Martins-Taylor, PhD; Xiaofang Wang, MD , PhD; Xue-Jun Li, PhD; and Ren-He Xu, MD , PhDIntroduction to Materials Science Sangamesh G. Kumbar, PhD and Cato T. Laurencin, MD , PhDBiomaterials A. Jon Goldberg, PhD and Liisa T. Kuhn, PhDIn Vitro Assessment of Cell-Biomaterial Interactions Yong Wang, PhDHost Response to Biomate

  14. Emplacement engineering

    Energy Technology Data Exchange (ETDEWEB)

    Hill, Ernest E [Lawrence Radiation Laboratory, University of California, Livermore, CA (United States)

    1970-05-01

    Emplacement Engineering can be defined as that portion of a nuclear explosive project that is concerned with the emplacement of the explosive. This definition would then include virtually everything except the design and fabrication of the explosive and the post-shot-effects program. For future commercial application, the post-shot-effects program will essentially disappear. This emplacement portion of a nuclear explosive project constitutes a large fraction of the total project cost, but it has largely been overshadowed by the explosive and explosive-effects portions. As we move into commercial applications. Emplacement Engineering must receive more attention from both industry and government. To place emplacement costs in their proper relationship with total projects costs, we have performed a study of commercial underground nuclear explosive applications such as gas stimulation. Although there are many intangibles in such a study, we have been able to at least obtain some feel for the relative fractional costs of the non-explosive costs compared with the explosive costs. This study involved estimating the cost elements for applications using a single explosive at 5,000 ft, 10,000 ft, and 15,000 ft. For each depth, the cost estimates were made for a range of emplacement hole and explosive diameters. Results of these estimates for explosive-related costs, hole-related costs, and total costs are shown for the three depths. Note that the explosive package outside diameter is assumed as 2 inches less than the hole (or casing) inside diameter for all cases. For the 5,000-ft application the explosive-related costs dominate, and of particular importance is the indicated diameter for minimum total cost which occurs at approximately a 17.5-in. hole (15.5-in. explosive). The hole-related costs are in 'the same range as the explosive-related costs for the 10,000-ft application. For this case, the minimum total cost occurs at approximately a 14-in. hole (12-in. explosive

  15. Engineers and Bildung

    DEFF Research Database (Denmark)

    Henriksen, Lars Bo

    2006-01-01

    and Bildung. In this chapter, this relation in investigated. In the first part, I present three engineers and their careers. In the second part, the concept of Bildung is analyzed, and in the third part, it is the conceptual relation between Bildung, engineers, and engineering work that is of concern.......What is an engineer? Or maybe better: how are engineers, and how are they “gebilded” in order to be able to be called engineers? In order to shed some light on this question we could ask: How is the relation between engineering and the making of an engineer, or the relation between engineering...

  16. Industrial Education. "Small Engines".

    Science.gov (United States)

    Parma City School District, OH.

    Part of a series of curriculum guides dealing with industrial education in junior high schools, this guide provides the student with information and manipulative experiences on small gasoline engines. Included are sections on shop adjustment, safety, small engines, internal combustion, engine construction, four stroke engines, two stroke engines,…

  17. Biosystems Engineering in Portugal

    OpenAIRE

    Marques da Silva, José Rafael; Silva, Luis Leopoldo; Cruz, Vasco Fitas

    2008-01-01

    The paper gives the definition of Biosystems Engineering in Portugal; Possible revisions of the core curriculum presented in the FEANI report; the current situation of Biosystems Engineering in Portugal; The impacts of the transition to Biosystems Engineering; The need for a transition to Biosystems Engineering;Opportunities to the Biosystems Engineer in the labour market.

  18. Metabolic Engineering X Conference

    Energy Technology Data Exchange (ETDEWEB)

    Flach, Evan [American Institute of Chemical Engineers

    2015-05-07

    The International Metabolic Engineering Society (IMES) and the Society for Biological Engineering (SBE), both technological communities of the American Institute of Chemical Engineers (AIChE), hosted the Metabolic Engineering X Conference (ME-X) on June 15-19, 2014 at the Westin Bayshore in Vancouver, British Columbia. It attracted 395 metabolic engineers from academia, industry and government from around the globe.

  19. Generation After Next Propulsor Research: Robust Design for Embedded Engine Systems

    Science.gov (United States)

    Arend, David J.; Tillman, Gregory; O'Brien, Walter F.

    2012-01-01

    The National Aeronautics and Space Administration, United Technologies Research Center and Virginia Polytechnic and State University have contracted to pursue multi-disciplinary research into boundary layer ingesting (BLI) propulsors for generation after next environmentally responsible subsonic fixed wing aircraft. This Robust Design for Embedded Engine Systems project first conducted a high-level vehicle system study based on a large commercial transport class hybrid wing body aircraft, which determined that a 3 to 5 percent reduction in fuel burn could be achieved over a 7,500 nanometer mission. Both pylon-mounted baseline and BLI propulsion systems were based on a low-pressure-ratio fan (1.35) in an ultra-high-bypass ratio engine (16), consistent with the next generation of advanced commercial turbofans. An optimized, coupled BLI inlet and fan system was subsequently designed to achieve performance targets identified in the system study. The resulting system possesses an inlet with total pressure losses less than 0.5%, and a fan stage with an efficiency debit of less than 1.5 percent relative to the pylon-mounted, clean-inflow baseline. The subject research project has identified tools and methodologies necessary for the design of next-generation, highly-airframe-integrated propulsion systems. These tools will be validated in future large-scale testing of the BLI inlet / fan system in NASA's 8 foot x 6 foot transonic wind tunnel. In addition, fan unsteady response to screen-generated total pressure distortion is being characterized experimentally in a JT15D engine test rig. These data will document engine sensitivities to distortion magnitude and spatial distribution, providing early insight into key physical processes that will control BLI propulsor design.

  20. Engineering allostery.

    Science.gov (United States)

    Raman, Srivatsan; Taylor, Noah; Genuth, Naomi; Fields, Stanley; Church, George M

    2014-12-01

    Allosteric proteins have great potential in synthetic biology, but our limited understanding of the molecular underpinnings of allostery has hindered the development of designer molecules, including transcription factors with new DNA-binding or ligand-binding specificities that respond appropriately to inducers. Such allosteric proteins could function as novel switches in complex circuits, metabolite sensors, or as orthogonal regulators for independent, inducible control of multiple genes. Advances in DNA synthesis and next-generation sequencing technologies have enabled the assessment of millions of mutants in a single experiment, providing new opportunities to study allostery. Using the classic LacI protein as an example, we describe a genetic selection system using a bidirectional reporter to capture mutants in both allosteric states, allowing the positions most crucial for allostery to be identified. This approach is not limited to bacterial transcription factors, and could reveal new mechanistic insights and facilitate engineering of other major classes of allosteric proteins such as nuclear receptors, two-component systems, G protein-coupled receptors, and protein kinases. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Meta Search Engines.

    Science.gov (United States)

    Garman, Nancy

    1999-01-01

    Describes common options and features to consider in evaluating which meta search engine will best meet a searcher's needs. Discusses number and names of engines searched; other sources and specialty engines; search queries; other search options; and results options. (AEF)

  2. NDE in biomedical engineering

    International Nuclear Information System (INIS)

    Bhagwat, Aditya; Kumar, Pradeep

    2015-01-01

    Biomedical Engineering (BME) is an interdisciplinary field, marking the conjunction of Medical and Engineering disciplines. It combines the design and problem solving skills of engineering with medical and biological sciences to advance health care treatment, including diagnosis, monitoring, and therapy

  3. Standing detonation wave engine

    KAUST Repository

    Kasimov, Aslan

    2015-01-01

    A detonation engine can detonate a mixture of fuel and oxidizer within a cylindrical detonation region to produce work. The detonation engine can have a first and a second inlet having ends fluidly connected from tanks to the detonation engine

  4. Turboelectric Distributed Propulsion Engine Cycle Analysis for Hybrid-Wing-Body Aircraft

    Science.gov (United States)

    Felder, James L.; Kim, Hyun Dae; Brown, Gerald V.

    2009-01-01

    Meeting NASA's N+3 goals requires a fundamental shift in approach to aircraft and engine design. Material and design improvements allow higher pressure and higher temperature core engines which improve the thermal efficiency. Propulsive efficiency, the other half of the overall efficiency equation, however, is largely determined by the fan pressure ratio (FPR). Lower FPR increases propulsive efficiency, but also dramatically reduces fan shaft speed through the combination of larger diameter fans and reduced fan tip speed limits. The result is that below an FPR of 1.5 the maximum fan shaft speed makes direct drive turbines problematic. However, it is the low pressure ratio fans that allow the improvement in propulsive efficiency which, along with improvements in thermal efficiency in the core, contributes strongly to meeting the N+3 goals for fuel burn reduction. The lower fan exhaust velocities resulting from lower FPRs are also key to meeting the aircraft noise goals. Adding a gear box to the standard turbofan engine allows acceptable turbine speeds to be maintained. However, development of a 50,000+ hp gearbox required by fans in a large twin engine transport aircraft presents an extreme technical challenge, therefore another approach is needed. This paper presents a propulsion system which transmits power from the turbine to the fan electrically rather than mechanically. Recent and anticipated advances in high temperature superconducting generators, motors, and power lines offer the possibility that such devices can be used to transmit turbine power in aircraft without an excessive weight penalty. Moving to such a power transmission system does more than provide better matching between fan and turbine shaft speeds. The relative ease with which electrical power can be distributed throughout the aircraft opens up numerous other possibilities for new aircraft and propulsion configurations and modes of operation. This paper discusses a number of these new

  5. Engineering Encounters: Blasting off with Engineering

    Science.gov (United States)

    Dare, Emily A.; Childs, Gregory T.; Cannaday, E. Ashley; Roehrig, Gillian H

    2014-01-01

    What better way to engage young students in physical science concepts than to have them engineer flying toy rockets? The integration of engineering into science classrooms is advocated by the "Next Generation Science Standards" (NGSS) and researchers alike (Brophy et al. 2008), as engineering provides: (1) A "real-world…

  6. Environmental Engineering in Mining Engineering Education

    Science.gov (United States)

    Mahamud-Lopez, Manuel Maria; Menendez-Aguado, Juan Maria

    2005-01-01

    In this paper, the current profile of the environmental engineer and the programming of the subject "Environmental Engineering and Technology" corresponding to the studies of Mining Engineering at the University of Oviedo in Spain, is discussed. Professional profile, student knowledge prior to and following instruction as well as…

  7. Modular Engineering Concept at Novo Nordisk Engineering

    DEFF Research Database (Denmark)

    Moelgaard, Gert; Miller, Thomas Dedenroth

    1997-01-01

    This report describes the concept of a new engineering method at Novo Nordisk Engineering: Modular Engineering (ME). Three tools are designed to support project phases with different levels of detailing and abstraction. ME supports a standard, cross-functional breakdown of projects that facilitates...

  8. Magical Engineering Plastic

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Gwang Ung

    1988-01-15

    This book introduces engineering plastic about advantage of engineering plastic, plastic material from processing method, plastic shock, plastic until now, background of making of engineering plastic, wonderful engineering plastic science such as a high molecule and molecule, classification of high molecule, difference between metal and high molecule, heat and high molecule materials, and property of surface, engineering plastic of dream like from linseed oil to aramid, small dictionary of engineering plastic.

  9. Magical Engineering Plastic

    International Nuclear Information System (INIS)

    Kim, Gwang Ung

    1988-01-01

    This book introduces engineering plastic about advantage of engineering plastic, plastic material from processing method, plastic shock, plastic until now, background of making of engineering plastic, wonderful engineering plastic science such as a high molecule and molecule, classification of high molecule, difference between metal and high molecule, heat and high molecule materials, and property of surface, engineering plastic of dream like from linseed oil to aramid, small dictionary of engineering plastic.

  10. Engine Test Facility (ETF)

    Data.gov (United States)

    Federal Laboratory Consortium — The Air Force Arnold Engineering Development Center's Engine Test Facility (ETF) test cells are used for development and evaluation testing of propulsion systems for...

  11. Contemporary engineering economics

    CERN Document Server

    Park, Chan S

    2011-01-01

    Contemporary Engineering Economics, 5/e, is intended for undergraduate engineering students taking introductory engineering economics while appealing to the full range of engineering disciplines for which this course is often required: industrial, civil, mechanical, electrical, computer, aerospace, chemical, and manufacturing engineering, as well as engineering technology. This edition has been thoroughly revised and updated while continuing to adopt a contemporary approach to the subject, and teaching, of engineering economics. This text aims not only to build a sound and comprehensive coverage of engineering economics, but also to address key educational challenges, such as student difficulty in developing the analytical skills required to make informed financial decisions.

  12. Solar engine system

    International Nuclear Information System (INIS)

    Tan, K.K.; Bahrom Sanugi; Chen, L.C.; Chong, K.K.; Jasmy Yunus; Kannan, K.S.; Lim, B.H.; Noriah Bidin; Omar Aliman; Sahar Salehan; Sheikh Ab Rezan Sheikh A H; Tam, C.M.; Chen, Y.T.

    2001-01-01

    This paper reports the revolutionary solar engine system in Universiti Teknologi Malaysia (UTM). The solar engine is a single cylinder stirling engine driven by solar thermal energy. A first prototype solar engine has been built and demonstrated. A new-concept non-imaging focusing heliostat and a recently invented optical receiver are used in the demonstration. Second generation of prototype solar engine is described briefly. In this paper, the solar engine system development is reported. Measurement for the first prototype engine speed, temperature and specifications are presented. The benefits and potential applications for the future solar engine system, especially for the electricity generating aspect are discussed. (Author)

  13. Sound engineering for diesel engines; Sound Engineering an Dieselmotoren

    Energy Technology Data Exchange (ETDEWEB)

    Enderich, A.; Fischer, R. [MAHLE Filtersysteme GmbH, Stuttgart (Germany)

    2006-07-01

    The strong acceptance for vehicles powered by turbo-charged diesel engines encourages several manufacturers to think about sportive diesel concepts. The approach of suppressing unpleasant noise by the application of distinctive insulation steps is not adequate to satisfy sportive needs. The acoustics cannot follow the engine's performance. This report documents, that it is possible to give diesel-powered vehicles a sportive sound characteristic by using an advanced MAHLE motor-sound-system with a pressure-resistant membrane and an integrated load controlled flap. With this the specific acoustic disadvantages of the diesel engine, like the ''diesel knock'' or a rough engine running can be masked. However, by the application of a motor-sound-system you must not negate the original character of the diesel engine concept, but accentuate its strong torque characteristic in the middle engine speed range. (orig.)

  14. Advanced Propfan Engine Technology (APET) definition study, single and counter-rotation gearbox/pitch change mechanism design

    Science.gov (United States)

    Anderson, R. D.

    1985-01-01

    Single-rotation propfan-powered regional transport aircraft were studied to identify key technology development issues and programs. The need for improved thrust specific fuel consumption to reduce fuel burned and aircraft direct operating cost is the dominant factor. Typical cycle trends for minimizing fuel consumption are reviewed, and two 10,000 shp class engine configurations for propfan propulsion systems for the 1990's are presented. Recommended engine configurations are both three-spool design with dual spool compressors and free power turbines. The benefits of these new propulsion system concepts were evaluated using an advanced airframe, and results are compared for single-rotation propfan and turbofan advanced technology propulsion systems. The single-rotation gearbox is compared to a similar design with current technology to establish the benefits of the advanced gearbox technology. The conceptual design of the advanced pitch change mechanism identified a high pressure hydraulic system that is superior to the other contenders and completely external to the gearboxes.

  15. 2016 Milwaukee Engineering Research Conference | College of Engineering &

    Science.gov (United States)

    Biomedical Engineering Concentration on Ergonomics M.S. Program in Computer Science Interdisciplinary Concentration on Energy Doctoral Programs in Engineering Non-Degree Candidate Departments Biomedical Engineering Biomedical Engineering Industry Advisory Council Civil & Environmental Engineering Civil &

  16. Fundamental of biomedical engineering

    CERN Document Server

    Sawhney, GS

    2007-01-01

    About the Book: A well set out textbook explains the fundamentals of biomedical engineering in the areas of biomechanics, biofluid flow, biomaterials, bioinstrumentation and use of computing in biomedical engineering. All these subjects form a basic part of an engineer''s education. The text is admirably suited to meet the needs of the students of mechanical engineering, opting for the elective of Biomedical Engineering. Coverage of bioinstrumentation, biomaterials and computing for biomedical engineers can meet the needs of the students of Electronic & Communication, Electronic & Instrumenta

  17. Studying Engineering Practice

    DEFF Research Database (Denmark)

    Buch, Anders

    2015-01-01

    The study of engineering practices has been the focus of Engineering Studies over the last three decades. Theses studies have used ethnographic and grounded methods in order to investigate engineering practices as they unfold in natural settings - in workplaces and engineering education. However......, engineering studies have not given much attention to conceptually clarifying what should be understood by 'engineering practices' and more precisely account for the composition and organization of the entities and phenomena that make up the practices. This chapter investigates and discusses how a 'practice...... will draw out some methodological consequences and discuss the ramifications of a practice theoretical approach for Engineering Studies....

  18. Strategic Plan | College of Engineering & Applied Science

    Science.gov (United States)

    Electrical Engineering Instructional Laboratories Student Resources Industrial & Manufacturing Engineering Industrial & Manufacturing Engineering Academic Programs Industrial & Manufacturing Engineering Major Industrial & Manufacturing Engineering Minor Industrial & Manufacturing Engineering

  19. News | College of Engineering & Applied Science

    Science.gov (United States)

    Electrical Engineering Instructional Laboratories Student Resources Industrial & Manufacturing Engineering Industrial & Manufacturing Engineering Academic Programs Industrial & Manufacturing Engineering Major Industrial & Manufacturing Engineering Minor Industrial & Manufacturing Engineering

  20. Structures Laboratory | College of Engineering & Applied Science

    Science.gov (United States)

    Electrical Engineering Instructional Laboratories Student Resources Industrial & Manufacturing Engineering Industrial & Manufacturing Engineering Academic Programs Industrial & Manufacturing Engineering Major Industrial & Manufacturing Engineering Minor Industrial & Manufacturing Engineering